Science.gov

Sample records for histone variant ratios

  1. Histone Variants and Epigenetics

    PubMed Central

    Henikoff, Steven; Smith, M. Mitchell

    2015-01-01

    Histones package and compact DNA by assembling into nucleosome core particles. Most histones are synthesized at S phase for rapid deposition behind replication forks. In addition, the replacement of histones deposited during S phase by variants that can be deposited independently of replication provide the most fundamental level of chromatin differentiation. Alternative mechanisms for depositing different variants can potentially establish and maintain epigenetic states. Variants have also evolved crucial roles in chromosome segregation, transcriptional regulation, DNA repair, and other processes. Investigations into the evolution, structure, and metabolism of histone variants provide a foundation for understanding the participation of chromatin in important cellular processes and in epigenetic memory. PMID:25561719

  2. Histone variants: emerging players in cancer biology

    PubMed Central

    Vardabasso, Chiara; Hasson, Dan; Ratnakumar, Kajan; Chung, Chi-Yeh; Duarte, Luis F.

    2014-01-01

    Histone variants are key players in shaping chromatin structure, and, thus, in regulating fundamental cellular processes such as chromosome segregation and gene expression. Emerging evidence points towards a role for histone variants in contributing to tumor progression, and, recently, the first cancer-associated mutation in a histone variant-encoding gene was reported. In addition, genetic alterations of the histone chaperones that specifically regulate chromatin incorporation of histone variants are rapidly being uncovered in numerous cancers. Collectively, these findings implicate histone variants as potential drivers of cancer initiation and/or progression, and, therefore, targeting histone deposition or the chromatin remodeling machinery may be of therapeutic value. Here, we review the mammalian histone variants of the H2A and H3 families in their respective cellular functions, and their involvement in tumor biology. PMID:23652611

  3. Histone variants: key players of chromatin.

    PubMed

    Biterge, Burcu; Schneider, Robert

    2014-06-01

    Histones are fundamental structural components of chromatin. Eukaryotic DNA is wound around an octamer of the core histones H2A, H2B, H3, and H4. Binding of linker histone H1 promotes higher order chromatin organization. In addition to their structural role, histones impact chromatin function and dynamics by, e.g., post-translational histone modifications or the presence of specific histone variants. Histone variants exhibit differential expression timings (DNA replication-independent) and mRNA characteristics compared to canonical histones. Replacement of canonical histones with histone variants can affect nucleosome stability and help to create functionally distinct chromatin domains. In line with this, several histone variants have been implicated in the regulation of cellular processes such as DNA repair and transcriptional activity. In this review, we focus on recent progress in the study of core histone variants H2A.X, H2A.Z, macroH2A, H3.3, and CENP-A, as well as linker histone H1 variants, their functions and their links to development and disease.

  4. Analysis of histones and histone variants in plants.

    PubMed

    Trivedi, Ila; Rai, Krishan Mohan; Singh, Sunil Kumar; Kumar, Verandra; Singh, Mala; Ranjan, Amol; Lodhi, Niraj; Sawant, Samir V

    2012-01-01

    Histone proteins are the major protein components of chromatin - the physiologically relevant form of the genome (or epigenome) in all eukaryotic cells. For many years, histones were considered passive structural components of eukaryotic chromatin. In recent years, it has been demonstrated that dynamic association of histones and their variants to the genome plays a very important role in gene regulation. Histones are extensively modified during posttranslation viz. acetylation, methylation, phosphorylation, ubiquitylation, etc., and the identification of these covalent marks on canonical and variant histones is crucial for the understanding of their biological significance. Different biochemical techniques have been developed to purify and separate histone proteins; here, we describe techniques for analysis of histones from plant tissues.

  5. Histone variants: the tricksters of the chromatin world☆

    PubMed Central

    Volle, Catherine; Dalal, Yamini

    2014-01-01

    The eukaryotic genome exists in vivo at an equimolar ratio with histones, thus forming a polymer composed of DNA and histone proteins. Each nucleosomal unit in this polymer provides versatile capabilities and dynamic range. Substitutions of the individual components of the histone core with structurally distinct histone variants and covalent modifications alter the local fabric of the chromatin fiber, resulting in epigenetic changes that can be regulated by the cell. In this review, we highlight recent advances in the study of histone variant structure, assembly, and inheritance, their influence on nucleosome positioning, and their cumulative effect upon gene expression, DNA repair and the progression of disease. We also highlight fundamental questions that remain unanswered regarding the behavior of histone variants and their influence on cellular function in the normal and diseased states. PMID:24463272

  6. Histone chaperones FACT and Spt6 prevent histone variants from turning into histone deviants.

    PubMed

    Jeronimo, Célia; Robert, François

    2016-05-01

    Histone variants are specialized histones which replace their canonical counterparts in specific nucleosomes. Together with histone post-translational modifications and DNA methylation, they contribute to the epigenome. Histone variants are incorporated at specific locations by the concerted action of histone chaperones and ATP-dependent chromatin remodelers. Recent studies have shown that the histone chaperone FACT plays key roles in preventing pervasive incorporation of two histone variants: H2A.Z and CenH3/CENP-A. In addition, Spt6, another histone chaperone, was also shown to be important for appropriate H2A.Z localization. FACT and Spt6 are both associated with elongating RNA polymerase II. Based on these two examples, we propose that the establishment and maintenance of histone variant genomic distributions depend on a transcription-coupled epigenome editing (or surveillance) function of histone chaperones.

  7. Histone variants in plant transcriptional regulation.

    PubMed

    Jiang, Danhua; Berger, Frédéric

    2017-01-01

    Chromatin based organization of eukaryotic genome plays a profound role in regulating gene transcription. Nucleosomes form the basic subunits of chromatin by packaging DNA with histone proteins, impeding the access of DNA to transcription factors and RNA polymerases. Exchange of histone variants in nucleosomes alters the properties of nucleosomes and thus modulates DNA exposure during transcriptional regulation. Growing evidence indicates the important function of histone variants in programming transcription during developmental transitions and stress response. Here we review how histone variants and their deposition machineries regulate the nucleosome stability and dynamics, and discuss the link between histone variants and transcriptional regulation in plants. This article is part of a Special Issue entitled: Plant Gene Regulatory Mechanisms and Networks, edited by Dr. Erich Grotewold and Dr. Nathan Springer.

  8. Canonical and variant histones of protozoan parasites.

    PubMed

    Dalmasso, Maria Carolina; Sullivan, William Joseph; Angel, Sergio Oscar

    2011-06-01

    Protozoan parasites have tremendously diverse lifestyles that require adaptation to a remarkable assortment of different environmental conditions. In order to complete their life cycles, protozoan parasites rely on fine-tuning gene expression. In general, protozoa use novel regulatory elements, transcription factors, and epigenetic mechanisms to regulate their transcriptomes. One of the most surprising findings includes the nature of their histones--these primitive eukaryotes lack some histones yet harbor novel histone variants of unknown function. In this review, we describe the histone components of different protozoan parasites based on literature and database searching. We summarize the key discoveries regarding histones and histone variants and their impact on chromatin regulation in protozoan parasites. In addition, we list histone genes IDs, sequences, and genomic localization of several protozoan parasites and Microsporidia histones, obtained from a thorough search of genome databases. We then compare these findings with those observed in higher eukaryotes, allowing us to highlight some novel aspects of epigenetic regulation in protists and to propose questions to be addressed in the upcoming years.

  9. HistoneDB 2.0: a histone database with variants--an integrated resource to explore histones and their variants.

    PubMed

    Draizen, Eli J; Shaytan, Alexey K; Mariño-Ramírez, Leonardo; Talbert, Paul B; Landsman, David; Panchenko, Anna R

    2016-01-01

    Compaction of DNA into chromatin is a characteristic feature of eukaryotic organisms. The core (H2A, H2B, H3, H4) and linker (H1) histone proteins are responsible for this compaction through the formation of nucleosomes and higher order chromatin aggregates. Moreover, histones are intricately involved in chromatin functioning and provide a means for genome dynamic regulation through specific histone variants and histone post-translational modifications. 'HistoneDB 2.0--with variants' is a comprehensive database of histone protein sequences, classified by histone types and variants. All entries in the database are supplemented by rich sequence and structural annotations with many interactive tools to explore and compare sequences of different variants from various organisms. The core of the database is a manually curated set of histone sequences grouped into 30 different variant subsets with variant-specific annotations. The curated set is supplemented by an automatically extracted set of histone sequences from the non-redundant protein database using algorithms trained on the curated set. The interactive web site supports various searching strategies in both datasets: browsing of phylogenetic trees; on-demand generation of multiple sequence alignments with feature annotations; classification of histone-like sequences and browsing of the taxonomic diversity for every histone variant. HistoneDB 2.0 is a resource for the interactive comparative analysis of histone protein sequences and their implications for chromatin function. Database URL: http://www.ncbi.nlm.nih.gov/projects/HistoneDB2.0.

  10. Histone variants and chromatin assembly in plant abiotic stress responses.

    PubMed

    Zhu, Yan; Dong, Aiwu; Shen, Wen-Hui

    2013-01-01

    Genome organization into nucleosomes and higher-order chromatin structures has profound implications for the regulation of gene expression, DNA replication and repair. The structure of chromatin can be remodeled by several mechanisms; among others, nucleosome assembly/disassembly and replacement of canonical histones with histone variants constitute important ones. In this review, we provide a brief description on the current knowledge about histone chaperones involved in nucleosome assembly/disassembly and histone variants in Arabidopsis thaliana. We discuss recent advances in revealing crucial functions of histone chaperones, nucleosome assembly/disassembly and histone variants in plant response to abiotic stresses. It appears that chromatin structure remodeling may provide a flexible, global and stable means for the regulation of gene transcription to help plants more effectively cope with environmental stresses. This article is part of a Special Issue entitled: Histone chaperones and chromatin assembly.

  11. Marking histone H3 variants: how, when and why?

    PubMed

    Loyola, Alejandra; Almouzni, Geneviève

    2007-09-01

    DNA in eukaryotic cells is compacted into chromatin, a regular repeated structure in which the nucleosome represents the basic unit. The nucleosome not only serves to compact the genetic material but also provides information that affects nuclear functions including DNA replication, repair and transcription. This information is conveyed through numerous combinations of histone post-translational modifications (PTMs) and histone variants. A recent challenge has been to understand how and when these combinations of PTMs are imposed and to what extent they are determined by the choice of a specific histone variant. Here we focus on histone H3 variants and the PTMs that they carry before and after their assembly into chromatin. We review and discuss recent knowledge about how the choice and initial modifications of a specific variant might affect PTM states and eventually the final epigenetic state of a chromosomal domain.

  12. Diversification of histone H2A variants during plant evolution.

    PubMed

    Kawashima, Tomokazu; Lorković, Zdravko J; Nishihama, Ryuichi; Ishizaki, Kimitsune; Axelsson, Elin; Yelagandula, Ramesh; Kohchi, Takayuki; Berger, Frederic

    2015-07-01

    Among eukaryotes, the four core histones show an extremely high conservation of their structure and form nucleosomes that compact, protect, and regulate access to genetic information. Nevertheless, in multicellular eukaryotes the two families, histone H2A and histone H3, have diversified significantly in key residues. We present a phylogenetic analysis across the green plant lineage that reveals an early diversification of the H2A family in unicellular green algae and remarkable expansions of H2A variants in flowering plants. We define motifs and domains that differentiate plant H2A proteins into distinct variant classes. In non-flowering land plants, we identify a new class of H2A variants and propose their possible role in the emergence of the H2A.W variant class in flowering plants.

  13. Germline-specific H1 variants: the "sexy" linker histones.

    PubMed

    Pérez-Montero, Salvador; Carbonell, Albert; Azorín, Fernando

    2016-03-01

    The eukaryotic genome is packed into chromatin, a nucleoprotein complex mainly formed by the interaction of DNA with the abundant basic histone proteins. The fundamental structural and functional subunit of chromatin is the nucleosome core particle, which is composed by 146 bp of DNA wrapped around an octameric protein complex formed by two copies of each core histone H2A, H2B, H3, and H4. In addition, although not an intrinsic component of the nucleosome core particle, linker histone H1 directly interacts with it in a monomeric form. Histone H1 binds nucleosomes near the exit/entry sites of linker DNA, determines nucleosome repeat length and stabilizes higher-order organization of nucleosomes into the ∼30 nm chromatin fiber. In comparison to core histones, histone H1 is less well conserved through evolution. Furthermore, histone H1 composition in metazoans is generally complex with most species containing multiple variants that play redundant as well as specific functions. In this regard, a characteristic feature is the presence of specific H1 variants that replace somatic H1s in the germline and during early embryogenesis. In this review, we summarize our current knowledge about their structural and functional properties.

  14. The right place at the right time: chaperoning core histone variants.

    PubMed

    Mattiroli, Francesca; D'Arcy, Sheena; Luger, Karolin

    2015-11-01

    Histone proteins dynamically regulate chromatin structure and epigenetic signaling to maintain cell homeostasis. These processes require controlled spatial and temporal deposition and eviction of histones by their dedicated chaperones. With the evolution of histone variants, a network of functionally specific histone chaperones has emerged. Molecular details of the determinants of chaperone specificity for different histone variants are only slowly being resolved. A complete understanding of these processes is essential to shed light on the genuine biological roles of histone variants, their chaperones, and their impact on chromatin dynamics.

  15. The right place at the right time: chaperoning core histone variants

    PubMed Central

    Mattiroli, Francesca; D’Arcy, Sheena; Luger, Karolin

    2015-01-01

    Histone proteins dynamically regulate chromatin structure and epigenetic signaling to maintain cell homeostasis. These processes require controlled spatial and temporal deposition and eviction of histones by their dedicated chaperones. With the evolution of histone variants, a network of functionally specific histone chaperones has emerged. Molecular details of the determinants of chaperone specificity for different histone variants are only slowly being resolved. A complete understanding of these processes is essential to shed light on the genuine biological roles of histone variants, their chaperones, and their impact on chromatin dynamics. PMID:26459557

  16. HistoneDB 2.0: a histone database with variants—an integrated resource to explore histones and their variants

    PubMed Central

    Draizen, Eli J.; Shaytan, Alexey K.; Mariño-Ramírez, Leonardo; Talbert, Paul B.; Landsman, David; Panchenko, Anna R.

    2016-01-01

    Compaction of DNA into chromatin is a characteristic feature of eukaryotic organisms. The core (H2A, H2B, H3, H4) and linker (H1) histone proteins are responsible for this compaction through the formation of nucleosomes and higher order chromatin aggregates. Moreover, histones are intricately involved in chromatin functioning and provide a means for genome dynamic regulation through specific histone variants and histone post-translational modifications. ‘HistoneDB 2.0 – with variants’ is a comprehensive database of histone protein sequences, classified by histone types and variants. All entries in the database are supplemented by rich sequence and structural annotations with many interactive tools to explore and compare sequences of different variants from various organisms. The core of the database is a manually curated set of histone sequences grouped into 30 different variant subsets with variant-specific annotations. The curated set is supplemented by an automatically extracted set of histone sequences from the non-redundant protein database using algorithms trained on the curated set. The interactive web site supports various searching strategies in both datasets: browsing of phylogenetic trees; on-demand generation of multiple sequence alignments with feature annotations; classification of histone-like sequences and browsing of the taxonomic diversity for every histone variant. HistoneDB 2.0 is a resource for the interactive comparative analysis of histone protein sequences and their implications for chromatin function. Database URL: http://www.ncbi.nlm.nih.gov/projects/HistoneDB2.0 PMID:26989147

  17. Every amino acid matters: essential contributions of histone variants to mammalian development and disease

    PubMed Central

    Maze, Ian; Noh, Kyung-Min; Soshnev, Alexey A.; Allis, C. David

    2014-01-01

    Despite a conserved role for histones as general DNA packaging agents, it is now clear that another key function of these proteins is to confer variations in chromatin structure to ensure dynamic patterns of transcriptional regulation in eukaryotes. The incorporation of histone variants is particularly important to this process. Recent knockdown and knockout studies in various cellular systems, as well as direct mutational evidence from human cancers, now suggest a crucial role for histone variant regulation in processes as diverse as differentiation and proliferation, meiosis and nuclear reprogramming. In this Review, we provide an overview of histone variants in the context of their unique functions during mammalian germ cell and embryonic development, and examine the consequences of aberrant histone variant regulation in human disease. PMID:24614311

  18. Prioritizing Rare Variants with Conditional Likelihood Ratios

    PubMed Central

    Li, Weili; Dobbins, Sara; Tomlinson, Ian; Houlston, Richard; Pal, Deb K.; Strug, Lisa J.

    2016-01-01

    Background Prioritizing individual rare variants within associated genes or regions often consists of an ad hoc combination of statistical and biological considerations. From the statistical perspective, rare variants are often ranked using Fisher’s exact p values, which can lead to different rankings of the same set of variants depending on whether 1- or 2-sided p values are used. Results We propose a likelihood ratio-based measure, maxLRc, for the statistical component of ranking rare variants under a case-control study design that avoids the hypothesis-testing paradigm. We prove analytically that the maxLRc is always well-defined, even when the data has zero cell counts in the 2×2 disease-variant table. Via simulation, we show that the maxLRc outperforms Fisher’s exact p values in most practical scenarios considered. Using next-generation sequence data from 27 rolandic epilepsy cases and 200 controls in a region previously shown to be linked to and associated with rolandic epilepsy, we demonstrate that rankings assigned by the maxLRc and exact p values can differ substantially. Conclusion The maxLRc provides reliable statistical prioritization of rare variants using only the observed data, avoiding the need to specify parameters associated with hypothesis testing that can result in ranking discrepancies across p value procedures; and it is applicable to common variant prioritization. PMID:25659987

  19. Distinct features of the histone core structure in nucleosomes containing the histone H2A.B variant.

    PubMed

    Sugiyama, Masaaki; Arimura, Yasuhiro; Shirayama, Kazuyoshi; Fujita, Risa; Oba, Yojiro; Sato, Nobuhiro; Inoue, Rintaro; Oda, Takashi; Sato, Mamoru; Heenan, Richard K; Kurumizaka, Hitoshi

    2014-05-20

    Nucleosomes containing a human histone variant, H2A.B, in an aqueous solution were analyzed by small-angle neutron scattering utilizing a contrast variation technique. Comparisons with the canonical H2A nucleosome structure revealed that the DNA termini of the H2A.B nucleosome are detached from the histone core surface, and flexibly expanded toward the solvent. In contrast, the histone tails are compacted in H2A.B nucleosomes compared to those in canonical H2A nucleosomes, suggesting that they bind to the surface of the histone core and/or DNA. Therefore, the histone tail dynamics may function to regulate the flexibility of the DNA termini in the nucleosomes.

  20. Proteomic characterization of histone variants in the mouse testis by mass spectrometry-based top-down analysis.

    PubMed

    Kwak, Ho-Geun; Dohmae, Naoshi

    2016-11-15

    Various histones, including testis-specific histones, exist during spermatogenesis and some of them have been reported to play a key role in chromatin remodeling. Mass spectrometry (MS)-based characterization has become the important step to understand histone structures. Although individual histones or partial histone variant groups have been characterized, the comprehensive analysis of histone variants has not yet been conducted in the mouse testis. Here, we present the comprehensive separation and characterization of histone variants from mouse testes by a top-down approach using MS. Histone variants were successfully separated on a reversed phase column using high performance liquid chromatography (HPLC) with an ion-pairing reagent. Increasing concentrations of testis-specific histones were observed in the mouse testis and some somatic histones increased in the epididymis. Specifically, the increase of mass abundance in H3.2 in the epididymis was inversely proportional to the decrease in H3t in the testis, which was approximately 80%. The top-down characterization of intact histone variants in the mouse testis was performed using LC-MS/MS. The masses of separated histone variants and their expected post-translation modifications were calculated by performing deconvolution with information taken from the database. TH2A, TH2B and H3t were characterized by MS/MS fragmentation. Our approach provides comprehensive knowledge for identification of histone variants in the mouse testis that will contribute to the structural and functional research of histone variants during spermatogenesis.

  1. Macro histone variants are critical for the differentiation of human pluripotent cells.

    PubMed

    Barrero, María J; Sese, Borja; Martí, Mercè; Izpisua Belmonte, Juan Carlos

    2013-05-31

    We have previously shown that macro histone variants (macroH2A) are expressed at low levels in stem cells and are up-regulated during differentiation. Here we show that the knockdown of macro histone variants impaired the in vitro and in vivo differentiation of human pluripotent cells, likely through defects in the silencing of pluripotency-related genes. ChIP experiments showed that during differentiation macro histone variants are recruited to the regulatory regions of pluripotency and developmental genes marked with H3K27me3 contributing to the silencing of these genes.

  2. Histone H2A variants in nucleosomes and chromatin: more or less stable?

    PubMed Central

    Bönisch, Clemens; Hake, Sandra B.

    2012-01-01

    In eukaryotes, DNA is organized together with histones and non-histone proteins into a highly complex nucleoprotein structure called chromatin, with the nucleosome as its monomeric subunit. Various interconnected mechanisms regulate DNA accessibility, including replacement of canonical histones with specialized histone variants. Histone variant incorporation can lead to profound chromatin structure alterations thereby influencing a multitude of biological processes ranging from transcriptional regulation to genome stability. Among core histones, the H2A family exhibits highest sequence divergence, resulting in the largest number of variants known. Strikingly, H2A variants differ mostly in their C-terminus, including the docking domain, strategically placed at the DNA entry/exit site and implicated in interactions with the (H3–H4)2-tetramer within the nucleosome and in the L1 loop, the interaction interface of H2A–H2B dimers. Moreover, the acidic patch, important for internucleosomal contacts and higher-order chromatin structure, is altered between different H2A variants. Consequently, H2A variant incorporation has the potential to strongly regulate DNA organization on several levels resulting in meaningful biological output. Here, we review experimental evidence pinpointing towards outstanding roles of these highly variable regions of H2A family members, docking domain, L1 loop and acidic patch, and close by discussing their influence on nucleosome and higher-order chromatin structure and stability. PMID:23002134

  3. New functions for an old variant: no substitute for histone H3.3

    PubMed Central

    Elsaesser, Simon J; Goldberg, Aaron D; Allis, C David

    2010-01-01

    Histone proteins often come in different variants serving specialized functions in addition to their fundamental role in packaging DNA. The metazoan histone H3.3 has been most closely associated with active transcription. Its role in histone replacement at active genes and promoters is conserved to the single histone H3 in yeast. However, recent genetic studies in flies have challenged its importance as a mark of active chromatin, and revealed unexpected insights into essential functions of H3.3 in the germline. With strikingly little amino acid sequence difference to the canonical H3, H3.3 therefore accomplishes a surprising variety of cellular and developmental processes. PMID:20153629

  4. Dynamic expression of combinatorial replication-dependent histone variant genes during mouse spermatogenesis.

    PubMed

    Sun, Rongfang; Qi, Huayu

    2014-01-01

    Nucleosomes are basic chromatin structural units that are formed by DNA sequences wrapping around histones. Global chromatin states in different cell types are specified by combinatorial effects of post-translational modifications of histones and the expression of histone variants. During mouse spermatogenesis, spermatogonial stem cells (SSCs) self-renew while undergo differentiation, events that occur in the company of constant re-modeling of chromatin structures. Previous studies have shown that testes contain highly expressed or specific histone variants to facilitate these epigenetic modifications. However, mechanisms of regulating the epigenetic changes and the specific histone compositions of spermatogenic cells are not fully understood. Using real time quantitative RT-PCR, we examined the dynamic expression of replication-dependent histone genes in post-natal mouse testes. It was found that distinct sets of histone genes are expressed in various spermatogenic cells at different stages during spermatogenesis. While gonocyte-enriched testes from mice at 2-dpp (days post partum) express pre-dominantly thirteen histone variant genes, SSC-stage testes at 9-dpp highly express a different set of eight histone genes. During differentiation stage when testes are occupied mostly by spermatocytes and spermatids, another twenty-two histone genes are expressed much higher than the rest, including previously known testis-specific hist1h1t, hist1h2ba and hist1h4c. In addition, histone genes that are pre-dominantly expressed in gonocytes and SSCs are also highly expressed in embryonic stem cells. Several of them were changed when embryoid bodies were formed from ES cells, suggesting their roles in regulating pluripotency of the cells. Further more, differentially expressed histone genes are specifically localized in either SSCs or spermatocytes and spermatids, as demonstrated by in situ hybridization using gene specific probes. Taken together, results presented here

  5. Differential Expression of Histone H3 Gene Variants during Cell Cycle and Somatic Embryogenesis in Alfalfa

    PubMed Central

    Kapros, Tamás; Bögre, László; Németh, Kinga; Bakó, László; Györgyey, János; Wu, Sheng Cheng; Dudits, Dénes

    1992-01-01

    Northern analysis has revealed substantial differences in mRNA accumulation of the two histone H3 gene variants represented by pH3c-1 and pH3c-11 cDNA clones. Both in partially synchronized cell suspension cultures and in protoplast-derived cells from alfalfa, Medicago varia, the maximal level of the histone H3-1 gene transcript coincided with the peak in [3H]thymidine incorporation. Histone H3-11 mRNA was detectable in cells throughout the period of the cell cycle studied. Various stress factors such as medium replacement, enzyme digestion of the cell wall, osmotic shock, and auxin treatment considerably increased the level of the histone H3-11 transcript. In alfalfa (Medicago sativa), the presence of H3-11 mRNA in unorganized tissues of microcallus suspension and in somatic embryos induced by auxin treatment supports the idea that this H3 variant exists in a continously active state of transcription. During embryo development, the early globular stage embryos showed increased accumulation of histone H3-11 mRNA in comparison with the later stages. The highest level of the histone H3-1 transcript was detectable 1 day after treatment of callus tissues with 2,4-dichlorophenoxyacetic acid. Somatic embryos contained appreciable levels of histone H3-1 transcripts at all stages of somatic embryo development. These observations suggest that the histone H3-1 gene belòngs to the class of replication-dependent histone genes. The histone H3-11 gene showed characteristics of a constitutively expressed replacement-type histone gene, with a specific characteristic that external factors can influence the level of gene transcription. ImagesFigure 1Figure 2Figure 3Figure 4 PMID:16668686

  6. Changes in nucleosomal core histone variants during chicken development and maturation.

    PubMed

    Urban, M K; Zweidler, A

    1983-02-01

    The nucleosomal core histones H2A, H2B, and H3 of the chicken can be resolved by polyacrylamide gel electrophoresis in the presence of nonionic detergents into two primary structure variants each, which occur in different relative amounts in various adult tissues. Quantitative analysis of the histone components throughout embryonic development and posthatching maturation of the chicken revealed that the proportions of the three pairs of variants change independently. Thus, the two H2A variants occur in similar proportions throughout embryonic development and in all adult tissues. In contrast, only one variant each of H2B and H3 is detectable at the earliest stages (primitive streak). The second variant of these histones becomes detectable and increases gradually during somite formation (2-12 days of incubation) to reach a plateau at a level of about 3 and 10% of total H2B and H3 histones, respectively. After hatching, the relative amounts of the minor H2B and H3 variants remain at embryonic levels in those tissues which maintain a high mitotic activity such as blood-forming tissues, but increase with different kinetics in tissues which essentially stop cell division in adults (e.g., liver, kidney, etc.). However, while H2B.2 remains a very minor component in all tissues, H3.3 increases at a relatively high rate for more than a year to become the predominant H3 variant in the liver and kidney of older chickens. The changes in chicken core histone variant proportions appear to be related to changes in growth rate rather than cell differentiation. The extensive change of H3 variant proportions in nondividing adult tissues is most likely due to replication-independent incorporation of H3.3 into nucleosomes.

  7. Protein profiling and histone deacetylation activities in somaclonal variants of oil palm (Elaeis guineensis Jacq.).

    PubMed

    Yaacob, Jamilah Syafawati; Loh, Hwei-San; Mat Taha, Rosna

    2013-01-01

    Mantled fruits as a result of somaclonal variation are often observed from the oil palm plantlets regenerated via tissue culture. The mantling of fruits with finger-like and thick outer coating phenotypes significantly reduces the seed size and oil content, posing a threat to oil palm planters, and may jeopardize the economic growth of countries that depend particularly on oil palm plantation. The molecular aspects of the occurrence of somaclonal variations are yet to be known, possibly due to gene repression such as DNA methylation, histone methylation and histone deacetylation. Histone deacetylases (HDACs), involved in eukaryotic gene regulation by catalyzing the acetyl groups are removal from lysine residues on histone, hence transcriptionally repress gene expression. This paper described the total protein polymorphism profiles of somaclonal variants of oil palm and the effects of histone deacetylation on this phenomenon. Parallel to the different phenotypes, the protein polymorphism profiles of the mantled samples (leaves, fruits, and florets) and the phenotypically normal samples were proven to be different. Higher HDAC activity was found in mantled leaf samples than in the phenotypically normal leaf samples, leading to a preliminary conclusion that histone deacetylation suppressed gene expression and contributed to the development of somaclonal variants.

  8. Protein Profiling and Histone Deacetylation Activities in Somaclonal Variants of Oil Palm (Elaeis guineensis Jacq.)

    PubMed Central

    Yaacob, Jamilah Syafawati; Loh, Hwei-San; Mat Taha, Rosna

    2013-01-01

    Mantled fruits as a result of somaclonal variation are often observed from the oil palm plantlets regenerated via tissue culture. The mantling of fruits with finger-like and thick outer coating phenotypes significantly reduces the seed size and oil content, posing a threat to oil palm planters, and may jeopardize the economic growth of countries that depend particularly on oil palm plantation. The molecular aspects of the occurrence of somaclonal variations are yet to be known, possibly due to gene repression such as DNA methylation, histone methylation and histone deacetylation. Histone deacetylases (HDACs), involved in eukaryotic gene regulation by catalyzing the acetyl groups are removal from lysine residues on histone, hence transcriptionally repress gene expression. This paper described the total protein polymorphism profiles of somaclonal variants of oil palm and the effects of histone deacetylation on this phenomenon. Parallel to the different phenotypes, the protein polymorphism profiles of the mantled samples (leaves, fruits, and florets) and the phenotypically normal samples were proven to be different. Higher HDAC activity was found in mantled leaf samples than in the phenotypically normal leaf samples, leading to a preliminary conclusion that histone deacetylation suppressed gene expression and contributed to the development of somaclonal variants. PMID:23844406

  9. Localization and expression of histone H2A variants during mouse oogenesis and preimplantation embryo development.

    PubMed

    Wu, B J; Dong, F L; Ma, X S; Wang, X G; Lin, F; Liu, H L

    2014-08-07

    Epigenetic modifications of the genome, such as histone H2A variants, ensure appropriate gene activation or silencing during oogenesis and preimplantation embryo development. We examined global localization and expression of the histone H2A variants, including H2A.Bbd, H2A.Z and H2A.X, during mouse oogenesis and preimplantation embryo development. Immunocytochemistry with specific antibodies against various histone H2A variants showed their localization and changes during oogenesis and preimplantation development. H2A.Bbd and H2A.Z were almost absent from nuclei of growing oocytes (except 5-day oocyte), whereas H2A.X was deposited in nuclei throughout oogenesis and in preimplantation embryos. In germinal vesicle (GV) oocyte chromatin, H2A.Bbd was detected as a weak signal, whereas no fluorescent signal was detected in GV breakdown (GVBD) or metaphase II (MII) oocytes; H2A.Z showed intense signals in chromatin of GV, GVBD and MII oocytes. H2A. Bbd showed very weak signals in both pronucleus and 2-cell embryo nuclei, but intense signals were detected in nuclei from 4-cell embryo to blastula. The H2A.Z signal was absent from pronucleus to morula chromatin, whereas a fluorescent signal was detected in blastula nuclei. Our results suggest that histone H2A variants are probably involved in reprogramming of genomes during oocyte meiosis or after fertilization.

  10. Weaver Syndrome‐Associated EZH2 Protein Variants Show Impaired Histone Methyltransferase Function In Vitro

    PubMed Central

    Yap, Damian B.; Lewis, M.E. Suzanne; Chijiwa, Chieko; Ramos‐Arroyo, Maria A.; Tkachenko, Natália; Milano, Valentina; Fradin, Mélanie; McKinnon, Margaret L.; Townsend, Katelin N.; Xu, Jieqing; Van Allen, M.I.; Ross, Colin J.D.; Dobyns, William B.; Weaver, David D.; Gibson, William T.

    2016-01-01

    ABSTRACT Weaver syndrome (WS) is a rare congenital disorder characterized by generalized overgrowth, macrocephaly, specific facial features, accelerated bone age, intellectual disability, and susceptibility to cancers. De novo mutations in the enhancer of zeste homolog 2 (EZH2) have been shown to cause WS. EZH2 is a histone methyltransferase that acts as the catalytic agent of the polycomb‐repressive complex 2 (PRC2) to maintain gene repression via methylation of lysine 27 on histone H3 (H3K27). Functional studies investigating histone methyltransferase activity of mutant EZH2 from various cancers have been reported, whereas WS‐associated mutations remain poorly characterized. To investigate the role of EZH2 in WS, we performed functional studies using artificially assembled PRC2 complexes containing mutagenized human EZH2 that reflected the codon changes predicted from patients with WS. We found that WS‐associated amino acid alterations reduce the histone methyltransferase function of EZH2 in this in vitro assay. Our results support the hypothesis that WS is caused by constitutional mutations in EZH2 that alter the histone methyltransferase function of PRC2. However, histone methyltransferase activities of different EZH2 variants do not appear to correlate directly with the phenotypic variability between WS patients and individuals with a common c.553G>C (p.Asp185His) polymorphism in EZH2. PMID:26694085

  11. Separation of Variant Methylated Histone Tails by Differential Ion Mobility

    SciTech Connect

    Shvartsburg, Alexandre A.; Zheng, Yupeng; Smith, Richard D.; Kelleher, Neil

    2012-07-18

    Differential ion mobility spectrometry (FAIMS) is emerging as a broadly useful tool for separation of isomeric modified peptides with post-translational modifications (PTMs) attached to alternative residues. Such separations were anticipated to become more challenging for smaller PTMs and longer peptides. Here we show that FAIMS can fully resolve localization variants involving a PTM as minuscule as methylation, even for larger peptides in the middle-down range.

  12. Preferential occupancy of histone variant H2AZ at inactive promoters influences local histone modifications and chromatin remodeling

    PubMed Central

    Li, Bing; Pattenden, Samantha G.; Lee, Daeyoup; Gutiérrez, José; Chen, Jie; Seidel, Chris; Gerton, Jennifer; Workman, Jerry L.

    2005-01-01

    The yeast histone variant H2AZ (Htz1) is implicated in transcription activation, prevention of the ectopic spread of heterochromatin, and genome integrity. Our genome-wide localization analysis revealed that Htz1 is widely, but nonrandomly, distributed throughout the genome in an SWR1-dependent manner. We found that Htz1 is enriched in intergenic regions compared with coding regions. Its occupancy is inversely proportional to transcription rates and the enrichment of the RNA polymerase II under different growth conditions. However, Htz1 does not seem to directly regulate transcription repression genome-wide; instead, the presence of Htz1 under the inactivated condition is essential for optimal activation of a subset of genes. In addition, Htz1 is not generally responsible for nucleosome positioning, even at those promoters where Htz1 is highly enriched. Finally, using a biochemical approach, we demonstrate that incorporation of Htz1 into nucleosomes inhibits activities of histone modifiers associated with transcription, Dot1, Set2, and NuA4 and reduces the nucleosome mobilization driven by chromatin remodeling complexes. These lines of evidence collectively suggest that Htz1 may serve to mark quiescent promoters for proper activation. PMID:16344463

  13. Post-translational modifications of linker histone H1 variants in mammals

    NASA Astrophysics Data System (ADS)

    Starkova, T. Yu; Polyanichko, A. M.; Artamonova, T. O.; Khodorkovskii, M. A.; Kostyleva, E. I.; Chikhirzhina, E. V.; Tomilin, A. N.

    2017-02-01

    The covalent modifications of the linker histone H1 and the core histones are thought to play an important role in the control of chromatin functioning. Histone H1 variants from K562 cell line (hH1), mouse (mH1) and calf (cH1) thymi were studied by matrix-activated laser desorption/ionization fourier transform ion cyclotron resonance mass-spectroscopy (MALDI-FT-ICR-MS). The proteomics analysis revealed novel post-translational modifications of the histone H1, such as meK34-mH1.4, meK35-cH1.1, meK35-mH1.1, meK75-hH1.2, meK75-hH1.3, acK26-hH1.4, acK26-hH1.3 and acK17-hH1.1. The comparison of the hH1, mH1 and cH1 proteins has demonstrated that the types and positions of the post-translational modifications of the globular domains of the H1.2–H1.4 variants are very conservative. However, the post-translational modifications of the N- and C-terminal tails of H1.2, H1.3 and H1.4 are different. The differences of post-translational modifications in the N- and C-terminal tails of H1.2, H1.3 and H1.4 likely lead to the differences in DNA-H1 and H1-protein interactions.

  14. Post-translational modifications of linker histone H1 variants in mammals.

    PubMed

    Starkova, T Yu; Polyanichko, A M; Artamonova, T O; Khodorkovskii, M A; Kostyleva, E I; Chikhirzhina, E V; Tomilin, A N

    2017-02-16

    The covalent modifications of the linker histone H1 and the core histones are thought to play an important role in the control of chromatin functioning. Histone H1 variants from K562 cell line (hH1), mouse (mH1) and calf (cH1) thymi were studied by matrix-activated laser desorption/ionization fourier transform ion cyclotron resonance mass-spectroscopy (MALDI-FT-ICR-MS). The proteomics analysis revealed novel post-translational modifications of the histone H1, such as meK34-mH1.4, meK35-cH1.1, meK35-mH1.1, meK75-hH1.2, meK75-hH1.3, acK26-hH1.4, acK26-hH1.3 and acK17-hH1.1. The comparison of the hH1, mH1 and cH1 proteins has demonstrated that the types and positions of the post-translational modifications of the globular domains of the H1.2-H1.4 variants are very conservative. However, the post-translational modifications of the N- and C-terminal tails of H1.2, H1.3 and H1.4 are different. The differences of post-translational modifications in the N- and C-terminal tails of H1.2, H1.3 and H1.4 likely lead to the differences in DNA-H1 and H1-protein interactions.

  15. Structure of human nucleosome containing the testis-specific histone variant TSH2B

    SciTech Connect

    Urahama, Takashi; Horikoshi, Naoki; Osakabe, Akihisa; Tachiwana, Hiroaki; Kurumizaka, Hitoshi

    2014-03-25

    The crystal structure of human nucleosome containing the testis-specific TSH2B variant has been determined. The TSH2B Ser85 residue does not interact with H4 in the nucleosome, and induces a local structural difference between TSH2B and H2B in nucleosomes. The human histone H2B variant TSH2B is highly expressed in testis and may function in the chromatin transition during spermatogenesis. In the present study, the crystal structure of the human testis-specific nucleosome containing TSH2B was determined at 2.8 Å resolution. A local structural difference between TSH2B and canonical H2B in nucleosomes was detected around the TSH2B-specific amino-acid residue Ser85. The TSH2B Ser85 residue does not interact with H4 in the nucleosome, but in the canonical nucleosome the H2B Asn84 residue (corresponding to the TSH2B Ser85 residue) forms water-mediated hydrogen bonds with the H4 Arg78 residue. In contrast, the other TSH2B-specific amino-acid residues did not induce any significant local structural changes in the TSH2B nucleosome. These findings may provide important information for understanding how testis-specific histone variants form nucleosomes during spermatogenesis.

  16. MacroH2A histone variants maintain nuclear organization and heterochromatin architecture.

    PubMed

    Douet, Julien; Corujo, David; Malinverni, Roberto; Renauld, Justine; Sansoni, Viola; Marjanović, Melanija Posavec; Cantari'o, Neus; Valero, Vanesa; Mongelard, Fabien; Bouvet, Philippe; Imhof, Axel; Thiry, Marc; Buschbeck, Marcus

    2017-03-10

    Genetic loss-of-function studies in development, cancer and somatic cell reprogramming have suggested that the group of macroH2A histone variants might function through stabilizing the differentiated state by a yet unknown mechanism. Here, we present results demonstrating that macroH2A variants have a major function in maintaining nuclear organization and heterochromatin architecture. Specifically, we find that a substantial amount of macroH2A is associated with heterochromatic repeat sequences. We further identify macroH2A on sites of interstitial heterochromatin decorated by H3K9me3. Loss of macroH2A leads to major defects in nuclear organization including reduced nuclear circularity, disruption of nucleoli and a global loss of dense heterochromatin. Domains formed by repeat sequences when depleted of macroH2A are disorganized, expanded and fragmented and mildly re-expressed. On the molecular level we find that macroH2A is required for the interaction of repeat sequences with the nucleostructural protein Lamin B1. Taken together our results argue that a major function of macroH2A histone variants is to link nucleosome composition to higher order chromatin architecture.

  17. H2A.Z and H3.3 histone variants affect nucleosome structure: biochemical and biophysical studies.

    PubMed

    Thakar, Amit; Gupta, Pooja; Ishibashi, Toyotaka; Finn, Ron; Silva-Moreno, Begonia; Uchiyama, Susumu; Fukui, Kiichi; Tomschik, Miroslav; Ausio, Juan; Zlatanova, Jordanka

    2009-11-24

    Histone variants play important roles in regulation of chromatin structure and function. To understand the structural role played by histone variants H2A.Z and H3.3, both of which are implicated in transcription regulation, we conducted extensive biochemical and biophysical analysis on mononucleosomes reconstituted from either random-sequence DNA derived from native nucleosomes or a defined DNA nucleosome positioning sequence and recombinant human histones. Using established electrophoretic and sedimentation analysis methods, we compared the properties of nucleosomes containing canonical histones and histone variants H2A.Z and H3.3 (in isolation or in combination). We find only subtle differences in the compaction and stability of the particles. Interestingly, both H2A.Z and H3.3 affect nucleosome positioning, either creating new positions or altering the relative occupancy of the existing nucleosome position space. On the other hand, only H2A.Z-containing nucleosomes exhibit altered linker histone binding. These properties could be physiologically significant as nucleosome positions and linker histone binding partly determine factor binding accessibility.

  18. A combination of maternal histone variants and chaperones promotes paternal genome activation and boosts somatic cell reprogramming

    PubMed Central

    Yang, Peng; Wu, Warren; Macfarlan, Todd S.

    2015-01-01

    The mammalian egg employs a wide spectrum of epigenome modification machinery to reprogram the sperm nucleus shortly after fertilization. This event is required for transcriptional activation of the paternal/zygotic genome and progression through cleavage divisions. Reprogramming of paternal nuclei requires replacement of sperm protamines with canonical and non-canonical histones, covalent modification of histone tails, and chemical modification of DNA (notably oxidative demethylation of methylated cytosines). In this essay we highlight the role maternal histone variants play during developmental reprogramming following fertilization. We discuss how reduced maternal histone variant incorporation in somatic nuclear transfer experiments may explain the reduced viability of resulting embryos and how knowledge of repressive and activating maternal factors may be used to improve somatic cell reprogramming. PMID:25328107

  19. The histone variant H3.3 claims its place in the crowded scene of epigenetics.

    PubMed

    Bano, Daniele; Piazzesi, Antonia; Salomoni, Paolo; Nicotera, Pierluigi

    2017-03-10

    Histones are evolutionarily conserved DNA-binding proteins. As scaffolding molecules, they significantly regulate the DNA packaging into the nucleus of all eukaryotic cells. As docking units, they influence the recruitment of the transcriptional machinery, thus establishing unique gene expression patterns that ultimately promote different biological outcomes. While canonical histones H3.1 and H3.2 are synthetized and loaded during DNA replication, the histone variant H3.3 is expressed and deposited into the chromatin throughout the cell cycle. Recent findings indicate that H3.3 replaces the majority of canonical H3 in non-dividing cells, reaching almost saturation levels in a time-dependent manner. Consequently, H3.3 incorporation and turnover represent an additional layer in the regulation of the chromatin landscape during aging. In this respect, work from our group and others suggest that H3.3 plays an important function in age-related processes throughout evolution. Here, we summarize the current knowledge on H3.3 biology and discuss the implications of its aberrant dynamics in the establishment of cellular states that may lead to human pathology. Critically, we review the importance of H3.3 turnover as part of epigenetic events that influence senescence and age-related processes. We conclude with the emerging evidence that H3.3 is required for proper neuronal function and brain plasticity.

  20. Structure of human nucleosome containing the testis-specific histone variant TSH2B.

    PubMed

    Urahama, Takashi; Horikoshi, Naoki; Osakabe, Akihisa; Tachiwana, Hiroaki; Kurumizaka, Hitoshi

    2014-04-01

    The human histone H2B variant TSH2B is highly expressed in testis and may function in the chromatin transition during spermatogenesis. In the present study, the crystal structure of the human testis-specific nucleosome containing TSH2B was determined at 2.8 Å resolution. A local structural difference between TSH2B and canonical H2B in nucleosomes was detected around the TSH2B-specific amino-acid residue Ser85. The TSH2B Ser85 residue does not interact with H4 in the nucleosome, but in the canonical nucleosome the H2B Asn84 residue (corresponding to the TSH2B Ser85 residue) forms water-mediated hydrogen bonds with the H4 Arg78 residue. In contrast, the other TSH2B-specific amino-acid residues did not induce any significant local structural changes in the TSH2B nucleosome. These findings may provide important information for understanding how testis-specific histone variants form nucleosomes during spermatogenesis.

  1. Structurally divergent histone H1 variants in chromosomes containing highly condensed interphase chromatin.

    PubMed

    Schulze, E; Nagel, S; Gavenis, K; Grossbach, U

    1994-12-01

    Condensed and late-replicating interphase chromatin in the Dipertan insect Chironomus contains a divergent type of histone H1 with an inserted KAP-KAP repeat that is conserved in single H1 variants of Caenorhabditis elegans and Volvox carteri. H1 peptides comprising the insertion interact specifically with DNA. The Chironomid Glyptotendipes exhibits a corresponding correlation between the presence of condensed chromosome sections and the appearance of a divergent H1 subtype. The centromere regions and other sections of Glyptotendipes barbipes chromosomes are inaccessible to immunodecoration by anti-H2B and anti-H1 antibodies one of which is known to recognize nine different epitopes in all domains of the H1 molecule. Microelectrophoresis of the histones from manually isolated unfixed centromeres revealed the presence of H1 and core histones. H1 genes of G. barpipes were sequenced and found to belong to two groups. H1 II and H1 III are rather similar but differ remarkably from H1 I. About 30% of the deduced amino acid residues were found to be unique to H1 I. Most conspicuous is the insertion, SPAKSPGR, in H1 I that is lacking in H1 II and H1 III and at its position gives rise to the sequence repeat SPAKSPAKSPGR. The homologous H1 I gene in Glyptotendipes salinus encodes the very similar repeat TPAKSPAKSPGR. Both sequences are structurally related to the KAPKAP repeat in H1 I-1 specific for condensed chromosome sites in Chironomus and to the SPKKSPKK repeat in sea urchin sperm H1, lie at almost the same distance from the central globular domain, and could interact with linker DNA in packaging condensed chromatin.

  2. Cu2+-assisted two dimensional charge-mass double focusing gel electrophoresis and mass spectrometric analysis of histone variants.

    PubMed

    Zhang, Wenyang; Tang, Xuemei; Ding, Mengjie; Zhong, Hongying

    2014-12-10

    Abundant isoforms and dynamic posttranslational modifications cause the separation and identification of histone variants to be experimentally challenging. To meet this need, we employ two-dimensional electrophoretic gel separation followed by mass spectrometric detection which takes advantage of the chelation of Cu(2+) with amino acid residues exposed on the surfaces of the histone proteins. Acid-extracted rat liver histones were first mixed with CuSO4 solution and then separated in one dimension with triton-acid-urea (TAU) gel electrophoresis and in a second dimension using sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE). The separations result from both the changes in charge and mass upon Cu(2+) chelation. Identities of each separated gel bands were obtained by using matrix-assisted laser desorption-ionization mass spectrometry (MALDI-MS). It was found that the migration of H3 histone isoforms of rat liver is markedly affected by the use of Cu(2+) ions.

  3. Characterization of centromeric histone H3 (CENH3) variants in cultivated and wild carrots (Daucus sp.).

    PubMed

    Dunemann, Frank; Schrader, Otto; Budahn, Holger; Houben, Andreas

    2014-01-01

    In eukaryotes, centromeres are the assembly sites for the kinetochore, a multi-protein complex to which spindle microtubules are attached at mitosis and meiosis, thereby ensuring segregation of chromosomes during cell division. They are specified by incorporation of CENH3, a centromere specific histone H3 variant which replaces canonical histone H3 in the nucleosomes of functional centromeres. To lay a first foundation of a putative alternative haploidization strategy based on centromere-mediated genome elimination in cultivated carrots, in the presented research we aimed at the identification and cloning of functional CENH3 genes in Daucus carota and three distantly related wild species of genus Daucus varying in basic chromosome numbers. Based on mining the carrot transcriptome followed by a subsequent PCR-based cloning, homologous coding sequences for CENH3s of the four Daucus species were identified. The ORFs of the CENH3 variants were very similar, and an amino acid sequence length of 146 aa was found in three out of the four species. Comparison of Daucus CENH3 amino acid sequences with those of other plant CENH3s as well as their phylogenetic arrangement among other dicot CENH3s suggest that the identified genes are authentic CENH3 homologs. To verify the location of the CENH3 protein in the kinetochore regions of the Daucus chromosomes, a polyclonal antibody based on a peptide corresponding to the N-terminus of DcCENH3 was developed and used for anti-CENH3 immunostaining of mitotic root cells. The chromosomal location of CENH3 proteins in the centromere regions of the chromosomes could be confirmed. For genetic localization of the CENH3 gene in the carrot genome, a previously constructed linkage map for carrot was used for mapping a CENH3-specific simple sequence repeat (SSR) marker, and the CENH3 locus was mapped on the carrot chromosome 9.

  4. The Genomic Distribution and Function of Histone Variant HTZ-1 during C. elegans Embryogenesis

    PubMed Central

    Whittle, Christina M.; McClinic, Karissa N.; Ercan, Sevinc; Zhang, Xinmin; Green, Roland D.; Kelly, William G.; Lieb, Jason D.

    2008-01-01

    In all eukaryotes, histone variants are incorporated into a subset of nucleosomes to create functionally specialized regions of chromatin. One such variant, H2A.Z, replaces histone H2A and is required for development and viability in all animals tested to date. However, the function of H2A.Z in development remains unclear. Here, we use ChIP-chip, genetic mutation, RNAi, and immunofluorescence microscopy to interrogate the function of H2A.Z (HTZ-1) during embryogenesis in Caenorhabditis elegans, a key model of metazoan development. We find that HTZ-1 is expressed in every cell of the developing embryo and is essential for normal development. The sites of HTZ-1 incorporation during embryogenesis reveal a genome wrought by developmental processes. HTZ-1 is incorporated upstream of 23% of C. elegans genes. While these genes tend to be required for development and occupied by RNA polymerase II, HTZ-1 incorporation does not specify a stereotypic transcription program. The data also provide evidence for unexpectedly widespread independent regulation of genes within operons during development; in 37% of operons, HTZ-1 is incorporated upstream of internally encoded genes. Fewer sites of HTZ-1 incorporation occur on the X chromosome relative to autosomes, which our data suggest is due to a paucity of developmentally important genes on X, rather than a direct function for HTZ-1 in dosage compensation. Our experiments indicate that HTZ-1 functions in establishing or maintaining an essential chromatin state at promoters regulated dynamically during C. elegans embryogenesis. PMID:18787694

  5. SWI/SNF remodeling and p300-dependent transcription of histone variant H2ABbd nucleosomal arrays

    PubMed Central

    Angelov, Dimitar; Verdel, André; An, Woojin; Bondarenko, Vladimir; Hans, Fabienne; Doyen, Cécile-Marie; Studitsky, Vassily M; Hamiche, Ali; Roeder, Robert G; Bouvet, Philippe; Dimitrov, Stefan

    2004-01-01

    A histone variant H2ABbd was recently identified, but its function is totally unknown. Here we have studied the structural and functional properties of nucleosome and nucleosomal arrays reconstituted with this histone variant. We show that H2ABbd can replace the conventional H2A in the nucleosome, but this replacement results in alterations of the nucleosomal structure. The remodeling complexes SWI/SNF and ACF are unable to mobilize the variant H2ABbd nucleosome. However, SWI/SNF was able to increase restriction enzyme access to the variant nucleosome and assist the transfer of variant H2ABbd–H2B dimer to a tetrameric histone H3–H4 particle. In addition, the p300- and Gal4-VP16-activated transcription appeared to be more efficient for H2ABbd nucleosomal arrays than for conventional H2A arrays. The intriguing mechanisms by which H2ABbd affects both nucleosome remodeling and transcription are discussed. PMID:15372075

  6. The histone variant H3.3 regulates gene expression during lytic infection with herpes simplex virus type 1.

    PubMed

    Placek, Brandon J; Huang, Jing; Kent, Jennifer R; Dorsey, Jean; Rice, Lyndi; Fraser, Nigel W; Berger, Shelley L

    2009-02-01

    It has been proposed that incorporation of the histone variant H3.3 within actively transcribed regions of a genome helps to facilitate transcription. In this report we use lytic infection by herpes simplex virus type 1 (HSV-1) as a model to examine the temporal profile of histone H3 incorporation and to determine whether the variant histone H3.3 has a direct effect on transcription. We find that canonical H3.1 and variant H3.3 exhibit distinct temporal associations with the genome in cell lines expressing equal amounts of epitope-tagged H3 variants. At the earliest times examined after infection, the HSV-1 genome is incorporated into chromatin that predominantly contains the variant H3.3, whereas incorporation of canonical H3.1 occurs later in infection and is dependent on replication of the HSV-1 genome. Further, inhibition of H3.3 association, via reduced expression of the H3.3 chaperone HIRA, significantly reduces the levels of HSV-1 mRNA. These findings show that incorporation of H3.3 facilitates transcription, and they provide new evidence for a regulatory role of chromatin composition during HSV-1 acute infection.

  7. The Histone Variant H3.3 Regulates Gene Expression during Lytic Infection with Herpes Simplex Virus Type 1 ▿

    PubMed Central

    Placek, Brandon J.; Huang, Jing; Kent, Jennifer R.; Dorsey, Jean; Rice, Lyndi; Fraser, Nigel W.; Berger, Shelley L.

    2009-01-01

    It has been proposed that incorporation of the histone variant H3.3 within actively transcribed regions of a genome helps to facilitate transcription. In this report we use lytic infection by herpes simplex virus type 1 (HSV-1) as a model to examine the temporal profile of histone H3 incorporation and to determine whether the variant histone H3.3 has a direct effect on transcription. We find that canonical H3.1 and variant H3.3 exhibit distinct temporal associations with the genome in cell lines expressing equal amounts of epitope-tagged H3 variants. At the earliest times examined after infection, the HSV-1 genome is incorporated into chromatin that predominantly contains the variant H3.3, whereas incorporation of canonical H3.1 occurs later in infection and is dependent on replication of the HSV-1 genome. Further, inhibition of H3.3 association, via reduced expression of the H3.3 chaperone HIRA, significantly reduces the levels of HSV-1 mRNA. These findings show that incorporation of H3.3 facilitates transcription, and they provide new evidence for a regulatory role of chromatin composition during HSV-1 acute infection. PMID:19004946

  8. Esperanto for histones: CENP-A, not CenH3, is the centromeric histone H3 variant.

    PubMed

    Earnshaw, W C; Allshire, R C; Black, B E; Bloom, K; Brinkley, B R; Brown, W; Cheeseman, I M; Choo, K H A; Copenhaver, G P; Deluca, J G; Desai, A; Diekmann, S; Erhardt, S; Fitzgerald-Hayes, M; Foltz, D; Fukagawa, T; Gassmann, R; Gerlich, D W; Glover, D M; Gorbsky, G J; Harrison, S C; Heun, P; Hirota, T; Jansen, L E T; Karpen, G; Kops, G J P L; Lampson, M A; Lens, S M; Losada, A; Luger, K; Maiato, H; Maddox, P S; Margolis, R L; Masumoto, H; McAinsh, A D; Mellone, B G; Meraldi, P; Musacchio, A; Oegema, K; O'Neill, R J; Salmon, E D; Scott, K C; Straight, A F; Stukenberg, P T; Sullivan, B A; Sullivan, K F; Sunkel, C E; Swedlow, J R; Walczak, C E; Warburton, P E; Westermann, S; Willard, H F; Wordeman, L; Yanagida, M; Yen, T J; Yoda, K; Cleveland, D W

    2013-04-01

    The first centromeric protein identified in any species was CENP-A, a divergent member of the histone H3 family that was recognised by autoantibodies from patients with scleroderma-spectrum disease. It has recently been suggested to rename this protein CenH3. Here, we argue that the original name should be maintained both because it is the basis of a long established nomenclature for centromere proteins and because it avoids confusion due to the presence of canonical histone H3 at centromeres.

  9. A histone variant, H2AvD, is essential in Drosophila melanogaster.

    PubMed Central

    van Daal, A; Elgin, S C

    1992-01-01

    H2AvD, a Drosophila melanogaster histone variant of the H2A.Z class, is encoded by a single copy gene in the 97CD region of the polytene chromosomes. Northern analysis shows that the transcript is expressed in adult females and is abundant throughout the first 12 h of embryogenesis but then decreases. The H2AvD protein is present at essentially constant levels in all developmental stages. Using D. melanogaster stocks with deletions in the 97CD region, we have localized the H2AvD gene to the 97D1-9 interval. A lethal mutation in this interval, l(3)810, exhibits a 311-base pair deletion in the H2AvD gene, which removes the second exon. P-element mediated transformation using a 4.1-kilobase fragment containing the H2AvD gene rescues the lethal phenotype. H2AvD is therefore both essential and continuously present, suggesting a requirement for its utilization, either to provide an alternative capability for nucleosome assembly or to generate an alternative nucleosome structure. Images PMID:1498368

  10. Psh1 is an E3 ubiquitin ligase that targets the centromeric histone variant Cse4

    PubMed Central

    Hewawasam, Geetha; Shivaraju, Manjunatha; Mattingly, Mark; Venkatesh, Swaminathan; Martin-Brown, Skylar; Florens, Laurence; Workman, Jerry L.; Gerton, Jennifer L.

    2010-01-01

    Cse4 is a variant of histone H3 that is incorporated into a single nucleosome at each centromere in budding yeast. We have discovered an E3 ubiquitin ligase, called Psh1, which controls the cellular level of Cse4 via ubiquitylation and proteolysis. The activity of Psh1 is dependent on both its RING and Zinc finger domains. We demonstrate the specificity of the ubiquitylation activity of Psh1 toward Cse4 in vitro and map the sites of ubiquitylation. Mutation of key lysines prevents ubiquitylation of Cse4 by Psh1 in vitro and stabilizes Cse4 in vivo. While deletion of Psh1 stabilizes Cse4, elimination of the Cse4-specific chaperone Scm3 destabilizes Cse4 and the addition of Scm3 to the Psh1-Cse4 ubiquitylation reaction prevents Cse4 ubiquitylation, together suggesting Scm3 may protect Cse4 from ubiquitylation. Without Psh1, Cse4 overexpression is toxic and Cse4 is found at ectopic locations. Our results suggest Psh1 functions to prevent the mislocalization of Cse4. PMID:21070970

  11. Testis-specific histone variants H2AL1/2 rapidly disappear from paternal heterochromatin after fertilization.

    PubMed

    Wu, Fang; Caron, Cécile; De Robertis, Christine; Khochbin, Saadi; Rousseaux, Sophie

    2008-12-01

    Before fertilization, the genome packaging of male and female gametes is very different. Indeed, whereas the female haploid genome is associated with histones in a somatic-like chromatin structure, most of the male genome is tightly bound to protamines. However, it has recently been demonstrated that the pericentric heterochromatin regions of the male genome are associated with specific H2A-like histone variants, named H2AL1 and H2AL2, suggesting a heterogeneous organization. The fate and role of the sex-specific genome packaging transmitted by germinal cells to the embryo are not well understood. The aim of the present study was to follow reprogramming of the parental genomes in early embryos after in vivo fertilization. We show here that two typical epigenetic markers, trimethylated lysine 9 of histone H3 (TriMethylH3K9) and acetylated H4, are asymmetrically distributed between the parental genomes in one-cell mouse embryos, confirming data from embryos obtained after intracytoplasmic sperm injection (ICSI) or in vitro fertilization (IVF). Indeed, whereas the maternal genome is highly enriched with trimethylH3K9, this mark is not detected in the paternal genome. On the contrary, histone H4 incorporated in the paternal genome is highly acetylated at an early stage, while in the maternal pronucleus, the level of acetylated H4 remains low in early one-cell embryos and becomes enriched at a later stage. Moreover, our results suggest a very quick disappearance of histone H2A variants H2AL1 and H2Al2 from the paternal pericentric heterochromatin regions after sperm-egg fusion.

  12. CHD1 Regulates Deposition of Histone Variant H3.3 During Bovine Early Embryonic Development.

    PubMed

    Zhang, Kun; Rajput, Sandeep K; Wang, Shaohua; Folger, Joseph K; Knott, Jason G; Smith, George W

    2016-06-01

    The CHD family of proteins is characterized by the presence of chromodomains and SNF2-related helicase/ATPase domains, which alter gene expression by modification of chromatin structure. Chd1-null embryos arrest at the peri-implantation stage in mice. However, the functional role of CHD1 during preimplantation development remains unclear, given maternal-derived CHD1 may mask the essential role of CHD1 during this stage in traditional knockout models. The objective of this study was to characterize CHD1 expression and elucidate its functional role in preimplantation development using the bovine model. CHD1 mRNA was elevated after meiotic maturation and remained increased through the 16-cell stage, followed by a sharp decrease at morula to blastocyst stage. Similarly, immunoblot analysis indicated CHD1 protein level is increased after maturation, maintained at high level after fertilization and declined sharply afterwards. CHD1 mRNA level was partially decreased in response to alpha-amanitin (RNA polymerase II inhibitor) treatment, suggesting that CHD1 mRNA in eight-cell embryos is of both maternal and zygotic origin. Results of siRNA-mediated silencing of CHD1 in bovine early embryos demonstrated that the percentages of embryos developing to the 8- to 16-cell and blastocyst stages were both significantly reduced. However, expression of NANOG (inner cell mass marker) and CDX2 (trophectoderm marker) were not affected in CHD1 knockdown blastocysts. In addition, we found that histone variant H3.3 immunostaining is altered in CHD1 knockdown embryos. Knockdown of H3.3 using siRNA resulted in a similar phenotype to CHD1-ablated embryos. Collectively, our results demonstrate that CHD1 is required for bovine early development, and suggest that CHD1 may regulate H3.3 deposition during this period.

  13. Dynamics of a novel centromeric histone variant CenH3 reveals the evolutionary ancestral timing of centromere biogenesis

    PubMed Central

    Dubin, Manu; Fuchs, Jörg; Gräf, Ralph; Schubert, Ingo; Nellen, Wolfgang

    2010-01-01

    The centromeric histone H3 variant (CenH3) serves to target the kinetochore to the centromeres and thus ensures correct chromosome segregation during mitosis and meiosis. The Dictyostelium H3-like variant H3v1 was identified as the CenH3 ortholog. Dictyostelium CenH3 has an extended N-terminal domain with no similarity to any other known proteins and a histone fold domain at its C-terminus. Within the histone fold, α-helix 2 (α2) and an extended loop 1 (L1) have been shown to be required for targeting CenH3 to centromeres. Compared to other known and putative CenH3 histones, Dictyostelium CenH3 has a shorter L1, suggesting that the extension is not an obligatory feature. Through ChIP analysis and fluorescence microscopy of live and fixed cells, we provide here the first survey of centromere structure in amoebozoa. The six telocentric centromeres were found to mostly consist of all the DIRS-1 elements and to associate with H3K9me3. During interphase, the centromeres remain attached to the centrosome forming a single CenH3-containing cluster. Loading of Dictyostelium CenH3 onto centromeres occurs at the G2/prophase transition, in contrast to the anaphase/telophase loading of CenH3 observed in metazoans. This suggests that loading during G2/prophase is the ancestral eukaryotic mechanism and that anaphase/telophase loading of CenH3 has evolved more recently after the amoebozoa diverged from the animal linage. PMID:20675719

  14. Quantitative microspectral evaluation of the ratio of arginine-rich to lysine-rich histones in neurons and neuroglial cells.

    PubMed

    Pevzner, L Z; Raygorodskaya, T G; Agroskin, L S

    1978-09-01

    Staining of nervous tissue sections with ammoniacal silver according to Black et al. has been confirmed to be a reliable histochemical colour reaction for quantitative evaluation of arginine-rich and lysine-rich histones in cell structures on the basis of determinations of the position of spectral curve maximum. Neurons of several brain nuclei which differed in predominating neurotransmitter did not differ in the ratio of arginine-rich to lysine-rich histones while some differences in this ratio were found out in the glial satelite cells adjacent to the corresponding neurons of these nuclei. Moderate circadian fluctuations were observed in the arginine-rich to lysine-rich histone ratio, these fluctuations being rather similar in the neurons studied and in the cells of perineuronal neuroglia.

  15. Loss of histone variant macroH2A2 expression associates with progression of anal neoplasm

    PubMed Central

    Hu, Wan-Hsiang; Miyai, Katsumi; Sporn, Judith C; Luo, Linda; Wang, Jean Y J; Cosman, Bard; Ramamoorthy, Sonia

    2016-01-01

    Aims The macroH2A histone variants are epigenetic marks for inactivated chromatin. In this study, we examined the expression of macroH2A2 in anal neoplasm from anal intraepithelial neoplasia (AIN) to anal squamous cell carcinoma (SCC). Methods AIN and anal SCC samples were analysed for macroH2A2 expression, HIV and human papilloma virus (HPV). The association of macroH2A2 expression with clinical grade, disease recurrence, overall survival and viral involvement was determined. Results macroH2A2 was expressed in normal squamous tissue and lower grade AIN (I and II). Expression was lost in 38% of high-grade AIN (III) and 71% of anal SCC (p=0.002). Patients with AIN with macroH2A2-negative lesions showed earlier recurrence than those with macroH2A2-positive neoplasm (p=0.017). With anal SCC, macroH2A2 loss was more prevalent in the HPV-negative tumours. Conclusions Loss of histone variant macroH2A2 expression is associated with the progression of anal neoplasm and can be used as a prognostic biomarker for high-grade AIN and SCC. PMID:26658220

  16. Mapping of six somatic linker histone H1 variants in human breast cancer cells uncovers specific features of H1.2.

    PubMed

    Millán-Ariño, Lluís; Islam, Abul B M M K; Izquierdo-Bouldstridge, Andrea; Mayor, Regina; Terme, Jean-Michel; Luque, Neus; Sancho, Mónica; López-Bigas, Núria; Jordan, Albert

    2014-04-01

    Seven linker histone H1 variants are present in human somatic cells with distinct prevalence across cell types. Despite being key structural components of chromatin, it is not known whether the different variants have specific roles in the regulation of nuclear processes or are differentially distributed throughout the genome. Using variant-specific antibodies to H1 and hemagglutinin (HA)-tagged recombinant H1 variants expressed in breast cancer cells, we have investigated the distribution of six H1 variants in promoters and genome-wide. H1 is depleted at promoters depending on its transcriptional status and differs between variants. Notably, H1.2 is less abundant than other variants at the transcription start sites of inactive genes, and promoters enriched in H1.2 are different from those enriched in other variants and tend to be repressed. Additionally, H1.2 is enriched at chromosomal domains characterized by low guanine-cytosine (GC) content and is associated with lamina-associated domains. Meanwhile, other variants are associated with higher GC content, CpG islands and gene-rich domains. For instance, H1.0 and H1X are enriched at gene-rich chromosomes, whereas H1.2 is depleted. In short, histone H1 is not uniformly distributed along the genome and there are differences between variants, H1.2 being the one showing the most specific pattern and strongest correlation with low gene expression.

  17. Mapping of six somatic linker histone H1 variants in human breast cancer cells uncovers specific features of H1.2

    PubMed Central

    Millán-Ariño, Lluís; Islam, Abul B. M. M. K.; Izquierdo-Bouldstridge, Andrea; Mayor, Regina; Terme, Jean-Michel; Luque, Neus; Sancho, Mónica; López-Bigas, Núria; Jordan, Albert

    2014-01-01

    Seven linker histone H1 variants are present in human somatic cells with distinct prevalence across cell types. Despite being key structural components of chromatin, it is not known whether the different variants have specific roles in the regulation of nuclear processes or are differentially distributed throughout the genome. Using variant-specific antibodies to H1 and hemagglutinin (HA)-tagged recombinant H1 variants expressed in breast cancer cells, we have investigated the distribution of six H1 variants in promoters and genome-wide. H1 is depleted at promoters depending on its transcriptional status and differs between variants. Notably, H1.2 is less abundant than other variants at the transcription start sites of inactive genes, and promoters enriched in H1.2 are different from those enriched in other variants and tend to be repressed. Additionally, H1.2 is enriched at chromosomal domains characterized by low guanine–cytosine (GC) content and is associated with lamina-associated domains. Meanwhile, other variants are associated with higher GC content, CpG islands and gene-rich domains. For instance, H1.0 and H1X are enriched at gene-rich chromosomes, whereas H1.2 is depleted. In short, histone H1 is not uniformly distributed along the genome and there are differences between variants, H1.2 being the one showing the most specific pattern and strongest correlation with low gene expression. PMID:24476918

  18. Tissue-Specific Expression and Posttranslational Modification of Histone H3 Variants

    PubMed Central

    Garcia, Benjamin A.; Thomas, C. Eric; Kelleher, Neil L.; Mizzen, Craig A.

    2008-01-01

    Analyses of histone H3 from ten rat tissues using a Middle Down proteomics platform revealed tissue-specific differences in their expression and global PTM abundance. ESI/FTMS with electron capture dissociation showed that, in general, these proteins were hypomodified in heart, liver and testes. H3.3 was hypermodified compared to H3.2 in some, but not all tissues. In addition, a novel rat testes-specific H3 protein was identified with this approach. PMID:18700791

  19. An E3 ubiquitin ligase prevents ectopic localization of the centromeric histone H3 variant via the centromere targeting domain

    PubMed Central

    Ranjitkar, Prerana; Press, Maximilian O.; Yi, Xianhua; Baker, Richard; MacCoss, Michael J.; Biggins, Sue

    2010-01-01

    Summary Proper centromere function is critical to maintain genomic stability and to prevent aneuploidy, a hallmark of tumors and birth defects. A conserved feature of all eukaryotic centromeres is an essential histone H3 variant called CENP-A that requires a centromere targeting domain (CATD) for its localization. Although proteolysis prevents CENP-A from mislocalizing to euchromatin, regulatory factors have not been identified. Here, we identify an E3 ubiquitin ligase called Psh1 that leads to the degradation of Cse4, the budding yeast CENP-A homolog. Cse4 overexpression is toxic to psh1Δ cells and results in euchromatic localization. Strikingly, the Cse4 centromere targeting domain is a key regulator of its stability and helps Psh1 discriminate Cse4 from histone H3. Taken together, we propose that the CATD has a previously unknown role in maintaining the exclusive localization of Cse4 by preventing its mislocalization to euchromatin via Psh1-mediated degradation. PMID:21070971

  20. Histone H1-like protein and a testis-specific variant in the reproductive tracts of Octopus vulgaris.

    PubMed

    Faraone Mennella, Maria Rosaria; Farina, Benedetta; Irace, Maria Venezia; Di Cristo, Carlo; Di Cosmo, Anna

    2002-11-01

    In this study, we have identified a 28-kDa protein resembling the linker H1 in the testis and prostate of the reproductive system of Octopus vulgaris. This protein, OvH1, was partially purified by reverse phase high-pressure liquid chromatography (HPLC) of the perchloric acid extract from testis nuclei. It showed electrophoretic mobility, CD spectrum and amino acid composition highly comparable with those of the mammalian histone. Moreover, it was microheterogeneous, as resulted from prostate and testis HPLC and mass spectrometry analyses. Such analysis showed that in testis there are two H1 subfractions, which do not appear in the prostate. Amino acid composition of the major testis specific variant (OvH1t) showed high similarity with rat testis specific H1t. The histone-like nature of OvH1 was confirmed by its ability to bind DNA as tested both by circular dichroism and protection of the nucleic acid toward deoxyribonuclease I activity. The circular dichroism spectra of Octopus DNA in the absence and presence of increasing amounts of the protein showed a dose-dependent effect, leading to a progressive compactness of the polynucleotide. OvH1/DNA complexes were also resistant to nuclease digestion. The presence of H1 in the testis and prostate of the reproductive system of Octopus is discussed in light of the fact that there is a similarity between its behavior and that of vertebrates.

  1. Effects of Florida Red Tides on histone variant expression and DNA methylation in the Eastern oyster Crassostrea virginica.

    PubMed

    Gonzalez-Romero, Rodrigo; Suarez-Ulloa, Victoria; Rodriguez-Casariego, Javier; Garcia-Souto, Daniel; Diaz, Gabriel; Smith, Abraham; Pasantes, Juan Jose; Rand, Gary; Eirin-Lopez, Jose M

    2017-03-07

    Massive algal proliferations known as Harmful Algal Blooms (HABs) represent one of the most important threats to coastal areas. Among them, the so-called Florida Red Tides (FRTs, caused by blooms of the dinoflagellate Karenia brevis and associated brevetoxins) are particularly detrimental in the southeastern U.S., causing high mortality rates and annual losses in excess of $40 million. The ability of marine organisms to cope with environmental stressors (including those produced during HABs) is influenced by genetic and epigenetic mechanisms, the latter resulting in phenotypic changes caused by heritable modifications in gene expression, without involving changes in the genetic (DNA) sequence. Yet, studies examining cause-effect relationships between environmental stressors, specific epigenetic mechanisms and subsequent responses are still lacking. The present work contributes to increase this knowledge by investigating the effects of Florida Red Tides on two types of mechanisms participating in the epigenetic memory of Eastern oysters: histone variants and DNA methylation. For that purpose, a HAB simulation was conducted in laboratory conditions, exposing oysters to increasing concentrations of K. brevis. The obtained results revealed, for the first time, the existence of H2A.X, H2A.Z and macroH2A genes in this organism, encoding histone variants potentially involved in the maintenance of genome integrity during responses to the genotoxic effect of brevetoxins. Additionally, an increase in H2A.X phosphorylation (γH2A.X, a marker of DNA damage) and a decrease in global DNA methylation were observed as the HAB simulation progressed. Overall, the present work provides a basis to better understand how epigenetic mechanisms participate in responses to environmental stress in marine invertebrates, opening new avenues to incorporate environmental epigenetics approaches into management and conservation programs.

  2. Histone H2A (H2A.X and H2A.Z) Variants in Molluscs: Molecular Characterization and Potential Implications For Chromatin Dynamics

    PubMed Central

    González-Romero, Rodrigo; Rivera-Casas, Ciro; Frehlick, Lindsay J.; Méndez, Josefina; Ausió, Juan; Eirín-López, José M.

    2012-01-01

    Histone variants are used by the cell to build specialized nucleosomes, replacing canonical histones and generating functionally specialized chromatin domains. Among many other processes, the specialization imparted by histone H2A (H2A.X and H2A.Z) variants to the nucleosome core particle constitutes the earliest response to DNA damage in the cell. Consequently, chromatin-based genotoxicity tests have been developed in those cases where enough information pertaining chromatin structure and dynamics is available (i.e., human and mouse). However, detailed chromatin knowledge is almost absent in most organisms, specially protostome animals. Molluscs (which represent sentinel organisms for the study of pollution) are not an exception to this lack of knowledge. In the present work we first identified the existence of functionally differentiated histone H2A.X and H2A.Z variants in the mussel Mytilus galloprovincialis (MgH2A.X and MgH2A.Z), a marine organism widely used in biomonitoring programs. Our results support the functional specialization of these variants based on: a) their active expression in different tissues, as revealed by the isolation of native MgH2A.X and MgH2A.Z proteins in gonad and hepatopancreas; b) the evolutionary conservation of different residues encompassing functional relevance; and c) their ability to confer specialization to nucleosomes, as revealed by nucleosome reconstitution experiments using recombinant MgH2A.X and MgH2A.Z histones. Given the seminal role of these variants in maintaining genomic integrity and regulating gene expression, their preliminary characterization opens up new potential applications for the future development of chromatin-based genotoxicity tests in pollution biomonitoring programs. PMID:22253857

  3. H3.5 is a novel hominid-specific histone H3 variant that is specifically expressed in the seminiferous tubules of human testes.

