Science.gov

Sample records for histone variant ratios

  1. Histone Variants and Epigenetics

    PubMed Central

    Henikoff, Steven; Smith, M. Mitchell

    2015-01-01

    Histones package and compact DNA by assembling into nucleosome core particles. Most histones are synthesized at S phase for rapid deposition behind replication forks. In addition, the replacement of histones deposited during S phase by variants that can be deposited independently of replication provide the most fundamental level of chromatin differentiation. Alternative mechanisms for depositing different variants can potentially establish and maintain epigenetic states. Variants have also evolved crucial roles in chromosome segregation, transcriptional regulation, DNA repair, and other processes. Investigations into the evolution, structure, and metabolism of histone variants provide a foundation for understanding the participation of chromatin in important cellular processes and in epigenetic memory. PMID:25561719

  2. Histones in functional diversification. Core histone variants.

    PubMed

    Pusarla, Rama-Haritha; Bhargava, Purnima

    2005-10-01

    Recent research suggests that minor changes in the primary sequence of the conserved histones may become major determinants for the chromatin structure regulating gene expression and other DNA-related processes. An analysis of the involvement of different core histone variants in different nuclear processes and the structure of different variant nucleosome cores shows that this may indeed be so. Histone variants may also be involved in demarcating functional regions of the chromatin. We discuss in this review why two of the four core histones show higher variation. A comparison of the status of variants in yeast with those from higher eukaryotes suggests that histone variants have evolved in synchrony with functional requirement of the cell.

  3. Histone variants: emerging players in cancer biology

    PubMed Central

    Vardabasso, Chiara; Hasson, Dan; Ratnakumar, Kajan; Chung, Chi-Yeh; Duarte, Luis F.

    2014-01-01

    Histone variants are key players in shaping chromatin structure, and, thus, in regulating fundamental cellular processes such as chromosome segregation and gene expression. Emerging evidence points towards a role for histone variants in contributing to tumor progression, and, recently, the first cancer-associated mutation in a histone variant-encoding gene was reported. In addition, genetic alterations of the histone chaperones that specifically regulate chromatin incorporation of histone variants are rapidly being uncovered in numerous cancers. Collectively, these findings implicate histone variants as potential drivers of cancer initiation and/or progression, and, therefore, targeting histone deposition or the chromatin remodeling machinery may be of therapeutic value. Here, we review the mammalian histone variants of the H2A and H3 families in their respective cellular functions, and their involvement in tumor biology. PMID:23652611

  4. Histone variants: key players of chromatin.

    PubMed

    Biterge, Burcu; Schneider, Robert

    2014-06-01

    Histones are fundamental structural components of chromatin. Eukaryotic DNA is wound around an octamer of the core histones H2A, H2B, H3, and H4. Binding of linker histone H1 promotes higher order chromatin organization. In addition to their structural role, histones impact chromatin function and dynamics by, e.g., post-translational histone modifications or the presence of specific histone variants. Histone variants exhibit differential expression timings (DNA replication-independent) and mRNA characteristics compared to canonical histones. Replacement of canonical histones with histone variants can affect nucleosome stability and help to create functionally distinct chromatin domains. In line with this, several histone variants have been implicated in the regulation of cellular processes such as DNA repair and transcriptional activity. In this review, we focus on recent progress in the study of core histone variants H2A.X, H2A.Z, macroH2A, H3.3, and CENP-A, as well as linker histone H1 variants, their functions and their links to development and disease.

  5. Analysis of histones and histone variants in plants.

    PubMed

    Trivedi, Ila; Rai, Krishan Mohan; Singh, Sunil Kumar; Kumar, Verandra; Singh, Mala; Ranjan, Amol; Lodhi, Niraj; Sawant, Samir V

    2012-01-01

    Histone proteins are the major protein components of chromatin - the physiologically relevant form of the genome (or epigenome) in all eukaryotic cells. For many years, histones were considered passive structural components of eukaryotic chromatin. In recent years, it has been demonstrated that dynamic association of histones and their variants to the genome plays a very important role in gene regulation. Histones are extensively modified during posttranslation viz. acetylation, methylation, phosphorylation, ubiquitylation, etc., and the identification of these covalent marks on canonical and variant histones is crucial for the understanding of their biological significance. Different biochemical techniques have been developed to purify and separate histone proteins; here, we describe techniques for analysis of histones from plant tissues.

  6. Histone variants: the tricksters of the chromatin world☆

    PubMed Central

    Volle, Catherine; Dalal, Yamini

    2014-01-01

    The eukaryotic genome exists in vivo at an equimolar ratio with histones, thus forming a polymer composed of DNA and histone proteins. Each nucleosomal unit in this polymer provides versatile capabilities and dynamic range. Substitutions of the individual components of the histone core with structurally distinct histone variants and covalent modifications alter the local fabric of the chromatin fiber, resulting in epigenetic changes that can be regulated by the cell. In this review, we highlight recent advances in the study of histone variant structure, assembly, and inheritance, their influence on nucleosome positioning, and their cumulative effect upon gene expression, DNA repair and the progression of disease. We also highlight fundamental questions that remain unanswered regarding the behavior of histone variants and their influence on cellular function in the normal and diseased states. PMID:24463272

  7. Histone chaperones FACT and Spt6 prevent histone variants from turning into histone deviants.

    PubMed

    Jeronimo, Célia; Robert, François

    2016-05-01

    Histone variants are specialized histones which replace their canonical counterparts in specific nucleosomes. Together with histone post-translational modifications and DNA methylation, they contribute to the epigenome. Histone variants are incorporated at specific locations by the concerted action of histone chaperones and ATP-dependent chromatin remodelers. Recent studies have shown that the histone chaperone FACT plays key roles in preventing pervasive incorporation of two histone variants: H2A.Z and CenH3/CENP-A. In addition, Spt6, another histone chaperone, was also shown to be important for appropriate H2A.Z localization. FACT and Spt6 are both associated with elongating RNA polymerase II. Based on these two examples, we propose that the establishment and maintenance of histone variant genomic distributions depend on a transcription-coupled epigenome editing (or surveillance) function of histone chaperones.

  8. Histone variants in plant transcriptional regulation.

    PubMed

    Jiang, Danhua; Berger, Frédéric

    2017-01-01

    Chromatin based organization of eukaryotic genome plays a profound role in regulating gene transcription. Nucleosomes form the basic subunits of chromatin by packaging DNA with histone proteins, impeding the access of DNA to transcription factors and RNA polymerases. Exchange of histone variants in nucleosomes alters the properties of nucleosomes and thus modulates DNA exposure during transcriptional regulation. Growing evidence indicates the important function of histone variants in programming transcription during developmental transitions and stress response. Here we review how histone variants and their deposition machineries regulate the nucleosome stability and dynamics, and discuss the link between histone variants and transcriptional regulation in plants. This article is part of a Special Issue entitled: Plant Gene Regulatory Mechanisms and Networks, edited by Dr. Erich Grotewold and Dr. Nathan Springer.

  9. Canonical and variant histones of protozoan parasites.

    PubMed

    Dalmasso, Maria Carolina; Sullivan, William Joseph; Angel, Sergio Oscar

    2011-06-01

    Protozoan parasites have tremendously diverse lifestyles that require adaptation to a remarkable assortment of different environmental conditions. In order to complete their life cycles, protozoan parasites rely on fine-tuning gene expression. In general, protozoa use novel regulatory elements, transcription factors, and epigenetic mechanisms to regulate their transcriptomes. One of the most surprising findings includes the nature of their histones--these primitive eukaryotes lack some histones yet harbor novel histone variants of unknown function. In this review, we describe the histone components of different protozoan parasites based on literature and database searching. We summarize the key discoveries regarding histones and histone variants and their impact on chromatin regulation in protozoan parasites. In addition, we list histone genes IDs, sequences, and genomic localization of several protozoan parasites and Microsporidia histones, obtained from a thorough search of genome databases. We then compare these findings with those observed in higher eukaryotes, allowing us to highlight some novel aspects of epigenetic regulation in protists and to propose questions to be addressed in the upcoming years.

  10. HistoneDB 2.0: a histone database with variants--an integrated resource to explore histones and their variants.

    PubMed

    Draizen, Eli J; Shaytan, Alexey K; Mariño-Ramírez, Leonardo; Talbert, Paul B; Landsman, David; Panchenko, Anna R

    2016-01-01

    Compaction of DNA into chromatin is a characteristic feature of eukaryotic organisms. The core (H2A, H2B, H3, H4) and linker (H1) histone proteins are responsible for this compaction through the formation of nucleosomes and higher order chromatin aggregates. Moreover, histones are intricately involved in chromatin functioning and provide a means for genome dynamic regulation through specific histone variants and histone post-translational modifications. 'HistoneDB 2.0--with variants' is a comprehensive database of histone protein sequences, classified by histone types and variants. All entries in the database are supplemented by rich sequence and structural annotations with many interactive tools to explore and compare sequences of different variants from various organisms. The core of the database is a manually curated set of histone sequences grouped into 30 different variant subsets with variant-specific annotations. The curated set is supplemented by an automatically extracted set of histone sequences from the non-redundant protein database using algorithms trained on the curated set. The interactive web site supports various searching strategies in both datasets: browsing of phylogenetic trees; on-demand generation of multiple sequence alignments with feature annotations; classification of histone-like sequences and browsing of the taxonomic diversity for every histone variant. HistoneDB 2.0 is a resource for the interactive comparative analysis of histone protein sequences and their implications for chromatin function. Database URL: http://www.ncbi.nlm.nih.gov/projects/HistoneDB2.0.

  11. Histone variants and chromatin assembly in plant abiotic stress responses.

    PubMed

    Zhu, Yan; Dong, Aiwu; Shen, Wen-Hui

    2013-01-01

    Genome organization into nucleosomes and higher-order chromatin structures has profound implications for the regulation of gene expression, DNA replication and repair. The structure of chromatin can be remodeled by several mechanisms; among others, nucleosome assembly/disassembly and replacement of canonical histones with histone variants constitute important ones. In this review, we provide a brief description on the current knowledge about histone chaperones involved in nucleosome assembly/disassembly and histone variants in Arabidopsis thaliana. We discuss recent advances in revealing crucial functions of histone chaperones, nucleosome assembly/disassembly and histone variants in plant response to abiotic stresses. It appears that chromatin structure remodeling may provide a flexible, global and stable means for the regulation of gene transcription to help plants more effectively cope with environmental stresses. This article is part of a Special Issue entitled: Histone chaperones and chromatin assembly.

  12. Genome-Wide Profiling of Histone Modifications and Histone Variants in Arabidopsis thaliana and Marchantia polymorpha.

    PubMed

    Yelagandula, Ramesh; Osakabe, Akihisa; Axelsson, Elin; Berger, Frederic; Kawashima, Tomokazu

    2017-01-01

    Histone modifications and histone variants barcode the genome and play major roles in epigenetic regulations. Chromatin immunoprecipitation (ChIP) coupled with next-generation sequencing (NGS) is a well-established method to investigate the landscape of epigenetic marks at a genomic level. Here, we describe procedures for conducting ChIP, subsequent NGS library construction, and data analysis on histone modifications and histone variants in Arabidopsis thaliana. We also describe an optimized nuclear isolation procedure to prepare chromatin for ChIP in the liverwort, Marchantia polymorpha, which is the emerging model plant ideal for evolutionary studies.

  13. Marking histone H3 variants: how, when and why?

    PubMed

    Loyola, Alejandra; Almouzni, Geneviève

    2007-09-01

    DNA in eukaryotic cells is compacted into chromatin, a regular repeated structure in which the nucleosome represents the basic unit. The nucleosome not only serves to compact the genetic material but also provides information that affects nuclear functions including DNA replication, repair and transcription. This information is conveyed through numerous combinations of histone post-translational modifications (PTMs) and histone variants. A recent challenge has been to understand how and when these combinations of PTMs are imposed and to what extent they are determined by the choice of a specific histone variant. Here we focus on histone H3 variants and the PTMs that they carry before and after their assembly into chromatin. We review and discuss recent knowledge about how the choice and initial modifications of a specific variant might affect PTM states and eventually the final epigenetic state of a chromosomal domain.

  14. Diversification of histone H2A variants during plant evolution.

    PubMed

    Kawashima, Tomokazu; Lorković, Zdravko J; Nishihama, Ryuichi; Ishizaki, Kimitsune; Axelsson, Elin; Yelagandula, Ramesh; Kohchi, Takayuki; Berger, Frederic

    2015-07-01

    Among eukaryotes, the four core histones show an extremely high conservation of their structure and form nucleosomes that compact, protect, and regulate access to genetic information. Nevertheless, in multicellular eukaryotes the two families, histone H2A and histone H3, have diversified significantly in key residues. We present a phylogenetic analysis across the green plant lineage that reveals an early diversification of the H2A family in unicellular green algae and remarkable expansions of H2A variants in flowering plants. We define motifs and domains that differentiate plant H2A proteins into distinct variant classes. In non-flowering land plants, we identify a new class of H2A variants and propose their possible role in the emergence of the H2A.W variant class in flowering plants.

  15. Germline-specific H1 variants: the "sexy" linker histones.

    PubMed

    Pérez-Montero, Salvador; Carbonell, Albert; Azorín, Fernando

    2016-03-01

    The eukaryotic genome is packed into chromatin, a nucleoprotein complex mainly formed by the interaction of DNA with the abundant basic histone proteins. The fundamental structural and functional subunit of chromatin is the nucleosome core particle, which is composed by 146 bp of DNA wrapped around an octameric protein complex formed by two copies of each core histone H2A, H2B, H3, and H4. In addition, although not an intrinsic component of the nucleosome core particle, linker histone H1 directly interacts with it in a monomeric form. Histone H1 binds nucleosomes near the exit/entry sites of linker DNA, determines nucleosome repeat length and stabilizes higher-order organization of nucleosomes into the ∼30 nm chromatin fiber. In comparison to core histones, histone H1 is less well conserved through evolution. Furthermore, histone H1 composition in metazoans is generally complex with most species containing multiple variants that play redundant as well as specific functions. In this regard, a characteristic feature is the presence of specific H1 variants that replace somatic H1s in the germline and during early embryogenesis. In this review, we summarize our current knowledge about their structural and functional properties.

  16. The right place at the right time: chaperoning core histone variants.

    PubMed

    Mattiroli, Francesca; D'Arcy, Sheena; Luger, Karolin

    2015-11-01

    Histone proteins dynamically regulate chromatin structure and epigenetic signaling to maintain cell homeostasis. These processes require controlled spatial and temporal deposition and eviction of histones by their dedicated chaperones. With the evolution of histone variants, a network of functionally specific histone chaperones has emerged. Molecular details of the determinants of chaperone specificity for different histone variants are only slowly being resolved. A complete understanding of these processes is essential to shed light on the genuine biological roles of histone variants, their chaperones, and their impact on chromatin dynamics.

  17. The right place at the right time: chaperoning core histone variants

    PubMed Central

    Mattiroli, Francesca; D’Arcy, Sheena; Luger, Karolin

    2015-01-01

    Histone proteins dynamically regulate chromatin structure and epigenetic signaling to maintain cell homeostasis. These processes require controlled spatial and temporal deposition and eviction of histones by their dedicated chaperones. With the evolution of histone variants, a network of functionally specific histone chaperones has emerged. Molecular details of the determinants of chaperone specificity for different histone variants are only slowly being resolved. A complete understanding of these processes is essential to shed light on the genuine biological roles of histone variants, their chaperones, and their impact on chromatin dynamics. PMID:26459557

  18. HistoneDB 2.0: a histone database with variants—an integrated resource to explore histones and their variants

    PubMed Central

    Draizen, Eli J.; Shaytan, Alexey K.; Mariño-Ramírez, Leonardo; Talbert, Paul B.; Landsman, David; Panchenko, Anna R.

    2016-01-01

    Compaction of DNA into chromatin is a characteristic feature of eukaryotic organisms. The core (H2A, H2B, H3, H4) and linker (H1) histone proteins are responsible for this compaction through the formation of nucleosomes and higher order chromatin aggregates. Moreover, histones are intricately involved in chromatin functioning and provide a means for genome dynamic regulation through specific histone variants and histone post-translational modifications. ‘HistoneDB 2.0 – with variants’ is a comprehensive database of histone protein sequences, classified by histone types and variants. All entries in the database are supplemented by rich sequence and structural annotations with many interactive tools to explore and compare sequences of different variants from various organisms. The core of the database is a manually curated set of histone sequences grouped into 30 different variant subsets with variant-specific annotations. The curated set is supplemented by an automatically extracted set of histone sequences from the non-redundant protein database using algorithms trained on the curated set. The interactive web site supports various searching strategies in both datasets: browsing of phylogenetic trees; on-demand generation of multiple sequence alignments with feature annotations; classification of histone-like sequences and browsing of the taxonomic diversity for every histone variant. HistoneDB 2.0 is a resource for the interactive comparative analysis of histone protein sequences and their implications for chromatin function. Database URL: http://www.ncbi.nlm.nih.gov/projects/HistoneDB2.0 PMID:26989147

  19. Histone H1 binding is inhibited by histone variant H3.3.

    PubMed

    Braunschweig, Ulrich; Hogan, Greg J; Pagie, Ludo; van Steensel, Bas

    2009-12-02

    Linker histones are involved in the formation of higher-order chromatin structure and the regulation of specific genes, yet it remains unclear what their principal binding determinants are. We generated a genome-wide high-resolution binding map for linker histone H1 in Drosophila cells, using DamID. H1 binds at similar levels across much of the genome, both in classic euchromatin and heterochromatin. Strikingly, there are pronounced dips of low H1 occupancy around transcription start sites for active genes and at many distant cis-regulatory sites. H1 dips are not due to lack of nucleosomes; rather, all regions with low binding of H1 show enrichment of the histone variant H3.3. Knockdown of H3.3 causes H1 levels to increase at these sites, with a concomitant increase in nucleosome repeat length. These changes are independent of transcriptional changes. Our results show that the H3.3 protein counteracts association of H1, providing a mechanism to keep diverse genomic sites in an open chromatin conformation.

  20. Every amino acid matters: essential contributions of histone variants to mammalian development and disease

    PubMed Central

    Maze, Ian; Noh, Kyung-Min; Soshnev, Alexey A.; Allis, C. David

    2014-01-01

    Despite a conserved role for histones as general DNA packaging agents, it is now clear that another key function of these proteins is to confer variations in chromatin structure to ensure dynamic patterns of transcriptional regulation in eukaryotes. The incorporation of histone variants is particularly important to this process. Recent knockdown and knockout studies in various cellular systems, as well as direct mutational evidence from human cancers, now suggest a crucial role for histone variant regulation in processes as diverse as differentiation and proliferation, meiosis and nuclear reprogramming. In this Review, we provide an overview of histone variants in the context of their unique functions during mammalian germ cell and embryonic development, and examine the consequences of aberrant histone variant regulation in human disease. PMID:24614311

  1. Prioritizing Rare Variants with Conditional Likelihood Ratios

    PubMed Central

    Li, Weili; Dobbins, Sara; Tomlinson, Ian; Houlston, Richard; Pal, Deb K.; Strug, Lisa J.

    2016-01-01

    Background Prioritizing individual rare variants within associated genes or regions often consists of an ad hoc combination of statistical and biological considerations. From the statistical perspective, rare variants are often ranked using Fisher’s exact p values, which can lead to different rankings of the same set of variants depending on whether 1- or 2-sided p values are used. Results We propose a likelihood ratio-based measure, maxLRc, for the statistical component of ranking rare variants under a case-control study design that avoids the hypothesis-testing paradigm. We prove analytically that the maxLRc is always well-defined, even when the data has zero cell counts in the 2×2 disease-variant table. Via simulation, we show that the maxLRc outperforms Fisher’s exact p values in most practical scenarios considered. Using next-generation sequence data from 27 rolandic epilepsy cases and 200 controls in a region previously shown to be linked to and associated with rolandic epilepsy, we demonstrate that rankings assigned by the maxLRc and exact p values can differ substantially. Conclusion The maxLRc provides reliable statistical prioritization of rare variants using only the observed data, avoiding the need to specify parameters associated with hypothesis testing that can result in ranking discrepancies across p value procedures; and it is applicable to common variant prioritization. PMID:25659987

  2. Distinct features of the histone core structure in nucleosomes containing the histone H2A.B variant.

    PubMed

    Sugiyama, Masaaki; Arimura, Yasuhiro; Shirayama, Kazuyoshi; Fujita, Risa; Oba, Yojiro; Sato, Nobuhiro; Inoue, Rintaro; Oda, Takashi; Sato, Mamoru; Heenan, Richard K; Kurumizaka, Hitoshi

    2014-05-20

    Nucleosomes containing a human histone variant, H2A.B, in an aqueous solution were analyzed by small-angle neutron scattering utilizing a contrast variation technique. Comparisons with the canonical H2A nucleosome structure revealed that the DNA termini of the H2A.B nucleosome are detached from the histone core surface, and flexibly expanded toward the solvent. In contrast, the histone tails are compacted in H2A.B nucleosomes compared to those in canonical H2A nucleosomes, suggesting that they bind to the surface of the histone core and/or DNA. Therefore, the histone tail dynamics may function to regulate the flexibility of the DNA termini in the nucleosomes.

  3. Proteomic characterization of histone variants in the mouse testis by mass spectrometry-based top-down analysis.

    PubMed

    Kwak, Ho-Geun; Dohmae, Naoshi

    2016-11-15

    Various histones, including testis-specific histones, exist during spermatogenesis and some of them have been reported to play a key role in chromatin remodeling. Mass spectrometry (MS)-based characterization has become the important step to understand histone structures. Although individual histones or partial histone variant groups have been characterized, the comprehensive analysis of histone variants has not yet been conducted in the mouse testis. Here, we present the comprehensive separation and characterization of histone variants from mouse testes by a top-down approach using MS. Histone variants were successfully separated on a reversed phase column using high performance liquid chromatography (HPLC) with an ion-pairing reagent. Increasing concentrations of testis-specific histones were observed in the mouse testis and some somatic histones increased in the epididymis. Specifically, the increase of mass abundance in H3.2 in the epididymis was inversely proportional to the decrease in H3t in the testis, which was approximately 80%. The top-down characterization of intact histone variants in the mouse testis was performed using LC-MS/MS. The masses of separated histone variants and their expected post-translation modifications were calculated by performing deconvolution with information taken from the database. TH2A, TH2B and H3t were characterized by MS/MS fragmentation. Our approach provides comprehensive knowledge for identification of histone variants in the mouse testis that will contribute to the structural and functional research of histone variants during spermatogenesis.

  4. Macro histone variants are critical for the differentiation of human pluripotent cells.

    PubMed

    Barrero, María J; Sese, Borja; Martí, Mercè; Izpisua Belmonte, Juan Carlos

    2013-05-31

    We have previously shown that macro histone variants (macroH2A) are expressed at low levels in stem cells and are up-regulated during differentiation. Here we show that the knockdown of macro histone variants impaired the in vitro and in vivo differentiation of human pluripotent cells, likely through defects in the silencing of pluripotency-related genes. ChIP experiments showed that during differentiation macro histone variants are recruited to the regulatory regions of pluripotency and developmental genes marked with H3K27me3 contributing to the silencing of these genes.

  5. Macro Histone Variants Are Critical for the Differentiation of Human Pluripotent Cells*

    PubMed Central

    Barrero, María J.; Sese, Borja; Martí, Mercè; Izpisua Belmonte, Juan Carlos

    2013-01-01

    We have previously shown that macro histone variants (macroH2A) are expressed at low levels in stem cells and are up-regulated during differentiation. Here we show that the knockdown of macro histone variants impaired the in vitro and in vivo differentiation of human pluripotent cells, likely through defects in the silencing of pluripotency-related genes. ChIP experiments showed that during differentiation macro histone variants are recruited to the regulatory regions of pluripotency and developmental genes marked with H3K27me3 contributing to the silencing of these genes. PMID:23595991

  6. Maintenance of cell fates through acetylated histone and the histone variant H2A.z in C. elegans.

    PubMed

    Shibata, Yukimasa; Nishiwaki, Kiyoji

    2014-01-01

    Maintenance of cell fates is essential for the development and homeostasis of multicellular organisms and involves the preservation of the expression status of selector genes that control many target genes. Epigenetic marks have pivotal roles in the maintenance of gene expression status, as occurs with methylation on lysine 27 of histone H3 (H3K27me) for Hox gene regulation. In contrast, because the levels of histone acetylation decrease during the mitotic phase, acetylated histone has not been believed to contribute to the maintenance of cell fates. Because members of the bromodomain and extra terminal (BET) family bind to acetylated histones localized on mitotic chromosomes, it is possible that they may regulate the transcriptional status of genes throughout the cell cycle. In this commentary, we discuss the recent analyses of C. elegans BET family protein BET-1, which contributes to the maintenance of cell fates through the histone H2A variant HTZ-1/H2A.z. This mechanism represses transcription of selector genes in the genomic region where lysine 27 of histone H3 (H3K27) is demethylated by histone demethylase UTX-1. We discuss the possibility that BET-1 and HTZ-1 maintain the poised state of RNA polymerase II in the cell such that it is ready to respond to differentiation signals.

  7. Histone H2A variants in nucleosomes and chromatin: more or less stable?

    PubMed

    Bönisch, Clemens; Hake, Sandra B

    2012-11-01

    In eukaryotes, DNA is organized together with histones and non-histone proteins into a highly complex nucleoprotein structure called chromatin, with the nucleosome as its monomeric subunit. Various interconnected mechanisms regulate DNA accessibility, including replacement of canonical histones with specialized histone variants. Histone variant incorporation can lead to profound chromatin structure alterations thereby influencing a multitude of biological processes ranging from transcriptional regulation to genome stability. Among core histones, the H2A family exhibits highest sequence divergence, resulting in the largest number of variants known. Strikingly, H2A variants differ mostly in their C-terminus, including the docking domain, strategically placed at the DNA entry/exit site and implicated in interactions with the (H3-H4)(2)-tetramer within the nucleosome and in the L1 loop, the interaction interface of H2A-H2B dimers. Moreover, the acidic patch, important for internucleosomal contacts and higher-order chromatin structure, is altered between different H2A variants. Consequently, H2A variant incorporation has the potential to strongly regulate DNA organization on several levels resulting in meaningful biological output. Here, we review experimental evidence pinpointing towards outstanding roles of these highly variable regions of H2A family members, docking domain, L1 loop and acidic patch, and close by discussing their influence on nucleosome and higher-order chromatin structure and stability.

  8. Histone H2A variants in nucleosomes and chromatin: more or less stable?

    PubMed Central

    Bönisch, Clemens; Hake, Sandra B.

    2012-01-01

    In eukaryotes, DNA is organized together with histones and non-histone proteins into a highly complex nucleoprotein structure called chromatin, with the nucleosome as its monomeric subunit. Various interconnected mechanisms regulate DNA accessibility, including replacement of canonical histones with specialized histone variants. Histone variant incorporation can lead to profound chromatin structure alterations thereby influencing a multitude of biological processes ranging from transcriptional regulation to genome stability. Among core histones, the H2A family exhibits highest sequence divergence, resulting in the largest number of variants known. Strikingly, H2A variants differ mostly in their C-terminus, including the docking domain, strategically placed at the DNA entry/exit site and implicated in interactions with the (H3–H4)2-tetramer within the nucleosome and in the L1 loop, the interaction interface of H2A–H2B dimers. Moreover, the acidic patch, important for internucleosomal contacts and higher-order chromatin structure, is altered between different H2A variants. Consequently, H2A variant incorporation has the potential to strongly regulate DNA organization on several levels resulting in meaningful biological output. Here, we review experimental evidence pinpointing towards outstanding roles of these highly variable regions of H2A family members, docking domain, L1 loop and acidic patch, and close by discussing their influence on nucleosome and higher-order chromatin structure and stability. PMID:23002134

  9. New functions for an old variant: no substitute for histone H3.3

    PubMed Central

    Elsaesser, Simon J; Goldberg, Aaron D; Allis, C David

    2010-01-01

    Histone proteins often come in different variants serving specialized functions in addition to their fundamental role in packaging DNA. The metazoan histone H3.3 has been most closely associated with active transcription. Its role in histone replacement at active genes and promoters is conserved to the single histone H3 in yeast. However, recent genetic studies in flies have challenged its importance as a mark of active chromatin, and revealed unexpected insights into essential functions of H3.3 in the germline. With strikingly little amino acid sequence difference to the canonical H3, H3.3 therefore accomplishes a surprising variety of cellular and developmental processes. PMID:20153629

  10. Nuclear and nucleolar activity of linker histone variant H1.0.

    PubMed

    Kowalski, Andrzej

    2016-01-01

    Histone H1.0 belongs to the class of linker histones (H1), although it is substantially distinct from other histone H1 family members. The differences can be observed in the chromosomal location and organization of the histone H1.0 encoding gene, as well as in the length and composition of its amino acid chain. Whereas somatic (H1.1-H1.5) histone H1 variants are synthesized in the cell cycle S-phase, histone H1.0 is synthesized throughout the cell cycle. By replacing somatic H1 variants during cell maturation, histone H1.0 is gradually deposited in low dividing cells and achieves the highest level of expression in the terminally differentiated cells. Compared to other differentiation-specific H1 histone (H5) characteristic for unique tissue and organisms, the distribution of histone H1.0 remains non-specific. Classic investigations emphasize that histone H1.0 is engaged in the organization of nuclear chromatin accounting for formation and maintenance of its nucleosomal and higher-order structure, and thus influences gene expression. However, the recent data confirmed histone H1.0 peculiar localization in the nucleolus and unexpectedly revealed its potential for regulation of nucleolar, RNA-dependent, activity via interaction with other proteins. According to such findings, histone H1.0 participates in the formation of gene-coded information through its control at both transcriptional and translational levels. In order to reappraise the biological significance of histone H1.0, both aspects of its activity are presented in this review.

  11. Transcriptional and epigenetic functions of histone variant H2A.Z.

    PubMed

    Draker, Ryan; Cheung, Peter

    2009-02-01

    The chromatin organization of a genome ultimately dictates the gene expression profile of the cell. It is now well recognized that key mechanisms that regulate chromatin structure include post-translational modifications of histones and the incorporation of histone variants at strategic sites within the genome. H2A.Z is a variant of H2A that is localized to the 5' end of many genes and is required for proper regulation of gene expression. However, its precise function in the transcription process is not yet well defined. In this review, we discuss some of the recent findings related to this histone variant, how it associates with other histone epigenetic marks, and how post-translational modifications of H2A.Z further define its function.

  12. Dynamic expression of combinatorial replication-dependent histone variant genes during mouse spermatogenesis.

    PubMed

    Sun, Rongfang; Qi, Huayu

    2014-01-01

    Nucleosomes are basic chromatin structural units that are formed by DNA sequences wrapping around histones. Global chromatin states in different cell types are specified by combinatorial effects of post-translational modifications of histones and the expression of histone variants. During mouse spermatogenesis, spermatogonial stem cells (SSCs) self-renew while undergo differentiation, events that occur in the company of constant re-modeling of chromatin structures. Previous studies have shown that testes contain highly expressed or specific histone variants to facilitate these epigenetic modifications. However, mechanisms of regulating the epigenetic changes and the specific histone compositions of spermatogenic cells are not fully understood. Using real time quantitative RT-PCR, we examined the dynamic expression of replication-dependent histone genes in post-natal mouse testes. It was found that distinct sets of histone genes are expressed in various spermatogenic cells at different stages during spermatogenesis. While gonocyte-enriched testes from mice at 2-dpp (days post partum) express pre-dominantly thirteen histone variant genes, SSC-stage testes at 9-dpp highly express a different set of eight histone genes. During differentiation stage when testes are occupied mostly by spermatocytes and spermatids, another twenty-two histone genes are expressed much higher than the rest, including previously known testis-specific hist1h1t, hist1h2ba and hist1h4c. In addition, histone genes that are pre-dominantly expressed in gonocytes and SSCs are also highly expressed in embryonic stem cells. Several of them were changed when embryoid bodies were formed from ES cells, suggesting their roles in regulating pluripotency of the cells. Further more, differentially expressed histone genes are specifically localized in either SSCs or spermatocytes and spermatids, as demonstrated by in situ hybridization using gene specific probes. Taken together, results presented here

  13. Phylogenomics of unusual histone H2A Variants in Bdelloid rotifers.

    PubMed

    Van Doninck, Karine; Mandigo, Morgan L; Hur, Jae H; Wang, Peter; Guglielmini, Julien; Milinkovitch, Michel C; Lane, William S; Meselson, Matthew

    2009-03-01

    Rotifers of Class Bdelloidea are remarkable in having evolved for millions of years, apparently without males and meiosis. In addition, they are unusually resistant to desiccation and ionizing radiation and are able to repair hundreds of radiation-induced DNA double-strand breaks per genome with little effect on viability or reproduction. Because specific histone H2A variants are involved in DSB repair and certain meiotic processes in other eukaryotes, we investigated the histone H2A genes and proteins of two bdelloid species. Genomic libraries were built and probed to identify histone H2A genes in Adineta vaga and Philodina roseola, species representing two different bdelloid families. The expressed H2A proteins were visualized on SDS-PAGE gels and identified by tandem mass spectrometry. We find that neither the core histone H2A, present in nearly all other eukaryotes, nor the H2AX variant, a ubiquitous component of the eukaryotic DSB repair machinery, are present in bdelloid rotifers. Instead, they are replaced by unusual histone H2A variants of higher mass. In contrast, a species of rotifer belonging to the facultatively sexual, desiccation- and radiation-intolerant sister class of bdelloid rotifers, the monogononts, contains a canonical core histone H2A and appears to lack the bdelloid H2A variant genes. Applying phylogenetic tools, we demonstrate that the bdelloid-specific H2A variants arose as distinct lineages from canonical H2A separate from those leading to the H2AX and H2AZ variants. The replacement of core H2A and H2AX in bdelloid rotifers by previously uncharacterized H2A variants with extended carboxy-terminal tails is further evidence for evolutionary diversity within this class of histone H2A genes and may represent adaptation to unusual features specific to bdelloid rotifers.

  14. Differential Expression of Histone H3 Gene Variants during Cell Cycle and Somatic Embryogenesis in Alfalfa

    PubMed Central

    Kapros, Tamás; Bögre, László; Németh, Kinga; Bakó, László; Györgyey, János; Wu, Sheng Cheng; Dudits, Dénes

    1992-01-01

    Northern analysis has revealed substantial differences in mRNA accumulation of the two histone H3 gene variants represented by pH3c-1 and pH3c-11 cDNA clones. Both in partially synchronized cell suspension cultures and in protoplast-derived cells from alfalfa, Medicago varia, the maximal level of the histone H3-1 gene transcript coincided with the peak in [3H]thymidine incorporation. Histone H3-11 mRNA was detectable in cells throughout the period of the cell cycle studied. Various stress factors such as medium replacement, enzyme digestion of the cell wall, osmotic shock, and auxin treatment considerably increased the level of the histone H3-11 transcript. In alfalfa (Medicago sativa), the presence of H3-11 mRNA in unorganized tissues of microcallus suspension and in somatic embryos induced by auxin treatment supports the idea that this H3 variant exists in a continously active state of transcription. During embryo development, the early globular stage embryos showed increased accumulation of histone H3-11 mRNA in comparison with the later stages. The highest level of the histone H3-1 transcript was detectable 1 day after treatment of callus tissues with 2,4-dichlorophenoxyacetic acid. Somatic embryos contained appreciable levels of histone H3-1 transcripts at all stages of somatic embryo development. These observations suggest that the histone H3-1 gene belòngs to the class of replication-dependent histone genes. The histone H3-11 gene showed characteristics of a constitutively expressed replacement-type histone gene, with a specific characteristic that external factors can influence the level of gene transcription. ImagesFigure 1Figure 2Figure 3Figure 4 PMID:16668686

  15. Changes in nucleosomal core histone variants during chicken development and maturation.

    PubMed

    Urban, M K; Zweidler, A

    1983-02-01

    The nucleosomal core histones H2A, H2B, and H3 of the chicken can be resolved by polyacrylamide gel electrophoresis in the presence of nonionic detergents into two primary structure variants each, which occur in different relative amounts in various adult tissues. Quantitative analysis of the histone components throughout embryonic development and posthatching maturation of the chicken revealed that the proportions of the three pairs of variants change independently. Thus, the two H2A variants occur in similar proportions throughout embryonic development and in all adult tissues. In contrast, only one variant each of H2B and H3 is detectable at the earliest stages (primitive streak). The second variant of these histones becomes detectable and increases gradually during somite formation (2-12 days of incubation) to reach a plateau at a level of about 3 and 10% of total H2B and H3 histones, respectively. After hatching, the relative amounts of the minor H2B and H3 variants remain at embryonic levels in those tissues which maintain a high mitotic activity such as blood-forming tissues, but increase with different kinetics in tissues which essentially stop cell division in adults (e.g., liver, kidney, etc.). However, while H2B.2 remains a very minor component in all tissues, H3.3 increases at a relatively high rate for more than a year to become the predominant H3 variant in the liver and kidney of older chickens. The changes in chicken core histone variant proportions appear to be related to changes in growth rate rather than cell differentiation. The extensive change of H3 variant proportions in nondividing adult tissues is most likely due to replication-independent incorporation of H3.3 into nucleosomes.

  16. In situ detection of histone variants and modifications in mouse brain using imaging mass spectrometry.

    PubMed

    Lahiri, Shibojyoti; Sun, Na; Solis-Mezarino, Victor; Fedisch, Andreas; Ninkovic, Jovica; Feuchtinger, Annette; Götz, Magdalena; Walch, Axel; Imhof, Axel

    2016-02-01

    Histone posttranslational modifications and histone variants control the epigenetic regulation of gene expression and affect a wide variety of biological processes. A complex pattern of such modifications and variants defines the identity of cells within complex organ systems and can therefore be used to characterize cells at a molecular level. However, their detection and identification in situ has been limited so far due to lack of specificity, selectivity, and availability of antihistone antibodies. Here, we describe a novel MALDI imaging MS based workflow, which enables us to detect and characterize histones by their intact mass and their correlation with cytological properties of the tissue using novel statistical and image analysis tools. The workflow allows us to characterize the in situ distribution of the major histone variants and their modification in the mouse brain. This new analysis tool is particularly useful for the investigation of expression patterns of the linker histone H1 variants for which suitable antibodies are so far not available. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. Protein Profiling and Histone Deacetylation Activities in Somaclonal Variants of Oil Palm (Elaeis guineensis Jacq.)

    PubMed Central

    Yaacob, Jamilah Syafawati; Loh, Hwei-San; Mat Taha, Rosna

    2013-01-01

    Mantled fruits as a result of somaclonal variation are often observed from the oil palm plantlets regenerated via tissue culture. The mantling of fruits with finger-like and thick outer coating phenotypes significantly reduces the seed size and oil content, posing a threat to oil palm planters, and may jeopardize the economic growth of countries that depend particularly on oil palm plantation. The molecular aspects of the occurrence of somaclonal variations are yet to be known, possibly due to gene repression such as DNA methylation, histone methylation and histone deacetylation. Histone deacetylases (HDACs), involved in eukaryotic gene regulation by catalyzing the acetyl groups are removal from lysine residues on histone, hence transcriptionally repress gene expression. This paper described the total protein polymorphism profiles of somaclonal variants of oil palm and the effects of histone deacetylation on this phenomenon. Parallel to the different phenotypes, the protein polymorphism profiles of the mantled samples (leaves, fruits, and florets) and the phenotypically normal samples were proven to be different. Higher HDAC activity was found in mantled leaf samples than in the phenotypically normal leaf samples, leading to a preliminary conclusion that histone deacetylation suppressed gene expression and contributed to the development of somaclonal variants. PMID:23844406

  18. Protein profiling and histone deacetylation activities in somaclonal variants of oil palm (Elaeis guineensis Jacq.).

    PubMed

    Yaacob, Jamilah Syafawati; Loh, Hwei-San; Mat Taha, Rosna

    2013-01-01

    Mantled fruits as a result of somaclonal variation are often observed from the oil palm plantlets regenerated via tissue culture. The mantling of fruits with finger-like and thick outer coating phenotypes significantly reduces the seed size and oil content, posing a threat to oil palm planters, and may jeopardize the economic growth of countries that depend particularly on oil palm plantation. The molecular aspects of the occurrence of somaclonal variations are yet to be known, possibly due to gene repression such as DNA methylation, histone methylation and histone deacetylation. Histone deacetylases (HDACs), involved in eukaryotic gene regulation by catalyzing the acetyl groups are removal from lysine residues on histone, hence transcriptionally repress gene expression. This paper described the total protein polymorphism profiles of somaclonal variants of oil palm and the effects of histone deacetylation on this phenomenon. Parallel to the different phenotypes, the protein polymorphism profiles of the mantled samples (leaves, fruits, and florets) and the phenotypically normal samples were proven to be different. Higher HDAC activity was found in mantled leaf samples than in the phenotypically normal leaf samples, leading to a preliminary conclusion that histone deacetylation suppressed gene expression and contributed to the development of somaclonal variants.

  19. Localization and expression of histone H2A variants during mouse oogenesis and preimplantation embryo development.

    PubMed

    Wu, B J; Dong, F L; Ma, X S; Wang, X G; Lin, F; Liu, H L

    2014-08-07

    Epigenetic modifications of the genome, such as histone H2A variants, ensure appropriate gene activation or silencing during oogenesis and preimplantation embryo development. We examined global localization and expression of the histone H2A variants, including H2A.Bbd, H2A.Z and H2A.X, during mouse oogenesis and preimplantation embryo development. Immunocytochemistry with specific antibodies against various histone H2A variants showed their localization and changes during oogenesis and preimplantation development. H2A.Bbd and H2A.Z were almost absent from nuclei of growing oocytes (except 5-day oocyte), whereas H2A.X was deposited in nuclei throughout oogenesis and in preimplantation embryos. In germinal vesicle (GV) oocyte chromatin, H2A.Bbd was detected as a weak signal, whereas no fluorescent signal was detected in GV breakdown (GVBD) or metaphase II (MII) oocytes; H2A.Z showed intense signals in chromatin of GV, GVBD and MII oocytes. H2A. Bbd showed very weak signals in both pronucleus and 2-cell embryo nuclei, but intense signals were detected in nuclei from 4-cell embryo to blastula. The H2A.Z signal was absent from pronucleus to morula chromatin, whereas a fluorescent signal was detected in blastula nuclei. Our results suggest that histone H2A variants are probably involved in reprogramming of genomes during oocyte meiosis or after fertilization.

  20. The role of variant histone H2AV in Drosophila melanogaster larval hematopoiesis.

    PubMed

    Grigorian, Melina; DeBruhl, Heather; Lipsick, Joseph S

    2017-04-15

    Replication-independent histone variants can replace the canonical replication-dependent histones. Vertebrates have multiple H2A variant histones, including H2AZ and H2AX that are present in most eukaryotes. H2AZ regulates transcriptional activation as well as the maintenance of gene silencing, while H2AX is important in DNA damage repair. The fruit fly Drosophila melanogaster has only one histone H2A variant (H2AV), which is a chimera of H2AZ and H2AX. In this study we found that lack of H2AV led to the formation of black melanotic masses in Drosophila third instar larvae. The formation of these masses was found in conjunction with a loss of the majority of the primary lymph gland lobes. Interestingly, the cells of the posterior signaling center were preserved in these mutants. Reduction of H2AV levels by RNAi knockdown caused a milder phenotype that preserved the lymph gland structure but that included precocious differentiation of the prohemocytes located within the medullary zone and the secondary lobes of the lymph gland. Mutant rescue experiments suggest that the H2AZ-like rather than the H2AX-like function of H2AV is primarily required for normal hematopoiesis. © 2017. Published by The Company of Biologists Ltd.

  1. Weaver Syndrome‐Associated EZH2 Protein Variants Show Impaired Histone Methyltransferase Function In Vitro

    PubMed Central

    Yap, Damian B.; Lewis, M.E. Suzanne; Chijiwa, Chieko; Ramos‐Arroyo, Maria A.; Tkachenko, Natália; Milano, Valentina; Fradin, Mélanie; McKinnon, Margaret L.; Townsend, Katelin N.; Xu, Jieqing; Van Allen, M.I.; Ross, Colin J.D.; Dobyns, William B.; Weaver, David D.; Gibson, William T.

    2016-01-01

    ABSTRACT Weaver syndrome (WS) is a rare congenital disorder characterized by generalized overgrowth, macrocephaly, specific facial features, accelerated bone age, intellectual disability, and susceptibility to cancers. De novo mutations in the enhancer of zeste homolog 2 (EZH2) have been shown to cause WS. EZH2 is a histone methyltransferase that acts as the catalytic agent of the polycomb‐repressive complex 2 (PRC2) to maintain gene repression via methylation of lysine 27 on histone H3 (H3K27). Functional studies investigating histone methyltransferase activity of mutant EZH2 from various cancers have been reported, whereas WS‐associated mutations remain poorly characterized. To investigate the role of EZH2 in WS, we performed functional studies using artificially assembled PRC2 complexes containing mutagenized human EZH2 that reflected the codon changes predicted from patients with WS. We found that WS‐associated amino acid alterations reduce the histone methyltransferase function of EZH2 in this in vitro assay. Our results support the hypothesis that WS is caused by constitutional mutations in EZH2 that alter the histone methyltransferase function of PRC2. However, histone methyltransferase activities of different EZH2 variants do not appear to correlate directly with the phenotypic variability between WS patients and individuals with a common c.553G>C (p.Asp185His) polymorphism in EZH2. PMID:26694085

  2. Separation of Variant Methylated Histone Tails by Differential Ion Mobility

    SciTech Connect

    Shvartsburg, Alexandre A.; Zheng, Yupeng; Smith, Richard D.; Kelleher, Neil

    2012-07-18

    Differential ion mobility spectrometry (FAIMS) is emerging as a broadly useful tool for separation of isomeric modified peptides with post-translational modifications (PTMs) attached to alternative residues. Such separations were anticipated to become more challenging for smaller PTMs and longer peptides. Here we show that FAIMS can fully resolve localization variants involving a PTM as minuscule as methylation, even for larger peptides in the middle-down range.

  3. Post-translational Modifications of Trypanosoma cruzi Canonical and Variant Histones.

    PubMed

    Picchi, Gisele F A; Zulkievicz, Vanessa; Krieger, Marco A; Zanchin, Nilson T; Goldenberg, Samuel; de Godoy, Lyris M F

    2017-03-03

    Chagas disease, caused by Trypanosoma cruzi, still affects millions of people around the world. No vaccines nor treatment for chronic Chagas disease are available, and chemotherapy for the acute phase is hindered by limited efficacy and severe side effects. The processes by which the parasite acquires infectivity and survives in different hosts involve tight regulation of gene expression, mainly post-transcriptionally. Nevertheless, chromatin structure/organization of trypanosomatids is similar to other eukaryotes, including histone variants and post-translational modifications. Emerging evidence suggests that epigenetic mechanisms also play an important role in the biology/pathogenesis of these parasites, making epigenetic targets suitable candidates to drug discovery. Here, we present the first comprehensive map of post-translational modifications of T. cruzi canonical and variant histones and show that its histone code can be as sophisticated as that of other eukaryotes. A total of 13 distinct modification types were identified, including rather novel and unusual ones such as alternative lysine acylations, serine/threonine acetylation, and N-terminal methylation. Some histone marks correlate to those described for other organisms, suggesting that similar regulatory mechanisms may be in place. Others, however, are unique to T. cruzi or to trypanosomatids as a group and might represent good candidates for the development of antiparasitic drugs.

  4. Preferential occupancy of histone variant H2AZ at inactive promoters influences local histone modifications and chromatin remodeling

    PubMed Central

    Li, Bing; Pattenden, Samantha G.; Lee, Daeyoup; Gutiérrez, José; Chen, Jie; Seidel, Chris; Gerton, Jennifer; Workman, Jerry L.

    2005-01-01

    The yeast histone variant H2AZ (Htz1) is implicated in transcription activation, prevention of the ectopic spread of heterochromatin, and genome integrity. Our genome-wide localization analysis revealed that Htz1 is widely, but nonrandomly, distributed throughout the genome in an SWR1-dependent manner. We found that Htz1 is enriched in intergenic regions compared with coding regions. Its occupancy is inversely proportional to transcription rates and the enrichment of the RNA polymerase II under different growth conditions. However, Htz1 does not seem to directly regulate transcription repression genome-wide; instead, the presence of Htz1 under the inactivated condition is essential for optimal activation of a subset of genes. In addition, Htz1 is not generally responsible for nucleosome positioning, even at those promoters where Htz1 is highly enriched. Finally, using a biochemical approach, we demonstrate that incorporation of Htz1 into nucleosomes inhibits activities of histone modifiers associated with transcription, Dot1, Set2, and NuA4 and reduces the nucleosome mobilization driven by chromatin remodeling complexes. These lines of evidence collectively suggest that Htz1 may serve to mark quiescent promoters for proper activation. PMID:16344463

  5. Quantitative Mass Spectrometry Reveals Changes in Histone H2B Variants as Cells Undergo Inorganic Arsenic-Mediated Cellular Transformation.

    PubMed

    Rea, Matthew; Jiang, Tingting; Eleazer, Rebekah; Eckstein, Meredith; Marshall, Alan G; Fondufe-Mittendorf, Yvonne N

    2016-07-01

    Exposure to inorganic arsenic, a ubiquitous environmental toxic metalloid, leads to carcinogenesis. However, the mechanism is unknown. Several studies have shown that inorganic arsenic exposure alters specific gene expression patterns, possibly through alterations in chromatin structure. While most studies on understanding the mechanism of chromatin-mediated gene regulation have focused on histone post-translational modifications, the role of histone variants remains largely unknown. Incorporation of histone variants alters the functional properties of chromatin. To understand the global dynamics of chromatin structure and function in arsenic-mediated carcinogenesis, analysis of the histone variants incorporated into the nucleosome and their covalent modifications is required. Here we report the first global mass spectrometric analysis of histone H2B variants as cells undergo arsenic-mediated epithelial to mesenchymal transition. We used electron capture dissociation-based top-down tandem mass spectrometry analysis validated with quantitative reverse transcription real-time polymerase chain reaction to identify changes in the expression levels of H2B variants in inorganic arsenic-mediated epithelial-mesenchymal transition. We identified changes in the expression levels of specific histone H2B variants in two cell types, which are dependent on dose and length of exposure of inorganic arsenic. In particular, we found increases in H2B variants H2B1H/1K/1C/1J/1O and H2B2E/2F, and significant decreases in H2B1N/1D/1B as cells undergo inorganic arsenic-mediated epithelial-mesenchymal transition. The analysis of these histone variants provides a first step toward an understanding of the functional significance of the diversity of histone structures, especially in inorganic arsenic-mediated gene expression and carcinogenesis. © 2016 by The American Society for Biochemistry and Molecular Biology, Inc.

  6. Quantitative Mass Spectrometry Reveals Changes in Histone H2B Variants as Cells Undergo Inorganic Arsenic-Mediated Cellular Transformation*

    PubMed Central

    Rea, Matthew; Jiang, Tingting; Eleazer, Rebekah; Eckstein, Meredith; Marshall, Alan G.; Fondufe-Mittendorf, Yvonne N.

    2016-01-01

    Exposure to inorganic arsenic, a ubiquitous environmental toxic metalloid, leads to carcinogenesis. However, the mechanism is unknown. Several studies have shown that inorganic arsenic exposure alters specific gene expression patterns, possibly through alterations in chromatin structure. While most studies on understanding the mechanism of chromatin-mediated gene regulation have focused on histone post-translational modifications, the role of histone variants remains largely unknown. Incorporation of histone variants alters the functional properties of chromatin. To understand the global dynamics of chromatin structure and function in arsenic-mediated carcinogenesis, analysis of the histone variants incorporated into the nucleosome and their covalent modifications is required. Here we report the first global mass spectrometric analysis of histone H2B variants as cells undergo arsenic-mediated epithelial to mesenchymal transition. We used electron capture dissociation-based top-down tandem mass spectrometry analysis validated with quantitative reverse transcription real-time polymerase chain reaction to identify changes in the expression levels of H2B variants in inorganic arsenic-mediated epithelial-mesenchymal transition. We identified changes in the expression levels of specific histone H2B variants in two cell types, which are dependent on dose and length of exposure of inorganic arsenic. In particular, we found increases in H2B variants H2B1H/1K/1C/1J/1O and H2B2E/2F, and significant decreases in H2B1N/1D/1B as cells undergo inorganic arsenic-mediated epithelial-mesenchymal transition. The analysis of these histone variants provides a first step toward an understanding of the functional significance of the diversity of histone structures, especially in inorganic arsenic-mediated gene expression and carcinogenesis. PMID:27169413

  7. The histone H1 variant accumulates in response to water stress in the drought tolerant genotype of Gossypium herbaceum L.

    PubMed

    Trivedi, Ila; Ranjan, Alok; Sharma, Y K; Sawant, Samir

    2012-08-01

    We have optimized and improved the protocol for extraction of histone proteins from Gossypium herbaceum. Histone proteins were isolated by acid extraction method and fractionation of histone proteins were performed using RP-HPLC (reverse-phase high performance liquid chromatography). Analysis of histones from drought tolerant (Vagad) and drought sensitive genotype (RAHS-14) indicated that the tolerant genotype Vagad encodes a 29 kDa protein. Protein sequencing on MALDI TOF/TOF revealed that the 29 kDA protein shared sequence similarity with another drought-inducible linker histone-H1.S reported in tomato. This H1.S like linker histone was not found in RAHS-14 in our study. We further examined the expression of H1 variant at the transcript and protein levels and found that it was induced specifically in the tolerant genotype Vagad.

  8. Post-translational modifications of linker histone H1 variants in mammals

    NASA Astrophysics Data System (ADS)

    Starkova, T. Yu; Polyanichko, A. M.; Artamonova, T. O.; Khodorkovskii, M. A.; Kostyleva, E. I.; Chikhirzhina, E. V.; Tomilin, A. N.

    2017-02-01

    The covalent modifications of the linker histone H1 and the core histones are thought to play an important role in the control of chromatin functioning. Histone H1 variants from K562 cell line (hH1), mouse (mH1) and calf (cH1) thymi were studied by matrix-activated laser desorption/ionization fourier transform ion cyclotron resonance mass-spectroscopy (MALDI-FT-ICR-MS). The proteomics analysis revealed novel post-translational modifications of the histone H1, such as meK34-mH1.4, meK35-cH1.1, meK35-mH1.1, meK75-hH1.2, meK75-hH1.3, acK26-hH1.4, acK26-hH1.3 and acK17-hH1.1. The comparison of the hH1, mH1 and cH1 proteins has demonstrated that the types and positions of the post-translational modifications of the globular domains of the H1.2-H1.4 variants are very conservative. However, the post-translational modifications of the N- and C-terminal tails of H1.2, H1.3 and H1.4 are different. The differences of post-translational modifications in the N- and C-terminal tails of H1.2, H1.3 and H1.4 likely lead to the differences in DNA-H1 and H1-protein interactions.

  9. Post-translational modifications of linker histone H1 variants in mammals.

    PubMed

    Starkova, T Yu; Polyanichko, A M; Artamonova, T O; Khodorkovskii, M A; Kostyleva, E I; Chikhirzhina, E V; Tomilin, A N

    2017-02-16

    The covalent modifications of the linker histone H1 and the core histones are thought to play an important role in the control of chromatin functioning. Histone H1 variants from K562 cell line (hH1), mouse (mH1) and calf (cH1) thymi were studied by matrix-activated laser desorption/ionization fourier transform ion cyclotron resonance mass-spectroscopy (MALDI-FT-ICR-MS). The proteomics analysis revealed novel post-translational modifications of the histone H1, such as meK34-mH1.4, meK35-cH1.1, meK35-mH1.1, meK75-hH1.2, meK75-hH1.3, acK26-hH1.4, acK26-hH1.3 and acK17-hH1.1. The comparison of the hH1, mH1 and cH1 proteins has demonstrated that the types and positions of the post-translational modifications of the globular domains of the H1.2-H1.4 variants are very conservative. However, the post-translational modifications of the N- and C-terminal tails of H1.2, H1.3 and H1.4 are different. The differences of post-translational modifications in the N- and C-terminal tails of H1.2, H1.3 and H1.4 likely lead to the differences in DNA-H1 and H1-protein interactions.

  10. H2A.Z and H3.3 histone variants affect nucleosome structure: biochemical and biophysical studies.

    PubMed

    Thakar, Amit; Gupta, Pooja; Ishibashi, Toyotaka; Finn, Ron; Silva-Moreno, Begonia; Uchiyama, Susumu; Fukui, Kiichi; Tomschik, Miroslav; Ausio, Juan; Zlatanova, Jordanka

    2009-11-24

    Histone variants play important roles in regulation of chromatin structure and function. To understand the structural role played by histone variants H2A.Z and H3.3, both of which are implicated in transcription regulation, we conducted extensive biochemical and biophysical analysis on mononucleosomes reconstituted from either random-sequence DNA derived from native nucleosomes or a defined DNA nucleosome positioning sequence and recombinant human histones. Using established electrophoretic and sedimentation analysis methods, we compared the properties of nucleosomes containing canonical histones and histone variants H2A.Z and H3.3 (in isolation or in combination). We find only subtle differences in the compaction and stability of the particles. Interestingly, both H2A.Z and H3.3 affect nucleosome positioning, either creating new positions or altering the relative occupancy of the existing nucleosome position space. On the other hand, only H2A.Z-containing nucleosomes exhibit altered linker histone binding. These properties could be physiologically significant as nucleosome positions and linker histone binding partly determine factor binding accessibility.

  11. MacroH2A histone variants maintain nuclear organization and heterochromatin architecture.

    PubMed

    Douet, Julien; Corujo, David; Malinverni, Roberto; Renauld, Justine; Sansoni, Viola; Marjanović, Melanija Posavec; Cantari'o, Neus; Valero, Vanesa; Mongelard, Fabien; Bouvet, Philippe; Imhof, Axel; Thiry, Marc; Buschbeck, Marcus

    2017-03-10

    Genetic loss-of-function studies in development, cancer and somatic cell reprogramming have suggested that the group of macroH2A histone variants might function through stabilizing the differentiated state by a yet unknown mechanism. Here, we present results demonstrating that macroH2A variants have a major function in maintaining nuclear organization and heterochromatin architecture. Specifically, we find that a substantial amount of macroH2A is associated with heterochromatic repeat sequences. We further identify macroH2A on sites of interstitial heterochromatin decorated by H3K9me3. Loss of macroH2A leads to major defects in nuclear organization including reduced nuclear circularity, disruption of nucleoli and a global loss of dense heterochromatin. Domains formed by repeat sequences when depleted of macroH2A are disorganized, expanded and fragmented and mildly re-expressed. On the molecular level we find that macroH2A is required for the interaction of repeat sequences with the nucleostructural protein Lamin B1. Taken together our results argue that a major function of macroH2A histone variants is to link nucleosome composition to higher order chromatin architecture.

  12. Structure of human nucleosome containing the testis-specific histone variant TSH2B

    SciTech Connect

    Urahama, Takashi; Horikoshi, Naoki; Osakabe, Akihisa; Tachiwana, Hiroaki; Kurumizaka, Hitoshi

    2014-03-25

    The crystal structure of human nucleosome containing the testis-specific TSH2B variant has been determined. The TSH2B Ser85 residue does not interact with H4 in the nucleosome, and induces a local structural difference between TSH2B and H2B in nucleosomes. The human histone H2B variant TSH2B is highly expressed in testis and may function in the chromatin transition during spermatogenesis. In the present study, the crystal structure of the human testis-specific nucleosome containing TSH2B was determined at 2.8 Å resolution. A local structural difference between TSH2B and canonical H2B in nucleosomes was detected around the TSH2B-specific amino-acid residue Ser85. The TSH2B Ser85 residue does not interact with H4 in the nucleosome, but in the canonical nucleosome the H2B Asn84 residue (corresponding to the TSH2B Ser85 residue) forms water-mediated hydrogen bonds with the H4 Arg78 residue. In contrast, the other TSH2B-specific amino-acid residues did not induce any significant local structural changes in the TSH2B nucleosome. These findings may provide important information for understanding how testis-specific histone variants form nucleosomes during spermatogenesis.

  13. Mass Spectrometry-Based Methodology for Identification of Native Histone Variant Modifications From Mammalian Tissues and Solid Tumors.

    PubMed

    Nuccio, A G; Bui, M; Dalal, Y; Nita-Lazar, A

    2017-01-01

    Histone posttranslational modifications (PTMs) are key epigenetic marks involved in gene silencing or activation. Histone modifications impact chromatin organization and transcriptional processes through the changes in charge density between histones and DNA. They also serve as recognition and binding sites for specific binding proteins. Histone tails and globular cores contain many basic amino acid residues, which are subject to various dynamic modifications, making the modification repertoire extremely diverse. Consequently, determination of histone PTM identity and quantity has been a challenging task. In recent years, mass spectrometry-based methods have proven useful in histone PTM characterization. This chapter provides a brief overview of these methods and describes the approach to analyze the PTMs of the histone variant CENP-A, essential for the cell cycle progression, when present in minute amounts from tumor and mammalian tissues. Because this method does not rely on antibody-based immunopurification, we anticipate that these tools could be readily adaptable to the investigation to other histone variants in a range of mammalian tissues and solid tumors. Published by Elsevier Inc.

  14. The histone variant macroH2A suppresses melanoma progression through regulation of CDK8

    PubMed Central

    Kapoor, Avnish; Goldberg, Matthew S.; Cumberland, Lara K.; Ratnakumar, Kajan; Segura, Miguel F.; Emanuel, Patrick O.; Menendez, Silvia; Vardabasso, Chiara; LeRoy, Gary; Vidal, Claudia I.; Polsky, David; Osman, Iman; Garcia, Benjamin A.; Hernando, Eva; Bernstein, Emily

    2010-01-01

    Cancer is a disease consisting of both genetic and epigenetic changes. While increasing evidence demonstrates that tumour progression entails chromatin-mediated changes such as DNA methylation, the role of histone variants in cancer initiation and progression currently remains unclear. Here, we report that the histone variant macroH2A (mH2A) suppresses tumour progression of malignant melanoma. Loss of mH2A isoforms, histone variants generally associated with condensed chromatin and fine-tuning of developmental gene expression programs1-4, is positively correlated with increasing malignant phenotype of melanoma cells in culture and human tissue samples. Knockdown of mH2A isoforms in melanoma cells of low malignancy results in significantly increased proliferation and migration in vitro and growth and metastasis in vivo. Restored expression of mH2A isoforms rescues these malignant phenotypes in vitro and in vivo. We demonstrate that the tumour promoting function of mH2A loss is mediated, at least in part, through direct transcriptional up-regulation of CDK8. Suppression of CDK8, a colorectal cancer oncogene5, 6, inhibits proliferation of melanoma cells, and knockdown of CDK8 in cells depleted of mH2A suppresses the proliferative advantage induced by mH2A loss. Moreover, a significant inverse correlation between mH2A and CDK8 expression levels exists in melanoma patient samples. Taken together, our results demonstrate that mH2A is a critical component of chromatin that suppresses the development of malignant melanoma, a highly intractable cutaneous neoplasm. PMID:21179167

  15. A combination of maternal histone variants and chaperones promotes paternal genome activation and boosts somatic cell reprogramming

    PubMed Central

    Yang, Peng; Wu, Warren; Macfarlan, Todd S.

    2015-01-01

    The mammalian egg employs a wide spectrum of epigenome modification machinery to reprogram the sperm nucleus shortly after fertilization. This event is required for transcriptional activation of the paternal/zygotic genome and progression through cleavage divisions. Reprogramming of paternal nuclei requires replacement of sperm protamines with canonical and non-canonical histones, covalent modification of histone tails, and chemical modification of DNA (notably oxidative demethylation of methylated cytosines). In this essay we highlight the role maternal histone variants play during developmental reprogramming following fertilization. We discuss how reduced maternal histone variant incorporation in somatic nuclear transfer experiments may explain the reduced viability of resulting embryos and how knowledge of repressive and activating maternal factors may be used to improve somatic cell reprogramming. PMID:25328107

  16. The histone variant H3.3 claims its place in the crowded scene of epigenetics.

    PubMed

    Bano, Daniele; Piazzesi, Antonia; Salomoni, Paolo; Nicotera, Pierluigi

    2017-03-10

    Histones are evolutionarily conserved DNA-binding proteins. As scaffolding molecules, they significantly regulate the DNA packaging into the nucleus of all eukaryotic cells. As docking units, they influence the recruitment of the transcriptional machinery, thus establishing unique gene expression patterns that ultimately promote different biological outcomes. While canonical histones H3.1 and H3.2 are synthetized and loaded during DNA replication, the histone variant H3.3 is expressed and deposited into the chromatin throughout the cell cycle. Recent findings indicate that H3.3 replaces the majority of canonical H3 in non-dividing cells, reaching almost saturation levels in a time-dependent manner. Consequently, H3.3 incorporation and turnover represent an additional layer in the regulation of the chromatin landscape during aging. In this respect, work from our group and others suggest that H3.3 plays an important function in age-related processes throughout evolution. Here, we summarize the current knowledge on H3.3 biology and discuss the implications of its aberrant dynamics in the establishment of cellular states that may lead to human pathology. Critically, we review the importance of H3.3 turnover as part of epigenetic events that influence senescence and age-related processes. We conclude with the emerging evidence that H3.3 is required for proper neuronal function and brain plasticity.

  17. Structure of human nucleosome containing the testis-specific histone variant TSH2B.

    PubMed

    Urahama, Takashi; Horikoshi, Naoki; Osakabe, Akihisa; Tachiwana, Hiroaki; Kurumizaka, Hitoshi

    2014-04-01

    The human histone H2B variant TSH2B is highly expressed in testis and may function in the chromatin transition during spermatogenesis. In the present study, the crystal structure of the human testis-specific nucleosome containing TSH2B was determined at 2.8 Å resolution. A local structural difference between TSH2B and canonical H2B in nucleosomes was detected around the TSH2B-specific amino-acid residue Ser85. The TSH2B Ser85 residue does not interact with H4 in the nucleosome, but in the canonical nucleosome the H2B Asn84 residue (corresponding to the TSH2B Ser85 residue) forms water-mediated hydrogen bonds with the H4 Arg78 residue. In contrast, the other TSH2B-specific amino-acid residues did not induce any significant local structural changes in the TSH2B nucleosome. These findings may provide important information for understanding how testis-specific histone variants form nucleosomes during spermatogenesis.

  18. Histone variant H3.3 maintains a decondensed chromatin state essential for mouse preimplantation development.

    PubMed

    Lin, Chih-Jen; Conti, Marco; Ramalho-Santos, Miguel

    2013-09-01

    Histone variants can replace canonical histones in the nucleosome and modify chromatin structure and gene expression. The histone variant H3.3 preferentially associates with active chromatin and has been implicated in the regulation of a diverse range of developmental processes. However, the mechanisms by which H3.3 may regulate gene activity are unclear and gene duplication has hampered an analysis of H3.3 function in mouse. Here, we report that the specific knockdown of H3.3 in fertilized mouse zygotes leads to developmental arrest at the morula stage. This phenotype can be rescued by exogenous H3.3 but not by canonical H3.1 mRNA. Loss of H3.3 leads to over-condensation and mis-segregation of chromosomes as early as the two-cell stage, with corresponding high levels of aneuploidy, but does not appear to affect zygotic gene activation at the two-cell stage or lineage gene transcription at the morula stage. H3.3-deficient embryos have significantly reduced levels of markers of open chromatin, such as H3K36me2 and H4K16Ac. Importantly, a mutation in H3.3K36 that disrupts H3K36 methylation (H3.3K36R) does not rescue the H3.3 knockdown (KD) phenotype. In addition, H3.3 KD embryos have increased incorporation of linker H1. Knockdown of Mof (Kat8), an acetyltransferase specific for H4K16, similarly leads to excessive H1 incorporation. Remarkably, pan-H1 RNA interference (RNAi) partially rescues the chromosome condensation of H3.3 KD embryos and allows development to the blastocyst stage. These results reveal that H3.3 mediates a balance between open and condensed chromatin that is crucial for the fidelity of chromosome segregation during early mouse development.

  19. Deposition of Histone Variant H2A.Z within Gene Bodies Regulates Responsive Genes

    PubMed Central

    Coleman-Derr, Devin; Zilberman, Daniel

    2012-01-01

    The regulation of eukaryotic chromatin relies on interactions between many epigenetic factors, including histone modifications, DNA methylation, and the incorporation of histone variants. H2A.Z, one of the most conserved but enigmatic histone variants that is enriched at the transcriptional start sites of genes, has been implicated in a variety of chromosomal processes. Recently, we reported a genome-wide anticorrelation between H2A.Z and DNA methylation, an epigenetic hallmark of heterochromatin that has also been found in the bodies of active genes in plants and animals. Here, we investigate the basis of this anticorrelation using a novel h2a.z loss-of-function line in Arabidopsis thaliana. Through genome-wide bisulfite sequencing, we demonstrate that loss of H2A.Z in Arabidopsis has only a minor effect on the level or profile of DNA methylation in genes, and we propose that the global anticorrelation between DNA methylation and H2A.Z is primarily caused by the exclusion of H2A.Z from methylated DNA. RNA sequencing and genomic mapping of H2A.Z show that H2A.Z enrichment across gene bodies, rather than at the TSS, is correlated with lower transcription levels and higher measures of gene responsiveness. Loss of H2A.Z causes misregulation of many genes that are disproportionately associated with response to environmental and developmental stimuli. We propose that H2A.Z deposition in gene bodies promotes variability in levels and patterns of gene expression, and that a major function of genic DNA methylation is to exclude H2A.Z from constitutively expressed genes. PMID:23071449

  20. Structurally divergent histone H1 variants in chromosomes containing highly condensed interphase chromatin.

    PubMed

    Schulze, E; Nagel, S; Gavenis, K; Grossbach, U

    1994-12-01

    Condensed and late-replicating interphase chromatin in the Dipertan insect Chironomus contains a divergent type of histone H1 with an inserted KAP-KAP repeat that is conserved in single H1 variants of Caenorhabditis elegans and Volvox carteri. H1 peptides comprising the insertion interact specifically with DNA. The Chironomid Glyptotendipes exhibits a corresponding correlation between the presence of condensed chromosome sections and the appearance of a divergent H1 subtype. The centromere regions and other sections of Glyptotendipes barbipes chromosomes are inaccessible to immunodecoration by anti-H2B and anti-H1 antibodies one of which is known to recognize nine different epitopes in all domains of the H1 molecule. Microelectrophoresis of the histones from manually isolated unfixed centromeres revealed the presence of H1 and core histones. H1 genes of G. barpipes were sequenced and found to belong to two groups. H1 II and H1 III are rather similar but differ remarkably from H1 I. About 30% of the deduced amino acid residues were found to be unique to H1 I. Most conspicuous is the insertion, SPAKSPGR, in H1 I that is lacking in H1 II and H1 III and at its position gives rise to the sequence repeat SPAKSPAKSPGR. The homologous H1 I gene in Glyptotendipes salinus encodes the very similar repeat TPAKSPAKSPGR. Both sequences are structurally related to the KAPKAP repeat in H1 I-1 specific for condensed chromosome sites in Chironomus and to the SPKKSPKK repeat in sea urchin sperm H1, lie at almost the same distance from the central globular domain, and could interact with linker DNA in packaging condensed chromatin.

  1. Cu2+-assisted two dimensional charge-mass double focusing gel electrophoresis and mass spectrometric analysis of histone variants.

    PubMed

    Zhang, Wenyang; Tang, Xuemei; Ding, Mengjie; Zhong, Hongying

    2014-12-10

    Abundant isoforms and dynamic posttranslational modifications cause the separation and identification of histone variants to be experimentally challenging. To meet this need, we employ two-dimensional electrophoretic gel separation followed by mass spectrometric detection which takes advantage of the chelation of Cu(2+) with amino acid residues exposed on the surfaces of the histone proteins. Acid-extracted rat liver histones were first mixed with CuSO4 solution and then separated in one dimension with triton-acid-urea (TAU) gel electrophoresis and in a second dimension using sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE). The separations result from both the changes in charge and mass upon Cu(2+) chelation. Identities of each separated gel bands were obtained by using matrix-assisted laser desorption-ionization mass spectrometry (MALDI-MS). It was found that the migration of H3 histone isoforms of rat liver is markedly affected by the use of Cu(2+) ions.

  2. Histone Variant Regulates DNA Repair via Chromatin Condensation | Center for Cancer Research

    Cancer.gov

    Activating the appropriate DNA repair pathway is essential for maintaining the stability of the genome after a break in both strands of DNA. How a pathway is selected, however, is not well understood. Since these double strand breaks (DSBs) occur while DNA is packaged as chromatin, changes in its organization are necessary for repair to take place. Numerous alterations have been associated with DSBs, including modifications of histone tails and exchange of histone variants, some increasing chromatin accessibility, others reducing it. In fact, distinct domains flanking a single DSB have been observed that are bound by opposing repair pathway proteins 53BP1and BRCA1, which promote non-homologous end joining (NHEJ) and homologous recombination (HR), respectively. To investigate whether DSB-proximal chromatin reorganization affects repair pathway selection, Philipp Oberdoerffer, Ph.D., of CCR’s Laboratory of Receptor Biology and Gene Expression, and his colleagues performed a high-throughput RNA interference (RNAi) screen for chromatin-related genes that modulate HR.

  3. Characterization of Centromeric Histone H3 (CENH3) Variants in Cultivated and Wild Carrots (Daucus sp.)

    PubMed Central

    Dunemann, Frank; Schrader, Otto; Budahn, Holger; Houben, Andreas

    2014-01-01

    In eukaryotes, centromeres are the assembly sites for the kinetochore, a multi-protein complex to which spindle microtubules are attached at mitosis and meiosis, thereby ensuring segregation of chromosomes during cell division. They are specified by incorporation of CENH3, a centromere specific histone H3 variant which replaces canonical histone H3 in the nucleosomes of functional centromeres. To lay a first foundation of a putative alternative haploidization strategy based on centromere-mediated genome elimination in cultivated carrots, in the presented research we aimed at the identification and cloning of functional CENH3 genes in Daucus carota and three distantly related wild species of genus Daucus varying in basic chromosome numbers. Based on mining the carrot transcriptome followed by a subsequent PCR-based cloning, homologous coding sequences for CENH3s of the four Daucus species were identified. The ORFs of the CENH3 variants were very similar, and an amino acid sequence length of 146 aa was found in three out of the four species. Comparison of Daucus CENH3 amino acid sequences with those of other plant CENH3s as well as their phylogenetic arrangement among other dicot CENH3s suggest that the identified genes are authentic CENH3 homologs. To verify the location of the CENH3 protein in the kinetochore regions of the Daucus chromosomes, a polyclonal antibody based on a peptide corresponding to the N-terminus of DcCENH3 was developed and used for anti-CENH3 immunostaining of mitotic root cells. The chromosomal location of CENH3 proteins in the centromere regions of the chromosomes could be confirmed. For genetic localization of the CENH3 gene in the carrot genome, a previously constructed linkage map for carrot was used for mapping a CENH3-specific simple sequence repeat (SSR) marker, and the CENH3 locus was mapped on the carrot chromosome 9. PMID:24887084

  4. Characterization of centromeric histone H3 (CENH3) variants in cultivated and wild carrots (Daucus sp.).

    PubMed

    Dunemann, Frank; Schrader, Otto; Budahn, Holger; Houben, Andreas

    2014-01-01

    In eukaryotes, centromeres are the assembly sites for the kinetochore, a multi-protein complex to which spindle microtubules are attached at mitosis and meiosis, thereby ensuring segregation of chromosomes during cell division. They are specified by incorporation of CENH3, a centromere specific histone H3 variant which replaces canonical histone H3 in the nucleosomes of functional centromeres. To lay a first foundation of a putative alternative haploidization strategy based on centromere-mediated genome elimination in cultivated carrots, in the presented research we aimed at the identification and cloning of functional CENH3 genes in Daucus carota and three distantly related wild species of genus Daucus varying in basic chromosome numbers. Based on mining the carrot transcriptome followed by a subsequent PCR-based cloning, homologous coding sequences for CENH3s of the four Daucus species were identified. The ORFs of the CENH3 variants were very similar, and an amino acid sequence length of 146 aa was found in three out of the four species. Comparison of Daucus CENH3 amino acid sequences with those of other plant CENH3s as well as their phylogenetic arrangement among other dicot CENH3s suggest that the identified genes are authentic CENH3 homologs. To verify the location of the CENH3 protein in the kinetochore regions of the Daucus chromosomes, a polyclonal antibody based on a peptide corresponding to the N-terminus of DcCENH3 was developed and used for anti-CENH3 immunostaining of mitotic root cells. The chromosomal location of CENH3 proteins in the centromere regions of the chromosomes could be confirmed. For genetic localization of the CENH3 gene in the carrot genome, a previously constructed linkage map for carrot was used for mapping a CENH3-specific simple sequence repeat (SSR) marker, and the CENH3 locus was mapped on the carrot chromosome 9.

