Sample records for histone variant ratios

  1. Histone H3 Variants in Trichomonas vaginalis

    PubMed Central

    Zubáčová, Zuzana; Hostomská, Jitka

    2012-01-01

    The parabasalid protist Trichomonas vaginalis is a widespread parasite that affects humans, frequently causing vaginitis in infected women. Trichomonad mitosis is marked by the persistence of the nuclear membrane and the presence of an asymmetric extranuclear spindle with no obvious direct connection to the chromosomes. No centromeric markers have been described in T. vaginalis, which has prevented a detailed analysis of mitotic events in this organism. In other eukaryotes, nucleosomes of centromeric chromatin contain the histone H3 variant CenH3. The principal aim of this work was to identify a CenH3 homolog in T. vaginalis. We performed a screen of the T. vaginalis genome to retrieve sequences of canonical and variant H3 histones. Three variant histone H3 proteins were identified, and the subcellular localization of their epitope-tagged variants was determined. The localization of the variant TVAG_185390 could not be distinguished from that of the canonical H3 histone. The sequence of the variant TVAG_087830 closely resembled that of histone H3. The tagged protein colocalized with sites of active transcription, indicating that the variant TVAG_087830 represented H3.3 in T. vaginalis. The third H3 variant (TVAG_224460) was localized to 6 or 12 distinct spots at the periphery of the nucleus, corresponding to the number of chromosomes in G1 phase and G2 phase, respectively. We propose that this variant represents the centromeric marker CenH3 and thus can be employed as a tool to study mitosis in T. vaginalis. Furthermore, we suggest that the peripheral distribution of CenH3 within the nucleus results from the association of centromeres with the nuclear envelope throughout the cell cycle. PMID:22408228

  2. Histone variant innovation in a rapidly evolving chordate lineage.

    PubMed

    Moosmann, Alexandra; Campsteijn, Coen; Jansen, Pascal Wtc; Nasrallah, Carole; Raasholm, Martina; Stunnenberg, Henk G; Thompson, Eric M

    2011-07-15

    Histone variants alter the composition of nucleosomes and play crucial roles in transcription, chromosome segregation, DNA repair, and sperm compaction. Modification of metazoan histone variant lineages occurs on a background of genome architecture that shows global similarities from sponges to vertebrates, but the urochordate, Oikopleura dioica, a member of the sister group to vertebrates, exhibits profound modification of this ancestral architecture. We show that a histone complement of 47 gene loci encodes 31 histone variants, grouped in distinct sets of developmental expression profiles throughout the life cycle. A particularly diverse array of 15 male-specific histone variants was uncovered, including a testes-specific H4t, the first metazoan H4 sequence variant reported. Universal histone variants H3.3, CenH3, and H2A.Z are present but O. dioica lacks homologs of macroH2A and H2AX. The genome encodes many H2A and H2B variants and the repertoire of H2A.Z isoforms is expanded through alternative splicing, incrementally regulating the number of acetylatable lysine residues in the functionally important N-terminal "charge patch". Mass spectrometry identified 40 acetylation, methylation and ubiquitylation posttranslational modifications (PTMs) and showed that hallmark PTMs of "active" and "repressive" chromatin were present in O. dioica. No obvious reduction in silent heterochromatic marks was observed despite high gene density in this extraordinarily compacted chordate genome. These results show that histone gene complements and their organization differ considerably even over modest phylogenetic distances. Substantial innovation among all core and linker histone variants has evolved in concert with adaptation of specific life history traits in this rapidly evolving chordate lineage.

  3. Proteomic characterization of histone variants in the mouse testis by mass spectrometry-based top-down analysis.

    PubMed

    Kwak, Ho-Geun; Dohmae, Naoshi

    2016-11-15

    Various histones, including testis-specific histones, exist during spermatogenesis and some of them have been reported to play a key role in chromatin remodeling. Mass spectrometry (MS)-based characterization has become the important step to understand histone structures. Although individual histones or partial histone variant groups have been characterized, the comprehensive analysis of histone variants has not yet been conducted in the mouse testis. Here, we present the comprehensive separation and characterization of histone variants from mouse testes by a top-down approach using MS. Histone variants were successfully separated on a reversed phase column using high performance liquid chromatography (HPLC) with an ion-pairing reagent. Increasing concentrations of testis-specific histones were observed in the mouse testis and some somatic histones increased in the epididymis. Specifically, the increase of mass abundance in H3.2 in the epididymis was inversely proportional to the decrease in H3t in the testis, which was approximately 80%. The top-down characterization of intact histone variants in the mouse testis was performed using LC-MS/MS. The masses of separated histone variants and their expected post-translation modifications were calculated by performing deconvolution with information taken from the database. TH2A, TH2B and H3t were characterized by MS/MS fragmentation. Our approach provides comprehensive knowledge for identification of histone variants in the mouse testis that will contribute to the structural and functional research of histone variants during spermatogenesis.

  4. Germline-specific H1 variants: the "sexy" linker histones.

    PubMed

    Pérez-Montero, Salvador; Carbonell, Albert; Azorín, Fernando

    2016-03-01

    The eukaryotic genome is packed into chromatin, a nucleoprotein complex mainly formed by the interaction of DNA with the abundant basic histone proteins. The fundamental structural and functional subunit of chromatin is the nucleosome core particle, which is composed by 146 bp of DNA wrapped around an octameric protein complex formed by two copies of each core histone H2A, H2B, H3, and H4. In addition, although not an intrinsic component of the nucleosome core particle, linker histone H1 directly interacts with it in a monomeric form. Histone H1 binds nucleosomes near the exit/entry sites of linker DNA, determines nucleosome repeat length and stabilizes higher-order organization of nucleosomes into the ∼30 nm chromatin fiber. In comparison to core histones, histone H1 is less well conserved through evolution. Furthermore, histone H1 composition in metazoans is generally complex with most species containing multiple variants that play redundant as well as specific functions. In this regard, a characteristic feature is the presence of specific H1 variants that replace somatic H1s in the germline and during early embryogenesis. In this review, we summarize our current knowledge about their structural and functional properties.

  5. Stable-isotope-labeled Histone Peptide Library for Histone Post-translational Modification and Variant Quantification by Mass Spectrometry *

    PubMed Central

    Lin, Shu; Wein, Samuel; Gonzales-Cope, Michelle; Otte, Gabriel L.; Yuan, Zuo-Fei; Afjehi-Sadat, Leila; Maile, Tobias; Berger, Shelley L.; Rush, John; Lill, Jennie R.; Arnott, David; Garcia, Benjamin A.

    2014-01-01

    To facilitate accurate histone variant and post-translational modification (PTM) quantification via mass spectrometry, we present a library of 93 synthetic peptides using Protein-Aqua™ technology. The library contains 55 peptides representing different modified forms from histone H3 peptides, 23 peptides representing H4 peptides, 5 peptides representing canonical H2A peptides, 8 peptides representing H2A.Z peptides, and peptides for both macroH2A and H2A.X. The PTMs on these peptides include lysine mono- (me1), di- (me2), and tri-methylation (me3); lysine acetylation; arginine me1; serine/threonine phosphorylation; and N-terminal acetylation. The library was subjected to chemical derivatization with propionic anhydride, a widely employed protocol for histone peptide quantification. Subsequently, the detection efficiencies were quantified using mass spectrometry extracted ion chromatograms. The library yields a wide spectrum of detection efficiencies, with more than 1700-fold difference between the peptides with the lowest and highest efficiencies. In this paper, we describe the impact of different modifications on peptide detection efficiencies and provide a resource to correct for detection biases among the 93 histone peptides. In brief, there is no correlation between detection efficiency and molecular weight, hydrophobicity, basicity, or modification type. The same types of modifications may have very different effects on detection efficiencies depending on their positions within a peptide. We also observed antagonistic effects between modifications. In a study of mouse trophoblast stem cells, we utilized the detection efficiencies of the peptide library to correct for histone PTM/variant quantification. For most histone peptides examined, the corrected data did not change the biological conclusions but did alter the relative abundance of these peptides. For a low-abundant histone H2A variant, macroH2A, the corrected data led to a different conclusion than the

  6. Quantitative Mass Spectrometry Reveals Changes in Histone H2B Variants as Cells Undergo Inorganic Arsenic-Mediated Cellular Transformation*

    PubMed Central

    Rea, Matthew; Jiang, Tingting; Eleazer, Rebekah; Eckstein, Meredith; Marshall, Alan G.; Fondufe-Mittendorf, Yvonne N.

    2016-01-01

    Exposure to inorganic arsenic, a ubiquitous environmental toxic metalloid, leads to carcinogenesis. However, the mechanism is unknown. Several studies have shown that inorganic arsenic exposure alters specific gene expression patterns, possibly through alterations in chromatin structure. While most studies on understanding the mechanism of chromatin-mediated gene regulation have focused on histone post-translational modifications, the role of histone variants remains largely unknown. Incorporation of histone variants alters the functional properties of chromatin. To understand the global dynamics of chromatin structure and function in arsenic-mediated carcinogenesis, analysis of the histone variants incorporated into the nucleosome and their covalent modifications is required. Here we report the first global mass spectrometric analysis of histone H2B variants as cells undergo arsenic-mediated epithelial to mesenchymal transition. We used electron capture dissociation-based top-down tandem mass spectrometry analysis validated with quantitative reverse transcription real-time polymerase chain reaction to identify changes in the expression levels of H2B variants in inorganic arsenic-mediated epithelial-mesenchymal transition. We identified changes in the expression levels of specific histone H2B variants in two cell types, which are dependent on dose and length of exposure of inorganic arsenic. In particular, we found increases in H2B variants H2B1H/1K/1C/1J/1O and H2B2E/2F, and significant decreases in H2B1N/1D/1B as cells undergo inorganic arsenic-mediated epithelial-mesenchymal transition. The analysis of these histone variants provides a first step toward an understanding of the functional significance of the diversity of histone structures, especially in inorganic arsenic-mediated gene expression and carcinogenesis. PMID:27169413

  7. Histone Variants and Composition in the Developing Brain: Should MeCP2 Care?

    PubMed

    Zago, Valentina; Pinar-CabezaDeVaca, Cristina; Vincent, John B; Ausio, Juan

    2017-01-01

    Specific compositional chromatin features distinguish brain/neuronal chromatin from that of other tissues and are critical to this organ and cell type development and neuroplasticity. These features include a significant turnover of the major constitutive chromosomal proteins, including the (canonical) replication-dependent histones, the replication-independent replacement histone variants, as well as the chromatin associated transcriptional regulator MeCP2 (methyl CpG binding protein 2). Alterations of histones and MeCP2 have already been implicated in many brain disorders. Despite the relevance of histone variants to chromatin structure and function, only recently has some exciting literature started to re-emerge that directly relates them to neuron plasticity and cognition. However, the amount of information available on the functional role of these histones is still very limited. The purpose of this review is to focus attention to this important group of chromatin proteins, which, in the brain, possess overlapping structural and functional roles with the highly abundant presence of MeCP2. There is an imperative need to understand how all these proteins communicate with each other, and future research will hopefully provide us with answers.

  8. Structural Characterization of the Histone Variant macroH2A

    PubMed Central

    Chakravarthy, Srinivas; Gundimella, Sampath Kumar Y.; Caron, Cecile; Perche, Pierre-Yves; Pehrson, John R.; Khochbin, Saadi; Luger, Karolin

    2005-01-01

    macroH2A is an H2A variant with a highly unusual structural organization. It has a C-terminal domain connected to the N-terminal histone domain by a linker. Crystallographic and biochemical studies show that changes in the L1 loop in the histone fold region of macroH2A impact the structure and potentially the function of nucleosomes. The 1.6-Å X-ray structure of the nonhistone region reveals an α/β fold which has previously been found in a functionally diverse group of proteins. This region associates with histone deacetylases and affects the acetylation status of nucleosomes containing macroH2A. Thus, the unusual domain structure of macroH2A integrates independent functions that are instrumental in establishing a structurally and functionally unique chromatin domain. PMID:16107708

  9. Histone chaperones: assisting histone traffic and nucleosome dynamics.

    PubMed

    Gurard-Levin, Zachary A; Quivy, Jean-Pierre; Almouzni, Geneviève

    2014-01-01

    The functional organization of eukaryotic DNA into chromatin uses histones as components of its building block, the nucleosome. Histone chaperones, which are proteins that escort histones throughout their cellular life, are key actors in all facets of histone metabolism; they regulate the supply and dynamics of histones at chromatin for its assembly and disassembly. Histone chaperones can also participate in the distribution of histone variants, thereby defining distinct chromatin landscapes of importance for genome function, stability, and cell identity. Here, we discuss our current knowledge of the known histone chaperones and their histone partners, focusing on histone H3 and its variants. We then place them into an escort network that distributes these histones in various deposition pathways. Through their distinct interfaces, we show how they affect dynamics during DNA replication, DNA damage, and transcription, and how they maintain genome integrity. Finally, we discuss the importance of histone chaperones during development and describe how misregulation of the histone flow can link to disease.

  10. A novel histone variant localized in nucleoli of higher plant cells.

    PubMed

    Tanaka, I; Akahori, Y; Gomi, K; Suzuki, T; Ueda, K

    1999-07-01

    Immunofluorescence staining with antisera raised against p35, a basic nuclear protein that accumulates in the pollen nuclei of Lilium longiflorum, specifically stained the nucleoli in interphase nuclei of somatic tissues, including root and leaf, and in pachytene nuclei during meiotic division, whereas antisera raised against histone H1 uniformly stained the entire chromatin domain with the exception of the nucleoli in these nuclei. Further, p35-specific antisera stained the nucleoli in root and leaf nuclei of the monocotyledonous plants Tulipa gesneriana, Allium cepa and Triticum aestivum and of the dicotyledonous plants Vicia faba and Nicotiana tabacum. Thus, these novel antisera stained the nucleoli in cells of all higher plants examined, although the staining patterns within nucleoli were somewhat different among plant species and tissues. The full-length cDNA of p35 was cloned on the basis of the partial amino acid sequence. The deduced amino acid composition and amino acid sequence of p35 indicate that this nucleolar protein is a novel variant of histone Hl. Further, p35 was strongly bound to ribosomal DNA in vitro. The results of immunoblotting of histones extracted from each tissue of the various plant species with the nucleolus-specific antibodies also suggested the conservation of similar epitope(s) in both mono- and dicotyledonous plants. From these results, it is suggested that similar variants of histone Hl are specifically distributed in the nucleoli of all plant species and help to organize the nucleolar chromatin.

  11. Post-translational modifications of linker histone H1 variants in mammals

    NASA Astrophysics Data System (ADS)

    Starkova, T. Yu; Polyanichko, A. M.; Artamonova, T. O.; Khodorkovskii, M. A.; Kostyleva, E. I.; Chikhirzhina, E. V.; Tomilin, A. N.

    2017-02-01

    The covalent modifications of the linker histone H1 and the core histones are thought to play an important role in the control of chromatin functioning. Histone H1 variants from K562 cell line (hH1), mouse (mH1) and calf (cH1) thymi were studied by matrix-activated laser desorption/ionization fourier transform ion cyclotron resonance mass-spectroscopy (MALDI-FT-ICR-MS). The proteomics analysis revealed novel post-translational modifications of the histone H1, such as meK34-mH1.4, meK35-cH1.1, meK35-mH1.1, meK75-hH1.2, meK75-hH1.3, acK26-hH1.4, acK26-hH1.3 and acK17-hH1.1. The comparison of the hH1, mH1 and cH1 proteins has demonstrated that the types and positions of the post-translational modifications of the globular domains of the H1.2-H1.4 variants are very conservative. However, the post-translational modifications of the N- and C-terminal tails of H1.2, H1.3 and H1.4 are different. The differences of post-translational modifications in the N- and C-terminal tails of H1.2, H1.3 and H1.4 likely lead to the differences in DNA-H1 and H1-protein interactions.

  12. Structure of allelic variants of subtype 5 of histone H1 in pea Pisum sativum L.

    PubMed

    Bogdanova, V S; Lester, D R; Berdnikov, V A; Andersson, I

    2005-06-01

    The pea genome contains seven histone H1 genes encoding different subtypes. Previously, the DNA sequence of only one gene, His1, coding for the subtype H1-1, had been identified. We isolated a histone H1 allele from a pea genomic DNA library. Data from the electrophoretic mobility of the pea H1 subtypes and their N-bromosuccinimide cleavage products indicated that the newly isolated gene corresponded to the H1-5 subtype encoded by His5. We confirmed this result by sequencing the gene from three pea lines with H1-5 allelic variants of altered electrophoretic mobility. The allele of the slow H1-5 variant differed from the standard allele by a nucleotide substitution that caused the replacement of the positively charged lysine with asparagine in the DNA-interacting domain of the histone molecule. A temperature-related occurrence had previously been demonstrated for this H1-5 variant in a study on a worldwide collection of pea germplasm. The variant tended to occur at higher frequencies in geographic regions with a cold climate. The fast allelic variant of H1-5 displayed a deletion resulting in the loss of a duplicated pentapeptide in the C-terminal domain.