    PubMed

    Schenk, Raphael; Jenke, Andreas; Zilbauer, Matthias; Wirth, Stefan; Postberg, Jan

    2011-06-01

    The incorporation of histone variants into chromatin plays an important role for the establishment of particular chromatin states. Six human histone H3 variants are known to date, not counting CenH3 variants: H3.1, H3.2, H3.3 and the testis-specific H3.1t as well as the recently described variants H3.X and H3.Y. We report the discovery of H3.5, a novel non-CenH3 histone H3 variant. H3.5 is encoded on human chromosome 12p11.21 and probably evolved in a common ancestor of all recent great apes (Hominidae) as a consequence of H3F3B gene duplication by retrotransposition. H3.5 mRNA is specifically expressed in seminiferous tubules of human testis. Interestingly, H3.5 has two exact copies of ARKST motifs adjacent to lysine-9 or lysine-27, and lysine-79 is replaced by asparagine. In the Hek293 cell line, ectopically expressed H3.5 is assembled into chromatin and targeted by PTM. H3.5 preferentially colocalizes with euchromatin, and it is associated with actively transcribed genes and can replace an essential function of RNAi-depleted H3.3 in cell growth.

  4. Histone chaperones: assisting histone traffic and nucleosome dynamics.

    PubMed

    Gurard-Levin, Zachary A; Quivy, Jean-Pierre; Almouzni, Geneviève

    2014-01-01

    The functional organization of eukaryotic DNA into chromatin uses histones as components of its building block, the nucleosome. Histone chaperones, which are proteins that escort histones throughout their cellular life, are key actors in all facets of histone metabolism; they regulate the supply and dynamics of histones at chromatin for its assembly and disassembly. Histone chaperones can also participate in the distribution of histone variants, thereby defining distinct chromatin landscapes of importance for genome function, stability, and cell identity. Here, we discuss our current knowledge of the known histone chaperones and their histone partners, focusing on histone H3 and its variants. We then place them into an escort network that distributes these histones in various deposition pathways. Through their distinct interfaces, we show how they affect dynamics during DNA replication, DNA damage, and transcription, and how they maintain genome integrity. Finally, we discuss the importance of histone chaperones during development and describe how misregulation of the histone flow can link to disease.

  5. Requirement of a novel splicing variant of human histone deacetylase 6 for TGF-{beta}1-mediated gene activation

    SciTech Connect

    Zhuang, Yan; Nguyen, Hong T.; Lasky, Joseph A.; Cao, Subing; Li, Cui; Hu, Jiyao; Guo, Xinyue; Burow, Matthew E.; Shan, Bin

    2010-02-19

    Histone deacetylase 6 (HDAC6) belongs to the family of class IIb HDACs and predominantly deacetylates non-histone proteins in the cytoplasm via the C-terminal deacetylase domain of its two tandem deacetylase domains. HDAC6 modulates fundamental cellular processes via deacetylation of {alpha}-tubulin, cortactin, molecular chaperones, and other peptides. Our previous study indicates that HDAC6 mediates TGF-{beta}1-induced epithelial-mesenchymal transition (EMT) in A549 cells. In the current study, we identify a novel splicing variant of human HDAC6, hHDAC6p114. The hHDAC6p114 mRNA arises from incomplete splicing and encodes a truncated isoform of the hHDAC6p114 protein of 114 kDa when compared to the major isoform hHDAC6p131. The hHDAC6p114 protein lacks the first 152 amino acids from N-terminus in the hHDAC6p131 protein, which harbors a nuclear export signal peptide and 76 amino acids of the N-terminal deacetylase domain. hHDAC6p114 is intact in its deacetylase activity against {alpha}-tubulin. The expression hHDAC6p114 is elevated in a MCF-7 derivative that exhibits an EMT-like phenotype. Moreover, hHDAC6p114 is required for TGF-{beta}1-activated gene expression associated with EMT in A549 cells. Taken together, our results implicate that expression and function of hHDAC6p114 is differentially regulated when compared to hHDAC6p131.

  6. A stepwise likelihood ratio test procedure for rare variant selection in case-control studies.

    PubMed

    Kuk, Anthony Y C; Nott, David J; Yang, Yaning

    2014-04-01

    There is much recent interest in finding rare genetic variants associated with various diseases. Owing to the scarcity of rare mutations, single-variant analyses often lack power. To enable pooling of information across variants, we use a random effect formulation within a retrospective modeling framework that respects the retrospective data collecting mechanism of case-control studies. More concretely, we model the control allele frequencies of the variants as random effects, and the systematic differences between the case and control frequencies as fixed effects, resulting in a mixed model. The use of Poisson approximation and gamma-distributed random effects results in a generalized negative binomial distribution for the joint distribution of the control and case frequencies. Variants are selected by conducting stepwise likelihood ratio tests. The superiority of the proposed method over two existing variant selection methods is demonstrated in a simulation study. The effects of non-gamma random effects and correlated variants are also found to be not too detrimental in the simulation study. When the proposed procedure is applied to identify rare variants associated with obesity, it identifies one additional variant not picked up by existing methods.

  7. Transcriptional and post-transcriptional regulation of histone variant H2A.Z during sea urchin development.

    PubMed

    Hajdu, Mihai; Calle, Jasmine; Puno, Andrea; Haruna, Aminat; Arenas-Mena, César

    2016-12-01

    Histone variant H2A.Z promotes chromatin accessibility at transcriptional regulatory elements and is developmentally regulated in metazoans. We characterize the transcriptional and post-transcriptional regulation of H2A.Z in the purple sea urchin Strongylocentrotus purpuratus. H2A.Z depletion by antisense translation-blocking morpholino oligonucleotides during early development causes developmental collapse, in agreement with its previously demonstrated general role in transcriptional multipotency. During H2A.Z peak expression in 24-h embryos, endogenous H2A.Z 3' UTR sequences stabilize GFP mRNAs relative to those with SV40 3' UTR sequences, although the 3' UTR of H2A.Z does not determine the spatial distribution of H2A.Z transcripts during embryonic and postembryonic development. We elaborated an H2A.Z::GFP BAC reporter that reproduces embryonic H2A.Z expression. Genome-wide chromatin accessibility analysis using ATAC-seq revealed a cis-regulatory module (CRM) that, when deleted, causes a significant decline of the H2A.Z reporter expression. In addition, the mutation of a Sox transcription factor binding site motif and, more strongly, of a Myb motif cause significant decline of reporter gene expression. Our results suggest that an undetermined Myb-family transcription factor controls the transcriptional regulation of H2A.Z.

  8. The histone variant H2A.X is a regulator of the epithelial–mesenchymal transition

    PubMed Central

    Weyemi, Urbain; Redon, Christophe E.; Choudhuri, Rohini; Aziz, Towqir; Maeda, Daisuke; Boufraqech, Myriem; Parekh, Palak R.; Sethi, Taresh K.; Kasoji, Manjula; Abrams, Natalie; Merchant, Anand; Rajapakse, Vinodh N.; Bonner, William M.

    2016-01-01

    The epithelial–mesenchymal transition (EMT), considered essential for metastatic cancer, has been a focus of much research, but important questions remain. Here, we show that silencing or removing H2A.X, a histone H2A variant involved in cellular DNA repair and robust growth, induces mesenchymal-like characteristics including activation of EMT transcription factors, Slug and ZEB1, in HCT116 human colon cancer cells. Ectopic H2A.X re-expression partially reverses these changes, as does silencing Slug and ZEB1. In an experimental metastasis model, the HCT116 parental and H2A.X-null cells exhibit a similar metastatic behaviour, but the cells with re-expressed H2A.X are substantially more metastatic. We surmise that H2A.X re-expression leads to partial EMT reversal and increases robustness in the HCT116 cells, permitting them to both form tumours and to metastasize. In a human adenocarcinoma panel, H2A.X levels correlate inversely with Slug and ZEB1 levels. Together, these results point to H2A.X as a regulator of EMT. PMID:26876487

  9. Rapid Elimination of the Histone Variant MacroH2A from Somatic Cell Heterochromatin after Nuclear Transfer

    PubMed Central

    Chang, Ching-Chien; Gao, Shaorong; Sung, Li-Ying; Corry, Gareth N.; Ma, Yinghong; Nagy, Zsolt Peter; Tian, X. Cindy

    2010-01-01

    Abstract Oocytes contain a maternal store of the histone variant MacroH2A, which is eliminated from zygotes shortly after fertilization. Preimplantation embryos then execute three cell divisions without MacroH2A before the onset of embryonic MacroH2A expression at the 16-cell stage. During subsequent development, MacroH2A is expressed in most cells, where it is assembled into facultative heterochromatin. Because differentiated cells contain heterochromatin rich in MacroH2A, we investigated the fate of MacroH2A during somatic cell nuclear transfer (SCNT). The results show that MacroH2A is rapidly eliminated from the chromosomes of transplanted somatic cell nuclei by a process in which MacroH2A is first stripped from chromosomes, and then degraded. Furthermore, MacroH2A is eliminated from transplanted nuclei by a mechanism requiring intact microtubules and nuclear envelope break down. Preimplantation SCNT embryos express endogenous MacroH2A once they reach the morula stage, similar to the timing observed in embryos produced by natural fertilization. We also show that the ability to reprogram somatic cell heterochromatin by SCNT is tied to the developmental stage of recipient cell cytoplasm because enucleated zygotes fail to support depletion of MacroH2A from transplanted somatic nuclei. Together, the results indicate that nuclear reprogramming by SCNT utilizes the same chromatin remodeling mechanisms that act upon the genome immediately after fertilization. PMID:20132012

  10. Proteolysis restricts localization of CID, the centromere-specific histone H3 variant of Drosophila, to centromeres.

    PubMed

    Moreno-Moreno, Olga; Torras-Llort, Mònica; Azorín, Fernando

    2006-01-01

    Centromere identity is determined by the formation of a specialized chromatin structure containing the centromere-specific histone H3 variant CENP-A. The precise molecular mechanism(s) accounting for the specific deposition of CENP-A at centromeres are still poorly understood. Centromeric deposition of CENP-A, which is independent of DNA replication, might involve specific chromatin assembly complexes and/or specific interactions with kinetochore components. However, transiently expressed CENP-A incorporates throughout chromatin indicating that CENP-A nucleosomes can also be promiscuously deposited during DNA replication. Therefore, additional mechanisms must exist to prevent deposition of CENP-A nucleosomes during replication and/or to remove them afterwards. Here, using transient expression experiments performed in Drosophila Kc cells, we show that proteasome-mediated degradation restricts localization of Drosophila CENP-A (CID) to centromeres by eliminating mislocalized CID as well as by regulating available CID levels. Regulating available CID levels appears essential to ensure centromeric deposition of transiently expressed CID as, when expression is increased in the presence of proteasome inhibitors, newly synthesized CID mislocalizes. Mislocalization of CID affects cell cycle progression as a high percentage of cells showing mislocalized CID are reactive against alphaPSer(10)H3 antibodies, enter mitosis at a very low frequency and show strong segregation defects. However, cells showing reduced amounts of mislocalized CID show normal cell cycle progression.

  11. The embryonic linker histone H1 variant of Drosophila, dBigH1, regulates zygotic genome activation.

    PubMed

    Pérez-Montero, Salvador; Carbonell, Albert; Morán, Tomás; Vaquero, Alejandro; Azorín, Fernando

    2013-09-30

    Histone H1 is an essential chromatin component. Metazoans usually contain multiple stage-specific H1s. In particular, specific variants replace somatic H1s during early embryogenesis. In this regard, Drosophila was an exception because a single dH1 was identified that, starting at cellularization, is detected throughout development in somatic cells. Here, we identify the embryonic H1 of Drosophila, dBigH1. dBigH1 is abundant before cellularization occurs, when somatic dH1 is absent and the zygotic genome is inactive. Upon cellularization, when the zygotic genome is progressively activated, dH1 replaces dBigH1 in the soma, but not in the primordial germ cells (PGCs) that have delayed zygotic genome activation (ZGA). In addition, a loss-of-function mutant shows premature ZGA in both the soma and PGCs. Mutant embryos die at cellularization, showing increased levels of active RNApol II and zygotic transcripts, along with DNA damage and mitotic defects. These results show an essential function of dBigH1 in ZGA regulation.

  12. A Specialized Histone H1 Variant Is Required for Adaptive Responses to Complex Abiotic Stress and Related DNA Methylation in Arabidopsis1[OPEN

    PubMed Central

    Rutowicz, Kinga; Puzio, Marcin; Halibart-Puzio, Joanna; Lirski, Maciej; Kotliński, Maciej; Kroteń, Magdalena A.; Knizewski, Lukasz; Lange, Bartosz; Muszewska, Anna; Śniegowska-Świerk, Katarzyna; Kościelniak, Janusz; Iwanicka-Nowicka, Roksana; Buza, Krisztián; Janowiak, Franciszek; Żmuda, Katarzyna; Jõesaar, Indrek; Laskowska-Kaszub, Katarzyna; Fogtman, Anna; Kollist, Hannes; Zielenkiewicz, Piotr; Tiuryn, Jerzy; Siedlecki, Paweł; Swiezewski, Szymon; Ginalski, Krzysztof; Koblowska, Marta; Archacki, Rafał; Wilczynski, Bartek; Rapacz, Marcin; Jerzmanowski, Andrzej

    2015-01-01

    Linker (H1) histones play critical roles in chromatin compaction in higher eukaryotes. They are also the most variable of the histones, with numerous nonallelic variants cooccurring in the same cell. Plants contain a distinct subclass of minor H1 variants that are induced by drought and abscisic acid and have been implicated in mediating adaptive responses to stress. However, how these variants facilitate adaptation remains poorly understood. Here, we show that the single Arabidopsis (Arabidopsis thaliana) stress-inducible variant H1.3 occurs in plants in two separate and most likely autonomous pools: a constitutive guard cell-specific pool and a facultative environmentally controlled pool localized in other tissues. Physiological and transcriptomic analyses of h1.3 null mutants demonstrate that H1.3 is required for both proper stomatal functioning under normal growth conditions and adaptive developmental responses to combined light and water deficiency. Using fluorescence recovery after photobleaching analysis, we show that H1.3 has superfast chromatin dynamics, and in contrast to the main Arabidopsis H1 variants H1.1 and H1.2, it has no stable bound fraction. The results of global occupancy studies demonstrate that, while H1.3 has the same overall binding properties as the main H1 variants, including predominant heterochromatin localization, it differs from them in its preferences for chromatin regions with epigenetic signatures of active and repressed transcription. We also show that H1.3 is required for a substantial part of DNA methylation associated with environmental stress, suggesting that the likely mechanism underlying H1.3 function may be the facilitation of chromatin accessibility by direct competition with the main H1 variants. PMID:26351307

  13. Loading of the centromeric histone H3 variant during meiosis-how does it differ from mitosis?

    PubMed

    Schubert, Veit; Lermontova, Inna; Schubert, Ingo

    2014-10-01

    In eukaryotic phyla studied so far, the essential centromeric histone H3 variant (CENH3) is loaded to centromeric nucleosomes after S-phase (except for yeast) but before mitotic segregation (except for metazoan). While the C-terminal part of CENH3 seems to be sufficient for mitotic centromere function in plants, meiotic centromeres neither load nor tolerate impaired CENH3 molecules. However, details about CENH3 deposition in meiocytes are unknown (except for Drosophila). Therefore, we quantified fluorescence signals after the immunostaining of CENH3 along meiotic and mitotic nuclear division cycles of rye, a monocotyledonous plant. One peak of fluorescence intensity appeared in the early meiotic prophase of pollen mother cells and a second one during interkinesis, both followed by a decrease of CENH3. Then, the next loading occurred in the male gametophyte before its first mitotic division. These data indicate that CENH3 loading differs between mitotic and meiotic nuclei. Contrary to the situation in mitotic cycles, CENH3 deposition is biphasic during meiosis and apparently linked with a quality check, a removal of impaired CENH3 molecules, and a general loss of CENH3 after each loading phase. These steps ensure an endowment of centromeres with a sufficient amount of correct CENH3 molecules as a prerequisite for centromere maintenance during mitotic cycles of the microgametophyte and the progeny. From a comparison with data available for Drosophila, we hypothesise that the post-divisional mitotic CENH3 loading in metazoans is evolutionarily derived from the post-divisional meiotic loading phase, while the pre-divisional first meiotic loading has been conserved among eukaryotes.

  14. The Eucalyptus linker histone variant EgH1.3 cooperates with the transcription factor EgMYB1 to control lignin biosynthesis during wood formation.

    PubMed

    Soler, Marçal; Plasencia, Anna; Larbat, Romain; Pouzet, Cécile; Jauneau, Alain; Rivas, Susana; Pesquet, Edouard; Lapierre, Catherine; Truchet, Isabelle; Grima-Pettenati, Jacqueline

    2017-01-01

    Wood, also called secondary xylem, is a specialized vascular tissue constituted by different cell types that undergo a differentiation process involving deposition of thick, lignified secondary cell walls. The mechanisms needed to control the extent of lignin deposition depending on the cell type and the differentiation stage are far from being fully understood. We found that the Eucalyptus transcription factor EgMYB1, which is known to repress lignin biosynthesis, interacts specifically with a linker histone variant, EgH1.3. This interaction enhances the repression of EgMYB1's target genes, strongly limiting the amount of lignin deposited in xylem cell walls. The expression profiles of EgMYB1 and EgH1.3 overlap in xylem cells at early stages of their differentiation as well as in mature parenchymatous xylem cells, which have no or only thin lignified secondary cell walls. This suggests that a complex between EgMYB1 and EgH1.3 integrates developmental signals to prevent premature or inappropriate lignification of secondary cell walls, providing a mechanism to fine-tune the differentiation of xylem cells in time and space. We also demonstrate a role for a linker histone variant in the regulation of a specific developmental process through interaction with a transcription factor, illustrating that plant linker histones have other functions beyond chromatin organization.

  15. A new link between transcriptional initiation and pre-mRNA splicing: The RNA binding histone variant H2A.B

    PubMed Central

    Hart-Smith, Gene; Tay, Ying Jin; Tng, Wei-Quan; Wilkins, Marc; Ryan, Daniel

    2017-01-01

    The replacement of histone H2A with its variant forms is critical for regulating all aspects of genome organisation and function. The histone variant H2A.B appeared late in evolution and is most highly expressed in the testis followed by the brain in mammals. This raises the question of what new function(s) H2A.B might impart to chromatin in these important tissues. We have immunoprecipitated the mouse orthologue of H2A.B, H2A.B.3 (H2A.Lap1), from testis chromatin and found this variant to be associated with RNA processing factors and RNA Polymerase (Pol) II. Most interestingly, many of these interactions with H2A.B.3 (Sf3b155, Spt6, DDX39A and RNA Pol II) were inhibited by the presence of endogenous RNA. This histone variant can bind to RNA directly in vitro and in vivo, and associates with mRNA at intron—exon boundaries. This suggests that the ability of H2A.B to bind to RNA negatively regulates its capacity to bind to these factors (Sf3b155, Spt6, DDX39A and RNA Pol II). Unexpectedly, H2A.B.3 forms highly decompacted nuclear subdomains of active chromatin that co-localizes with splicing speckles in male germ cells. H2A.B.3 ChIP-Seq experiments revealed a unique chromatin organization at active genes being not only enriched at the transcription start site (TSS), but also at the beginning of the gene body (but being excluded from the +1 nucleosome) compared to the end of the gene. We also uncover a general histone variant replacement process whereby H2A.B.3 replaces H2A.Z at intron-exon boundaries in the testis and the brain, which positively correlates with expression and exon inclusion. Taken together, we propose that a special mechanism of splicing may occur in the testis and brain whereby H2A.B.3 recruits RNA processing factors from splicing speckles to active genes following its replacement of H2A.Z. PMID:28234895

  16. A new link between transcriptional initiation and pre-mRNA splicing: The RNA binding histone variant H2A.B.

    PubMed

    Soboleva, Tatiana A; Parker, Brian J; Nekrasov, Maxim; Hart-Smith, Gene; Tay, Ying Jin; Tng, Wei-Quan; Wilkins, Marc; Ryan, Daniel; Tremethick, David J

    2017-02-01

    The replacement of histone H2A with its variant forms is critical for regulating all aspects of genome organisation and function. The histone variant H2A.B appeared late in evolution and is most highly expressed in the testis followed by the brain in mammals. This raises the question of what new function(s) H2A.B might impart to chromatin in these important tissues. We have immunoprecipitated the mouse orthologue of H2A.B, H2A.B.3 (H2A.Lap1), from testis chromatin and found this variant to be associated with RNA processing factors and RNA Polymerase (Pol) II. Most interestingly, many of these interactions with H2A.B.3 (Sf3b155, Spt6, DDX39A and RNA Pol II) were inhibited by the presence of endogenous RNA. This histone variant can bind to RNA directly in vitro and in vivo, and associates with mRNA at intron-exon boundaries. This suggests that the ability of H2A.B to bind to RNA negatively regulates its capacity to bind to these factors (Sf3b155, Spt6, DDX39A and RNA Pol II). Unexpectedly, H2A.B.3 forms highly decompacted nuclear subdomains of active chromatin that co-localizes with splicing speckles in male germ cells. H2A.B.3 ChIP-Seq experiments revealed a unique chromatin organization at active genes being not only enriched at the transcription start site (TSS), but also at the beginning of the gene body (but being excluded from the +1 nucleosome) compared to the end of the gene. We also uncover a general histone variant replacement process whereby H2A.B.3 replaces H2A.Z at intron-exon boundaries in the testis and the brain, which positively correlates with expression and exon inclusion. Taken together, we propose that a special mechanism of splicing may occur in the testis and brain whereby H2A.B.3 recruits RNA processing factors from splicing speckles to active genes following its replacement of H2A.Z.

  17. Histone H1 Variants in Arabidopsis Are Subject to Numerous Post-Translational Modifications, Both Conserved and Previously Unknown in Histones, Suggesting Complex Functions of H1 in Plants

    PubMed Central

    Kotliński, Maciej; Rutowicz, Kinga; Kniżewski, Łukasz; Palusiński, Antoni; Olędzki, Jacek; Fogtman, Anna; Rubel, Tymon; Koblowska, Marta; Dadlez, Michał; Ginalski, Krzysztof; Jerzmanowski, Andrzej

    2016-01-01

    Linker histones (H1s) are conserved and ubiquitous structural components of eukaryotic chromatin. Multiple non-allelic variants of H1, which differ in their DNA/nucleosome binding properties, co-exist in animal and plant cells and have been implicated in the control of genetic programs during development and differentiation. Studies in mammals and Drosophila have revealed diverse post-translational modifications of H1s, most of which are of unknown function. So far, it is not known how this pattern compares with that of H1s from other major lineages of multicellular Eukaryotes. Here, we show that the two main H1variants of a model flowering plant Arabidopsis thaliana are subject to a rich and diverse array of post-translational modifications. The distribution of these modifications in the H1 molecule, especially in its globular domain (GH1), resembles that occurring in mammalian H1s, suggesting that their functional significance is likely to be conserved. While the majority of modifications detected in Arabidopsis H1s, including phosphorylation, acetylation, mono- and dimethylation, formylation, crotonylation and propionylation, have also been reported in H1s of other species, some others have not been previously identified in histones. PMID:26820416

  18. Histone H1 Variants in Arabidopsis Are Subject to Numerous Post-Translational Modifications, Both Conserved and Previously Unknown in Histones, Suggesting Complex Functions of H1 in Plants.

    PubMed

    Kotliński, Maciej; Rutowicz, Kinga; Kniżewski, Łukasz; Palusiński, Antoni; Olędzki, Jacek; Fogtman, Anna; Rubel, Tymon; Koblowska, Marta; Dadlez, Michał; Ginalski, Krzysztof; Jerzmanowski, Andrzej

    2016-01-01

    Linker histones (H1s) are conserved and ubiquitous structural components of eukaryotic chromatin. Multiple non-allelic variants of H1, which differ in their DNA/nucleosome binding properties, co-exist in animal and plant cells and have been implicated in the control of genetic programs during development and differentiation. Studies in mammals and Drosophila have revealed diverse post-translational modifications of H1s, most of which are of unknown function. So far, it is not known how this pattern compares with that of H1s from other major lineages of multicellular Eukaryotes. Here, we show that the two main H1variants of a model flowering plant Arabidopsis thaliana are subject to a rich and diverse array of post-translational modifications. The distribution of these modifications in the H1 molecule, especially in its globular domain (GH1), resembles that occurring in mammalian H1s, suggesting that their functional significance is likely to be conserved. While the majority of modifications detected in Arabidopsis H1s, including phosphorylation, acetylation, mono- and dimethylation, formylation, crotonylation and propionylation, have also been reported in H1s of other species, some others have not been previously identified in histones.

  19. Insulin-inducible changes in the relative ratio of PTP1B splice variants.

    PubMed

    Sell, S M; Reese, D

    1999-03-01

    The skeletal muscle activity of protein tyrosine phosphates 1B (PTP1B), a modulator of insulin and IGF-1 signaling, is reduced in obese nondiabetic subjects and in subjects with type 2 diabetes in comparison with leaner, nondiabetic controls. PTP1B mRNA, like many other signaling molecules, including the insulin receptor, is alternatively spliced. Since we have shown that the ratio of the insulin receptor splice variants is modulated by insulin in vitro and is related to insulin levels in vivo, we hypothesized that the relative ratios of the alternatively spliced PTP1B mRNA might also vary in humans in proportion to the degree of hyperinsulinemia. This was tested in 21 nondiabetic Pima Indians, a population at increased risk for obesity and type 2 diabetes. The relative ratio of the PTP1B splice variants was quantified using RT-PCR of total RNA extracted from fractionated monocytes. The ratio of the splice variants was positively correlated with fasting plasma insulin concentration (r = 0.757; P = 0.0001), 2-h plasma insulin concentration following an oral glucose tolerance test (r = 0.614; P = 0.01, n = 16), and percentage of body fat (r = 0.746; P = 0.0001). These data indicate that variability in the ratio of the two splice variants is due, in part, to in vivo levels of chronic hyperinsulinemia. This simple, noninvasive assay is therefore a potential biomarker for chronic hyperinsulinemia, similar to the HbAlc assay in use to monitor glucose management in diabetic patients.

  20. Mapping post-translational modifications of mammalian testicular specific histone variant TH2B in tetraploid and haploid germ cells and their implications on the dynamics of nucleosome structure.

    PubMed

    Pentakota, Satya Krishna; Sandhya, Sankaran; P Sikarwar, Arun; Chandra, Nagasuma; Satyanarayana Rao, Manchanahalli R

    2014-12-05

    Histones regulate a variety of chromatin templated events by their post-translational modifications (PTMs). Although there are extensive reports on the PTMs of canonical histones, the information on the histone variants remains very scanty. Here, we report the identification of different PTMs, such as acetylation, methylation, and phosphorylation of a major mammalian histone variant TH2B. Our mass spectrometric analysis has led to the identification of both conserved and unique modifications across tetraploid spermatocytes and haploid spermatids. We have also computationally derived the 3-dimensional model of a TH2B containing nucleosome in order to study the spatial orientation of the PTMs identified and their effect on nucleosome stability and DNA binding potential. From our nucleosome model, it is evident that substitution of specific amino acid residues in TH2B results in both differential histone-DNA and histone-histone contacts. Furthermore, we have also observed that acetylation on the N-terminal tail of TH2B weakens the interactions with the DNA. These results provide direct evidence that, similar to somatic H2B, the testis specific histone TH2B also undergoes multiple PTMs, suggesting the possibility of chromatin regulation by such covalent modifications in mammalian male germ cells.

  1. Identification of proliferation-induced genes in Arabidopsis thaliana. Characterization of a new member of the highly evolutionarily conserved histone H2A.F/Z variant subfamily.

    PubMed Central

    Callard, D; Mazzolini, L

    1997-01-01

    The changes in gene expression associated with the reinitiation of cell division and subsequent progression through the cell cycle in Arabidopsis thaliana cell-suspension cultures were investigated. Partial synchronization of cells was achieved by a technique combining phosphate starvation and a transient treatment with the DNA replication inhibitor aphidicolin. Six cDNAs corresponding to genes highly induced in proliferating cells and showing cell-cycle-regulated expression were obtained by the mRNA differential display technique. Full-length cDNA clones (cH2BAt and cH2AvAt) corresponding to two of the display products were subsequently isolated. The cH2BAt clone codes for a novel histone H2B protein, whereas the cH2AvAt cDNA corresponds to a gene encoding a new member of the highly conserved histone H2A.F/Z subfamily of chromosomal proteins. Further studies indicated that H2AvAt mRNA expression is tightly correlated with cell proliferation in cell-suspension cultures, and that closely related analogs of the encoded protein exist in Arabidopsis. The implications of the conservation of histone H2A.F/Z variants in plants are discussed. PMID:9414552

  2. Rare Variants Detection with Kernel Machine Learning Based on Likelihood Ratio Test

    PubMed Central

    Zeng, Ping; Zhao, Yang; Zhang, Liwei; Huang, Shuiping; Chen, Feng

    2014-01-01

    This paper mainly utilizes likelihood-based tests to detect rare variants associated with a continuous phenotype under the framework of kernel machine learning. Both the likelihood ratio test (LRT) and the restricted likelihood ratio test (ReLRT) are investigated. The relationship between the kernel machine learning and the mixed effects model is discussed. By using the eigenvalue representation of LRT and ReLRT, their exact finite sample distributions are obtained in a simulation manner. Numerical studies are performed to evaluate the performance of the proposed approaches under the contexts of standard mixed effects model and kernel machine learning. The results have shown that the LRT and ReLRT can control the type I error correctly at the given α level. The LRT and ReLRT consistently outperform the SKAT, regardless of the sample size and the proportion of the negative causal rare variants, and suffer from fewer power reductions compared to the SKAT when both positive and negative effects of rare variants are present. The LRT and ReLRT performed under the context of kernel machine learning have slightly higher powers than those performed under the context of standard mixed effects model. We use the Genetic Analysis Workshop 17 exome sequencing SNP data as an illustrative example. Some interesting results are observed from the analysis. Finally, we give the discussion. PMID:24675868

  3. A Protein Complex Containing the Conserved Swi2/Snf2-Related ATPase Swr1p Deposits Histone Variant H2A.Z into Euchromatin

    PubMed Central

    Kobor, Michael. S; Venkatasubrahmanyam, Shivkumar; Meneghini, Marc D; Gin, Jennifer W; Jennings, Jennifer L; Link, Andrew J

    2004-01-01

    The conserved histone variant H2A.Z functions in euchromatin to antagonize the spread of heterochromatin. The mechanism by which histone H2A is replaced by H2A.Z in the nucleosome is unknown. We identified a complex containing 13 different polypeptides associated with a soluble pool of H2A.Z in Saccharomyces cerevisiae. This complex was designated SWR1-Com in reference to the Swr1p subunit, a Swi2/Snf2-paralog. Swr1p and six other subunits were found only in SWR1-Com, whereas six other subunits were also found in the NuA4 histone acetyltransferase and/or the Ino80 chromatin remodeling complex. H2A.Z and SWR1 were essential for viability of cells lacking the EAF1 component of NuA4, pointing to a close functional connection between these two complexes. Strikingly, chromatin immunoprecipitation analysis of cells lacking Swr1p, the presumed ATPase of the complex, revealed a profound defect in the deposition of H2A.Z at euchromatic regions that flank the silent mating type cassette HMR and at 12 other chromosomal sites tested. Consistent with a specialized role for Swr1p in H2A.Z deposition, the majority of the genome-wide transcriptional defects seen in swr1Δ cells were also found in htz1Δ cells. These studies revealed a novel role for a member of the ATP-dependent chromatin remodeling enzyme family in determining the region-specific histone subunit composition of chromatin in vivo and controlling the epigenetic state of chromatin. Metazoan orthologs of Swr1p (Drosophila Domino; human SRCAP and p400) may have analogous functions. PMID:15045029

  4. A protein complex containing the conserved Swi2/Snf2-related ATPase Swr1p deposits histone variant H2A.Z into euchromatin.

    PubMed

    Kobor, Michael S; Venkatasubrahmanyam, Shivkumar; Meneghini, Marc D; Gin, Jennifer W; Jennings, Jennifer L; Link, Andrew J; Madhani, Hiten D; Rine, Jasper

    2004-05-01

    The conserved histone variant H2A.Z functions in euchromatin to antagonize the spread of heterochromatin. The mechanism by which histone H2A is replaced by H2A.Z in the nucleosome is unknown. We identified a complex containing 13 different polypeptides associated with a soluble pool of H2A.Z in Saccharomyces cerevisiae. This complex was designated SWR1-Com in reference to the Swr1p subunit, a Swi2/Snf2-paralog. Swr1p and six other subunits were found only in SWR1-Com, whereas six other subunits were also found in the NuA4 histone acetyltransferase and/or the Ino80 chromatin remodeling complex. H2A.Z and SWR1 were essential for viability of cells lacking the EAF1 component of NuA4, pointing to a close functional connection between these two complexes. Strikingly, chromatin immunoprecipitation analysis of cells lacking Swr1p, the presumed ATPase of the complex, revealed a profound defect in the deposition of H2A.Z at euchromatic regions that flank the silent mating type cassette HMR and at 12 other chromosomal sites tested. Consistent with a specialized role for Swr1p in H2A.Z deposition, the majority of the genome-wide transcriptional defects seen in swr1Delta cells were also found in htz1Delta cells. These studies revealed a novel role for a member of the ATP-dependent chromatin remodeling enzyme family in determining the region-specific histone subunit composition of chromatin in vivo and controlling the epigenetic state of chromatin. Metazoan orthologs of Swr1p (Drosophila Domino; human SRCAP and p400) may have analogous functions.

  5. The Histone Database: an integrated resource for histones and histone fold-containing proteins.

    PubMed

    Mariño-Ramírez, Leonardo; Levine, Kevin M; Morales, Mario; Zhang, Suiyuan; Moreland, R Travis; Baxevanis, Andreas D; Landsman, David

    2011-01-01

    Eukaryotic chromatin is composed of DNA and protein components-core histones-that act to compactly pack the DNA into nucleosomes, the fundamental building blocks of chromatin. These nucleosomes are connected to adjacent nucleosomes by linker histones. Nucleosomes are highly dynamic and, through various core histone post-translational modifications and incorporation of diverse histone variants, can serve as epigenetic marks to control processes such as gene expression and recombination. The Histone Sequence Database is a curated collection of sequences and structures of histones and non-histone proteins containing histone folds, assembled from major public databases. Here, we report a substantial increase in the number of sequences and taxonomic coverage for histone and histone fold-containing proteins available in the database. Additionally, the database now contains an expanded dataset that includes archaeal histone sequences. The database also provides comprehensive multiple sequence alignments for each of the four core histones (H2A, H2B, H3 and H4), the linker histones (H1/H5) and the archaeal histones. The database also includes current information on solved histone fold-containing structures. The Histone Sequence Database is an inclusive resource for the analysis of chromatin structure and function focused on histones and histone fold-containing proteins.

  6. Label-Free Relative Quantitation of Isobaric and Isomeric Human Histone H2A and H2B Variants by Fourier Transform Ion Cyclotron Resonance Top-Down MS/MS.

    PubMed

    Dang, Xibei; Singh, Amar; Spetman, Brian D; Nolan, Krystal D; Isaacs, Jennifer S; Dennis, Jonathan H; Dalton, Stephen; Marshall, Alan G; Young, Nicolas L

    2016-09-02

    Histone variants are known to play a central role in genome regulation and maintenance. However, many variants are inaccessible by antibody-based methods or bottom-up tandem mass spectrometry due to their highly similar sequences. For many, the only tractable approach is with intact protein top-down tandem mass spectrometry. Here, ultra-high-resolution FT-ICR MS and MS/MS yield quantitative relative abundances of all detected HeLa H2A and H2B isobaric and isomeric variants with a label-free approach. We extend the analysis to identify and relatively quantitate 16 proteoforms from 12 sequence variants of histone H2A and 10 proteoforms of histone H2B from three other cell lines: human embryonic stem cells (WA09), U937, and a prostate cancer cell line LaZ. The top-down MS/MS approach provides a path forward for more extensive elucidation of the biological role of many previously unstudied histone variants and post-translational modifications.

  7. Possible prognostic value of BORIS transcript variants ratio in laryngeal squamous cell carcinomas - a pilot study.

    PubMed

    Novak Kujundžić, Renata; Grbeša, Ivana; Ivkić, Mirko; Krušlin, Božo; Konjevoda, Paško; Gall Trošelj, Koraljka

    2014-07-01

    BORIS is a paralog of a highly conserved, multi-functional chromatin factor CTCF. Unlike CTCF, which has been shown to possess tumor-suppressive properties, BORIS belongs to the "cancer/testis antigen" family normally expressed only in germ cells and aberrantly activated in a variety of tumors. The consequences of BORIS expression, relative abundance of its isoforms, and its role in carcinogenesis have not been completely elucidated. It activates transcription of hTERT and MYC, genes relevant for laryngeal carcinoma progression. In this study, BORIS expression has been analyzed at the transcriptional level by RT-PCR and protein level by semi-quantitative immunohistochemistry in 32 laryngeal squamous cell carcinomas and adjacent non-tumorous tissue. BORIS was detected in 44 % (14/32) laryngeal squamous cell carcinoma samples, while it was detected only in one normal, tumor-adjacent tissue sample. Tree based survival analysis, using the recursive partitioning algorithm mvpart, extracted the ratio of relative abundance of BORIS transcript variants containing exon 7 (BORIS 7+) and those lacking exon 7 (BORIS 7-) as an independent prognostic factor associated with disease relapse during a 5-year follow-up period. Patients having BORIS 7+/BORIS 7- ratio ≥1 had a higher rate of disease relapse than patients with BORIS 7+/BORIS 7- ratio <1. Hazard ratio for that group, based on Cox Proportional Hazard Regression, was 3.53. This is the first study analyzing expression of BORIS protein and transcript variants in laryngeal squamous cell carcinoma relative to its possible prognostic value for recurrence and overall survival.

  8. The histone variant H2A.Z is dynamically expressed in the developing mouse placenta and in differentiating trophoblast stem cells.

    PubMed

    Kafer, Georgia R; Carlton, Peter M; Lehnert, Sigrid A

    2015-11-01

    The histone variant H2A.Z is important in establishing new chromatin environments necessary for permitting changes in gene expression and thus differentiation in mouse embryonic stem (mES) cells. In this study we show that H2A.Z is highly expressed in the early mouse placenta, and is specifically limited to progenitor-like trophoblast cells. Using in vitro models, we revealed distinct differences in H2A.Z abundance between undifferentiated, differentiating and differentiated mouse trophoblast stem (mTS) cells. Our work supports the hypothesis that in addition to roles in differentiating mES cells, H2A.Z is also involved in the differentiation of extra-embryonic tissues.

  9. MLL5 Orchestrates a Cancer Self-Renewal State by Repressing the Histone Variant H3.3 and Globally Reorganizing Chromatin.

    PubMed

    Gallo, Marco; Coutinho, Fiona J; Vanner, Robert J; Gayden, Tenzin; Mack, Stephen C; Murison, Alex; Remke, Marc; Li, Ren; Takayama, Naoya; Desai, Kinjal; Lee, Lilian; Lan, Xiaoyang; Park, Nicole I; Barsyte-Lovejoy, Dalia; Smil, David; Sturm, Dominik; Kushida, Michelle M; Head, Renee; Cusimano, Michael D; Bernstein, Mark; Clarke, Ian D; Dick, John E; Pfister, Stefan M; Rich, Jeremy N; Arrowsmith, Cheryl H; Taylor, Michael D; Jabado, Nada; Bazett-Jones, David P; Lupien, Mathieu; Dirks, Peter B

    2015-12-14

    Mutations in the histone 3 variant H3.3 have been identified in one-third of pediatric glioblastomas (GBMs), but not in adult tumors. Here we show that H3.3 is a dynamic determinant of functional properties in adult GBM. H3.3 is repressed by mixed lineage leukemia 5 (MLL5) in self-renewing GBM cells. MLL5 is a global epigenetic repressor that orchestrates reorganization of chromatin structure by punctuating chromosomes with foci of compacted chromatin, favoring tumorigenic and self-renewing properties. Conversely, H3.3 antagonizes self-renewal and promotes differentiation. We exploited these epigenetic states to rationally identify two small molecules that effectively curb cancer stem cell properties in a preclinical model. Our work uncovers a role for MLL5 and H3.3 in maintaining self-renewal hierarchies in adult GBM.

  10. The NH2 Tail of the Novel Histone Variant H2BFWT Exhibits Properties Distinct from Conventional H2B with Respect to the Assembly of Mitotic Chromosomes

    PubMed Central

    Boulard, Mathieu; Gautier, Thierry; Mbele, Gaelh Ouengue; Gerson, Véronique; Hamiche, Ali; Angelov, Dimitar; Bouvet, Philippe; Dimitrov, Stefan

    2006-01-01

    We have studied the functional and structural properties of nucleosomes reconstituted with H2BFWT, a recently identified putative histone variant of the H2B family with totally unknown function. We show that H2BFWT can replace the conventional histone H2B in the nucleosome. The presence of H2BFWT did not affect the overall structure of the nucleosome, and the H2BFWT nucleosomes exhibited the same stability as conventional nucleosomes. SWI/SNF was able to efficiently remodel and mobilize the H2BFWT nucleosomes. Importantly, H2BFWT, in contrast to conventional H2B, was unable to recruit chromosome condensation factors and to participate in the assembly of mitotic chromosomes. This was determined by the highly divergent (compared to conventional H2B) NH2 tail of H2BFWT. These data, in combination with the observations that H2BFWT was found by others in the sperm nuclei and appeared to be associated with the telomeric chromatin, suggest that H2BFWT could act as a specific epigenetic marker. PMID:16449661

  11. DNA Hypomethylation and Histone Variant macroH2A1 Synergistically Attenuate Chemotherapy-Induced Senescence to Promote Hepatocellular Carcinoma Progression

    PubMed Central

    Borghesan, Michela; Fusilli, Caterina; Rappa, Francesca; Panebianco, Concetta; Rizzo, Giovanni; Oben, Jude A.; Mazzoccoli, Gianluigi; Faulkes, Chris; Pata, Illar; Agodi, Antonella; Rezaee, Farhad; Minogue, Shane; Warren, Alessandra; Peterson, Abigail; Sedivy, John M.; Douet, Julien; Buschbeck, Marcus; Cappello, Francesco; Mazza, Tommaso; Pazienza, Valerio; Vinciguerra, Manlio

    2016-01-01

    Aging is a major risk factor for progression of liver diseases to hepatocellular carcinoma (HCC). Cellular senescence contributes to age-related tissue dysfunction, but the epigenetic basis underlying drug-induced senescence remains unclear.macroH2A1, a variant of histone H2A, is a marker of senescence-associated heterochromatic foci that synergizes with DNA methylation to silence tumor-suppressor genes in human fibroblasts. In this study, we investigated the relationship between macroH2A1 splice variants, macroH2A1.1 and macroH2A1.2, and liver carcinogenesis. We found that protein levels of both macroH2A1 isoforms were increased in the livers of very elderly rodents and humans, and were robust immunohistochemical markers of human cirrhosis and HCC. In response to the chemotherapeutic and DNA-demethylating agent 5-aza-deoxycytidine (5-aza-dC), transgenic expression of macroH2A1 isoforms in HCC cell lines prevented the emergence of a senescent-like phenotype and induced synergistic global DNA hypomethylation. Conversely, macroH2A1 depletion amplified the antiproliferative effects of 5-aza-dC in HCC cells, but failed to enhance senescence. Senescence-associated secretory phenotype and whole-transcriptome analyses implicated the p38 MAPK/IL8 pathway in mediating macroH2A1-dependent escape of HCC cells from chemotherapy-induced senescence. Furthermore, chromatin immunoprecipitation sequencing revealed that this hepatic antisenescence state also required active transcription that could not be attributed to genomic occupancy of these histones. Collectively, our findings reveal a new mechanism by which drug-induced senescence is epigenetically regulated by macroH2A1 and DNA methylation and suggest macroH2A1 as a novel biomarker of hepatic senescence that could potentially predict prognosis and disease progression. PMID:26772755

  12. Impact of cigarette smoking on histone (H2B) to protamine ratio in human spermatozoa and its relation to sperm parameters.

    PubMed

    Hamad, M F; Shelko, N; Kartarius, S; Montenarh, M; Hammadeh, M E

    2014-09-01

    Smoking is strongly associated with abnormalities in histone-to-protamine transition and with alteration of protamine expression in human spermatozoa. A proper protamine to histone ratio is, however, essential for sperm chromatin maturity and DNA integrity. Alterations in these sperm nuclear proteins were observed in infertile men. The present prospective study is aimed at evaluating the possible relationship among smoking, semen quality and the histone-to-protamine transition ratio in mature spermatozoa. Histone H2B and protamine 1 (P1) and 2 (P2) were quantified using acid-urea polyacrylamide gel electrophoresis in the spermatozoa of 35 smokers and 19 non-smokers. Levels of lipid peroxidation marker malondialdehyde (MDA) were measured in seminal plasma by thiobarbituric acid assay. Cotinine concentrations were determined in seminal plasma using an enzyme-linked immunosorbent assay. Histone H2B levels in smokers (292.27 ± 58.24 ng/10(6)) were significantly higher (p = 0.001) than that of non-smokers (109.1 ± 43.70 ng/10(6)), besides, a significant difference (p > 0.0001) was found for the P1 and P2 ratio between smokers (1.71 ± 0.071) and non-smokers (1.05 ± 0.033). The H2B/(H2B+P1 + P2) ratio (0.29 ± 0.71) of smokers were significantly higher (p = <0.0001) than that of non-smokers (0.12 ± 0.01). The concentrations of MDA (μm) (7.13 ± 1.15) and cotinine (ng/mL) (60.44 ± 31.32) in seminal plasma of smokers were significantly higher (p = 0.001) than those in the samples of the non-smoker group (4.42 ± 1.16 and 2.01 ± 2.84 respectively). In addition, smokers showed significantly (p ≤ 0.002) lower sperm count, motility (p = 0.018), vitality (p = 0.009) and membrane integrity (p = 0.0001) than non-smokers. These results reveal that patients who smoke possess a higher proportion of spermatozoa with an alteration of the histone to protamine ratio than patients who do not smoke, and suggest that cigarette smoking may inversely affect male fertility.

  13. Functional role of histone variant Htz1 in the stress response to oleate in Saccharomyces cerevisiae.

    PubMed

    Liu, Hongde; Li, Guanghui; Liu, Lingjie; Wan, Yakun

    2015-05-20

    Chromatin structure is implicated in regulating gene transcription in stress response. Transcription factors, transferases and deacetylases, such as multicopy suppressor of SNF1 protein 2 (Msn2), SET domain-containing protein 1 (Set1) and sucrose NonFermenting protein 1 (Snf1), have been identified as key regulators in stress response. In the present study, we reported the dynamics of nucleosome occupancy, Histone Two A Z1 (Htz1) deposition and histone H3 lysine 4 dimethylation (H3K4me2) and histone H3 lysine 79 trimethylation (H3K79me3) in Saccharomyces cerevisiae under oleate stress. Our results indicated that citrate cycle-associated genes are enhanced and ribosome genes are repressed during the glucose-oleate shift. Importantly, Htz1 acts as a sensor for oleate stress. High-throughput ChIP-chip analysis showed that Htz1 has redistributed across the genome during oleate stress. The number of Htz1-bound genes increases with stress and the number of Htz1-bound ribosome genes decreases with stress. The dynamics of Htz1 and H3K79me3 around transcription factor-binding sites correlate with transcriptional changes. Moreover, we found that nucleosome dynamics are coupled with Htz1 binding changes upon stress. In unstressed conditions (2% glucose), nucleosome occupancy is comparable between Htz1-bound genes and Htz1-depleted genes; in stressed conditions (0.2% oleate for 8 h), the nucleosome occupancy of Htz1-depleted genes is significantly lower than that of Htz1-bound genes. We also found that Msn2 acts an important role in response to the oleate stress and Htz1 is dynamic in Msn2-target genes. Htz1 senses the oleate stress and undergoes a global redistribution and this change couples dynamics of nucleosome occupancy. Our analysis suggests that Htz1 and nucleosome dynamics change in response to oleate stress.

  14. Arabidopsis KINETOCHORE NULL2 Is an Upstream Component for Centromeric Histone H3 Variant cenH3 Deposition at Centromeres[W

    PubMed Central

    Lermontova, Inna; Kuhlmann, Markus; Friedel, Swetlana; Rutten, Twan; Heckmann, Stefan; Sandmann, Michael; Demidov, Dmitri; Schubert, Veit; Schubert, Ingo

    2013-01-01

    The centromeric histone H3 variant cenH3 is an essential centromeric protein required for assembly, maintenance, and proper function of kinetochores during mitosis and meiosis. We identified a KINETOCHORE NULL2 (KNL2) homolog in Arabidopsis thaliana and uncovered features of its role in cenH3 loading at centromeres. We show that Arabidopsis KNL2 colocalizes with cenH3 and is associated with centromeres during all stages of the mitotic cell cycle, except from metaphase to mid-anaphase. KNL2 is regulated by the proteasome degradation pathway. The KNL2 promoter is mainly active in meristematic tissues, similar to the cenH3 promoter. A knockout mutant for KNL2 shows a reduced level of cenH3 expression and reduced amount of cenH3 protein at chromocenters of meristematic nuclei, anaphase bridges during mitosis, micronuclei in pollen tetrads, and 30% seed abortion. Moreover, knl2 mutant plants display reduced expression of suppressor of variegation 3-9 homologs2, 4, and 9 and reduced DNA methylation, suggesting an impact of KNL2 on the epigenetic environment for centromere maintenance. PMID:24014547

  15. Human GRK4γ142V Variant Promotes Angiotensin II Type I Receptor-Mediated Hypertension via Renal Histone Deacetylase Type 1 Inhibition.

    PubMed

    Wang, Zheng; Zeng, Chunyu; Villar, Van Anthony M; Chen, Shi-You; Konkalmatt, Prasad; Wang, Xiaoyan; Asico, Laureano D; Jones, John E; Yang, Yu; Sanada, Hironobu; Felder, Robin A; Eisner, Gilbert M; Weir, Matthew R; Armando, Ines; Jose, Pedro A

    2016-02-01

    The influence of a single gene on the pathogenesis of essential hypertension may be difficult to ascertain, unless the gene interacts with other genes that are germane to blood pressure regulation. G-protein-coupled receptor kinase type 4 (GRK4) is one such gene. We have reported that the expression of its variant hGRK4γ(142V) in mice results in hypertension because of impaired dopamine D1 receptor. Signaling through dopamine D1 receptor and angiotensin II type I receptor (AT1R) reciprocally modulates renal sodium excretion and blood pressure. Here, we demonstrate the ability of the hGRK4γ(142V) to increase the expression and activity of the AT1R. We show that hGRK4γ(142V) phosphorylates histone deacetylase type 1 and promotes its nuclear export to the cytoplasm, resulting in increased AT1R expression and greater pressor response to angiotensin II. AT1R blockade and the deletion of the Agtr1a gene normalize the hypertension in hGRK4γ(142V) mice. These findings illustrate the unique role of GRK4 by targeting receptors with opposite physiological activity for the same goal of maintaining blood pressure homeostasis, and thus making the GRK4 a relevant therapeutic target to control blood pressure.

  16. Characterization of post‐translational modifications on lysine 9 of histone H3 variants in mouse testis using matrix‐assisted laser desorption/ionization in‐source decay

    PubMed Central

    Kwak, Ho‐Geun

    2016-01-01

    Rationale Post‐translational modifications (PTMs) of histones result in changes to transcriptional activities and chromatin remodeling. Lysine 9 of histone H3 (H3K9) is subject to PTMs, such as methylation and acetylation, which influence histone activity during spermatogenesis. Characterization strategies for studying PTMs on H3K9 have been developed to provide epigenetic and proteomic information. Proteomic analysis has been used to limited success to study PTMs on H3K9; however, a comprehensive analytical approach is required to elucidate global patterns of PTMs of H3 variants during spermatogenesis. Methods Intact H3 variants in mouse testis were separated by high‐performance liquid chromatography on a reversed‐phase column with an ion‐pairing reagent. Modifications to H3K9 were identified via top‐down analysis using matrix‐assisted laser desorption/ionization in source decay (MALDI‐ISD). Results Mono‐, di‐, and tri‐methylations were identified at H3K9 in mouse testis and epididymis. These modifications were also observed in testis‐specific histone H3 (H3t). Specifically, tri‐methylation was more abundant on H3tK9 than on K9 of other H3 variants. Conclusions We introduce a method for rapid, simple, and comprehensive characterization of PTMs on the N‐termini of H3 variants using MALDI‐ISD. This approach provides novel and useful information, including K9 modifications on H3t, which would benefit epigenetic and proteomic research. © 2016 The Authors. Rapid Communications in Mass Spectrometry Published by John Wiley & Sons Ltd. PMID:27643486

  17. Histone H3 lysine 4 trimethylation regulates cotranscriptional H2A variant exchange by Tip60 complexes to maximize gene expression

    PubMed Central

    Kusch, Thomas; Mei, Amanda; Nguyen, Camtu

    2014-01-01

    Histone H3 lysine 4 trimethylation (H3K4me3) and the acetylated H2A variant, H2A.Z/v (H2Avac), are enriched at promoters of highly transcribed loci including the stress response genes. Using the inducible Drosophila hsp70 loci as a model, we study here the roles of the dSet1 and dTip60 complexes in the generation of these two chromatin modifications. We find that Heat Shock Factor recruits the dTip60 complex to the hsp70 loci in cells treated with salicylate, which triggers chromatin remodeling at these loci without transcription activation. Under these conditions, H2Avac or H3K4me3 are not enriched at the hsp70 promoter. By contrast, heat shock-induced hsp70 transcription induces dSet1-dependent H3K4me3 and H2Avac deposition by the dTip60 complex. The loss of dSet1 or dTip60 abolishes H2Avac incorporation, impairs Pol II release from the hsp70 promoter, and causes a stalling of mRNA production during phases of transcription maximization. Biochemical assays confirm that nucleosomal H3K4me3 stimulates the histone acetyltransferase and H2Av exchange activities of dTip60 complexes. H2Avac contributes to nucleosome destabilization at promoters, and H3K4me3 restricts its incorporation to phases of acute transcription. The process uncouples cotranscriptional chromatin remodeling by dTip60 complexes from their role in the activation of PARP, which is responsible for the removal of transcription-incompatible or damaged chromatin during the initial stress response. The control of the multifunctional dTip60 complex by H3K4me3 ensures optimal stress response and cell survival by mediating the rapid maximization of hsp70 expression. Furthermore, this mechanism prevents the accumulation of epigenetic noise caused by random complex-nucleosome collisions. PMID:24639513

  18. Histone H3 lysine 4 trimethylation regulates cotranscriptional H2A variant exchange by Tip60 complexes to maximize gene expression.

    PubMed

    Kusch, Thomas; Mei, Amanda; Nguyen, Camtu

    2014-04-01

    Histone H3 lysine 4 trimethylation (H3K4me3) and the acetylated H2A variant, H2A.Z/v (H2Avac), are enriched at promoters of highly transcribed loci including the stress response genes. Using the inducible Drosophila hsp70 loci as a model, we study here the roles of the dSet1 and dTip60 complexes in the generation of these two chromatin modifications. We find that Heat Shock Factor recruits the dTip60 complex to the hsp70 loci in cells treated with salicylate, which triggers chromatin remodeling at these loci without transcription activation. Under these conditions, H2Avac or H3K4me3 are not enriched at the hsp70 promoter. By contrast, heat shock-induced hsp70 transcription induces dSet1-dependent H3K4me3 and H2Avac deposition by the dTip60 complex. The loss of dSet1 or dTip60 abolishes H2Avac incorporation, impairs Pol II release from the hsp70 promoter, and causes a stalling of mRNA production during phases of transcription maximization. Biochemical assays confirm that nucleosomal H3K4me3 stimulates the histone acetyltransferase and H2Av exchange activities of dTip60 complexes. H2Avac contributes to nucleosome destabilization at promoters, and H3K4me3 restricts its incorporation to phases of acute transcription. The process uncouples cotranscriptional chromatin remodeling by dTip60 complexes from their role in the activation of PARP, which is responsible for the removal of transcription-incompatible or damaged chromatin during the initial stress response. The control of the multifunctional dTip60 complex by H3K4me3 ensures optimal stress response and cell survival by mediating the rapid maximization of hsp70 expression. Furthermore, this mechanism prevents the accumulation of epigenetic noise caused by random complex-nucleosome collisions.

  19. Correlation of morphological variants of the soft palate and Need's ratio in normal individuals: A digital cephalometric study

    PubMed Central

    Verma, Pradhuman; Kumaraswam, Kikkeri Lakshminarayana; Basavaraju, Suman; Sachdeva, Suresh K.; Juneja, Suruchi

    2014-01-01

    Purpose The present study was aimed to investigate the variation of soft palate morphology in different age and gender groups. The correlations of radiographic velar length (VL), velar width (VW), pharyngeal depth (PD), and Need's ratio with soft palate variants were also studied in the North Indian subpopulation. Materials and Methods The study sample consisted of 300 subjects aged between 15 and 45 (mean: 31.32) years. The velar morphology on lateral cephalograms was examined and grouped into six types. The results obtained were subjected to a statistical analysis to find the correlation between variants of the soft palate with gender and different age groups. Results The most frequent type of soft palate was leaf shaped (48.7%), and the least common was crook shaped (3.0%) among both the genders and various age groups, showing a significant correlation. The mean VL, VW, and PD values were significantly higher in males and significantly correlated with the types of soft palate. A significant correlation was observed between the mean VL, VW, PD, and Need's ratio with various age groups, showing an inconsistent pattern with an increase in age. The types of soft palate, gender, and Need's ratio were also significantly correlated, with an overall higher mean value of the Need's ratio among female subjects and the S-shaped soft palate. Conclusion The knowledge of a varied spectrum of velar morphology and the variants of the soft palate help in a better understanding of the velopharyngeal closure and craniofacial anomalies. PMID:25279339

  20. Mass Spectrometric Analysis of Histone Proteoforms

    NASA Astrophysics Data System (ADS)

    Yuan, Zuo-Fei; Arnaudo, Anna M.; Garcia, Benjamin A.

    2014-06-01

    Histones play important roles in chromatin, in the forms of various posttranslational modifications (PTMs) and sequence variants, which are called histone proteoforms. Investigating modifications and variants is an ongoing challenge. Previous methods are based on antibodies, and because they usually detect only one modification at a time, they are not suitable for studying the various combinations of modifications on histones. Fortunately, mass spectrometry (MS) has emerged as a high-throughput technology for histone analysis and does not require prior knowledge about any modifications. From the data generated by mass spectrometers, both identification and quantification of modifications, as well as variants, can be obtained easily. On the basis of this information, the functions of histones in various cellular contexts can be revealed. Therefore, MS continues to play an important role in the study of histone proteoforms. In this review, we discuss the analysis strategies of MS, their applications on histones, and some key remaining challenges.

  1. Rapid purification of recombinant histones.

    PubMed

    Klinker, Henrike; Haas, Caroline; Harrer, Nadine; Becker, Peter B; Mueller-Planitz, Felix

    2014-01-01

    The development of methods to assemble nucleosomes from recombinant histones decades ago has transformed chromatin research. Nevertheless, nucleosome reconstitution remains time consuming to this day, not least because the four individual histones must be purified first. Here, we present a streamlined purification protocol of recombinant histones from bacteria. We termed this method "rapid histone purification" (RHP) as it circumvents isolation of inclusion bodies and thereby cuts out the most time-consuming step of traditional purification protocols. Instead of inclusion body isolation, whole cell extracts are prepared under strongly denaturing conditions that directly solubilize inclusion bodies. By ion exchange chromatography, the histones are purified from the extracts. The protocol has been successfully applied to all four canonical Drosophila and human histones. RHP histones and histones that were purified from isolated inclusion bodies had similar purities. The different purification strategies also did not impact the quality of octamers reconstituted from these histones. We expect that the RHP protocol can be readily applied to the purification of canonical histones from other species as well as the numerous histone variants.

  2. A genetic system to assess in vivo the functions of histones and histone modifications in higher eukaryotes.

    PubMed

    Günesdogan, Ufuk; Jäckle, Herbert; Herzig, Alf

    2010-10-01

    Despite the fundamental role of canonical histones in nucleosome structure, there is no experimental system for higher eukaryotes in which basic questions about histone function can be directly addressed. We developed a new genetic tool for Drosophila melanogaster in which the canonical histone complement can be replaced with multiple copies of experimentally modified histone transgenes. This new histone-replacement system provides a well-defined and direct cellular assay system for histone function with which to critically test models in chromatin biology dealing with chromatin assembly, variant histone functions and the biological significance of distinct histone modifications in a multicellular organism.

  3. Structure and Functions of Linker Histones.

    PubMed

    Lyubitelev, A V; Nikitin, D V; Shaytan, A K; Studitsky, V M; Kirpichnikov, M P

    2016-03-01

    Linker histones such as variants H1, H5, and other similar proteins play an important role in regulation of chromatin structure and dynamics. However, interactions of linker histones with DNA and proteins, as well as specific functions of their different variants, are poorly studied. This is because they acquire tertiary structure only when interacting with a nucleosome, and because of limitations of currently available methods. However, deeper investigation of linker histones and their interactions with other proteins will address a number of important questions - from structure of compacted chromatin to regulation of early embryogenesis. In this review, structures of histone H1 variants and its interaction with chromatin DNA are considered. A possible functional significance of different H1 variants, a role of these proteins in maintaining interphase chromatin structure, and interactions of linker histones with other cellular proteins are also discussed.

  4. Diversity and Divergence of Dinoflagellate Histone Proteins.

    PubMed

    Marinov, Georgi K; Lynch, Michael

    2015-12-08

    Histone proteins and the nucleosomal organization of chromatin are near-universal eukaroytic features, with the exception of dinoflagellates. Previous studies have suggested that histones do not play a major role in the packaging of dinoflagellate genomes, although several genomic and transcriptomic surveys have detected a full set of core histone genes. Here, transcriptomic and genomic sequence data from multiple dinoflagellate lineages are analyzed, and the diversity of histone proteins and their variants characterized, with particular focus on their potential post-translational modifications and the conservation of the histone code. In addition, the set of putative epigenetic mark readers and writers, chromatin remodelers and histone chaperones are examined. Dinoflagellates clearly express the most derived set of histones among all autonomous eukaryote nuclei, consistent with a combination of relaxation of sequence constraints imposed by the histone code and the presence of numerous specialized histone variants. The histone code itself appears to have diverged significantly in some of its components, yet others are conserved, implying conservation of the associated biochemical processes. Specifically, and with major implications for the function of histones in dinoflagellates, the results presented here strongly suggest that transcription through nucleosomal arrays happens in dinoflagellates. Finally, the plausible roles of histones in dinoflagellate nuclei are discussed.

  5. Characterization of a Novel Chromatin Sorting Tool Reveals Importance of Histone Variant H3.3 in Contextual Fear Memory and Motor Learning.

    PubMed

    McNally, Anna G; Poplawski, Shane G; Mayweather, Brittany A; White, Kyle M; Abel, Ted

    2016-01-01

    The consolidation of short-term labile memories for long-term storage requires transcription and there is growing interest in defining the epigenetic mechanisms regulating these transcriptional events. In particular, it has been hypothesized that combinations of histone post-translational modifications (PTMs) have the potential to store memory by dynamically defining the transcriptional status of any given gene loci. Studying epigenetic phenomena during long-term memory consolidation, however, is complicated by the complex cellular heterogeneity of the brain, in which epigenetic signal from memory-relevant cells can be obscured or diluted by the surrounding milieu. To address this issue, we have developed a transgenic mouse line expressing a tetO-regulated, hemagglutinin (HA)-tagged histone H3.3 exclusively in excitatory neurons of the forebrain. Unlike canonical histones, histone H3.3 is incorporated at promoter regions of transcriptionally active genes in a DNA replication-independent manner, stably "barcoding" active regions of the genome in post-mitotic cells. Immunoprecipitating H3.3-HA containing nucleosomes from the hippocampus will therefore enrich for memory-relevant chromatin by isolating actively transcribed regions of the excitatory neuron genome. To evaluate the validity of using H3.3 "barcoding" to sort chromatin, we performed a molecular and behavioral characterization of the H3.3-HA transgenic mouse line. Expectedly, we find that H3.3-HA is incorporated preferentially at promoter regions of actively-transcribed neuronal genes and that expression can be effectively regulated by doxycycline. Additionally, H3.3-HA overexpression does not adversely affect exploratory or anxiety-related behaviors, nor does it affect spatial memory. Transgenic animals do, however, exhibit deficits in contextual memory and motor learning, revealing the importance of this histone isoform in the brain. Future studies in the H3.3-HA transgenic mouse line will define the

  6. A zebrafish histone variant H2A.F/Z and a transgenic H2A.F/Z:GFP fusion protein for in vivo studies of embryonic development.

    PubMed

    Pauls, S; Geldmacher-Voss, B; Campos-Ortega, J A

    2001-12-01

    Abstract. We have generated transgenic zebrafish lines expressing a fusion of a histone variant, H2A.F/Z, to the green fluorescent protein (GFP) of the jellyfish Aequorea victoria. Here, we describe the molecular cloning, partial characterisation and expression of the zebrafish H2A.F/Z histone gene, as well as the construction of the transgene and its transformation into the zebrafish germ line. No abnormality can be detected in transgenic fish expressing the H2A.F/Z:GFP fusion protein. The nuclear localisation of the fusion protein correlates with the start of zygotic transcription, in that it is present in the unfertilised egg and in the cytoplasm of cells after the first cleavages, being found in some nuclei after the seventh or eighth cleavage, whereas all nuclei from the 1,000-cell stage on, i.e. after midblastula transition, contain protein. In addition to these data, we present a few examples of the many possible applications of this transgenic line for developmental studies in vivo. Electronic supplementary material to this paper can be obtained by using the Springer LINK server located at http://dx.doi.org/10.1007/s00427-001-0196-x

  7. Histone Deacetylases

    PubMed Central

    Parbin, Sabnam; Kar, Swayamsiddha; Shilpi, Arunima; Sengupta, Dipta; Deb, Moonmoon; Rath, Sandip Kumar

    2014-01-01

    In the current era of genomic medicine, diseases are identified as manifestations of anomalous patterns of gene expression. Cancer is the principal example among such maladies. Although remarkable progress has been achieved in the understanding of the molecular mechanisms involved in the genesis and progression of cancer, its epigenetic regulation, particularly histone deacetylation, demands further studies. Histone deacetylases (HDACs) are one of the key players in the gene expression regulation network in cancer because of their repressive role on tumor suppressor genes. Higher expression and function of deacetylases disrupt the finely tuned acetylation homeostasis in both histone and non-histone target proteins. This brings about alterations in the genes implicated in the regulation of cell proliferation, differentiation, apoptosis and other cellular processes. Moreover, the reversible nature of epigenetic modulation by HDACs makes them attractive targets for cancer remedy. This review summarizes the current knowledge of HDACs in tumorigenesis and tumor progression as well as their contribution to the hallmarks of cancer. The present report also describes briefly various assays to detect histone deacetylase activity and discusses the potential role of histone deacetylase inhibitors as emerging epigenetic drugs to cure cancer. PMID:24051359

  8. The D-isoAsp-25 variant of histone H2B is highly enriched in active chromatin: potential role in the regulation of gene expression?

    PubMed

    Qin, Zhenxia; Zhu, Jeff X; Aswad, Dana W

    2016-02-01

    Approximately 12 % of histone H2B in mammalian brain contains an unusual D-aspartate residue in its N-terminal tail. Most of this D-aspartate is linked to the C-flanking glycine via an isopeptide bond. To explore the possible significance of these modifications, we generated an antibody to the D-isoaspartyl form of H2B, and used it to assess its levels in H2B associated with "active" vs. "silent" chromatin. We found that the D-isoaspartyl form of H2B appears to be highly enriched in the former. This irreversible modification could serve a novel regulatory function in gene expression.

  9. Histone Octamer

    NASA Technical Reports Server (NTRS)

    1997-01-01

    1 mm histone octamer crystal grown on STS-81. A very dynamic structure which functions in many aspects of gene regulation from control of gene activity to the more subtle mechanisms of genetic imprinting. Principle Investigator is Dan Carter of New Century Pharmaceuticals.

  10. Histone Octamer

    NASA Technical Reports Server (NTRS)

    1997-01-01

    This is a large 2 mm crystal of histone octamer, grown on STS-81. A very dynamic structure which functions in many aspects of gene regulation from control of gene activity to the more subtle mechanisms of genetic imprinting. Principle Investigator is Dan Carter of New Century Pharmaceuticals.

  11. Whole-exome-sequencing identifies mutations in histone acetyltransferase gene KAT6B in individuals with the Say-Barber-Biesecker variant of Ohdo syndrome.

    PubMed

    Clayton-Smith, Jill; O'Sullivan, James; Daly, Sarah; Bhaskar, Sanjeev; Day, Ruth; Anderson, Beverley; Voss, Anne K; Thomas, Tim; Biesecker, Leslie G; Smith, Philip; Fryer, Alan; Chandler, Kate E; Kerr, Bronwyn; Tassabehji, May; Lynch, Sally-Ann; Krajewska-Walasek, Malgorzata; McKee, Shane; Smith, Janine; Sweeney, Elizabeth; Mansour, Sahar; Mohammed, Shehla; Donnai, Dian; Black, Graeme

    2011-11-11

    Say-Barber-Biesecker-Young-Simpson syndrome (SBBYSS or Ohdo syndrome) is a multiple anomaly syndrome characterized by severe intellectual disability, blepharophimosis, and a mask-like facial appearance. A number of individuals with SBBYSS also have thyroid abnormalities and cleft palate. The condition usually occurs sporadically and is therefore presumed to be due in most cases to new dominant mutations. In individuals with SBBYSS, a whole-exome sequencing approach was used to demonstrate de novo protein-truncating mutations in the highly conserved histone acetyltransferase gene KAT6B (MYST4/MORF)) in three out of four individuals sequenced. Sanger sequencing was used to confirm truncating mutations of KAT6B, clustering in the final exon of the gene in all four individuals and in a further nine persons with typical SBBYSS. Where parental samples were available, the mutations were shown to have occurred de novo. During mammalian development KAT6B is upregulated specifically in the developing central nervous system, facial structures, and limb buds. The phenotypic features seen in the Qkf mouse, a hypomorphic Kat6b mutant, include small eyes, ventrally placed ears and long first digits that mirror the human phenotype. This is a further example of how perturbation of a protein involved in chromatin modification might give rise to a multisystem developmental disorder.

  12. SUMO-targeted ubiquitin ligase (STUbL) Slx5 regulates proteolysis of centromeric histone H3 variant Cse4 and prevents its mislocalization to euchromatin

    PubMed Central

    Ohkuni, Kentaro; Takahashi, Yoshimitsu; Fulp, Alyona; Lawrimore, Josh; Au, Wei-Chun; Pasupala, Nagesh; Levy-Myers, Reuben; Warren, Jack; Strunnikov, Alexander; Baker, Richard E.; Kerscher, Oliver; Bloom, Kerry; Basrai, Munira A.

    2016-01-01

    Centromeric histone H3, CENP-ACse4, is essential for faithful chromosome segregation. Stringent regulation of cellular levels of CENP-ACse4 restricts its localization to centromeres. Mislocalization of CENP-ACse4 is associated with aneuploidy in yeast and flies and tumorigenesis in human cells; thus defining pathways that regulate CENP-A levels is critical for understanding how mislocalization of CENP-A contributes to aneuploidy in human cancers. Previous work in budding yeast shows that ubiquitination of overexpressed Cse4 by Psh1, an E3 ligase, partially contributes to proteolysis of Cse4. Here we provide the first evidence that Cse4 is sumoylated by E3 ligases Siz1 and Siz2 in vivo and in vitro. Ubiquitination of Cse4 by the small ubiquitin-related modifier (SUMO)-targeted ubiquitin ligase (STUbL) Slx5 plays a critical role in proteolysis of Cse4 and prevents mislocalization of Cse4 to euchromatin under normal physiological conditions. Accumulation of sumoylated Cse4 species and increased stability of Cse4 in slx5∆ strains suggest that sumoylation precedes ubiquitin-mediated proteolysis of Cse4. Slx5-mediated Cse4 proteolysis is independent of Psh1, since slx5∆ psh1∆ strains exhibit higher levels of Cse4 stability and mislocalization than either slx5∆ or psh1∆ strains. Our results demonstrate a role for Slx5 in ubiquitin-mediated proteolysis of Cse4 to prevent its mislocalization and maintain genome stability. PMID:26960795

  13. Ratio

    NASA Astrophysics Data System (ADS)

    Webster, Nathan A. S.; Pownceby, Mark I.; Madsen, Ian C.; Studer, Andrew J.; Manuel, James R.; Kimpton, Justin A.

    2014-12-01

    Effects of basicity, B (CaO:SiO2 ratio) on the thermal range, concentration, and formation mechanisms of silico-ferrite of calcium and aluminum (SFCA) and SFCA-I iron ore sinter bonding phases have been investigated using an in situ synchrotron X-ray diffraction-based methodology with subsequent Rietveld refinement-based quantitative phase analysis. SFCA and SFCA-I phases are the key bonding materials in iron ore sinter, and improved understanding of the effects of processing parameters such as basicity on their formation and decomposition may assist in improving efficiency of industrial iron ore sintering operations. Increasing basicity significantly increased the thermal range of SFCA-I, from 1363 K to 1533 K (1090 °C to 1260 °C) for a mixture with B = 2.48, to ~1339 K to 1535 K (1066 °C to 1262 °C) for a mixture with B = 3.96, and to ~1323 K to 1593 K (1050 °C to 1320 °C) at B = 4.94. Increasing basicity also increased the amount of SFCA-I formed, from 18 wt pct for the mixture with B = 2.48 to 25 wt pct for the B = 4.94 mixture. Higher basicity of the starting sinter mixture will, therefore, increase the amount of SFCA-I, considered to be more desirable of the two phases. Basicity did not appear to significantly influence the formation mechanism of SFCA-I. It did, however, affect the formation mechanism of SFCA, with the decomposition of SFCA-I coinciding with the formation of a significant amount of additional SFCA in the B = 2.48 and 3.96 mixtures but only a minor amount in the highest basicity mixture. In situ neutron diffraction enabled characterization of the behavior of magnetite after melting of SFCA produced a magnetite plus melt phase assemblage.

  14. The histone chaperones Nap1 and Vps75 bind histones H3 and H4 in a tetrameric conformation.

    PubMed

    Bowman, Andrew; Ward, Richard; Wiechens, Nicola; Singh, Vijender; El-Mkami, Hassane; Norman, David George; Owen-Hughes, Tom

    2011-02-18

    Histone chaperones physically interact with histones to direct proper assembly and disassembly of nucleosomes regulating diverse nuclear processes such as DNA replication, promoter remodeling, transcription elongation, DNA damage, and histone variant exchange. Currently, the best-characterized chaperone-histone interaction is that between the ubiquitous chaperone Asf1 and a dimer of H3 and H4. Nucleosome assembly proteins (Nap proteins) represent a distinct class of histone chaperone. Using pulsed electron double resonance (PELDOR) measurements and protein crosslinking, we show that two members of this class, Nap1 and Vps75, bind histones in the tetrameric conformation also observed when they are sequestered within the nucleosome. Furthermore, H3 and H4 trapped in their tetrameric state can be used as substrates in nucleosome assembly and chaperone-mediated lysine acetylation. This alternate mode of histone interaction provides a potential means of maintaining the integrity of the histone tetramer during cycles of nucleosome reassembly.