  5. SWI/SNF remodeling and p300-dependent transcription of histone variant H2ABbd nucleosomal arrays

    PubMed Central

    Angelov, Dimitar; Verdel, André; An, Woojin; Bondarenko, Vladimir; Hans, Fabienne; Doyen, Cécile-Marie; Studitsky, Vassily M; Hamiche, Ali; Roeder, Robert G; Bouvet, Philippe; Dimitrov, Stefan

    2004-01-01

    A histone variant H2ABbd was recently identified, but its function is totally unknown. Here we have studied the structural and functional properties of nucleosome and nucleosomal arrays reconstituted with this histone variant. We show that H2ABbd can replace the conventional H2A in the nucleosome, but this replacement results in alterations of the nucleosomal structure. The remodeling complexes SWI/SNF and ACF are unable to mobilize the variant H2ABbd nucleosome. However, SWI/SNF was able to increase restriction enzyme access to the variant nucleosome and assist the transfer of variant H2ABbd–H2B dimer to a tetrameric histone H3–H4 particle. In addition, the p300- and Gal4-VP16-activated transcription appeared to be more efficient for H2ABbd nucleosomal arrays than for conventional H2A arrays. The intriguing mechanisms by which H2ABbd affects both nucleosome remodeling and transcription are discussed. PMID:15372075

  6. High-Resolution Mapping of H1 Linker Histone Variants in Embryonic Stem Cells

    PubMed Central

    Cao, Kaixiang; Lee, Eva K.; Wu, Hongwei; Medrzycki, Magdalena; Pan, Chenyi; Ho, Po-Yi; Cooper, Guy P.; Dong, Xiao; Bock, Christoph; Bouhassira, Eric E.; Fan, Yuhong

    2013-01-01

    H1 linker histones facilitate higher-order chromatin folding and are essential for mammalian development. To achieve high-resolution mapping of H1 variants H1d and H1c in embryonic stem cells (ESCs), we have established a knock-in system and shown that the N-terminally tagged H1 proteins are functionally interchangeable to their endogenous counterparts in vivo. H1d and H1c are depleted from GC- and gene-rich regions and active promoters, inversely correlated with H3K4me3, but positively correlated with H3K9me3 and associated with characteristic sequence features. Surprisingly, both H1d and H1c are significantly enriched at major satellites, which display increased nucleosome spacing compared with bulk chromatin. While also depleted at active promoters and enriched at major satellites, overexpressed H10 displays differential binding patterns in specific repetitive sequences compared with H1d and H1c. Depletion of H1c, H1d, and H1e causes pericentric chromocenter clustering and de-repression of major satellites. These results integrate the localization of an understudied type of chromatin proteins, namely the H1 variants, into the epigenome map of mouse ESCs, and we identify significant changes at pericentric heterochromatin upon depletion of this epigenetic mark. PMID:23633960

  7. Linker histone variant H1T targets rDNA repeats.

    PubMed

    Tani, Ruiko; Hayakawa, Koji; Tanaka, Satoshi; Shiota, Kunio

    2016-04-02

    H1T is a linker histone H1 variant that is highly expressed at the primary spermatocyte stage through to the early spermatid stage of spermatogenesis. While the functions of the somatic types of H1 have been extensively investigated, the intracellular role of H1T is unclear. H1 variants specifically expressed in germ cells show low amino acid sequence homology to somatic H1s, which suggests that the functions or target loci of germ cell-specific H1T differ from those of somatic H1s. Here, we describe the target loci and function of H1T. H1T was expressed not only in the testis but also in tumor cell lines, mouse embryonic stem cells (mESCs), and some normal somatic cells. To elucidate the intracellular localization and target loci of H1T, fluorescent immunostaining and ChIP-seq were performed in tumor cells and mESCs. We found that H1T accumulated in nucleoli and predominantly targeted rDNA repeats, which differ from somatic H1 targets. Furthermore, by nuclease sensitivity assay and RT-qPCR, we showed that H1T repressed rDNA transcription by condensing chromatin structure. Imaging analysis indicated that H1T expression affected nucleolar formation. We concluded that H1T plays a role in rDNA transcription, by distinctively targeting rDNA repeats.

  8. The activity-dependent histone variant H2BE modulates the life span of olfactory neurons

    PubMed Central

    Santoro, Stephen W; Dulac, Catherine

    2012-01-01

    We have identified a replication-independent histone variant, Hist2h2be (referred to herein as H2be), which is expressed exclusively by olfactory chemosensory neurons. Levels of H2BE are heterogeneous among olfactory neurons, but stereotyped according to the identity of the co-expressed olfactory receptor (OR). Gain- and loss-of-function experiments demonstrate that changes in H2be expression affect olfactory function and OR representation in the adult olfactory epithelium. We show that H2BE expression is reduced by sensory activity and that it promotes neuronal cell death, such that inactive olfactory neurons display higher levels of the variant and shorter life spans. Post-translational modifications (PTMs) of H2BE differ from those of the canonical H2B, consistent with a role for H2BE in altering transcription. We propose a physiological function for H2be in modulating olfactory neuron population dynamics to adapt the OR repertoire to the environment. DOI: http://dx.doi.org/10.7554/eLife.00070.001 PMID:23240083

  9. Esperanto for histones: CENP-A, not CenH3, is the centromeric histone H3 variant.

    PubMed

    Earnshaw, W C; Allshire, R C; Black, B E; Bloom, K; Brinkley, B R; Brown, W; Cheeseman, I M; Choo, K H A; Copenhaver, G P; Deluca, J G; Desai, A; Diekmann, S; Erhardt, S; Fitzgerald-Hayes, M; Foltz, D; Fukagawa, T; Gassmann, R; Gerlich, D W; Glover, D M; Gorbsky, G J; Harrison, S C; Heun, P; Hirota, T; Jansen, L E T; Karpen, G; Kops, G J P L; Lampson, M A; Lens, S M; Losada, A; Luger, K; Maiato, H; Maddox, P S; Margolis, R L; Masumoto, H; McAinsh, A D; Mellone, B G; Meraldi, P; Musacchio, A; Oegema, K; O'Neill, R J; Salmon, E D; Scott, K C; Straight, A F; Stukenberg, P T; Sullivan, B A; Sullivan, K F; Sunkel, C E; Swedlow, J R; Walczak, C E; Warburton, P E; Westermann, S; Willard, H F; Wordeman, L; Yanagida, M; Yen, T J; Yoda, K; Cleveland, D W

    2013-04-01

    The first centromeric protein identified in any species was CENP-A, a divergent member of the histone H3 family that was recognised by autoantibodies from patients with scleroderma-spectrum disease. It has recently been suggested to rename this protein CenH3. Here, we argue that the original name should be maintained both because it is the basis of a long established nomenclature for centromere proteins and because it avoids confusion due to the presence of canonical histone H3 at centromeres.

  10. Expression of P. falciparum var Genes Involves Exchange of the Histone Variant H2A.Z at the Promoter

    PubMed Central

    Petter, Michaela; Lee, Chin Chin; Byrne, Timothy J.; Boysen, Katja E.; Volz, Jennifer; Ralph, Stuart A.; Cowman, Alan F.; Brown, Graham V.; Duffy, Michael F.

    2011-01-01

    Plasmodium falciparum employs antigenic variation to evade the human immune response by switching the expression of different variant surface antigens encoded by the var gene family. Epigenetic mechanisms including histone modifications and sub-nuclear compartmentalization contribute to transcriptional regulation in the malaria parasite, in particular to control antigenic variation. Another mechanism of epigenetic control is the exchange of canonical histones with alternative variants to generate functionally specialized chromatin domains. Here we demonstrate that the alternative histone PfH2A.Z is associated with the epigenetic regulation of var genes. In many eukaryotic organisms the histone variant H2A.Z mediates an open chromatin structure at promoters and facilitates diverse levels of regulation, including transcriptional activation. Throughout the asexual, intraerythrocytic lifecycle of P. falciparum we found that the P. falciparum ortholog of H2A.Z (PfH2A.Z) colocalizes with histone modifications that are characteristic of transcriptionally-permissive euchromatin, but not with markers of heterochromatin. Consistent with this finding, antibodies to PfH2A.Z co-precipitate the permissive modification H3K4me3. By chromatin-immunoprecipitation we show that PfH2A.Z is enriched in nucleosomes around the transcription start site (TSS) in both transcriptionally active and silent stage-specific genes. In var genes, however, PfH2A.Z is enriched at the TSS only during active transcription in ring stage parasites. Thus, in contrast to other genes, temporal var gene regulation involves histone variant exchange at promoter nucleosomes. Sir2 histone deacetylases are important for var gene silencing and their yeast ortholog antagonises H2A.Z function in subtelomeric yeast genes. In immature P. falciparum parasites lacking Sir2A or Sir2B high var transcription levels correlate with enrichment of PfH2A.Z at the TSS. As Sir2A knock out parasites mature the var genes are

  11. Psh1 is an E3 ubiquitin ligase that targets the centromeric histone variant Cse4

    PubMed Central

    Hewawasam, Geetha; Shivaraju, Manjunatha; Mattingly, Mark; Venkatesh, Swaminathan; Martin-Brown, Skylar; Florens, Laurence; Workman, Jerry L.; Gerton, Jennifer L.

    2010-01-01

    Cse4 is a variant of histone H3 that is incorporated into a single nucleosome at each centromere in budding yeast. We have discovered an E3 ubiquitin ligase, called Psh1, which controls the cellular level of Cse4 via ubiquitylation and proteolysis. The activity of Psh1 is dependent on both its RING and Zinc finger domains. We demonstrate the specificity of the ubiquitylation activity of Psh1 toward Cse4 in vitro and map the sites of ubiquitylation. Mutation of key lysines prevents ubiquitylation of Cse4 by Psh1 in vitro and stabilizes Cse4 in vivo. While deletion of Psh1 stabilizes Cse4, elimination of the Cse4-specific chaperone Scm3 destabilizes Cse4 and the addition of Scm3 to the Psh1-Cse4 ubiquitylation reaction prevents Cse4 ubiquitylation, together suggesting Scm3 may protect Cse4 from ubiquitylation. Without Psh1, Cse4 overexpression is toxic and Cse4 is found at ectopic locations. Our results suggest Psh1 functions to prevent the mislocalization of Cse4. PMID:21070970

  12. Histone variants enriched in oocytes enhance reprogramming to induced pluripotent stem cells.

    PubMed

    Shinagawa, Toshie; Takagi, Tsuyoshi; Tsukamoto, Daisuke; Tomaru, Chinatsu; Huynh, Linh My; Sivaraman, Padavattan; Kumarevel, Thirumananseri; Inoue, Kimiko; Nakato, Ryuichiro; Katou, Yuki; Sado, Takashi; Takahashi, Satoru; Ogura, Atsuo; Shirahige, Katsuhiko; Ishii, Shunsuke

    2014-02-06

    Expression of Oct3/4, Sox2, Klf4, and c-Myc (OSKM) can reprogram somatic cells into induced pluripotent stem cells (iPSCs). Somatic cell nuclear transfer (SCNT) can also be used for reprogramming, suggesting that factors present in oocytes could potentially augment OSKM-mediated induction of pluripotency. Here, we report that two histone variants, TH2A and TH2B, which are highly expressed in oocytes and contribute to activation of the paternal genome after fertilization, enhance OSKM-dependent generation of iPSCs and can induce reprogramming with Klf4 and Oct3/4 alone. TH2A and TH2B are enriched on the X chromosome during the reprogramming process, and their expression in somatic cells increases the DNase I sensitivity of chromatin. In addition, Xist deficiency, which was reported to enhance SCNT reprogramming efficiency, stimulates iPSC generation using TH2A/TH2B in conjunction with OSKM, but not OSKM alone. Thus, TH2A/TH2B may enhance reprogramming by introducing processes that normally operate in zygotes and during SCNT. Copyright © 2014 Elsevier Inc. All rights reserved.

  13. The histone variant H2A.Z is an important regulator of enhancer activity

    PubMed Central

    Brunelle, Mylène; Nordell Markovits, Alexei; Rodrigue, Sébastien; Lupien, Mathieu; Jacques, Pierre-Étienne; Gévry, Nicolas

    2015-01-01

    Gene regulatory programs in different cell types are largely defined through cell-specific enhancers activity. The histone variant H2A.Z has been shown to play important roles in transcription mainly by controlling proximal promoters, but its effect on enhancer functions remains unclear. Here, we demonstrate by genome-wide approaches that H2A.Z is present at a subset of active enhancers bound by the estrogen receptor alpha (ERα). We also determine that H2A.Z does not influence the local nucleosome positioning around ERα enhancers using ChIP sequencing at nucleosomal resolution and unsupervised pattern discovery. We further highlight that H2A.Z-enriched enhancers are associated with chromatin accessibility, H3K122ac enrichment and hypomethylated DNA. Moreover, upon estrogen stimulation, the enhancers occupied by H2A.Z produce enhancer RNAs (eRNAs), and recruit RNA polymerase II as well as RAD21, a member of the cohesin complex involved in chromatin interactions between enhancers and promoters. Importantly, their recruitment and eRNAs production are abolished by H2A.Z depletion, thereby revealing a novel functional link between H2A.Z occupancy and enhancer activity. Taken together, our findings suggest that H2A.Z acts as an important player for enhancer functions by establishing and maintaining a chromatin environment required for RNA polymerase II recruitment, eRNAs transcription and enhancer-promoters interactions, all essential attributes of enhancer activity. PMID:26319018

  14. Histone variant H2A.Z.2 mediates proliferation and drug sensitivity of malignant melanoma

    PubMed Central

    Vardabasso, Chiara; Gaspar-Maia, Alexandre; Hasson, Dan; Pünzeler, Sebastian; Valle-Garcia, David; Straub, Tobias; Keilhauer, Eva C.; Strub, Thomas; Dong, Joanna; Panda, Taniya; Chung, Chi-Yeh; Yao, Jonathan L.; Singh, Rajendra; Segura, Miguel F.; Fontanals-Cirera, Barbara; Verma, Amit; Mann, Matthias; Hernando, Eva; Hake, Sandra B.; Bernstein, Emily

    2015-01-01

    SUMMARY Histone variants are emerging as key regulatory molecules in cancer. Here we report a novel role for the H2A.Z isoform H2A.Z.2 as a driver of malignant melanoma. H2A.Z.2 is highly expressed in metastatic melanoma, correlates with decreased patient survival, and is required for cellular proliferation. Our integrated genomic analyses reveal that H2A.Z.2 controls the transcriptional output of E2F target genes in melanoma cells. These genes are highly expressed and display a distinct signature of H2A.Z occupancy. We identify BRD2 as an H2A.Z interacting protein, whose levels are also elevated in melanoma. We further demonstrate that H2A.Z.2 regulated genes are bound by BRD2 and E2F1 in a H2A.Z.2-dependent manner. Importantly, H2A.Z.2 deficiency sensitizes melanoma cells to chemotherapy and targeted therapies. Collectively, our findings implicate H2A.Z.2 as a mediator of cell proliferation and drug sensitivity in malignant melanoma, holding translational potential for novel therapeutic strategies. PMID:26051178

  15. The histone variant H2A.Z promotes splicing of weak introns.

    PubMed

    Nissen, Kelly E; Homer, Christina M; Ryan, Colm J; Shales, Michael; Krogan, Nevan J; Patrick, Kristin L; Guthrie, Christine

    2017-04-01

    Multiple lines of evidence implicate chromatin in the regulation of premessenger RNA (pre-mRNA) splicing. However, the influence of chromatin factors on cotranscriptional splice site usage remains unclear. Here we investigated the function of the highly conserved histone variant H2A.Z in pre-mRNA splicing using the intron-rich model yeast Schizosaccharomyces pombe Using epistatic miniarray profiles (EMAPs) to survey the genetic interaction landscape of the Swr1 nucleosome remodeling complex, which deposits H2A.Z, we uncovered evidence for functional interactions with components of the spliceosome. In support of these genetic connections, splicing-specific microarrays show that H2A.Z and the Swr1 ATPase are required during temperature stress for the efficient splicing of a subset of introns. Notably, affected introns are enriched for H2A.Z occupancy and more likely to contain nonconsensus splice sites. To test the significance of the latter correlation, we mutated the splice sites in an affected intron to consensus and found that this suppressed the requirement for H2A.Z in splicing of that intron. These data suggest that H2A.Z occupancy promotes cotranscriptional splicing of suboptimal introns that may otherwise be discarded via proofreading ATPases. Consistent with this model, we show that overexpression of splicing ATPase Prp16 suppresses both the growth and splicing defects seen in the absence of H2A.Z. © 2017 Nissen et al.; Published by Cold Spring Harbor Laboratory Press.

  16. A histone variant, H2AvD, is essential in Drosophila melanogaster.

    PubMed Central

    van Daal, A; Elgin, S C

    1992-01-01

    H2AvD, a Drosophila melanogaster histone variant of the H2A.Z class, is encoded by a single copy gene in the 97CD region of the polytene chromosomes. Northern analysis shows that the transcript is expressed in adult females and is abundant throughout the first 12 h of embryogenesis but then decreases. The H2AvD protein is present at essentially constant levels in all developmental stages. Using D. melanogaster stocks with deletions in the 97CD region, we have localized the H2AvD gene to the 97D1-9 interval. A lethal mutation in this interval, l(3)810, exhibits a 311-base pair deletion in the H2AvD gene, which removes the second exon. P-element mediated transformation using a 4.1-kilobase fragment containing the H2AvD gene rescues the lethal phenotype. H2AvD is therefore both essential and continuously present, suggesting a requirement for its utilization, either to provide an alternative capability for nucleosome assembly or to generate an alternative nucleosome structure. Images PMID:1498368

  17. Histone variant macroH2A confers resistance to nuclear reprogramming

    PubMed Central

    Pasque, Vincent; Gillich, Astrid; Garrett, Nigel; Gurdon, John B

    2011-01-01

    How various layers of epigenetic repression restrict somatic cell nuclear reprogramming is poorly understood. The transfer of mammalian somatic cell nuclei into Xenopus oocytes induces transcriptional reprogramming of previously repressed genes. Here, we address the mechanisms that restrict reprogramming following nuclear transfer by assessing the stability of the inactive X chromosome (Xi) in different stages of inactivation. We find that the Xi of mouse post-implantation-derived epiblast stem cells (EpiSCs) can be reversed by nuclear transfer, while the Xi of differentiated or extraembryonic cells is irreversible by nuclear transfer to oocytes. After nuclear transfer, Xist RNA is lost from chromatin of the Xi. Most epigenetic marks such as DNA methylation and Polycomb-deposited H3K27me3 do not explain the differences between reversible and irreversible Xi. Resistance to reprogramming is associated with incorporation of the histone variant macroH2A, which is retained on the Xi of differentiated cells, but absent from the Xi of EpiSCs. Our results uncover the decreased stability of the Xi in EpiSCs, and highlight the importance of combinatorial epigenetic repression involving macroH2A in restricting transcriptional reprogramming by oocytes. PMID:21552206

  18. The histone variant H2A.Z promotes efficient cotranscriptional splicing in S. cerevisiae.

    PubMed

    Neves, Lauren T; Douglass, Stephen; Spreafico, Roberto; Venkataramanan, Srivats; Kress, Tracy L; Johnson, Tracy L

    2017-04-01

    In eukaryotes, a dynamic ribonucleic protein machine known as the spliceosome catalyzes the removal of introns from premessenger RNA (pre-mRNA). Recent studies show the processes of RNA synthesis and RNA processing to be spatio-temporally coordinated, indicating that RNA splicing takes place in the context of chromatin. H2A.Z is a highly conserved histone variant of the canonical histone H2A. In Saccharomyces cerevisiae, H2A.Z is deposited into chromatin by the SWR-C complex, is found near the 5' ends of protein-coding genes, and has been implicated in transcription regulation. Here we show that splicing of intron-containing genes in cells lacking H2A.Z is impaired, particularly under suboptimal splicing conditions. Cells lacking H2A.Z are especially dependent on a functional U2 snRNP (small nuclear RNA [snRNA] plus associated proteins), as H2A.Z shows extensive genetic interactions with U2 snRNP-associated proteins, and RNA sequencing (RNA-seq) reveals that introns with nonconsensus branch points are particularly sensitive to H2A.Z loss. Consistently, H2A.Z promotes efficient spliceosomal rearrangements involving the U2 snRNP, as H2A.Z loss results in persistent U2 snRNP association and decreased recruitment of downstream snRNPs to nascent RNA. H2A.Z impairs transcription elongation, suggesting that spliceosome rearrangements are tied to H2A.Z's role in elongation. Depletion of disassembly factor Prp43 suppresses H2A.Z-mediated splice defects, indicating that, in the absence of H2A.Z, stalled spliceosomes are disassembled, and unspliced RNAs are released. Together, these data demonstrate that H2A.Z is required for efficient pre-mRNA splicing and indicate a role for H2A.Z in coordinating the kinetics of transcription elongation and splicing. © 2017 Neves et al.; Published by Cold Spring Harbor Laboratory Press.

  19. Testis-specific histone variants H2AL1/2 rapidly disappear from paternal heterochromatin after fertilization.

    PubMed

    Wu, Fang; Caron, Cécile; De Robertis, Christine; Khochbin, Saadi; Rousseaux, Sophie

    2008-12-01

    Before fertilization, the genome packaging of male and female gametes is very different. Indeed, whereas the female haploid genome is associated with histones in a somatic-like chromatin structure, most of the male genome is tightly bound to protamines. However, it has recently been demonstrated that the pericentric heterochromatin regions of the male genome are associated with specific H2A-like histone variants, named H2AL1 and H2AL2, suggesting a heterogeneous organization. The fate and role of the sex-specific genome packaging transmitted by germinal cells to the embryo are not well understood. The aim of the present study was to follow reprogramming of the parental genomes in early embryos after in vivo fertilization. We show here that two typical epigenetic markers, trimethylated lysine 9 of histone H3 (TriMethylH3K9) and acetylated H4, are asymmetrically distributed between the parental genomes in one-cell mouse embryos, confirming data from embryos obtained after intracytoplasmic sperm injection (ICSI) or in vitro fertilization (IVF). Indeed, whereas the maternal genome is highly enriched with trimethylH3K9, this mark is not detected in the paternal genome. On the contrary, histone H4 incorporated in the paternal genome is highly acetylated at an early stage, while in the maternal pronucleus, the level of acetylated H4 remains low in early one-cell embryos and becomes enriched at a later stage. Moreover, our results suggest a very quick disappearance of histone H2A variants H2AL1 and H2Al2 from the paternal pericentric heterochromatin regions after sperm-egg fusion.

  20. CHD1 Regulates Deposition of Histone Variant H3.3 During Bovine Early Embryonic Development.

    PubMed

    Zhang, Kun; Rajput, Sandeep K; Wang, Shaohua; Folger, Joseph K; Knott, Jason G; Smith, George W

    2016-06-01

    The CHD family of proteins is characterized by the presence of chromodomains and SNF2-related helicase/ATPase domains, which alter gene expression by modification of chromatin structure. Chd1-null embryos arrest at the peri-implantation stage in mice. However, the functional role of CHD1 during preimplantation development remains unclear, given maternal-derived CHD1 may mask the essential role of CHD1 during this stage in traditional knockout models. The objective of this study was to characterize CHD1 expression and elucidate its functional role in preimplantation development using the bovine model. CHD1 mRNA was elevated after meiotic maturation and remained increased through the 16-cell stage, followed by a sharp decrease at morula to blastocyst stage. Similarly, immunoblot analysis indicated CHD1 protein level is increased after maturation, maintained at high level after fertilization and declined sharply afterwards. CHD1 mRNA level was partially decreased in response to alpha-amanitin (RNA polymerase II inhibitor) treatment, suggesting that CHD1 mRNA in eight-cell embryos is of both maternal and zygotic origin. Results of siRNA-mediated silencing of CHD1 in bovine early embryos demonstrated that the percentages of embryos developing to the 8- to 16-cell and blastocyst stages were both significantly reduced. However, expression of NANOG (inner cell mass marker) and CDX2 (trophectoderm marker) were not affected in CHD1 knockdown blastocysts. In addition, we found that histone variant H3.3 immunostaining is altered in CHD1 knockdown embryos. Knockdown of H3.3 using siRNA resulted in a similar phenotype to CHD1-ablated embryos. Collectively, our results demonstrate that CHD1 is required for bovine early development, and suggest that CHD1 may regulate H3.3 deposition during this period.

  1. The Histone Variant His2Av is Required for Adult Stem Cell Maintenance in the Drosophila Testis

    PubMed Central

    Fuller, Margaret T.

    2013-01-01

    Many tissues are sustained by adult stem cells, which replace lost cells by differentiation and maintain their own population through self-renewal. The mechanisms through which adult stem cells maintain their identity are thus important for tissue homeostasis and repair throughout life. Here, we show that a histone variant, His2Av, is required cell autonomously for maintenance of germline and cyst stem cells in the Drosophila testis. The ATP-dependent chromatin-remodeling factor Domino is also required in this tissue for adult stem cell maintenance possibly by regulating the incorporation of His2Av into chromatin. Interestingly, although expression of His2Av was ubiquitous, its function was dispensable for germline and cyst cell differentiation, suggesting a specific role for this non-canonical histone in maintaining the stem cell state in these lineages. PMID:24244183

  2. Dynamics of a novel centromeric histone variant CenH3 reveals the evolutionary ancestral timing of centromere biogenesis

    PubMed Central

    Dubin, Manu; Fuchs, Jörg; Gräf, Ralph; Schubert, Ingo; Nellen, Wolfgang

    2010-01-01

    The centromeric histone H3 variant (CenH3) serves to target the kinetochore to the centromeres and thus ensures correct chromosome segregation during mitosis and meiosis. The Dictyostelium H3-like variant H3v1 was identified as the CenH3 ortholog. Dictyostelium CenH3 has an extended N-terminal domain with no similarity to any other known proteins and a histone fold domain at its C-terminus. Within the histone fold, α-helix 2 (α2) and an extended loop 1 (L1) have been shown to be required for targeting CenH3 to centromeres. Compared to other known and putative CenH3 histones, Dictyostelium CenH3 has a shorter L1, suggesting that the extension is not an obligatory feature. Through ChIP analysis and fluorescence microscopy of live and fixed cells, we provide here the first survey of centromere structure in amoebozoa. The six telocentric centromeres were found to mostly consist of all the DIRS-1 elements and to associate with H3K9me3. During interphase, the centromeres remain attached to the centrosome forming a single CenH3-containing cluster. Loading of Dictyostelium CenH3 onto centromeres occurs at the G2/prophase transition, in contrast to the anaphase/telophase loading of CenH3 observed in metazoans. This suggests that loading during G2/prophase is the ancestral eukaryotic mechanism and that anaphase/telophase loading of CenH3 has evolved more recently after the amoebozoa diverged from the animal linage. PMID:20675719

  3. Quantitative microspectral evaluation of the ratio of arginine-rich to lysine-rich histones in neurons and neuroglial cells.

    PubMed

    Pevzner, L Z; Raygorodskaya, T G; Agroskin, L S

    1978-09-01

    Staining of nervous tissue sections with ammoniacal silver according to Black et al. has been confirmed to be a reliable histochemical colour reaction for quantitative evaluation of arginine-rich and lysine-rich histones in cell structures on the basis of determinations of the position of spectral curve maximum. Neurons of several brain nuclei which differed in predominating neurotransmitter did not differ in the ratio of arginine-rich to lysine-rich histones while some differences in this ratio were found out in the glial satelite cells adjacent to the corresponding neurons of these nuclei. Moderate circadian fluctuations were observed in the arginine-rich to lysine-rich histone ratio, these fluctuations being rather similar in the neurons studied and in the cells of perineuronal neuroglia.

  4. Loss of histone variant macroH2A2 expression associates with progression of anal neoplasm

    PubMed Central

    Hu, Wan-Hsiang; Miyai, Katsumi; Sporn, Judith C; Luo, Linda; Wang, Jean Y J; Cosman, Bard; Ramamoorthy, Sonia

    2016-01-01

    Aims The macroH2A histone variants are epigenetic marks for inactivated chromatin. In this study, we examined the expression of macroH2A2 in anal neoplasm from anal intraepithelial neoplasia (AIN) to anal squamous cell carcinoma (SCC). Methods AIN and anal SCC samples were analysed for macroH2A2 expression, HIV and human papilloma virus (HPV). The association of macroH2A2 expression with clinical grade, disease recurrence, overall survival and viral involvement was determined. Results macroH2A2 was expressed in normal squamous tissue and lower grade AIN (I and II). Expression was lost in 38% of high-grade AIN (III) and 71% of anal SCC (p=0.002). Patients with AIN with macroH2A2-negative lesions showed earlier recurrence than those with macroH2A2-positive neoplasm (p=0.017). With anal SCC, macroH2A2 loss was more prevalent in the HPV-negative tumours. Conclusions Loss of histone variant macroH2A2 expression is associated with the progression of anal neoplasm and can be used as a prognostic biomarker for high-grade AIN and SCC. PMID:26658220

  5. Identification and characterization of the two isoforms of the vertebrate H2A.Z histone variant

    PubMed Central

    Matsuda, Ryo; Hori, Tetsuya; Kitamura, Hiroshi; Takeuchi, Kozo; Fukagawa, Tatsuo; Harata, Masahiko

    2010-01-01

    Histone variants play important roles in the epigenetic regulation of genome function. The histone variant H2A.Z is evolutionarily conserved from yeast to vertebrates, and it has been reported to have multiple effects upon gene expression and insulation, and chromosome segregation. Recently two genes encoding H2A.Z were identified in the vertebrate genome. However, it is not yet clear whether the proteins transcribed from these genes are functionally distinct. To address this issue, we knocked out each gene individually in chicken DT40 cells. We found that two distinct proteins, H2A.Z-1 and H2A.Z-2, were produced from these genes, and that these proteins could be separated on a long SDS–PAGE gel. The two isoforms were deposited to a similar extent by the SRCAP chromatin-remodeling complex, suggesting redundancy to their function. However, cells lacking either one of the two isoforms exhibited distinct alterations in cell growth and gene expression, suggesting that the two isoforms have differential effects upon nucleosome stability and chromatin structure. These findings provide insight into the molecular basis of the multiple functions of the H2A.Z gene products. PMID:20299344

  6. Dual Role of the Histone Variant H2A.Z in Transcriptional Regulation of Stress-Response Genes.

    PubMed

    Sura, Weronika; Kabza, Michał; Karlowski, Wojciech M; Bieluszewski, Tomasz; Kus-Slowinska, Marta; Pawełoszek, Łukasz; Sadowski, Jan; Ziolkowski, Piotr A

    2017-04-01

    The influence of the histone variant H2A.Z on transcription remains a long-standing conundrum. Here, by analyzing the actin-related protein6 mutant, which is impaired in H2A.Z deposition, and by H2A.Z profiling in stress conditions, we investigated the impact of this histone variant on gene expression in Arabidopsis thaliana We demonstrate that the arp6 mutant exhibits anomalies in response to osmotic stress. Indeed, stress-responsive genes are overrepresented among those hyperactive in arp6. In wild-type plants, these genes exhibit high levels of H2A.Z in the gene body. Furthermore, we observed that in drought-responsive genes, levels of H2A.Z in the gene body correlate with transcript levels. H2A.Z occupancy, but not distribution, changes in parallel with transcriptional changes. In particular, we observed H2A.Z loss upon transcriptional activation and H2A.Z gain upon repression. These data suggest that H2A.Z has a repressive role in transcription and counteracts unwanted expression in noninductive conditions. However, reduced activity of some genes in arp6 is associated with distinct behavior of H2A.Z at their +1 nucleosome, which exemplifies the requirement of this histone for transcription. Our data support a model where H2A.Z in gene bodies has a strong repressive effect on transcription, whereas in +1 nucleosomes, it is important for maintaining the activity of some genes. © 2017 ASPB.

  7. Mapping of six somatic linker histone H1 variants in human breast cancer cells uncovers specific features of H1.2.

    PubMed

    Millán-Ariño, Lluís; Islam, Abul B M M K; Izquierdo-Bouldstridge, Andrea; Mayor, Regina; Terme, Jean-Michel; Luque, Neus; Sancho, Mónica; López-Bigas, Núria; Jordan, Albert

    2014-04-01

    Seven linker histone H1 variants are present in human somatic cells with distinct prevalence across cell types. Despite being key structural components of chromatin, it is not known whether the different variants have specific roles in the regulation of nuclear processes or are differentially distributed throughout the genome. Using variant-specific antibodies to H1 and hemagglutinin (HA)-tagged recombinant H1 variants expressed in breast cancer cells, we have investigated the distribution of six H1 variants in promoters and genome-wide. H1 is depleted at promoters depending on its transcriptional status and differs between variants. Notably, H1.2 is less abundant than other variants at the transcription start sites of inactive genes, and promoters enriched in H1.2 are different from those enriched in other variants and tend to be repressed. Additionally, H1.2 is enriched at chromosomal domains characterized by low guanine-cytosine (GC) content and is associated with lamina-associated domains. Meanwhile, other variants are associated with higher GC content, CpG islands and gene-rich domains. For instance, H1.0 and H1X are enriched at gene-rich chromosomes, whereas H1.2 is depleted. In short, histone H1 is not uniformly distributed along the genome and there are differences between variants, H1.2 being the one showing the most specific pattern and strongest correlation with low gene expression.

  8. Mapping of six somatic linker histone H1 variants in human breast cancer cells uncovers specific features of H1.2

    PubMed Central

    Millán-Ariño, Lluís; Islam, Abul B. M. M. K.; Izquierdo-Bouldstridge, Andrea; Mayor, Regina; Terme, Jean-Michel; Luque, Neus; Sancho, Mónica; López-Bigas, Núria; Jordan, Albert

    2014-01-01

    Seven linker histone H1 variants are present in human somatic cells with distinct prevalence across cell types. Despite being key structural components of chromatin, it is not known whether the different variants have specific roles in the regulation of nuclear processes or are differentially distributed throughout the genome. Using variant-specific antibodies to H1 and hemagglutinin (HA)-tagged recombinant H1 variants expressed in breast cancer cells, we have investigated the distribution of six H1 variants in promoters and genome-wide. H1 is depleted at promoters depending on its transcriptional status and differs between variants. Notably, H1.2 is less abundant than other variants at the transcription start sites of inactive genes, and promoters enriched in H1.2 are different from those enriched in other variants and tend to be repressed. Additionally, H1.2 is enriched at chromosomal domains characterized by low guanine–cytosine (GC) content and is associated with lamina-associated domains. Meanwhile, other variants are associated with higher GC content, CpG islands and gene-rich domains. For instance, H1.0 and H1X are enriched at gene-rich chromosomes, whereas H1.2 is depleted. In short, histone H1 is not uniformly distributed along the genome and there are differences between variants, H1.2 being the one showing the most specific pattern and strongest correlation with low gene expression. PMID:24476918

  9. Toxoplasma H2A Variants Reveal Novel Insights into Nucleosome Composition and Functions for this Histone Family

    PubMed Central

    Dalmasso, Maria C.; Onyango, David O.; Naguleswaran, Arunasalam; Sullivan, William J.; Angel, Sergio O.

    2009-01-01

    Toxoplasma gondii is an obligate intracellular parasite. Toxoplasmosis is incurable because of its ability to differentiate from the rapidly replicating tachyzoite stage into a latent cyst form (bradyzoite stage). Gene regulation pertinent to Toxoplasma differentiation involves histone modification, but very little is known about the histone proteins in this early branching eukaryote. Here we report the characterization of three H2A histones, a canonical H2A1 and variants H2AX and H2AZ. H2AZ is the minor parasite H2A member. H2A1 and H2AX both have an SQ motif, but only H2AX has a complete SQ(E/D)φ (φ denotes a hydrophobic residue) known to be phosphorylated in response to DNA damage. We also show that a novel H2B variant interacts with H2AZ and H2A1 but not with H2AX. Chromatin immunoprecipitation (ChIP) revealed that H2AZ and H2Bv are enriched at active genes while H2AX is enriched at repressed genes as well as the silent TgIRE repeat element. During DNA damage, we detected an increase in H2AX phosphorylation as well as increases in h2a1 and h2ax transcription. We also found that h2ax expression, but not h2a1 and h2az, increases in bradyzoites generated in vitro. Similar analysis performed on mature bradyzoites generated in vivo, which are arrested in G0, showed that h2az and h2ax are actively expressed and h2a1 is not, consistent with the idea that h2a1 is the canonical histone orthologue in the parasite. The increase of H2AX, which localizes to silenced areas during bradyzoite differentiation, is consistent with the quiescent nature of this life cycle stage. Our results indicate that the early-branching eukaryotic parasite Toxoplasma contains nucleosomes of novel composition, which is likely to impact multiple facets of parasite biology, including the clinically important process of bradyzoite differentiation. PMID:19607843

  10. Capillary electrophoresis of histone H1 variants at neutral pH in dynamically modified fused- silica tubing.

    PubMed

    Mizzen, C A; McLachlan, D R

    2000-07-01

    Existing methods for the analysis of histone H1 by capillary electrophoresis (CE) employ acidic buffers (pH <3.0) to suppress silanol ionization and minimize the loss of these extremely basic proteins by adsorption to capillary walls. Here we describe the use of Polybrene (PB) as a dynamic modification reagent in a simple procedure that facilitates the analysis of chicken H1 at neutral pH. PB is adsorbed to the inner surfaces of capillaries to render them cationic prior to use and a low concentration of PB is included in the electrolyte to replenish the coating during use. Inclusion of ethylenediaminetetraacetic acid (EDTA) in the electrolyte results in the assembly of a dynamic cation-exchange layer upon the immobilized PB that influences the relative mobilities of H1 variants. The six nonallelic variants of H1 known in this species as well as certain allelic variants are resolved. Because the procedure is effective in preventing the adsorption of proteins as basic as H1 at neutral pH, this strategy should facilitate CE analyses of many basic proteins under conditions that maintain their native conformation.

  11. Tissue-Specific Expression and Posttranslational Modification of Histone H3 Variants

    PubMed Central

    Garcia, Benjamin A.; Thomas, C. Eric; Kelleher, Neil L.; Mizzen, Craig A.

    2008-01-01

    Analyses of histone H3 from ten rat tissues using a Middle Down proteomics platform revealed tissue-specific differences in their expression and global PTM abundance. ESI/FTMS with electron capture dissociation showed that, in general, these proteins were hypomodified in heart, liver and testes. H3.3 was hypermodified compared to H3.2 in some, but not all tissues. In addition, a novel rat testes-specific H3 protein was identified with this approach. PMID:18700791

  12. An Essential Role of Variant Histone H3.3 for Ectomesenchyme Potential of the Cranial Neural Crest

    PubMed Central

    Cox, Samuel G.; Kim, Hyunjung; Garnett, Aaron Timothy; Medeiros, Daniel Meulemans; An, Woojin; Crump, J. Gage

    2012-01-01

    The neural crest (NC) is a vertebrate-specific cell population that exhibits remarkable multipotency. Although derived from the neural plate border (NPB) ectoderm, cranial NC (CNC) cells contribute not only to the peripheral nervous system but also to the ectomesenchymal precursors of the head skeleton. To date, the developmental basis for such broad potential has remained elusive. Here, we show that the replacement histone H3.3 is essential during early CNC development for these cells to generate ectomesenchyme and head pigment precursors. In a forward genetic screen in zebrafish, we identified a dominant D123N mutation in h3f3a, one of five zebrafish variant histone H3.3 genes, that eliminates the CNC–derived head skeleton and a subset of pigment cells yet leaves other CNC derivatives and trunk NC intact. Analyses of nucleosome assembly indicate that mutant D123N H3.3 interferes with H3.3 nucleosomal incorporation by forming aberrant H3 homodimers. Consistent with CNC defects arising from insufficient H3.3 incorporation into chromatin, supplying exogenous wild-type H3.3 rescues head skeletal development in mutants. Surprisingly, embryo-wide expression of dominant mutant H3.3 had little effect on embryonic development outside CNC, indicating an unexpectedly specific sensitivity of CNC to defects in H3.3 incorporation. Whereas previous studies had implicated H3.3 in large-scale histone replacement events that generate totipotency during germ line development, our work has revealed an additional role of H3.3 in the broad potential of the ectoderm-derived CNC, including the ability to make the mesoderm-like ectomesenchymal precursors of the head skeleton. PMID:23028350

  13. Histone H1-like protein and a testis-specific variant in the reproductive tracts of Octopus vulgaris.

    PubMed

    Faraone Mennella, Maria Rosaria; Farina, Benedetta; Irace, Maria Venezia; Di Cristo, Carlo; Di Cosmo, Anna

    2002-11-01

    In this study, we have identified a 28-kDa protein resembling the linker H1 in the testis and prostate of the reproductive system of Octopus vulgaris. This protein, OvH1, was partially purified by reverse phase high-pressure liquid chromatography (HPLC) of the perchloric acid extract from testis nuclei. It showed electrophoretic mobility, CD spectrum and amino acid composition highly comparable with those of the mammalian histone. Moreover, it was microheterogeneous, as resulted from prostate and testis HPLC and mass spectrometry analyses. Such analysis showed that in testis there are two H1 subfractions, which do not appear in the prostate. Amino acid composition of the major testis specific variant (OvH1t) showed high similarity with rat testis specific H1t. The histone-like nature of OvH1 was confirmed by its ability to bind DNA as tested both by circular dichroism and protection of the nucleic acid toward deoxyribonuclease I activity. The circular dichroism spectra of Octopus DNA in the absence and presence of increasing amounts of the protein showed a dose-dependent effect, leading to a progressive compactness of the polynucleotide. OvH1/DNA complexes were also resistant to nuclease digestion. The presence of H1 in the testis and prostate of the reproductive system of Octopus is discussed in light of the fact that there is a similarity between its behavior and that of vertebrates.

  14. Histone variant H2A.Z marks the 5' ends of both active and inactive genes in euchromatin.

    PubMed

    Raisner, Ryan M; Hartley, Paul D; Meneghini, Marc D; Bao, Marie Z; Liu, Chih Long; Schreiber, Stuart L; Rando, Oliver J; Madhani, Hiten D

    2005-10-21

    In S. cerevisiae, histone variant H2A.Z is deposited in euchromatin at the flanks of silent heterochromatin to prevent its ectopic spread. We show that H2A.Z nucleosomes are found at promoter regions of nearly all genes in euchromatin. They generally occur as two positioned nucleosomes that flank a nucleosome-free region (NFR) that contains the transcription start site. Astonishingly, enrichment at 5' ends is observed not only at actively transcribed genes but also at inactive loci. Mutagenesis of a typical promoter revealed a 22 bp segment of DNA sufficient to program formation of a NFR flanked by two H2A.Z nucleosomes. This segment contains a binding site of the Myb-related protein Reb1 and an adjacent dT:dA tract. Efficient deposition of H2A.Z is further promoted by a specific pattern of histone H3 and H4 tail acetylation and the bromodomain protein Bdf1, a component of the Swr1 remodeling complex that deposits H2A.Z.

  15. An E3 ubiquitin ligase prevents ectopic localization of the centromeric histone H3 variant via the centromere targeting domain

    PubMed Central

    Ranjitkar, Prerana; Press, Maximilian O.; Yi, Xianhua; Baker, Richard; MacCoss, Michael J.; Biggins, Sue

    2010-01-01

    Summary Proper centromere function is critical to maintain genomic stability and to prevent aneuploidy, a hallmark of tumors and birth defects. A conserved feature of all eukaryotic centromeres is an essential histone H3 variant called CENP-A that requires a centromere targeting domain (CATD) for its localization. Although proteolysis prevents CENP-A from mislocalizing to euchromatin, regulatory factors have not been identified. Here, we identify an E3 ubiquitin ligase called Psh1 that leads to the degradation of Cse4, the budding yeast CENP-A homolog. Cse4 overexpression is toxic to psh1Δ cells and results in euchromatic localization. Strikingly, the Cse4 centromere targeting domain is a key regulator of its stability and helps Psh1 discriminate Cse4 from histone H3. Taken together, we propose that the CATD has a previously unknown role in maintaining the exclusive localization of Cse4 by preventing its mislocalization to euchromatin via Psh1-mediated degradation. PMID:21070971

  16. ATRX-mediated chromatin association of histone variant macroH2A1 regulates α-globin expression

    PubMed Central

    Ratnakumar, Kajan; Duarte, Luis F.; LeRoy, Gary; Hasson, Dan; Smeets, Daniel; Vardabasso, Chiara; Bönisch, Clemens; Zeng, Tianying; Xiang, Bin; Zhang, David Y.; Li, Haitao; Wang, Xiaowo; Hake, Sandra B.; Schermelleh, Lothar; Garcia, Benjamin A.; Bernstein, Emily

    2012-01-01

    The histone variant macroH2A generally associates with transcriptionally inert chromatin; however, the factors that regulate its chromatin incorporation remain elusive. Here, we identify the SWI/SNF helicase ATRX (α-thalassemia/MR, X-linked) as a novel macroH2A-interacting protein. Unlike its role in assisting H3.3 chromatin deposition, ATRX acts as a negative regulator of macroH2A's chromatin association. In human erythroleukemic cells deficient for ATRX, macroH2A accumulates at the HBA gene cluster on the subtelomere of chromosome 16, coinciding with the loss of α-globin expression. Collectively, our results implicate deregulation of macroH2A's distribution as a contributing factor to the α-thalassemia phenotype of ATRX syndrome. PMID:22391447

  17. Effects of Florida Red Tides on histone variant expression and DNA methylation in the Eastern oyster Crassostrea virginica.

    PubMed

    Gonzalez-Romero, Rodrigo; Suarez-Ulloa, Victoria; Rodriguez-Casariego, Javier; Garcia-Souto, Daniel; Diaz, Gabriel; Smith, Abraham; Pasantes, Juan Jose; Rand, Gary; Eirin-Lopez, Jose M

    2017-03-07

    Massive algal proliferations known as Harmful Algal Blooms (HABs) represent one of the most important threats to coastal areas. Among them, the so-called Florida Red Tides (FRTs, caused by blooms of the dinoflagellate Karenia brevis and associated brevetoxins) are particularly detrimental in the southeastern U.S., causing high mortality rates and annual losses in excess of $40 million. The ability of marine organisms to cope with environmental stressors (including those produced during HABs) is influenced by genetic and epigenetic mechanisms, the latter resulting in phenotypic changes caused by heritable modifications in gene expression, without involving changes in the genetic (DNA) sequence. Yet, studies examining cause-effect relationships between environmental stressors, specific epigenetic mechanisms and subsequent responses are still lacking. The present work contributes to increase this knowledge by investigating the effects of Florida Red Tides on two types of mechanisms participating in the epigenetic memory of Eastern oysters: histone variants and DNA methylation. For that purpose, a HAB simulation was conducted in laboratory conditions, exposing oysters to increasing concentrations of K. brevis. The obtained results revealed, for the first time, the existence of H2A.X, H2A.Z and macroH2A genes in this organism, encoding histone variants potentially involved in the maintenance of genome integrity during responses to the genotoxic effect of brevetoxins. Additionally, an increase in H2A.X phosphorylation (γH2A.X, a marker of DNA damage) and a decrease in global DNA methylation were observed as the HAB simulation progressed. Overall, the present work provides a basis to better understand how epigenetic mechanisms participate in responses to environmental stress in marine invertebrates, opening new avenues to incorporate environmental epigenetics approaches into management and conservation programs.

  18. Expressed Centromere Specific Histone 3 (CENH3) Variants in Cultivated Triploid and Wild Diploid Bananas (Musa spp.).

    PubMed

    Muiruri, Kariuki S; Britt, Anne; Amugune, Nelson O; Nguu, Edward K; Chan, Simon; Tripathi, Leena

    2017-01-01

    Centromeres are specified by a centromere specific histone 3 (CENH3) protein, which exists in a complex environment, interacting with conserved proteins and rapidly evolving satellite DNA sequences. The interactions may become more challenging if multiple CENH3 versions are introduced into the zygote as this can affect post-zygotic mitosis and ultimately sexual reproduction. Here, we characterize CENH3 variant transcripts expressed in cultivated triploid and wild diploid progenitor bananas. We describe both splice- and allelic-[Single Nucleotide Polymorphisms (SNP)] variants and their effects on the predicted secondary structures of protein. Expressed CENH3 transcripts from six banana genotypes were characterized and clustered into three groups (MusaCENH-1A, MusaCENH-1B, and MusaCENH-2) based on similarity. The CENH3 groups differed with SNPs as well as presence of indels resulting from retained and/or skipped exons. The CENH3 transcripts from different banana genotypes were spliced in either 7/6, 5/4 or 6/5 exons/introns. The 7/6 and the 5/4 exon/intron structures were found in both diploids and triploids, however, 7/6 was most predominant. The 6/5 exon/introns structure was a result of failure of the 7/6 to splice correctly. The various transcripts obtained were predicted to encode highly variable N-terminal tails and a relatively conserved C-terminal histone fold domain (HFD). The SNPs were predicted in some cases to affect the secondary structure of protein by lengthening or shorting the affected domains. Sequencing of banana CENH3 transcripts predicts SNP variations that affect amino acid sequences and alternatively spliced transcripts. Most of these changes affect the N-terminal tail of CENH3.

  19. Classification of variant forms of haemoglobin according to the ratio of glycated haemoglobin to glycated albumin.

    PubMed

    Miyazaki, Ayako; Kohzuma, Takuji; Kasayama, Soji; Koga, Masafumi

    2012-09-01

    Asymptomatic variant haemoglobin is increasingly being found in the measurement of glycated haemoglobin (HbA(1c)) for the management of diabetes mellitus. We compared the HbA(1c) concentrations measured by high-performance liquid chromatography (HPLC) and immunoassay and glycated albumin (GA) concentrations and calculated the respective ratios in order to classify the variant haemoglobin. Twenty different haemoglobin variants from 43 subjects were identified by mass spectrometry and DNA analysis. Since GA accurately reflects glycaemic control in patients with variant haemoglobin, we calculated respective ratios of HbA(1c) and GA. Haemoglobin variants causing a low ratio of HbA(1c) measured by HPLC (HPLC-HbA(1c)) to GA with a normal ratio of HbA(1c) measured by immunoassay (IA-HbA(1c)) to GA were classified as C1. A further classification of α and β was used with abnormalities of the α chain or β chain in the haemoglobin gene. Other haemoglobin variants were classified as non-C1. Eight diabetic patients with stable glycaemic control were used as controls. Twenty forms of variant haemoglobins were classified as C1α (2 variants; I-Interlaken and Hb J-Meerut), C1β (15 variants) and non-C1 (3 variants; Hb Himeji, Hb Woolwich, Hb Peterborough). Positive correlations between GA and HPLC-HbA(1c) or IA-HbA(1c) were seen in the C1β patients with diabetes mellitus. The regression line between GA and HPLC-HbA(1c), but not that between GA and IA-HbA(1c), showed a downward shift in comparison with the data obtained from the diabetic controls. Variant haemoglobin could be classified by calculating the ratios of HPLC-HbA(1c), IA-HbA(1c) and GA.

  20. Histone H2A (H2A.X and H2A.Z) Variants in Molluscs: Molecular Characterization and Potential Implications For Chromatin Dynamics

    PubMed Central

    González-Romero, Rodrigo; Rivera-Casas, Ciro; Frehlick, Lindsay J.; Méndez, Josefina; Ausió, Juan; Eirín-López, José M.

    2012-01-01

    Histone variants are used by the cell to build specialized nucleosomes, replacing canonical histones and generating functionally specialized chromatin domains. Among many other processes, the specialization imparted by histone H2A (H2A.X and H2A.Z) variants to the nucleosome core particle constitutes the earliest response to DNA damage in the cell. Consequently, chromatin-based genotoxicity tests have been developed in those cases where enough information pertaining chromatin structure and dynamics is available (i.e., human and mouse). However, detailed chromatin knowledge is almost absent in most organisms, specially protostome animals. Molluscs (which represent sentinel organisms for the study of pollution) are not an exception to this lack of knowledge. In the present work we first identified the existence of functionally differentiated histone H2A.X and H2A.Z variants in the mussel Mytilus galloprovincialis (MgH2A.X and MgH2A.Z), a marine organism widely used in biomonitoring programs. Our results support the functional specialization of these variants based on: a) their active expression in different tissues, as revealed by the isolation of native MgH2A.X and MgH2A.Z proteins in gonad and hepatopancreas; b) the evolutionary conservation of different residues encompassing functional relevance; and c) their ability to confer specialization to nucleosomes, as revealed by nucleosome reconstitution experiments using recombinant MgH2A.X and MgH2A.Z histones. Given the seminal role of these variants in maintaining genomic integrity and regulating gene expression, their preliminary characterization opens up new potential applications for the future development of chromatin-based genotoxicity tests in pollution biomonitoring programs. PMID:22253857

  1. Histone chaperones: assisting histone traffic and nucleosome dynamics.

    PubMed

    Gurard-Levin, Zachary A; Quivy, Jean-Pierre; Almouzni, Geneviève

    2014-01-01

    The functional organization of eukaryotic DNA into chromatin uses histones as components of its building block, the nucleosome. Histone chaperones, which are proteins that escort histones throughout their cellular life, are key actors in all facets of histone metabolism; they regulate the supply and dynamics of histones at chromatin for its assembly and disassembly. Histone chaperones can also participate in the distribution of histone variants, thereby defining distinct chromatin landscapes of importance for genome function, stability, and cell identity. Here, we discuss our current knowledge of the known histone chaperones and their histone partners, focusing on histone H3 and its variants. We then place them into an escort network that distributes these histones in various deposition pathways. Through their distinct interfaces, we show how they affect dynamics during DNA replication, DNA damage, and transcription, and how they maintain genome integrity. Finally, we discuss the importance of histone chaperones during development and describe how misregulation of the histone flow can link to disease.

  2. H3.5 is a novel hominid-specific histone H3 variant that is specifically expressed in the seminiferous tubules of human testes.

    PubMed

    Schenk, Raphael; Jenke, Andreas; Zilbauer, Matthias; Wirth, Stefan; Postberg, Jan

    2011-06-01

    The incorporation of histone variants into chromatin plays an important role for the establishment of particular chromatin states. Six human histone H3 variants are known to date, not counting CenH3 variants: H3.1, H3.2, H3.3 and the testis-specific H3.1t as well as the recently described variants H3.X and H3.Y. We report the discovery of H3.5, a novel non-CenH3 histone H3 variant. H3.5 is encoded on human chromosome 12p11.21 and probably evolved in a common ancestor of all recent great apes (Hominidae) as a consequence of H3F3B gene duplication by retrotransposition. H3.5 mRNA is specifically expressed in seminiferous tubules of human testis. Interestingly, H3.5 has two exact copies of ARKST motifs adjacent to lysine-9 or lysine-27, and lysine-79 is replaced by asparagine. In the Hek293 cell line, ectopically expressed H3.5 is assembled into chromatin and targeted by PTM. H3.5 preferentially colocalizes with euchromatin, and it is associated with actively transcribed genes and can replace an essential function of RNAi-depleted H3.3 in cell growth.

  3. Requirement of a novel splicing variant of human histone deacetylase 6 for TGF-{beta}1-mediated gene activation

    SciTech Connect

    Zhuang, Yan; Nguyen, Hong T.; Lasky, Joseph A.; Cao, Subing; Li, Cui; Hu, Jiyao; Guo, Xinyue; Burow, Matthew E.; Shan, Bin

    2010-02-19

    Histone deacetylase 6 (HDAC6) belongs to the family of class IIb HDACs and predominantly deacetylates non-histone proteins in the cytoplasm via the C-terminal deacetylase domain of its two tandem deacetylase domains. HDAC6 modulates fundamental cellular processes via deacetylation of {alpha}-tubulin, cortactin, molecular chaperones, and other peptides. Our previous study indicates that HDAC6 mediates TGF-{beta}1-induced epithelial-mesenchymal transition (EMT) in A549 cells. In the current study, we identify a novel splicing variant of human HDAC6, hHDAC6p114. The hHDAC6p114 mRNA arises from incomplete splicing and encodes a truncated isoform of the hHDAC6p114 protein of 114 kDa when compared to the major isoform hHDAC6p131. The hHDAC6p114 protein lacks the first 152 amino acids from N-terminus in the hHDAC6p131 protein, which harbors a nuclear export signal peptide and 76 amino acids of the N-terminal deacetylase domain. hHDAC6p114 is intact in its deacetylase activity against {alpha}-tubulin. The expression hHDAC6p114 is elevated in a MCF-7 derivative that exhibits an EMT-like phenotype. Moreover, hHDAC6p114 is required for TGF-{beta}1-activated gene expression associated with EMT in A549 cells. Taken together, our results implicate that expression and function of hHDAC6p114 is differentially regulated when compared to hHDAC6p131.

  4. A stepwise likelihood ratio test procedure for rare variant selection in case-control studies.

    PubMed

    Kuk, Anthony Y C; Nott, David J; Yang, Yaning

    2014-04-01

    There is much recent interest in finding rare genetic variants associated with various diseases. Owing to the scarcity of rare mutations, single-variant analyses often lack power. To enable pooling of information across variants, we use a random effect formulation within a retrospective modeling framework that respects the retrospective data collecting mechanism of case-control studies. More concretely, we model the control allele frequencies of the variants as random effects, and the systematic differences between the case and control frequencies as fixed effects, resulting in a mixed model. The use of Poisson approximation and gamma-distributed random effects results in a generalized negative binomial distribution for the joint distribution of the control and case frequencies. Variants are selected by conducting stepwise likelihood ratio tests. The superiority of the proposed method over two existing variant selection methods is demonstrated in a simulation study. The effects of non-gamma random effects and correlated variants are also found to be not too detrimental in the simulation study. When the proposed procedure is applied to identify rare variants associated with obesity, it identifies one additional variant not picked up by existing methods.

  5. Proteomic Analysis of Fatty-acylated Proteins in Mammalian Cells with Chemical Reporters Reveals S-Acylation of Histone H3 Variants

    PubMed Central

    Wilson, John P.; Raghavan, Anuradha S.; Yang, Yu-Ying; Charron, Guillaume; Hang, Howard C.

    2011-01-01

    Bioorthogonal chemical reporters are useful tools for visualizing and identifying post-translational modifications on proteins. Here we report the proteomic analysis of mammalian proteins targeted by a series of fatty acid chemical reporters ranging from myristic to stearic acid. The large-scale analysis of total cell lysates from fully solubilized Jurkat T cells identified known fatty-acylated proteins and many new candidates, including nuclear proteins and in particular histone H3 variants. We demonstrate that histones H3.1, H3.2, and H3.3 are modified with fatty acid chemical reporters and identify the conserved cysteine 110 as a new site of S-acylation on histone H3.2. This newly discovered modification of histone H3 could have implications for nuclear organization and chromatin regulation. The unbiased proteomic analysis of fatty-acylated proteins using chemical reporters has revealed a greater diversity of lipid-modified proteins in mammalian cells and identified a novel post-translational modification of histones. PMID:21076176

  6. Chromatin remodeling defects in pediatric and young adult glioblastoma: a tale of a variant histone 3 tail.

    PubMed

    Fontebasso, Adam M; Liu, Xiao-Yang; Sturm, Dominik; Jabado, Nada

    2013-03-01

    Primary brain tumors occur in 8 out of 100 000 people and are the leading cause of cancer-related death in children. Among brain tumors, high-grade astrocytomas (HGAs) including glioblastoma multiforme (GBM) are aggressive and are lethal human cancers. Despite decades of concerted therapeutic efforts, HGAs remain essentially incurable in adults and children. Recent discoveries have revolutionized our understanding of these tumors in children and young adults. Recurrent somatic driver mutations in the tail of histone 3 variant 3 (H3.3), leading to amino acid substitutions at key residues, namely lysine (K) 27 (K27M) and glycine 34 (G34R/G34V), were identified as a new molecular mechanism in pediatric GBM. These mutations represent the pediatric counterpart of the recurrent mutations in isocitrate dehydrogenases (IDH) identified in young adult gliomas and provide a much-needed new pathway that can be targeted for therapeutic development. This review will provide an overview of the potential role of these mutations in altering chromatin structure and affecting specific molecular pathways ultimately leading to gliomagenesis. The distinct changes in chromatin structure and the specific downstream events induced by each mutation need characterizing independently if progress is to be made in tackling this devastating cancer. © 2013 The Authors; Brain Pathology © 2013 International Society of Neuropathology.

  7. Transcriptional and post-transcriptional regulation of histone variant H2A.Z during sea urchin development.

    PubMed

    Hajdu, Mihai; Calle, Jasmine; Puno, Andrea; Haruna, Aminat; Arenas-Mena, César

    2016-12-01

    Histone variant H2A.Z promotes chromatin accessibility at transcriptional regulatory elements and is developmentally regulated in metazoans. We characterize the transcriptional and post-transcriptional regulation of H2A.Z in the purple sea urchin Strongylocentrotus purpuratus. H2A.Z depletion by antisense translation-blocking morpholino oligonucleotides during early development causes developmental collapse, in agreement with its previously demonstrated general role in transcriptional multipotency. During H2A.Z peak expression in 24-h embryos, endogenous H2A.Z 3' UTR sequences stabilize GFP mRNAs relative to those with SV40 3' UTR sequences, although the 3' UTR of H2A.Z does not determine the spatial distribution of H2A.Z transcripts during embryonic and postembryonic development. We elaborated an H2A.Z::GFP BAC reporter that reproduces embryonic H2A.Z expression. Genome-wide chromatin accessibility analysis using ATAC-seq revealed a cis-regulatory module (CRM) that, when deleted, causes a significant decline of the H2A.Z reporter expression. In addition, the mutation of a Sox transcription factor binding site motif and, more strongly, of a Myb motif cause significant decline of reporter gene expression. Our results suggest that an undetermined Myb-family transcription factor controls the transcriptional regulation of H2A.Z. © 2016 Japanese Society of Developmental Biologists.

  8. Rapid Elimination of the Histone Variant MacroH2A from Somatic Cell Heterochromatin after Nuclear Transfer

    PubMed Central

    Chang, Ching-Chien; Gao, Shaorong; Sung, Li-Ying; Corry, Gareth N.; Ma, Yinghong; Nagy, Zsolt Peter; Tian, X. Cindy

    2010-01-01

    Abstract Oocytes contain a maternal store of the histone variant MacroH2A, which is eliminated from zygotes shortly after fertilization. Preimplantation embryos then execute three cell divisions without MacroH2A before the onset of embryonic MacroH2A expression at the 16-cell stage. During subsequent development, MacroH2A is expressed in most cells, where it is assembled into facultative heterochromatin. Because differentiated cells contain heterochromatin rich in MacroH2A, we investigated the fate of MacroH2A during somatic cell nuclear transfer (SCNT). The results show that MacroH2A is rapidly eliminated from the chromosomes of transplanted somatic cell nuclei by a process in which MacroH2A is first stripped from chromosomes, and then degraded. Furthermore, MacroH2A is eliminated from transplanted nuclei by a mechanism requiring intact microtubules and nuclear envelope break down. Preimplantation SCNT embryos express endogenous MacroH2A once they reach the morula stage, similar to the timing observed in embryos produced by natural fertilization. We also show that the ability to reprogram somatic cell heterochromatin by SCNT is tied to the developmental stage of recipient cell cytoplasm because enucleated zygotes fail to support depletion of MacroH2A from transplanted somatic nuclei. Together, the results indicate that nuclear reprogramming by SCNT utilizes the same chromatin remodeling mechanisms that act upon the genome immediately after fertilization. PMID:20132012

  9. The histone variant H2A.X is a regulator of the epithelial–mesenchymal transition

    PubMed Central

    Weyemi, Urbain; Redon, Christophe E.; Choudhuri, Rohini; Aziz, Towqir; Maeda, Daisuke; Boufraqech, Myriem; Parekh, Palak R.; Sethi, Taresh K.; Kasoji, Manjula; Abrams, Natalie; Merchant, Anand; Rajapakse, Vinodh N.; Bonner, William M.

    2016-01-01

    The epithelial–mesenchymal transition (EMT), considered essential for metastatic cancer, has been a focus of much research, but important questions remain. Here, we show that silencing or removing H2A.X, a histone H2A variant involved in cellular DNA repair and robust growth, induces mesenchymal-like characteristics including activation of EMT transcription factors, Slug and ZEB1, in HCT116 human colon cancer cells. Ectopic H2A.X re-expression partially reverses these changes, as does silencing Slug and ZEB1. In an experimental metastasis model, the HCT116 parental and H2A.X-null cells exhibit a similar metastatic behaviour, but the cells with re-expressed H2A.X are substantially more metastatic. We surmise that H2A.X re-expression leads to partial EMT reversal and increases robustness in the HCT116 cells, permitting them to both form tumours and to metastasize. In a human adenocarcinoma panel, H2A.X levels correlate inversely with Slug and ZEB1 levels. Together, these results point to H2A.X as a regulator of EMT. PMID:26876487

  10. The Histone Variant MacroH2A1 Is a BRCA1 Ubiquitin Ligase Substrate.

    PubMed

    Kim, Beom-Jun; Chan, Doug W; Jung, Sung Yun; Chen, Yue; Qin, Jun; Wang, Yi

    2017-05-30

    The breast- and ovarian-cancer-specific tumor suppressor BRCA1 and its heterodimeric partner BARD1 contain RING domains that implicate them as E3 ubiquitin ligases. Despite extensive efforts, the bona fide substrates of BRCA1/BARD1 remain elusive. Here, we used recombinant GST fused to four UBA domains to enrich ubiquitinated proteins followed by a Lys-ε-Gly-Gly (diGly) antibody to enrich ubiquitinated tryptic peptides. This tandem affinity purification method coupled with mass spectrometry identified 101 putative BRCA1/BARD1 E3 substrates. We identified the histone variant macroH2A1 from the screen and showed that BRCA1/BARD1 ubiquitinates macroH2A1 at lysine 123 in vitro and in vivo. Primary human fibroblasts stably expressing a ubiquitination-deficient macroH2A1 mutant were defective in cellular senescence compared to their wild-type counterpart. Our study demonstrates that BRCA1/BARD1 is a macroH2A1 E3 ligase and implicates a role for macroH2A1 K123 ubiquitination in cellular senescence. Copyright © 2017 The Author(s). Published by Elsevier Inc. All rights reserved.

  11. Proteolysis restricts localization of CID, the centromere-specific histone H3 variant of Drosophila, to centromeres.

    PubMed

    Moreno-Moreno, Olga; Torras-Llort, Mònica; Azorín, Fernando

    2006-01-01

    Centromere identity is determined by the formation of a specialized chromatin structure containing the centromere-specific histone H3 variant CENP-A. The precise molecular mechanism(s) accounting for the specific deposition of CENP-A at centromeres are still poorly understood. Centromeric deposition of CENP-A, which is independent of DNA replication, might involve specific chromatin assembly complexes and/or specific interactions with kinetochore components. However, transiently expressed CENP-A incorporates throughout chromatin indicating that CENP-A nucleosomes can also be promiscuously deposited during DNA replication. Therefore, additional mechanisms must exist to prevent deposition of CENP-A nucleosomes during replication and/or to remove them afterwards. Here, using transient expression experiments performed in Drosophila Kc cells, we show that proteasome-mediated degradation restricts localization of Drosophila CENP-A (CID) to centromeres by eliminating mislocalized CID as well as by regulating available CID levels. Regulating available CID levels appears essential to ensure centromeric deposition of transiently expressed CID as, when expression is increased in the presence of proteasome inhibitors, newly synthesized CID mislocalizes. Mislocalization of CID affects cell cycle progression as a high percentage of cells showing mislocalized CID are reactive against alphaPSer(10)H3 antibodies, enter mitosis at a very low frequency and show strong segregation defects. However, cells showing reduced amounts of mislocalized CID show normal cell cycle progression.

  12. The embryonic linker histone H1 variant of Drosophila, dBigH1, regulates zygotic genome activation.

    PubMed

    Pérez-Montero, Salvador; Carbonell, Albert; Morán, Tomás; Vaquero, Alejandro; Azorín, Fernando

    2013-09-30

    Histone H1 is an essential chromatin component. Metazoans usually contain multiple stage-specific H1s. In particular, specific variants replace somatic H1s during early embryogenesis. In this regard, Drosophila was an exception because a single dH1 was identified that, starting at cellularization, is detected throughout development in somatic cells. Here, we identify the embryonic H1 of Drosophila, dBigH1. dBigH1 is abundant before cellularization occurs, when somatic dH1 is absent and the zygotic genome is inactive. Upon cellularization, when the zygotic genome is progressively activated, dH1 replaces dBigH1 in the soma, but not in the primordial germ cells (PGCs) that have delayed zygotic genome activation (ZGA). In addition, a loss-of-function mutant shows premature ZGA in both the soma and PGCs. Mutant embryos die at cellularization, showing increased levels of active RNApol II and zygotic transcripts, along with DNA damage and mitotic defects. These results show an essential function of dBigH1 in ZGA regulation.

  13. H2A.Z.2.2 is an alternatively spliced histone H2A.Z variant that causes severe nucleosome destabilization

    PubMed Central

    Bönisch, Clemens; Schneider, Katrin; Pünzeler, Sebastian; Wiedemann, Sonja M.; Bielmeier, Christina; Bocola, Marco; Eberl, H. Christian; Kuegel, Wolfgang; Neumann, Jürgen; Kremmer, Elisabeth; Leonhardt, Heinrich; Mann, Matthias; Michaelis, Jens; Schermelleh, Lothar; Hake, Sandra B.

    2012-01-01

    The histone variant H2A.Z has been implicated in many biological processes, such as gene regulation and genome stability. Here, we present the identification of H2A.Z.2.2 (Z.2.2), a novel alternatively spliced variant of histone H2A.Z and provide a comprehensive characterization of its expression and chromatin incorporation properties. Z.2.2 mRNA is found in all human cell lines and tissues with highest levels in brain. We show the proper splicing and in vivo existence of this variant protein in humans. Furthermore, we demonstrate the binding of Z.2.2 to H2A.Z-specific TIP60 and SRCAP chaperone complexes and its active replication-independent deposition into chromatin. Strikingly, various independent in vivo and in vitro analyses, such as biochemical fractionation, comparative FRAP studies of GFP-tagged H2A variants, size exclusion chromatography and single molecule FRET, in combination with in silico molecular dynamics simulations, consistently demonstrate that Z.2.2 causes major structural changes and significantly destabilizes nucleosomes. Analyses of deletion mutants and chimeric proteins pinpoint this property to its unique C-terminus. Our findings enrich the list of known human variants by an unusual protein belonging to the H2A.Z family that leads to the least stable nucleosome known to date. PMID:22467210

  14. A Specialized Histone H1 Variant Is Required for Adaptive Responses to Complex Abiotic Stress and Related DNA Methylation in Arabidopsis1[OPEN

    PubMed Central

    Rutowicz, Kinga; Puzio, Marcin; Halibart-Puzio, Joanna; Lirski, Maciej; Kotliński, Maciej; Kroteń, Magdalena A.; Knizewski, Lukasz; Lange, Bartosz; Muszewska, Anna; Śniegowska-Świerk, Katarzyna; Kościelniak, Janusz; Iwanicka-Nowicka, Roksana; Buza, Krisztián; Janowiak, Franciszek; Żmuda, Katarzyna; Jõesaar, Indrek; Laskowska-Kaszub, Katarzyna; Fogtman, Anna; Kollist, Hannes; Zielenkiewicz, Piotr; Tiuryn, Jerzy; Siedlecki, Paweł; Swiezewski, Szymon; Ginalski, Krzysztof; Koblowska, Marta; Archacki, Rafał; Wilczynski, Bartek; Rapacz, Marcin; Jerzmanowski, Andrzej

    2015-01-01

    Linker (H1) histones play critical roles in chromatin compaction in higher eukaryotes. They are also the most variable of the histones, with numerous nonallelic variants cooccurring in the same cell. Plants contain a distinct subclass of minor H1 variants that are induced by drought and abscisic acid and have been implicated in mediating adaptive responses to stress. However, how these variants facilitate adaptation remains poorly understood. Here, we show that the single Arabidopsis (Arabidopsis thaliana) stress-inducible variant H1.3 occurs in plants in two separate and most likely autonomous pools: a constitutive guard cell-specific pool and a facultative environmentally controlled pool localized in other tissues. Physiological and transcriptomic analyses of h1.3 null mutants demonstrate that H1.3 is required for both proper stomatal functioning under normal growth conditions and adaptive developmental responses to combined light and water deficiency. Using fluorescence recovery after photobleaching analysis, we show that H1.3 has superfast chromatin dynamics, and in contrast to the main Arabidopsis H1 variants H1.1 and H1.2, it has no stable bound fraction. The results of global occupancy studies demonstrate that, while H1.3 has the same overall binding properties as the main H1 variants, including predominant heterochromatin localization, it differs from them in its preferences for chromatin regions with epigenetic signatures of active and repressed transcription. We also show that H1.3 is required for a substantial part of DNA methylation associated with environmental stress, suggesting that the likely mechanism underlying H1.3 function may be the facilitation of chromatin accessibility by direct competition with the main H1 variants. PMID:26351307

  15. Proteome analysis of protein partners to nucleosomes containing canonical H2A or the variant histones H2A.Z or H2A.X.

    PubMed

    Fujimoto, Satoru; Seebart, Corrine; Guastafierro, Tiziana; Prenni, Jessica; Caiafa, Paola; Zlatanova, Jordanka

    2012-01-01

    Although the existence of histone variants has been known for quite some time, only recently are we grasping the breadth and diversity of the cellular processes in which they are involved. Of particular interest are the two variants of histone H2A, H2A.Z and H2A.X because of their roles in regulation of gene expression and in DNA double-strand break repair, respectively. We hypothesize that nucleosomes containing these variants may perform their distinct functions by interacting with different sets of proteins. Here, we present our proteome analysis aimed at identifying protein partners that interact with nucleosomes containing H2A.Z, H2A.X or their canonical H2A counterpart. Our development of a nucleosome-pull down assay and analysis of the recovered nucleosome-interacting proteins by mass spectrometry allowed us to directly compare nuclear partners of these variant-containing nucleosomes to those containing canonical H2A. To our knowledge, our data represent the first systematic analysis of the H2A.Z and H2A.X interactome in the context of nucleosome structure.

  16. Loading of the centromeric histone H3 variant during meiosis-how does it differ from mitosis?

    PubMed

    Schubert, Veit; Lermontova, Inna; Schubert, Ingo

    2014-10-01

    In eukaryotic phyla studied so far, the essential centromeric histone H3 variant (CENH3) is loaded to centromeric nucleosomes after S-phase (except for yeast) but before mitotic segregation (except for metazoan). While the C-terminal part of CENH3 seems to be sufficient for mitotic centromere function in plants, meiotic centromeres neither load nor tolerate impaired CENH3 molecules. However, details about CENH3 deposition in meiocytes are unknown (except for Drosophila). Therefore, we quantified fluorescence signals after the immunostaining of CENH3 along meiotic and mitotic nuclear division cycles of rye, a monocotyledonous plant. One peak of fluorescence intensity appeared in the early meiotic prophase of pollen mother cells and a second one during interkinesis, both followed by a decrease of CENH3. Then, the next loading occurred in the male gametophyte before its first mitotic division. These data indicate that CENH3 loading differs between mitotic and meiotic nuclei. Contrary to the situation in mitotic cycles, CENH3 deposition is biphasic during meiosis and apparently linked with a quality check, a removal of impaired CENH3 molecules, and a general loss of CENH3 after each loading phase. These steps ensure an endowment of centromeres with a sufficient amount of correct CENH3 molecules as a prerequisite for centromere maintenance during mitotic cycles of the microgametophyte and the progeny. From a comparison with data available for Drosophila, we hypothesise that the post-divisional mitotic CENH3 loading in metazoans is evolutionarily derived from the post-divisional meiotic loading phase, while the pre-divisional first meiotic loading has been conserved among eukaryotes.