  13. Quantitative regulation of histone variant H2A.Z during cell cycle by ubiquitin proteasome system and SUMO-targeted ubiquitin ligases.

    PubMed

    Takahashi, Daisuke; Orihara, Yuki; Kitagawa, Saho; Kusakabe, Masayuki; Shintani, Takahiro; Oma, Yukako; Harata, Masahiko

    2017-08-01

    Quantitative control of histones and histone variants during cell cycle is relevant to their epigenetic functions. We found that the level of yeast histone variant H2A.Z in the G2/M-phase is actively kept low by the ubiquitin proteasome system and SUMO-targeted ubiquitin ligases. Overexpression of H2A.Z induced defects in mitotic progression, suggesting functional importance of this quantitative control.

  14. Histone H3.3 sub-variant H3mm7 is required for normal skeletal muscle regeneration.

    PubMed

    Harada, Akihito; Maehara, Kazumitsu; Ono, Yusuke; Taguchi, Hiroyuki; Yoshioka, Kiyoshi; Kitajima, Yasuo; Xie, Yan; Sato, Yuko; Iwasaki, Takeshi; Nogami, Jumpei; Okada, Seiji; Komatsu, Tetsuro; Semba, Yuichiro; Takemoto, Tatsuya; Kimura, Hiroshi; Kurumizaka, Hitoshi; Ohkawa, Yasuyuki

    2018-04-11

    Regulation of gene expression requires selective incorporation of histone H3 variant H3.3 into chromatin. Histone H3.3 has several subsidiary variants but their functions are unclear. Here we characterize the function of histone H3.3 sub-variant, H3mm7, which is expressed in skeletal muscle satellite cells. H3mm7 knockout mice demonstrate an essential role of H3mm7 in skeletal muscle regeneration. Chromatin analysis reveals that H3mm7 facilitates transcription by forming an open chromatin structure around promoter regions including those of myogenic genes. The crystal structure of the nucleosome containing H3mm7 reveals that, unlike the S57 residue of other H3 proteins, the H3mm7-specific A57 residue cannot form a hydrogen bond with the R40 residue of the cognate H4 molecule. Consequently, the H3mm7 nucleosome is unstable in vitro and exhibited higher mobility in vivo compared with the H3.3 nucleosome. We conclude that the unstable H3mm7 nucleosome may be required for proper skeletal muscle differentiation.

  15. Characterization of Chlamydomonas reinhardtii Core Histones by Top-Down Mass Spectrometry Reveals Unique Algae-Specific Variants and Post-Translational Modifications.

    PubMed

    Khan, Aliyya; Eikani, Carlo K; Khan, Hana; Iavarone, Anthony T; Pesavento, James J

    2018-01-05

    The unicellular microalga Chlamydomonas reinhardtii has played an instrumental role in the development of many new fields (bioproducts, biofuels, etc.) as well as the advancement of basic science (photosynthetic apparati, flagellar function, etc.). Chlamydomonas' versatility ultimately derives from the genes encoded in its genome and the way that the expression of these genes is regulated, which is largely influenced by a family of DNA binding proteins called histones. We characterize C. reinhardtii core histones, both variants and their post-translational modifications, by chromatographic separation, followed by top-down mass spectrometry (TDMS). Because TDMS has not been previously used to study Chlamydomonas proteins, we show rampant artifactual protein oxidation using established nuclei purification and histone extraction methods. After addressing oxidation, both histones H3 and H4 are found to each have a single polypeptide sequence that is minimally acetylated and methylated. Surprisingly, we uncover a novel monomethylation at lysine 79 on histone H4 present on all observed molecules. Histone H2B and H2A are found to have two and three variants, respectively, and both are minimally modified. This study provides an updated assessment of the core histone proteins in the green alga C. reinhardtii by top-down mass spectrometry and lays the foundation for further investigation of these essential proteins.

  16. The histone shuffle: histone chaperones in an energetic dance

    PubMed Central

    Das, Chandrima; Tyler, Jessica K.; Churchill, Mair E.A.

    2014-01-01

    Our genetic information is tightly packaged into a rather ingenious nucleoprotein complex called chromatin in a manner that enables it to be rapidly accessed during genomic processes. Formation of the nucleosome, which is the fundamental unit of chromatin, occurs via a stepwise process that is reversed to enable the disassembly of nucleosomes. Histone chaperone proteins have prominent roles in facilitating these processes as well as in replacing old histones with new canonical histones or histone variants during the process of histone exchange. Recent structural, biophysical and biochemical studies have begun to shed light on the molecular mechanisms whereby histone chaperones promote chromatin assembly, disassembly and histone exchange to facilitate DNA replication, repair and transcription. PMID:20444609

  17. Label-Free Relative Quantitation of Isobaric and Isomeric Human Histone H2A and H2B Variants by Fourier Transform Ion Cyclotron Resonance Top-Down MS/MS.

    PubMed

    Dang, Xibei; Singh, Amar; Spetman, Brian D; Nolan, Krystal D; Isaacs, Jennifer S; Dennis, Jonathan H; Dalton, Stephen; Marshall, Alan G; Young, Nicolas L

    2016-09-02

    Histone variants are known to play a central role in genome regulation and maintenance. However, many variants are inaccessible by antibody-based methods or bottom-up tandem mass spectrometry due to their highly similar sequences. For many, the only tractable approach is with intact protein top-down tandem mass spectrometry. Here, ultra-high-resolution FT-ICR MS and MS/MS yield quantitative relative abundances of all detected HeLa H2A and H2B isobaric and isomeric variants with a label-free approach. We extend the analysis to identify and relatively quantitate 16 proteoforms from 12 sequence variants of histone H2A and 10 proteoforms of histone H2B from three other cell lines: human embryonic stem cells (WA09), U937, and a prostate cancer cell line LaZ. The top-down MS/MS approach provides a path forward for more extensive elucidation of the biological role of many previously unstudied histone variants and post-translational modifications.

  18. A unique H2A histone variant occupies the transcriptional start site of active genes.

    PubMed

    Soboleva, Tatiana A; Nekrasov, Maxim; Pahwa, Anuj; Williams, Rohan; Huttley, Gavin A; Tremethick, David J

    2011-12-04

    Transcriptional activation is controlled by chromatin, which needs to be unfolded and remodeled to ensure access to the transcription start site (TSS). However, the mechanisms that yield such an 'open' chromatin structure, and how these processes are coordinately regulated during differentiation, are poorly understood. We identify the mouse (Mus musculus) H2A histone variant H2A.Lap1 as a previously undescribed component of the TSS of active genes expressed during specific stages of spermatogenesis. This unique chromatin landscape also includes a second histone variant, H2A.Z. In the later stages of round spermatid development, H2A.Lap1 dynamically loads onto the inactive X chromosome, enabling the transcriptional activation of previously repressed genes. Mechanistically, we show that H2A.Lap1 imparts unique unfolding properties to chromatin. We therefore propose that H2A.Lap1 coordinately regulates gene expression by directly opening the chromatin structure of the TSS at genes regulated during spermatogenesis.

  19. The Histone Database: an integrated resource for histones and histone fold-containing proteins

    PubMed Central

    Mariño-Ramírez, Leonardo; Levine, Kevin M.; Morales, Mario; Zhang, Suiyuan; Moreland, R. Travis; Baxevanis, Andreas D.; Landsman, David

    2011-01-01

    Eukaryotic chromatin is composed of DNA and protein components—core histones—that act to compactly pack the DNA into nucleosomes, the fundamental building blocks of chromatin. These nucleosomes are connected to adjacent nucleosomes by linker histones. Nucleosomes are highly dynamic and, through various core histone post-translational modifications and incorporation of diverse histone variants, can serve as epigenetic marks to control processes such as gene expression and recombination. The Histone Sequence Database is a curated collection of sequences and structures of histones and non-histone proteins containing histone folds, assembled from major public databases. Here, we report a substantial increase in the number of sequences and taxonomic coverage for histone and histone fold-containing proteins available in the database. Additionally, the database now contains an expanded dataset that includes archaeal histone sequences. The database also provides comprehensive multiple sequence alignments for each of the four core histones (H2A, H2B, H3 and H4), the linker histones (H1/H5) and the archaeal histones. The database also includes current information on solved histone fold-containing structures. The Histone Sequence Database is an inclusive resource for the analysis of chromatin structure and function focused on histones and histone fold-containing proteins. Database URL: The Histone Sequence Database is freely available and can be accessed at http://research.nhgri.nih.gov/histones/. PMID:22025671

  20. Functional crosstalk between histone H2B ubiquitylation and H2A modifications and variants.

    PubMed

    Wojcik, Felix; Dann, Geoffrey P; Beh, Leslie Y; Debelouchina, Galia T; Hofmann, Raphael; Muir, Tom W

    2018-04-11

    Ubiquitylation of histone H2B at lysine residue 120 (H2BK120ub) is a prominent histone posttranslational modification (PTM) associated with the actively transcribed genome. Although H2BK120ub triggers several critical downstream histone modification pathways and changes in chromatin structure, less is known about the regulation of the ubiquitylation reaction itself, in particular with respect to the modification status of the chromatin substrate. Here we employ an unbiased library screening approach to profile the impact of pre-existing chromatin modifications on de novo ubiquitylation of H2BK120 by the cognate human E2:E3 ligase pair, UBE2A:RNF20/40. Deposition of H2BK120ub is found to be highly sensitive to PTMs on the N-terminal tail of histone H2A, a crosstalk that extends to the common histone variant H2A.Z. Based on a series of biochemical and cell-based studies, we propose that this crosstalk contributes to the spatial organization of H2BK120ub on gene bodies, and is thus important for transcriptional regulation.

  1. Genome Editing a Mouse Locus Encoding a Variant Histone, H3.3B, to Report on its Expression in Live Animals

    PubMed Central

    Wen, Duancheng; Noh, Kyung-Min; Goldberg, Aaron D.; Allis, C. David; Rosenwaks, Zev; Rafii, Shahin; Banaszynski, Laura A.

    2018-01-01

    Summary Chromatin remodeling via incorporation of histone variants plays a key role in the regulation of embryonic development. The histone variant H3.3 has been associated with a number of early events including formation of the paternal pronucleus upon fertilization. The small number of amino acid differences between H3.3 and its canonical counterparts (H3.1 and H3.2) has limited studies of the developmental significance of H3.3 deposition into chromatin due to difficulties in distinguishing the H3 isoforms. To this end, we used zinc-finger nuclease (ZFN) mediated gene editing to introduce a small C-terminal hemagglutinin (HA) tag to the endogenous H3.3B locus in mouse embryonic stem cells (ESCs), along with an internal ribosome entry site (IRES) and a separately translated fluorescent reporter of expression. This system will allow detection of expression driven by the reporter in cells, animals, and embryos, and will facilitate investigation of differential roles of paternal and maternal H3.3 protein during embryogenesis that would not be possible using variant-specific antibodies. Further, the ability to monitor endogenous H3.3 protein in various cell lineages will enhance our understanding of the dynamics of this histone variant over the course of development. genesis PMID:25262655

  2. HIstome--a relational knowledgebase of human histone proteins and histone modifying enzymes.

    PubMed

    Khare, Satyajeet P; Habib, Farhat; Sharma, Rahul; Gadewal, Nikhil; Gupta, Sanjay; Galande, Sanjeev

    2012-01-01

    Histones are abundant nuclear proteins that are essential for the packaging of eukaryotic DNA into chromosomes. Different histone variants, in combination with their modification 'code', control regulation of gene expression in diverse cellular processes. Several enzymes that catalyze the addition and removal of multiple histone modifications have been discovered in the past decade, enabling investigations of their role(s) in normal cellular processes and diverse pathological conditions. This sudden influx of data, however, has resulted in need of an updated knowledgebase that compiles, organizes and presents curated scientific information to the user in an easily accessible format. Here, we present HIstome, a browsable, manually curated, relational database that provides information about human histone proteins, their sites of modifications, variants and modifying enzymes. HIstome is a knowledgebase of 55 human histone proteins, 106 distinct sites of their post-translational modifications (PTMs) and 152 histone-modifying enzymes. Entries have been grouped into 5 types of histones, 8 types of post-translational modifications and 14 types of enzymes that catalyze addition and removal of these modifications. The resource will be useful for epigeneticists, pharmacologists and clinicians. HIstome: The Histone Infobase is available online at http://www.iiserpune.ac.in/∼coee/histome/ and http://www.actrec.gov.in/histome/.

  3. Protamine ratio and the level of histone retention in sperm selected from a density gradient preparation.

    PubMed

    Hammoud, S; Liu, L; Carrell, D T

    2009-04-01

    Fertile males express two forms of sperm nuclear proteins, protamine 1 (P1) and protamine 2 (P2), in roughly equal quantities, whereas some infertile men have been shown to have a reduction in protamine content and an increase in the level of histones retained in mature sperm. In this study, we assessed histone and protamine levels in spermatozoa isolated from different layers of a density gradient centrifugation column to evaluate the nuclear protein content of the sperm population selected. Protamine levels were measured using acid gel electrophoresis and immunofluorescence, and the percentage of cells retaining histones was evaluated using aniline staining and immunofluorescence. Our data suggests that there is an inverse correlation between P1/P2 ratio and the level of histone expression in the different layers of the density gradient. Paradoxically, the 90% layer had a lower P1/P2 ratio, which corresponded with an increase in histone expression. It is concluded that although the sperm population selected in the 90% layer of the density gradient columns had a lower P1/P2 ratio, it was yet similar to the P1/P2 ratio observed in previously screened fertile donors.

  4. Immunocytochemical localization of a histone H2A variant in the mammalian nucleolar chromatin.

    PubMed

    Bhatnagar, Y M; McCullar, M K; Chronister, R B

    1984-11-01

    The distribution of protein "A", a minor variant of H2A present in the mouse testis, was studied in the liver and brain nuclei using peroxidase-antiperoxidase technique. The data presented here suggest that nucleolar-associated chromatin is highly enriched in protein "A". Microspectrophotometric measurements corroborate the immunocytochemical data. The regional differentiation in the eukaryotic chromatin, therefore, may involve qualitative changes in the histone composition.

  5. Histone Variant Regulates DNA Repair via Chromatin Condensation | Center for Cancer Research

    Cancer.gov

    Activating the appropriate DNA repair pathway is essential for maintaining the stability of the genome after a break in both strands of DNA. How a pathway is selected, however, is not well understood. Since these double strand breaks (DSBs) occur while DNA is packaged as chromatin, changes in its organization are necessary for repair to take place. Numerous alterations have been associated with DSBs, including modifications of histone tails and exchange of histone variants, some increasing chromatin accessibility, others reducing it. In fact, distinct domains flanking a single DSB have been observed that are bound by opposing repair pathway proteins 53BP1and BRCA1, which promote non-homologous end joining (NHEJ) and homologous recombination (HR), respectively. To investigate whether DSB-proximal chromatin reorganization affects repair pathway selection, Philipp Oberdoerffer, Ph.D., of CCR’s Laboratory of Receptor Biology and Gene Expression, and his colleagues performed a high-throughput RNA interference (RNAi) screen for chromatin-related genes that modulate HR.

  6. Rapid divergence of histones in Hydrozoa (Cnidaria) and evolution of a novel histone involved in DNA damage response in hydra.

    PubMed

    Reddy, Puli Chandramouli; Ubhe, Suyog; Sirwani, Neha; Lohokare, Rasika; Galande, Sanjeev

    2017-08-01

    Histones are fundamental components of chromatin in all eukaryotes. Hydra, an emerging model system belonging to the basal metazoan phylum Cnidaria, provides an ideal platform to understand the evolution of core histone components at the base of eumetazoan phyla. Hydra exhibits peculiar properties such as tremendous regenerative capacity, lack of organismal senescence and rarity of malignancy. In light of the role of histone modifications and histone variants in these processes it is important to understand the nature of histones themselves and their variants in hydra. Here, we report identification of the complete repertoire of histone-coding genes in the Hydra magnipapillata genome. Hydra histones were classified based on their copy numbers, gene structure and other characteristic features. Genomic organization of canonical histone genes revealed the presence of H2A-H2B and H3-H4 paired clusters in high frequency and also a cluster with all core histones along with H1. Phylogenetic analysis of identified members of H2A and H2B histones suggested rapid expansion of these groups in Hydrozoa resulting in the appearance of unique subtypes. Amino acid sequence level comparisons of H2A and H2B forms with bilaterian counterparts suggest the possibility of a highly mobile nature of nucleosomes in hydra. Absolute quantitation of transcripts confirmed the high copy number of histones and supported the canonical nature of H2A. Furthermore, functional characterization of H2A.X.1 and a unique variant H2A.X.2 in the gastric region suggest their role in the maintenance of genome integrity and differentiation processes. These findings provide insights into the evolution of histones and their variants in hydra. Copyright © 2017 Elsevier GmbH. All rights reserved.