  15. Histone lysine methylation and chromatin replication.

    PubMed

    Rivera, Carlos; Gurard-Levin, Zachary A; Almouzni, Geneviève; Loyola, Alejandra

    2014-12-01

    In eukaryotic organisms, the replication of the DNA sequence and its organization into chromatin are critical to maintain genome integrity. Chromatin components, such as histone variants and histone post-translational modifications, along with the higher-order chromatin structure, impact several DNA metabolic processes, including replication, transcription, and repair. In this review we focus on lysine methylation and the relationships between this histone mark and chromatin replication. We first describe studies implicating lysine methylation in regulating early steps in the replication process. We then discuss chromatin reassembly following replication fork passage, where the incorporation of a combination of newly synthesized histones and parental histones can impact the inheritance of lysine methylation marks on the daughter strands. Finally, we elaborate on how the inheritance of lysine methylation can impact maintenance of the chromatin landscape, using heterochromatin as a model chromatin domain, and we discuss the potential mechanisms involved in this process.

  16. The human histone chaperone sNASP interacts with linker and core histones through distinct mechanisms.

    PubMed

    Wang, Huanyu; Ge, Zhongqi; Walsh, Scott T R; Parthun, Mark R

    2012-01-01

    Somatic nuclear autoantigenic sperm protein (sNASP) is a human homolog of the N1/N2 family of histone chaperones. sNASP contains the domain structure characteristic of this family, which includes a large acidic patch flanked by several tetratricopeptide repeat (TPR) motifs. sNASP possesses a unique binding specificity in that it forms specific complexes with both histone H1 and histones H3/H4. Based on the binding affinities of sNASP variants to histones H1, H3.3, H4 and H3.3/H4 complexes, sNASP uses distinct structural domains to interact with linker and core histones. For example, one of the acidic patches of sNASP was essential for linker histone binding but not for core histone interactions. The fourth TPR of sNASP played a critical role in interactions with histone H3/H4 complexes, but did not influence histone H1 binding. Finally, analysis of cellular proteins demonstrated that sNASP existed in distinct complexes that contained either linker or core histones.

  17. Oncogenic potential of histone-variant H2A.Z.1 and its regulatory role in cell cycle and epithelial-mesenchymal transition in liver cancer

    PubMed Central

    Eun, Jung Woo; Shen, Qingyu; Kim, Hyung Seok; Shin, Woo Chan; Ahn, Young Min; Park, Won Sang; Lee, Jung Young; Nam, Suk Woo

    2016-01-01

    H2A.Z is a highly conserved H2A variant, and two distinct H2A.Z isoforms, H2A.Z.1 and H2A.Z.2, have been identified as products of two non-allelic genes, H2AFZ and H2AFV. H2A.Z has been reported to be overexpressed in breast, prostate and bladder cancers, but most studies did not clearly distinguish between isoforms. One recent study reported a unique role for the H2A.Z isoform H2A.Z.2 as a driver of malignant melanoma. Here we first report that H2A.Z.1 plays a pivotal role in the liver tumorigenesis by selectively regulating key molecules in cell cycle and epithelial-mesenchymal transition (EMT). H2AFZ expression was significantly overexpressed in a large cohort of hepatocellular carcinoma (HCC) patients, and high expression of H2AFZ was significantly associated with their poor prognosis. H2A.Z.1 overexpression was demonstrated in a subset of human HCC and cell lines. H2A.Z.1 knockdown suppressed HCC cell growth by transcriptional deregulation of cell cycle proteins and caused apoptotic cell death of HCC cells. We also observed that H2A.Z.1 knockdown reduced the metastatic potential of HCC cells by selectively modulating epithelial-mesenchymal transition regulatory proteins such as E-cadherin and fibronectin. In addition, H2A.Z.1 knockdown reduced the in vivo tumor growth rate in a mouse xenograft model. In conclusion, our findings suggest the oncogenic potential of H2A.Z.1 in liver tumorigenesis and that it plays established role in accelerating cell cycle transition and EMT during hepatocarcinogenesis. This makes H2A.Z.1 a promising target in liver cancer therapy. PMID:26863632

  18. Re-writing the Histone Code of Breast Cancer

    DTIC Science & Technology

    2013-02-01

    associated with poor prognosis. The structure of the chromatin in these self-renewal gene promoters is a major determinant associated with...transcriptional dysregulation and oncogenesis. Chromatin structure and function is controlled in large part by the post-translational modification of...histones and the incorporation of specialized histone variants into nucleosomes . Strikingly, histone proteins are highly modified by an array of diverse

  19. Genetic Variants Associated with Optic Nerve Vertical Cup-to-Disc Ratio Are Risk Factors for Primary Open Angle Glaucoma in a US Caucasian Population

    PubMed Central

    Fan, Bao Jian; Wang, Dan Yi; Pasquale, Louis R.; Haines, Jonathan L.

    2011-01-01

    Purpose. Genetically complex disorders, such as primary open angle glaucoma (POAG), may include highly heritable quantitative traits as part of the overall phenotype, and mapping genes influencing the related quantitative traits may effectively identify genetic risk factors predisposing to the complex disease. Recent studies have identified SNPs associated with optic nerve area and vertical cup-to-disc ratio (VCDR). The purpose of this study was to evaluate the association between these SNPs and POAG in a US Caucasian case-control sample. Methods. Five SNPs previously associated with optic disc area, or VCDR, were genotyped in 539 POAG cases and 336 controls. Genotype data were analyzed for single SNP associations and SNP interactions with VCDR and POAG. Results. SNPs associated with VCDR rs1063192 (CDKN2B) and rs10483727 (SIX1/SIX6) were also associated with POAG (P = 0.0006 and P = 0.0043 for rs1063192 and rs10483727, respectively). rs1063192, associated with smaller VCDR, had a protective effect (odds ratio [OR] = 0.73; 95% confidence interval [CI], 0.58–0.90), whereas rs10483727, associated with larger VCDR, increased POAG risk (OR = 1.33; 95% CI, 1.08–1.65). POAG risk associated with increased VCDR was significantly influenced by the C allele of rs1900004 (ATOH7), associated with increased optic nerve area (P-interaction = 0.025; OR = 1.89; 95% CI, 1.22–2.94). Conclusions. Genetic variants influencing VCDR are associated with POAG in a US Caucasian population. Variants associated with optic nerve area are not independently associated with disease but can influence the effects of VCDR variants suggesting that increased optic disc area can significantly contribute to POAG risk when coupled with risk factors controlling VCDR. PMID:21398277

  20. Linker histones in hormonal gene regulation.

    PubMed

    Vicent, G P; Wright, R H G; Beato, M

    2016-03-01

    In the present review, we summarize advances in our knowledge on the role of the histone H1 family of proteins in breast cancer cells, focusing on their response to progestins. Histone H1 plays a dual role in gene regulation by hormones, both as a structural component of chromatin and as a dynamic modulator of transcription. It contributes to hormonal regulation of the MMTV promoter by stabilizing a homogeneous nucleosome positioning, which reduces basal transcription whereas at the same time promoting progesterone receptor binding and nucleosome remodeling. These combined effects enhance hormone dependent gene transcription, which eventually requires H1 phosphorylation and displacement. Various isoforms of histone H1 have specific functions in differentiated breast cancer cells and compact nucleosomal arrays to different extents in vitro. Genome-wide studies show that histone H1 has a key role in chromatin dynamics of hormone regulated genes. A complex sequence of enzymatic events, including phosphorylation by CDK2, PARylation by PARP1 and the ATP-dependent activity of NURF, are required for H1 displacement and gene de-repression, as a prerequisite for further nucleosome remodeling. Similarly, during hormone-dependent gene repression a dedicated enzymatic mechanism controls H1 deposition at promoters by a complex containing HP1γ, LSD1 and BRG1, the ATPase of the BAF complex. Thus, a broader vision of the histone code should include histone H1, as the linker histone variants actively participate in the regulation of the chromatin structure. How modifications of the core histones tails affect H1 modifications and vice versa is one of the many questions that remains to be addressed to provide a more comprehensive view of the histone cross-talk mechanisms.

  1. HAMLET interacts with histones and chromatin in tumor cell nuclei.

    PubMed

    Düringer, Caroline; Hamiche, Ali; Gustafsson, Lotta; Kimura, Hiroshi; Svanborg, Catharina

    2003-10-24

    HAMLET is a folding variant of human alpha-lactalbumin in an active complex with oleic acid. HAMLET selectively enters tumor cells, accumulates in their nuclei and induces apoptosis-like cell death. This study examined the interactions of HAMLET with nuclear constituents and identified histones as targets. HAMLET was found to bind histone H3 strongly and to lesser extent histones H4 and H2B. The specificity of these interactions was confirmed using BIAcore technology and chromatin assembly assays. In vivo in tumor cells, HAMLET co-localized with histones and perturbed the chromatin structure; HAMLET was found associated with chromatin in an insoluble nuclear fraction resistant to salt extraction. In vitro, HAMLET bound strongly to histones and impaired their deposition on DNA. We conclude that HAMLET interacts with histones and chromatin in tumor cell nuclei and propose that this interaction locks the cells into the death pathway by irreversibly disrupting chromatin organization.

  2. Production and Purification of Antibodies Against Histone Modifications.

    PubMed

    Guillemette, Benoit; Hammond-Martel, Ian; Wurtele, Hugo; Verreault, Alain

    2017-01-01

    Antibodies that recognize specific histone modifications are invaluable tools to study chromatin structure and function. There are numerous commercially available antibodies that recognize a remarkable diversity of histone modifications. Unfortunately, many of them fail to work in certain applications or lack the high degree of specificity required of these reagents. The production of affinity-purified polyclonal antibodies against histone modifications demands a little effort but, in return, provides extremely valuable tools that overcome many of the concerns and limitations of commercial antibodies. We present a series of protocols and guidelines for the production and use of large amounts of polyclonal antibodies that recognize modifications of canonical histones. Our protocols can be applied to obtain antibodies that occur in histone variants and proteins other than histones. In addition, some of our protocols are compatible with the production of monoclonal or recombinant antibodies.

  3. Extracellular histones inhibit efferocytosis.

    PubMed

    Friggeri, Arnaud; Banerjee, Sami; Xie, Na; Cui, Huachun; De Freitas, Andressa; Zerfaoui, Mourad; Dupont, Hervé; Abraham, Edward; Liu, Gang

    2012-07-18

    The uptake and clearance of apoptotic cells by macrophages and other phagocytic cells, a process called efferocytosis, is a major component in the resolution of inflammation. Increased concentrations of extracellular histones are found during acute inflammatory states and appear to contribute to organ system dysfunction and mortality. In these studies, we examined the potential role of histones in modulating efferocytosis. We found that phagocytosis of apoptotic neutrophils or thymocytes by macrophages was significantly diminished in the presence of histones H3 or H4, but not histone H1. Histone H3 demonstrated direct binding to macrophages, an effect that was diminished by preincubation of macrophages with the opsonins growth arrest-specific gene 6 (Gas6) and milk fat globule-epidermal growth factor (EGF) 8 (MFG-E8). Incubation of histone H3 with soluble α(v)β₅ integrin and Mer, but not with α(v)β₃, diminished its binding to macrophages. Phagocytosis of apoptotic cells by alveolar macrophages in vivo was diminished in the presence of histone H3. Incubation of histone H3 with activated protein C, a treatment that degrades histones, abrogated its inhibitory effects on efferocytosis under both in vitro and in vivo conditions. The present studies demonstrate that histones have inhibitory effects on efferocytosis, suggesting a new mechanism by which extracellular histones contribute to acute inflammatory processes and tissue injury.

  4. Imipramine exploits histone deacetylase 11 to increase the IL-12/IL-10 ratio in macrophages infected with antimony-resistant Leishmania donovani and clears organ parasites in experimental infection.

    PubMed

    Mukherjee, Sandip; Mukherjee, Budhaditya; Mukhopadhyay, Rupkatha; Naskar, Kshudiram; Sundar, Shyam; Dujardin, Jean-Claude; Roy, Syamal

    2014-10-15

    The efflux of antimony through multidrug resistance protein (MDR)-1 is the key factor in the failure of metalloid treatment in kala-azar patients infected with antimony-resistant Leishmania donovani (Sb(R)LD). Previously we showed that MDR-1 upregulation in Sb(R)LD infection is IL-10-dependent. Imipramine, a drug in use for the treatment of depression and nocturnal enuresis in children, inhibits IL-10 production from Sb(R)LD-infected macrophages (Sb(R)LD-Mϕs) and favors accumulation of surrogates of antimonials. It inhibits IL-10-driven nuclear translocation of c-Fos/c-Jun, critical for enhanced MDR-1 expression. The drug upregulates histone deacetylase 11, which inhibits acetylation of IL-10 promoter, leading to a decrease in IL-10 production from Sb(R)LD-Mϕs. It abrogates Sb(R)LD-mediated p50/c-Rel binding to IL-10 promoter and preferentially recruits p65/RelB to IL-12 p35 and p40 promoters, causing a decrease in IL-10 and overproduction of IL-12 in Sb(R)LD-Mϕs. Histone deacetylase 11 per se does not influence IL-12 promoter activity. Instead, a imipramine-mediated decreased IL-10 level allows optimal IL-12 production in Sb(R)LD-Mϕs. Furthermore, exogenous rIL-12 inhibits intracellular Sb(R)LD replication, which can be mimicked by the presence of Ab to IL-10. This observation indicated that reciprocity exists between IL-10 and IL-12 and that imipramine tips the balance toward an increased IL-12/IL-10 ratio in Sb(R)LD-Mϕs. Oral treatment of infected BALB/c mice with imipramine in combination with sodium stibogluconate cleared organ Sb(R)LD parasites and caused an expansion of the antileishmanial T cell repertoire where sodium stibogluconate alone had no effect. Our study deciphers a detailed molecular mechanism of imipramine-mediated regulation of IL-10/IL-12 reciprocity and its impact on Sb(R)LD clearance from infected hosts.

  5. ChIp-seq of bovine cells (MDBK) to study butyrate-induced histone modification with 10 datasets

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Next-generation sequencing was combined with chromatin immunoprecipitation (ChIP) technology to analyze histone modification (acetylation) induced by butyrate and to map the epigenomic landscape of normal histone H3, H4 in rumen cells of the cow. Ten variants of histone H3 and H4 modification were m...

  6. RAPID SEMISYNTHESIS OF ACETYLATED AND SUMOYLATED HISTONE ANALOGS

    PubMed Central

    Dhall, Abhinav; Weller, Caroline E.

    2016-01-01

    The density and diversity of post-translational modifications (PTMs) observed in histone proteins typically limits their purification to homogeneity from biological sources. Access to quantities of uniformly modified histones is, however, critical for investigating the downstream effects of histone PTMs on chromatin-templated processes. Therefore, a number of semisynthetic methodologies have been developed to generate histones bearing precisely defined PTMs or close analogs thereof. In this chapter, we present two optimized and rapid strategies for generating functional analogs of site-specifically acetylated and sumoylated histones. First, we describe a convergent strategy to site-specifically attach the small ubiquitin-like modifier-3 (SUMO-3) protein to the site of Lys12 in histone H4 by means of a disulfide linkage. We then describe the generation of thialysine analogs of histone H3 acetylated at Lys 14 or Lys 56, using thiol-ene coupling chemistry. Both strategies afford multi-milligram quantities of uniformly modified histones that are easily incorporated into mononucleosomes and nucleosome arrays for biophysical and biochemical investigations. These methods are readily extendable to any desired sites in the four core nucleosomal histones and their variant forms. PMID:27423861

  7. Readers of histone modifications

    PubMed Central

    Yun, Miyong; Wu, Jun; Workman, Jerry L; Li, Bing

    2011-01-01

    Histone modifications not only play important roles in regulating chromatin structure and nuclear processes but also can be passed to daughter cells as epigenetic marks. Accumulating evidence suggests that the key function of histone modifications is to signal for recruitment or activity of downstream effectors. Here, we discuss the latest discovery of histone-modification readers and how the modification language is interpreted. PMID:21423274

  8. Histone Arginine Methylation

    PubMed Central

    Lorenzo, Alessandra Di; Bedford, Mark T.

    2012-01-01

    Arginine methylation is a common posttranslational modification (PTM). This type of PTM occurs on both nuclear and cytoplasmic proteins, and is particularly abundant on shuttling proteins. In this review, we will focus on one aspect of this PTM: the diverse roles that arginine methylation of the core histone tails play in regulating chromatin function. A family of nine protein arginine methyltransferases (PRMTs) catalyze methylation reactions, and a subset target histones. Importantly, arginine methylation of histone tails can promote or prevent the docking of key transcriptional effector molecules, thus playing a central role in the orchestration of the histone code. PMID:21074527

  9. Histones and histone modifications in perinuclear chromatin anchoring: from yeast to man.

    PubMed

    Harr, Jennifer C; Gonzalez-Sandoval, Adriana; Gasser, Susan M

    2016-02-01

    It is striking that within a eukaryotic nucleus, the genome can assume specific spatiotemporal distributions that correlate with the cell's functional states. Cell identity itself is determined by distinct sets of genes that are expressed at a given time. On the level of the individual gene, there is a strong correlation between transcriptional activity and associated histone modifications. Histone modifications act by influencing the recruitment of non-histone proteins and by determining the level of chromatin compaction, transcription factor binding, and transcription elongation. Accumulating evidence also shows that the subnuclear position of a gene or domain correlates with its expression status. Thus, the question arises whether this spatial organization results from or determines a gene's chromatin status. Although the association of a promoter with the inner nuclear membrane (INM) is neither necessary nor sufficient for repression, the perinuclear sequestration of heterochromatin is nonetheless conserved from yeast to man. How does subnuclear localization influence gene expression? Recent work argues that the common denominator between genome organization and gene expression is the modification of histones and in some cases of histone variants. This provides an important link between local chromatin structure and long-range genome organization in interphase cells. In this review, we will evaluate how histones contribute to the latter, and discuss how this might help to regulate genes crucial for cell differentiation.

  10. Histone chaperones link histone nuclear import and chromatin assembly.

    PubMed

    Keck, Kristin M; Pemberton, Lucy F

    2013-01-01

    Histone chaperones are proteins that shield histones from nonspecific interactions until they are assembled into chromatin. After their synthesis in the cytoplasm, histones are bound by different histone chaperones, subjected to a series of posttranslational modifications and imported into the nucleus. These evolutionarily conserved modifications, including acetylation and methylation, can occur in the cytoplasm, but their role in regulating import is not well understood. As part of histone import complexes, histone chaperones may serve to protect the histones during transport, or they may be using histones to promote their own nuclear localization. In addition, there is evidence that histone chaperones can play an active role in the import of histones. Histone chaperones have also been shown to regulate the localization of important chromatin modifying enzymes. This review is focused on the role histone chaperones play in the early biogenesis of histones, the distinct cytoplasmic subcomplexes in which histone chaperones have been found in both yeast and mammalian cells and the importins/karyopherins and nuclear localization signals that mediate the nuclear import of histones. We also address the role that histone chaperone localization plays in human disease. This article is part of a Special Issue entitled: Histone chaperones and chromatin assembly.

  11. Histone H2A significantly enhances in vitro DNA transfection.

    PubMed Central

    Balicki, D.; Beutler, E.

    1997-01-01

    BACKGROUND: Gene transfer is a potential treatment modality of genetic disease. Efficient, practical methods of DNA transfection are currently under investigation. MATERIALS AND METHODS: A beta-galactosidase reporter plasmid interacted electrostatically with histones, poly-L-Lys, poly-L-Arg, and a combination of poly-L-Lys and poly-L-Arg. This complex was then used to transfect COS-7 cells. beta-galactosidase activity was quantified and used to compare the efficiency of gene transfection in vitro. A comparison was also made of DNA transfection with the most active histone subclass, i.e., histone H2A, in the absence and presence of an anionic liposome. RESULTS: There was a marked increase in DNA transfection in the presence of histone H2A when compared with the control, whereas each of the other histones and polycations showed little, if any, effect. The extent of activation depends strongly on the DNA/histone ratio and is also a function of the molarity of the final Tris-acetate, pH 8, solution. The anionic liposomes used demonstrated an inhibitory effect. CONCLUSIONS: Histone H2A significantly enhances in vitro DNA transfection whereas other histones and anionic liposomes do not. A study of the difference between histone H2A and other histone subclasses may serve to clarify some of the mechanisms and the essential components of efficient gene delivery. PMID:9407553

  12. Evidence for sequence biases associated with patterns of histone methylation

    PubMed Central

    2012-01-01

    Background Combinations of histone variants and modifications, conceptually representing a histone code, have been proposed to play a significant role in gene regulation and developmental processes in complex organisms. While various mechanisms have been implicated in establishing and maintaining epigenetic patterns at specific locations in the genome, they are generally believed to be independent of primary DNA sequence on a more global scale. Results To address this systematically in the case of the human genome, we have analyzed primary DNA sequences underlying patterns of 19 different methylated histones in human primary T-cells and patterns of three methylated histones across additional human cell lines. We report strong sequence biases associated with most of these histone marks genome-wide in each cell type. Furthermore, the sequence characteristics for such association are distinct for different groups of histone marks. Conclusions These findings provide evidence of an influence of genomic sequence on patterns of histone modification associated with gene expression and chromatin programming, and they suggest that the mechanisms responsible for global histone modifications may interpret genomic sequence in various ways. PMID:22857523

  13. Antibodies specific to acetylated histones document the existence of deposition- and transcription-related histone acetylation in Tetrahymena

    PubMed Central

    1989-01-01

    In this study, we have constructed synthetic peptides which are identical to hyperacetylated amino termini of two Tetrahymena core histones (tetra-acetylated H4 and penta-acetylated hv1) and used them to generate polyclonal antibodies specific for acetylated forms (mono-, di-, tri-, etc.) of these histones. Neither of these antisera recognizes histone that is unacetylated. Immunoblotting analyses demonstrate that both transcription-related and deposition-related acetate groups on H4 are recognized by both antisera. In addition, the antiserum raised against penta-acetylated hv1 also recognizes acetylated forms of this variant. Immunofluorescent analyses with both antisera demonstrate that, as expected, histone acetylation is specific to macronuclei (or new macronuclei) at all stages of the life cycle except when micronuclei undergo periods of rapid replication and chromatin assembly. During this time micronuclear staining is also detected. Our results also suggest that transcription-related acetylation begins selectively in new macronuclei immediately after the second postzygotic division. Acetylated histone is not observed in new micronuclei during stages corresponding to anlagen development and, therefore, histone acetylation can be distributed asymmetrically in development. Equally striking is the rapid turnover of acetylated histone in parental macronuclei during the time of their inactivation and elimination from the cell. Taken together, these data lend strong support to the idea that modulation of histone acetylation plays an important role in gene activation and in chromatin assembly. PMID:2654136

  14. Histone acetylation in neurodevelopment.

    PubMed

    Contestabile, Antonio; Sintoni, Silvia

    2013-01-01

    Post-translational modification of histones is a primary mechanism through which epigenetic regulation of DNA transcription does occur. Among these modifications, regulation of histone acetylation state is an important tool to influence gene expression. Epigenetic regulation of neurodevelopment contributes to the structural and functional shaping of the brain during neurogenesis and continues to impact on neural plasticity lifelong. Alterations of these mechanisms during neurodevelopment may result in later occurrence of neuropsychatric disorders. The present paper reviews and discusses available data on histone modifications, in particular histone acetylation, in neurogenesis considering results obtained in culture systems of neural progenitors as well as in in vivo studies. Possible teratogenic effects of altered histone acetylation state during development are also considered. The use during pregnancy of drugs such as valproic acid, which acts as a histone deacetylase inhibitor, may result during postnatal development in autistic-like symptoms. The effect of gestational administration of the drug has been, therefore, tested on adult hippocampal neurogenesis in animals showing behavioral impairment as a consequence of the drug administration at a specific stage of pregnancy. These experimental results show that adult neurogenesis in the hippocampal dentate gyrus is not quantitatively altered by gestational valproic acid administration. Future steps and goals of research on the role and mechanisms of histone acetylation in neurodevelopment are briefly discussed.

  15. The Specification and Global Reprogramming of Histone Epigenetic Marks during Gamete Formation and Early Embryo Development in C. elegans

    PubMed Central

    Samson, Mark; Jow, Margaret M.; Wong, Catherine C. L.; Fitzpatrick, Colin; Aslanian, Aaron; Saucedo, Israel; Estrada, Rodrigo; Ito, Takashi; Park, Sung-kyu Robin; Yates, John R.; Chu, Diana S.

    2014-01-01

    In addition to the DNA contributed by sperm and oocytes, embryos receive parent-specific epigenetic information that can include histone variants, histone post-translational modifications (PTMs), and DNA methylation. However, a global view of how such marks are erased or retained during gamete formation and reprogrammed after fertilization is lacking. To focus on features conveyed by histones, we conducted a large-scale proteomic identification of histone variants and PTMs in sperm and mixed-stage embryo chromatin from C. elegans, a species that lacks conserved DNA methylation pathways. The fate of these histone marks was then tracked using immunostaining. Proteomic analysis found that sperm harbor ∼2.4 fold lower levels of histone PTMs than embryos and revealed differences in classes of PTMs between sperm and embryos. Sperm chromatin repackaging involves the incorporation of the sperm-specific histone H2A variant HTAS-1, a widespread erasure of histone acetylation, and the retention of histone methylation at sites that mark the transcriptional history of chromatin domains during spermatogenesis. After fertilization, we show HTAS-1 and 6 histone PTM marks distinguish sperm and oocyte chromatin in the new embryo and characterize distinct paternal and maternal histone remodeling events during the oocyte-to-embryo transition. These include the exchange of histone H2A that is marked by ubiquitination, retention of HTAS-1, removal of the H2A variant HTZ-1, and differential reprogramming of histone PTMs. This work identifies novel and conserved features of paternal chromatin that are specified during spermatogenesis and processed in the embryo. Furthermore, our results show that different species, even those with diverged DNA packaging and imprinting strategies, use conserved histone modification and removal mechanisms to reprogram epigenetic information. PMID:25299455

  16. Balancing chromatin remodeling and histone modifications in transcription

    PubMed Central

    Petty, Emily; Pillus, Lorraine

    2013-01-01

    Chromatin remodelers use the energy of ATP hydrolysis to reposition or evict nucleosomes or to replace canonical histones with histone variants. By regulating nucleosome dynamics, remodelers gate access to the underlying DNA for replication, repair, and transcription. Nucleosomes are subject to extensive post-translational modifications that can recruit regulatory proteins or alter the local chromatin structure. Just as extensive cross-talk has been observed between different histone post-translational modifications, there is growing evidence for both coordinated and antagonistic functional relationships between nucleosome remodeling and modifying machineries. Defining the combined functions of the complexes that alter nucleosome interactions, position, and stability is key to understanding processes that require access to DNA, particularly with growing appreciation of their contributions to human health and disease. Here, we highlight recent advances in the interactions between histone modifications and the ISWI and CHD1 chromatin remodelers from studies in budding yeast, fission yeast, flies, and mammalian cells, with a focus on yeast. PMID:23870137

  17. The intrinsically disordered distal face of nucleoplasmin recognizes distinct oligomerization states of histones.

    PubMed

    Ramos, Isbaal; Fernández-Rivero, Noelia; Arranz, Rocío; Aloria, Kerman; Finn, Ron; Arizmendi, Jesús M; Ausió, Juan; Valpuesta, José María; Muga, Arturo; Prado, Adelina

    2014-01-01

    The role of Nucleoplasmin (NP) as a H2A-H2B histone chaperone has been extensively characterized. To understand its putative interaction with other histone ligands, we have characterized its ability to bind H3-H4 and histone octamers. We find that the chaperone forms distinct complexes with histones, which differ in the number of molecules that build the assembly and in their spatial distribution. When complexed with H3-H4 tetramers or histone octamers, two NP pentamers form an ellipsoidal particle with the histones located at the center of the assembly, in stark contrast with the NP/H2A-H2B complex that contains up to five histone dimers bound to one chaperone pentamer. This particular assembly relies on the ability of H3-H4 to form tetramers either in solution or as part of the octamer, and it is not observed when a variant of H3 (H3C110E), unable to form stable tetramers, is used instead of the wild-type protein. Our data also suggest that the distal face of the chaperone is involved in the interaction with distinct types of histones, as supported by electron microscopy analysis of the different NP/histone complexes. The use of the same structural region to accommodate all type of histones could favor histone exchange and nucleosome dynamics.

  18. Histone chaperone ASF1B promotes human β-cell proliferation via recruitment of histone H3.3.

    PubMed

    Paul, Pradyut K; Rabaglia, Mary E; Wang, Chen-Yu; Stapleton, Donald S; Leng, Ning; Kendziorski, Christina; Lewis, Peter W; Keller, Mark P; Attie, Alan D

    2016-12-01

    Anti-silencing function 1 (ASF1) is a histone H3-H4 chaperone involved in DNA replication and repair, and transcriptional regulation. Here, we identify ASF1B, the mammalian paralog to ASF1, as a proliferation-inducing histone chaperone in human β-cells. Overexpression of ASF1B led to distinct transcriptional signatures consistent with increased cellular proliferation and reduced cellular death. Using multiple methods of monitoring proliferation and mitotic progression, we show that overexpression of ASF1B is sufficient to induce human β-cell proliferation. Co-expression of histone H3.3 further augmented β-cell proliferation, whereas suppression of endogenous H3.3 attenuated the stimulatory effect of ASF1B. Using the histone binding-deficient mutant of ASF1B (V94R), we show that histone binding to ASF1B is required for the induction of β-cell proliferation. In contrast to H3.3, overexpression of histone H3 variants H3.1 and H3.2 did not have an impact on ASF1B-mediated induction of proliferation. Our findings reveal a novel role of ASF1B in human β-cell replication and show that ASF1B and histone H3.3A synergistically stimulate human β-cell proliferation.

  19. Genetic predisposition to obesity and lifestyle factors--the combined analyses of twenty-six known BMI- and fourteen known waist:hip ratio (WHR)-associated variants in the Finnish Diabetes Prevention Study.

    PubMed

    Jääskeläinen, Tiina; Paananen, Jussi; Lindström, Jaana; Eriksson, Johan G; Tuomilehto, Jaakko; Uusitupa, Matti

    2013-11-01

    Recent genome-wide association studies have identified multiple loci associated with BMI or the waist:hip ratio (WHR). However, evidence on gene-lifestyle interactions is still scarce, and investigation of the effects of well-documented dietary and other lifestyle data is warranted to assess whether genetic risk can be modified by lifestyle. We assessed whether previously established BMI and WHR genetic variants associate with obesity and weight change in the Finnish Diabetes Prevention Study, and whether the associations are modified by dietary factors or physical activity. Individuals (n 459) completed a 3 d food record and were genotyped for twenty-six BMI- and fourteen WHR-related variants. The effects of the variants individually and in combination were investigated in relation to obesity and to 1- and 3-year weight change by calculating genetic risk scores (GRS). The GRS were separately calculated for BMI and the WHR by summing the increasing alleles weighted by their published effect sizes. At baseline, the GRS were not associated with total intakes of energy, macronutrients or fibre. The mean 1- and 3-year weight changes were not affected by the BMI or WHR GRS. During the 3-year follow-up, a trend for higher BMI by the GRS was detected especially in those who reported a diet low in fibre (P for interaction=0·065). Based on the present findings, it appears unlikely that obesity-predisposing variants substantially modify the effect of lifestyle modification on the success of weight reduction in the long term. In addition, these findings suggest that the association between the BMI-related genetic variants and obesity could be modulated by the diet.

  20. Application of histone modification-specific interaction domains as an alternative to antibodies

    PubMed Central

    Kungulovski, Goran; Kycia, Ina; Tamas, Raluca; Jurkowska, Renata Z.; Kudithipudi, Srikanth; Henry, Chisato; Reinhardt, Richard; Labhart, Paul

    2014-01-01

    Post-translational modifications (PTMs) of histones constitute a major chromatin indexing mechanism, and their proper characterization is of highest biological importance. So far, PTM-specific antibodies have been the standard reagent for studying histone PTMs despite caveats such as lot-to-lot variability of specificity and binding affinity. Herein, we successfully employed naturally occurring and engineered histone modification interacting domains for detection and identification of histone PTMs and ChIP-like enrichment of different types of chromatin. Our results demonstrate that histone interacting domains are robust and highly specific reagents that can replace or complement histone modification antibodies. These domains can be produced recombinantly in Escherichia coli at low cost and constant quality. Protein design of reading domains allows for generation of novel specificities, addition of affinity tags, and preparation of PTM binding pocket variants as matching negative controls, which is not possible with antibodies. PMID:25301795

  1. Epigenetic regulation of the histone-to-protamine transition during spermiogenesis

    PubMed Central

    Bao, Jianqiang; Bedford, Mark T.

    2016-01-01

    In mammals, male germ cells differentiate from haploid round spermatids to flagella-containing motile sperm, in a process called spermiogenesis. This process is distinct from somatic cell differentiation in that the majority of the core histones are replaced sequentially, first by transition proteins and then protamines, facilitating chromatin hyper-compaction. This histone-to-protamine transition process represents an excellent model for the investigation of how epigenetic regulators interact with each other to remodel chromatin architecture. While early work in the field highlighted the critical roles of testis-specific transcription factors in controlling the haploid-specific developmental program, recent studies underscore the essential functions of epigenetic players involved in the dramatic genome remodeling that takes place during wholesale histone replacement. In this review, we will discuss recent advances in our understanding of how epigenetic players, like histone variants and histone writers/readers/erasers, rewire the haploid spermatid genome to facilitate histone substitution by protamines in mammals. PMID:26850883

  2. Complete Workflow for Analysis of Histone Post-translational Modifications Using Bottom-up Mass Spectrometry: From Histone Extraction to Data Analysis

    PubMed Central

    Sidoli, Simone; Bhanu, Natarajan V.; Karch, Kelly R.; Wang, Xiaoshi; Garcia, Benjamin A.

    2016-01-01

    Nucleosomes are the smallest structural unit of chromatin, composed of 147 base pairs of DNA wrapped around an octamer of histone proteins. Histone function is mediated by extensive post-translational modification by a myriad of nuclear proteins. These modifications are critical for nuclear integrity as they regulate chromatin structure and recruit enzymes involved in gene regulation, DNA repair and chromosome condensation. Even though a large part of the scientific community adopts antibody-based techniques to characterize histone PTM abundance, these approaches are low throughput and biased against hypermodified proteins, as the epitope might be obstructed by nearby modifications. This protocol describes the use of nano liquid chromatography (nLC) and mass spectrometry (MS) for accurate quantification of histone modifications. This method is designed to characterize a large variety of histone PTMs and the relative abundance of several histone variants within single analyses. In this protocol, histones are derivatized with propionic anhydride followed by digestion with trypsin to generate peptides of 5 - 20 aa in length. After digestion, the newly exposed N-termini of the histone peptides are derivatized to improve chromatographic retention during nLC-MS. This method allows for the relative quantification of histone PTMs spanning four orders of magnitude. PMID:27286567

  3. Further evidence for poly-ADP-ribosylated histones as DNA suppressors

    SciTech Connect

    Yu, F.L.; Geronimo, I.H.; Bender, W.; Meginniss, K.E.

    1986-05-01

    For many years histones have been considered to be the gene suppressors in eukaryotic cells. Recently, the authors have found strong evidence indicating that poly-ADP-ribosylated histones, rather than histones, are the potent inhibitors of DNA-dependent RNA synthesis. They now report additional evidence for this concept: 1) using histone inhibitor isolated directly from nuclei, the authors are able to confirm their earlier findings that the inhibitor substances are sensitive to pronase, snake venom phosphodiesterase digestion and 0.1N KOH hydrolysis, and are resistant to DNase I and RNase A digestion, 2) the O.D. 260/O.D.280 ratio of the histone inhibitor is between pure protein and nuclei acid, suggesting the inhibitor substance is a nucleoprotein hybrid. This result directly supports the fact that the isolated histone inhibitor is radioactive poly (ADP-ribose) labeled, 3) commercial histones show big differences in inhibitor activity. The authors believe this reflects the variation in poly-ADP-ribosylation among commercial histones, and 4) 0.1N KOH hydrolysis eliminates the poly (ADP-ribose) radioactivity from the acceptor proteins as well as histone inhibitor activity. Yet, on gel, the inhibitor shows identical histone bands and stain intensity before and after hydrolysis, indicating the histones per se are qualitatively and quantitatively unaffected by alkaline treatment. This result strongly suggests that histones themselves are not capable of inhibiting DNA-dependent RNA synthesis.

  4. Structural plasticity of histones H3-H4 facilitates their allosteric exchange between RbAp48 and ASF1

    PubMed Central

    Zhang, Wei; Tyl, Marek; Ward, Richard; Sobott, Frank; Maman, Joseph; Murthy, Andal S.; Watson, Aleksandra A.; Fedorov, Oleg; Bowman, Andrew; Owen-Hughes, Tom; EL-Mkami, Hassane; Murzina, Natalia V.; Norman, David; Laue, Ernest D.

    2012-01-01

    The mechanisms by which histones are disassembled and reassembled into nucleosomes and chromatin structure during DNA replication, repair and transcription are poorly understood. A better understanding of the processes involved is, however, crucial if we are to understand whether and how histone variants and post-translationally modified histones are inherited in an epigenetic manner. To this end we have studied the interaction of histones H3–H4 with the human retinoblastoma-associated protein RbAp48 and their exchange with a second histone chaperone, anti-silencing function protein 1 (ASF1). Exchange of histones H3–H4 between these two histone chaperones plays a central role in the assembly of new nucleosomes and we show here that the H3–H4 complex has a surprising structural plasticity, which is important for this exchange. PMID:23178455

  5. Structural plasticity of histones H3-H4 facilitates their allosteric exchange between RbAp48 and ASF1.

    PubMed

    Zhang, Wei; Tyl, Marek; Ward, Richard; Sobott, Frank; Maman, Joseph; Murthy, Andal S; Watson, Aleksandra A; Fedorov, Oleg; Bowman, Andrew; Owen-Hughes, Tom; El Mkami, Hassane; Murzina, Natalia V; Norman, David G; Laue, Ernest D

    2013-01-01

    The mechanisms by which histones are disassembled and reassembled into nucleosomes and chromatin structure during DNA replication, repair and transcription are poorly understood. A better understanding of the processes involved is, however, crucial if we are to understand whether and how histone variants and post-translationally modified histones are inherited in an epigenetic manner. To this end we have studied the interaction of the histone H3-H4 complex with the human retinoblastoma-associated protein RbAp48 and their exchange with a second histone chaperone, anti-silencing function protein 1 (ASF1). Exchange of histones H3-H4 between these two histone chaperones has a central role in the assembly of new nucleosomes, and we show here that the H3-H4 complex has an unexpected structural plasticity, which is important for this exchange.

  6. DAXX envelops a histone H3.3-H4 dimer for H3.3-specific recognition

    SciTech Connect

    Elsässer, Simon J; Huang, Hongda; Lewis, Peter W; Chin, Jason W; Allis, C David; Patel, Dinshaw J

    2013-01-24

    Histone chaperones represent a structurally and functionally diverse family of histone-binding proteins that prevent promiscuous interactions of histones before their assembly into chromatin. DAXX is a metazoan histone chaperone specific to the evolutionarily conserved histone variant H3.3. Here we report the crystal structures of the DAXX histone-binding domain with a histone H3.3–H4 dimer, including mutants within DAXX and H3.3, together with in vitro and in vivo functional studies that elucidate the principles underlying H3.3 recognition specificity. Occupying 40% of the histone surface-accessible area, DAXX wraps around the H3.3–H4 dimer, with complex formation accompanied by structural transitions in the H3.3–H4 histone fold. DAXX uses an extended α-helical conformation to compete with major inter-histone, DNA and ASF1 interaction sites. Our structural studies identify recognition elements that read out H3.3-specific residues, and functional studies address the contributions of Gly90 in H3.3 and Glu225 in DAXX to chaperone-mediated H3.3 variant recognition specificity.

  7. Zinc deficiency and metabolism of histones and non-histone proteins in Euglena gracilis

    SciTech Connect

    Czupryn, M.; Falchuk, K.H.; Vallee, B.L.

    1987-12-15

    Histones and most other basic chromosomal proteins are not extracted from zinc-deficient (-Zn) Euglena gracilis chromatin either by 0.25 M HCl or by 0.3-0.6 M NaCl/7 M urea. Instead, a class of 3-5-kilodalton (kDa) polypeptides, which is absent in zinc-sufficient (+Zn) cells, is solubilized. These heterogeneous polypeptides are comprised of Asn, Arg, Cys, and Gln. The partial sequence of one of these, which is composed only of Arg and Asn, is Arg-Asn-Asn-Arg-Arg-Asn-Asn-Asn-Asn-Asn-. This demonstrates they are not proteolytic fragments of the histones, proteins which do not contain contiguous Arg-Asn or Asn-Asn sequences. Once -Zn chromatin is depleted of this 3-5-kDa material, nearly all of the histones and most non-histone proteins are extracted. On the other hand, if chromatin first is depleted of, and subsequently is reconstituted with, the 3-5-kDa material, the chromosomal proteins are not solubilized, as observed with intact chromatin. Histone H4 is an exception. Electrophoretic analysis of the solubilized H4 reveals that the degree to which it is acetylated in -Zn is lower than in +Zn chromatin. Jointly, these data indicate that chromosomal proteins bind much more tightly to DNA of -Zn than +Zn cells. The histone/DNA weight ratio in -Zn chromatin is 0.44 compared to 1.04 in +Zn chromatin. However, the 3-5-kDa polypeptide fraction maintains the amount of total basic proteins per unit mass of DNA at approximately 1. Further, four non-histone proteins extractable with 5% HClO/sub 4/ or 0.35 M NaCl and characterized by high electrophoretic mobility have been purified from +Zn nuclei. Only one of these proteins is found in -Zn chromatin. Thus, zinc deficiency induces changes in the amounts and types of histones and non-histone proteins, as well as in their interaction with DNA. These findings are discussed in relation to recent advances in understanding of the role of zinc in replication and transcription.

  8. Two distinct modes for propagation of histone PTMs across the cell cycle.

    PubMed

    Alabert, Constance; Barth, Teresa K; Reverón-Gómez, Nazaret; Sidoli, Simone; Schmidt, Andreas; Jensen, Ole N; Imhof, Axel; Groth, Anja

    2015-03-15

    Epigenetic states defined by chromatin can be maintained through mitotic cell division. However, it remains unknown how histone-based information is transmitted. Here we combine nascent chromatin capture (NCC) and triple-SILAC (stable isotope labeling with amino acids in cell culture) labeling to track histone modifications and histone variants during DNA replication and across the cell cycle. We show that post-translational modifications (PTMs) are transmitted with parental histones to newly replicated DNA. Di- and trimethylation marks are diluted twofold upon DNA replication, as a consequence of new histone deposition. Importantly, within one cell cycle, all PTMs are restored. In general, new histones are modified to mirror the parental histones. However, H3K9 trimethylation (H3K9me3) and H3K27me3 are propagated by continuous modification of parental and new histones because the establishment of these marks extends over several cell generations. Together, our results reveal how histone marks propagate and demonstrate that chromatin states oscillate within the cell cycle.

  9. Replication-dependent histone genes are actively transcribed in differentiating and aging retinal neurons.

    PubMed

    Banday, Abdul Rouf; Baumgartner, Marybeth; Al Seesi, Sahar; Karunakaran, Devi Krishna Priya; Venkatesh, Aditya; Congdon, Sean; Lemoine, Christopher; Kilcollins, Ashley M; Mandoiu, Ion; Punzo, Claudio; Kanadia, Rahul N

    2014-01-01

    In the mammalian genome, each histone family contains multiple replication-dependent paralogs, which are found in clusters where their transcription is thought to be coupled to the cell cycle. Here, we wanted to interrogate the transcriptional regulation of these paralogs during retinal development and aging. We employed deep sequencing, quantitative PCR, in situ hybridization (ISH), and microarray analysis, which revealed that replication-dependent histone genes were not only transcribed in progenitor cells but also in differentiating neurons. Specifically, by ISH analysis we found that different histone genes were actively transcribed in a subset of neurons between postnatal day 7 and 14. Interestingly, within a histone family, not all paralogs were transcribed at the same level during retinal development. For example, expression of Hist1h1b was higher embryonically, while that of Hist1h1c was higher postnatally. Finally, expression of replication-dependent histone genes was also observed in the aging retina. Moreover, transcription of replication-dependent histones was independent of rapamycin-mediated mTOR pathway inactivation. Overall, our data suggest the existence of variant nucleosomes produced by the differential expression of the replication-dependent histone genes across retinal development. Also, the expression of a subset of replication-dependent histone isotypes in senescent neurons warrants re-examining these genes as "replication-dependent." Thus, our findings underscore the importance of understanding the transcriptional regulation of replication-dependent histone genes in the maintenance and functioning of neurons.

  10. A nucleosome turnover map reveals that the stability of histone H4 Lys20 methylation depends on histone recycling in transcribed chromatin.

    PubMed

    Svensson, J Peter; Shukla, Manu; Menendez-Benito, Victoria; Norman-Axelsson, Ulrika; Audergon, Pauline; Sinha, Indranil; Tanny, Jason C; Allshire, Robin C; Ekwall, Karl

    2015-06-01

    Nucleosome composition actively contributes to chromatin structure and accessibility. Cells have developed mechanisms to remove or recycle histones, generating a landscape of differentially aged nucleosomes. This study aimed to create a high-resolution, genome-wide map of nucleosome turnover in Schizosaccharomyces pombe. The recombination-induced tag exchange (RITE) method was used to study replication-independent nucleosome turnover through the appearance of new histone H3 and the disappearance or preservation of old histone H3. The genome-wide location of histones was determined by chromatin immunoprecipitation-exonuclease methodology (ChIP-exo). The findings were compared with diverse chromatin marks, including histone variant H2A.Z, post-translational histone modifications, and Pol II binding. Finally, genome-wide mapping of the methylation states of H4K20 was performed to determine the relationship between methylation (mono, di, and tri) of this residue and nucleosome turnover. Our analysis showed that histone recycling resulted in low nucleosome turnover in the coding regions of active genes, stably expressed at intermediate levels. High levels of transcription resulted in the incorporation of new histones primarily at the end of transcribed units. H4K20 was methylated in low-turnover nucleosomes in euchromatic regions, notably in the coding regions of long genes that were expressed at low levels. This transcription-dependent accumulation of histone methylation was dependent on the histone chaperone complex FACT. Our data showed that nucleosome turnover is highly dynamic in the genome and that several mechanisms are at play to either maintain or suppress stability. In particular, we found that FACT-associated transcription conserves histones by recycling them and is required for progressive H4K20 methylation.

  11. Histone acetylation in insect chromosomes.

    PubMed

    Allfrey, V G; Pogo, B G; Littau, V C; Gershey, E L; Mirsky, A E

    1968-01-19

    Acetylation of histones takes place along the salivary gland chromosomes of Chironomus thummi when RNA synthesis is active. It can be observed but not measured quantitatively by autoradiography of chromosome squashes. The "fixatives" commonly used in preparing squashes of insect chromosomes preferentially extract the highly acetylated "arginine-rich" histone fractions; the use of such fixatives may explain the reported absence of histone acetylation in Drosophila melanogaster.

  12. Histone genes of the razor clam Solen marginatus unveil new aspects of linker histone evolution in protostomes.

    PubMed

    González-Romero, Rodrigo; Ausió, Juan; Méndez, Josefina; Eirín-López, José M

    2009-07-01

    The association of DNA with histones results in a nucleoprotein complex called chromatin that consists of repetitive nucleosomal subunits. Nucleosomes are joined together in the chromatin fiber by short stretches of linker DNA that interact with a wide diversity of linker H1 histones involved in chromatin compaction and dynamics. Although the long-term evolution of the H1 family has been the subject of different studies during the last 5 years, the lack of molecular data on replication-independent (RI) H1 variants from protostomes has been hampering attempts to complete the evolutionary picture of this histone family in eukaryotes, especially as it pertains to the functional specialization they impart to the chromatin structure in members of this bilaterian lineage. In an attempt to fill this gap, the present work characterizes the histone gene complement from the razor clam Solen marginatus. Molecular evolutionary analyses reveal that the H1 gene from this organism represents one of the few protostome RI H1 genes known to date, a notion which is further supported by its location within the monophyletic group encompassing the RI H1 variants in the overall phylogeny of eukaryotic H1 proteins. Although the detailed characterization of the nucleotide substitution patterns in RI H1 variants agrees with the model of birth-and-death evolution under strong purifying selection, maximum-likelihood approaches unveil the presence of adaptive selection during at least part of the evolutionary differentiation between protostomes and deuterostomes. The presence of increased levels of specialization in RI H1 proteins from deuterostomes as well as the significant differences observed in electrostatic properties between protostome and deuterostome RI H1s represent novel and important preliminary results for future studies of the functional differentiation of this histone H1 lineage across bilaterians.

  13. Asymmetric division of Drosophila male germline stem cell shows asymmetric histone distribution.

    PubMed

    Tran, Vuong; Lim, Cindy; Xie, Jing; Chen, Xin

    2012-11-02

    Stem cells can self-renew and generate differentiating daughter cells. It is not known whether these cells maintain their epigenetic information during asymmetric division. Using a dual-color method to differentially label "old" versus "new" histones in Drosophila male germline stem cells (GSCs), we show that preexisting canonical H3, but not variant H3.3, histones are selectively segregated to the GSC, whereas newly synthesized histones incorporated during DNA replication are enriched in the differentiating daughter cell. The asymmetric histone distribution occurs in GSCs but not in symmetrically dividing progenitor cells. Furthermore, if GSCs are genetically manipulated to divide symmetrically, this asymmetric mode is lost. This work suggests that stem cells retain preexisting canonical histones during asymmetric cell divisions, probably as a mechanism to maintain their unique molecular properties.

  14. Cellulase variants

    DOEpatents

    Blazej, Robert; Toriello, Nicholas; Emrich, Charles; Cohen, Richard N.; Koppel, Nitzan

    2015-07-14

    This invention provides novel variant cellulolytic enzymes having improved activity and/or stability. In certain embodiments the variant cellulotyic enzymes comprise a glycoside hydrolase with or comprising a substitution at one or more positions corresponding to one or more of residues F64, A226, and/or E246 in Thermobifida fusca Cel9A enzyme. In certain embodiments the glycoside hydrolase is a variant of a family 9 glycoside hydrolase. In certain embodiments the glycoside hydrolase is a variant of a theme B family 9 glycoside hydrolase.

  15. Therapeutic Targeting of Histone Modifications in Adult and Pediatric High-Grade Glioma

    PubMed Central

    Williams, Maria J.; Singleton, Will G. B.; Lowis, Stephen P.; Malik, Karim; Kurian, Kathreena M.

    2017-01-01

    Recent exciting work partly through The Cancer Genome Atlas has implicated epigenetic mechanisms including histone modifications in the development of both pediatric and adult high-grade glioma (HGG). Histone lysine methylation has emerged as an important player in regulating gene expression and chromatin function. Lysine (K) 27 (K27) is a critical residue in all seven histone 3 variants and the subject of posttranslational histone modifications, as it can be both methylated and acetylated. In pediatric HGG, two critical single-point mutations occur in the H3F3A gene encoding the regulatory histone variant H3.3. These mutations occur at lysine (K) 27 (K27M) and glycine (G) 34 (G34R/V), both of which are involved with key regulatory posttranscriptional modifications. Therefore, these mutations effect gene expression, cell differentiation, and telomere maintenance. In recent years, alterations in histone acetylation have provided novel opportunities to explore new pharmacological targeting, with histone deacetylase (HDAC) overexpression reported in high-grade, late-stage proliferative tumors. HDAC inhibitors have shown promising therapeutic potential in many malignancies. This review focuses on the epigenetic mechanisms propagating pediatric and adult HGGs, as well as summarizing the current advances in clinical trials using HDAC inhibitors.

  16. Histone deacetylases and atherosclerosis.

    PubMed

    Zheng, Xia-xia; Zhou, Tian; Wang, Xin-An; Tong, Xiao-hong; Ding, Jia-wang

    2015-06-01

    Atherosclerosis is the most common pathological process that leads to cardiovascular diseases, a disease of large- and medium-sized arteries that is characterized by a formation of atherosclerotic plaques consisting of necrotic cores, calcified regions, accumulated modified lipids, smooth muscle cells (SMCs), endothelial cells, leukocytes, and foam cells. Recently, the question about how to suppress the occurrence of atherosclerosis and alleviate the progress of cardiovascular disease becomes the hot topic. Accumulating evidence suggests that histone deacetylases(HDACs) play crucial roles in arteriosclerosis. This review summarizes the effect of HDACs and HDAC inhibitors(HDACi) on the progress of atherosclerosis.

  17. Direct interplay among histones, histone chaperones, and a chromatin boundary protein in the control of histone gene expression.

    PubMed

    Zunder, Rachel M; Rine, Jasper

    2012-11-01

    In Saccharomyces cerevisiae, the histone chaperone Rtt106 binds newly synthesized histone proteins and mediates their delivery into chromatin during transcription, replication, and silencing. Rtt106 is also recruited to histone gene regulatory regions by the HIR histone chaperone complex to ensure S-phase-specific expression. Here we showed that this Rtt106:HIR complex included Asf1 and histone proteins. Mutations in Rtt106 that reduced histone binding reduced Rtt106 enrichment at histone genes, leading to their increased transcription. Deletion of the chromatin boundary element Yta7 led to increased Rtt106:H3 binding, increased Rtt106 enrichment at histone gene regulatory regions, and decreased histone gene transcription at the HTA1-HTB1 locus. These results suggested a unique regulatory mechanism in which Rtt106 sensed the level of histone proteins to maintain the proper level of histone gene transcription. The role of these histone chaperones and Yta7 differed markedly among the histone gene loci, including the two H3-H4 histone gene pairs. Defects in silencing in rtt106 mutants could be partially accounted for by Rtt106-mediated changes in histone gene repression. These studies suggested that feedback mediated by histone chaperone complexes plays a pivotal role in regulating histone gene transcription.

  18. Chatting histone modifications in mammals

    PubMed Central

    Izzo, Annalisa

    2010-01-01

    Eukaryotic chromatin can be highly dynamic and can continuously exchange between an open transcriptionally active conformation and a compacted silenced one. Post-translational modifications of histones have a pivotal role in regulating chromatin states, thus influencing all chromatin dependent processes. Methylation is currently one of the best characterized histone modification and occurs on arginine and lysine residues. Histone methylation can regulate other modifications (e.g. acetylation, phosphorylation and ubiquitination) in order to define a precise functional chromatin environment. In this review we focus on histone methylation and demethylation, as well as on the enzymes responsible for setting these marks. In particular we are describing novel concepts on the interdependence of histone modifications marks and discussing the molecular mechanisms governing this cross-talks. PMID:21266346

  19. Histone-modifying enzymes, histone modifications and histone chaperones in nucleosome assembly: Lessons learned from Rtt109 histone acetyltransferases

    PubMed Central

    Dahlin, Jayme L; Chen, Xiaoyue; Walters, Michael A.; Zhang, Zhiguo

    2015-01-01

    During DNA replication, nucleosomes ahead of replication forks are disassembled to accommodate replication machinery. Following DNA replication, nucleosomes are then reassembled onto replicated DNA using both parental and newly synthesized histones. This process, termed DNA replication-coupled nucleosome assembly (RCNA), is critical for maintaining genome integrity and for the propagation of epigenetic information, dysfunctions of which have been implicated in cancers and aging. In recent years, it has been shown that RCNA is carefully orchestrated by a series of histone modifications, histone chaperones and histone-modifying enzymes. Interestingly, many features of RCNA are also found in processes involving DNA replication-independent nucleosome assembly like histone exchange and gene transcription. In yeast, histone H3 lysine K56 acetylation (H3K56ac) is found in newly synthesized histone H3 and is critical for proper nucleosome assembly and for maintaining genomic stability. The histone acetyltransferase (HAT) regulator of Ty1 transposition 109 (Rtt109) is the sole enzyme responsible for H3K56ac in yeast. Much research has centered on this particular histone modification and histone-modifying enzyme. This Critical Review summarizes much of our current understanding of nucleosome assembly and highlights many important insights learned from studying Rtt109 HATs in fungi. We highlight some seminal features in nucleosome assembly conserved in mammalian systems and describe some of the lingering questions in the field. Further studying fungal and mammalian chromatin assembly may have important public health implications, including deeper understandings of human cancers and aging as well as the pursuit of novel anti-fungal therapies. PMID:25365782

  20. Histone H3 Glutathionylation in Proliferating Mammalian Cells Destabilizes Nucleosomal Structure

    PubMed Central

    Olaso, Gloria; Hake, Sandra B.; Bönisch, Clemens; Wiedemann, Sonja M.; Markovic, Jelena; Dasí, Francisco; Gimeno, Amparo; Pérez-Quilis, Carme; Palacios, Òscar; Capdevila, Mercè; Viña, José

    2013-01-01

    Abstract Aims: Here we report that chromatin, the complex and dynamic eukaryotic DNA packaging structure, is able to sense cellular redox changes. Histone H3, the only nucleosomal protein that possesses cysteine(s), can be modified by glutathione (GSH). Results: Using Biotin labeled glutathione ethyl ester (BioGEE) treatment of nucleosomes in vitro, we show that GSH, the most abundant antioxidant in mammals, binds to histone H3. BioGEE treatment of NIH3T3 cells indicates that glutathionylation of H3 is maximal in fast proliferating cells, correlating well with enhanced levels of H3 glutathionylation in different tumor cell lines. Furthermore, glutathionylation of H3 in vivo decreases in livers from aged SAMP8 and C57BL/6J mice. We demonstrate biochemically and by mass spectrometry that histone variants H3.2/H3.3 are glutathionylated on their cysteine residue 110. Furthermore, circular dichroism, thermal denaturation of reconstituted nucleosomes, and molecular modeling indicate that glutathionylation of histone H3 produces structural changes affecting nucleosomal stability. Innovation: We characterize the implications of histone H3 glutathionylation in cell physiology and the modulation of core histone proteins structure affected by this modification. Conclusion: Histone H3 senses cellular redox changes through glutathionylation of Cys, which increases during cell proliferation and decreases during aging. Glutathionylation of histone H3 affects nucleosome stability structure leading to a more open chromatin structure. Antioxid. Redox Signal. 19, 1305–1320. PMID:23541030

  1. Structure of the histone deacetylase SIRT2.

    PubMed

    Finnin, M S; Donigian, J R; Pavletich, N P

    2001-07-01

    Sir2 is an NAD-dependent histone deacetylase that mediates transcriptional silencing at mating-type loci, telomeres and ribosomal gene clusters, and has a critical role in the determination of life span in yeast and Caenorhabditis elegans. The 1.7 A crystal structure of the 323 amino acid catalytic core of human SIRT2, a homolog of yeast Sir2, reveals an NAD-binding domain, which is a variant of the Rossmann fold, and a smaller domain composed of a helical module and a zinc-binding module. A conserved large groove at the interface of the two domains is the likely site of catalysis based on mutagenesis. Intersecting this large groove, there is a pocket formed by the helical module. The pocket is lined with hydrophobic residues conserved within each of the five Sir2 classes, suggesting that it is a class-specific protein-binding site.

  2. Colloidal aggregation and structural assembly of aspect ratio variant goethite (α-FeOOH) with nC60 fullerene in environmental media.

    PubMed

    Ghosh, Saikat; Pradhan, Nihar R; Mashayekhi, Hamid; Zhang, Qiu; Pan, Bo; Xing, Baoshan

    2016-12-01

    may unlikely abate fullerene transport as envisaged in case of HAsp α-FeOOH. Thus, aspect ratio variation and associated material properties of naturally abundant α-FeOOH may significantly impact fullerene transport through environmental media.

  3. Oxidative stress alters global histone modification and DNA methylation.

    PubMed

    Niu, Yingmei; DesMarais, Thomas L; Tong, Zhaohui; Yao, Yixin; Costa, Max

    2015-05-01

    The JmjC domain-containing histone demethylases can remove histone lysine methylation and thereby regulate gene expression. The JmjC domain uses iron Fe(II) and α-ketoglutarate (αKG) as cofactors in an oxidative demethylation reaction via hydroxymethyl lysine. We hypothesize that reactive oxygen species will oxidize Fe(II) to Fe(III), thereby attenuating the activity of JmjC domain-containing histone demethylases. To minimize secondary responses from cells, extremely short periods of oxidative stress (3h) were used to investigate this question. Cells that were exposed to hydrogen peroxide (H2O2) for 3h exhibited increases in several histone methylation marks including H3K4me3 and decreases of histone acetylation marks including H3K9ac and H4K8ac; preincubation with ascorbate attenuated these changes. The oxidative stress level was measured by generation of 2',7'-dichlorofluorescein, GSH/GSSG ratio, and protein carbonyl content. A cell-free system indicated that H2O2 inhibited histone demethylase activity where increased Fe(II) rescued this inhibition. TET protein showed a decreased activity under oxidative stress. Cells exposed to a low-dose and long-term (3 weeks) oxidative stress also showed increased global levels of H3K4me3 and H3K27me3. However, these global methylation changes did not persist after washout. The cells exposed to short-term oxidative stress also appeared to have higher activity of class I/II histone deacetylase (HDAC) but not class III HDAC. In conclusion, we have found that oxidative stress transiently alters the epigenetic program process through modulating the activity of enzymes responsible for demethylation and deacetylation of histones.

  4. Erasers of Histone Acetylation: The Histone Deacetylase Enzymes

    PubMed Central

    Seto, Edward; Yoshida, Minoru

    2014-01-01

    Histone deacetylases (HDACs) are enzymes that catalyze the removal of acetyl functional groups from the lysine residues of both histone and nonhistone proteins. In humans, there are 18 HDAC enzymes that use either zinc- or NAD+-dependent mechanisms to deacetylate acetyl lysine substrates. Although removal of histone acetyl epigenetic modification by HDACs regulates chromatin structure and transcription, deacetylation of nonhistones controls diverse cellular processes. HDAC inhibitors are already known potential anticancer agents and show promise for the treatment of many diseases. PMID:24691964

  5. Interaction of calmodulin with histones. Alteration of histone dephosphorylation.

    PubMed

    Wolff, D J; Ross, J M; Thompson, P N; Brostrom, M A; Brostrom, C O

    1981-02-25

    The Ca2+-dependent regulator protein (CDR), also frequently termed "calmodulin" was determined to influence the dephosphorylation of mixed calf thymus histones or purified histones 1, 2A, or 2B by a partially purified bovine brain phosphoprotein phosphatase. CDR increase the rate of dephosphorylation of mixed histones more than 20-fold. With increasing concentrations of mixed histones as substrate, a proportionate increase of CDR concentration was required to maintain maximal expression of histone phosphatase activity. Mixed histones suppressed the activation by CDR of a bovine brain cyclic nucleotide phosphodiesterase activity, with activation being restored by increased quantities of CDR. Dephosphorylation of casein and phosphorylase alpha by the phosphatase preparation was not affected by CDR. These observations support the interpretation that the effects of CDR on histone dephosphorylation are substrate-directed. The rates of dephosphorylation of histones 1, 2A, and 2B by the phosphatase were 4- to 12-fold more rapid at low (sub-micromolar) concentrations of free Ca2+ than at high (200 microM) Ca2+ in incubations containing CDR, but they were unaffected by Ca2+ in incubations without CDR. The addition of stoichiometric quantities of calmodulin increased the apparent Km of the phosphatase for the various histones 2- to 6-fold, while maximal velocities were 4- to 12-fold higher at low than at high added Ca2+. The inhibitory effect of Ca2+ on histone dephosphorylation was immediately reversible by chelation of Ca2+ with EDTA. Ca2+-dependent inhibition of histone 1 or 2B phosphatase activities was also produced by rabbit skeletal muscle troponin C, but not by rabbit skeletal muscle parvalbumin, by poly(L-aspartate) or poly(L-glutamate). The phosphorylated fragment from the NH2-terminal region of either H2A (generated by treatment with N-bromosuccinimide) or H2B (generated by treatment with cyanogen bromide) was dephosphorylated by the phosphatase, with the rates of

  6. Histone deacetylases: unique players in shaping the epigenetic histone code.

    PubMed

    Thiagalingam, Sam; Cheng, Kuang-Hung; Lee, Hyunjoo J; Mineva, Nora; Thiagalingam, Arunthathi; Ponte, Jose F

    2003-03-01

    The epigenome is defined by DNA methylation patterns and the associated posttranslational modifications of histones. This histone code determines the expression status of individual genes dependent upon their localization on the chromatin. The silencing of gene expression is associated with deacetylated histones, which are often found to be associated with regions of DNA methylation as well as methylation at the lysine 4 residue of histone 3. In contrast, the activation of gene expression is associated with acetylated histones and methylation at the lysine 9 residue of histone 3. The histone deactylases play a major role in keeping the balance between the acetylated and deacetylated states of chromatin. Histone deacetylases (HDACs) are divided into three classes: class I HDACs (HDACs 1, 2, 3, and 8) are similar to the yeast RPD3 protein and localize to the nucleus; class II HDACs (HDACs 4, 5, 6, 7, 9, and 10) are homologous to the yeast HDA1 protein and are found in both the nucleus and cytoplasm; and class III HDACs form a structurally distinct class of NAD-dependent enzymes that are similar to the yeast SIR2 proteins. Since inappropriate silencing of critical genes can result in one or both hits of tumor suppressor gene (TSG) inactivation in cancer, theoretically the reactivation of affected TSGs could have an enormous therapeutic value in preventing and treating cancer. Indeed, several HDAC inhibitors are currently being developed and tested for their potency in cancer chemotherapy. Importantly, these agents are also potentially applicable to chemoprevention if their toxicity can be minimized. Despite the toxic side effects and lack of specificity of some of the inhibitors, progress is being made. With the elucidation of the structures, functions and modes of action of HDACs, finding agents that may be targeted to specific HDACs and potentially reactivate expression of only a defined set of affected genes in cancer will be more attainable.

  7. Histone chaperone networks shaping chromatin function.

    PubMed

    Hammond, Colin M; Strømme, Caroline B; Huang, Hongda; Patel, Dinshaw J; Groth, Anja

    2017-03-01

    The association of histones with specific chaperone complexes is important for their folding, oligomerization, post-translational modification, nuclear import, stability, assembly and genomic localization. In this way, the chaperoning of soluble histones is a key determinant of histone availability and fate, which affects all chromosomal processes, including gene expression, chromosome segregation and genome replication and repair. Here, we review the distinct structural and functional properties of the expanding network of histone chaperones. We emphasize how chaperones cooperate in the histone chaperone network and via co-chaperone complexes to match histone supply with demand, thereby promoting proper nucleosome assembly and maintaining epigenetic information by recycling modified histones evicted from chromatin.

  8. Histone H3.3 and its proteolytically processed form drive a cellular senescence program

    PubMed Central

    Duarte, Luis F.; Young, Andrew R. J.; Wang, Zichen; Wu, Hsan-Au; Panda, Taniya; Kou, Yan; Kapoor, Avnish; Hasson, Dan; Mills, Nicholas R.; Ma’ayan, Avi; Narita, Masashi; Bernstein, Emily

    2014-01-01

    The process of cellular senescence generates a repressive chromatin environment, however, the role of histone variants and histone proteolytic cleavage in senescence remains unclear. Using models of oncogene-induced and replicative senescence, here we report novel histone H3 tail cleavage events mediated by the protease Cathepsin L. We find that cleaved forms of H3 are nucleosomal and the histone variant H3.3 is the preferred cleaved form of H3. Ectopic expression of H3.3 and its cleavage product (H3.3cs1), which lacks the first twenty-one amino acids of the H3 tail, is sufficient to induce senescence. Further, H3.3cs1 chromatin incorporation is mediated by the HUCA histone chaperone complex. Genome-wide transcriptional profiling revealed that H3.3cs1 facilitates transcriptional silencing of cell cycle regulators including RB/E2F target genes, likely via the permanent removal of H3K4me3. Collectively, our study identifies histone H3.3 and its proteolytically processed forms as key regulators of cellular senescence. PMID:25394905

  9. A subset of replication-dependent histone mRNAs are expressed as polyadenylated RNAs in terminally differentiated tissues

    PubMed Central

    Lyons, Shawn M.; Cunningham, Clark H.; Welch, Joshua D.; Groh, Beezly; Guo, Andrew Y.; Wei, Bruce; Whitfield, Michael L.; Xiong, Yue; Marzluff, William F.

    2016-01-01

    Histone proteins are synthesized in large amounts during S-phase to package the newly replicated DNA, and are among the most stable proteins in the cell. The replication-dependent (RD)-histone mRNAs expressed during S-phase end in a conserved stem-loop rather than a polyA tail. In addition, there are replication-independent (RI)-histone genes that encode histone variants as polyadenylated mRNAs. Most variants have specific functions in chromatin, but H3.3 also serves as a replacement histone for damaged histones in long-lived terminally differentiated cells. There are no reported replacement histone genes for histones H2A, H2B or H4. We report that a subset of RD-histone genes are expressed in terminally differentiated tissues as polyadenylated mRNAs, likely serving as replacement histone genes in long-lived non-dividing cells. Expression of two genes, HIST2H2AA3 and HIST1H2BC, is conserved in mammals. They are expressed as polyadenylated mRNAs in fibroblasts differentiated in vitro, but not in serum starved fibroblasts, suggesting that their expression is part of the terminal differentiation program. There are two histone H4 genes and an H3 gene that encode mRNAs that are polyadenylated and expressed at 5- to 10-fold lower levels than the mRNAs from H2A and H2B genes, which may be replacement genes for the H3.1 and H4 proteins. PMID:27402160

  10. Quantification of histone modifications by parallel-reaction monitoring: a method validation.

    PubMed

    Sowers, James L; Mirfattah, Barsam; Xu, Pei; Tang, Hui; Park, In Young; Walker, Cheryl; Wu, Ping; Laezza, Fernanda; Sowers, Lawrence C; Zhang, Kangling

    2015-10-06

    Abnormal epigenetic reprogramming is one of the major causes leading to irregular gene expression and regulatory pathway perturbations, in the cells, resulting in unhealthy cell development or diseases. Accurate measurements of these changes of epigenetic modifications, especially the complex histone modifications, are very important, and the methods for these measurements are not trivial. By following our previous introduction of PRM to targeting histone modifications (Tang, H.; Fang, H.; Yin, E.; Brasier, A. R.; Sowers, L. C.; Zhang, K. Multiplexed parallel reaction monitoring targeting histone modifications on the QExactive mass spectrometer. Anal. Chem. 2014, 86 (11), 5526-34), herein we validated this method by varying the protein/trypsin ratios via serial dilutions. Our data demonstrated that PRM with SILAC histones as the internal standards allowed reproducible measurements of histone H3/H4 acetylation and methylation in the samples whose histone contents differ at least one-order of magnitude. The method was further validated by histones isolated from histone H3 K36 trimethyltransferase SETD2 knockout mouse embryonic fibroblasts (MEF) cells. Furthermore, histone acetylation and methylation in human neural stem cells (hNSC) treated with ascorbic acid phosphate (AAP) were measured by this method, revealing that H3 K36 trimethylation was significantly down-regulated by 6 days of treatment with vitamin C.

  11. Drug-induced histone eviction from open chromatin contributes to the chemotherapeutic effects of doxorubicin

    PubMed Central

    Pang, Baoxu; Qiao, Xiaohang; Janssen, Lennert; Velds, Arno; Groothuis, Tom; Kerkhoven, Ron; Nieuwland, Marja; Ovaa, Huib; Rottenberg, Sven; van Tellingen, Olaf; Janssen, Jeroen; Huijgens, Peter; Zwart, Wilbert; Neefjes, Jacques

    2013-01-01

    DNA topoisomerase II inhibitors are a major class of cancer chemotherapeutics, which are thought to eliminate cancer cells by inducing DNA double-strand breaks. Here we identify a novel activity for the anthracycline class of DNA topoisomerase II inhibitors: histone eviction from open chromosomal areas. We show that anthracyclines promote histone eviction irrespective of their ability to induce DNA double-strand breaks. The histone variant H2AX, which is a key component of the DNA damage response, is also evicted by anthracyclines, and H2AX eviction is associated with attenuated DNA repair. Histone eviction deregulates the transcriptome in cancer cells and organs such as the heart, and can drive apoptosis of topoisomerase-negative acute myeloid leukaemia blasts in patients. We define a novel mechanism of action of anthracycline anticancer drugs doxorubicin and daunorubicin on chromatin biology, with important consequences for DNA damage responses, epigenetics, transcription, side effects and cancer therapy. PMID:23715267

  12. Butyrate Histone Deacetylase Inhibitors

    PubMed Central

    Boosalis, Michael S.; Perrine, Susan P.; Sangerman, José

    2012-01-01

    Abstract In addition to being a part of the metabolic fatty acid fuel cycle, butyrate is also capable of inducing growth arrest in a variety of normal cell types and senescence-like phenotypes in gynecological cancer cells, inhibiting DNA synthesis and cell growth in colonic tumor cell lines, suppressing hTERT mRNA expression and telomerase activity in human prostate cancer cells, and inducing stem cell differentiation and apoptosis by DNA fragmentation. It regulates gene expression by inhibiting histone deacetylases (HDACs), enhances memory recovery and formation in mice, stimulates neurogenesis in the ischemic brain, promotes osteoblast formation, selectively blocks cell replication in transformed cells (compared to healthy cells), and can prevent and treat diet-induced obesity and insulin resistance in mouse models of obesity, as well as stimulate fetal hemoglobin expression in individuals with hematologic diseases such as the thalassemias and sickle-cell disease, in addition to a multitude of other biochemical effects in vivo. However, efforts to exploit the potential of butyrate in the clinical treatment of cancer and other medical disorders are thwarted by its poor pharmacological properties (short half-life and first-pass hepatic clearance) and the multigram doses needed to achieve therapeutic concentrations in vivo. Herein, we review some of the methods used to overcome these difficulties with an emphasis on HDAC inhibition. PMID:23514803

  13. Histones and DNA Compete for Binding Polyphosphoinositides in Bilayers

    PubMed Central

    Lete, Marta G.; Sot, Jesús; Ahyayauch, Hasna; Fernández-Rivero, Noelia; Prado, Adelina; Goñi, Félix M.; Alonso, Alicia

    2014-01-01

    Recent discoveries on the presence and location of phosphoinositides in the eukaryotic cell nucleoplasm and nuclear membrane prompted us to study the putative interaction of chromatin components with these lipids in model membranes (liposomes). Turbidimetric studies revealed that a variety of histones and histone combinations (H1, H2AH2B, H3H4, octamers) caused a dose-dependent aggregation of phosphatidylcholine vesicles (large unilamellar vesicle or small unilamellar vesicle) containing negatively charged phospholipids. 5 mol % phosphatidylinositol-4-phosphate (PIP) was enough to cause extensive aggregation under our conditions, whereas with phosphatidylinositol (PI) at least 20 mol % was necessary to obtain a similar effect. Histone binding to giant unilamellar vesicle and vesicle aggregation was visualized by confocal microscopy. Histone did not cause vesicle aggregation in the presence of DNA, and the latter was able to disassemble the histone-vesicle aggregates. At DNA/H1 weight ratios 0.1–0.5 DNA- and PIP-bound H1 appear to coexist. Isothermal calorimetry studies revealed that the PIP-H1 association constant was one order of magnitude higher than that of PI-H1, and the corresponding lipid/histone stoichiometries were ∼0.5 and ∼1, respectively. The results suggest that, in the nucleoplasm, a complex interplay of histones, DNA, and phosphoinositides may be taking place, particularly at the nucleoplasmic reticula that reach deep within the nucleoplasm, or during somatic and nonsomatic nuclear envelope assembly. The data described here provide a minimal model for analyzing and understanding the mechanism of these interactions. PMID:24606933

  14. Histone regulation in the CNS: basic principles of epigenetic plasticity.

    PubMed

    Maze, Ian; Noh, Kyung-Min; Allis, C David

    2013-01-01

    Postmitotic neurons are subject to a vast array of environmental influences that require the nuclear integration of intracellular signaling events to promote a wide variety of neuroplastic states associated with synaptic function, circuit formation, and behavioral memory. Over the last decade, much attention has been paid to the roles of transcription and chromatin regulation in guiding fundamental aspects of neuronal function. A great deal of this work has centered on neurodevelopmental and adulthood plasticity, with increased focus in the areas of neuropharmacology and molecular psychiatry. Here, we attempt to provide a broad overview of chromatin regulation, as it relates to central nervous system (CNS) function, with specific emphasis on the modes of histone posttranslational modifications, chromatin remodeling, and histone variant exchange. Understanding the functions of chromatin in the context of the CNS will aid in the future development of pharmacological therapeutics aimed at alleviating devastating neurological disorders.