  17. The Histone Variant H3.3 Is Enriched at Drosophila Amplicon Origins but Does Not Mark Them for Activation

    PubMed Central

    Paranjape, Neha P.; Calvi, Brian R.

    2016-01-01

    Eukaryotic DNA replication begins from multiple origins. The origin recognition complex (ORC) binds origin DNA and scaffolds assembly of a prereplicative complex (pre-RC), which is subsequently activated to initiate DNA replication. In multicellular eukaryotes, origins do not share a strict DNA consensus sequence, and their activity changes in concert with chromatin status during development, but mechanisms are ill-defined. Previous genome-wide analyses in Drosophila and other organisms have revealed a correlation between ORC binding sites and the histone variant H3.3. This correlation suggests that H3.3 may designate origin sites, but this idea has remained untested. To address this question, we examined the enrichment and function of H3.3 at the origins responsible for developmental gene amplification in the somatic follicle cells of the Drosophila ovary. We found that H3.3 is abundant at these amplicon origins. H3.3 levels remained high when replication initiation was blocked, indicating that H3.3 is abundant at the origins before activation of the pre-RC. H3.3 was also enriched at the origins during early oogenesis, raising the possibility that H3.3 bookmarks sites for later amplification. However, flies null mutant for both of the H3.3 genes in Drosophila did not have overt defects in developmental gene amplification or genomic replication, suggesting that H3.3 is not essential for the assembly or activation of the pre-RC at origins. Instead, our results imply that the correlation between H3.3 and ORC sites reflects other chromatin attributes that are important for origin function. PMID:27172191

  18. Pat1 protects centromere-specific histone H3 variant Cse4 from Psh1-mediated ubiquitination.

    PubMed

    Mishra, Prashant K; Guo, Jiasheng; Dittman, Lauren E; Haase, Julian; Yeh, Elaine; Bloom, Kerry; Basrai, Munira A

    2015-06-01

    Evolutionarily conserved histone H3 variant Cse4 and its homologues are essential components of specialized centromere (CEN)-specific nucleosomes and serve as an epigenetic mark for CEN identity and propagation. Cse4 is a critical determinant for the structure and function of the kinetochore and is required to ensure faithful chromosome segregation. The kinetochore protein Pat1 regulates the levels and spatial distribution of Cse4 at centromeres. Deletion of PAT1 results in altered structure of CEN chromatin and chromosome segregation errors. In this study, we show that Pat1 protects CEN-associated Cse4 from ubiquitination in order to maintain proper structure and function of the kinetochore in budding yeast. PAT1-deletion strains exhibit increased ubiquitination of Cse4 and faster turnover of Cse4 at kinetochores. Psh1, a Cse4-specific E3-ubiquitin ligase, interacts with Pat1 in vivo and contributes to the increased ubiquitination of Cse4 in pat1∆ strains. Consistent with a role of Psh1 in ubiquitination of Cse4, transient induction of PSH1 in a wild-type strain resulted in phenotypes similar to a pat1∆ strain, including a reduction in CEN-associated Cse4, increased Cse4 ubiquitination, defects in spatial distribution of Cse4 at kinetochores, and altered structure of CEN chromatin. Pat1 interacts with Scm3 and is required for its maintenance at kinetochores. In conclusion, our studies provide novel insights into mechanisms by which Pat1 affects the structure of CEN chromatin and protects Cse4 from Psh1-mediated ubiquitination for faithful chromosome segregation. © 2015 Mishra et al. This article is distributed by The American Society for Cell Biology under license from the author(s). Two months after publication it is available to the public under an Attribution–Noncommercial–Share Alike 3.0 Unported Creative Commons License (http://creativecommons.org/licenses/by-nc-sa/3.0).

  19. The Eucalyptus linker histone variant EgH1.3 cooperates with the transcription factor EgMYB1 to control lignin biosynthesis during wood formation.

    PubMed

    Soler, Marçal; Plasencia, Anna; Larbat, Romain; Pouzet, Cécile; Jauneau, Alain; Rivas, Susana; Pesquet, Edouard; Lapierre, Catherine; Truchet, Isabelle; Grima-Pettenati, Jacqueline

    2017-01-01

    Wood, also called secondary xylem, is a specialized vascular tissue constituted by different cell types that undergo a differentiation process involving deposition of thick, lignified secondary cell walls. The mechanisms needed to control the extent of lignin deposition depending on the cell type and the differentiation stage are far from being fully understood. We found that the Eucalyptus transcription factor EgMYB1, which is known to repress lignin biosynthesis, interacts specifically with a linker histone variant, EgH1.3. This interaction enhances the repression of EgMYB1's target genes, strongly limiting the amount of lignin deposited in xylem cell walls. The expression profiles of EgMYB1 and EgH1.3 overlap in xylem cells at early stages of their differentiation as well as in mature parenchymatous xylem cells, which have no or only thin lignified secondary cell walls. This suggests that a complex between EgMYB1 and EgH1.3 integrates developmental signals to prevent premature or inappropriate lignification of secondary cell walls, providing a mechanism to fine-tune the differentiation of xylem cells in time and space. We also demonstrate a role for a linker histone variant in the regulation of a specific developmental process through interaction with a transcription factor, illustrating that plant linker histones have other functions beyond chromatin organization. © 2016 The Authors. New Phytologist © 2016 New Phytologist Trust.

  20. A new link between transcriptional initiation and pre-mRNA splicing: The RNA binding histone variant H2A.B

    PubMed Central

    Hart-Smith, Gene; Tay, Ying Jin; Tng, Wei-Quan; Wilkins, Marc; Ryan, Daniel

    2017-01-01

    The replacement of histone H2A with its variant forms is critical for regulating all aspects of genome organisation and function. The histone variant H2A.B appeared late in evolution and is most highly expressed in the testis followed by the brain in mammals. This raises the question of what new function(s) H2A.B might impart to chromatin in these important tissues. We have immunoprecipitated the mouse orthologue of H2A.B, H2A.B.3 (H2A.Lap1), from testis chromatin and found this variant to be associated with RNA processing factors and RNA Polymerase (Pol) II. Most interestingly, many of these interactions with H2A.B.3 (Sf3b155, Spt6, DDX39A and RNA Pol II) were inhibited by the presence of endogenous RNA. This histone variant can bind to RNA directly in vitro and in vivo, and associates with mRNA at intron—exon boundaries. This suggests that the ability of H2A.B to bind to RNA negatively regulates its capacity to bind to these factors (Sf3b155, Spt6, DDX39A and RNA Pol II). Unexpectedly, H2A.B.3 forms highly decompacted nuclear subdomains of active chromatin that co-localizes with splicing speckles in male germ cells. H2A.B.3 ChIP-Seq experiments revealed a unique chromatin organization at active genes being not only enriched at the transcription start site (TSS), but also at the beginning of the gene body (but being excluded from the +1 nucleosome) compared to the end of the gene. We also uncover a general histone variant replacement process whereby H2A.B.3 replaces H2A.Z at intron-exon boundaries in the testis and the brain, which positively correlates with expression and exon inclusion. Taken together, we propose that a special mechanism of splicing may occur in the testis and brain whereby H2A.B.3 recruits RNA processing factors from splicing speckles to active genes following its replacement of H2A.Z. PMID:28234895

  1. A new link between transcriptional initiation and pre-mRNA splicing: The RNA binding histone variant H2A.B.

    PubMed

    Soboleva, Tatiana A; Parker, Brian J; Nekrasov, Maxim; Hart-Smith, Gene; Tay, Ying Jin; Tng, Wei-Quan; Wilkins, Marc; Ryan, Daniel; Tremethick, David J

    2017-02-01

    The replacement of histone H2A with its variant forms is critical for regulating all aspects of genome organisation and function. The histone variant H2A.B appeared late in evolution and is most highly expressed in the testis followed by the brain in mammals. This raises the question of what new function(s) H2A.B might impart to chromatin in these important tissues. We have immunoprecipitated the mouse orthologue of H2A.B, H2A.B.3 (H2A.Lap1), from testis chromatin and found this variant to be associated with RNA processing factors and RNA Polymerase (Pol) II. Most interestingly, many of these interactions with H2A.B.3 (Sf3b155, Spt6, DDX39A and RNA Pol II) were inhibited by the presence of endogenous RNA. This histone variant can bind to RNA directly in vitro and in vivo, and associates with mRNA at intron-exon boundaries. This suggests that the ability of H2A.B to bind to RNA negatively regulates its capacity to bind to these factors (Sf3b155, Spt6, DDX39A and RNA Pol II). Unexpectedly, H2A.B.3 forms highly decompacted nuclear subdomains of active chromatin that co-localizes with splicing speckles in male germ cells. H2A.B.3 ChIP-Seq experiments revealed a unique chromatin organization at active genes being not only enriched at the transcription start site (TSS), but also at the beginning of the gene body (but being excluded from the +1 nucleosome) compared to the end of the gene. We also uncover a general histone variant replacement process whereby H2A.B.3 replaces H2A.Z at intron-exon boundaries in the testis and the brain, which positively correlates with expression and exon inclusion. Taken together, we propose that a special mechanism of splicing may occur in the testis and brain whereby H2A.B.3 recruits RNA processing factors from splicing speckles to active genes following its replacement of H2A.Z.

  2. Histone H1 Variants in Arabidopsis Are Subject to Numerous Post-Translational Modifications, Both Conserved and Previously Unknown in Histones, Suggesting Complex Functions of H1 in Plants.

    PubMed

    Kotliński, Maciej; Rutowicz, Kinga; Kniżewski, Łukasz; Palusiński, Antoni; Olędzki, Jacek; Fogtman, Anna; Rubel, Tymon; Koblowska, Marta; Dadlez, Michał; Ginalski, Krzysztof; Jerzmanowski, Andrzej

    2016-01-01

    Linker histones (H1s) are conserved and ubiquitous structural components of eukaryotic chromatin. Multiple non-allelic variants of H1, which differ in their DNA/nucleosome binding properties, co-exist in animal and plant cells and have been implicated in the control of genetic programs during development and differentiation. Studies in mammals and Drosophila have revealed diverse post-translational modifications of H1s, most of which are of unknown function. So far, it is not known how this pattern compares with that of H1s from other major lineages of multicellular Eukaryotes. Here, we show that the two main H1variants of a model flowering plant Arabidopsis thaliana are subject to a rich and diverse array of post-translational modifications. The distribution of these modifications in the H1 molecule, especially in its globular domain (GH1), resembles that occurring in mammalian H1s, suggesting that their functional significance is likely to be conserved. While the majority of modifications detected in Arabidopsis H1s, including phosphorylation, acetylation, mono- and dimethylation, formylation, crotonylation and propionylation, have also been reported in H1s of other species, some others have not been previously identified in histones.

  3. Histone H1 Variants in Arabidopsis Are Subject to Numerous Post-Translational Modifications, Both Conserved and Previously Unknown in Histones, Suggesting Complex Functions of H1 in Plants

    PubMed Central

    Kotliński, Maciej; Rutowicz, Kinga; Kniżewski, Łukasz; Palusiński, Antoni; Olędzki, Jacek; Fogtman, Anna; Rubel, Tymon; Koblowska, Marta; Dadlez, Michał; Ginalski, Krzysztof; Jerzmanowski, Andrzej

    2016-01-01

    Linker histones (H1s) are conserved and ubiquitous structural components of eukaryotic chromatin. Multiple non-allelic variants of H1, which differ in their DNA/nucleosome binding properties, co-exist in animal and plant cells and have been implicated in the control of genetic programs during development and differentiation. Studies in mammals and Drosophila have revealed diverse post-translational modifications of H1s, most of which are of unknown function. So far, it is not known how this pattern compares with that of H1s from other major lineages of multicellular Eukaryotes. Here, we show that the two main H1variants of a model flowering plant Arabidopsis thaliana are subject to a rich and diverse array of post-translational modifications. The distribution of these modifications in the H1 molecule, especially in its globular domain (GH1), resembles that occurring in mammalian H1s, suggesting that their functional significance is likely to be conserved. While the majority of modifications detected in Arabidopsis H1s, including phosphorylation, acetylation, mono- and dimethylation, formylation, crotonylation and propionylation, have also been reported in H1s of other species, some others have not been previously identified in histones. PMID:26820416

  4. Insulin-inducible changes in the relative ratio of PTP1B splice variants.

    PubMed

    Sell, S M; Reese, D

    1999-03-01

    The skeletal muscle activity of protein tyrosine phosphates 1B (PTP1B), a modulator of insulin and IGF-1 signaling, is reduced in obese nondiabetic subjects and in subjects with type 2 diabetes in comparison with leaner, nondiabetic controls. PTP1B mRNA, like many other signaling molecules, including the insulin receptor, is alternatively spliced. Since we have shown that the ratio of the insulin receptor splice variants is modulated by insulin in vitro and is related to insulin levels in vivo, we hypothesized that the relative ratios of the alternatively spliced PTP1B mRNA might also vary in humans in proportion to the degree of hyperinsulinemia. This was tested in 21 nondiabetic Pima Indians, a population at increased risk for obesity and type 2 diabetes. The relative ratio of the PTP1B splice variants was quantified using RT-PCR of total RNA extracted from fractionated monocytes. The ratio of the splice variants was positively correlated with fasting plasma insulin concentration (r = 0.757; P = 0.0001), 2-h plasma insulin concentration following an oral glucose tolerance test (r = 0.614; P = 0.01, n = 16), and percentage of body fat (r = 0.746; P = 0.0001). These data indicate that variability in the ratio of the two splice variants is due, in part, to in vivo levels of chronic hyperinsulinemia. This simple, noninvasive assay is therefore a potential biomarker for chronic hyperinsulinemia, similar to the HbAlc assay in use to monitor glucose management in diabetic patients.

  5. Mapping post-translational modifications of mammalian testicular specific histone variant TH2B in tetraploid and haploid germ cells and their implications on the dynamics of nucleosome structure.

    PubMed

    Pentakota, Satya Krishna; Sandhya, Sankaran; P Sikarwar, Arun; Chandra, Nagasuma; Satyanarayana Rao, Manchanahalli R

    2014-12-05

    Histones regulate a variety of chromatin templated events by their post-translational modifications (PTMs). Although there are extensive reports on the PTMs of canonical histones, the information on the histone variants remains very scanty. Here, we report the identification of different PTMs, such as acetylation, methylation, and phosphorylation of a major mammalian histone variant TH2B. Our mass spectrometric analysis has led to the identification of both conserved and unique modifications across tetraploid spermatocytes and haploid spermatids. We have also computationally derived the 3-dimensional model of a TH2B containing nucleosome in order to study the spatial orientation of the PTMs identified and their effect on nucleosome stability and DNA binding potential. From our nucleosome model, it is evident that substitution of specific amino acid residues in TH2B results in both differential histone-DNA and histone-histone contacts. Furthermore, we have also observed that acetylation on the N-terminal tail of TH2B weakens the interactions with the DNA. These results provide direct evidence that, similar to somatic H2B, the testis specific histone TH2B also undergoes multiple PTMs, suggesting the possibility of chromatin regulation by such covalent modifications in mammalian male germ cells.

  6. The Histone Database: an integrated resource for histones and histone fold-containing proteins

    PubMed Central

    Mariño-Ramírez, Leonardo; Levine, Kevin M.; Morales, Mario; Zhang, Suiyuan; Moreland, R. Travis; Baxevanis, Andreas D.; Landsman, David

    2011-01-01

    Eukaryotic chromatin is composed of DNA and protein components—core histones—that act to compactly pack the DNA into nucleosomes, the fundamental building blocks of chromatin. These nucleosomes are connected to adjacent nucleosomes by linker histones. Nucleosomes are highly dynamic and, through various core histone post-translational modifications and incorporation of diverse histone variants, can serve as epigenetic marks to control processes such as gene expression and recombination. The Histone Sequence Database is a curated collection of sequences and structures of histones and non-histone proteins containing histone folds, assembled from major public databases. Here, we report a substantial increase in the number of sequences and taxonomic coverage for histone and histone fold-containing proteins available in the database. Additionally, the database now contains an expanded dataset that includes archaeal histone sequences. The database also provides comprehensive multiple sequence alignments for each of the four core histones (H2A, H2B, H3 and H4), the linker histones (H1/H5) and the archaeal histones. The database also includes current information on solved histone fold-containing structures. The Histone Sequence Database is an inclusive resource for the analysis of chromatin structure and function focused on histones and histone fold-containing proteins. Database URL: The Histone Sequence Database is freely available and can be accessed at http://research.nhgri.nih.gov/histones/. PMID:22025671

  7. Carbohydrate/fat ratio in the diet alters histone acetylation on the sucrase-isomaltase gene and its expression in mouse small intestine.

    PubMed

    Honma, Kazue; Mochizuki, Kazuki; Goda, Toshinao

    2007-06-15

    A diet with a high carbohydrate/fat ratio enhances jejunal SI gene expression. Using ChIP assay, we revealed that the acetylation of histone H3 on transcriptional region and H4 on promoter region, respectively, of mouse SI gene are high. The acetylation of histone H3 and H4 as well as binding of HNF-1 and Cdx-2 on SI gene, was enhanced by increase in carbohydrate/fat ratio in the diet. These suggest that induction of SI gene by the diet rich in carbohydrate is associated with acetylation of histone H3 and H4 as well as binding of HNF-1 and Cdx-2 on SI gene.

  8. Bootstrap Restricted Likelihood Ratio Test for the Detection of Rare Variants

    PubMed Central

    Zeng, Ping; Wang, Ting

    2015-01-01

    In this paper the detection of rare variants association with continuous phenotypes of interest is investigated via the likelihood-ratio based variance component test under the framework of linear mixed models. The hypothesis testing is challenging and nonstandard, since under the null the variance component is located on the boundary of its parameter space. In this situation the usual asymptotic chisquare distribution of the likelihood ratio statistic does not necessarily hold. To circumvent the derivation of the null distribution we resort to the bootstrap method due to its generic applicability and being easy to implement. Both parametric and nonparametric bootstrap likelihood ratio tests are studied. Numerical studies are implemented to evaluate the performance of the proposed bootstrap likelihood ratio test and compare to some existing methods for the identification of rare variants. To reduce the computational time of the bootstrap likelihood ratio test we propose an effective approximation mixture for the bootstrap null distribution. The GAW17 data is used to illustrate the proposed test. PMID:26069459

  9. Identification of proliferation-induced genes in Arabidopsis thaliana. Characterization of a new member of the highly evolutionarily conserved histone H2A.F/Z variant subfamily.

    PubMed Central

    Callard, D; Mazzolini, L

    1997-01-01

    The changes in gene expression associated with the reinitiation of cell division and subsequent progression through the cell cycle in Arabidopsis thaliana cell-suspension cultures were investigated. Partial synchronization of cells was achieved by a technique combining phosphate starvation and a transient treatment with the DNA replication inhibitor aphidicolin. Six cDNAs corresponding to genes highly induced in proliferating cells and showing cell-cycle-regulated expression were obtained by the mRNA differential display technique. Full-length cDNA clones (cH2BAt and cH2AvAt) corresponding to two of the display products were subsequently isolated. The cH2BAt clone codes for a novel histone H2B protein, whereas the cH2AvAt cDNA corresponds to a gene encoding a new member of the highly conserved histone H2A.F/Z subfamily of chromosomal proteins. Further studies indicated that H2AvAt mRNA expression is tightly correlated with cell proliferation in cell-suspension cultures, and that closely related analogs of the encoded protein exist in Arabidopsis. The implications of the conservation of histone H2A.F/Z variants in plants are discussed. PMID:9414552

  10. The Histone Database: an integrated resource for histones and histone fold-containing proteins.

    PubMed

    Mariño-Ramírez, Leonardo; Levine, Kevin M; Morales, Mario; Zhang, Suiyuan; Moreland, R Travis; Baxevanis, Andreas D; Landsman, David

    2011-01-01

    Eukaryotic chromatin is composed of DNA and protein components-core histones-that act to compactly pack the DNA into nucleosomes, the fundamental building blocks of chromatin. These nucleosomes are connected to adjacent nucleosomes by linker histones. Nucleosomes are highly dynamic and, through various core histone post-translational modifications and incorporation of diverse histone variants, can serve as epigenetic marks to control processes such as gene expression and recombination. The Histone Sequence Database is a curated collection of sequences and structures of histones and non-histone proteins containing histone folds, assembled from major public databases. Here, we report a substantial increase in the number of sequences and taxonomic coverage for histone and histone fold-containing proteins available in the database. Additionally, the database now contains an expanded dataset that includes archaeal histone sequences. The database also provides comprehensive multiple sequence alignments for each of the four core histones (H2A, H2B, H3 and H4), the linker histones (H1/H5) and the archaeal histones. The database also includes current information on solved histone fold-containing structures. The Histone Sequence Database is an inclusive resource for the analysis of chromatin structure and function focused on histones and histone fold-containing proteins.

  11. Rare Variants Detection with Kernel Machine Learning Based on Likelihood Ratio Test

    PubMed Central

    Zeng, Ping; Zhao, Yang; Zhang, Liwei; Huang, Shuiping; Chen, Feng

    2014-01-01

    This paper mainly utilizes likelihood-based tests to detect rare variants associated with a continuous phenotype under the framework of kernel machine learning. Both the likelihood ratio test (LRT) and the restricted likelihood ratio test (ReLRT) are investigated. The relationship between the kernel machine learning and the mixed effects model is discussed. By using the eigenvalue representation of LRT and ReLRT, their exact finite sample distributions are obtained in a simulation manner. Numerical studies are performed to evaluate the performance of the proposed approaches under the contexts of standard mixed effects model and kernel machine learning. The results have shown that the LRT and ReLRT can control the type I error correctly at the given α level. The LRT and ReLRT consistently outperform the SKAT, regardless of the sample size and the proportion of the negative causal rare variants, and suffer from fewer power reductions compared to the SKAT when both positive and negative effects of rare variants are present. The LRT and ReLRT performed under the context of kernel machine learning have slightly higher powers than those performed under the context of standard mixed effects model. We use the Genetic Analysis Workshop 17 exome sequencing SNP data as an illustrative example. Some interesting results are observed from the analysis. Finally, we give the discussion. PMID:24675868

  12. Dual Role of the Histone Variant H2A.Z in Transcriptional Regulation of Stress-Response Genes[OPEN

    PubMed Central

    Kabza, Michał; Karlowski, Wojciech M.; Kus-Slowinska, Marta; Pawełoszek, Łukasz; Sadowski, Jan

    2017-01-01

    The influence of the histone variant H2A.Z on transcription remains a long-standing conundrum. Here, by analyzing the actin-related protein6 mutant, which is impaired in H2A.Z deposition, and by H2A.Z profiling in stress conditions, we investigated the impact of this histone variant on gene expression in Arabidopsis thaliana. We demonstrate that the arp6 mutant exhibits anomalies in response to osmotic stress. Indeed, stress-responsive genes are overrepresented among those hyperactive in arp6. In wild-type plants, these genes exhibit high levels of H2A.Z in the gene body. Furthermore, we observed that in drought-responsive genes, levels of H2A.Z in the gene body correlate with transcript levels. H2A.Z occupancy, but not distribution, changes in parallel with transcriptional changes. In particular, we observed H2A.Z loss upon transcriptional activation and H2A.Z gain upon repression. These data suggest that H2A.Z has a repressive role in transcription and counteracts unwanted expression in noninductive conditions. However, reduced activity of some genes in arp6 is associated with distinct behavior of H2A.Z at their +1 nucleosome, which exemplifies the requirement of this histone for transcription. Our data support a model where H2A.Z in gene bodies has a strong repressive effect on transcription, whereas in +1 nucleosomes, it is important for maintaining the activity of some genes. PMID:28258158

  13. A Protein Complex Containing the Conserved Swi2/Snf2-Related ATPase Swr1p Deposits Histone Variant H2A.Z into Euchromatin

    PubMed Central

    Kobor, Michael. S; Venkatasubrahmanyam, Shivkumar; Meneghini, Marc D; Gin, Jennifer W; Jennings, Jennifer L; Link, Andrew J

    2004-01-01

    The conserved histone variant H2A.Z functions in euchromatin to antagonize the spread of heterochromatin. The mechanism by which histone H2A is replaced by H2A.Z in the nucleosome is unknown. We identified a complex containing 13 different polypeptides associated with a soluble pool of H2A.Z in Saccharomyces cerevisiae. This complex was designated SWR1-Com in reference to the Swr1p subunit, a Swi2/Snf2-paralog. Swr1p and six other subunits were found only in SWR1-Com, whereas six other subunits were also found in the NuA4 histone acetyltransferase and/or the Ino80 chromatin remodeling complex. H2A.Z and SWR1 were essential for viability of cells lacking the EAF1 component of NuA4, pointing to a close functional connection between these two complexes. Strikingly, chromatin immunoprecipitation analysis of cells lacking Swr1p, the presumed ATPase of the complex, revealed a profound defect in the deposition of H2A.Z at euchromatic regions that flank the silent mating type cassette HMR and at 12 other chromosomal sites tested. Consistent with a specialized role for Swr1p in H2A.Z deposition, the majority of the genome-wide transcriptional defects seen in swr1Δ cells were also found in htz1Δ cells. These studies revealed a novel role for a member of the ATP-dependent chromatin remodeling enzyme family in determining the region-specific histone subunit composition of chromatin in vivo and controlling the epigenetic state of chromatin. Metazoan orthologs of Swr1p (Drosophila Domino; human SRCAP and p400) may have analogous functions. PMID:15045029

  14. A protein complex containing the conserved Swi2/Snf2-related ATPase Swr1p deposits histone variant H2A.Z into euchromatin.

    PubMed

    Kobor, Michael S; Venkatasubrahmanyam, Shivkumar; Meneghini, Marc D; Gin, Jennifer W; Jennings, Jennifer L; Link, Andrew J; Madhani, Hiten D; Rine, Jasper

    2004-05-01

    The conserved histone variant H2A.Z functions in euchromatin to antagonize the spread of heterochromatin. The mechanism by which histone H2A is replaced by H2A.Z in the nucleosome is unknown. We identified a complex containing 13 different polypeptides associated with a soluble pool of H2A.Z in Saccharomyces cerevisiae. This complex was designated SWR1-Com in reference to the Swr1p subunit, a Swi2/Snf2-paralog. Swr1p and six other subunits were found only in SWR1-Com, whereas six other subunits were also found in the NuA4 histone acetyltransferase and/or the Ino80 chromatin remodeling complex. H2A.Z and SWR1 were essential for viability of cells lacking the EAF1 component of NuA4, pointing to a close functional connection between these two complexes. Strikingly, chromatin immunoprecipitation analysis of cells lacking Swr1p, the presumed ATPase of the complex, revealed a profound defect in the deposition of H2A.Z at euchromatic regions that flank the silent mating type cassette HMR and at 12 other chromosomal sites tested. Consistent with a specialized role for Swr1p in H2A.Z deposition, the majority of the genome-wide transcriptional defects seen in swr1Delta cells were also found in htz1Delta cells. These studies revealed a novel role for a member of the ATP-dependent chromatin remodeling enzyme family in determining the region-specific histone subunit composition of chromatin in vivo and controlling the epigenetic state of chromatin. Metazoan orthologs of Swr1p (Drosophila Domino; human SRCAP and p400) may have analogous functions.

  15. The "drought-inducible" histone H1s of tobacco play no role in male sterility linked to alterations in H1 variants.

    PubMed

    Przewloka, Marcin R; Wierzbicki, Andrzej T; Slusarczyk, Joanna; Kuraś, Mieczyslaw; Grasser, Klaus D; Stemmer, Christian; Jerzmanowski, Andrzej

    2002-07-01

    Tobacco ( Nicotiana tabacum L.) has two major H1 variants (H1A and H1B), which account for over 80% of chromatin linker histones, and four minor variants: H1C, H1D, H1E and H1F. We have shown previously [M. Prymakowska-Bosak et al. (1999) Plant Cell 11:2317-2329] that reversal of the natural proportion of major to minor H1 variants in transgenic tobacco plants results in a characteristic male-sterility phenotype identical to that occurring in many plant species subjected to water deficit at the time of male meiosis. It has been proposed by others that the drought-induced arrest of male gametophyte development is linked to decreased sugar delivery to reproductive tissues. Within the family of angiosperm H1s there is a well-defined class of minor H1 variants named "drought inducible" because some of its members have been shown to be induced by water deficit. We have identified and cloned the tobacco H1C gene, which, based on sequence similarity, represents a "drought-inducible" minor H1 variant. Analysis of the un-translated mRNA and promoter regions of H1C suggests a regulation by sucrose concentration. Antisense silencing of H1C and its close homologue H1D in plants that do not express H1A and H1B does not affect the characteristic H1A(-)/ H1B(-) male-sterility phenotype. Silencing of H1C and H1D also has no effect on growth and development of plants. Our findings demonstrate that H1C and H1D are dispensable for normal growth and development of tobacco, and that the compensatory up-regulation of "drought-inducible" H1s observed in H1A(-)/ H1B(-) plants is not the direct cause of male sterility linked to alterations in H1 variants.

  16. Label-Free Relative Quantitation of Isobaric and Isomeric Human Histone H2A and H2B Variants by Fourier Transform Ion Cyclotron Resonance Top-Down MS/MS.

    PubMed

    Dang, Xibei; Singh, Amar; Spetman, Brian D; Nolan, Krystal D; Isaacs, Jennifer S; Dennis, Jonathan H; Dalton, Stephen; Marshall, Alan G; Young, Nicolas L

    2016-09-02

    Histone variants are known to play a central role in genome regulation and maintenance. However, many variants are inaccessible by antibody-based methods or bottom-up tandem mass spectrometry due to their highly similar sequences. For many, the only tractable approach is with intact protein top-down tandem mass spectrometry. Here, ultra-high-resolution FT-ICR MS and MS/MS yield quantitative relative abundances of all detected HeLa H2A and H2B isobaric and isomeric variants with a label-free approach. We extend the analysis to identify and relatively quantitate 16 proteoforms from 12 sequence variants of histone H2A and 10 proteoforms of histone H2B from three other cell lines: human embryonic stem cells (WA09), U937, and a prostate cancer cell line LaZ. The top-down MS/MS approach provides a path forward for more extensive elucidation of the biological role of many previously unstudied histone variants and post-translational modifications.

  17. [Dual-index sequence analysis of common and variant peak ratio in far-infrared fingerprint of Pyritum].

    PubMed

    Huang, Liping; Wu, Jing

    2011-06-01

    To set up the dual-indexes sequence analytical method for far-infrared fingerprint in which the dual indexes are common peak ratio and variant ration. Two new indexes, common peak ratio and variant peak ratio, were applied and their values were calculated by means of sequential analysis, in which each Pyritum sample's far-infrared fingerprint spectra were set up and the common peak ratio sequences were arranged in order of size in comparision with other samples. The analytical results suggested that samples S3 and S4, S5, S6 and S7, S8 and S9 from the same region showed higher common peak ratio and lower variant peak ratio. However, the sample S1 from Anhui showed little similarity with others. The method, applied to distinguish Pyritum of different areas and batches, is reasonable to characterize of traditional Chinese medicine.

  18. Possible prognostic value of BORIS transcript variants ratio in laryngeal squamous cell carcinomas - a pilot study.

    PubMed

    Novak Kujundžić, Renata; Grbeša, Ivana; Ivkić, Mirko; Krušlin, Božo; Konjevoda, Paško; Gall Trošelj, Koraljka

    2014-07-01

    BORIS is a paralog of a highly conserved, multi-functional chromatin factor CTCF. Unlike CTCF, which has been shown to possess tumor-suppressive properties, BORIS belongs to the "cancer/testis antigen" family normally expressed only in germ cells and aberrantly activated in a variety of tumors. The consequences of BORIS expression, relative abundance of its isoforms, and its role in carcinogenesis have not been completely elucidated. It activates transcription of hTERT and MYC, genes relevant for laryngeal carcinoma progression. In this study, BORIS expression has been analyzed at the transcriptional level by RT-PCR and protein level by semi-quantitative immunohistochemistry in 32 laryngeal squamous cell carcinomas and adjacent non-tumorous tissue. BORIS was detected in 44 % (14/32) laryngeal squamous cell carcinoma samples, while it was detected only in one normal, tumor-adjacent tissue sample. Tree based survival analysis, using the recursive partitioning algorithm mvpart, extracted the ratio of relative abundance of BORIS transcript variants containing exon 7 (BORIS 7+) and those lacking exon 7 (BORIS 7-) as an independent prognostic factor associated with disease relapse during a 5-year follow-up period. Patients having BORIS 7+/BORIS 7- ratio ≥1 had a higher rate of disease relapse than patients with BORIS 7+/BORIS 7- ratio <1. Hazard ratio for that group, based on Cox Proportional Hazard Regression, was 3.53. This is the first study analyzing expression of BORIS protein and transcript variants in laryngeal squamous cell carcinoma relative to its possible prognostic value for recurrence and overall survival.

  19. Impact of cigarette smoking on histone (H2B) to protamine ratio in human spermatozoa and its relation to sperm parameters.

    PubMed

    Hamad, M F; Shelko, N; Kartarius, S; Montenarh, M; Hammadeh, M E

    2014-09-01

    Smoking is strongly associated with abnormalities in histone-to-protamine transition and with alteration of protamine expression in human spermatozoa. A proper protamine to histone ratio is, however, essential for sperm chromatin maturity and DNA integrity. Alterations in these sperm nuclear proteins were observed in infertile men. The present prospective study is aimed at evaluating the possible relationship among smoking, semen quality and the histone-to-protamine transition ratio in mature spermatozoa. Histone H2B and protamine 1 (P1) and 2 (P2) were quantified using acid-urea polyacrylamide gel electrophoresis in the spermatozoa of 35 smokers and 19 non-smokers. Levels of lipid peroxidation marker malondialdehyde (MDA) were measured in seminal plasma by thiobarbituric acid assay. Cotinine concentrations were determined in seminal plasma using an enzyme-linked immunosorbent assay. Histone H2B levels in smokers (292.27 ± 58.24 ng/10(6)) were significantly higher (p = 0.001) than that of non-smokers (109.1 ± 43.70 ng/10(6)), besides, a significant difference (p > 0.0001) was found for the P1 and P2 ratio between smokers (1.71 ± 0.071) and non-smokers (1.05 ± 0.033). The H2B/(H2B+P1 + P2) ratio (0.29 ± 0.71) of smokers were significantly higher (p = <0.0001) than that of non-smokers (0.12 ± 0.01). The concentrations of MDA (μm) (7.13 ± 1.15) and cotinine (ng/mL) (60.44 ± 31.32) in seminal plasma of smokers were significantly higher (p = 0.001) than those in the samples of the non-smoker group (4.42 ± 1.16 and 2.01 ± 2.84 respectively). In addition, smokers showed significantly (p ≤ 0.002) lower sperm count, motility (p = 0.018), vitality (p = 0.009) and membrane integrity (p = 0.0001) than non-smokers. These results reveal that patients who smoke possess a higher proportion of spermatozoa with an alteration of the histone to protamine ratio than patients who do not smoke, and suggest that cigarette smoking may inversely affect male fertility.

  20. The NH2 Tail of the Novel Histone Variant H2BFWT Exhibits Properties Distinct from Conventional H2B with Respect to the Assembly of Mitotic Chromosomes

    PubMed Central

    Boulard, Mathieu; Gautier, Thierry; Mbele, Gaelh Ouengue; Gerson, Véronique; Hamiche, Ali; Angelov, Dimitar; Bouvet, Philippe; Dimitrov, Stefan

    2006-01-01

    We have studied the functional and structural properties of nucleosomes reconstituted with H2BFWT, a recently identified putative histone variant of the H2B family with totally unknown function. We show that H2BFWT can replace the conventional histone H2B in the nucleosome. The presence of H2BFWT did not affect the overall structure of the nucleosome, and the H2BFWT nucleosomes exhibited the same stability as conventional nucleosomes. SWI/SNF was able to efficiently remodel and mobilize the H2BFWT nucleosomes. Importantly, H2BFWT, in contrast to conventional H2B, was unable to recruit chromosome condensation factors and to participate in the assembly of mitotic chromosomes. This was determined by the highly divergent (compared to conventional H2B) NH2 tail of H2BFWT. These data, in combination with the observations that H2BFWT was found by others in the sperm nuclei and appeared to be associated with the telomeric chromatin, suggest that H2BFWT could act as a specific epigenetic marker. PMID:16449661

  1. The histone variant H2A.Z is dynamically expressed in the developing mouse placenta and in differentiating trophoblast stem cells.

    PubMed

    Kafer, Georgia R; Carlton, Peter M; Lehnert, Sigrid A

    2015-11-01

    The histone variant H2A.Z is important in establishing new chromatin environments necessary for permitting changes in gene expression and thus differentiation in mouse embryonic stem (mES) cells. In this study we show that H2A.Z is highly expressed in the early mouse placenta, and is specifically limited to progenitor-like trophoblast cells. Using in vitro models, we revealed distinct differences in H2A.Z abundance between undifferentiated, differentiating and differentiated mouse trophoblast stem (mTS) cells. Our work supports the hypothesis that in addition to roles in differentiating mES cells, H2A.Z is also involved in the differentiation of extra-embryonic tissues. Copyright © 2015. Published by Elsevier Ltd.

  2. MLL5 Orchestrates a Cancer Self-Renewal State by Repressing the Histone Variant H3.3 and Globally Reorganizing Chromatin.

    PubMed

    Gallo, Marco; Coutinho, Fiona J; Vanner, Robert J; Gayden, Tenzin; Mack, Stephen C; Murison, Alex; Remke, Marc; Li, Ren; Takayama, Naoya; Desai, Kinjal; Lee, Lilian; Lan, Xiaoyang; Park, Nicole I; Barsyte-Lovejoy, Dalia; Smil, David; Sturm, Dominik; Kushida, Michelle M; Head, Renee; Cusimano, Michael D; Bernstein, Mark; Clarke, Ian D; Dick, John E; Pfister, Stefan M; Rich, Jeremy N; Arrowsmith, Cheryl H; Taylor, Michael D; Jabado, Nada; Bazett-Jones, David P; Lupien, Mathieu; Dirks, Peter B

    2015-12-14

    Mutations in the histone 3 variant H3.3 have been identified in one-third of pediatric glioblastomas (GBMs), but not in adult tumors. Here we show that H3.3 is a dynamic determinant of functional properties in adult GBM. H3.3 is repressed by mixed lineage leukemia 5 (MLL5) in self-renewing GBM cells. MLL5 is a global epigenetic repressor that orchestrates reorganization of chromatin structure by punctuating chromosomes with foci of compacted chromatin, favoring tumorigenic and self-renewing properties. Conversely, H3.3 antagonizes self-renewal and promotes differentiation. We exploited these epigenetic states to rationally identify two small molecules that effectively curb cancer stem cell properties in a preclinical model. Our work uncovers a role for MLL5 and H3.3 in maintaining self-renewal hierarchies in adult GBM. Copyright © 2015 Elsevier Inc. All rights reserved.

  3. Genome-wide identification of histone H2A and histone variant H2A.Z-interacting proteins by bPPI-seq.

    PubMed

    Zhang, Yi; Ku, Wai Lim; Liu, Shuai; Cui, Kairong; Jin, Wenfei; Tang, Qingsong; Lu, William; Ni, Bing; Zhao, Keji

    2017-09-01

    H2A is a nucleosome core subunit involved in organizing DNA into a chromatin structure that is often inaccessible to regulatory enzymes. Replacement of H2A by its variant H2A.Z renders chromatin accessible at enhancers and promoters. However, it remains unclear how H2A.Z functions so differently from canonical H2A. Here we report the genome-wide identification of proteins that directly interact with H2A and H2A.Z in vivo using a novel strategy, bPPI-seq. We show that bPPI-seq is a sensitive and robust technique to identify protein-protein interactions in vivo. Our data indicate that H2A.Z-interacting proteins and H2A-interacting proteins participate in distinct biological processes. In contrast to H2A-interacting proteins, the H2A.Z-interacting proteins are involved in transcriptional regulation. We found that the transcription factor Osr1 interacts with H2A.Z both in vitro and in vivo. It also mediates H2A.Z incorporation to a large number of target sites and regulates gene expression. Our data indicate that bPPI-seq can be widely applied to identify genome-wide interacting proteins under physiological conditions.Cell Research advance online publication 1 September 2017; doi:10.1038/cr.2017.112.

  4. DNA Hypomethylation and Histone Variant macroH2A1 Synergistically Attenuate Chemotherapy-Induced Senescence to Promote Hepatocellular Carcinoma Progression

    PubMed Central

    Borghesan, Michela; Fusilli, Caterina; Rappa, Francesca; Panebianco, Concetta; Rizzo, Giovanni; Oben, Jude A.; Mazzoccoli, Gianluigi; Faulkes, Chris; Pata, Illar; Agodi, Antonella; Rezaee, Farhad; Minogue, Shane; Warren, Alessandra; Peterson, Abigail; Sedivy, John M.; Douet, Julien; Buschbeck, Marcus; Cappello, Francesco; Mazza, Tommaso; Pazienza, Valerio; Vinciguerra, Manlio

    2016-01-01

    Aging is a major risk factor for progression of liver diseases to hepatocellular carcinoma (HCC). Cellular senescence contributes to age-related tissue dysfunction, but the epigenetic basis underlying drug-induced senescence remains unclear.macroH2A1, a variant of histone H2A, is a marker of senescence-associated heterochromatic foci that synergizes with DNA methylation to silence tumor-suppressor genes in human fibroblasts. In this study, we investigated the relationship between macroH2A1 splice variants, macroH2A1.1 and macroH2A1.2, and liver carcinogenesis. We found that protein levels of both macroH2A1 isoforms were increased in the livers of very elderly rodents and humans, and were robust immunohistochemical markers of human cirrhosis and HCC. In response to the chemotherapeutic and DNA-demethylating agent 5-aza-deoxycytidine (5-aza-dC), transgenic expression of macroH2A1 isoforms in HCC cell lines prevented the emergence of a senescent-like phenotype and induced synergistic global DNA hypomethylation. Conversely, macroH2A1 depletion amplified the antiproliferative effects of 5-aza-dC in HCC cells, but failed to enhance senescence. Senescence-associated secretory phenotype and whole-transcriptome analyses implicated the p38 MAPK/IL8 pathway in mediating macroH2A1-dependent escape of HCC cells from chemotherapy-induced senescence. Furthermore, chromatin immunoprecipitation sequencing revealed that this hepatic antisenescence state also required active transcription that could not be attributed to genomic occupancy of these histones. Collectively, our findings reveal a new mechanism by which drug-induced senescence is epigenetically regulated by macroH2A1 and DNA methylation and suggest macroH2A1 as a novel biomarker of hepatic senescence that could potentially predict prognosis and disease progression. PMID:26772755

  5. DNA Hypomethylation and Histone Variant macroH2A1 Synergistically Attenuate Chemotherapy-Induced Senescence to Promote Hepatocellular Carcinoma Progression.

    PubMed

    Borghesan, Michela; Fusilli, Caterina; Rappa, Francesca; Panebianco, Concetta; Rizzo, Giovanni; Oben, Jude A; Mazzoccoli, Gianluigi; Faulkes, Chris; Pata, Illar; Agodi, Antonella; Rezaee, Farhad; Minogue, Shane; Warren, Alessandra; Peterson, Abigail; Sedivy, John M; Douet, Julien; Buschbeck, Marcus; Cappello, Francesco; Mazza, Tommaso; Pazienza, Valerio; Vinciguerra, Manlio

    2016-02-01

    Aging is a major risk factor for progression of liver diseases to hepatocellular carcinoma (HCC). Cellular senescence contributes to age-related tissue dysfunction, but the epigenetic basis underlying drug-induced senescence remains unclear. macroH2A1, a variant of histone H2A, is a marker of senescence-associated heterochromatic foci that synergizes with DNA methylation to silence tumor-suppressor genes in human fibroblasts. In this study, we investigated the relationship between macroH2A1 splice variants, macroH2A1.1 and macroH2A1.2, and liver carcinogenesis. We found that protein levels of both macroH2A1 isoforms were increased in the livers of very elderly rodents and humans, and were robust immunohistochemical markers of human cirrhosis and HCC. In response to the chemotherapeutic and DNA-demethylating agent 5-aza-deoxycytidine (5-aza-dC), transgenic expression of macroH2A1 isoforms in HCC cell lines prevented the emergence of a senescent-like phenotype and induced synergistic global DNA hypomethylation. Conversely, macroH2A1 depletion amplified the antiproliferative effects of 5-aza-dC in HCC cells, but failed to enhance senescence. Senescence-associated secretory phenotype and whole-transcriptome analyses implicated the p38 MAPK/IL8 pathway in mediating macroH2A1-dependent escape of HCC cells from chemotherapy-induced senescence. Furthermore, chromatin immunoprecipitation sequencing revealed that this hepatic antisenescence state also required active transcription that could not be attributed to genomic occupancy of these histones. Collectively, our findings reveal a new mechanism by which drug-induced senescence is epigenetically regulated by macroH2A1 and DNA methylation and suggest macroH2A1 as a novel biomarker of hepatic senescence that could potentially predict prognosis and disease progression. ©2016 American Association for Cancer Research.

  6. Estimation of Odds Ratios of Genetic Variants for the Secondary Phenotypes Associated with Primary Diseases

    PubMed Central

    Wang, Jian; Shete, Sanjay

    2011-01-01

    Genetic association studies for binary diseases are designed as case-control studies: the cases are those affected with the primary disease and the controls are free of the disease. At the time of case-control collection, information about secondary phenotypes is also collected. Association studies of secondary phenotype and genetic variants have received a great deal of interest recently. To study the secondary phenotypes, investigators use standard regression approaches, where individuals with secondary phenotypes are coded as cases and those without secondary phenotypes are coded as controls. However, using the secondary phenotype as an outcome variable in a case-control study might lead to a biased estimate of odds ratios (ORs) for genetic variants. The secondary phenotype is associated with the primary disease; therefore, individuals with and without the secondary phenotype are not sampled following the principles of a case-control study. In this article, we demonstrate that such analyses will lead to a biased estimate of OR and propose new approaches to provide more accurate OR estimates of genetic variants associated with the secondary phenotype for both unmatched and frequency-matched (with respect to the secondary phenotype) case-control studies. We also propose a bootstrapping method to estimate the empirical confidence intervals for the corrected ORs. Using simulation studies and analysis of lung cancer data for single-nucleotide polymorphism associated with smoking quantity, we compared our new approaches to standard logistic regression and to an extended version of the inverse-probability-of-sampling-weighted regression. The proposed approaches provide more accurate estimation of the true OR. PMID:21308766

  7. Functional role of histone variant Htz1 in the stress response to oleate in Saccharomyces cerevisiae.

    PubMed

    Liu, Hongde; Li, Guanghui; Liu, Lingjie; Wan, Yakun

    2015-05-20

    Chromatin structure is implicated in regulating gene transcription in stress response. Transcription factors, transferases and deacetylases, such as multicopy suppressor of SNF1 protein 2 (Msn2), SET domain-containing protein 1 (Set1) and sucrose NonFermenting protein 1 (Snf1), have been identified as key regulators in stress response. In the present study, we reported the dynamics of nucleosome occupancy, Histone Two A Z1 (Htz1) deposition and histone H3 lysine 4 dimethylation (H3K4me2) and histone H3 lysine 79 trimethylation (H3K79me3) in Saccharomyces cerevisiae under oleate stress. Our results indicated that citrate cycle-associated genes are enhanced and ribosome genes are repressed during the glucose-oleate shift. Importantly, Htz1 acts as a sensor for oleate stress. High-throughput ChIP-chip analysis showed that Htz1 has redistributed across the genome during oleate stress. The number of Htz1-bound genes increases with stress and the number of Htz1-bound ribosome genes decreases with stress. The dynamics of Htz1 and H3K79me3 around transcription factor-binding sites correlate with transcriptional changes. Moreover, we found that nucleosome dynamics are coupled with Htz1 binding changes upon stress. In unstressed conditions (2% glucose), nucleosome occupancy is comparable between Htz1-bound genes and Htz1-depleted genes; in stressed conditions (0.2% oleate for 8 h), the nucleosome occupancy of Htz1-depleted genes is significantly lower than that of Htz1-bound genes. We also found that Msn2 acts an important role in response to the oleate stress and Htz1 is dynamic in Msn2-target genes. Htz1 senses the oleate stress and undergoes a global redistribution and this change couples dynamics of nucleosome occupancy. Our analysis suggests that Htz1 and nucleosome dynamics change in response to oleate stress. © 2015 Authors.

  8. Functional role of histone variant Htz1 in the stress response to oleate in Saccharomyces cerevisiae

    PubMed Central

    Liu, Hongde; Li, Guanghui; Liu, Lingjie; Wan, Yakun

    2015-01-01

    Chromatin structure is implicated in regulating gene transcription in stress response. Transcription factors, transferases and deacetylases, such as multicopy suppressor of SNF1 protein 2 (Msn2), SET domain-containing protein 1 (Set1) and sucrose NonFermenting protein 1 (Snf1), have been identified as key regulators in stress response. In the present study, we reported the dynamics of nucleosome occupancy, Histone Two A Z1 (Htz1) deposition and histone H3 lysine 4 dimethylation (H3K4me2) and histone H3 lysine 79 trimethylation (H3K79me3) in Saccharomyces cerevisiae under oleate stress. Our results indicated that citrate cycle-associated genes are enhanced and ribosome genes are repressed during the glucose-oleate shift. Importantly, Htz1 acts as a sensor for oleate stress. High-throughput ChIP-chip analysis showed that Htz1 has redistributed across the genome during oleate stress. The number of Htz1-bound genes increases with stress and the number of Htz1-bound ribosome genes decreases with stress. The dynamics of Htz1 and H3K79me3 around transcription factor-binding sites correlate with transcriptional changes. Moreover, we found that nucleosome dynamics are coupled with Htz1 binding changes upon stress. In unstressed conditions (2% glucose), nucleosome occupancy is comparable between Htz1-bound genes and Htz1-depleted genes; in stressed conditions (0.2% oleate for 8 h), the nucleosome occupancy of Htz1-depleted genes is significantly lower than that of Htz1-bound genes. We also found that Msn2 acts an important role in response to the oleate stress and Htz1 is dynamic in Msn2-target genes. Htz1 senses the oleate stress and undergoes a global redistribution and this change couples dynamics of nucleosome occupancy. Our analysis suggests that Htz1 and nucleosome dynamics change in response to oleate stress. PMID:26182431

  9. The histone shuffle: histone chaperones in an energetic dance

    PubMed Central

    Das, Chandrima; Tyler, Jessica K.; Churchill, Mair E.A.

    2014-01-01

    Our genetic information is tightly packaged into a rather ingenious nucleoprotein complex called chromatin in a manner that enables it to be rapidly accessed during genomic processes. Formation of the nucleosome, which is the fundamental unit of chromatin, occurs via a stepwise process that is reversed to enable the disassembly of nucleosomes. Histone chaperone proteins have prominent roles in facilitating these processes as well as in replacing old histones with new canonical histones or histone variants during the process of histone exchange. Recent structural, biophysical and biochemical studies have begun to shed light on the molecular mechanisms whereby histone chaperones promote chromatin assembly, disassembly and histone exchange to facilitate DNA replication, repair and transcription. PMID:20444609

  10. Characterization of post‐translational modifications on lysine 9 of histone H3 variants in mouse testis using matrix‐assisted laser desorption/ionization in‐source decay

    PubMed Central

    Kwak, Ho‐Geun

    2016-01-01

    Rationale Post‐translational modifications (PTMs) of histones result in changes to transcriptional activities and chromatin remodeling. Lysine 9 of histone H3 (H3K9) is subject to PTMs, such as methylation and acetylation, which influence histone activity during spermatogenesis. Characterization strategies for studying PTMs on H3K9 have been developed to provide epigenetic and proteomic information. Proteomic analysis has been used to limited success to study PTMs on H3K9; however, a comprehensive analytical approach is required to elucidate global patterns of PTMs of H3 variants during spermatogenesis. Methods Intact H3 variants in mouse testis were separated by high‐performance liquid chromatography on a reversed‐phase column with an ion‐pairing reagent. Modifications to H3K9 were identified via top‐down analysis using matrix‐assisted laser desorption/ionization in source decay (MALDI‐ISD). Results Mono‐, di‐, and tri‐methylations were identified at H3K9 in mouse testis and epididymis. These modifications were also observed in testis‐specific histone H3 (H3t). Specifically, tri‐methylation was more abundant on H3tK9 than on K9 of other H3 variants. Conclusions We introduce a method for rapid, simple, and comprehensive characterization of PTMs on the N‐termini of H3 variants using MALDI‐ISD. This approach provides novel and useful information, including K9 modifications on H3t, which would benefit epigenetic and proteomic research. © 2016 The Authors. Rapid Communications in Mass Spectrometry Published by John Wiley & Sons Ltd. PMID:27643486

  11. Wild-type p53-induced phosphatase 1 dephosphorylates histone variant gamma-H2AX and suppresses DNA double strand break repair.

    PubMed

    Moon, Sung-Hwan; Lin, Lin; Zhang, Xinna; Nguyen, Thuy-Ai; Darlington, Yolanda; Waldman, Alan S; Lu, Xiongbin; Donehower, Lawrence A

    2010-04-23

    In response to DNA double strand breaks, the histone variant H2AX at the break site is phosphorylated at serine 139 by DNA damage sensor kinases such as ataxia telangiectasia-mutated, forming gamma-H2AX. This phosphorylation event is critical for sustained recruitment of other proteins to repair the break. After repair, restoration of the cell to a prestress state is associated with gamma-H2AX dephosphorylation and dissolution of gamma-H2AX-associated damage foci. The phosphatases PP2A and PP4 have previously been shown to dephosphorylate gamma-H2AX. Here, we demonstrate that the wild-type p53-induced phosphatase 1 (WIP1) also dephosphorylates gamma-H2AX at serine 139 in vitro and in vivo. Overexpression of WIP1 reduces formation of gamma-H2AX foci in response to ionizing and ultraviolet radiation and blocks recruitment of MDC1 (mediator of DNA damage checkpoint 1) and 53BP1 (p53 binding protein 1) to DNA damage foci. Finally, these inhibitory effects of WIP1 on gamma-H2AX are accompanied by WIP1 suppression of DNA double strand break repair. Thus, WIP1 has a homeostatic role in reversing the effects of ataxia telangiectasia-mutated phosphorylation of H2AX.

  12. Arabidopsis KINETOCHORE NULL2 Is an Upstream Component for Centromeric Histone H3 Variant cenH3 Deposition at Centromeres[W

    PubMed Central

    Lermontova, Inna; Kuhlmann, Markus; Friedel, Swetlana; Rutten, Twan; Heckmann, Stefan; Sandmann, Michael; Demidov, Dmitri; Schubert, Veit; Schubert, Ingo

    2013-01-01

    The centromeric histone H3 variant cenH3 is an essential centromeric protein required for assembly, maintenance, and proper function of kinetochores during mitosis and meiosis. We identified a KINETOCHORE NULL2 (KNL2) homolog in Arabidopsis thaliana and uncovered features of its role in cenH3 loading at centromeres. We show that Arabidopsis KNL2 colocalizes with cenH3 and is associated with centromeres during all stages of the mitotic cell cycle, except from metaphase to mid-anaphase. KNL2 is regulated by the proteasome degradation pathway. The KNL2 promoter is mainly active in meristematic tissues, similar to the cenH3 promoter. A knockout mutant for KNL2 shows a reduced level of cenH3 expression and reduced amount of cenH3 protein at chromocenters of meristematic nuclei, anaphase bridges during mitosis, micronuclei in pollen tetrads, and 30% seed abortion. Moreover, knl2 mutant plants display reduced expression of suppressor of variegation 3-9 homologs2, 4, and 9 and reduced DNA methylation, suggesting an impact of KNL2 on the epigenetic environment for centromere maintenance. PMID:24014547

  13. Human GRK4γ142V Variant Promotes Angiotensin II Type I Receptor-Mediated Hypertension via Renal Histone Deacetylase Type 1 Inhibition.

    PubMed

    Wang, Zheng; Zeng, Chunyu; Villar, Van Anthony M; Chen, Shi-You; Konkalmatt, Prasad; Wang, Xiaoyan; Asico, Laureano D; Jones, John E; Yang, Yu; Sanada, Hironobu; Felder, Robin A; Eisner, Gilbert M; Weir, Matthew R; Armando, Ines; Jose, Pedro A

    2016-02-01

    The influence of a single gene on the pathogenesis of essential hypertension may be difficult to ascertain, unless the gene interacts with other genes that are germane to blood pressure regulation. G-protein-coupled receptor kinase type 4 (GRK4) is one such gene. We have reported that the expression of its variant hGRK4γ(142V) in mice results in hypertension because of impaired dopamine D1 receptor. Signaling through dopamine D1 receptor and angiotensin II type I receptor (AT1R) reciprocally modulates renal sodium excretion and blood pressure. Here, we demonstrate the ability of the hGRK4γ(142V) to increase the expression and activity of the AT1R. We show that hGRK4γ(142V) phosphorylates histone deacetylase type 1 and promotes its nuclear export to the cytoplasm, resulting in increased AT1R expression and greater pressor response to angiotensin II. AT1R blockade and the deletion of the Agtr1a gene normalize the hypertension in hGRK4γ(142V) mice. These findings illustrate the unique role of GRK4 by targeting receptors with opposite physiological activity for the same goal of maintaining blood pressure homeostasis, and thus making the GRK4 a relevant therapeutic target to control blood pressure. © 2015 American Heart Association, Inc.

  14. Histone H3 lysine 4 trimethylation regulates cotranscriptional H2A variant exchange by Tip60 complexes to maximize gene expression.

    PubMed

    Kusch, Thomas; Mei, Amanda; Nguyen, Camtu

    2014-04-01

    Histone H3 lysine 4 trimethylation (H3K4me3) and the acetylated H2A variant, H2A.Z/v (H2Avac), are enriched at promoters of highly transcribed loci including the stress response genes. Using the inducible Drosophila hsp70 loci as a model, we study here the roles of the dSet1 and dTip60 complexes in the generation of these two chromatin modifications. We find that Heat Shock Factor recruits the dTip60 complex to the hsp70 loci in cells treated with salicylate, which triggers chromatin remodeling at these loci without transcription activation. Under these conditions, H2Avac or H3K4me3 are not enriched at the hsp70 promoter. By contrast, heat shock-induced hsp70 transcription induces dSet1-dependent H3K4me3 and H2Avac deposition by the dTip60 complex. The loss of dSet1 or dTip60 abolishes H2Avac incorporation, impairs Pol II release from the hsp70 promoter, and causes a stalling of mRNA production during phases of transcription maximization. Biochemical assays confirm that nucleosomal H3K4me3 stimulates the histone acetyltransferase and H2Av exchange activities of dTip60 complexes. H2Avac contributes to nucleosome destabilization at promoters, and H3K4me3 restricts its incorporation to phases of acute transcription. The process uncouples cotranscriptional chromatin remodeling by dTip60 complexes from their role in the activation of PARP, which is responsible for the removal of transcription-incompatible or damaged chromatin during the initial stress response. The control of the multifunctional dTip60 complex by H3K4me3 ensures optimal stress response and cell survival by mediating the rapid maximization of hsp70 expression. Furthermore, this mechanism prevents the accumulation of epigenetic noise caused by random complex-nucleosome collisions.

  15. Histone H3 lysine 4 trimethylation regulates cotranscriptional H2A variant exchange by Tip60 complexes to maximize gene expression

    PubMed Central

    Kusch, Thomas; Mei, Amanda; Nguyen, Camtu

    2014-01-01

    Histone H3 lysine 4 trimethylation (H3K4me3) and the acetylated H2A variant, H2A.Z/v (H2Avac), are enriched at promoters of highly transcribed loci including the stress response genes. Using the inducible Drosophila hsp70 loci as a model, we study here the roles of the dSet1 and dTip60 complexes in the generation of these two chromatin modifications. We find that Heat Shock Factor recruits the dTip60 complex to the hsp70 loci in cells treated with salicylate, which triggers chromatin remodeling at these loci without transcription activation. Under these conditions, H2Avac or H3K4me3 are not enriched at the hsp70 promoter. By contrast, heat shock-induced hsp70 transcription induces dSet1-dependent H3K4me3 and H2Avac deposition by the dTip60 complex. The loss of dSet1 or dTip60 abolishes H2Avac incorporation, impairs Pol II release from the hsp70 promoter, and causes a stalling of mRNA production during phases of transcription maximization. Biochemical assays confirm that nucleosomal H3K4me3 stimulates the histone acetyltransferase and H2Av exchange activities of dTip60 complexes. H2Avac contributes to nucleosome destabilization at promoters, and H3K4me3 restricts its incorporation to phases of acute transcription. The process uncouples cotranscriptional chromatin remodeling by dTip60 complexes from their role in the activation of PARP, which is responsible for the removal of transcription-incompatible or damaged chromatin during the initial stress response. The control of the multifunctional dTip60 complex by H3K4me3 ensures optimal stress response and cell survival by mediating the rapid maximization of hsp70 expression. Furthermore, this mechanism prevents the accumulation of epigenetic noise caused by random complex-nucleosome collisions. PMID:24639513

  16. Mass Spectrometric Analysis of Histone Proteoforms

    NASA Astrophysics Data System (ADS)

    Yuan, Zuo-Fei; Arnaudo, Anna M.; Garcia, Benjamin A.

    2014-06-01

    Histones play important roles in chromatin, in the forms of various posttranslational modifications (PTMs) and sequence variants, which are called histone proteoforms. Investigating modifications and variants is an ongoing challenge. Previous methods are based on antibodies, and because they usually detect only one modification at a time, they are not suitable for studying the various combinations of modifications on histones. Fortunately, mass spectrometry (MS) has emerged as a high-throughput technology for histone analysis and does not require prior knowledge about any modifications. From the data generated by mass spectrometers, both identification and quantification of modifications, as well as variants, can be obtained easily. On the basis of this information, the functions of histones in various cellular contexts can be revealed. Therefore, MS continues to play an important role in the study of histone proteoforms. In this review, we discuss the analysis strategies of MS, their applications on histones, and some key remaining challenges.

  17. Correlation of morphological variants of the soft palate and Need's ratio in normal individuals: A digital cephalometric study

    PubMed Central

    Verma, Pradhuman; Kumaraswam, Kikkeri Lakshminarayana; Basavaraju, Suman; Sachdeva, Suresh K.; Juneja, Suruchi

    2014-01-01

    Purpose The present study was aimed to investigate the variation of soft palate morphology in different age and gender groups. The correlations of radiographic velar length (VL), velar width (VW), pharyngeal depth (PD), and Need's ratio with soft palate variants were also studied in the North Indian subpopulation. Materials and Methods The study sample consisted of 300 subjects aged between 15 and 45 (mean: 31.32) years. The velar morphology on lateral cephalograms was examined and grouped into six types. The results obtained were subjected to a statistical analysis to find the correlation between variants of the soft palate with gender and different age groups. Results The most frequent type of soft palate was leaf shaped (48.7%), and the least common was crook shaped (3.0%) among both the genders and various age groups, showing a significant correlation. The mean VL, VW, and PD values were significantly higher in males and significantly correlated with the types of soft palate. A significant correlation was observed between the mean VL, VW, PD, and Need's ratio with various age groups, showing an inconsistent pattern with an increase in age. The types of soft palate, gender, and Need's ratio were also significantly correlated, with an overall higher mean value of the Need's ratio among female subjects and the S-shaped soft palate. Conclusion The knowledge of a varied spectrum of velar morphology and the variants of the soft palate help in a better understanding of the velopharyngeal closure and craniofacial anomalies. PMID:25279339

  18. Rapid purification of recombinant histones.

    PubMed

    Klinker, Henrike; Haas, Caroline; Harrer, Nadine; Becker, Peter B; Mueller-Planitz, Felix

    2014-01-01

    The development of methods to assemble nucleosomes from recombinant histones decades ago has transformed chromatin research. Nevertheless, nucleosome reconstitution remains time consuming to this day, not least because the four individual histones must be purified first. Here, we present a streamlined purification protocol of recombinant histones from bacteria. We termed this method "rapid histone purification" (RHP) as it circumvents isolation of inclusion bodies and thereby cuts out the most time-consuming step of traditional purification protocols. Instead of inclusion body isolation, whole cell extracts are prepared under strongly denaturing conditions that directly solubilize inclusion bodies. By ion exchange chromatography, the histones are purified from the extracts. The protocol has been successfully applied to all four canonical Drosophila and human histones. RHP histones and histones that were purified from isolated inclusion bodies had similar purities. The different purification strategies also did not impact the quality of octamers reconstituted from these histones. We expect that the RHP protocol can be readily applied to the purification of canonical histones from other species as well as the numerous histone variants.

  19. Rapid Purification of Recombinant Histones

    PubMed Central

    Klinker, Henrike; Becker, Peter B.; Mueller-Planitz, Felix

    2014-01-01

    The development of methods to assemble nucleosomes from recombinant histones decades ago has transformed chromatin research. Nevertheless, nucleosome reconstitution remains time consuming to this day, not least because the four individual histones must be purified first. Here, we present a streamlined purification protocol of recombinant histones from bacteria. We termed this method “rapid histone purification” (RHP) as it circumvents isolation of inclusion bodies and thereby cuts out the most time-consuming step of traditional purification protocols. Instead of inclusion body isolation, whole cell extracts are prepared under strongly denaturing conditions that directly solubilize inclusion bodies. By ion exchange chromatography, the histones are purified from the extracts. The protocol has been successfully applied to all four canonical Drosophila and human histones. RHP histones and histones that were purified from isolated inclusion bodies had similar purities. The different purification strategies also did not impact the quality of octamers reconstituted from these histones. We expect that the RHP protocol can be readily applied to the purification of canonical histones from other species as well as the numerous histone variants. PMID:25090252

  20. A genetic system to assess in vivo the functions of histones and histone modifications in higher eukaryotes.

    PubMed

    Günesdogan, Ufuk; Jäckle, Herbert; Herzig, Alf

    2010-10-01

    Despite the fundamental role of canonical histones in nucleosome structure, there is no experimental system for higher eukaryotes in which basic questions about histone function can be directly addressed. We developed a new genetic tool for Drosophila melanogaster in which the canonical histone complement can be replaced with multiple copies of experimentally modified histone transgenes. This new histone-replacement system provides a well-defined and direct cellular assay system for histone function with which to critically test models in chromatin biology dealing with chromatin assembly, variant histone functions and the biological significance of distinct histone modifications in a multicellular organism.

  1. Liquid Chromatography Mass Spectrometry Profiling of Histones

    PubMed Central

    Su, Xiaodan; Jacob, Naduparambil K.; Amunugama, Ravindra; Lucas, David M.; Knapp, Amy R.; Ren, Chen; Davis, Melanie E.; Marcucci, Guido; Parthun, Mark R.; Byrd, John C.; Fishel, Richard A.; Freitas, Michael A.

    2007-01-01

    Here we describe the use of reverse-phase liquid chromatography mass spectrometry (RP-LC-MS) to simultaneously characterize variants and post-translationally modified isoforms for each histone. The analysis of intact proteins significantly reduces the time of sample preparation and simplifies data interpretation. LC-MS analysis and peptide mass mapping have previously been applied to identify histone proteins and to characterize their post-translational modifications. However, these studies provided limited characterization of both linker histones and core histones. The current LC-MS analysis allows for the simultaneous observation of all histone PTMs and variants (both replacement and bulk histones) without further enrichment, which will be valuable in comparative studies. Protein identities were verified by the analysis of histone H2A species using RPLC fractionation, AU-PAGE separation and nano-LC-MS/MS. PMID:17254850

  2. Histone phosphorylation

    PubMed Central

    Rossetto, Dorine; Avvakumov, Nikita; Côté, Jacques

    2012-01-01

    Histone posttranslational modifications are key components of diverse processes that modulate chromatin structure. These marks function as signals during various chromatin-based events, and act as platforms for recruitment, assembly or retention of chromatin-associated factors. The best-known function of histone phosphorylation takes place during cellular response to DNA damage, when phosphorylated histone H2A(X) demarcates large chromatin domains around the site of DNA breakage. However, multiple studies have also shown that histone phosphorylation plays crucial roles in chromatin remodeling linked to other nuclear processes. In this review, we summarize the current knowledge of histone phosphorylation and describe the many kinases and phosphatases that regulate it. We discuss the key roles played by this histone mark in DNA repair, transcription and chromatin compaction during cell division and apoptosis. Additionally, we describe the intricate crosstalk that occurs between phosphorylation and other histone modifications and allows for sophisticated control over the chromatin remodeling processes. PMID:22948226

  3. Structure and Functions of Linker Histones.

    PubMed

    Lyubitelev, A V; Nikitin, D V; Shaytan, A K; Studitsky, V M; Kirpichnikov, M P

    2016-03-01

    Linker histones such as variants H1, H5, and other similar proteins play an important role in regulation of chromatin structure and dynamics. However, interactions of linker histones with DNA and proteins, as well as specific functions of their different variants, are poorly studied. This is because they acquire tertiary structure only when interacting with a nucleosome, and because of limitations of currently available methods. However, deeper investigation of linker histones and their interactions with other proteins will address a number of important questions - from structure of compacted chromatin to regulation of early embryogenesis. In this review, structures of histone H1 variants and its interaction with chromatin DNA are considered. A possible functional significance of different H1 variants, a role of these proteins in maintaining interphase chromatin structure, and interactions of linker histones with other cellular proteins are also discussed.

  4. Diversity and Divergence of Dinoflagellate Histone Proteins

    PubMed Central

    Marinov, Georgi K.; Lynch, Michael

    2015-01-01

    Histone proteins and the nucleosomal organization of chromatin are near-universal eukaroytic features, with the exception of dinoflagellates. Previous studies have suggested that histones do not play a major role in the packaging of dinoflagellate genomes, although several genomic and transcriptomic surveys have detected a full set of core histone genes. Here, transcriptomic and genomic sequence data from multiple dinoflagellate lineages are analyzed, and the diversity of histone proteins and their variants characterized, with particular focus on their potential post-translational modifications and the conservation of the histone code. In addition, the set of putative epigenetic mark readers and writers, chromatin remodelers and histone chaperones are examined. Dinoflagellates clearly express the most derived set of histones among all autonomous eukaryote nuclei, consistent with a combination of relaxation of sequence constraints imposed by the histone code and the presence of numerous specialized histone variants. The histone code itself appears to have diverged significantly in some of its components, yet others are conserved, implying conservation of the associated biochemical processes. Specifically, and with major implications for the function of histones in dinoflagellates, the results presented here strongly suggest that transcription through nucleosomal arrays happens in dinoflagellates. Finally, the plausible roles of histones in dinoflagellate nuclei are discussed. PMID:26646152

  5. Diversity and Divergence of Dinoflagellate Histone Proteins.

    PubMed

    Marinov, Georgi K; Lynch, Michael

    2015-12-08

    Histone proteins and the nucleosomal organization of chromatin are near-universal eukaroytic features, with the exception of dinoflagellates. Previous studies have suggested that histones do not play a major role in the packaging of dinoflagellate genomes, although several genomic and transcriptomic surveys have detected a full set of core histone genes. Here, transcriptomic and genomic sequence data from multiple dinoflagellate lineages are analyzed, and the diversity of histone proteins and their variants characterized, with particular focus on their potential post-translational modifications and the conservation of the histone code. In addition, the set of putative epigenetic mark readers and writers, chromatin remodelers and histone chaperones are examined. Dinoflagellates clearly express the most derived set of histones among all autonomous eukaryote nuclei, consistent with a combination of relaxation of sequence constraints imposed by the histone code and the presence of numerous specialized histone variants. The histone code itself appears to have diverged significantly in some of its components, yet others are conserved, implying conservation of the associated biochemical processes. Specifically, and with major implications for the function of histones in dinoflagellates, the results presented here strongly suggest that transcription through nucleosomal arrays happens in dinoflagellates. Finally, the plausible roles of histones in dinoflagellate nuclei are discussed.

  6. Poly(ADP-ribose) polymerase 1 is inhibited by a histone H2A variant, MacroH2A, and contributes to silencing of the inactive X chromosome.

    PubMed

    Nusinow, Dmitri A; Hernández-Muñoz, Inmaculada; Fazzio, Thomas G; Shah, Girish M; Kraus, W Lee; Panning, Barbara

    2007-04-27

    Poly(ADP-ribose) polymerase 1 (PARP-1) is a nuclear enzyme that is involved in modulating chromatin structure, regulation of gene expression, and sensing DNA damage. Here, we report that PARP-1 enzymatic activity is inhibited by macroH2A, a vertebrate histone H2A variant that is enriched on facultative heterochromatin. MacroH2A family members have a large C-terminal non-histone domain (NHD) and H2A-like histone domain. MacroH2A1.2 and PARP-1 interact in vivo and in vitro via the NHD. The NHD of each macroH2A family member was sufficient to inhibit PARP-1 enzymatic activity in vitro. The NHD of macroH2A1.2 was a mixed inhibitor of PARP-1 catalytic activity, with affects on both catalytic activity and the substrate binding affinity of PARP-1. Depletion of PARP-1 by RNA interference caused reactivation of a reporter gene on the inactive X chromosome, demonstrating that PARP-1 participates in the maintenance of silencing. These results suggest that one function of macroH2A in gene silencing is to inhibit PARP-1 enzymatic activity, and this may affect PARP-1 association with chromatin.

  7. Genome distribution of replication-independent histone H1 variants shows H1.0 associated with nucleolar domains and H1X associated with RNA polymerase II-enriched regions.

    PubMed

    Mayor, Regina; Izquierdo-Bouldstridge, Andrea; Millán-Ariño, Lluís; Bustillos, Alberto; Sampaio, Cristina; Luque, Neus; Jordan, Albert

    2015-03-20

    Unlike core histones, the linker histone H1 family is more evolutionarily diverse, and many organisms have multiple H1 variants or subtypes. In mammals, the H1 family includes seven somatic H1 variants; H1.1 to H1.5 are expressed in a replication-dependent manner, whereas H1.0 and H1X are replication-independent. Using ChIP-sequencing data and cell fractionation, we have compared the genomic distribution of H1.0 and H1X in human breast cancer cells, in which we previously observed differential distribution of H1.2 compared with the other subtypes. We have found H1.0 to be enriched at nucleolus-associated DNA repeats and chromatin domains, whereas H1X is associated with coding regions, RNA polymerase II-enriched regions, and hypomethylated CpG islands. Further, H1X accumulates within constitutive or included exons and retained introns and toward the 3' end of expressed genes. Inducible H1X knockdown does not affect cell proliferation but dysregulates a subset of genes related to cell movement and transport. In H1X-depleted cells, the promoters of up-regulated genes are not occupied specifically by this variant, have a lower than average H1 content, and, unexpectedly, do not form an H1 valley upon induction. We conclude that H1 variants are not distributed evenly across the genome and may participate with some specificity in chromatin domain organization or gene regulation. © 2015 by The American Society for Biochemistry and Molecular Biology, Inc.