  7. A new link between transcriptional initiation and pre-mRNA splicing: The RNA binding histone variant H2A.B

    PubMed Central

    Hart-Smith, Gene; Tay, Ying Jin; Tng, Wei-Quan; Wilkins, Marc; Ryan, Daniel

    2017-01-01

    The replacement of histone H2A with its variant forms is critical for regulating all aspects of genome organisation and function. The histone variant H2A.B appeared late in evolution and is most highly expressed in the testis followed by the brain in mammals. This raises the question of what new function(s) H2A.B might impart to chromatin in these important tissues. We have immunoprecipitated the mouse orthologue of H2A.B, H2A.B.3 (H2A.Lap1), from testis chromatin and found this variant to be associated with RNA processing factors and RNA Polymerase (Pol) II. Most interestingly, many of these interactions with H2A.B.3 (Sf3b155, Spt6, DDX39A and RNA Pol II) were inhibited by the presence of endogenous RNA. This histone variant can bind to RNA directly in vitro and in vivo, and associates with mRNA at intron—exon boundaries. This suggests that the ability of H2A.B to bind to RNA negatively regulates its capacity to bind to these factors (Sf3b155, Spt6, DDX39A and RNA Pol II). Unexpectedly, H2A.B.3 forms highly decompacted nuclear subdomains of active chromatin that co-localizes with splicing speckles in male germ cells. H2A.B.3 ChIP-Seq experiments revealed a unique chromatin organization at active genes being not only enriched at the transcription start site (TSS), but also at the beginning of the gene body (but being excluded from the +1 nucleosome) compared to the end of the gene. We also uncover a general histone variant replacement process whereby H2A.B.3 replaces H2A.Z at intron-exon boundaries in the testis and the brain, which positively correlates with expression and exon inclusion. Taken together, we propose that a special mechanism of splicing may occur in the testis and brain whereby H2A.B.3 recruits RNA processing factors from splicing speckles to active genes following its replacement of H2A.Z. PMID:28234895

  8. Histone modifications in the male germ line of Drosophila.

    PubMed

    Hennig, Wolfgang; Weyrich, Alexandra

    2013-02-22

    In the male germ line of Drosophila chromatin remains decondensed and highly transcribed during meiotic prophase until it is rapidly compacted. A large proportion of the cell cycle-regulated histone H3.1 is replaced by H3.3, a histone variant encoded outside the histone repeat cluster and not subject to cell cycle controlled expression. We investigated histone modification patterns in testes of D. melanogaster and D. hydei. In somatic cells of the testis envelope and in germ cells these modification patterns differ from those typically seen in eu- and heterochromatin of other somatic cells. During the meiotic prophase some modifications expected in active chromatin are not found or are found at low level. The absence of H4K16ac suggests that dosage compensation does not take place. Certain histone modifications correspond to either the cell cycle-regulated histone H3.1 or to the testis-specific variant H3.3. In spermatogonia we found H3K9 methylation in cytoplasmic histones, most likely corresponding to the H3.3 histone variant. Most histone modifications persist throughout the meiotic divisions. The majority of modifications persist until the early spermatid nuclei, and only a minority further persist until the final chromatin compaction stages before individualization of the spermatozoa. Histone modification patterns in the male germ line differ from expected patterns. They are consistent with an absence of dosage compensation of the X chromosome during the male meiotic prophase. The cell cycle-regulated histone variant H3.1 and H3.3, expressed throughout the cell cycle, also vary in their modification patterns. Postmeiotically, we observed a highly complex pattern of the histone modifications until late spermatid nuclear elongation stages. This may be in part due to postmeiotic transcription and in part to differential histone replacement during chromatin condensation.

  9. Diversity and Divergence of Dinoflagellate Histone Proteins

    PubMed Central

    Marinov, Georgi K.; Lynch, Michael

    2015-01-01

    Histone proteins and the nucleosomal organization of chromatin are near-universal eukaroytic features, with the exception of dinoflagellates. Previous studies have suggested that histones do not play a major role in the packaging of dinoflagellate genomes, although several genomic and transcriptomic surveys have detected a full set of core histone genes. Here, transcriptomic and genomic sequence data from multiple dinoflagellate lineages are analyzed, and the diversity of histone proteins and their variants characterized, with particular focus on their potential post-translational modifications and the conservation of the histone code. In addition, the set of putative epigenetic mark readers and writers, chromatin remodelers and histone chaperones are examined. Dinoflagellates clearly express the most derived set of histones among all autonomous eukaryote nuclei, consistent with a combination of relaxation of sequence constraints imposed by the histone code and the presence of numerous specialized histone variants. The histone code itself appears to have diverged significantly in some of its components, yet others are conserved, implying conservation of the associated biochemical processes. Specifically, and with major implications for the function of histones in dinoflagellates, the results presented here strongly suggest that transcription through nucleosomal arrays happens in dinoflagellates. Finally, the plausible roles of histones in dinoflagellate nuclei are discussed. PMID:26646152

  10. The histone variant H2A.Bbd is enriched at sites of DNA synthesis

    PubMed Central

    Sansoni, Viola; Casas-Delucchi, Corella S.; Rajan, Malini; Schmidt, Andreas; Bönisch, Clemens; Thomae, Andreas W.; Staege, Martin S.; Hake, Sandra B.; Cardoso, M. Cristina; Imhof, Axel

    2014-01-01

    Histone variants play an important role in shaping the mammalian epigenome and their aberrant expression is frequently observed in several types of cancer. However, the mechanisms that mediate their function and the composition of the variant-containing chromatin are still largely unknown. A proteomic interrogation of chromatin containing the different H2A variants macroH2A.1.2, H2A.Bbd and H2A revealed a strikingly different protein composition. Gene ontology analysis reveals a strong enrichment of splicing factors as well as components of the mammalian replisome in H2A.Bbd-containing chromatin. We find H2A.Bbd localizing transiently to sites of DNA synthesis during S-phase and during DNA repair. Cells that express H2A.Bbd have a shortened S-phase and are more susceptible to DNA damage, two phenotypes that are also observed in human Hodgkin's lymphoma cells that aberrantly express this variant. Based on our experiments we conclude that H2A.Bbd is targeted to newly synthesized DNA during replication and DNA repair. The transient incorporation of H2A.Bbd may be due to the intrinsic instability of nucleosomes carrying this variant or a faster chromatin loading. This potentially leads to a disturbance of the existing chromatin structure, which may have effects on cell cycle regulation and DNA damage sensitivity. PMID:24753410

  11. Quantitative microspectral evaluation of the ratio of arginine-rich to lysine-rich histones in neurons and neuroglial cells.

    PubMed

    Pevzner, L Z; Raygorodskaya, T G; Agroskin, L S

    1978-09-01

    Staining of nervous tissue sections with ammoniacal silver according to Black et al. has been confirmed to be a reliable histochemical colour reaction for quantitative evaluation of arginine-rich and lysine-rich histones in cell structures on the basis of determinations of the position of spectral curve maximum. Neurons of several brain nuclei which differed in predominating neurotransmitter did not differ in the ratio of arginine-rich to lysine-rich histones while some differences in this ratio were found out in the glial satelite cells adjacent to the corresponding neurons of these nuclei. Moderate circadian fluctuations were observed in the arginine-rich to lysine-rich histone ratio, these fluctuations being rather similar in the neurons studied and in the cells of perineuronal neuroglia.

  12. The histone H3 variant H3.3 regulates gene body DNA methylation in Arabidopsis thaliana.

    PubMed

    Wollmann, Heike; Stroud, Hume; Yelagandula, Ramesh; Tarutani, Yoshiaki; Jiang, Danhua; Jing, Li; Jamge, Bhagyshree; Takeuchi, Hidenori; Holec, Sarah; Nie, Xin; Kakutani, Tetsuji; Jacobsen, Steven E; Berger, Frédéric

    2017-05-18

    Gene bodies of vertebrates and flowering plants are occupied by the histone variant H3.3 and DNA methylation. The origin and significance of these profiles remain largely unknown. DNA methylation and H3.3 enrichment profiles over gene bodies are correlated and both have a similar dependence on gene transcription levels. This suggests a mechanistic link between H3.3 and gene body methylation. We engineered an H3.3 knockdown in Arabidopsis thaliana and observed transcription reduction that predominantly affects genes responsive to environmental cues. When H3.3 levels are reduced, gene bodies show a loss of DNA methylation correlated with transcription levels. To study the origin of changes in DNA methylation profiles when H3.3 levels are reduced, we examined genome-wide distributions of several histone H3 marks, H2A.Z, and linker histone H1. We report that in the absence of H3.3, H1 distribution increases in gene bodies in a transcription-dependent manner. We propose that H3.3 prevents recruitment of H1, inhibiting H1's promotion of chromatin folding that restricts access to DNA methyltransferases responsible for gene body methylation. Thus, gene body methylation is likely shaped by H3.3 dynamics in conjunction with transcriptional activity.

  13. A Specialized Histone H1 Variant Is Required for Adaptive Responses to Complex Abiotic Stress and Related DNA Methylation in Arabidopsis1[OPEN

    PubMed Central

    Rutowicz, Kinga; Puzio, Marcin; Halibart-Puzio, Joanna; Lirski, Maciej; Kotliński, Maciej; Kroteń, Magdalena A.; Knizewski, Lukasz; Lange, Bartosz; Muszewska, Anna; Śniegowska-Świerk, Katarzyna; Kościelniak, Janusz; Iwanicka-Nowicka, Roksana; Buza, Krisztián; Janowiak, Franciszek; Żmuda, Katarzyna; Jõesaar, Indrek; Laskowska-Kaszub, Katarzyna; Fogtman, Anna; Kollist, Hannes; Zielenkiewicz, Piotr; Tiuryn, Jerzy; Siedlecki, Paweł; Swiezewski, Szymon; Ginalski, Krzysztof; Koblowska, Marta; Archacki, Rafał; Wilczynski, Bartek; Rapacz, Marcin; Jerzmanowski, Andrzej

    2015-01-01

    Linker (H1) histones play critical roles in chromatin compaction in higher eukaryotes. They are also the most variable of the histones, with numerous nonallelic variants cooccurring in the same cell. Plants contain a distinct subclass of minor H1 variants that are induced by drought and abscisic acid and have been implicated in mediating adaptive responses to stress. However, how these variants facilitate adaptation remains poorly understood. Here, we show that the single Arabidopsis (Arabidopsis thaliana) stress-inducible variant H1.3 occurs in plants in two separate and most likely autonomous pools: a constitutive guard cell-specific pool and a facultative environmentally controlled pool localized in other tissues. Physiological and transcriptomic analyses of h1.3 null mutants demonstrate that H1.3 is required for both proper stomatal functioning under normal growth conditions and adaptive developmental responses to combined light and water deficiency. Using fluorescence recovery after photobleaching analysis, we show that H1.3 has superfast chromatin dynamics, and in contrast to the main Arabidopsis H1 variants H1.1 and H1.2, it has no stable bound fraction. The results of global occupancy studies demonstrate that, while H1.3 has the same overall binding properties as the main H1 variants, including predominant heterochromatin localization, it differs from them in its preferences for chromatin regions with epigenetic signatures of active and repressed transcription. We also show that H1.3 is required for a substantial part of DNA methylation associated with environmental stress, suggesting that the likely mechanism underlying H1.3 function may be the facilitation of chromatin accessibility by direct competition with the main H1 variants. PMID:26351307

  14. Histone modification: cause or cog?

    PubMed

    Henikoff, Steven; Shilatifard, Ali

    2011-10-01

    Histone modifications are key components of chromatin packaging but whether they constitute a 'code' has been contested. We believe that the central issue is causality: are histone modifications responsible for differences between chromatin states, or are differences in modifications mostly consequences of dynamic processes, such as transcription and nucleosome remodeling? We find that inferences of causality are often based on correlation and that patterns of some key histone modifications are more easily explained as consequences of nucleosome disruption in the presence of histone modifying enzymes. We suggest that the 35-year-old DNA accessibility paradigm provides a mechanistically sound basis for understanding the role of nucleosomes in gene regulation and epigenetic inheritance. Based on this view, histone modifications and variants contribute to diversification of a chromatin landscape shaped by dynamic processes that are driven primarily by transcription and nucleosome remodeling. Copyright © 2011 Elsevier Ltd. All rights reserved.

  15. Histone H1 heterogeneity in the midge, Chironomus thummi. Structural comparison of the H1 variants in an organism where their intrachromosomal localization is possible.

    PubMed

    Hoyer-Fender, S; Grossbach, U

    1988-09-01

    1. Seven subfractions of histone H1 have been isolated and purified from larvae of Chironomus thummi (Diptera). They have been denominated I-1, II-1, II-2, II-3, III-1, III-2, and III-3, according to the order of migration in two steps of preparative electrophoresis. 2. The amino acid compositions are similar to those of other H1 histones. Subfractions I-1 and II-1 were found to contain one methionine and two tyrosine residues, II-2 contained two methionine and three tyrosine residues, and III-1 one methionine and three tyrosine residues. The other subfractions contained one or two methionine and two or three tyrosine residues. For subfractions I-1 and II-1 a chain length of about 252 amino acids was estimated. 3. Peptide pattern analyses after chemical cleavage at the methionine and tyrosine residues, and enzymatic cleavage with thrombin and chymotrypsin, respectively, showed that all subfractions have different individual primary structures. A comparison of peptide sizes and of the positions in the peptide patterns of epitopes recognized by monoclonal antibodies was made to check whether some of the subfractions could arise by proteolytic degradation of others. This possibility can be excluded for five of the subfractions and is very improbable for the two others. Treatment of C. thummi H1 with alkaline phosphatase did not change the pattern of subfractions, while the phosphorylated subfraction of histone H2A disappeared after this treatment. Most and very probably all subfractions are thus H1 sequence variants. 4. Inbred strains and individual larvae of C. thummi were found to comprise all seven variants. The H1 heterogeneity can therefore not be due to allelic polymorphism. Salivary gland nuclei were found to contain variant I-1 and at least some of the other variants. 5. H1 from Drosophila melanogaster and from calf thymus were used as reference molecules in all cleavage experiments and yielded the peptide patterns expected from the sequence. The comparison

  16. Mild performic acid oxidation enhances chromatographic and top down mass spectrometric analyses of histones.

    PubMed

    Pesavento, James J; Garcia, Benjamin A; Streeky, James A; Kelleher, Neil L; Mizzen, Craig A

    2007-09-01

    Recent developments in top down mass spectrometry have enabled closely related histone variants and their modified forms to be identified and quantitated with unprecedented precision, facilitating efforts to better understand how histones contribute to the epigenetic regulation of gene transcription and other nuclear processes. It is therefore crucial that intact MS profiles accurately reflect the levels of variants and modified forms present in a given cell type or cell state for the full benefit of such efforts to be realized. Here we show that partial oxidation of Met and Cys residues in histone samples prepared by conventional methods, together with oxidation that can accrue during storage or during chip-based automated nanoflow electrospray ionization, confounds MS analysis by altering the intact MS profile as well as hindering posttranslational modification localization after MS/MS. We also describe an optimized performic acid oxidation procedure that circumvents these problems without catalyzing additional oxidations or altering the levels of posttranslational modifications common in histones. MS and MS/MS of HeLa cell core histones confirmed that Met and Cys were the only residues oxidized and that complete oxidation restored true intact abundance ratios and significantly enhanced MS/MS data quality. This allowed for the unequivocal detection, at the intact molecule level, of novel combinatorially modified forms of H4 that would have been missed otherwise. Oxidation also enhanced the separation of human core histones by reverse phase chromatography and decreased the levels of salt-adducted forms observed in ESI-FTMS. This method represents a simple and easily automated means for enhancing the accuracy and sensitivity of top down analyses of combinatorially modified forms of histones that may also be of benefit for top down or bottom up analyses of other proteins.