  15. A novel, enigmatic histone modification: biotinylation of histones by holocarboxylase synthetase.

    PubMed

    Hassan, Yousef I; Zempleni, Janos

    2008-12-01

    Holocarboxylase synthetase catalyzes the covalent binding of biotin to histones in humans and other eukaryotes. Eleven biotinylation sites have been identified in histones H2A, H3, and H4. K12-biotinylated histone H4 is enriched in heterochromatin, repeat regions, and plays a role in gene repression. About 30% of the histone H4 molecules are biotinylated at K12 in histone H4 in human fibroblast telomeres. The abundance of biotinylated histones at distinct genomic loci depends on biotin availability. Decreased histone biotinylation decreases life span and stress resistance in Drosophila. Low enrichment of biotinylated histones at transposable elements impairs repression of these elements.

  16. The histone chaperone sNASP binds a conserved peptide motif within the globular core of histone H3 through its TPR repeats

    PubMed Central

    Bowman, Andrew; Lercher, Lukas; Singh, Hari R.; Zinne, Daria; Timinszky, Gyula; Carlomagno, Teresa; Ladurner, Andreas G.

    2016-01-01

    Eukaryotic chromatin is a complex yet dynamic structure, which is regulated in part by the assembly and disassembly of nucleosomes. Key to this process is a group of proteins termed histone chaperones that guide the thermodynamic assembly of nucleosomes by interacting with soluble histones. Here we investigate the interaction between the histone chaperone sNASP and its histone H3 substrate. We find that sNASP binds with nanomolar affinity to a conserved heptapeptide motif in the globular domain of H3, close to the C-terminus. Through functional analysis of sNASP homologues we identified point mutations in surface residues within the TPR domain of sNASP that disrupt H3 peptide interaction, but do not completely disrupt binding to full length H3 in cells, suggesting that sNASP interacts with H3 through additional contacts. Furthermore, chemical shift perturbations from 1H-15N HSQC experiments show that H3 peptide binding maps to the helical groove formed by the stacked TPR motifs of sNASP. Our findings reveal a new mode of interaction between a TPR repeat domain and an evolutionarily conserved peptide motif found in canonical H3 and in all histone H3 variants, including CenpA and have implications for the mechanism of histone chaperoning within the cell. PMID:26673727

  17. Specificities and genomic distribution of somatic mammalian histone H1 subtypes.

    PubMed

    Millán-Ariño, Lluís; Izquierdo-Bouldstridge, Andrea; Jordan, Albert

    2016-03-01

    Histone H1 is a structural component of chromatin that may have a role in the regulation of chromatin dynamics. Unlike core histones, the linker histone H1 family is evolutionarily diverse and many organisms have multiple H1 variants or subtypes, distinguishable between germ-line and somatic cells. In mammals, the H1 family includes seven somatic H1 variants with a prevalence that varies between cell types and over the course of differentiation, H1.1 to H1.5 being expressed in a replication-dependent manner, whereas H1.0 and H1X are replication-independent. Until recently, it has not been known whether the different variants had specific roles in the regulation of nuclear processes or were differentially distributed across the genome. To address this, an increasing effort has been made to investigate divergent features among H1 variants, regarding their structure, expression patterns, chromatin dynamics, post-translational modifications and genome-wide distribution. Although H1 subtypes seem to have redundant functions, several reports point to the idea that they are also differently involved in specific cellular processes. Initial studies investigating the genomic distribution of H1 variants have started to suggest that despite a wide overlap, different variants may be enriched or preferentially located at different chromatin types, but this may depend on the cell type, the relative abundance of the variants, the differentiation state of the cell, or whether cells are derived from a neoplastic process. Understanding the heterogeneity of the histone H1 family is crucial to elucidate their role in chromatin organization, gene expression regulation and other cellular processes.

  18. Histone code or not? Combinatorial pattern analyses of histone modifications

    NASA Astrophysics Data System (ADS)

    Zang, Chongzhi; Peng, Weiqun; Wang, Zhibin; Schones, Dustin E.; Barski, Artem; Cuddapah, Suresh; Cui, Kairong; Roh, Tae-Young; Zhao, Keji; Rosenfeld, Jeffrey; Zhang, Michael

    2008-03-01

    Eukaryotic genomes are organized into chromatin, the structure of which plays critical role in the program of gene expression. Chromatin structure and function is regulated by a myriad of posttranslational modifications on histone tails of the nucleosomes, the fundamental unit of chromatin. It remains unclear how different modifications interact. Based on high- resolution genomic maps of close to 40 histone methylations and acetylations in human T-cells obtained experimentally by ChIP- Seq technique, we investigated the combinatorial patterns of histone modifications at gene promoter regions. We found that a very limited number of patterns dominate. Modifications within a pattern are strongly correlated and each pattern is associated with a distinct gene expression distribution. Our results suggest that it is the patterns rather than the individual modifications that affect the downstream readout.

  19. Radiation-induced alterations in histone modification patterns and their potential impact on short-term radiation effects

    PubMed Central

    Friedl, Anna A.; Mazurek, Belinda; Seiler, Doris M.

    2012-01-01

    Detection and repair of radiation-induced DNA damage occur in the context of chromatin. An intricate network of mechanisms defines chromatin structure, including DNA methylation, incorporation of histone variants, histone modifications, and chromatin remodeling. In the last years it became clear that the cellular response to radiation-induced DNA damage involves all of these mechanisms. Here we focus on the current knowledge on radiation-induced alterations in post-translational histone modification patterns and their effect on the chromatin accessibility, transcriptional regulation and chromosomal stability. PMID:23050241

  20. HHMD: the human histone modification database.

    PubMed

    Zhang, Yan; Lv, Jie; Liu, Hongbo; Zhu, Jiang; Su, Jianzhong; Wu, Qiong; Qi, Yunfeng; Wang, Fang; Li, Xia

    2010-01-01

    Histone modifications play important roles in chromatin remodeling, gene transcriptional regulation, stem cell maintenance and differentiation. Alterations in histone modifications may be linked to human diseases especially cancer. Histone modifications including methylation, acetylation and ubiquitylation probed by ChIP-seq, ChIP-chip and qChIP have become widely available. Mining and integration of histone modification data can be beneficial to novel biological discoveries. There has been no comprehensive data repository that is exclusive for human histone modifications. Therefore, we developed a relatively comprehensive database for human histone modifications. Human Histone Modification Database (HHMD, http://bioinfo.hrbmu.edu.cn/hhmd) focuses on the storage and integration of histone modification datasets that were obtained from laboratory experiments. The latest release of HHMD incorporates 43 location-specific histone modifications in human. To facilitate data extraction, flexible search options are built in HHMD. It can be searched by histone modification, gene ID, functional categories, chromosome location and cancer name. HHMD also includes a user-friendly visualization tool named HisModView, by which genome-wide histone modification map can be shown. HisModView facilitates the acquisition and visualization of histone modifications. The database also has manually curated information of histone modification dysregulation in nine human cancers.

  1. Electrophoretic Analysis of Histones from Gibberellic Acid-treated Dwarf Peas

    PubMed Central

    Spiker, Steven; Chalkley, Roger

    1971-01-01

    Histones from the epicotyls of light-grown dwarf peas (Pisum sativum L. cv. Little Marvel) which had been treated with gibberellic acid were compared to histones from control dwarf peas by the method of polyacrylamide gel electrophoresis. The histone complements were found to be unaltered in the electrophoretic mobility and relative quantity of the individual fractions. The ratio of histone to DNA was also unaffected by treatment with gibberellic acid. The investigation confirmed earlier reports that over 95% of the histone of peas is contained in seven molecular species and that one of these can exist both as an oxidized disulfide dimer and as a reduced monomer. Evidence is presented which indicates that only the monomer form exists in vivo in the pea epicotyl tissue and that the oxidized dimer is an artifact of extraction. The implications of the data concerning the mechanism of action of gibberellic acid are discussed. Images PMID:16657619

  2. A heterogeneity of the pheasant (Phasianus colchicus L.) erythrocyte histone H1 subtype H5.

    PubMed

    Kowalski, Andrzej

    2016-01-01

    In a previous work (Górnicka-Michalska et al. (1998)), an occurrence of genetic variants in the chicken erythrocyte histone H5 has been presented. Here, the pheasant histone H5 heterogeneity is characterized to verify if the interspecies variability of this protein is caused by the analogous determinants. During screening histone H1 preparations isolated from the pheasant erythrocytes, histone H5 was identified as differently located in the electrophoretic gels. According to the rate of electrophoretic migration, two histone H5 phenotypes (H5a and H5b) possessing similar quantitative proportion (P>0.05) were distinguished. A rare phenotype H5a (frequency 0.26) migrating faster in the SDS-PAGE was low mobile in the AU-PAGE, in contrast to the frequent phenotype H5b (frequency 0.74) that moved slowly in the SDS-PAGE and roamed faster in the AU-PAGE. The electrophoretic properties of histone H5 phenotypes may reflect disparities in their net charge and molecular weight. Peptide maps of histone H5 phenotypes, obtained by partial chemical cleavage (NBS) and limited enzymatic digestion (α-chymotrypsin), revealed their C-peptides possessing the same electrophoretic mobility and the N-peptides having variable rate of the electrophoretic migration. Based on this, the identified phenotypic variation seems to be determined by a histone H5 phenotype-specific amino acid sequence region situated in the N-terminal portion of its molecule. According to the identified varied sequence stretches, histone H5 phenotype may induce specific effects related to the organization and/or function of the pheasant chromatin.

  3. Histone acetylation: from code to web and router via intrinsically disordered regions.

    PubMed

    Horikoshi, Masami

    2013-01-01

    Structural changes of chromatin, which consists of nucleosomes and nucleosome-associated factors, lead to functional changes that are important determinants of eukaryotic gene regulation. These structural changes are regulated by modifications of histones and DNA, both of which are components of nucleosomes, as well as by replacement of histone variants and the actions of noncoding RNAs. In studies of chromatin modifications, a great deal of attention has been paid to histone acetylation. Progress in understanding this subject has been extensive, including i) elucidation of the relationship of histone acetylation and gene activity; ii) the first isolation of a histonemodifying enzyme; iii) the first identification of a factor that recognizes a modified site; iv) elucidation of the mechanism by which histone modification leads to structural changes in nucleosomes; and v) elucidation of the mechanism of border formation between euchromatin and heterochromatin. Histone acetylation is considered to be fundamental in several fields, including studies of a) the role of chromatin and epigenetics in higher-order biochemical systems such as transcription, DNA replication, and repair; b) biological phenomena such as cell proliferation and differentiation; and c) cancer and aging, potentially leading to clinical applications. In this review, I will discuss the histone code hypothesis, at one time believed to represent a unified theory regarding the functions of histone modification. In addition, I will describe the "modification web theory, " by which the problems in the histone code hypothesis can be overcome, as well as the "signal router theory, " which explains the mechanisms of formation, development, and evolution of the modification web from a structural viewpoint. Lastly, I will illustrate how these novel theories partially explain the robustness of biological systems against various perturbations, and elucidate the strategy that a cell employs to avoid fatal

  4. Histone Deacetylases and Cardiometabolic Diseases

    PubMed Central

    Yiew, Kan Hui; Chatterjee, Tapan K.; Hui, David Y.; Weintraub, Neal L.

    2015-01-01

    Cardiometabolic disease, emerging as a worldwide epidemic, is a combination of metabolic derangements leading to type 2 diabetes and cardiovascular disease. Genetic and environmental factors are linked through epigenetic mechanisms to the pathogenesis of cardiometabolic disease. Post-translational modifications of histone tails, including acetylation and deacetylation, epigenetically alter chromatin structure and dictate cell-specific gene expression patterns. The histone deacetylase (HDAC) family is comprised of 18 members that regulate gene expression by altering the acetylation status of nucleosomal histones and by functioning as nuclear transcriptional co-repressors. HDACs regulate key aspects of metabolism, inflammation, and vascular function pertinent to cardiometabolic disease in a cell- and tissue-specific manner. HDACs also likely play a role in the “metabolic memory” of diabetes, an important clinical aspect of the disease. Understanding the molecular, cellular, and physiological functions of HDACs in cardiometabolic disease is expected to provide insight into disease pathogenesis, risk factor control, and therapeutic development. PMID:26183616

  5. Histone acetylation in heterochromatin assembly

    PubMed Central

    Kim, Jeong-Hoon; Workman, Jerry L.

    2010-01-01

    Histone acetylation is generally considered a mark involved in activating gene expression by making chromatin structures less compact. In the April 1, 2010, issue of Genes & Development, Xhemalce and Kouzarides (pp. 647–652) demonstrate that the acetylation of histone H3 at Lys 4 (H3K4) plays a role in the formation of repressive heterochromatin in Schizosaccharomyces pombe. H3K4 acetylation mediates a switch of chromodomain proteins associated with methylated H3K9 during heterochromatin assembly. PMID:20395362

  6. Global analysis of core histones reveals nucleosomal surfaces required for chromosome bi-orientation

    PubMed Central

    Kawashima, Satoshi; Nakabayashi, Yu; Matsubara, Kazuko; Sano, Norihiko; Enomoto, Takemi; Tanaka, Kozo; Seki, Masayuki; Horikoshi, Masami

    2011-01-01

    The attachment of sister kinetochores to microtubules from opposite spindle poles is essential for faithful chromosome segregation. Kinetochore assembly requires centromere-specific nucleosomes containing the histone H3 variant CenH3. However, the functional roles of the canonical histones (H2A, H2B, H3, and H4) in chromosome segregation remain elusive. Using a library of histone point mutants in Saccharomyces cerevisiae, 24 histone residues that conferred sensitivity to the microtubule-depolymerizing drugs thiabendazole (TBZ) and benomyl were identified. Twenty-three of these mutations were clustered at three spatially separated nucleosomal regions designated TBS-I, -II, and -III (TBZ/benomyl-sensitive regions I–III). Elevation of mono-polar attachment induced by prior nocodazole treatment was observed in H2A-I112A (TBS-I), H2A-E57A (TBS-II), and H4-L97A (TBS-III) cells. Severe impairment of the centromere localization of Sgo1, a key modulator of chromosome bi-orientation, occurred in H2A-I112A and H2A-E57A cells. In addition, the pericentromeric localization of Htz1, the histone H2A variant, was impaired in H4-L97A cells. These results suggest that the spatially separated nucleosomal regions, TBS-I and -II, are necessary for Sgo1-mediated chromosome bi-orientation and that TBS-III is required for Htz1 function. PMID:21772248

  7. Schizosaccharomyces pombe mst2+ Encodes a MYST Family Histone Acetyltransferase That Negatively Regulates Telomere Silencing†

    PubMed Central

    Gómez, Eliana B.; Espinosa, Joaquín M.; Forsburg, Susan L.

    2005-01-01

    Histone acetylation and deacetylation are associated with transcriptional activity and the formation of constitutively silent heterochromatin. Increasingly, histone acetylation is also implicated in other chromosome transactions, including replication and segregation. We have cloned the only Schizosaccharomyces pombe MYST family histone acetyltransferase genes, mst1+ and mst2+. Mst1p, but not Mst2p, is essential for viability. Both proteins are localized to the nucleus and bound to chromatin throughout the cell cycle. Δmst2 genetically interacts with mutants that affect heterochromatin, cohesion, and telomere structure. Mst2p is a negative regulator of silencing at the telomere but does not affect silencing in the centromere or mating type region. We generated a census of proteins and histone modifications at wild-type telomeres. A histone acetylation gradient at the telomeres is lost in Δmst2 cells without affecting the distribution of Taz1p, Swi6p, Rad21p, or Sir2p. We propose that the increased telomeric silencing is caused by histone hypoacetylation and/or an increase in the ratio of methylated to acetylated histones. Although telomere length is normal, meiosis is aberrant in Δmst2 diploid homozygote mutants, suggesting that telomeric histone acetylation contributes to normal meiotic progression. PMID:16199868

  8. Molecular morphology and function of bull spermatozoa linked to histones and associated with fertility.

    PubMed

    de Oliveira, Rodrigo V; Dogan, Sule; Belser, Lauren E; Kaya, Abdullah; Topper, Einko; Moura, Arlindo; Thibaudeau, Giselle; Memili, Erdogan

    2013-09-01

    Sub-par fertility in bulls is influenced by alterations in sperm chromatin, and it might not be solved with increased sperm concentration in artificial insemination. Appropriate histone retention during sperm chromatin condensation plays critical roles in male fertility. The objective of this study was to determine failures of sperm chromatin condensation associated with abnormal persistence or accessibility of histones by aniline blue (ANBL) test, expression levels, and cellular localizations of one variant and two core histones (H3.3, H2B, and H4 respectively) in the spermatozoa of low-fertility (LF) vs high-fertility (HF) bulls. The expression levels and cellular localizations of histones in spermatozoa were studied using immunoblotting, immunocytochemistry, and staining methods. The bioinformatics focused on the sequence identity and evolutionary distance of these proteins among three mammalian species: bovine, mouse, and human. We demonstrated that ANBL staining was different within the LF (1.73 (0.55, 0.19)) and HF (0.67 (0.17, 0.06)) groups (P<0.0001), which was also negatively correlated with in vivo bull fertility (r=-0.90, P<0.0001). Although these histones were consistently detectable and specifically localized in bull sperm cells, they were not different between the two groups. Except H2B variants, H3.3 and H4 showed 100% identity and were evolutionarily conserved in bulls, mice and humans. The H2B variants were more conserved between bulls and humans, than in mice. In conclusion, we showed that H2B, H3.3, and H4 were detectable in bull spermatozoa and that sperm chromatin condensation status, changed by histone retention, is related to bull fertility.

  9. Mutation of histone H3 serine 86 disrupts GATA factor Ams2 expression and precise chromosome segregation in fission yeast.

    PubMed

    Lim, Kim Kiat; Ong, Terenze Yao Rui; Tan, Yue Rong; Yang, Eugene Guorong; Ren, Bingbing; Seah, Kwi Shan; Yang, Zhe; Tan, Tsu Soo; Dymock, Brian W; Chen, Ee Sin

    2015-09-15

    Eukaryotic genomes are packed into discrete units, referred to as nucleosomes, by organizing around scaffolding histone proteins. The interplay between these histones and the DNA can dynamically regulate the function of the chromosomal domain. Here, we interrogated the function of a pair of juxtaposing serine residues (S86 and S87) that reside within the histone fold of histone H3. We show that fission yeast cells expressing a mutant histone H3 disrupted at S86 and S87 (hht2-S86AS87A) exhibited unequal chromosome segregation, disrupted transcriptional silencing of centromeric chromatin, and reduced expression of Ams2, a GATA-factor that regulates localization of the centromere-specific histone H3 variant CENP-A. We found that overexpression of ams2(+) could suppress the chromosome missegregation phenotype that arose in the hht2-S86AS87A mutant. We further demonstrate that centromeric localization of SpCENP-A(cnp1-1) was significantly compromised in hht2-S86AS87A, suggesting synergism between histone H3 and the centromere-targeting domain of SpCENP-A. Taken together, our work presents evidence for an uncharacterized serine residue in fission yeast histone H3 that affects centromeric integrity via regulating the expression of the SpCENP-A-localizing Ams2 protein. [173/200 words].

  10. A unique binding mode enables MCM2 to chaperone histones H3-H4 at replication forks.

    PubMed

    Huang, Hongda; Strømme, Caroline B; Saredi, Giulia; Hödl, Martina; Strandsby, Anne; González-Aguilera, Cristina; Chen, Shoudeng; Groth, Anja; Patel, Dinshaw J

    2015-08-01

    During DNA replication, chromatin is reassembled by recycling of modified old histones and deposition of new ones. How histone dynamics integrates with DNA replication to maintain genome and epigenome information remains unclear. Here, we reveal how human MCM2, part of the replicative helicase, chaperones histones H3-H4. Our first structure shows an H3-H4 tetramer bound by two MCM2 histone-binding domains (HBDs), which hijack interaction sites used by nucleosomal DNA. Our second structure reveals MCM2 and ASF1 cochaperoning an H3-H4 dimer. Mutational analyses show that the MCM2 HBD is required for MCM2-7 histone-chaperone function and normal cell proliferation. Further, we show that MCM2 can chaperone both new and old canonical histones H3-H4 as well as H3.3 and CENPA variants. The unique histone-binding mode of MCM2 thus endows the replicative helicase with ideal properties for recycling histones genome wide during DNA replication.

  11. Phenotypic variation of erythrocyte linker histone H1.c in a pheasant (Phasianus colchicus L.) population.

    PubMed

    Kowalski, Andrzej; Pa Yga, Jan; Górnicka-Michalska, Ewa; Bernacki, Zenon; Adamski, Marek

    2010-07-01

    Our goal was to characterize a phenotypic variation of the pheasant erythrocyte linker histone subtype H1.c. By using two-dimensional polyacrylamide gel electrophoresis three histone H1.c phenotypes were identified. The differently migrating allelic variants H1.c1 and H1.c2 formed either two homozygous phenotypes, c1 and c2, or a single heterozygous phenotype, c1c2. In the pheasant population screened, birds with phenotype c2 were the most common (frequency 0.761) while individuals with phenotype c1 were rare (frequency 0.043).

  12. Identification of a variant-specific phosphorylation of TH2A during spermiogenesis

    PubMed Central

    Hada, Masashi; Masuda, Koji; Yamaguchi, Kosuke; Shirahige, Katsuhiko; Okada, Yuki

    2017-01-01

    Tissue-specific histone variant incorporation into chromatin plays dynamic and important roles in tissue development. Testis is one such tissue, and a number of testis-specific histone variants are expressed that have unique roles. While it is expected that such variants acquire post-transcriptional modifications to be functional, identification of variant-specific histone modifications is challenging because of the high similarity of amino acid sequences between canonical and variant versions. Here we identified a novel phosphorylation on TH2A, a germ cell-specific histone H2A variant. TH2A-Thr127 is unique to the variant and phosphorylated concomitant with chromatin condensation including spermiogenesis and early embryonic mitosis. In sperm chromatin, phosphorylated TH2A-Thr127 (=pTH2A) is co-localized with H3.3 at transcriptional starting sites of the genome, and subsequently becomes absent from the paternal genome upon fertilization. Notably, pTH2A is recurrent and accumulated in the pericentromeric heterochromatin of both paternal and maternal chromosomes in the first mitosis of embryos, suggesting its unique regulation during spermiogenesis and early embryogenesis. PMID:28387373

  13. Histone H1 Limits DNA Methylation in Neurospora crassa.

    PubMed

    Seymour, Michael; Ji, Lexiang; Santos, Alex M; Kamei, Masayuki; Sasaki, Takahiko; Basenko, Evelina Y; Schmitz, Robert J; Zhang, Xiaoyu; Lewis, Zachary A

    2016-07-07

    Histone H1 variants, known as linker histones, are essential chromatin components in higher eukaryotes, yet compared to the core histones relatively little is known about their in vivo functions. The filamentous fungus Neurospora crassa encodes a single H1 protein that is not essential for viability. To investigate the role of N. crassa H1, we constructed a functional FLAG-tagged H1 fusion protein and performed genomic and molecular analyses. Cell fractionation experiments showed that H1-3XFLAG is a chromatin binding protein. Chromatin-immunoprecipitation combined with sequencing (ChIP-seq) revealed that H1-3XFLAG is globally enriched throughout the genome with a subtle preference for promoters of expressed genes. In mammals, the stoichiometry of H1 impacts nucleosome repeat length. To determine if H1 impacts nucleosome occupancy or nucleosome positioning in N. crassa, we performed micrococcal nuclease digestion in the wild-type and the [Formula: see text]hH1 strain followed by sequencing (MNase-seq). Deletion of hH1 did not significantly impact nucleosome positioning or nucleosome occupancy. Analysis of DNA methylation by whole-genome bisulfite sequencing (MethylC-seq) revealed a modest but global increase in DNA methylation in the [Formula: see text]hH1 mutant. Together, these data suggest that H1 acts as a nonspecific chromatin binding protein that can limit accessibility of the DNA methylation machinery in N. crassa.

  14. Electrostatic effect of H1-histone protein binding on nucleosome repeat length

    NASA Astrophysics Data System (ADS)

    Cherstvy, Andrey G.; Teif, Vladimir B.

    2014-08-01

    Within a simple biophysical model we describe the effect of electrostatic binding of H1 histone proteins on the nucleosome repeat length in chromatin. The length of wrapped DNA optimizes its binding energy to the histone core and the elastic energy penalty of DNA wrapping. The magnitude of the effect predicted from our model is in agreement with the systematic experimental data on the linear variation of nucleosome repeat lengths with H1/nucleosome ratio (Woodcock C L et al 2006 Chromos. Res. 14 17-25). We compare our model to the data for different cell types and organisms, with a widely varying ratio of bound H1 histones per nucleosome. We underline the importance of this non-specific histone-DNA charge-balance mechanism in regulating the positioning of nucleosomes and the degree of compaction of chromatin fibers in eukaryotic cells.

  15. The differential mobilization of histones H3.1 and H3.3 by herpes simplex virus 1 relates histone dynamics to the assembly of viral chromatin.

    PubMed

    Conn, Kristen L; Hendzel, Michael J; Schang, Luis M

    2013-01-01

    During lytic infections, HSV-1 genomes are assembled into unstable nucleosomes. The histones required for HSV-1 chromatin assembly, however, are in the cellular chromatin. We have shown that linker (H1) and core (H2B and H4) histones are mobilized during HSV-1 infection, and proposed that the mobilized histones are available for assembly into viral chromatin. However, the actual relevance of histone mobilization remained unknown. We now show that canonical H3.1 and variant H3.3 are also mobilized during HSV-1 infection. Mobilization required no HSV-1 protein expression, although immediate early or early proteins enhanced it. We used the previously known differential association of H3.3 and H3.1 with HSV-1 DNA to test the relevance of histone mobilization. H3.3 binds to HSV-1 genomes first, whereas H3.1 only binds after HSV-1 DNA replication initiates. Consistently, H3.3 and H3.1 were differentially mobilized. H3.1 mobilization decreased with HSV-1 DNA replication, whereas H3.3 mobilization was largely unaffected by it. These results support a model in which previously mobilized H3.1 is immobilized by assembly into viral chromatin during HSV-1 DNA replication, whereas H3.3 is mobilized and assembled into HSV-1 chromatin throughout infection. The differential mobilizations of H3.3 and H3.1 are consistent with their differential assembly into viral chromatin. These data therefore relate nuclear histone dynamics to the composition of viral chromatin and provide the first evidence that histone mobilization relates to viral chromatin assembly.

  16. Role of H1 linker histones in mammalian development and stem cell differentiation.

    PubMed

    Pan, Chenyi; Fan, Yuhong

    2016-03-01

    H1 linker histones are key chromatin architectural proteins facilitating the formation of higher order chromatin structures. The H1 family constitutes the most heterogeneous group of histone proteins, with eleven non-allelic H1 variants in mammals. H1 variants differ in their biochemical properties and exhibit significant sequence divergence from one another, yet most of them are highly conserved during evolution from mouse to human. H1 variants are differentially regulated during development and their cellular compositions undergo dramatic changes in embryogenesis, gametogenesis, tissue maturation and cellular differentiation. As a group, H1 histones are essential for mouse development and proper stem cell differentiation. Here we summarize our current knowledge on the expression and functions of H1 variants in mammalian development and stem cell differentiation. Their diversity, sequence conservation, complex expression and distinct functions suggest that H1s mediate chromatin reprogramming and contribute to the large variations and complexity of chromatin structure and gene expression in the mammalian genome.

  17. H3.3/H2A.Z double variant-containing nucleosomes mark 'nucleosome-free regions' of active promoters and other regulatory regions.

    PubMed

    Jin, Chunyuan; Zang, Chongzhi; Wei, Gang; Cui, Kairong; Peng, Weiqun; Zhao, Keji; Felsenfeld, Gary

    2009-08-01

    To understand how chromatin structure is organized by different histone variants, we have measured the genome-wide distribution of nucleosome core particles (NCPs) containing the histone variants H3.3 and H2A.Z in human cells. We find that a special class of NCPs containing both variants is enriched at 'nucleosome-free regions' of active promoters, enhancers and insulator regions. We show that preparative methods used previously in studying nucleosome structure result in the loss of these unstable double-variant NCPs. It seems likely that this instability facilitates the access of transcription factors to promoters and other regulatory sites in vivo. Other combinations of variants have different distributions, consistent with distinct roles for histone variants in the modulation of gene expression.

  18. Properties of the yeast nuclear histone deacetylase.

    PubMed Central

    Sanchez del Pino, M M; Lopez-Rodas, G; Sendra, R; Tordera, V

    1994-01-01

    A nuclear histone deacetylase from yeast was partially purified and some of its characteristics were studied. Histone deacetylase activity was stimulated in vitro by high-mobility-group nonhistone chromatin proteins 1 and 2 and ubiquitin and inhibited by spermine and spermidine, whereas n-butyrate had no significant inhibitory effect. Like the mammalian enzyme, partially purified histone deacetylase from yeast was strongly inhibited by trichostatin A. However, in crude extract preparations the yeast enzyme was not inhibited and treatment with trichostatin in vivo did not show any effect, either on the histone acetylation level or on cell viability. At low ionic strength, the enzyme can be isolated as a complex of high molecular mass that is much less inhibited by trichostatin A than is partially purified histone deacetylase activity. Furthermore, radiolabelled oligonucleosomes were more efficiently deacetylated by the complex than by the low-molecular-mass form of the enzyme. The histone deacetylase activity was separated from a polyamine deacetylase activity and its specificity studied. Using h.p.l.c.-purified core histone species as substrate, histone deacetylase from yeast is able to deacetylate all core histones with a slight preference for H3. Our results support the idea that the yeast histone deacetylase may act as a high-molecular-mass complex in vivo. Images Figure 3 PMID:7980438

  19. Species specificity and individual variability of sea urchin sperm H2B histones.

    PubMed

    de Petrocellis, B; de Petrocellis, L; Lancieri, M; Geraci, G

    1980-01-01

    Total histones from the sperms and embryos of the sea urchins Paracentrotus lividus, Arbacia lixula, Psammechinus microtuberculatus and Sphaerechinus granularis hae been fractionated into the component molecules by electrophoretic analyses in SDS, in urea-acetic acid and in Triton-urea-acetic acid. Sperm H2B histones are in all cases different from those of the corresponding embryonic chromatins. Each sea urchin species has distinctive variants of the sperm H2B histones that are fractionated by electrophoresis in SDS acrylamide gel into two to four components forming a new class of lower mobility. This analytical method shows that individuals of the same species have different assortments of the H2B components. Electrophoretic analyses in Triton-urea also show multiple components for H2B but the patterns are similar in the different individuals.

  20. A comparison of in vitro nucleosome positioning mapped with chicken, frog and a variety of yeast core histones.

    PubMed

    Allan, James; Fraser, Ross M; Owen-Hughes, Tom; Docherty, Kevin; Singh, Vijender

    2013-11-15

    Using high-throughput sequencing, we have mapped sequence-directed nucleosome positioning in vitro on four plasmid DNAs containing DNA fragments derived from the genomes of sheep, drosophila, human and yeast. Chromatins were prepared by reconstitution using chicken, frog and yeast core histones. We also assembled yeast chromatin in which histone H3 was replaced by the centromere-specific histone variant, Cse4. The positions occupied by recombinant frog and native chicken histones were found to be very similar. In contrast, nucleosomes containing the canonical yeast octamer or, in particular, the Cse4 octamer were assembled at distinct populations of locations, a property that was more apparent on particular genomic DNA fragments. The factors that may contribute to this variation in nucleosome positioning and the implications of the behavior are discussed.

  1. Dissecting the Molecular Roles of Histone Chaperones in Histone Acetylation by Type B Histone Acetyltransferases (HAT-B).

    PubMed

    Haigney, Allison; Ricketts, M Daniel; Marmorstein, Ronen

    2015-12-18

    The HAT-B enzyme complex is responsible for acetylating newly synthesized histone H4 on lysines K5 and K12. HAT-B is a multisubunit complex composed of the histone acetyltransferase 1 (Hat1) catalytic subunit and the Hat2 (rbap46) histone chaperone. Hat1 is predominantly localized in the nucleus as a member of a trimeric NuB4 complex containing Hat1, Hat2, and a histone H3-H4 specific histone chaperone called Hif1 (NASP). In addition to Hif1 and Hat2, Hat1 interacts with Asf1 (anti-silencing function 1), a histone chaperone that has been reported to be involved in both replication-dependent and -independent chromatin assembly. To elucidate the molecular roles of the Hif1 and Asf1 histone chaperones in HAT-B histone binding and acetyltransferase activity, we have characterized the stoichiometry and binding mode of Hif1 and Asf1 to HAT-B and the effect of this binding on the enzymatic activity of HAT-B. We find that Hif1 and Asf1 bind through different modes and independently to HAT-B, whereby Hif1 binds directly to Hat2, and Asf1 is only capable of interactions with HAT-B through contacts with histones H3-H4. We also demonstrate that HAT-B is significantly more active against an intact H3-H4 heterodimer over a histone H4 peptide, independent of either Hif1 or Asf1 binding. Mutational studies further demonstrate that HAT-B binding to the histone tail regions is not sufficient for this enhanced activity. Based on these data, we propose a model for HAT-B/histone chaperone assembly and acetylation of H3-H4 complexes.

  2. Quantitative proteomics reveals direct and indirect alterations in the histone code following methyltransferase knockdown.

    PubMed

    Plazas-Mayorca, Mariana D; Bloom, Joshua S; Zeissler, Ulrike; Leroy, Gary; Young, Nicolas L; DiMaggio, Peter A; Krugylak, Leonid; Schneider, Robert; Garcia, Benjamin A

    2010-09-01

    Histones are highly conserved proteins that organize cellular DNA. These proteins, especially their N-terminal domains, are adorned with many post-translational modifications (PTMs) such as lysine methylation, which are associated with active or repressed transcriptional states. The lysine methyltransferase G9a and its interaction partner Glp1 can mono- or dimethylate histone H3 on lysine (H3K9me1 or me2); possible cross-talk between these modifications and other PTMs on the same or other histone molecules is currently uncharacterized. In this study, we comprehensively analyze the effects of G9a/Glp1 knockdown on the most abundant histone modifications through both Bottom Up and Middle Down mass spectrometry-based proteomics. In addition to the expected decrease in H3K9me1/me2 we find that other degrees of methylation on K9 are affected by the reduction of G9a/Glp1 activity, particularly when K9 methylation occurs in combination with K14 acetylation. In line with this, an increase in K14 acetylation upon G9a knockdown was observed across all H3 variants (H3.1, H3.2 and H3.3), hinting at the potential existence of a binary switch between K9 methylation and K14 acetylation. Interestingly, we also detect changes in the abundance of other modifications (such as H3K79me2) in response to lowered levels of G9a/Glp1 suggesting histone PTM cross-talk amongst the H3 variants. In contrast, we find that G9a/Glp1 knockdown produces little effect on the levels of histone H4 PTMs, indicating low to no trans-histone PTM crosstalk. Lastly, we determined gene expression profiles of control and G9a/Glp1 knockdown cells, and we find that the G9a/Glp1 knockdown influences several genes, including DNA binding proteins and key factors in chromatin. Our results provide new insights into the intra- and inter- histone cross-regulation of histone K9 methylation and its potential downstream gene targets.

  3. Histone chaperone specificity in Rtt109 activation

    PubMed Central

    Park, Young-Jun; Sudhoff, Keely B; Andrews, Andrew J; Stargell, Laurie A; Luger, Karolin

    2008-01-01

    Rtt109 is a histone acetyltransferase that requires a histone chaperone for the acetylation of histone 3 at lysine 56 (H3K56). Rtt109 forms a complex with the chaperone Vps75 in vivo and is implicated in DNA replication and repair. Here we show that both Rtt109 and Vps75 bind histones with high affinity, but only the complex is efficient for catalysis. The C-terminal acidic domain of Vps75 contributes to activation of Rtt109 and is necessary for in vivo functionality of Vps75, but it is not required for interaction with either Rtt109 or histones. We demonstrate that Vps75 is a structural homolog of yeast Nap1 by solving its crystal structure. Nap1 and Vps75 interact with histones and Rtt109 with comparable affinities. However, only Vps75 stimulates Rtt109 enzymatic activity. Our data highlight the functional specificity of Vps75 in Rtt109 activation. PMID:19172749

  4. Pathway analysis of whole exome sequence data provides further support for the involvement of histone modification in the aetiology of schizophrenia.

    PubMed

    Curtis, David

    2016-10-01

    Weighted burden pathway analysis was applied to whole exome sequence data for 2045 schizophrenic patients and 2045 controls. Overall, there was a statistically significant excess of pathways with more rare, functional variants in cases than in controls. Among the highest ranked were pathways relating to histone modification, as well as neuron differentiation and membrane and vesicle function. This bolsters the evidence from previous studies that histone modification pathways may be important in the aetiology of schizophrenia.

  5. Effect of non-histone chromosomal proteins on transcription in vitro in sea-urchin.

    PubMed Central

    Di Mauro, E; Pedone, F; Pomponi, M

    1978-01-01

    Non-histone chromosomal proteins prepared from chromosomal material of the sea-urchin Paracentrotus lividus affect RNA synthesis in vitro. 1. The extent of transcription can be radically changed from inhibition to stimulation, depending on the DNA/non-histone chromosomal proteins ratio. 2. A correlation exists between stage of development and influence on transcription. 3. Non-histone chromosomal proteins exert their action by intervening directly on some initiation step of RNA synthesis, as shown by the numbers of initiation events that take place in their presence or absence. 4. Stimulatory activity is observed only in restrictive conditions of ionic strength and temperature. These observations are in agreement with models that predict for non-histone chromosomal proteins a regulatory role on the transcription process exerted through a modulation of promoter availability. Images Fig. 1. PMID:697768

  6. Uncoupling histone turnover from transcription-associated histone H3 modifications.

    PubMed

    Ferrari, Paolo; Strubin, Michel

    2015-04-30

    Transcription in eukaryotes is associated with two major changes in chromatin organization. Firstly, nucleosomal histones are continuously replaced by new histones, an event that in yeast occurs predominantly at transcriptionally active promoters. Secondly, histones become modified post-translationally at specific lysine residues. Some modifications, including histone H3 trimethylation at lysine 4 (H3K4me3) and acetylation at lysines 9 (H3K9ac) and 14 (H3K14ac), are specifically enriched at active promoters where histones exchange, suggesting a possible causal relationship. Other modifications accumulate within transcribed regions and one of them, H3K36me3, is thought to prevent histone exchange. Here we explored the relationship between these four H3 modifications and histone turnover at a few selected genes. Using lysine-to-arginine mutants and a histone exchange assay, we found that none of these modifications plays a major role in either promoting or preventing histone turnover. Unexpectedly, mutation of H3K56, whose acetylation occurs prior to chromatin incorporation, had an effect only when introduced into the nucleosomal histone. Furthermore, we used various genetic approaches to show that histone turnover can be experimentally altered with no major consequence on the H3 modifications tested. Together, these results suggest that transcription-associated histone turnover and H3 modification are two correlating but largely independent events.

  7. The evolutionary history of histone H3 suggests a deep eukaryotic root of chromatin modifying mechanisms

    PubMed Central

    2010-01-01

    Background The phenotype of an organism is an outcome of both its genotype, encoding the primary sequence of proteins, and the developmental orchestration of gene expression. The substrate of gene expression in eukaryotes is the chromatin, whose fundamental units are nucleosomes composed of DNA wrapped around each two of the core histone types H2A, H2B, H3 and H4. Key regulatory steps involved in the determination of chromatin conformations are posttranslational modifications (PTM) at histone tails as well as the assembly of histone variants into nucleosomal arrays. Although the mechanistic background is fragmentary understood, it appears that the chromatin signature of metazoan cell types is inheritable over generations. Even less understood is the conservation of epigenetic mechanisms among eukaryotes and their origins. Results In the light of recent progress in understanding the tree of eukaryotic life we discovered the origin of histone H3 by phylogenetic analyses of variants from all supergroups, which allowed the reconstruction of ancestral states. We found that H3 variants evolved frequently but independently within related species of almost all eukaryotic supergroups. Interestingly, we found all core histone types encoded in the genome of a basal dinoflagellate and H3 variants in two other species, although is was reported that dinoflagellate chromatin is not organized into nucleosomes. Most probably one or more animal/nuclearid H3.3-like variants gave rise to H3 variants of all opisthokonts (animals, choanozoa, fungi, nuclearids, Amoebozoa). H3.2 and H3.1 as well as H3.1t are derivatives of H3.3, whereas H3.2 evolved already in early branching animals, such as Trichoplax. H3.1 and H3.1t are probably restricted to mammals. We deduced a model for protoH3 of the last eukaryotic common ancestor (LECA) confirming a remarkable degree of sequence conservation in comparison to canonical human H3.1. We found evidence that multiple PTMs are conserved even in

  8. Analysis of Histones H3 and H4 Reveals Novel and Conserved Post-Translational Modifications in Sugarcane.

    PubMed

    Moraes, Izabel; Yuan, Zuo-Fei; Liu, Shichong; Souza, Glaucia Mendes; Garcia, Benjamin A; Casas-Mollano, J Armando

    2015-01-01

    Histones are the main structural components of the nucleosome, hence targets of many regulatory proteins that mediate processes involving changes in chromatin. The functional outcome of many pathways is "written" in the histones in the form of post-translational modifications that determine the final gene expression readout. As a result, modifications, alone or in combination, are important determinants of chromatin states. Histone modifications are accomplished by the addition of different chemical groups such as methyl, acetyl and phosphate. Thus, identifying and characterizing these modifications and the proteins related to them is the initial step to understanding the mechanisms of gene regulation and in the future may even provide tools for breeding programs. Several studies over the past years have contributed to increase our knowledge of epigenetic gene regulation in model organisms like Arabidopsis, yet this field remains relatively unexplored in crops. In this study we identified and initially characterized histones H3 and H4 in the monocot crop sugarcane. We discovered a number of histone genes by searching the sugarcane ESTs database. The proteins encoded correspond to canonical histones, and their variants. We also purified bulk histones and used them to map post-translational modifications in the histones H3 and H4 using mass spectrometry. Several modifications conserved in other plants, and also novel modified residues, were identified. In particular, we report O-acetylation of serine, threonine and tyrosine, a recently identified modification conserved in several eukaryotes. Additionally, the sub-nuclear localization of some well-studied modifications (i.e., H3K4me3, H3K9me2, H3K27me3, H3K9ac, H3T3ph) is described and compared to other plant species. To our knowledge, this is the first report of histones H3 and H4 as well as their post-translational modifications in sugarcane, and will provide a starting point for the study of chromatin regulation in

  9. Histone modifying enzymes: novel disease biomarkers and assay development.

    PubMed

    Ma, Fei; Zhang, Chun-yang

    2016-01-01

    Histones are the chief components of chromatin. When being catalyzed by a series of histone modifying enzymes, histones may undergo various post-translational modifications such as acetylation, methylation, phosphorylation, ubiquitylation and SUMOylation. The dysregulation of histone modifying enzymes will alter the histone post-modification patterns and cause diverse diseases including cancers. Consequently, the histone modifying enzymes have emerged as the promising biomarkers for disease diagnosis and prognosis. In this review, we summarize the recent researches about the histone modifying enzymes as the disease biomarkers, and highlight the development of methods for histone modifying enzyme assays.

  10. Assessment of estrogen receptor--histone interactions.

    PubMed Central

    Kallos, J; Fasy, T M; Hollander, V P

    1981-01-01

    Several different in vitro binding assays show that the estrogen receptor from rabbit uterus interacts selectively with purified histones from calf thymus. The estrogen receptor binds strongly to histones H2B and H2A, moderately to histones H3 and H4, and poorly to histone H1. In the presence of histones H2B or H2A, the position at which the estrogen receptor focuses in an isoelectric gradient is shifted to a more basic zone. Kinetic experiments show that, if histone H2B is bound to a DNA, the estrogen receptor dissociates more slowly from that DNA. The portion of the estrogen receptor molecule required for binding to histone H2B is relatively stable to tryptic digestion; in contrast, the portion of the receptor molecule responsible for DNA binding is promptly lost during limited tryptic digestion. These in vitro findings suggest that the mechanism by which the estrogen receptor selectively alters gene expression may involve specific contacts with histone molecules. PMID:6942408

  11. Targeting histone methylation for colorectal cancer

    PubMed Central

    Huang, Tao; Lin, Chengyuan; Zhong, Linda L. D.; Zhao, Ling; Zhang, Ge; Lu, Aiping; Wu, Jiang; Bian, Zhaoxiang

    2016-01-01

    As a leading cause of cancer deaths worldwide, colorectal cancer (CRC) results from accumulation of both genetic and epigenetic alterations. Disruption of epigenetic regulation in CRC, particularly aberrant histone methylation mediated by histone methyltransferases (HMTs) and demethylases (HDMs), have drawn increasing interest in recent years. In this paper, we aim to review the roles of histone methylation and associated enzymes in the pathogenesis of CRC, and the development of small-molecule modulators to regulate histone methylation for treating CRC. Multiple levels of evidence suggest that aberrant histone methylations play important roles in CRC. More than 20 histone-methylation enzymes are found to be clinically relevant to CRC, including 17 oncoproteins and 8 tumor suppressors. Inhibitors of EZH2 and DOT1L have demonstrated promising therapeutic effects in preclinical CRC treatment. Potent and selective chemical probes of histone-methylation enzymes are required for validation of their functional roles in carcinogenesis and clinical translations as CRC therapies. With EZH2 inhibitor EPZ-6438 entering into phase I/II trials for advanced solid tumors, histone methylation is emerging as a promising target for CRC. PMID:28286564

  12. Histone H2A mobility is regulated by its tails and acetylation of core histone tails

    SciTech Connect

    Higashi, Tsunehito; Matsunaga, Sachihiro; Isobe, Keisuke; Morimoto, Akihiro; Shimada, Tomoko; Kataoka, Shogo; Watanabe, Wataru; Uchiyama, Susumu; Itoh, Kazuyoshi; Fukui, Kiichi . E-mail: kfukui@bio.eng.osaka-u.ac.jp

    2007-06-08

    Histone tail domains play important roles in cellular processes, such as replication, transcription, and chromosome condensation. Histone H2A has one central and two tail domains, and their functions have mainly been studied from a biochemical perspective. In addition, analyses based on visualization have been employed for functional analysis of some chromatin proteins. In this study, we analyzed histone H2A mobility in vivo by two-photon FRAP, and elucidated that the histone H2A N- and C-terminal tails regulate its mobility. We found that histone H2A mobility was increased following treatment of host cells with a histone deacetylase inhibitor. Our results support a model in which core histone tails directly regulate transcription by interacting with nucleosome DNA via electrostatic interactions.

  13. Histone Modifications and Nuclear Architecture: A Review

    PubMed Central

    Bártová, Eva; Krejčí, Jana; Harničarová, Andrea; Galiová, Gabriela; Kozubek, Stanislav

    2008-01-01

    Epigenetic modifications, such as acetylation, phosphorylation, methylation, ubiquitination, and ADP ribosylation, of the highly conserved core histones, H2A, H2B, H3, and H4, influence the genetic potential of DNA. The enormous regulatory potential of histone modification is illustrated in the vast array of epigenetic markers found throughout the genome. More than the other types of histone modification, acetylation and methylation of specific lysine residues on N-terminal histone tails are fundamental for the formation of chromatin domains, such as euchromatin, and facultative and constitutive heterochromatin. In addition, the modification of histones can cause a region of chromatin to undergo nuclear compartmentalization and, as such, specific epigenetic markers are non-randomly distributed within interphase nuclei. In this review, we summarize the principles behind epigenetic compartmentalization and the functional consequences of chromatin arrangement within interphase nuclei. (J Histochem Cytochem 56:711–721, 2008) PMID:18474937

  14. Acetylated histone H3 increases nucleosome dissociation

    NASA Astrophysics Data System (ADS)

    Simon, Marek; Manohar, Mridula; Ottesen, Jennifer; Poirier, Michael

    2009-03-01

    Chromatin's basic unit structure is the nucleosome, i.e. genomic DNA wrapped around a particular class of proteins -- histones -- which due to their physical hindrance, block vital biological processes, such as DNA repair, DNA replication, and RNA transcription. Histone post-translational modifications, which are known to exist in vivo, are hypothesized to regulate these biological processes by directly altering DNA-histone interactions and thus nucleosome structure and stability. Using magnetic tweezers technique we studied the acetylation of histone H3 in the dyad region, i.e. at K115 and K122, on reconstituted arrays of nucleosomes under constant external force. Based on the measured increase in the probability of dissociation of modified nucleosomes, we infer that this double modification could facilitate histone chaperone mediated nucleosome disassembly in vivo.

  15. Characterization of mussel H2A.Z.2: a new H2A.Z variant preferentially expressed in germinal tissues from Mytilus.

    PubMed

    Rivera-Casas, Ciro; González-Romero, Rodrigo; Vizoso-Vazquez, Ángel; Cheema, Manjinder S; Cerdán, M Esperanza; Méndez, Josefina; Ausió, Juan; Eirin-Lopez, Jose M

    2016-10-01

    Histones are the fundamental constituents of the eukaryotic chromatin, facilitating the physical organization of DNA in chromosomes and participating in the regulation of its metabolism. The H2A family displays the largest number of variants among core histones, including the renowned H2A.X, macroH2A, H2A.B (Bbd), and H2A.Z. This latter variant is especially interesting because of its regulatory role and its differentiation into 2 functionally divergent variants (H2A.Z.1 and H2A.Z.2), further specializing the structure and function of vertebrate chromatin. In the present work we describe, for the first time, the presence of a second H2A.Z variant (H2A.Z.2) in the genome of a non-vertebrate animal, the mussel Mytilus. The molecular and evolutionary characterization of mussel H2A.Z.1 and H2A.Z.2 histones is consistent with their functional specialization, supported on sequence divergence at promoter and coding regions as well as on varying gene expression patterns. More precisely, the expression of H2A.Z.2 transcripts in gonadal tissue and its potential upregulation in response to genotoxic stress might be mirroring the specialization of this variant in DNA repair. Overall, the findings presented in this work complement recent reports describing the widespread presence of other histone variants across eukaryotes, supporting an ancestral origin and conserved role for histone variants in chromatin.

  16. Inhibition of mitotic-specific histone phophorylation by sodium arsenite

    SciTech Connect

    Cobo, J.M.; Valdez, J.G.; Gurley, L.R.

    1994-10-01

    Synchronized cultures of Chinese hamster cells (line CHO) were used to measure the effects of 10{mu}M sodium arsenite on histone phosphorylation. This treatment caused cell proliferation to be temporarily arrested, after which the cells spontaneously resumed cell proliferation in a radiomimetric manner. Immediately following treatment, it was found that sodium arsenite affected only mitotic-specific HI and H3 phosphorylations. Neither interphase, nor mitotic, H2A and H4 phosphorylations were affected, nor was interphase HI Phosphorylation affected. The phosphorylation of HI was inhibited only in mitosis, reducing HI phosphorylation to 38.1% of control levels, which was the level of interphase HI phosphorylation. The phosphorylation of both H3 variants was inhibited in mitosis, the less hydrophobic H3 to 19% and the more hydrophobic H3 to 24% of control levels. These results suggest that sodium arsenite may inhibite cell proliferation by interfering with the cyclin B/p34{sup cdc2} histone kinase activity which is thought to play a key role in regulating the cell cycle. It has been proposed by our laboratory that HI and H3 phosphorylations play a role in restructuring interphase chromatin into metaphase chromosomes. Interference of this process by sodium arsenite may lead to structurally damaged chromosomes resulting in the increased cancer risks known to be produced by arsenic exposure from the environment.

  17. Structure and function of human histone H3.Y nucleosome

    PubMed Central

    Kujirai, Tomoya; Horikoshi, Naoki; Sato, Koichi; Maehara, Kazumitsu; Machida, Shinichi; Osakabe, Akihisa; Kimura, Hiroshi; Ohkawa, Yasuyuki; Kurumizaka, Hitoshi

    2016-01-01

    Histone H3.Y is a primate-specific, distant H3 variant. It is evolutionarily derived from H3.3, and may function in transcription regulation. However, the mechanism by which H3.Y regulates transcription has not been elucidated. In the present study, we determined the crystal structure of the H3.Y nucleosome, and found that many H3.Y-specific residues are located on the entry/exit sites of the nucleosome. Biochemical analyses revealed that the DNA ends of the H3.Y nucleosome were more flexible than those of the H3.3 nucleosome, although the H3.Y nucleosome was stable in vitro and in vivo. Interestingly, the linker histone H1, which compacts nucleosomal DNA, appears to bind to the H3.Y nucleosome less efficiently, as compared to the H3.3 nucleosome. These characteristics of the H3.Y nucleosome are also conserved in the H3.Y/H3.3 heterotypic nucleosome, which may be the predominant form in cells. In human cells, H3.Y preferentially accumulated around transcription start sites (TSSs). Taken together, H3.Y-containing nucleosomes around transcription start sites may form relaxed chromatin that allows transcription factor access, to regulate the transcription status of specific genes. PMID:27016736

  18. Genetic variants of methyl metabolizing enzymes and epigenetic regulators: associations with promoter CpG island hypermethylation in colorectal cancer.

    PubMed

    de Vogel, Stefan; Wouters, Kim A D; Gottschalk, Ralph W H; van Schooten, Frederik J; de Goeij, Anton F P M; de Bruïne, Adriaan P; Goldbohm, Royle A; van den Brandt, Piet A; Weijenberg, Matty P; van Engeland, Manon

    2009-11-01

    Aberrant DNA methylation affects carcinogenesis of colorectal cancer. Folate metabolizing enzymes may influence the bioavailability of methyl groups, whereas DNA and histone methyltransferases are involved in epigenetic regulation of gene expression. We studied associations of genetic variants of folate metabolizing enzymes (MTHFR, MTR, and MTRR), DNA methyltransferase DNMT3b, and histone methyltransferases (EHMT1, EHMT2, and PRDM2), with colorectal cancers, with or without the CpG island methylator phenotype (CIMP), MLH1 hypermethylation, or microsatellite instability. Incidence rate ratios were calculated in case-cohort analyses, with common homozygotes as reference, among 659 cases and 1,736 subcohort members of the Netherlands Cohort Study on diet and cancer (n = 120,852). Men with the MTHFR 677TT genotype were at decreased colorectal cancer risk (incidence rate ratio, 0.49; P = 0.01), but the T allele was associated with increased risk in women (incidence rate ratio, 1.39; P = 0.02). The MTR 2756GG genotype was associated with increased colorectal cancer risk (incidence rate ratio, 1.58; P = 0.04), and inverse associations were observed among women carrying DNMT3b C-->T (rs406193; incidence rate ratio, 0.72; P = 0.04) or EHMT2 G-->A (rs535586; incidence rate ratio, 0.76; P = 0.05) polymorphisms. Although significantly correlated (P < 0.001), only 41.5% and 33.3% of CIMP tumors harbored MLH1 hypermethylation or microsatellite instability, respectively. We observed inverse associations between MTR A2756G and CIMP among men (incidence rate ratio, 0.58; P = 0.04), and between MTRR A66G and MLH1 hypermethylation among women (incidence rate ratio, 0.55; P = 0.02). In conclusion, MTHFR, MTR, DNMT3b, and EHMT2 polymorphisms are associated with colorectal cancer, and rare variants of MTR and MTRR may reduce promoter hypermethylation. The incomplete overlap between CIMP, MLH1 hypermethylation, and microsatellite instability indicates that these related "methylation

  19. H3K36ac Is an Evolutionary Conserved Plant Histone Modification That Marks Active Genes1[OPEN

    PubMed Central

    Arellano, Minerva Susana Trejo; Shu, Huan; Gruissem, Wilhelm

    2016-01-01

    In eukaryotic cells, histones are subject to a large number of posttranslational modifications whose sequential or combinatorial action affects chromatin structure and genome function. We identified acetylation at Lys-36 in histone H3 (H3K36ac) as a new chromatin modification in plants. The H3K36ac modification is evolutionary conserved in seed plants, including the gymnosperm Norway spruce (Picea abies) and the angiosperms rice (Oryza sativa), tobacco (Nicotiana tabacum), and Arabidopsis (Arabidopsis thaliana). In Arabidopsis, H3K36ac is highly enriched in euchromatin but not in heterochromatin. Genome-wide chromatin immunoprecipitation sequencing experiments revealed that H3K36ac peaks at the 5′ end of genes, mainly on the two nucleosomes immediately distal to the transcription start site, independently of gene length. H3K36ac overlaps with H3K4me3 and the H2A.Z histone variant. The histone acetyl transferase GCN5 and the histone deacetylase HDA19 are required for H3K36ac homeostasis. H3K36ac and H3K36me3 show negative crosstalk, which is mediated by GCN5 and the histone methyl transferase SDG8. Although H3K36ac is associated with gene activity, we did not find a linear relationship between H3K36ac and transcript levels, suggesting that H3K36ac is a binary indicator of transcription. PMID:26764380

  20. Histone tail modifications and noncanonical functions of histones: perspectives in cancer epigenetics.

    PubMed

    Hadnagy, Annamaria; Beaulieu, Raymond; Balicki, Danuta

    2008-04-01

    Over the past few years, the histone deacetylase (HDAC) inhibitors have occupied an important place in the effort to develop novel, but less toxic, anticancer therapy. HDAC inhibitors block HDACs, which are the enzymes responsible for histone deacetylation, and therefore they modulate gene expression. The cellular effects of HDAC inhibitors include growth arrest and the induction of differentiation. Early successes in cancer therapeutics obtained using these drugs alone or in combination with other anticancer drugs emphasize the important place of posttranslational modifications of histones in cancer therapy. Histone tail modifications along with DNA methylation are the most studied epigenetic events related to cancer progression. Moreover, extranuclear functions of histones have also been described. Because HDAC inhibitors block HDACs and thereby increase histone acetylation, we propose a model wherein exogenous acetylated histones or other related acetylated proteins that are introduced into the nucleus become HDAC substrates and thereby compete with endogenous histones for HDACs. This competition may lead to the increased acetylation of the endogenous histones, as in the case of HDAC inhibitor therapy. Moreover, other mechanisms of action, such as binding to chromatin and modulating gene expression, are also possible for exogenously introduced histones.

  1. Identification and characterization of lysine-methylated sites on histones and non-histone proteins.

    PubMed

    Lee, Tzong-Yi; Chang, Cheng-Wei; Lu, Cheng-Tzung; Cheng, Tzu-Hsiu; Chang, Tzu-Hao

    2014-06-01

    Protein methylation is a kind of post-translational modification (PTM), and typically takes place on lysine and arginine amino acid residues. Protein methylation is involved in many important biological processes, and most recent studies focused on lysine methylation of histones due to its critical roles in regulating transcriptional repression and activation. Histones possess highly conserved sequences and are homologous in most species. However, there is much less sequence conservation among non-histone proteins. Therefore, mechanisms for identifying lysine-methylated sites may greatly differ between histones and non-histone proteins. Nevertheless, this point of view was not considered in previous studies. Here we constructed two support vector machine (SVM) models by using lysine-methylated data from histones and non-histone proteins for predictions of lysine-methylated sites. Numerous features, such as the amino acid composition (AAC) and accessible surface area (ASA), were used in the SVM models, and the predictive performance was evaluated using five-fold cross-validations. For histones, the predictive sensitivity was 85.62% and specificity was 80.32%. For non-histone proteins, the predictive sensitivity was 69.1% and specificity was 88.72%. Results showed that our model significantly improved the predictive accuracy of histones compared to previous approaches. In addition, features of the flanking region of lysine-methylated sites on histones and non-histone proteins were also characterized and are discussed. A gene ontology functional analysis of lysine-methylated proteins and correlations of lysine-methylated sites with other PTMs in histones were also analyzed in detail. Finally, a web server, MethyK, was constructed to identify lysine-methylated sites. MethK now is available at http://csb.cse.yzu.edu.tw/MethK/.

  2. Analyses of Histone Proteoforms Using Front-end Electron Transfer Dissociation-enabled Orbitrap Instruments*

    PubMed Central

    Anderson, Lissa C.; Karch, Kelly R.; Ugrin, Scott A.; Coradin, Mariel; English, A. Michelle; Sidoli, Simone; Shabanowitz, Jeffrey; Garcia, Benjamin A.; Hunt, Donald F.

    2016-01-01

    Histones represent a class of proteins ideally suited to analyses by top-down mass spectrometry due to their relatively small size, the high electron transfer dissociation-compatible charge states they exhibit, and the potential to gain valuable information concerning combinatorial post-translational modifications and variants. We recently described new methods in mass spectrometry for the acquisition of high-quality MS/MS spectra of intact proteins (Anderson, L. C., English, A. M., Wang, W., Bai, D. L., Shabanowitz, J., and Hunt, D. F. (2015) Int. J. Mass Spectrom. 377, 617–624). Here, we report an extension of these techniques. Sequential ion/ion reactions carried out in a modified Orbitrap Velos Pro/EliteTM capable of multiple fragment ion fills of the C-trap, in combination with data-dependent and targeted HPLC-MS experiments, were used to obtain high resolution MS/MS spectra of histones from butyrate-treated HeLa cells. These spectra were used to identify several unique intact histone proteoforms with up to 81% sequence coverage. We also demonstrate that parallel ion parking during ion/ion proton transfer reactions can be used to separate species of overlapping m/z that are not separated chromatographically, revealing previously indiscernible signals. Finally, we characterized several truncated forms of H2A and H2B found within the histone fractions analyzed, achieving up to 93% sequence coverage by electron transfer dissociation MS/MS. Results of follow-up in vitro experiments suggest that some of the truncated histone H2A proteoforms we observed can be generated by cathepsin L, an enzyme known to also catalyze clipping of histone H3. PMID:26785730

  3. Perceiving the epigenetic landscape through histone readers

    PubMed Central

    Musselman, Catherine A.; Lalonde, Marie-Eve; Côté, Jacques; Kutateladze, Tatiana G.

    2013-01-01

    Post-translational modifications (PTMs) of histones provide a fine-tuned mechanism for regulating chromatin structure and dynamics. PTMs can alter direct interactions between histones and DNA and serve as docking sites for protein effectors, or readers, of these PTMs. Binding of the readers recruits or stabilizes various components of the nuclear signaling machinery at specific genomic sites, mediating fundamental DNA-templated processes, including gene transcription and DNA recombination, replication and repair. In this review, we highlight the latest advances in characterizing histone-binding mechanisms and identifying new epigenetic readers and summarize the functional significance of PTM recognition. PMID:23211769

  4. Dynamics of Histone Tails within Chromatin

    NASA Astrophysics Data System (ADS)

    Bernier, Morgan; North, Justin; Page, Michael; Jaroniec, Christopher; Hammel, Christopher; Poirier, Michael

    2012-02-01

    Genetic information in humans is encoded within DNA molecules that is wrapped around histone octamer proteins and compacted into a highly conserved structural polymer, chromatin. The physical and material properties of chromatin appear to influence gene expression by altering the accessibility of proteins to the DNA. The tails of the histones are flexible domains that are thought to play a role in regulating DNA accessibility and compaction; however the molecular mechanisms for these phenomena are not understood. I will present CW-EPR studies on site directed spin labeled nucleosomes that probe the structure and dynamics of these histone tails within nucleosomes.

  5. Linker histones: History and current perspectives.

    PubMed

    Crane-Robinson, C

    2016-03-01

    Although the overall structure of the fifth histone (linker histone, H1) is understood, its location on the nucleosome is only partially defined. Whilst it is clear that H1 helps condense the chromatin fibre, precisely how this is achieved remains to be determined. H1 is not a general gene repressor in that although it must be displaced from transcription start sites for activity to occur, there is only partial loss along the body of genes. How the deposition and removal of H1 occurs in particular need of further study. Linker histones are highly abundant nuclear proteins about which we know too little.

  6. Remodeling somatic nuclei in Xenopus laevis egg extracts: molecular mechanisms for the selective release of histones H1 and H1(0) from chromatin and the acquisition of transcriptional competence.

    PubMed Central

    Dimitrov, S; Wolffe, A P

    1996-01-01

    The molecular mechanisms responsible for the remodeling of entire somatic erythrocyte nuclei in Xenopus laevis egg cytoplasm have been examined. These transitions in chromosomal composition are associated with the capacity to activate new patterns of gene expression and the re-acquisition of replication competence. Somatic linker histone variants H1 and H1 (0) are released from chromatin in egg cytoplasm, whereas the oocyte-specific linker histone B4 and HMG1 are efficiently incorporated into remodeled chromatin. Histone H1 (0) is released from chromatin preferentially in comparison with histone H1. Core histones H2A and H4 in the somatic nucleus are phosphorylated during this remodeling process. These transitions recapitulate the chromosomal environment found within the nuclei of the early Xenopus embryo. Phosphorylation of somatic linker histone variants is demonstrated not to direct their release from chromatin, nor does direct competition with cytoplasmic stores of linker histone B4 determine their release. However, the molecular chaperone nucleoplasmin does have an important role in the selective removal of linker histones from somatic nuclei. For Xenopus erythrocyte nuclei, this disruption of chromatin structure leads to activation of the 5S rRNA genes. These results provide a molecular explanation for the remodeling of chromatin in Xenopus egg cytoplasm and indicate the capacity of molecular chaperones to disrupt a natural chromosomal environment, thereby facilitating transcription. Images PMID:8918467

  7. Nucleosome adaptability conferred by sequence and structural variations in histone H2A-H2B dimers.

    PubMed

    Shaytan, Alexey K; Landsman, David; Panchenko, Anna R

    2015-06-01

    Nucleosome variability is essential for their functions in compacting the chromatin structure and regulation of transcription, replication and cell reprogramming. The DNA molecule in nucleosomes is wrapped around an octamer composed of four types of core histones (H3, H4, H2A, H2B). Nucleosomes represent dynamic entities and may change their conformation, stability and binding properties by employing different sets of histone variants or by becoming post-translationally modified. There are many variants of histones H2A and H2B. Specific H2A and H2B variants may preferentially associate with each other resulting in different combinations of variants and leading to the increased combinatorial complexity of nucleosomes. In addition, the H2A-H2B dimer can be recognized and substituted by chaperones/remodelers as a distinct unit, can assemble independently and is stable during nucleosome unwinding. In this review we discuss how sequence and structural variations in H2A-H2B dimers may provide necessary complexity and confer the nucleosome functional variability.

  8. Transcription-coupled replacement of histones: degradation or recycling?

    PubMed

    Chen, Yu-Shan; Qiu, Xiao-Bo

    2012-11-20

    Histone modifications are proposed to constitute a "histone code" for epigenetic regulation of gene expression. However, recent studies demonstrate that histones have to be disassembled from chromatin during transcription. Recent evidence, though not conclusive, suggests that histones might be degradable after being removed from chromatin during transcription. Degradation of overexpressed excessive histones, instead of native histones, has been shown to be dependent on proteasomes and ubiquitination. Since the 26S proteasome usually recognizes polyubiquitinated substrates, it is critical to demonstrate whether degradation of histones is mediated by polyubiquitination. Unexpectedly, there is almost no evidence that any ubiquitin ligase can promote polyubiquitination-dependent degradation of constitutive histones. Meanwhile, acetylation and phosphorylation are also associated with histone degradation. This review attempts to summarize the current knowledge on the transcription-coupled degradation of histones and its regulation by posttranslational protein modifications.

  9. Transcription in the absence of histone H3.2 and H3K4 methylation.

    PubMed

    Hödl, Martina; Basler, Konrad

    2012-12-04

    Histone H3 proteins play fundamental roles in DNA packaging, gene transcription, and the transmission of epigenetic states. In addition to posttranslational modifications of their N termini, the use of H3 variants contributes to their regulatory repertoire. Canonical histone H3.2 is expressed during S phase and differs by four amino acid residues from the variant histone H3.3, which is synthesized in a cell-cycle-independent manner. Because H3.3 is enriched within actively transcribed loci, and because di- and trimethylation of H3 lysine 4 are hallmarks of chromatin at such sites in the genome, the H3.3K4 residue is considered to serve as the major regulatory determinant for the transcriptional state of a gene. Here we use genetic approaches in Drosophila to replace all 46 gene copies of His3.2 with mutant derivatives and thereby demonstrate that canonical and variant H3 can functionally replace each other. Cells are able to divide and differentiate when H3.2 is entirely absent but replaced by S phase-expressed H3.3. Moreover, although slowed down in their proliferative capacity, cells that code for a nonmethylatable residue instead of K4 in all canonical and variant H3 genes are competent to respond to major developmental signaling pathways by activating target gene expression. Hence, the presence of different H3 protein species is not essential in Drosophila and transcriptional regulation can occur in the complete absence of H3K4 methylation.

  10. ADP-ribosylation of histones by ARTD1: an additional module of the histone code?

    PubMed

    Hottiger, Michael O

    2011-06-06

    ADP-ribosylation is a covalent post-translational protein modification catalyzed by ADP-ribosyltransferases and is involved in important processes such as cell cycle regulation, DNA damage response, replication or transcription. Histones are ADP-ribosylated by ADP-ribosyltransferase diphtheria toxin-like 1 at specific amino acid residues, in particular lysines, of the histones tails. Specific ADP-ribosyl hydrolases and poly-ADP-ribose glucohydrolases degrade the ADP-ribose polymers. The ADP-ribose modification is read by zinc finger motifs or macrodomains, which then regulate chromatin structure and transcription. Thus, histone ADP-ribosylation may be considered an additional component of the histone code.

  11. Replication stress interferes with histone recycling and predeposition marking of new histones.

    PubMed

    Jasencakova, Zuzana; Scharf, Annette N D; Ask, Katrine; Corpet, Armelle; Imhof, Axel; Almouzni, Geneviève; Groth, Anja

    2010-03-12

    To restore chromatin on new DNA during replication, recycling of histones evicted ahead of the fork is combined with new histone deposition. The Asf1 histone chaperone, which buffers excess histones under stress, is a key player in this process. Yet how histones handled by human Asf1 are modified remains unclear. Here we identify marks on histones H3-H4 bound to Asf1 and changes induced upon replication stress. In S phase, distinct cytosolic and nuclear Asf1b complexes show ubiquitous H4K5K12diAc and heterogeneous H3 marks, including K9me1, K14ac, K18ac, and K56ac. Upon acute replication arrest, the predeposition mark H3K9me1 and modifications typical of chromatin accumulate in Asf1 complexes. In parallel, ssDNA is generated at replication sites, consistent with evicted histones being trapped with Asf1. During recovery, histones stored with Asf1 are rapidly used as replication resumes. This shows that replication stress interferes with predeposition marking and histone recycling with potential impact on epigenetic stability.

  12. Histone H2A.Z and DNA methylation are mutually antagonistic chromatin marks

    PubMed Central

    Zilberman, Daniel; Coleman-Derr, Devin; Ballinger, Tracy; Henikoff, Steven

    2010-01-01

    Eukaryotic chromatin is separated into functional domains differentiated by posttranslational histone modifications, histone variants, and DNA methylation1–6. Methylation is associated with repression of transcriptional initiation in plants and animals, and is frequently found in transposable elements. Proper methylation patterns are critical for eukaryotic development4,5, and aberrant methylation-induced silencing of tumor suppressor genes is a common feature of human cancer7. In contrast to methylation, the histone variant H2A.Z is preferentially deposited by the Swr1 ATPase complex near 5′ ends of genes where it promotes transcriptional competence8–20. How DNA methylation and H2A.Z influence transcription remains largely unknown. Here we show that in the plant Arabidopsis thaliana, regions of DNA methylation are quantitatively deficient in H2A.Z. Exclusion of H2A.Z is seen at sites of DNA methylation in the bodies of actively transcribed genes and in methylated transposons. Mutation of the MET1 DNA methyltransferase, which causes both losses and gains of DNA methylation4,5, engenders opposite changes in H2A.Z deposition, while mutation of the PIE1 subunit of the Swr1 complex that deposits H2A.Z17 leads to genome-wide hypermethylation. Our findings indicate that DNA methylation can influence chromatin structure and effect gene silencing by excluding H2A.Z, and that H2A.Z protects genes from DNA methylation. PMID:18815594

  13. Point Mutations in Centromeric Histone Induce Post-zygotic Incompatibility and Uniparental Inheritance.

    PubMed

    Kuppu, Sundaram; Tan, Ek Han; Nguyen, Hanh; Rodgers, Andrea; Comai, Luca; Chan, Simon W L; Britt, Anne B

    2015-09-01

    The centromeric histone 3 variant (CENH3, aka CENP-A) is essential for the segregation of sister chromatids during mitosis and meiosis. To better define CENH3 functional constraints, we complemented a null allele in Arabidopsis with a variety of mutant alleles, each inducing a single amino acid change in conserved residues of the histone fold domain. Many of these transgenic missense lines displayed wild-type growth and fertility on self-pollination, but exhibited frequent post-zygotic death and uniparental inheritance when crossed with wild-type plants. The failure of centromeres marked by these missense mutation in the histone fold domain of CENH3 reproduces the genome elimination syndromes described with chimeric CENH3 and CENH3 from diverged species. Additionally, evidence that a single point mutation is sufficient to generate a haploid inducer provide a simple one-step method for the identification of non-transgenic haploid inducers in existing mutagenized collections of crop species. As proof of the extreme simplicity of this approach to create haploid-inducing lines, we performed an in silico search for previously identified point mutations in CENH3 and identified an Arabidopsis line carrying the A86V substitution within the histone fold domain. This A87V non-transgenic line, while fully fertile on self-pollination, produced postzygotic death and uniparental haploids when crossed to wild type.

  14. Analysis of the Histone H3.1 Interactome: A Suitable Chaperone for the Right Event

    PubMed Central

    Campos, Eric I.; Smits, Arne H.; Kang, Young-Hoon; Landry, Sébastien; Escobar, Thelma M.; Nayak, Shruti; Ueberheide, Beatrix M.; Durocher, Daniel; Vermeulen, Michiel; Hurwitz, Jerard; Reinberg, Danny

    2015-01-01

    SUMMARY Despite minimal disparity at the sequence level, mammalian H3 variants bind to distinct sets of polypeptides. Though histone H3.1 predominates in cycling cells, our knowledge of the soluble complexes that it forms en route to deposition or following eviction from chromatin remains limited. Here, we provide a comprehensive analysis of the H3.1-binding proteome, with emphasis on its interactions with histone chaperones and components of the replication fork. Quantitative mass spectrometry revealed 170 protein interactions, whereas a large-scale biochemical fractionation of H3.1 and associated enzymatic activities uncovered over twenty stable protein complexes in dividing human cells. The sNASP and ASF1 chaperones play pivotal roles in the processing of soluble histones, but do not associate with the active CDC45/MCM2-7/GINS (CMG) replicative helicase. We also find TONSL-MMS22L to function as a H3-H4 histone chaperone. It associates with the regulatory MCM5 subunit of the replicative helicase. PMID:26527279

  15. Myogenic transcriptional activation of MyoD mediated by replication-independent histone deposition

    PubMed Central

    Yang, Jae-Hyun; Song, Yunkyoung; Seol, Ja-Hwan; Park, Jin Young; Yang, Yong-Jin; Han, Jeung-Whan; Youn, Hong-Duk; Cho, Eun-Jung

    2011-01-01

    In mammals, the canonical histone H3 and the variant H3.3 are assembled into chromatin through replication-coupled and replication-independent (RI) histone deposition pathways, respectively, to play distinct roles in chromatin function. H3.3 is largely associated with transcriptionally active regions via the activity of RI histone chaperone, HIRA. However, the precise role of the RI pathway and HIRA in active transcription and the mechanisms by which H3.3 affects gene activity are not known. In this study, we show that HIRA is an essential factor for muscle development by establishing MyoD activation in myotubes. HIRA and Asf1a, but not CHD1 or Asf1b, mediate H3.3 incorporation in the promoter and the critical upstream regulatory regions of the MyoD gene. HIRA and H3.3 are required for epigenetic transition into the more permissive chromatin structure for polymerase II recruitment to the promoter, regardless of transcription-associated covalent modification of histones. Our results suggest distinct epigenetic management of the master regulator with RI pathway components for cellular differentiation. PMID:21173268

  16. Bisalbuminemia. A new molecular variant, albumin Vancouver.

    PubMed

    Frohlich, J; Kozier, J; Campbell, D J; Curnow, J V; Tárnoky, A L

    1978-11-01

    Of 18 members of a Fiji Indian family investigated, eight of the 12 males and two of the six females had an electrophoretically slow-type bisalbuminemia (alloalbuminemia). The albumin was characterized by the hiterto unique ratio of the two bands (Al A 35%: variant 65%), and by dye-binding studies and electrophoretic mobility in different media. The data suggest that this is a new variant, which we propose to call albumin Vancouver (Al Va).