  8. Genome Distribution of Replication-independent Histone H1 Variants Shows H1.0 Associated with Nucleolar Domains and H1X Associated with RNA Polymerase II-enriched Regions*

    PubMed Central

    Mayor, Regina; Izquierdo-Bouldstridge, Andrea; Millán-Ariño, Lluís; Bustillos, Alberto; Sampaio, Cristina; Luque, Neus; Jordan, Albert

    2015-01-01

    Unlike core histones, the linker histone H1 family is more evolutionarily diverse, and many organisms have multiple H1 variants or subtypes. In mammals, the H1 family includes seven somatic H1 variants; H1.1 to H1.5 are expressed in a replication-dependent manner, whereas H1.0 and H1X are replication-independent. Using ChIP-sequencing data and cell fractionation, we have compared the genomic distribution of H1.0 and H1X in human breast cancer cells, in which we previously observed differential distribution of H1.2 compared with the other subtypes. We have found H1.0 to be enriched at nucleolus-associated DNA repeats and chromatin domains, whereas H1X is associated with coding regions, RNA polymerase II-enriched regions, and hypomethylated CpG islands. Further, H1X accumulates within constitutive or included exons and retained introns and toward the 3′ end of expressed genes. Inducible H1X knockdown does not affect cell proliferation but dysregulates a subset of genes related to cell movement and transport. In H1X-depleted cells, the promoters of up-regulated genes are not occupied specifically by this variant, have a lower than average H1 content, and, unexpectedly, do not form an H1 valley upon induction. We conclude that H1 variants are not distributed evenly across the genome and may participate with some specificity in chromatin domain organization or gene regulation. PMID:25645921

  9. Examining Histone Posttranslational Modification Patterns by High Resolution Mass Spectrometry

    PubMed Central

    Lin, Shu; Garcia, Benjamin A.

    2014-01-01

    Histone variants and posttranslational modifications (PTMs) are essential for epigenetic regulation of transcriptional expression. Single and/or combinatorial PTMs of histones play important roles in development and disease formation. Mass spectrometry (MS) has been a powerful tool to study histone variants and PTMs as it not only can identify novel PTMs but also can provide quantitative measurement of a spectrum of histone variants and PTMs in the same sample. In this chapter, we employ a combination of chemical derivation and high resolution mass spectrometry to identify and quantify multiple histone variants and PTMs. Histones are acid extracted and modified with propionyl groups, and subsequently produces suitable sizes of fragments for MS analysis by trypsin digestion. The newly generated N-termini of histone peptides can be differentially marked by stable isotope labeling in a second reaction of propionylation, which enables direct comparison between two different samples in the following MS analysis. PMID:22910200

  10. Characterization of a Novel Chromatin Sorting Tool Reveals Importance of Histone Variant H3.3 in Contextual Fear Memory and Motor Learning.

    PubMed

    McNally, Anna G; Poplawski, Shane G; Mayweather, Brittany A; White, Kyle M; Abel, Ted

    2016-01-01

    The consolidation of short-term labile memories for long-term storage requires transcription and there is growing interest in defining the epigenetic mechanisms regulating these transcriptional events. In particular, it has been hypothesized that combinations of histone post-translational modifications (PTMs) have the potential to store memory by dynamically defining the transcriptional status of any given gene loci. Studying epigenetic phenomena during long-term memory consolidation, however, is complicated by the complex cellular heterogeneity of the brain, in which epigenetic signal from memory-relevant cells can be obscured or diluted by the surrounding milieu. To address this issue, we have developed a transgenic mouse line expressing a tetO-regulated, hemagglutinin (HA)-tagged histone H3.3 exclusively in excitatory neurons of the forebrain. Unlike canonical histones, histone H3.3 is incorporated at promoter regions of transcriptionally active genes in a DNA replication-independent manner, stably "barcoding" active regions of the genome in post-mitotic cells. Immunoprecipitating H3.3-HA containing nucleosomes from the hippocampus will therefore enrich for memory-relevant chromatin by isolating actively transcribed regions of the excitatory neuron genome. To evaluate the validity of using H3.3 "barcoding" to sort chromatin, we performed a molecular and behavioral characterization of the H3.3-HA transgenic mouse line. Expectedly, we find that H3.3-HA is incorporated preferentially at promoter regions of actively-transcribed neuronal genes and that expression can be effectively regulated by doxycycline. Additionally, H3.3-HA overexpression does not adversely affect exploratory or anxiety-related behaviors, nor does it affect spatial memory. Transgenic animals do, however, exhibit deficits in contextual memory and motor learning, revealing the importance of this histone isoform in the brain. Future studies in the H3.3-HA transgenic mouse line will define the

  11. A histone timer for zygotic genome activation.

    PubMed

    Siriaco, Giorgia; Tamkun, John W

    2013-09-30

    Histone H1 variants play key roles in the regulation of higher-order chromatin structure and have been implicated in numerous developmental processes. In this issue of Developmental Cell, Pérez-Montero et al. (2013) present evidence that the Drosophila histone H1 variant dBigH1 prevents premature activation of the zygotic genome during early embryogenesis. Copyright © 2013 Elsevier Inc. All rights reserved.

  12. A zebrafish histone variant H2A.F/Z and a transgenic H2A.F/Z:GFP fusion protein for in vivo studies of embryonic development.

    PubMed

    Pauls, S; Geldmacher-Voss, B; Campos-Ortega, J A

    2001-12-01

    Abstract. We have generated transgenic zebrafish lines expressing a fusion of a histone variant, H2A.F/Z, to the green fluorescent protein (GFP) of the jellyfish Aequorea victoria. Here, we describe the molecular cloning, partial characterisation and expression of the zebrafish H2A.F/Z histone gene, as well as the construction of the transgene and its transformation into the zebrafish germ line. No abnormality can be detected in transgenic fish expressing the H2A.F/Z:GFP fusion protein. The nuclear localisation of the fusion protein correlates with the start of zygotic transcription, in that it is present in the unfertilised egg and in the cytoplasm of cells after the first cleavages, being found in some nuclei after the seventh or eighth cleavage, whereas all nuclei from the 1,000-cell stage on, i.e. after midblastula transition, contain protein. In addition to these data, we present a few examples of the many possible applications of this transgenic line for developmental studies in vivo. Electronic supplementary material to this paper can be obtained by using the Springer LINK server located at http://dx.doi.org/10.1007/s00427-001-0196-x

  13. Histone Deacetylases

    PubMed Central

    Parbin, Sabnam; Kar, Swayamsiddha; Shilpi, Arunima; Sengupta, Dipta; Deb, Moonmoon; Rath, Sandip Kumar

    2014-01-01

    In the current era of genomic medicine, diseases are identified as manifestations of anomalous patterns of gene expression. Cancer is the principal example among such maladies. Although remarkable progress has been achieved in the understanding of the molecular mechanisms involved in the genesis and progression of cancer, its epigenetic regulation, particularly histone deacetylation, demands further studies. Histone deacetylases (HDACs) are one of the key players in the gene expression regulation network in cancer because of their repressive role on tumor suppressor genes. Higher expression and function of deacetylases disrupt the finely tuned acetylation homeostasis in both histone and non-histone target proteins. This brings about alterations in the genes implicated in the regulation of cell proliferation, differentiation, apoptosis and other cellular processes. Moreover, the reversible nature of epigenetic modulation by HDACs makes them attractive targets for cancer remedy. This review summarizes the current knowledge of HDACs in tumorigenesis and tumor progression as well as their contribution to the hallmarks of cancer. The present report also describes briefly various assays to detect histone deacetylase activity and discusses the potential role of histone deacetylase inhibitors as emerging epigenetic drugs to cure cancer. PMID:24051359

  14. The D-isoAsp-25 variant of histone H2B is highly enriched in active chromatin: potential role in the regulation of gene expression?

    PubMed

    Qin, Zhenxia; Zhu, Jeff X; Aswad, Dana W

    2016-02-01

    Approximately 12 % of histone H2B in mammalian brain contains an unusual D-aspartate residue in its N-terminal tail. Most of this D-aspartate is linked to the C-flanking glycine via an isopeptide bond. To explore the possible significance of these modifications, we generated an antibody to the D-isoaspartyl form of H2B, and used it to assess its levels in H2B associated with "active" vs. "silent" chromatin. We found that the D-isoaspartyl form of H2B appears to be highly enriched in the former. This irreversible modification could serve a novel regulatory function in gene expression.

  15. Rare variant associations with waist-to-hip ratio in European-American and African-American women from the NHLBI-Exome Sequencing Project.

    PubMed

    Kan, Mengyuan; Auer, Paul L; Wang, Gao T; Bucasas, Kristine L; Hooker, Stanley; Rodriguez, Alejandra; Li, Biao; Ellis, Jaclyn; Adrienne Cupples, L; Ida Chen, Yii-Der; Dupuis, Josée; Fox, Caroline S; Gross, Myron D; Smith, Joshua D; Heard-Costa, Nancy; Meigs, James B; Pankow, James S; Rotter, Jerome I; Siscovick, David; Wilson, James G; Shendure, Jay; Jackson, Rebecca; Peters, Ulrike; Zhong, Hua; Lin, Danyu; Hsu, Li; Franceschini, Nora; Carlson, Chris; Abecasis, Goncalo; Gabriel, Stacey; Bamshad, Michael J; Altshuler, David; Nickerson, Deborah A; North, Kari E; Lange, Leslie A; Reiner, Alexander P; Leal, Suzanne M

    2016-08-01

    Waist-to-hip ratio (WHR), a relative comparison of waist and hip circumferences, is an easily accessible measurement of body fat distribution, in particular central abdominal fat. A high WHR indicates more intra-abdominal fat deposition and is an established risk factor for cardiovascular disease and type 2 diabetes. Recent genome-wide association studies have identified numerous common genetic loci influencing WHR, but the contributions of rare variants have not been previously reported. We investigated rare variant associations with WHR in 1510 European-American and 1186 African-American women from the National Heart, Lung, and Blood Institute-Exome Sequencing Project. Association analysis was performed on the gene level using several rare variant association methods. The strongest association was observed for rare variants in IKBKB (P=4.0 × 10(-8)) in European-Americans, where rare variants in this gene are predicted to decrease WHRs. The activation of the IKBKB gene is involved in inflammatory processes and insulin resistance, which may affect normal food intake and body weight and shape. Meanwhile, aggregation of rare variants in COBLL1, previously found to harbor common variants associated with WHR and fasting insulin, were nominally associated (P=2.23 × 10(-4)) with higher WHR in European-Americans. However, these significant results are not shared between African-Americans and European-Americans that may be due to differences in the allelic architecture of the two populations and the small sample sizes. Our study indicates that the combined effect of rare variants contribute to the inter-individual variation in fat distribution through the regulation of insulin response.

  16. Histone Octamer

    NASA Technical Reports Server (NTRS)

    1997-01-01

    This is a large 2 mm crystal of histone octamer, grown on STS-81. A very dynamic structure which functions in many aspects of gene regulation from control of gene activity to the more subtle mechanisms of genetic imprinting. Principle Investigator is Dan Carter of New Century Pharmaceuticals.

  17. Histone Octamer

    NASA Technical Reports Server (NTRS)

    1997-01-01

    1 mm histone octamer crystal grown on STS-81. A very dynamic structure which functions in many aspects of gene regulation from control of gene activity to the more subtle mechanisms of genetic imprinting. Principle Investigator is Dan Carter of New Century Pharmaceuticals.

  18. Histone Octamer

    NASA Technical Reports Server (NTRS)

    1997-01-01

    1 mm histone octamer crystal grown on STS-81. A very dynamic structure which functions in many aspects of gene regulation from control of gene activity to the more subtle mechanisms of genetic imprinting. Principle Investigator is Dan Carter of New Century Pharmaceuticals.

  19. Histone Octamer

    NASA Technical Reports Server (NTRS)

    1997-01-01

    This is a large 2 mm crystal of histone octamer, grown on STS-81. A very dynamic structure which functions in many aspects of gene regulation from control of gene activity to the more subtle mechanisms of genetic imprinting. Principle Investigator is Dan Carter of New Century Pharmaceuticals.

  20. Ratio

    NASA Astrophysics Data System (ADS)

    Webster, Nathan A. S.; Pownceby, Mark I.; Madsen, Ian C.; Studer, Andrew J.; Manuel, James R.; Kimpton, Justin A.

    2014-12-01

    Effects of basicity, B (CaO:SiO2 ratio) on the thermal range, concentration, and formation mechanisms of silico-ferrite of calcium and aluminum (SFCA) and SFCA-I iron ore sinter bonding phases have been investigated using an in situ synchrotron X-ray diffraction-based methodology with subsequent Rietveld refinement-based quantitative phase analysis. SFCA and SFCA-I phases are the key bonding materials in iron ore sinter, and improved understanding of the effects of processing parameters such as basicity on their formation and decomposition may assist in improving efficiency of industrial iron ore sintering operations. Increasing basicity significantly increased the thermal range of SFCA-I, from 1363 K to 1533 K (1090 °C to 1260 °C) for a mixture with B = 2.48, to ~1339 K to 1535 K (1066 °C to 1262 °C) for a mixture with B = 3.96, and to ~1323 K to 1593 K (1050 °C to 1320 °C) at B = 4.94. Increasing basicity also increased the amount of SFCA-I formed, from 18 wt pct for the mixture with B = 2.48 to 25 wt pct for the B = 4.94 mixture. Higher basicity of the starting sinter mixture will, therefore, increase the amount of SFCA-I, considered to be more desirable of the two phases. Basicity did not appear to significantly influence the formation mechanism of SFCA-I. It did, however, affect the formation mechanism of SFCA, with the decomposition of SFCA-I coinciding with the formation of a significant amount of additional SFCA in the B = 2.48 and 3.96 mixtures but only a minor amount in the highest basicity mixture. In situ neutron diffraction enabled characterization of the behavior of magnetite after melting of SFCA produced a magnetite plus melt phase assemblage.

  1. Whole-exome-sequencing identifies mutations in histone acetyltransferase gene KAT6B in individuals with the Say-Barber-Biesecker variant of Ohdo syndrome.

    PubMed

    Clayton-Smith, Jill; O'Sullivan, James; Daly, Sarah; Bhaskar, Sanjeev; Day, Ruth; Anderson, Beverley; Voss, Anne K; Thomas, Tim; Biesecker, Leslie G; Smith, Philip; Fryer, Alan; Chandler, Kate E; Kerr, Bronwyn; Tassabehji, May; Lynch, Sally-Ann; Krajewska-Walasek, Malgorzata; McKee, Shane; Smith, Janine; Sweeney, Elizabeth; Mansour, Sahar; Mohammed, Shehla; Donnai, Dian; Black, Graeme

    2011-11-11

    Say-Barber-Biesecker-Young-Simpson syndrome (SBBYSS or Ohdo syndrome) is a multiple anomaly syndrome characterized by severe intellectual disability, blepharophimosis, and a mask-like facial appearance. A number of individuals with SBBYSS also have thyroid abnormalities and cleft palate. The condition usually occurs sporadically and is therefore presumed to be due in most cases to new dominant mutations. In individuals with SBBYSS, a whole-exome sequencing approach was used to demonstrate de novo protein-truncating mutations in the highly conserved histone acetyltransferase gene KAT6B (MYST4/MORF)) in three out of four individuals sequenced. Sanger sequencing was used to confirm truncating mutations of KAT6B, clustering in the final exon of the gene in all four individuals and in a further nine persons with typical SBBYSS. Where parental samples were available, the mutations were shown to have occurred de novo. During mammalian development KAT6B is upregulated specifically in the developing central nervous system, facial structures, and limb buds. The phenotypic features seen in the Qkf mouse, a hypomorphic Kat6b mutant, include small eyes, ventrally placed ears and long first digits that mirror the human phenotype. This is a further example of how perturbation of a protein involved in chromatin modification might give rise to a multisystem developmental disorder.

  2. Isolation and analysis of linker histones across cellular compartments

    PubMed Central

    Harshman, Sean W.; Chen, Michael M.; Branson, Owen E.; Jacob, Naduparambil K.; Johnson, Amy J.; Byrd, John C.; Freitas, Michael A.

    2013-01-01

    Analysis of histones, especially histone H1, is severely limited by immunological reagent availability. This paper describes the application of cellular fractionation with LC-MS for profiling histones in the cytosol and upon chromatin. First, we show that linker histones enriched by cellular fractionation gives less nuclear contamination and higher histone content than when prepared by nuclei isolation. Second, we profiled the soluble linker histones throughout the cell cycle revealing phosphorylation increases as cells reach mitosis. Finally, we monitored histone H1.2–H1.5 translocation to the cytosol in response to the CDK inhibitor flavopiridol in primary CLL cells treated ex vivo. Data shows all H1 variants translocate in response to drug treatment with no specific order to their cytosolic appearance. The results illustrate the utility of cellular fractionation in conjunction with LC-MS for the analysis of histone H1 throughout the cell. PMID:24013129

  3. Toxoplasma histone acetylation remodelers as novel drug targets

    PubMed Central

    Vanagas, Laura; Jeffers, Victoria; Bogado, Silvina S; Dalmasso, Maria C; Sullivan, William J; Angel, Sergio O

    2013-01-01

    Toxoplasma gondii is a leading cause of neurological birth defects and a serious opportunistic pathogen. The authors and others have found that Toxoplasma uses a unique nucleosome composition supporting a fine gene regulation together with other factors. Post-translational modifications in histones facilitate the establishment of a global chromatin environment and orchestrate DNA-related biological processes. Histone acetylation is one of the most prominent post-translational modifications influencing gene expression. Histone acetyltransferases and histone deacetylases have been intensively studied as potential drug targets. In particular, histone deacetylase inhibitors have activity against apicomplexan parasites, underscoring their potential as a new class of antiparasitic compounds. In this review, we summarize what is known about Toxoplasma histone acetyltransferases and histone deacetylases, and discuss the inhibitors studied to date. Finally, the authors discuss the distinct possibility that the unique nucleosome composition of Toxoplasma, which harbors a nonconserved H2Bv variant histone, might be targeted in novel therapeutics directed against this parasite. PMID:23199404

  4. SUMO-targeted ubiquitin ligase (STUbL) Slx5 regulates proteolysis of centromeric histone H3 variant Cse4 and prevents its mislocalization to euchromatin

    PubMed Central

    Ohkuni, Kentaro; Takahashi, Yoshimitsu; Fulp, Alyona; Lawrimore, Josh; Au, Wei-Chun; Pasupala, Nagesh; Levy-Myers, Reuben; Warren, Jack; Strunnikov, Alexander; Baker, Richard E.; Kerscher, Oliver; Bloom, Kerry; Basrai, Munira A.

    2016-01-01

    Centromeric histone H3, CENP-ACse4, is essential for faithful chromosome segregation. Stringent regulation of cellular levels of CENP-ACse4 restricts its localization to centromeres. Mislocalization of CENP-ACse4 is associated with aneuploidy in yeast and flies and tumorigenesis in human cells; thus defining pathways that regulate CENP-A levels is critical for understanding how mislocalization of CENP-A contributes to aneuploidy in human cancers. Previous work in budding yeast shows that ubiquitination of overexpressed Cse4 by Psh1, an E3 ligase, partially contributes to proteolysis of Cse4. Here we provide the first evidence that Cse4 is sumoylated by E3 ligases Siz1 and Siz2 in vivo and in vitro. Ubiquitination of Cse4 by the small ubiquitin-related modifier (SUMO)-targeted ubiquitin ligase (STUbL) Slx5 plays a critical role in proteolysis of Cse4 and prevents mislocalization of Cse4 to euchromatin under normal physiological conditions. Accumulation of sumoylated Cse4 species and increased stability of Cse4 in slx5∆ strains suggest that sumoylation precedes ubiquitin-mediated proteolysis of Cse4. Slx5-mediated Cse4 proteolysis is independent of Psh1, since slx5∆ psh1∆ strains exhibit higher levels of Cse4 stability and mislocalization than either slx5∆ or psh1∆ strains. Our results demonstrate a role for Slx5 in ubiquitin-mediated proteolysis of Cse4 to prevent its mislocalization and maintain genome stability. PMID:26960795

  5. The Histone Chaperones Nap1 and Vps75 Bind Histones H3 and H4 in a Tetrameric Conformation

    PubMed Central

    Bowman, Andrew; Ward, Richard; Wiechens, Nicola; Singh, Vijender; El-Mkami, Hassane; Norman, David George; Owen-Hughes, Tom

    2011-01-01

    Summary Histone chaperones physically interact with histones to direct proper assembly and disassembly of nucleosomes regulating diverse nuclear processes such as DNA replication, promoter remodeling, transcription elongation, DNA damage, and histone variant exchange. Currently, the best-characterized chaperone-histone interaction is that between the ubiquitous chaperone Asf1 and a dimer of H3 and H4. Nucleosome assembly proteins (Nap proteins) represent a distinct class of histone chaperone. Using pulsed electron double resonance (PELDOR) measurements and protein crosslinking, we show that two members of this class, Nap1 and Vps75, bind histones in the tetrameric conformation also observed when they are sequestered within the nucleosome. Furthermore, H3 and H4 trapped in their tetrameric state can be used as substrates in nucleosome assembly and chaperone-mediated lysine acetylation. This alternate mode of histone interaction provides a potential means of maintaining the integrity of the histone tetramer during cycles of nucleosome reassembly. PMID:21329878

  6. The histone chaperones Nap1 and Vps75 bind histones H3 and H4 in a tetrameric conformation.

    PubMed

    Bowman, Andrew; Ward, Richard; Wiechens, Nicola; Singh, Vijender; El-Mkami, Hassane; Norman, David George; Owen-Hughes, Tom

    2011-02-18

    Histone chaperones physically interact with histones to direct proper assembly and disassembly of nucleosomes regulating diverse nuclear processes such as DNA replication, promoter remodeling, transcription elongation, DNA damage, and histone variant exchange. Currently, the best-characterized chaperone-histone interaction is that between the ubiquitous chaperone Asf1 and a dimer of H3 and H4. Nucleosome assembly proteins (Nap proteins) represent a distinct class of histone chaperone. Using pulsed electron double resonance (PELDOR) measurements and protein crosslinking, we show that two members of this class, Nap1 and Vps75, bind histones in the tetrameric conformation also observed when they are sequestered within the nucleosome. Furthermore, H3 and H4 trapped in their tetrameric state can be used as substrates in nucleosome assembly and chaperone-mediated lysine acetylation. This alternate mode of histone interaction provides a potential means of maintaining the integrity of the histone tetramer during cycles of nucleosome reassembly.

  7. Histone lysine methylation and chromatin replication.

    PubMed

    Rivera, Carlos; Gurard-Levin, Zachary A; Almouzni, Geneviève; Loyola, Alejandra

    2014-12-01

    In eukaryotic organisms, the replication of the DNA sequence and its organization into chromatin are critical to maintain genome integrity. Chromatin components, such as histone variants and histone post-translational modifications, along with the higher-order chromatin structure, impact several DNA metabolic processes, including replication, transcription, and repair. In this review we focus on lysine methylation and the relationships between this histone mark and chromatin replication. We first describe studies implicating lysine methylation in regulating early steps in the replication process. We then discuss chromatin reassembly following replication fork passage, where the incorporation of a combination of newly synthesized histones and parental histones can impact the inheritance of lysine methylation marks on the daughter strands. Finally, we elaborate on how the inheritance of lysine methylation can impact maintenance of the chromatin landscape, using heterochromatin as a model chromatin domain, and we discuss the potential mechanisms involved in this process.

  8. Histone modifications in the male germ line of Drosophilaa

    PubMed Central

    2013-01-01

    Background In the male germ line of Drosophila chromatin remains decondensed and highly transcribed during meiotic prophase until it is rapidly compacted. A large proportion of the cell cycle-regulated histone H3.1 is replaced by H3.3, a histone variant encoded outside the histone repeat cluster and not subject to cell cycle controlled expression. Results We investigated histone modification patterns in testes of D. melanogaster and D. hydei. In somatic cells of the testis envelope and in germ cells these modification patterns differ from those typically seen in eu- and heterochromatin of other somatic cells. During the meiotic prophase some modifications expected in active chromatin are not found or are found at low level. The absence of H4K16ac suggests that dosage compensation does not take place. Certain histone modifications correspond to either the cell cycle-regulated histone H3.1 or to the testis-specific variant H3.3. In spermatogonia we found H3K9 methylation in cytoplasmic histones, most likely corresponding to the H3.3 histone variant. Most histone modifications persist throughout the meiotic divisions. The majority of modifications persist until the early spermatid nuclei, and only a minority further persist until the final chromatin compaction stages before individualization of the spermatozoa. Conclusion Histone modification patterns in the male germ line differ from expected patterns. They are consistent with an absence of dosage compensation of the X chromosome during the male meiotic prophase. The cell cycle-regulated histone variant H3.1 and H3.3, expressed throughout the cell cycle, also vary in their modification patterns. Postmeiotically, we observed a highly complex pattern of the histone modifications until late spermatid nuclear elongation stages. This may be in part due to postmeiotic transcription and in part to differential histone replacement during chromatin condensation. PMID:23433182

  9. The human histone chaperone sNASP interacts with linker and core histones through distinct mechanisms.

    PubMed

    Wang, Huanyu; Ge, Zhongqi; Walsh, Scott T R; Parthun, Mark R

    2012-01-01

    Somatic nuclear autoantigenic sperm protein (sNASP) is a human homolog of the N1/N2 family of histone chaperones. sNASP contains the domain structure characteristic of this family, which includes a large acidic patch flanked by several tetratricopeptide repeat (TPR) motifs. sNASP possesses a unique binding specificity in that it forms specific complexes with both histone H1 and histones H3/H4. Based on the binding affinities of sNASP variants to histones H1, H3.3, H4 and H3.3/H4 complexes, sNASP uses distinct structural domains to interact with linker and core histones. For example, one of the acidic patches of sNASP was essential for linker histone binding but not for core histone interactions. The fourth TPR of sNASP played a critical role in interactions with histone H3/H4 complexes, but did not influence histone H1 binding. Finally, analysis of cellular proteins demonstrated that sNASP existed in distinct complexes that contained either linker or core histones.

  10. The human histone chaperone sNASP interacts with linker and core histones through distinct mechanisms

    PubMed Central

    Wang, Huanyu; Ge, Zhongqi; Walsh, Scott T. R.; Parthun, Mark R.

    2012-01-01

    Somatic nuclear autoantigenic sperm protein (sNASP) is a human homolog of the N1/N2 family of histone chaperones. sNASP contains the domain structure characteristic of this family, which includes a large acidic patch flanked by several tetratricopeptide repeat (TPR) motifs. sNASP possesses a unique binding specificity in that it forms specific complexes with both histone H1 and histones H3/H4. Based on the binding affinities of sNASP variants to histones H1, H3.3, H4 and H3.3/H4 complexes, sNASP uses distinct structural domains to interact with linker and core histones. For example, one of the acidic patches of sNASP was essential for linker histone binding but not for core histone interactions. The fourth TPR of sNASP played a critical role in interactions with histone H3/H4 complexes, but did not influence histone H1 binding. Finally, analysis of cellular proteins demonstrated that sNASP existed in distinct complexes that contained either linker or core histones. PMID:21965532

  11. HIstome--a relational knowledgebase of human histone proteins and histone modifying enzymes.

    PubMed

    Khare, Satyajeet P; Habib, Farhat; Sharma, Rahul; Gadewal, Nikhil; Gupta, Sanjay; Galande, Sanjeev

    2012-01-01

    Histones are abundant nuclear proteins that are essential for the packaging of eukaryotic DNA into chromosomes. Different histone variants, in combination with their modification 'code', control regulation of gene expression in diverse cellular processes. Several enzymes that catalyze the addition and removal of multiple histone modifications have been discovered in the past decade, enabling investigations of their role(s) in normal cellular processes and diverse pathological conditions. This sudden influx of data, however, has resulted in need of an updated knowledgebase that compiles, organizes and presents curated scientific information to the user in an easily accessible format. Here, we present HIstome, a browsable, manually curated, relational database that provides information about human histone proteins, their sites of modifications, variants and modifying enzymes. HIstome is a knowledgebase of 55 human histone proteins, 106 distinct sites of their post-translational modifications (PTMs) and 152 histone-modifying enzymes. Entries have been grouped into 5 types of histones, 8 types of post-translational modifications and 14 types of enzymes that catalyze addition and removal of these modifications. The resource will be useful for epigeneticists, pharmacologists and clinicians. HIstome: The Histone Infobase is available online at http://www.iiserpune.ac.in/∼coee/histome/ and http://www.actrec.gov.in/histome/.

  12. Oncogenic potential of histone-variant H2A.Z.1 and its regulatory role in cell cycle and epithelial-mesenchymal transition in liver cancer.

    PubMed

    Yang, Hee Doo; Kim, Pum-Joon; Eun, Jung Woo; Shen, Qingyu; Kim, Hyung Seok; Shin, Woo Chan; Ahn, Young Min; Park, Won Sang; Lee, Jung Young; Nam, Suk Woo

    2016-03-08

    H2A.Z is a highly conserved H2A variant, and two distinct H2A.Z isoforms, H2A.Z.1 and H2A.Z.2, have been identified as products of two non-allelic genes, H2AFZ and H2AFV. H2A.Z has been reported to be overexpressed in breast, prostate and bladder cancers, but most studies did not clearly distinguish between isoforms. One recent study reported a unique role for the H2A.Z isoform H2A.Z.2 as a driver of malignant melanoma. Here we first report that H2A.Z.1 plays a pivotal role in the liver tumorigenesis by selectively regulating key molecules in cell cycle and epithelial-mesenchymal transition (EMT). H2AFZ expression was significantly overexpressed in a large cohort of hepatocellular carcinoma (HCC) patients, and high expression of H2AFZ was significantly associated with their poor prognosis. H2A.Z.1 overexpression was demonstrated in a subset of human HCC and cell lines. H2A.Z.1 knockdown suppressed HCC cell growth by transcriptional deregulation of cell cycle proteins and caused apoptotic cell death of HCC cells. We also observed that H2A.Z.1 knockdown reduced the metastatic potential of HCC cells by selectively modulating epithelial-mesenchymal transition regulatory proteins such as E-cadherin and fibronectin. In addition, H2A.Z.1 knockdown reduced the in vivo tumor growth rate in a mouse xenograft model. In conclusion, our findings suggest the oncogenic potential of H2A.Z.1 in liver tumorigenesis and that it plays established role in accelerating cell cycle transition and EMT during hepatocarcinogenesis. This makes H2A.Z.1 a promising target in liver cancer therapy.

  13. Oncogenic potential of histone-variant H2A.Z.1 and its regulatory role in cell cycle and epithelial-mesenchymal transition in liver cancer

    PubMed Central

    Eun, Jung Woo; Shen, Qingyu; Kim, Hyung Seok; Shin, Woo Chan; Ahn, Young Min; Park, Won Sang; Lee, Jung Young; Nam, Suk Woo

    2016-01-01

    H2A.Z is a highly conserved H2A variant, and two distinct H2A.Z isoforms, H2A.Z.1 and H2A.Z.2, have been identified as products of two non-allelic genes, H2AFZ and H2AFV. H2A.Z has been reported to be overexpressed in breast, prostate and bladder cancers, but most studies did not clearly distinguish between isoforms. One recent study reported a unique role for the H2A.Z isoform H2A.Z.2 as a driver of malignant melanoma. Here we first report that H2A.Z.1 plays a pivotal role in the liver tumorigenesis by selectively regulating key molecules in cell cycle and epithelial-mesenchymal transition (EMT). H2AFZ expression was significantly overexpressed in a large cohort of hepatocellular carcinoma (HCC) patients, and high expression of H2AFZ was significantly associated with their poor prognosis. H2A.Z.1 overexpression was demonstrated in a subset of human HCC and cell lines. H2A.Z.1 knockdown suppressed HCC cell growth by transcriptional deregulation of cell cycle proteins and caused apoptotic cell death of HCC cells. We also observed that H2A.Z.1 knockdown reduced the metastatic potential of HCC cells by selectively modulating epithelial-mesenchymal transition regulatory proteins such as E-cadherin and fibronectin. In addition, H2A.Z.1 knockdown reduced the in vivo tumor growth rate in a mouse xenograft model. In conclusion, our findings suggest the oncogenic potential of H2A.Z.1 in liver tumorigenesis and that it plays established role in accelerating cell cycle transition and EMT during hepatocarcinogenesis. This makes H2A.Z.1 a promising target in liver cancer therapy. PMID:26863632

  14. Histone carbonylation occurs in proliferating cells.

    PubMed

    García-Giménez, José Luis; Ledesma, Ana María Velázquez; Esmoris, Isabel; Romá-Mateo, Carlos; Sanz, Pascual; Viña, José; Pallardó, Federico V

    2012-04-15

    Chromatin is a dynamic structure formed mainly by DNA and histones, and chemical modifications on these elements regulate its compaction. Histone posttranslational modifications (PTMs) have a direct impact on chromatin conformation, controlling important cellular events such as cell proliferation and differentiation. Redox-related posttranslational modifications may have important effects on chromatin structure and function, offering a new intriguing area of research termed "redox epigenetics." Little is known about histone carbonylation, a PTM that may be related to modifications in the cellular redox environment. The aim of our study was to determine the carbonylation of the various histones during cell proliferation, a moment in cell life during which important redox changes take place. Here, we describe changes in histone carbonylation during cell proliferation in NIH3T3 fibroblasts. In addition, we have studied the variations of poly(ADP-ribosyl)ation and phospho-H2AX at the same time, because both modifications are related to DNA damage responses. High levels of carbonylation on specific histones (H1, H1(0), and H3.1 dimers) were found when cells were in an active phase of DNA synthesis. The modification decreased when nuclear proteasome activity was activated. However, these results did not correlate completely with poly(ADP-ribosyl)ation and phospho-H2AX levels. Therefore, histone carbonylation may represent a specific event during cell proliferation. We describe a new methodology named oxy-2D-TAU Western blot that allowed us to separate and analyze the carbonylation patterns of the histone variants. In addition we offer a new role for histone carbonylation and its implication in redox epigenetics. Our results suggest that histone carbonylation is involved in histone detoxification during DNA synthesis. Copyright © 2012 Elsevier Inc. All rights reserved.

  15. Rapid divergence of histones in Hydrozoa (Cnidaria) and evolution of a novel histone involved in DNA damage response in hydra.

    PubMed

    Reddy, Puli Chandramouli; Ubhe, Suyog; Sirwani, Neha; Lohokare, Rasika; Galande, Sanjeev

    2017-08-01

    Histones are fundamental components of chromatin in all eukaryotes. Hydra, an emerging model system belonging to the basal metazoan phylum Cnidaria, provides an ideal platform to understand the evolution of core histone components at the base of eumetazoan phyla. Hydra exhibits peculiar properties such as tremendous regenerative capacity, lack of organismal senescence and rarity of malignancy. In light of the role of histone modifications and histone variants in these processes it is important to understand the nature of histones themselves and their variants in hydra. Here, we report identification of the complete repertoire of histone-coding genes in the Hydra magnipapillata genome. Hydra histones were classified based on their copy numbers, gene structure and other characteristic features. Genomic organization of canonical histone genes revealed the presence of H2A-H2B and H3-H4 paired clusters in high frequency and also a cluster with all core histones along with H1. Phylogenetic analysis of identified members of H2A and H2B histones suggested rapid expansion of these groups in Hydrozoa resulting in the appearance of unique subtypes. Amino acid sequence level comparisons of H2A and H2B forms with bilaterian counterparts suggest the possibility of a highly mobile nature of nucleosomes in hydra. Absolute quantitation of transcripts confirmed the high copy number of histones and supported the canonical nature of H2A. Furthermore, functional characterization of H2A.X.1 and a unique variant H2A.X.2 in the gastric region suggest their role in the maintenance of genome integrity and differentiation processes. These findings provide insights into the evolution of histones and their variants in hydra. Copyright © 2017 Elsevier GmbH. All rights reserved.

  16. Developmentally Regulated Linker Histone H1c Promotes Heterochromatin Condensation and Mediates Structural Integrity of Rod Photoreceptors in Mouse Retina*

    PubMed Central

    Popova, Evgenya Y.; Grigoryev, Sergei A.; Fan, Yuhong; Skoultchi, Arthur I.; Zhang, Samuel S.; Barnstable, Colin J.

    2013-01-01

    Mature rod photoreceptor cells contain very small nuclei with tightly condensed heterochromatin. We observed that during mouse rod maturation, the nucleosomal repeat length increases from 190 bp at postnatal day 1 to 206 bp in the adult retina. At the same time, the total level of linker histone H1 increased reaching the ratio of 1.3 molecules of total H1 per nucleosome, mostly via a dramatic increase in H1c. Genetic elimination of the histone H1c gene is functionally compensated by other histone variants. However, retinas in H1c/H1e/H10 triple knock-outs have photoreceptors with bigger nuclei, decreased heterochromatin area, and notable morphological changes suggesting that the process of chromatin condensation and rod cell structural integrity are partly impaired. In triple knock-outs, nuclear chromatin exposed several epigenetic histone modification marks masked in the wild type chromatin. Dramatic changes in exposure of a repressive chromatin mark, H3K9me2, indicate that during development linker histone plays a role in establishing the facultative heterochromatin territory and architecture in the nucleus. During retina development, the H1c gene and its promoter acquired epigenetic patterns typical of rod-specific genes. Our data suggest that histone H1c gene expression is developmentally up-regulated to promote facultative heterochromatin in mature rod photoreceptors. PMID:23645681

  17. Genetic Variants Associated with Optic Nerve Vertical Cup-to-Disc Ratio Are Risk Factors for Primary Open Angle Glaucoma in a US Caucasian Population

    PubMed Central

    Fan, Bao Jian; Wang, Dan Yi; Pasquale, Louis R.; Haines, Jonathan L.

    2011-01-01

    Purpose. Genetically complex disorders, such as primary open angle glaucoma (POAG), may include highly heritable quantitative traits as part of the overall phenotype, and mapping genes influencing the related quantitative traits may effectively identify genetic risk factors predisposing to the complex disease. Recent studies have identified SNPs associated with optic nerve area and vertical cup-to-disc ratio (VCDR). The purpose of this study was to evaluate the association between these SNPs and POAG in a US Caucasian case-control sample. Methods. Five SNPs previously associated with optic disc area, or VCDR, were genotyped in 539 POAG cases and 336 controls. Genotype data were analyzed for single SNP associations and SNP interactions with VCDR and POAG. Results. SNPs associated with VCDR rs1063192 (CDKN2B) and rs10483727 (SIX1/SIX6) were also associated with POAG (P = 0.0006 and P = 0.0043 for rs1063192 and rs10483727, respectively). rs1063192, associated with smaller VCDR, had a protective effect (odds ratio [OR] = 0.73; 95% confidence interval [CI], 0.58–0.90), whereas rs10483727, associated with larger VCDR, increased POAG risk (OR = 1.33; 95% CI, 1.08–1.65). POAG risk associated with increased VCDR was significantly influenced by the C allele of rs1900004 (ATOH7), associated with increased optic nerve area (P-interaction = 0.025; OR = 1.89; 95% CI, 1.22–2.94). Conclusions. Genetic variants influencing VCDR are associated with POAG in a US Caucasian population. Variants associated with optic nerve area are not independently associated with disease but can influence the effects of VCDR variants suggesting that increased optic disc area can significantly contribute to POAG risk when coupled with risk factors controlling VCDR. PMID:21398277

  18. A variant in LIN28B is associated with 2D:4D finger-length ratio, a putative retrospective biomarker of prenatal testosterone exposure.

    PubMed

    Medland, Sarah E; Zayats, Tetyana; Glaser, Beate; Nyholt, Dale R; Gordon, Scott D; Wright, Margaret J; Montgomery, Grant W; Campbell, Megan J; Henders, Anjali K; Timpson, Nicholas J; Peltonen, Leena; Wolke, Dieter; Ring, Susan M; Deloukas, Panos; Martin, Nicholas G; Smith, George Davey; Evans, David M

    2010-04-09

    The ratio of the lengths of an individual's second to fourth digit (2D:4D) is commonly used as a noninvasive retrospective biomarker for prenatal androgen exposure. In order to identify the genetic determinants of 2D:4D, we applied a genome-wide association approach to 1507 11-year-old children from the Avon Longitudinal Study of Parents and Children (ALSPAC) in whom 2D:4D ratio had been measured, as well as a sample of 1382 12- to 16-year-olds from the Brisbane Adolescent Twin Study. A meta-analysis of the two scans identified a single variant in the LIN28B gene that was strongly associated with 2D:4D (rs314277: p = 4.1 x 10(-8)) and was subsequently independently replicated in an additional 3659 children from the ALSPAC cohort (p = 1.53 x 10(-6)). The minor allele of the rs314277 variant has previously been linked to increased height and delayed age at menarche, but in our study it was associated with increased 2D:4D in the direction opposite to that of previous reports on the correlation between 2D:4D and age at menarche. Our findings call into question the validity of 2D:4D as a simplistic retrospective biomarker for prenatal testosterone exposure. (c) 2010 The American Society of Human Genetics. Published by Elsevier Inc. All rights reserved.

  19. A Variant in LIN28B Is Associated with 2D:4D Finger-Length Ratio, a Putative Retrospective Biomarker of Prenatal Testosterone Exposure

    PubMed Central

    Medland, Sarah E.; Zayats, Tetyana; Glaser, Beate; Nyholt, Dale R.; Gordon, Scott D.; Wright, Margaret J.; Montgomery, Grant W.; Campbell, Megan J.; Henders, Anjali K.; Timpson, Nicholas J.; Peltonen, Leena; Wolke, Dieter; Ring, Susan M.; Deloukas, Panos; Martin, Nicholas G.; Smith, George Davey; Evans, David M.

    2010-01-01

    The ratio of the lengths of an individual's second to fourth digit (2D:4D) is commonly used as a noninvasive retrospective biomarker for prenatal androgen exposure. In order to identify the genetic determinants of 2D:4D, we applied a genome-wide association approach to 1507 11-year-old children from the Avon Longitudinal Study of Parents and Children (ALSPAC) in whom 2D:4D ratio had been measured, as well as a sample of 1382 12- to 16-year-olds from the Brisbane Adolescent Twin Study. A meta-analysis of the two scans identified a single variant in the LIN28B gene that was strongly associated with 2D:4D (rs314277: p = 4.1 × 10−8) and was subsequently independently replicated in an additional 3659 children from the ALSPAC cohort (p = 1.53 × 10−6). The minor allele of the rs314277 variant has previously been linked to increased height and delayed age at menarche, but in our study it was associated with increased 2D:4D in the direction opposite to that of previous reports on the correlation between 2D:4D and age at menarche. Our findings call into question the validity of 2D:4D as a simplistic retrospective biomarker for prenatal testosterone exposure. PMID:20303062

  20. Genotyping of common SIRPB1 copy number variant using Paralogue Ratio Test coupled to MALDI-MS quantification.

    PubMed

    Royo, Jose Luis; Pascual-Pons, Mariona; Lupiañez, Arantxa; Sanchez-López, Isabel; Fibla, Joan

    2015-12-01

    Copy number variant (CNV) regions have been proven to have a significant impact on gene expression. Some of them have been also found to be associated to different human diseases. CNV genotyping is often prone to error and cross-validation with independent methods is frequently required. The platform of choice depends on whether it is a genome-wide discovery screening or a candidate CNV study, the cohort size and the number of CNVs included in the assay and, finally, the budget available. Here we illustrate a affordable approach to determine the CNV genotype using matrix-assisted laser desorption/ionization mass spectrometry (MALDI-MS) and based on the quantitative determination of single nucleotide duplicated mismatches (SNDM) mapping the CNV region and a paralogue genomic region that is used as a two-copy reference. We have genotyped nsv436327, a common CNV mapping SIRPB1 intron 1 that has been associated to human personality behavior. SIRP cluster region was subjected to several ancestral duplication events what makes SIRPB1 CNV genotyping technically challenging. We designed three sets of primer pairs that amplified paralogue regions inside and outside the CNV, containing three SNDMs. Post-PCR extension analyses of sequencing oligonucleotides mapping immediately upstream each SNDM allowed us to quantify using MALDI-MS the proportion of PCR products derived from the CNV region versus the external reference. In contrast to other approaches, setting up this genotyping method requires an affordable investment. Copyright © 2015 Elsevier Ltd. All rights reserved.

  1. Histone acetylation in astrocytes suppresses GFAP and stimulates a reorganization of the intermediate filament network.

    PubMed

    Kanski, Regina; Sneeboer, Marjolein A M; van Bodegraven, Emma J; Sluijs, Jacqueline A; Kropff, Wietske; Vermunt, Marit W; Creyghton, Menno P; De Filippis, Lidia; Vescovi, Angelo; Aronica, Eleonora; van Tijn, Paula; van Strien, Miriam E; Hol, Elly M

    2014-10-15

    Glial fibrillary acidic protein (GFAP) is the main intermediate filament in astrocytes and is regulated by epigenetic mechanisms during development. We demonstrate that histone acetylation also controls GFAP expression in mature astrocytes. Inhibition of histone deacetylases (HDACs) with trichostatin A or sodium butyrate reduced GFAP expression in primary human astrocytes and astrocytoma cells. Because splicing occurs co-transcriptionally, we investigated whether histone acetylation changes the ratio between the canonical isoform GFAPα and the alternative GFAPδ splice variant. We observed that decreased transcription of GFAP enhanced alternative isoform expression, as HDAC inhibition increased the GFAPδ∶GFAPα ratio. Expression of GFAPδ was dependent on the presence and binding of splicing factors of the SR protein family. Inhibition of HDAC activity also resulted in aggregation of the GFAP network, reminiscent of our previous findings of a GFAPδ-induced network collapse. Taken together, our data demonstrate that HDAC inhibition results in changes in transcription, splicing and organization of GFAP. These data imply that a tight regulation of histone acetylation in astrocytes is essential, because dysregulation of gene expression causes the aggregation of GFAP, a hallmark of human diseases like Alexander's disease. © 2014. Published by The Company of Biologists Ltd.

  2. Mediation analysis reveals a sex-dependent association between ABO gene variants and TG/HDL-C ratio that is suppressed by sE-selectin level.

    PubMed

    Teng, Ming-Sheng; Hsu, Lung-An; Wu, Semon; Chou, Hsin-Hua; Chang, Chi-Jen; Sun, Yu-Zen; Juan, Shu-Hui; Ko, Yu-Lin

    2013-06-01

    Previous investigations have revealed an association between the ABO locus/blood group and total cholesterol and inflammatory biomarker levels. We aimed to test the statistical association of ABO locus variants with lipid profiles and levels of thirteen inflammatory markers in a Taiwanese population. A sample population of 617 Taiwanese subjects was enrolled. Five ABO gene region polymorphisms were selected and genotyped. After adjusting for clinical covariates and inflammatory marker levels, the genetic-inferred ABO blood group genotypes were associated with sE-selectin level (P = 3.5 × 10(-36)). Significantly higher total and low-density lipoprotein cholesterol (LDL-C) levels were noted in individuals with blood group A (P = 7.2 × 10(-4) and P = 7.3 × 10(-4), respectively). Interestingly, after adjusting for sE-selectin level, significantly lower high-density lipoprotein cholesterol (HDL-C) level as well as higher triglyceride (TG) level and ratio of triglyceride to HDL-C (TG/HDL-C ratio) were noted in individuals with blood group A comparing to non-A individuals (P = 0.009, P = 0.004 and P = 0.001, respectively); these associations were also observed in the group A male subjects (P = 0.027, P = 0.001, and P = 0.002, respectively). Mediation analysis further revealed a suppression effect of sE-selectin level on the association between genetic-inferred ABO blood group genotypes and TG/HDL-C ratio in total participants (P = 1.18 × 10(-6)) and in males (P = 5.99 × 10(-5)). Genetic variants at the ABO locus independently affect sE-selectin level in Taiwanese subjects, while the association of ABO locus variants with TG/HDL-C ratio is suppressed by sE-selectin level in Taiwanese males. These results provided further evidence for the mechanism in the association of ABO blood groups with atherosclerotic cardiovascular diseases. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.

  3. Concentrating pre-mRNA processing factors in the histone locus body facilitates efficient histone mRNA biogenesis

    PubMed Central

    Tatomer, Deirdre C.; Terzo, Esteban; Curry, Kaitlin P.; Salzler, Harmony; Sabath, Ivan; Zapotoczny, Grzegorz; McKay, Daniel J.; Dominski, Zbigniew

    2016-01-01

    The histone locus body (HLB) assembles at replication-dependent histone genes and concentrates factors required for histone messenger RNA (mRNA) biosynthesis. FLASH (Flice-associated huge protein) and U7 small nuclear RNP (snRNP) are HLB components that participate in 3′ processing of the nonpolyadenylated histone mRNAs by recruiting the endonuclease CPSF-73 to histone pre-mRNA. Using transgenes to complement a FLASH mutant, we show that distinct domains of FLASH involved in U7 snRNP binding, histone pre-mRNA cleavage, and HLB localization are all required for proper FLASH function in vivo. By genetically manipulating HLB composition using mutations in FLASH, mutations in the HLB assembly factor Mxc, or depletion of the variant histone H2aV, we find that failure to concentrate FLASH and/or U7 snRNP in the HLB impairs histone pre-mRNA processing. This failure results in accumulation of small amounts of polyadenylated histone mRNA and nascent read-through transcripts at the histone locus. Thus, the HLB concentrates FLASH and U7 snRNP, promoting efficient histone mRNA biosynthesis and coupling 3′ end processing with transcription termination. PMID:27241916

  4. Linker histones in hormonal gene regulation.

    PubMed

    Vicent, G P; Wright, R H G; Beato, M

    2016-03-01

    In the present review, we summarize advances in our knowledge on the role of the histone H1 family of proteins in breast cancer cells, focusing on their response to progestins. Histone H1 plays a dual role in gene regulation by hormones, both as a structural component of chromatin and as a dynamic modulator of transcription. It contributes to hormonal regulation of the MMTV promoter by stabilizing a homogeneous nucleosome positioning, which reduces basal transcription whereas at the same time promoting progesterone receptor binding and nucleosome remodeling. These combined effects enhance hormone dependent gene transcription, which eventually requires H1 phosphorylation and displacement. Various isoforms of histone H1 have specific functions in differentiated breast cancer cells and compact nucleosomal arrays to different extents in vitro. Genome-wide studies show that histone H1 has a key role in chromatin dynamics of hormone regulated genes. A complex sequence of enzymatic events, including phosphorylation by CDK2, PARylation by PARP1 and the ATP-dependent activity of NURF, are required for H1 displacement and gene de-repression, as a prerequisite for further nucleosome remodeling. Similarly, during hormone-dependent gene repression a dedicated enzymatic mechanism controls H1 deposition at promoters by a complex containing HP1γ, LSD1 and BRG1, the ATPase of the BAF complex. Thus, a broader vision of the histone code should include histone H1, as the linker histone variants actively participate in the regulation of the chromatin structure. How modifications of the core histones tails affect H1 modifications and vice versa is one of the many questions that remains to be addressed to provide a more comprehensive view of the histone cross-talk mechanisms.

  5. HAMLET interacts with histones and chromatin in tumor cell nuclei.

    PubMed

    Düringer, Caroline; Hamiche, Ali; Gustafsson, Lotta; Kimura, Hiroshi; Svanborg, Catharina

    2003-10-24

    HAMLET is a folding variant of human alpha-lactalbumin in an active complex with oleic acid. HAMLET selectively enters tumor cells, accumulates in their nuclei and induces apoptosis-like cell death. This study examined the interactions of HAMLET with nuclear constituents and identified histones as targets. HAMLET was found to bind histone H3 strongly and to lesser extent histones H4 and H2B. The specificity of these interactions was confirmed using BIAcore technology and chromatin assembly assays. In vivo in tumor cells, HAMLET co-localized with histones and perturbed the chromatin structure; HAMLET was found associated with chromatin in an insoluble nuclear fraction resistant to salt extraction. In vitro, HAMLET bound strongly to histones and impaired their deposition on DNA. We conclude that HAMLET interacts with histones and chromatin in tumor cell nuclei and propose that this interaction locks the cells into the death pathway by irreversibly disrupting chromatin organization.

  6. Production and Purification of Antibodies Against Histone Modifications.

    PubMed

    Guillemette, Benoit; Hammond-Martel, Ian; Wurtele, Hugo; Verreault, Alain

    2017-01-01

    Antibodies that recognize specific histone modifications are invaluable tools to study chromatin structure and function. There are numerous commercially available antibodies that recognize a remarkable diversity of histone modifications. Unfortunately, many of them fail to work in certain applications or lack the high degree of specificity required of these reagents. The production of affinity-purified polyclonal antibodies against histone modifications demands a little effort but, in return, provides extremely valuable tools that overcome many of the concerns and limitations of commercial antibodies. We present a series of protocols and guidelines for the production and use of large amounts of polyclonal antibodies that recognize modifications of canonical histones. Our protocols can be applied to obtain antibodies that occur in histone variants and proteins other than histones. In addition, some of our protocols are compatible with the production of monoclonal or recombinant antibodies.

  7. Expression analysis of mammalian linker-histone subtypes.

    PubMed

    Medrzycki, Magdalena; Zhang, Yunzhe; Cao, Kaixiang; Fan, Yuhong

    2012-03-19

    Linker histone H1 binds to the nucleosome core particle and linker DNA, facilitating folding of chromatin into higher order structure. H1 is essential for mammalian development and regulates specific gene expression in vivo. Among the highly conserved histone proteins, the family of H1 linker histones is the most heterogeneous group. There are 11 H1 subtypes in mammals that are differentially regulated during development and in different cell types. These H1 subtypes include 5 somatic H1s (H1a-e), the replacement H1(0), 4 germ cell specific H1 subtypes, and H1x. The presence of multiple H1 subtypes that differ in DNA binding affinity and chromatin compaction ability provides an additional level of modulation of chromatin function. Thus, quantitative expression analysis of individual H1 subtypes, both of mRNA and proteins, is necessary for better understanding of the regulation of higher order chromatin structure and function. Here we describe a set of assays designed for analyzing the expression levels of individual H1 subtypes. mRNA expression of various H1 variant genes is measured by a set of highly sensitive and quantitative reverse transcription-PCR (qRT-PCR) assays, which are faster, more accurate and require much less samples compared with the alternative approach of Northern blot analysis. Unlike most other cellular mRNA messages, mRNAs for most histone genes, including the majority of H1 genes, lack a long polyA tail, but contain a stem-loop structure at the 3' untranslated region (UTR). Therefore, cDNAs are prepared from total RNA by reverse transcription using random primers instead of oligo-dT primers. Realtime PCR assays with primers specific to each H1 subtypes are performed to obtain highly quantitative measurement of mRNA levels of individual H1 subtypes. Expression of housekeeping genes are analyzed as controls for normalization. The relative abundance of proteins of each H1 subtype and core histones is obtained through reverse phase high

  8. Extracellular histones inhibit efferocytosis.

    PubMed

    Friggeri, Arnaud; Banerjee, Sami; Xie, Na; Cui, Huachun; De Freitas, Andressa; Zerfaoui, Mourad; Dupont, Hervé; Abraham, Edward; Liu, Gang

    2012-07-18

    The uptake and clearance of apoptotic cells by macrophages and other phagocytic cells, a process called efferocytosis, is a major component in the resolution of inflammation. Increased concentrations of extracellular histones are found during acute inflammatory states and appear to contribute to organ system dysfunction and mortality. In these studies, we examined the potential role of histones in modulating efferocytosis. We found that phagocytosis of apoptotic neutrophils or thymocytes by macrophages was significantly diminished in the presence of histones H3 or H4, but not histone H1. Histone H3 demonstrated direct binding to macrophages, an effect that was diminished by preincubation of macrophages with the opsonins growth arrest-specific gene 6 (Gas6) and milk fat globule-epidermal growth factor (EGF) 8 (MFG-E8). Incubation of histone H3 with soluble α(v)β₅ integrin and Mer, but not with α(v)β₃, diminished its binding to macrophages. Phagocytosis of apoptotic cells by alveolar macrophages in vivo was diminished in the presence of histone H3. Incubation of histone H3 with activated protein C, a treatment that degrades histones, abrogated its inhibitory effects on efferocytosis under both in vitro and in vivo conditions. The present studies demonstrate that histones have inhibitory effects on efferocytosis, suggesting a new mechanism by which extracellular histones contribute to acute inflammatory processes and tissue injury.

  9. Extracellular Histones Inhibit Efferocytosis

    PubMed Central

    Friggeri, Arnaud; Banerjee, Sami; Xie, Na; Cui, Huachun; de Freitas, Andressa; Zerfaoui, Mourad; Dupont, Hervé; Abraham, Edward; Liu, Gang

    2012-01-01

    The uptake and clearance of apoptotic cells by macrophages and other phagocytic cells, a process called efferocytosis, is a major component in the resolution of inflammation. Increased concentrations of extracellular histones are found during acute inflammatory states and appear to contribute to organ system dysfunction and mortality. In these studies, we examined the potential role of histones in modulating efferocytosis. We found that phagocytosis of apoptotic neutrophils or thymocytes by macrophages was significantly diminished in the presence of histones H3 or H4, but not histone H1. Histone H3 demonstrated direct binding to macrophages, an effect that was diminished by preincubation of macrophages with the opsonins growth arrest–specific gene 6 (Gas6) and milk fat globule–epidermal growth factor (EGF) 8 (MFG-E8). Incubation of histone H3 with soluble αvβ5 integrin and Mer, but not with αvβ3, diminished its binding to macrophages. Phagocytosis of apoptotic cells by alveolar macrophages in vivo was diminished in the presence of histone H3. Incubation of histone H3 with activated protein C, a treatment that degrades histones, abrogated its inhibitory effects on efferocytosis under both in vitro and in vivo conditions. The present studies demonstrate that histones have inhibitory effects on efferocytosis, suggesting a new mechanism by which extracellular histones contribute to acute inflammatory processes and tissue injury. PMID:22495510

  10. Imipramine exploits histone deacetylase 11 to increase the IL-12/IL-10 ratio in macrophages infected with antimony-resistant Leishmania donovani and clears organ parasites in experimental infection.

    PubMed

    Mukherjee, Sandip; Mukherjee, Budhaditya; Mukhopadhyay, Rupkatha; Naskar, Kshudiram; Sundar, Shyam; Dujardin, Jean-Claude; Roy, Syamal

    2014-10-15

    The efflux of antimony through multidrug resistance protein (MDR)-1 is the key factor in the failure of metalloid treatment in kala-azar patients infected with antimony-resistant Leishmania donovani (Sb(R)LD). Previously we showed that MDR-1 upregulation in Sb(R)LD infection is IL-10-dependent. Imipramine, a drug in use for the treatment of depression and nocturnal enuresis in children, inhibits IL-10 production from Sb(R)LD-infected macrophages (Sb(R)LD-Mϕs) and favors accumulation of surrogates of antimonials. It inhibits IL-10-driven nuclear translocation of c-Fos/c-Jun, critical for enhanced MDR-1 expression. The drug upregulates histone deacetylase 11, which inhibits acetylation of IL-10 promoter, leading to a decrease in IL-10 production from Sb(R)LD-Mϕs. It abrogates Sb(R)LD-mediated p50/c-Rel binding to IL-10 promoter and preferentially recruits p65/RelB to IL-12 p35 and p40 promoters, causing a decrease in IL-10 and overproduction of IL-12 in Sb(R)LD-Mϕs. Histone deacetylase 11 per se does not influence IL-12 promoter activity. Instead, a imipramine-mediated decreased IL-10 level allows optimal IL-12 production in Sb(R)LD-Mϕs. Furthermore, exogenous rIL-12 inhibits intracellular Sb(R)LD replication, which can be mimicked by the presence of Ab to IL-10. This observation indicated that reciprocity exists between IL-10 and IL-12 and that imipramine tips the balance toward an increased IL-12/IL-10 ratio in Sb(R)LD-Mϕs. Oral treatment of infected BALB/c mice with imipramine in combination with sodium stibogluconate cleared organ Sb(R)LD parasites and caused an expansion of the antileishmanial T cell repertoire where sodium stibogluconate alone had no effect. Our study deciphers a detailed molecular mechanism of imipramine-mediated regulation of IL-10/IL-12 reciprocity and its impact on Sb(R)LD clearance from infected hosts.

  11. ChIp-seq of bovine cells (MDBK) to study butyrate-induced histone modification with 10 datasets

    USDA-ARS?s Scientific Manuscript database

    Next-generation sequencing was combined with chromatin immunoprecipitation (ChIP) technology to analyze histone modification (acetylation) induced by butyrate and to map the epigenomic landscape of normal histone H3, H4 in rumen cells of the cow. Ten variants of histone H3 and H4 modification were m...

  12. RAPID SEMISYNTHESIS OF ACETYLATED AND SUMOYLATED HISTONE ANALOGS

    PubMed Central

    Dhall, Abhinav; Weller, Caroline E.

    2016-01-01

    The density and diversity of post-translational modifications (PTMs) observed in histone proteins typically limits their purification to homogeneity from biological sources. Access to quantities of uniformly modified histones is, however, critical for investigating the downstream effects of histone PTMs on chromatin-templated processes. Therefore, a number of semisynthetic methodologies have been developed to generate histones bearing precisely defined PTMs or close analogs thereof. In this chapter, we present two optimized and rapid strategies for generating functional analogs of site-specifically acetylated and sumoylated histones. First, we describe a convergent strategy to site-specifically attach the small ubiquitin-like modifier-3 (SUMO-3) protein to the site of Lys12 in histone H4 by means of a disulfide linkage. We then describe the generation of thialysine analogs of histone H3 acetylated at Lys 14 or Lys 56, using thiol-ene coupling chemistry. Both strategies afford multi-milligram quantities of uniformly modified histones that are easily incorporated into mononucleosomes and nucleosome arrays for biophysical and biochemical investigations. These methods are readily extendable to any desired sites in the four core nucleosomal histones and their variant forms. PMID:27423861

  13. Readers of histone modifications

    PubMed Central

    Yun, Miyong; Wu, Jun; Workman, Jerry L; Li, Bing

    2011-01-01

    Histone modifications not only play important roles in regulating chromatin structure and nuclear processes but also can be passed to daughter cells as epigenetic marks. Accumulating evidence suggests that the key function of histone modifications is to signal for recruitment or activity of downstream effectors. Here, we discuss the latest discovery of histone-modification readers and how the modification language is interpreted. PMID:21423274

  14. Histone Arginine Methylation

    PubMed Central

    Lorenzo, Alessandra Di; Bedford, Mark T.

    2012-01-01

    Arginine methylation is a common posttranslational modification (PTM). This type of PTM occurs on both nuclear and cytoplasmic proteins, and is particularly abundant on shuttling proteins. In this review, we will focus on one aspect of this PTM: the diverse roles that arginine methylation of the core histone tails play in regulating chromatin function. A family of nine protein arginine methyltransferases (PRMTs) catalyze methylation reactions, and a subset target histones. Importantly, arginine methylation of histone tails can promote or prevent the docking of key transcriptional effector molecules, thus playing a central role in the orchestration of the histone code. PMID:21074527

  15. Histone Modifiers in Cancer

    PubMed Central

    Cohen, Idan; Poręba, Elżbieta; Kamieniarz, Kinga; Schneider, Robert

    2011-01-01

    Covalent modifications of histones can regulate all DNA-dependent processes. In the last few years, it has become more and more evident that histone modifications are key players in the regulation of chromatin states and dynamics as well as in gene expression. Therefore, histone modifications and the enzymatic machineries that set them are crucial regulators that can control cellular proliferation, differentiation, plasticity, and malignancy processes. This review discusses the biology and biochemistry of covalent histone posttranslational modifications (PTMs) and evaluates the dual role of their modifiers in cancer: as oncogenes that can initiate and amplify tumorigenesis or as tumor suppressors. PMID:21941619

  16. Histones and histone modifications in perinuclear chromatin anchoring: from yeast to man.

    PubMed

    Harr, Jennifer C; Gonzalez-Sandoval, Adriana; Gasser, Susan M

    2016-02-01

    It is striking that within a eukaryotic nucleus, the genome can assume specific spatiotemporal distributions that correlate with the cell's functional states. Cell identity itself is determined by distinct sets of genes that are expressed at a given time. On the level of the individual gene, there is a strong correlation between transcriptional activity and associated histone modifications. Histone modifications act by influencing the recruitment of non-histone proteins and by determining the level of chromatin compaction, transcription factor binding, and transcription elongation. Accumulating evidence also shows that the subnuclear position of a gene or domain correlates with its expression status. Thus, the question arises whether this spatial organization results from or determines a gene's chromatin status. Although the association of a promoter with the inner nuclear membrane (INM) is neither necessary nor sufficient for repression, the perinuclear sequestration of heterochromatin is nonetheless conserved from yeast to man. How does subnuclear localization influence gene expression? Recent work argues that the common denominator between genome organization and gene expression is the modification of histones and in some cases of histone variants. This provides an important link between local chromatin structure and long-range genome organization in interphase cells. In this review, we will evaluate how histones contribute to the latter, and discuss how this might help to regulate genes crucial for cell differentiation.

  17. Accuracy and equivalence testing of crown ratio models and assessment of their impact on diameter growth and basal area increment predictions of two variants of the Forest Vegetation Simulator

    Treesearch

    Laura P. Leites; Andrew P. Robinson; Nicholas L. Crookston

    2009-01-01

    Diameter growth (DG) equations in many existing forest growth and yield models use tree crown ratio (CR) as a predictor variable. Where CR is not measured, it is estimated from other measured variables. We evaluated CR estimation accuracy for the models in two Forest Vegetation Simulator variants: the exponential and the logistic CR models used in the North...

  18. "Hunt"-ing for post-translational modifications that underlie the histone code

    NASA Astrophysics Data System (ADS)

    Taverna, Sean D.; David Allis, C.; Hake, Sandra B.

    2007-01-01

    Eukaryotic cells package their DNA with histone proteins to form chromatin that can be regulated to enable transcription, DNA repair and replication in response to cellular needs and external stimuli. A wealth of recent studies of post-translational histone modifications and histone variants have led to an explosion of insights into and more questions about how these processes might be regulated. Work from Donald Hunt and colleagues contributed greatly to our understanding of the "histone code" by developing novel methods to study and identify histone modifications in both generic and specialized variant histone proteins. Without his expertise, the field of chromatin biology would not be where it is today. In recognition, we are pleased to contribute to a special issue of the International Journal of Mass Spectrometry dedicated to the many advances pioneered by the Hunt laboratory, which have enhanced the science of many fields and the careers of many scientists.

  19. Histone chaperones link histone nuclear import and chromatin assembly.

    PubMed

    Keck, Kristin M; Pemberton, Lucy F

    2013-01-01

    Histone chaperones are proteins that shield histones from nonspecific interactions until they are assembled into chromatin. After their synthesis in the cytoplasm, histones are bound by different histone chaperones, subjected to a series of posttranslational modifications and imported into the nucleus. These evolutionarily conserved modifications, including acetylation and methylation, can occur in the cytoplasm, but their role in regulating import is not well understood. As part of histone import complexes, histone chaperones may serve to protect the histones during transport, or they may be using histones to promote their own nuclear localization. In addition, there is evidence that histone chaperones can play an active role in the import of histones. Histone chaperones have also been shown to regulate the localization of important chromatin modifying enzymes. This review is focused on the role histone chaperones play in the early biogenesis of histones, the distinct cytoplasmic subcomplexes in which histone chaperones have been found in both yeast and mammalian cells and the importins/karyopherins and nuclear localization signals that mediate the nuclear import of histones. We also address the role that histone chaperone localization plays in human disease. This article is part of a Special Issue entitled: Histone chaperones and chromatin assembly.

  20. Histone H2A significantly enhances in vitro DNA transfection.

    PubMed Central

    Balicki, D.; Beutler, E.

    1997-01-01

    BACKGROUND: Gene transfer is a potential treatment modality of genetic disease. Efficient, practical methods of DNA transfection are currently under investigation. MATERIALS AND METHODS: A beta-galactosidase reporter plasmid interacted electrostatically with histones, poly-L-Lys, poly-L-Arg, and a combination of poly-L-Lys and poly-L-Arg. This complex was then used to transfect COS-7 cells. beta-galactosidase activity was quantified and used to compare the efficiency of gene transfection in vitro. A comparison was also made of DNA transfection with the most active histone subclass, i.e., histone H2A, in the absence and presence of an anionic liposome. RESULTS: There was a marked increase in DNA transfection in the presence of histone H2A when compared with the control, whereas each of the other histones and polycations showed little, if any, effect. The extent of activation depends strongly on the DNA/histone ratio and is also a function of the molarity of the final Tris-acetate, pH 8, solution. The anionic liposomes used demonstrated an inhibitory effect. CONCLUSIONS: Histone H2A significantly enhances in vitro DNA transfection whereas other histones and anionic liposomes do not. A study of the difference between histone H2A and other histone subclasses may serve to clarify some of the mechanisms and the essential components of efficient gene delivery. PMID:9407553

  1. Evidence for sequence biases associated with patterns of histone methylation

    PubMed Central

    2012-01-01

    Background Combinations of histone variants and modifications, conceptually representing a histone code, have been proposed to play a significant role in gene regulation and developmental processes in complex organisms. While various mechanisms have been implicated in establishing and maintaining epigenetic patterns at specific locations in the genome, they are generally believed to be independent of primary DNA sequence on a more global scale. Results To address this systematically in the case of the human genome, we have analyzed primary DNA sequences underlying patterns of 19 different methylated histones in human primary T-cells and patterns of three methylated histones across additional human cell lines. We report strong sequence biases associated with most of these histone marks genome-wide in each cell type. Furthermore, the sequence characteristics for such association are distinct for different groups of histone marks. Conclusions These findings provide evidence of an influence of genomic sequence on patterns of histone modification associated with gene expression and chromatin programming, and they suggest that the mechanisms responsible for global histone modifications may interpret genomic sequence in various ways. PMID:22857523

  2. Antibodies specific to acetylated histones document the existence of deposition- and transcription-related histone acetylation in Tetrahymena

    PubMed Central

    1989-01-01

    In this study, we have constructed synthetic peptides which are identical to hyperacetylated amino termini of two Tetrahymena core histones (tetra-acetylated H4 and penta-acetylated hv1) and used them to generate polyclonal antibodies specific for acetylated forms (mono-, di-, tri-, etc.) of these histones. Neither of these antisera recognizes histone that is unacetylated. Immunoblotting analyses demonstrate that both transcription-related and deposition-related acetate groups on H4 are recognized by both antisera. In addition, the antiserum raised against penta-acetylated hv1 also recognizes acetylated forms of this variant. Immunofluorescent analyses with both antisera demonstrate that, as expected, histone acetylation is specific to macronuclei (or new macronuclei) at all stages of the life cycle except when micronuclei undergo periods of rapid replication and chromatin assembly. During this time micronuclear staining is also detected. Our results also suggest that transcription-related acetylation begins selectively in new macronuclei immediately after the second postzygotic division. Acetylated histone is not observed in new micronuclei during stages corresponding to anlagen development and, therefore, histone acetylation can be distributed asymmetrically in development. Equally striking is the rapid turnover of acetylated histone in parental macronuclei during the time of their inactivation and elimination from the cell. Taken together, these data lend strong support to the idea that modulation of histone acetylation plays an important role in gene activation and in chromatin assembly. PMID:2654136

  3. Histone acetylation in neurodevelopment.

    PubMed

    Contestabile, Antonio; Sintoni, Silvia

    2013-01-01

    Post-translational modification of histones is a primary mechanism through which epigenetic regulation of DNA transcription does occur. Among these modifications, regulation of histone acetylation state is an important tool to influence gene expression. Epigenetic regulation of neurodevelopment contributes to the structural and functional shaping of the brain during neurogenesis and continues to impact on neural plasticity lifelong. Alterations of these mechanisms during neurodevelopment may result in later occurrence of neuropsychatric disorders. The present paper reviews and discusses available data on histone modifications, in particular histone acetylation, in neurogenesis considering results obtained in culture systems of neural progenitors as well as in in vivo studies. Possible teratogenic effects of altered histone acetylation state during development are also considered. The use during pregnancy of drugs such as valproic acid, which acts as a histone deacetylase inhibitor, may result during postnatal development in autistic-like symptoms. The effect of gestational administration of the drug has been, therefore, tested on adult hippocampal neurogenesis in animals showing behavioral impairment as a consequence of the drug administration at a specific stage of pregnancy. These experimental results show that adult neurogenesis in the hippocampal dentate gyrus is not quantitatively altered by gestational valproic acid administration. Future steps and goals of research on the role and mechanisms of histone acetylation in neurodevelopment are briefly discussed.

  4. The specification and global reprogramming of histone epigenetic marks during gamete formation and early embryo development in C. elegans.

    PubMed

    Samson, Mark; Jow, Margaret M; Wong, Catherine C L; Fitzpatrick, Colin; Aslanian, Aaron; Saucedo, Israel; Estrada, Rodrigo; Ito, Takashi; Park, Sung-kyu Robin; Yates, John R; Chu, Diana S

    2014-10-01

    In addition to the DNA contributed by sperm and oocytes, embryos receive parent-specific epigenetic information that can include histone variants, histone post-translational modifications (PTMs), and DNA methylation. However, a global view of how such marks are erased or retained during gamete formation and reprogrammed after fertilization is lacking. To focus on features conveyed by histones, we conducted a large-scale proteomic identification of histone variants and PTMs in sperm and mixed-stage embryo chromatin from C. elegans, a species that lacks conserved DNA methylation pathways. The fate of these histone marks was then tracked using immunostaining. Proteomic analysis found that sperm harbor ∼2.4 fold lower levels of histone PTMs than embryos and revealed differences in classes of PTMs between sperm and embryos. Sperm chromatin repackaging involves the incorporation of the sperm-specific histone H2A variant HTAS-1, a widespread erasure of histone acetylation, and the retention of histone methylation at sites that mark the transcriptional history of chromatin domains during spermatogenesis. After fertilization, we show HTAS-1 and 6 histone PTM marks distinguish sperm and oocyte chromatin in the new embryo and characterize distinct paternal and maternal histone remodeling events during the oocyte-to-embryo transition. These include the exchange of histone H2A that is marked by ubiquitination, retention of HTAS-1, removal of the H2A variant HTZ-1, and differential reprogramming of histone PTMs. This work identifies novel and conserved features of paternal chromatin that are specified during spermatogenesis and processed in the embryo. Furthermore, our results show that different species, even those with diverged DNA packaging and imprinting strategies, use conserved histone modification and removal mechanisms to reprogram epigenetic information.

  5. The Specification and Global Reprogramming of Histone Epigenetic Marks during Gamete Formation and Early Embryo Development in C. elegans

    PubMed Central

    Samson, Mark; Jow, Margaret M.; Wong, Catherine C. L.; Fitzpatrick, Colin; Aslanian, Aaron; Saucedo, Israel; Estrada, Rodrigo; Ito, Takashi; Park, Sung-kyu Robin; Yates, John R.; Chu, Diana S.

    2014-01-01

    In addition to the DNA contributed by sperm and oocytes, embryos receive parent-specific epigenetic information that can include histone variants, histone post-translational modifications (PTMs), and DNA methylation. However, a global view of how such marks are erased or retained during gamete formation and reprogrammed after fertilization is lacking. To focus on features conveyed by histones, we conducted a large-scale proteomic identification of histone variants and PTMs in sperm and mixed-stage embryo chromatin from C. elegans, a species that lacks conserved DNA methylation pathways. The fate of these histone marks was then tracked using immunostaining. Proteomic analysis found that sperm harbor ∼2.4 fold lower levels of histone PTMs than embryos and revealed differences in classes of PTMs between sperm and embryos. Sperm chromatin repackaging involves the incorporation of the sperm-specific histone H2A variant HTAS-1, a widespread erasure of histone acetylation, and the retention of histone methylation at sites that mark the transcriptional history of chromatin domains during spermatogenesis. After fertilization, we show HTAS-1 and 6 histone PTM marks distinguish sperm and oocyte chromatin in the new embryo and characterize distinct paternal and maternal histone remodeling events during the oocyte-to-embryo transition. These include the exchange of histone H2A that is marked by ubiquitination, retention of HTAS-1, removal of the H2A variant HTZ-1, and differential reprogramming of histone PTMs. This work identifies novel and conserved features of paternal chromatin that are specified during spermatogenesis and processed in the embryo. Furthermore, our results show that different species, even those with diverged DNA packaging and imprinting strategies, use conserved histone modification and removal mechanisms to reprogram epigenetic information. PMID:25299455

  6. Balancing chromatin remodeling and histone modifications in transcription

    PubMed Central

    Petty, Emily; Pillus, Lorraine

    2013-01-01

    Chromatin remodelers use the energy of ATP hydrolysis to reposition or evict nucleosomes or to replace canonical histones with histone variants. By regulating nucleosome dynamics, remodelers gate access to the underlying DNA for replication, repair, and transcription. Nucleosomes are subject to extensive post-translational modifications that can recruit regulatory proteins or alter the local chromatin structure. Just as extensive cross-talk has been observed between different histone post-translational modifications, there is growing evidence for both coordinated and antagonistic functional relationships between nucleosome remodeling and modifying machineries. Defining the combined functions of the complexes that alter nucleosome interactions, position, and stability is key to understanding processes that require access to DNA, particularly with growing appreciation of their contributions to human health and disease. Here, we highlight recent advances in the interactions between histone modifications and the ISWI and CHD1 chromatin remodelers from studies in budding yeast, fission yeast, flies, and mammalian cells, with a focus on yeast. PMID:23870137

  7. The intrinsically disordered distal face of nucleoplasmin recognizes distinct oligomerization states of histones.

    PubMed

    Ramos, Isbaal; Fernández-Rivero, Noelia; Arranz, Rocío; Aloria, Kerman; Finn, Ron; Arizmendi, Jesús M; Ausió, Juan; Valpuesta, José María; Muga, Arturo; Prado, Adelina

    2014-01-01

    The role of Nucleoplasmin (NP) as a H2A-H2B histone chaperone has been extensively characterized. To understand its putative interaction with other histone ligands, we have characterized its ability to bind H3-H4 and histone octamers. We find that the chaperone forms distinct complexes with histones, which differ in the number of molecules that build the assembly and in their spatial distribution. When complexed with H3-H4 tetramers or histone octamers, two NP pentamers form an ellipsoidal particle with the histones located at the center of the assembly, in stark contrast with the NP/H2A-H2B complex that contains up to five histone dimers bound to one chaperone pentamer. This particular assembly relies on the ability of H3-H4 to form tetramers either in solution or as part of the octamer, and it is not observed when a variant of H3 (H3C110E), unable to form stable tetramers, is used instead of the wild-type protein. Our data also suggest that the distal face of the chaperone is involved in the interaction with distinct types of histones, as supported by electron microscopy analysis of the different NP/histone complexes. The use of the same structural region to accommodate all type of histones could favor histone exchange and nucleosome dynamics.