  17. The activity-dependent histone variant H2BE modulates the life span of olfactory neurons

    PubMed Central

    Santoro, Stephen W; Dulac, Catherine

    2012-01-01

    We have identified a replication-independent histone variant, Hist2h2be (referred to herein as H2be), which is expressed exclusively by olfactory chemosensory neurons. Levels of H2BE are heterogeneous among olfactory neurons, but stereotyped according to the identity of the co-expressed olfactory receptor (OR). Gain- and loss-of-function experiments demonstrate that changes in H2be expression affect olfactory function and OR representation in the adult olfactory epithelium. We show that H2BE expression is reduced by sensory activity and that it promotes neuronal cell death, such that inactive olfactory neurons display higher levels of the variant and shorter life spans. Post-translational modifications (PTMs) of H2BE differ from those of the canonical H2B, consistent with a role for H2BE in altering transcription. We propose a physiological function for H2be in modulating olfactory neuron population dynamics to adapt the OR repertoire to the environment. DOI: http://dx.doi.org/10.7554/eLife.00070.001 PMID:23240083

  18. The cnidarian Hydractinia echinata employs canonical and highly adapted histones to pack its DNA.

    PubMed

    Török, Anna; Schiffer, Philipp H; Schnitzler, Christine E; Ford, Kris; Mullikin, James C; Baxevanis, Andreas D; Bacic, Antony; Frank, Uri; Gornik, Sebastian G

    2016-01-01

    Cnidarians are a group of early branching animals including corals, jellyfish and hydroids that are renowned for their high regenerative ability, growth plasticity and longevity. Because cnidarian genomes are conventional in terms of protein-coding genes, their remarkable features are likely a consequence of epigenetic regulation. To facilitate epigenetics research in cnidarians, we analysed the histone complement of the cnidarian model organism Hydractinia echinata using phylogenomics, proteomics, transcriptomics and mRNA in situ hybridisations. We find that the Hydractinia genome encodes 19 histones and analyse their spatial expression patterns, genomic loci and replication-dependency. Alongside core and other replication-independent histone variants, we find several histone replication-dependent variants, including a rare replication-dependent H3.3, a female germ cell-specific H2A.X and an unusual set of five H2B variants, four of which are male germ cell-specific. We further confirm the absence of protamines in Hydractinia. Since no protamines are found in hydroids, we suggest that the novel H2B variants are pivotal for sperm DNA packaging in this class of Cnidaria. This study adds to the limited number of full histone gene complements available in animals and sets a comprehensive framework for future studies on the role of histones and their post-translational modifications in cnidarian epigenetics. Finally, it provides insight into the evolution of spermatogenesis.

  19. Variant Histone H2A.Z Is Globally Localized to the Promoters of Inactive Yeast Genes and Regulates Nucleosome Positioning

    PubMed Central

    Gévry, Nicolas; Adam, Maryse; Blanchette, Mathieu

    2005-01-01

    H2A.Z is an evolutionary conserved histone variant involved in transcriptional regulation, antisilencing, silencing, and genome stability. The mechanism(s) by which H2A.Z regulates these various biological functions remains poorly defined, in part due to the lack of knowledge regarding its physical location along chromosomes and the bearing it has in regulating chromatin structure. Here we mapped H2A.Z across the yeast genome at an approximately 300-bp resolution, using chromatin immunoprecipitation combined with tiling microarrays. We have identified 4,862 small regions—typically one or two nucleosomes wide—decorated with H2A.Z. Those “Z loci” are predominantly found within specific nucleosomes in the promoter of inactive genes all across the genome. Furthermore, we have shown that H2A.Z can regulate nucleosome positioning at the GAL1 promoter. Within HZAD domains, the regions where H2A.Z shows an antisilencing function, H2A.Z is localized in a wider pattern, suggesting that the variant histone regulates a silencing and transcriptional activation via different mechanisms. Our data suggest that the incorporation of H2A.Z into specific promoter-bound nucleosomes configures chromatin structure to poise genes for transcriptional activation. The relevance of these findings to higher eukaryotes is discussed. PMID:16248679

  20. Ubiquitous and gene-specific regulatory 5' sequences in a sea urchin histone DNA clone coding for histone protein variants.

    PubMed Central

    Busslinger, M; Portmann, R; Irminger, J C; Birnstiel, M L

    1980-01-01

    The DNA sequences of the entire structural H4, H3, H2A and H2B genes and of their 5' flanking regions have been determined in the histone DNA clone h19 of the sea urchin Psammechinus miliaris. In clone h19 the polarity of transcription and the relative arrangement of the histone genes is identical to that in clone h22 of the same species. The histone proteins encoded by h19 DNA differ in their primary structure from those encoded by clone h22 and have been compared to histone protein sequences of other sea urchin species as well as other eukaryotes. A comparative analysis of the 5' flanking DNA sequences of the structural histone genes in both clones revealed four ubiquitous sequence motifs; a pentameric element GATCC, followed at short distance by the Hogness box GTATAAATAG, a conserved sequence PyCATTCPu, in or near which the 5' ends of the mRNAs map in h22 DNA and lastly a sequence A, containing the initiation codon. These sequences are also found, sometimes in modified version, in front of other eukaryotic genes transcribed by polymerase II. When prelude sequences of isocoding histone genes in clone h19 and h22 are compared areas of homology are seen to extend beyond the ubiquitous sequence motifs towards the divergent AT-rich spacer and terminate between approximately 140 and 240 nucleotides away from the structural gene. These prelude regions contain quite large conservative sequence blocks which are specific for each type of histone genes. Images PMID:7443547

  1. Esperanto for histones: CENP-A, not CenH3, is the centromeric histone H3 variant.

    PubMed

    Earnshaw, W C; Allshire, R C; Black, B E; Bloom, K; Brinkley, B R; Brown, W; Cheeseman, I M; Choo, K H A; Copenhaver, G P; Deluca, J G; Desai, A; Diekmann, S; Erhardt, S; Fitzgerald-Hayes, M; Foltz, D; Fukagawa, T; Gassmann, R; Gerlich, D W; Glover, D M; Gorbsky, G J; Harrison, S C; Heun, P; Hirota, T; Jansen, L E T; Karpen, G; Kops, G J P L; Lampson, M A; Lens, S M; Losada, A; Luger, K; Maiato, H; Maddox, P S; Margolis, R L; Masumoto, H; McAinsh, A D; Mellone, B G; Meraldi, P; Musacchio, A; Oegema, K; O'Neill, R J; Salmon, E D; Scott, K C; Straight, A F; Stukenberg, P T; Sullivan, B A; Sullivan, K F; Sunkel, C E; Swedlow, J R; Walczak, C E; Warburton, P E; Westermann, S; Willard, H F; Wordeman, L; Yanagida, M; Yen, T J; Yoda, K; Cleveland, D W

    2013-04-01

    The first centromeric protein identified in any species was CENP-A, a divergent member of the histone H3 family that was recognised by autoantibodies from patients with scleroderma-spectrum disease. It has recently been suggested to rename this protein CenH3. Here, we argue that the original name should be maintained both because it is the basis of a long established nomenclature for centromere proteins and because it avoids confusion due to the presence of canonical histone H3 at centromeres.

  2. Isolation and analysis of linker histones across cellular compartments

    PubMed Central

    Harshman, Sean W.; Chen, Michael M.; Branson, Owen E.; Jacob, Naduparambil K.; Johnson, Amy J.; Byrd, John C.; Freitas, Michael A.

    2013-01-01

    Analysis of histones, especially histone H1, is severely limited by immunological reagent availability. This paper describes the application of cellular fractionation with LC-MS for profiling histones in the cytosol and upon chromatin. First, we show that linker histones enriched by cellular fractionation gives less nuclear contamination and higher histone content than when prepared by nuclei isolation. Second, we profiled the soluble linker histones throughout the cell cycle revealing phosphorylation increases as cells reach mitosis. Finally, we monitored histone H1.2–H1.5 translocation to the cytosol in response to the CDK inhibitor flavopiridol in primary CLL cells treated ex vivo. Data shows all H1 variants translocate in response to drug treatment with no specific order to their cytosolic appearance. The results illustrate the utility of cellular fractionation in conjunction with LC-MS for the analysis of histone H1 throughout the cell. PMID:24013129

  3. Impact of cigarette smoking on histone (H2B) to protamine ratio in human spermatozoa and its relation to sperm parameters.

    PubMed

    Hamad, M F; Shelko, N; Kartarius, S; Montenarh, M; Hammadeh, M E

    2014-09-01

    Smoking is strongly associated with abnormalities in histone-to-protamine transition and with alteration of protamine expression in human spermatozoa. A proper protamine to histone ratio is, however, essential for sperm chromatin maturity and DNA integrity. Alterations in these sperm nuclear proteins were observed in infertile men. The present prospective study is aimed at evaluating the possible relationship among smoking, semen quality and the histone-to-protamine transition ratio in mature spermatozoa. Histone H2B and protamine 1 (P1) and 2 (P2) were quantified using acid-urea polyacrylamide gel electrophoresis in the spermatozoa of 35 smokers and 19 non-smokers. Levels of lipid peroxidation marker malondialdehyde (MDA) were measured in seminal plasma by thiobarbituric acid assay. Cotinine concentrations were determined in seminal plasma using an enzyme-linked immunosorbent assay. Histone H2B levels in smokers (292.27 ± 58.24 ng/10(6)) were significantly higher (p = 0.001) than that of non-smokers (109.1 ± 43.70 ng/10(6)), besides, a significant difference (p > 0.0001) was found for the P1 and P2 ratio between smokers (1.71 ± 0.071) and non-smokers (1.05 ± 0.033). The H2B/(H2B+P1 + P2) ratio (0.29 ± 0.71) of smokers were significantly higher (p = <0.0001) than that of non-smokers (0.12 ± 0.01). The concentrations of MDA (μm) (7.13 ± 1.15) and cotinine (ng/mL) (60.44 ± 31.32) in seminal plasma of smokers were significantly higher (p = 0.001) than those in the samples of the non-smoker group (4.42 ± 1.16 and 2.01 ± 2.84 respectively). In addition, smokers showed significantly (p ≤ 0.002) lower sperm count, motility (p = 0.018), vitality (p = 0.009) and membrane integrity (p = 0.0001) than non-smokers. These results reveal that patients who smoke possess a higher proportion of spermatozoa with an alteration of the histone to protamine ratio than patients who do not smoke, and suggest that cigarette smoking may inversely affect male fertility. © 2014

  4. The specification and global reprogramming of histone epigenetic marks during gamete formation and early embryo development in C. elegans.

    PubMed

    Samson, Mark; Jow, Margaret M; Wong, Catherine C L; Fitzpatrick, Colin; Aslanian, Aaron; Saucedo, Israel; Estrada, Rodrigo; Ito, Takashi; Park, Sung-kyu Robin; Yates, John R; Chu, Diana S

    2014-10-01

    In addition to the DNA contributed by sperm and oocytes, embryos receive parent-specific epigenetic information that can include histone variants, histone post-translational modifications (PTMs), and DNA methylation. However, a global view of how such marks are erased or retained during gamete formation and reprogrammed after fertilization is lacking. To focus on features conveyed by histones, we conducted a large-scale proteomic identification of histone variants and PTMs in sperm and mixed-stage embryo chromatin from C. elegans, a species that lacks conserved DNA methylation pathways. The fate of these histone marks was then tracked using immunostaining. Proteomic analysis found that sperm harbor ∼2.4 fold lower levels of histone PTMs than embryos and revealed differences in classes of PTMs between sperm and embryos. Sperm chromatin repackaging involves the incorporation of the sperm-specific histone H2A variant HTAS-1, a widespread erasure of histone acetylation, and the retention of histone methylation at sites that mark the transcriptional history of chromatin domains during spermatogenesis. After fertilization, we show HTAS-1 and 6 histone PTM marks distinguish sperm and oocyte chromatin in the new embryo and characterize distinct paternal and maternal histone remodeling events during the oocyte-to-embryo transition. These include the exchange of histone H2A that is marked by ubiquitination, retention of HTAS-1, removal of the H2A variant HTZ-1, and differential reprogramming of histone PTMs. This work identifies novel and conserved features of paternal chromatin that are specified during spermatogenesis and processed in the embryo. Furthermore, our results show that different species, even those with diverged DNA packaging and imprinting strategies, use conserved histone modification and removal mechanisms to reprogram epigenetic information.

  5. Role of H1 Linker Histones in Mammalian Development and Stem Cell Differentiation

    PubMed Central

    Pan, Chenyi; Fan, Yuhong

    2016-01-01

    H1 linker histones are key chromatin architectural proteins facilitating the formation of higher order chromatin structures. The H1 family constitutes the most heterogeneous group of histone proteins, with eleven non-allelic H1 variants in mammals. H1 variants differ in their biochemical properties and exhibit significant sequence divergence from one another, yet most of them are highly conserved during evolution from mouse to human. H1 variants are differentially regulated during development and their cellular compositions undergo dramatic changes in embryogenesis, gametogenesis, tissue maturation and cellular differentiation. As a group, H1 histones are essential for mouse development and proper stem cell differentiation. Here we summarize our current knowledge on the expression and functions of H1 variants in mammalian development and stem cell differentiation. Their diversity, sequence conservation, complex expression and distinct functions suggest that H1s mediate chromatin reprogramming and contribute to the large variations and complexity of chromatin structure and gene expression in the mammalian genome. PMID:26689747

  6. An essential role of variant histone H3.3 for ectomesenchyme potential of the cranial neural crest.

    PubMed

    Cox, Samuel G; Kim, Hyunjung; Garnett, Aaron Timothy; Medeiros, Daniel Meulemans; An, Woojin; Crump, J Gage

    2012-09-01

    The neural crest (NC) is a vertebrate-specific cell population that exhibits remarkable multipotency. Although derived from the neural plate border (NPB) ectoderm, cranial NC (CNC) cells contribute not only to the peripheral nervous system but also to the ectomesenchymal precursors of the head skeleton. To date, the developmental basis for such broad potential has remained elusive. Here, we show that the replacement histone H3.3 is essential during early CNC development for these cells to generate ectomesenchyme and head pigment precursors. In a forward genetic screen in zebrafish, we identified a dominant D123N mutation in h3f3a, one of five zebrafish variant histone H3.3 genes, that eliminates the CNC-derived head skeleton and a subset of pigment cells yet leaves other CNC derivatives and trunk NC intact. Analyses of nucleosome assembly indicate that mutant D123N H3.3 interferes with H3.3 nucleosomal incorporation by forming aberrant H3 homodimers. Consistent with CNC defects arising from insufficient H3.3 incorporation into chromatin, supplying exogenous wild-type H3.3 rescues head skeletal development in mutants. Surprisingly, embryo-wide expression of dominant mutant H3.3 had little effect on embryonic development outside CNC, indicating an unexpectedly specific sensitivity of CNC to defects in H3.3 incorporation. Whereas previous studies had implicated H3.3 in large-scale histone replacement events that generate totipotency during germ line development, our work has revealed an additional role of H3.3 in the broad potential of the ectoderm-derived CNC, including the ability to make the mesoderm-like ectomesenchymal precursors of the head skeleton.