  17. Top-down and Middle-down Protein Analysis Reveals that Intact and Clipped Human Histones Differ in Post-translational Modification Patterns.

    PubMed

    Tvardovskiy, Andrey; Wrzesinski, Krzysztof; Sidoli, Simone; Fey, Stephen J; Rogowska-Wrzesinska, Adelina; Jensen, Ole N

    2015-12-01

    Post-translational modifications (PTMs) of histone proteins play a fundamental role in regulation of DNA-templated processes. There is also growing evidence that proteolytic cleavage of histone N-terminal tails, known as histone clipping, influences nucleosome dynamics and functional properties. Using top-down and middle-down protein analysis by mass spectrometry, we report histone H2B and H3 N-terminal tail clipping in human hepatocytes and demonstrate a relationship between clipping and co-existing PTMs of histone H3. Histones H2B and H3 undergo proteolytic processing in primary human hepatocytes and the hepatocellular carcinoma cell line HepG2/C3A when grown in spheroid (3D) culture, but not in a flat (2D) culture. Using tandem mass spectrometry we localized four different clipping sites in H3 and one clipping site in H2B. We show that in spheroid culture clipped H3 proteoforms are mainly represented by canonical histone H3, whereas in primary hepatocytes over 90% of clipped H3 correspond to the histone variant H3.3. Comprehensive analysis of histone H3 modifications revealed a series of PTMs, including K14me1, K27me2/K27me3, and K36me1/me2, which are differentially abundant in clipped and intact H3. Analysis of co-existing PTMs revealed negative crosstalk between H3K36 methylation and H3K23 acetylation in clipped H3. Our data provide the first evidence of histone clipping in human hepatocytes and demonstrate that clipped H3 carry distinct co-existing PTMs different from those in intact H3.

  18. Top-down and Middle-down Protein Analysis Reveals that Intact and Clipped Human Histones Differ in Post-translational Modification Patterns*

    PubMed Central

    Tvardovskiy, Andrey; Wrzesinski, Krzysztof; Sidoli, Simone; Fey, Stephen J.; Rogowska-Wrzesinska, Adelina; Jensen, Ole N.

    2015-01-01

    Post-translational modifications (PTMs) of histone proteins play a fundamental role in regulation of DNA-templated processes. There is also growing evidence that proteolytic cleavage of histone N-terminal tails, known as histone clipping, influences nucleosome dynamics and functional properties. Using top-down and middle-down protein analysis by mass spectrometry, we report histone H2B and H3 N-terminal tail clipping in human hepatocytes and demonstrate a relationship between clipping and co-existing PTMs of histone H3. Histones H2B and H3 undergo proteolytic processing in primary human hepatocytes and the hepatocellular carcinoma cell line HepG2/C3A when grown in spheroid (3D) culture, but not in a flat (2D) culture. Using tandem mass spectrometry we localized four different clipping sites in H3 and one clipping site in H2B. We show that in spheroid culture clipped H3 proteoforms are mainly represented by canonical histone H3, whereas in primary hepatocytes over 90% of clipped H3 correspond to the histone variant H3.3. Comprehensive analysis of histone H3 modifications revealed a series of PTMs, including K14me1, K27me2/K27me3, and K36me1/me2, which are differentially abundant in clipped and intact H3. Analysis of co-existing PTMs revealed negative crosstalk between H3K36 methylation and H3K23 acetylation in clipped H3. Our data provide the first evidence of histone clipping in human hepatocytes and demonstrate that clipped H3 carry distinct co-existing PTMs different from those in intact H3. PMID:26424599

  19. Bivalent histone modifications in early embryogenesis.

    PubMed

    Vastenhouw, Nadine L; Schier, Alexander F

    2012-06-01

    Histone modifications influence the interactions of transcriptional regulators with chromatin. Studies in embryos and embryonic stem (ES) cells have uncovered histone modification patterns that are diagnostic for different cell types and developmental stages. For example, bivalent domains consisting of regions of H3 lysine 27 trimethylation (H3K27me3) and H3 lysine 4 trimethylation (H3K4me3) mark lineage control genes in ES cells and zebrafish blastomeres. Such bivalent domains have garnered attention because the H3K27me3 mark might help repress lineage-regulatory genes during pluripotency while the H3K4me3 mark could poise genes for activation upon differentiation. Despite the prominence of the bivalent domain concept, studies in other model organisms have questioned its universal nature, and the function of bivalent domains has remained unclear. Histone marks are also associated with developmental regulatory genes in sperm. These observations have raised the possibility that specific histone modification patterns might persist from parent to offspring, but it is unclear whether histone marks are inherited or formed de novo. Here, we review the potential roles of H3K4me3 and H3K27me3 marks in embryos and ES cells and discuss how histone marks might be established, maintained and resolved during embryonic development.

  20. Vanadates form insoluble complexes with histones.

    PubMed

    Michele, D E; Thomsen, D; Louters, L L

    1997-07-01

    Vanadium oxoanions are known to have a variety of physiological effects including insulin-like activity, inhibition of phosphotyrosine phosphatases, as well as direct interactions with a variety of cellular proteins, such as microtubules. In this study, vanadate was found to form insoluble complexes with histones, as well as other positively charged proteins, in a concentration dependent fashion. This interaction occurred over a 0.5-10 mM range which corresponds to the concentration range required for many of vanadate's known physiological effects. Results from precipitation experiments using vanadate solutions with or without the yellow-orange decavanadate indicated that the decamer form is primarily responsible for this precipitation. Vanadate was able to selectively precipitate histones from soluble chromatin as well as from a soluble bacterial protein extract to which a low concentration of histones had been added. Vanadate was also able to effectively precipitate histone from solutions as low as 0.006 mg/mL histone. Thus, the selective precipitation of histones and other positively charged proteins by vanadate can be utilized as a tool for protein purification. In addition, this interaction may provide insight into the mechanisms for the physiological effects of vanadate.

  1. Extracellular histones in tissue injury and inflammation.

    PubMed

    Allam, Ramanjaneyulu; Kumar, Santhosh V R; Darisipudi, Murthy N; Anders, Hans-Joachim

    2014-05-01

    Neutrophil NETosis is an important element of host defense as it catapults chromatin out of the cell to trap bacteria, which then are killed, e.g., by the chromatin's histone component. Also, during sterile inflammation TNF-alpha and other mediators trigger NETosis, which elicits cytotoxic effects on host cells. The same mechanism should apply to other forms of regulated necrosis including pyroptosis, necroptosis, ferroptosis, and cyclophilin D-mediated regulated necrosis. Beyond these toxic effects, extracellular histones also trigger thrombus formation and innate immunity by activating Toll-like receptors and the NLRP3 inflammasome. Thereby, extracellular histones contribute to the microvascular complications of sepsis, major trauma, small vessel vasculitis as well as acute liver, kidney, brain, and lung injury. Finally, histones prevent the degradation of extracellular DNA, which promotes autoimmunization, anti-nuclear antibody formation, and autoimmunity in susceptible individuals. Here, we review the current evidence on the pathogenic role of extracellular histones in disease and discuss how to target extracellular histones to improve disease outcomes.

  2. Histone Lysine Methylation in Diabetic Nephropathy

    PubMed Central

    Sun, Guang-dong; Cui, Wen-peng; Guo, Qiao-yan; Miao, Li-ning

    2014-01-01

    Diabetic nephropathy (DN) belongs to debilitating microvascular complications of diabetes and is the leading cause of end-stage renal diseases worldwide. Furthermore, outcomes from the DCCT/EDIC study showed that DN often persists and progresses despite intensive glucose control in many diabetes patients, possibly as a result of prior episode of hyperglycemia, which is called “metabolic memory.” The underlying mechanisms responsible for the development and progression of DN remain poorly understood. Activation of multiple signaling pathways and key transcription factors can lead to aberrant expression of DN-related pathologic genes in target renal cells. Increasing evidence suggests that epigenetic mechanisms in chromatin such as DNA methylation, histone acetylation, and methylation can influence the pathophysiology of DN and metabolic memory. Exciting researches from cell culture and experimental animals have shown that key histone methylation patterns and the related histone methyltransferases and histone demethylases can play important roles in the regulation of inflammatory and profibrotic genes in renal cells under diabetic conditions. Because histone methylation is dynamic and potentially reversible, it can provide a window of opportunity for the development of much-needed novel therapeutic potential for DN in the future. In this minireview, we discuss recent advances in the field of histone methylation and its roles in the pathogenesis and progression of DN. PMID:25215303

  3. Nonpeptide Macrocyclic Histone Deacetylase Inhibitors

    PubMed Central

    Oyelere, Adegboyega K.; Chen, Po C.; Guerrant, William; Mwakwari, Sandra C.; Hood, Rebecca; Zhang, Yunzhe; Fan, Yuhong

    2009-01-01

    Inhibition of Histone Deacetylases inhibitors (HDACi) hold great promise in cancer therapy due to their demonstrated ability to arrest proliferation of nearly all transformed cell types. Of the several structurally distinct small molecules HDACi reported, macrocyclic depsipeptides have the most complex recognition cap-group moieties and present an excellent opportunity for the modulation of the biological activities of HDACi. Unfortunately, the structure–activity relationship (SAR) studies for this class of compounds have been impaired largely because most macrocyclic HDACi known to date are comprised of complex peptide macrocycles. In addition to retaining the pharmacologically disadvantaged peptidyl-backbone, they offer only limited opportunity for side-chain modifications. Here we report the discovery of a new class of macrocyclic HDACi based on the macrolide antibiotics skeletons. SAR studies revealed that these compounds displayed both linker-length and macrolide-type dependent HDAC inhibition activities with IC50 in low nanomolar range. In addition, these nonpeptide macrocyclic HDACi are more selective against HDAC 1 and 2 relative to HDAC 8, another class I HDAC isoform, hence have sub-class HDAC isoform selectivity. PMID:19093884

  4. Application of machine learning methods to histone methylation ChIP-Seq data reveals H4R3me2 globally represses gene expression

    PubMed Central

    2010-01-01

    Background In the last decade, biochemical studies have revealed that epigenetic modifications including histone modifications, histone variants and DNA methylation form a complex network that regulate the state of chromatin and processes that depend on it including transcription and DNA replication. Currently, a large number of these epigenetic modifications are being mapped in a variety of cell lines at different stages of development using high throughput sequencing by members of the ENCODE consortium, the NIH Roadmap Epigenomics Program and the Human Epigenome Project. An extremely promising and underexplored area of research is the application of machine learning methods, which are designed to construct predictive network models, to these large-scale epigenomic data sets. Results Using a ChIP-Seq data set of 20 histone lysine and arginine methylations and histone variant H2A.Z in human CD4+ T-cells, we built predictive models of gene expression as a function of histone modification/variant levels using Multilinear (ML) Regression and Multivariate Adaptive Regression Splines (MARS). Along with extensive crosstalk among the 20 histone methylations, we found H4R3me2 was the most and second most globally repressive histone methylation among the 20 studied in the ML and MARS models, respectively. In support of our finding, a number of experimental studies show that PRMT5-catalyzed symmetric dimethylation of H4R3 is associated with repression of gene expression. This includes a recent study, which demonstrated that H4R3me2 is required for DNMT3A-mediated DNA methylation--a known global repressor of gene expression. Conclusion In stark contrast to univariate analysis of the relationship between H4R3me2 and gene expression levels, our study showed that the regulatory role of some modifications like H4R3me2 is masked by confounding variables, but can be elucidated by multivariate/systems-level approaches. PMID:20653935

  5. Assaying Pharmacodynamic Endpoints with Targeted Therapy: Flavopiridol and 17AAG Induced Dephosphorylation of Histone H1.5 in Acute Myeloid Leukemia

    PubMed Central

    Wang, Liwen; Harshman, Sean W.; Liu, Shujun; Ren, Chen; Xu, Hua; Sallans, Larry; Grever, Michael; Byrd, John C.; Marcucci, Guido; Freitas, Michael A.

    2011-01-01

    Histone H1 is commonly used to assay kinase activity in vitro. As many promising targeted therapies affect kinase activity of specific enzymes involved in cancer transformation, H1 phosphorylation can serve as potential pharmacodynamic marker for drug activity within the cell. In this report we utilized a phosphoproteomic workflow to characterize histone H1 phosphorylation changes associated with two targeted therapies in the Kasumi-1 Acute Myeloid Leukemia (AML) cell line. The phosphoproteomic workflow was first validated with standard casein phosphoproteins and then applied to the direct analysis of histone H1 from Kasumi-1 nuclear lysates. Ten H1 phosphorylation sites were identified on the H1 variants, H1.2, H1.3, H1.4, H1.5 and H1.x. Liquid chromatography mass spectrometry profiling of intact H1s demonstrated global dephosphorylation of H1.5 associated with therapy by the cyclin dependent kinase inhibitor, flavopiridol, and the Hsp90 inhibitor, 17AAG (17-(Allylamino)-17-demethoxygeldanamycin). In contrast, independent treatments with a nucleotide analog, proteosome inhibitor and histone deacetylase inhibitor did not exhibit decreased H1.5 phosphorylation. The data presented herein demonstrate that potential of histones to assess the cellular response of reagents that have direct and indirect effects on kinase activity that alters histone phosphorylation. As such, this approach may be a highly informative marker for response to targeted therapies influencing histone phosphorylation. PMID:21110323

  6. Assaying pharmacodynamic endpoints with targeted therapy: flavopiridol and 17AAG induced dephosphorylation of histone H1.5 in acute myeloid leukemia.

    PubMed

    Wang, Liwen; Harshman, Sean W; Liu, Shujun; Ren, Chen; Xu, Hua; Sallans, Larry; Grever, Michael; Byrd, John C; Marcucci, Guido; Freitas, Michael A

    2010-12-01

    Histone H1 is commonly used to assay kinase activity in vitro. As many promising targeted therapies affect kinase activity of specific enzymes involved in cancer transformation, H1 phosphorylation can serve as potential pharmacodynamic marker for drug activity within the cell. In this study we utilized a phosphoproteomic workflow to characterize histone H1 phosphorylation changes associated with two targeted therapies in the Kasumi-1 acute myeloid leukemia cell line. The phosphoproteomic workflow was first validated with standard casein phosphoproteins and then applied to the direct analysis of histone H1 from Kasumi-1 nuclear lysates. Ten H1 phosphorylation sites were identified on the H1 variants, H1.2, H1.3, H1.4, H1.5 and H1.x. LC MS profiling of intact H1s demonstrated global dephosphorylation of H1.5 associated with therapy by the cyclin-dependent kinase inhibitor, flavopiridol and the Heat Shock Protein 90 inhibitor, 17-(Allylamino)-17-demethoxygeldanamycin. In contrast, independent treatments with a nucleotide analog, proteosome inhibitor and histone deacetylase inhibitor did not exhibit decreased H1.5 phosphorylation. The data presented herein demonstrate that potential of histones to assess the cellular response of reagents that have direct and indirect effects on kinase activity that alters histone phosphorylation. As such, this approach may be a highly informative marker for response to targeted therapies influencing histone phosphorylation.

  7. Histone turnover and chromatin accessibility: Critical mediators of neurological development, plasticity, and disease

    PubMed Central

    Wenderski, Wendy; Maze, Ian

    2016-01-01

    In postmitotic neurons, nucleosomal turnover was long considered to be a static process that is inconsequential to transcription. However, our recent studies in human and rodent brain indicate that replication-independent (RI) nucleosomal turnover, which requires the histone variant H3.3, is dynamic throughout life and is necessary for activity-dependent gene expression, synaptic connectivity, and cognition. H3.3 turnover also facilitates cellular lineage specification and plays a role in suppressing the expression of heterochromatic repetitive elements, including mutagenic transposable sequences, in mouse embryonic stem cells. In this essay, we review mechanisms and functions for RI nucleosomal turnover in brain and present the hypothesis that defects in histone dynamics may represent a common mechanism underlying neurological aging and disease. PMID:26990528

  8. The Histone Chaperones FACT and Spt6 Restrict H2A.Z from Intragenic Locations

    PubMed Central

    Jeronimo, Célia; Watanabe, Shinya; Kaplan, Craig D.; Peterson, Craig L.; Robert, François

    2015-01-01

    SUMMARY H2A.Z is a highly conserved histone variant involved in several key nuclear processes. It is incorporated into promoters by SWR-C-related chromatin remodeling complexes, but whether it is also actively excluded from non-promoter regions is not clear. Here, we provide genomic and biochemical evidence that RNA polymerase II (RNAPII) elongation-associated histone chaperones FACT and Spt6 both contribute to restricting H2A.Z from intragenic regions. In the absence of FACT or Spt6, the lack of efficient nucleosome reassembly coupled to pervasive incorporation of H2A.Z by mislocalized SWR-C alters chromatin composition and contributes to cryptic initiation. Thus, chaperone-mediated H2A.Z confinement is crucial for restricting the chromatin signature of gene promoters, which otherwise may license or promote cryptic transcription. PMID:25959393

  9. Organ distribution of histones after intravenous infusion of FITC histones or after sepsis.

    PubMed

    Fattahi, Fatemeh; Grailer, Jamison J; Jajou, Lawrence; Zetoune, Firas S; Andjelkovic, Anuska V; Ward, Peter A

    2015-03-01

    Histones appear in plasma during infectious or non-infectious sepsis and are associated with multiorgan injury. In the current studies, intravenous infusion of histones resulted in their localization in major organs. In vitro exposure of mouse macrophages to histones caused a buildup of histones on cell membranes followed by localization into cytosol and into the nucleus. After polymicrobial sepsis (cecal ligation and puncture), histones appeared in plasma as well as in a multiorgan pattern, peaking at 8 h followed by decline. In lungs, histones and neutrophils appeared together, with evidence for formation of neutrophil extracellular traps (NETs), which represent an innate immune response to trap and kill bacteria and other infectious agents. In liver, there was intense NET formation, featuring linear patterns containing histones and strands of DNA. When neutrophils were activated in vitro with C5a or phorbol myristate acetate, NET formation ensued. While formation of NETs represents entrapment and killing of infectious agents, the simultaneous release from neutrophils of histones often results in tissue/organ damage.

  10. A brief histone in time: understanding the combinatorial functions of histone PTMs in the nucleosome context.

    PubMed

    Ng, Marlee K; Cheung, Peter

    2016-02-01

    It has been over 50 years since Allfrey et al. proposed that histone acetylation regulates RNA synthesis, and the study of histone modifications has progressed at an extraordinary pace for the past two decades. In this review, we provide a perspective on some key events and advances in our understanding of histone modifications. We also highlight reagents and tools from past to present that facilitated progress in this research field. Using histone H3 phosphorylation as an underlying thread, we review the rationale that led to the proposal of the histone code hypothesis, as well as examples that illustrate the concepts of combinatorial histone modifications and cross-talk pathways. We further highlight the importance of investigating these mechanisms in the context of nucleosomes rather than just at the histone level and present current and developing approaches for such studies. Overall, research on histone modifications has yielded great mechanistic insights into the regulation of genomic functions, and extending these studies using nucleosomes will further elucidate the complexity of these pathways in a more physiologically relevant context.

  11. Histone availability as a strategy to control gene expression.

    PubMed

    Prado, Félix; Jimeno-González, Silvia; Reyes, José C

    2017-03-04

    Histone proteins are main structural components of the chromatin and major determinants of gene regulation. Expression of canonical histone genes is strictly controlled during the cell cycle in order to couple DNA replication with histone deposition. Indeed, reductions in the levels of canonical histones or defects in chromatin assembly cause genetic instability. Early data from yeast demonstrated that severe histone depletion also causes strong gene expression changes. We have recently reported that a moderated depletion of canonical histones in human cells leads to an open chromatin configuration, which in turn increases RNA polymerase II elongation rates and causes pre-mRNA splicing defects. Interestingly, some of the observed defects accompany the scheduled histone depletion that is associated with several senescence and aging processes. Thus, our comparison of induced and naturally-occurring histone depletion processes suggests that a programmed reduction of the level of canonical histones might be a strategy to control gene expression during specific physiological processes.

  12. Cell-cycle-regulated control of VSG expression site silencing by histones and histone chaperones ASF1A and CAF-1b in Trypanosoma brucei.

    PubMed

    Alsford, Sam; Horn, David

    2012-11-01

    Antigenic variation in African trypanosomes involves monoallelic expression and reversible silencing of variant surface glycoprotein (VSG) genes found adjacent to telomeres in polycistronic expression sites (ESs). We assessed the impact on ES silencing of five candidate essential chromatin-associated factors that emerged from a genome-wide RNA interference viability screen. Using this approach, we demonstrate roles in VSG ES silencing for two histone chaperones. Defects in S-phase progression in cells depleted for histone H3, or either chaperone, highlight in particular the link between chromatin assembly and DNA replication control. S-phase checkpoint arrest was incomplete, however, allowing G2/M-specific VSG ES derepression following knockdown of histone H3. In striking contrast, knockdown of anti-silencing factor 1A (ASF1A) allowed for derepression at all cell cycle stages, whereas knockdown of chromatin assembly factor 1b (CAF-1b) revealed derepression predominantly in S-phase and G2/M. Our results support a central role for chromatin in maintaining VSG ES silencing. ASF1A and CAF-1b appear to play constitutive and DNA replication-dependent roles, respectively, in the recycling and assembly of chromatin. Defects in these functions typically lead to arrest in S-phase but defective cells can also progress through the cell cycle leading to nucleosome depletion and derepression of telomeric VSG ESs.

  13. Defective histone supply causes changes in RNA polymerase II elongation rate and cotranscriptional pre-mRNA splicing.

    PubMed

    Jimeno-González, Silvia; Payán-Bravo, Laura; Muñoz-Cabello, Ana M; Guijo, Macarena; Gutierrez, Gabriel; Prado, Félix; Reyes, José C

    2015-12-01

    RNA polymerase II (RNAPII) transcription elongation is a highly regulated process that greatly influences mRNA levels as well as pre-mRNA splicing. Despite many studies in vitro, how chromatin modulates RNAPII elongation in vivo is still unclear. Here, we show that a decrease in the level of available canonical histones leads to more accessible chromatin with decreased levels of canonical histones and variants H2A.X and H2A.Z and increased levels of H3.3. With this altered chromatin structure, the RNAPII elongation rate increases, and the kinetics of pre-mRNA splicing is delayed with respect to RNAPII elongation. Consistent with the kinetic model of cotranscriptional splicing, the rapid RNAPII elongation induced by histone depletion promotes the skipping of variable exons in the CD44 gene. Indeed, a slowly elongating mutant of RNAPII was able to rescue this defect, indicating that the defective splicing induced by histone depletion is a direct consequence of the increased elongation rate. In addition, genome-wide analysis evidenced that histone reduction promotes widespread alterations in pre-mRNA processing, including intron retention and changes in alternative splicing. Our data demonstrate that pre-mRNA splicing may be regulated by chromatin structure through the modulation of the RNAPII elongation rate.

  14. Defective histone supply causes changes in RNA polymerase II elongation rate and cotranscriptional pre-mRNA splicing

    PubMed Central

    Jimeno-González, Silvia; Payán-Bravo, Laura; Muñoz-Cabello, Ana M.; Guijo, Macarena; Gutierrez, Gabriel; Prado, Félix; Reyes, José C.

    2015-01-01

    RNA polymerase II (RNAPII) transcription elongation is a highly regulated process that greatly influences mRNA levels as well as pre-mRNA splicing. Despite many studies in vitro, how chromatin modulates RNAPII elongation in vivo is still unclear. Here, we show that a decrease in the level of available canonical histones leads to more accessible chromatin with decreased levels of canonical histones and variants H2A.X and H2A.Z and increased levels of H3.3. With this altered chromatin structure, the RNAPII elongation rate increases, and the kinetics of pre-mRNA splicing is delayed with respect to RNAPII elongation. Consistent with the kinetic model of cotranscriptional splicing, the rapid RNAPII elongation induced by histone depletion promotes the skipping of variable exons in the CD44 gene. Indeed, a slowly elongating mutant of RNAPII was able to rescue this defect, indicating that the defective splicing induced by histone depletion is a direct consequence of the increased elongation rate. In addition, genome-wide analysis evidenced that histone reduction promotes widespread alterations in pre-mRNA processing, including intron retention and changes in alternative splicing. Our data demonstrate that pre-mRNA splicing may be regulated by chromatin structure through the modulation of the RNAPII elongation rate. PMID:26578803

  15. A novel histone H4 mutant defective in nuclear division and mitotic chromosome transmission.

    PubMed Central

    Smith, M M; Yang, P; Santisteban, M S; Boone, P W; Goldstein, A T; Megee, P C

    1996-01-01

    The histone proteins are essential for the assembly and function of th e eukaryotic chromosome. Here we report the first isolation of a temperature-sensitive lethal histone H4 mutant defective in mitotic chromosome transmission Saccharomyces cerevisiae. The mutant requires two amino acid substitutions in histone H4: a lethal Thr-to-Ile change at position 82, which lies within one of the DNA-binding surfaces of the protein, and a substitution of Ala to Val at position 89 that is an intragenic suppressor. Genetic and biochemical evidence shows that the mutant histone H4 is temperature sensitive for function but not for synthesis, deposition, or stability. The chromatin structure of 2 micrometer circle minichromosomes is temperature sensitive in vivo, consistent with a defect in H4-DNA interactions. The mutant also has defects in transcription, displaying weak Spt- phenotypes. At the restrictive temperature, mutant cells arrest in the cell cycle at nuclear division, with a large bud, a single nucleus with 2C DNA content, and a short bipolar spindle. At semipermissive temperatures, the frequency of chromosome loss is elevated 60-fold in the mutant while DNA recombination frequencies are unaffected. High-copy CSE4, encoding an H3 variant related to the mammalian CENP-A kinetochore antigen, was found to suppress the temperature sensitivity of the mutant without suppressing the Spt- transcription defect. These genetic, biochemical, and phenotypic results indicate that this novel histone H4 mutant defines one or more chromatin-dependent steps in chromosome segregation. PMID:8622646

  16. Histone chaperone-mediated nucleosome assembly process.

    PubMed

    Fan, Hsiu-Fang; Liu, Zi-Ning; Chow, Sih-Yao; Lu, Yi-Han; Li, Hsin

    2015-01-01

    A huge amount of information is stored in genomic DNA and this stored information resides inside the nucleus with the aid of chromosomal condensation factors. It has been reported that the repeat nucleosome core particle (NCP) consists of 147-bp of DNA and two copies of H2A, H2B, H3 and H4. Regulation of chromosomal structure is important to many processes inside the cell. In vivo, a group of histone chaperones facilitate and regulate nucleosome assembly. How NCPs are constructed with the aid of histone chaperones remains unclear. In this study, the histone chaperone-mediated nucleosome assembly process was investigated using single-molecule tethered particle motion (TPM) experiments. It was found that Asf1 is able to exert more influence than Nap1 and poly glutamate acid (PGA) on the nucleosome formation process, which highlights Asf1's specific role in tetrasome formation. Thermodynamic parameters supported a model whereby energetically favored nucleosomal complexes compete with non-nucleosomal complexes. In addition, our kinetic findings propose the model that histone chaperones mediate nucleosome assembly along a path that leads to enthalpy-favored products with free histones as reaction substrates.

  17. DNA-histone interactions in nucleosomes

    SciTech Connect

    Van Holde, K.E.; Allen, J.R.; Tatchell, K.; Weischet, W.O.; Lohr, D.

    1980-10-01

    We have utilized micrococcal nuclease digestion and thermal denaturation studies to investigate the binding of DNA to the histone core of the nucleosome. We conclude that a total of approx. 168 base pairs (bp) of DNA can interact with the histone core under appropriate solution conditions, even in the absence of lysine-rich histones. The interactions in this total length of DNA can be divided into three classes: (a) approx. 22 bp at the ends is bound only at moderate ionic strength. It is easily displaced, and its removal yields the 146 bp core particle; (b) approx. 46 bp near the ends of the core DNA are quite weakly bound to the core, and are displaced at quite moderate temperatures; (c) the remaining central 100 bp are strongly bound, and interact with all of the sites on the histones which strongly protect DNA against DNAse I digestion. A theoretical analysis of the cleavage of nucleosomal DNA by DNAse I has been used to develop evidence that the pattern of protection offered by the histone core is very similar in nuclei to that in isolated core particles.

  18. Detection of histone modifications in plant leaves.

    PubMed

    Jaskiewicz, Michal; Peterhansel, Christoph; Conrath, Uwe

    2011-09-23

    Chromatin structure is important for the regulation of gene expression in eukaryotes. In this process, chromatin remodeling, DNA methylation, and covalent modifications on the amino-terminal tails of histones H3 and H4 play essential roles(1-2). H3 and H4 histone modifications include methylation of lysine and arginine, acetylation of lysine, and phosphorylation of serine residues(1-2). These modifications are associated either with gene activation, repression, or a primed state of gene that supports more rapid and robust activation of expression after perception of appropriate signals (microbe-associated molecular patterns, light, hormones, etc.)(3-7). Here, we present a method for the reliable and sensitive detection of specific chromatin modifications on selected plant genes. The technique is based on the crosslinking of (modified) histones and DNA with formaldehyde(8,9), extraction and sonication of chromatin, chromatin immunoprecipitation (ChIP) with modification-specific antibodies(9,10), de-crosslinking of histone-DNA complexes, and gene-specific real-time quantitative PCR. The approach has proven useful for detecting specific histone modifications associated with C(4;) photosynthesis in maize(5,11) and systemic immunity in Arabidopsis(3).

  19. The role of histone ubiquitination during spermatogenesis.

    PubMed

    Sheng, Kai; Liang, Xiaotong; Huang, Sizhou; Xu, Wenming

    2014-01-01

    Protein ubiquitin-proteasome (ubiquitin-proteasome) system is the major mechanism responsible for protein degradation in eukaryotic cell. During spermatogenesis, the replacement of histone by protamine is vital for normal sperm formation, which is involved in ubiquitination enzymes expressed in testis. Recently, histone ubiquitin ligases have been shown to play critical roles in several aspects of spermatogenesis, such as meiotic sex chromosome inactivation (MSCI), DNA damage response, and spermiogenesis. In this review, we highlight recent progress in the discovery of several histone ubiquitin ligases and elaborate mechanisms of how these enzymes are involved in these processes through knockout mouse model. Using Huwe1, UBR2, and RNF8 as examples, we emphasized the diverse functions for each enzyme and the broad involvement of these enzymes in every stage, from spermatogonia differentiation and meiotic division to spermiogenesis; thus histone ubiquitin ligases represent a class of enzymes, which play important roles in spermatogenesis through targeting histone for ubiquitination and therefore are involved in transcription regulation, epigenetic modification, and other processes essential for normal gametes formation.

  20. Epigenetic Modifications of Histones in Periodontal Disease.

    PubMed

    Martins, M D; Jiao, Y; Larsson, L; Almeida, L O; Garaicoa-Pazmino, C; Le, J M; Squarize, C H; Inohara, N; Giannobile, W V; Castilho, R M

    2016-02-01

    Periodontitis is a chronic infectious disease driven by dysbiosis, an imbalance between commensal bacteria and the host organism. Periodontitis is a leading cause of tooth loss in adults and occurs in about 50% of the US population. In addition to the clinical challenges associated with treating periodontitis, the progression and chronic nature of this disease seriously affect human health. Emerging evidence suggests that periodontitis is associated with mechanisms beyond bacteria-induced protein and tissue degradation. Here, we hypothesize that bacteria are able to induce epigenetic modifications in oral epithelial cells mediated by histone modifications. In this study, we found that dysbiosis in vivo led to epigenetic modifications, including acetylation of histones and downregulation of DNA methyltransferase 1. In addition, in vitro exposure of oral epithelial cells to lipopolysaccharides resulted in histone modifications, activation of transcriptional coactivators, such as p300/CBP, and accumulation of nuclear factor-κB (NF-κB). Given that oral epithelial cells are the first line of defense for the periodontium against bacteria, we also evaluated whether activation of pathogen recognition receptors induced histone modifications. We found that activation of the Toll-like receptors 1, 2, and 4 and the nucleotide-binding oligomerization domain protein 1 induced histone acetylation in oral epithelial cells. Our findings corroborate the emerging concept that epigenetic modifications play a role in the development of periodontitis.

  1. Citrullination regulates pluripotency and histone H1 binding to chromatin

    NASA Astrophysics Data System (ADS)

    Christophorou, Maria A.; Castelo-Branco, Gonçalo; Halley-Stott, Richard P.; Oliveira, Clara Slade; Loos, Remco; Radzisheuskaya, Aliaksandra; Mowen, Kerri A.; Bertone, Paul; Silva, José C. R.; Zernicka-Goetz, Magdalena; Nielsen, Michael L.; Gurdon, John B.; Kouzarides, Tony

    2014-03-01

    Citrullination is the post-translational conversion of an arginine residue within a protein to the non-coded amino acid citrulline. This modification leads to the loss of a positive charge and reduction in hydrogen-bonding ability. It is carried out by a small family of tissue-specific vertebrate enzymes called peptidylarginine deiminases (PADIs) and is associated with the development of diverse pathological states such as autoimmunity, cancer, neurodegenerative disorders, prion diseases and thrombosis. Nevertheless, the physiological functions of citrullination remain ill-defined, although citrullination of core histones has been linked to transcriptional regulation and the DNA damage response. PADI4 (also called PAD4 or PADV), the only PADI with a nuclear localization signal, was previously shown to act in myeloid cells where it mediates profound chromatin decondensation during the innate immune response to infection. Here we show that the expression and enzymatic activity of Padi4 are also induced under conditions of ground-state pluripotency and during reprogramming in mouse. Padi4 is part of the pluripotency transcriptional network, binding to regulatory elements of key stem-cell genes and activating their expression. Its inhibition lowers the percentage of pluripotent cells in the early mouse embryo and significantly reduces reprogramming efficiency. Using an unbiased proteomic approach we identify linker histone H1 variants, which are involved in the generation of compact chromatin, as novel PADI4 substrates. Citrullination of a single arginine residue within the DNA-binding site of H1 results in its displacement from chromatin and global chromatin decondensation. Together, these results uncover a role for citrullination in the regulation of pluripotency and provide new mechanistic insights into how citrullination regulates chromatin compaction.

  2. Epigenomic functional characterization of genetic susceptibility variants in systemic vasculitis.

    PubMed

    Sawalha, Amr H; Dozmorov, Mikhail G

    2016-02-01

    Systemic vasculitides are poorly understood inflammatory diseases of the blood vessels that are frequently associated with significant organ damage. Genetic risk variants contribute to the susceptibility of vasculitis, but functional consequences of these genetic variants are largely unknown. Most genetic risk variants in immune-mediated diseases, including systemic vasculitis, are localized to non-coding genetic regions suggesting they might increase disease risk by influencing regulatory elements within the genome. Long range regulatory interactions pose an additional obstacle in localizing functional consequences associated with risk variants to specific genes or cell types. We used cell-type specific enrichment patterns of histone changes that mark poised, primed, and active enhancers, and DNase hypersensitivity to identify specific immune cells mediating genetic risk in vasculitis. Our data suggest that genetic risk variants in ANCA-associated vasculitis are significantly enriched in enhancer elements in Th17 cells, supporting a role for Th17 cells in this disease. Primed and active enhancer elements in B cells can be potentially affected by genetic risk variants associated with Kawasaki disease. Genetic risk in Behçet's disease and Takayasu arteritis might affect enhancer elements in multiple cell types, possibly explained by influencing enhancers in hematopoietic stem cells. Interestingly, our analyses indicate a role for B cells in Kawasaki disease, Behçet's disease, and Takayasu arteritis, and suggest that further work to characterize the involvement of B cells in these diseases is warranted.

  3. Acetylation of retinal histones in diabetes increases inflammatory proteins: effects of minocycline and manipulation of histone acetyltransferase (HAT) and histone deacetylase (HDAC).

    PubMed

    Kadiyala, Chandra Sekhar Rao; Zheng, Ling; Du, Yunpeng; Yohannes, Elizabeth; Kao, Hung-Ying; Miyagi, Masaru; Kern, Timothy S

    2012-07-27

    Histone acetylation was significantly increased in retinas from diabetic rats, and this acetylation was inhibited in diabetics treated with minocycline, a drug known to inhibit early diabetic retinopathy in animals. Histone acetylation and expression of inflammatory proteins that have been implicated in the pathogenesis of diabetic retinopathy were increased likewise in cultured retinal Müller glia grown in a diabetes-like concentration of glucose. Both the acetylation and induction of the inflammatory proteins in elevated glucose levels were significantly inhibited by inhibitors of histone acetyltransferase (garcinol and antisense against the histone acetylase, p300) or activators of histone deacetylase (theophylline and resveratrol) and were increased by the histone deacetylase inhibitor, suberolylanilide hydroxamic acid. We conclude that hyperglycemia causes acetylation of retinal histones (and probably other proteins) and that the acetylation contributes to the hyperglycemia-induced up-regulation of proinflammatory proteins and thereby to the development of diabetic retinopathy.

  4. Chemical and semisynthesis of modified histones.

    PubMed

    Maity, Suman Kumar; Jbara, Muhammad; Brik, Ashraf

    2016-05-01

    Post-translational modifications (PTMs) of histones play critical roles in the epigenetic regulation of eukaryotic genome by directly altering the biophysical properties of chromatin or by recruiting effector proteins. The large number of PTMs and the inherent complexity in their population and signaling processes make it highly challenging to understand epigenetics-related processes. To address these challenges, accesses to homogeneously modified histones are obligatory. Over the last decade, synthetic protein chemists have been devising novel synthetic tools and applying state-of-the-art chemoselective ligation strategies to prepare precious materials useful in answering fundamental questions in this area. In this short review, we cover some of the recent breakthroughs in these directions in particular the synthesis and semi-synthesis of modified histones and their use to unravel the mysteries of epigenetics. Copyright © 2016 European Peptide Society and John Wiley & Sons, Ltd.

  5. The Cajal Body and Histone Locus Body

    PubMed Central

    Nizami, Zehra; Deryusheva, Svetlana; Gall, Joseph G.

    2010-01-01

    The Cajal body (CB) is a nuclear organelle present in all eukaryotes that have been carefully studied. It is identified by the signature protein coilin and by CB-specific RNAs (scaRNAs). CBs contain high concentrations of splicing small nuclear ribonucleoproteins (snRNPs) and other RNA processing factors, suggesting that they are sites for assembly and/or posttranscriptional modification of the splicing machinery of the nucleus. The histone locus body (HLB) contains factors required for processing histone pre-mRNAs. As its name implies, the HLB is associated with the genes that code for histones, suggesting that it may function to concentrate processing factors at their site of action. CBs and HLBs are present throughout the interphase of the cell cycle, but disappear during mitosis. The biogenesis of CBs shows the features of a self-organizing structure. PMID:20504965

  6. H1 histones: current perspectives and challenges.

    PubMed

    Harshman, Sean W; Young, Nicolas L; Parthun, Mark R; Freitas, Michael A

    2013-11-01

    H1 and related linker histones are important both for maintenance of higher-order chromatin structure and for the regulation of gene expression. The biology of the linker histones is complex, as they are evolutionarily variable, exist in multiple isoforms and undergo a large variety of posttranslational modifications in their long, unstructured, NH2- and COOH-terminal tails. We review recent progress in understanding the structure, genetics and posttranslational modifications of linker histones, with an emphasis on the dynamic interactions of these proteins with DNA and transcriptional regulators. We also discuss various experimental challenges to the study of H1 and related proteins, including limitations of immunological reagents and practical difficulties in the analysis of posttranslational modifications by mass spectrometry.

  7. Antifungal properties of wheat histones (H1-H4) and purified wheat histone H1.

    PubMed

    De Lucca, Anthony J; Heden, Lars-Olof; Ingber, Bruce; Bhatnagar, Deepak

    2011-07-13

    Wheat ( Triticum spp.) histones H1, H2, H3, and H4 were extracted, and H1 was further purified. The effect of these histones on specific fungi that may or may not be pathogenic to wheat was determined. These fungi included Aspergillus flavus , Aspergillus fumigatus , Aspergillus niger , Fusarium oxysporum , Fusarium verticillioides , Fusarium solani , Fusarium graminearum , Penicillium digitatum , Penicillium italicum , and Greeneria uvicola . Non-germinated and germinating conidia of these fungi were bioassayed separately. The non-germinated and germinating conidia of all Fusarium species were highly susceptible to the mixture (H1-H4) as well as pure H1, with viability losses of 99-100% found to be significant (p < 0.001) at ≤10 μM or less for the histone mixture and pure H1. F. graminearum was the most sensitive to histone activity. The histones were inactive against all of the non-germinated Penicillium spp. conidia. However, they significantly reduced the viability of the germinating conidia of the Penicillium spp. conidia, with 95% loss at 2.5 μM. Non-germinated and germinating conidia viability of the Aspergillus spp. and G. uvicola were unaffected when exposed to histones up to 10 μM. Results indicate that Fusarium spp. pathogenic to wheat are susceptible to wheat histones, indicating that these proteins may be a resistance mechanism in wheat against fungal infection.

  8. The FACT Histone Chaperone Guides Histone H4 Into Its Nucleosomal Conformation in Saccharomyces cerevisiae

    PubMed Central

    McCullough, Laura; Poe, Bryan; Connell, Zaily; Xin, Hua; Formosa, Tim

    2013-01-01

    The pob3-Q308K mutation alters the small subunit of the Saccharomyces cerevisiae histone/nucleosome chaperone Facilitates Chromatin Transactions (FACT), causing defects in both transcription and DNA replication. We describe histone mutations that suppress some of these defects, providing new insight into the mechanism of FACT activity in vivo. FACT is primarily known for its ability to promote reorganization of nucleosomes into a more open form, but neither the pob3-Q308K mutation nor the compensating histone mutations affect this activity. Instead, purified mutant FACT complexes fail to release from nucleosomes efficiently, and the histone mutations correct this flaw. We confirm that pob3-T252E also suppresses pob3-Q308K and show that combining two suppressor mutations can be detrimental, further demonstrating the importance of balance between association and dissociation for efficient FACT:nucleosome interactions. To explain our results, we propose that histone H4 can adopt multiple conformations, most of which are incompatible with nucleosome assembly. FACT guides H4 to adopt appropriate conformations, and this activity can be enhanced or diminished by mutations in Pob3 or histones. FACT can therefore destabilize nucleosomes by favoring the reorganized state, but it can also promote assembly by tethering histones and DNA together and maintaining them in conformations that promote canonical nucleosome formation. PMID:23833181

  9. Extracellular histone release in response to traumatic injury: implications for a compensatory role of activated Protein C

    PubMed Central

    Kutcher, Matthew E; Xu, Jun; Vilardi, Ryan F; Ho, Coral; Esmon, Charles T; Cohen, Mitchell Jay

    2013-01-01

    Background Tissue injury leads to release of damage-associated molecular patterns (DAMPs) that may drive a sterile inflammatory response; however, the role of extracellular histones after traumatic injury remains unexplored. We hypothesized that extracellular histones would be increased and associated with poor outcomes after traumatic injury. Methods In this prognostic study, plasma was prospectively collected from 132 critically injured trauma patients on arrival and 6h after admission to an urban level I trauma ICU. Circulating extracellular histone levels and plasma clotting factors were assayed, and linked to resuscitation and outcomes data. Results Of 132 patients, histone levels were elevated to a median of 14.0 absorbance units (AU) on arrival, declining to 6.4 AU by 6h. Patients with elevated admission histone levels had higher injury severity score, lower admission GCS, more days of mechanical ventilation, and higher incidences of multiorgan failure, acute lung injury, and mortality (all p ≤0.05). Histone levels correlated with prolonged INR and PTT, fibrinolytic markers D-dimer and tissue-type plasminogen activator, and anticoagulants tissue factor pathway inhibitor and activated Protein C (aPC; all p < 0.03). Increasing histone level from admission to 6h was a multivariate predictor of mortality (hazard ratio 1.005, p=0.013). When aPC level trends were included, the impact of histone level increase on mortality was abrogated (p=0.206) by a protective effect of increasing aPC levels (hazard ratio 0.900, p=0.020). Conclusions Extracellular histones are elevated in response to traumatic injury, and correlate with fibrinolysis and activation of anticoagulants. An increase in histone levels from admission to 6h is predictive of mortality, representing evidence of ongoing release of intracellular antigens similar to that seen in sepsis. Concomitant elevation of aPC abrogates this effect, suggesting a possible role for aPC in mitigating the sterile

  10. Telomeres, histone code, and DNA damage response.

    PubMed

    Misri, S; Pandita, S; Kumar, R; Pandita, T K

    2008-01-01

    Genomic stability is maintained by telomeres, the end terminal structures that protect chromosomes from fusion or degradation. Shortening or loss of telomeric repeats or altered telomere chromatin structure is correlated with telomere dysfunction such as chromosome end-to-end associations that could lead to genomic instability and gene amplification. The structure at the end of telomeres is such that its DNA differs from DNA double strand breaks (DSBs) to avoid nonhomologous end-joining (NHEJ), which is accomplished by forming a unique higher order nucleoprotein structure. Telomeres are attached to the nuclear matrix and have a unique chromatin structure. Whether this special structure is maintained by specific chromatin changes is yet to be thoroughly investigated. Chromatin modifications implicated in transcriptional regulation are thought to be the result of a code on the histone proteins (histone code). This code, involving phosphorylation, acetylation, methylation, ubiquitylation, and sumoylation of histones, is believed to regulate chromatin accessibility either by disrupting chromatin contacts or by recruiting non-histone proteins to chromatin. The histone code in which distinct histone tail-protein interactions promote engagement may be the deciding factor for choosing specific DSB repair pathways. Recent evidence suggests that such mechanisms are involved in DNA damage detection and repair. Altered telomere chromatin structure has been linked to defective DNA damage response (DDR), and eukaryotic cells have evolved DDR mechanisms utilizing proficient DNA repair and cell cycle checkpoints in order to maintain genomic stability. Recent studies suggest that chromatin modifying factors play a critical role in the maintenance of genomic stability. This review will summarize the role of DNA damage repair proteins specifically ataxia-telangiectasia mutated (ATM) and its effectors and the telomere complex in maintaining genome stability.

  11. Nickel compounds induce histone ubiquitination by inhibiting histone deubiquitinating enzyme activity

    SciTech Connect

    Ke Qingdong; Ellen, Thomas P.; Costa, Max

    2008-04-15

    Nickel (Ni) compounds are known carcinogens but underlying mechanisms are not clear. Epigenetic changes are likely to play an important role in nickel ion carcinogenesis. Previous studies have shown epigenetic effects of nickel ions, including the loss of histone acetylation and a pronounced increase in dimethylated H3K9 in nickel-exposed cells. In this study, we demonstrated that both water-soluble and insoluble nickel compounds induce histone ubiquitination (uH2A and uH2B) in a variety of cell lines. Investigations of the mechanism by which nickel increases histone ubiquitination in cells reveal that nickel does not affect cellular levels of the substrates of this modification, i.e., ubiquitin, histones, and other non-histone ubiquitinated proteins. In vitro ubiquitination and deubiquitination assays have been developed to further investigate possible effects of nickel on enzymes responsible for histone ubiquitination. Results from the in vitro assays demonstrate that the presence of nickel did not affect the levels of ubiquitinated histones in the ubiquitinating assay. Instead, the addition of nickel significantly prevents loss of uH2A and uH2B in the deubiquitinating assay, suggesting that nickel-induced histone ubiquitination is the result of inhibition of (a) putative deubiquitinating enzyme(s). Additional supporting evidence comes from the comparison of the response to nickel ions with a known deubiquitinating enzyme inhibitor, iodoacetamide (IAA). This study is the first to demonstrate such effects of nickel ions on histone ubiquitination. It also sheds light on the possible mechanisms involved in altering the steady state of this modification. The study provides further evidence that supports the notion that nickel ions alter epigenetic homeostasis in cells, which may lead to altered programs of gene expression and carcinogenesis.

  12. Modeling the dynamics of bivalent histone modifications.

    PubMed

    Ku, Wai Lim; Girvan, Michelle; Yuan, Guo-Cheng; Sorrentino, Francesco; Ott, Edward

    2013-01-01

    Epigenetic modifications to histones may promote either activation or repression of the transcription of nearby genes. Recent experimental studies show that the promoters of many lineage-control genes in stem cells have "bivalent domains" in which the nucleosomes contain both active (H3K4me3) and repressive (H3K27me3) marks. It is generally agreed that bivalent domains play an important role in stem cell differentiation, but the underlying mechanisms remain unclear. Here we formulate a mathematical model to investigate the dynamic properties of histone modification patterns. We then illustrate that our modeling framework can be used to capture key features of experimentally observed combinatorial chromatin states.

  13. Histone deacetylases: Targets for antifungal drug development

    PubMed Central

    Kmetzsch, Livia

    2015-01-01

    The interaction of pathogens and its hosts causes a drastic change in the transcriptional landscape in both cells. Among the several mechanisms of gene regulation, transcriptional initiation is probably the main point. In such scenario, the access of transcriptional machinery to promoter is highly regulated by post-translational modification of histones, such as acetylation, phosphorylation and others. Inhibition of histone deacetylases is able to reduce fungal pathogens fitness during infection and, therefore, is currently being considered for the development of new antifungal therapy strategies. PMID:26151486

  14. Regulation and function of histone acetyltransferase MOF.

    PubMed

    Yang, Yang; Han, Xiaofei; Guan, Jingyun; Li, Xiangzhi

    2014-03-01

    The mammalian MOF (male absent on the first), a member of the MYST (MOZ, YBF2, SAS2, and Tip60) family of histone acetyltransferases (HATs), is the major enzyme that catalyzes the acetylation of histone H4 on lysine 16. Acetylation of K16 is a prevalent mark associated with chromatin decondensation. MOF has recently been shown to play an essential role in maintaining normal cell functions. In this study, we discuss the important roles of MOF in DNA damage repair, apoptosis, and tumorigenesis. We also analyze the role of MOF as a key regulator of the core transcriptional network of embryonic stem cells.

  15. A new family of tandem repetitive early histone genes in the sea urchin Lytechinus pictus: evidence for concerted evolution within tandem arrays.

    PubMed Central

    Holt, C A; Childs, G

    1984-01-01

    We have isolated and characterized a third nonallelic tandemly arrayed histone cluster (LpE) from the sea urchin Lytechinus pictus. Although this tandem array is not intermingled with the other two early histone gene families also found in the L. pictus genome, the order and polarity of the five histone coding sequences in this family are the same as every other well characterized sea urchin early histone gene family. Heteroduplex analysis and restriction endonuclease mapping experiments indicate that the LpE family is more closely related to the B-C than the A-D family of early histone genes. Examination of several individual sperm DNA samples has revealed considerable polymorphism in each of the three tandem repeat families. Within an individual, however, each family is remarkably homogeneous. Thus, our results indicate that rapid fixation of variants acts to homogenize the members of a single tandem array at a considerably faster rate within a family than between families. However, at least some exchange of sequences between families is evident based on the conservation of many restriction endonuclease recognition sites and from analysis of a a cosmid clone in which the A-D and E tandem repeats are found adjacent to one another. These differences in the rate of fixation of variants within and between these families are likely to be responsible for the maintenance of diversity between the different families. Images PMID:6089115

  16. Structural insights into yeast histone chaperone Hif1: a scaffold protein recruiting protein complexes to core histones.

    PubMed

    Liu, Hejun; Zhang, Mengying; He, Wei; Zhu, Zhongliang; Teng, Maikun; Gao, Yongxiang; Niu, Liwen

    2014-09-15

    Yeast Hif1 [Hat1 (histone acetyltransferase 1)-interacting factor], a homologue of human NASP (nuclear autoantigenic sperm protein), is a histone chaperone that is involved in various protein complexes which modify histones during telomeric silencing and chromatin reassembly. For elucidating the structural basis of Hif1, in the present paper we demonstrate the crystal structure of Hif1 consisting of a superhelixed TPR (tetratricopeptide repeat) domain and an extended acid loop covering the rear of TPR domain, which represent typical characteristics of SHNi-TPR [Sim3 (start independent of mitosis 3)-Hif1-NASP interrupted TPR] proteins. Our binding assay indicates that Hif1 could bind to the histone octamer via histones H3 and H4. The acid loop is shown to be crucial for the binding of histones and may also change the conformation of the TPR groove. By binding to the core histone complex Hif1 may recruit functional protein complexes to modify histones during chromatin reassembly.

  17. Circulating histones exacerbate inflammation in mice with acute liver failure.

    PubMed

    Wen, Zongmei; Liu, Yan; Li, Feng; Ren, Feng; Chen, Dexi; Li, Xiuhui; Wen, Tao

    2013-10-01

    Circulating histones are a newly recognized mediator implicated in various inflammatory diseases. It is likely that the release of histones, from dying hepatocytes or inflammatory leukocytes, into the circulation initiates and amplifies inflammation during the course of acute liver failure (ALF). In this study, we investigated a putative pathogenic role of circulating histones in a murine model of ALF induced by D-galactosamine (GalN) plus lipopolysaccharide (LPS). Hepatic function and histological indexes, myeloperoxidase (MPO) activity, hepatocyte apoptosis and the levels of circulating histone were measured in GalN/LPS-treated mice. GalN/LPS caused severe liver damage and a notable increase in plasma concentration of circulating histones. To further assess the role of circulating histones in our model, we administered exogenous histones and anti-histone H4 antibody. Notably, exogenous histones aggravated GalN/LPS-induced hepatotoxicity, whereas anti-histone antibody significantly protected mice. Circulating histones may serve as both a functional marker of ALF activity and as an inflammatory mediator contributing to the progression of ALF. Blockade of circulating histones shows potent protective effects, suggesting a potential therapeutic strategy for ALF.

  18. Human CRP defends against the toxicity of circulating histones.

    PubMed

    Abrams, Simon T; Zhang, Nan; Dart, Caroline; Wang, Susan Siyu; Thachil, Jecko; Guan, Yunyan; Wang, Guozheng; Toh, Cheng-Hock

    2013-09-01

    C-reactive protein (CRP) is an acute-phase protein that plays an important defensive role in innate immunity against bacterial infection, but it is also upregulated in many noninfectious diseases. The generic function of this highly conserved molecule in diseases that range from infection, inflammation, trauma, and malignancy is not well understood. In this article, we demonstrate that CRP defends the human body against the toxicity of histones released into the circulation after extensive cell death. In vitro, CRP significantly alleviates histone-induced endothelial cell damage, permeability increase, and platelet aggregation. In vivo, CRP rescues mice challenged with lethal doses of histones by inhibiting endothelial damage, vascular permeability, and coagulation activation, as reflected by significant reductions in lung edema, hemorrhage, and thrombosis. In patients, elevation of CRP significantly increases the capacity to neutralize extracellular histones in the circulation. We have also confirmed that CRP interacts with individual histones in vitro and forms CRP-histone complexes in serum from patients with both elevated CRP and histones. CRP is able to compete with phospholipid-containing liposomes for the binding to histones. This explains how CRP prevents histones from integrating into cell membranes, which would otherwise induce calcium influx as the major mechanism of cytotoxicity caused by extracellular histones. Because histone elevation occurs in the acute phase of numerous critical illnesses associated with extensive cell death, CRP detoxification of circulating histones would be a generic host defense mechanism in humans.

  19. Genetic variants in epigenetic genes and breast cancer risk.

    PubMed

    Cebrian, Arancha; Pharoah, Paul D; Ahmed, Shahana; Ropero, Santiago; Fraga, Mario F; Smith, Paula L; Conroy, Don; Luben, Robert; Perkins, Barbara; Easton, Douglas F; Dunning, Alison M; Esteller, Manel; Ponder, Bruce A J

    2006-08-01

    Epigenetic events, resulting changes in gene expression capacity, are important in tumour progression, and variation in genes involved in epigenetic mechanisms might therefore be important in cancer susceptibility. To evaluate this hypothesis, we examined common variants in 12 genes coding for DNA methyltransferases (DNMT), histone acetyltransferases, histone deacetyltransferases, histone methyltrasferases and methyl-CpG binding domain proteins, for association with breast cancer in a large case-control study (N cases = 4474 and N controls = 4580). We identified 63 single nucleotide polymorphisms (SNPs) that efficiently tag all the known common variants in these genes, and are also expected to tag any unknown SNP in each gene. We found some evidence for association for six SNPs: DNMT3b-c31721t [P (2 df) = 0.007], PRDM2-c99243 t [P (2 df) = 0.03] and t105413c [P-recessive = 0.05], EHMT1-g-9441a [P (2df) = 0.05] and g41451t (P-trend = 0.04), and EHMT2-S237S [P (2df) = 0.04]. The most significant result was for DNMT3b-c31721t (P-trend = 0.124 after adjusting for multiple testing). However, there were three other results with P < 0.05. The permutation-based probability of this occurring by chance was 0.335. These significant SNPs were genotyped in 75 human cancer cell lines from different tumour types to assess if there was an association between them and six epigenetic measures. No statistically significant association was found. However, a trend was observed: homozygotes for the rare alleles of the EHMT1, EHMT2 and PRDM2 had a mean value for both trimethylation of K9 and K27 of histone H3 remarkably different to the homozygotes for the common alleles. Thus, these preliminary observations suggest the possible existence of a functional consequence of harbouring these genetic variants in histone methyltransferases, and warrant the design of larger epidemiological and biochemical studies to establish the true meaning of these findings.

  20. Histone H2A/H2B chaperones: from molecules to chromatin-based functions in plant growth and development.

    PubMed

    Zhou, Wangbin; Zhu, Yan; Dong, Aiwu; Shen, Wen-Hui

    2015-07-01

    Nucleosomal core histones (H2A, H2B, H3 and H4) must be assembled, replaced or exchanged to preserve or modify chromatin organization and function according to cellular needs. Histone chaperones escort histones, and play key functions during nucleosome assembly/disassembly and in nucleosome structure configuration. Because of their location at the periphery of nucleosome, histone H2A-H2B dimers are remarkably dynamic. Here we focus on plant histone H2A/H2B chaperones, particularly members of the NUCLEOSOME ASSEMBLY PROTEIN-1 (NAP1) and FACILITATES CHROMATIN TRANSCRIPTION (FACT) families, discussing their molecular features, properties, regulation and function. Covalent histone modifications (e.g. ubiquitination, phosphorylation, methylation, acetylation) and H2A variants (H2A.Z, H2A.X and H2A.W) are also discussed in view of their crucial importance in modulating nucleosome organization and function. We further discuss roles of NAP1 and FACT in chromatin-based processes, such as transcription, DNA replication and repair. Specific functions of NAP1 and FACT are evident when their roles are considered with respect to regulation of plant growth and development and in plant responses to environmental stresses. Future major challenges remain in order to define in more detail the overlapping and specific roles of various members of the NAP1 family as well as differences and similarities between NAP1 and FACT family members, and to identify and characterize their partners as well as new families of chaperones to understand histone variant incorporation and chromatin target specificity.

  1. Influence of chromatin structure, antibiotics, and endogenous histone methylation on phosphorylation of histones H1 and H3 in the presence of protein kinase A in rat liver nuclei in vitro.

    PubMed

    Prusov, A N; Smirnova, T A; Kolomijtseva, G Ya

    2013-02-01

    In vitro phosphorylation of histones H1 and H3 by cAMP-dependent protein kinase A and endogenous phosphokinases in the presence of [γ-³²P]ATP was studied in isolated rat liver nuclei with different variants of chromatin structural organization: condensed (diameter of fibrils 100-200 nm; N-1) and partly decondensed (diameter of fibrils ~30 nm; N-2). In the N-1 state histone, H1 is phosphorylated approximately twice as much than histone H3. Upon the decondensation of the chromatin in the N-2 state, 1.5-fold decrease of total phosphorylation of H1 is observed, while that of H3 does not change, although the endogenous phosphorylation of both histones is reduced by half. Changes in histone phosphorylation in the presence of low or high concentrations of distamycin and chromomycin differ for H1 and H3 in N-1 and N-2. It was found that distamycin (DM) stimulates the phosphorylation of tightly bound H1 fraction, which is not extractable by polyglutamic acid (PG), especially in N-1. Chromomycin (CM) increases the phosphorylation of both histones in PG extracts and in the nuclear pellets, particularly in N-2. At the same time, in N-1 one can detect phosphorylation of a tightly bound fraction of histones H1 whose N-termini are located on AT-rich sites that become inaccessible for protein kinase in the process of chromatin decondensation in N-2. At the same time, in N-2 the accessibility for protein kinase A of tightly bound H1 fractions, whose N-termini are located on GC-rich sites, increases dramatically. High concentrations of both CM and DM in N-1 and N-2 stimulated phosphorylation of the non-extractable by PG fraction of H1 whose N-termini are located on sites where AT ≈ GC. CM at high concentration stimulated 4-7 times the phosphorylation of a small fraction of H3, which is extracted by PG from both types of nuclei. We detected an effect of endogenous methylation of histones H1 and H3 in the nuclei on their subsequent phosphorylation depending on the chromatin

  2. Inhibitors of DNA Methylation, Histone Deacetylation, and Histone Demethylation: A Perfect Combination for Cancer Therapy.

    PubMed

    Zahnow, C A; Topper, M; Stone, M; Murray-Stewart, T; Li, H; Baylin, S B; Casero, R A

    2016-01-01

    Epigenetic silencing and inappropriate activation of gene expression are frequent events during the initiation and progression of cancer. These events involve a complex interplay between the hypermethylation of CpG dinucleotides within gene promoter and enhancer regions, the recruitment of transcriptional corepressors and the deacetylation and/or methylation of histone tails. These epigenetic regulators act in concert to block transcription or interfere with the maintenance of chromatin boundary regions. However, DNA/histone methylation and histone acetylation states are reversible, enzyme-mediated processes and as such, have emerged as promising targets for cancer therapy. This review will focus on the potential benefits and synergistic/additive effects of combining DNA-demethylating agents and histone deacetylase inhibitors or lysine-specific demethylase inhibitors together in epigenetic therapy for solid tumors and will highlight what is known regarding the mechanisms of action that contribute to the antitumor response.

  3. SAS-mediated acetylation of histone H4 Lys 16 is required for H2A.Z incorporation at subtelomeric regions in Saccharomyces cerevisiae

    PubMed Central

    Shia, Wei-Jong; Li, Bing; Workman, Jerry L.

    2006-01-01

    The yeast SAS (Something About Silencing) complex and the histone variant H2A.Z have both previously been linked to an antisilencing function at the subtelomeric regions. SAS is an H4 Lys 16-specific histone acetyltransferase complex. Here we demonstrate that the H4 Lys 16 acetylation by SAS is required for efficient H2A.Z incorporation near telomeres. The presence of H4 Lys 16 acetylation and H2A.Z synergistically prevent the ectopic propagation of heterochromatin. Overall, our data suggest a novel antisilencing mechanism near telomeres. PMID:16980580

  4. CREB-binding protein controls response to cocaine by acetylating histones at the fosB promoter in the mouse striatum

    PubMed Central

    Levine, Amir A.; Guan, Zhonghui; Barco, Angel; Xu, Shiqin; Kandel, Eric R.; Schwartz, James H.

    2005-01-01

    Remodeling chromatin is essential for cAMP-regulated gene expression, necessary not only for development but also for memory storage and other enduring mental states. Histone acetylation and deacetylation mediate long-lasting forms of synaptic plasticity in Aplysia as well as cognition in mice. Here, we show that histone acetylation by the cAMP-response element binding protein (CREB)-binding protein (CBP) mediates sensitivity to cocaine by regulating expression of the fosB gene and its splice variant, ΔfosB, a transcription factor previously implicated in addiction. Using the chromatin immunoprecipitation assay with antibodies against histone H4 or CBP, we find that CBP is recruited to the fosB promoter to acetylate histone H4 in response to acute exposure to cocaine. We show that mutant mice that lack one allele of the CBP gene and have normal levels of fosB expression are less sensitive to chronic (10-day) administration of cocaine than are wild-type mice. This decreased sensitivity is correlated with decreased histone acetylation and results in decreased fosB expression and diminished accumulation of ΔfosB. Thus, CBP, which forms part of the promoter complex with CREB, mediates sensitivity to cocaine by acetylating histones. PMID:16380431

  5. Nitric Oxide Modulates Histone Acetylation at Stress Genes by Inhibition of Histone Deacetylases1[OPEN

    PubMed Central

    Mengel, Alexander; Ageeva, Alexandra; Durner, Jörg

    2017-01-01

    Histone acetylation, which is an important mechanism to regulate gene expression, is controlled by the opposing action of histone acetyltransferases and histone deacetylases (HDACs). In animals, several HDACs are subjected to regulation by nitric oxide (NO); in plants, however, it is unknown whether NO affects histone acetylation. We found that treatment with the physiological NO donor S-nitrosoglutathione (GSNO) increased the abundance of several histone acetylation marks in Arabidopsis (Arabidopsis thaliana), which was strongly diminished in the presence of the NO scavenger 2-4-carboxyphenyl-4,4,5,5-tetramethylimidazoline-1-oxyl-3-oxide. This increase was likely triggered by NO-dependent inhibition of HDAC activity, since GSNO and S-nitroso-N-acetyl-dl-penicillamine significantly and reversibly reduced total HDAC activity in vitro (in nuclear extracts) and in vivo (in protoplasts). Next, genome-wide H3K9/14ac profiles in Arabidopsis seedlings were generated by chromatin immunoprecipitation sequencing, and changes induced by GSNO, GSNO/2-4-carboxyphenyl-4,4,5,5-tetramethylimidazoline-1-oxyl-3-oxide or trichostatin A (an HDAC inhibitor) were quantified, thereby identifying genes that display putative NO-regulated histone acetylation. Functional classification of these genes revealed that many of them are involved in the plant defense response and the abiotic stress response. Furthermore, salicylic acid, which is the major plant defense hormone against biotrophic pathogens, inhibited HDAC activity and increased histone acetylation by inducing endogenous NO production. These data suggest that NO affects histone acetylation by targeting and inhibiting HDAC complexes, resulting in the hyperacetylation of specific genes. This mechanism might operate in the plant stress response by facilitating the stress-induced transcription of genes. PMID:27980017

  6. Methylation of a histone mimic within the histone methyltransferase G9a regulates protein complex assembly.

    PubMed

    Sampath, Srihari C; Marazzi, Ivan; Yap, Kyoko L; Sampath, Srinath C; Krutchinsky, Andrew N; Mecklenbräuker, Ingrid; Viale, Agnes; Rudensky, Eugene; Zhou, Ming-Ming; Chait, Brian T; Tarakhovsky, Alexander

    2007-08-17

    Epigenetic gene silencing in eukaryotes is regulated in part by lysine methylation of the core histone proteins. While histone lysine methylation is known to control gene expression through the recruitment of modification-specific effector proteins, it remains unknown whether nonhistone chromatin proteins are targets for similar modification-recognition systems. Here we show that the histone H3 methyltransferase G9a contains a conserved methylation motif with marked sequence similarity to H3 itself. As with methylation of H3 lysine 9, autocatalytic G9a methylation is necessary and sufficient to mediate in vivo interaction with the epigenetic regulator heterochromatin protein 1 (HP1), and this methyl-dependent interaction can be reversed by adjacent G9a phosphorylation. NMR analysis indicates that the HP1 chromodomain recognizes methyl-G9a through a binding mode similar to that used in recognition of methyl-H3K9, demonstrating that the chromodomain functions as a generalized methyl-lysine binding module. These data reveal histone-like modification cassettes - or "histone mimics" - as a distinct class of nonhistone methylation targets and directly extend the principles of the histone code to the regulation of nonhistone proteins.

  7. A quantitative investigation of linker histone interactions with nucleosomes and chromatin.

    PubMed

    White, Alison E; Hieb, Aaron R; Luger, Karolin

    2016-01-11

    Linker histones such as H1 are abundant basic proteins that bind tightly to nucleosomes, thereby acting as key organizers of chromatin structure. The molecular details of linker histone interactions with the nucleosome, and in particular the contributions of linker DNA and of the basic C-terminal tail of H1, are controversial. Here we combine rigorous solution-state binding assays with native gel electrophoresis and Atomic Force Microscopy, to quantify the interaction of H1 with chromatin. We find that H1 binds nucleosomes and nucleosomal arrays with very tight affinity by recognizing a specific DNA geometry minimally consisting of a solitary nucleosome with a single ~18 base pair DNA linker arm. The association of H1 alters the conformation of trinucleosomes so that only one H1 can bind to the two available linker DNA regions. Neither incorporation of the histone variant H2A.Z, nor the presence of neighboring nucleosomes affects H1 affinity. Our data provide a comprehensive thermodynamic framework for this ubiquitous chromatin architectural protein.

  8. FACT plays a major role in histone dynamics affecting VSG expression site control in Trypanosoma brucei.

    PubMed

    Denninger, Viola; Rudenko, Gloria

    2014-11-01

    Chromatin remodelling is involved in the transcriptional regulation of the RNA polymerase I transcribed variant surface glycoprotein (VSG) expression sites (ESs) of Trypanosoma brucei. We show that the T. brucei FACT complex contains the Pob3 and Spt16 subunits, and plays a key role in ES silencing. We see an inverse correlation between transcription and condensed chromatin, whereby FACT knockdown results in ES derepression and more open chromatin around silent ES promoters. Derepressed ESs show increased sensitivity to micrococcal nuclease (MNase) digestion, and a decrease in histones at silent ES promoters but not telomeres. In contrast, FACT knockdown results in more histones at the active ES, correlated with transcription shut-down. ES promoters are derepressed in cells stalled at the G2/M cell cycle stage after knockdown of FACT, but not in G2/M cells stalled after knockdown of cyclin 6. This argues that the observed ES derepression is a direct consequence of histone chaperone activity by FACT at the G2/M cell cycle stage which could affect transcription elongation, rather than an indirect consequence of a cell cycle checkpoint. These experiments highlight the role of the FACT complex in cell cycle-specific chromatin remodelling within VSG ESs.

  9. Solution NMR structure and histone binding of the PHD domain of human MLL5.

    PubMed

    Lemak, Alexander; Yee, Adelinda; Wu, Hong; Yap, Damian; Zeng, Hong; Dombrovski, Ludmila; Houliston, Scott; Aparicio, Samuel; Arrowsmith, Cheryl H

    2013-01-01

    Mixed Lineage Leukemia 5 (MLL5) is a histone methyltransferase that plays a key role in hematopoiesis, spermatogenesis and cell cycle progression. In addition to its catalytic domain, MLL5 contains a PHD finger domain, a protein module that is often involved in binding to the N-terminus of histone H3. Here we report the NMR solution structure of the MLL5 PHD domain showing a variant of the canonical PHD fold that combines conserved H3 binding features from several classes of other PHD domains (including an aromatic cage) along with a novel C-terminal α-helix, not previously seen. We further demonstrate that the PHD domain binds with similar affinity to histone H3 tail peptides di- and tri-methylated at lysine 4 (H3K4me2 and H3K4me3), the former being the putative product of the MLL5 catalytic reaction. This work establishes the PHD domain of MLL5 as a bone fide 'reader' domain of H3K4 methyl marks suggesting that it may guide the spreading or further methylation of this site on chromatin.

  10. Histone H3.3 regulates dynamic chromatin states during spermatogenesis

    PubMed Central

    Yuen, Benjamin T. K.; Bush, Kelly M.; Barrilleaux, Bonnie L.; Cotterman, Rebecca; Knoepfler, Paul S.

    2014-01-01

    The histone variant H3.3 is involved in diverse biological processes, including development, transcriptional memory and transcriptional reprogramming, as well as diseases, including most notably malignant brain tumors. Recently, we developed a knockout mouse model for the H3f3b gene, one of two genes encoding H3.3. Here, we show that targeted disruption of H3f3b results in a number of phenotypic abnormalities, including a reduction in H3.3 histone levels, leading to male infertility, as well as abnormal sperm and testes morphology. Additionally, null germ cell populations at specific stages in spermatogenesis, in particular spermatocytes and spermatogonia, exhibited increased rates of apoptosis. Disruption of H3f3b also altered histone post-translational modifications and gene expression in the testes, with the most prominent changes occurring at genes involved in spermatogenesis. Finally, H3f3b null testes also exhibited abnormal germ cell chromatin reorganization and reduced protamine incorporation. Taken together, our studies indicate a major role for H3.3 in spermatogenesis through regulation of chromatin dynamics. PMID:25142466

  11. Highly selective inhibition of histone demethylases by de novo macrocyclic peptides.

    PubMed

    Kawamura, Akane; Münzel, Martin; Kojima, Tatsuya; Yapp, Clarence; Bhushan, Bhaskar; Goto, Yuki; Tumber, Anthony; Katoh, Takayuki; King, Oliver N F; Passioura, Toby; Walport, Louise J; Hatch, Stephanie B; Madden, Sarah; Müller, Susanne; Brennan, Paul E; Chowdhury, Rasheduzzaman; Hopkinson, Richard J; Suga, Hiroaki; Schofield, Christopher J

    2017-04-06

    The JmjC histone demethylases (KDMs) are linked to tumour cell proliferation and are current cancer targets; however, very few highly selective inhibitors for these are available. Here we report cyclic peptide inhibitors of the KDM4A-C with selectivity over other KDMs/2OG oxygenases, including closely related KDM4D/E isoforms. Crystal structures and biochemical analyses of one of the inhibitors (CP2) with KDM4A reveals that CP2 binds differently to, but competes with, histone substrates in the active site. Substitution of the active site binding arginine of CP2 to N-ɛ-trimethyl-lysine or methylated arginine results in cyclic peptide substrates, indicating that KDM4s may act on non-histone substrates. Targeted modifications to CP2 based on crystallographic and mass spectrometry analyses results in variants with greater proteolytic robustness. Peptide dosing in cells manifests KDM4A target stabilization. Although further development is required to optimize cellular activity, the results reveal the feasibility of highly selective non-metal chelating, substrate-competitive inhibitors of the JmjC KDMs.

  12. The potential of histone deacetylase inhibitors in lung cancer.

    PubMed

    Aparicio, Ana

    2006-03-01

    In the nucleus, DNA is wrapped around octamers of histone proteins. Histones, like other proteins, are posttranslationally modified by the addition of an array of chemical groups that affect their interactions with surrounding structures. Histone acetyltransferases and histone deacetylases (HDACs) are the enzymes involved in the addition and removal, respectively, of acetyl groups from the aminoterminal tails of histones. A number of structurally diverse compounds are capable of inhibiting HDACs and exert a variety of biologic effects on cancer cells in preclinical models. Early clinical trials with the first generation of HDAC inhibitors (HDACIs) have demonstrated promising therapeutic activity, and HDACs have become one of the hottest targets in drug development today.

  13. Role of extracellular histones in the cardiomyopathy of sepsis.

    PubMed

    Kalbitz, Miriam; Grailer, Jamison J; Fattahi, Fatemeh; Jajou, Lawrence; Herron, Todd J; Campbell, Katherine F; Zetoune, Firas S; Bosmann, Markus; Sarma, J Vidya; Huber-Lang, Markus; Gebhard, Florian; Loaiza, Randall; Valdivia, Hector H; Jalife, José; Russell, Mark W; Ward, Peter A

    2015-05-01

    The purpose of this study was to define the relationship in polymicrobial sepsis (in adult male C57BL/6 mice) between heart dysfunction and the appearance in plasma of extracellular histones. Procedures included induction of sepsis by cecal ligation and puncture and measurement of heart function using echocardiogram/Doppler parameters. We assessed the ability of histones to cause disequilibrium in the redox status and intracellular [Ca(2+)]i levels in cardiomyocytes (CMs) (from mice and rats). We also studied the ability of histones to disturb both functional and electrical responses of hearts perfused with histones. Main findings revealed that extracellular histones appearing in septic plasma required C5a receptors, polymorphonuclear leukocytes (PMNs), and the Nacht-, LRR-, and PYD-domains-containing protein 3 (NLRP3) inflammasome. In vitro exposure of CMs to histones caused loss of homeostasis of the redox system and in [Ca(2+)]i, as well as defects in mitochondrial function. Perfusion of hearts with histones caused electrical and functional dysfunction. Finally, in vivo neutralization of histones in septic mice markedly reduced the parameters of heart dysfunction. Histones caused dysfunction in hearts during polymicrobial sepsis. These events could be attenuated by histone neutralization, suggesting that histones may be targets in the setting of sepsis to reduce cardiac dysfunction.