  8. The intrinsically disordered distal face of nucleoplasmin recognizes distinct oligomerization states of histones

    PubMed Central

    Ramos, Isbaal; Fernández-Rivero, Noelia; Arranz, Rocío; Aloria, Kerman; Finn, Ron; Arizmendi, Jesús M.; Ausió, Juan; Valpuesta, José María; Muga, Arturo; Prado, Adelina

    2014-01-01

    The role of Nucleoplasmin (NP) as a H2A-H2B histone chaperone has been extensively characterized. To understand its putative interaction with other histone ligands, we have characterized its ability to bind H3-H4 and histone octamers. We find that the chaperone forms distinct complexes with histones, which differ in the number of molecules that build the assembly and in their spatial distribution. When complexed with H3-H4 tetramers or histone octamers, two NP pentamers form an ellipsoidal particle with the histones located at the center of the assembly, in stark contrast with the NP/H2A-H2B complex that contains up to five histone dimers bound to one chaperone pentamer. This particular assembly relies on the ability of H3-H4 to form tetramers either in solution or as part of the octamer, and it is not observed when a variant of H3 (H3C110E), unable to form stable tetramers, is used instead of the wild-type protein. Our data also suggest that the distal face of the chaperone is involved in the interaction with distinct types of histones, as supported by electron microscopy analysis of the different NP/histone complexes. The use of the same structural region to accommodate all type of histones could favor histone exchange and nucleosome dynamics. PMID:24121686

  9. Histone chaperone ASF1B promotes human β-cell proliferation via recruitment of histone H3.3.

    PubMed

    Paul, Pradyut K; Rabaglia, Mary E; Wang, Chen-Yu; Stapleton, Donald S; Leng, Ning; Kendziorski, Christina; Lewis, Peter W; Keller, Mark P; Attie, Alan D

    2016-12-01

    Anti-silencing function 1 (ASF1) is a histone H3-H4 chaperone involved in DNA replication and repair, and transcriptional regulation. Here, we identify ASF1B, the mammalian paralog to ASF1, as a proliferation-inducing histone chaperone in human β-cells. Overexpression of ASF1B led to distinct transcriptional signatures consistent with increased cellular proliferation and reduced cellular death. Using multiple methods of monitoring proliferation and mitotic progression, we show that overexpression of ASF1B is sufficient to induce human β-cell proliferation. Co-expression of histone H3.3 further augmented β-cell proliferation, whereas suppression of endogenous H3.3 attenuated the stimulatory effect of ASF1B. Using the histone binding-deficient mutant of ASF1B (V94R), we show that histone binding to ASF1B is required for the induction of β-cell proliferation. In contrast to H3.3, overexpression of histone H3 variants H3.1 and H3.2 did not have an impact on ASF1B-mediated induction of proliferation. Our findings reveal a novel role of ASF1B in human β-cell replication and show that ASF1B and histone H3.3A synergistically stimulate human β-cell proliferation.

  10. Application of histone modification-specific interaction domains as an alternative to antibodies

    PubMed Central

    Kungulovski, Goran; Kycia, Ina; Tamas, Raluca; Jurkowska, Renata Z.; Kudithipudi, Srikanth; Henry, Chisato; Reinhardt, Richard; Labhart, Paul

    2014-01-01

    Post-translational modifications (PTMs) of histones constitute a major chromatin indexing mechanism, and their proper characterization is of highest biological importance. So far, PTM-specific antibodies have been the standard reagent for studying histone PTMs despite caveats such as lot-to-lot variability of specificity and binding affinity. Herein, we successfully employed naturally occurring and engineered histone modification interacting domains for detection and identification of histone PTMs and ChIP-like enrichment of different types of chromatin. Our results demonstrate that histone interacting domains are robust and highly specific reagents that can replace or complement histone modification antibodies. These domains can be produced recombinantly in Escherichia coli at low cost and constant quality. Protein design of reading domains allows for generation of novel specificities, addition of affinity tags, and preparation of PTM binding pocket variants as matching negative controls, which is not possible with antibodies. PMID:25301795

  11. Epigenetic regulation of the histone-to-protamine transition during spermiogenesis

    PubMed Central

    Bao, Jianqiang; Bedford, Mark T.

    2016-01-01

    In mammals, male germ cells differentiate from haploid round spermatids to flagella-containing motile sperm, in a process called spermiogenesis. This process is distinct from somatic cell differentiation in that the majority of the core histones are replaced sequentially, first by transition proteins and then protamines, facilitating chromatin hyper-compaction. This histone-to-protamine transition process represents an excellent model for the investigation of how epigenetic regulators interact with each other to remodel chromatin architecture. While early work in the field highlighted the critical roles of testis-specific transcription factors in controlling the haploid-specific developmental program, recent studies underscore the essential functions of epigenetic players involved in the dramatic genome remodeling that takes place during wholesale histone replacement. In this review, we will discuss recent advances in our understanding of how epigenetic players, like histone variants and histone writers/readers/erasers, rewire the haploid spermatid genome to facilitate histone substitution by protamines in mammals. PMID:26850883

  12. Critical Role of Histone Turnover in Neuronal Transcription and Plasticity.

    PubMed

    Maze, Ian; Wenderski, Wendy; Noh, Kyung-Min; Bagot, Rosemary C; Tzavaras, Nikos; Purushothaman, Immanuel; Elsässer, Simon J; Guo, Yin; Ionete, Carolina; Hurd, Yasmin L; Tamminga, Carol A; Halene, Tobias; Farrelly, Lorna; Soshnev, Alexey A; Wen, Duancheng; Rafii, Shahin; Birtwistle, Marc R; Akbarian, Schahram; Buchholz, Bruce A; Blitzer, Robert D; Nestler, Eric J; Yuan, Zuo-Fei; Garcia, Benjamin A; Shen, Li; Molina, Henrik; Allis, C David

    2015-07-01

    Turnover and exchange of nucleosomal histones and their variants, a process long believed to be static in post-replicative cells, remains largely unexplored in brain. Here, we describe a novel mechanistic role for HIRA (histone cell cycle regulator) and proteasomal degradation-associated histone dynamics in the regulation of activity-dependent transcription, synaptic connectivity, and behavior. We uncover a dramatic developmental profile of nucleosome occupancy across the lifespan of both rodents and humans, with the histone variant H3.3 accumulating to near-saturating levels throughout the neuronal genome by mid-adolescence. Despite such accumulation, H3.3-containing nucleosomes remain highly dynamic-in a modification-independent manner-to control neuronal- and glial-specific gene expression patterns throughout life. Manipulating H3.3 dynamics in both embryonic and adult neurons confirmed its essential role in neuronal plasticity and cognition. Our findings establish histone turnover as a critical and previously undocumented regulator of cell type-specific transcription and plasticity in mammalian brain. Copyright © 2015 Elsevier Inc. All rights reserved.

  13. Genetic predisposition to obesity and lifestyle factors--the combined analyses of twenty-six known BMI- and fourteen known waist:hip ratio (WHR)-associated variants in the Finnish Diabetes Prevention Study.

    PubMed

    Jääskeläinen, Tiina; Paananen, Jussi; Lindström, Jaana; Eriksson, Johan G; Tuomilehto, Jaakko; Uusitupa, Matti

    2013-11-01

    Recent genome-wide association studies have identified multiple loci associated with BMI or the waist:hip ratio (WHR). However, evidence on gene-lifestyle interactions is still scarce, and investigation of the effects of well-documented dietary and other lifestyle data is warranted to assess whether genetic risk can be modified by lifestyle. We assessed whether previously established BMI and WHR genetic variants associate with obesity and weight change in the Finnish Diabetes Prevention Study, and whether the associations are modified by dietary factors or physical activity. Individuals (n 459) completed a 3 d food record and were genotyped for twenty-six BMI- and fourteen WHR-related variants. The effects of the variants individually and in combination were investigated in relation to obesity and to 1- and 3-year weight change by calculating genetic risk scores (GRS). The GRS were separately calculated for BMI and the WHR by summing the increasing alleles weighted by their published effect sizes. At baseline, the GRS were not associated with total intakes of energy, macronutrients or fibre. The mean 1- and 3-year weight changes were not affected by the BMI or WHR GRS. During the 3-year follow-up, a trend for higher BMI by the GRS was detected especially in those who reported a diet low in fibre (P for interaction=0·065). Based on the present findings, it appears unlikely that obesity-predisposing variants substantially modify the effect of lifestyle modification on the success of weight reduction in the long term. In addition, these findings suggest that the association between the BMI-related genetic variants and obesity could be modulated by the diet.

  14. Complete Workflow for Analysis of Histone Post-translational Modifications Using Bottom-up Mass Spectrometry: From Histone Extraction to Data Analysis

    PubMed Central

    Sidoli, Simone; Bhanu, Natarajan V.; Karch, Kelly R.; Wang, Xiaoshi; Garcia, Benjamin A.

    2016-01-01

    Nucleosomes are the smallest structural unit of chromatin, composed of 147 base pairs of DNA wrapped around an octamer of histone proteins. Histone function is mediated by extensive post-translational modification by a myriad of nuclear proteins. These modifications are critical for nuclear integrity as they regulate chromatin structure and recruit enzymes involved in gene regulation, DNA repair and chromosome condensation. Even though a large part of the scientific community adopts antibody-based techniques to characterize histone PTM abundance, these approaches are low throughput and biased against hypermodified proteins, as the epitope might be obstructed by nearby modifications. This protocol describes the use of nano liquid chromatography (nLC) and mass spectrometry (MS) for accurate quantification of histone modifications. This method is designed to characterize a large variety of histone PTMs and the relative abundance of several histone variants within single analyses. In this protocol, histones are derivatized with propionic anhydride followed by digestion with trypsin to generate peptides of 5 - 20 aa in length. After digestion, the newly exposed N-termini of the histone peptides are derivatized to improve chromatographic retention during nLC-MS. This method allows for the relative quantification of histone PTMs spanning four orders of magnitude. PMID:27286567

  15. Altered ratios of pro- and anti-angiogenic VEGF-A variants and pericyte expression of DLL4 disrupt vascular maturation in infantile haemangioma.

    PubMed

    Ye, Xi; Abou-Rayyah, Yassir; Bischoff, Joyce; Ritchie, Alison; Sebire, Neil J; Watts, Patrick; Churchill, Amanda J; Bates, David O

    2016-06-01

    Infantile haemangioma (IH), the most common neoplasm in infants, is a slowly resolving vascular tumour. Vascular endothelial growth factor A (VEGF-A), which consists of both the pro- and anti-angiogenic variants, contributes to the pathogenesis of IH. However, the roles of different VEGF-A variants in IH progression and its spontaneous involution is unknown. Using patient-derived cells and surgical specimens, we showed that the relative level of VEGF-A165 b was increased in the involuting phase of IH and the relative change in VEGF-A isoforms may be dependent on endothelial differentiation of IH stem cells. VEGFR signalling regulated IH cell functions and VEGF-A165 b inhibited cell proliferation and the angiogenic potential of IH endothelial cells in vitro and in vivo. The inhibition of angiogenesis by VEGF-A165 b was associated with the extent of VEGF receptor 2 (VEGFR2) activation and degradation and Delta-like ligand 4 (DLL4) expression. These results indicate that VEGF-A variants can be regulated by cell differentiation and are involved in IH progression. We also demonstrated that DLL4 expression was not exclusive to the endothelium in IH but was also present in pericytes, where the expression of VEGFR2 is absent, suggesting that pericyte-derived DLL4 may prevent sprouting during involution, independently of VEGFR2. Angiogenesis in IH therefore appears to be controlled by DLL4 within the endothelium in a VEGF-A isoform-dependent manner, and in perivascular cells in a VEGF-independent manner. The contribution of VEGF-A isoforms to disease progression also indicates that IH may be associated with altered splicing. © 2016 The Authors. The Journal of Pathology published by John Wiley & Sons Ltd on behalf of Pathological Society of Great Britain and Ireland. © 2016 The Authors. The Journal of Pathology published by John Wiley & Sons Ltd on behalf of Pathological Society of Great Britain and Ireland.

  16. Altered ratios of pro‐ and anti‐angiogenic VEGF‐A variants and pericyte expression of DLL4 disrupt vascular maturation in infantile haemangioma

    PubMed Central

    Ye, Xi; Abou‐Rayyah, Yassir; Bischoff, Joyce; Ritchie, Alison; Sebire, Neil J; Watts, Patrick

    2016-01-01

    Abstract Infantile haemangioma (IH), the most common neoplasm in infants, is a slowly resolving vascular tumour. Vascular endothelial growth factor A (VEGF‐A), which consists of both the pro‐ and anti‐angiogenic variants, contributes to the pathogenesis of IH. However, the roles of different VEGF‐A variants in IH progression and its spontaneous involution is unknown. Using patient‐derived cells and surgical specimens, we showed that the relative level of VEGF‐A165b was increased in the involuting phase of IH and the relative change in VEGF‐A isoforms may be dependent on endothelial differentiation of IH stem cells. VEGFR signalling regulated IH cell functions and VEGF‐A165b inhibited cell proliferation and the angiogenic potential of IH endothelial cells in vitro and in vivo. The inhibition of angiogenesis by VEGF‐A165b was associated with the extent of VEGF receptor 2 (VEGFR2) activation and degradation and Delta‐like ligand 4 (DLL4) expression. These results indicate that VEGF‐A variants can be regulated by cell differentiation and are involved in IH progression. We also demonstrated that DLL4 expression was not exclusive to the endothelium in IH but was also present in pericytes, where the expression of VEGFR2 is absent, suggesting that pericyte‐derived DLL4 may prevent sprouting during involution, independently of VEGFR2. Angiogenesis in IH therefore appears to be controlled by DLL4 within the endothelium in a VEGF‐A isoform‐dependent manner, and in perivascular cells in a VEGF‐independent manner. The contribution of VEGF‐A isoforms to disease progression also indicates that IH may be associated with altered splicing. © 2016 The Authors. The Journal of Pathology published by John Wiley & Sons Ltd on behalf of Pathological Society of Great Britain and Ireland. PMID:26957058

  17. Histones and genome integrity.

    PubMed

    Williamson, Wes D; Pinto, Ines

    2012-01-01

    Chromosomes undergo extensive structural rearrangements during the cell cycle, from the most open chromatin state required for DNA replication to the highest level of compaction and condensation essential for mitotic segregation of sister chromatids. It is now widely accepted that chromatin is a highly dynamic structure that participates in all DNA-related functions, including transcription, DNA replication, repair, and mitosis; hence, histones have emerged as key players in these cellular processes. We review here the studies that implicate histones in functions that affect the chromosome cycle, defined as the cellular processes involved in the maintenance, replication, and segregation of chromosomal DNA. Disruption of the chromosome cycle affects the integrity of the cellular genome, leading to aneuploidy, polyploidy or cell death. Histone stoichiometry, mutations that affect the structure of the nucleosome core particle, and mutations that affect the structure and/or modifications of the histone tails, all have a direct impact on the fidelity of chromosome transmission and the integrity of the genome.

  18. Further evidence for poly-ADP-ribosylated histones as DNA suppressors

    SciTech Connect

    Yu, F.L.; Geronimo, I.H.; Bender, W.; Meginniss, K.E.

    1986-05-01

    For many years histones have been considered to be the gene suppressors in eukaryotic cells. Recently, the authors have found strong evidence indicating that poly-ADP-ribosylated histones, rather than histones, are the potent inhibitors of DNA-dependent RNA synthesis. They now report additional evidence for this concept: 1) using histone inhibitor isolated directly from nuclei, the authors are able to confirm their earlier findings that the inhibitor substances are sensitive to pronase, snake venom phosphodiesterase digestion and 0.1N KOH hydrolysis, and are resistant to DNase I and RNase A digestion, 2) the O.D. 260/O.D.280 ratio of the histone inhibitor is between pure protein and nuclei acid, suggesting the inhibitor substance is a nucleoprotein hybrid. This result directly supports the fact that the isolated histone inhibitor is radioactive poly (ADP-ribose) labeled, 3) commercial histones show big differences in inhibitor activity. The authors believe this reflects the variation in poly-ADP-ribosylation among commercial histones, and 4) 0.1N KOH hydrolysis eliminates the poly (ADP-ribose) radioactivity from the acceptor proteins as well as histone inhibitor activity. Yet, on gel, the inhibitor shows identical histone bands and stain intensity before and after hydrolysis, indicating the histones per se are qualitatively and quantitatively unaffected by alkaline treatment. This result strongly suggests that histones themselves are not capable of inhibiting DNA-dependent RNA synthesis.

  19. Structural plasticity of histones H3-H4 facilitates their allosteric exchange between RbAp48 and ASF1

    PubMed Central

    Zhang, Wei; Tyl, Marek; Ward, Richard; Sobott, Frank; Maman, Joseph; Murthy, Andal S.; Watson, Aleksandra A.; Fedorov, Oleg; Bowman, Andrew; Owen-Hughes, Tom; EL-Mkami, Hassane; Murzina, Natalia V.; Norman, David; Laue, Ernest D.

    2012-01-01

    The mechanisms by which histones are disassembled and reassembled into nucleosomes and chromatin structure during DNA replication, repair and transcription are poorly understood. A better understanding of the processes involved is, however, crucial if we are to understand whether and how histone variants and post-translationally modified histones are inherited in an epigenetic manner. To this end we have studied the interaction of histones H3–H4 with the human retinoblastoma-associated protein RbAp48 and their exchange with a second histone chaperone, anti-silencing function protein 1 (ASF1). Exchange of histones H3–H4 between these two histone chaperones plays a central role in the assembly of new nucleosomes and we show here that the H3–H4 complex has a surprising structural plasticity, which is important for this exchange. PMID:23178455

  20. Structural plasticity of histones H3-H4 facilitates their allosteric exchange between RbAp48 and ASF1.

    PubMed

    Zhang, Wei; Tyl, Marek; Ward, Richard; Sobott, Frank; Maman, Joseph; Murthy, Andal S; Watson, Aleksandra A; Fedorov, Oleg; Bowman, Andrew; Owen-Hughes, Tom; El Mkami, Hassane; Murzina, Natalia V; Norman, David G; Laue, Ernest D

    2013-01-01

    The mechanisms by which histones are disassembled and reassembled into nucleosomes and chromatin structure during DNA replication, repair and transcription are poorly understood. A better understanding of the processes involved is, however, crucial if we are to understand whether and how histone variants and post-translationally modified histones are inherited in an epigenetic manner. To this end we have studied the interaction of the histone H3-H4 complex with the human retinoblastoma-associated protein RbAp48 and their exchange with a second histone chaperone, anti-silencing function protein 1 (ASF1). Exchange of histones H3-H4 between these two histone chaperones has a central role in the assembly of new nucleosomes, and we show here that the H3-H4 complex has an unexpected structural plasticity, which is important for this exchange.

  1. Histone H2A.Z subunit exchange controls consolidation of recent and remote memory.

    PubMed

    Zovkic, Iva B; Paulukaitis, Brynna S; Day, Jeremy J; Etikala, Deepa M; Sweatt, J David

    2014-11-27

    Memory formation is a multi-stage process that initially requires cellular consolidation in the hippocampus, after which memories are downloaded to the cortex for maintenance, in a process termed systems consolidation. Epigenetic mechanisms regulate both types of consolidation, but histone variant exchange, in which canonical histones are replaced with their variant counterparts, is an entire branch of epigenetics that has received limited attention in the brain and has never, to our knowledge, been studied in relation to cognitive function. Here we show that histone H2A.Z, a variant of histone H2A, is actively exchanged in response to fear conditioning in the hippocampus and the cortex, where it mediates gene expression and restrains the formation of recent and remote memory. Our data provide evidence for H2A.Z involvement in cognitive function and specifically implicate H2A.Z as a negative regulator of hippocampal consolidation and systems consolidation, probably through downstream effects on gene expression. Moreover, alterations in H2A.Z binding at later stages of systems consolidation suggest that this histone has the capacity to mediate stable molecular modifications required for memory retention. Overall, our data introduce histone variant exchange as a novel mechanism contributing to the molecular basis of cognitive function and implicate H2A.Z as a potential therapeutic target for memory disorders.

  2. DAXX envelops a histone H3.3-H4 dimer for H3.3-specific recognition

    SciTech Connect

    Elsässer, Simon J; Huang, Hongda; Lewis, Peter W; Chin, Jason W; Allis, C David; Patel, Dinshaw J

    2013-01-24

    Histone chaperones represent a structurally and functionally diverse family of histone-binding proteins that prevent promiscuous interactions of histones before their assembly into chromatin. DAXX is a metazoan histone chaperone specific to the evolutionarily conserved histone variant H3.3. Here we report the crystal structures of the DAXX histone-binding domain with a histone H3.3–H4 dimer, including mutants within DAXX and H3.3, together with in vitro and in vivo functional studies that elucidate the principles underlying H3.3 recognition specificity. Occupying 40% of the histone surface-accessible area, DAXX wraps around the H3.3–H4 dimer, with complex formation accompanied by structural transitions in the H3.3–H4 histone fold. DAXX uses an extended α-helical conformation to compete with major inter-histone, DNA and ASF1 interaction sites. Our structural studies identify recognition elements that read out H3.3-specific residues, and functional studies address the contributions of Gly90 in H3.3 and Glu225 in DAXX to chaperone-mediated H3.3 variant recognition specificity.

  3. Two distinct modes for propagation of histone PTMs across the cell cycle

    PubMed Central

    Alabert, Constance; Barth, Teresa K.; Reverón-Gómez, Nazaret; Sidoli, Simone; Schmidt, Andreas; Jensen, Ole N.

    2015-01-01

    Epigenetic states defined by chromatin can be maintained through mitotic cell division. However, it remains unknown how histone-based information is transmitted. Here we combine nascent chromatin capture (NCC) and triple-SILAC (stable isotope labeling with amino acids in cell culture) labeling to track histone modifications and histone variants during DNA replication and across the cell cycle. We show that post-translational modifications (PTMs) are transmitted with parental histones to newly replicated DNA. Di- and trimethylation marks are diluted twofold upon DNA replication, as a consequence of new histone deposition. Importantly, within one cell cycle, all PTMs are restored. In general, new histones are modified to mirror the parental histones. However, H3K9 trimethylation (H3K9me3) and H3K27me3 are propagated by continuous modification of parental and new histones because the establishment of these marks extends over several cell generations. Together, our results reveal how histone marks propagate and demonstrate that chromatin states oscillate within the cell cycle. PMID:25792596

  4. Directed evolution of a histone acetyltransferase--enhancing thermostability, whilst maintaining catalytic activity and substrate specificity.

    PubMed

    Leemhuis, Hans; Nightingale, Karl P; Hollfelder, Florian

    2008-11-01

    Histone acetylation plays an integral role in the epigenetic regulation of gene expression. Transcriptional activity reflects the recruitment of opposing classes of enzymes to promoter elements; histone acetyltransferases (EC 2.3.1.48) that deposit acetyl marks at a subset of histone residues and histone deacetylases that remove them. Many histone acetyltransferases are difficult to study in solution because of their limited stability once purified. We have developed a directed evolution protocol that allows the screening of hundreds of histone acetyltransferase mutants for histone acetylating activity, and used this to enhance the thermostability of the human P/CAF histone acetyltransferase. Two rounds of directed evolution significantly stabilized the enzyme without lowering the catalytic efficiency and substrate specificity of the enzyme. Twenty-four variants with higher thermostability were identified. Detailed analysis revealed twelve single amino acid mutants that were found to possess a higher thermostability. The residues affected are scattered over the entire protein structure, and are different from mutations predicted by sequence alignment approaches, suggesting that sequence comparison and directed evolution methods are complementary strategies in engineering increased protein thermostability. The stabilizing mutations are predominately located at surface of the enzyme, suggesting that the protein's surface is important for stability. The directed evolution approach described in the present study is easily adapted to other histone modifying enzymes, requiring only appropriate peptide substrates and antibodies, which are available from commercial suppliers.

  5. Two distinct modes for propagation of histone PTMs across the cell cycle.

    PubMed

    Alabert, Constance; Barth, Teresa K; Reverón-Gómez, Nazaret; Sidoli, Simone; Schmidt, Andreas; Jensen, Ole N; Imhof, Axel; Groth, Anja

    2015-03-15

    Epigenetic states defined by chromatin can be maintained through mitotic cell division. However, it remains unknown how histone-based information is transmitted. Here we combine nascent chromatin capture (NCC) and triple-SILAC (stable isotope labeling with amino acids in cell culture) labeling to track histone modifications and histone variants during DNA replication and across the cell cycle. We show that post-translational modifications (PTMs) are transmitted with parental histones to newly replicated DNA. Di- and trimethylation marks are diluted twofold upon DNA replication, as a consequence of new histone deposition. Importantly, within one cell cycle, all PTMs are restored. In general, new histones are modified to mirror the parental histones. However, H3K9 trimethylation (H3K9me3) and H3K27me3 are propagated by continuous modification of parental and new histones because the establishment of these marks extends over several cell generations. Together, our results reveal how histone marks propagate and demonstrate that chromatin states oscillate within the cell cycle.

  6. Replication-dependent histone genes are actively transcribed in differentiating and aging retinal neurons.

    PubMed

    Banday, Abdul Rouf; Baumgartner, Marybeth; Al Seesi, Sahar; Karunakaran, Devi Krishna Priya; Venkatesh, Aditya; Congdon, Sean; Lemoine, Christopher; Kilcollins, Ashley M; Mandoiu, Ion; Punzo, Claudio; Kanadia, Rahul N

    2014-01-01

    In the mammalian genome, each histone family contains multiple replication-dependent paralogs, which are found in clusters where their transcription is thought to be coupled to the cell cycle. Here, we wanted to interrogate the transcriptional regulation of these paralogs during retinal development and aging. We employed deep sequencing, quantitative PCR, in situ hybridization (ISH), and microarray analysis, which revealed that replication-dependent histone genes were not only transcribed in progenitor cells but also in differentiating neurons. Specifically, by ISH analysis we found that different histone genes were actively transcribed in a subset of neurons between postnatal day 7 and 14. Interestingly, within a histone family, not all paralogs were transcribed at the same level during retinal development. For example, expression of Hist1h1b was higher embryonically, while that of Hist1h1c was higher postnatally. Finally, expression of replication-dependent histone genes was also observed in the aging retina. Moreover, transcription of replication-dependent histones was independent of rapamycin-mediated mTOR pathway inactivation. Overall, our data suggest the existence of variant nucleosomes produced by the differential expression of the replication-dependent histone genes across retinal development. Also, the expression of a subset of replication-dependent histone isotypes in senescent neurons warrants re-examining these genes as "replication-dependent." Thus, our findings underscore the importance of understanding the transcriptional regulation of replication-dependent histone genes in the maintenance and functioning of neurons.

  7. Zinc deficiency and metabolism of histones and non-histone proteins in Euglena gracilis

    SciTech Connect

    Czupryn, M.; Falchuk, K.H.; Vallee, B.L.

    1987-12-15

    Histones and most other basic chromosomal proteins are not extracted from zinc-deficient (-Zn) Euglena gracilis chromatin either by 0.25 M HCl or by 0.3-0.6 M NaCl/7 M urea. Instead, a class of 3-5-kilodalton (kDa) polypeptides, which is absent in zinc-sufficient (+Zn) cells, is solubilized. These heterogeneous polypeptides are comprised of Asn, Arg, Cys, and Gln. The partial sequence of one of these, which is composed only of Arg and Asn, is Arg-Asn-Asn-Arg-Arg-Asn-Asn-Asn-Asn-Asn-. This demonstrates they are not proteolytic fragments of the histones, proteins which do not contain contiguous Arg-Asn or Asn-Asn sequences. Once -Zn chromatin is depleted of this 3-5-kDa material, nearly all of the histones and most non-histone proteins are extracted. On the other hand, if chromatin first is depleted of, and subsequently is reconstituted with, the 3-5-kDa material, the chromosomal proteins are not solubilized, as observed with intact chromatin. Histone H4 is an exception. Electrophoretic analysis of the solubilized H4 reveals that the degree to which it is acetylated in -Zn is lower than in +Zn chromatin. Jointly, these data indicate that chromosomal proteins bind much more tightly to DNA of -Zn than +Zn cells. The histone/DNA weight ratio in -Zn chromatin is 0.44 compared to 1.04 in +Zn chromatin. However, the 3-5-kDa polypeptide fraction maintains the amount of total basic proteins per unit mass of DNA at approximately 1. Further, four non-histone proteins extractable with 5% HClO/sub 4/ or 0.35 M NaCl and characterized by high electrophoretic mobility have been purified from +Zn nuclei. Only one of these proteins is found in -Zn chromatin. Thus, zinc deficiency induces changes in the amounts and types of histones and non-histone proteins, as well as in their interaction with DNA. These findings are discussed in relation to recent advances in understanding of the role of zinc in replication and transcription.

  8. Histone H2A.Z regulats transcription and is partially redundant with nucleosome remodeling complexes.

    PubMed

    Santisteban, M S; Kalashnikova, T; Smith, M M

    2000-10-27

    Nucleosomes impose a block to transcription that can be overcome in vivo by remodeling complexes such as SNF/SWI and histone modification complexes such as SAGA. Mutations in the major core histones relieve transcriptional repression and bypass the requirement for SNF/SWI and SAGA. We have found that the variant histone H2A.Z regulates gene transcription, and deletion of the gene encoding H2A.Z strongly increases the requirement for SNF/SWI and SAGA. This synthetic genetic interaction is seen at the level of single genes and acts downstream of promoter nucleosome reorganization. H2A.Z is preferentially crosslinked in vivo to intergenic DNA at the PH05 and GAL1 loci, and this association changes with transcriptional activation. These results describe a novel pathway for regulating transcription using variant histones to modulate chromatin structure.

  9. A nucleosome turnover map reveals that the stability of histone H4 Lys20 methylation depends on histone recycling in transcribed chromatin.

    PubMed

    Svensson, J Peter; Shukla, Manu; Menendez-Benito, Victoria; Norman-Axelsson, Ulrika; Audergon, Pauline; Sinha, Indranil; Tanny, Jason C; Allshire, Robin C; Ekwall, Karl

    2015-06-01

    Nucleosome composition actively contributes to chromatin structure and accessibility. Cells have developed mechanisms to remove or recycle histones, generating a landscape of differentially aged nucleosomes. This study aimed to create a high-resolution, genome-wide map of nucleosome turnover in Schizosaccharomyces pombe. The recombination-induced tag exchange (RITE) method was used to study replication-independent nucleosome turnover through the appearance of new histone H3 and the disappearance or preservation of old histone H3. The genome-wide location of histones was determined by chromatin immunoprecipitation-exonuclease methodology (ChIP-exo). The findings were compared with diverse chromatin marks, including histone variant H2A.Z, post-translational histone modifications, and Pol II binding. Finally, genome-wide mapping of the methylation states of H4K20 was performed to determine the relationship between methylation (mono, di, and tri) of this residue and nucleosome turnover. Our analysis showed that histone recycling resulted in low nucleosome turnover in the coding regions of active genes, stably expressed at intermediate levels. High levels of transcription resulted in the incorporation of new histones primarily at the end of transcribed units. H4K20 was methylated in low-turnover nucleosomes in euchromatic regions, notably in the coding regions of long genes that were expressed at low levels. This transcription-dependent accumulation of histone methylation was dependent on the histone chaperone complex FACT. Our data showed that nucleosome turnover is highly dynamic in the genome and that several mechanisms are at play to either maintain or suppress stability. In particular, we found that FACT-associated transcription conserves histones by recycling them and is required for progressive H4K20 methylation. © 2015 Svensson et al.; Published by Cold Spring Harbor Laboratory Press.

  10. Histone acetylation in insect chromosomes.

    PubMed

    Allfrey, V G; Pogo, B G; Littau, V C; Gershey, E L; Mirsky, A E

    1968-01-19

    Acetylation of histones takes place along the salivary gland chromosomes of Chironomus thummi when RNA synthesis is active. It can be observed but not measured quantitatively by autoradiography of chromosome squashes. The "fixatives" commonly used in preparing squashes of insect chromosomes preferentially extract the highly acetylated "arginine-rich" histone fractions; the use of such fixatives may explain the reported absence of histone acetylation in Drosophila melanogaster.

  11. Asymmetric division of Drosophila male germline stem cell shows asymmetric histone distribution.

    PubMed

    Tran, Vuong; Lim, Cindy; Xie, Jing; Chen, Xin

    2012-11-02

    Stem cells can self-renew and generate differentiating daughter cells. It is not known whether these cells maintain their epigenetic information during asymmetric division. Using a dual-color method to differentially label "old" versus "new" histones in Drosophila male germline stem cells (GSCs), we show that preexisting canonical H3, but not variant H3.3, histones are selectively segregated to the GSC, whereas newly synthesized histones incorporated during DNA replication are enriched in the differentiating daughter cell. The asymmetric histone distribution occurs in GSCs but not in symmetrically dividing progenitor cells. Furthermore, if GSCs are genetically manipulated to divide symmetrically, this asymmetric mode is lost. This work suggests that stem cells retain preexisting canonical histones during asymmetric cell divisions, probably as a mechanism to maintain their unique molecular properties.

  12. Histone genes of the razor clam Solen marginatus unveil new aspects of linker histone evolution in protostomes.

    PubMed

    González-Romero, Rodrigo; Ausió, Juan; Méndez, Josefina; Eirín-López, José M

    2009-07-01

    The association of DNA with histones results in a nucleoprotein complex called chromatin that consists of repetitive nucleosomal subunits. Nucleosomes are joined together in the chromatin fiber by short stretches of linker DNA that interact with a wide diversity of linker H1 histones involved in chromatin compaction and dynamics. Although the long-term evolution of the H1 family has been the subject of different studies during the last 5 years, the lack of molecular data on replication-independent (RI) H1 variants from protostomes has been hampering attempts to complete the evolutionary picture of this histone family in eukaryotes, especially as it pertains to the functional specialization they impart to the chromatin structure in members of this bilaterian lineage. In an attempt to fill this gap, the present work characterizes the histone gene complement from the razor clam Solen marginatus. Molecular evolutionary analyses reveal that the H1 gene from this organism represents one of the few protostome RI H1 genes known to date, a notion which is further supported by its location within the monophyletic group encompassing the RI H1 variants in the overall phylogeny of eukaryotic H1 proteins. Although the detailed characterization of the nucleotide substitution patterns in RI H1 variants agrees with the model of birth-and-death evolution under strong purifying selection, maximum-likelihood approaches unveil the presence of adaptive selection during at least part of the evolutionary differentiation between protostomes and deuterostomes. The presence of increased levels of specialization in RI H1 proteins from deuterostomes as well as the significant differences observed in electrostatic properties between protostome and deuterostome RI H1s represent novel and important preliminary results for future studies of the functional differentiation of this histone H1 lineage across bilaterians.

  13. Therapeutic Targeting of Histone Modifications in Adult and Pediatric High-Grade Glioma

    PubMed Central

    Williams, Maria J.; Singleton, Will G. B.; Lowis, Stephen P.; Malik, Karim; Kurian, Kathreena M.

    2017-01-01

    Recent exciting work partly through The Cancer Genome Atlas has implicated epigenetic mechanisms including histone modifications in the development of both pediatric and adult high-grade glioma (HGG). Histone lysine methylation has emerged as an important player in regulating gene expression and chromatin function. Lysine (K) 27 (K27) is a critical residue in all seven histone 3 variants and the subject of posttranslational histone modifications, as it can be both methylated and acetylated. In pediatric HGG, two critical single-point mutations occur in the H3F3A gene encoding the regulatory histone variant H3.3. These mutations occur at lysine (K) 27 (K27M) and glycine (G) 34 (G34R/V), both of which are involved with key regulatory posttranscriptional modifications. Therefore, these mutations effect gene expression, cell differentiation, and telomere maintenance. In recent years, alterations in histone acetylation have provided novel opportunities to explore new pharmacological targeting, with histone deacetylase (HDAC) overexpression reported in high-grade, late-stage proliferative tumors. HDAC inhibitors have shown promising therapeutic potential in many malignancies. This review focuses on the epigenetic mechanisms propagating pediatric and adult HGGs, as well as summarizing the current advances in clinical trials using HDAC inhibitors. PMID:28401060

  14. Histone deacetylases and atherosclerosis.

    PubMed

    Zheng, Xia-xia; Zhou, Tian; Wang, Xin-An; Tong, Xiao-hong; Ding, Jia-wang

    2015-06-01

    Atherosclerosis is the most common pathological process that leads to cardiovascular diseases, a disease of large- and medium-sized arteries that is characterized by a formation of atherosclerotic plaques consisting of necrotic cores, calcified regions, accumulated modified lipids, smooth muscle cells (SMCs), endothelial cells, leukocytes, and foam cells. Recently, the question about how to suppress the occurrence of atherosclerosis and alleviate the progress of cardiovascular disease becomes the hot topic. Accumulating evidence suggests that histone deacetylases(HDACs) play crucial roles in arteriosclerosis. This review summarizes the effect of HDACs and HDAC inhibitors(HDACi) on the progress of atherosclerosis. Copyright © 2015. Published by Elsevier Ireland Ltd.

  15. An age of fewer histones.

    PubMed

    Oberdoerffer, Philipp

    2010-11-01

    Changes in chromatin structure are a conserved hallmark of ageing, and the mechanism driving these changes, as well as their functional significance, are heavily investigated. Loss of core histones is now observed in aged cells and may contribute to this phenomenon. Histone loss is coupled to cell division and seems to be triggered by telomeric DNA damage.

  16. Cellulase variants

    DOEpatents

    Blazej, Robert; Toriello, Nicholas; Emrich, Charles; Cohen, Richard N.; Koppel, Nitzan

    2015-07-14

    This invention provides novel variant cellulolytic enzymes having improved activity and/or stability. In certain embodiments the variant cellulotyic enzymes comprise a glycoside hydrolase with or comprising a substitution at one or more positions corresponding to one or more of residues F64, A226, and/or E246 in Thermobifida fusca Cel9A enzyme. In certain embodiments the glycoside hydrolase is a variant of a family 9 glycoside hydrolase. In certain embodiments the glycoside hydrolase is a variant of a theme B family 9 glycoside hydrolase.

  17. Direct interplay among histones, histone chaperones, and a chromatin boundary protein in the control of histone gene expression.

    PubMed

    Zunder, Rachel M; Rine, Jasper

    2012-11-01

    In Saccharomyces cerevisiae, the histone chaperone Rtt106 binds newly synthesized histone proteins and mediates their delivery into chromatin during transcription, replication, and silencing. Rtt106 is also recruited to histone gene regulatory regions by the HIR histone chaperone complex to ensure S-phase-specific expression. Here we showed that this Rtt106:HIR complex included Asf1 and histone proteins. Mutations in Rtt106 that reduced histone binding reduced Rtt106 enrichment at histone genes, leading to their increased transcription. Deletion of the chromatin boundary element Yta7 led to increased Rtt106:H3 binding, increased Rtt106 enrichment at histone gene regulatory regions, and decreased histone gene transcription at the HTA1-HTB1 locus. These results suggested a unique regulatory mechanism in which Rtt106 sensed the level of histone proteins to maintain the proper level of histone gene transcription. The role of these histone chaperones and Yta7 differed markedly among the histone gene loci, including the two H3-H4 histone gene pairs. Defects in silencing in rtt106 mutants could be partially accounted for by Rtt106-mediated changes in histone gene repression. These studies suggested that feedback mediated by histone chaperone complexes plays a pivotal role in regulating histone gene transcription.

  18. Chatting histone modifications in mammals

    PubMed Central

    Izzo, Annalisa

    2010-01-01

    Eukaryotic chromatin can be highly dynamic and can continuously exchange between an open transcriptionally active conformation and a compacted silenced one. Post-translational modifications of histones have a pivotal role in regulating chromatin states, thus influencing all chromatin dependent processes. Methylation is currently one of the best characterized histone modification and occurs on arginine and lysine residues. Histone methylation can regulate other modifications (e.g. acetylation, phosphorylation and ubiquitination) in order to define a precise functional chromatin environment. In this review we focus on histone methylation and demethylation, as well as on the enzymes responsible for setting these marks. In particular we are describing novel concepts on the interdependence of histone modifications marks and discussing the molecular mechanisms governing this cross-talks. PMID:21266346

  19. Histone h3 glutathionylation in proliferating mammalian cells destabilizes nucleosomal structure.

    PubMed

    García-Giménez, José Luis; Òlaso, Gloria; Hake, Sandra B; Bönisch, Clemens; Wiedemann, Sonja M; Markovic, Jelena; Dasí, Francisco; Gimeno, Amparo; Pérez-Quilis, Carme; Palacios, Oscar; Capdevila, Mercè; Viña, José; Pallardó, Federico V

    2013-10-20

    Here we report that chromatin, the complex and dynamic eukaryotic DNA packaging structure, is able to sense cellular redox changes. Histone H3, the only nucleosomal protein that possesses cysteine(s), can be modified by glutathione (GSH). Using Biotin labeled glutathione ethyl ester (BioGEE) treatment of nucleosomes in vitro, we show that GSH, the most abundant antioxidant in mammals, binds to histone H3. BioGEE treatment of NIH3T3 cells indicates that glutathionylation of H3 is maximal in fast proliferating cells, correlating well with enhanced levels of H3 glutathionylation in different tumor cell lines. Furthermore, glutathionylation of H3 in vivo decreases in livers from aged SAMP8 and C57BL/6J mice. We demonstrate biochemically and by mass spectrometry that histone variants H3.2/H3.3 are glutathionylated on their cysteine residue 110. Furthermore, circular dichroism, thermal denaturation of reconstituted nucleosomes, and molecular modeling indicate that glutathionylation of histone H3 produces structural changes affecting nucleosomal stability. We characterize the implications of histone H3 glutathionylation in cell physiology and the modulation of core histone proteins structure affected by this modification. Histone H3 senses cellular redox changes through glutathionylation of Cys, which increases during cell proliferation and decreases during aging. Glutathionylation of histone H3 affects nucleosome stability structure leading to a more open chromatin structure.

  20. Histone H3 Glutathionylation in Proliferating Mammalian Cells Destabilizes Nucleosomal Structure

    PubMed Central

    Olaso, Gloria; Hake, Sandra B.; Bönisch, Clemens; Wiedemann, Sonja M.; Markovic, Jelena; Dasí, Francisco; Gimeno, Amparo; Pérez-Quilis, Carme; Palacios, Òscar; Capdevila, Mercè; Viña, José

    2013-01-01

    Abstract Aims: Here we report that chromatin, the complex and dynamic eukaryotic DNA packaging structure, is able to sense cellular redox changes. Histone H3, the only nucleosomal protein that possesses cysteine(s), can be modified by glutathione (GSH). Results: Using Biotin labeled glutathione ethyl ester (BioGEE) treatment of nucleosomes in vitro, we show that GSH, the most abundant antioxidant in mammals, binds to histone H3. BioGEE treatment of NIH3T3 cells indicates that glutathionylation of H3 is maximal in fast proliferating cells, correlating well with enhanced levels of H3 glutathionylation in different tumor cell lines. Furthermore, glutathionylation of H3 in vivo decreases in livers from aged SAMP8 and C57BL/6J mice. We demonstrate biochemically and by mass spectrometry that histone variants H3.2/H3.3 are glutathionylated on their cysteine residue 110. Furthermore, circular dichroism, thermal denaturation of reconstituted nucleosomes, and molecular modeling indicate that glutathionylation of histone H3 produces structural changes affecting nucleosomal stability. Innovation: We characterize the implications of histone H3 glutathionylation in cell physiology and the modulation of core histone proteins structure affected by this modification. Conclusion: Histone H3 senses cellular redox changes through glutathionylation of Cys, which increases during cell proliferation and decreases during aging. Glutathionylation of histone H3 affects nucleosome stability structure leading to a more open chromatin structure. Antioxid. Redox Signal. 19, 1305–1320. PMID:23541030

  1. Histone-modifying enzymes, histone modifications and histone chaperones in nucleosome assembly: Lessons learned from Rtt109 histone acetyltransferases

    PubMed Central

    Dahlin, Jayme L; Chen, Xiaoyue; Walters, Michael A.; Zhang, Zhiguo

    2015-01-01

    During DNA replication, nucleosomes ahead of replication forks are disassembled to accommodate replication machinery. Following DNA replication, nucleosomes are then reassembled onto replicated DNA using both parental and newly synthesized histones. This process, termed DNA replication-coupled nucleosome assembly (RCNA), is critical for maintaining genome integrity and for the propagation of epigenetic information, dysfunctions of which have been implicated in cancers and aging. In recent years, it has been shown that RCNA is carefully orchestrated by a series of histone modifications, histone chaperones and histone-modifying enzymes. Interestingly, many features of RCNA are also found in processes involving DNA replication-independent nucleosome assembly like histone exchange and gene transcription. In yeast, histone H3 lysine K56 acetylation (H3K56ac) is found in newly synthesized histone H3 and is critical for proper nucleosome assembly and for maintaining genomic stability. The histone acetyltransferase (HAT) regulator of Ty1 transposition 109 (Rtt109) is the sole enzyme responsible for H3K56ac in yeast. Much research has centered on this particular histone modification and histone-modifying enzyme. This Critical Review summarizes much of our current understanding of nucleosome assembly and highlights many important insights learned from studying Rtt109 HATs in fungi. We highlight some seminal features in nucleosome assembly conserved in mammalian systems and describe some of the lingering questions in the field. Further studying fungal and mammalian chromatin assembly may have important public health implications, including deeper understandings of human cancers and aging as well as the pursuit of novel anti-fungal therapies. PMID:25365782

  2. Structure of the histone deacetylase SIRT2.

    PubMed

    Finnin, M S; Donigian, J R; Pavletich, N P

    2001-07-01

    Sir2 is an NAD-dependent histone deacetylase that mediates transcriptional silencing at mating-type loci, telomeres and ribosomal gene clusters, and has a critical role in the determination of life span in yeast and Caenorhabditis elegans. The 1.7 A crystal structure of the 323 amino acid catalytic core of human SIRT2, a homolog of yeast Sir2, reveals an NAD-binding domain, which is a variant of the Rossmann fold, and a smaller domain composed of a helical module and a zinc-binding module. A conserved large groove at the interface of the two domains is the likely site of catalysis based on mutagenesis. Intersecting this large groove, there is a pocket formed by the helical module. The pocket is lined with hydrophobic residues conserved within each of the five Sir2 classes, suggesting that it is a class-specific protein-binding site.

  3. Oxidative stress alters global histone modification and DNA methylation.

    PubMed

    Niu, Yingmei; DesMarais, Thomas L; Tong, Zhaohui; Yao, Yixin; Costa, Max

    2015-05-01

    The JmjC domain-containing histone demethylases can remove histone lysine methylation and thereby regulate gene expression. The JmjC domain uses iron Fe(II) and α-ketoglutarate (αKG) as cofactors in an oxidative demethylation reaction via hydroxymethyl lysine. We hypothesize that reactive oxygen species will oxidize Fe(II) to Fe(III), thereby attenuating the activity of JmjC domain-containing histone demethylases. To minimize secondary responses from cells, extremely short periods of oxidative stress (3h) were used to investigate this question. Cells that were exposed to hydrogen peroxide (H2O2) for 3h exhibited increases in several histone methylation marks including H3K4me3 and decreases of histone acetylation marks including H3K9ac and H4K8ac; preincubation with ascorbate attenuated these changes. The oxidative stress level was measured by generation of 2',7'-dichlorofluorescein, GSH/GSSG ratio, and protein carbonyl content. A cell-free system indicated that H2O2 inhibited histone demethylase activity where increased Fe(II) rescued this inhibition. TET protein showed a decreased activity under oxidative stress. Cells exposed to a low-dose and long-term (3 weeks) oxidative stress also showed increased global levels of H3K4me3 and H3K27me3. However, these global methylation changes did not persist after washout. The cells exposed to short-term oxidative stress also appeared to have higher activity of class I/II histone deacetylase (HDAC) but not class III HDAC. In conclusion, we have found that oxidative stress transiently alters the epigenetic program process through modulating the activity of enzymes responsible for demethylation and deacetylation of histones.

  4. Erasers of Histone Acetylation: The Histone Deacetylase Enzymes

    PubMed Central

    Seto, Edward; Yoshida, Minoru

    2014-01-01

    Histone deacetylases (HDACs) are enzymes that catalyze the removal of acetyl functional groups from the lysine residues of both histone and nonhistone proteins. In humans, there are 18 HDAC enzymes that use either zinc- or NAD+-dependent mechanisms to deacetylate acetyl lysine substrates. Although removal of histone acetyl epigenetic modification by HDACs regulates chromatin structure and transcription, deacetylation of nonhistones controls diverse cellular processes. HDAC inhibitors are already known potential anticancer agents and show promise for the treatment of many diseases. PMID:24691964

  5. Colloidal aggregation and structural assembly of aspect ratio variant goethite (α-FeOOH) with nC60 fullerene in environmental media.

    PubMed

    Ghosh, Saikat; Pradhan, Nihar R; Mashayekhi, Hamid; Zhang, Qiu; Pan, Bo; Xing, Baoshan

    2016-12-01

    may unlikely abate fullerene transport as envisaged in case of HAsp α-FeOOH. Thus, aspect ratio variation and associated material properties of naturally abundant α-FeOOH may significantly impact fullerene transport through environmental media.

  6. Interaction of calmodulin with histones. Alteration of histone dephosphorylation.

    PubMed

    Wolff, D J; Ross, J M; Thompson, P N; Brostrom, M A; Brostrom, C O

    1981-02-25

    The Ca2+-dependent regulator protein (CDR), also frequently termed "calmodulin" was determined to influence the dephosphorylation of mixed calf thymus histones or purified histones 1, 2A, or 2B by a partially purified bovine brain phosphoprotein phosphatase. CDR increase the rate of dephosphorylation of mixed histones more than 20-fold. With increasing concentrations of mixed histones as substrate, a proportionate increase of CDR concentration was required to maintain maximal expression of histone phosphatase activity. Mixed histones suppressed the activation by CDR of a bovine brain cyclic nucleotide phosphodiesterase activity, with activation being restored by increased quantities of CDR. Dephosphorylation of casein and phosphorylase alpha by the phosphatase preparation was not affected by CDR. These observations support the interpretation that the effects of CDR on histone dephosphorylation are substrate-directed. The rates of dephosphorylation of histones 1, 2A, and 2B by the phosphatase were 4- to 12-fold more rapid at low (sub-micromolar) concentrations of free Ca2+ than at high (200 microM) Ca2+ in incubations containing CDR, but they were unaffected by Ca2+ in incubations without CDR. The addition of stoichiometric quantities of calmodulin increased the apparent Km of the phosphatase for the various histones 2- to 6-fold, while maximal velocities were 4- to 12-fold higher at low than at high added Ca2+. The inhibitory effect of Ca2+ on histone dephosphorylation was immediately reversible by chelation of Ca2+ with EDTA. Ca2+-dependent inhibition of histone 1 or 2B phosphatase activities was also produced by rabbit skeletal muscle troponin C, but not by rabbit skeletal muscle parvalbumin, by poly(L-aspartate) or poly(L-glutamate). The phosphorylated fragment from the NH2-terminal region of either H2A (generated by treatment with N-bromosuccinimide) or H2B (generated by treatment with cyanogen bromide) was dephosphorylated by the phosphatase, with the rates of

  7. Presence of Cytotoxic Extracellular Histones in Machine Perfusate of Donation After Circulatory Death Kidneys.

    PubMed

    van Smaalen, Tim C; Beurskens, Daniëlle M H; Hoogland, E R Pieter; Winkens, Bjorn; Christiaans, Maarten H L; Reutelingsperger, Chris P; van Heurn, L W Ernest; Nicolaes, Gerry A F

    2017-04-01

    Extracellular histones are cytotoxic molecules that are related to cell stress and death. They have been shown to play a crucial role in multiple pathophysiologic processes like sepsis, inflammation, vascular dysfunction, and thrombosis. Their role in organ donation and graft function and survival is still unknown. The aim of this study was to assess whether an association exists between the presence of extracellular histones in machine perfusates and deceased donor kidney viability. Machine perfusates of 390 donations after circulatory death kidneys were analyzed for histone concentration, and corresponding graft function and survival were assessed. Extracellular histone concentrations were significantly higher in perfusates of kidneys with posttransplant graft dysfunction (primary nonfunction and delayed graft function) and were an independent risk factor for delayed graft function (odds ratio, 2.152; 95% confidence interval [95% CI], 1.199-3.863) and 1 year graft failure (hazard ratio, 1.386; 95% CI, 1.037-1.853), but not for primary nonfunction (odds ratio, 1.342; 95% CI, 0.900-2.002). One year graft survival was 12% higher in the group with low histone concentrations (P = 0.008) as compared with the group that contained higher histone concentrations. This study warrants future studies to probe for a possible role of cytotoxic extracellular histones in organ viability and suggests that quantitation of extracellular histones might contribute to assessment of posttransplant graft function and survival.

  8. Histone chaperone networks shaping chromatin function.

    PubMed

    Hammond, Colin M; Strømme, Caroline B; Huang, Hongda; Patel, Dinshaw J; Groth, Anja

    2017-03-01

    The association of histones with specific chaperone complexes is important for their folding, oligomerization, post-translational modification, nuclear import, stability, assembly and genomic localization. In this way, the chaperoning of soluble histones is a key determinant of histone availability and fate, which affects all chromosomal processes, including gene expression, chromosome segregation and genome replication and repair. Here, we review the distinct structural and functional properties of the expanding network of histone chaperones. We emphasize how chaperones cooperate in the histone chaperone network and via co-chaperone complexes to match histone supply with demand, thereby promoting proper nucleosome assembly and maintaining epigenetic information by recycling modified histones evicted from chromatin.

  9. Histone deacetylases: unique players in shaping the epigenetic histone code.

    PubMed

    Thiagalingam, Sam; Cheng, Kuang-Hung; Lee, Hyunjoo J; Mineva, Nora; Thiagalingam, Arunthathi; Ponte, Jose F

    2003-03-01

    The epigenome is defined by DNA methylation patterns and the associated posttranslational modifications of histones. This histone code determines the expression status of individual genes dependent upon their localization on the chromatin. The silencing of gene expression is associated with deacetylated histones, which are often found to be associated with regions of DNA methylation as well as methylation at the lysine 4 residue of histone 3. In contrast, the activation of gene expression is associated with acetylated histones and methylation at the lysine 9 residue of histone 3. The histone deactylases play a major role in keeping the balance between the acetylated and deacetylated states of chromatin. Histone deacetylases (HDACs) are divided into three classes: class I HDACs (HDACs 1, 2, 3, and 8) are similar to the yeast RPD3 protein and localize to the nucleus; class II HDACs (HDACs 4, 5, 6, 7, 9, and 10) are homologous to the yeast HDA1 protein and are found in both the nucleus and cytoplasm; and class III HDACs form a structurally distinct class of NAD-dependent enzymes that are similar to the yeast SIR2 proteins. Since inappropriate silencing of critical genes can result in one or both hits of tumor suppressor gene (TSG) inactivation in cancer, theoretically the reactivation of affected TSGs could have an enormous therapeutic value in preventing and treating cancer. Indeed, several HDAC inhibitors are currently being developed and tested for their potency in cancer chemotherapy. Importantly, these agents are also potentially applicable to chemoprevention if their toxicity can be minimized. Despite the toxic side effects and lack of specificity of some of the inhibitors, progress is being made. With the elucidation of the structures, functions and modes of action of HDACs, finding agents that may be targeted to specific HDACs and potentially reactivate expression of only a defined set of affected genes in cancer will be more attainable.

  10. Histone H3.3 and its proteolytically processed form drive a cellular senescence program

    PubMed Central

    Duarte, Luis F.; Young, Andrew R. J.; Wang, Zichen; Wu, Hsan-Au; Panda, Taniya; Kou, Yan; Kapoor, Avnish; Hasson, Dan; Mills, Nicholas R.; Ma’ayan, Avi; Narita, Masashi; Bernstein, Emily

    2014-01-01

    The process of cellular senescence generates a repressive chromatin environment, however, the role of histone variants and histone proteolytic cleavage in senescence remains unclear. Using models of oncogene-induced and replicative senescence, here we report novel histone H3 tail cleavage events mediated by the protease Cathepsin L. We find that cleaved forms of H3 are nucleosomal and the histone variant H3.3 is the preferred cleaved form of H3. Ectopic expression of H3.3 and its cleavage product (H3.3cs1), which lacks the first twenty-one amino acids of the H3 tail, is sufficient to induce senescence. Further, H3.3cs1 chromatin incorporation is mediated by the HUCA histone chaperone complex. Genome-wide transcriptional profiling revealed that H3.3cs1 facilitates transcriptional silencing of cell cycle regulators including RB/E2F target genes, likely via the permanent removal of H3K4me3. Collectively, our study identifies histone H3.3 and its proteolytically processed forms as key regulators of cellular senescence. PMID:25394905

  11. A subset of replication-dependent histone mRNAs are expressed as polyadenylated RNAs in terminally differentiated tissues

    PubMed Central

    Lyons, Shawn M.; Cunningham, Clark H.; Welch, Joshua D.; Groh, Beezly; Guo, Andrew Y.; Wei, Bruce; Whitfield, Michael L.; Xiong, Yue; Marzluff, William F.

    2016-01-01

    Histone proteins are synthesized in large amounts during S-phase to package the newly replicated DNA, and are among the most stable proteins in the cell. The replication-dependent (RD)-histone mRNAs expressed during S-phase end in a conserved stem-loop rather than a polyA tail. In addition, there are replication-independent (RI)-histone genes that encode histone variants as polyadenylated mRNAs. Most variants have specific functions in chromatin, but H3.3 also serves as a replacement histone for damaged histones in long-lived terminally differentiated cells. There are no reported replacement histone genes for histones H2A, H2B or H4. We report that a subset of RD-histone genes are expressed in terminally differentiated tissues as polyadenylated mRNAs, likely serving as replacement histone genes in long-lived non-dividing cells. Expression of two genes, HIST2H2AA3 and HIST1H2BC, is conserved in mammals. They are expressed as polyadenylated mRNAs in fibroblasts differentiated in vitro, but not in serum starved fibroblasts, suggesting that their expression is part of the terminal differentiation program. There are two histone H4 genes and an H3 gene that encode mRNAs that are polyadenylated and expressed at 5- to 10-fold lower levels than the mRNAs from H2A and H2B genes, which may be replacement genes for the H3.1 and H4 proteins. PMID:27402160

  12. Quantification of histone modifications by parallel-reaction monitoring: a method validation.

    PubMed

    Sowers, James L; Mirfattah, Barsam; Xu, Pei; Tang, Hui; Park, In Young; Walker, Cheryl; Wu, Ping; Laezza, Fernanda; Sowers, Lawrence C; Zhang, Kangling

    2015-10-06

    Abnormal epigenetic reprogramming is one of the major causes leading to irregular gene expression and regulatory pathway perturbations, in the cells, resulting in unhealthy cell development or diseases. Accurate measurements of these changes of epigenetic modifications, especially the complex histone modifications, are very important, and the methods for these measurements are not trivial. By following our previous introduction of PRM to targeting histone modifications (Tang, H.; Fang, H.; Yin, E.; Brasier, A. R.; Sowers, L. C.; Zhang, K. Multiplexed parallel reaction monitoring targeting histone modifications on the QExactive mass spectrometer. Anal. Chem. 2014, 86 (11), 5526-34), herein we validated this method by varying the protein/trypsin ratios via serial dilutions. Our data demonstrated that PRM with SILAC histones as the internal standards allowed reproducible measurements of histone H3/H4 acetylation and methylation in the samples whose histone contents differ at least one-order of magnitude. The method was further validated by histones isolated from histone H3 K36 trimethyltransferase SETD2 knockout mouse embryonic fibroblasts (MEF) cells. Furthermore, histone acetylation and methylation in human neural stem cells (hNSC) treated with ascorbic acid phosphate (AAP) were measured by this method, revealing that H3 K36 trimethylation was significantly down-regulated by 6 days of treatment with vitamin C.

  13. Imaging local deposition of newly synthesized histones in UVC-damaged chromatin.

    PubMed

    Adam, Salomé; Dabin, Juliette; Bai, Siau-Kun; Polo, Sophie E

    2015-01-01

    DNA damage not only jeopardizes genome integrity but also challenges the well-organized association of DNA with histone proteins into chromatin, which is key for regulating gene expression and cell functions. The extent to which the original chromatin structure is altered after repair of DNA lesions is thus a critical issue. Dissecting histone dynamics at sites of DNA damage has provided mechanistic insights into chromatin plasticity in response to genotoxic stress. Here, we present an experimental protocol for visualizing the deposition of newly synthesized histone H3 variants at sites of UVC damage in human cells that couples SNAP-tag based labeling of new histones with local UVC irradiation of cells through micropore filters.

  14. Effect of trypsinization and histone H5 addition on DNA twist and topology in reconstituted minichromosomes.

    PubMed Central

    Morse, R H; Cantor, C R

    1986-01-01

    Free DNA in solution exhibits an untwisting of the double helix with increasing temperature. We have shown previously that when DNA is reconstituted with histones to form nucleosome core particles, both the core DNA and the adjacent linker DNA are constrained from thermal untwisting. The origin of this constraint is unknown. Here we examine the effect of two modifications of nucleosome structure on the constraint against thermal untwisting, and also on DNA topology. In one experiment, we removed the highly positively charged histone amino and carboxy termini by trypsinization. Alternatively, we added histone H5, a histone H1 variant from chick erythrocytes. Neither of these modifications had any major effect on DNA topology or twist in the nucleosome. Images PMID:3703676

  15. Drug-induced histone eviction from open chromatin contributes to the chemotherapeutic effects of doxorubicin

    PubMed Central

    Pang, Baoxu; Qiao, Xiaohang; Janssen, Lennert; Velds, Arno; Groothuis, Tom; Kerkhoven, Ron; Nieuwland, Marja; Ovaa, Huib; Rottenberg, Sven; van Tellingen, Olaf; Janssen, Jeroen; Huijgens, Peter; Zwart, Wilbert; Neefjes, Jacques

    2013-01-01

    DNA topoisomerase II inhibitors are a major class of cancer chemotherapeutics, which are thought to eliminate cancer cells by inducing DNA double-strand breaks. Here we identify a novel activity for the anthracycline class of DNA topoisomerase II inhibitors: histone eviction from open chromosomal areas. We show that anthracyclines promote histone eviction irrespective of their ability to induce DNA double-strand breaks. The histone variant H2AX, which is a key component of the DNA damage response, is also evicted by anthracyclines, and H2AX eviction is associated with attenuated DNA repair. Histone eviction deregulates the transcriptome in cancer cells and organs such as the heart, and can drive apoptosis of topoisomerase-negative acute myeloid leukaemia blasts in patients. We define a novel mechanism of action of anthracycline anticancer drugs doxorubicin and daunorubicin on chromatin biology, with important consequences for DNA damage responses, epigenetics, transcription, side effects and cancer therapy. PMID:23715267

  16. Histones and DNA Compete for Binding Polyphosphoinositides in Bilayers

    PubMed Central

    Lete, Marta G.; Sot, Jesús; Ahyayauch, Hasna; Fernández-Rivero, Noelia; Prado, Adelina; Goñi, Félix M.; Alonso, Alicia

    2014-01-01

    Recent discoveries on the presence and location of phosphoinositides in the eukaryotic cell nucleoplasm and nuclear membrane prompted us to study the putative interaction of chromatin components with these lipids in model membranes (liposomes). Turbidimetric studies revealed that a variety of histones and histone combinations (H1, H2AH2B, H3H4, octamers) caused a dose-dependent aggregation of phosphatidylcholine vesicles (large unilamellar vesicle or small unilamellar vesicle) containing negatively charged phospholipids. 5 mol % phosphatidylinositol-4-phosphate (PIP) was enough to cause extensive aggregation under our conditions, whereas with phosphatidylinositol (PI) at least 20 mol % was necessary to obtain a similar effect. Histone binding to giant unilamellar vesicle and vesicle aggregation was visualized by confocal microscopy. Histone did not cause vesicle aggregation in the presence of DNA, and the latter was able to disassemble the histone-vesicle aggregates. At DNA/H1 weight ratios 0.1–0.5 DNA- and PIP-bound H1 appear to coexist. Isothermal calorimetry studies revealed that the PIP-H1 association constant was one order of magnitude higher than that of PI-H1, and the corresponding lipid/histone stoichiometries were ∼0.5 and ∼1, respectively. The results suggest that, in the nucleoplasm, a complex interplay of histones, DNA, and phosphoinositides may be taking place, particularly at the nucleoplasmic reticula that reach deep within the nucleoplasm, or during somatic and nonsomatic nuclear envelope assembly. The data described here provide a minimal model for analyzing and understanding the mechanism of these interactions. PMID:24606933

  17. Butyrate Histone Deacetylase Inhibitors

    PubMed Central

    Boosalis, Michael S.; Perrine, Susan P.; Sangerman, José

    2012-01-01

    Abstract In addition to being a part of the metabolic fatty acid fuel cycle, butyrate is also capable of inducing growth arrest in a variety of normal cell types and senescence-like phenotypes in gynecological cancer cells, inhibiting DNA synthesis and cell growth in colonic tumor cell lines, suppressing hTERT mRNA expression and telomerase activity in human prostate cancer cells, and inducing stem cell differentiation and apoptosis by DNA fragmentation. It regulates gene expression by inhibiting histone deacetylases (HDACs), enhances memory recovery and formation in mice, stimulates neurogenesis in the ischemic brain, promotes osteoblast formation, selectively blocks cell replication in transformed cells (compared to healthy cells), and can prevent and treat diet-induced obesity and insulin resistance in mouse models of obesity, as well as stimulate fetal hemoglobin expression in individuals with hematologic diseases such as the thalassemias and sickle-cell disease, in addition to a multitude of other biochemical effects in vivo. However, efforts to exploit the potential of butyrate in the clinical treatment of cancer and other medical disorders are thwarted by its poor pharmacological properties (short half-life and first-pass hepatic clearance) and the multigram doses needed to achieve therapeutic concentrations in vivo. Herein, we review some of the methods used to overcome these difficulties with an emphasis on HDAC inhibition. PMID:23514803

  18. A novel, enigmatic histone modification: biotinylation of histones by holocarboxylase synthetase.

    PubMed

    Hassan, Yousef I; Zempleni, Janos

    2008-12-01

    Holocarboxylase synthetase catalyzes the covalent binding of biotin to histones in humans and other eukaryotes. Eleven biotinylation sites have been identified in histones H2A, H3, and H4. K12-biotinylated histone H4 is enriched in heterochromatin, repeat regions, and plays a role in gene repression. About 30% of the histone H4 molecules are biotinylated at K12 in histone H4 in human fibroblast telomeres. The abundance of biotinylated histones at distinct genomic loci depends on biotin availability. Decreased histone biotinylation decreases life span and stress resistance in Drosophila. Low enrichment of biotinylated histones at transposable elements impairs repression of these elements.

  19. Histone regulation in the CNS: basic principles of epigenetic plasticity.

    PubMed

    Maze, Ian; Noh, Kyung-Min; Allis, C David

    2013-01-01

    Postmitotic neurons are subject to a vast array of environmental influences that require the nuclear integration of intracellular signaling events to promote a wide variety of neuroplastic states associated with synaptic function, circuit formation, and behavioral memory. Over the last decade, much attention has been paid to the roles of transcription and chromatin regulation in guiding fundamental aspects of neuronal function. A great deal of this work has centered on neurodevelopmental and adulthood plasticity, with increased focus in the areas of neuropharmacology and molecular psychiatry. Here, we attempt to provide a broad overview of chromatin regulation, as it relates to central nervous system (CNS) function, with specific emphasis on the modes of histone posttranslational modifications, chromatin remodeling, and histone variant exchange. Understanding the functions of chromatin in the context of the CNS will aid in the future development of pharmacological therapeutics aimed at alleviating devastating neurological disorders.

  20. Lysine succinylation and lysine malonylation in histones.

    PubMed

    Xie, Zhongyu; Dai, Junbiao; Dai, Lunzhi; Tan, Minjia; Cheng, Zhongyi; Wu, Yeming; Boeke, Jef D; Zhao, Yingming

    2012-05-01

    Histone protein post-translational modifications (PTMs) are significant for gene expression and DNA repair. Here we report the identification and validation of a new type of PTM in histones, lysine succinylation. The identified lysine succinylated histone peptides were verified by MS/MS of synthetic peptides, HPLC co-elution, and isotopic labeling. We identified 13, 7, 10, and 7 histone lysine succinylation sites in HeLa, mouse embryonic fibroblast, Drosophila S2, and Saccharomyces cerevisiae cells, respectively. We demonstrated that this histone PTM is present in all eukaryotic cells we examined. Mutagenesis of succinylation sites followed by functional assays implied that histone lysine succinylation can cause unique functional consequences. We also identified one and two histone lysine malonylation sites in HeLa and S. cerevisiae cells, respectively. Our results therefore increase potential combinatorial diversity of histone PTMs and suggest possible new connections between histone biology and metabolism.

  1. The histone chaperone sNASP binds a conserved peptide motif within the globular core of histone H3 through its TPR repeats

    PubMed Central

    Bowman, Andrew; Lercher, Lukas; Singh, Hari R.; Zinne, Daria; Timinszky, Gyula; Carlomagno, Teresa; Ladurner, Andreas G.

    2016-01-01

    Eukaryotic chromatin is a complex yet dynamic structure, which is regulated in part by the assembly and disassembly of nucleosomes. Key to this process is a group of proteins termed histone chaperones that guide the thermodynamic assembly of nucleosomes by interacting with soluble histones. Here we investigate the interaction between the histone chaperone sNASP and its histone H3 substrate. We find that sNASP binds with nanomolar affinity to a conserved heptapeptide motif in the globular domain of H3, close to the C-terminus. Through functional analysis of sNASP homologues we identified point mutations in surface residues within the TPR domain of sNASP that disrupt H3 peptide interaction, but do not completely disrupt binding to full length H3 in cells, suggesting that sNASP interacts with H3 through additional contacts. Furthermore, chemical shift perturbations from 1H-15N HSQC experiments show that H3 peptide binding maps to the helical groove formed by the stacked TPR motifs of sNASP. Our findings reveal a new mode of interaction between a TPR repeat domain and an evolutionarily conserved peptide motif found in canonical H3 and in all histone H3 variants, including CenpA and have implications for the mechanism of histone chaperoning within the cell. PMID:26673727

  2. Specificities and genomic distribution of somatic mammalian histone H1 subtypes.

    PubMed

    Millán-Ariño, Lluís; Izquierdo-Bouldstridge, Andrea; Jordan, Albert

    2016-03-01

    Histone H1 is a structural component of chromatin that may have a role in the regulation of chromatin dynamics. Unlike core histones, the linker histone H1 family is evolutionarily diverse and many organisms have multiple H1 variants or subtypes, distinguishable between germ-line and somatic cells. In mammals, the H1 family includes seven somatic H1 variants with a prevalence that varies between cell types and over the course of differentiation, H1.1 to H1.5 being expressed in a replication-dependent manner, whereas H1.0 and H1X are replication-independent. Until recently, it has not been known whether the different variants had specific roles in the regulation of nuclear processes or were differentially distributed across the genome. To address this, an increasing effort has been made to investigate divergent features among H1 variants, regarding their structure, expression patterns, chromatin dynamics, post-translational modifications and genome-wide distribution. Although H1 subtypes seem to have redundant functions, several reports point to the idea that they are also differently involved in specific cellular processes. Initial studies investigating the genomic distribution of H1 variants have started to suggest that despite a wide overlap, different variants may be enriched or preferentially located at different chromatin types, but this may depend on the cell type, the relative abundance of the variants, the differentiation state of the cell, or whether cells are derived from a neoplastic process. Understanding the heterogeneity of the histone H1 family is crucial to elucidate their role in chromatin organization, gene expression regulation and other cellular processes.

  3. Histone code or not? Combinatorial pattern analyses of histone modifications

    NASA Astrophysics Data System (ADS)

    Zang, Chongzhi; Peng, Weiqun; Wang, Zhibin; Schones, Dustin E.; Barski, Artem; Cuddapah, Suresh; Cui, Kairong; Roh, Tae-Young; Zhao, Keji; Rosenfeld, Jeffrey; Zhang, Michael

    2008-03-01

    Eukaryotic genomes are organized into chromatin, the structure of which plays critical role in the program of gene expression. Chromatin structure and function is regulated by a myriad of posttranslational modifications on histone tails of the nucleosomes, the fundamental unit of chromatin. It remains unclear how different modifications interact. Based on high- resolution genomic maps of close to 40 histone methylations and acetylations in human T-cells obtained experimentally by ChIP- Seq technique, we investigated the combinatorial patterns of histone modifications at gene promoter regions. We found that a very limited number of patterns dominate. Modifications within a pattern are strongly correlated and each pattern is associated with a distinct gene expression distribution. Our results suggest that it is the patterns rather than the individual modifications that affect the downstream readout.

  4. Radiation-induced alterations in histone modification patterns and their potential impact on short-term radiation effects

    PubMed Central

    Friedl, Anna A.; Mazurek, Belinda; Seiler, Doris M.

    2012-01-01

    Detection and repair of radiation-induced DNA damage occur in the context of chromatin. An intricate network of mechanisms defines chromatin structure, including DNA methylation, incorporation of histone variants, histone modifications, and chromatin remodeling. In the last years it became clear that the cellular response to radiation-induced DNA damage involves all of these mechanisms. Here we focus on the current knowledge on radiation-induced alterations in post-translational histone modification patterns and their effect on the chromatin accessibility, transcriptional regulation and chromosomal stability. PMID:23050241

  5. Histone modifications in zebrafish development.

    PubMed

    Cunliffe, V T

    2016-01-01

    Reversible covalent histone modifications are known to influence spatiotemporal patterns of gene transcription during development. Here I review recent advances in the development and use of methods to analyze the distribution and functions of histone modifications in zebrafish chromatin. I discuss the roles of dynamic histone modification patterns at the promoters and enhancers of genes during the process of zygotic gene activation at blastula stages and the interplay between the molecular machinery responsible for histone modifications, chromatin remodeling and DNA methylation. Interactions are also described between developmentally regulated enhancer sequences and modified histones. A detailed method for chromatin immunoprecipitation using antibodies is provided, and I describe the use of high-throughput whole genome sequencing technology to generate DNA sequence data from chromatin immunoprecipitates. I also discuss computational approaches to integrating DNA sequence data obtained from chromatin immunoprecipitates with annotated reference genome sequences, transcriptome and methylome sequence data, transcription factor binding motif databases, and gene ontologies and describe the types of software tools currently available for visualizing the results. Copyright © 2016 Elsevier Inc. All rights reserved.