  7. An Essential Role of Variant Histone H3.3 for Ectomesenchyme Potential of the Cranial Neural Crest

    PubMed Central

    Cox, Samuel G.; Kim, Hyunjung; Garnett, Aaron Timothy; Medeiros, Daniel Meulemans; An, Woojin; Crump, J. Gage

    2012-01-01

    The neural crest (NC) is a vertebrate-specific cell population that exhibits remarkable multipotency. Although derived from the neural plate border (NPB) ectoderm, cranial NC (CNC) cells contribute not only to the peripheral nervous system but also to the ectomesenchymal precursors of the head skeleton. To date, the developmental basis for such broad potential has remained elusive. Here, we show that the replacement histone H3.3 is essential during early CNC development for these cells to generate ectomesenchyme and head pigment precursors. In a forward genetic screen in zebrafish, we identified a dominant D123N mutation in h3f3a, one of five zebrafish variant histone H3.3 genes, that eliminates the CNC–derived head skeleton and a subset of pigment cells yet leaves other CNC derivatives and trunk NC intact. Analyses of nucleosome assembly indicate that mutant D123N H3.3 interferes with H3.3 nucleosomal incorporation by forming aberrant H3 homodimers. Consistent with CNC defects arising from insufficient H3.3 incorporation into chromatin, supplying exogenous wild-type H3.3 rescues head skeletal development in mutants. Surprisingly, embryo-wide expression of dominant mutant H3.3 had little effect on embryonic development outside CNC, indicating an unexpectedly specific sensitivity of CNC to defects in H3.3 incorporation. Whereas previous studies had implicated H3.3 in large-scale histone replacement events that generate totipotency during germ line development, our work has revealed an additional role of H3.3 in the broad potential of the ectoderm-derived CNC, including the ability to make the mesoderm-like ectomesenchymal precursors of the head skeleton. PMID:23028350

  8. Characterization of Centromeric Histone H3 (CENH3) Variants in Cultivated and Wild Carrots (Daucus sp.)

    PubMed Central

    Dunemann, Frank; Schrader, Otto; Budahn, Holger; Houben, Andreas

    2014-01-01

    In eukaryotes, centromeres are the assembly sites for the kinetochore, a multi-protein complex to which spindle microtubules are attached at mitosis and meiosis, thereby ensuring segregation of chromosomes during cell division. They are specified by incorporation of CENH3, a centromere specific histone H3 variant which replaces canonical histone H3 in the nucleosomes of functional centromeres. To lay a first foundation of a putative alternative haploidization strategy based on centromere-mediated genome elimination in cultivated carrots, in the presented research we aimed at the identification and cloning of functional CENH3 genes in Daucus carota and three distantly related wild species of genus Daucus varying in basic chromosome numbers. Based on mining the carrot transcriptome followed by a subsequent PCR-based cloning, homologous coding sequences for CENH3s of the four Daucus species were identified. The ORFs of the CENH3 variants were very similar, and an amino acid sequence length of 146 aa was found in three out of the four species. Comparison of Daucus CENH3 amino acid sequences with those of other plant CENH3s as well as their phylogenetic arrangement among other dicot CENH3s suggest that the identified genes are authentic CENH3 homologs. To verify the location of the CENH3 protein in the kinetochore regions of the Daucus chromosomes, a polyclonal antibody based on a peptide corresponding to the N-terminus of DcCENH3 was developed and used for anti-CENH3 immunostaining of mitotic root cells. The chromosomal location of CENH3 proteins in the centromere regions of the chromosomes could be confirmed. For genetic localization of the CENH3 gene in the carrot genome, a previously constructed linkage map for carrot was used for mapping a CENH3-specific simple sequence repeat (SSR) marker, and the CENH3 locus was mapped on the carrot chromosome 9. PMID:24887084

  9. Classification of variant forms of haemoglobin according to the ratio of glycated haemoglobin to glycated albumin.

    PubMed

    Miyazaki, Ayako; Kohzuma, Takuji; Kasayama, Soji; Koga, Masafumi

    2012-09-01

    Asymptomatic variant haemoglobin is increasingly being found in the measurement of glycated haemoglobin (HbA(1c)) for the management of diabetes mellitus. We compared the HbA(1c) concentrations measured by high-performance liquid chromatography (HPLC) and immunoassay and glycated albumin (GA) concentrations and calculated the respective ratios in order to classify the variant haemoglobin. Twenty different haemoglobin variants from 43 subjects were identified by mass spectrometry and DNA analysis. Since GA accurately reflects glycaemic control in patients with variant haemoglobin, we calculated respective ratios of HbA(1c) and GA. Haemoglobin variants causing a low ratio of HbA(1c) measured by HPLC (HPLC-HbA(1c)) to GA with a normal ratio of HbA(1c) measured by immunoassay (IA-HbA(1c)) to GA were classified as C1. A further classification of α and β was used with abnormalities of the α chain or β chain in the haemoglobin gene. Other haemoglobin variants were classified as non-C1. Eight diabetic patients with stable glycaemic control were used as controls. Twenty forms of variant haemoglobins were classified as C1α (2 variants; I-Interlaken and Hb J-Meerut), C1β (15 variants) and non-C1 (3 variants; Hb Himeji, Hb Woolwich, Hb Peterborough). Positive correlations between GA and HPLC-HbA(1c) or IA-HbA(1c) were seen in the C1β patients with diabetes mellitus. The regression line between GA and HPLC-HbA(1c), but not that between GA and IA-HbA(1c), showed a downward shift in comparison with the data obtained from the diabetic controls. Variant haemoglobin could be classified by calculating the ratios of HPLC-HbA(1c), IA-HbA(1c) and GA.

  10. HAMLET interacts with histones and chromatin in tumor cell nuclei.

    PubMed

    Düringer, Caroline; Hamiche, Ali; Gustafsson, Lotta; Kimura, Hiroshi; Svanborg, Catharina

    2003-10-24

    HAMLET is a folding variant of human alpha-lactalbumin in an active complex with oleic acid. HAMLET selectively enters tumor cells, accumulates in their nuclei and induces apoptosis-like cell death. This study examined the interactions of HAMLET with nuclear constituents and identified histones as targets. HAMLET was found to bind histone H3 strongly and to lesser extent histones H4 and H2B. The specificity of these interactions was confirmed using BIAcore technology and chromatin assembly assays. In vivo in tumor cells, HAMLET co-localized with histones and perturbed the chromatin structure; HAMLET was found associated with chromatin in an insoluble nuclear fraction resistant to salt extraction. In vitro, HAMLET bound strongly to histones and impaired their deposition on DNA. We conclude that HAMLET interacts with histones and chromatin in tumor cell nuclei and propose that this interaction locks the cells into the death pathway by irreversibly disrupting chromatin organization.

  11. Molecular morphology and function of bull spermatozoa linked to histones and associated with fertility.

    PubMed

    de Oliveira, Rodrigo V; Dogan, Sule; Belser, Lauren E; Kaya, Abdullah; Topper, Einko; Moura, Arlindo; Thibaudeau, Giselle; Memili, Erdogan

    2013-09-01

    Sub-par fertility in bulls is influenced by alterations in sperm chromatin, and it might not be solved with increased sperm concentration in artificial insemination. Appropriate histone retention during sperm chromatin condensation plays critical roles in male fertility. The objective of this study was to determine failures of sperm chromatin condensation associated with abnormal persistence or accessibility of histones by aniline blue (ANBL) test, expression levels, and cellular localizations of one variant and two core histones (H3.3, H2B, and H4 respectively) in the spermatozoa of low-fertility (LF) vs high-fertility (HF) bulls. The expression levels and cellular localizations of histones in spermatozoa were studied using immunoblotting, immunocytochemistry, and staining methods. The bioinformatics focused on the sequence identity and evolutionary distance of these proteins among three mammalian species: bovine, mouse, and human. We demonstrated that ANBL staining was different within the LF (1.73 (0.55, 0.19)) and HF (0.67 (0.17, 0.06)) groups (P<0.0001), which was also negatively correlated with in vivo bull fertility (r=-0.90, P<0.0001). Although these histones were consistently detectable and specifically localized in bull sperm cells, they were not different between the two groups. Except H2B variants, H3.3 and H4 showed 100% identity and were evolutionarily conserved in bulls, mice and humans. The H2B variants were more conserved between bulls and humans, than in mice. In conclusion, we showed that H2B, H3.3, and H4 were detectable in bull spermatozoa and that sperm chromatin condensation status, changed by histone retention, is related to bull fertility.

  12. Flexible histone tails in a new mesoscopic oligonucleosome model.

    PubMed

    Arya, Gaurav; Zhang, Qing; Schlick, Tamar

    2006-07-01

    We describe a new mesoscopic model of oligonucleosomes that incorporates flexible histone tails. The nucleosome cores are modeled using the discrete surface-charge optimization model, which treats the nucleosome as an electrostatic surface represented by hundreds of point charges; the linker DNAs are treated using a discrete elastic chain model; and the histone tails are modeled using a bead/chain hydrodynamic approach as chains of connected beads where each bead represents five protein residues. Appropriate charges and force fields are assigned to each histone chain so as to reproduce the electrostatic potential, structure, and dynamics of the corresponding atomistic histone tails at different salt conditions. The dynamics of resulting oligonucleosomes at different sizes and varying salt concentrations are simulated by Brownian dynamics with complete hydrodynamic interactions. The analyses demonstrate that the new mesoscopic model reproduces experimental results better than its predecessors, which modeled histone tails as rigid entities. In particular, our model with flexible histone tails: correctly accounts for salt-dependent conformational changes in the histone tails; yields the experimentally obtained values of histone-tail mediated core/core attraction energies; and considers the partial shielding of electrostatic repulsion between DNA linkers as a result of the spatial distribution of histone tails. These effects are crucial for regulating chromatin structure but are absent or improperly treated in models with rigid histone tails. The development of this model of oligonucleosomes thus opens new avenues for studying the role of histone tails and their variants in mediating gene expression through modulation of chromatin structure.

  13. A subset of replication-dependent histone mRNAs are expressed as polyadenylated RNAs in terminally differentiated tissues.

    PubMed

    Lyons, Shawn M; Cunningham, Clark H; Welch, Joshua D; Groh, Beezly; Guo, Andrew Y; Wei, Bruce; Whitfield, Michael L; Xiong, Yue; Marzluff, William F

    2016-11-02

    Histone proteins are synthesized in large amounts during S-phase to package the newly replicated DNA, and are among the most stable proteins in the cell. The replication-dependent (RD)-histone mRNAs expressed during S-phase end in a conserved stem-loop rather than a polyA tail. In addition, there are replication-independent (RI)-histone genes that encode histone variants as polyadenylated mRNAs. Most variants have specific functions in chromatin, but H3.3 also serves as a replacement histone for damaged histones in long-lived terminally differentiated cells. There are no reported replacement histone genes for histones H2A, H2B or H4. We report that a subset of RD-histone genes are expressed in terminally differentiated tissues as polyadenylated mRNAs, likely serving as replacement histone genes in long-lived non-dividing cells. Expression of two genes, HIST2H2AA3 and HIST1H2BC, is conserved in mammals. They are expressed as polyadenylated mRNAs in fibroblasts differentiated in vitro, but not in serum starved fibroblasts, suggesting that their expression is part of the terminal differentiation program. There are two histone H4 genes and an H3 gene that encode mRNAs that are polyadenylated and expressed at 5- to 10-fold lower levels than the mRNAs from H2A and H2B genes, which may be replacement genes for the H3.1 and H4 proteins. © The Author(s) 2016. Published by Oxford University Press on behalf of Nucleic Acids Research.

  14. Phylogenetic analysis of the core histone doublet and DNA topo II genes of Marseilleviridae: evidence of proto-eukaryotic provenance.

    PubMed

    Erives, Albert J

    2017-11-28

    While the genomes of eukaryotes and Archaea both encode the histone-fold domain, only eukaryotes encode the core histone paralogs H2A, H2B, H3, and H4. With DNA, these core histones assemble into the nucleosomal octamer underlying eukaryotic chromatin. Importantly, core histones for H2A and H3 are maintained as neofunctionalized paralogs adapted for general bulk chromatin (canonical H2 and H3) or specialized chromatin (H2A.Z enriched at gene promoters and cenH3s enriched at centromeres). In this context, the identification of core histone-like "doublets" in the cytoplasmic replication factories of the Marseilleviridae (MV) is a novel finding with possible relevance to understanding the origin of eukaryotic chromatin. Here, we analyze and compare the core histone doublet genes from all known MV genomes as well as other MV genes relevant to the origin of the eukaryotic replisome. Using different phylogenetic approaches, we show that MV histone domains encode obligate H2B-H2A and H4-H3 dimers of possible proto-eukaryotic origin. MV core histone moieties form sister clades to each of the four eukaryotic clades of canonical and variant core histones. This suggests that MV core histone moieties diverged prior to eukaryotic neofunctionalizations associated with paired linear chromosomes and variant histone octamer assembly. We also show that MV genomes encode a proto-eukaryotic DNA topoisomerase II enzyme that forms a sister clade to eukaryotes. This is a relevant finding given that DNA topo II influences histone deposition and chromatin compaction and is the second most abundant nuclear protein after histones. The combined domain architecture and phylogenomic analyses presented here suggest that a primitive origin for MV histone genes is a more parsimonious explanation than horizontal gene transfers + gene fusions + sufficient divergence to eliminate relatedness to eukaryotic neofunctionalizations within the H2A and H3 clades without loss of relatedness to each of

  15. Association of class II histone deacetylases with heterochromatin protein 1: potential role for histone methylation in control of muscle differentiation.

    PubMed

    Zhang, Chun Li; McKinsey, Timothy A; Olson, Eric N

    2002-10-01

    Class II histone deacetylases (HDACs) 4, 5, 7, and 9 repress muscle differentiation through associations with the myocyte enhancer factor 2 (MEF2) transcription factor. MEF2-interacting transcription repressor (MITR) is an amino-terminal splice variant of HDAC9 that also potently inhibits MEF2 transcriptional activity despite lacking a catalytic domain. Here we report that MITR, HDAC4, and HDAC5 associate with heterochromatin protein 1 (HP1), an adaptor protein that recognizes methylated lysines within histone tails and mediates transcriptional repression by recruiting histone methyltransferase. Promyogenic signals provided by calcium/calmodulin-dependent kinase (CaMK) disrupt the interaction of MITR and HDACs with HP1. Since the histone methyl-lysine residues recognized by HP1 also serve as substrates for deacetylation by HDACs, the interaction of MITR and HDACs with HP1 provides an efficient mechanism for silencing MEF2 target genes by coupling histone deacetylation and methylation. Indeed, nucleosomal histones surrounding a MEF2-binding site in the myogenin gene promoter are highly methylated in undifferentiated myoblasts, when the gene is silent, and become acetylated during muscle differentiation, when the myogenin gene is expressed at high levels. The ability of MEF2 to recruit a histone methyltransferase to target gene promoters via HP1-MITR and HP1-HDAC interactions and of CaMK signaling to disrupt these interactions provides an efficient mechanism for signal-dependent regulation of the epigenetic events controlling muscle differentiation.

  16. Association of Class II Histone Deacetylases with Heterochromatin Protein 1: Potential Role for Histone Methylation in Control of Muscle Differentiation

    PubMed Central

    Zhang, Chun Li; McKinsey, Timothy A.; Olson, Eric N.

    2002-01-01

    Class II histone deacetylases (HDACs) 4, 5, 7, and 9 repress muscle differentiation through associations with the myocyte enhancer factor 2 (MEF2) transcription factor. MEF2-interacting transcription repressor (MITR) is an amino-terminal splice variant of HDAC9 that also potently inhibits MEF2 transcriptional activity despite lacking a catalytic domain. Here we report that MITR, HDAC4, and HDAC5 associate with heterochromatin protein 1 (HP1), an adaptor protein that recognizes methylated lysines within histone tails and mediates transcriptional repression by recruiting histone methyltransferase. Promyogenic signals provided by calcium/calmodulin-dependent kinase (CaMK) disrupt the interaction of MITR and HDACs with HP1. Since the histone methyl-lysine residues recognized by HP1 also serve as substrates for deacetylation by HDACs, the interaction of MITR and HDACs with HP1 provides an efficient mechanism for silencing MEF2 target genes by coupling histone deacetylation and methylation. Indeed, nucleosomal histones surrounding a MEF2-binding site in the myogenin gene promoter are highly methylated in undifferentiated myoblasts, when the gene is silent, and become acetylated during muscle differentiation, when the myogenin gene is expressed at high levels. The ability of MEF2 to recruit a histone methyltransferase to target gene promoters via HP1-MITR and HP1-HDAC interactions and of CaMK signaling to disrupt these interactions provides an efficient mechanism for signal-dependent regulation of the epigenetic events controlling muscle differentiation. PMID:12242305

  17. Application of histone modification-specific interaction domains as an alternative to antibodies.

    PubMed

    Kungulovski, Goran; Kycia, Ina; Tamas, Raluca; Jurkowska, Renata Z; Kudithipudi, Srikanth; Henry, Chisato; Reinhardt, Richard; Labhart, Paul; Jeltsch, Albert

    2014-11-01

    Post-translational modifications (PTMs) of histones constitute a major chromatin indexing mechanism, and their proper characterization is of highest biological importance. So far, PTM-specific antibodies have been the standard reagent for studying histone PTMs despite caveats such as lot-to-lot variability of specificity and binding affinity. Herein, we successfully employed naturally occurring and engineered histone modification interacting domains for detection and identification of histone PTMs and ChIP-like enrichment of different types of chromatin. Our results demonstrate that histone interacting domains are robust and highly specific reagents that can replace or complement histone modification antibodies. These domains can be produced recombinantly in Escherichia coli at low cost and constant quality. Protein design of reading domains allows for generation of novel specificities, addition of affinity tags, and preparation of PTM binding pocket variants as matching negative controls, which is not possible with antibodies. © 2014 Kungulovski et al.; Published by Cold Spring Harbor Laboratory Press.

  18. The histone variant H2A.X is a regulator of the epithelial-mesenchymal transition.

    PubMed

    Weyemi, Urbain; Redon, Christophe E; Choudhuri, Rohini; Aziz, Towqir; Maeda, Daisuke; Boufraqech, Myriem; Parekh, Palak R; Sethi, Taresh K; Kasoji, Manjula; Abrams, Natalie; Merchant, Anand; Rajapakse, Vinodh N; Bonner, William M

    2016-02-15

    The epithelial-mesenchymal transition (EMT), considered essential for metastatic cancer, has been a focus of much research, but important questions remain. Here, we show that silencing or removing H2A.X, a histone H2A variant involved in cellular DNA repair and robust growth, induces mesenchymal-like characteristics including activation of EMT transcription factors, Slug and ZEB1, in HCT116 human colon cancer cells. Ectopic H2A.X re-expression partially reverses these changes, as does silencing Slug and ZEB1. In an experimental metastasis model, the HCT116 parental and H2A.X-null cells exhibit a similar metastatic behaviour, but the cells with re-expressed H2A.X are substantially more metastatic. We surmise that H2A.X re-expression leads to partial EMT reversal and increases robustness in the HCT116 cells, permitting them to both form tumours and to metastasize. In a human adenocarcinoma panel, H2A.X levels correlate inversely with Slug and ZEB1 levels. Together, these results point to H2A.X as a regulator of EMT.