  14. Histones as mediators of host defense, inflammation and thrombosis.

    PubMed

    Hoeksema, Marloes; van Eijk, Martin; Haagsman, Henk P; Hartshorn, Kevan L

    2016-01-01

    Histones are known for their ability to bind to and regulate expression of DNA. However, histones are also present in cytoplasm and extracellular fluids where they serve host defense functions and promote inflammatory responses. Histones are a major component of neutrophil extracellular traps that contribute to bacterial killing but also to inflammatory injury. Histones can act as antimicrobial peptides and directly kill bacteria, fungi, parasites and viruses, in vitro and in a variety of animal hosts. In addition, histones can trigger inflammatory responses in some cases acting through Toll-like receptors or inflammasome pathways. Extracellular histones mediate organ injury (lung, liver), sepsis physiology, thrombocytopenia and thrombin generation and some proteins can bind histones and reduce these potentially harmful effects.

  15. Sequence specific binding of chlamydial histone H1-like protein.

    PubMed Central

    Kaul, R; Allen, M; Bradbury, E M; Wenman, W M

    1996-01-01

    Chlamydia trachomatis is one of the few prokaryotic organisms known to contain proteins that bear homology to eukaryotic histone H1. Changes in macromolecular conformation of DNA mediated by the histone H1-like protein (Hc1) appear to regulate stage specific differentiation. We have developed a cross-linking immunoprecipitation protocol to examine in vivo protein-DNA interaction by immune precipitating chlamydial Hc1 cross linked to DNA. Our results strongly support the presence of sequence specific binding sites on the chlamydial plasmid and hc1 gene upstream of its open reading frame. The preferential binding sites were mapped to 520 bp BamHI-XhoI and 547 bp BamHI-DraI DNA fragments on the plasmid and hc1 respectively. Comparison of these two DNA sequences using Bestfit program has identified a 24 bp region with >75% identity that is unique to the chlamydial genome. Double-stranded DNA prepared by annealing complementary oligonucleotides corresponding to the conserved 24 bp region bind Hc1, in contrast to control sequences with similar A+T ratios. Further, Hc1 binds to DNA in a strand specific fashion, with preferential binding for only one strand. The site specific affinity to plasmid DNA was also demonstrated by atomic force microscopy data images. Binding was always followed by coiling, shrinking and aggregation of the affected DNA. Very low protein-DNA ratio was required if incubations were carried out in solution. However, if DNA was partially immobilized on mica substrate individual strands with dark foci were still visible even after the addition of excess Hc1. PMID:8760883

  16. Mucopolysaccharidosis: A New Variant?

    ERIC Educational Resources Information Center

    Primrose, D. A.

    1972-01-01

    Described is a possibly new variant of mucopolysaccharidosis characterized by progressive mental and motor deficiency, bone abnormalities, a generalized skin lesion, and abnormal mucopolysaccharides in the urine as seen in a 20-year-old female. (DB)

  17. Structure of the histone chaperone CIA/ASF1-double bromodomain complex linking histone modifications and site-specific histone eviction.

    PubMed

    Akai, Yusuke; Adachi, Naruhiko; Hayashi, Yohei; Eitoku, Masamitsu; Sano, Norihiko; Natsume, Ryo; Kudo, Norio; Tanokura, Masaru; Senda, Toshiya; Horikoshi, Masami

    2010-05-04

    Nucleosomes around the promoter region are disassembled for transcription in response to various signals, such as acetylation and methylation of histones. Although the interactions between histone-acetylation-recognizing bromodomains and factors involved in nucleosome disassembly have been reported, no structural basis connecting histone modifications and nucleosome disassembly has been obtained. Here, we determined at 3.3 A resolution the crystal structure of histone chaperone cell cycle gene 1 (CCG1) interacting factor A/antisilencing function 1 (CIA/ASF1) in complex with the double bromodomain in the CCG1/TAF1/TAF(II)250 subunit of transcription factor IID. Structural, biochemical, and biological studies suggested that interaction between double bromodomain and CIA/ASF1 is required for their colocalization, histone eviction, and pol II entry at active promoter regions. Furthermore, the present crystal structure has characteristics that can connect histone acetylation and CIA/ASF1-mediated histone eviction. These findings suggest that the molecular complex between CIA/ASF1 and the double bromodomain plays a key role in site-specific histone eviction at active promoter regions. The model we propose here is the initial structure-based model of the biological signaling from histone modifications to structural change of the nucleosome (hi-MOST model).

  18. Chaperone-mediated acetylation of histones by Rtt109 identified by quantitative proteomics.

    PubMed

    Abshiru, Nebiyu; Ippersiel, Kevin; Tang, Yong; Yuan, Hua; Marmorstein, Ronen; Verreault, Alain; Thibault, Pierre

    2013-04-09

    Rtt109 is a fungal-specific histone acetyltransferase (HAT) that associates with either Vps75 or Asf1 to acetylate histone H3. Recent biochemical and structural studies suggest that site-specific acetylation of H3 by Rtt109 is dictated by the binding chaperone where Rtt109-Asf1 acetylates K56, while Rtt109-Vps75 acetylates K9 and K27. To gain further insights into the roles of Vps75 and Asf1 in directing site-specific acetylation of H3, we used quantitative proteomics to profile the global and site-specific changes in H3 and H4 during in vitro acetylation assays with Rtt109 and its chaperones. Our analyses showed that Rtt109-Vps75 preferentially acetylates H3 K9 and K23, the former residue being the major acetylation site. At high enzyme-to-substrate ratio, Rtt109 also acetylated K14, K18, K27 and to a lower extent K56 of histone H3. Importantly, this study revealed that in contrast to Rtt109-Vps75, Rtt109-Asf1 displayed a far greater site-specificity, with K56 being the primary site of acetylation. For the first time, we also report the acetylation of histone H4 K12 by Rtt109-Vps75, whereas Rtt109-Asf1 showed no detectable activity toward H4. This article is part of a Special Issue entitled: From protein structures to clinical applications.

  19. Chaperone-mediated acetylation of histones by Rtt109 identified by quantitative proteomics

    PubMed Central

    Abshiru, Nebiyu; Ippersiel, Kevin; Tang, Yong; Yuan, Hua; Marmorstein, Ronen; Verreault, Alain; Thibault, Pierre

    2014-01-01

    Rtt109 is a fungal-specific histone acetyltransferase (HAT) that associates with either Vps75 or Asf1 to acetylate histone H3. Recent biochemical and structural studies suggest that site-specific acetylation of H3 by Rtt109 is dictated by the binding chaperone where Rtt109-Asf1 acetylates K56, while Rtt109-Vps75 acetylates K9 and K27. To gain further insights into the roles of Vps75 and Asf1 in directing site-specific acetylation of H3, we used quantitative proteomics to profile the global and site-specific changes in H3 and H4 during in vitro acetylation assays with Rtt109 and its chaperones. Our analyses showed that Rtt109-Vps75 preferentially acetylates H3 K9 and K23, the former residue being the major acetylation site. At high enzyme to substrate ratio, Rtt109 also acetylated K14, K18, K27 and to a lower extent K56 of histone H3. Importantly, this study revealed that in contrast to Rtt109-Vps75, Rtt109-Asf1 displayed a far greater site-specificity, with K56 being the primary site of acetylation. For the first time, we also report the acetylation of histone H4 K12 by Rtt109-Vps75, whereas Rtt109-Asf1 showed no detectable activity toward H4. PMID:23036725

  20. The expression and nuclear deposition of histone H3.1 in murine oocytes and preimplantation embryos.

    PubMed

    Kawamura, Machika; Akiyama, Tomohiko; Tsukamoto, Satoshi; Suzuki, Masataka G; Aoki, Fugaku

    2012-01-01

    Differentiated oocytes acquire totipotency through fertilization. During this transition, genome-wide chromatin remodeling occurs, which leads to change in gene expression. However, the mechanism that underlies this global change in chromatin structure has not been fully elucidated. Histone variants play a key role in defining chromatin structure and are implicated in inheritance of epigenetic information. In this study, we analyzed the nuclear localization and expression of H3.1 to elucidate the role of this histone variant in chromatin remodeling during oogenesis and preimplantation development. Analysis using Flag-tagged H3.1 transgenic mice revealed that Flag-H3.1 was not present in differentiated oocytes or early preimplantation embryos before the morula stage, although Flag-H3.1 mRNA was expressed at all stages examined. In addition, the expression levels of endogenous H3.1 genes were low at the stages where H3.1 was not present in chromatin. These results suggest that H3.1 is not incorporated into chromatin due to the inactivity of the histone chaperone and low mRNA expression level. The significance of the dynamics of H3.1 is evaluated in terms of chromatin remodeling that takes place during development.

  1. LSD1 Histone Demethylase Assays and Inhibition

    PubMed Central

    Hayward, D.; Cole, P.A.

    2016-01-01

    The lysine-specific demethylase (LSD1) is a flavin-dependent amine oxidase that selectively removes one or two methyl groups from histone H3 at the Lys4 position. Along with histone deacetylases 1 and 2, LSD1 is involved in epigenetically silencing gene expression. LSD1 has been implicated as a potential therapeutic target in cancer and other diseases. In this chapter, we discuss several approaches to measure LSD1 demethylase activity and their relative strengths and limitations for inhibitor discovery and mechanistic characterization. In addition, we review the principal established chemical functional groups derived from monoamine oxidase inhibitors that have been investigated in the context of LSD1 as demethylase inhibitors. Finally, we highlight a few examples of recently developed LSD1 mechanism-based inactivators and their biomedical applications. PMID:27372757

  2. Epigenetic regulation by histone demethylases in hypoxia.

    PubMed

    Hancock, Rebecca L; Dunne, Kate; Walport, Louise J; Flashman, Emily; Kawamura, Akane

    2015-08-01

    The response to hypoxia is primarily mediated by the hypoxia-inducible transcription factor (HIF). Levels of HIF are regulated by the oxygen-sensing HIF hydroxylases, members of the 2-oxoglutarate (2OG) dependent oxygenase family. JmjC-domain containing histone lysine demethylases (JmjC-KDMs), also members of the 2OG oxygenase family, are key epigenetic regulators that modulate the methylation levels of histone tails. Kinetic studies of the JmjC-KDMs indicate they could also act in an oxygen-sensitive manner. This may have important implications for epigenetic regulation in hypoxia. In this review we examine evidence that the levels and activity of JmjC-KDMs are sensitive to oxygen availability, and consider how this may influence their roles in early development and hypoxic disease states including cancer and cardiovascular disease.

  3. Bivalent histone modifications during tooth development.

    PubMed

    Zheng, Li-Wei; Zhang, Bin-Peng; Xu, Ruo-Shi; Xu, Xin; Ye, Ling; Zhou, Xue-Dong

    2014-12-01

    Histone methylation is one of the most widely studied post-transcriptional modifications. It is thought to be an important epigenetic event that is closely associated with cell fate determination and differentiation. To explore the spatiotemporal expression of histone H3 lysine 4 trimethylation (H3K4me3) and histone H3 lysine 27 trimethylation (H3K27me3) epigenetic marks and methylation or demethylation transferases in tooth organ development, we measured the expression of SET7, EZH2, KDM5B and JMJD3 via immunohistochemistry and quantitative polymerase chain reaction (qPCR) analysis in the first molar of BALB/c mice embryos at E13.5, E15.5, E17.5, P0 and P3, respectively. We also measured the expression of H3K4me3 and H3K27me3 with immunofluorescence staining. During murine tooth germ development, methylation or demethylation transferases were expressed in a spatial-temporal manner. The bivalent modification characterized by H3K4me3 and H3K27me3 can be found during the tooth germ development, as shown by immunofluorescence. The expression of SET7, EZH2 as methylation transferases and KDM5B and JMJD3 as demethylation transferases indicated accordingly with the expression of H3K4me3 and H3K27me3 respectively to some extent. The bivalent histone may play a critical role in tooth organ development via the regulation of cell differentiation.

  4. Histones-mediated lymphocyte apoptosis during sepsis is dependent on p38 phosphorylation and mitochondrial permeability transition.

    PubMed

    Liu, Zhan-Guo; Ni, Shu-Yuan; Chen, Gui-Ming; Cai, Jing; Guo, Zhen-Hui; Chang, Ping; Li, Yu-Sheng

    2013-01-01

    Lymphocyte apoptosis is one reason for immunoparalysis seen in sepsis, although the triggers are unknown. We hypothesized that molecules in plasma, which are up-regulated during sepsis, may be responsible for this. In this study, peripheral lymphocyte apoptosis caused by extracellular histones was confirmed both in mouse and human primary lymphocytes, in which histones induced lymphocyte apoptosis dose-dependently and time-dependently. To identify which intracellular signal pathways were activated, phosphorylation of various mitogen-activated protein kinases (MAPKs) were evaluated during this process, and p38 inhibitor (SB203580) was used to confirm the role of p38 in lymphocyte apoptosis induced by histones. To investigate the mitochondrial injury during these processes, we analyzed Bcl2 degradation and Rhodamine 123 to assess mitochondrial-membrane stability, via cyclosporin A as an inhibitor for mitochondrial permeability transition (MPT). Then, caspase 3 activation was also checked by western-blotting. We found that p38 phosphorylation, mitochondrial injury and caspase 3 activation occurred dose-dependently in histones-mediated lymphocyte apoptosis. We also observed that p38 inhibitor SB203580 decreased lymphocyte apoptotic ratio by 49% (P<0.05), and inhibition of MPT protected lymphocytes from apoptosis. Furthermore, to investigate whether histones are responsible for lymphocyte apoptosis, various concentrations of histone H4 neutralization antibodies were co-cultured with human primary lymphocytes and plasma from cecal ligation and puncture (CLP) mice or sham mice. The results showed that H4 neutralization antibody dose-dependently blocked lymphocyte apoptosis caused by septic plasma in vitro. These data demonstrate for the first time that extracellular histones, especially H4, play a vital role in lymphocyte apoptosis during sepsis which is dependent on p38 phosphorylation and mitochondrial permeability transition. Neutralizing H4 can inhibit lymphocyte

  5. Combined bottom-up and top-down mass spectrometry analyses of the pattern of post-translational modifications of Drosophila melanogaster linker histone H1.

    PubMed

    Bonet-Costa, Carles; Vilaseca, Marta; Diema, Claudio; Vujatovic, Olivera; Vaquero, Alejandro; Omeñaca, Núria; Castejón, Lucía; Bernués, Jordi; Giralt, Ernest; Azorín, Fernando

    2012-07-16

    Linker histone H1 is a major chromatin component that binds internucleosomal DNA and mediates the folding of nucleosomes into a higher-order structure, namely the 30-nm chromatin fiber. Multiple post-translational modifications (PTMs) of core histones H2A, H2B, H3 and H4 have been identified and their important contribution to the regulation of chromatin structure and function is firmly established. In contrast, little is known about histone H1 modifications and their function. Here we address this question in Drosophila melanogaster, which, in contrast to most eukaryotic species, contains a single histone H1 variant, dH1. For this purpose, we combined bottom-up and top-down mass-spectrometry strategies. Our results indicated that dH1 is extensively modified by phosphorylation, methylation, acetylation and ubiquitination, with most PTMs falling in the N-terminal domain. Interestingly, several dH1 N-terminal modifications have also been reported in specific human and/or mouse H1 variants, suggesting that they have conserved functions. In this regard, we also provide evidence for the contribution of one of such conserved PTMs, dimethylation of K27, to heterochromatin organization during mitosis. Furthermore, our results also identified multiple dH1 isoforms carrying several phosphorylations and/or methylations, illustrating the high structural heterogeneity of dH1. In particular, we identified several non-CDK sites at the N-terminal domain that appear to be hierarchically phosphorylated. This study provides the most comprehensive PTM characterization of any histone H1 variant to date.

  6. Chromatin immunoprecipitation microarrays for identification of genes silenced by histone H3 lysine 9 methylation.

    PubMed

    Kondo, Yutaka; Shen, Lanlan; Yan, Pearlly S; Huang, Tim Hui-Ming; Issa, Jean-Pierre J

    2004-05-11

    Switching from acetylation to methylation at histone H3 lysine 9 (K9) has recently been shown to contribute to euchromatin gene silencing. To identify genes silenced by K9 modifications, we probed a human CpG island microarray with DNA obtained by chromatin immunoprecipitation (ChIP) in a cancer cell line using an anti-H3-K9 methylated antibody or an anti-H3-K9 acetylated antibody. Of the 27 clones with the highest signal ratio of K9 methylation over acetylation (Me/Ac), 13 contained repetitive sequences. Among 14 nonrepetitive clones, we identified 11 genes (seven known and four previously undescribed), one EST, and two unknown fragments. Using ChIP-PCR, all 18 examined clones showed higher ratios of H3-K9 Me/Ac than the active gene control, P21, thus confirming the microarray data. In addition, we found a strong correlation between the K9 Me/Ac ratio and CpG island DNA methylation (R = 0.92, P < 0.01), and five of seven genes examined (megalin, thrombospondin-4, KR18, latrophilin-3, and phosphatidylinositol-3-OH kinase P101 subunit) showed lack of expression by RT-PCR and reactivation by DNA methylation and/or histone deacetylase inhibition, suggesting that these genes are true targets of silencing through histone modifications. All five genes also showed significant DNA methylation in a cell line panel and in primary colon cancers. Our data suggest that CpG island microarray coupled with ChIP can identify novel targets of gene silencing in cancer. This unbiased approach confirms the tight coupling between DNA methylation and histone modifications in cancer and could be used to probe gene silencing in nonneoplastic conditions as well.

  7. Theoretical framework for the histone modification network: modifications in the unstructured histone tails form a robust scale-free network.

    PubMed

    Hayashi, Yohei; Senda, Toshiya; Sano, Norihiko; Horikoshi, Masami

    2009-07-01

    A rapid increase in research on the relationship between histone modifications and their subsequent reactions in the nucleus has revealed that the histone modification system is complex, and robust against point mutations. The prevailing theoretical framework (the histone code hypothesis) is inadequate to explain either the complexity or robustness, making the formulation of a new theoretical framework both necessary and desirable. Here, we develop a model of the regulatory network of histone modifications in which we encode histone modifications as nodes and regulatory interactions between histone modifications as links. This network has scale-free properties and subnetworks with a pseudo-mirror symmetry structure, which supports the robustness of the histone modification network. In addition, we show that the unstructured tail regions of histones are suitable for the acquisition of this scale-free property. Our model and related insights provide the first framework for an overall architecture of a histone modification network system, particularly with regard to the structural and functional roles of the unstructured histone tail region. In general, the post-translational "modification webs" of natively unfolded regions (proteins) may function as signal routers for the robust processing of the large amounts of signaling information.

  8. Replication-coupled chromatin assembly of newly synthesized histones: distinct functions for the histone tail domains.

    PubMed

    Ejlassi-Lassallette, Aïda; Thiriet, Christophe

    2012-02-01

    The maintenance of the genome during replication requires the assembly of nucleosomes with newly synthesized histones. Achieving the deposition of newly synthesized histones in chromatin implies their transport from the cytoplasm to the nucleus at the replication sites. Several lines of evidence have revealed critical functions of the histone tail domains in these conserved cellular processes. In this review, we discuss the role of the amino termini of the nucleosome building blocks, H2A/H2B and H3/H4, in different model systems. The experimental data showed that H2A/H2B tails and H3/H4 tails display distinct functions in nuclear import and chromatin assembly. Furthermore, we describe recent studies exploiting the unique properties of the slime mold, Physarum polycephalum , that have advanced understanding of the function of the highly conserved replication-dependent diacetylation of H4.

  9. Alterations of histone modifications by cobalt compounds

    PubMed Central

    Li, Qin; Ke, Qingdong; Costa, Max

    2009-01-01

    In the present study, we examined the effects of CoCl2 on multiple histone modifications at the global level. We found that in both human lung carcinoma A549 cells and human bronchial epithelial Beas-2B cells, exposure to CoCl2 (≥200 μM) for 24 h increased H3K4me3, H3K9me2, H3K9me3, H3K27me3, H3K36me3, uH2A and uH2B but decreased acetylation at histone H4 (AcH4). Further investigation demonstrated that in A549 cells, the increase in H3K4me3 and H3K27me3 by cobalt ions exposure was probably through enhancing histone methylation processes, as methionine-deficient medium blocked the induction of H3K4me3 and H3K27me3 by cobalt ions, whereas cobalt ions increased H3K9me3 and H3K36me3 by directly inhibiting JMJD2A demethylase activity in vitro, which was probably due to the competition of cobalt ions with iron for binding to the active site of JMJD2A. Furthermore, in vitro ubiquitination and deubiquitination assays revealed that the cobalt-induced histone H2A and H2B ubiquitination is the result of inhibition of deubiquitinating enzyme activity. Microarray data showed that exposed to 200 μM of CoCl2 for 24 h, A549 cells not only increased but also decreased expression of hundreds of genes involved in different cellular functions, including tumorigenesis. This study is the first to demonstrate that cobalt ions altered epigenetic homeostasis in cells. It also sheds light on the possible mechanisms involved in cobalt-induced alteration of histone modifications, which may lead to altered programs of gene expression and carcinogenesis since cobalt at higher concentrations is a known carcinogen. PMID:19376846

  10. Heart failure: the pivotal role of histone deacetylases.

    PubMed

    Hewitson, Ruth; Dargan, James; Collis, David; Green, Aneta; Moorjani, Narain; Ohri, Sunil; Townsend, Paul A

    2013-02-01

    Heart failure, a state in which cardiac output is unable to meet the metabolic demands of the tissues, poses a significant health burden; following an initial hospital admission with heart failure, five-year mortality is close to 50%. Cardiac hypertrophy, characterised by increased cardiomyocyte size and protein synthesis, has deleterious effects when prolonged and contributes to heart failure. Cardiac hypertrophy itself increases risk of morbidity and mortality. Histone deacetylases are chromatin modifiers which deacetylate the N-terminal tails of histones and have been implicated in common cardiac pathologies associated with hypertrophy. There are 18 histone deacetylases separated into four classes. Class I histone deacetylases interact with heat shock proteins and are pro-hypertrophic, class IIa histone deacetylases repress hypertrophy by inhibiting the activity of transcription factors such as myocyte enhancer factor 2. Histone deacetylases present an exciting new target in combating cardiac hypertrophy and progression to heart failure.

  11. Epigenetic Histone Marks of Extended Meta-Polycentric Centromeres of Lathyrus and Pisum Chromosomes

    PubMed Central

    Neumann, Pavel; Schubert, Veit; Fuková, Iva; Manning, Jasper E.; Houben, Andreas; Macas, Jiří

    2016-01-01

    Species of the legume genera Lathyrus and Pisum possess chromosomes that exhibit a unique structure of their centromeric regions, which is clearly apparent during metaphase by the formation of extended primary constrictions which span up to a third of the length of the chromosome. In addition, these species express two different variants of the CenH3 protein which are co-localized in multiple domains along the poleward surface of the primary constrictions. Here, we show that the constrictions represent a distinct type of chromatin differing from the chromosome arms. In metaphase, histone phosphorylation patterns including H3S10ph, H3S28ph, and H3T3ph were observed along the entire constriction, in a way similar to holocentric chromosomes. On the other hand, distribution of phosphorylated H2AT120 was different from that previously reported from either, holocentric and monocentric chromosomes, occurring at chromatin surrounding but not overlapping CenH3 domains. Since some of these phosphorylations play a role in chromatid cohesion, it can be assumed that they facilitate correct chromosome segregation by ensuring that multiple separate CenH3 domains present on the same chromatid are oriented toward the same pole. The constrictions also displayed distinct patterns of histone methylation marks, being enriched in H3K9me2 and depleted in H3K4me3 and H3K27me2 compared to the chromosome arms. Super-resolution fluorescence microscopy revealed that although both CenH3 protein variants are present in all CenH3 domains detected on metaphase chromosomes, they are only partially co-localized while there are chromatin subdomains which are mostly made of only one CenH3 variant. Taken together, these data revealed specific features of extended primary constrictions of Lathyrus and Pisum and support the idea that they may represent an intermediate stage between monocentric and holocentric chromosomes. PMID:26973677

  12. Epigenetic Control of Reprogramming and Transdifferentiation by Histone Modifications.

    PubMed

    Qin, Hua; Zhao, Andong; Zhang, Cuiping; Fu, Xiaobing

    2016-12-01

    Somatic cells can be reprogrammed to pluripotent stem cells or transdifferentiate to another lineage cell type. Much efforts have been made to unravel the epigenetic mechanisms underlying the cell fate conversion. Histone modifications as the major epigenetic regulator are implicated in various aspects of reprogramming and transdifferentiation. Here, we discuss the roles of histone modifications on reprogramming and transdifferentiation and hopefully provide new insights into induction and promotion of the cell fate conversion by modulating histone modifications.

  13. An interactive database for the assessment of histone antibody specificity

    PubMed Central

    Rothbart, Scott B.; Dickson, Bradley M.; Raab, Jesse R.; Grzybowski, Adrian T.; Krajewski, Krzysztof; Guo, Angela H.; Shanle, Erin K.; Josefowicz, Steven Z.; Fuchs, Stephen M.; Allis, C. David; Magnuson, Terry R.; Ruthenburg, Alexander J.; Strahl, Brian D.

    2015-01-01

    SUMMARY Access to high quality antibodies is a necessity for the study of histones and their posttranslational modifications (PTMs). Here we debut The Histone Antibody Specificity Database (http://www.histoneantibodies.com), an online and expanding resource cataloguing the behavior of widely used commercially available histone antibodies by peptide microarray. This interactive web portal provides a critical resource to the biological research community who routinely use these antibodies as detection reagents for a wide range of applications. PMID:26212453

  14. Inhibitors of Histone Deacetylases for Radiosensitization of Prostate Cancer

    DTIC Science & Technology

    2005-02-01

    AD Award Number: W81XWH-04-1-0170 TITLE: Inhibitors of Histone Deacetylases for Radiosensitization of Prostate Cancer PRINCIPAL INVESTIGATOR: Mira 0...of Histone Deacetylases for Radiosensitization W81XWH-04-1-0170 of Prostate Cancer 6. AUTHOR(S) Mira 0. Jung, Ph.D. 7. PERFORMING ORGANIZA TION NAME(S...cellular radiation sensitivity. 14. SUBJECT TERMS 15. NUMBER OF PA GES Radiation sensitivity, histone deacetylase , cytotoxicity 13 16. PRICE CODE 17

  15. A ‘selfish’ B chromosome induces genome elimination by disrupting the histone code in the jewel wasp Nasonia vitripennis

    PubMed Central

    Aldrich, John C.; Leibholz, Alexandra; Cheema, Manjinder S.; Ausiό, Juan; Ferree, Patrick M.

    2017-01-01

    Intragenomic conflict describes a phenomenon in which genetic elements act ‘selfishly’ to gain a transmission advantage at the expense of the whole genome. A non-essential, selfish B chromosome known as Paternal Sex Ratio (PSR) induces complete elimination of the sperm-derived hereditary material in the jewel wasp Nasonia vitripennis. PSR prevents the paternal chromatin from forming chromosomes during the first embryonic mitosis, leading to its loss. Although paternally transmitted, PSR evades self-elimination in order to be inherited. We examined important post-translational modifications to the DNA packaging histones on the normal genome and the PSR chromosome in the fertilized embryo. Three histone marks – H3K9me2,3, H3K27me1, and H4K20me1 – became abnormally enriched and spread to ectopic positions on the sperm’s chromatin before entry into mitosis. In contrast, other histone marks and DNA methylation were not affected by PSR, suggesting that its effect on the paternal genome is specific to a subset of histone marks. Contrary to the paternally derived genome, the PSR chromosome was visibly devoid of the H3K27me1 and H4K20me1 marks. These findings strongly suggest that PSR causes paternal genome elimination by disrupting at least three histone marks following fertilization, while PSR avoids self-elimination by evading two of these marks. PMID:28211924

  16. Interrogating the function of metazoan histones using engineered gene clusters

    PubMed Central

    McKay, Daniel J.; Klusza, Stephen; Penke, Taylor J.R.; Meers, Michael P.; Curry, Kaitlin P.; McDaniel, Stephen L.; Malek, Pamela Y.; Cooper, Stephen W.; Tatomer, Deirdre C.; Lieb, Jason D.; Strahl, Brian D.; Duronio, Robert J.; Matera, A. Gregory

    2015-01-01

    SUMMARY Histones and their post-translational modifications influence the regulation of many DNA-dependent processes. Although an essential role for histone-modifying enzymes in these processes is well established, defining the specific contribution of individual histone residues remains a challenge because many histone-modifying enzymes have non-histone targets. This challenge is exacerbated by the paucity of suitable approaches to genetically engineer histone genes in metazoans. Here, we describe a facile platform in Drosophila for generating and analyzing any desired histone genotype, and we use it to test the in vivo function of three histone residues. We demonstrate that H4K20 is neither essential for DNA replication nor for completion of development, unlike conclusions drawn from analyses of H4K20 methyltransferases. We also show that H3K36 is required for viability and H3K27 is essential for maintenance of cellular identity during development. These findings highlight the power of engineering histones to interrogate genome structure and function in animals. PMID:25669886

  17. Metabolic regulation of histone post-translational modifications

    PubMed Central

    Fan, Jing; Krautkramer, Kimberly A.; Feldman, Jessica L.; Denu, John M.

    2015-01-01

    Histone post-translational modifications regulate transcription and other DNA-templated functions. This process is dynamically regulated by specific modifying enzymes whose activities require metabolites that either serve as co-substrates or act as activators/inhibitors. Therefore, metabolism can influence histone modification by changing local concentrations of key metabolites. Physiologically, the epigenetic response to metabolism is important for nutrient sensing and environment adaption. In pathologic states, the connection between metabolism and histone modification mediates epigenetic abnormality in complex disease. In this review, we summarize recent studies of the molecular mechanisms involved in metabolic regulation of histone modifications and discuss their biological significance. PMID:25562692

  18. Targeting post-translational modifications of histones for cancer therapy.

    PubMed

    Hsu, Y-C; Hsieh, Y-H; Liao, C-C; Chong, L-W; Lee, C-Y; Yu, Y-L; Chou, R-H

    2015-10-30

    Post-translational modifications (PTMs) on histones including acetylation, methylation, phosphorylation, citrullination, ubiquitination, ADP ribosylation, and sumoylation, play important roles in different biological events including chromatin dynamics, DNA replication, and transcriptional regulation. Aberrant histones PTMs leads to abnormal gene expression and uncontrolled cell proliferation, followed by development of cancers. Therefore, targeting the enzymes required for specific histone PTMs holds a lot of potential for cancer treatment. In this review article, we retrospect the latest studies in the regulations of acetylation, methylation, and phosphorylation of histones. We also summarize inhibitors/drugs that target these modifications for cancer treatment.

  19. Rare variant detection using family-based sequencing analysis.

    PubMed

    Peng, Gang; Fan, Yu; Palculict, Timothy B; Shen, Peidong; Ruteshouser, E Cristy; Chi, Aung-Kyaw; Davis, Ronald W; Huff, Vicki; Scharfe, Curt; Wang, Wenyi

    2013-03-05

    Next-generation sequencing is revolutionizing genomic analysis, but this analysis can be compromised by high rates of missing true variants. To develop a robust statistical method capable of identifying variants that would otherwise not be called, we conducted sequence data simulations and both whole-genome and targeted sequencing data analysis of 28 families. Our method (Family-Based Sequencing Program, FamSeq) integrates Mendelian transmission information and raw sequencing reads. Sequence analysis using FamSeq reduced the number of false negative variants by 14-33% as assessed by HapMap sample genotype confirmation. In a large family affected with Wilms tumor, 84% of variants uniquely identified by FamSeq were confirmed by Sanger sequencing. In children with early-onset neurodevelopmental disorders from 26 families, de novo variant calls in disease candidate genes were corrected by FamSeq as mendelian variants, and the number of uniquely identified variants in affected individuals increased proportionally as additional family members were included in the analysis. To gain insight into maximizing variant detection, we studied factors impacting actual improvements of family-based calling, including pedigree structure, allele frequency (common vs. rare variants), prior settings of minor allele frequency, sequence signal-to-noise ratio, and coverage depth (∼20× to >200×). These data will help guide the design, analysis, and interpretation of family-based sequencing studies to improve the ability to identify new disease-associated genes.

  20. Melanoma risk associated with MC1R gene variants in Latvia and the functional analysis of rare variants.

    PubMed

    Ozola, Aija; Azarjana, Kristīne; Doniņa, Simona; Proboka, Guna; Mandrika, Ilona; Petrovska, Ramona; Cēma, Ingrīda; Heisele, Olita; Eņģele, Ludmila; Streinerte, Baiba; Pjanova, Dace

    2013-03-01

    To evaluate the association of melanocortin 1 receptor gene (MC1R) variants with melanoma risk in a Latvian population, the MC1R gene was sequenced in 200 melanoma patients and 200 control persons. A functional study of previously uncharacterized, rare MC1R variants was also performed. In total, 26 different MC1R variants, including two novel variants Val165Ile and Val188Ile, were detected. The highest risk of melanoma was associated with the Arg151Cys variant (odds ratio (OR) 4.47, 95% confidence interval (CI) 2.19-9.14, P<0.001). A gene dosage effect was observed, with melanoma risk for carriers of two variants being twice (OR 3.98, 95% CI 2.15-7.38, P<0.001) that of carriers of one variant (OR 1.98, 95% CI 1.26-3.11, P=0.003). After stratification according to the pigmentation phenotype, the risk of melanoma remained in groups with otherwise protective phenotypes. Functional analyses of eight previously uncharacterized MC1R variants revealed that a subset of them is functionally relevant. Our results support the contribution of MC1R variants to a genetic predisposition to melanoma in Latvia.

  1. Loss-of-Function Variants in Schizophrenia Risk and SETD1A as a Candidate Susceptibility Gene

    PubMed Central

    Takata, Atsushi; Xu, Bin; Ionita-Laza, Iuliana; Roos, J. Louw; Gogos, Joseph A.; Karayiorgou, Maria

    2015-01-01

    SUMMARY Loss-of-function (LOF) (i.e., nonsense, splice site, and frameshift) variants that lead to disruption of gene function are likely to contribute to the etiology of neuropsychiatric disorders. Here, we perform a systematic investigation of the role of both de novo and inherited LOF variants in schizophrenia using exome sequencing data from 231 case and 34 control trios. We identify two de novo LOF variants in the SETD1A gene, which encodes a subunit of his-tone methyltransferase, a finding unlikely to have occurred by chance, and provide evidence for a more general role of chromatin regulators in schizophrenia risk. Transmission pattern analyses reveal that LOF variants are more likely to be transmitted to affected individuals than controls. This is especially true for private LOF variants in genes intolerant to functional genetic variation. These findings highlight the contribution of LOF mutations to the genetic architecture of schizophrenia and provide important insights into disease pathogenesis. PMID:24853937

  2. Epigenetic regulation of GATA4 expression by histone modification in AFP-producing gastric adenocarcinoma.

    PubMed

    Yamamura, Nobuhisa; Kishimoto, Takashi

    2012-08-01

    AFP-producing adenocarcinoma is a variant of adenocarcinoma with high malignancy. Production of AFP suggests enteroblastic or hepatoid differentiation of cancer cells. GATA4 is a key molecule involved in the prenatal development of the stomach and liver. GATA4 is epigenetically silenced by hypermethylation of primer region in many types of cancers including gastric cancer. The aim of this study is to investigate the expression and epigenetic regulation of GATA4 in AFP-producing adenocarcinoma. Immunohistochemical analysis revealed that GATA4 was positive in 3/8 cases of AFP-producing gastric adenocarcinomas and in 28/30 cases of common type adenocarcinomas. Epigenetic modification of GATA4 promoter region was investigated with 3 AFP-producing and 4 common-type gastric cancer cell lines. GATA4 mRNA was detected in 1/3 of AFP-producing and 2/4 of common-type gastric cancer cell lines by RT-PCR. Methylation-specific PCR revealed no GATA4 methylation in any of the AFP-producing gastric cancers, whereas methylation was consistent with GATA4 expression in the common-type gastric cancers. Chromatin immunoprecipitation assay for AFP-producing gastric cancers revealed that histones H3 and H4 were hypoacetylated in the GATA4-negative cells, while they were hyperacetylated in the GATA4-positive cells. Treatment with trichostain A, an inhibitor for histone deacetylase, induced acetylation of histones H3 and H4, and tri-methylation of lysine 4 of histone H3, which was associated with the active transcription of GATA4 in GATA4-negative AFP-producing cells. These results indicated that histone deacetylation is a silencing mechanism for GATA4 expression in AFP-producing gastric cancer cells. Differences between AFP-producing gastric cancer and common-type gastric cancer in terms of the mechanism of GATA4 regulation may be reflected in the phenotypic deviation of AFP-producing gastric cancer from common-type gastric cancer.

  3. Reorganization of Damaged Chromatin by the Exchange of Histone Variant H2A.Z-2

    SciTech Connect

    Nishibuchi, Ikuno; Suzuki, Hidekazu; Kinomura, Aiko; Sun, Jiying; Liu, Ning-Ang; Horikoshi, Yasunori; Shima, Hiroki; Kusakabe, Masayuki; Harata, Masahiko; Fukagawa, Tatsuo; Ikura, Tsuyoshi; Ishida, Takafumi; Nagata, Yasushi; Tashiro, Satoshi

    2014-07-15

    Purpose: The reorganization of damaged chromatin plays an important role in the regulation of the DNA damage response. A recent study revealed the presence of 2 vertebrate H2A.Z isoforms, H2A.Z-1 and H2A.Z-2. However, the roles of the vertebrate H2A.Z isoforms are still unclear. Thus, in this study we examined the roles of the vertebrate H2A.Z isoforms in chromatin reorganization after the induction of DNA double-strand breaks (DSBs). Methods and Materials: To examine the dynamics of H2A.Z isoforms at damaged sites, we constructed GM0637 cells stably expressing each of the green fluorescent protein (GFP)-labeled H2A.Z isoforms, and performed fluorescence recovery after photobleaching (FRAP) analysis and inverted FRAP analysis in combination with microirradiation. Immunofluorescence staining using an anti-RAD51 antibody was performed to study the kinetics of RAD51 foci formation after 2-Gy irradiation of wild-type (WT), H2A.Z-1- and H2A.Z-2-deficient DT40 cells. Colony-forming assays were also performed to compare the survival rates of WT, H2A.Z-1-, and H2A.Z-2-deficient DT40 cells with control, and H2A.Z-1- and H2A.Z-2-depleted U2OS cells after irradiation. Results: FRAP analysis revealed that H2A.Z-2 was incorporated into damaged chromatin just after the induction of DSBs, whereas H2A.Z-1 remained essentially unchanged. Inverted FRAP analysis showed that H2A.Z-2 was released from damaged chromatin. These findings indicated that H2A.Z-2 was exchanged at DSB sites immediately after the induction of DSBs. RAD51 focus formation after ionizing irradiation was disturbed in H2A.Z-2-deficient DT40 cells but not in H2A.Z-1-deficient cells. The survival rate of H2A.Z-2-deficient cells after irradiation was lower than those of WT and H2A.Z-1- DT40 cells. Similar to DT40 cells, H2A.Z-2-depleted U2OS cells were also radiation-sensitive compared to control and H2A.Z-1-depleted cells. Conclusions: We found that vertebrate H2A.Z-2 is involved in the regulation of the DNA damage response at a very early stage, via the damaged chromatin reorganization required for RAD51 focus formation.

  4. Resetting the epigenetic histone code in the MRL-lpr/lpr mouse model of lupus by histone deacetylase inhibition.

    PubMed

    Garcia, Benjamin A; Busby, Scott A; Shabanowitz, Jeffrey; Hunt, Donald F; Mishra, Nilamadhab

    2005-01-01

    The baseline level of gene expression varies between healthy controls and systemic lupus erythematosus (SLE) patients, and among SLE patients themselves. These variations may explain the different clinical manifestations and severity of disease observed in SLE. Epigenetic mechanisms, which involve DNA and histone modifications, are predictably associated with distinct transcriptional states. To understand the interplay between various histone modifications, including acetylation and methylation, and lupus disease, we performed differential expression histone modification analysis in splenocytes from the MRL-lpr/lpr mouse model of lupus. Using stable isotope labeling in combination with mass spectrometry, we found global site-specific hypermethylation (except H3 K4 methylation) and hypoacetylation in histone H3 and H4 MRL-lpr/lpr mice compared to control MRL/MPJ mice. Moreover, we have identified novel histone modifications such as H3 K18 methylation, H4 K31 methylation, and H4 K31 acetylation that are differentially expressed in MRL-lpr/lpr mice compared to controls. Finally, in vivo administration of the histone deacetylase inhibitor trichostatin A (TSA) corrected the site-specific hypoacetylation states on H3 and H4 in MRL-lpr/lpr mice with improvement of disease phenotype. Thus, this study is the first to establish the association between aberrant histone codes and pathogenesis of autoimmune disease SLE. These aberrant post-translational histone modifications can therefore be reset with histone deacetylase inhibition in vivo.

  5. Structure and function of the histone chaperone CIA/ASF1 complexed with histones H3 and H4.

    PubMed

    Natsume, Ryo; Eitoku, Masamitsu; Akai, Yusuke; Sano, Norihiko; Horikoshi, Masami; Senda, Toshiya

    2007-03-15

    CIA (CCG1-interacting factor A)/ASF1, which is the most conserved histone chaperone among the eukaryotes, was genetically identified as a factor for an anti-silencing function (Asf1) by yeast genetic screening. Shortly after that, the CIA-histone-H3-H4 complex was isolated from Drosophila as a histone chaperone CAF-1 stimulator. Human CIA-I/II (ASF1a/b) was identified as a histone chaperone that interacts with the bromodomain-an acetylated-histone-recognizing domain-of CCG1, in the general transcription initiation factor TFIID. Intensive studies have revealed that CIA/ASF1 mediates nucleosome assembly by forming a complex with another histone chaperone in human cells and yeast, and is involved in DNA replication, transcription, DNA repair and silencing/anti-silencing in yeast. CIA/ASF1 was shown as a major storage chaperone for soluble histones in proliferating human cells. Despite all these biochemical and biological functional analyses, the structure-function relationship of the nucleosome assembly/disassembly activity of CIA/ASF1 has remained elusive. Here we report the crystal structure, at 2.7 A resolution, of CIA-I in complex with histones H3 and H4. The structure shows the histone H3-H4 dimer's mutually exclusive interactions with another histone H3-H4 dimer and CIA-I. The carboxy-terminal beta-strand of histone H4 changes its partner from the beta-strand in histone H2A to that of CIA-I through large conformational change. In vitro functional analysis demonstrated that CIA-I has a histone H3-H4 tetramer-disrupting activity. Mutants with weak histone H3-H4 dimer binding activity showed critical functional effects on cellular processes related to transcription. The histone H3-H4 tetramer-disrupting activity of CIA/ASF1 and the crystal structure of the CIA/ASF1-histone-H3-H4 dimer complex should give insights into mechanisms of both nucleosome assembly/disassembly and nucleosome semi-conservative replication.

  6. One-pot refolding of core histones from bacterial inclusion bodies allows rapid reconstitution of histone octamer.

    PubMed

    Lee, Young-Tae; Gibbons, Garrett; Lee, Shirley Y; Nikolovska-Coleska, Zaneta; Dou, Yali

    2015-06-01

    We report an optimized method to purify and reconstitute histone octamer, which utilizes high expression of histones in inclusion bodies but eliminates the time consuming steps of individual histone purification. In the newly modified protocol, Xenopus laevis H2A, H2B, H3, and H4 are expressed individually into inclusion bodies of bacteria, which are subsequently mixed together and denatured in 8M guanidine hydrochloride. Histones are refolded and reconstituted into soluble octamer by dialysis against 2M NaCl, and metal-affinity purified through an N-terminal polyhistidine-tag added on the H2A. After cleavage of the polyhistidine-tag, histone octamer is further purified by size exclusion chromatography. We show that the nucleosomes reconstituted using the purified histone octamer above are fully functional. They serve as effective substrates for the histone methyltransferases DOT1L and MLL1. Small angle X-ray scattering further confirms that the reconstituted nucleosomes have correct structural integration of histone octamer and DNA as observed in the X-ray crystal structure. Our new protocol enables rapid reconstitution of histone octamer with an optimal yield. We expect this simplified approach to facilitate research using recombinant nucleosomes in vitro.

  7. Recognition of Histone H3K4 Trimethylation by the Plant Homeodomain of PHF2 Modulates Histone Demethylation

    SciTech Connect

    Wen, Hong; Li, Jingzhi; Song, Tanjing; Lu, Ming; Kan, Pu-Yeh; Lee, Min Gyu; Sha, Bingdong; Shi, Xiaobing

    2010-10-28

    Distinct lysine methylation marks on histones create dynamic signatures deciphered by the 'effector' modules, although the underlying mechanisms remain unclear. We identified the plant homeodomain- and Jumonji C domain-containing protein PHF2 as a novel histone H3K9 demethylase. We show in biochemical and crystallographic analyses that PHF2 recognizes histone H3K4 trimethylation through its plant homeodomain finger and that this interaction is essential for PHF2 occupancy and H3K9 demethylation at rDNA promoters. Our study provides molecular insights into the mechanism by which distinct effector domains within a protein cooperatively modulate the 'cross-talk' of histone modifications.

  8. Antifungal properties of wheat histones (H1-H4) and purified wheat histone H1

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Wheat (Triticum sp.) histones H1, H2, H3, and H4 were extracted. H1 was further purified. Their activities against fungi with varying degrees of wheat pathogenicity were determined. They included Aspergillus flavus, A. fumigatus, A. niger, F. oxysporum, F. verticillioides, F. solani, F. graminearu...

  9. Essential functions of the histone demethylase lid.

    PubMed

    Li, Ling; Greer, Christina; Eisenman, Robert N; Secombe, Julie

    2010-11-24

    Drosophila Little imaginal discs (Lid) is a recently described member of the JmjC domain class of histone demethylases that specifically targets trimethylated histone H3 lysine 4 (H3K4me3). To understand its biological function, we have utilized a series of Lid deletions and point mutations to assess the role that each domain plays in histone demethylation, in animal viability, and in cell growth mediated by the transcription factor dMyc. Strikingly, we find that lid mutants are rescued to adulthood by either wildtype or enzymatically inactive Lid expressed under the control of its endogenous promoter, demonstrating that Lid's demethylase activity is not essential for development. In contrast, ubiquitous expression of UAS-Lid transgenes lacking its JmjN, C-terminal PHD domain, and C(5)HC(2) zinc finger were unable to rescue lid homozygous mutants, indicating that these domains carry out Lid's essential developmental functions. Although Lid-dependent demethylase activity is not essential, dynamic removal of H3K4me3 may still be an important component of development, as we have observed a genetic interaction between lid and another H3K4me3 demethylase, dKDM2. We also show that Lid's essential C-terminal PHD finger binds specifically to di- and trimethylated H3K4 and that this activity is required for Lid to function in dMyc-induced cell growth. Taken together, our findings highlight the importance of Lid function in the regulated removal and recognition of H3K4me3 during development.

  10. Essential Functions of the Histone Demethylase Lid

    PubMed Central

    Li, Ling; Greer, Christina; Eisenman, Robert N.; Secombe, Julie

    2010-01-01

    Drosophila Little imaginal discs (Lid) is a recently described member of the JmjC domain class of histone demethylases that specifically targets trimethylated histone H3 lysine 4 (H3K4me3). To understand its biological function, we have utilized a series of Lid deletions and point mutations to assess the role that each domain plays in histone demethylation, in animal viability, and in cell growth mediated by the transcription factor dMyc. Strikingly, we find that lid mutants are rescued to adulthood by either wildtype or enzymatically inactive Lid expressed under the control of its endogenous promoter, demonstrating that Lid's demethylase activity is not essential for development. In contrast, ubiquitous expression of UAS-Lid transgenes lacking its JmjN, C-terminal PHD domain, and C5HC2 zinc finger were unable to rescue lid homozygous mutants, indicating that these domains carry out Lid's essential developmental functions. Although Lid-dependent demethylase activity is not essential, dynamic removal of H3K4me3 may still be an important component of development, as we have observed a genetic interaction between lid and another H3K4me3 demethylase, dKDM2. We also show that Lid's essential C-terminal PHD finger binds specifically to di- and trimethylated H3K4 and that this activity is required for Lid to function in dMyc-induced cell growth. Taken together, our findings highlight the importance of Lid function in the regulated removal and recognition of H3K4me3 during development. PMID:21124823

  11. WaveSeq: A Novel Data-Driven Method of Detecting Histone Modification Enrichments Using Wavelets

    PubMed Central

    Mitra, Apratim; Song, Jiuzhou

    2012-01-01

    Background Chromatin immunoprecipitation followed by next-generation sequencing is a genome-wide analysis technique that can be used to detect various epigenetic phenomena such as, transcription factor binding sites and histone modifications. Histone modification profiles can be either punctate or diffuse which makes it difficult to distinguish regions of enrichment from background noise. With the discovery of histone marks having a wide variety of enrichment patterns, there is an urgent need for analysis methods that are robust to various data characteristics and capable of detecting a broad range of enrichment patterns. Results To address these challenges we propose WaveSeq, a novel data-driven method of detecting regions of significant enrichment in ChIP-Seq data. Our approach utilizes the wavelet transform, is free of distributional assumptions and is robust to diverse data characteristics such as low signal-to-noise ratios and broad enrichment patterns. Using publicly available datasets we showed that WaveSeq compares favorably with other published methods, exhibiting high sensitivity and precision for both punctate and diffuse enrichment regions even in the absence of a control data set. The application of our algorithm to a complex histone modification data set helped make novel functional discoveries which further underlined its utility in such an experimental setup. Conclusions WaveSeq is a highly sensitive method capable of accurate identification of enriched regions in a broad range of data sets. WaveSeq can detect both narrow and broad peaks with a high degree of accuracy even in low signal-to-noise ratio data sets. WaveSeq is also suited for application in complex experimental scenarios, helping make biologically relevant functional discoveries. PMID:23029045

  12. Histone Gene Multiplicity and Position Effect Variegation in DROSOPHILA MELANOGASTER

    PubMed Central

    Moore, Gerald D.; Sinclair, Donald A.; Grigliatti, Thomas A.

    1983-01-01

    The histone genes of wild-type Drosophila melanogaster are reiterated 100–150 times per haploid genome and are located in the segment of chromosome 2 that corresponds to polytene bands 39D2-3 to E1-2. The influence of altered histone gene multiplicity on chromatin structure has been assayed by measuring modification of the gene inactivation associated with position effect variegation in genotypes bearing deletions of the 39D-E segment. The proportion of cells in which a variegating gene is active is increased in genotypes that are heterozygous for a deficiency that removes the histone gene complex. Deletions that remove segments adjacent to the histone gene complex have no effect on the expression of variegating genes. Suppression of position effect variegation associated with reduction of histone gene multiplicity applies to both X-linked and autosomal variegating genes. Position effects exerted by both autosomal and sex-chromosome heterochromatin were suppressible by deletions of the histone gene complex. The suppression was independent of the presence of the Y chromosome. A deficiency that deletes only the distal portion of the histone gene complex also has the ability to suppress position effect variegation. Duplication of the histone gene complex did not enhance position effect variegation. Deletion or duplication of the histone gene complex in the maternal genome had no effect on the extent of variegation in progeny whose histone gene multiplicity was normal. These results are discussed with respect to current knowledge of the organization of the histone gene complex and control of its expression. PMID:17246163

  13. Histone lysine crotonylation during acute kidney injury in mice

    PubMed Central

    Ruiz-Andres, Olga; Sanchez-Niño, Maria Dolores; Cannata-Ortiz, Pablo; Ruiz-Ortega, Marta; Egido, Jesus; Ortiz, Alberto; Sanz, Ana Belen

    2016-01-01

    ABSTRACT Acute kidney injury (AKI) is a potentially lethal condition for which no therapy is available beyond replacement of renal function. Post-translational histone modifications modulate gene expression and kidney injury. Histone crotonylation is a recently described post-translational modification. We hypothesized that histone crotonylation might modulate kidney injury. Histone crotonylation was studied in cultured murine proximal tubular cells and in kidneys from mice with AKI induced by folic acid or cisplatin. Histone lysine crotonylation was observed in tubular cells from healthy murine and human kidney tissue. Kidney tissue histone crotonylation increased during AKI. This was reproduced by exposure to the protein TWEAK in cultured tubular cells. Specifically, ChIP-seq revealed enrichment of histone crotonylation at the genes encoding the mitochondrial biogenesis regulator PGC-1α and the sirtuin-3 decrotonylase in both TWEAK-stimulated tubular cells and in AKI kidney tissue. To assess the role of crotonylation in kidney injury, crotonate was used to increase histone crotonylation in cultured tubular cells or in the kidneys in vivo. Crotonate increased the expression of PGC-1α and sirtuin-3, and decreased CCL2 expression in cultured tubular cells and healthy kidneys. Systemic crotonate administration protected from experimental AKI, preventing the decrease in renal function and in kidney PGC-1α and sirtuin-3 levels as well as the increase in CCL2 expression. For the first time, we have identified factors such as cell stress and crotonate availability that increase histone crotonylation in vivo. Overall, increasing histone crotonylation might have a beneficial effect on AKI. This is the first observation of the in vivo potential of the therapeutic manipulation of histone crotonylation in a disease state. PMID:27125278

  14. Thyroid hormone increases bulk histones expression by enhancing translational efficiency.

    PubMed

    Zambrano, Alberto; García-Carpizo, Verónica; Villamuera, Raquel; Aranda, Ana

    2015-01-01

    The expression of canonical histones is normally coupled to DNA synthesis during the S phase of the cell cycle. Replication-dependent histone mRNAs do not contain a poly(A) tail at their 3' terminus, but instead possess a stem-loop motif, the binding site for the stem-loop binding protein (SLBP), which regulates mRNA processing, stability, and relocation to polysomes. Here we show that the thyroid hormone can increase the levels of canonical histones independent of DNA replication. Incubation of mouse embryonic fibroblasts with T3 increases the total levels of histones, and expression of the thyroid hormone receptor β induces a further increase. This is not restricted to mouse embryonic fibroblasts, because T3 also raises histone expression in other cell lines. T3 does not increase histone mRNA or SLBP levels, suggesting that T3 regulates histone expression by a posttranscriptional mechanism. Indeed, T3 enhanced translational efficiency, inducing relocation of histone mRNA to heavy polysomes. Increased translation was associated with augmented transcription of the eukaryotic translation initiation factor 4 γ2 (EIF4G2). T3 induced EIF4G2 protein and mRNA levels and the thyroid hormone receptor bound to the promoter region of the Eif4g2 gene. Induction of EIF4G2 was essential for T3-dependent histone induction, because depletion of this factor abolished histone increase. These results point out the importance of the thyroid hormones on the posttranscriptional regulation of histone biosynthesis in a cell cycle-independent manner and also suggest the potential regulation of eukaryotic translation by the modulation of the initiation factor EIF4G2, which also operates in the translation of canonical mRNAs.

  15. Tungsten exposure causes a selective loss of histone demethylase protein.

    PubMed

    Laulicht-Glick, Freda; Wu, Feng; Zhang, Xiaoru; Jordan, Ashley; Brocato, Jason; Kluz, Thomas; Sun, Hong; Costa, Max

    2017-02-20

    In the course of our investigations into the toxicity of tungstate, we discovered that cellular exposure resulted in the loss of the histone demethylase protein. We specifically investigated the loss of two histone demethylase dioxygenases, JARID1A and JMJD1A. Both of these proteins were degraded in the presence of tungstate and this resulted in increased global levels of H3K4me3 and H3K9me2, the substrates of JARID1A and JMJD1A, respectively. Treatment with MG132 completely inhibited the loss of the demethylase proteins induced by tungstate treatment, suggesting that tungstate activated the proteasomal degradation of these proteins. The changes in global histone marks and loss of histone demethylase protein persisted for at least 48 h after removing sodium tungstate from the culture. The increase in global histone methylation remained when cells were cultured in methionine-free media, indicating that the increased histone methylation did not depend upon any de novo methylation process, but rather was due to the loss of the demethylase protein. Similar increases of H3K4me3 and H3K9me2 were observed in the livers of the mice that were acutely exposed to tungstate via their drinking water. Taken together, our results indicated that tungstate exposure specifically reduced histone demethylase JARID1A and JMJD1A via proteasomal degradation, leading to increased histone methylation.

  16. Heparin defends against the toxicity of circulating histones in sepsis.

    PubMed

    Wang, Feifei; Zhang, Naipu; Li, Biru; Liu, Lanbo; Ding, Lei; Wang, Ying; Zhu, Yimin; Mo, Xi; Cao, Qing

    2015-06-01

    Although circulating histones were demonstrated as major mediators of death in septic mice models, their roles in septic patients are not clarified. The present study sought to evaluate the clinical relevance of the circulating histone levels in septic children, and the antagonizing effects of heparin on circulating histones. Histone levels in the plasma of septic children were significantly higher than healthy controls, and positively correlated with disease severity. Histone treatment could activate NF-κB pathway of the endothelial cells and induce the secretion of large amount of cytokines that further amplify inflammation, subsequently leading to organ damage. Co-injection of low dose heparin with lethal dose histones could protect mouse from organ damage and death by antagonizing circulating histones, and similar effects were also observed in other septic models. Collectively, these findings indicated that circulating histones might serve as key factors in the pathogenesis of sepsis and their levels in plasma might be a marker for disease progression and prognosis. Furthermore, low dose heparin might be an effective therapy to hamper sepsis progression and reduce the mortality.

  17. Effect of adenovirus infection on expression of human histone genes.

    PubMed Central

    Flint, S J; Plumb, M A; Yang, U C; Stein, G S; Stein, J L

    1984-01-01

    The influence of adenovirus type 2 infection of HeLa cells upon expression of human histone genes was examined as a function of the period of infection. Histone RNA synthesis was assayed after run-off transcription in nuclei isolated from mock-infected cells and after various periods of adenovirus infection. Histone protein synthesis was measured by [3H]leucine labeling of intact cells and fluorography of electrophoretically fractionated nuclear and cytoplasmic proteins. The cellular representation of RNA species complementary to more than 13 different human histone genes was determined by RNA blot analysis of total cellular, nuclear or cytoplasmic RNA by using a series of 32P-labeled cloned human histone genes as hybridization probes and also by analysis of 3H-labeled histone mRNA species synthesized in intact cells. By 18 h after infection, HeLa cell DNA synthesis and all parameters of histone gene expression, including transcription and the nuclear and cytoplasmic concentrations of core and H1 mRNA species, were reduced to less than 5 to 10% of the control values. By contrast, transcription and processing of other cellular mRNA sequences have been shown to continue throughout this period of infection. The early period of adenovirus infection was marked by an inhibition of transcription of histone genes that accompanied the reduction in rate of HeLa cell DNA synthesis. These results suggest that the adenovirus-induced inhibition of histone gene expression is mediated in part at the transcriptional level. However, the persistence of histone mRNA species at concentrations comparable to those of mock-infected control cells during the early phase of the infection, despite a reduction in histone gene transcription and histone protein synthesis, implies that histone gene expression is also regulated post-transcriptionally in adenovirus-infected cells. These results suggest that the tight coupling between histone mRNA concentrations and the rate of cellular DNA

  18. Saccharomyces cerevisiae Yta7 Regulates Histone Gene Expression

    PubMed Central

    Gradolatto, Angeline; Rogers, Richard S.; Lavender, Heather; Taverna, Sean D.; Allis, C. David; Aitchison, John D.; Tackett, Alan J.

    2008-01-01

    The Saccharomyces cerevisiae Yta7 protein is a component of a nucleosome bound protein complex that maintains distinct transcriptional zones of chromatin. We previously found that one protein copurifying with Yta7 is the yFACT member Spt16. Epistasis analyses revealed a link between Yta7, Spt16, and other previously identified members of the histone regulatory pathway. In concurrence, Yta7 was found to regulate histone gene transcription in a cell-cycle-dependent manner. Association at the histone gene loci appeared to occur through binding of the bromodomain-like region of Yta7 with the N-terminal tail of histone H3. Our work suggests a mechanism in which Yta7 is localized to chromatin to establish regions of transcriptional silencing, and that one facet of this cellular mechanism is to modulate transcription of histone genes. PMID:18493054

  19. Methylation of histone H3 lysine 9 occurs during translation.

    PubMed

    Rivera, Carlos; Saavedra, Francisco; Alvarez, Francisca; Díaz-Celis, César; Ugalde, Valentina; Li, Jianhua; Forné, Ignasi; Gurard-Levin, Zachary A; Almouzni, Geneviève; Imhof, Axel; Loyola, Alejandra

    2015-10-30

    Histone post-translational modifications are key contributors to chromatin structure and function, and participate in the maintenance of genome stability. Understanding the establishment and maintenance of these marks, along with their misregulation in pathologies is thus a major focus in the field. While we have learned a great deal about the enzymes regulating histone modifications on nucleosomal histones, much less is known about the mechanisms establishing modifications on soluble newly synthesized histones. This includes methylation of lysine 9 on histone H3 (H3K9), a mark that primes the formation of heterochromatin, a critical chromatin landmark for genome stability. Here, we report that H3K9 mono- and dimethylation is imposed during translation by the methyltransferase SetDB1. We discuss the importance of these results in the context of heterochromatin establishment and maintenance and new therapeutic opportunities in pathologies where heterochromatin is perturbed.

  20. Structural Basis of Histone H4 Recognition by p55

    SciTech Connect

    Song,J.; Garlick, J.; Kingston, R.

    2008-01-01

    p55 is a common component of many chromatin-modifying complexes and has been shown to bind to histones. Here, we present a crystal structure of Drosophila p55 bound to a histone H4 peptide. p55, a predicted WD40 repeat protein, recognizes the first helix of histone H4 via a binding pocket located on the side of a ?-propeller structure. The pocket cannot accommodate the histone fold of H4, which must be altered to allow p55 binding. Reconstitution experiments show that the binding pocket is important to the function of p55-containing complexes. These data demonstrate that WD40 repeat proteins use various surfaces to direct the modification of histones.

  1. RNF8-dependent histone modifications regulate nucleosome removal during spermatogenesis.

    PubMed

    Lu, Lin-Yu; Wu, Jiaxue; Ye, Lin; Gavrilina, Galina B; Saunders, Thomas L; Yu, Xiaochun

    2010-03-16

    During spermatogenesis, global nucleosome removal occurs where histones are initially replaced by transition proteins and subsequently by protamines. This chromatin reorganization is thought to facilitate the compaction of the paternal genome into the sperm head and to protect the DNA from damaging agents. Histone ubiquitination has been suggested to be important for sex chromosome inactivation during meiotic prophase and nucleosome removal at postmeiotic stages. However, the mechanisms regulating these ubiquitin-mediated processes are unknown. In this study, we investigate the role of the ubiquitin ligase RNF8 during spermatogenesis and find that RNF8-deficient mice are proficient in meiotic sex chromosome inactivation (MSCI) but deficient in global nucleosome removal. Moreover, we show that RNF8-dependent histone ubiquitination induces H4K16 acetylation, which may be an initial step in nucleosome removal. Thus, our results show that RNF8 plays an important role during spermatogenesis through histone ubiquitination, resulting in trans-histone acetylation and global nucleosome removal.

  2. Immune activation by histones: plusses and minuses in inflammation.

    PubMed

    Pisetsky, David S

    2013-12-01

    Histones are highly cationic proteins that are essential components of the cell nucleus, interacting with DNA to form the nucleosome and regulating transcription. Histones, however, can transit from the cell nucleus during cell death and, once in an extracellular location, can serve as danger signals and activate immune cells. An article in this issue of the European Journal of Immunology [Eur. J. Immunol. 2013. 43: 3336-3342] reports that histones can activate monocyte-derived DCs via the NRLP3 inflammasome to induce the production of IL-1β. As such, histones, which can also stimulate TLRs, may drive events in the immunopathogenesis of a wide range of acute and chronic diseases marked by sterile inflammation. While the mechanism of this stimulation is not known, the positive charge of histones may provide a structural element to promote interaction with cells and activation of downstream signaling systems.

  3. Extracellular DNA and histones: double-edged swords in immunothrombosis.

    PubMed

    Gould, T J; Lysov, Z; Liaw, P C

    2015-06-01

    The existence of extracellular DNA in human plasma, also known as cell-free DNA (cfDNA), was first described in the 1940s. In recent years, there has been a resurgence of interest in the functional significance of cfDNA, particularly in the context of neutrophil extracellular traps (NETs). cfDNA and histones are key components of NETs that aid in the host response to infection and inflammation. However, cfDNA and histones may also exert harmful effects by triggering coagulation, inflammation, and cell death and by impairing fibrinolysis. In this article, we will review the pathologic nature of cfDNA and histones in macrovascular and microvascular thrombosis, including venous thromboembolism, cancer, sepsis, and trauma. We will also discuss the prognostic value of cfDNA and histones in these disease states. Understanding the molecular and cellular pathways regulated by cfDNA and histones may provide novel insights to prevent pathological thrombus formation and vascular occlusion.

  4. Methylation of histone H3 lysine 9 occurs during translation

    PubMed Central

    Rivera, Carlos; Saavedra, Francisco; Alvarez, Francisca; Díaz-Celis, César; Ugalde, Valentina; Li, Jianhua; Forné, Ignasi; Gurard-Levin, Zachary A.; Almouzni, Geneviève; Imhof, Axel; Loyola, Alejandra

    2015-01-01

    Histone post-translational modifications are key contributors to chromatin structure and function, and participate in the maintenance of genome stability. Understanding the establishment and maintenance of these marks, along with their misregulation in pathologies is thus a major focus in the field. While we have learned a great deal about the enzymes regulating histone modifications on nucleosomal histones, much less is known about the mechanisms establishing modifications on soluble newly synthesized histones. This includes methylation of lysine 9 on histone H3 (H3K9), a mark that primes the formation of heterochromatin, a critical chromatin landmark for genome stability. Here, we report that H3K9 mono- and dimethylation is imposed during translation by the methyltransferase SetDB1. We discuss the importance of these results in the context of heterochromatin establishment and maintenance and new therapeutic opportunities in pathologies where heterochromatin is perturbed. PMID:26405197

  5. Variants of Uncertainty

    DTIC Science & Technology

    1981-05-15

    Variants of Uncertainty Daniel Kahneman University of British Columbia Amos Tversky Stanford University DTI-C &%E-IECTE ~JUNO 1i 19 8 1j May 15, 1981... Dennett , 1979) in which different parts have ac- cess to different data, assign then different weights and hold different views of the situation...2robable and t..h1 provable. Oxford- Claredor Press, 1977. Dennett , D.C. Brainstorms. Hassocks: Harvester, 1979. Donchin, E., Ritter, W. & McCallum, W.C

  6. Variants of glycoside hydrolases

    DOEpatents

    Teter, Sarah; Ward, Connie; Cherry, Joel; Jones, Aubrey; Harris, Paul; Yi, Jung

    2013-02-26

    The present invention relates to variants of a parent glycoside hydrolase, comprising a substitution at one or more positions corresponding to positions 21, 94, 157, 205, 206, 247, 337, 350, 373, 383, 438, 455, 467, and 486 of amino acids 1 to 513 of SEQ ID NO: 2, and optionally further comprising a substitution at one or more positions corresponding to positions 8, 22, 41, 49, 57, 113, 193, 196, 226, 227, 246, 251, 255, 259, 301, 356, 371, 411, and 462 of amino acids 1 to 513 of SEQ ID NO: 2 a substitution at one or more positions corresponding to positions 8, 22, 41, 49, 57, 113, 193, 196, 226, 227, 246, 251, 255, 259, 301, 356, 371, 411, and 462 of amino acids 1 to 513 of SEQ ID NO: 2, wherein the variants have glycoside hydrolase activity. The present invention also relates to nucleotide sequences encoding the variant glycoside hydrolases and to nucleic acid constructs, vectors, and host cells comprising the nucleotide sequences.

  7. Variants of glycoside hydrolases

    DOEpatents

    Teter, Sarah; Ward, Connie; Cherry, Joel; Jones, Aubrey; Harris, Paul; Yi, Jung

    2011-04-26

    The present invention relates to variants of a parent glycoside hydrolase, comprising a substitution at one or more positions corresponding to positions 21, 94, 157, 205, 206, 247, 337, 350, 373, 383, 438, 455, 467, and 486 of amino acids 1 to 513 of SEQ ID NO: 2, and optionally further comprising a substitution at one or more positions corresponding to positions 8, 22, 41, 49, 57, 113, 193, 196, 226, 227, 246, 251, 255, 259, 301, 356, 371, 411, and 462 of amino acids 1 to 513 of SEQ ID NO: 2 a substitution at one or more positions corresponding to positions 8, 22, 41, 49, 57, 113, 193, 196, 226, 227, 246, 251, 255, 259, 301, 356, 371, 411, and 462 of amino acids 1 to 513 of SEQ ID NO: 2, wherein the variants have glycoside hydrolase activity. The present invention also relates to nucleotide sequences encoding the variant glycoside hydrolases and to nucleic acid constructs, vectors, and host cells comprising the nucleotide sequences.

  8. Neuroendocrine factors distinguish juvenile psychopathy variants.

    PubMed

    Kimonis, Eva R; Goulter, Natalie; Hawes, David J; Wilbur, Rhonda R; Groer, Maureen W

    2017-03-01

    The characteristic pattern of emotional hypo-reactivity observed in primary psychopathy is not evident in secondary psychopathy, which is thought to originate from childhood adversity and co-occurring anxiety. The main aim of this study was to test whether salivary afternoon cortisol, Dehydroepiandrosterone (DHEA), and cortisol-to-DHEA concentrations, which at high levels indicate risk for chronic stress and poor mental health, distinguished secondary from primary variants of callous-unemotional (CU) traits-the affective component of psychopathy. This aim was achieved by first identifying psychopathy variants using latent profile analysis of CU, anxiety, and aggression scores among 232 incarcerated adolescent boys (M age = 16.75). Based on a subset with neuroendocrine data (n = 201), aggressive secondary CU variants had lower afternoon DHEA concentrations and higher cortisol-to-DHEA ratios and comorbid psychopathology compared with all other groups. In contrast, two primary CU variants (aggressive and non-aggressive types) emerged with profiles characterized by low to average psychopathology and high DHEA levels. Findings contribute to a growing literature base suggesting that biomarkers may distinguish youth on separable developmental pathways to psychopathy.

  9. Preparations of homeostatic thymus hormone consist predominantly of histones 2A and 2B and suggest additional histone functions.

    PubMed Central

    Reichhart, R; Zeppezauer, M; Jörnvall, H

    1985-01-01

    The two major constituents in preparations of the homeostatic thymus hormone (HTH) were purified. Amino acid sequence analysis showed that the components (HTH alpha and HTH beta) are identical to histones H2A and H2B, suggesting the possibility that histones might have hitherto unrecognized occurrence and functions. If the HTH activities are not ascribed to the two histones in the preparation, they could only be derived from minor constituents present in minimal amounts. Therefore, the histone structures were scrutinized for properties of relevance in relation to hormone activities and for similarities with thymic hormones. Similarities between COOH-terminal regions of histones H2A, H2B, and H3 were noticed, as well as some similarities between NH2-terminal regions of histones and parts of recognized thymus hormones and related proteins. Potential signals, resembling cleavage sites in prohormones, are present in the histone structures, and further correlations with recently discovered ubiquitin functions may explain molecular mechanisms for actions of the HTH preparations. None of the observations is significant by itself, but the combined results suggest the hypothesis of different relationships and functions, including hormone-like activities, for some histones. Images PMID:3860828

  10. Structural Basis for the Recognition of Histone H4 by the Histone-Chaperone RbAp46

    PubMed Central

    Murzina, Natalia V.; Pei, Xue-Yuan; Zhang, Wei; Sparkes, Mike; Vicente-Garcia, Jose; Pratap, J. Venkatesh; McLaughlin, Stephen H.; Ben-Shahar, Tom Rolef; Verreault, Alain; Luisi, Ben F.; Laue, Ernest D.

    2008-01-01

    Summary RbAp46 and RbAp48 (pRB-associated proteins p46 and p48, also known as RBBP7 and RBBP4, respectively) are highly homologous histone chaperones that play key roles in establishing and maintaining chromatin structure. We report here the crystal structure of human RbAp46 bound to histone H4. RbAp46 folds into a seven-bladed β propeller structure and binds histone H4 in a groove formed between an N-terminal α helix and an extended loop inserted into blade six. Surprisingly, histone H4 adopts a different conformation when interacting with RbAp46 than it does in either the nucleosome or in the complex with ASF1, another histone chaperone. Our structural and biochemical results suggest that when a histone H3/H4 dimer (or tetramer) binds to RbAp46 or RbAp48, helix 1 of histone H4 unfolds to interact with the histone chaperone. We discuss the implications of our findings for the assembly and function of RbAp46 and RbAp48 complexes. PMID:18571423

  11. Mislocalization of the Drosophila centromere-specific histone CIDpromotes formation of functional ectopic kinetochores

    SciTech Connect

    Heun, Patrick; Erhardt, Sylvia; Blower, Michael D.; Weiss,Samara; Skora, Andrew D.; Karpen, Gary H.

    2006-01-30

    The centromere-specific histone variant CENP-A (CID in Drosophila) is a structural and functional foundation for kinetochore formation and chromosome segregation. Here, we show that overexpressed CID is mislocalized into normally non-centromeric regions in Drosophila tissue culture cells and animals. Analysis of mitoses in living and fixed cells reveals that mitotic delays, anaphase bridges, chromosome fragmentation, and cell and organismal lethality are all direct consequences of CID mislocalization. In addition, proteins that are normally restricted to endogenous kinetochores assemble at a subset of ectopic CID incorporation regions. The presence of microtubule motors and binding proteins, spindle attachments, and aberrant chromosome morphologies demonstrate that these ectopic kinetochores are functional. We conclude that CID mislocalization promotes formation of ectopic centromeres and multicentric chromosomes, which causes chromosome missegregation, aneuploidy, and growth defects. Thus, CENP-A mislocalization is one possible mechanism for genome instability during cancer progression, as well as centromere plasticity during evolution.

  12. Mutations in the histone methyltransferase gene KMT2B cause complex early-onset dystonia.

    PubMed

    Meyer, Esther; Carss, Keren J; Rankin, Julia; Nichols, John M E; Grozeva, Detelina; Joseph, Agnel P; Mencacci, Niccolo E; Papandreou, Apostolos; Ng, Joanne; Barral, Serena; Ngoh, Adeline; Ben-Pazi, Hilla; Willemsen, Michel A; Arkadir, David; Barnicoat, Angela; Bergman, Hagai; Bhate, Sanjay; Boys, Amber; Darin, Niklas; Foulds, Nicola; Gutowski, Nicholas; Hills, Alison; Houlden, Henry; Hurst, Jane A; Israel, Zvi; Kaminska, Margaret; Limousin, Patricia; Lumsden, Daniel; McKee, Shane; Misra, Shibalik; Mohammed, Shekeeb S; Nakou, Vasiliki; Nicolai, Joost; Nilsson, Magnus; Pall, Hardev; Peall, Kathryn J; Peters, Gregory B; Prabhakar, Prab; Reuter, Miriam S; Rump, Patrick; Segel, Reeval; Sinnema, Margje; Smith, Martin; Turnpenny, Peter; White, Susan M; Wieczorek, Dagmar; Wiethoff, Sarah; Wilson, Brian T; Winter, Gidon; Wragg, Christopher; Pope, Simon; Heales, Simon J H; Morrogh, Deborah; Pittman, Alan; Carr, Lucinda J; Perez-Dueñas, Belen; Lin, Jean-Pierre; Reis, Andre; Gahl, William A; Toro, Camilo; Bhatia, Kailash P; Wood, Nicholas W; Kamsteeg, Erik-Jan; Chong, Wui K; Gissen, Paul; Topf, Maya; Dale, Russell C; Chubb, Jonathan R; Raymond, F Lucy; Kurian, Manju A

    2017-02-01

    Histone lysine methylation, mediated by mixed-lineage leukemia (MLL) proteins, is now known to be critical in the regulation of gene expression, genomic stability, cell cycle and nuclear architecture. Despite MLL proteins being postulated as essential for normal development, little is known about the specific functions of the different MLL lysine methyltransferases. Here we report heterozygous variants in the gene KMT2B (also known as MLL4) in 27 unrelated individuals with a complex progressive childhood-onset dystonia, often associated with a typical facial appearance and characteristic brain magnetic resonance imaging findings. Over time, the majority of affected individuals developed prominent cervical, cranial and laryngeal dystonia. Marked clinical benefit, including the restoration of independent ambulation in some cases, was observed following deep brain stimulation (DBS). These findings highlight a clinically recognizable and potentially treatable form of genetic dystonia, demonstrating the crucial role of KMT2B in the physiological control of voluntary movement.