  6. Histone methylation during neural development.

    PubMed

    Roidl, Deborah; Hacker, Christine

    2014-06-01

    Post-translational modification of histone proteins, such as the methylation of lysine and arginine residues, influences the higher order of chromatin and leads to gene activation or silencing. Histone methyltransferases or demethylases actively add or remove various methylation marks in a cell-type-specific and context-dependent way. They are therefore important players in regulating the transcriptional program of a cell. Some control of the various cellular programs is necessary during the differentiation of stem cells along a specific lineage, when differentiation to alternative lineages needs to be suppressed. One example is the development of neurons from neural stem cells during neurogenesis. Neurogenesis is a highly organized process that requires the proper coordination of survival, proliferation, differentiation and migration signals. This holds true for both embryonic and neural stem cells that give rise to the various cell types of the central nervous system. The control of embryonic and neural stem cell self-renewal and differentiation is achieved by both extrinsic and intrinsic signals that regulate gene expression precisely. Recent advances in neuroscience support the importance of epigenetic modifications, such as the methylation and acetylation of histones, as an important intrinsic mechanism for the regulation of central nervous system development. This review summarizes our current knowledge of histone methylation processes during neural development and provides insights into the function of histone methylation enzymes and their role during central nervous system development.

  7. HHMD: the human histone modification database.

    PubMed

    Zhang, Yan; Lv, Jie; Liu, Hongbo; Zhu, Jiang; Su, Jianzhong; Wu, Qiong; Qi, Yunfeng; Wang, Fang; Li, Xia

    2010-01-01

    Histone modifications play important roles in chromatin remodeling, gene transcriptional regulation, stem cell maintenance and differentiation. Alterations in histone modifications may be linked to human diseases especially cancer. Histone modifications including methylation, acetylation and ubiquitylation probed by ChIP-seq, ChIP-chip and qChIP have become widely available. Mining and integration of histone modification data can be beneficial to novel biological discoveries. There has been no comprehensive data repository that is exclusive for human histone modifications. Therefore, we developed a relatively comprehensive database for human histone modifications. Human Histone Modification Database (HHMD, http://bioinfo.hrbmu.edu.cn/hhmd) focuses on the storage and integration of histone modification datasets that were obtained from laboratory experiments. The latest release of HHMD incorporates 43 location-specific histone modifications in human. To facilitate data extraction, flexible search options are built in HHMD. It can be searched by histone modification, gene ID, functional categories, chromosome location and cancer name. HHMD also includes a user-friendly visualization tool named HisModView, by which genome-wide histone modification map can be shown. HisModView facilitates the acquisition and visualization of histone modifications. The database also has manually curated information of histone modification dysregulation in nine human cancers.

  8. Electrophoretic Analysis of Histones from Gibberellic Acid-treated Dwarf Peas

    PubMed Central

    Spiker, Steven; Chalkley, Roger

    1971-01-01

    Histones from the epicotyls of light-grown dwarf peas (Pisum sativum L. cv. Little Marvel) which had been treated with gibberellic acid were compared to histones from control dwarf peas by the method of polyacrylamide gel electrophoresis. The histone complements were found to be unaltered in the electrophoretic mobility and relative quantity of the individual fractions. The ratio of histone to DNA was also unaffected by treatment with gibberellic acid. The investigation confirmed earlier reports that over 95% of the histone of peas is contained in seven molecular species and that one of these can exist both as an oxidized disulfide dimer and as a reduced monomer. Evidence is presented which indicates that only the monomer form exists in vivo in the pea epicotyl tissue and that the oxidized dimer is an artifact of extraction. The implications of the data concerning the mechanism of action of gibberellic acid are discussed. Images PMID:16657619

  9. A heterogeneity of the pheasant (Phasianus colchicus L.) erythrocyte histone H1 subtype H5.

    PubMed

    Kowalski, Andrzej

    2016-01-01

    In a previous work (Górnicka-Michalska et al. (1998)), an occurrence of genetic variants in the chicken erythrocyte histone H5 has been presented. Here, the pheasant histone H5 heterogeneity is characterized to verify if the interspecies variability of this protein is caused by the analogous determinants. During screening histone H1 preparations isolated from the pheasant erythrocytes, histone H5 was identified as differently located in the electrophoretic gels. According to the rate of electrophoretic migration, two histone H5 phenotypes (H5a and H5b) possessing similar quantitative proportion (P>0.05) were distinguished. A rare phenotype H5a (frequency 0.26) migrating faster in the SDS-PAGE was low mobile in the AU-PAGE, in contrast to the frequent phenotype H5b (frequency 0.74) that moved slowly in the SDS-PAGE and roamed faster in the AU-PAGE. The electrophoretic properties of histone H5 phenotypes may reflect disparities in their net charge and molecular weight. Peptide maps of histone H5 phenotypes, obtained by partial chemical cleavage (NBS) and limited enzymatic digestion (α-chymotrypsin), revealed their C-peptides possessing the same electrophoretic mobility and the N-peptides having variable rate of the electrophoretic migration. Based on this, the identified phenotypic variation seems to be determined by a histone H5 phenotype-specific amino acid sequence region situated in the N-terminal portion of its molecule. According to the identified varied sequence stretches, histone H5 phenotype may induce specific effects related to the organization and/or function of the pheasant chromatin.

  10. Histone acetylation: from code to web and router via intrinsically disordered regions.

    PubMed

    Horikoshi, Masami

    2013-01-01

    Structural changes of chromatin, which consists of nucleosomes and nucleosome-associated factors, lead to functional changes that are important determinants of eukaryotic gene regulation. These structural changes are regulated by modifications of histones and DNA, both of which are components of nucleosomes, as well as by replacement of histone variants and the actions of noncoding RNAs. In studies of chromatin modifications, a great deal of attention has been paid to histone acetylation. Progress in understanding this subject has been extensive, including i) elucidation of the relationship of histone acetylation and gene activity; ii) the first isolation of a histonemodifying enzyme; iii) the first identification of a factor that recognizes a modified site; iv) elucidation of the mechanism by which histone modification leads to structural changes in nucleosomes; and v) elucidation of the mechanism of border formation between euchromatin and heterochromatin. Histone acetylation is considered to be fundamental in several fields, including studies of a) the role of chromatin and epigenetics in higher-order biochemical systems such as transcription, DNA replication, and repair; b) biological phenomena such as cell proliferation and differentiation; and c) cancer and aging, potentially leading to clinical applications. In this review, I will discuss the histone code hypothesis, at one time believed to represent a unified theory regarding the functions of histone modification. In addition, I will describe the "modification web theory, " by which the problems in the histone code hypothesis can be overcome, as well as the "signal router theory, " which explains the mechanisms of formation, development, and evolution of the modification web from a structural viewpoint. Lastly, I will illustrate how these novel theories partially explain the robustness of biological systems against various perturbations, and elucidate the strategy that a cell employs to avoid fatal

  11. Histone Deacetylases and Cardiometabolic Diseases

    PubMed Central

    Yiew, Kan Hui; Chatterjee, Tapan K.; Hui, David Y.; Weintraub, Neal L.

    2015-01-01

    Cardiometabolic disease, emerging as a worldwide epidemic, is a combination of metabolic derangements leading to type 2 diabetes and cardiovascular disease. Genetic and environmental factors are linked through epigenetic mechanisms to the pathogenesis of cardiometabolic disease. Post-translational modifications of histone tails, including acetylation and deacetylation, epigenetically alter chromatin structure and dictate cell-specific gene expression patterns. The histone deacetylase (HDAC) family is comprised of 18 members that regulate gene expression by altering the acetylation status of nucleosomal histones and by functioning as nuclear transcriptional co-repressors. HDACs regulate key aspects of metabolism, inflammation, and vascular function pertinent to cardiometabolic disease in a cell- and tissue-specific manner. HDACs also likely play a role in the “metabolic memory” of diabetes, an important clinical aspect of the disease. Understanding the molecular, cellular, and physiological functions of HDACs in cardiometabolic disease is expected to provide insight into disease pathogenesis, risk factor control, and therapeutic development. PMID:26183616

  12. Translating the histone code into leukemia.

    PubMed

    Linggi, Bryan E; Brandt, Stephen J; Sun, Zu-Wen; Hiebert, Scott W

    2005-12-01

    The "histone code" is comprised of the covalent modifications of histone tails that function to regulate gene transcription. The post-translational modifications that occur in histones within the regulatory regions of genes include acetylation, methylation, phosphorylation, ubiquitination, sumoylation, and ADP-ribosylation. These modifications serve to alter chromatin structure and accessibility, and to act as docking sites for transcription factors or other histone modifying enzymes. Several of the factors that are disrupted by chromosomal translocations associated with hematological malignancies can alter the histone code in a gene-specific manner. Here, we discuss how the histone code may be disrupted by chromosomal translocations, either directly by altering the activity of histone modifying enzymes, or indirectly by recruitment of this type of enzyme by oncogenic transcription factors. These alterations in the histone code may alter gene expression pattern to set the stage for leukemogenesis. 2005 Wiley-Liss, Inc.

  13. Histone acetylation in heterochromatin assembly

    PubMed Central

    Kim, Jeong-Hoon; Workman, Jerry L.

    2010-01-01

    Histone acetylation is generally considered a mark involved in activating gene expression by making chromatin structures less compact. In the April 1, 2010, issue of Genes & Development, Xhemalce and Kouzarides (pp. 647–652) demonstrate that the acetylation of histone H3 at Lys 4 (H3K4) plays a role in the formation of repressive heterochromatin in Schizosaccharomyces pombe. H3K4 acetylation mediates a switch of chromodomain proteins associated with methylated H3K9 during heterochromatin assembly. PMID:20395362

  14. Global analysis of core histones reveals nucleosomal surfaces required for chromosome bi-orientation

    PubMed Central

    Kawashima, Satoshi; Nakabayashi, Yu; Matsubara, Kazuko; Sano, Norihiko; Enomoto, Takemi; Tanaka, Kozo; Seki, Masayuki; Horikoshi, Masami

    2011-01-01

    The attachment of sister kinetochores to microtubules from opposite spindle poles is essential for faithful chromosome segregation. Kinetochore assembly requires centromere-specific nucleosomes containing the histone H3 variant CenH3. However, the functional roles of the canonical histones (H2A, H2B, H3, and H4) in chromosome segregation remain elusive. Using a library of histone point mutants in Saccharomyces cerevisiae, 24 histone residues that conferred sensitivity to the microtubule-depolymerizing drugs thiabendazole (TBZ) and benomyl were identified. Twenty-three of these mutations were clustered at three spatially separated nucleosomal regions designated TBS-I, -II, and -III (TBZ/benomyl-sensitive regions I–III). Elevation of mono-polar attachment induced by prior nocodazole treatment was observed in H2A-I112A (TBS-I), H2A-E57A (TBS-II), and H4-L97A (TBS-III) cells. Severe impairment of the centromere localization of Sgo1, a key modulator of chromosome bi-orientation, occurred in H2A-I112A and H2A-E57A cells. In addition, the pericentromeric localization of Htz1, the histone H2A variant, was impaired in H4-L97A cells. These results suggest that the spatially separated nucleosomal regions, TBS-I and -II, are necessary for Sgo1-mediated chromosome bi-orientation and that TBS-III is required for Htz1 function. PMID:21772248

  15. Schizosaccharomyces pombe mst2+ Encodes a MYST Family Histone Acetyltransferase That Negatively Regulates Telomere Silencing†

    PubMed Central

    Gómez, Eliana B.; Espinosa, Joaquín M.; Forsburg, Susan L.

    2005-01-01

    Histone acetylation and deacetylation are associated with transcriptional activity and the formation of constitutively silent heterochromatin. Increasingly, histone acetylation is also implicated in other chromosome transactions, including replication and segregation. We have cloned the only Schizosaccharomyces pombe MYST family histone acetyltransferase genes, mst1+ and mst2+. Mst1p, but not Mst2p, is essential for viability. Both proteins are localized to the nucleus and bound to chromatin throughout the cell cycle. Δmst2 genetically interacts with mutants that affect heterochromatin, cohesion, and telomere structure. Mst2p is a negative regulator of silencing at the telomere but does not affect silencing in the centromere or mating type region. We generated a census of proteins and histone modifications at wild-type telomeres. A histone acetylation gradient at the telomeres is lost in Δmst2 cells without affecting the distribution of Taz1p, Swi6p, Rad21p, or Sir2p. We propose that the increased telomeric silencing is caused by histone hypoacetylation and/or an increase in the ratio of methylated to acetylated histones. Although telomere length is normal, meiosis is aberrant in Δmst2 diploid homozygote mutants, suggesting that telomeric histone acetylation contributes to normal meiotic progression. PMID:16199868

  16. A unique binding mode enables MCM2 to chaperone histones H3-H4 at replication forks.

    PubMed

    Huang, Hongda; Strømme, Caroline B; Saredi, Giulia; Hödl, Martina; Strandsby, Anne; González-Aguilera, Cristina; Chen, Shoudeng; Groth, Anja; Patel, Dinshaw J

    2015-08-01

    During DNA replication, chromatin is reassembled by recycling of modified old histones and deposition of new ones. How histone dynamics integrates with DNA replication to maintain genome and epigenome information remains unclear. Here, we reveal how human MCM2, part of the replicative helicase, chaperones histones H3-H4. Our first structure shows an H3-H4 tetramer bound by two MCM2 histone-binding domains (HBDs), which hijack interaction sites used by nucleosomal DNA. Our second structure reveals MCM2 and ASF1 cochaperoning an H3-H4 dimer. Mutational analyses show that the MCM2 HBD is required for MCM2-7 histone-chaperone function and normal cell proliferation. Further, we show that MCM2 can chaperone both new and old canonical histones H3-H4 as well as H3.3 and CENPA variants. The unique histone-binding mode of MCM2 thus endows the replicative helicase with ideal properties for recycling histones genome wide during DNA replication.

  17. A unique binding mode enables MCM2 to chaperone histones H3–H4 at replication forks

    PubMed Central

    Huang, Hongda; Strømme, Caroline B; Saredi, Giulia; Hödl, Martina; Strandsby, Anne; González-Aguilera, Cristina; Chen, Shoudeng; Groth, Anja; Patel, Dinshaw J

    2015-01-01

    During DNA replication, chromatin is reassembled by recycling of modified old histones and deposition of new ones. How histone dynamics integrates with DNA replication to maintain genome and epigenome information remains unclear. Here, we reveal how human MCM2, part of the replicative helicase, chaperones histones H3–H4. Our first structure shows an H3–H4 tetramer bound by two MCM2 histone-binding domains (HBDs), which hijack interaction sites used by nucleosomal DNA. Our second structure reveals MCM2 and ASF1 cochaperoning an H3–H4 dimer. Mutational analyses show that the MCM2 HBD is required for MCM2–7 histone-chaperone function and normal cell proliferation. Further, we show that MCM2 can chaperone both new and old canonical histones H3–H4 as well as H3.3 and CENPA variants. The unique histone-binding mode of MCM2 thus endows the replicative helicase with ideal properties for recycling histones genome wide during DNA replication. PMID:26167883

  18. Mutation of histone H3 serine 86 disrupts GATA factor Ams2 expression and precise chromosome segregation in fission yeast.

    PubMed

    Lim, Kim Kiat; Ong, Terenze Yao Rui; Tan, Yue Rong; Yang, Eugene Guorong; Ren, Bingbing; Seah, Kwi Shan; Yang, Zhe; Tan, Tsu Soo; Dymock, Brian W; Chen, Ee Sin

    2015-09-15

    Eukaryotic genomes are packed into discrete units, referred to as nucleosomes, by organizing around scaffolding histone proteins. The interplay between these histones and the DNA can dynamically regulate the function of the chromosomal domain. Here, we interrogated the function of a pair of juxtaposing serine residues (S86 and S87) that reside within the histone fold of histone H3. We show that fission yeast cells expressing a mutant histone H3 disrupted at S86 and S87 (hht2-S86AS87A) exhibited unequal chromosome segregation, disrupted transcriptional silencing of centromeric chromatin, and reduced expression of Ams2, a GATA-factor that regulates localization of the centromere-specific histone H3 variant CENP-A. We found that overexpression of ams2(+) could suppress the chromosome missegregation phenotype that arose in the hht2-S86AS87A mutant. We further demonstrate that centromeric localization of SpCENP-A(cnp1-1) was significantly compromised in hht2-S86AS87A, suggesting synergism between histone H3 and the centromere-targeting domain of SpCENP-A. Taken together, our work presents evidence for an uncharacterized serine residue in fission yeast histone H3 that affects centromeric integrity via regulating the expression of the SpCENP-A-localizing Ams2 protein. [173/200 words].

  19. Molecular morphology and function of bull spermatozoa linked to histones and associated with fertility.

    PubMed

    de Oliveira, Rodrigo V; Dogan, Sule; Belser, Lauren E; Kaya, Abdullah; Topper, Einko; Moura, Arlindo; Thibaudeau, Giselle; Memili, Erdogan

    2013-09-01

    Sub-par fertility in bulls is influenced by alterations in sperm chromatin, and it might not be solved with increased sperm concentration in artificial insemination. Appropriate histone retention during sperm chromatin condensation plays critical roles in male fertility. The objective of this study was to determine failures of sperm chromatin condensation associated with abnormal persistence or accessibility of histones by aniline blue (ANBL) test, expression levels, and cellular localizations of one variant and two core histones (H3.3, H2B, and H4 respectively) in the spermatozoa of low-fertility (LF) vs high-fertility (HF) bulls. The expression levels and cellular localizations of histones in spermatozoa were studied using immunoblotting, immunocytochemistry, and staining methods. The bioinformatics focused on the sequence identity and evolutionary distance of these proteins among three mammalian species: bovine, mouse, and human. We demonstrated that ANBL staining was different within the LF (1.73 (0.55, 0.19)) and HF (0.67 (0.17, 0.06)) groups (P<0.0001), which was also negatively correlated with in vivo bull fertility (r=-0.90, P<0.0001). Although these histones were consistently detectable and specifically localized in bull sperm cells, they were not different between the two groups. Except H2B variants, H3.3 and H4 showed 100% identity and were evolutionarily conserved in bulls, mice and humans. The H2B variants were more conserved between bulls and humans, than in mice. In conclusion, we showed that H2B, H3.3, and H4 were detectable in bull spermatozoa and that sperm chromatin condensation status, changed by histone retention, is related to bull fertility.

  20. H3K36ac Is an Evolutionary Conserved Plant Histone Modification That Marks Active Genes.

    PubMed

    Mahrez, Walid; Arellano, Minerva Susana Trejo; Moreno-Romero, Jordi; Nakamura, Miyuki; Shu, Huan; Nanni, Paolo; Köhler, Claudia; Gruissem, Wilhelm; Hennig, Lars

    2016-03-01

    In eukaryotic cells, histones are subject to a large number of posttranslational modifications whose sequential or combinatorial action affects chromatin structure and genome function. We identified acetylation at Lys-36 in histone H3 (H3K36ac) as a new chromatin modification in plants. The H3K36ac modification is evolutionary conserved in seed plants, including the gymnosperm Norway spruce (Picea abies) and the angiosperms rice (Oryza sativa), tobacco (Nicotiana tabacum), and Arabidopsis (Arabidopsis thaliana). In Arabidopsis, H3K36ac is highly enriched in euchromatin but not in heterochromatin. Genome-wide chromatin immunoprecipitation sequencing experiments revealed that H3K36ac peaks at the 5' end of genes, mainly on the two nucleosomes immediately distal to the transcription start site, independently of gene length. H3K36ac overlaps with H3K4me3 and the H2A.Z histone variant. The histone acetyl transferase GCN5 and the histone deacetylase HDA19 are required for H3K36ac homeostasis. H3K36ac and H3K36me3 show negative crosstalk, which is mediated by GCN5 and the histone methyl transferase SDG8. Although H3K36ac is associated with gene activity, we did not find a linear relationship between H3K36ac and transcript levels, suggesting that H3K36ac is a binary indicator of transcription. © 2016 American Society of Plant Biologists. All Rights Reserved.

  1. Genomic organization and nucleotide sequences of two corn histone H4 genes.

    PubMed

    Philipps, G; Chaubet, N; Chaboute, M E; Ehling, M; Gigot, C

    1986-01-01

    The sea urchin histone H4 gene has been used as a probe to clone two corn histone H4 genes from a lambda gtWES X lambda B corn genomic library. The nucleotide (nt) sequences of both genes showed that the encoded amino acid sequences were identical to that of the H4 of pea and one variant of wheat. The nt sequences of the coding regions showed 92% homology. 5'- and 3'-flanking regions do not show extensive nt sequence analogies. Southern blotting of the EcoRI digested genomic DNA suggests the existence of multiple H4 genes dispersed throughout the genome.

  2. Phenotypic variation of erythrocyte linker histone H1.c in a pheasant (Phasianus colchicus L.) population.

    PubMed

    Kowalski, Andrzej; Pa Yga, Jan; Górnicka-Michalska, Ewa; Bernacki, Zenon; Adamski, Marek

    2010-07-01

    Our goal was to characterize a phenotypic variation of the pheasant erythrocyte linker histone subtype H1.c. By using two-dimensional polyacrylamide gel electrophoresis three histone H1.c phenotypes were identified. The differently migrating allelic variants H1.c1 and H1.c2 formed either two homozygous phenotypes, c1 and c2, or a single heterozygous phenotype, c1c2. In the pheasant population screened, birds with phenotype c2 were the most common (frequency 0.761) while individuals with phenotype c1 were rare (frequency 0.043).

  3. Histone H1 Limits DNA Methylation in Neurospora crassa.

    PubMed

    Seymour, Michael; Ji, Lexiang; Santos, Alex M; Kamei, Masayuki; Sasaki, Takahiko; Basenko, Evelina Y; Schmitz, Robert J; Zhang, Xiaoyu; Lewis, Zachary A

    2016-07-07

    Histone H1 variants, known as linker histones, are essential chromatin components in higher eukaryotes, yet compared to the core histones relatively little is known about their in vivo functions. The filamentous fungus Neurospora crassa encodes a single H1 protein that is not essential for viability. To investigate the role of N. crassa H1, we constructed a functional FLAG-tagged H1 fusion protein and performed genomic and molecular analyses. Cell fractionation experiments showed that H1-3XFLAG is a chromatin binding protein. Chromatin-immunoprecipitation combined with sequencing (ChIP-seq) revealed that H1-3XFLAG is globally enriched throughout the genome with a subtle preference for promoters of expressed genes. In mammals, the stoichiometry of H1 impacts nucleosome repeat length. To determine if H1 impacts nucleosome occupancy or nucleosome positioning in N. crassa, we performed micrococcal nuclease digestion in the wild-type and the [Formula: see text]hH1 strain followed by sequencing (MNase-seq). Deletion of hH1 did not significantly impact nucleosome positioning or nucleosome occupancy. Analysis of DNA methylation by whole-genome bisulfite sequencing (MethylC-seq) revealed a modest but global increase in DNA methylation in the [Formula: see text]hH1 mutant. Together, these data suggest that H1 acts as a nonspecific chromatin binding protein that can limit accessibility of the DNA methylation machinery in N. crassa.

  4. Drug Addiction and Histone Code Alterations.

    PubMed

    Kim, Hee-Dae; Call, Tanessa; Magazu, Samantha; Ferguson, Deveroux

    2017-01-01

    Acute and prolonged exposure to drugs of abuse induces changes in gene expression, synaptic function, and neural plasticity in brain regions involved in reward. Numerous genes are involved in this process, and persistent changes in gene expression coincide with epigenetic histone modifications and DNA methylation. Histone modifications are attractive regulatory mechanisms, which can encode complex environmental signals in the genome of postmitotic cells, like neurons. Recently, it has been demonstrated that specific histone modifications are involved in addiction-related gene regulatory mechanisms, by a diverse set of histone-modifying enzymes and readers. These histone modifiers and readers may prove to be valuable pharmacological targets for effective treatments for drug addiction.

  5. Electrostatic effect of H1-histone protein binding on nucleosome repeat length

    NASA Astrophysics Data System (ADS)

    Cherstvy, Andrey G.; Teif, Vladimir B.

    2014-08-01

    Within a simple biophysical model we describe the effect of electrostatic binding of H1 histone proteins on the nucleosome repeat length in chromatin. The length of wrapped DNA optimizes its binding energy to the histone core and the elastic energy penalty of DNA wrapping. The magnitude of the effect predicted from our model is in agreement with the systematic experimental data on the linear variation of nucleosome repeat lengths with H1/nucleosome ratio (Woodcock C L et al 2006 Chromos. Res. 14 17-25). We compare our model to the data for different cell types and organisms, with a widely varying ratio of bound H1 histones per nucleosome. We underline the importance of this non-specific histone-DNA charge-balance mechanism in regulating the positioning of nucleosomes and the degree of compaction of chromatin fibers in eukaryotic cells.

  6. Identification of a variant-specific phosphorylation of TH2A during spermiogenesis

    PubMed Central

    Hada, Masashi; Masuda, Koji; Yamaguchi, Kosuke; Shirahige, Katsuhiko; Okada, Yuki

    2017-01-01

    Tissue-specific histone variant incorporation into chromatin plays dynamic and important roles in tissue development. Testis is one such tissue, and a number of testis-specific histone variants are expressed that have unique roles. While it is expected that such variants acquire post-transcriptional modifications to be functional, identification of variant-specific histone modifications is challenging because of the high similarity of amino acid sequences between canonical and variant versions. Here we identified a novel phosphorylation on TH2A, a germ cell-specific histone H2A variant. TH2A-Thr127 is unique to the variant and phosphorylated concomitant with chromatin condensation including spermiogenesis and early embryonic mitosis. In sperm chromatin, phosphorylated TH2A-Thr127 (=pTH2A) is co-localized with H3.3 at transcriptional starting sites of the genome, and subsequently becomes absent from the paternal genome upon fertilization. Notably, pTH2A is recurrent and accumulated in the pericentromeric heterochromatin of both paternal and maternal chromosomes in the first mitosis of embryos, suggesting its unique regulation during spermiogenesis and early embryogenesis. PMID:28387373

  7. The differential mobilization of histones H3.1 and H3.3 by herpes simplex virus 1 relates histone dynamics to the assembly of viral chromatin.

    PubMed

    Conn, Kristen L; Hendzel, Michael J; Schang, Luis M

    2013-01-01

    During lytic infections, HSV-1 genomes are assembled into unstable nucleosomes. The histones required for HSV-1 chromatin assembly, however, are in the cellular chromatin. We have shown that linker (H1) and core (H2B and H4) histones are mobilized during HSV-1 infection, and proposed that the mobilized histones are available for assembly into viral chromatin. However, the actual relevance of histone mobilization remained unknown. We now show that canonical H3.1 and variant H3.3 are also mobilized during HSV-1 infection. Mobilization required no HSV-1 protein expression, although immediate early or early proteins enhanced it. We used the previously known differential association of H3.3 and H3.1 with HSV-1 DNA to test the relevance of histone mobilization. H3.3 binds to HSV-1 genomes first, whereas H3.1 only binds after HSV-1 DNA replication initiates. Consistently, H3.3 and H3.1 were differentially mobilized. H3.1 mobilization decreased with HSV-1 DNA replication, whereas H3.3 mobilization was largely unaffected by it. These results support a model in which previously mobilized H3.1 is immobilized by assembly into viral chromatin during HSV-1 DNA replication, whereas H3.3 is mobilized and assembled into HSV-1 chromatin throughout infection. The differential mobilizations of H3.3 and H3.1 are consistent with their differential assembly into viral chromatin. These data therefore relate nuclear histone dynamics to the composition of viral chromatin and provide the first evidence that histone mobilization relates to viral chromatin assembly.

  8. The Differential Mobilization of Histones H3.1 and H3.3 by Herpes Simplex Virus 1 Relates Histone Dynamics to the Assembly of Viral Chromatin

    PubMed Central

    Conn, Kristen L.; Hendzel, Michael J.; Schang, Luis M.

    2013-01-01

    During lytic infections, HSV-1 genomes are assembled into unstable nucleosomes. The histones required for HSV-1 chromatin assembly, however, are in the cellular chromatin. We have shown that linker (H1) and core (H2B and H4) histones are mobilized during HSV-1 infection, and proposed that the mobilized histones are available for assembly into viral chromatin. However, the actual relevance of histone mobilization remained unknown. We now show that canonical H3.1 and variant H3.3 are also mobilized during HSV-1 infection. Mobilization required no HSV-1 protein expression, although immediate early or early proteins enhanced it. We used the previously known differential association of H3.3 and H3.1 with HSV-1 DNA to test the relevance of histone mobilization. H3.3 binds to HSV-1 genomes first, whereas H3.1 only binds after HSV-1 DNA replication initiates. Consistently, H3.3 and H3.1 were differentially mobilized. H3.1 mobilization decreased with HSV-1 DNA replication, whereas H3.3 mobilization was largely unaffected by it. These results support a model in which previously mobilized H3.1 is immobilized by assembly into viral chromatin during HSV-1 DNA replication, whereas H3.3 is mobilized and assembled into HSV-1 chromatin throughout infection. The differential mobilizations of H3.3 and H3.1 are consistent with their differential assembly into viral chromatin. These data therefore relate nuclear histone dynamics to the composition of viral chromatin and provide the first evidence that histone mobilization relates to viral chromatin assembly. PMID:24130491

  9. Histone gene expression and histone mRNA 3' end structure in Caenorhabditis elegans.

    PubMed

    Keall, Rebecca; Whitelaw, Sandra; Pettitt, Jonathan; Müller, Berndt

    2007-06-14

    Histone protein synthesis is essential for cell proliferation and required for the packaging of DNA into chromatin. In animals, histone proteins are provided by the expression of multicopy replication-dependent histone genes. Histone mRNAs that are processed by a histone-specific mechanism to end after a highly conserved RNA hairpin element, and lack a poly(A) tail. In vertebrates and Drosophila, their expression is dependent on HBP/SLBP that binds to the RNA hairpin element. We showed previously that these cis and trans acting regulators of histone gene expression are conserved in C. elegans. Here we report the results of an investigation of the histone mRNA 3' end structure and of histone gene expression during C. elegans development. Sequence analysis of replication-dependent histone genes revealed the presence of several highly conserved sequence elements in the 3' untranslated region of histone pre-mRNAs, including an RNA hairpin element and a polyadenylation signal. To determine whether in C. elegans histone mRNA 3' end formation occurs at this polyadenylation signal and results in polyadenylated histone mRNA, we investigated the mRNA 3' end structure of histone mRNA. Using poly(A) selection, RNAse protection and sequencing of histone mRNA ends, we determined that a majority of C. elegans histone mRNAs lack a poly(A) tail and end three to six nucleotides after the hairpin structure, after an A or a U, and have a 3' OH group. RNAi knock down of CDL-1, the C. elegans HBP/SLBP, does not significantly affect histone mRNA levels but severely depletes histone protein levels. Histone gene expression varies during development and is reduced in L3 animals compared to L1 animals and adults. In adults, histone gene expression is restricted to the germ line, where cell division occurs. Our findings indicate that the expression of C. elegans histone genes is subject to control mechanisms similar to the ones in other animals: the structure of C. elegans histone mRNA 3

  10. Role of H1 linker histones in mammalian development and stem cell differentiation.

    PubMed

    Pan, Chenyi; Fan, Yuhong

    2016-03-01

    H1 linker histones are key chromatin architectural proteins facilitating the formation of higher order chromatin structures. The H1 family constitutes the most heterogeneous group of histone proteins, with eleven non-allelic H1 variants in mammals. H1 variants differ in their biochemical properties and exhibit significant sequence divergence from one another, yet most of them are highly conserved during evolution from mouse to human. H1 variants are differentially regulated during development and their cellular compositions undergo dramatic changes in embryogenesis, gametogenesis, tissue maturation and cellular differentiation. As a group, H1 histones are essential for mouse development and proper stem cell differentiation. Here we summarize our current knowledge on the expression and functions of H1 variants in mammalian development and stem cell differentiation. Their diversity, sequence conservation, complex expression and distinct functions suggest that H1s mediate chromatin reprogramming and contribute to the large variations and complexity of chromatin structure and gene expression in the mammalian genome.

  11. Properties of the yeast nuclear histone deacetylase.

    PubMed Central

    Sanchez del Pino, M M; Lopez-Rodas, G; Sendra, R; Tordera, V

    1994-01-01

    A nuclear histone deacetylase from yeast was partially purified and some of its characteristics were studied. Histone deacetylase activity was stimulated in vitro by high-mobility-group nonhistone chromatin proteins 1 and 2 and ubiquitin and inhibited by spermine and spermidine, whereas n-butyrate had no significant inhibitory effect. Like the mammalian enzyme, partially purified histone deacetylase from yeast was strongly inhibited by trichostatin A. However, in crude extract preparations the yeast enzyme was not inhibited and treatment with trichostatin in vivo did not show any effect, either on the histone acetylation level or on cell viability. At low ionic strength, the enzyme can be isolated as a complex of high molecular mass that is much less inhibited by trichostatin A than is partially purified histone deacetylase activity. Furthermore, radiolabelled oligonucleosomes were more efficiently deacetylated by the complex than by the low-molecular-mass form of the enzyme. The histone deacetylase activity was separated from a polyamine deacetylase activity and its specificity studied. Using h.p.l.c.-purified core histone species as substrate, histone deacetylase from yeast is able to deacetylate all core histones with a slight preference for H3. Our results support the idea that the yeast histone deacetylase may act as a high-molecular-mass complex in vivo. Images Figure 3 PMID:7980438

  12. Pharmacogenomics and histone deacetylase inhibitors.

    PubMed

    Goey, Andrew Kl; Sissung, Tristan M; Peer, Cody J; Figg, William D

    2016-11-01

    The histone deacetylase inhibitor valproic acid (VPA) has been used for many decades in neurology and psychiatry. The more recent introduction of the histone deacetylase inhibitors (HDIs) belinostat, romidepsin and vorinostat for treatment of hematological malignancies indicates the increasing popularity of these agents. Belinostat, romidepsin and vorinostat are metabolized or transported by polymorphic enzymes or drug transporters. Thus, genotype-directed dosing could improve pharmacotherapy by reducing the risk of toxicities or preventing suboptimal treatment. This review provides an overview of clinical studies on the effects of polymorphisms on the pharmacokinetics, efficacy or toxicities of HDIs including belinostat, romidepsin, vorinostat, panobinostat, VPA and a number of novel compounds currently being tested in Phase I and II trials. Although pharmacogenomic studies for HDIs are scarce, available data indicate that therapy with belinostat (UGT1A1), romidepsin (ABCB1), vorinostat (UGT2B17) or VPA (UGT1A6) could be optimized by upfront genotyping.

  13. Species specificity and individual variability of sea urchin sperm H2B histones.

    PubMed

    de Petrocellis, B; de Petrocellis, L; Lancieri, M; Geraci, G

    1980-01-01

    Total histones from the sperms and embryos of the sea urchins Paracentrotus lividus, Arbacia lixula, Psammechinus microtuberculatus and Sphaerechinus granularis hae been fractionated into the component molecules by electrophoretic analyses in SDS, in urea-acetic acid and in Triton-urea-acetic acid. Sperm H2B histones are in all cases different from those of the corresponding embryonic chromatins. Each sea urchin species has distinctive variants of the sperm H2B histones that are fractionated by electrophoresis in SDS acrylamide gel into two to four components forming a new class of lower mobility. This analytical method shows that individuals of the same species have different assortments of the H2B components. Electrophoretic analyses in Triton-urea also show multiple components for H2B but the patterns are similar in the different individuals.

  14. Epstein-Barr Viral Productive Amplification Reprograms Nuclear Architecture, DNA Replication and Histone Deposition

    PubMed Central

    Chiu, Ya-Fang; Sugden, Arthur U.; Sugden, Bill

    2014-01-01

    Summary The spontaneous transition of Epstein-Barr Virus (EBV) from latency to productive infection is infrequent, making its analysis in the resulting mixed cell populations difficult. We engineered cells to support this transition efficiently and developed EBV DNA variants that could be visualized and measured as fluorescent signals over multiple cell cycles. This approach revealed that EBV’s productive replication began synchronously for viral DNAs within a cell but asynchronously between cells. EBV DNA amplification was delayed until early S-phase and occurred in factories characterized by the absence of cellular DNA and histones, by a sequential redistribution of PCNA, and by localization away from the nuclear periphery. The earliest amplified DNAs lacked histones accompanying a decline in four histone chaperones. Thus, EBV transitions from being dependent on the cellular replication machinery during latency to commandeering both that machinery and nuclear structure for its own reproductive needs. PMID:24331459

  15. A comparison of in vitro nucleosome positioning mapped with chicken, frog and a variety of yeast core histones.

    PubMed

    Allan, James; Fraser, Ross M; Owen-Hughes, Tom; Docherty, Kevin; Singh, Vijender

    2013-11-15

    Using high-throughput sequencing, we have mapped sequence-directed nucleosome positioning in vitro on four plasmid DNAs containing DNA fragments derived from the genomes of sheep, drosophila, human and yeast. Chromatins were prepared by reconstitution using chicken, frog and yeast core histones. We also assembled yeast chromatin in which histone H3 was replaced by the centromere-specific histone variant, Cse4. The positions occupied by recombinant frog and native chicken histones were found to be very similar. In contrast, nucleosomes containing the canonical yeast octamer or, in particular, the Cse4 octamer were assembled at distinct populations of locations, a property that was more apparent on particular genomic DNA fragments. The factors that may contribute to this variation in nucleosome positioning and the implications of the behavior are discussed.

  16. Readers of histone methylarginine marks.

    PubMed

    Gayatri, Sitaram; Bedford, Mark T

    2014-08-01

    Arginine methylation is a common posttranslational modification (PTM) that alters roughly 0.5% of all arginine residues in the cells. There are three types of arginine methylation: monomethylarginine (MMA), asymmetric dimethylarginine (ADMA), and symmetric dimethylarginine (SDMA). These three PTMs are enriched on RNA-binding proteins and on histones, and also impact signal transduction cascades. To date, over thirty arginine methylation sites have been cataloged on the different core histones. These modifications alter protein structure, impact interactions with DNA, and also generate docking sites for effector molecules. The primary "readers" of methylarginine marks are Tudor domain-containing proteins. The complete family of thirty-six Tudor domain-containing proteins has yet to be fully characterized, but at least ten bind methyllysine motifs and eight bind methylarginine motifs. In this review, we will highlight the biological roles of the Tudor domains that interact with arginine methylated motifs, and also address other types of interactions that are regulated by these particular PTMs. This article is part of a Special Issue entitled: Molecular mechanisms of histone modification function. Copyright © 2014 Elsevier B.V. All rights reserved.

  17. H3.3/H2A.Z double variant-containing nucleosomes mark 'nucleosome-free regions' of active promoters and other regulatory regions.

    PubMed

    Jin, Chunyuan; Zang, Chongzhi; Wei, Gang; Cui, Kairong; Peng, Weiqun; Zhao, Keji; Felsenfeld, Gary

    2009-08-01

    To understand how chromatin structure is organized by different histone variants, we have measured the genome-wide distribution of nucleosome core particles (NCPs) containing the histone variants H3.3 and H2A.Z in human cells. We find that a special class of NCPs containing both variants is enriched at 'nucleosome-free regions' of active promoters, enhancers and insulator regions. We show that preparative methods used previously in studying nucleosome structure result in the loss of these unstable double-variant NCPs. It seems likely that this instability facilitates the access of transcription factors to promoters and other regulatory sites in vivo. Other combinations of variants have different distributions, consistent with distinct roles for histone variants in the modulation of gene expression.

  18. Dissecting the Molecular Roles of Histone Chaperones in Histone Acetylation by Type B Histone Acetyltransferases (HAT-B).

    PubMed

    Haigney, Allison; Ricketts, M Daniel; Marmorstein, Ronen

    2015-12-18

    The HAT-B enzyme complex is responsible for acetylating newly synthesized histone H4 on lysines K5 and K12. HAT-B is a multisubunit complex composed of the histone acetyltransferase 1 (Hat1) catalytic subunit and the Hat2 (rbap46) histone chaperone. Hat1 is predominantly localized in the nucleus as a member of a trimeric NuB4 complex containing Hat1, Hat2, and a histone H3-H4 specific histone chaperone called Hif1 (NASP). In addition to Hif1 and Hat2, Hat1 interacts with Asf1 (anti-silencing function 1), a histone chaperone that has been reported to be involved in both replication-dependent and -independent chromatin assembly. To elucidate the molecular roles of the Hif1 and Asf1 histone chaperones in HAT-B histone binding and acetyltransferase activity, we have characterized the stoichiometry and binding mode of Hif1 and Asf1 to HAT-B and the effect of this binding on the enzymatic activity of HAT-B. We find that Hif1 and Asf1 bind through different modes and independently to HAT-B, whereby Hif1 binds directly to Hat2, and Asf1 is only capable of interactions with HAT-B through contacts with histones H3-H4. We also demonstrate that HAT-B is significantly more active against an intact H3-H4 heterodimer over a histone H4 peptide, independent of either Hif1 or Asf1 binding. Mutational studies further demonstrate that HAT-B binding to the histone tail regions is not sufficient for this enhanced activity. Based on these data, we propose a model for HAT-B/histone chaperone assembly and acetylation of H3-H4 complexes.

  19. Quantitative proteomics reveals direct and indirect alterations in the histone code following methyltransferase knockdown.

    PubMed

    Plazas-Mayorca, Mariana D; Bloom, Joshua S; Zeissler, Ulrike; Leroy, Gary; Young, Nicolas L; DiMaggio, Peter A; Krugylak, Leonid; Schneider, Robert; Garcia, Benjamin A

    2010-09-01

    Histones are highly conserved proteins that organize cellular DNA. These proteins, especially their N-terminal domains, are adorned with many post-translational modifications (PTMs) such as lysine methylation, which are associated with active or repressed transcriptional states. The lysine methyltransferase G9a and its interaction partner Glp1 can mono- or dimethylate histone H3 on lysine (H3K9me1 or me2); possible cross-talk between these modifications and other PTMs on the same or other histone molecules is currently uncharacterized. In this study, we comprehensively analyze the effects of G9a/Glp1 knockdown on the most abundant histone modifications through both Bottom Up and Middle Down mass spectrometry-based proteomics. In addition to the expected decrease in H3K9me1/me2 we find that other degrees of methylation on K9 are affected by the reduction of G9a/Glp1 activity, particularly when K9 methylation occurs in combination with K14 acetylation. In line with this, an increase in K14 acetylation upon G9a knockdown was observed across all H3 variants (H3.1, H3.2 and H3.3), hinting at the potential existence of a binary switch between K9 methylation and K14 acetylation. Interestingly, we also detect changes in the abundance of other modifications (such as H3K79me2) in response to lowered levels of G9a/Glp1 suggesting histone PTM cross-talk amongst the H3 variants. In contrast, we find that G9a/Glp1 knockdown produces little effect on the levels of histone H4 PTMs, indicating low to no trans-histone PTM crosstalk. Lastly, we determined gene expression profiles of control and G9a/Glp1 knockdown cells, and we find that the G9a/Glp1 knockdown influences several genes, including DNA binding proteins and key factors in chromatin. Our results provide new insights into the intra- and inter- histone cross-regulation of histone K9 methylation and its potential downstream gene targets.

  20. Release and activity of histone in diseases

    PubMed Central

    Chen, R; Kang, R; Fan, X-G; Tang, D

    2014-01-01

    Histones and their post-translational modifications have key roles in chromatin remodeling and gene transcription. Besides intranuclear functions, histones act as damage-associated molecular pattern molecules when they are released into the extracellular space. Administration of exogenous histones to animals leads to systemic inflammatory and toxic responses through activating Toll-like receptors and inflammasome pathways. Anti-histone treatment (e.g., neutralizing antibodies, activated protein C, recombinant thrombomodulin, and heparin) protect mice against lethal endotoxemia, sepsis, ischemia/reperfusion injury, trauma, pancreatitis, peritonitis, stroke, coagulation, and thrombosis. In addition, elevated serum histone and nucleosome levels have been implicated in multiple pathophysiological processes and progression of diseases including autoimmune diseases, inflammatory diseases, and cancer. Therefore, extracellular histones could serve as biomarkers and novel therapeutic targets in human diseases. PMID:25118930

  1. Combinations of Histone Modifications for Pattern Genes.

    PubMed

    Cui, Xiang-Jun; Shi, Chen-Xia

    2016-06-01

    Histone post-translational modifications play important roles in transcriptional regulation. It is known that multiple histone modifications can act in a combinatorial manner. In this study, we investigated the effects of multiple histone modifications on expression levels of five gene categories (four kinds of pattern genes and non-pattern genes) in coding regions. The combinatorial patterns of modifications for the five gene categories were also studied in the regions. Our results indicated that the differences in the expression levels between any two gene categories were significant. There were some corresponding differences in multiple histone modification levels among the five gene categories. Multiple histone modifications jointly impacted expression levels of every gene category. Four mutual combinations of histone modifications were found and analyzed.

  2. Histone chaperone specificity in Rtt109 activation

    PubMed Central

    Park, Young-Jun; Sudhoff, Keely B; Andrews, Andrew J; Stargell, Laurie A; Luger, Karolin

    2008-01-01

    Rtt109 is a histone acetyltransferase that requires a histone chaperone for the acetylation of histone 3 at lysine 56 (H3K56). Rtt109 forms a complex with the chaperone Vps75 in vivo and is implicated in DNA replication and repair. Here we show that both Rtt109 and Vps75 bind histones with high affinity, but only the complex is efficient for catalysis. The C-terminal acidic domain of Vps75 contributes to activation of Rtt109 and is necessary for in vivo functionality of Vps75, but it is not required for interaction with either Rtt109 or histones. We demonstrate that Vps75 is a structural homolog of yeast Nap1 by solving its crystal structure. Nap1 and Vps75 interact with histones and Rtt109 with comparable affinities. However, only Vps75 stimulates Rtt109 enzymatic activity. Our data highlight the functional specificity of Vps75 in Rtt109 activation. PMID:19172749

  3. Pathway analysis of whole exome sequence data provides further support for the involvement of histone modification in the aetiology of schizophrenia.

    PubMed

    Curtis, David

    2016-10-01

    Weighted burden pathway analysis was applied to whole exome sequence data for 2045 schizophrenic patients and 2045 controls. Overall, there was a statistically significant excess of pathways with more rare, functional variants in cases than in controls. Among the highest ranked were pathways relating to histone modification, as well as neuron differentiation and membrane and vesicle function. This bolsters the evidence from previous studies that histone modification pathways may be important in the aetiology of schizophrenia.

  4. Dynamic fuzziness during linker histone action.

    PubMed

    McBryant, Steven J; Hansen, Jeffrey C

    2012-01-01

    Linker histones are multi-domain nucleosome binding proteins that stabilize higher order chromatin structures and engage in specific protein-protein interactions. Here we emphasize the structural and functional properties of the linker histone C-terminal domain (CTD), focusing on its intrinsic disorder, interaction-induced secondary structure formation and dynamic fuzziness. We argue that the fuzziness inherent in the CTD is a primary molecular mechanism underlying linker histone function in the nucleus.

  5. Lysine residues in N-terminal and C-terminal regions of human histone H2A are targets for biotinylation by biotinidase.

    PubMed

    Chew, Yap Ching; Camporeale, Gabriela; Kothapalli, Nagarama; Sarath, Gautam; Zempleni, Janos

    2006-04-01

    In eukaryotic cell nuclei, DNA associates with the core histones H2A, H2B, H3 and H4 to form nucleosomal core particles. DNA binding to histones is regulated by posttranslational modifications of N-terminal tails (e.g., acetylation and methylation of histones). These modifications play important roles in the epigenetic control of chromatin structure. Recently, evidence that biotinidase and holocarboxylase synthetase (HCS) catalyze the covalent binding of biotin to histones has been provided. The primary aim of this study was to identify biotinylation sites in histone H2A and its variant H2AX. Secondary aims were to determine whether acetylation and methylation of histone H2A affect subsequent biotinylation and whether biotinidase and HCS localize to the nucleus in human cells. Biotinylation sites were identified using synthetic peptides as substrates for biotinidase. These studies provided evidence that K9 and K13 in the N-terminus of human histones H2A and H2AX are targets for biotinylation and that K125, K127 and K129 in the C-terminus of histone H2A are targets for biotinylation. Biotinylation of lysine residues was decreased by acetylation of adjacent lysines but was increased by dimethylation of adjacent arginines. The existence of biotinylated histone H2A in vivo was confirmed by using modification-specific antibodies. Antibodies to biotinidase and HCS localized primarily to the nuclear compartment, consistent with a role for these enzymes in regulating chromatin structure. Collectively, these studies have identified five novel biotinylation sites in human histones; histone H2A is unique among histones in that its biotinylation sites include amino acid residues from the C-terminus.

  6. Effect of non-histone chromosomal proteins on transcription in vitro in sea-urchin.

    PubMed Central

    Di Mauro, E; Pedone, F; Pomponi, M

    1978-01-01

    Non-histone chromosomal proteins prepared from chromosomal material of the sea-urchin Paracentrotus lividus affect RNA synthesis in vitro. 1. The extent of transcription can be radically changed from inhibition to stimulation, depending on the DNA/non-histone chromosomal proteins ratio. 2. A correlation exists between stage of development and influence on transcription. 3. Non-histone chromosomal proteins exert their action by intervening directly on some initiation step of RNA synthesis, as shown by the numbers of initiation events that take place in their presence or absence. 4. Stimulatory activity is observed only in restrictive conditions of ionic strength and temperature. These observations are in agreement with models that predict for non-histone chromosomal proteins a regulatory role on the transcription process exerted through a modulation of promoter availability. Images Fig. 1. PMID:697768

  7. A Full Suite of Histone and Histone Modifying Genes Are Transcribed in the Dinoflagellate Lingulodinium

    PubMed Central

    Roy, Sougata; Morse, David

    2012-01-01

    Background Dinoflagellates typically lack histones and nucleosomes are not observed in DNA spreads. However, recent studies have shown the presence of core histone mRNA sequences scattered among different dinoflagellate species. To date, the presence of all components required for manufacturing and modifying nucleosomes in a single dinoflagellate species has not been confirmed. Methodology and Results Analysis of a Lingulodinium transcriptome obtained by Illumina sequencing of mRNA shows several different copies of each of the four core histones as well as a suite of histone modifying enzymes and histone chaperone proteins. Phylogenetic analysis shows one of each Lingulodinium histone copies belongs to the dinoflagellate clade while the second is more divergent and does not share a common ancestor. All histone mRNAs are in low abundance (roughly 25 times lower than higher plants) and transcript levels do not vary over the cell cycle. We also tested Lingulodinium extracts for histone proteins using immunoblotting and LC-MS/MS, but were unable to confirm histone expression at the protein level. Conclusion We show that all core histone sequences are present in the Lingulodinium transcriptome. The conservation of these sequences, even though histone protein accumulation remains below currently detectable levels, strongly suggests dinoflagellates possess histones. PMID:22496791

  8. Uncoupling histone turnover from transcription-associated histone H3 modifications.

    PubMed

    Ferrari, Paolo; Strubin, Michel

    2015-04-30

    Transcription in eukaryotes is associated with two major changes in chromatin organization. Firstly, nucleosomal histones are continuously replaced by new histones, an event that in yeast occurs predominantly at transcriptionally active promoters. Secondly, histones become modified post-translationally at specific lysine residues. Some modifications, including histone H3 trimethylation at lysine 4 (H3K4me3) and acetylation at lysines 9 (H3K9ac) and 14 (H3K14ac), are specifically enriched at active promoters where histones exchange, suggesting a possible causal relationship. Other modifications accumulate within transcribed regions and one of them, H3K36me3, is thought to prevent histone exchange. Here we explored the relationship between these four H3 modifications and histone turnover at a few selected genes. Using lysine-to-arginine mutants and a histone exchange assay, we found that none of these modifications plays a major role in either promoting or preventing histone turnover. Unexpectedly, mutation of H3K56, whose acetylation occurs prior to chromatin incorporation, had an effect only when introduced into the nucleosomal histone. Furthermore, we used various genetic approaches to show that histone turnover can be experimentally altered with no major consequence on the H3 modifications tested. Together, these results suggest that transcription-associated histone turnover and H3 modification are two correlating but largely independent events.

  9. The evolutionary history of histone H3 suggests a deep eukaryotic root of chromatin modifying mechanisms

    PubMed Central

    2010-01-01

    Background The phenotype of an organism is an outcome of both its genotype, encoding the primary sequence of proteins, and the developmental orchestration of gene expression. The substrate of gene expression in eukaryotes is the chromatin, whose fundamental units are nucleosomes composed of DNA wrapped around each two of the core histone types H2A, H2B, H3 and H4. Key regulatory steps involved in the determination of chromatin conformations are posttranslational modifications (PTM) at histone tails as well as the assembly of histone variants into nucleosomal arrays. Although the mechanistic background is fragmentary understood, it appears that the chromatin signature of metazoan cell types is inheritable over generations. Even less understood is the conservation of epigenetic mechanisms among eukaryotes and their origins. Results In the light of recent progress in understanding the tree of eukaryotic life we discovered the origin of histone H3 by phylogenetic analyses of variants from all supergroups, which allowed the reconstruction of ancestral states. We found that H3 variants evolved frequently but independently within related species of almost all eukaryotic supergroups. Interestingly, we found all core histone types encoded in the genome of a basal dinoflagellate and H3 variants in two other species, although is was reported that dinoflagellate chromatin is not organized into nucleosomes. Most probably one or more animal/nuclearid H3.3-like variants gave rise to H3 variants of all opisthokonts (animals, choanozoa, fungi, nuclearids, Amoebozoa). H3.2 and H3.1 as well as H3.1t are derivatives of H3.3, whereas H3.2 evolved already in early branching animals, such as Trichoplax. H3.1 and H3.1t are probably restricted to mammals. We deduced a model for protoH3 of the last eukaryotic common ancestor (LECA) confirming a remarkable degree of sequence conservation in comparison to canonical human H3.1. We found evidence that multiple PTMs are conserved even in

  10. The evolutionary history of histone H3 suggests a deep eukaryotic root of chromatin modifying mechanisms.

    PubMed

    Postberg, Jan; Forcob, Sakeh; Chang, Wei-Jen; Lipps, Hans J

    2010-08-25

    The phenotype of an organism is an outcome of both its genotype, encoding the primary sequence of proteins, and the developmental orchestration of gene expression. The substrate of gene expression in eukaryotes is the chromatin, whose fundamental units are nucleosomes composed of DNA wrapped around each two of the core histone types H2A, H2B, H3 and H4. Key regulatory steps involved in the determination of chromatin conformations are posttranslational modifications (PTM) at histone tails as well as the assembly of histone variants into nucleosomal arrays. Although the mechanistic background is fragmentary understood, it appears that the chromatin signature of metazoan cell types is inheritable over generations. Even less understood is the conservation of epigenetic mechanisms among eukaryotes and their origins. In the light of recent progress in understanding the tree of eukaryotic life we discovered the origin of histone H3 by phylogenetic analyses of variants from all supergroups, which allowed the reconstruction of ancestral states. We found that H3 variants evolved frequently but independently within related species of almost all eukaryotic supergroups. Interestingly, we found all core histone types encoded in the genome of a basal dinoflagellate and H3 variants in two other species, although is was reported that dinoflagellate chromatin is not organized into nucleosomes.Most probably one or more animal/nuclearid H3.3-like variants gave rise to H3 variants of all opisthokonts (animals, choanozoa, fungi, nuclearids, Amoebozoa). H3.2 and H3.1 as well as H3.1t are derivatives of H3.3, whereas H3.2 evolved already in early branching animals, such as Trichoplax. H3.1 and H3.1t are probably restricted to mammals.We deduced a model for protoH3 of the last eukaryotic common ancestor (LECA) confirming a remarkable degree of sequence conservation in comparison to canonical human H3.1. We found evidence that multiple PTMs are conserved even in putatively early branching

  11. Histone modifications in cancer biology and prognosis.

    PubMed

    Kurdistani, Siavash K

    2011-01-01

    Cancer is a disease of genome sequence alterations as well as epigenetic changes. Epigenetics refers in part to the mechanisms by which histones affect various DNA-based processes, such as gene regulation. Histones are proteins around which the DNA wraps itself to form chromatin--the physiologically relevant form of the human genome. Histones are modified extensively by posttranslational modifications that alter chromatin structure and serve to recruit to or exclude protein complexes from DNA. Aberrations in histone modifications occur frequently in cancer including changes in their levels and distribution at gene promoters, gene coding regions, repetitive DNA sequences, and other genomic elements. Locus-specific alterations in histone modifications may have adverse effects on expression of nearby genes but so far have not been shown to have clinical utility. Cancer cells also exhibit alterations in global levels of specific histone modifications, generating an additional layer of epigenetic heterogeneity at the cellular level in tumor tissues. Unlike locus-specific changes, the cellular epigenetic heterogeneity can be used to define previously unrecognized subsets of cancer patients with distinct clinical outcomes. In general, increased prevalence of cells with lower global levels of histone modifications is prognostic of poorer clinical outcome such as increased risk of tumor recurrence and/or decreased survival probability. Prognostic utility of histone modifications has been demonstrated independently for multiple cancers including those of prostate, lung, kidney, breast, ovary, and pancreas, suggesting a fundamental association between global histone modification levels and tumor aggressiveness, regardless of cancer tissue of origin. Cellular levels of histone modifications may also predict response to certain chemotherapeutic agents, serving as predictive biomarkers that could inform clinical decisions on choice and course of therapy. The challenge before us

  12. Analysis of Histones H3 and H4 Reveals Novel and Conserved Post-Translational Modifications in Sugarcane.

    PubMed

    Moraes, Izabel; Yuan, Zuo-Fei; Liu, Shichong; Souza, Glaucia Mendes; Garcia, Benjamin A; Casas-Mollano, J Armando

    2015-01-01

    Histones are the main structural components of the nucleosome, hence targets of many regulatory proteins that mediate processes involving changes in chromatin. The functional outcome of many pathways is "written" in the histones in the form of post-translational modifications that determine the final gene expression readout. As a result, modifications, alone or in combination, are important determinants of chromatin states. Histone modifications are accomplished by the addition of different chemical groups such as methyl, acetyl and phosphate. Thus, identifying and characterizing these modifications and the proteins related to them is the initial step to understanding the mechanisms of gene regulation and in the future may even provide tools for breeding programs. Several studies over the past years have contributed to increase our knowledge of epigenetic gene regulation in model organisms like Arabidopsis, yet this field remains relatively unexplored in crops. In this study we identified and initially characterized histones H3 and H4 in the monocot crop sugarcane. We discovered a number of histone genes by searching the sugarcane ESTs database. The proteins encoded correspond to canonical histones, and their variants. We also purified bulk histones and used them to map post-translational modifications in the histones H3 and H4 using mass spectrometry. Several modifications conserved in other plants, and also novel modified residues, were identified. In particular, we report O-acetylation of serine, threonine and tyrosine, a recently identified modification conserved in several eukaryotes. Additionally, the sub-nuclear localization of some well-studied modifications (i.e., H3K4me3, H3K9me2, H3K27me3, H3K9ac, H3T3ph) is described and compared to other plant species. To our knowledge, this is the first report of histones H3 and H4 as well as their post-translational modifications in sugarcane, and will provide a starting point for the study of chromatin regulation in

  13. Chemical Phylogenetics of Histone Deacetylases

    PubMed Central

    Bradner, James E.; West, Nathan; Grachan, Melissa L.; Greenberg, Edward F.; Haggarty, Stephen J.; Warnow, Tandy; Mazitschek, Ralph

    2010-01-01

    The broad study of histone deacetylases in chemistry, biology and medicine relies on tool compounds to derive mechanistic insights. A phylogenetic analysis of Class I and II HDACs as targets of a comprehensive, structurally diverse panel of inhibitors revealed unexpected isoform selectivity even among compounds widely perceived as non-selective. The synthesis and study of a focused library of cinnamic hydroxamates allowed the identification of a first non-selective HDAC inhibitor. These data will guide a more informed use of HDAC inhibitors as chemical probes and therapeutic agents. PMID:20139990

  14. Histone modifying enzymes: novel disease biomarkers and assay development.

    PubMed

    Ma, Fei; Zhang, Chun-yang

    2016-01-01

    Histones are the chief components of chromatin. When being catalyzed by a series of histone modifying enzymes, histones may undergo various post-translational modifications such as acetylation, methylation, phosphorylation, ubiquitylation and SUMOylation. The dysregulation of histone modifying enzymes will alter the histone post-modification patterns and cause diverse diseases including cancers. Consequently, the histone modifying enzymes have emerged as the promising biomarkers for disease diagnosis and prognosis. In this review, we summarize the recent researches about the histone modifying enzymes as the disease biomarkers, and highlight the development of methods for histone modifying enzyme assays.

  15. Characterization of neurohistone variants and post-translational modifications by electron capture dissociation mass spectrometry

    NASA Astrophysics Data System (ADS)

    Garcia, Benjamin A.; Siuti, Nertila; Thomas, C. Eric; Mizzen, Craig A.; Kelleher, Neil L.

    2007-01-01

    Post-translational modifications (PTMs) of histones are intimately involved in chromatin structure and thus have roles in cellular processes through their impact on gene activation or repression. At the forefront in histone PTM analysis are mass spectrometry-based techniques, which have capabilities to produce improved views of processes affected by chromatin remodeling via histone modifications. In this report, we take the first mass spectrometric look at histone variant expression and post-translational modifications from histones isolated from rat brain tissue. Analyses of whole rat brain identified specific histone H2A and H2B gene family members and several H4 and H3 post-translational modification sites by electron capture dissociation (ECD) mass spectrometry. We subsequently compared these results to selected rat brain regions. Major differences in the expression profiles of H2A and H2B gene family members or in the post-translational modifications on histone H4 were not observed from the different brain regions using a Top Down approach. However, "Middle Down" mass spectrometry facilitating improved characterization of the histone H3 tail (1-50 residues), revealed an enrichment of trimethylation on Lys9 from cerebellum tissue compared to H3 extracted from whole brain, cerebral cortex or hypothalamus tissue. We forward this study in honor of Professor Donald F. Hunt, whose pioneering efforts in protein and PTM analyses have spawned new eras and numerous careers, many exemplified in this special issue.

  16. Histone H2A mobility is regulated by its tails and acetylation of core histone tails

    SciTech Connect

    Higashi, Tsunehito; Matsunaga, Sachihiro; Isobe, Keisuke; Morimoto, Akihiro; Shimada, Tomoko; Kataoka, Shogo; Watanabe, Wataru; Uchiyama, Susumu; Itoh, Kazuyoshi; Fukui, Kiichi . E-mail: kfukui@bio.eng.osaka-u.ac.jp

    2007-06-08

    Histone tail domains play important roles in cellular processes, such as replication, transcription, and chromosome condensation. Histone H2A has one central and two tail domains, and their functions have mainly been studied from a biochemical perspective. In addition, analyses based on visualization have been employed for functional analysis of some chromatin proteins. In this study, we analyzed histone H2A mobility in vivo by two-photon FRAP, and elucidated that the histone H2A N- and C-terminal tails regulate its mobility. We found that histone H2A mobility was increased following treatment of host cells with a histone deacetylase inhibitor. Our results support a model in which core histone tails directly regulate transcription by interacting with nucleosome DNA via electrostatic interactions.

  17. Assessment of estrogen receptor--histone interactions.

    PubMed Central

    Kallos, J; Fasy, T M; Hollander, V P

    1981-01-01

    Several different in vitro binding assays show that the estrogen receptor from rabbit uterus interacts selectively with purified histones from calf thymus. The estrogen receptor binds strongly to histones H2B and H2A, moderately to histones H3 and H4, and poorly to histone H1. In the presence of histones H2B or H2A, the position at which the estrogen receptor focuses in an isoelectric gradient is shifted to a more basic zone. Kinetic experiments show that, if histone H2B is bound to a DNA, the estrogen receptor dissociates more slowly from that DNA. The portion of the estrogen receptor molecule required for binding to histone H2B is relatively stable to tryptic digestion; in contrast, the portion of the receptor molecule responsible for DNA binding is promptly lost during limited tryptic digestion. These in vitro findings suggest that the mechanism by which the estrogen receptor selectively alters gene expression may involve specific contacts with histone molecules. PMID:6942408

  18. Modeling exon expression using histone modifications.

    PubMed

    Zhu, Shijia; Wang, Guohua; Liu, Bo; Wang, Yadong

    2013-01-01

    Histones undergo numerous covalent modifications that play important roles in regulating gene expression. Previous investigations have focused on the effects of histone modifications on gene promoters, whereas efforts to unravel their effects on transcribed regions have lagged behind. To elucidate the effects of histone modification on transcribed regions, we constructed a quantitative model, which we suggest can predict the variation of gene expression more faithfully than the model constructed on promoters. Moreover, motivated by the fact that exon spicing is functionally coupled to transcription, we also devised a quantitative model to predict alternative exon expression using histone modifications on exons. This model was found to be general across different exon types and even cell types. Furthermore, an interaction network linking histone modifications to alternative exon expression was constructed using partial correlations. The network indicated that gene expression and specific histone modifications (H3K36me3 and H4K20me1) could directly influence the exon expression, while other modifications could act in an additive way to account for the stability and robustness. In addition, our results suggest that combinations of histone modifications contribute to exon splicing in a redundant and cumulative fashion. To conclude, this study provides a better understanding of the effects of histone modifications on gene transcribed regions.

  19. Modeling Exon Expression Using Histone Modifications

    PubMed Central

    Zhu, Shijia; Wang, Guohua; Liu, Bo; Wang, Yadong

    2013-01-01

    Histones undergo numerous covalent modifications that play important roles in regulating gene expression. Previous investigations have focused on the effects of histone modifications on gene promoters, whereas efforts to unravel their effects on transcribed regions have lagged behind. To elucidate the effects of histone modification on transcribed regions, we constructed a quantitative model, which we suggest can predict the variation of gene expression more faithfully than the model constructed on promoters. Moreover, motivated by the fact that exon spicing is functionally coupled to transcription, we also devised a quantitative model to predict alternative exon expression using histone modifications on exons. This model was found to be general across different exon types and even cell types. Furthermore, an interaction network linking histone modifications to alternative exon expression was constructed using partial correlations. The network indicated that gene expression and specific histone modifications (H3K36me3 and H4K20me1) could directly influence the exon expression, while other modifications could act in an additive way to account for the stability and robustness. In addition, our results suggest that combinations of histone modifications contribute to exon splicing in a redundant and cumulative fashion. To conclude, this study provides a better understanding of the effects of histone modifications on gene transcribed regions. PMID:23825663

  20. Targeting histone methylation for colorectal cancer

    PubMed Central

    Huang, Tao; Lin, Chengyuan; Zhong, Linda L. D.; Zhao, Ling; Zhang, Ge; Lu, Aiping; Wu, Jiang; Bian, Zhaoxiang

    2016-01-01

    As a leading cause of cancer deaths worldwide, colorectal cancer (CRC) results from accumulation of both genetic and epigenetic alterations. Disruption of epigenetic regulation in CRC, particularly aberrant histone methylation mediated by histone methyltransferases (HMTs) and demethylases (HDMs), have drawn increasing interest in recent years. In this paper, we aim to review the roles of histone methylation and associated enzymes in the pathogenesis of CRC, and the development of small-molecule modulators to regulate histone methylation for treating CRC. Multiple levels of evidence suggest that aberrant histone methylations play important roles in CRC. More than 20 histone-methylation enzymes are found to be clinically relevant to CRC, including 17 oncoproteins and 8 tumor suppressors. Inhibitors of EZH2 and DOT1L have demonstrated promising therapeutic effects in preclinical CRC treatment. Potent and selective chemical probes of histone-methylation enzymes are required for validation of their functional roles in carcinogenesis and clinical translations as CRC therapies. With EZH2 inhibitor EPZ-6438 entering into phase I/II trials for advanced solid tumors, histone methylation is emerging as a promising target for CRC. PMID:28286564

  1. Acetylated histone H3 increases nucleosome dissociation

    NASA Astrophysics Data System (ADS)

    Simon, Marek; Manohar, Mridula; Ottesen, Jennifer; Poirier, Michael

    2009-03-01

    Chromatin's basic unit structure is the nucleosome, i.e. genomic DNA wrapped around a particular class of proteins -- histones -- which due to their physical hindrance, block vital biological processes, such as DNA repair, DNA replication, and RNA transcription. Histone post-translational modifications, which are known to exist in vivo, are hypothesized to regulate these biological processes by directly altering DNA-histone interactions and thus nucleosome structure and stability. Using magnetic tweezers technique we studied the acetylation of histone H3 in the dyad region, i.e. at K115 and K122, on reconstituted arrays of nucleosomes under constant external force. Based on the measured increase in the probability of dissociation of modified nucleosomes, we infer that this double modification could facilitate histone chaperone mediated nucleosome disassembly in vivo.

  2. Histone Modifications and Nuclear Architecture: A Review

    PubMed Central

    Bártová, Eva; Krejčí, Jana; Harničarová, Andrea; Galiová, Gabriela; Kozubek, Stanislav

    2008-01-01

    Epigenetic modifications, such as acetylation, phosphorylation, methylation, ubiquitination, and ADP ribosylation, of the highly conserved core histones, H2A, H2B, H3, and H4, influence the genetic potential of DNA. The enormous regulatory potential of histone modification is illustrated in the vast array of epigenetic markers found throughout the genome. More than the other types of histone modification, acetylation and methylation of specific lysine residues on N-terminal histone tails are fundamental for the formation of chromatin domains, such as euchromatin, and facultative and constitutive heterochromatin. In addition, the modification of histones can cause a region of chromatin to undergo nuclear compartmentalization and, as such, specific epigenetic markers are non-randomly distributed within interphase nuclei. In this review, we summarize the principles behind epigenetic compartmentalization and the functional consequences of chromatin arrangement within interphase nuclei. (J Histochem Cytochem 56:711–721, 2008) PMID:18474937

  3. Common coding variant in SERPINA1 increases the risk for large artery stroke.

    PubMed

    Malik, Rainer; Dau, Therese; Gonik, Maria; Sivakumar, Anirudh; Deredge, Daniel J; Edeleva, Evgeniia V; Götzfried, Jessica; van der Laan, Sander W; Pasterkamp, Gerard; Beaufort, Nathalie; Seixas, Susana; Bevan, Steve; Lincz, Lisa F; Holliday, Elizabeth G; Burgess, Annette I; Rannikmäe, Kristiina; Minnerup, Jens; Kriebel, Jennifer; Waldenberger, Melanie; Müller-Nurasyid, Martina; Lichtner, Peter; Saleheen, Danish; Rothwell, Peter M; Levi, Christopher; Attia, John; Sudlow, Cathie L M; Braun, Dieter; Markus, Hugh S; Wintrode, Patrick L; Berger, Klaus; Jenne, Dieter E; Dichgans, Martin

    2017-04-04

    Large artery atherosclerotic stroke (LAS) shows substantial heritability not explained by previous genome-wide association studies. Here, we explore the role of coding variation in LAS by analyzing variants on the HumanExome BeadChip in a total of 3,127 cases and 9,778 controls from Europe, Australia, and South Asia. We report on a nonsynonymous single-nucleotide variant in serpin family A member 1 (SERPINA1) encoding alpha-1 antitrypsin [AAT; p.V213A; P = 5.99E-9, odds ratio (OR) = 1.22] and confirm histone deacetylase 9 (HDAC9) as a major risk gene for LAS with an association in the 3'-UTR (rs2023938; P = 7.76E-7, OR = 1.28). Using quantitative microscale thermophoresis, we show that M1 (A213) exhibits an almost twofold lower dissociation constant with its primary target human neutrophil elastase (NE) in lipoprotein-containing plasma, but not in lipid-free plasma. Hydrogen/deuterium exchange combined with mass spectrometry further revealed a significant difference in the global flexibility of the two variants. The observed stronger interaction with lipoproteins in plasma and reduced global flexibility of the Val-213 variant most likely improve its local availability and reduce the extent of proteolytic inactivation by other proteases in atherosclerotic plaques. Our results indicate that the interplay between AAT, NE, and lipoprotein particles is modulated by the gate region around position 213 in AAT, far away from the unaltered reactive center loop (357-360). Collectively, our findings point to a functionally relevant balance between lipoproteins, proteases, and AAT in atherosclerosis.

  4. Structure and function of human histone H3.Y nucleosome

    PubMed Central

    Kujirai, Tomoya; Horikoshi, Naoki; Sato, Koichi; Maehara, Kazumitsu; Machida, Shinichi; Osakabe, Akihisa; Kimura, Hiroshi; Ohkawa, Yasuyuki; Kurumizaka, Hitoshi

    2016-01-01

    Histone H3.Y is a primate-specific, distant H3 variant. It is evolutionarily derived from H3.3, and may function in transcription regulation. However, the mechanism by which H3.Y regulates transcription has not been elucidated. In the present study, we determined the crystal structure of the H3.Y nucleosome, and found that many H3.Y-specific residues are located on the entry/exit sites of the nucleosome. Biochemical analyses revealed that the DNA ends of the H3.Y nucleosome were more flexible than those of the H3.3 nucleosome, although the H3.Y nucleosome was stable in vitro and in vivo. Interestingly, the linker histone H1, which compacts nucleosomal DNA, appears to bind to the H3.Y nucleosome less efficiently, as compared to the H3.3 nucleosome. These characteristics of the H3.Y nucleosome are also conserved in the H3.Y/H3.3 heterotypic nucleosome, which may be the predominant form in cells. In human cells, H3.Y preferentially accumulated around transcription start sites (TSSs). Taken together, H3.Y-containing nucleosomes around transcription start sites may form relaxed chromatin that allows transcription factor access, to regulate the transcription status of specific genes. PMID:27016736

  5. Inhibition of mitotic-specific histone phophorylation by sodium arsenite

    SciTech Connect

    Cobo, J.M.; Valdez, J.G.; Gurley, L.R.

    1994-10-01

    Synchronized cultures of Chinese hamster cells (line CHO) were used to measure the effects of 10{mu}M sodium arsenite on histone phosphorylation. This treatment caused cell proliferation to be temporarily arrested, after which the cells spontaneously resumed cell proliferation in a radiomimetric manner. Immediately following treatment, it was found that sodium arsenite affected only mitotic-specific HI and H3 phosphorylations. Neither interphase, nor mitotic, H2A and H4 phosphorylations were affected, nor was interphase HI Phosphorylation affected. The phosphorylation of HI was inhibited only in mitosis, reducing HI phosphorylation to 38.1% of control levels, which was the level of interphase HI phosphorylation. The phosphorylation of both H3 variants was inhibited in mitosis, the less hydrophobic H3 to 19% and the more hydrophobic H3 to 24% of control levels. These results suggest that sodium arsenite may inhibite cell proliferation by interfering with the cyclin B/p34{sup cdc2} histone kinase activity which is thought to play a key role in regulating the cell cycle. It has been proposed by our laboratory that HI and H3 phosphorylations play a role in restructuring interphase chromatin into metaphase chromosomes. Interference of this process by sodium arsenite may lead to structurally damaged chromosomes resulting in the increased cancer risks known to be produced by arsenic exposure from the environment.