  19. Histone HIST1H1C/H1.2 regulates autophagy in the development of diabetic retinopathy.

    PubMed

    Wang, Wenjun; Wang, Qing; Wan, Danyang; Sun, Yue; Wang, Lin; Chen, Hong; Liu, Chengyu; Petersen, Robert B; Li, Jianshuang; Xue, Weili; Zheng, Ling; Huang, Kun

    2017-05-04

    Autophagy plays critical and complex roles in many human diseases, including diabetes and its complications. However, the role of autophagy in the development of diabetic retinopathy remains uncertain. Core histone modifications have been reported involved in the development of diabetic retinopathy, but little is known about the histone variants. Here, we observed increased autophagy and histone HIST1H1C/H1.2, an important variant of the linker histone H1, in the retinas of type 1 diabetic rodents. Overexpression of histone HIST1H1C upregulates SIRT1 and HDAC1 to maintain the deacetylation status of H4K16, leads to upregulation of ATG proteins, then promotes autophagy in cultured retinal cell line. Histone HIST1H1C overexpression also promotes inflammation and cell toxicity in vitro. Knockdown of histone HIST1H1C reduces both the basal and stresses (including high glucose)-induced autophagy, and inhibits high glucose induced inflammation and cell toxicity. Importantly, AAV-mediated histone HIST1H1C overexpression in the retinas leads to increased autophagy, inflammation, glial activation and neuron loss, similar to the pathological changes identified in the early stage of diabetic retinopathy. Furthermore, knockdown of histone Hist1h1c by siRNA in the retinas of diabetic mice significantly attenuated the diabetes-induced autophagy, inflammation, glial activation and neuron loss. These results indicate that histone HIST1H1C may offer a novel therapeutic target for preventing diabetic retinopathy.

  20. Histone chaperone APLF regulates induction of pluripotency in murine fibroblasts.

    PubMed

    Syed, Khaja Mohieddin; Joseph, Sunu; Mukherjee, Ananda; Majumder, Aditi; Teixeira, Jose M; Dutta, Debasree; Pillai, Madhavan Radhakrishna

    2016-12-15

    Induction of pluripotency in differentiated cells through the exogenous expression of the transcription factors Oct4, Sox2, Klf4 and cellular Myc involves reprogramming at the epigenetic level. Histones and their metabolism governed by histone chaperones constitute an important regulator of epigenetic control. We hypothesized that histone chaperones facilitate or inhibit the course of reprogramming. For the first time, we report here that the downregulation of histone chaperone Aprataxin PNK-like factor (APLF) promotes reprogramming by augmenting the expression of E-cadherin (Cdh1), which is implicated in the mesenchymal-to-epithelial transition (MET) involved in the generation of induced pluripotent stem cells (iPSCs) from mouse embryonic fibroblasts (MEFs). Downregulation of APLF in MEFs expedites the loss of the repressive MacroH2A.1 (encoded by H2afy) histone variant from the Cdh1 promoter and enhances the incorporation of active histone H3me2K4 marks at the promoters of the pluripotency genes Nanog and Klf4, thereby accelerating the process of cellular reprogramming and increasing the efficiency of iPSC generation. We demonstrate a new histone chaperone (APLF)-MET-histone modification cohort that functions in the induction of pluripotency in fibroblasts. This regulatory axis might provide new mechanistic insights into perspectives of epigenetic regulation involved in cancer metastasis. © 2016. Published by The Company of Biologists Ltd.

  1. The histone variant H2A.Z promotes efficient cotranscriptional splicing in S. cerevisiae

    PubMed Central

    Neves, Lauren T.; Douglass, Stephen; Spreafico, Roberto; Venkataramanan, Srivats; Kress, Tracy L.; Johnson, Tracy L.

    2017-01-01

    In eukaryotes, a dynamic ribonucleic protein machine known as the spliceosome catalyzes the removal of introns from premessenger RNA (pre-mRNA). Recent studies show the processes of RNA synthesis and RNA processing to be spatio–temporally coordinated, indicating that RNA splicing takes place in the context of chromatin. H2A.Z is a highly conserved histone variant of the canonical histone H2A. In Saccharomyces cerevisiae, H2A.Z is deposited into chromatin by the SWR-C complex, is found near the 5′ ends of protein-coding genes, and has been implicated in transcription regulation. Here we show that splicing of intron-containing genes in cells lacking H2A.Z is impaired, particularly under suboptimal splicing conditions. Cells lacking H2A.Z are especially dependent on a functional U2 snRNP (small nuclear RNA [snRNA] plus associated proteins), as H2A.Z shows extensive genetic interactions with U2 snRNP-associated proteins, and RNA sequencing (RNA-seq) reveals that introns with nonconsensus branch points are particularly sensitive to H2A.Z loss. Consistently, H2A.Z promotes efficient spliceosomal rearrangements involving the U2 snRNP, as H2A.Z loss results in persistent U2 snRNP association and decreased recruitment of downstream snRNPs to nascent RNA. H2A.Z impairs transcription elongation, suggesting that spliceosome rearrangements are tied to H2A.Z's role in elongation. Depletion of disassembly factor Prp43 suppresses H2A.Z-mediated splice defects, indicating that, in the absence of H2A.Z, stalled spliceosomes are disassembled, and unspliced RNAs are released. Together, these data demonstrate that H2A.Z is required for efficient pre-mRNA splicing and indicate a role for H2A.Z in coordinating the kinetics of transcription elongation and splicing. PMID:28446598

  2. Mass spectrometry-compatible silver staining of histones resolved on acetic acid-urea-Triton PAGE.

    PubMed

    Pramod, Khare Satyajeet; Bharat, Khade; Sanjay, Gupta

    2009-05-01

    Acetic acid-Urea-Triton (AUT) PAGE is commonly used method to separate histone variants and their post-translationally modified forms. Coomassie staining is the preferred method for protein visualization; however, its sensitivity is less than that of silver staining. Though silver staining of histones in AUT-PAGE has been reported, the method is time-consuming, dependent on prior staining by Amido black and has not been reported suitable for mass spectrometry. Here, we propose 'SDS-Silver' method for rapid, sensitive and mass spectrometry-compatible staining of histones resolved on AUT-PAGE.

  3. Higher organization and histone modification of the plant nucleus and chromosome.

    PubMed

    Wako, T; Fukui, K

    2010-07-01

    Plants have a wide range of genome sizes. The length of each DNA molecule is usually much longer than the diameter of the cell and the length of each metaphase chromosome is effectively shortened to progress through mitosis. Thus some questions arise, such as: How is genomic DNA folded and shortened into chromosomes? What kind of proteins and/or their modifications contribute to chromosome structure? Are there any upper limits for the ratio of DNA volume to nuclear volume? This review attempts to answer these questions based on recent advances in chromosome research. Genomic DNA is first folded into nucleosomal fibers and then superfolded into metaphase chromosomes to sufficiently shorten its length to less than the upper limit for normal progression of cell division. Nucleosomes play structural roles, not only for DNA folding, but also for determination of euchromatin, heterochromatin, and centromeres, together with post-translational modifications and replacement of core histones with histone variants, and for the regulation of their structure and transcriptional status. More than 200 proteins of human metaphase chromosomes have been identified, including 5 types of nucleosome histones. They are categorized into 4 groups, and a 4-layer model of the human metaphase chromosome has been developed. There are upper limits for DNA volume. In all plants examined to date the DNA volume does not exceed 3% of the nuclear volume. Histone modification also has an impact on the spatial distribution of chromosomes within a nucleus, which seems to be related to the plant genome size. These points are discussed as well, as they are essential to maintain proper nuclear functions. Copyright 2010 S. Karger AG, Basel.

  4. A mechanism for histone chaperoning activity of nucleoplasmin: thermodynamic and structural models.

    PubMed

    Taneva, Stefka G; Bañuelos, Sonia; Falces, Jorge; Arregi, Igor; Muga, Arturo; Konarev, Petr V; Svergun, Dmitri I; Velázquez-Campoy, Adrián; Urbaneja, María A

    2009-10-23

    Nucleoplasmin (NP), a histone chaperone, acts as a reservoir for histones H2A-H2B in Xenopus laevis eggs and can displace sperm nuclear basic proteins and linker histones from the chromatin fiber of sperm and quiescent somatic nuclei. NP has been proposed to mediate the dynamic exchange of histones during the expression of certain genes and assists the assembly of nucleosomes by modulating the interaction between histones and DNA. Here, solution structural models of full-length NP and NP complexes with the functionally distinct nucleosomal core and linker histones are presented for the first time, providing a picture of the physical interactions between the nucleosomal and linker histones with NP core and tail domains. Small-angle X-ray scattering and isothermal titration calorimetry reveal that NP pentamer can accommodate five histones, either H2A-H2B dimers or H5, and that NP core and tail domains are intimately involved in the association with histones. The analysis of the binding events, employing a site-specific cooperative model, reveals a negative cooperativity-based regulatory mechanism for the linker histone/nucleosomal histone exchange. The two histone types bind with drastically different intrinsic affinity, and the strongest affinity is observed for the NP variant that mimicks the hyperphosphorylated active protein. The different "affinity windows" for H5 and H2A-H2B might allow NP to fulfill its histone chaperone role, simultaneously acting as a reservoir for the core histones and a chromatin decondensing factor. Our data are compatible with the previously proposed model where NP facilitates nucleosome assembly by removing the linker histones and depositing H2A-H2B dimers onto DNA.

  5. Structural basis for recognition of centromere histone variant CenH3 by the chaperone Scm3

    PubMed Central

    Zhou, Zheng; Feng, Hanqiao; Zhou, Bing-Rui; Ghirlando, Rodolfo; Hu, Kaifeng; Zwolak, Adam; Miller Jenkins, Lisa M.; Xiao, Hua; Tjandra, Nico; Wu, Carl; Bai, Yawen

    2011-01-01

    The centromere is a unique chromosomal locus that ensures accurate segregation of chromosomes during cell division by directing the assembly of a multiprotein complex, the kinetochore1. The centromere is marked by a conserved variant of conventional histone H3 termed CenH3 or CENP-A2. A conserved motif of CenH3, the CATD, defined by loop 1 and helix 2 of the histone fold, is necessary and sufficient for specifying centromere functions of CenH33, 4. The structural basis of this specification is of outstanding interest. Yeast Scm3 and human HJURP are conserved nonhistone proteins that interact physically with the (CenH3-H4)2 heterotetramer and are required for the deposition of CenH3 at centromeres in vivo5, 6, 7, 8, 9, 10, 11, 12, 13. Here we have elucidated the structural basis for recognition of budding yeast CenH3 (Cse4) by Scm3. We solved the structure of the Cse4-binding domain (CBD) of Scm3 complexed with Cse4 and H4 in a single chain model. An α-helix and an irregular loop at the conserved N-terminus and a shorter α-helix at the C-terminus of Scm3-CBD wraps around the Cse4-H4 dimer. Four Cse4-specific residues in the N-terminal region of helix 2 are sufficient for specific recognition by conserved and functionally important residues in the N-terminal helix of Scm3 through formation of a hydrophobic cluster. Scm3-CBD induces major conformational changes and sterically occludes DNA binding sites in the structure of Cse4 and H4. These findings have implications for the assembly and architecture of the centromeric nucleosome. PMID:21412236

  6. Characterization of mussel H2A.Z.2: a new H2A.Z variant preferentially expressed in germinal tissues from Mytilus.

    PubMed

    Rivera-Casas, Ciro; González-Romero, Rodrigo; Vizoso-Vazquez, Ángel; Cheema, Manjinder S; Cerdán, M Esperanza; Méndez, Josefina; Ausió, Juan; Eirin-Lopez, Jose M

    2016-10-01

    Histones are the fundamental constituents of the eukaryotic chromatin, facilitating the physical organization of DNA in chromosomes and participating in the regulation of its metabolism. The H2A family displays the largest number of variants among core histones, including the renowned H2A.X, macroH2A, H2A.B (Bbd), and H2A.Z. This latter variant is especially interesting because of its regulatory role and its differentiation into 2 functionally divergent variants (H2A.Z.1 and H2A.Z.2), further specializing the structure and function of vertebrate chromatin. In the present work we describe, for the first time, the presence of a second H2A.Z variant (H2A.Z.2) in the genome of a non-vertebrate animal, the mussel Mytilus. The molecular and evolutionary characterization of mussel H2A.Z.1 and H2A.Z.2 histones is consistent with their functional specialization, supported on sequence divergence at promoter and coding regions as well as on varying gene expression patterns. More precisely, the expression of H2A.Z.2 transcripts in gonadal tissue and its potential upregulation in response to genotoxic stress might be mirroring the specialization of this variant in DNA repair. Overall, the findings presented in this work complement recent reports describing the widespread presence of other histone variants across eukaryotes, supporting an ancestral origin and conserved role for histone variants in chromatin.

  7. Histone variant H2A.Z.2 mediates proliferation and drug sensitivity of malignant melanoma

    PubMed Central

    Vardabasso, Chiara; Gaspar-Maia, Alexandre; Hasson, Dan; Pünzeler, Sebastian; Valle-Garcia, David; Straub, Tobias; Keilhauer, Eva C.; Strub, Thomas; Dong, Joanna; Panda, Taniya; Chung, Chi-Yeh; Yao, Jonathan L.; Singh, Rajendra; Segura, Miguel F.; Fontanals-Cirera, Barbara; Verma, Amit; Mann, Matthias; Hernando, Eva; Hake, Sandra B.; Bernstein, Emily

    2015-01-01

    SUMMARY Histone variants are emerging as key regulatory molecules in cancer. Here we report a novel role for the H2A.Z isoform H2A.Z.2 as a driver of malignant melanoma. H2A.Z.2 is highly expressed in metastatic melanoma, correlates with decreased patient survival, and is required for cellular proliferation. Our integrated genomic analyses reveal that H2A.Z.2 controls the transcriptional output of E2F target genes in melanoma cells. These genes are highly expressed and display a distinct signature of H2A.Z occupancy. We identify BRD2 as an H2A.Z interacting protein, whose levels are also elevated in melanoma. We further demonstrate that H2A.Z.2 regulated genes are bound by BRD2 and E2F1 in a H2A.Z.2-dependent manner. Importantly, H2A.Z.2 deficiency sensitizes melanoma cells to chemotherapy and targeted therapies. Collectively, our findings implicate H2A.Z.2 as a mediator of cell proliferation and drug sensitivity in malignant melanoma, holding translational potential for novel therapeutic strategies. PMID:26051178

  8. Mislocalization of centromeric histone H3 variant CENP-A contributes to chromosomal instability (CIN) in human cells

    PubMed Central

    Shrestha, Roshan L.; Ahn, Grace S.; Staples, Mae I.; Sathyan, Kizhakke M.; Karpova, Tatiana S.; Foltz, Daniel R.; Basrai, Munira A.

    2017-01-01

    Chromosomal instability (CIN) is a hallmark of many cancers and a major contributor to tumorigenesis. Centromere and kinetochore associated proteins such as the evolutionarily conserved centromeric histone H3 variant CENP-A, associate with centromeric DNA for centromere function and chromosomal stability. Stringent regulation of cellular CENP-A levels prevents its mislocalization in yeast and flies to maintain genome stability. CENP-A overexpression and mislocalization are observed in several cancers and reported to be associated with increased invasiveness and poor prognosis. We examined whether there is a direct relationship between mislocalization of overexpressed CENP-A and CIN using HeLa and chromosomally stable diploid RPE1 cell lines as model systems. Our results show that mislocalization of overexpressed CENP-A to chromosome arms leads to chromosome congression defects, lagging chromosomes, micronuclei formation and a delay in mitotic exit. CENP-A overexpressing cells showed altered localization of centromere and kinetochore associated proteins such as CENP-C, CENP-T and Nuf2 leading to weakened native kinetochores as shown by reduced interkinetochore distance and CIN. Importantly, our results show that mislocalization of CENP-A to chromosome arms is one of the major contributors for CIN as depletion of histone chaperone DAXX prevents CENP-A mislocalization and rescues the reduced interkinetochore distance and CIN phenotype in CENP-A overexpressing cells. In summary, our results establish that CENP-A overexpression and mislocalization result in a CIN phenotype in human cells. This study provides insights into how overexpression of CENP-A may contribute to CIN in cancers and underscore the importance of understanding the pathways that prevent CENP-A mislocalization for genome stability. PMID:28596481

  9. Histone chaperones: an escort network regulating histone traffic.

    PubMed

    De Koning, Leanne; Corpet, Armelle; Haber, James E; Almouzni, Geneviève

    2007-11-01

    In eukaryotes, DNA is organized into chromatin in a dynamic manner that enables it to be accessed for processes such as transcription and repair. Histones, the chief protein component of chromatin, must be assembled, replaced or exchanged to preserve or change this organization according to cellular needs. Histone chaperones are key actors during histone metabolism. Here we classify known histone chaperones and discuss how they build a network to escort histone proteins. Molecular interactions with histones and their potential specificity or redundancy are also discussed in light of chaperone structural properties. The multiplicity of histone chaperone partners, including histone modifiers, nucleosome remodelers and cell-cycle regulators, is relevant to their coordination with key cellular processes. Given the current interest in chromatin as a source of epigenetic marks, we address the potential contributions of histone chaperones to epigenetic memory and genome stability.