  13. Role of Arginine and Lysine in the Antimicrobial Mechanism of Histone-derived Antimicrobial Peptides

    PubMed Central

    Cutrona, Kara J.; Kaufman, Bethany A.; Figueroa, Dania M.; Elmore, Donald E.

    2015-01-01

    Translocation of cell-penetrating peptides is often promoted by increased content of arginine or other guanidinum groups. However, relatively little research has considered the role of these functional groups on antimicrobial peptide activity. This study compared the activity of three histone-derived antimicrobial peptides—buforin II, DesHDAP1, and parasin— with variants that contain only lysine or arginine cationic residues. These peptides operate via different mechanisms as parasin causes membrane permeabilization while buforin II and DesHDAP1 translocate into bacteria. For all peptides, antibacterial activity increased with increased arginine content. Higher arginine content increased permeabilization for parasin while it improved translocation for buforin II and DesHDAP1. These observations provide insight into the relative importance of arginine and lysine in these antimicrobial peptides. PMID:26555191

  14. Functional Interplay Between Histone H1 and HMG Proteins in Chromatin

    PubMed Central

    Postnikov, Yuri V.; Bustin, Michael

    2015-01-01

    The dynamic interaction of nucleosome binding proteins with their chromatin targets is an important element in regulating the structure and function of chromatin. Histone H1 variants and High Mobility Group (HMG) proteins are ubiquitously expressed in all vertebrate cells, bind dynamically to chromatin, and are known to affect chromatin condensation and the ability of regulatory factors to access their genomic binding sites. Here, we review the studies that focus on the interactions between H1 and HMGs and highlight the functional consequences of the interplay between these architectural chromatin binding proteins. H1 and HMG proteins are mobile molecules that bind to nucleosomes as members of a dynamic protein network. All HMGs compete with H1 for chromatin binding sites, in a dose dependent fashion, but each HMG family has specific effects on the interaction of H1 with chromatin. The interplay between H1 and HMGs affects chromatin organization and plays a role in epigenetic regulation. PMID:26455954

  15. Psychiatric genome-wide association study analyses implicate neuronal, immune and histone pathways

    PubMed Central

    2015-01-01

    Genome-wide association studies (GWAS) of psychiatric disorders have identified multiple genetic associations with such disorders, but better methods are needed to derive the underlying biological mechanisms that these signals indicate. We sought to identify biological pathways in GWAS data from over 60,000 participants from the Psychiatric Genomics Consortium. We developed an analysis framework to rank pathways that requires only summary statistics. We combined this score across disorders to find common pathways across three adult psychiatric disorders: schizophrenia, major depression and bipolar disorder. Histone methylation processes showed the strongest association, and we also found statistically significant evidence for associations with multiple immune and neuronal signaling pathways and with the postsynaptic density. Our study indicates that risk variants for psychiatric disorders aggregate in particular biological pathways and that these pathways are frequently shared between disorders. Our results confirm known mechanisms and suggest several novel insights into the etiology of psychiatric disorders. PMID:25599223

  16. Psychiatric genome-wide association study analyses implicate neuronal, immune and histone pathways.

    PubMed

    2015-02-01

    Genome-wide association studies (GWAS) of psychiatric disorders have identified multiple genetic associations with such disorders, but better methods are needed to derive the underlying biological mechanisms that these signals indicate. We sought to identify biological pathways in GWAS data from over 60,000 participants from the Psychiatric Genomics Consortium. We developed an analysis framework to rank pathways that requires only summary statistics. We combined this score across disorders to find common pathways across three adult psychiatric disorders: schizophrenia, major depression and bipolar disorder. Histone methylation processes showed the strongest association, and we also found statistically significant evidence for associations with multiple immune and neuronal signaling pathways and with the postsynaptic density. Our study indicates that risk variants for psychiatric disorders aggregate in particular biological pathways and that these pathways are frequently shared between disorders. Our results confirm known mechanisms and suggest several novel insights into the etiology of psychiatric disorders.

  17. Histone deacetylases play distinct roles in telomeric VSG expression site silencing in African trypanosomes.

    PubMed

    Wang, Qiao-Ping; Kawahara, Taemi; Horn, David

    2010-09-01

    African trypanosomes evade the host immune response through antigenic variation, which is achieved by periodically expressing different variant surface glycoproteins (VSGs). VSG expression is monoallelic such that only one of approximately 15 telomeric VSG expression sites (ESs) is transcribed at a time. Epigenetic regulation is involved in VSG control but our understanding of the mechanisms involved remains incomplete. Histone deacetylases are potential drug targets for diseases caused by protozoan parasites. Here, using recombinant expression we show that the essential Trypanosoma brucei deacetylases, DAC1 (class I) and DAC3 (class II) display histone deacetylase activity. Both DAC1 and DAC3 are nuclear proteins in the bloodstream stage parasite, while only DAC3 remains concentrated in the nucleus in insect-stage cells. Consistent with developmentally regulated localization, DAC1 antagonizes SIR2rp1-dependent telomeric silencing only in the bloodstream form, indicating a conserved role in the control of silent chromatin domains. In contrast, DAC3 is specifically required for silencing at VSG ES promoters in both bloodstream and insect-stage cells. We conclude that DAC1 and DAC3 play distinct roles in subtelomeric gene silencing and that DAC3 represents the first readily druggable target linked to VSG ES control in the African trypanosome.

  18. Thermodynamics of ligand binding to histone deacetylase like amidohydrolase from Bordetella/Alcaligenes.

    PubMed

    Meyners, Christian; Baud, Matthias G J; Fuchter, Matthew J; Meyer-Almes, Franz-Josef

    2014-03-01

    Thermodynamic studies on ligand-protein binding have become increasingly important in the process of drug design. In combination with structural data and molecular dynamics simulations, thermodynamic studies provide relevant information about the mode of interaction between compounds and their target proteins and therefore build a sound basis for further drug optimization. Using the example of histone deacetylases (HDACs), particularly the histone deacetylase like amidohydrolase (HDAH) from Bordetella/Alcaligenes, a novel sensitive competitive fluorescence resonance energy transfer-based binding assay was developed and the thermodynamics of interaction of both fluorescent ligands and inhibitors to histone deacetylase like amidohydrolase were investigated. The assay consumes only small amounts of valuable target proteins and is suitable for fast kinetic and mechanistic studies as well as high throughput screening applications. Binding affinity increased with increasing length of aliphatic spacers (n = 4-7) between the hydroxamate moiety and the dansyl head group of ligand probes. Van't Hoff plots revealed an optimum in enthalpy contribution to the free energy of binding for the dansyl-ligand with hexyl spacer. The selectivity in the series of dansyl-ligands against human class I HDAC1 but not class II HDACs 4 and 6 increased with the ratio of ΔH(0)/ΔG(0). The data clearly emphasize the importance of thermodynamic signatures as useful general guidance for the optimization of ligands or rational drug design.

  19. Condensed Mitotic Chromosome Structure at Nanometer Resolution Using PALM and EGFP- Histones

    PubMed Central

    Matsuda, Atsushi; Shao, Lin; Boulanger, Jerome; Kervrann, Charles; Carlton, Peter M.; Kner, Peter; Agard, David; Sedat, John W.

    2010-01-01

    Photoactivated localization microscopy (PALM) and related fluorescent biological imaging methods are capable of providing very high spatial resolutions (up to 20 nm). Two major demands limit its widespread use on biological samples: requirements for photoactivatable/photoconvertible fluorescent molecules, which are sometimes difficult to incorporate, and high background signals from autofluorescence or fluorophores in adjacent focal planes in three-dimensional imaging which reduces PALM resolution significantly. We present here a high-resolution PALM method utilizing conventional EGFP as the photoconvertible fluorophore, improved algorithms to deal with high levels of biological background noise, and apply this to imaging higher order chromatin structure. We found that the emission wavelength of EGFP is efficiently converted from green to red when exposed to blue light in the presence of reduced riboflavin. The photon yield of red-converted EGFP using riboflavin is comparable to other bright photoconvertible fluorescent proteins that allow <20 nm resolution. We further found that image pre-processing using a combination of denoising and deconvolution of the raw PALM images substantially improved the spatial resolution of the reconstruction from noisy images. Performing PALM on Drosophila mitotic chromosomes labeled with H2AvD-EGFP, a histone H2A variant, revealed filamentous components of ∼70 nm. This is the first observation of fine chromatin filaments specific for one histone variant at a resolution approximating that of conventional electron microscope images (10–30 nm). As demonstrated by modeling and experiments on a challenging specimen, the techniques described here facilitate super-resolution fluorescent imaging with common biological samples. PMID:20856676

  20. HP1BP3 is a novel histone H1 related protein with essential roles in viability and growth

    PubMed Central

    Garfinkel, Benjamin P.; Melamed-Book, Naomi; Anuka, Eli; Bustin, Michael; Orly, Joseph

    2015-01-01

    The dynamic architecture of chromatin is vital for proper cellular function, and is maintained by the concerted action of numerous nuclear proteins, including that of the linker histone H1 variants, the most abundant family of nucleosome-binding proteins. Here we show that the nuclear protein HP1BP3 is widely expressed in most vertebrate tissues and is evolutionarily and structurally related to the H1 family. HP1BP3 contains three globular domains and a highly positively charged C-terminal domain, resembling similar domains in H1. Fluorescence recovery after photobleaching (FRAP) studies indicate that like H1, binding of HP1BP3 to chromatin depends on both its C and N terminal regions and is affected by the cell cycle and post translational modifications. HP1BP3 contains functional motifs not found in H1 histones, including an acidic stretch and a consensus HP1-binding motif. Transcriptional profiling of HeLa cells lacking HP1BP3 showed altered expression of 383 genes, suggesting a role for HP1BP3 in modulation of gene expression. Significantly, Hp1bp3−/− mice present a dramatic phenotype with 60% of pups dying within 24 h of birth and the surviving animals exhibiting a lifelong 20% growth retardation. We suggest that HP1BP3 is a ubiquitous histone H1 like nuclear protein with distinct and non-redundant functions necessary for survival and growth. PMID:25662603

  1. HP1BP3 is a novel histone H1 related protein with essential roles in viability and growth.

    PubMed

    Garfinkel, Benjamin P; Melamed-Book, Naomi; Anuka, Eli; Bustin, Michael; Orly, Joseph

    2015-02-27

    The dynamic architecture of chromatin is vital for proper cellular function, and is maintained by the concerted action of numerous nuclear proteins, including that of the linker histone H1 variants, the most abundant family of nucleosome-binding proteins. Here we show that the nuclear protein HP1BP3 is widely expressed in most vertebrate tissues and is evolutionarily and structurally related to the H1 family. HP1BP3 contains three globular domains and a highly positively charged C-terminal domain, resembling similar domains in H1. Fluorescence recovery after photobleaching (FRAP) studies indicate that like H1, binding of HP1BP3 to chromatin depends on both its C and N terminal regions and is affected by the cell cycle and post translational modifications. HP1BP3 contains functional motifs not found in H1 histones, including an acidic stretch and a consensus HP1-binding motif. Transcriptional profiling of HeLa cells lacking HP1BP3 showed altered expression of 383 genes, suggesting a role for HP1BP3 in modulation of gene expression. Significantly, Hp1bp3(-/-) mice present a dramatic phenotype with 60% of pups dying within 24 h of birth and the surviving animals exhibiting a lifelong 20% growth retardation. We suggest that HP1BP3 is a ubiquitous histone H1 like nuclear protein with distinct and non-redundant functions necessary for survival and growth.

  2. Epigenetic Inheritance: Histone Bookmarks Across Generations

    PubMed Central

    Campos, Eric I.; Stafford, James M.; Reinberg, Danny

    2014-01-01

    Multiple circuitries ensure that cells respond correctly to the environmental cues within defined cellular programs. There is increasing evidence suggesting that cellular memory for these adaptive processes can be passed on through cell divisions and generations. However, the mechanisms by which this epigenetic information is transferred remain elusive largely because it requires that such memory survive through gross chromatin remodeling events during DNA replication, mitosis, meiosis and developmental reprogramming. Elucidating the processes by which epigenetic information survives and is transmitted is a central challenge in biology. Here we consider recent advances in understanding mechanisms of epigenetic inheritance with a focus on histone segregation at the replication fork and how an epigenetic memory may get passed through the paternal lineage. PMID:25242115

  3. Novel nucleosomal particles containing core histones and linker DNA but no histone H1.

    PubMed

    Cole, Hope A; Cui, Feng; Ocampo, Josefina; Burke, Tara L; Nikitina, Tatiana; Nagarajavel, V; Kotomura, Naoe; Zhurkin, Victor B; Clark, David J

    2016-01-29

    Eukaryotic chromosomal DNA is assembled into regularly spaced nucleosomes, which play a central role in gene regulation by determining accessibility of control regions. The nucleosome contains ∼147 bp of DNA wrapped ∼1.7 times around a central core histone octamer. The linker histone, H1, binds both to the nucleosome, sealing the DNA coils, and to the linker DNA between nucleosomes, directing chromatin folding. Micrococcal nuclease (MNase) digests the linker to yield the chromatosome, containing H1 and ∼160 bp, and then converts it to a core particle, containing ∼147 bp and no H1. Sequencing of nucleosomal DNA obtained after MNase digestion (MNase-seq) generates genome-wide nucleosome maps that are important for understanding gene regulation. We present an improved MNase-seq method involving simultaneous digestion with exonuclease III, which removes linker DNA. Remarkably, we discovered two novel intermediate particles containing 154 or 161 bp, corresponding to 7 bp protruding from one or both sides of the nucleosome core. These particles are detected in yeast lacking H1 and in H1-depleted mouse chromatin. They can be reconstituted in vitro using purified core histones and DNA. We propose that these 'proto-chromatosomes' are fundamental chromatin subunits, which include the H1 binding site and influence nucleosome spacing independently of H1.

  4. Novel chemokine-like activities of histones in tumor metastasis

    PubMed Central

    Chen, Ruochan; Xie, Yangchun; Zhong, Xiao; Fu, Yongmin; Huang, Yan; Zhen, Yixiang; Pan, Pinhua; Wang, Haichao; Bartlett, David L.; Billiar, Timothy R.; Lotze, Michael T.; Zeh, Herbert J.; Fan, Xue-Gong; Tang, Daolin; Kang, Rui

    2016-01-01

    Histones are intracellular nucleosomal components and extracellular damage-associated molecular pattern molecules that modulate chromatin remodeling, as well as the immune response. However, their extracellular roles in cell migration and invasion remain undefined. Here, we demonstrate that histones are novel regulators of tumor metastasis with chemokine-like activities. Indeed, exogenous histones promote both hepatocellular carcinoma (HCC) cell migration and invasion through toll-like receptor (TLR)4, but not TLR2 or the receptor for advanced glycosylation end product. TLR4-mediated activation of nuclear factor-κB (NF-κB) by extracellular signal-regulated kinase (ERK) is required for histone-induced chemokine (e.g., C-C motif ligand 9/10) production. Pharmacological and genetic inhibition of TLR4-ERK-NF-κB signaling impairs histone-induced chemokine production and HCC cell migration. Additionally, TLR4 depletion (by using TLR4−/− mice and TLR4-shRNA) or inhibition of histone release/activity (by administration of heparin and H3 neutralizing antibody) attenuates lung metastasis of HCC cells injected via the tail vein of mice. Thus, histones promote tumor metastasis of HCC cells through the TLR4-NF-κB pathway and represent novel targets for treating patients with HCC. PMID:27623211

  5. Lateral Thinking: How Histone Modifications Regulate Gene Expression.

    PubMed

    Lawrence, Moyra; Daujat, Sylvain; Schneider, Robert

    2016-01-01

    The DNA of each cell is wrapped around histone octamers, forming so-called 'nucleosomal core particles'. These histone proteins have tails that project from the nucleosome and many residues in these tails can be post-translationally modified, influencing all DNA-based processes, including chromatin compaction, nucleosome dynamics, and transcription. In contrast to those present in histone tails, modifications in the core regions of the histones had remained largely uncharacterised until recently, when some of these modifications began to be analysed in detail. Overall, recent work has shown that histone core modifications can not only directly regulate transcription, but also influence processes such as DNA repair, replication, stemness, and changes in cell state. In this review, we focus on the most recent developments in our understanding of histone modifications, particularly those on the lateral surface of the nucleosome. This region is in direct contact with the DNA and is formed by the histone cores. We suggest that these lateral surface modifications represent a key insight into chromatin regulation in the cell. Therefore, lateral surface modifications form a key area of interest and a focal point of ongoing study in epigenetics.

  6. Histone supply regulates S phase timing and cell cycle progression

    PubMed Central

    Günesdogan, Ufuk; Jäckle, Herbert; Herzig, Alf

    2014-01-01

    Eukaryotes package DNA into nucleosomes that contain a core of histone proteins. During DNA replication, nucleosomes are disrupted and re-assembled with newly synthesized histones and DNA. Despite much progress, it is still unclear why higher eukaryotes contain multiple core histone genes, how chromatin assembly is controlled, and how these processes are coordinated with cell cycle progression. We used a histone null mutation of Drosophila melanogaster to show that histone supply levels, provided by a defined number of transgenic histone genes, regulate the length of S phase during the cell cycle. Lack of de novo histone supply not only extends S phase, but also causes a cell cycle arrest during G2 phase, and thus prevents cells from entering mitosis. Our results suggest a novel cell cycle surveillance mechanism that monitors nucleosome assembly without involving the DNA repair pathways and exerts its effect via suppression of CDC25 phosphatase String expression. DOI: http://dx.doi.org/10.7554/eLife.02443.001 PMID:25205668

  7. Histone deacetylase inhibitors promote the tumoricidal effect of HAMLET.

    PubMed

    Brest, Patrick; Gustafsson, Mattias; Mossberg, Ann-Kristin; Gustafsson, Lotta; Duringer, Caroline; Hamiche, Ali; Svanborg, Catharina

    2007-12-01

    Histone deacetylase inhibitors (HDIs) and HAMLET (human alpha-lactalbumin made lethal to tumor cells) interact with histones, modify the structure of chromatin, and trigger tumor cell death. This study investigated how the combination of HDIs and HAMLET influences cell viability, histone acetylation, and DNA integrity. The pretreatment of tumor cells with HDIs was shown to enhance the lethal effect of HAMLET and the histone hyperacetylation response to HDIs increased even further after HAMLET treatment. HDIs and HAMLET were shown to target different histone domains as HAMLET bound tailless core histones, whereas HDIs modify the acetylation of the histone tail. DNA damage in response to HAMLET was increased by HDIs. The DNA repair response (p21WAFI expression) was induced by both agonists but abolished when the two agonists were combined. The results suggest that the synergy of HDIs and HAMLET is based on different but converging death pathways, both involving chromatin alterations. We speculate that HAMLET and HDIs might be combined to promote tumor cell death in vivo.

  8. Increasing Power of Groupwise Association Test with Likelihood Ratio Test

    NASA Astrophysics Data System (ADS)

    Sul, Jae Hoon; Han, Buhm; Eskin, Eleazar

    Sequencing studies have been discovering a numerous number of rare variants, allowing the identification of the effects of rare variants on disease susceptibility. As a method to increase the statistical power of studies on rare variants, several groupwise association tests that group rare variants in genes and detect associations between groups and diseases have been proposed. One major challenge in these methods is to determine which variants are causal in a group, and to overcome this challenge, previous methods used prior information that specifies how likely each variant is causal. Another source of information that can be used to determine causal variants is observation data because case individuals are likely to have more causal variants than control individuals. In this paper, we introduce a likelihood ratio test (LRT) that uses both data and prior information to infer which variants are causal and uses this finding to determine whether a group of variants is involved in a disease. We demonstrate through simulations that LRT achieves higher power than previous methods. We also evaluate our method on mutation screening data of the susceptibility gene for ataxia telangiectasia, and show that LRT can detect an association in real data. To increase the computational speed of our method, we show how we can decompose the computation of LRT, and propose an efficient permutation test. With this optimization, we can efficiently compute an LRT statistic and its significance at a genome-wide level. The software for our method is publicly available at http://genetics.cs.ucla.edu/rarevariants.

  9. Circulating Histones Are Mediators of Trauma-associated Lung Injury

    PubMed Central

    Abrams, Simon T.; Zhang, Nan; Manson, Joanna; Liu, Tingting; Dart, Caroline; Baluwa, Florence; Wang, Susan Siyu; Brohi, Karim; Kipar, Anja; Yu, Weiping

    2013-01-01

    Rationale: Acute lung injury is a common complication after severe trauma, which predisposes patients to multiple organ failure. This syndrome largely accounts for the late mortality that arises and despite many theories, the pathological mechanism is not fully understood. Discovery of histone-induced toxicity in mice presents a new dimension for elucidating the underlying pathophysiology. Objectives: To investigate the pathological roles of circulating histones in trauma-induced lung injury. Methods: Circulating histone levels in patients with severe trauma were determined and correlated with respiratory failure and Sequential Organ Failure Assessment (SOFA) scores. Their cause–effect relationship was studied using cells and mouse models. Measurements and Main Results: In a cohort of 52 patients with severe nonthoracic blunt trauma, circulating histones surged immediately after trauma to levels that were toxic to cultured endothelial cells. The high levels were significantly associated with the incidence of acute lung injury and SOFA scores, as well as markers of endothelial damage and coagulation activation. In in vitro systems, histones damaged endothelial cells, stimulated cytokine release, and induced neutrophil extracellular trap formation and myeloperoxidase release. Cellular toxicity resulted from their direct membrane interaction and resultant calcium influx. In mouse models, cytokines and markers for endothelial damage and coagulation activation significantly increased immediately after trauma or histone infusion. Pathological examinations showed that lungs were the predominantly affected organ with edema, hemorrhage, microvascular thrombosis, and neutrophil congestion. An anti-histone antibody could reduce these changes and protect mice from histone-induced lethality. Conclusions: This study elucidates a new mechanism for acute lung injury after severe trauma and proposes that circulating histones are viable therapeutic targets for improving survival

  10. Structure of Vps75 and Implications for Histone Chaperone Function

    SciTech Connect

    Tang,Y.; Meeth, K.; Jiang, E.; Luo, c.; Marmostein, R.

    2008-01-01

    The vacuolar protein sorting 75 (Vps75) histone chaperone participates in chromatin assembly and disassembly at both active and inactive genes through the preferential binding to histone H3-H4. Vps75 is also one of two histone chaperones, along with antisilencing factor 1, that promotes histone H3-Lys-56 acetylation by the regulation of Ty1 transposition protein 109 (Rtt109) histone acetyltransferase. Here, we report the x-ray crystal structure of Vps75 and carry out biochemical studies to characterize its interaction with Rtt109. We find that the Vps75 structure forms a homodimeric 'headphone' architecture that includes an extended helical dimerization domain and earmuff domains at opposite ends and sides of the dimerization domain. Despite the similar overall architecture with the yeast nucleosome assembly protein 1 and human SET/TAF-1{beta}/INHAT histone chaperones, Vps75 shows several unique features including the relative disposition of the earmuff domains to the dimerization domain, characteristics of the earmuff domains, and a pronounced cleft at the center of the Vps75 dimer. These differences appear to correlate with the unique function of Vps75 to interact with Rtt109 for histone acetylation. Our biochemical studies reveal that two surfaces on the earmuff domain of Vps75 participate in Rtt109 interaction with a stoichiometry of 2:1, thus leaving the pronounced central cleft of the Vps75 dimer largely accessible for histone binding. Taken together, our data provide a structural framework for understanding how Vps75 mediates both nucleosome assembly and histone acetylation by Rtt109.

  11. Histone modification and signalling cascade of the dormancy-associated MADS-box gene, PpMADS13-1, in Japanese pear (Pyrus pyrifolia) during endodormancy.

    PubMed

    Saito, Takanori; Bai, Songling; Imai, Tsuyoshi; Ito, Akiko; Nakajima, Ikuko; Moriguchi, Takaya

    2015-06-01

    Dormancy-associated MADS-box (DAM) genes play an important role in endodormancy phase transition. We investigated histone modification in the DAM homolog (PpMADS13-1) from Japanese pear, via chromatin immunoprecipitation-quantitative PCR, to understand the mechanism behind the reduced expression of the PpMADS13-1 gene towards endodormancy release. Our results indicated that the reduction in the active histone mark by trimethylation of the histone H3 tail at lysine 4 contributed to the reduction of PpMADS13-1 expression towards endodormancy release. In contrast, the inactive histone mark by trimethylation of the histone H3 tail at lysine 27 in PpMADS13-1 locus was quite low, and these levels were more similar to a negative control [normal mouse immunoglobulin G (IgG)] than to a positive control (AGAMOUS) in endodormancy phase transition. The loss of histone variant H2A.Z also coincided with the down-regulation of PpMADS13-1. Subsequently, we investigated the PpMADS13-1 signalling cascade and found that PpCBF2, a pear C-repeated binding factor, regulated PpMADS13-1 expression via interaction of PpCBF2 with the 5'-upstream region of PpMADS13-1 by transient reporter assay. Furthermore, transient reporter assay confirmed no interaction between the PpMADS13-1 protein and the pear FLOWERING LOCUS T genes. Taken together, our results enhance understanding of the molecular mechanisms underlying endodormancy phase transition in Japanese pear.

  12. Histone deacetylases in kidney development: implications for disease and therapy.

    PubMed

    Chen, Shaowei; El-Dahr, Samir S

    2013-05-01

    Histone deacetylases (HDACs) are an evolutionarily conserved group of enzymes that regulate a broad range of biological processes through removal of acetyl groups from histones as well as non-histone proteins. Recent studies using a variety of pharmacological inhibitors and genetic models of HDACs have revealed a central role of HDACs in control of kidney development. These findings provide new insights into the epigenetic mechanisms underlying congenital anomalies of the kidney and urinary tract (CAKUT) and implicate the potential of HDACs as therapeutic targets in kidney diseases, such as cystic kidney diseases and renal cell cancers. Determining the specific functions of individual HDAC members would be an important task of future research.

  13. Histone gene expression and chromatin structure in mammalian cell hybrids

    PubMed Central

    1980-01-01

    DNA isolated from mammalian cell nuclear reveals discrete size patterns when partially digested with micrococcal nuclease. The DNA repeat lengths from different tissues within a species or from different species may vary. These differences have been attributed to the presence of different species of histone H1. To examine the nature of regulation of DNA repeat lengths and their possible relationship to histone H1, we have selected several mouse and human cell lines that differ in their DNA repeat lengths and examined them and their cell hybrids. 24 mouse X human and five mouse X mouse hybrid cell lines were analyzed. All the interspecific hybrids exhibited the repeat pattern characteristic of the murine parent. The mouse intraspecific hybrids had a repeat pattern of only one of the parents. We conclude that the partial human chromosome complements retained in the hybrids assume the repeat lengths exhibited by the mouse cells. Because H1 histones have been implicated in the determination of DNA repeat lengths, we also investigated the regulation of H1 histone expression in these cell hybrids. Purified H1 histones were radioactively labeled in vitro, and individual subfractions were subjected to proteolysis followed by gel electrophoresis. The resulting partial peptide maps off H1 histone subfractions A and B were distinguishable from one another and from different cell lines. In the mouse X human hybrids analyzed, only the mouse H1 histones were detected. These observations were extended to H2b by analysis of the hybrid cell histone by Triton-acid-urea gels. Neither the DNA repeat length nor histone expression is affected by the presence of any specific human chromosome. The fact that human genes are expressed in these hybrids suggests that the H1 histones of one species is able to interact with the chromatin of another species in a biologically funtional conformation. Analysis of the intraspecific PG19 X B82 (mouse X mouse) hybrids reveals the presence of H1

  14. Alternating tandem array of histone and ribosomal RNA gene blocks in the boll weevil

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Histones are the major protein component of the ncleosome. The histone family is made up of a quintet of proteins, four core histones (H2A, H2B, H3 & H4) and the linker histones (H1). Spacers are found between the coding regions. Among insects this quintet of genes is usually clustered and the clust...

  15. Computational identification of novel histone deacetylase inhibitors by docking based QSAR.

    PubMed

    Nair, Syam B; Teli, Mahesh Kumar; Pradeep, H; Rajanikant, G K

    2012-06-01

    Histone deacetylases (HDACs) are enzymes that modify chromatin structure and contribute to aberrant gene expression in cancer. A series compounds with well-assigned HDAC inhibitory activity was used for docking based 3D-QSAR analysis. The 3D-QSAR acquired had excellent correlation coefficient value (q2=0.753) and high Fisher ratio (F=300.2). A validated pharmacophore model (AAAPR) was employed for virtual screening. After manual selection, molecular docking and further refinement, six compounds with good absorption, distribution, metabolism, and excretion (ADME) properties were selected as potential HDAC inhibitors. Further, the molecular interactions of these inhibitors with the HDAC active site residues were discussed in detail.

  16. Gene variants as risk factors for gastroschisis

    PubMed Central

    Yang, Wei; Schultz, Kathleen; Tom, Lauren; Lin, Bin; Carmichael, Suzan L.; Lammer, Edward J.; Shaw, Gary M.

    2016-01-01

    In a population‐based case‐control study in California of 228 infants, we investigated 75 genetic variants in 20 genes and risk of gastroschisis with regard to maternal age, race/ethnicity, vitamin use, and smoking exposure. We hypothesized that genes related to vascular compromise may interact with environmental factors to affect the risk of gastroschisis. Haplotypes were constructed for 75 gene variants using the HaploView program. Risk for gastroschisis associated with each gene variant was calculated for both the homozygotes and the heterozygotes, with the homozygous wildtypes as the referent. Risks were estimated as odds ratios (ORs) with 95% confidence intervals (CIs) by logistic regression. We found 11 gene variants with increased risk and four variants with decreased risk of gastroschisis for heterozygous (ORh) or homozygous variants (ORv) genotypes. These included NOS3 (rs1036145) ORh = 0.4 (95% CI: 0.2–0.7); NOS3 (rs10277237) ORv = 2.7 (95% CI: 1.3–6.0); ADD1 (rs12503220) ORh = 2.9 (95% CI: 1.6–5.4), GNB3 (rs5443) ORh = 0.2 (95% CI: 0.1–0.5), ORv = 0.4 (95% CI: 0.2–0.9); ICAM1 (rs281428) ORv = 6.9 (95% CI: 2.1–22.9), ICAM1 (rs3093030) ORv = 2.6 (95% CI: 1.2–5.6); ICAM4 (rs281438) ORv = 4.9 (95% CI: 1.4–16.6), ICAM5 (rs281417) ORh = 2.1 (95% CI: 1.1–4.1), ORv = 4.8 (95% CI: 1.7–13.6); ICAM5 (rs281440) ORh = 23.7 (95% CI: 5.5–102.5), ORv = 20.6 (95% CI: 3.4–124.3); ICAM5 (rs2075741) ORv = 2.2 (95% CI: 1.1–4.4); NAT1 ORv = 0.3 (95% CI: 0.1–0.9). There were additional associations between several gene variants and gastroschisis among women aged 20–24 and among mothers with and without vitamin use. NOS3, ADD1, ICAM1, ICAM4, and ICAM5 warrant further investigation in additional populations and with the interaction of additional environmental exposures. © 2016 Wiley Periodicals, Inc. PMID:27616475

  17. Histone chaperone spt16 promotes redeposition of the original h3-h4 histones evicted by elongating RNA polymerase.

    PubMed

    Jamai, Adil; Puglisi, Andrea; Strubin, Michel

    2009-08-14

    Nucleosomes are surprisingly dynamic structures in vivo, showing transcription-independent exchange of histones H2A-H2B genome-wide and exchange of H3-H4 mainly within the promoters of transcribed genes. In addition, nucleosomes are disrupted in front of and reassembled behind the elongating RNA polymerase. Here we show that inactivation of histone chaperone Spt16 in yeast results in rapid loss of H2B and H3 from transcribed genes but also from inactive genes. In all cases, histone loss is blocked by a transcription inhibitor, indicating a transcription-dependent event. Thus, nucleosomes are efficiently evicted by the polymerase but do not reform in the absence of Spt16. Yet exchange of nucleosomal H2B with free histones occurs normally, and, unexpectedly, incorporation of new H3 increases at all loci tested. This points to Spt16 restoring normal nucleosome structure by redepositing the displaced H3-H4 histones, thereby preventing incorporation of new histones and perhaps changes in histone modification patterns associated with ongoing transcription.

  18. Methods to study histone chaperone function in nucleosome assembly and chromatin transcription.

    PubMed

    Senapati, Parijat; Sudarshan, Deepthi; Gadad, Shrikanth S; Shandilya, Jayasha; Swaminathan, Venkatesh; Kundu, Tapas K

    2015-01-01

    Histone chaperones are histone interacting proteins that are involved in various stages of histone metabolism in the cell such as histone storage, transport, nucleosome assembly and disassembly. Histone assembly and disassembly are essential processes in certain DNA-templated phenomena such as replication, repair and transcription in eukaryotes. Since the first histone chaperone Nucleoplasmin was discovered in Xenopus, a plethora of histone chaperones have been identified, characterized and their functional significance elucidated in the last 35 years or so. Some of the histone chaperone containing complexes such as FACT have been described to play a significant role in nucleosome disassembly during transcription elongation. We have reported earlier that human Nucleophosmin (NPM1), a histone chaperone belonging to the Nucleoplasmin family, is a co-activator of transcription. In this chapter, we describe several methods that are used to study the histone chaperone activity of proteins and their role in transcription.

  19. Two histone H1-encoding genes of the green alga Volvox carteri with features intermediate between plant and animal genes.

    PubMed

    Lindauer, A; Müller, K; Schmitt, R

    1993-07-15

    Southern hybridization indicated the presence of at least two and possibly four histone H1-encoding genes occurring as singlets in the Volvox carteri genome. Two of these genes, H1-I and H1-II, have been cloned and characterized. Their coding sequences are each interrupted by three introns, but only the position of the second intron is identically conserved in both H1-I and H1-II. The encoded 260-amino-acid (aa) (H1-I) and 240-aa (H1-II) polypeptides possess the typical tripartite organization of animal H1 histones, with variable N- and C-terminal domains flanking a conserved 'globular' DNA-binding domain. Extensive differences in their variable regions suggest that H1-I and H1-II (62% identity) represent two isotypes with different functions. A prominent KAPKAP-KAA motif in the H1-I N-terminal region, similarly seen in single H1 variants of a mosquito and a nematode, has a putative function in packing condensed subtypes of chromatin. Different from higher plants, but like animals, the H1 genes of V. carteri possess a typical 3' palindrome for mRNA processing, resulting in non-polyadenylated mRNAs. Transcription initiates 33 nucleotides (nt) (H1-I) and 26 nt (H1-II) downstream of typical TATA boxes. A putative 20-bp conserved enhancer element upstream of each TATA box closely resembles the consensus sequence associated with the nucleosomal histone-encoding genes in V. carteri [Müller et al., Gene 93 (1990) 167-175] and suggests stringent regulation. Accordingly, transcription of H1 was shown to be restricted to late embryogenesis, when new flagella are produced. We discuss the inferred accessory role of histone H1 proteins in stabilizing axonemal microtubules, as has been recently observed in sea urchin flagella [Multigner et al., Nature 360 (1992) 33-39].

  20. Histone H1 plays a role in heterochromatin formation and VSG expression site silencing in Trypanosoma brucei.

    PubMed

    Povelones, Megan L; Gluenz, Eva; Dembek, Marcin; Gull, Keith; Rudenko, Gloria

    2012-01-01

    The African sleeping sickness parasite Trypanosoma brucei evades the host immune system through antigenic variation of its variant surface glycoprotein (VSG) coat. Although the T. brucei genome contains ∼1500 VSGs, only one VSG is expressed at a time from one of about 15 subtelomeric VSG expression sites (ESs). For antigenic variation to work, not only must the vast VSG repertoire be kept silent in a genome that is mainly constitutively transcribed, but the frequency of VSG switching must be strictly controlled. Recently it has become clear that chromatin plays a key role in silencing inactive ESs, thereby ensuring monoallelic expression of VSG. We investigated the role of the linker histone H1 in chromatin organization and ES regulation in T. brucei. T. brucei histone H1 proteins have a different domain structure to H1 proteins in higher eukaryotes. However, we show that they play a key role in the maintenance of higher order chromatin structure in bloodstream form T. brucei as visualised by electron microscopy. In addition, depletion of histone H1 results in chromatin becoming generally more accessible to endonucleases in bloodstream but not in insect form T. brucei. The effect on chromatin following H1 knock-down in bloodstream form T. brucei is particularly evident at transcriptionally silent ES promoters, leading to 6-8 fold derepression of these promoters. T. brucei histone H1 therefore appears to be important for the maintenance of repressed chromatin in bloodstream form T. brucei. In particular H1 plays a role in downregulating silent ESs, arguing that H1-mediated chromatin functions in antigenic variation in T. brucei.

  1. Mitochondrial DNA variant interactions modify breast cancer risk.

    PubMed

    Covarrubias, Daniel; Bai, Ren-Kui; Wong, Lee-Jun C; Leal, Suzanne M

    2008-01-01

    Interactions between mitochondrial deoxyribonucleic acid (mtDNA) variants and the risk of developing breast cancer were investigated using DNA samples collected from non-Jewish European American breast cancer patients and ethnically age-matched female controls. Logistic regression was used to evaluate two-way interactions between 17 mtDNA variants. To control for multiple testing, empirical P values were calculated using permutation. Odds ratios (ORs) and corresponding 95% confidence intervals (CIs) were calculated to measure the contribution of variants in modifying the risk of developing breast cancer. A highly significant interaction was identified between variants 12308G and 10398G (empirical P value = 0.0028), with results suggesting these variants increase the risk of a woman developing breast cancer (OR = 3.03; 95% CI 1.53-6.11). Nominal significant P values were also observed for interactions between mtDNA variants 709A and 16189C; 4216C and 10398G; 4216C and 16189C; 10398G and 16159C; 13368A and 16189C; and 14766T and 16519C. However, after adjusting for multiple testing, the P values did not remain significant. Although it is important to elucidate the main effect of mtDNA variants on the risk of developing breast cancer, understanding gene x gene interactions will give a greater knowledge of disease etiology and aid in interpreting a woman's risk of developing breast cancer.

  2. Patterns of sperm-specific histone variation in sea stars and sea urchins: primary structural homologies in the N-terminal region of spermatogenic H1.

    PubMed

    Massey, C B; Watts, S A

    1992-04-15

    An electrophoretic characterization of histones from pyloric caeca, testes, and sperm of Asterias vulgaris revealed a sperm/testes-specific variant of histone H1 significantly larger than its somatic counterpart from pyloric caeca. Additional proteins were observed in H1 regions of acetic acid-urea polyacrylamide gels in testicular extracts. Sperm or testis-specific variants of H2B observed in sea urchins were not found in the sea star. Evidence presented suggests that sperm- or testes-specific H1 species of intermediate mobility may arise from a single, slow-migrating H1 species (SpH1). Although an increase in nonspecific DNA binding by nuclear proteins must occur during the process of spermatogenesis, different organisms exhibit various patterns of sperm-specific protein mediating differential binding during the process. Sperm-specific variants of both H1 and H2B histones are observed in sea urchins, while the only variant observed in sea stars during spermatogenesis is SpH1. Sequencing of the N-terminus of SpH1 from A. vulgaris revealed a repeating tetrapeptide in residues 3-6 and 8-11 (Ser-Pro-Arg-Lys and Ser-Pro-Lys-Lys, respectively), homologous to repeats in the N-termini of sperm-specific H1s from sea urchins. Primary structure within critical, variable regions of molecules responsible for nonspecific DNA binding appear conserved in many organisms. The occurrence of repeating tetrapeptides in SpH1 and other DNA binding proteins suggests that such domains may function similarly in various chromatins undergoing regulated or reversible condensation.

  3. An Alternative Approach to ChIP-Seq Normalization Enables Detection of Genome-Wide Changes in Histone H3 Lysine 27 Trimethylation upon EZH2 Inhibition

    PubMed Central

    Yuan, Chih-Chi; Craske, Madeleine Lisa; Labhart, Paul; Guler, Gulfem D.; Arnott, David; Maile, Tobias M.; Busby, Jennifer; Henry, Chisato; Kelly, Theresa K.; Tindell, Charles A.; Jhunjhunwala, Suchit; Zhao, Feng; Hatton, Charlie; Bryant, Barbara M.

    2016-01-01

    Chromatin immunoprecipitation and DNA sequencing (ChIP-seq) has been instrumental in inferring the roles of histone post-translational modifications in the regulation of transcription, chromatin compaction and other cellular processes that require modulation of chromatin structure. However, analysis of ChIP-seq data is challenging when the manipulation of a chromatin-modifying enzyme significantly affects global levels of histone post-translational modifications. For example, small molecule inhibition of the methyltransferase EZH2 reduces global levels of histone H3 lysine 27 trimethylation (H3K27me3). However, standard ChIP-seq normalization and analysis methods fail to detect a decrease upon EZH2 inhibitor treatment. We overcome this challenge by employing an alternative normalization approach that is based on the addition of Drosophila melanogaster chromatin and a D. melanogaster-specific antibody into standard ChIP reactions. Specifically, the use of an antibody that exclusively recognizes the D. melanogaster histone variant H2Av enables precipitation of D. melanogaster chromatin as a minor fraction of the total ChIP DNA. The D. melanogaster ChIP-seq tags are used to normalize the human ChIP-seq data from DMSO and EZH2 inhibitor-treated samples. Employing this strategy, a substantial reduction in H3K27me3 signal is now observed in ChIP-seq data from EZH2 inhibitor treated samples. PMID:27875550

  4. An Alternative Approach to ChIP-Seq Normalization Enables Detection of Genome-Wide Changes in Histone H3 Lysine 27 Trimethylation upon EZH2 Inhibition.

    PubMed

    Egan, Brian; Yuan, Chih-Chi; Craske, Madeleine Lisa; Labhart, Paul; Guler, Gulfem D; Arnott, David; Maile, Tobias M; Busby, Jennifer; Henry, Chisato; Kelly, Theresa K; Tindell, Charles A; Jhunjhunwala, Suchit; Zhao, Feng; Hatton, Charlie; Bryant, Barbara M; Classon, Marie; Trojer, Patrick

    2016-01-01

    Chromatin immunoprecipitation and DNA sequencing (ChIP-seq) has been instrumental in inferring the roles of histone post-translational modifications in the regulation of transcription, chromatin compaction and other cellular processes that require modulation of chromatin structure. However, analysis of ChIP-seq data is challenging when the manipulation of a chromatin-modifying enzyme significantly affects global levels of histone post-translational modifications. For example, small molecule inhibition of the methyltransferase EZH2 reduces global levels of histone H3 lysine 27 trimethylation (H3K27me3). However, standard ChIP-seq normalization and analysis methods fail to detect a decrease upon EZH2 inhibitor treatment. We overcome this challenge by employing an alternative normalization approach that is based on the addition of Drosophila melanogaster chromatin and a D. melanogaster-specific antibody into standard ChIP reactions. Specifically, the use of an antibody that exclusively recognizes the D. melanogaster histone variant H2Av enables precipitation of D. melanogaster chromatin as a minor fraction of the total ChIP DNA. The D. melanogaster ChIP-seq tags are used to normalize the human ChIP-seq data from DMSO and EZH2 inhibitor-treated samples. Employing this strategy, a substantial reduction in H3K27me3 signal is now observed in ChIP-seq data from EZH2 inhibitor treated samples.

  5. High-resolution genome-wide mapping of histone modifications.

    PubMed

    Roh, Tae-young; Ngau, Wing Chi; Cui, Kairong; Landsman, David; Zhao, Keji

    2004-08-01

    The expression patterns of eukaryotic genomes are controlled by their chromatin structure, consisting of nucleosome subunits in which DNA of approximately 146 bp is wrapped around a core of 8 histone molecules. Post-translational histone modifications play an essential role in modifying chromatin structure. Here we apply a combination of SAGE and chromatin immunoprecipitation (ChIP) protocols to determine the distribution of hyperacetylated histones H3 and H4 in the Saccharomyces cerevisiae genome. We call this approach genome-wide mapping technique (GMAT). Using GMAT, we find that the highest acetylation levels are detected in the 5' end of a gene's coding region, but not in the promoter. Furthermore, we show that the histone acetyltransferase, GCN5p, regulates H3 acetylation in the promoter and 5' end of the coding regions. These findings indicate that GMAT should find valuable applications in mapping target sites of chromatin-modifying enzymes.

  6. Directional sliding of histone octamers caused by DNA bending

    NASA Astrophysics Data System (ADS)

    Wang, Peng-Ye; Li, Wei; Dou, Shuo-Xing; Xie, Ping

    2006-03-01

    Chromatin-remodeling complexes such as SWI/SNF and RSC of yeast can perturb the structure of nucleosomes in an ATP-dependent manner. Experimental results prove that this chromatin remodeling process involves DNA bending. We simulate the effect of DNA bending, caused by chromatin-remodeling complexes, on directional sliding of histone octamers by Brownian dynamics simulation. The simulation results show that, after a DNA loop being generated at the side of a nucleosome, the histone octamer slides towards this DNA loop until the loop disappears. The DNA loop size is an important factor affecting the process of directional sliding of the histone octamer. A model for directional sliding of histone octamers induced by chromatin-remodeling complexes is suggested. (This research was supported by National Natural Science Foundation of China, and the Innovation Project of the Chinese Academy of Sciences.) (Email: pywang@aphy.iphy.ac.cn)

  7. A histone demethylase is necessary for regeneration in zebrafish.

    PubMed

    Stewart, Scott; Tsun, Zhi-Yang; Izpisua Belmonte, Juan Carlos

    2009-11-24

    Urodele amphibians and teleost fish regenerate amputated body parts via a process called epimorphic regeneration. A hallmark of this phenomenon is the reactivation of silenced developmental regulatory genes that previously functioned during embryonic patterning. We demonstrate that histone modifications silence promoters of numerous genes involved in zebrafish caudal fin regeneration. Silenced developmental regulatory genes contain bivalent me(3)K4/me(3)K27 H3 histone modifications created by the concerted action of Polycomb (PcG) and Trithorax histone methyltransferases. During regeneration, this silent, bivalent chromatin is converted to an active state by loss of repressive me(3)K27 H3 modifications, occurring at numerous genes that appear to function during regeneration. Loss-of-function studies demonstrate a requirement for a me(3)K27 H3 demethylase during fin regeneration. These results indicate that histone modifications at discreet genomic positions may serve as a crucial regulatory event in the initiation of fin regeneration.

  8. Protein kinase C coordinates histone H3 phosphorylation and acetylation

    PubMed Central

    Darieva, Zoulfia; Webber, Aaron; Warwood, Stacey; Sharrocks, Andrew D

    2015-01-01

    The re-assembly of chromatin following DNA replication is a critical event in the maintenance of genome integrity. Histone H3 acetylation at K56 and phosphorylation at T45 are two important chromatin modifications that accompany chromatin assembly. Here we have identified the protein kinase Pkc1 as a key regulator that coordinates the deposition of these modifications in S. cerevisiae under conditions of replicative stress. Pkc1 phosphorylates the histone acetyl transferase Rtt109 and promotes its ability to acetylate H3K56. Our data also reveal novel cross-talk between two different histone modifications as Pkc1 also enhances H3T45 phosphorylation and this modification is required for H3K56 acetylation. Our data therefore uncover an important role for Pkc1 in coordinating the deposition of two different histone modifications that are important for chromatin assembly. DOI: http://dx.doi.org/10.7554/eLife.09886.001 PMID:26468616

  9. Reshaping chromatin after DNA damage: the choreography of histone proteins.

    PubMed

    Polo, Sophie E

    2015-02-13

    DNA damage signaling and repair machineries operate in a nuclear environment where DNA is wrapped around histone proteins and packaged into chromatin. Understanding how chromatin structure is restored together with the DNA sequence during DNA damage repair has been a topic of intense research. Indeed, chromatin integrity is central to cell functions and identity. However, chromatin shows remarkable plasticity in response to DNA damage. This review presents our current knowledge of chromatin dynamics in the mammalian cell nucleus in response to DNA double strand breaks and UV lesions. I provide an overview of the key players involved in regulating histone dynamics in damaged chromatin regions, focusing on histone chaperones and their concerted action with histone modifiers, chromatin remodelers and repair factors. I also discuss how these dynamics contribute to reshaping chromatin and, by altering the chromatin landscape, may affect the maintenance of epigenetic information.

  10. Suppression of caspase-11 expression by histone deacetylase inhibitors

    SciTech Connect

    Heo, Hyejung; Yoo, Lang; Shin, Ki Soon; Kang, Shin Jung

    2009-01-02

    It has been well documented that histone deacetylase inhibitors suppress inflammatory gene expression. Therefore, we investigated whether histone deacetylase inhibitors modulate the expression of caspase-11 that is known as an inducible caspase regulating both inflammation and apoptosis. In the present study, we show that sodium butyrate and trichostatin A, two structurally unrelated inhibitors of histone deacetylase (HDAC), effectively suppressed the induction of caspase-11 in mouse embryonic fibroblasts stimulated with lipopolysaccharides. Sodium butyrate inhibited the activation of upstream signaling events for the caspase-11 induction such as activation of p38 mitogen-activated protein kinase and c-Jun N-terminal kinase, degradation of inhibitor of {kappa}B, and activation of nuclear factor-{kappa}B. These results suggest that the HDAC inhibitor suppressed cytosolic signaling events for the induction of caspase-11 by inhibiting the deacetylation of non-histone proteins.

  11. Physicochemical modifications of histones and their impact on epigenomics.

    PubMed

    Andreoli, Federico; Del Rio, Alberto

    2014-09-01

    The study of histone post-translational modifications (PTMs) has made extraordinary progress over the past few years and many epigenetic modifications have been identified and found to be associated with fundamental biological processes and pathological conditions. Most histone-modifying enzymes produce specific covalent modifications on histone tails that, taken together, elicit complex and concerted processes. An even higher level of complexity is generated by the action of small molecules that are able to modulate pharmacologically epigenetic enzymes and interfere with these biochemical mechanisms. In this article, we provide an overview of histone PTMs by reviewing and discussing them in terms of their physicochemical properties, emphasizing these concepts in view of recent research efforts to elucidate epigenetic mechanisms and devise future epigenetic drugs.

  12. Histone methylation: a dynamic mark in health, disease and inheritance

    PubMed Central

    Greer, Eric L.; Shi, Yang

    2014-01-01

    Organisms require an appropriate balance of stability and reversibility in gene expression programs, to maintain cell identity or to enable responses to stimuli; epigenetic regulation is integral to this dynamic control. Post-translational modification of histones by methylation is an important and widespread type of chromatin modification that is known to influence biological processes in the context of development and cellular responses. We provide a broad overview of how histone methylation is regulated and leads to biological outcomes, to evaluate how histone methylation contributes to stable or reversible control. The importance of maintaining or reprogramming histone methylation appropriately is illustrated by links to disease and aging, or possibly transmission of traits across generations. PMID:22473383

  13. Diverse functions of WD40 repeat proteins in histone recognition

    PubMed Central

    Suganuma, Tamaki; Pattenden, Samantha G.; Workman, Jerry L.

    2008-01-01

    WD40 repeat proteins have been shown to bind the histone H3 tail at the center of their β-propeller structure. In contrast, in this issue of Genes & Development, Song and colleagues (pp. 1313–1318) demonstrate that the WD40 repeat protein p55 binds a structured region of H4 through a novel binding pocket on the side of β-propeller, illustrating a diversity of histone recognition by WD40 repeat proteins. PMID:18483215

  14. Group B streptococcal opacity variants.

    PubMed Central

    Pincus, S H; Cole, R L; Wessels, M R; Corwin, M D; Kamanga-Sollo, E; Hayes, S F; Cieplak, W; Swanson, J

    1992-01-01

    Colony opacity variants were detected for type III group B streptococci (GBS). Transparent colonies predominate in the parent GBS, with occasional colonies having opaque portions. Two stable opaque variants (1.1 and 1.5) were compared with three transparent clones (1.2, 1.3, and 1.4). All grew well on blood agar and on GC medium, but variant 1.1 failed to grow on Todd-Hewitt medium. Scanning and transmission electron microscopy demonstrated that colony opacity correlated with bacterial aggregation status, with opaque variants forming longer and more organized chains. Opaque-transparent switches were observed in both directions for most variants, with transparent to opaque noted most frequently, but 1.5 did not switch at all. Switching of the opacity phenotype was observed both in vitro and in neonatal mice. Relationships between colony opacity and several cell surface phenomena were explored. (i) Opaque variant 1.1 had two surface proteins (46 and 75 kDa) that were either unique or greatly overexpressed. (ii) Variant 1.1 was deficient in type III polysaccharide, while 1.5 lacked group B antigen. Diminished capsular polysaccharide of variant 1.1 was reflected in reduced negative electrophoretic mobility and in increased buoyant density. (iii) Transparent variant colonies growing closest to a penicillin disk were opaque, but colonial variants did not differ in their sensitivity to penicillin. These data indicate that GBS can exist in both opaque and transparent forms, with opaque appearance occurring by multiple routes. Opaque variants grow poorly on Todd-Hewitt medium generally used for isolation of GBS, so any possible relationships between opacity variation and pathogenesis of GBS infection are unknown. Images PMID:1592825

  15. Variants of windmill nystagmus.

    PubMed

    Choi, Kwang-Dong; Shin, Hae Kyung; Kim, Ji-Soo; Kim, Sung-Hee; Choi, Jae-Hwan; Kim, Hyo-Jung; Zee, David S

    2016-07-01

    Windmill nystagmus is characterized by a clock-like rotation of the beating direction of a jerk nystagmus suggesting separate horizontal and vertical oscillators, usually 90° out of phase. We report oculographic characteristics in three patients with variants of windmill nystagmus in whom the common denominator was profound visual loss due to retinal diseases. Two patients showed a clock-like pattern, while in the third, the nystagmus was largely diagonal (in phase or 180° out of phase) but also periodically changed direction by 180°. We hypothesize that windmill nystagmus is a unique manifestation of "eye movements of the blind." It emerges when the central structures, including the cerebellum, that normally keep eye movements calibrated and gaze steady can no longer perform their task, because they are deprived of the retinal image motion that signals a need for adaptive recalibration.

  16. Mechanism of histone survival during transcription by RNA polymerase II.

    PubMed

    Kulaeva, Olga I; Studitsky, Vasily M

    2010-01-01

    This work is related to and stems from our recent NSMB paper, "Mechanism of chromatin remodeling and recovery during passage of RNA polymerase II" (December 2009). Synopsis. Recent genomic studies from many laboratories have suggested that nucleosomes are not displaced from moderately transcribed genes. Furthermore, histones H3/H4 carrying the primary epigenetic marks are not displaced or exchanged (in contrast to H2A/H2B histones) during moderate transcription by RNA polymerase II (Pol II) in vivo. These exciting observations suggest that the large molecule of Pol II passes through chromatin structure without even transient displacement of H3/H4 histones. The most recent analysis of the RNA polymerase II (Pol II)-type mechanism of chromatin remodeling in vitro (described in our NSMB 2009 paper) suggests that nucleosome survival is tightly coupled with formation of a novel intermediate: a very small intranucleosomal DNA loop (Ø-loop) containing transcribing Pol II. In the submitted manuscript we critically evaluate one of the key predictions of this model: the lack of even transient displacement of histones H3/H4 during Pol II transcription in vitro. The data suggest that, indeed, histones H3/H4 are not displaced during Pol II transcription in vitro. These studies are directly connected with the observation in vivo on the lack of exchange of histones H3/H4 during Pol II transcription.

  17. New histone supply regulates replication fork speed and PCNA unloading

    PubMed Central

    Mejlvang, Jakob; Feng, Yunpeng; Alabert, Constance; Neelsen, Kai J.; Jasencakova, Zuzana; Zhao, Xiaobei; Lees, Michael; Sandelin, Albin; Pasero, Philippe; Lopes, Massimo

    2014-01-01

    Correct duplication of DNA sequence and its organization into chromatin is central to genome function and stability. However, it remains unclear how cells coordinate DNA synthesis with provision of new histones for chromatin assembly to ensure chromosomal stability. In this paper, we show that replication fork speed is dependent on new histone supply and efficient nucleosome assembly. Inhibition of canonical histone biosynthesis impaired replication fork progression and reduced nucleosome occupancy on newly synthesized DNA. Replication forks initially remained stable without activation of conventional checkpoints, although prolonged histone deficiency generated DNA damage. PCNA accumulated on newly synthesized DNA in cells lacking new histones, possibly to maintain opportunity for CAF-1 recruitment and nucleosome assembly. Consistent with this, in vitro and in vivo analysis showed that PCNA unloading is delayed in the absence of nucleosome assembly. We propose that coupling of fork speed and PCNA unloading to nucleosome assembly provides a simple mechanism to adjust DNA replication and maintain chromatin integrity during transient histone shortage. PMID:24379417

  18. Epigenetic targeting of histone deacetylase: therapeutic potential in Parkinson's disease?

    PubMed

    Harrison, Ian F; Dexter, David T

    2013-10-01

    Parkinson's disease (PD) is the most common movement disorder affecting more than 4million people worldwide. The primary motor symptoms of the disease are due to degeneration of dopaminergic nigrostriatal neurons. Dopamine replacement therapies have therefore revolutionised disease management by partially controlling these symptoms. However these drugs can produce debilitating side effects when used long term and do not protect degenerating neurons against death. Recent evidence has highlighted a pathological imbalance in PD between the acetylation and deacetylation of the histone proteins around which deoxyribonucleic acid (DNA) is coiled, in favour of excessive histone deacetylation. This mechanism of adding/removing acetyl groups to histone lysine residues is one of many epigenetic regulatory processes which control the expression of genes, many of which will be essential for neuronal survival. Hence, such epigenetic modifications may have a pathogenic role in PD. It has therefore been hypothesised that if this pathological imbalance can be corrected with the use of histone deacetylase inhibiting agents then neurodegeneration observed in PD can be ameliorated. This article will review the current literature with regard to epigenetic changes in PD and the use of histone deacetylase inhibitors (HDACIs) in PD: examining the evidence of the neuroprotective effects of numerous HDACIs in cellular and animal models of Parkinsonian cell death. Ultimately answering the question: does epigenetic targeting of histone deacetylases hold therapeutic potential in PD?

  19. Introns in histone genes alter the distribution of 3' ends.

    PubMed Central

    Pandey, N B; Chodchoy, N; Liu, T J; Marzluff, W F

    1990-01-01

    Chimeric genes were constructed which contained either a histone or globin promoter, a human alpha-globin coding region as a cDNA or containing one or both intervening sequences, and the 3' end of a mouse histone H2a gene. The genes were introduced into mouse L cells or Chinese Hamster Ovary cells. The genes containing at least one intervening sequence produced two mRNAs in about equal amounts, one which ended at a cryptic polyadenylation site 33 nucleotides 3' to the normal histone mRNA 3' end and one which ended at the normal histone 3' end. In contrast, the same construct containing a globin cDNA yielded mRNA ending only at the correct histone 3' end. Similar proportions of polyadenylated and non-polyadenylated mRNA were obtained when the cryptic polyadenylation signal was replaced with the globin polyadenylation signal. More than 90% of the transcripts were accurately spliced. All of the unspliced transcripts had histone 3' ends. Images PMID:2356116

  20. Structural Mechanisms of Nucleosome Recognition by Linker Histones.

    PubMed

    Zhou, Bing-Rui; Jiang, Jiansheng; Feng, Hanqiao; Ghirlando, Rodolfo; Xiao, T Sam; Bai, Yawen

    2015-08-20

    Linker histones bind to the nucleosome and regulate the structure of chromatin and gene expression. Despite more than three decades of effort, the structural basis of nucleosome recognition by linker histones remains elusive. Here, we report the crystal structure of the globular domain of chicken linker histone H5 in complex with the nucleosome at 3.5 Å resolution, which is validated using nuclear magnetic resonance spectroscopy. The globular domain sits on the dyad of the nucleosome and interacts with both DNA linkers. Our structure integrates results from mutation analyses and previous cross-linking and fluorescence recovery after photobleach experiments, and it helps resolve the long debate on structural mechanisms of nucleosome recognition by linker histones. The on-dyad binding mode of the H5 globular domain is different from the recently reported off-dyad binding mode of Drosophila linker histone H1. We demonstrate that linker histones with different binding modes could fold chromatin to form distinct higher-order structures.

  1. Histone Methylation by Temozolomide; A Classic DNA Methylating Anticancer Drug

    PubMed Central

    Pickard, Amanda J.; Diaz, Anthony Joseph; Mura, Hugo; Nyuwen, Lila; Coello, Daniel; Sheva, Saif; Maria, Nava; Gallo, James M.; Wang, Tieli

    2017-01-01

    Background/Aim The alkylating agent, temozolomide (TMZ), is considered the standard-of-care for high-grade astrocytomas –known as glioblastoma multiforme (GBM)– an aggressive type of tumor with poor prognosis. The therapeutic benefit of TMZ is attributed to formation of DNA adducts involving the methylation of purine bases in DNA. We investigated the effects of TMZ on arginine and lysine amino acids, histone H3 peptides and histone H3 proteins. Materials and Methods Chemical modification of amino acids, histone H3 peptide and protein by TMZ was performed in phosphate buffer at physiological pH. The reaction products were examined by mass spectrometry and western blot analysis. Results Our results showed that TMZ following conversion to a methylating cation, can methylate histone H3 peptide and histone H3 protein, suggesting that TMZ exerts its anticancer activity not only through its interaction with DNA, but also through alterations of protein post-translational modifications. Conclusion The possibility that TMZ can methylate histones involved with epigenetic regulation of protein indicates a potentially unique mechanism of action. The study will contribute to the understanding the anticancer activity of TMZ in order to develop novel targeted molecular strategies to advance the cancer treatment. PMID:27354585

  2. Histone density is maintained during transcription mediated by the chromatin remodeler RSC and histone chaperone NAP1 in vitro

    PubMed Central

    Kuryan, Benjamin G.; Kim, Jessica; Tran, Nancy Nga H.; Lombardo, Sarah R.; Venkatesh, Swaminathan; Workman, Jerry L.; Carey, Michael

    2012-01-01

    ATPases and histone chaperones facilitate RNA polymerase II (pol II) elongation on chromatin. In vivo, the coordinated action of these enzymes is necessary to permit pol II passage through a nucleosome while restoring histone density afterward. We have developed a biochemical system recapitulating this basic process. Transcription through a nucleosome in vitro requires the ATPase remodels structure of chromatin (RSC) and the histone chaperone nucleosome assembly protein 1 (NAP1). In the presence of NAP1, RSC generates a hexasome. Despite the propensity of RSC to evict histones, NAP1 reprograms the reaction such that the hexasome is retained on the template during multiple rounds of transcription. This work has implications toward understanding the mechanism of pol II elongation on chromatin. PMID:22308335

  3. Association of global levels of histone modifications with recurrence-free survival in stage IIB and III esophageal squamous cell carcinomas.

    PubMed

    I, Hoseok; Ko, Eunkyung; Kim, Yujin; Cho, Eun Yoon; Han, Joungho; Park, Joobae; Kim, Kwhanmien; Kim, Duk-Hwan; Shim, Young Mog

    2010-02-01

    This study was aimed at understanding the effects of histone modifications on recurrence-free survival (RFS) after esophagectomy in esophageal squamous cell carcinoma (ESCC). The acetylation of histone H3 lysine (H3K9Ac), histone H3 lysine 18 (H3K18Ac), and histone H4 lysine 12 (H4K12Ac), and the dimethylation of histone H3 lysine 9 (H3K9diMe) and histone H4 arginine 3 (H4R3diMe) were analyzed by immunohistochemistry in 237 ESCCs. The K-means clustering algorithm was used to identify unique patterns of histone modifications. At a median follow-up of 5.1 years, 109 (46%) of 237 patients had developed recurrence of disease. Mean global levels of H3K9Ac, H3K18Ac, H3K9diMe, H4K12Ac, and H4R3diMe were 81.5%, 65.1%, 80.3%, 45.9%, and 27.4%, respectively. In the analysis of individual histones, a 1% increase in the global level of H3K18Ac in pathologic stage III worsened RFS at 1.009 times [95% confidence interval (CI), 1.001-1.016; P = 0.03], after adjusting for age, sex, and operative method. Cluster analysis also showed significant effects of histone modifications on RFS. For stage IIB cancers, Cox proportional hazards analysis showed that RFS of cluster 1, with high global levels of H3K18Ac and H4R3diMe, was 2.79 times poorer (95% CI, 1.14-6.27; P = 0.008) than that of cluster 2, with low levels. RFS for stage III cancers was also poorer in cluster 1 than cluster 2 (adjusted hazard ratio, 2.42; 95% CI, 1.10-5.34; P = 0.02). In conclusion, the present study suggests that global levels of histone modifications in ESCC may be an independent prognostic factor of RFS.

  4. Election 2016: Voting on Variants.

    PubMed

    Cho, Raymond J; Collisson, Eric A

    2016-07-01

    Genome sequencing studies increasingly identify variants of unknown significance in provocative genes. Kim and colleagues present a system with which to functionally annotate such variants in a high-throughput, biologically relevant series of assays. Cancer Discov; 6(7); 694-6. ©2016 AACRSee related article by Kim et al., p. 714.

  5. PTMs on H3 variants before chromatin assembly potentiate their final epigenetic state.

    PubMed

    Loyola, Alejandra; Bonaldi, Tiziana; Roche, Danièle; Imhof, Axel; Almouzni, Geneviève

    2006-10-20

    Histone posttranslational modifications (PTMs) and sequence variants regulate genome function. Although accumulating evidence links particular PTM patterns with specific genomic loci, our knowledge concerning where and when these PTMs are imposed remains limited. Here, we find that lysine methylation is absent prior to histone incorporation into chromatin, except at H3K9. Nonnucleosomal H3.1 and H3.3 show distinct enrichments in H3K9me, such that H3.1 contains more K9me1 than H3.3. In addition, H3.3 presents other modifications, including K9/K14 diacetylated and K9me2. Importantly, H3K9me3 was undetectable in both nonnucleosomal variants. Notably, initial modifications on H3 variants can potentiate the action of enzymes as exemplified with Suv39HMTase to produce H3K9me3 as found in pericentric heterochromatin. Although the set of initial modifications present on H3.1 is permissive for further modifications, in H3.3 a subset cannot be K9me3. Thus, initial modifications impact final PTMs within chromatin.

  6. Histone as future drug target for malaria.

    PubMed

    Rawat, D S; Lumb, V; Sharma, Y D; Pasha, S T; Singh, G

    2007-06-01

    Malaria continues to be a major cause of mortality and morbidity in tropical countries and affecting around 100 countries of the world. As per WHO estimates, 300-500 million are being infected and 1-3 million deaths annually due to malaria. With the emerging knowledge about genome sequence of all the three counterparts involved in the disease of malaria, the parasite Plasmodium, vector Anopheles and host Homo sapien have helped the scientists to understand interactions between them. Simultaneous advancement in technology further improves the prospects to discover new targets for vaccines and drugs. Though the malaria vaccine is still far away in this situation there is need to develop a potent and affordable drug(s). Histones are the key protein of chromatin and play an important role in DNA packaging, replication and gene expression. They also show frequent post-translation modifications. The specific combinations of these posttranslational modifications are thought to alter chromatin structure by forming epigenetic bar codes that specify either transient or heritable patterns of genome function. Chromatin regulators and upstream pathways are therefore seen as promising targets for development of therapeutic drugs.

  7. The Role of Electrostatic Interactions in Binding of Histone H3K4me2/3 to the Sgf29 Tandem Tudor Domain.

    PubMed

    Pieters, Bas J G E; Meulenbroeks, Erik; Belle, Roman; Mecinović, Jasmin

    2015-01-01

    Several reader domain proteins that specifically recognize methyllysine-containing histones contain the negatively-charged aspartate or glutamate residues as part of the aromatic cage. Herein, we report thermodynamic analyses for the recognition of histone H3K4me3 and H3K4me2 by the tandem tudor domain of Sgf29 and its recognition site variants. Small uncharged and large aromatic substitutions on the Asp266 site resulted in a significant decrease in binding affinities for both H3K4me3 and H3K4me2, demonstrating the role of the negative charge of Asp266 in the readout process by Sgf29. This study emphasizes the essential contribution of electrostatic interactions to the overall binding affinity, and reveals that the underlying mechanisms for the recognition of Kme2/3 depend on the composition and arrangement of the aromatic cage.

  8. The Role of Electrostatic Interactions in Binding of Histone H3K4me2/3 to the Sgf29 Tandem Tudor Domain

    PubMed Central

    Pieters, Bas J. G. E.; Meulenbroeks, Erik; Belle, Roman; Mecinović, Jasmin

    2015-01-01

    Several reader domain proteins that specifically recognize methyllysine-containing histones contain the negatively-charged aspartate or glutamate residues as part of the aromatic cage. Herein, we report thermodynamic analyses for the recognition of histone H3K4me3 and H3K4me2 by the tandem tudor domain of Sgf29 and its recognition site variants. Small uncharged and large aromatic substitutions on the Asp266 site resulted in a significant decrease in binding affinities for both H3K4me3 and H3K4me2, demonstrating the role of the negative charge of Asp266 in the readout process by Sgf29. This study emphasizes the essential contribution of electrostatic interactions to the overall binding affinity, and reveals that the underlying mechanisms for the recognition of Kme2/3 depend on the composition and arrangement of the aromatic cage. PMID:26421618

  9. Post-Training Intrahippocampal Inhibition of Class I Histone Deacetylases Enhances Long-Term Object-Location Memory

    ERIC Educational Resources Information Center

    Hawk, Joshua D.; Florian, Cedrick; Abel, Ted

    2011-01-01

    Long-term memory formation involves covalent modification of the histone proteins that package DNA. Reducing histone acetylation by mutating histone acetyltransferases impairs long-term memory, and enhancing histone acetylation by inhibiting histone deacetylases (HDACs) improves long-term memory. Previous studies using HDAC inhibitors to enhance…

  10. A variety of DNA-binding and multimeric proteins contain the histone fold motif.

    PubMed Central

    Baxevanis, A D; Arents, G; Moudrianakis, E N; Landsman, D

    1995-01-01

    The histone fold motif has previously been identified as a structural feature common to all four core histones and is involved in both histone-histone and histone-DNA interactions. Through the use of a novel motif searching method, a group of proteins containing the histone fold motif has been established. The proteins in this group are involved in a wide variety of functions related mostly to DNA metabolism. Most of these proteins engage in protein-protein or protein-DNA interactions, as do their core histone counterparts. Among these, CCAAT-specific transcription factor CBF and its yeast homologue HAP are two examples of multimeric complexes with different component subunits that contain the histone fold motif. The histone fold proteins are distantly related, with a relatively small degree of absolute sequence similarity. It is proposed that these proteins may share a similar three-dimensional conformation despite the lack of significant sequence similarity. PMID:7651829

  11. Open and closed: the roles of linker histones in plants and animals.

    PubMed

    Over, Ryan S; Michaels, Scott D

    2014-03-01

    Histones package DNA in all eukaryotes and play key roles in regulating gene expression. Approximately 150 base pairs of DNA wraps around an octamer of core histones to form the nucleosome, the basic unit of chromatin. Linker histones compact chromatin further by binding to and neutralizing the charge of the DNA between nucleosomes. It is well established that chromatin packing is regulated by a complex pattern of posttranslational modifications (PTMs) to core histones, but linker histone function is less well understood. In this review, we describe the current understanding of the many roles that linker histones play in cellular processes, including gene regulation, cell division, and development, while putting the linker histone in the context of other nuclear proteins. Although intriguing roles for plant linker histones are beginning to emerge, much of our current understanding comes from work in animal systems. Many unanswered questions remain and additional work is required to fully elucidate the complex processes mediated by linker histones in plants.

  12. Quantitative Histone Mass Spectrometry Identifies Elevated Histone H3 Lysine 27 (Lys27) Trimethylation in Melanoma*

    PubMed Central

    Sengupta, Deepanwita; Byrum, Stephanie D.; Avaritt, Nathan L.; Davis, Lauren; Shields, Bradley; Mahmoud, Fade; Reynolds, Matthew; Orr, Lisa M.; Mackintosh, Samuel G.; Shalin, Sara C.; Tackett, Alan J.

    2016-01-01

    Normal cell growth is characterized by a regulated epigenetic program that drives cellular activities such as gene transcription, DNA replication, and DNA damage repair. Perturbation of this epigenetic program can lead to events such as mis-regulation of gene transcription and diseases such as cancer. To begin to understand the epigenetic program correlated to the development of melanoma, we performed a novel quantitative mass spectrometric analysis of histone post-translational modifications mis-regulated in melanoma cell culture as well as patient tumors. Aggressive melanoma cell lines as well as metastatic melanoma were found to have elevated histone H3 Lys27 trimethylation (H3K27me3) accompanied by overexpressed methyltransferase EZH2 that adds the specific modification. The altered epigenetic program that led to elevated H3K27me3 in melanoma cell culture was found to directly silence transcription of the tumor suppressor genes RUNX3 and E-cadherin. The EZH2-mediated silencing of RUNX3 and E-cadherin transcription was also validated in advanced stage human melanoma tissues. This is the first study focusing on the detailed epigenetic mechanisms leading to EZH2-mediated silencing of RUNX3 and E-cadherin tumor suppressors in melanoma. This study underscores the utility of using high resolution mass spectrometry to identify mis-regulated epigenetic programs in diseases such as cancer, which could ultimately lead to the identification of biological markers for diagnostic and prognostic applications. PMID:26621846

  13. Interaction of short peptides with FITC-labeled wheat histones and their complexes with deoxyribooligonucleotides.

    PubMed

    Fedoreyeva, L I; Smirnova, T A; Kolomijtseva, G Ya; Khavinson, V Kh; Vanyushin, B F

    2013-02-01

    Judging from fluorescence modulation (quenching), short peptides (Ala-Glu-Asp-Gly, Glu-Asp-Arg, Ala-Glu-Asp-Leu, Lys-Glu-Asp-Gly, Ala-Glu-Asp-Arg, and Lys-Glu-Asp-Trp) bind with FITC-labeled wheat histones H1, H2B, H3, and H4. This results from the interaction of the peptides with the N-terminal histone regions that contain respective and seemingly homologous peptide-binding motifs. Because homologous amino acid sequences in wheat core histones were not found, the peptides seem to bind with some core histone regions having specific conformational structure. Peptide binding with histones and histone-deoxyribooligonucleotide complexes depends on the nature of the histone and the primary structures of the peptides and oligonucleotides; thus, it is site specific. Histones H1 bind preferentially with single-stranded oligonucleotides by homologous sites in the C-terminal region of the protein. Unlike histone H1, the core histones bind predominantly with double-stranded methylated oligonucleotides and methylated DNA. Stern-Volmer constants of interaction of histone H1 and core histones with double-stranded hemimethylated oligonucleotides are higher compared with that of binding with unmethylated ones. DNA or deoxyribooligonucleotides in a complex with histones can enhance or inhibit peptide binding. It is suggested that site-specific interactions of short biologically active peptides with histone tails can serve in chromatin as control epigenetic mechanisms of regulation of gene activity and cellular differentiation.