  6. Characterization of mussel H2A.Z.2: a new H2A.Z variant preferentially expressed in germinal tissues from Mytilus.

    PubMed

    Rivera-Casas, Ciro; González-Romero, Rodrigo; Vizoso-Vazquez, Ángel; Cheema, Manjinder S; Cerdán, M Esperanza; Méndez, Josefina; Ausió, Juan; Eirin-Lopez, Jose M

    2016-10-01

    Histones are the fundamental constituents of the eukaryotic chromatin, facilitating the physical organization of DNA in chromosomes and participating in the regulation of its metabolism. The H2A family displays the largest number of variants among core histones, including the renowned H2A.X, macroH2A, H2A.B (Bbd), and H2A.Z. This latter variant is especially interesting because of its regulatory role and its differentiation into 2 functionally divergent variants (H2A.Z.1 and H2A.Z.2), further specializing the structure and function of vertebrate chromatin. In the present work we describe, for the first time, the presence of a second H2A.Z variant (H2A.Z.2) in the genome of a non-vertebrate animal, the mussel Mytilus. The molecular and evolutionary characterization of mussel H2A.Z.1 and H2A.Z.2 histones is consistent with their functional specialization, supported on sequence divergence at promoter and coding regions as well as on varying gene expression patterns. More precisely, the expression of H2A.Z.2 transcripts in gonadal tissue and its potential upregulation in response to genotoxic stress might be mirroring the specialization of this variant in DNA repair. Overall, the findings presented in this work complement recent reports describing the widespread presence of other histone variants across eukaryotes, supporting an ancestral origin and conserved role for histone variants in chromatin.

  7. The elusive structural role of ubiquitinated histones.

    PubMed

    Moore, Susan C; Jason, Laure; Ausió, Juan

    2002-01-01

    It is increasingly apparent that histone posttranslational modifications are important in chromatin structure and dynamics. However, histone ubiquitination has received little attention. Histones H1, H3, H2A, and H2B can be ubiquitinated in vivo, but the most prevalent are uH2A and uH2B. The size of this modification suggests some sort of structural impact. Physiological observations suggest that ubiquitinated histones may have multiple functions and structural effects. Ubiquitinated histones have been correlated with transcriptionally active DNA, implying that it may prevent chromatin folding or help maintain an open conformation. Also, in some organisms during spermiogenesis, a process involving extensive chromatin remodeling, uH2A levels increase just prior to histone replacement by protamines. Determination of chromatin's structural changes resulting from histone ubiquitination is therefore important. Recent work using reconstituted nucleosomes and chromatin fibers containing uH2A indicate that in the absence of linker histones, ubiquitination has little structural impact. DNase I digests and analytical ultracentrifugation of reconstituted ubiquitinated nucleosomes show no structural differences. Solubility assays using reconstituted chromatin fibers in the presence of divalent ions demonstrate that uH2A fibers are slightly more prone to aggregation than controls, and analytical ultracentrifugation results with different MgCl2 and NaCl concentrations determined that chromatin folding is not affected by this modification. Additional work to assess possible synergistic affects with histone acetylation also precludes any structural implications. Protamine displacement experiments concluded that the presence of uH2A does not significantly affect the ability of the protamines to displace histones. In addition, uH2A does not interfere with histone H1 binding to the nucleosome. While work with uH2B remains insufficient to come to any definitive conclusions about its

  8. Histone tail modifications and noncanonical functions of histones: perspectives in cancer epigenetics.

    PubMed

    Hadnagy, Annamaria; Beaulieu, Raymond; Balicki, Danuta

    2008-04-01

    Over the past few years, the histone deacetylase (HDAC) inhibitors have occupied an important place in the effort to develop novel, but less toxic, anticancer therapy. HDAC inhibitors block HDACs, which are the enzymes responsible for histone deacetylation, and therefore they modulate gene expression. The cellular effects of HDAC inhibitors include growth arrest and the induction of differentiation. Early successes in cancer therapeutics obtained using these drugs alone or in combination with other anticancer drugs emphasize the important place of posttranslational modifications of histones in cancer therapy. Histone tail modifications along with DNA methylation are the most studied epigenetic events related to cancer progression. Moreover, extranuclear functions of histones have also been described. Because HDAC inhibitors block HDACs and thereby increase histone acetylation, we propose a model wherein exogenous acetylated histones or other related acetylated proteins that are introduced into the nucleus become HDAC substrates and thereby compete with endogenous histones for HDACs. This competition may lead to the increased acetylation of the endogenous histones, as in the case of HDAC inhibitor therapy. Moreover, other mechanisms of action, such as binding to chromatin and modulating gene expression, are also possible for exogenously introduced histones.

  9. Preferential Phosphorylation on Old Histones during Early Mitosis in Human Cells.

    PubMed

    Lin, Shu; Yuan, Zuo-Fei; Han, Yumiao; Marchione, Dylan M; Garcia, Benjamin A

    2016-07-15

    How histone post-translational modifications (PTMs) are inherited through the cell cycle remains poorly understood. Canonical histones are made in the S phase of the cell cycle. Combining mass spectrometry-based technologies and stable isotope labeling by amino acids in cell culture, we question the distribution of multiple histone PTMs on old versus new histones in synchronized human cells. We show that histone PTMs can be grouped into three categories according to their distributions. Most lysine mono-methylation and acetylation PTMs are either symmetrically distributed on old and new histones or are enriched on new histones. In contrast, most di- and tri-methylation PTMs are enriched on old histones, suggesting that the inheritance of different PTMs is regulated distinctly. Intriguingly, old and new histones are distinct in their phosphorylation status during early mitosis in the following three human cell types: HeLa, 293T, and human foreskin fibroblast cells. The mitotic hallmark H3S10ph is predominantly associated with old H3 at early mitosis and becomes symmetric with the progression of mitosis. This same distribution was observed with other mitotic phosphorylation marks, including H3T3/T6ph, H3.1/2S28ph, and H1.4S26ph but not S28/S31ph on the H3 variant H3.3. Although H3S10ph often associates with the neighboring Lys-9 di- or tri-methylations, they are not required for the asymmetric distribution of Ser-10 phosphorylation on the same H3 tail. Inhibition of the kinase Aurora B does not change the distribution despite significant reduction of H3S10ph levels. However, K9me2 abundance on the new H3 is significantly reduced after Aurora B inhibition, suggesting a cross-talk between H3S10ph and H3K9me2. © 2016 by The American Society for Biochemistry and Molecular Biology, Inc.

  10. Identification and characterization of lysine-methylated sites on histones and non-histone proteins.

    PubMed

    Lee, Tzong-Yi; Chang, Cheng-Wei; Lu, Cheng-Tzung; Cheng, Tzu-Hsiu; Chang, Tzu-Hao

    2014-06-01

    Protein methylation is a kind of post-translational modification (PTM), and typically takes place on lysine and arginine amino acid residues. Protein methylation is involved in many important biological processes, and most recent studies focused on lysine methylation of histones due to its critical roles in regulating transcriptional repression and activation. Histones possess highly conserved sequences and are homologous in most species. However, there is much less sequence conservation among non-histone proteins. Therefore, mechanisms for identifying lysine-methylated sites may greatly differ between histones and non-histone proteins. Nevertheless, this point of view was not considered in previous studies. Here we constructed two support vector machine (SVM) models by using lysine-methylated data from histones and non-histone proteins for predictions of lysine-methylated sites. Numerous features, such as the amino acid composition (AAC) and accessible surface area (ASA), were used in the SVM models, and the predictive performance was evaluated using five-fold cross-validations. For histones, the predictive sensitivity was 85.62% and specificity was 80.32%. For non-histone proteins, the predictive sensitivity was 69.1% and specificity was 88.72%. Results showed that our model significantly improved the predictive accuracy of histones compared to previous approaches. In addition, features of the flanking region of lysine-methylated sites on histones and non-histone proteins were also characterized and are discussed. A gene ontology functional analysis of lysine-methylated proteins and correlations of lysine-methylated sites with other PTMs in histones were also analyzed in detail. Finally, a web server, MethyK, was constructed to identify lysine-methylated sites. MethK now is available at http://csb.cse.yzu.edu.tw/MethK/.

  11. Genetic variants of methyl metabolizing enzymes and epigenetic regulators: associations with promoter CpG island hypermethylation in colorectal cancer.

    PubMed

    de Vogel, Stefan; Wouters, Kim A D; Gottschalk, Ralph W H; van Schooten, Frederik J; de Goeij, Anton F P M; de Bruïne, Adriaan P; Goldbohm, Royle A; van den Brandt, Piet A; Weijenberg, Matty P; van Engeland, Manon

    2009-11-01

    Aberrant DNA methylation affects carcinogenesis of colorectal cancer. Folate metabolizing enzymes may influence the bioavailability of methyl groups, whereas DNA and histone methyltransferases are involved in epigenetic regulation of gene expression. We studied associations of genetic variants of folate metabolizing enzymes (MTHFR, MTR, and MTRR), DNA methyltransferase DNMT3b, and histone methyltransferases (EHMT1, EHMT2, and PRDM2), with colorectal cancers, with or without the CpG island methylator phenotype (CIMP), MLH1 hypermethylation, or microsatellite instability. Incidence rate ratios were calculated in case-cohort analyses, with common homozygotes as reference, among 659 cases and 1,736 subcohort members of the Netherlands Cohort Study on diet and cancer (n = 120,852). Men with the MTHFR 677TT genotype were at decreased colorectal cancer risk (incidence rate ratio, 0.49; P = 0.01), but the T allele was associated with increased risk in women (incidence rate ratio, 1.39; P = 0.02). The MTR 2756GG genotype was associated with increased colorectal cancer risk (incidence rate ratio, 1.58; P = 0.04), and inverse associations were observed among women carrying DNMT3b C-->T (rs406193; incidence rate ratio, 0.72; P = 0.04) or EHMT2 G-->A (rs535586; incidence rate ratio, 0.76; P = 0.05) polymorphisms. Although significantly correlated (P < 0.001), only 41.5% and 33.3% of CIMP tumors harbored MLH1 hypermethylation or microsatellite instability, respectively. We observed inverse associations between MTR A2756G and CIMP among men (incidence rate ratio, 0.58; P = 0.04), and between MTRR A66G and MLH1 hypermethylation among women (incidence rate ratio, 0.55; P = 0.02). In conclusion, MTHFR, MTR, DNMT3b, and EHMT2 polymorphisms are associated with colorectal cancer, and rare variants of MTR and MTRR may reduce promoter hypermethylation. The incomplete overlap between CIMP, MLH1 hypermethylation, and microsatellite instability indicates that these related "methylation

  12. Analyses of Histone Proteoforms Using Front-end Electron Transfer Dissociation-enabled Orbitrap Instruments*

    PubMed Central

    Anderson, Lissa C.; Karch, Kelly R.; Ugrin, Scott A.; Coradin, Mariel; English, A. Michelle; Sidoli, Simone; Shabanowitz, Jeffrey; Garcia, Benjamin A.; Hunt, Donald F.

    2016-01-01

    Histones represent a class of proteins ideally suited to analyses by top-down mass spectrometry due to their relatively small size, the high electron transfer dissociation-compatible charge states they exhibit, and the potential to gain valuable information concerning combinatorial post-translational modifications and variants. We recently described new methods in mass spectrometry for the acquisition of high-quality MS/MS spectra of intact proteins (Anderson, L. C., English, A. M., Wang, W., Bai, D. L., Shabanowitz, J., and Hunt, D. F. (2015) Int. J. Mass Spectrom. 377, 617–624). Here, we report an extension of these techniques. Sequential ion/ion reactions carried out in a modified Orbitrap Velos Pro/EliteTM capable of multiple fragment ion fills of the C-trap, in combination with data-dependent and targeted HPLC-MS experiments, were used to obtain high resolution MS/MS spectra of histones from butyrate-treated HeLa cells. These spectra were used to identify several unique intact histone proteoforms with up to 81% sequence coverage. We also demonstrate that parallel ion parking during ion/ion proton transfer reactions can be used to separate species of overlapping m/z that are not separated chromatographically, revealing previously indiscernible signals. Finally, we characterized several truncated forms of H2A and H2B found within the histone fractions analyzed, achieving up to 93% sequence coverage by electron transfer dissociation MS/MS. Results of follow-up in vitro experiments suggest that some of the truncated histone H2A proteoforms we observed can be generated by cathepsin L, an enzyme known to also catalyze clipping of histone H3. PMID:26785730

  13. Remodeling somatic nuclei in Xenopus laevis egg extracts: molecular mechanisms for the selective release of histones H1 and H1(0) from chromatin and the acquisition of transcriptional competence.

    PubMed Central

    Dimitrov, S; Wolffe, A P

    1996-01-01

    The molecular mechanisms responsible for the remodeling of entire somatic erythrocyte nuclei in Xenopus laevis egg cytoplasm have been examined. These transitions in chromosomal composition are associated with the capacity to activate new patterns of gene expression and the re-acquisition of replication competence. Somatic linker histone variants H1 and H1 (0) are released from chromatin in egg cytoplasm, whereas the oocyte-specific linker histone B4 and HMG1 are efficiently incorporated into remodeled chromatin. Histone H1 (0) is released from chromatin preferentially in comparison with histone H1. Core histones H2A and H4 in the somatic nucleus are phosphorylated during this remodeling process. These transitions recapitulate the chromosomal environment found within the nuclei of the early Xenopus embryo. Phosphorylation of somatic linker histone variants is demonstrated not to direct their release from chromatin, nor does direct competition with cytoplasmic stores of linker histone B4 determine their release. However, the molecular chaperone nucleoplasmin does have an important role in the selective removal of linker histones from somatic nuclei. For Xenopus erythrocyte nuclei, this disruption of chromatin structure leads to activation of the 5S rRNA genes. These results provide a molecular explanation for the remodeling of chromatin in Xenopus egg cytoplasm and indicate the capacity of molecular chaperones to disrupt a natural chromosomal environment, thereby facilitating transcription. Images PMID:8918467

  14. Dynamics of Histone Tails within Chromatin

    NASA Astrophysics Data System (ADS)

    Bernier, Morgan; North, Justin; Page, Michael; Jaroniec, Christopher; Hammel, Christopher; Poirier, Michael

    2012-02-01

    Genetic information in humans is encoded within DNA molecules that is wrapped around histone octamer proteins and compacted into a highly conserved structural polymer, chromatin. The physical and material properties of chromatin appear to influence gene expression by altering the accessibility of proteins to the DNA. The tails of the histones are flexible domains that are thought to play a role in regulating DNA accessibility and compaction; however the molecular mechanisms for these phenomena are not understood. I will present CW-EPR studies on site directed spin labeled nucleosomes that probe the structure and dynamics of these histone tails within nucleosomes.

  15. Linker histones: History and current perspectives.

    PubMed

    Crane-Robinson, C

    2016-03-01

    Although the overall structure of the fifth histone (linker histone, H1) is understood, its location on the nucleosome is only partially defined. Whilst it is clear that H1 helps condense the chromatin fibre, precisely how this is achieved remains to be determined. H1 is not a general gene repressor in that although it must be displaced from transcription start sites for activity to occur, there is only partial loss along the body of genes. How the deposition and removal of H1 occurs in particular need of further study. Linker histones are highly abundant nuclear proteins about which we know too little.

  16. Perceiving the epigenetic landscape through histone readers

    PubMed Central

    Musselman, Catherine A.; Lalonde, Marie-Eve; Côté, Jacques; Kutateladze, Tatiana G.

    2013-01-01

    Post-translational modifications (PTMs) of histones provide a fine-tuned mechanism for regulating chromatin structure and dynamics. PTMs can alter direct interactions between histones and DNA and serve as docking sites for protein effectors, or readers, of these PTMs. Binding of the readers recruits or stabilizes various components of the nuclear signaling machinery at specific genomic sites, mediating fundamental DNA-templated processes, including gene transcription and DNA recombination, replication and repair. In this review, we highlight the latest advances in characterizing histone-binding mechanisms and identifying new epigenetic readers and summarize the functional significance of PTM recognition. PMID:23211769

  17. Nucleosome adaptability conferred by sequence and structural variations in histone H2A-H2B dimers.

    PubMed

    Shaytan, Alexey K; Landsman, David; Panchenko, Anna R

    2015-06-01

    Nucleosome variability is essential for their functions in compacting the chromatin structure and regulation of transcription, replication and cell reprogramming. The DNA molecule in nucleosomes is wrapped around an octamer composed of four types of core histones (H3, H4, H2A, H2B). Nucleosomes represent dynamic entities and may change their conformation, stability and binding properties by employing different sets of histone variants or by becoming post-translationally modified. There are many variants of histones H2A and H2B. Specific H2A and H2B variants may preferentially associate with each other resulting in different combinations of variants and leading to the increased combinatorial complexity of nucleosomes. In addition, the H2A-H2B dimer can be recognized and substituted by chaperones/remodelers as a distinct unit, can assemble independently and is stable during nucleosome unwinding. In this review we discuss how sequence and structural variations in H2A-H2B dimers may provide necessary complexity and confer the nucleosome functional variability.

  18. Transcription-coupled replacement of histones: degradation or recycling?

    PubMed

    Chen, Yu-Shan; Qiu, Xiao-Bo

    2012-11-20

    Histone modifications are proposed to constitute a "histone code" for epigenetic regulation of gene expression. However, recent studies demonstrate that histones have to be disassembled from chromatin during transcription. Recent evidence, though not conclusive, suggests that histones might be degradable after being removed from chromatin during transcription. Degradation of overexpressed excessive histones, instead of native histones, has been shown to be dependent on proteasomes and ubiquitination. Since the 26S proteasome usually recognizes polyubiquitinated substrates, it is critical to demonstrate whether degradation of histones is mediated by polyubiquitination. Unexpectedly, there is almost no evidence that any ubiquitin ligase can promote polyubiquitination-dependent degradation of constitutive histones. Meanwhile, acetylation and phosphorylation are also associated with histone degradation. This review attempts to summarize the current knowledge on the transcription-coupled degradation of histones and its regulation by posttranslational protein modifications.

  19. Replication stress interferes with histone recycling and predeposition marking of new histones.

    PubMed

    Jasencakova, Zuzana; Scharf, Annette N D; Ask, Katrine; Corpet, Armelle; Imhof, Axel; Almouzni, Geneviève; Groth, Anja

    2010-03-12

    To restore chromatin on new DNA during replication, recycling of histones evicted ahead of the fork is combined with new histone deposition. The Asf1 histone chaperone, which buffers excess histones under stress, is a key player in this process. Yet how histones handled by human Asf1 are modified remains unclear. Here we identify marks on histones H3-H4 bound to Asf1 and changes induced upon replication stress. In S phase, distinct cytosolic and nuclear Asf1b complexes show ubiquitous H4K5K12diAc and heterogeneous H3 marks, including K9me1, K14ac, K18ac, and K56ac. Upon acute replication arrest, the predeposition mark H3K9me1 and modifications typical of chromatin accumulate in Asf1 complexes. In parallel, ssDNA is generated at replication sites, consistent with evicted histones being trapped with Asf1. During recovery, histones stored with Asf1 are rapidly used as replication resumes. This shows that replication stress interferes with predeposition marking and histone recycling with potential impact on epigenetic stability.

  20. Transcription in the absence of histone H3.2 and H3K4 methylation.

    PubMed

    Hödl, Martina; Basler, Konrad

    2012-12-04

    Histone H3 proteins play fundamental roles in DNA packaging, gene transcription, and the transmission of epigenetic states. In addition to posttranslational modifications of their N termini, the use of H3 variants contributes to their regulatory repertoire. Canonical histone H3.2 is expressed during S phase and differs by four amino acid residues from the variant histone H3.3, which is synthesized in a cell-cycle-independent manner. Because H3.3 is enriched within actively transcribed loci, and because di- and trimethylation of H3 lysine 4 are hallmarks of chromatin at such sites in the genome, the H3.3K4 residue is considered to serve as the major regulatory determinant for the transcriptional state of a gene. Here we use genetic approaches in Drosophila to replace all 46 gene copies of His3.2 with mutant derivatives and thereby demonstrate that canonical and variant H3 can functionally replace each other. Cells are able to divide and differentiate when H3.2 is entirely absent but replaced by S phase-expressed H3.3. Moreover, although slowed down in their proliferative capacity, cells that code for a nonmethylatable residue instead of K4 in all canonical and variant H3 genes are competent to respond to major developmental signaling pathways by activating target gene expression. Hence, the presence of different H3 protein species is not essential in Drosophila and transcriptional regulation can occur in the complete absence of H3K4 methylation.

  1. Histone H2A.Z and DNA methylation are mutually antagonistic chromatin marks.

    PubMed

    Zilberman, Daniel; Coleman-Derr, Devin; Ballinger, Tracy; Henikoff, Steven

    2008-11-06

    Eukaryotic chromatin is separated into functional domains differentiated by post-translational histone modifications, histone variants and DNA methylation. Methylation is associated with repression of transcriptional initiation in plants and animals, and is frequently found in transposable elements. Proper methylation patterns are crucial for eukaryotic development, and aberrant methylation-induced silencing of tumour suppressor genes is a common feature of human cancer. In contrast to methylation, the histone variant H2A.Z is preferentially deposited by the Swr1 ATPase complex near 5' ends of genes where it promotes transcriptional competence. How DNA methylation and H2A.Z influence transcription remains largely unknown. Here we show that in the plant Arabidopsis thaliana regions of DNA methylation are quantitatively deficient in H2A.Z. Exclusion of H2A.Z is seen at sites of DNA methylation in the bodies of actively transcribed genes and in methylated transposons. Mutation of the MET1 DNA methyltransferase, which causes both losses and gains of DNA methylation, engenders opposite changes (gains and losses) in H2A.Z deposition, whereas mutation of the PIE1 subunit of the Swr1 complex that deposits H2A.Z leads to genome-wide hypermethylation. Our findings indicate that DNA methylation can influence chromatin structure and effect gene silencing by excluding H2A.Z, and that H2A.Z protects genes from DNA methylation.

  2. Point Mutations in Centromeric Histone Induce Post-zygotic Incompatibility and Uniparental Inheritance.

    PubMed

    Kuppu, Sundaram; Tan, Ek Han; Nguyen, Hanh; Rodgers, Andrea; Comai, Luca; Chan, Simon W L; Britt, Anne B

    2015-09-01

    The centromeric histone 3 variant (CENH3, aka CENP-A) is essential for the segregation of sister chromatids during mitosis and meiosis. To better define CENH3 functional constraints, we complemented a null allele in Arabidopsis with a variety of mutant alleles, each inducing a single amino acid change in conserved residues of the histone fold domain. Many of these transgenic missense lines displayed wild-type growth and fertility on self-pollination, but exhibited frequent post-zygotic death and uniparental inheritance when crossed with wild-type plants. The failure of centromeres marked by these missense mutation in the histone fold domain of CENH3 reproduces the genome elimination syndromes described with chimeric CENH3 and CENH3 from diverged species. Additionally, evidence that a single point mutation is sufficient to generate a haploid inducer provide a simple one-step method for the identification of non-transgenic haploid inducers in existing mutagenized collections of crop species. As proof of the extreme simplicity of this approach to create haploid-inducing lines, we performed an in silico search for previously identified point mutations in CENH3 and identified an Arabidopsis line carrying the A86V substitution within the histone fold domain. This A87V non-transgenic line, while fully fertile on self-pollination, produced postzygotic death and uniparental haploids when crossed to wild type.

  3. Analysis of the Histone H3.1 Interactome: A Suitable Chaperone for the Right Event

    PubMed Central

    Campos, Eric I.; Smits, Arne H.; Kang, Young-Hoon; Landry, Sébastien; Escobar, Thelma M.; Nayak, Shruti; Ueberheide, Beatrix M.; Durocher, Daniel; Vermeulen, Michiel; Hurwitz, Jerard; Reinberg, Danny

    2015-01-01

    SUMMARY Despite minimal disparity at the sequence level, mammalian H3 variants bind to distinct sets of polypeptides. Though histone H3.1 predominates in cycling cells, our knowledge of the soluble complexes that it forms en route to deposition or following eviction from chromatin remains limited. Here, we provide a comprehensive analysis of the H3.1-binding proteome, with emphasis on its interactions with histone chaperones and components of the replication fork. Quantitative mass spectrometry revealed 170 protein interactions, whereas a large-scale biochemical fractionation of H3.1 and associated enzymatic activities uncovered over twenty stable protein complexes in dividing human cells. The sNASP and ASF1 chaperones play pivotal roles in the processing of soluble histones, but do not associate with the active CDC45/MCM2-7/GINS (CMG) replicative helicase. We also find TONSL-MMS22L to function as a H3-H4 histone chaperone. It associates with the regulatory MCM5 subunit of the replicative helicase. PMID:26527279

  4. Myogenic transcriptional activation of MyoD mediated by replication-independent histone deposition

    PubMed Central

    Yang, Jae-Hyun; Song, Yunkyoung; Seol, Ja-Hwan; Park, Jin Young; Yang, Yong-Jin; Han, Jeung-Whan; Youn, Hong-Duk; Cho, Eun-Jung

    2011-01-01

    In mammals, the canonical histone H3 and the variant H3.3 are assembled into chromatin through replication-coupled and replication-independent (RI) histone deposition pathways, respectively, to play distinct roles in chromatin function. H3.3 is largely associated with transcriptionally active regions via the activity of RI histone chaperone, HIRA. However, the precise role of the RI pathway and HIRA in active transcription and the mechanisms by which H3.3 affects gene activity are not known. In this study, we show that HIRA is an essential factor for muscle development by establishing MyoD activation in myotubes. HIRA and Asf1a, but not CHD1 or Asf1b, mediate H3.3 incorporation in the promoter and the critical upstream regulatory regions of the MyoD gene. HIRA and H3.3 are required for epigenetic transition into the more permissive chromatin structure for polymerase II recruitment to the promoter, regardless of transcription-associated covalent modification of histones. Our results suggest distinct epigenetic management of the master regulator with RI pathway components for cellular differentiation. PMID:21173268

  5. Histone modifications in DNA damage response.

    PubMed

    Cao, Lin-Lin; Shen, Changchun; Zhu, Wei-Guo

    2016-03-01

    DNA damage is a relatively common event in eukaryotic cell and may lead to genetic mutation and even cancer. DNA damage induces cellular responses that enable the cell either to repair the damaged DNA or cope with the damage in an appropriate way. Histone proteins are also the fundamental building blocks of eukaryotic chromatin besides DNA, and many types of post-translational modifications often occur on tails of histones. Although the function of these modifications has remained elusive, there is ever-growing studies suggest that histone modifications play vital roles in several chromatin-based processes, such as DNA damage response. In this review, we will discuss the main histone modifications, and their functions in DNA damage response.

  6. Top-down and Middle-down Protein Analysis Reveals that Intact and Clipped Human Histones Differ in Post-translational Modification Patterns*

    PubMed Central

    Tvardovskiy, Andrey; Wrzesinski, Krzysztof; Sidoli, Simone; Fey, Stephen J.; Rogowska-Wrzesinska, Adelina; Jensen, Ole N.

    2015-01-01

    Post-translational modifications (PTMs) of histone proteins play a fundamental role in regulation of DNA-templated processes. There is also growing evidence that proteolytic cleavage of histone N-terminal tails, known as histone clipping, influences nucleosome dynamics and functional properties. Using top-down and middle-down protein analysis by mass spectrometry, we report histone H2B and H3 N-terminal tail clipping in human hepatocytes and demonstrate a relationship between clipping and co-existing PTMs of histone H3. Histones H2B and H3 undergo proteolytic processing in primary human hepatocytes and the hepatocellular carcinoma cell line HepG2/C3A when grown in spheroid (3D) culture, but not in a flat (2D) culture. Using tandem mass spectrometry we localized four different clipping sites in H3 and one clipping site in H2B. We show that in spheroid culture clipped H3 proteoforms are mainly represented by canonical histone H3, whereas in primary hepatocytes over 90% of clipped H3 correspond to the histone variant H3.3. Comprehensive analysis of histone H3 modifications revealed a series of PTMs, including K14me1, K27me2/K27me3, and K36me1/me2, which are differentially abundant in clipped and intact H3. Analysis of co-existing PTMs revealed negative crosstalk between H3K36 methylation and H3K23 acetylation in clipped H3. Our data provide the first evidence of histone clipping in human hepatocytes and demonstrate that clipped H3 carry distinct co-existing PTMs different from those in intact H3. PMID:26424599

  7. Top-down and Middle-down Protein Analysis Reveals that Intact and Clipped Human Histones Differ in Post-translational Modification Patterns.

    PubMed

    Tvardovskiy, Andrey; Wrzesinski, Krzysztof; Sidoli, Simone; Fey, Stephen J; Rogowska-Wrzesinska, Adelina; Jensen, Ole N

    2015-12-01

    Post-translational modifications (PTMs) of histone proteins play a fundamental role in regulation of DNA-templated processes. There is also growing evidence that proteolytic cleavage of histone N-terminal tails, known as histone clipping, influences nucleosome dynamics and functional properties. Using top-down and middle-down protein analysis by mass spectrometry, we report histone H2B and H3 N-terminal tail clipping in human hepatocytes and demonstrate a relationship between clipping and co-existing PTMs of histone H3. Histones H2B and H3 undergo proteolytic processing in primary human hepatocytes and the hepatocellular carcinoma cell line HepG2/C3A when grown in spheroid (3D) culture, but not in a flat (2D) culture. Using tandem mass spectrometry we localized four different clipping sites in H3 and one clipping site in H2B. We show that in spheroid culture clipped H3 proteoforms are mainly represented by canonical histone H3, whereas in primary hepatocytes over 90% of clipped H3 correspond to the histone variant H3.3. Comprehensive analysis of histone H3 modifications revealed a series of PTMs, including K14me1, K27me2/K27me3, and K36me1/me2, which are differentially abundant in clipped and intact H3. Analysis of co-existing PTMs revealed negative crosstalk between H3K36 methylation and H3K23 acetylation in clipped H3. Our data provide the first evidence of histone clipping in human hepatocytes and demonstrate that clipped H3 carry distinct co-existing PTMs different from those in intact H3.

  8. Histone methyltransferases regulating rRNA gene dose and dosage control in Arabidopsis

    PubMed Central

    Pontvianne, Frédéric; Blevins, Todd; Chandrasekhara, Chinmayi; Feng, Wei; Stroud, Hume; Jacobsen, Steven E.; Michaels, Scott D.; Pikaard, Craig S.

    2012-01-01

    Eukaryotes have hundreds of nearly identical 45S ribosomal RNA (rRNA) genes, each encoding the 18S, 5.8S, and 25S catalytic rRNAs. Because cellular demands for ribosomes and protein synthesis vary during development, the number of active rRNA genes is subject to dosage control. In genetic hybrids, one manifestation of dosage control is nucleolar dominance, an epigenetic phenomenon in which the rRNA genes of one progenitor are repressed. For instance, in Arabidopsis suecica, the allotetraploid hybrid of Arabidopsis thaliana and Arabidopsis arenosa, the A. thaliana-derived rRNA genes are selectively silenced. An analogous phenomenon occurs in nonhybrid A. thaliana, in which specific classes of rRNA gene variants are inactivated. An RNA-mediated knockdown screen identified SUVR4 {SUPPRESSOR OF VARIEGATION 3-9 [SU(VAR)3-9]-RELATED 4} as a histone H3 Lys 9 (H3K9) methyltransferase required for nucleolar dominance in A. suecica. H3K9 methyltransferases are also required for variant-specific silencing in A. thaliana, but SUVH5 [SU(VAR)3-9 HOMOLOG 5] and SUVH6, rather than SUVR4, are the key activities in this genomic context. Mutations disrupting the H3K27 methyltransferases ATXR5 or ATXR6 affect which rRNA gene variants are expressed or silenced, and in atxr5 atxr6 double mutants, dominance relationships among variants are reversed relative to wild type. Interestingly, these changes in gene expression are accompanied by changes in the relative abundance of the rRNA gene variants at the DNA level, including overreplication of the normally silenced class and decreased abundance of the normally dominant class. Collectively, our results indicate that histone methylation can affect both the doses of different variants and their differential silencing through the choice mechanisms that achieve dosage control. PMID:22549957

  9. Deciphering the histone code using mass spectrometry

    NASA Astrophysics Data System (ADS)

    Ueberheide, Beatrix M.; Mollah, Sahana

    2007-01-01

    During the past decade, studies surrounding chromatin research have grown exponentially. A major focus of chromatin biology is centered on understanding of how histone modifications alter chromatin structure at the molecular and mechanistic levels. Discoveries are being made at a rapid pace due to the advent of new and innovative techniques. Mass spectrometry has emerged as a powerful tool in the field of histone research due to its speed, sensitivity, and ease of use. This has resulted in the identification of a number of novel histone modification sites. In consequence, new roles in biological processes have been discovered and hypothetical models, such as the `histone code' have been reaffirmed or refined. One significant advantage to using mass spectrometric techniques is that the combinations of modifications on different sites can be determined which is crucial to deciphering the `histone code'. In this manuscript, the mass spectrometric approaches developed over the past decade for both qualitative and quantitative analysis of histone post-translational modifications (PTMs) are discussed.

  10. Extracellular histones in tissue injury and inflammation.

    PubMed

    Allam, Ramanjaneyulu; Kumar, Santhosh V R; Darisipudi, Murthy N; Anders, Hans-Joachim

    2014-05-01

    Neutrophil NETosis is an important element of host defense as it catapults chromatin out of the cell to trap bacteria, which then are killed, e.g., by the chromatin's histone component. Also, during sterile inflammation TNF-alpha and other mediators trigger NETosis, which elicits cytotoxic effects on host cells. The same mechanism should apply to other forms of regulated necrosis including pyroptosis, necroptosis, ferroptosis, and cyclophilin D-mediated regulated necrosis. Beyond these toxic effects, extracellular histones also trigger thrombus formation and innate immunity by activating Toll-like receptors and the NLRP3 inflammasome. Thereby, extracellular histones contribute to the microvascular complications of sepsis, major trauma, small vessel vasculitis as well as acute liver, kidney, brain, and lung injury. Finally, histones prevent the degradation of extracellular DNA, which promotes autoimmunization, anti-nuclear antibody formation, and autoimmunity in susceptible individuals. Here, we review the current evidence on the pathogenic role of extracellular histones in disease and discuss how to target extracellular histones to improve disease outcomes.

  11. Histone Lysine Methylation in Diabetic Nephropathy

    PubMed Central

    Sun, Guang-dong; Cui, Wen-peng; Guo, Qiao-yan; Miao, Li-ning

    2014-01-01

    Diabetic nephropathy (DN) belongs to debilitating microvascular complications of diabetes and is the leading cause of end-stage renal diseases worldwide. Furthermore, outcomes from the DCCT/EDIC study showed that DN often persists and progresses despite intensive glucose control in many diabetes patients, possibly as a result of prior episode of hyperglycemia, which is called “metabolic memory.” The underlying mechanisms responsible for the development and progression of DN remain poorly understood. Activation of multiple signaling pathways and key transcription factors can lead to aberrant expression of DN-related pathologic genes in target renal cells. Increasing evidence suggests that epigenetic mechanisms in chromatin such as DNA methylation, histone acetylation, and methylation can influence the pathophysiology of DN and metabolic memory. Exciting researches from cell culture and experimental animals have shown that key histone methylation patterns and the related histone methyltransferases and histone demethylases can play important roles in the regulation of inflammatory and profibrotic genes in renal cells under diabetic conditions. Because histone methylation is dynamic and potentially reversible, it can provide a window of opportunity for the development of much-needed novel therapeutic potential for DN in the future. In this minireview, we discuss recent advances in the field of histone methylation and its roles in the pathogenesis and progression of DN. PMID:25215303

  12. Vanadates form insoluble complexes with histones.

    PubMed

    Michele, D E; Thomsen, D; Louters, L L

    1997-07-01

    Vanadium oxoanions are known to have a variety of physiological effects including insulin-like activity, inhibition of phosphotyrosine phosphatases, as well as direct interactions with a variety of cellular proteins, such as microtubules. In this study, vanadate was found to form insoluble complexes with histones, as well as other positively charged proteins, in a concentration dependent fashion. This interaction occurred over a 0.5-10 mM range which corresponds to the concentration range required for many of vanadate's known physiological effects. Results from precipitation experiments using vanadate solutions with or without the yellow-orange decavanadate indicated that the decamer form is primarily responsible for this precipitation. Vanadate was able to selectively precipitate histones from soluble chromatin as well as from a soluble bacterial protein extract to which a low concentration of histones had been added. Vanadate was also able to effectively precipitate histone from solutions as low as 0.006 mg/mL histone. Thus, the selective precipitation of histones and other positively charged proteins by vanadate can be utilized as a tool for protein purification. In addition, this interaction may provide insight into the mechanisms for the physiological effects of vanadate.

  13. Bivalent histone modifications in early embryogenesis.

    PubMed

    Vastenhouw, Nadine L; Schier, Alexander F

    2012-06-01

    Histone modifications influence the interactions of transcriptional regulators with chromatin. Studies in embryos and embryonic stem (ES) cells have uncovered histone modification patterns that are diagnostic for different cell types and developmental stages. For example, bivalent domains consisting of regions of H3 lysine 27 trimethylation (H3K27me3) and H3 lysine 4 trimethylation (H3K4me3) mark lineage control genes in ES cells and zebrafish blastomeres. Such bivalent domains have garnered attention because the H3K27me3 mark might help repress lineage-regulatory genes during pluripotency while the H3K4me3 mark could poise genes for activation upon differentiation. Despite the prominence of the bivalent domain concept, studies in other model organisms have questioned its universal nature, and the function of bivalent domains has remained unclear. Histone marks are also associated with developmental regulatory genes in sperm. These observations have raised the possibility that specific histone modification patterns might persist from parent to offspring, but it is unclear whether histone marks are inherited or formed de novo. Here, we review the potential roles of H3K4me3 and H3K27me3 marks in embryos and ES cells and discuss how histone marks might be established, maintained and resolved during embryonic development.

  14. Assaying Pharmacodynamic Endpoints with Targeted Therapy: Flavopiridol and 17AAG Induced Dephosphorylation of Histone H1.5 in Acute Myeloid Leukemia

    PubMed Central

    Wang, Liwen; Harshman, Sean W.; Liu, Shujun; Ren, Chen; Xu, Hua; Sallans, Larry; Grever, Michael; Byrd, John C.; Marcucci, Guido; Freitas, Michael A.

    2011-01-01

    Histone H1 is commonly used to assay kinase activity in vitro. As many promising targeted therapies affect kinase activity of specific enzymes involved in cancer transformation, H1 phosphorylation can serve as potential pharmacodynamic marker for drug activity within the cell. In this report we utilized a phosphoproteomic workflow to characterize histone H1 phosphorylation changes associated with two targeted therapies in the Kasumi-1 Acute Myeloid Leukemia (AML) cell line. The phosphoproteomic workflow was first validated with standard casein phosphoproteins and then applied to the direct analysis of histone H1 from Kasumi-1 nuclear lysates. Ten H1 phosphorylation sites were identified on the H1 variants, H1.2, H1.3, H1.4, H1.5 and H1.x. Liquid chromatography mass spectrometry profiling of intact H1s demonstrated global dephosphorylation of H1.5 associated with therapy by the cyclin dependent kinase inhibitor, flavopiridol, and the Hsp90 inhibitor, 17AAG (17-(Allylamino)-17-demethoxygeldanamycin). In contrast, independent treatments with a nucleotide analog, proteosome inhibitor and histone deacetylase inhibitor did not exhibit decreased H1.5 phosphorylation. The data presented herein demonstrate that potential of histones to assess the cellular response of reagents that have direct and indirect effects on kinase activity that alters histone phosphorylation. As such, this approach may be a highly informative marker for response to targeted therapies influencing histone phosphorylation. PMID:21110323

  15. Assaying pharmacodynamic endpoints with targeted therapy: flavopiridol and 17AAG induced dephosphorylation of histone H1.5 in acute myeloid leukemia.

    PubMed

    Wang, Liwen; Harshman, Sean W; Liu, Shujun; Ren, Chen; Xu, Hua; Sallans, Larry; Grever, Michael; Byrd, John C; Marcucci, Guido; Freitas, Michael A

    2010-12-01

    Histone H1 is commonly used to assay kinase activity in vitro. As many promising targeted therapies affect kinase activity of specific enzymes involved in cancer transformation, H1 phosphorylation can serve as potential pharmacodynamic marker for drug activity within the cell. In this study we utilized a phosphoproteomic workflow to characterize histone H1 phosphorylation changes associated with two targeted therapies in the Kasumi-1 acute myeloid leukemia cell line. The phosphoproteomic workflow was first validated with standard casein phosphoproteins and then applied to the direct analysis of histone H1 from Kasumi-1 nuclear lysates. Ten H1 phosphorylation sites were identified on the H1 variants, H1.2, H1.3, H1.4, H1.5 and H1.x. LC MS profiling of intact H1s demonstrated global dephosphorylation of H1.5 associated with therapy by the cyclin-dependent kinase inhibitor, flavopiridol and the Heat Shock Protein 90 inhibitor, 17-(Allylamino)-17-demethoxygeldanamycin. In contrast, independent treatments with a nucleotide analog, proteosome inhibitor and histone deacetylase inhibitor did not exhibit decreased H1.5 phosphorylation. The data presented herein demonstrate that potential of histones to assess the cellular response of reagents that have direct and indirect effects on kinase activity that alters histone phosphorylation. As such, this approach may be a highly informative marker for response to targeted therapies influencing histone phosphorylation.

  16. Nonpeptide Macrocyclic Histone Deacetylase Inhibitors

    PubMed Central

    Oyelere, Adegboyega K.; Chen, Po C.; Guerrant, William; Mwakwari, Sandra C.; Hood, Rebecca; Zhang, Yunzhe; Fan, Yuhong

    2009-01-01

    Inhibition of Histone Deacetylases inhibitors (HDACi) hold great promise in cancer therapy due to their demonstrated ability to arrest proliferation of nearly all transformed cell types. Of the several structurally distinct small molecules HDACi reported, macrocyclic depsipeptides have the most complex recognition cap-group moieties and present an excellent opportunity for the modulation of the biological activities of HDACi. Unfortunately, the structure–activity relationship (SAR) studies for this class of compounds have been impaired largely because most macrocyclic HDACi known to date are comprised of complex peptide macrocycles. In addition to retaining the pharmacologically disadvantaged peptidyl-backbone, they offer only limited opportunity for side-chain modifications. Here we report the discovery of a new class of macrocyclic HDACi based on the macrolide antibiotics skeletons. SAR studies revealed that these compounds displayed both linker-length and macrolide-type dependent HDAC inhibition activities with IC50 in low nanomolar range. In addition, these nonpeptide macrocyclic HDACi are more selective against HDAC 1 and 2 relative to HDAC 8, another class I HDAC isoform, hence have sub-class HDAC isoform selectivity. PMID:19093884

  17. Histone modifications and traditional Chinese medicinals

    PubMed Central

    2013-01-01

    Background Chromatin, residing in the nuclei of eukaryotic cells, comprises DNA and histones to make up chromosomes. Chromatin condenses to compact the chromosomes and loosens to facilitate gene transcription and DNA replication/repair. Chemical modifications to the histones mediate changes in chromatin structure. Histone-modifying enzymes are potential drug targets. How herbs affect phenotypes through histone modifications is interesting. Methods Two public traditional Chinese medicine (TCM) databases were accessed to retrieve the chemical constituents and TCM natures of 3,294 TCM medicinals. NCBI taxonomy database was accessed to build the phylogenetic tree of the TCM medicinals. Statistical test was used to test if TCM natures of the medicinals cluster in the phylogenetic tree. A public chemical-protein interaction database was accessed to identify TCM medicinals whose constituent chemicals interact with human histone-modifying enzymes. For each histone modification, a correlation coefficient was calculated between the medicinals’ TCM natures and modification modulabilities. Information of the ingredient medicinals of 200 classical TCM formulas was accessed from a public database. Results It was found that 1,170 or 36% of the 3,294 TCM medicinals interact with human histone-modifying enzymes. Among the histone-modifying medicinals, 56% of them promote chromatin condensation. The cold-hot natures of TCM medicinals were found to be phylogenetically correlated. Furthermore, cold (hot) TCM medicinals were found to be associated with heterochromatinization (euchromatinization) through mainly H3K9 methylation and H3K4 demethylation. The associations were weak yet statistically significant. On the other hand, analysis of TCM formulas, the major form of TCM prescriptions in clinical practice, found that 99% of 200 government approved TCM formulas are histone-modifying. Furthermore, in formula formation, heterochromatic medicinals were found to team up with other

  18. The Histone Chaperones FACT and Spt6 Restrict H2A.Z from Intragenic Locations

    PubMed Central

    Jeronimo, Célia; Watanabe, Shinya; Kaplan, Craig D.; Peterson, Craig L.; Robert, François

    2015-01-01

    SUMMARY H2A.Z is a highly conserved histone variant involved in several key nuclear processes. It is incorporated into promoters by SWR-C-related chromatin remodeling complexes, but whether it is also actively excluded from non-promoter regions is not clear. Here, we provide genomic and biochemical evidence that RNA polymerase II (RNAPII) elongation-associated histone chaperones FACT and Spt6 both contribute to restricting H2A.Z from intragenic regions. In the absence of FACT or Spt6, the lack of efficient nucleosome reassembly coupled to pervasive incorporation of H2A.Z by mislocalized SWR-C alters chromatin composition and contributes to cryptic initiation. Thus, chaperone-mediated H2A.Z confinement is crucial for restricting the chromatin signature of gene promoters, which otherwise may license or promote cryptic transcription. PMID:25959393

  19. Histone turnover and chromatin accessibility: Critical mediators of neurological development, plasticity, and disease

    PubMed Central

    Wenderski, Wendy; Maze, Ian

    2016-01-01

    In postmitotic neurons, nucleosomal turnover was long considered to be a static process that is inconsequential to transcription. However, our recent studies in human and rodent brain indicate that replication-independent (RI) nucleosomal turnover, which requires the histone variant H3.3, is dynamic throughout life and is necessary for activity-dependent gene expression, synaptic connectivity, and cognition. H3.3 turnover also facilitates cellular lineage specification and plays a role in suppressing the expression of heterochromatic repetitive elements, including mutagenic transposable sequences, in mouse embryonic stem cells. In this essay, we review mechanisms and functions for RI nucleosomal turnover in brain and present the hypothesis that defects in histone dynamics may represent a common mechanism underlying neurological aging and disease. PMID:26990528

  20. Histone availability as a strategy to control gene expression.

    PubMed

    Prado, Félix; Jimeno-González, Silvia; Reyes, José C

    2017-03-04

    Histone proteins are main structural components of the chromatin and major determinants of gene regulation. Expression of canonical histone genes is strictly controlled during the cell cycle in order to couple DNA replication with histone deposition. Indeed, reductions in the levels of canonical histones or defects in chromatin assembly cause genetic instability. Early data from yeast demonstrated that severe histone depletion also causes strong gene expression changes. We have recently reported that a moderated depletion of canonical histones in human cells leads to an open chromatin configuration, which in turn increases RNA polymerase II elongation rates and causes pre-mRNA splicing defects. Interestingly, some of the observed defects accompany the scheduled histone depletion that is associated with several senescence and aging processes. Thus, our comparison of induced and naturally-occurring histone depletion processes suggests that a programmed reduction of the level of canonical histones might be a strategy to control gene expression during specific physiological processes.

  1. Organ distribution of histones after intravenous infusion of FITC histones or after sepsis.

    PubMed

    Fattahi, Fatemeh; Grailer, Jamison J; Jajou, Lawrence; Zetoune, Firas S; Andjelkovic, Anuska V; Ward, Peter A

    2015-03-01

    Histones appear in plasma during infectious or non-infectious sepsis and are associated with multiorgan injury. In the current studies, intravenous infusion of histones resulted in their localization in major organs. In vitro exposure of mouse macrophages to histones caused a buildup of histones on cell membranes followed by localization into cytosol and into the nucleus. After polymicrobial sepsis (cecal ligation and puncture), histones appeared in plasma as well as in a multiorgan pattern, peaking at 8 h followed by decline. In lungs, histones and neutrophils appeared together, with evidence for formation of neutrophil extracellular traps (NETs), which represent an innate immune response to trap and kill bacteria and other infectious agents. In liver, there was intense NET formation, featuring linear patterns containing histones and strands of DNA. When neutrophils were activated in vitro with C5a or phorbol myristate acetate, NET formation ensued. While formation of NETs represents entrapment and killing of infectious agents, the simultaneous release from neutrophils of histones often results in tissue/organ damage.

  2. Organ Distribution of Histones after Intravenous Infusion of FITC-Histones or after Sepsis

    PubMed Central

    Fattahi, Fatemeh; Grailer, Jamison J.; Jajou, Lawrence; Zetoune, Firas S.; Andjelkovic, Anuska V.; Ward, Peter A.

    2015-01-01

    Histones appear in plasma during infectious or non-infectious sepsis and are associated with multiorgan injury. In the current studies, intravenous infusion of histones resulted in their localization in major organs. In vitro exposure of mouse macrophages to histones caused a buildup of histones on cell membranes followed by localization into cytosol and into the nucleus. After polymicrobial sepsis (cecal ligation and puncture, CLP), histones appeared in plasma as well as in a multiorgan pattern, peaking at 8 hr followed by decline. In lungs, histones and neutrophils appeared together, with evidence for formation of neutrophil extracellular traps (NETs), which represent an innate immune response to trap and kill bacteria and other infectious agents. In liver, there was intense NET formation, featuring linear patterns containing histones and strands of DNA. When neutrophils were activated in vitro with C5a or phorbol myristate acetate, NET formation ensued. While formation of NETs represents entrapment and killing of infectious agents, the simultaneous release from neutrophils of histones often results in tissue/organ damage. PMID:25680340

  3. A brief histone in time: understanding the combinatorial functions of histone PTMs in the nucleosome context.

    PubMed

    Ng, Marlee K; Cheung, Peter

    2016-02-01

    It has been over 50 years since Allfrey et al. proposed that histone acetylation regulates RNA synthesis, and the study of histone modifications has progressed at an extraordinary pace for the past two decades. In this review, we provide a perspective on some key events and advances in our understanding of histone modifications. We also highlight reagents and tools from past to present that facilitated progress in this research field. Using histone H3 phosphorylation as an underlying thread, we review the rationale that led to the proposal of the histone code hypothesis, as well as examples that illustrate the concepts of combinatorial histone modifications and cross-talk pathways. We further highlight the importance of investigating these mechanisms in the context of nucleosomes rather than just at the histone level and present current and developing approaches for such studies. Overall, research on histone modifications has yielded great mechanistic insights into the regulation of genomic functions, and extending these studies using nucleosomes will further elucidate the complexity of these pathways in a more physiologically relevant context.

  4. Bisalbuminemia. A new molecular variant, albumin Vancouver.

    PubMed

    Frohlich, J; Kozier, J; Campbell, D J; Curnow, J V; Tárnoky, A L

    1978-11-01

    Of 18 members of a Fiji Indian family investigated, eight of the 12 males and two of the six females had an electrophoretically slow-type bisalbuminemia (alloalbuminemia). The albumin was characterized by the hiterto unique ratio of the two bands (Al A 35%: variant 65%), and by dye-binding studies and electrophoretic mobility in different media. The data suggest that this is a new variant, which we propose to call albumin Vancouver (Al Va).

  5. Cell-cycle-regulated control of VSG expression site silencing by histones and histone chaperones ASF1A and CAF-1b in Trypanosoma brucei.

    PubMed

    Alsford, Sam; Horn, David

    2012-11-01

    Antigenic variation in African trypanosomes involves monoallelic expression and reversible silencing of variant surface glycoprotein (VSG) genes found adjacent to telomeres in polycistronic expression sites (ESs). We assessed the impact on ES silencing of five candidate essential chromatin-associated factors that emerged from a genome-wide RNA interference viability screen. Using this approach, we demonstrate roles in VSG ES silencing for two histone chaperones. Defects in S-phase progression in cells depleted for histone H3, or either chaperone, highlight in particular the link between chromatin assembly and DNA replication control. S-phase checkpoint arrest was incomplete, however, allowing G2/M-specific VSG ES derepression following knockdown of histone H3. In striking contrast, knockdown of anti-silencing factor 1A (ASF1A) allowed for derepression at all cell cycle stages, whereas knockdown of chromatin assembly factor 1b (CAF-1b) revealed derepression predominantly in S-phase and G2/M. Our results support a central role for chromatin in maintaining VSG ES silencing. ASF1A and CAF-1b appear to play constitutive and DNA replication-dependent roles, respectively, in the recycling and assembly of chromatin. Defects in these functions typically lead to arrest in S-phase but defective cells can also progress through the cell cycle leading to nucleosome depletion and derepression of telomeric VSG ESs.

  6. Defective histone supply causes changes in RNA polymerase II elongation rate and cotranscriptional pre-mRNA splicing.

    PubMed

    Jimeno-González, Silvia; Payán-Bravo, Laura; Muñoz-Cabello, Ana M; Guijo, Macarena; Gutierrez, Gabriel; Prado, Félix; Reyes, José C

    2015-12-01

    RNA polymerase II (RNAPII) transcription elongation is a highly regulated process that greatly influences mRNA levels as well as pre-mRNA splicing. Despite many studies in vitro, how chromatin modulates RNAPII elongation in vivo is still unclear. Here, we show that a decrease in the level of available canonical histones leads to more accessible chromatin with decreased levels of canonical histones and variants H2A.X and H2A.Z and increased levels of H3.3. With this altered chromatin structure, the RNAPII elongation rate increases, and the kinetics of pre-mRNA splicing is delayed with respect to RNAPII elongation. Consistent with the kinetic model of cotranscriptional splicing, the rapid RNAPII elongation induced by histone depletion promotes the skipping of variable exons in the CD44 gene. Indeed, a slowly elongating mutant of RNAPII was able to rescue this defect, indicating that the defective splicing induced by histone depletion is a direct consequence of the increased elongation rate. In addition, genome-wide analysis evidenced that histone reduction promotes widespread alterations in pre-mRNA processing, including intron retention and changes in alternative splicing. Our data demonstrate that pre-mRNA splicing may be regulated by chromatin structure through the modulation of the RNAPII elongation rate.

  7. Defective histone supply causes changes in RNA polymerase II elongation rate and cotranscriptional pre-mRNA splicing

    PubMed Central

    Jimeno-González, Silvia; Payán-Bravo, Laura; Muñoz-Cabello, Ana M.; Guijo, Macarena; Gutierrez, Gabriel; Prado, Félix; Reyes, José C.

    2015-01-01

    RNA polymerase II (RNAPII) transcription elongation is a highly regulated process that greatly influences mRNA levels as well as pre-mRNA splicing. Despite many studies in vitro, how chromatin modulates RNAPII elongation in vivo is still unclear. Here, we show that a decrease in the level of available canonical histones leads to more accessible chromatin with decreased levels of canonical histones and variants H2A.X and H2A.Z and increased levels of H3.3. With this altered chromatin structure, the RNAPII elongation rate increases, and the kinetics of pre-mRNA splicing is delayed with respect to RNAPII elongation. Consistent with the kinetic model of cotranscriptional splicing, the rapid RNAPII elongation induced by histone depletion promotes the skipping of variable exons in the CD44 gene. Indeed, a slowly elongating mutant of RNAPII was able to rescue this defect, indicating that the defective splicing induced by histone depletion is a direct consequence of the increased elongation rate. In addition, genome-wide analysis evidenced that histone reduction promotes widespread alterations in pre-mRNA processing, including intron retention and changes in alternative splicing. Our data demonstrate that pre-mRNA splicing may be regulated by chromatin structure through the modulation of the RNAPII elongation rate. PMID:26578803

  8. A novel histone H4 mutant defective in nuclear division and mitotic chromosome transmission.

    PubMed Central

    Smith, M M; Yang, P; Santisteban, M S; Boone, P W; Goldstein, A T; Megee, P C

    1996-01-01

    The histone proteins are essential for the assembly and function of th e eukaryotic chromosome. Here we report the first isolation of a temperature-sensitive lethal histone H4 mutant defective in mitotic chromosome transmission Saccharomyces cerevisiae. The mutant requires two amino acid substitutions in histone H4: a lethal Thr-to-Ile change at position 82, which lies within one of the DNA-binding surfaces of the protein, and a substitution of Ala to Val at position 89 that is an intragenic suppressor. Genetic and biochemical evidence shows that the mutant histone H4 is temperature sensitive for function but not for synthesis, deposition, or stability. The chromatin structure of 2 micrometer circle minichromosomes is temperature sensitive in vivo, consistent with a defect in H4-DNA interactions. The mutant also has defects in transcription, displaying weak Spt- phenotypes. At the restrictive temperature, mutant cells arrest in the cell cycle at nuclear division, with a large bud, a single nucleus with 2C DNA content, and a short bipolar spindle. At semipermissive temperatures, the frequency of chromosome loss is elevated 60-fold in the mutant while DNA recombination frequencies are unaffected. High-copy CSE4, encoding an H3 variant related to the mammalian CENP-A kinetochore antigen, was found to suppress the temperature sensitivity of the mutant without suppressing the Spt- transcription defect. These genetic, biochemical, and phenotypic results indicate that this novel histone H4 mutant defines one or more chromatin-dependent steps in chromosome segregation. PMID:8622646

  9. A Histone Map of Human Chromosome 20q13.12

    PubMed Central

    Akan, Pelin; Sahlén, Martin; Deloukas, Panagiotis

    2009-01-01

    Background We present a systematic search for regulatory elements in a 3.5 Mb region on human chromosome 20q13.12, a region associated with a number of medical conditions such as type II diabetes and obesity. Methodology/Principal Findings We profiled six histone modifications alongside RNA polymerase II (PolII) and CTCF in two cell lines, HeLa S3 and NTERA-2 clone D1 (NT2/D1), by chromatin immunoprecipitation using an in-house spotted DNA array, constructed with 1.8 kb overlapping plasmid clones. In both cells, more than 90% of transcription start sites (TSSs) of expressed genes showed enrichments with PolII, di-methylated lysine 4 of histone H3 (H3K4me2), tri-methylated lysine 4 of histone H3 (H3K4me3) or acetylated H3 (H3Ac), whereas mono-methylated lysine 4 of histone H3 (H3K4me1) signals did not correlate with expression. No TSSs were enriched with tri-methylated lysine 27 of histone H3 (H3K27me3) in HeLa S3, while eight TSSs (4 expressed) showed enrichments in NT2/D1. We have also located several CTCF binding sites that are potential insulator elements. Conclusions/Significance In summary, we annotated a number of putative regulatory elements in 20q13.12 and went on to verify experimentally a subset of them using dual luciferase reporter assays. Correlating this data to sequence variation can aid identification of disease causing variants. PMID:19229332

  10. Epigenetic Modifications of Histones in Periodontal Disease.

    PubMed

    Martins, M D; Jiao, Y; Larsson, L; Almeida, L O; Garaicoa-Pazmino, C; Le, J M; Squarize, C H; Inohara, N; Giannobile, W V; Castilho, R M

    2016-02-01

    Periodontitis is a chronic infectious disease driven by dysbiosis, an imbalance between commensal bacteria and the host organism. Periodontitis is a leading cause of tooth loss in adults and occurs in about 50% of the US population. In addition to the clinical challenges associated with treating periodontitis, the progression and chronic nature of this disease seriously affect human health. Emerging evidence suggests that periodontitis is associated with mechanisms beyond bacteria-induced protein and tissue degradation. Here, we hypothesize that bacteria are able to induce epigenetic modifications in oral epithelial cells mediated by histone modifications. In this study, we found that dysbiosis in vivo led to epigenetic modifications, including acetylation of histones and downregulation of DNA methyltransferase 1. In addition, in vitro exposure of oral epithelial cells to lipopolysaccharides resulted in histone modifications, activation of transcriptional coactivators, such as p300/CBP, and accumulation of nuclear factor-κB (NF-κB). Given that oral epithelial cells are the first line of defense for the periodontium against bacteria, we also evaluated whether activation of pathogen recognition receptors induced histone modifications. We found that activation of the Toll-like receptors 1, 2, and 4 and the nucleotide-binding oligomerization domain protein 1 induced histone acetylation in oral epithelial cells. Our findings corroborate the emerging concept that epigenetic modifications play a role in the development of periodontitis. © International & American Associations for Dental Research 2015.

  11. Histone chaperone-mediated nucleosome assembly process.

    PubMed

    Fan, Hsiu-Fang; Liu, Zi-Ning; Chow, Sih-Yao; Lu, Yi-Han; Li, Hsin

    2015-01-01

    A huge amount of information is stored in genomic DNA and this stored information resides inside the nucleus with the aid of chromosomal condensation factors. It has been reported that the repeat nucleosome core particle (NCP) consists of 147-bp of DNA and two copies of H2A, H2B, H3 and H4. Regulation of chromosomal structure is important to many processes inside the cell. In vivo, a group of histone chaperones facilitate and regulate nucleosome assembly. How NCPs are constructed with the aid of histone chaperones remains unclear. In this study, the histone chaperone-mediated nucleosome assembly process was investigated using single-molecule tethered particle motion (TPM) experiments. It was found that Asf1 is able to exert more influence than Nap1 and poly glutamate acid (PGA) on the nucleosome formation process, which highlights Asf1's specific role in tetrasome formation. Thermodynamic parameters supported a model whereby energetically favored nucleosomal complexes compete with non-nucleosomal complexes. In addition, our kinetic findings propose the model that histone chaperones mediate nucleosome assembly along a path that leads to enthalpy-favored products with free histones as reaction substrates.

  12. DNA-histone interactions in nucleosomes

    SciTech Connect

    Van Holde, K.E.; Allen, J.R.; Tatchell, K.; Weischet, W.O.; Lohr, D.

    1980-10-01

    We have utilized micrococcal nuclease digestion and thermal denaturation studies to investigate the binding of DNA to the histone core of the nucleosome. We conclude that a total of approx. 168 base pairs (bp) of DNA can interact with the histone core under appropriate solution conditions, even in the absence of lysine-rich histones. The interactions in this total length of DNA can be divided into three classes: (a) approx. 22 bp at the ends is bound only at moderate ionic strength. It is easily displaced, and its removal yields the 146 bp core particle; (b) approx. 46 bp near the ends of the core DNA are quite weakly bound to the core, and are displaced at quite moderate temperatures; (c) the remaining central 100 bp are strongly bound, and interact with all of the sites on the histones which strongly protect DNA against DNAse I digestion. A theoretical analysis of the cleavage of nucleosomal DNA by DNAse I has been used to develop evidence that the pattern of protection offered by the histone core is very similar in nuclei to that in isolated core particles.

  13. Detection of histone modifications in plant leaves.

    PubMed

    Jaskiewicz, Michal; Peterhansel, Christoph; Conrath, Uwe

    2011-09-23

    Chromatin structure is important for the regulation of gene expression in eukaryotes. In this process, chromatin remodeling, DNA methylation, and covalent modifications on the amino-terminal tails of histones H3 and H4 play essential roles(1-2). H3 and H4 histone modifications include methylation of lysine and arginine, acetylation of lysine, and phosphorylation of serine residues(1-2). These modifications are associated either with gene activation, repression, or a primed state of gene that supports more rapid and robust activation of expression after perception of appropriate signals (microbe-associated molecular patterns, light, hormones, etc.)(3-7). Here, we present a method for the reliable and sensitive detection of specific chromatin modifications on selected plant genes. The technique is based on the crosslinking of (modified) histones and DNA with formaldehyde(8,9), extraction and sonication of chromatin, chromatin immunoprecipitation (ChIP) with modification-specific antibodies(9,10), de-crosslinking of histone-DNA complexes, and gene-specific real-time quantitative PCR. The approach has proven useful for detecting specific histone modifications associated with C(4;) photosynthesis in maize(5,11) and systemic immunity in Arabidopsis(3).

  14. The role of histone ubiquitination during spermatogenesis.

    PubMed

    Sheng, Kai; Liang, Xiaotong; Huang, Sizhou; Xu, Wenming

    2014-01-01

    Protein ubiquitin-proteasome (ubiquitin-proteasome) system is the major mechanism responsible for protein degradation in eukaryotic cell. During spermatogenesis, the replacement of histone by protamine is vital for normal sperm formation, which is involved in ubiquitination enzymes expressed in testis. Recently, histone ubiquitin ligases have been shown to play critical roles in several aspects of spermatogenesis, such as meiotic sex chromosome inactivation (MSCI), DNA damage response, and spermiogenesis. In this review, we highlight recent progress in the discovery of several histone ubiquitin ligases and elaborate mechanisms of how these enzymes are involved in these processes through knockout mouse model. Using Huwe1, UBR2, and RNF8 as examples, we emphasized the diverse functions for each enzyme and the broad involvement of these enzymes in every stage, from spermatogonia differentiation and meiotic division to spermiogenesis; thus histone ubiquitin ligases represent a class of enzymes, which play important roles in spermatogenesis through targeting histone for ubiquitination and therefore are involved in transcription regulation, epigenetic modification, and other processes essential for normal gametes formation.

  15. Histones bundle F-actin filaments and affect actin structure.

    PubMed

    Blotnick, Edna; Sol, Asaf; Muhlrad, Andras

    2017-01-01

    Histones are small polycationic proteins complexed with DNA located in the cell nucleus. Upon apoptosis they are secreted from the cells and react with extracellular polyanionic compounds. Actin which is a polyanionic protein, is also secreted from necrotic cells and interacts with histones. We showed that both histone mixture (histone type III) and the recombinant H2A histone bundles F-actin, increases the viscosity of the F-actin containing solution and polymerizes G-actin. The histone-actin bundles are relatively insensitive to increase of ionic strength, unlike other polycation, histatin, lysozyme, spermine and LL-37 induced F-actin bundles. The histone-actin bundles dissociate completely only in the presence of 300-400 mM NaCl. DNA, which competes with F-actin for histones, disassembles histone induced actin bundles. DNase1, which depolymerizes F- to G-actin, actively unbundles the H2A histone induced but slightly affects the histone mixture induced actin bundles. Cofilin decreases the amount of F-actin sedimented by low speed centrifugation, increases light scattering and viscosity of F-actin-histone mixture containing solutions and forms star like superstructures by copolymerizing G-actin with H2A histone. The results indicate that histones are tightly attached to F-actin by strong electrostatic and hydrophobic forces. Since both histones and F-actin are present in the sputum of patients with cystic fibrosis, therefore, the formation of the stable histone-actin bundles can contribute to the pathology of this disease by increasing the viscosity of the sputum. The actin-histone interaction in the nucleus might affect gene expression.

  16. Citrullination regulates pluripotency and histone H1 binding to chromatin

    NASA Astrophysics Data System (ADS)

    Christophorou, Maria A.; Castelo-Branco, Gonçalo; Halley-Stott, Richard P.; Oliveira, Clara Slade; Loos, Remco; Radzisheuskaya, Aliaksandra; Mowen, Kerri A.; Bertone, Paul; Silva, José C. R.; Zernicka-Goetz, Magdalena; Nielsen, Michael L.; Gurdon, John B.; Kouzarides, Tony

    2014-03-01

    Citrullination is the post-translational conversion of an arginine residue within a protein to the non-coded amino acid citrulline. This modification leads to the loss of a positive charge and reduction in hydrogen-bonding ability. It is carried out by a small family of tissue-specific vertebrate enzymes called peptidylarginine deiminases (PADIs) and is associated with the development of diverse pathological states such as autoimmunity, cancer, neurodegenerative disorders, prion diseases and thrombosis. Nevertheless, the physiological functions of citrullination remain ill-defined, although citrullination of core histones has been linked to transcriptional regulation and the DNA damage response. PADI4 (also called PAD4 or PADV), the only PADI with a nuclear localization signal, was previously shown to act in myeloid cells where it mediates profound chromatin decondensation during the innate immune response to infection. Here we show that the expression and enzymatic activity of Padi4 are also induced under conditions of ground-state pluripotency and during reprogramming in mouse. Padi4 is part of the pluripotency transcriptional network, binding to regulatory elements of key stem-cell genes and activating their expression. Its inhibition lowers the percentage of pluripotent cells in the early mouse embryo and significantly reduces reprogramming efficiency. Using an unbiased proteomic approach we identify linker histone H1 variants, which are involved in the generation of compact chromatin, as novel PADI4 substrates. Citrullination of a single arginine residue within the DNA-binding site of H1 results in its displacement from chromatin and global chromatin decondensation. Together, these results uncover a role for citrullination in the regulation of pluripotency and provide new mechanistic insights into how citrullination regulates chromatin compaction.

  17. Histones induce rapid and profound thrombocytopenia in mice

    PubMed Central

    Bhandari, Ashish A.

    2011-01-01

    Histones are released from dying cells and contribute to antimicrobial defense during infection. However, extracellular histones are a double-edged sword because they also damage host tissue and may cause death. We studied the interactions of histones with platelets. Histones bound to platelets, induced calcium influx, and recruited plasma adhesion proteins such as fibrinogen to induce platelet aggregation. Hereby fibrinogen cross-linked histone-bearing platelets and triggered microaggregation. Fibrinogen interactions with αIIbβ3 integrins were not required for this process but were necessary for the formation of large platelet aggregates. Infused histones associated with platelets in vivo and caused a profound thrombocytopenia within minutes after administration. Mice lacking platelets or αIIbβ3 integrins were protected from histone-induced death but not from histone-induced tissue damage. Heparin, at high concentrations, prevented histone interactions with platelets and protected mice from histone-induced thrombocytopenia, tissue damage, and death. Heparin and histones are evolutionary maintained. Histones may combine microbicidal with prothrombotic properties to fight invading microbes and maintain hemostasis after injury. Heparin may provide an innate counter mechanism to neutralize histones and diminish collateral tissue damage. PMID:21700775

  18. Acetylation of retinal histones in diabetes increases inflammatory proteins: effects of minocycline and manipulation of histone acetyltransferase (HAT) and histone deacetylase (HDAC).

    PubMed

    Kadiyala, Chandra Sekhar Rao; Zheng, Ling; Du, Yunpeng; Yohannes, Elizabeth; Kao, Hung-Ying; Miyagi, Masaru; Kern, Timothy S

    2012-07-27

    Histone acetylation was significantly increased in retinas from diabetic rats, and this acetylation was inhibited in diabetics treated with minocycline, a drug known to inhibit early diabetic retinopathy in animals. Histone acetylation and expression of inflammatory proteins that have been implicated in the pathogenesis of diabetic retinopathy were increased likewise in cultured retinal Müller glia grown in a diabetes-like concentration of glucose. Both the acetylation and induction of the inflammatory proteins in elevated glucose levels were significantly inhibited by inhibitors of histone acetyltransferase (garcinol and antisense against the histone acetylase, p300) or activators of histone deacetylase (theophylline and resveratrol) and were increased by the histone deacetylase inhibitor, suberolylanilide hydroxamic acid. We conclude that hyperglycemia causes acetylation of retinal histones (and probably other proteins) and that the acetylation contributes to the hyperglycemia-induced up-regulation of proinflammatory proteins and thereby to the development of diabetic retinopathy.

  19. Extracellular histone release in response to traumatic injury: implications for a compensatory role of activated Protein C

    PubMed Central

    Kutcher, Matthew E; Xu, Jun; Vilardi, Ryan F; Ho, Coral; Esmon, Charles T; Cohen, Mitchell Jay

    2013-01-01

    Background Tissue injury leads to release of damage-associated molecular patterns (DAMPs) that may drive a sterile inflammatory response; however, the role of extracellular histones after traumatic injury remains unexplored. We hypothesized that extracellular histones would be increased and associated with poor outcomes after traumatic injury. Methods In this prognostic study, plasma was prospectively collected from 132 critically injured trauma patients on arrival and 6h after admission to an urban level I trauma ICU. Circulating extracellular histone levels and plasma clotting factors were assayed, and linked to resuscitation and outcomes data. Results Of 132 patients, histone levels were elevated to a median of 14.0 absorbance units (AU) on arrival, declining to 6.4 AU by 6h. Patients with elevated admission histone levels had higher injury severity score, lower admission GCS, more days of mechanical ventilation, and higher incidences of multiorgan failure, acute lung injury, and mortality (all p ≤0.05). Histone levels correlated with prolonged INR and PTT, fibrinolytic markers D-dimer and tissue-type plasminogen activator, and anticoagulants tissue factor pathway inhibitor and activated Protein C (aPC; all p < 0.03). Increasing histone level from admission to 6h was a multivariate predictor of mortality (hazard ratio 1.005, p=0.013). When aPC level trends were included, the impact of histone level increase on mortality was abrogated (p=0.206) by a protective effect of increasing aPC levels (hazard ratio 0.900, p=0.020). Conclusions Extracellular histones are elevated in response to traumatic injury, and correlate with fibrinolysis and activation of anticoagulants. An increase in histone levels from admission to 6h is predictive of mortality, representing evidence of ongoing release of intracellular antigens similar to that seen in sepsis. Concomitant elevation of aPC abrogates this effect, suggesting a possible role for aPC in mitigating the sterile

  20. The FACT Histone Chaperone Guides Histone H4 Into Its Nucleosomal Conformation in Saccharomyces cerevisiae

    PubMed Central

    McCullough, Laura; Poe, Bryan; Connell, Zaily; Xin, Hua; Formosa, Tim

    2013-01-01

    The pob3-Q308K mutation alters the small subunit of the Saccharomyces cerevisiae histone/nucleosome chaperone Facilitates Chromatin Transactions (FACT), causing defects in both transcription and DNA replication. We describe histone mutations that suppress some of these defects, providing new insight into the mechanism of FACT activity in vivo. FACT is primarily known for its ability to promote reorganization of nucleosomes into a more open form, but neither the pob3-Q308K mutation nor the compensating histone mutations affect this activity. Instead, purified mutant FACT complexes fail to release from nucleosomes efficiently, and the histone mutations correct this flaw. We confirm that pob3-T252E also suppresses pob3-Q308K and show that combining two suppressor mutations can be detrimental, further demonstrating the importance of balance between association and dissociation for efficient FACT:nucleosome interactions. To explain our results, we propose that histone H4 can adopt multiple conformations, most of which are incompatible with nucleosome assembly. FACT guides H4 to adopt appropriate conformations, and this activity can be enhanced or diminished by mutations in Pob3 or histones. FACT can therefore destabilize nucleosomes by favoring the reorganized state, but it can also promote assembly by tethering histones and DNA together and maintaining them in conformations that promote canonical nucleosome formation. PMID:23833181

  1. Antifungal properties of wheat histones (H1-H4) and purified wheat histone H1.

    PubMed

    De Lucca, Anthony J; Heden, Lars-Olof; Ingber, Bruce; Bhatnagar, Deepak

    2011-07-13

    Wheat ( Triticum spp.) histones H1, H2, H3, and H4 were extracted, and H1 was further purified. The effect of these histones on specific fungi that may or may not be pathogenic to wheat was determined. These fungi included Aspergillus flavus , Aspergillus fumigatus , Aspergillus niger , Fusarium oxysporum , Fusarium verticillioides , Fusarium solani , Fusarium graminearum , Penicillium digitatum , Penicillium italicum , and Greeneria uvicola . Non-germinated and germinating conidia of these fungi were bioassayed separately. The non-germinated and germinating conidia of all Fusarium species were highly susceptible to the mixture (H1-H4) as well as pure H1, with viability losses of 99-100% found to be significant (p < 0.001) at ≤10 μM or less for the histone mixture and pure H1. F. graminearum was the most sensitive to histone activity. The histones were inactive against all of the non-germinated Penicillium spp. conidia. However, they significantly reduced the viability of the germinating conidia of the Penicillium spp. conidia, with 95% loss at 2.5 μM. Non-germinated and germinating conidia viability of the Aspergillus spp. and G. uvicola were unaffected when exposed to histones up to 10 μM. Results indicate that Fusarium spp. pathogenic to wheat are susceptible to wheat histones, indicating that these proteins may be a resistance mechanism in wheat against fungal infection.

  2. H1 histones: current perspectives and challenges.

    PubMed

    Harshman, Sean W; Young, Nicolas L; Parthun, Mark R; Freitas, Michael A

    2013-11-01

    H1 and related linker histones are important both for maintenance of higher-order chromatin structure and for the regulation of gene expression. The biology of the linker histones is complex, as they are evolutionarily variable, exist in multiple isoforms and undergo a large variety of posttranslational modifications in their long, unstructured, NH2- and COOH-terminal tails. We review recent progress in understanding the structure, genetics and posttranslational modifications of linker histones, with an emphasis on the dynamic interactions of these proteins with DNA and transcriptional regulators. We also discuss various experimental challenges to the study of H1 and related proteins, including limitations of immunological reagents and practical difficulties in the analysis of posttranslational modifications by mass spectrometry.

  3. [Structure and function of histone chaperone FACT].