  10. Identification of histone modifications in biomedical text for supporting epigenomic research

    PubMed Central

    Kolářik, Corinna; Klinger, Roman; Hofmann-Apitius, Martin

    2009-01-01

    Background Posttranslational modifications of histones influence the structure of chromatine and in such a way take part in the regulation of gene expression. Certain histone modification patterns, distributed over the genome, are connected to cell as well as tissue differentiation and to the adaption of organisms to their environment. Abnormal changes instead influence the development of disease states like cancer. The regulation mechanisms for modifying histones and its functionalities are the subject of epigenomics investigation and are still not completely understood. Text provides a rich resource of knowledge on epigenomics and modifications of histones in particular. It contains information about experimental studies, the conditions used, and results. To our knowledge, no approach has been published so far for identifying histone modifications in text. Results We have developed an approach for identifying histone modifications in biomedical literature with Conditional Random Fields (CRF) and for resolving the recognized histone modification term variants by term standardization. For the term identification F1 measures of 0.84 by 10-fold cross-validation on the training corpus and 0.81 on an independent test corpus have been obtained. The standardization enabled the correct transformation of 96% of the terms from training and 98% from test the corpus. Due to the lack of terminologies exhaustively covering specific histone modification types, we developed a histone modification term hierarchy for use in a semantic text retrieval system. Conclusion The developed approach highly improves the retrieval of articles describing histone modifications. Since text contains context information about performed studies and experiments, the identification of histone modifications is the basis for supporting literature-based knowledge discovery and hypothesis generation to accelerate epigenomic research. PMID:19208128

  11. Identification of histone modifications in biomedical text for supporting epigenomic research.

    PubMed

    Kolárik, Corinna; Klinger, Roman; Hofmann-Apitius, Martin

    2009-01-30

    Posttranslational modifications of histones influence the structure of chromatine and in such a way take part in the regulation of gene expression. Certain histone modification patterns, distributed over the genome, are connected to cell as well as tissue differentiation and to the adaption of organisms to their environment. Abnormal changes instead influence the development of disease states like cancer. The regulation mechanisms for modifying histones and its functionalities are the subject of epigenomics investigation and are still not completely understood. Text provides a rich resource of knowledge on epigenomics and modifications of histones in particular. It contains information about experimental studies, the conditions used, and results. To our knowledge, no approach has been published so far for identifying histone modifications in text. We have developed an approach for identifying histone modifications in biomedical literature with Conditional Random Fields (CRF) and for resolving the recognized histone modification term variants by term standardization. For the term identification F1 measures of 0.84 by 10-fold cross-validation on the training corpus and 0.81 on an independent test corpus have been obtained. The standardization enabled the correct transformation of 96% of the terms from training and 98% from test the corpus. Due to the lack of terminologies exhaustively covering specific histone modification types, we developed a histone modification term hierarchy for use in a semantic text retrieval system. The developed approach highly improves the retrieval of articles describing histone modifications. Since text contains context information about performed studies and experiments, the identification of histone modifications is the basis for supporting literature-based knowledge discovery and hypothesis generation to accelerate epigenomic research.

  12. Differential Expression of Histone H3.3 Genes and Their Role in Modulating Temperature Stress Response in Caenorhabditis elegans.

    PubMed

    Delaney, Kamila; Mailler, Jonathan; Wenda, Joanna M; Gabus, Caroline; Steiner, Florian A

    2018-04-10

    Replication-independent variant histones replace canonical histones in nucleosomes and act as important regulators of chromatin function. H3.3 is a major variant of histone H3 that is remarkably conserved across all taxa and is distinguished from canonical H3 by just four key amino acids. Most genomes contain two or more genes expressing H3.3, and complete loss of the protein usually causes sterility or embryonic lethality. Here we investigated the developmental expression pattern of the five Caenorhabditis elegans H3.3 homologues and identified two previously uncharacterized homologues to be restricted to the germ line. We demonstrate an essential role for the conserved histone chaperone HIRA in the nucleosomal loading of all H3.3 variants. This requirement can be bypassed by mutation of the H3.3-specific residues to those found in H3. Analysis of H3.3 knockout mutants revealed a surprising absence of developmental phenotypes. While removal of all H3.3 homologues did not result in lethality, it led to reduced fertility and viability in response to high temperature stress. Our results thus show that H3.3 is non-essential in C. elegans , but is critical for ensuring adequate response to stress. Copyright © 2018, Genetics.

  13. Global regulation of post-translational modifications on core histones.

    PubMed

    Galasinski, Scott C; Louie, Donna F; Gloor, Kristen K; Resing, Katheryn A; Ahn, Natalie G

    2002-01-25

    Full-length masses of histones were analyzed by mass spectrometry to characterize post-translational modifications of bulk histones and their changes induced by cell stimulation. By matching masses of unique peptides with full-length masses, H4 and the variants H2A.1, H2B.1, and H3.1 were identified as the main histone forms in K562 cells. Mass changes caused by covalent modifications were measured in a dose- and time-dependent manner following inhibition of phosphatases by okadaic acid. Histones H2A, H3, and H4 underwent changes in mass consistent with altered acetylation and phosphorylation, whereas H2B mass was largely unchanged. Unexpectedly, histone H4 became almost completely deacetylated in a dose-dependent manner that occurred independently of phosphorylation. Okadaic acid also partially blocked H4 hyperacetylation induced by trichostatin-A, suggesting that the mechanism of deacetylation involves inhibition of H4 acetyltransferase activity, following perturbation of cellular phosphatases. In addition, mass changes in H3 in response to okadaic acid were consistent with phosphorylation of methylated, acetylated, and phosphorylated forms. Finally, kinetic differences were observed with respect to the rate of phosphorylation of H2A versus H4, suggesting differential regulation of phosphorylation at sites on these proteins, which are highly related by sequence. These results provide novel evidence that global covalent modifications of chromatin-bound histones are regulated through phosphorylation-dependent mechanisms.

  14. Structural studies of human histone deacetylase 8 and its site-specific variants complexed with substrate and inhibitors.

    PubMed

    Dowling, Daniel P; Gantt, Stephanie L; Gattis, Samuel G; Fierke, Carol A; Christianson, David W

    2008-12-23

    Metal-dependent histone deacetylases (HDACs) require Zn(2+) or Fe(2+) to regulate the acetylation of lysine residues in histones and other proteins in eukaryotic cells. Isozyme HDAC8 is perhaps the archetypical member of the class I HDAC family and serves as a paradigm for studying structure-function relationships. Here, we report the structures of HDAC8 complexes with trichostatin A and 3-(1-methyl-4-phenylacetyl-1H-2-pyrrolyl)-N-hydroxy-2-propenamide (APHA) in a new crystal form. The structure of the APHA complex reveals that the hydroxamate CO group accepts a hydrogen bond from Y306 but does not coordinate to Zn(2+) with favorable geometry, perhaps due to the constraints of its extended pi system. Additionally, since APHA binds to only two of the three protein molecules in the asymmetric unit of this complex, the structure of the third monomer represents the first structure of HDAC8 in the unliganded state. Comparison of unliganded and liganded structures illustrates ligand-induced conformational changes in the L2 loop that likely accompany substrate binding and catalysis. Furthermore, these structures, along with those of the D101N, D101E, D101A, and D101L variants, support the proposal that D101 is critical for the function of the L2 loop. However, amino acid substitutions for D101 can also trigger conformational changes of Y111 and W141 that perturb the substrate binding site. Finally, the structure of H143A HDAC8 complexed with an intact acetylated tetrapeptide substrate molecule confirms the importance of D101 for substrate binding and reveals how Y306 and the active site zinc ion together bind and activate the scissile amide linkage of acetyllysine.

  15. Replication-dependent histone genes are actively transcribed in differentiating and aging retinal neurons

    PubMed Central

    Banday, Abdul Rouf; Baumgartner, Marybeth; Al Seesi, Sahar; Karunakaran, Devi Krishna Priya; Venkatesh, Aditya; Congdon, Sean; Lemoine, Christopher; Kilcollins, Ashley M; Mandoiu, Ion; Punzo, Claudio; Kanadia, Rahul N

    2014-01-01

    In the mammalian genome, each histone family contains multiple replication-dependent paralogs, which are found in clusters where their transcription is thought to be coupled to the cell cycle. Here, we wanted to interrogate the transcriptional regulation of these paralogs during retinal development and aging. We employed deep sequencing, quantitative PCR, in situ hybridization (ISH), and microarray analysis, which revealed that replication-dependent histone genes were not only transcribed in progenitor cells but also in differentiating neurons. Specifically, by ISH analysis we found that different histone genes were actively transcribed in a subset of neurons between postnatal day 7 and 14. Interestingly, within a histone family, not all paralogs were transcribed at the same level during retinal development. For example, expression of Hist1h1b was higher embryonically, while that of Hist1h1c was higher postnatally. Finally, expression of replication-dependent histone genes was also observed in the aging retina. Moreover, transcription of replication-dependent histones was independent of rapamycin-mediated mTOR pathway inactivation. Overall, our data suggest the existence of variant nucleosomes produced by the differential expression of the replication-dependent histone genes across retinal development. Also, the expression of a subset of replication-dependent histone isotypes in senescent neurons warrants re-examining these genes as “replication-dependent.” Thus, our findings underscore the importance of understanding the transcriptional regulation of replication-dependent histone genes in the maintenance and functioning of neurons. PMID:25486194

  16. Using a model comparison approach to describe the assembly pathway for histone H1

    PubMed Central

    Contreras, Carlos; Villasana, Minaya; Hendzel, Michael J.

    2018-01-01

    Histones H1 or linker histones are highly dynamic proteins that diffuse throughout the cell nucleus and associate with chromatin (DNA and associated proteins). This binding interaction of histone H1 with the chromatin is thought to regulate chromatin organization and DNA accessibility to transcription factors and has been proven to involve a kinetic process characterized by a population that associates weakly with chromatin and rapidly dissociates and another population that resides at a binding site for up to several minutes before dissociating. When considering differences between these two classes of interactions in a mathematical model for the purpose of describing and quantifying the dynamics of histone H1, it becomes apparent that there could be several assembly pathways that explain the kinetic data obtained in living cells. In this work, we model these different pathways using systems of reaction-diffusion equations and carry out a model comparison analysis using FRAP (fluorescence recovery after photobleaching) experimental data from different histone H1 variants to determine the most feasible mechanism to explain histone H1 binding to chromatin. The analysis favors four different chromatin assembly pathways for histone H1 which share common features and provide meaningful biological information on histone H1 dynamics. We show, using perturbation analysis, that the explicit consideration of high- and low-affinity associations of histone H1 with chromatin in the favored assembly pathways improves the interpretation of histone H1 experimental FRAP data. To illustrate the results, we use one of the favored models to assess the kinetic changes of histone H1 after core histone hyperacetylation, and conclude that this post-transcriptional modification does not affect significantly the transition of histone H1 from a weakly bound state to a tightly bound state. PMID:29352283

  17. Significance of Lignin S/G Ratio in Biomass Recalcitrance of Populus trichocarpa Variants for Bioethanol Production

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yoo, Chang Geun; Dumitrache, Alexandru; Muchero, Wellington

    Lignin S/G ratio has been investigated as an important factor in biomass recalcitrance to bioethanol production. Because of the complexity and variety of biomass, recalcitrance was also reportedly influenced by several other factors, such as total lignin content, degree of cellulose polymerization, etc. In addition, the effect of S/G ratio on biomass conversion is not uniform across plant species. Herein, 11 Populus trichocarpa natural variants grown under the same conditions with similar total lignin content were selected to minimize the effects of other factors. The lignin S/G ratio of the selected P. trichocarpa natural variants showed negative correlations with p-hydroxybenzoatemore » (PB) and ..beta..-5 linkage contents, while it had positive ones with ..beta..-O-4 linkage, lignin molecular weight, and ethanol production. This study showed the importance of lignin S/G ratio as an independent recalcitrance factor that may aid future energy crop engineering and biomass conversion strategies.« less

  18. Significance of Lignin S/G Ratio in Biomass Recalcitrance of Populus trichocarpa Variants for Bioethanol Production

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yoo, Chang Geun; Dumitrache, Alexandru; Muchero, Wellington

    Lignin S/G ratio has been investigated as an important factor in biomass recalcitrance to bioethanol production. Because of the complexity and variety of biomass, recalcitrance was also reportedly influenced by several other factors, such as total lignin content, degree of cellulose polymerization, etc. In addition, the effect of S/G ratio on biomass conversion is not uniform across plant species. Herein, 11 Populus trichocarpa natural variants grown under the same conditions with similar total lignin content were selected to minimize the effects of other factors. The lignin S/G ratio of the selected P. trichocarpa natural variants showed negative correlations with p-hydroxybenzoatemore » (PB) and β–5 linkage contents, while it had positive ones with β-O-4 linkage, lignin molecular weight, and ethanol production. In conclusion, this study showed the importance of lignin S/G ratio as an independent recalcitrance factor that may aid future energy crop engineering and biomass conversion strategies.« less

  19. Preferential Phosphorylation on Old Histones during Early Mitosis in Human Cells*

    PubMed Central

    Lin, Shu; Yuan, Zuo-Fei; Han, Yumiao; Marchione, Dylan M.; Garcia, Benjamin A.

    2016-01-01

    How histone post-translational modifications (PTMs) are inherited through the cell cycle remains poorly understood. Canonical histones are made in the S phase of the cell cycle. Combining mass spectrometry-based technologies and stable isotope labeling by amino acids in cell culture, we question the distribution of multiple histone PTMs on old versus new histones in synchronized human cells. We show that histone PTMs can be grouped into three categories according to their distributions. Most lysine mono-methylation and acetylation PTMs are either symmetrically distributed on old and new histones or are enriched on new histones. In contrast, most di- and tri-methylation PTMs are enriched on old histones, suggesting that the inheritance of different PTMs is regulated distinctly. Intriguingly, old and new histones are distinct in their phosphorylation status during early mitosis in the following three human cell types: HeLa, 293T, and human foreskin fibroblast cells. The mitotic hallmark H3S10ph is predominantly associated with old H3 at early mitosis and becomes symmetric with the progression of mitosis. This same distribution was observed with other mitotic phosphorylation marks, including H3T3/T6ph, H3.1/2S28ph, and H1.4S26ph but not S28/S31ph on the H3 variant H3.3. Although H3S10ph often associates with the neighboring Lys-9 di- or tri-methylations, they are not required for the asymmetric distribution of Ser-10 phosphorylation on the same H3 tail. Inhibition of the kinase Aurora B does not change the distribution despite significant reduction of H3S10ph levels. However, K9me2 abundance on the new H3 is significantly reduced after Aurora B inhibition, suggesting a cross-talk between H3S10ph and H3K9me2. PMID:27226594

  20. Preferential Phosphorylation on Old Histones during Early Mitosis in Human Cells.

    PubMed

    Lin, Shu; Yuan, Zuo-Fei; Han, Yumiao; Marchione, Dylan M; Garcia, Benjamin A

    2016-07-15

    How histone post-translational modifications (PTMs) are inherited through the cell cycle remains poorly understood. Canonical histones are made in the S phase of the cell cycle. Combining mass spectrometry-based technologies and stable isotope labeling by amino acids in cell culture, we question the distribution of multiple histone PTMs on old versus new histones in synchronized human cells. We show that histone PTMs can be grouped into three categories according to their distributions. Most lysine mono-methylation and acetylation PTMs are either symmetrically distributed on old and new histones or are enriched on new histones. In contrast, most di- and tri-methylation PTMs are enriched on old histones, suggesting that the inheritance of different PTMs is regulated distinctly. Intriguingly, old and new histones are distinct in their phosphorylation status during early mitosis in the following three human cell types: HeLa, 293T, and human foreskin fibroblast cells. The mitotic hallmark H3S10ph is predominantly associated with old H3 at early mitosis and becomes symmetric with the progression of mitosis. This same distribution was observed with other mitotic phosphorylation marks, including H3T3/T6ph, H3.1/2S28ph, and H1.4S26ph but not S28/S31ph on the H3 variant H3.3. Although H3S10ph often associates with the neighboring Lys-9 di- or tri-methylations, they are not required for the asymmetric distribution of Ser-10 phosphorylation on the same H3 tail. Inhibition of the kinase Aurora B does not change the distribution despite significant reduction of H3S10ph levels. However, K9me2 abundance on the new H3 is significantly reduced after Aurora B inhibition, suggesting a cross-talk between H3S10ph and H3K9me2. © 2016 by The American Society for Biochemistry and Molecular Biology, Inc.