  14. Cellobiohydrolase variants and polynucleotides encoding same

    DOEpatents

    Wogulis, Mark

    2013-09-24

    The present invention relates to variants of a parent cellobiohydrolase II. The present invention also relates to polynucleotides encoding the variants; nucleic acid constructs, vectors, and host cells comprising the polynucleotides; and methods of using the variants.

  15. Cellobiohydrolase variants and polynucleotides encoding same

    DOEpatents

    Wogulis, Mark

    2014-10-14

    The present invention relates to variants of a parent cellobiohydrolase II. The present invention also relates to polynucleotides encoding the variants; nucleic acid constructs, vectors, and host cells comprising the polynucleotides; and methods of using the variants.

  16. Cellobiohydrolase variants and polynucleotides encoding the same

    DOEpatents

    Wogulis, Mark

    2014-09-09

    The present invention relates to variants of a parent cellobiohydrolase. The present invention also relates to polynucleotides encoding the cellobiohydrolase variants; nucleic acid constructs, vectors, and host cells comprising the polynucleotides; and methods of using the cellobiohydrolase variants.

  17. Structural and Histone Binding Ability Characterizations of Human PWWP Domains

    SciTech Connect

    Wu, Hong; Zeng, Hong; Lam, Robert; Tempel, Wolfram; Amaya, Maria F.; Xu, Chao; Dombrovski, Ludmila; Qiu, Wei; Wang, Yanming; Min, Jinrong

    2013-09-25

    The PWWP domain was first identified as a structural motif of 100-130 amino acids in the WHSC1 protein and predicted to be a protein-protein interaction domain. It belongs to the Tudor domain 'Royal Family', which consists of Tudor, chromodomain, MBT and PWWP domains. While Tudor, chromodomain and MBT domains have long been known to bind methylated histones, PWWP was shown to exhibit histone binding ability only until recently. The PWWP domain has been shown to be a DNA binding domain, but sequence analysis and previous structural studies show that the PWWP domain exhibits significant similarity to other 'Royal Family' members, implying that the PWWP domain has the potential to bind histones. In order to further explore the function of the PWWP domain, we used the protein family approach to determine the crystal structures of the PWWP domains from seven different human proteins. Our fluorescence polarization binding studies show that PWWP domains have weak histone binding ability, which is also confirmed by our NMR titration experiments. Furthermore, we determined the crystal structures of the BRPF1 PWWP domain in complex with H3K36me3, and HDGF2 PWWP domain in complex with H3K79me3 and H4K20me3. PWWP proteins constitute a new family of methyl lysine histone binders. The PWWP domain consists of three motifs: a canonical {beta}-barrel core, an insertion motif between the second and third {beta}-strands and a C-terminal {alpha}-helix bundle. Both the canonical {beta}-barrel core and the insertion motif are directly involved in histone binding. The PWWP domain has been previously shown to be a DNA binding domain. Therefore, the PWWP domain exhibits dual functions: binding both DNA and methyllysine histones.

  18. Rare Copy Number Variants

    PubMed Central

    Grozeva, Detelina; Kirov, George; Ivanov, Dobril; Jones, Ian R.; Jones, Lisa; Green, Elaine K.; St Clair, David M.; Young, Allan H.; Ferrier, Nicol; Farmer, Anne E.; McGuffin, Peter; Holmans, Peter A.; Owen, Michael J.; O’Donovan, Michael C.; Craddock, Nick

    2015-01-01

    Context Recent studies suggest that copy number variation in the human genome is extensive and may play an important role in susceptibility to disease, including neuropsychiatric disorders such as schizophrenia and autism. The possible involvement of copy number variants (CNVs) in bipolar disorder has received little attention to date. Objectives To determine whether large (>100 000 base pairs) and rare (found in <1% of the population) CNVs are associated with susceptibility to bipolar disorder and to compare with findings in schizophrenia. Design A genome-wide survey of large, rare CNVs in a case-control sample using a high-density microarray. Setting The Wellcome Trust Case Control Consortium. Participants There were 1697 cases of bipolar disorder and 2806 nonpsychiatric controls. All participants were white UK residents. Main Outcome Measures Overall load of CNVs and presence of rare CNVs. Results The burden of CNVs in bipolar disorder was not increased compared with controls and was significantly less than in schizophrenia cases. The CNVs previously implicated in the etiology of schizophrenia were not more common in cases with bipolar disorder. Conclusions Schizophrenia and bipolar disorder differ with respect to CNV burden in general and association with specific CNVs in particular. Our data are consistent with the possibility that possession of large, rare deletions may modify the phenotype in those at risk of psychosis: those possessing such events are more likely to be diagnosed as having schizophrenia, and those without them are more likely to be diagnosed as having bipolar disorder. PMID:20368508

  19. Remodeling sperm chromatin in Xenopus laevis egg extracts: the role of core histone phosphorylation and linker histone B4 in chromatin assembly

    PubMed Central

    1994-01-01

    We find that the remodeling of the condensed Xenopus laevis sperm nucleus into the paternal pronucleus in egg extracts is associated with phosphorylation of the core histones H2A, H2A.X and H4, and uptake of a linker histone B4 and a HMG 2 protein. Histone B4 is required for the assembly of chromatosome structures in the pronucleus. However neither B4 nor core histone phosphorylation are required for the assembly of spaced nucleosomal arrays. We suggest that the spacing of nucleosomal arrays is determined by interaction between adjacent histone octamers under physiological assembly conditions. PMID:8045925

  20. Heteromorphic variants of chromosome 9

    PubMed Central

    2013-01-01

    Background Heterochromatic variants of pericentromere of chromosome 9 are reported and discussed since decades concerning their detailed structure and clinical meaning. However, detailed studies are scarce. Thus, here we provide the largest ever done molecular cytogenetic research based on >300 chromosome 9 heteromorphism carriers. Results In this study, 334 carriers of heterochromatic variants of chromosome 9 were included, being 192 patients from Western Europe and the remainder from Easter-European origin. A 3-color-fluorescence in situ hybridization (FISH) probe-set directed against for 9p12 to 9q13~21.1 (9het-mix) and 8 different locus-specific probes were applied for their characterization. The 9het-mix enables the characterization of 21 of the yet known 24 chromosome 9 heteromorphic patterns. In this study, 17 different variants were detected including five yet unreported; the most frequent were pericentric inversions (49.4%) followed by 9qh-variants (23.9%), variants of 9ph (11.4%), cenh (8.2%), and dicentric- (3.8%) and duplication-variants (3.3%). For reasons of simplicity, a new short nomenclature for the yet reported 24 heteromorphic patterns of chromosome 9 is suggested. Six breakpoints involved in four of the 24 variants could be narrowed down using locus-specific probes. Conclusions Based on this largest study ever done in carriers of chromosome 9 heteromorphisms, three of the 24 detailed variants were more frequently observed in Western than in Eastern Europe. Besides, there is no clear evidence that infertility is linked to any of the 24 chromosome 9 heteromorphic variants. PMID:23547710

  1. Histone deacetylase inhibitors (HDACIs): multitargeted anticancer agents

    PubMed Central

    Ververis, Katherine; Hiong, Alison; Karagiannis, Tom C; Licciardi, Paul V

    2013-01-01

    Histone deacetylase (HDAC) inhibitors are an emerging class of therapeutics with potential as anticancer drugs. The rationale for developing HDAC inhibitors (and other chromatin-modifying agents) as anticancer therapies arose from the understanding that in addition to genetic mutations, epigenetic changes such as dysregulation of HDAC enzymes can alter phenotype and gene expression, disturb homeostasis, and contribute to neoplastic growth. The family of HDAC inhibitors is large and diverse. It includes a range of naturally occurring and synthetic compounds that differ in terms of structure, function, and specificity. HDAC inhibitors have multiple cell type-specific effects in vitro and in vivo, such as growth arrest, cell differentiation, and apoptosis in malignant cells. HDAC inhibitors have the potential to be used as monotherapies or in combination with other anticancer therapies. Currently, there are two HDAC inhibitors that have received approval from the US FDA for the treatment of cutaneous T-cell lymphoma: vorinostat (suberoylanilide hydroxamic acid, Zolinza) and depsipeptide (romidepsin, Istodax). More recently, depsipeptide has also gained FDA approval for the treatment of peripheral T-cell lymphoma. Many more clinical trials assessing the effects of various HDAC inhibitors on hematological and solid malignancies are currently being conducted. Despite the proven anticancer effects of particular HDAC inhibitors against certain cancers, many aspects of HDAC enzymes and HDAC inhibitors are still not fully understood. Increasing our understanding of the effects of HDAC inhibitors, their targets and mechanisms of action will be critical for the advancement of these drugs, especially to facilitate the rational design of HDAC inhibitors that are effective as antineoplastic agents. This review will discuss the use of HDAC inhibitors as multitargeted therapies for malignancy. Further, we outline the pharmacology and mechanisms of action of HDAC inhibitors while

  2. Variants of beta-glucosidases

    SciTech Connect

    Fidantsef, Ana; Lamsa, Michael; Gorre-Clancy, Brian

    2014-10-07

    The present invention relates to variants of a parent beta-glucosidase, comprising a substitution at one or more positions corresponding to positions 142, 183, 266, and 703 of amino acids 1 to 842 of SEQ ID NO: 2 or corresponding to positions 142, 183, 266, and 705 of amino acids 1 to 844 of SEQ ID NO: 70, wherein the variant has beta-glucosidase activity. The present invention also relates to nucleotide sequences encoding the variant beta-glucosidases and to nucleic acid constructs, vectors, and host cells comprising the nucleotide sequences.

  3. Variants of beta-glucosidase

    SciTech Connect

    Fidantsef, Ana; Lamsa, Michael; Gorre-Clancy, Brian

    2015-07-14

    The present invention relates to variants of a parent beta-glucosidase, comprising a substitution at one or more positions corresponding to positions 142, 183, 266, and 703 of amino acids 1 to 842 of SEQ ID NO: 2 or corresponding to positions 142, 183, 266, and 705 of amino acids 1 to 844 of SEQ ID NO: 70, wherein the variant has beta-glucosidase activity. The present invention also relates to nucleotide sequences encoding the variant beta-glucosidases and to nucleic acid constructs, vectors, and host cells comprising the nucleotide sequences.

  4. Variants of beta-glucosidase

    DOEpatents

    Fidantsef, Ana; Lamsa, Michael; Gorre-Clancy, Brian

    2009-12-29

    The present invention relates to variants of a parent beta-glucosidase, comprising a substitution at one or more positions corresponding to positions 142, 183, 266, and 703 of amino acids 1 to 842 of SEQ ID NO: 2 or corresponding to positions 142, 183, 266, and 705 of amino acids 1 to 844 of SEQ ID NO: 70, wherein the variant has beta-glucosidase activity. The present invention also relates to nucleotide sequences encoding the variant beta-glucosidases and to nucleic acid constructs, vectors, and host cells comprising the nucleotide sequences.

  5. Variants of beta-glucosidases

    DOEpatents

    Fidantsef, Ana; Lamsa, Michael; Clancy, Brian Gorre

    2008-08-19

    The present invention relates to variants of a parent beta-glucosidase, comprising a substitution at one or more positions corresponding to positions 142, 183, 266, and 703 of amino acids 1 to 842 of SEQ ID NO: 2 or corresponding to positions 142, 183, 266, and 705 of amino acids 1 to 844 of SEQ ID NO: 70, wherein the variant has beta-glucosidase activity. The present invention also relates to nucleotide sequences encoding the variant beta-glucosidases and to nucleic acid constructs, vectors, and host cells comprising the nucleotide sequences.

  6. Differences in the binding of H1 variants to DNA. Cooperativity and linker-length related distribution.

    PubMed

    Clark, D J; Thomas, J O

    1988-12-01

    A study of the complexes formed between short linear DNA and three H1 variants, a typical somatic H1, and the extreme variants H5, from chicken erythrocytes, and spH1 from sea urchin sperm, has revealed differences between H1, H5 and spH1 that have implications for chromatin structure and folding. 1. All three histones bind cooperatively to DNA in 35 mM NaCl forming similar, but not identical, rod-like complexes. With sufficiently long DNA the complexes may be circular, circles forming more easily with H5 and spH1 than with H1. 2. The binding of H5 and spH1 to DNA is cooperative even in 5 mM NaCl, resulting in well-defined thin filaments that appear to contain two DNA molecules bridged by histone molecules. In contrast, H1 binds distributively over all the DNA molecules in 5 mM NaCl, but forms short stretches similar in appearance to the thin filaments formed with H5 and spH1. Rods appear to arise from the intertwining of regular thin filaments containing cooperatively bound histone molecules on raising the NaCl concentration to 35 mM. 3. The compositions of the rods correspond to one histone molecule for about every 47 bp (H1), 81 bp (H5) and 112 bp (spH1), suggesting average spacings of 24 bp (H1), 41 bp (H5) and 56 bp (spH1) in the component thin (double) filaments. Strikingly, these values are proportional to the linker lengths of the chromatins in which the particular H1 variant is the main or sole H1.

  7. Confirmed rare copy number variants implicate novel genes in schizophrenia.

    PubMed

    Tam, Gloria W C; van de Lagemaat, Louie N; Redon, Richard; Strathdee, Karen E; Croning, Mike D R; Malloy, Mary P; Muir, Walter J; Pickard, Ben S; Deary, Ian J; Blackwood, Douglas H R; Carter, Nigel P; Grant, Seth G N

    2010-04-01

    Understanding how cognitive processes including learning, memory, decision making and ideation are encoded by the genome is a key question in biology. Identification of sets of genes underlying human mental disorders is a path towards this objective. Schizophrenia is a common disease with cognitive symptoms, high heritability and complex genetics. We have identified genes involved with schizophrenia by measuring differences in DNA copy number across the entire genome in 91 schizophrenia cases and 92 controls in the Scottish population. Our data reproduce rare and common variants observed in public domain data from >3000 schizophrenia cases, confirming known disease loci as well as identifying novel loci. We found copy number variants in PDE10A (phosphodiesterase 10A), CYFIP1 [cytoplasmic FMR1 (Fragile X mental retardation 1)-interacting protein 1], K(+) channel genes KCNE1 and KCNE2, the Down's syndrome critical region 1 gene RCAN1 (regulator of calcineurin 1), cell-recognition protein CHL1 (cell adhesion molecule with homology with L1CAM), the transcription factor SP4 (specificity protein 4) and histone deacetylase HDAC9, among others (see http://www.genes2cognition.org/SCZ-CNV). Integrating the function of these many genes into a coherent model of schizophrenia and cognition is a major unanswered challenge.

  8. Differential effect of H1 variant overexpression on cell cycle progression and gene expression.

    PubMed Central

    Brown, D T; Alexander, B T; Sittman, D B

    1996-01-01

    To identify functional differences among non-allelic variants of the mammalian H1 linker histones a system for the overexpression of individual H1 variants in vivo was developed. Mouse 3T3 cells were transformed with an expression vector containing the coding regions for the H1c or H10 variant under the control of an inducible promoter. Stable, single colony transformants, in which the normal stoichiometry of H1 variants was perturbed, displayed normal viability, unaltered morphology and no long-term growth arrest. However, upon release from synchronization at different points in the cell cycle transformants significantly overproducing H10 exhibited transient inhibition of both G1 and S phase progression. Overexpression of H1c to comparable levels had no effect on cell cycle progression. Analysis of transcript levels for several cell cycle-regulated and housekeeping genes indicated that overexpression of H10 resulted in significantly reduced expression of all genes tested. Surprisingly, overexpression of H1c to comparable levels resulted in either a negligible effect or, in some cases, a dramatic increase in transcript levels. These results support the suggestion that functional differences exist among H1 variants. PMID:8602362

  9. Biochemical Studies on Methylglyoxal-Mediated Glycated Histones: Implications for Presence of Serum Antibodies against the Glycated Histones in Patients with Type 1 Diabetes Mellitus.

    PubMed

    Ansari, Nadeem A; Dash, Debabrata

    2013-01-01

    Reactive carbonyl species (RCS) mainly reacts with lysine and arginine residues of proteins to form advanced glycation end products (AGEs). Histone was glycoxidated with glyoxal and methylglyoxal. It was characterized by polyacrylamide gel electrophoresis and quenching studies involving penicillamine and aminoguanidine as carbonyl scavengers. Further characterization of histone modified with methylglyoxal was done by UV, fluorescence, and IR spectrophotometry. Spectral analysis of the protein clearly demonstrates structural perturbation in the histone by methylglyoxal. Methylglyoxal-induces cross-linking in the protein leading to aggregation. Role of methylglyoxal mediated glycoxidation of histone in type 1 diabetes was also undertaken. Antibodies were detected against glycoxidated histone in sera of type 1 diabetes patients by solid-phase enzyme immunoassay. The findings indicate that as a result of structural perturbation in histone by methylglyoxal, the modified histone may be involved in production of serum antibodies in the diabetes patients.

  10. The Diversity of Histone Versus Nonhistone Sirtuin Substrates

    PubMed Central

    Martínez-Redondo, Paloma

    2013-01-01

    The members of the Sir2 family, or sirtuins, are major regulators of the response to different types of stress. The members of the family have adapted to increasing complexities throughout evolution and have become diversified by increasing their number, specificity, and localization and acquiring novel functions. Sirtuins have been consistently implicated in the cross-talk between the genomic information and environment from the prokaryotes onward. Evidence suggests that in the transition to eukaryotes, histones became one of the basic and most conserved targets of the family, to the extent that in yeast and mammals, sirtuins were originally described as NAD+-dependent histone deacetylases and classified as class III histone deacetylases. A growing number of studies have determined that sirtuins also target a wide range of nonhistone proteins. Many of these targets are also directly or indirectly related to chromatin regulation. The number of targets has grown considerably in the last decade but has provoked an ill-founded discussion that neglects the importance of histones as sirtuin targets. In this review, we summarize our knowledge regarding the range of sirtuin targets described to date and discuss the different functional implications of histone and nonhistone targets throughout evolution. PMID:24020006

  11. Force-extension relation of DNA-histone complexes

    NASA Astrophysics Data System (ADS)

    Levine, A. J.; Henle, Mark L.; Chou, Tom

    2007-03-01

    In eukaryotic cells, DNA is packaged inside the nucleus in the form of chromatin, a structure whose basic repeat unit, known as the nucleosome, consists of DNA wrapped around a cylindrical complex of histone proteins. In order for the cell to function properly, these nucleosome complexes must be stable at equilibrium. At the same time, the cell must be able to gain access to the genomic information contained within the DNA, which it can achieve by exerting forces on the nucleosomes that cause the DNA to unwrap from the histones. Single molecule mechanical manipulation techniques, in which DNA/histone complexes are disrupted by an external force, can provide information not only about the equilibrium structure of these complexes, but also about the forces and displacements required to access the DNA in the nucleosome. In this talk, we derive the force-extension relation for these complexes. We allow for the DNA to unwrap from the histones in both a continuous and discontinuous fashion; that is, we allow the histones to ``pop'' off of the DNA, releasing a large amount of DNA in the process. We also include the conformational fluctuations of the unwrapped portions of the DNA.

  12. Calcium-mediated histone modifications regulate alternative splicing in cardiomyocytes.

    PubMed

    Sharma, Alok; Nguyen, Hieu; Geng, Cuiyu; Hinman, Melissa N; Luo, Guangbin; Lou, Hua

    2014-11-18

    In cardiomyocytes, calcium is known to control gene expression at the level of transcription, whereas its role in regulating alternative splicing has not been explored. Here we report that, in mouse primary or embryonic stem cell-derived cardiomyocytes, increased calcium levels induce robust and reversible skipping of several alternative exons from endogenously expressed genes. Interestingly, we demonstrate a calcium-mediated splicing regulatory mechanism that depends on changes of histone modifications. Specifically, the regulation occurs through changes in calcium-responsive kinase activities that lead to alterations in histone modifications and subsequent changes in the transcriptional elongation rate and exon skipping. We demonstrate that increased intracellular calcium levels lead to histone hyperacetylation along the body of the genes containing calcium-responsive alternative exons by disrupting the histone deacetylase-to-histone acetyltransferase balance in the nucleus. Consequently, the RNA polymerase II elongation rate increases significantly on those genes, resulting in skipping of the alternative exons. These studies reveal a mechanism by which calcium-level changes in cardiomyocytes impact on the output of gene expression through altering alternative pre-mRNA splicing patterns.

  13. The proteasome and epigenetics: zooming in on histone modifications.

    PubMed

    Bach, Svitlana V; Hegde, Ashok N

    2016-08-01

    The proteasome is a structural complex of many proteins that degrades substrates marked by covalent linkage to ubiquitin. Many years of research has shown a role for ubiquitin-proteasome-mediated proteolysis in synaptic plasticity and memory mainly in degrading synaptic, cytoplasmic and nuclear proteins. Recent work indicates that the proteasome has wider proteolytic and non-proteolytic roles in processes such as histone modifications that affect synaptic plasticity and memory. In this review, we assess the evidence gathered from neuronal as well as non-neuronal cell types regarding the function of the proteasome in positive or negative regulation of posttranslational modifications of histones, such as acetylation, methylation and ubiquitination. We discuss the critical roles of the proteasome in clearing excess histone proteins in various cellular contexts and the possible non-proteolytic functions in regulating transcription of target genes. In addition, we summarize the current literature on diverse chromatin-remodeling machineries, such as histone acetyltransferases, deacetylates, methyltransferases and demethylases, as targets for proteasomal degradation across experimental models. Lastly, we provide a perspective on how proteasomal regulation of histone modifications may modulate synaptic plasticity in the nervous system.

  14. Glycation and glycoxidation of histones by ADP-ribose.

    PubMed

    Cervantes-Laurean, D; Jacobson, E L; Jacobson, M K

    1996-05-03

    The reaction of long lived proteins with reducing sugars has been implicated in the pathophysiology of aging and age-related diseases. A likely intranuclear source of reducing sugar is ADP-ribose, which is generated following DNA damage from the turnover of ADP-ribose polymers. In this study, ADP-ribose has been shown to be a potent histone glycation and glycoxidation agent in vitro. Incubation of ADP-ribose with histones H1, H2A, H2B, and H4 at pH 7.5 resulted in the formation of ketoamine glycation conjugates. Incubation of histone H1 with ADP-ribose also rapidly resulted in the formation of protein carboxymethyllysine residues, protein-protein cross-links, and highly fluorescent products with properties similar to the advanced glycosylation end product pentosidine. The formation of glycoxidation products was related to the degradation of ketoamine glycation conjugates by two different pathways. One pathway resulted in the formation of protein carboxymethyllysine residues and release of an ADP moiety containing a glyceric acid fragment. A second pathway resulted in the release of ADP, and it is postulated that this pathway is involved in the formation of histone-histone cross-links and fluorescent advanced glycosylation end products.

  15. Chemical origins of isoform selectivity in histone deacetylase inhibitors.

    PubMed

    Butler, Kyle V; Kozikowski, Alan P

    2008-01-01

    Histones undergo extensive posttranslational modifications that affect gene expression. Acetylation is a key histone modification that is primarily regulated by two enzymes, one of which is histone deacetylase (HDAC). The activity of HDAC causes transcriptional silencing of DNA. Eleven distinct zinc-dependent histone deacetylase isoforms have been identified in humans. Each isoform has a unique structure and function, and regulates a unique set of genes. HDAC is responsible for the regulation of many genes involved in cancer cell proliferation, and it has been implicated in the pathogenesis of many neurological conditions. HDAC inhibitors are known to be very effective anti-cancer agents, and research has shown them to be potential treatments for many other conditions. Histone deacetylase inhibitors modify the expression of many genes, and it is possible that inhibition of one isoform could cause epigenetic changes that are beneficial to treatment of a disease, while inhibition of another isoform could cause contradictory changes. Selective HDAC inhibitors will be better able to avoid these types of situations than non-specific inhibitors, and may also be less toxic than pan-HDAC inhibitors. Many potent pan-HDAC inhibitors have already been developed, leaving the development of selective inhibitors at the forefront of HDAC drug development. Certain structural moieties may be added to HDAC inhibitors to give isoform selectivity, and these will be discussed in this review. This review will focus on the applications of selective HDAC inhibitors, inhibitors reported to show selectivity, and the relationship between inhibitor structure and selectivity.

  16. Regulation of Histone Acetylation by Autophagy in Parkinson Disease*

    PubMed Central

    Park, Goonho; Tan, Jieqiong; Garcia, Guillermina; Kang, Yunyi; Salvesen, Guy; Zhang, Zhuohua

    2016-01-01

    Parkinson disease (PD) is the most common age-dependent neurodegenerative movement disorder. Accumulated evidence indicates both environmental and genetic factors play important roles in PD pathogenesis, but the potential interaction between environment and genetics in PD etiology remains largely elusive. Here, we report that PD-related neurotoxins induce both expression and acetylation of multiple sites of histones in cultured human cells and mouse midbrain dopaminergic (DA) neurons. Consistently, levels of histone acetylation are markedly higher in midbrain DA neurons of PD patients compared to those of their matched control individuals. Further analysis reveals that multiple histone deacetylases (HDACs) are concurrently decreased in 1-methyl-4-phenylpyridinium (MPP+)-treated cells and 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine-treated mouse brains, as well as midbrain tissues of human PD patients. Finally, inhibition of histone acetyltransferase (HAT) protects, whereas inhibition of HDAC1 and HDAC2 potentiates, MPP+-induced cell death. Pharmacological and genetic inhibition of autophagy suppresses MPP+-induced HDACs degradation. The study reveals that PD environmental factors induce HDACs degradation and histone acetylation increase in DA neurons via autophagy and identifies an epigenetic mechanism in PD pathogenesis. PMID:26699403

  17. Histone deacetylases and their role in motor neuron degeneration

    PubMed Central

    Lazo-Gómez, Rafael; Ramírez-Jarquín, Uri N.; Tovar-y-Romo, Luis B.; Tapia, Ricardo

    2013-01-01

    Amyotrophic lateral sclerosis (ALS) is a fatal neurodegenerative disease, characterized by the progressive loss of motor neurons. The cause of this selective neuronal death is unknown, but transcriptional dysregulation is recently emerging as an important factor. The physical substrate for the regulation of the transcriptional process is chromatin, a complex assembly of histones and DNA. Histones are subject to several post-translational modifications, like acetylation, that are a component of the transcriptional regulation process. Histone acetylation and deacetylation is performed by a group of enzymes (histone acetyltransferases (HATs) and deacetylases, respectively) whose modulation can alter the transcriptional state of many regions of the genome, and thus may be an important target in diseases that share this pathogenic process, as is the case for ALS. This review will discuss the present evidence of transcriptional dysregulation in ALS, the role of histone deacetylases (HDACs) in disease pathogenesis, and the novel pharmacologic strategies that are being comprehensively studied to prevent motor neuron death, with focus on sirtuins (SIRT) and their effectors. PMID:24367290

  18. The Functional Analysis of Histone Acetyltransferase MOF in Tumorigenesis.

    PubMed

    Su, Jiaming; Wang, Fei; Cai, Yong; Jin, Jingji

    2016-01-14

    Changes in chromatin structure and heritably regulating the gene expression by epigenetic mechanisms, such as histone post-translational modification, are involved in most cellular biological processes. Thus, abnormal regulation of epigenetics is implicated in the occurrence of various diseases, including cancer. Human MOF (males absent on the first) is a member of the MYST (Moz-Ybf2/Sas3-Sas2-Tip60) family of histone acetyltransferases (HATs). As a catalytic subunit, MOF can form at least two distinct multiprotein complexes (MSL and NSL) in human cells. Both complexes can acetylate histone H4 at lysine 16 (H4K16); however, the NSL complex possesses broader substrate specificity and can also acetylate histone H4 at lysines 5 and 8 (H4K5 and H4K8), suggesting the complexity of the intracellular functions of MOF. Silencing of MOF in cells leads to genomic instability, inactivation of gene transcription, defective DNA damage repair and early embryonic lethality. Unbalanced MOF expression and its corresponding acetylation of H4K16 have been found in certain primary cancer tissues, including breast cancer, medulloblastoma, ovarian cancer, renal cell carcinoma, colorectal carcinoma, gastric cancer, as well as non-small cell lung cancer. In this review, we provide a brief overview of MOF and its corresponding histone acetylation, introduce recent research findings that link MOF functions to tumorigenesis and speculate on the potential role that may be relevant to tumorigenic pathways.

  19. Sequences controlling histone H4 mRNA abundance.

    PubMed Central

    Capasso, O; Bleecker, G C; Heintz, N

    1987-01-01

    The post-transcriptional regulation of histone mRNA abundance is manifest both by accumulation of histone mRNA during the S phase, and by the rapid degradation of mature histone mRNA following the inhibition of DNA synthesis. We have constructed a comprehensive series of substitution mutants within a human H4 histone gene, introduced them into the mouse L cell genome, and analyzed their effects on the post-transcriptional control of the H4 mRNA. Our results demonstrate that most of the H4 mRNA is dispensable for proper regulation of histone mRNA abundance. However, recognition of the 3' terminus of the mature H4 mRNA is critically important for regulating its cytoplasmic half-life. Thus, this region of the mRNA functions both in the nucleus as a signal for proper processing of the mRNA terminus, and in the cytoplasm as an essential element in the control of mRNA stability. Images Fig. 2. Fig. 3. Fig. 4. Fig. 5. PMID:3608993

  20. Regulation of Histone Acetylation by Autophagy in Parkinson Disease.

    PubMed

    Park, Goonho; Tan, Jieqiong; Garcia, Guillermina; Kang, Yunyi; Salvesen, Guy; Zhang, Zhuohua

    2016-02-12

    Parkinson disease (PD) is the most common age-dependent neurodegenerative movement disorder. Accumulated evidence indicates both environmental and genetic factors play important roles in PD pathogenesis, but the potential interaction between environment and genetics in PD etiology remains largely elusive. Here, we report that PD-related neurotoxins induce both expression and acetylation of multiple sites of histones in cultured human cells and mouse midbrain dopaminergic (DA) neurons. Consistently, levels of histone acetylation are markedly higher in midbrain DA neurons of PD patients compared to those of their matched control individuals. Further analysis reveals that multiple histone deacetylases (HDACs) are concurrently decreased in 1-methyl-4-phenylpyridinium (MPP(+))-treated cells and 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine-treated mouse brains, as well as midbrain tissues of human PD patients. Finally, inhibition of histone acetyltransferase (HAT) protects, whereas inhibition of HDAC1 and HDAC2 potentiates, MPP(+)-induced cell death. Pharmacological and genetic inhibition of autophagy suppresses MPP(+)-induced HDACs degradation. The study reveals that PD environmental factors induce HDACs degradation and histone acetylation increase in DA neurons via autophagy and identifies an epigenetic mechanism in PD pathogenesis.

  1. Histones trigger sterile inflammation by activating the NLRP3 inflammasome.

    PubMed

    Allam, Ramanjaneyulu; Darisipudi, Murthy Narayana; Tschopp, Jurg; Anders, Hans-Joachim

    2013-12-01

    Sterile cell death mediated inflammation is linked to several pathological disorders and involves danger recognition of intracellular molecules released by necrotic cells that activate different groups of innate pattern recognition receptors. Toll-like receptors directly interact with their extrinsic or intrinsic agonists and induce multiple proinflammatory mediators. In contrast, the NLRP3 inflammasome is rather thought to represent a downstream element integrating various indirect stimuli into proteolytic cleavage of interleukin (IL)-1β and IL-18. Here, we report that histones released from necrotic cells induce IL-1β secretion in an NLRP3-ASC-caspase-1-dependent manner. Genetic deletion of NLRP3 in mice significantly attenuated histone-induced IL-1β production and neutrophil recruitment. Furthermore, necrotic cells induced neutrophil recruitment, which was significantly reduced by histone-neutralizing antibodies or depleting extracellular histones via enzymatic degradation. These results identify cytosolic uptake of necrotic cell-derived histones as a triggering mechanism of sterile inflammation, which involves NLRP3 inflammasome activation and IL-1β secretion via oxidative stress.

  2. Targeting Histone Deacetylases in Diseases: Where Are We?

    PubMed Central

    Benedetti, Rosaria; Conte, Mariarosaria

    2015-01-01

    Abstract Significance: Epigenetic inactivation of pivotal genes involved in cell growth is a hallmark of human pathologies, in particular cancer. Histone acetylation balance obtained through opposing actions of histone deacetylases (HDACs) and histone acetyltransferases is one epigenetic mechanism controlling gene expression and is, thus, associated with disease etiology and progression. Interfering pharmacologically with HDAC activity can correct abnormalities in cell proliferation, migration, vascularization, and death. Recent Advances: Histone deacetylase inhibitors (HDACi) represent a new class of cytostatic agents that interfere with the function of HDACs and are able to increase gene expression by indirectly inducing histone acetylation. Several HDACi, alone or in combination with DNA-demethylating agents, chemopreventive, or classical chemotherapeutic drugs, are currently being used in clinical trials for solid and hematological malignancies, and are, thus, promising candidates for cancer therapy. Critical Issues: (i) Non-specific (off-target) HDACi effects due to activities unassociated with HDAC inhibition. (ii) Advantages/disadvantages of non-selective or isoform-directed HDACi. (iii) Limited number of response-predictive biomarkers. (iv) Toxicity leading to dysfunction of critical biological processes. Future Directions: Selective HDACi could achieve enhanced clinical utility by reducing or eliminating the serious side effects associated with current first-generation non-selective HDACi. Isoform-selective and pan-HDACi candidates might benefit from the identification of biomarkers, enabling better patient stratification and prediction of response to treatment. Antioxid. Redox Signal. 23, 99–126. PMID:24382114

  3. Garcinol, a Histone Acetyltransferase Inhibitor, Radiosensitizes Cancer Cells by Inhibiting Non-Homologous End Joining

    SciTech Connect

    Oike, Takahiro; Ogiwara, Hideaki; Torikai, Kohta; Nakano, Takashi; Yokota, Jun; Kohno, Takashi

    2012-11-01

    Purpose: Non-homologous end joining (NHEJ), a major pathway used to repair DNA double-strand breaks (DSBs) generated by ionizing radiation (IR), requires chromatin remodeling at DSB sites through the acetylation of histones by histone acetyltransferases (HATs). However, the effect of compounds with HAT inhibitory activities on the DNA damage response (DDR), including the NHEJ and cell cycle checkpoint, as well as on the radiosensitivity of cancer cells, remains largely unclear. Here, we investigated whether garcinol, a HAT inhibitor found in the rinds of Garcinia indica fruit (called mangosteens), has effects on DDR, and whether it can be used for radiosensitization. Methods and Materials: The following assays were used to examine the effect of garcinol on the inhibition of DSB repair, including the following: a conventional neutral comet assay; a cell-based assay recently developed by us, in which NHEJ repair of DSBs on chromosomal DNA was evaluated; the micrococcal nuclease sensitivity assay; and immunoblotting for autophosphorylation of DNA-dependent protein kinase catalytic subunit (DNA-PKcs). We assessed the effect of garcinol on the cell cycle checkpoint after IR treatment by analyzing the phosphorylation levels of checkpoint kinases CHK1 and CHK2 and histone H3, and by cell cycle profile analysis using flow cytometry. The radiosensitizing effect of garcinol was assessed by a clonogenic survival assay, whereas its effects on apoptosis and senescence were examined by annexin V and senescence-associated {beta}-galactosidase (SA-{beta}-Gal) staining, respectively. Results: We found that garcinol inhibits DSB repair, including NHEJ, without affecting cell cycle checkpoint. Garcinol radiosensitized A549 lung and HeLa cervical carcinoma cells with dose enhancement ratios (at 10% surviving fraction) of 1.6 and 1.5, respectively. Cellular senescence induced by IR was enhanced by garcinol. Conclusion: These results suggest that garcinol is a radiosensitizer that

  4. Toxic effects of extracellular histones and their neutralization by vitreous in retinal detachment.

    PubMed

    Kawano, Hiroki; Ito, Takashi; Yamada, Shingo; Hashiguchi, Teruto; Maruyama, Ikuro; Hisatomi, Toshio; Nakamura, Makoto; Sakamoto, Taiji

    2014-05-01

    Histones are DNA-binding proteins and are involved in chromatin remodeling and regulation of gene expression. Histones can be released after tissue injuries, and the extracellular histones cause cellular damage and organ dysfunction. Regardless of their clinical significance, the role and relevance of histones in ocular diseases are unknown. We studied the role of histones in eyes with retinal detachment (RD). Vitreous samples were collected during vitrectomy, and the concentration of histone H3 was measured by enzyme-linked immunosorbent assay. The location of the histones and related molecules was examined in a rat RD model. The release of histones and their effects on rat retinal progenitor cells R28 and ARPE-19 were evaluated in vitro. In addition, the protective role of the vitreous body against histones was tested. The intravitreal concentration of histones was higher in eyes with RD (mean, 30.9 ± 9.8 ng/ml) than in control eyes (below the limit of detection, P<0.05). In the rat RD model, histone H3 was observed on the outer side of the detached retina and was associated with photoreceptor death. Histone H3 was released from cultured R28 by oxidative stress. Histones at a concentration 10 μg/ml induced the production of interleukin-8 in ARPE-19 cells (2.5-fold increase, P<0.05) that was mediated through the ERK1/2- and p38 MAPK-dependent pathways and Toll-like receptor 4. Histones were toxic to cells at concentrations of ≥ 20 μg/ml. Vitreous body or hyaluronan decreased toxicity of histones by inhibiting diffusion of histones. These results indicate that histones are released from retinas with RD and may modulate the subretinal microenvironment by functioning as damage-associated molecular pattern molecules, thereby inducing proinflammatory cytokines or cell toxicity. In addition, the important role of the vitreous body and hyaluronan in protecting the retina from these toxic effects is suggested.

  5. Modelling Robust Feedback Control Mechanisms That Ensure Reliable Coordination of Histone Gene Expression with DNA Replication

    PubMed Central

    Corrigall, Holly; Ebenhöh, Oliver; Müller, Berndt

    2016-01-01

    Histone proteins are key elements in the packing of eukaryotic DNA into chromosomes. A little understood control system ensures that histone gene expression is balanced with DNA replication so that histone proteins are produced in appropriate amounts. Disturbing or disrupting this system affects genome stability and gene expression, and has detrimental consequences for human development and health. It has been proposed that feedback control involving histone proteins contributes to this regulation and there is evidence implicating cell cycle checkpoint molecules activated when DNA synthesis is impaired in this control. We have developed mathematical models that incorporate these control modes in the form of inhibitory feedback of histone gene expression from free histone proteins, and alternatively a direct link that couples histone RNA synthesis to DNA synthesis. Using our experimental evidence and related published data we provide a simplified description of histone protein synthesis during S phase. Both models reproduce the coordination of histone gene expression with DNA replication during S phase and the down-regulation of histone RNA when DNA synthesis is interrupted, but only the model incorporating histone protein feedback control was able to effectively simulate the coordinate expression of a simplified histone gene family. Our combined theoretical and experimental approach supports the hypothesis that the regulation of histone gene expression involves feedback control. PMID:27798685

  6. Inter-α inhibitor protein and its associated glycosaminoglycans protect against histone-induced injury.

    PubMed

    Chaaban, Hala; Keshari, Ravi S; Silasi-Mansat, Robert; Popescu, Narcis I; Mehta-D'Souza, Padmaja; Lim, Yow-Pin; Lupu, Florea

    2015-04-02

    Extracellular histones are mediators of tissue injury and organ dysfunction; therefore they constitute potential therapeutic targets in sepsis, inflammation, and thrombosis. Histone cytotoxicity in vitro decreases in the presence of plasma. Here, we demonstrate that plasma inter-α inhibitor protein (IAIP) neutralizes the cytotoxic effects of histones and decreases histone-induced platelet aggregation. These effects are mediated through the negatively charged glycosaminoglycans (GAGs) chondroitin sulfate and high-molecular-weight hyaluronan (HMW-HA) associated with IAIP. Cell surface anionic glycosaminoglycans heparan sulfate and HA protect the cells against histone-mediated damage in vitro. Surface plasmon resonance showed that both IAIP and HMW-HA directly bind to recombinant histone H4. In vivo neutralization of histones with IAIP and HMW-HA prevented histone-induced thrombocytopenia, bleeding, and lung microvascular thrombosis, decreased neutrophil activation, and averted histone-induced production of inflammatory cytokines and chemokines. IAIP and HMW-HA colocalized with histones in necrotic tissues and areas that displayed neutrophil extracellular traps. Increasing amounts of IAIP-histone complexes detected in the plasma of septic baboons correlated with increase in histones and/or nucleosomes and consumption of plasma IAIP. Our data suggest that IAIP, chondroitin sulfate, and HMW-HA are potential therapeutic agents to protect against histone-induced cytotoxicity, coagulopathy, systemic inflammation, and organ damage during inflammatory conditions such as sepsis and trauma.

  7. Developing a DNA variant database.

    PubMed

    Fung, David C Y

    2008-01-01

    Disease- and locus-specific variant databases have been a valuable resource to clinical and research geneticists. With the recent rapid developments in technologies, the number of DNA variants detected in a typical molecular genetics laboratory easily exceeds 1,000. To keep track of the growing inventory of DNA variants, many laboratories employ information technology to store the data as well as distributing the data and its associated information to clinicians and researchers via the Web. While it is a valuable resource, the hosting of a web-accessible database requires collaboration between bioinformaticians and biologists and careful planning to ensure its usability and availability. In this chapter, a series of tutorials on building a local DNA variant database out of a sample dataset will be provided. However, this tutorial will not include programming details on building a web interface and on constructing the web application necessary for web hosting. Instead, an introduction to the two commonly used methods for hosting web-accessible variant databases will be described. Apart from the tutorials, this chapter will also consider the resources and planning required for making a variant database project successful.

  8. Ubinuclein-1 confers histone H3.3-specific-binding by the HIRA histone chaperone complex

    PubMed Central

    Daniel Ricketts, M; Frederick, Brian; Hoff, Henry; Tang, Yong; Schultz, David C.; Singh Rai, Taranjit; Grazia Vizioli, Maria; Adams, Peter D.; Marmorstein, Ronen

    2015-01-01

    Histone chaperones bind specific histones to mediate their storage, eviction or deposition from/or into chromatin. The HIRA histone chaperone complex, composed of HIRA, ubinuclein-1 (UBN1) and CABIN1, cooperates with the histone chaperone ASF1a to mediate H3.3-specific binding and chromatin deposition. Here we demonstrate that the conserved UBN1 Hpc2-related domain (HRD) is a novel H3.3-specific-binding domain. Biochemical and biophysical studies show the UBN1-HRD preferentially binds H3.3/H4 over H3.1/H4. X-ray crystallographic and mutational studies reveal that conserved residues within the UBN1-HRD and H3.3 G90 as key determinants of UBN1–H3.3-binding specificity. Comparison of the structure with the unrelated H3.3-specific chaperone DAXX reveals nearly identical points of contact between the chaperone and histone in the proximity of H3.3 G90, although the mechanism for H3.3 G90 recognition appears to be distinct. This study points to UBN1 as the determinant of H3.3-specific binding and deposition by the HIRA complex. PMID:26159857

  9. The Role of Histone Protein Modifications and Mutations in Histone Modifiers in Pediatric B-Cell Progenitor Acute Lymphoblastic Leukemia

    PubMed Central

    Janczar, Szymon; Janczar, Karolina; Pastorczak, Agata; Harb, Hani; Paige, Adam J. W.; Zalewska-Szewczyk, Beata; Danilewicz, Marian; Mlynarski, Wojciech

    2017-01-01

    While cancer has been long recognized as a disease of the genome, the importance of epigenetic mechanisms in neoplasia was acknowledged more recently. The most active epigenetic marks are DNA methylation and histone protein modifications and they are involved in basic biological phenomena in every cell. Their role in tumorigenesis is stressed by recent unbiased large-scale studies providing evidence that several epigenetic modifiers are recurrently mutated or frequently dysregulated in multiple cancers. The interest in epigenetic marks is especially due to the fact that they are potentially reversible and thus druggable. In B-cell progenitor acute lymphoblastic leukemia (BCP-ALL) there is a relative paucity of reports on the role of histone protein modifications (acetylation, methylation, phosphorylation) as compared to acute myeloid leukemia, T-cell ALL, or other hematologic cancers, and in this setting chromatin modifications are relatively less well studied and reviewed than DNA methylation. In this paper, we discuss the biomarker associations and evidence for a driver role of dysregulated global and loci-specific histone marks, as well as mutations in epigenetic modifiers in BCP-ALL. Examples of chromatin modifiers recurrently mutated/disrupted in BCP-ALL and associated with disease outcomes include MLL1, CREBBP, NSD2, and SETD2. Altered histone marks and histone modifiers and readers may play a particular role in disease chemoresistance and relapse. We also suggest that epigenetic regulation of B-cell differentiation may have parallel roles in leukemogenesis. PMID:28054944

  10. Structural and histone binding ability characterization of the ARB2 domain of a histone deacetylase Hda1 from Saccharomyces cerevisiae

    PubMed Central

    Shen, Hui; Zhu, Yuwei; Wang, Chongyuan; Yan, Hui; Teng, Maikun; Li, Xu

    2016-01-01

    Hda1 is the catalytic core component of the H2B- and H3- specific histone deacetylase (HDAC) complex from Saccharomyces cerevisiae, which is involved in the epigenetic repression and plays a crucial role in transcriptional regulation and developmental events. Though the N-terminal catalytic HDAC domain of Hda1 is well characterized, the function of the C-terminal ARB2 domain remains unknown. In this study, we determine the crystal structure of the ARB2 domain from S. cerevisiae Hda1 at a resolution of 2.7 Å. The ARB2 domain displays an α/β sandwich architecture with an arm protruding outside. Two ARB2 domain molecules form a compact homo-dimer via the arm elements, and assemble as an inverse “V” shape. The pull-down and ITC results reveal that the ARB2 domain possesses the histone binding ability, recognizing both the H2A-H2B dimer and H3-H4 tetramer. Perturbation of the dimer interface abolishes the histone binding ability of the ARB2 domain, indicating that the unique dimer architecture of the ARB2 domain coincides with the function for anchoring to histone. Collectively, our data report the first structure of the ARB2 domain and disclose its histone binding ability, which is of benefit for understanding the deacetylation reaction catalyzed by the class II Hda1 HDAC complex. PMID:27665728

  11. Treatment of chronic kidney diseases with histone deacetylase inhibitors

    PubMed Central

    Liu, Na; Zhuang, Shougang

    2015-01-01

    Histone deacetylases (HDACs) induce deacetylation of both histone and non-histone proteins and play a critical role in the modulation of physiological and pathological gene expression. Pharmacological inhibition of HDAC has been reported to attenuate progression of renal fibrogenesis in obstructed kidney and reduce cyst formation in polycystic kidney disease. HDAC inhibitors (HDACis) are also able to ameliorate renal lesions in diabetes nephropathy, lupus nephritis, aristolochic acid nephropathy, and transplant nephropathy. The beneficial effects of HDACis are associated with their anti-fibrosis, anti-inflammation, and immunosuppressant effects. In this review, we summarize recent advances on the treatment of various chronic kidney diseases with HDACis in pre-clinical models. PMID:25972812

  12. The relationship between gene transcription and combinations of histone modifications

    NASA Astrophysics Data System (ADS)

    Cui, Xiangjun; Li, Hong; Luo, Liaofu

    2012-09-01

    Histone modification is an important subject of epigenetics which plays an intrinsic role in transcriptional regulation. It is known that multiple histone modifications act in a combinatorial fashion. In this study, we demonstrated that the pathways within constructed Bayesian networks can give an indication for the combinations among 12 histone modifications which have been studied in the TSS+1kb region in S. cerevisiae. After Bayesian networks for the genes with high transcript levels (H-network) and low transcript levels (L-network) were constructed, the combinations of modifications within the two networks were analyzed from the view of transcript level. The results showed that different combinations played dissimilar roles in the regulation of gene transcription when there exist differences for gene expression at transcription level.

  13. Low Proteolytic Clipping of Histone H3 in Cervical Cancer.

    PubMed

    Sandoval-Basilio, Jorge; Serafín-Higuera, Nicolás; Reyes-Hernandez, Octavio D; Serafín-Higuera, Idanya; Leija-Montoya, Gabriela; Blanco-Morales, Magali; Sierra-Martínez, Monica; Ramos-Mondragon, Roberto; García, Silvia; López-Hernández, Luz Berenice; Yocupicio-Monroy, Martha; Alcaraz-Estrada, Sofia L

    2016-01-01

    Chromatin in cervical cancer (CC) undergoes chemical and structural changes that alter the expression pattern of genes. Recently, a potential mechanism, which regulates gene expression at transcriptional levels is the proteolytic clipping of histone H3. However, until now this process in CC has not been reported. Using HeLa cells as a model of CC and human samples from patients with CC, we identify that the H3 cleavage was lower in CC compared with control tissue. Additionally, the histone H3 clipping was performed by serine and aspartyl proteases in HeLa cells. These results suggest that histone H3 clipping operates as part of post-translational modification system in CC.

  14. Elucidating Internucleosome Interactions and the Roles of Histone Tails

    PubMed Central

    Howell, Steven C.; Andresen, Kurt; Jimenez-Useche, Isabel; Yuan, Chongli; Qiu, Xiangyun

    2013-01-01

    The nucleosome is the first level of genome organization and regulation in eukaryotes where negatively charged DNA is wrapped around largely positively charged histone proteins. Interaction between nucleosomes is dominated by electrostatics at long range and guided by specific contacts at short range, particularly involving their flexible histone tails. We have thus quantified how internucleosome interactions are modulated by salts (KCl, MgCl2) and histone tail deletions (H3, H4 N-terminal), using small-angle x-ray scattering and theoretical modeling. We found that measured effective charges at low salts are ∼1/5th of the theoretically predicted renormalized charges and that H4 tail deletion suppresses the attraction at high salts to a larger extent than H3 tail deletion. PMID:23823239

  15. The Histone Modification Code in the Pathogenesis of Autoimmune Diseases

    PubMed Central

    2017-01-01

    Autoimmune diseases are chronic inflammatory disorders caused by a loss of self-tolerance, which is characterized by the appearance of autoantibodies and/or autoreactive lymphocytes and the impaired suppressive function of regulatory T cells. The pathogenesis of autoimmune diseases is extremely complex and remains largely unknown. Recent advances indicate that environmental factors trigger autoimmune diseases in genetically predisposed individuals. In addition, accumulating results have indicated a potential role of epigenetic mechanisms, such as histone modifications, in the development of autoimmune diseases. Histone modifications regulate the chromatin states and gene transcription without any change in the DNA sequence, possibly resulting in phenotype alteration in several different cell types. In this paper, we discuss the significant roles of histone modifications involved in the pathogenesis of autoimmune diseases, including rheumatoid arthritis, systemic lupus erythematosus, systemic sclerosis, primary biliary cirrhosis, and type 1 diabetes. PMID:28127155

  16. Low Proteolytic Clipping of Histone H3 in Cervical Cancer

    PubMed Central

    Sandoval-Basilio, Jorge; Serafín-Higuera, Nicolás; Reyes-Hernandez, Octavio D.; Serafín-Higuera, Idanya; Leija-Montoya, Gabriela; Blanco-Morales, Magali; Sierra-Martínez, Monica; Ramos-Mondragon, Roberto; García, Silvia; López-Hernández, Luz Berenice; Yocupicio-Monroy, Martha; Alcaraz-Estrada, Sofia L.

    2016-01-01

    Chromatin in cervical cancer (CC) undergoes chemical and structural changes that alter the expression pattern of genes. Recently, a potential mechanism, which regulates gene expression at transcriptional levels is the proteolytic clipping of histone H3. However, until now this process in CC has not been reported. Using HeLa cells as a model of CC and human samples from patients with CC, we identify that the H3 cleavage was lower in CC compared with control tissue. Additionally, the histone H3 clipping was performed by serine and aspartyl proteases in HeLa cells. These results suggest that histone H3 clipping operates as part of post-translational modification system in CC. PMID:27698925

  17. Burden of rare sarcomere gene variants in the Framingham and Jackson Heart Study cohorts.

    PubMed

    Bick, Alexander G; Flannick, Jason; Ito, Kaoru; Cheng, Susan; Vasan, Ramachandran S; Parfenov, Michael G; Herman, Daniel S; DePalma, Steven R; Gupta, Namrata; Gabriel, Stacey B; Funke, Birgit H; Rehm, Heidi L; Benjamin, Emelia J; Aragam, Jayashri; Taylor, Herman A; Fox, Ervin R; Newton-Cheh, Christopher; Kathiresan, Sekar; O'Donnell, Christopher J; Wilson, James G; Altshuler, David M; Hirschhorn, Joel N; Seidman, J G; Seidman, Christine

    2012-09-07

    Rare sarcomere protein variants cause dominant hypertrophic and dilated cardiomyopathies. To evaluate whether allelic variants in eight sarcomere genes are associated with cardiac morphology and function in the community, we sequenced 3,600 individuals from the Framingham Heart Study (FHS) and Jackson Heart Study (JHS) cohorts. Out of the total, 11.2% of individuals had one or more rare nonsynonymous sarcomere variants. The prevalence of likely pathogenic sarcomere variants was 0.6%, twice the previous estimates; however, only four of the 22 individuals had clinical manifestations of hypertrophic cardiomyopathy. Rare sarcomere variants were associated with an increased risk for adverse cardiovascular events (hazard ratio: 2.3) in the FHS cohort, suggesting that cardiovascular risk assessment in the general population can benefit from rare variant analysis.

  18. Inhibitors of Histone Deacetylases Attenuate Noise-Induced Hearing Loss.

    PubMed

    Chen, Jun; Hill, Kayla; Sha, Su-Hua

    2016-08-01

    Loss of auditory sensory hair cells is the major pathological feature of noise-induced hearing loss (NIHL). Currently, no established clinical therapies for prevention or amelioration of NIHL are available. The absence of treatments is due to our lack of a comprehensive understanding of the molecular mechanisms underlying noise-induced damage. Our previous study indicates that epigenetic modification of histones alters hair cell survival. In this study, we investigated the effect of noise exposure on histone H3 lysine 9 acetylation (H3K9ac) in the inner ear of adult CBA/J mice and determined if inhibition of histone deacetylases by systemic administration of suberoylanilide hydroxamic acid (SAHA) could attenuate NIHL. Our results showed that H3K9ac was decreased in the nuclei of outer hair cells (OHCs) and marginal cells of the stria vascularis in the basal region after exposure to a traumatic noise paradigm known to induce permanent threshold shifts (PTS). Consistent with these results, levels of histone deacetylases 1, 2, and 3 (HDAC1, HDAC2 and HDAC3) were increased predominately in the nuclei of cochlear cells. Silencing of HDAC1, HDAC2, or HDAC3 with siRNA reduced the expression of the target HDAC in OHCs, but did not attenuate noise-induced PTS, whereas treatment with the pan-HDAC inhibitor SAHA, also named vorinostat, reduced OHC loss, and attenuated PTS. These findings suggest that histone acetylation is involved in the pathogenesis of noise-induced OHC death and hearing loss. Pharmacological targeting of histone deacetylases may afford a strategy for protection against NIHL.

  19. Identification and characterization of histone deacetylases in tomato (Solanum lycopersicum)

    PubMed Central

    Zhao, Linmao; Lu, Jingxia; Zhang, Jianxia; Wu, Pei-Ying; Yang, Songguang; Wu, Keqiang

    2015-01-01

    Histone acetylation and deacetylation at the N-terminus of histone tails play crucial roles in the regulation of eukaryotic gene activity. Histone acetylation and deacetylation are catalyzed by histone acetyltransferases and histone deacetylases (HDACs), respectively. A growing number of studies have demonstrated the importance of histone deacetylation/acetylation on genome stability, transcriptional regulation, development and response to stress in Arabidopsis. However, the biological functions of HDACs in tomato have not been investigated previously. Fifteen HDACs identified from tomato (Solanum lycopersicum) can be grouped into RPD3/HDA1, SIR2 and HD2 families based on phylogenetic analysis. Meanwhile, 10 members of the RPD3/HDA1 family can be further subdivided into four groups, namely Class I, Class II, Class III, and Class IV. High similarities of protein sequences and conserved domains were identified among SlHDACs and their homologs in Arabidopsis. Most SlHDACs were expressed in all tissues examined with different transcript abundance. Transient expression in Arabidopsis protoplasts showed that SlHDA8, SlHDA1, SlHDA5, SlSRT1 and members of the HD2 family were localized to the nucleus, whereas SlHDA3 and SlHDA4 were localized in both the cytoplasm and nucleus. The difference in the expression patterns and subcellular localization of SlHDACs suggest that they may play distinct functions in tomato. Furthermore, we found that three members of the RPD3/HDA1 family, SlHDA1, SIHDA3 and SlHDA4, interacted with TAG1 (TOMATO AGAMOUS1) and TM29 (TOMATO MADS BOX29), two MADS-box proteins associated with tomato reproductive development, indicating that these HDACs may be involved in gene regulation in reproductive development. PMID:25610445

  20. Post-Translational Modifications of Histones in Human Sperm.

    PubMed

    Krejčí, Jana; Stixová, Lenka; Pagáčová, Eva; Legartová, Soňa; Kozubek, Stanislav; Lochmanová, Gabriela; Zdráhal, Zbyněk; Sehnalová, Petra; Dabravolski, Siarhei; Hejátko, Jan; Bártová, Eva

    2015-10-01

    We examined the levels and distribution of post-translationally modified histones and protamines in human sperm. Using western blot immunoassay, immunofluorescence, mass spectrometry (MS), and FLIM-FRET approaches, we analyzed the status of histone modifications and the protamine P2. Among individual samples, we observed variability in the levels of H3K9me1, H3K9me2, H3K27me3, H3K36me3, and H3K79me1, but the level of acetylated (ac) histones H4 was relatively stable in the sperm head fractions, as demonstrated by western blot analysis. Sperm heads with lower levels of P2 exhibited lower levels of H3K9ac, H3K9me1, H3K27me3, H3K36me3, and H3K79me1. A very strong correlation was observed between the levels of P2 and H3K9me2. FLIM-FRET analysis additionally revealed that acetylated histones H4 are not only parts of sperm chromatin but also appear in a non-integrated form. Intriguingly, H4ac and H3K27me3 were detected in sperm tail fractions via western blot analysis. An appearance of specific histone H3 and H4 acetylation and H3 methylation in sperm tail fractions was also confirmed by both LC-MS/MS and MALDI-TOF MS analysis. Taken together, these data indicate that particular post-translational modifications of histones are uniquely distributed in human sperm, and this distribution varies among individuals and among the sperm of a single individual.

  1. Structural insight into histone recognition by the ING PHD fingers.

    PubMed

    Champagne, Karen S; Kutateladze, Tatiana G

    2009-05-01

    The Inhibitor of Growth (ING) tumor suppressors are implicated in oncogenesis, control of DNA damage repair, cellular senescence and apoptosis. All members of the ING family contain unique amino-terminal regions and a carboxy-terminal plant homeodomain (PHD) finger. While the amino-terminal domains associate with a number of protein effectors including distinct components of histone deacetylase (HDAC) and histone acetyltransferase (HAT) complexes, the PHD finger binds strongly and specifically to histone H3 trimethylated at lysine 4 (H3K4me3). In this review we describe the molecular mechanism of H3K4me3 recognition by the ING1-5 PHD fingers, analyze the determinants of the histone specificity and compare the biological activities and structures within subsets of PHD fingers. The atomic-resolution structures of the ING PHD fingers in complex with a H3K4me3 peptide reveal that the histone tail is bound in a large and deep binding site encompassing nearly one-third of the protein surface. An extensive network of intermolecular hydrogen bonds, hydrophobic and cation-pi contacts, and complementary surface interactions coordinate the first six residues of the H3K4me3 peptide. The trimethylated Lys4 occupies an elongated groove, formed by the highly conserved aromatic and hydrophobic residues of the PHD finger, whereas the adjacent groove accommodates Arg2. The two grooves are connected by a narrow channel, the small size of which defines the PHD finger's specificity, excluding interactions with other modified histone peptides. Binding of the ING PHD fingers to H3K4me3 plays a critical role in regulating chromatin acetylation. The ING proteins function as tethering molecules that physically link the HDAC and HAT enzymatic complexes to chromatin. In this review we also highlight progress recently made in understanding the molecular basis underlying biological and tumorigenic activities of the ING tumor suppressors.

  2. Destabilization of the Outer and Inner Mitochondrial Membranes by Core and Linker Histones

    PubMed Central

    Cascone, Annunziata; Bruelle, Celine; Lindholm, Dan; Bernardi, Paolo; Eriksson, Ove

    2012-01-01

    Background Extensive DNA damage leads to apoptosis. Histones play a central role in DNA damage sensing and may mediate signals of genotoxic damage to cytosolic effectors including mitochondria. Methodology/Principal Findings We have investigated the effects of histones on mitochondrial function and membrane integrity. We demonstrate that both linker histone H1 and core histones H2A, H2B, H3, and H4 bind strongly to isolated mitochondria. All histones caused a rapid and massive release of the pro-apoptotic intermembrane space proteins cytochrome c and Smac/Diablo, indicating that they permeabilize the outer mitochondrial membrane. In addition, linker histone H1, but not core histones, permeabilized the inner membrane with a collapse of the membrane potential, release of pyridine nucleotides, and mitochondrial fragmentation. Conclusions We conclude that histones destabilize the mitochondrial membranes, a mechanism that may convey genotoxic signals to mitochondria and promote apoptosis following DNA damage. PMID:22523586

  3. Substrate Specificity Profiling of Histone-Modifying Enzymes by Peptide Microarray.

    PubMed

    Cornett, E M; Dickson, B M; Vaughan, R M; Krishnan, S; Trievel, R C; Strahl, B D; Rothbart, S B

    2016-01-01

    The dynamic addition and removal of covalent posttranslational modifications (PTMs) on histone proteins serves as a major mechanism regulating chromatin-templated biological processes in eukaryotic genomes. Histone PTMs and their combinations function by directly altering the physical structure of chromatin and as rheostats for effector protein interactions. In this chapter, we detail microarray-based methods for analyzing the substrate specificity of lysine methyltransferase and demethylase enzymes on immobilized synthetic histone peptides. Consistent with the "histone code" hypothesis, we reveal a strong influence of adjacent and, surprisingly, distant histone PTMs on the ability of histone-modifying enzymes to methylate or demethylate their substrates. This platform will greatly facilitate future investigations into histone substrate specificity and mechanisms of PTM signaling that regulate the catalytic properties of histone-modifying enzymes.

  4. Substrate Specificity Profiling of Histone-Modifying Enzymes by Peptide Microarray

    PubMed Central

    Cornett, E.M.; Dickson, B.M.; Vaughan, R.M.; Krishnan, S.; Trievel, R.C.; Strahl, B.D.; Rothbart, S.B.

    2017-01-01

    The dynamic addition and removal of covalent posttranslational modifications (PTMs) on histone proteins serves as a major mechanism regulating chromatin-templated biological processes in eukaryotic genomes. Histone PTMs and their combinations function by directly altering the physical structure of chromatin and as rheostats for effector protein interactions. In this chapter, we detail microarray-based methods for analyzing the substrate specificity of lysine methyltransferase and demethylase enzymes on immobilized synthetic histone peptides. Consistent with the “histone code” hypothesis, we reveal a strong influenceof adjacent and,surprisingly,distant histonePTMs onthe ability of histone-modifying enzymes to methylate or demethylate their substrates. This platform will greatly facilitate future investigations into histone substrate specificity and mechanisms of PTM signaling that regulate the catalytic properties of histone-modifying enzymes. PMID:27423856

  5. Mutations in the paralogous human alpha-globin genes yielding identical hemoglobin variants.

    PubMed

    Moradkhani, Kamran; Préhu, Claude; Old, John; Henderson, Shirley; Balamitsa, Vera; Luo, Hong-Yuan; Poon, Man-Chiu; Chui, David H K; Wajcman, Henri; Patrinos, George P

    2009-06-01

    The human alpha-globin genes are paralogues, sharing a high degree of DNA sequence similarity and producing an identical alpha-globin chain. Over half of the alpha-globin structural variants reported to date are only characterized at the amino acid level. It is likely that a fraction of these variants, with phenotypes differing from one observation to another, may be due to the same mutation but on a different alpha-globin gene. There have been very few previous examples of hemoglobin variants that can be found at both HBA1 and HBA2 genes. Here, we report the results of a systematic multicenter study in a large multiethnic population to identify such variants and to analyze their differences from a functional and evolutionary perspective. We identified 14 different Hb variants resulting from identical mutations on either one of the two human alpha-globin paralogue genes. We also showed that the average percentage of hemoglobin variants due to a HBA2 gene mutation (alpha2) is higher than the percentage of hemoglobin variants due to the same HBA1 gene mutation (alpha1) and that the alpha2/alpha1 ratio varied between variants. These alpha-globin chain variants have most likely occurred via recurrent mutations, gene conversion events, or both. Based on these data, we propose a nomenclature for hemoglobin variants that fall into this category.

  6. DNA methylation pathways and their crosstalk with histone methylation

    PubMed Central

    Du, Jiamu; Johnson, Lianna M.; Jacobsen, Steven E.; Patel, Dinshaw J.

    2015-01-01

    Methylation of DNA and of histone 3 at Lys 9 (H3K9) are highly correlated with gene silencing in eukaryotes from fungi to humans. Both of these epigenetic marks need to be established at specific regions of the genome and then maintained at these sites through cell division. Protein structural domains that specifically recognize methylated DNA and methylated histones are key for targeting enzymes that catalyse these marks to appropriate genome sites. Genetic, genomic, structural and biochemical data reveal connections between these two epigenetic marks, and these domains mediate much of the crosstalk. PMID:26296162

  7. Reversible histone methylation regulates brain gene expression and behavior

    PubMed Central

    Xu, Jun; Andreassi, Megan

    2011-01-01

    Epigenetic chromatin remodeling, including reversible histone methylation, regulates gene transcription in brain development and synaptic plasticity. Aberrant chromatin modifications due to mutant chromatin enzymes or chemical exposures have been associated with neurological or psychiatric disorders such as mental retardation, schizophrenia, depression, and drug addiction. Some chromatin enzymes, such as histone demethylases JARID1C and UTX, are coded by X-linked genes which are not X-inactivated in females. The higher expression of JARID1C and UTX in females could contribute to sex differences in brain development and behavior. PMID:20816965

  8. Chemical biology of histone acetyltransferase natural compounds modulators.

    PubMed

    Piaz, Fabrizio Dal; Vassallo, Antonio; Rubio, Osmany Cuesta; Castellano, Sabrina; Sbardella, Gianluca; De Tommasi, Nunziatina

    2011-05-01

    Histone acetyltransferases (HATs) are a class of epigenetic enzymes crucial for chromatin restructuring and transcriptional regulation in eukaryotic cells, thus being a promising target for therapeutic development. Nonetheless, differently from histone deacetylases (HDACs) inhibitors, there is still paucity of small-molecule modulators of HAT activity. After a decline during past decade, natural products and their derivatives could be once again a valuable tool in the lead discovery process and meet such need of Novel Chemical Entities (NCEs). In this review, we will provide a comprehensive summary on the discovery of small-molecule HAT modulators from naturally occurring molecular scaffolds.

  9. Heterochromatin, histone modifications, and nuclear architecture in disease vectors

    PubMed Central

    Sharakhov, Igor V.; Sharakhova, Maria V.

    2015-01-01

    Interactions between a pathogen and a vector are plastic and dynamic. Such interactions can be more rapidly accommodated by epigenetic changes than by genetic mutations. Gene expression can be affected by the proximity to the heterochromatin, by local histone modifications, and by the three-dimensional position within the nucleus. Recent studies of disease vectors indicate that gene regulation by these factors can be important for susceptibility to pathogens, reproduction, immunity, development, and longevity. Knowledge about heterochromatin, histone modifications, and nuclear architecture will help our understanding of epigenetic mechanisms that control gene function at traits related to vectorial capacity. PMID:26097808

  10. FUS/TLS contributes to replication-dependent histone gene expression by interaction with U7 snRNPs and histone-specific transcription factors

    PubMed Central

    Raczynska, Katarzyna Dorota; Ruepp, Marc-David; Brzek, Aleksandra; Reber, Stefan; Romeo, Valentina; Rindlisbacher, Barbara; Heller, Manfred; Szweykowska-Kulinska, Zofia; Jarmolowski, Artur; Schümperli, Daniel

    2015-01-01

    Replication-dependent histone genes are up-regulated during the G1/S phase transition to meet the requirement for histones to package the newly synthesized DNA. In mammalian cells, this increment is achieved by enhanced transcription and 3′ end processing. The non-polyadenylated histone mRNA 3′ ends are generated by a unique mechanism involving the U7 small ribonucleoprotein (U7 snRNP). By using affinity purification methods to enrich U7 snRNA, we identified FUS/TLS as a novel U7 snRNP interacting protein. Both U7 snRNA and histone transcripts can be precipitated by FUS antibodies predominantly in the S phase of the cell cycle. Moreover, FUS depletion leads to decreased levels of correctly processed histone mRNAs and increased levels of extended transcripts. Interestingly, FUS antibodies also co-immunoprecipitate histone transcriptional activator NPAT and transcriptional repressor hnRNP UL1 in different phases of the cell cycle. We further show that FUS binds to histone genes in S phase, promotes the recruitment of RNA polymerase II and is important for the activity of histone gene promoters. Thus, FUS may serve as a linking factor that positively regulates histone gene transcription and 3′ end processing by interacting with the U7 snRNP and other factors involved in replication-dependent histone gene expression. PMID:26250115

  11. In Vitro Targeting Reveals Intrinsic Histone Tail Specificity of the Sin3/Histone Deacetylase and N-CoR/SMRT Corepressor Complexes

    PubMed Central

    Vermeulen, Michiel; Carrozza, Michael J.; Lasonder, Edwin; Workman, Jerry L.; Logie, Colin; Stunnenberg, Hendrik G.

    2004-01-01

    The histone code is among others established via differential acetylation catalyzed by histone acetyltransferases (HATs) and histone deacetylases (HDACs). To unambiguously determine the histone tail specificity of HDAC-containing complexes, we have established an in vitro system consisting of nucleosomal templates reconstituted with hyperacetylated histones or recombinant histones followed by acetylation with native SAGA or NuA4. Selective targeting of the mammalian Sin3/HDAC and N-CoR/SMRT corepressor complexes by using specific chimeric repressors created a near physiological setting to assess their histone tail specificity. Recruitment of the Sin3/HDAC complex to nucleosomal templates preacetylated with SAGA or NuA4 resulted in deacetylation of histones H3 and H4, whereas recruitment of N-CoR/SMRT resulted in deacetylation of histone H3 only. These results provide solid evidence that HDAC-containing complexes display distinct, intrinsic histone tail specificities and hence may function differently to regulate chromatin structure and transcription. PMID:14993276

  12. Mass spectrometry-based strategies for characterization of histones and their post-translational modifications

    PubMed Central

    Su, Xiaodan; Ren, Chen; Freitas, Michael A

    2008-01-01

    Due to the intimate interactions between histones and DNA, the characterization of histones has become the focus of great attention. A series of mass spectrometry-based technologies have been dedicated to the characterization and quantitation of different histone forms. This review focuses on the discussion of mass spectrometry-based strategies used for the characterization of histones and their post-translational modifications. PMID:17425457

  13. Mean field study of a propagation-turnover lattice model for the dynamics of histone marking

    NASA Astrophysics Data System (ADS)

    Yao, Fan; Li, FangTing; Li, TieJun

    2017-02-01

    We present a mean field study of a propagation-turnover lattice model, which was proposed by Hodges and Crabtree [Proc. Nat. Acad. Sci. 109, 13296 (2012)] for understanding how posttranslational histone marks modulate gene expression in mammalian cells. The kinetics of the lattice model consists of nucleation, propagation and turnover mechanisms, and exhibits second-order phase transition for the histone marking domain. We showed rigorously that the dynamics essentially depends on a non-dimensional parameter κ = k +/ k -, the ratio between the propagation and turnover rates, which has been observed in the simulations. We then studied the lowest order mean field approximation, and observed the phase transition with an analytically obtained critical parameter. The boundary layer analysis was utilized to investigate the structure of the decay profile of the mark density. We also studied the higher order mean field approximation to achieve sharper estimate of the critical transition parameter and more detailed features. The comparison between the simulation and theoretical results shows the validity of our theory.

  14. Tracking epigenetic histone modifications in single cells using Fab-based live endogenous modification labeling.

    PubMed

    Hayashi-Takanaka, Yoko; Yamagata, Kazuo; Wakayama, Teruhiko; Stasevich, Timothy J; Kainuma, Takashi; Tsurimoto, Toshiki; Tachibana, Makoto; Shinkai, Yoichi; Kurumizaka, Hitoshi; Nozaki, Naohito; Kimura, Hiroshi

    2011-08-01

    Histone modifications play an important role in epigenetic gene regulation and genome integrity. It remains largely unknown, however, how these modifications dynamically change in individual cells. By using fluorescently labeled specific antigen binding fragments (Fabs), we have developed a general method to monitor the distribution and global level of endogenous histone H3 lysine modifications in living cells without disturbing cell growth and embryo development. Fabs produce distinct nuclear patterns that are characteristic of their target modifications. H3K27 trimethylation-specific Fabs, for example, are concentrated on inactive X chromosomes. As Fabs bind their targets transiently, the ratio of bound and free molecules depends on the target concentration, allowing us to measure changes in global modification levels. High-affinity Fabs are suitable for mouse embryo imaging, so we have used them to monitor H3K9 and H3K27 acetylation levels in mouse preimplantation embryos produced by in vitro fertilization and somatic cell nuclear transfer. The data suggest that a high level of H3K27 acetylation is important for normal embryo development. As Fab-based live endogenous modification labeling (FabLEM) is broadly useful for visualizing any modification, it should be a powerful tool for studying cell signaling and diagnosis in the future.

  15. Vaccination with Leishmania histone H1-pulsed dendritic cells confers protection in murine visceral leishmaniasis.

    PubMed

    Agallou, Maria; Smirlis, Despina; Soteriadou, Ketty P; Karagouni, Evdokia

    2012-07-20

    Visceral leishmaniasis is the most severe form of leishmaniases affecting millions of people worldwide often resulting in death despite optimal therapy. Thus, there is an urgent need for the development of effective anti-infective vaccine(s). In the present study, we evaluated the prophylactic value of bone marrow-derived dendritic cells (BM-DCs) pulsed with the Leishmania (L.) infantum histone H1. We developed fully mature BM-DCs characterized by enhanced capacity of IL-12 production after ex vivo pulsing with GST-LeishH1. Intravenous administration of these BM-DCs in naive BALB/c mice resulted in antigen-specific spleenocyte proliferation and IgG1 isotype antibody production and conferred protection against experimental challenge with L. infantum independently of CpG oligonucleotides (ODNs) co-administration. Protection was associated with a pronounced enhancement of parasite-specific IFNγ-producing cells and reduction of cells producing IL-10, whereas IL-4 production was comparable in protected and non-protected mice. The polarization of immune responses to Th1 type was further confirmed by the elevation of parasite-specific IgG2a/IgG1 ratio in protected mice. The above data indicate the immunostimulatory capacity of Leishmania histone H1 and further support its exploitation as a candidate protein for vaccine development against leishmaniasis.

  16. Holocarboxylase synthetase interacts physically with euchromatic histone-lysine N-methyltransferase, linking histone biotinylation with methylation events.

    PubMed

    Li, Yong; Hassan, Yousef I; Moriyama, Hideaki; Zempleni, Janos

    2013-08-01

    Holocarboxylase synthetase (HCS) catalyzes the binding of the vitamin biotin to histones H3 and H4, thereby creating rare histone biotinylation marks in the epigenome. These marks co-localize with K9-methylated histone H3 (H3K9me), an abundant gene repression mark. The abundance of H3K9me marks in transcriptionally competent loci decreases when HCS is knocked down and when cells are depleted of biotin. Here we tested the hypothesis that the creation of H3K9me marks is at least partially explained by physical interactions between HCS and histone-lysine N-methyltransferases. Using a novel in silico protocol, we predicted that HCS-interacting proteins con