    PubMed

    Bondarenko, M T; Maluchenko, N V; Valieva, M E; Gerasimova, N S; Kulaeva, O I; Georgiev, P G; Studitsky, V M

    2015-01-01

    FACT is heterodimer protein complex and histone chaperone that plays an important role in maintaining and modifying chromatin structure during various DNA-dependent processes. FACT is involved in nucleosome assembly de novo and in the preservation and recovery of the nucleosome structure during and after transcription, replication and repair of DNA. During transcript elongation FACT reduces the height of the nucleosome barrier and supports survival of the nucleosomes during and after passage of RNA polymerase II. In this process FACT interacts with histone H2A-H2B dimer in nucleosomes, thus facilitating uncoiling of nucleosomal DNA from the octamer of histones; it also facilitates subsequent recovery of the canonical structure of the nucleosome after transcription. FACT also plays an important role in transformation of human cells and in maintaining the viability of the tumor cells.

  4. Constraints, histones, and the 30-nm spiral

    NASA Astrophysics Data System (ADS)

    Zandi, Roya; Rudnick, Joseph

    2001-11-01

    We investigate the mechanical stability of a segment of DNA wrapped around a histone in the nucleosome configuration, under the assumption that the proper model for this packaging arrangement is that of an elastic rod that is free to twist and that writhes subject to mechanical constraints. We find that the number of constraints required to stabilize the nuclesome configuration is determined by the length of the segment, the number of times the DNA wraps around the histone spool, and the specific constraints utilized. While it can be shown that four constraints suffice, in principle, to insure stability of the nucleosome, a proper choice must be made to guarantee the effectiveness of this minimal number. The optimal choice of constraints appears to bear a relation to the existence of a spiral ridge on the surface of the histone octamer. The particular configuration that we investigate is related to the 30-nm spiral, a higher-order organization of DNA in chromatin.

  5. The Cajal Body and Histone Locus Body

    PubMed Central

    Nizami, Zehra; Deryusheva, Svetlana; Gall, Joseph G.

    2010-01-01

    The Cajal body (CB) is a nuclear organelle present in all eukaryotes that have been carefully studied. It is identified by the signature protein coilin and by CB-specific RNAs (scaRNAs). CBs contain high concentrations of splicing small nuclear ribonucleoproteins (snRNPs) and other RNA processing factors, suggesting that they are sites for assembly and/or posttranscriptional modification of the splicing machinery of the nucleus. The histone locus body (HLB) contains factors required for processing histone pre-mRNAs. As its name implies, the HLB is associated with the genes that code for histones, suggesting that it may function to concentrate processing factors at their site of action. CBs and HLBs are present throughout the interphase of the cell cycle, but disappear during mitosis. The biogenesis of CBs shows the features of a self-organizing structure. PMID:20504965

  6. H1 histones: current perspectives and challenges

    PubMed Central

    Harshman, Sean W.; Young, Nicolas L.; Parthun, Mark R.; Freitas, Michael A.

    2013-01-01

    H1 and related linker histones are important both for maintenance of higher-order chromatin structure and for the regulation of gene expression. The biology of the linker histones is complex, as they are evolutionarily variable, exist in multiple isoforms and undergo a large variety of posttranslational modifications in their long, unstructured, NH2- and COOH-terminal tails. We review recent progress in understanding the structure, genetics and posttranslational modifications of linker histones, with an emphasis on the dynamic interactions of these proteins with DNA and transcriptional regulators. We also discuss various experimental challenges to the study of H1 and related proteins, including limitations of immunological reagents and practical difficulties in the analysis of posttranslational modifications by mass spectrometry. PMID:23945933

  7. Chemical and semisynthesis of modified histones.

    PubMed

    Maity, Suman Kumar; Jbara, Muhammad; Brik, Ashraf

    2016-05-01

    Post-translational modifications (PTMs) of histones play critical roles in the epigenetic regulation of eukaryotic genome by directly altering the biophysical properties of chromatin or by recruiting effector proteins. The large number of PTMs and the inherent complexity in their population and signaling processes make it highly challenging to understand epigenetics-related processes. To address these challenges, accesses to homogeneously modified histones are obligatory. Over the last decade, synthetic protein chemists have been devising novel synthetic tools and applying state-of-the-art chemoselective ligation strategies to prepare precious materials useful in answering fundamental questions in this area. In this short review, we cover some of the recent breakthroughs in these directions in particular the synthesis and semi-synthesis of modified histones and their use to unravel the mysteries of epigenetics. Copyright © 2016 European Peptide Society and John Wiley & Sons, Ltd.

  8. Nickel compounds induce histone ubiquitination by inhibiting histone deubiquitinating enzyme activity

    SciTech Connect

    Ke Qingdong; Ellen, Thomas P.; Costa, Max

    2008-04-15

    Nickel (Ni) compounds are known carcinogens but underlying mechanisms are not clear. Epigenetic changes are likely to play an important role in nickel ion carcinogenesis. Previous studies have shown epigenetic effects of nickel ions, including the loss of histone acetylation and a pronounced increase in dimethylated H3K9 in nickel-exposed cells. In this study, we demonstrated that both water-soluble and insoluble nickel compounds induce histone ubiquitination (uH2A and uH2B) in a variety of cell lines. Investigations of the mechanism by which nickel increases histone ubiquitination in cells reveal that nickel does not affect cellular levels of the substrates of this modification, i.e., ubiquitin, histones, and other non-histone ubiquitinated proteins. In vitro ubiquitination and deubiquitination assays have been developed to further investigate possible effects of nickel on enzymes responsible for histone ubiquitination. Results from the in vitro assays demonstrate that the presence of nickel did not affect the levels of ubiquitinated histones in the ubiquitinating assay. Instead, the addition of nickel significantly prevents loss of uH2A and uH2B in the deubiquitinating assay, suggesting that nickel-induced histone ubiquitination is the result of inhibition of (a) putative deubiquitinating enzyme(s). Additional supporting evidence comes from the comparison of the response to nickel ions with a known deubiquitinating enzyme inhibitor, iodoacetamide (IAA). This study is the first to demonstrate such effects of nickel ions on histone ubiquitination. It also sheds light on the possible mechanisms involved in altering the steady state of this modification. The study provides further evidence that supports the notion that nickel ions alter epigenetic homeostasis in cells, which may lead to altered programs of gene expression and carcinogenesis.

  9. histoneHMM: Differential analysis of histone modifications with broad genomic footprints.

    PubMed

    Heinig, Matthias; Colomé-Tatché, Maria; Taudt, Aaron; Rintisch, Carola; Schafer, Sebastian; Pravenec, Michal; Hubner, Norbert; Vingron, Martin; Johannes, Frank

    2015-02-22

    ChIP-seq has become a routine method for interrogating the genome-wide distribution of various histone modifications. An important experimental goal is to compare the ChIP-seq profiles between an experimental sample and a reference sample, and to identify regions that show differential enrichment. However, comparative analysis of samples remains challenging for histone modifications with broad domains, such as heterochromatin-associated H3K27me3, as most ChIP-seq algorithms are designed to detect well defined peak-like features. To address this limitation we introduce histoneHMM, a powerful bivariate Hidden Markov Model for the differential analysis of histone modifications with broad genomic footprints. histoneHMM aggregates short-reads over larger regions and takes the resulting bivariate read counts as inputs for an unsupervised classification procedure, requiring no further tuning parameters. histoneHMM outputs probabilistic classifications of genomic regions as being either modified in both samples, unmodified in both samples or differentially modified between samples. We extensively tested histoneHMM in the context of two broad repressive marks, H3K27me3 and H3K9me3, and evaluated region calls with follow up qPCR as well as RNA-seq data. Our results show that histoneHMM outperforms competing methods in detecting functionally relevant differentially modified regions. histoneHMM is a fast algorithm written in C++ and compiled as an R package. It runs in the popular R computing environment and thus seamlessly integrates with the extensive bioinformatic tool sets available through Bioconductor. This makeshistoneHMM an attractive choice for the differential analysis of ChIP-seq data. Software is available from http://histonehmm.molgen.mpg.de .

  10. Telomeres, histone code, and DNA damage response.

    PubMed

    Misri, S; Pandita, S; Kumar, R; Pandita, T K

    2008-01-01

    Genomic stability is maintained by telomeres, the end terminal structures that protect chromosomes from fusion or degradation. Shortening or loss of telomeric repeats or altered telomere chromatin structure is correlated with telomere dysfunction such as chromosome end-to-end associations that could lead to genomic instability and gene amplification. The structure at the end of telomeres is such that its DNA differs from DNA double strand breaks (DSBs) to avoid nonhomologous end-joining (NHEJ), which is accomplished by forming a unique higher order nucleoprotein structure. Telomeres are attached to the nuclear matrix and have a unique chromatin structure. Whether this special structure is maintained by specific chromatin changes is yet to be thoroughly investigated. Chromatin modifications implicated in transcriptional regulation are thought to be the result of a code on the histone proteins (histone code). This code, involving phosphorylation, acetylation, methylation, ubiquitylation, and sumoylation of histones, is believed to regulate chromatin accessibility either by disrupting chromatin contacts or by recruiting non-histone proteins to chromatin. The histone code in which distinct histone tail-protein interactions promote engagement may be the deciding factor for choosing specific DSB repair pathways. Recent evidence suggests that such mechanisms are involved in DNA damage detection and repair. Altered telomere chromatin structure has been linked to defective DNA damage response (DDR), and eukaryotic cells have evolved DDR mechanisms utilizing proficient DNA repair and cell cycle checkpoints in order to maintain genomic stability. Recent studies suggest that chromatin modifying factors play a critical role in the maintenance of genomic stability. This review will summarize the role of DNA damage repair proteins specifically ataxia-telangiectasia mutated (ATM) and its effectors and the telomere complex in maintaining genome stability.

  11. Histone modifications for human epigenome analysis.

    PubMed

    Kimura, Hiroshi

    2013-07-01

    Histones function both positively and negatively in the regulation of gene expression, mainly governed by post-translational modifications on specific amino acid residues. Although histone modifications are not necessarily prerequisite codes, they may still serve as good epigenetic indicators of chromatin state associated with gene activation or repression. In particular, six emerging classes of histone H3 modifications are subjected for epigenome profiling by the International Human Epigenome Consortium. In general, transcription start sites of actively transcribed genes are marked by trimethylated H3K4 (H3K4me3) and acetylated H3K27 (H3K27ac), and active enhancers can be identified by enrichments of both monomethylated H3K4 (H3K4me1) and H3K27ac. Gene bodies of actively transcribed genes are associated with trimethylated H3K36 (H3K36me3). Gene repression can be mediated through two distinct mechanisms involving trimethylated H3K9 (H3K9me3) and trimethylated H3K27 (H3K27me3). Enrichments of these histone modifications on specific loci, or in genome wide, in given cells can be analyzed by chromatin immunoprecipitation (ChIP)-based methods using an antibody directed against the site-specific modification. When performing ChIP experiments, one should be careful about the specificity of antibody, as this affects the data interpretation. If cell samples with preserved histone-DNA contacts are available, evaluation of histone modifications, in addition to DNA methylaion, at specific gene loci would be useful for deciphering the epigenome state for human genetics studies.

  12. Telomeres, histone code, and DNA damage response

    PubMed Central

    Misri, S.; Pandita, S.; Kumar, R.; Pandita, T.K.

    2009-01-01

    Genomic stability is maintained by telomeres, the end terminal structures that protect chromosomes from fusion or degradation. Shortening or loss of telomeric repeats or altered telomere chromatin structure is correlated with telomere dysfunction such as chromosome end-to-end associations that could lead to genomic instability and gene amplification. The structure at the end of telomeres is such that its DNA differs from DNA double strand breaks (DSBs) to avoid nonhomologous end-joining (NHEJ), which is accomplished by forming a unique higher order nucleoprotein structure. Telomeres are attached to the nuclear matrix and have a unique chromatin structure. Whether this special structure is maintained by specific chromatin changes is yet to be thoroughly investigated. Chromatin modifications implicated in transcriptional regulation are thought to be the result of a code on the histone proteins (histone code). This code, involving phosphorylation, acetylation, methylation, ubiquitylation, and sumoylation of histones, is believed to regulate chromatin accessibility either by disrupting chromatin contacts or by recruiting non-histone proteins to chromatin. The histone code in which distinct histone tail-protein interactions promote engagement may be the deciding factor for choosing specific DSB repair pathways. Recent evidence suggests that such mechanisms are involved in DNA damage detection and repair. Altered telomere chromatin structure has been linked to defective DNA damage response (DDR), and eukaryotic cells have evolved DDR mechanisms utilizing proficient DNA repair and cell cycle checkpoints in order to maintain genomic stability. Recent studies suggest that chromatin modifying factors play a critical role in the maintenance of genomic stability. This review will summarize the role of DNA damage repair proteins specifically ataxia-telangiectasia mutated (ATM) and its effectors and the telomere complex in maintaining genome stability. PMID:19188699

  13. Emerging roles of lysine methylation on non-histone proteins.

    PubMed

    Zhang, Xi; Huang, Yaling; Shi, Xiaobing

    2015-11-01

    Lysine methylation is a common posttranslational modification (PTM) of histones that is important for the epigenetic regulation of transcription and chromatin in eukaryotes. Increasing evidence demonstrates that in addition to histones, lysine methylation also occurs on various non-histone proteins, especially transcription- and chromatin-regulating proteins. In this review, we will briefly describe the histone lysine methyltransferases (KMTs) that have a broad spectrum of non-histone substrates. We will use p53 and nuclear receptors, especially estrogen receptor alpha, as examples to discuss the dynamic nature of non-histone protein lysine methylation, the writers, erasers, and readers of these modifications, and the crosstalk between lysine methylation and other PTMs in regulating the functions of the modified proteins. Understanding the roles of lysine methylation in normal cells and during development will shed light on the complex biology of diseases associated with the dysregulation of lysine methylation on both histones and non-histone proteins.

  14. Epigenomic functional characterization of genetic susceptibility variants in systemic vasculitis.

    PubMed

    Sawalha, Amr H; Dozmorov, Mikhail G

    2016-02-01

    Systemic vasculitides are poorly understood inflammatory diseases of the blood vessels that are frequently associated with significant organ damage. Genetic risk variants contribute to the susceptibility of vasculitis, but functional consequences of these genetic variants are largely unknown. Most genetic risk variants in immune-mediated diseases, including systemic vasculitis, are localized to non-coding genetic regions suggesting they might increase disease risk by influencing regulatory elements within the genome. Long range regulatory interactions pose an additional obstacle in localizing functional consequences associated with risk variants to specific genes or cell types. We used cell-type specific enrichment patterns of histone changes that mark poised, primed, and active enhancers, and DNase hypersensitivity to identify specific immune cells mediating genetic risk in vasculitis. Our data suggest that genetic risk variants in ANCA-associated vasculitis are significantly enriched in enhancer elements in Th17 cells, supporting a role for Th17 cells in this disease. Primed and active enhancer elements in B cells can be potentially affected by genetic risk variants associated with Kawasaki disease. Genetic risk in Behçet's disease and Takayasu arteritis might affect enhancer elements in multiple cell types, possibly explained by influencing enhancers in hematopoietic stem cells. Interestingly, our analyses indicate a role for B cells in Kawasaki disease, Behçet's disease, and Takayasu arteritis, and suggest that further work to characterize the involvement of B cells in these diseases is warranted.

  15. Comprehensive Catalog of Currently Documented Histone Modifications.

    PubMed

    Zhao, Yingming; Garcia, Benjamin A

    2015-09-01

    Modern techniques in molecular biology, genomics, and mass spectrometry-based proteomics have identified a large number of novel histone posttranslational modifications (PTMs), many of whose functions are still under intense investigation. Here, we catalog histone PTMs under two classes: first, those whose functions have been fairly well studied and, second, those PTMs that have been more recently identified but whose functions remain unclear. We hope that this will be a useful resource for researchers from all biological or technical backgrounds, aiding in their chromatin and epigenetic pursuits. Copyright © 2015 Cold Spring Harbor Laboratory Press; all rights reserved.

  16. Histone deacetylases: Targets for antifungal drug development

    PubMed Central

    Kmetzsch, Livia

    2015-01-01

    The interaction of pathogens and its hosts causes a drastic change in the transcriptional landscape in both cells. Among the several mechanisms of gene regulation, transcriptional initiation is probably the main point. In such scenario, the access of transcriptional machinery to promoter is highly regulated by post-translational modification of histones, such as acetylation, phosphorylation and others. Inhibition of histone deacetylases is able to reduce fungal pathogens fitness during infection and, therefore, is currently being considered for the development of new antifungal therapy strategies. PMID:26151486

  17. Regulation and function of histone acetyltransferase MOF.

    PubMed

    Yang, Yang; Han, Xiaofei; Guan, Jingyun; Li, Xiangzhi

    2014-03-01

    The mammalian MOF (male absent on the first), a member of the MYST (MOZ, YBF2, SAS2, and Tip60) family of histone acetyltransferases (HATs), is the major enzyme that catalyzes the acetylation of histone H4 on lysine 16. Acetylation of K16 is a prevalent mark associated with chromatin decondensation. MOF has recently been shown to play an essential role in maintaining normal cell functions. In this study, we discuss the important roles of MOF in DNA damage repair, apoptosis, and tumorigenesis. We also analyze the role of MOF as a key regulator of the core transcriptional network of embryonic stem cells.

  18. Modeling the dynamics of bivalent histone modifications.

    PubMed

    Ku, Wai Lim; Girvan, Michelle; Yuan, Guo-Cheng; Sorrentino, Francesco; Ott, Edward

    2013-01-01

    Epigenetic modifications to histones may promote either activation or repression of the transcription of nearby genes. Recent experimental studies show that the promoters of many lineage-control genes in stem cells have "bivalent domains" in which the nucleosomes contain both active (H3K4me3) and repressive (H3K27me3) marks. It is generally agreed that bivalent domains play an important role in stem cell differentiation, but the underlying mechanisms remain unclear. Here we formulate a mathematical model to investigate the dynamic properties of histone modification patterns. We then illustrate that our modeling framework can be used to capture key features of experimentally observed combinatorial chromatin states.

  19. A new family of tandem repetitive early histone genes in the sea urchin Lytechinus pictus: evidence for concerted evolution within tandem arrays.

    PubMed Central

    Holt, C A; Childs, G

    1984-01-01

    We have isolated and characterized a third nonallelic tandemly arrayed histone cluster (LpE) from the sea urchin Lytechinus pictus. Although this tandem array is not intermingled with the other two early histone gene families also found in the L. pictus genome, the order and polarity of the five histone coding sequences in this family are the same as every other well characterized sea urchin early histone gene family. Heteroduplex analysis and restriction endonuclease mapping experiments indicate that the LpE family is more closely related to the B-C than the A-D family of early histone genes. Examination of several individual sperm DNA samples has revealed considerable polymorphism in each of the three tandem repeat families. Within an individual, however, each family is remarkably homogeneous. Thus, our results indicate that rapid fixation of variants acts to homogenize the members of a single tandem array at a considerably faster rate within a family than between families. However, at least some exchange of sequences between families is evident based on the conservation of many restriction endonuclease recognition sites and from analysis of a a cosmid clone in which the A-D and E tandem repeats are found adjacent to one another. These differences in the rate of fixation of variants within and between these families are likely to be responsible for the maintenance of diversity between the different families. Images PMID:6089115

  20. Lipid droplets control the maternal histone supply of Drosophila embryos

    PubMed Central

    Li, Zhihuan; Thiel, Katharina; Thul, Peter J.; Beller, Mathias; Kühnlein, Ronald P.; Welte, Michael A.

    2012-01-01

    Summary Background Histones are essential for chromatin packing, yet free histones not incorporated into chromatin are toxic. While in most cells multiple regulatory mechanisms prevent accumulation of excess histones, early Drosophila embryos contain massive extra-nuclear histone stores, thought to be essential for development. Excess histones H2A, H2B, and H2Av are bound to lipid droplets, ubiquitous fat storage organelles especially abundant in embryos. It has been proposed that sequestration on lipid droplets allows safe transient storage of supernumerary histones. Results Here we critically test this sequestration hypothesis. We find that histones are anchored to lipid droplets via the previously uncharacterized protein Jabba: Jabba localizes to droplets, co-immunoprecipitates with histones, and is necessary to recruit histones to droplets. Jabba mutants lack the maternal H2A, H2B, and H2Av deposits altogether; presumably, these deposits are eliminated unless sequestered on droplets. Jabba mutant embryos compensate for this histone deficit by translating maternal histone mRNAs. However, when histone expression is mildly compromised, the maternal histone protein deposits are essential for proper early mitoses and for viability. Conclusions A growing number of proteins from other cellular compartments have been found to transiently associate with lipid droplets. Our studies provide the first insight into mechanism and functional relevance of this sequestration. We conclude that sequestration on lipid droplets allows embryos to build up extra-nuclear histones stores and provides histones for chromatin assembly during times of high demand. This work reveals a novel aspect of histone metabolism and establishes lipid droplets as functional storage sites for unstable or detrimental proteins. PMID:23084995

  1. Structural insights into yeast histone chaperone Hif1: a scaffold protein recruiting protein complexes to core histones.

    PubMed

    Liu, Hejun; Zhang, Mengying; He, Wei; Zhu, Zhongliang; Teng, Maikun; Gao, Yongxiang; Niu, Liwen

    2014-09-15

    Yeast Hif1 [Hat1 (histone acetyltransferase 1)-interacting factor], a homologue of human NASP (nuclear autoantigenic sperm protein), is a histone chaperone that is involved in various protein complexes which modify histones during telomeric silencing and chromatin reassembly. For elucidating the structural basis of Hif1, in the present paper we demonstrate the crystal structure of Hif1 consisting of a superhelixed TPR (tetratricopeptide repeat) domain and an extended acid loop covering the rear of TPR domain, which represent typical characteristics of SHNi-TPR [Sim3 (start independent of mitosis 3)-Hif1-NASP interrupted TPR] proteins. Our binding assay indicates that Hif1 could bind to the histone octamer via histones H3 and H4. The acid loop is shown to be crucial for the binding of histones and may also change the conformation of the TPR groove. By binding to the core histone complex Hif1 may recruit functional protein complexes to modify histones during chromatin reassembly.

  2. Circulating histones exacerbate inflammation in mice with acute liver failure.

    PubMed

    Wen, Zongmei; Liu, Yan; Li, Feng; Ren, Feng; Chen, Dexi; Li, Xiuhui; Wen, Tao

    2013-10-01

    Circulating histones are a newly recognized mediator implicated in various inflammatory diseases. It is likely that the release of histones, from dying hepatocytes or inflammatory leukocytes, into the circulation initiates and amplifies inflammation during the course of acute liver failure (ALF). In this study, we investigated a putative pathogenic role of circulating histones in a murine model of ALF induced by D-galactosamine (GalN) plus lipopolysaccharide (LPS). Hepatic function and histological indexes, myeloperoxidase (MPO) activity, hepatocyte apoptosis and the levels of circulating histone were measured in GalN/LPS-treated mice. GalN/LPS caused severe liver damage and a notable increase in plasma concentration of circulating histones. To further assess the role of circulating histones in our model, we administered exogenous histones and anti-histone H4 antibody. Notably, exogenous histones aggravated GalN/LPS-induced hepatotoxicity, whereas anti-histone antibody significantly protected mice. Circulating histones may serve as both a functional marker of ALF activity and as an inflammatory mediator contributing to the progression of ALF. Blockade of circulating histones shows potent protective effects, suggesting a potential therapeutic strategy for ALF.

  3. Human CRP defends against the toxicity of circulating histones.

    PubMed

    Abrams, Simon T; Zhang, Nan; Dart, Caroline; Wang, Susan Siyu; Thachil, Jecko; Guan, Yunyan; Wang, Guozheng; Toh, Cheng-Hock

    2013-09-01

    C-reactive protein (CRP) is an acute-phase protein that plays an important defensive role in innate immunity against bacterial infection, but it is also upregulated in many noninfectious diseases. The generic function of this highly conserved molecule in diseases that range from infection, inflammation, trauma, and malignancy is not well understood. In this article, we demonstrate that CRP defends the human body against the toxicity of histones released into the circulation after extensive cell death. In vitro, CRP significantly alleviates histone-induced endothelial cell damage, permeability increase, and platelet aggregation. In vivo, CRP rescues mice challenged with lethal doses of histones by inhibiting endothelial damage, vascular permeability, and coagulation activation, as reflected by significant reductions in lung edema, hemorrhage, and thrombosis. In patients, elevation of CRP significantly increases the capacity to neutralize extracellular histones in the circulation. We have also confirmed that CRP interacts with individual histones in vitro and forms CRP-histone complexes in serum from patients with both elevated CRP and histones. CRP is able to compete with phospholipid-containing liposomes for the binding to histones. This explains how CRP prevents histones from integrating into cell membranes, which would otherwise induce calcium influx as the major mechanism of cytotoxicity caused by extracellular histones. Because histone elevation occurs in the acute phase of numerous critical illnesses associated with extensive cell death, CRP detoxification of circulating histones would be a generic host defense mechanism in humans.

  4. Histone H2A/H2B chaperones: from molecules to chromatin-based functions in plant growth and development.

    PubMed

    Zhou, Wangbin; Zhu, Yan; Dong, Aiwu; Shen, Wen-Hui

    2015-07-01

    Nucleosomal core histones (H2A, H2B, H3 and H4) must be assembled, replaced or exchanged to preserve or modify chromatin organization and function according to cellular needs. Histone chaperones escort histones, and play key functions during nucleosome assembly/disassembly and in nucleosome structure configuration. Because of their location at the periphery of nucleosome, histone H2A-H2B dimers are remarkably dynamic. Here we focus on plant histone H2A/H2B chaperones, particularly members of the NUCLEOSOME ASSEMBLY PROTEIN-1 (NAP1) and FACILITATES CHROMATIN TRANSCRIPTION (FACT) families, discussing their molecular features, properties, regulation and function. Covalent histone modifications (e.g. ubiquitination, phosphorylation, methylation, acetylation) and H2A variants (H2A.Z, H2A.X and H2A.W) are also discussed in view of their crucial importance in modulating nucleosome organization and function. We further discuss roles of NAP1 and FACT in chromatin-based processes, such as transcription, DNA replication and repair. Specific functions of NAP1 and FACT are evident when their roles are considered with respect to regulation of plant growth and development and in plant responses to environmental stresses. Future major challenges remain in order to define in more detail the overlapping and specific roles of various members of the NAP1 family as well as differences and similarities between NAP1 and FACT family members, and to identify and characterize their partners as well as new families of chaperones to understand histone variant incorporation and chromatin target specificity. © 2015 The Authors The Plant Journal © 2015 John Wiley & Sons Ltd.

  5. Influence of chromatin structure, antibiotics, and endogenous histone methylation on phosphorylation of histones H1 and H3 in the presence of protein kinase A in rat liver nuclei in vitro.

    PubMed

    Prusov, A N; Smirnova, T A; Kolomijtseva, G Ya

    2013-02-01

    In vitro phosphorylation of histones H1 and H3 by cAMP-dependent protein kinase A and endogenous phosphokinases in the presence of [γ-³²P]ATP was studied in isolated rat liver nuclei with different variants of chromatin structural organization: condensed (diameter of fibrils 100-200 nm; N-1) and partly decondensed (diameter of fibrils ~30 nm; N-2). In the N-1 state histone, H1 is phosphorylated approximately twice as much than histone H3. Upon the decondensation of the chromatin in the N-2 state, 1.5-fold decrease of total phosphorylation of H1 is observed, while that of H3 does not change, although the endogenous phosphorylation of both histones is reduced by half. Changes in histone phosphorylation in the presence of low or high concentrations of distamycin and chromomycin differ for H1 and H3 in N-1 and N-2. It was found that distamycin (DM) stimulates the phosphorylation of tightly bound H1 fraction, which is not extractable by polyglutamic acid (PG), especially in N-1. Chromomycin (CM) increases the phosphorylation of both histones in PG extracts and in the nuclear pellets, particularly in N-2. At the same time, in N-1 one can detect phosphorylation of a tightly bound fraction of histones H1 whose N-termini are located on AT-rich sites that become inaccessible for protein kinase in the process of chromatin decondensation in N-2. At the same time, in N-2 the accessibility for protein kinase A of tightly bound H1 fractions, whose N-termini are located on GC-rich sites, increases dramatically. High concentrations of both CM and DM in N-1 and N-2 stimulated phosphorylation of the non-extractable by PG fraction of H1 whose N-termini are located on sites where AT ≈ GC. CM at high concentration stimulated 4-7 times the phosphorylation of a small fraction of H3, which is extracted by PG from both types of nuclei. We detected an effect of endogenous methylation of histones H1 and H3 in the nuclei on their subsequent phosphorylation depending on the chromatin

  6. ADP-ribosylation of histones by ARTD1: an additional module of the histone code?

    PubMed

    Hottiger, Michael O

    2011-06-06

    ADP-ribosylation is a covalent post-translational protein modification catalyzed by ADP-ribosyltransferases and is involved in important processes such as cell cycle regulation, DNA damage response, replication or transcription. Histones are ADP-ribosylated by ADP-ribosyltransferase diphtheria toxin-like 1 at specific amino acid residues, in particular lysines, of the histones tails. Specific ADP-ribosyl hydrolases and poly-ADP-ribose glucohydrolases degrade the ADP-ribose polymers. The ADP-ribose modification is read by zinc finger motifs or macrodomains, which then regulate chromatin structure and transcription. Thus, histone ADP-ribosylation may be considered an additional component of the histone code. Copyright © 2011 Federation of European Biochemical Societies. Published by Elsevier B.V. All rights reserved.

  7. Inhibitors of DNA Methylation, Histone Deacetylation, and Histone Demethylation: A Perfect Combination for Cancer Therapy.

    PubMed

    Zahnow, C A; Topper, M; Stone, M; Murray-Stewart, T; Li, H; Baylin, S B; Casero, R A

    2016-01-01

    Epigenetic silencing and inappropriate activation of gene expression are frequent events during the initiation and progression of cancer. These events involve a complex interplay between the hypermethylation of CpG dinucleotides within gene promoter and enhancer regions, the recruitment of transcriptional corepressors and the deacetylation and/or methylation of histone tails. These epigenetic regulators act in concert to block transcription or interfere with the maintenance of chromatin boundary regions. However, DNA/histone methylation and histone acetylation states are reversible, enzyme-mediated processes and as such, have emerged as promising targets for cancer therapy. This review will focus on the potential benefits and synergistic/additive effects of combining DNA-demethylating agents and histone deacetylase inhibitors or lysine-specific demethylase inhibitors together in epigenetic therapy for solid tumors and will highlight what is known regarding the mechanisms of action that contribute to the antitumor response.

  8. CREB-binding protein controls response to cocaine by acetylating histones at the fosB promoter in the mouse striatum

    PubMed Central

    Levine, Amir A.; Guan, Zhonghui; Barco, Angel; Xu, Shiqin; Kandel, Eric R.; Schwartz, James H.

    2005-01-01

    Remodeling chromatin is essential for cAMP-regulated gene expression, necessary not only for development but also for memory storage and other enduring mental states. Histone acetylation and deacetylation mediate long-lasting forms of synaptic plasticity in Aplysia as well as cognition in mice. Here, we show that histone acetylation by the cAMP-response element binding protein (CREB)-binding protein (CBP) mediates sensitivity to cocaine by regulating expression of the fosB gene and its splice variant, ΔfosB, a transcription factor previously implicated in addiction. Using the chromatin immunoprecipitation assay with antibodies against histone H4 or CBP, we find that CBP is recruited to the fosB promoter to acetylate histone H4 in response to acute exposure to cocaine. We show that mutant mice that lack one allele of the CBP gene and have normal levels of fosB expression are less sensitive to chronic (10-day) administration of cocaine than are wild-type mice. This decreased sensitivity is correlated with decreased histone acetylation and results in decreased fosB expression and diminished accumulation of ΔfosB. Thus, CBP, which forms part of the promoter complex with CREB, mediates sensitivity to cocaine by acetylating histones. PMID:16380431

  9. SAS-mediated acetylation of histone H4 Lys 16 is required for H2A.Z incorporation at subtelomeric regions in Saccharomyces cerevisiae

    PubMed Central

    Shia, Wei-Jong; Li, Bing; Workman, Jerry L.

    2006-01-01

    The yeast SAS (Something About Silencing) complex and the histone variant H2A.Z have both previously been linked to an antisilencing function at the subtelomeric regions. SAS is an H4 Lys 16-specific histone acetyltransferase complex. Here we demonstrate that the H4 Lys 16 acetylation by SAS is required for efficient H2A.Z incorporation near telomeres. The presence of H4 Lys 16 acetylation and H2A.Z synergistically prevent the ectopic propagation of heterochromatin. Overall, our data suggest a novel antisilencing mechanism near telomeres. PMID:16980580

  10. Expanding the Reader Landscape of Histone Acylation.

    PubMed

    Khan, Abid; Bridgers, Joseph B; Strahl, Brian D

    2017-04-04

    In this issue of Structure,Klein et al. (2017) expand our understanding of what reader domains bind to by showing that MORF, a double PHD domain containing lysine acetyltransferase, is a preferential reader of histone lysine acylation. Copyright © 2017 Elsevier Ltd. All rights reserved.

  11. Picosecond laser cross, linking histones to DNA in chromatin: implication in studying histone-DNA interactions

    NASA Astrophysics Data System (ADS)

    Angelov, Dimitar A.; Dimitrov, S.; Keskinova, E.; Pashev, I.; Russanova, V.; Stefanovsky, Yu.

    1991-05-01

    A picosecond UV laser radiation was used to cross-link proteins to DNA in nuclei, whole cells and different chromating preparations. All histones as well as high-mobility group 1 proten were identified immunochemically in the covalently linked protein-DNA complexes. Irradiation of the nuclieohistone resulted in cross-linking 20% of bound histones to DNA as a result of two-quantum photoreaction with a maximum quantum yield 3.10 -4 for double stranded DNA. When nuclei, total bromatin Hi-depleted chromatin and core particles were irradiated and then trypsinized or treated with clostripain to cleave respectively the N-, C- and N- terminal histone tails, no histones have been found covalently linked to DNA. However whilst the yield of cross-links was similar in total and H1-depleted chromatin in core particples the efficiencey was 3-4 times lower for H2A, H2B and H4 10-12 times lower for H3. This finding we consider as a direct evidence for interaction of non structured N- tails of core histones with linker DNA. Cross-linking in core particles depends on the ionic strength. All histones were identified in the complex formed up to 0.4 N NaCl, no cross-linking was observed when irradiation was carried out at salt concentration higher than 0.4 M. The cross-linking ability was preserved both upon physiological acetylation of histones knows to be restriced to the N-terminal tails and with chemically acetylated chromatin. This finding is direct evidence that postsynthetic histone acetylation does not release the N-terminal tails from interaction with DNA.

  12. Nitric Oxide Modulates Histone Acetylation at Stress Genes by Inhibition of Histone Deacetylases1[OPEN

    PubMed Central

    Mengel, Alexander; Ageeva, Alexandra; Durner, Jörg

    2017-01-01

    Histone acetylation, which is an important mechanism to regulate gene expression, is controlled by the opposing action of histone acetyltransferases and histone deacetylases (HDACs). In animals, several HDACs are subjected to regulation by nitric oxide (NO); in plants, however, it is unknown whether NO affects histone acetylation. We found that treatment with the physiological NO donor S-nitrosoglutathione (GSNO) increased the abundance of several histone acetylation marks in Arabidopsis (Arabidopsis thaliana), which was strongly diminished in the presence of the NO scavenger 2-4-carboxyphenyl-4,4,5,5-tetramethylimidazoline-1-oxyl-3-oxide. This increase was likely triggered by NO-dependent inhibition of HDAC activity, since GSNO and S-nitroso-N-acetyl-dl-penicillamine significantly and reversibly reduced total HDAC activity in vitro (in nuclear extracts) and in vivo (in protoplasts). Next, genome-wide H3K9/14ac profiles in Arabidopsis seedlings were generated by chromatin immunoprecipitation sequencing, and changes induced by GSNO, GSNO/2-4-carboxyphenyl-4,4,5,5-tetramethylimidazoline-1-oxyl-3-oxide or trichostatin A (an HDAC inhibitor) were quantified, thereby identifying genes that display putative NO-regulated histone acetylation. Functional classification of these genes revealed that many of them are involved in the plant defense response and the abiotic stress response. Furthermore, salicylic acid, which is the major plant defense hormone against biotrophic pathogens, inhibited HDAC activity and increased histone acetylation by inducing endogenous NO production. These data suggest that NO affects histone acetylation by targeting and inhibiting HDAC complexes, resulting in the hyperacetylation of specific genes. This mechanism might operate in the plant stress response by facilitating the stress-induced transcription of genes. PMID:27980017

  13. Endometriosis Is Characterized by a Distinct Pattern of Histone 3 and Histone 4 Lysine Modifications

    PubMed Central

    Monteiro, Janice B.; Colón-Díaz, Maricarmen; García, Miosotis; Gutierrez, Sylvia; Colón, Mariano; Seto, Edward; Laboy, Joaquín

    2014-01-01

    Background: The histone modification patterns in endometriosis have not been fully characterized. This gap in knowledge results in a poor understanding of the epigenetic mechanisms (and potential therapeutic targets) at play. We aimed to (1) assess global acetylation status of histone 3 (H3) and histone 4 (H4), (2) measure levels of H3 and H4 lysine (K) acetylation and methylation, and (3) to identify histone acetylation patterns in promoter regions of candidate genes in tissues from patients and controls. Methods: Global and K-specific acetylation/methylation levels of histones were measured in 24 lesions, 15 endometrium from patients, and 26 endometrium from controls. Chromatin immunoprecipitation (ChIP)–polymerase chain reaction was used to determine the histone acetylation status of the promoter regions of candidate genes in tissues. Results: The lesions were globally hypoacetylated at H3 (but not H4) compared to eutopic endometrium from controls. Lesions had significantly lower levels of H3K9ac and H4K16ac compared to eutopic endometrium from patients and controls. Tissues from patients were hypermethylated at H3K4, H3K9, and H3K27 compared to endometrium from controls. The ChIP analysis showed hypoacetylation of H3/H4 within promoter regions of candidate genes known to be downregulated in endometriosis (e.g., HOXA10, ESR1, CDH1, and p21WAF1/Cip1) in lesions versus control endometrium. The stereoidogenic factor 1 (SF1) promoter region was enriched for acetylated H3 and H4 in lesions versus control tissues, correlating with its reported high expression in lesions. Conclusions: This study describes the histone code of lesions and endometrium from patients with endometriosis and provides support for a possible role of histone modification in modulation of gene expression in endometriosis. PMID:23899551

  14. Genetic variants in epigenetic genes and breast cancer risk.

    PubMed

    Cebrian, Arancha; Pharoah, Paul D; Ahmed, Shahana; Ropero, Santiago; Fraga, Mario F; Smith, Paula L; Conroy, Don; Luben, Robert; Perkins, Barbara; Easton, Douglas F; Dunning, Alison M; Esteller, Manel; Ponder, Bruce A J

    2006-08-01

    Epigenetic events, resulting changes in gene expression capacity, are important in tumour progression, and variation in genes involved in epigenetic mechanisms might therefore be important in cancer susceptibility. To evaluate this hypothesis, we examined common variants in 12 genes coding for DNA methyltransferases (DNMT), histone acetyltransferases, histone deacetyltransferases, histone methyltrasferases and methyl-CpG binding domain proteins, for association with breast cancer in a large case-control study (N cases = 4474 and N controls = 4580). We identified 63 single nucleotide polymorphisms (SNPs) that efficiently tag all the known common variants in these genes, and are also expected to tag any unknown SNP in each gene. We found some evidence for association for six SNPs: DNMT3b-c31721t [P (2 df) = 0.007], PRDM2-c99243 t [P (2 df) = 0.03] and t105413c [P-recessive = 0.05], EHMT1-g-9441a [P (2df) = 0.05] and g41451t (P-trend = 0.04), and EHMT2-S237S [P (2df) = 0.04]. The most significant result was for DNMT3b-c31721t (P-trend = 0.124 after adjusting for multiple testing). However, there were three other results with P < 0.05. The permutation-based probability of this occurring by chance was 0.335. These significant SNPs were genotyped in 75 human cancer cell lines from different tumour types to assess if there was an association between them and six epigenetic measures. No statistically significant association was found. However, a trend was observed: homozygotes for the rare alleles of the EHMT1, EHMT2 and PRDM2 had a mean value for both trimethylation of K9 and K27 of histone H3 remarkably different to the homozygotes for the common alleles. Thus, these preliminary observations suggest the possible existence of a functional consequence of harbouring these genetic variants in histone methyltransferases, and warrant the design of larger epidemiological and biochemical studies to establish the true meaning of these findings.

  15. Histone hypoacetylation and increased histone deacetylases in peripheral blood mononuclear cells from patients with Graves' disease.

    PubMed

    Yan, Ni; Zhou, Jiao-zhen; Zhang, Jin-an; Cai, Tiantian; Zhang, Wen; Wang, Yuan; Muhali, Fatuma-Said; Guan, Lijuan; Song, Rong-hua

    2015-10-15

    The objective of this study was to investigate histone modification patterns in peripheral blood mononuclear cells (PBMCs) of patients with Graves' disease (GD). Thirty GD patients and 20 healthy controls were enrolled in this study. Global histone H3/H4 acetylation levels of PBMCs in all subjects were detected by enzyme-linked immunosorbent assay. mRNA levels of histone-related chromatin modifier genes were measured by real-time quantitative reverse transcription-polymerase chain reaction. Global histone H4 acetylation level in PBMCs of GD patients was significantly decreased compared with controls (p=0.005). The mRNA expression of histone deacetylases HDAC1 and HDAC2 were significantly increased in PBMCs of GD patients compared with controls (p=0.004 and 0.018; respectively). No significant difference was observed either in SIRT1 or in HATs mRNA including p300, CREBBP between GD patients and controls (p>0.05). Our findings firstly suggested that histone acetylation modifications are aberrant in PBMCs of GD patients, possibly due to the deregulation of epigenetic modifier genes. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  16. Basic nuclear processes affected by histone acetyltransferases and histone deacetylase inhibitors.

    PubMed

    Legartová, Soňa; Stixová, Lenka; Strnad, Hynek; Kozubek, Stanislav; Martinet, Nadine; Dekker, Frank J; Franek, Michal; Bártová, Eva

    2013-08-01

    The optimal balance between histone acetylation and deacetylation is important for proper gene function. Therefore, we addressed how inhibitors of histone-modifying enzymes can modulate nuclear events, including replication, transcription, splicing and DNA repair. Changes in cell signaling pathways upon treatment with histone acetyltransferases and/or histone deacetylase inhibitors were studied by cDNA microarrays and western blots. We analyzed the effects of the histone deacetylase inhibitor suberoylanilide hydroxamic acid (SAHA) and the histone acetylase inhibitor MG149. SAHA altered the expression of factors involved in DNA replication complexes, basal transcription and the spliceosome pathway. DNA repair-related genes, including Rad51, Rad54 and BRCA2, were significantly downregulated by SAHA. However, MG149 had no effect on the investigated nuclear processes, with the exception of the spliceosome network and Sestrins, involved in DNA repair. Based on our results, we propose that the studied epigenetic drugs have the distinct potential to affect specific cell signaling pathways depending on their respective molecular targets.

  17. Methylation of a histone mimic within the histone methyltransferase G9a regulates protein complex assembly.

    PubMed

    Sampath, Srihari C; Marazzi, Ivan; Yap, Kyoko L; Sampath, Srinath C; Krutchinsky, Andrew N; Mecklenbräuker, Ingrid; Viale, Agnes; Rudensky, Eugene; Zhou, Ming-Ming; Chait, Brian T; Tarakhovsky, Alexander

    2007-08-17

    Epigenetic gene silencing in eukaryotes is regulated in part by lysine methylation of the core histone proteins. While histone lysine methylation is known to control gene expression through the recruitment of modification-specific effector proteins, it remains unknown whether nonhistone chromatin proteins are targets for similar modification-recognition systems. Here we show that the histone H3 methyltransferase G9a contains a conserved methylation motif with marked sequence similarity to H3 itself. As with methylation of H3 lysine 9, autocatalytic G9a methylation is necessary and sufficient to mediate in vivo interaction with the epigenetic regulator heterochromatin protein 1 (HP1), and this methyl-dependent interaction can be reversed by adjacent G9a phosphorylation. NMR analysis indicates that the HP1 chromodomain recognizes methyl-G9a through a binding mode similar to that used in recognition of methyl-H3K9, demonstrating that the chromodomain functions as a generalized methyl-lysine binding module. These data reveal histone-like modification cassettes - or "histone mimics" - as a distinct class of nonhistone methylation targets and directly extend the principles of the histone code to the regulation of nonhistone proteins.

  18. Substantial Histone Reduction Modulates Genomewide Nucleosomal Occupancy and Global Transcriptional Output

    PubMed Central

    Celona, Barbara; Weiner, Assaf; Di Felice, Francesca; Mancuso, Francesco M.; Cesarini, Elisa; Rossi, Riccardo L.; Gregory, Lorna; Baban, Dilair; Rossetti, Grazisa; Grianti, Paolo; Pagani, Massimiliano; Bonaldi, Tiziana; Ragoussis, Jiannis; Friedman, Nir; Camilloni, Giorgio; Bianchi, Marco E.; Agresti, Alessandra

    2011-01-01

    The basic unit of genome packaging is the nucleosome, and nucleosomes have long been proposed to restrict DNA accessibility both to damage and to transcription. Nucleosome number in cells was considered fixed, but recently aging yeast and mammalian cells were shown to contain fewer nucleosomes. We show here that mammalian cells lacking High Mobility Group Box 1 protein (HMGB1) contain a reduced amount of core, linker, and variant histones, and a correspondingly reduced number of nucleosomes, possibly because HMGB1 facilitates nucleosome assembly. Yeast nhp6 mutants lacking Nhp6a and -b proteins, which are related to HMGB1, also have a reduced amount of histones and fewer nucleosomes. Nucleosome limitation in both mammalian and yeast cells increases the sensitivity of DNA to damage, increases transcription globally, and affects the relative expression of about 10% of genes. In yeast nhp6 cells the loss of more than one nucleosome in four does not affect the location of nucleosomes and their spacing, but nucleosomal occupancy. The decrease in nucleosomal occupancy is non-uniform and can be modelled assuming that different nucleosomal sites compete for available histones. Sites with a high propensity to occupation are almost always packaged into nucleosomes both in wild type and nucleosome-depleted cells; nucleosomes on sites with low propensity to occupation are disproportionately lost in nucleosome-depleted cells. We suggest that variation in nucleosome number, by affecting nucleosomal occupancy both genomewide and gene-specifically, constitutes a novel layer of epigenetic regulation. PMID:21738444

  19. A quantitative investigation of linker histone interactions with nucleosomes and chromatin.

    PubMed

    White, Alison E; Hieb, Aaron R; Luger, Karolin

    2016-01-11

    Linker histones such as H1 are abundant basic proteins that bind tightly to nucleosomes, thereby acting as key organizers of chromatin structure. The molecular details of linker histone interactions with the nucleosome, and in particular the contributions of linker DNA and of the basic C-terminal tail of H1, are controversial. Here we combine rigorous solution-state binding assays with native gel electrophoresis and Atomic Force Microscopy, to quantify the interaction of H1 with chromatin. We find that H1 binds nucleosomes and nucleosomal arrays with very tight affinity by recognizing a specific DNA geometry minimally consisting of a solitary nucleosome with a single ~18 base pair DNA linker arm. The association of H1 alters the conformation of trinucleosomes so that only one H1 can bind to the two available linker DNA regions. Neither incorporation of the histone variant H2A.Z, nor the presence of neighboring nucleosomes affects H1 affinity. Our data provide a comprehensive thermodynamic framework for this ubiquitous chromatin architectural protein.

  20. FACT plays a major role in histone dynamics affecting VSG expression site control in Trypanosoma brucei.

    PubMed

    Denninger, Viola; Rudenko, Gloria

    2014-11-01

    Chromatin remodelling is involved in the transcriptional regulation of the RNA polymerase I transcribed variant surface glycoprotein (VSG) expression sites (ESs) of Trypanosoma brucei. We show that the T. brucei FACT complex contains the Pob3 and Spt16 subunits, and plays a key role in ES silencing. We see an inverse correlation between transcription and condensed chromatin, whereby FACT knockdown results in ES derepression and more open chromatin around silent ES promoters. Derepressed ESs show increased sensitivity to micrococcal nuclease (MNase) digestion, and a decrease in histones at silent ES promoters but not telomeres. In contrast, FACT knockdown results in more histones at the active ES, correlated with transcription shut-down. ES promoters are derepressed in cells stalled at the G2/M cell cycle stage after knockdown of FACT, but not in G2/M cells stalled after knockdown of cyclin 6. This argues that the observed ES derepression is a direct consequence of histone chaperone activity by FACT at the G2/M cell cycle stage which could affect transcription elongation, rather than an indirect consequence of a cell cycle checkpoint. These experiments highlight the role of the FACT complex in cell cycle-specific chromatin remodelling within VSG ESs.

  1. Solution NMR structure and histone binding of the PHD domain of human MLL5.

    PubMed

    Lemak, Alexander; Yee, Adelinda; Wu, Hong; Yap, Damian; Zeng, Hong; Dombrovski, Ludmila; Houliston, Scott; Aparicio, Samuel; Arrowsmith, Cheryl H

    2013-01-01

    Mixed Lineage Leukemia 5 (MLL5) is a histone methyltransferase that plays a key role in hematopoiesis, spermatogenesis and cell cycle progression. In addition to its catalytic domain, MLL5 contains a PHD finger domain, a protein module that is often involved in binding to the N-terminus of histone H3. Here we report the NMR solution structure of the MLL5 PHD domain showing a variant of the canonical PHD fold that combines conserved H3 binding features from several classes of other PHD domains (including an aromatic cage) along with a novel C-terminal α-helix, not previously seen. We further demonstrate that the PHD domain binds with similar affinity to histone H3 tail peptides di- and tri-methylated at lysine 4 (H3K4me2 and H3K4me3), the former being the putative product of the MLL5 catalytic reaction. This work establishes the PHD domain of MLL5 as a bone fide 'reader' domain of H3K4 methyl marks suggesting that it may guide the spreading or further methylation of this site on chromatin.

  2. Highly selective inhibition of histone demethylases by de novo macrocyclic peptides.

    PubMed

    Kawamura, Akane; Münzel, Martin; Kojima, Tatsuya; Yapp, Clarence; Bhushan, Bhaskar; Goto, Yuki; Tumber, Anthony; Katoh, Takayuki; King, Oliver N F; Passioura, Toby; Walport, Louise J; Hatch, Stephanie B; Madden, Sarah; Müller, Susanne; Brennan, Paul E; Chowdhury, Rasheduzzaman; Hopkinson, Richard J; Suga, Hiroaki; Schofield, Christopher J

    2017-04-06

    The JmjC histone demethylases (KDMs) are linked to tumour cell proliferation and are current cancer targets; however, very few highly selective inhibitors for these are available. Here we report cyclic peptide inhibitors of the KDM4A-C with selectivity over other KDMs/2OG oxygenases, including closely related KDM4D/E isoforms. Crystal structures and biochemical analyses of one of the inhibitors (CP2) with KDM4A reveals that CP2 binds differently to, but competes with, histone substrates in the active site. Substitution of the active site binding arginine of CP2 to N-ɛ-trimethyl-lysine or methylated arginine results in cyclic peptide substrates, indicating that KDM4s may act on non-histone substrates. Targeted modifications to CP2 based on crystallographic and mass spectrometry analyses results in variants with greater proteolytic robustness. Peptide dosing in cells manifests KDM4A target stabilization. Although further development is required to optimize cellular activity, the results reveal the feasibility of highly selective non-metal chelating, substrate-competitive inhibitors of the JmjC KDMs.

  3. Histone H3.3 regulates dynamic chromatin states during spermatogenesis

    PubMed Central

    Yuen, Benjamin T. K.; Bush, Kelly M.; Barrilleaux, Bonnie L.; Cotterman, Rebecca; Knoepfler, Paul S.

    2014-01-01

    The histone variant H3.3 is involved in diverse biological processes, including development, transcriptional memory and transcriptional reprogramming, as well as diseases, including most notably malignant brain tumors. Recently, we developed a knockout mouse model for the H3f3b gene, one of two genes encoding H3.3. Here, we show that targeted disruption of H3f3b results in a number of phenotypic abnormalities, including a reduction in H3.3 histone levels, leading to male infertility, as well as abnormal sperm and testes morphology. Additionally, null germ cell populations at specific stages in spermatogenesis, in particular spermatocytes and spermatogonia, exhibited increased rates of apoptosis. Disruption of H3f3b also altered histone post-translational modifications and gene expression in the testes, with the most prominent changes occurring at genes involved in spermatogenesis. Finally, H3f3b null testes also exhibited abnormal germ cell chromatin reorganization and reduced protamine incorporation. Taken together, our studies indicate a major role for H3.3 in spermatogenesis through regulation of chromatin dynamics. PMID:25142466

  4. The potential of histone deacetylase inhibitors in lung cancer.

    PubMed

    Aparicio, Ana

    2006-03-01

    In the nucleus, DNA is wrapped around octamers of histone proteins. Histones, like other proteins, are posttranslationally modified by the addition of an array of chemical groups that affect their interactions with surrounding structures. Histone acetyltransferases and histone deacetylases (HDACs) are the enzymes involved in the addition and removal, respectively, of acetyl groups from the aminoterminal tails of histones. A number of structurally diverse compounds are capable of inhibiting HDACs and exert a variety of biologic effects on cancer cells in preclinical models. Early clinical trials with the first generation of HDAC inhibitors (HDACIs) have demonstrated promising therapeutic activity, and HDACs have become one of the hottest targets in drug development today.

  5. The patterns of histone modifications in the vicinity of transcription factor binding sites in human lymphoblastoid cell lines.

    PubMed

    Nie, Yumin; Liu, Hongde; Sun, Xiao

    2013-01-01

    Transcription factor (TF) binding at specific DNA sequences is the fundamental step in transcriptional regulation and is highly dependent on the chromatin structure context, which may be affected by specific histone modifications and variants, known as histone marks. The lack of a global binding map for hundreds of TFs means that previous studies have focused mainly on histone marks at binding sites for several specific TFs. We therefore studied 11 histone marks around computationally-inferred and experimentally-determined TF binding sites (TFBSs), based on 164 and 34 TFs, respectively, in human lymphoblastoid cell lines. For H2A.Z, methylation of H3K4, and acetylation of H3K27 and H3K9, the mark patterns exhibited bimodal distributions and strong pairwise correlations in the 600-bp region around enriched TFBSs, suggesting that these marks mainly coexist within the two nucleosomes proximal to the TF sites. TFs competing with nucleosomes to access DNA at most binding sites, contributes to the bimodal distribution, which is a common feature of histone marks for TF binding. Mark H3K79me2 showed a unimodal distribution on one side of TFBSs and the signals extended up to 4000 bp, indicating a longer-distance pattern. Interestingly, H4K20me1, H3K27me3, H3K36me3 and H3K9me3, which were more diffuse and less enriched surrounding TFBSs, showed unimodal distributions around the enriched TFBSs, suggesting that some TFs may bind to nucleosomal DNA. Besides, asymmetrical distributions of H3K36me3 and H3K9me3 indicated that repressors might establish a repressive chromatin structure in one direction to repress gene expression. In conclusion, this study demonstrated the ranges of histone marks associated with TF binding, and the common features of these marks around the binding sites. These findings have epigenetic implications for future analysis of regulatory elements.

  6. The chromatin-binding protein HMGN3 stimulates histone acetylation and transcription across the Glyt1 gene

    PubMed Central

    Barkess, Gráinne; Postnikov, Yuri; Campos, Chrisanne D.; Mishra, Shivam; Mohan, Gokula; Verma, Sakshi; Bustin, Michael; West, Katherine L.

    2013-01-01

    HMGNs are nucleosome-binding proteins that alter the pattern of histone modifications and modulate the binding of linker histones to chromatin. The HMGN3 family member exists as two splice forms, HMGN3a which is full-length and HMGN3b which lacks the C-terminal RD (regulatory domain). In the present study, we have used the Glyt1 (glycine transporter 1) gene as a model system to investigate where HMGN proteins are bound across the locus in vivo, and to study how the two HMGN3 splice variants affect histone modifications and gene expression. We demonstrate that HMGN1, HMGN2, HMGN3a and HMGN3b are bound across the Glyt1 gene locus and surrounding regions, and are not enriched more highly at the promoter or putative enhancer. We conclude that the peaks of H3K4me3 (trimethylated Lys4 of histone H3) and H3K9ac (acetylated Lys9 of histone H3) at the active Glyt1a promoter do not play a major role in recruiting HMGN proteins. HMGN3a/b binding leads to increased H3K14 (Lys14 of histone H3) acetylation and stimulates Glyt1a expression, but does not alter the levels of H3K4me3 or H3K9ac enrichment. Acetylation assays show that HMGN3a stimulates the ability of PCAF [p300/CREB (cAMP-response-element-binding protein)-binding protein-associated factor] to acetylate nucleosomal H3 in vitro, whereas HMGN3b does not. We propose a model where HMGN3a/b-stimulated H3K14 acetylation across the bodies of large genes such as Glyt1 can lead to more efficient transcription elongation and increased mRNA production. PMID:22150271

  7. Role of extracellular histones in the cardiomyopathy of sepsis.

    PubMed

    Kalbitz, Miriam; Grailer, Jamison J; Fattahi, Fatemeh; Jajou, Lawrence; Herron, Todd J; Campbell, Katherine F; Zetoune, Firas S; Bosmann, Markus; Sarma, J Vidya; Huber-Lang, Markus; Gebhard, Florian; Loaiza, Randall; Valdivia, Hector H; Jalife, José; Russell, Mark W; Ward, Peter A

    2015-05-01

    The purpose of this study was to define the relationship in polymicrobial sepsis (in adult male C57BL/6 mice) between heart dysfunction and the appearance in plasma of extracellular histones. Procedures included induction of sepsis by cecal ligation and puncture and measurement of heart function using echocardiogram/Doppler parameters. We assessed the ability of histones to cause disequilibrium in the redox status and intracellular [Ca(2+)]i levels in cardiomyocytes (CMs) (from mice and rats). We also studied the ability of histones to disturb both functional and electrical responses of hearts perfused with histones. Main findings revealed that extracellular histones appearing in septic plasma required C5a receptors, polymorphonuclear leukocytes (PMNs), and the Nacht-, LRR-, and PYD-domains-containing protein 3 (NLRP3) inflammasome. In vitro exposure of CMs to histones caused loss of homeostasis of the redox system and in [Ca(2+)]i, as well as defects in mitochondrial function. Perfusion of hearts with histones caused electrical and functional dysfunction. Finally, in vivo neutralization of histones in septic mice markedly reduced the parameters of heart dysfunction. Histones caused dysfunction in hearts during polymicrobial sepsis. These events could be attenuated by histone neutralization, suggesting that histones may be targets in the setting of sepsis to reduce cardiac dysfunction.

  8. Modulation of histone deposition by the karyopherin kap114.

    PubMed

    Mosammaparast, Nima; Del Rosario, Brian C; Pemberton, Lucy F

    2005-03-01

    The nuclear import of histones is a prerequisite for the downstream deposition of histones to form chromatin. However, the coordinate regulation of these processes remains poorly understood. Here we demonstrate that Kap114p, the primary karyopherin/importin responsible for the nuclear import of histones H2A and H2B, modulates the deposition of histones H2A and H2B by the histone chaperone Nap1p. We show that a complex comprising Kap114p, histones H2A and H2B, and Nap1p is present in the nucleus and that the presence of this complex is specifically promoted by Nap1p. This places Kap114p in a position to modulate Nap1p function, and we demonstrate by the use of two different assay systems that Kap114p inhibits Nap1p-mediated chromatin assembly. The inhibition of H2A and H2B deposition by Kap114p results in the concomitant inhibition of RCC1 loading onto chromatin. Biochemical evidence suggests that the mechanism by which Kap114p modulates histone deposition primarily involves direct histone binding, while the interaction between Kap114p and Nap1p plays a secondary role. Furthermore, we found that the inhibition of histone deposition by Kap114p is partially reversed by RanGTP. Our results indicate a novel mechanism by which cells can regulate histone deposition and establish a coordinate link between histone nuclear import and chromatin assembly.

  9. Histones as mediators of host defense, inflammation and thrombosis.

    PubMed

    Hoeksema, Marloes; van Eijk, Martin; Haagsman, Henk P; Hartshorn, Kevan L

    2016-01-01

    Histones are known for their ability to bind to and regulate expression of DNA. However, histones are also present in cytoplasm and extracellular fluids where they serve host defense functions and promote inflammatory responses. Histones are a major component of neutrophil extracellular traps that contribute to bacterial killing but also to inflammatory injury. Histones can act as antimicrobial peptides and directly kill bacteria, fungi, parasites and viruses, in vitro and in a variety of animal hosts. In addition, histones can trigger inflammatory responses in some cases acting through Toll-like receptors or inflammasome pathways. Extracellular histones mediate organ injury (lung, liver), sepsis physiology, thrombocytopenia and thrombin generation and some proteins can bind histones and reduce these potentially harmful effects.

  10. Histones as mediators of host defense, inflammation and thrombosis

    PubMed Central

    Hoeksema, Marloes; van Eijk, Martin; Haagsman, Henk P; Hartshorn, Kevan L

    2016-01-01

    Histones are known for their ability to bind to and regulate expression of DNA. However, histones are also present in cytoplasm and extracellular fluids where they serve host defense functions and promote inflammatory responses. Histones are a major component of neutrophil extracellular traps that contribute to bacterial killing but also to inflammatory injury. Histones can act as antimicrobial peptides and directly kill bacteria, fungi, parasites and viruses, in vitro and in a variety of animal hosts. In addition, histones can trigger inflammatory responses in some cases acting through Toll-like receptors or inflammasome pathways. Extracellular histones mediate organ injury (lung, liver), sepsis physiology, thrombocytopenia and thrombin generation and some proteins can bind histones and reduce these potentially harmful effects. PMID:26939619

  11. Cadmium Induces Histone H3 Lysine Methylation by Inhibiting Histone Demethylase Activity

    PubMed Central

    Xiao, Chunlian; Liu, Yin; Xie, Chengfeng; Tu, Wei; Xia, Yujie; Costa, Max; Zhou, Xue

    2015-01-01

    Cadmium is an established human lung carcinogen with weak mutagenicity. However, the mechanisms underlying cadmium-induced carcinogenesis remain obscure. It has been suggested that epigenetic mechanisms may play a role in cadmium-induced carcinogenesis. In this study, we investigated the effects of cadmium on histone methylation and histone demethylases, and the role of histone methylation in transformation of immortalized normal human bronchial epithelial (BEAS-2B) cells. Exposure to 0.625, 1.25, 2.5, and 5.0 μM of cadmium for 6, 24, and 48 h increased global trimethylated histone H3 on lysine 4 (H3K4me3) and dimethylated histone H3 on lysine 9 (H3K9me2) in BEAS-2B cells compared with untreated cells, and most of these changes remained after the removal of cadmium (P < .05 or P < .01 for most modifications). Meanwhile, cadmium inhibited the activities of histone H3 on lysine 4 (H3K4) and histone H3 on lysine 9 (H3K9) demethylases which were detected by histone demethylation assay. However, there was no significant change in the protein levels of the H3K4 demethylase lysine-specific demethylase 5A (KDM5A) and the H3K9 demethylase lysine-specific demethylase 3A (KDM3A). Interestingly, during transformation of BEAS-2B cells by 20 weeks of exposure to 2.0 μM cadmium as assessed by anchorage-independent growth in soft agar, global H3K4me3, and H3K9me2 were significantly increased at 4 weeks (P < .05 or P < .01), whereas no significant change was observed at 8, 12, 16, and 20 weeks compared with control. Our study suggests that cadmium increases global H3K4me3 and H3K9me2 by inhibiting the activities of histone demethylases, and aberrant histone methylation that occurs early (48 h) and at 4 weeks is associated with cadmium-induced transformation of BEAS-2B cells at the early stage. PMID:25673502

  12. Structure of the histone chaperone CIA/ASF1-double bromodomain complex linking histone modifications and site-specific histone eviction.

    PubMed

    Akai, Yusuke; Adachi, Naruhiko; Hayashi, Yohei; Eitoku, Masamitsu; Sano, Norihiko; Natsume, Ryo; Kudo, Norio; Tanokura, Masaru; Senda, Toshiya; Horikoshi, Masami

    2010-05-04

    Nucleosomes around the promoter region are disassembled for transcription in response to various signals, such as acetylation and methylation of histones. Although the interactions between histone-acetylation-recognizing bromodomains and factors involved in nucleosome disassembly have been reported, no structural basis connecting histone modifications and nucleosome disassembly has been obtained. Here, we determined at 3.3 A resolution the crystal structure of histone chaperone cell cycle gene 1 (CCG1) interacting factor A/antisilencing function 1 (CIA/ASF1) in complex with the double bromodomain in the CCG1/TAF1/TAF(II)250 subunit of transcription factor IID. Structural, biochemical, and biological studies suggested that interaction between double bromodomain and CIA/ASF1 is required for their colocalization, histone eviction, and pol II entry at active promoter regions. Furthermore, the present crystal structure has characteristics that can connect histone acetylation and CIA/ASF1-mediated histone eviction. These findings suggest that the molecular complex between CIA/ASF1 and the double bromodomain plays a key role in site-specific histone eviction at active promoter regions. The model we propose here is the initial structure-based model of the biological signaling from histone modifications to structural change of the nucleosome (hi-MOST model).

  13. Structure of the histone chaperone CIA/ASF1–double bromodomain complex linking histone modifications and site-specific histone eviction

    PubMed Central

    Akai, Yusuke; Adachi, Naruhiko; Hayashi, Yohei; Eitoku, Masamitsu; Sano, Norihiko; Natsume, Ryo; Kudo, Norio; Tanokura, Masaru; Senda, Toshiya; Horikoshi, Masami

    2010-01-01

    Nucleosomes around the promoter region are disassembled for transcription in response to various signals, such as acetylation and methylation of histones. Although the interactions between histone-acetylation-recognizing bromodomains and factors involved in nucleosome disassembly have been reported, no structural basis connecting histone modifications and nucleosome disassembly has been obtained. Here, we determined at 3.3 Å resolution the crystal structure of histone chaperone cell cycle gene 1 (CCG1) interacting factor A/antisilencing function 1 (CIA/ASF1) in complex with the double bromodomain in the CCG1/TAF1/TAF(II)250 subunit of transcription factor IID. Structural, biochemical, and biological studies suggested that interaction between double bromodomain and CIA/ASF1 is required for their colocalization, histone eviction, and pol II entry at active promoter regions. Furthermore, the present crystal structure has characteristics that can connect histone acetylation and CIA/ASF1-mediated histone eviction. These findings suggest that the molecular complex between CIA/ASF1 and the double bromodomain plays a key role in site-specific histone eviction at active promoter regions. The model we propose here is the initial structure-based model of the biological signaling from histone modifications to structural change of the nucleosome (hi-MOST model). PMID:20393127

  14. Sequence specific binding of chlamydial histone H1-like protein.

    PubMed Central

    Kaul, R; Allen, M; Bradbury, E M; Wenman, W M

    1996-01-01

    Chlamydia trachomatis is one of the few prokaryotic organisms known to contain proteins that bear homology to eukaryotic histone H1. Changes in macromolecular conformation of DNA mediated by the histone H1-like protein (Hc1) appear to regulate stage specific differentiation. We have developed a cross-linking immunoprecipitation protocol to examine in vivo protein-DNA interaction by immune precipitating chlamydial Hc1 cross linked to DNA. Our results strongly support the presence of sequence specific binding sites on the chlamydial plasmid and hc1 gene upstream of its open reading frame. The preferential binding sites were mapped to 520 bp BamHI-XhoI and 547 bp BamHI-DraI DNA fragments on the plasmid and hc1 respectively. Comparison of these two DNA sequences using Bestfit program has identified a 24 bp region with >75% identity that is unique to the chlamydial genome. Double-stranded DNA prepared by annealing complementary oligonucleotides corresponding to the conserved 24 bp region bind Hc1, in contrast to control sequences with similar A+T ratios. Further, Hc1 binds to DNA in a strand specific fashion, with preferential binding for only one strand. The site specific affinity to plasmid DNA was also demonstrated by atomic force microscopy data images. Binding was always followed by coiling, shrinking and aggregation of the affected DNA. Very low protein-DNA ratio was required if incubations were carried out in solution. However, if DNA was partially immobilized on mica substrate individual strands with dark foci were still visible even after the addition of excess Hc1. PMID:8760883

  15. Histone H3.3 regulates mitotic progression in mouse embryonic fibroblasts.

    PubMed

    Ors, Aysegul; Papin, Christophe; Favier, Bertrand; Roulland, Yohan; Dalkara, Defne; Ozturk, Mehmet; Hamiche, Ali; Dimitrov, Stefan; Padmanabhan, Kiran

    2017-08-01

    H3.3 is a histone variant that marks transcription start sites as well as telomeres and heterochromatic sites on the genome. The presence of H3.3 is thought to positively correlate with the transcriptional status of its target genes. Using a conditional genetic strategy against H3.3B, combined with short hairpin RNAs against H3.3A, we essentially depleted all H3.3 gene expression in mouse embryonic fibroblasts. Following nearly complete loss of H3.3 in the cells, our transcriptomic analyses show very little impact on global gene expression or on the localization of histone variant H2A.Z. Instead, fibroblasts displayed slower cell growth and an increase in cell death, coincident with large-scale chromosome misalignment in mitosis and large polylobed or micronuclei in interphase cells. Thus, we conclude that H3.3 may have an important under-explored additional role in chromosome segregation, nuclear structure, and the maintenance of genome integrity.

  16. Chaperone-mediated acetylation of histones by Rtt109 identified by quantitative proteomics.

    PubMed

    Abshiru, Nebiyu; Ippersiel, Kevin; Tang, Yong; Yuan, Hua; Marmorstein, Ronen; Verreault, Alain; Thibault, Pierre

    2013-04-09

    Rtt109 is a fungal-specific histone acetyltransferase (HAT) that associates with either Vps75 or Asf1 to acetylate histone H3. Recent biochemical and structural studies suggest that site-specific acetylation of H3 by Rtt109 is dictated by the binding chaperone where Rtt109-Asf1 acetylates K56, while Rtt109-Vps75 acetylates K9 and K27. To gain further insights into the roles of Vps75 and Asf1 in directing site-specific acetylation of H3, we used quantitative proteomics to profile the global and site-specific changes in H3 and H4 during in vitro acetylation assays with Rtt109 and its chaperones. Our analyses showed that Rtt109-Vps75 preferentially acetylates H3 K9 and K23, the former residue being the major acetylation site. At high enzyme-to-substrate ratio, Rtt109 also acetylated K14, K18, K27 and to a lower extent K56 of histone H3. Importantly, this study revealed that in contrast to Rtt109-Vps75, Rtt109-Asf1 displayed a far greater site-specificity, with K56 being the primary site of acetylation. For the first time, we also report the acetylation of histone H4 K12 by Rtt109-Vps75, whereas Rtt109-Asf1 showed no detectable activity toward H4. This article is part of a Special Issue entitled: From protein structures to clinical applications.

  17. Chaperone-mediated acetylation of histones by Rtt109 identified by quantitative proteomics

    PubMed Central

    Abshiru, Nebiyu; Ippersiel, Kevin; Tang, Yong; Yuan, Hua; Marmorstein, Ronen; Verreault, Alain; Thibault, Pierre

    2014-01-01

    Rtt109 is a fungal-specific histone acetyltransferase (HAT) that associates with either Vps75 or Asf1 to acetylate histone H3. Recent biochemical and structural studies suggest that site-specific acetylation of H3 by Rtt109 is dictated by the binding chaperone where Rtt109-Asf1 acetylates K56, while Rtt109-Vps75 acetylates K9 and K27. To gain further insights into the roles of Vps75 and Asf1 in directing site-specific acetylation of H3, we used quantitative proteomics to profile the global and site-specific changes in H3 and H4 during in vitro acetylation assays with Rtt109 and its chaperones. Our analyses showed that Rtt109-Vps75 preferentially acetylates H3 K9 and K23, the former residue being the major acetylation site. At high enzyme to substrate ratio, Rtt109 also acetylated K14, K18, K27 and to a lower extent K56 of histone H3. Importantly, this study revealed that in contrast to Rtt109-Vps75, Rtt109-Asf1 displayed a far greater site-specificity, with K56 being the primary site of acetylation. For the first time, we also report the acetylation of histone H4 K12 by Rtt109-Vps75, whereas Rtt109-Asf1 showed no detectable activity toward H4. PMID:23036725

  18. The rapidly evolving centromere-specific histone has stringent functional requirements in Arabidopsis thaliana.

    PubMed

    Ravi, Maruthachalam; Kwong, Pak N; Menorca, Ron M G; Valencia, Joel T; Ramahi, Joseph S; Stewart, Jodi L; Tran, Robert K; Sundaresan, Venkatesan; Comai, Luca; Chan, Simon W-L

    2010-10-01

    Centromeres control chromosome inheritance in eukaryotes, yet their DNA structure and primary sequence are hypervariable. Most animals and plants have megabases of tandem repeats at their centromeres, unlike yeast with unique centromere sequences. Centromere function requires the centromere-specific histone CENH3 (CENP-A in human), which replaces histone H3 in centromeric nucleosomes. CENH3 evolves rapidly, particularly in its N-terminal tail domain. A portion of the CENH3 histone-fold domain, the CENP-A targeting domain (CATD), has been previously shown to confer kinetochore localization and centromere function when swapped into human H3. Furthermore, CENP-A in human cells can be functionally replaced by CENH3 from distantly related organisms including Saccharomyces cerevisiae. We have used cenh3-1 (a null mutant in Arabidopsis thaliana) to replace endogenous CENH3 with GFP-tagged variants. A H3.3 tail domain-CENH3 histone-fold domain chimera rescued viability of cenh3-1, but CENH3's lacking a tail domain were nonfunctional. In contrast to human results, H3 containing the A. thaliana CATD cannot complement cenh3-1. GFP-CENH3 from the sister species A. arenosa functionally replaces A. thaliana CENH3. GFP-CENH3 from the close relative Brassica rapa was targeted to centromeres, but did not complement cenh3-1, indicating that kinetochore localization and centromere function can be uncoupled. We conclude that CENH3 function in A. thaliana, an organism with large tandem repeat centromeres, has stringent requirements for functional complementation in mitosis.

  19. The expression and nuclear deposition of histone H3.1 in murine oocytes and preimplantation embryos.

    PubMed

    Kawamura, Machika; Akiyama, Tomohiko; Tsukamoto, Satoshi; Suzuki, Masataka G; Aoki, Fugaku

    2012-01-01

    Differentiated oocytes acquire totipotency through fertilization. During this transition, genome-wide chromatin remodeling occurs, which leads to change in gene expression. However, the mechanism that underlies this global change in chromatin structure has not been fully elucidated. Histone variants play a key role in defining chromatin structure and are implicated in inheritance of epigenetic information. In this study, we analyzed the nuclear localization and expression of H3.1 to elucidate the role of this histone variant in chromatin remodeling during oogenesis and preimplantation development. Analysis using Flag-tagged H3.1 transgenic mice revealed that Flag-H3.1 was not present in differentiated oocytes or early preimplantation embryos before the morula stage, although Flag-H3.1 mRNA was expressed at all stages examined. In addition, the expression levels of endogenous H3.1 genes were low at the stages where H3.1 was not present in chromatin. These results suggest that H3.1 is not incorporated into chromatin due to the inactivity of the histone chaperone and low mRNA expression level. The significance of the dynamics of H3.1 is evaluated in terms of chromatin remodeling that takes place during development.

  20. The Histone H3 Acetylase dGcn5 Is a Key Player in Drosophila melanogaster Metamorphosis

    PubMed Central

    Carré, Clément; Szymczak, Dimitri; Pidoux, Josette; Antoniewski, Christophe

    2005-01-01

    Although it has been well established that histone acetyltransferases (HATs) are involved in the modulation of chromatin structure and gene transcription, there is only little information on their developmental role in higher organisms. Gcn5 was the first transcription factor with HAT activity identified in eukaryotes. Here w