  1. Epstein-Barr Viral Productive Amplification Reprograms Nuclear Architecture, DNA Replication and Histone Deposition

    PubMed Central

    Chiu, Ya-Fang; Sugden, Arthur U.; Sugden, Bill

    2014-01-01

    Summary The spontaneous transition of Epstein-Barr Virus (EBV) from latency to productive infection is infrequent, making its analysis in the resulting mixed cell populations difficult. We engineered cells to support this transition efficiently and developed EBV DNA variants that could be visualized and measured as fluorescent signals over multiple cell cycles. This approach revealed that EBV’s productive replication began synchronously for viral DNAs within a cell but asynchronously between cells. EBV DNA amplification was delayed until early S-phase and occurred in factories characterized by the absence of cellular DNA and histones, by a sequential redistribution of PCNA, and by localization away from the nuclear periphery. The earliest amplified DNAs lacked histones accompanying a decline in four histone chaperones. Thus, EBV transitions from being dependent on the cellular replication machinery during latency to commandeering both that machinery and nuclear structure for its own reproductive needs. PMID:24331459

  2. Cell cycle-regulated oscillator coordinates core histone gene transcription through histone acetylation

    PubMed Central

    Kurat, Christoph F.; Lambert, Jean-Philippe; Petschnigg, Julia; Friesen, Helena; Pawson, Tony; Rosebrock, Adam; Gingras, Anne-Claude; Fillingham, Jeffrey; Andrews, Brenda

    2014-01-01

    DNA replication occurs during the synthetic (S) phase of the eukaryotic cell cycle and features a dramatic induction of histone gene expression for concomitant chromatin assembly. Ectopic production of core histones outside of S phase is toxic, underscoring the critical importance of regulatory pathways that ensure proper expression of histone genes. Several regulators of histone gene expression in the budding yeast Saccharomyces cerevisiae are known, yet the key oscillator responsible for restricting gene expression to S phase has remained elusive. Here, we show that suppressor of Ty (Spt)10, a putative histone acetyltransferase, and its binding partner Spt21 are key determinants of S-phase–specific histone gene expression. We show that Spt21 abundance is restricted to S phase in part by anaphase promoting complex Cdc20-homologue 1 (APCCdh1) and that it is recruited to histone gene promoters in S phase by Spt10. There, Spt21-Spt10 enables the recruitment of a cascade of regulators, including histone chaperones and the histone-acetyltransferase general control nonderepressible (Gcn) 5, which we hypothesize lead to histone acetylation and consequent transcription activation. PMID:25228766

  3. High levels of histones promote whole-genome-duplications and trigger a Swe1WEE1-dependent phosphorylation of Cdc28CDK1

    PubMed Central

    Peñate, Xenia; Sanmartín Olmo, Trinidad; Jourquin, Frederic; Muñoz Centeno, Maria Cruz; Mendoza, Manuel; Simon, Marie-Noelle; Chavez, Sebastian

    2018-01-01

    Whole-genome duplications (WGDs) have played a central role in the evolution of genomes and constitute an important source of genome instability in cancer. Here, we show in Saccharomyces cerevisiae that abnormal accumulations of histones are sufficient to induce WGDs. Our results link these WGDs to a reduced incorporation of the histone variant H2A.Z to chromatin. Moreover, we show that high levels of histones promote Swe1WEE1 stabilisation thereby triggering the phosphorylation and inhibition of Cdc28CDK1 through a mechanism different of the canonical DNA damage response. Our results link high levels of histones to a specific type of genome instability that is quite frequently observed in cancer and uncovers a new mechanism that might be able to respond to high levels of histones. PMID:29580382

  4. Resolving Heart Regeneration by Replacement Histone Profiling.

    PubMed

    Goldman, Joseph Aaron; Kuzu, Guray; Lee, Nutishia; Karasik, Jaclyn; Gemberling, Matthew; Foglia, Matthew J; Karra, Ravi; Dickson, Amy L; Sun, Fei; Tolstorukov, Michael Y; Poss, Kenneth D

    2017-02-27

    Chromatin regulation is a principal mechanism governing animal development, yet it is unclear to what extent structural changes in chromatin underlie tissue regeneration. Non-mammalian vertebrates such as zebrafish activate cardiomyocyte (CM) division after tissue damage to regenerate lost heart muscle. Here, we generated transgenic zebrafish expressing a biotinylatable H3.3 histone variant in CMs and derived cell-type-specific profiles of histone replacement. We identified an emerging program of putative enhancers that revise H3.3 occupancy during regeneration, overlaid upon a genome-wide reduction of H3.3 from promoters. In transgenic reporter lines, H3.3-enriched elements directed gene expression in subpopulations of CMs. Other elements increased H3.3 enrichment and displayed enhancer activity in settings of injury- and/or Neuregulin1-elicited CM proliferation. Dozens of consensus sequence motifs containing predicted transcription factor binding sites were enriched in genomic regions with regeneration-responsive H3.3 occupancy. Thus, cell-type-specific regulatory programs of tissue regeneration can be revealed by genome-wide H3.3 profiling. Copyright © 2017 Elsevier Inc. All rights reserved.

  5. De Novo Mutations of the Gene Encoding the Histone Acetyltransferase KAT6B Cause Genitopatellar Syndrome

    PubMed Central

    Simpson, Michael A.; Deshpande, Charu; Dafou, Dimitra; Vissers, Lisenka E.L.M.; Woollard, Wesley J.; Holder, Susan E.; Gillessen-Kaesbach, Gabriele; Derks, Ronny; White, Susan M.; Cohen-Snuijf, Ruthy; Kant, Sarina G.; Hoefsloot, Lies H.; Reardon, Willie; Brunner, Han G.; Bongers, Ernie M.H.F.; Trembath, Richard C.

    2012-01-01

    Genitopatellar syndrome (GPS) is a rare disorder in which patellar aplasia or hypoplasia is associated with external genital anomalies and severe intellectual disability. Using an exome-sequencing approach, we identified de novo mutations of KAT6B in five individuals with GPS; a single nonsense variant and three frameshift indels, including a 4 bp deletion observed in two cases. All identified mutations are located within the terminal exon of the gene and are predicted to generate a truncated protein product lacking evolutionarily conserved domains. KAT6B encodes a member of the MYST family of histone acetyltranferases. We demonstrate a reduced level of both histone H3 and H4 acetylation in patient-derived cells suggesting that dysregulation of histone acetylation is a direct functional consequence of GPS alleles. These findings define the genetic basis of GPS and illustrate the complex role of the regulation of histone acetylation during development. PMID:22265017

  6. Phylogeny-Based Systematization of Arabidopsis Proteins with Histone H1 Globular Domain.

    PubMed

    Kotliński, Maciej; Knizewski, Lukasz; Muszewska, Anna; Rutowicz, Kinga; Lirski, Maciej; Schmidt, Anja; Baroux, Célia; Ginalski, Krzysztof; Jerzmanowski, Andrzej

    2017-05-01

    H1 (or linker) histones are basic nuclear proteins that possess an evolutionarily conserved nucleosome-binding globular domain, GH1. They perform critical functions in determining the accessibility of chromatin DNA to trans-acting factors. In most metazoan species studied so far, linker histones are highly heterogenous, with numerous nonallelic variants cooccurring in the same cells. The phylogenetic relationships among these variants as well as their structural and functional properties have been relatively well established. This contrasts markedly with the rather limited knowledge concerning the phylogeny and structural and functional roles of an unusually diverse group of GH1-containing proteins in plants. The dearth of information and the lack of a coherent phylogeny-based nomenclature of these proteins can lead to misunderstandings regarding their identity and possible relationships, thereby hampering plant chromatin research. Based on published data and our in silico and high-throughput analyses, we propose a systematization and coherent nomenclature of GH1-containing proteins of Arabidopsis ( Arabidopsis thaliana [L.] Heynh) that will be useful for both the identification and structural and functional characterization of homologous proteins from other plant species. © 2017 American Society of Plant Biologists. All Rights Reserved.

  7. Erasers of Histone Acetylation: The Histone Deacetylase Enzymes

    PubMed Central

    Seto, Edward; Yoshida, Minoru

    2014-01-01

    Histone deacetylases (HDACs) are enzymes that catalyze the removal of acetyl functional groups from the lysine residues of both histone and nonhistone proteins. In humans, there are 18 HDAC enzymes that use either zinc- or NAD+-dependent mechanisms to deacetylate acetyl lysine substrates. Although removal of histone acetyl epigenetic modification by HDACs regulates chromatin structure and transcription, deacetylation of nonhistones controls diverse cellular processes. HDAC inhibitors are already known potential anticancer agents and show promise for the treatment of many diseases. PMID:24691964

  8. Histone-poly(A) hybrid molecules as tools to block nuclear pores.

    PubMed

    Cremer, G; Wojtech, E; Kalbas, M; Agutter, P S; Prochnow, D

    1995-04-01

    Histone-poly(A) hybrid molecules were used for transport experiments with resealed nuclear envelopes and after attachment of a cleavable cross-linker (SASD) to identify nuclear proteins. In contrast to histones, the hybrid molecules cannot be accumulated in resealed nuclear envelopes, and in contrast to poly(A), the export of hybrids from preloaded nuclear envelopes is completely impaired. The experiments strongly confirm the existence of poly(A) as an export signal in mRNA which counteracts the nuclear location signals (NLS) in histones. The contradicting transport signals in the hybrid molecules impair translocation through the nuclear pore complex. The failure to accumulate hybrid molecules into resealed nuclear envelopes results from the covalent attachment of polyadenylic acid to histones in a strict 1:1 molar ratio. This was demonstrated in control transport experiments where radiolabeled histones were simply mixed with nonlabeled poly(A) or radiolabeled poly(A) mixed with nonlabeled histones. In comparison, control uptake experiments with histones covalently linked to a single UMP-mononucleotide are strongly enhanced. Such controls exclude the conceivable possibility of a simple masking of the nuclear location signal in the histones by the covalent attached poly(A) moiety. Photoreactive histone-poly(A) hybrid analogs serve to identify nuclear envelope proteins--presumably in the nuclear pore--with molecular weights of 110, 80, and 71.4 kDa.

  9. Histone H1 depletion triggers an interferon response in cancer cells via activation of heterochromatic repeats

    PubMed Central

    Izquierdo-Bouldstridge, Andrea; Bustillos, Alberto; Bonet-Costa, Carles; Aribau-Miralbés, Patricia; García-Gomis, Daniel; Dabad, Marc; Esteve-Codina, Anna; Pascual-Reguant, Laura; Peiró, Sandra; Esteller, Manel; Murtha, Matthew; Millán-Ariño, Lluís

    2017-01-01

    Abstract Histone H1 has seven variants in human somatic cells and contributes to chromatin compaction and transcriptional regulation. Knock-down (KD) of each H1 variant in breast cancer cells results in altered gene expression and proliferation differently in a variant specific manner with H1.2 and H1.4 KDs being most deleterious. Here we show combined depletion of H1.2 and H1.4 has a strong deleterious effect resulting in a strong interferon (IFN) response, as evidenced by an up-regulation of many IFN-stimulated genes (ISGs) not seen in individual nor in other combinations of H1 variant KDs. Although H1 participates to repress ISG promoters, IFN activation upon H1.2 and H1.4 KD is mainly generated through the activation of the IFN response by cytosolic nucleic acid receptors and IFN synthesis, and without changes in histone modifications at induced ISG promoters. H1.2 and H1.4 co-KD also promotes the appearance of accessibility sites genome wide and, particularly, at satellites and other repeats. The IFN response may be triggered by the expression of noncoding RNA generated from heterochromatic repeats or endogenous retroviruses upon H1 KD. In conclusion, redundant H1-mediated silencing of heterochromatin is important to maintain cell homeostasis and to avoid an unspecific IFN response. PMID:28977426

  10. High levels of histones promote whole-genome-duplications and trigger a Swe1WEE1-dependent phosphorylation of Cdc28CDK1.

    PubMed

    Maya Miles, Douglas; Peñate, Xenia; Sanmartín Olmo, Trinidad; Jourquin, Frederic; Muñoz Centeno, Maria Cruz; Mendoza, Manuel; Simon, Marie-Noelle; Chavez, Sebastian; Geli, Vincent

    2018-03-27

    Whole-genome duplications (WGDs) have played a central role in the evolution of genomes and constitute an important source of genome instability in cancer. Here, we show in Saccharomyces cerevisiae that abnormal accumulations of histones are sufficient to induce WGDs. Our results link these WGDs to a reduced incorporation of the histone variant H2A.Z to chromatin. Moreover, we show that high levels of histones promote Swe1 WEE1 stabilisation thereby triggering the phosphorylation and inhibition of Cdc28 CDK1 through a mechanism different of the canonical DNA damage response. Our results link high levels of histones to a specific type of genome instability that is quite frequently observed in cancer and uncovers a new mechanism that might be able to respond to high levels of histones. © 2018, Maya Miles et al.

  11. The chaperone-histone partnership: for the greater good of histone traffic and chromatin plasticity.

    PubMed

    Hondele, Maria; Ladurner, Andreas G

    2011-12-01

    Histones are highly positively charged proteins that wrap our genome. Their surface properties also make them prone to nonspecific interactions and aggregation. A class of proteins known as histone chaperones is dedicated to safeguard histones by aiding their proper incorporation into nucleosomes. Histone chaperones facilitate ordered nucleosome assembly and disassembly reactions through the formation of semi-stable histone-chaperone intermediates without requiring ATP, but merely providing a complementary protein surface for histones to dynamically interact with. Recurrent 'chaperoning' mechanisms involve the masking of the histone's positive charge and the direct blocking of crucial histone surface sites, including those required for H3-H4 tetramerization or the binding of nucleosomal DNA. This shielding prevents histones from engaging in premature or unwanted interactions with nucleic acids and other cellular components. In this review, we analyze recent structural studies on chaperone-histone interactions and discuss the implications of this vital partnership for nucleosome assembly and disassembly pathways. Copyright © 2011 Elsevier Ltd. All rights reserved.

  12. Dynamic intramolecular regulation of the histone chaperone nucleoplasmin controls histone binding and release

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Warren, Christopher; Matsui, Tsutomu; Karp, Jerome M.

    Here, nucleoplasmin (Npm) is a highly conserved histone chaperone responsible for the maternal storage and zygotic release of histones H2A/H2B. Npm contains a pentameric N-terminal core domain and an intrinsically disordered C-terminal tail domain. Though intrinsically disordered regions are common among histone chaperones, their roles in histone binding and chaperoning remain unclear. Using an NMR-based approach, here we demonstrate that the Xenopus laevis Npm tail domain controls the binding of histones at its largest acidic stretch (A2) via direct competition with both the C-terminal basic stretch and basic nuclear localization signal. NMR and small-angle X-ray scattering (SAXS) structural analyses allowedmore » us to construct models of both the tail domain and the pentameric complex. Functional analyses demonstrate that these competitive intramolecular interactions negatively regulate Npm histone chaperone activity in vitro. Together these data establish a potentially generalizable mechanism of histone chaperone regulation via dynamic and specific intramolecular shielding of histone interaction sites.« less

  13. Dynamic intramolecular regulation of the histone chaperone nucleoplasmin controls histone binding and release

    DOE PAGES

    Warren, Christopher; Matsui, Tsutomu; Karp, Jerome M.; ...

    2017-12-20

    Here, nucleoplasmin (Npm) is a highly conserved histone chaperone responsible for the maternal storage and zygotic release of histones H2A/H2B. Npm contains a pentameric N-terminal core domain and an intrinsically disordered C-terminal tail domain. Though intrinsically disordered regions are common among histone chaperones, their roles in histone binding and chaperoning remain unclear. Using an NMR-based approach, here we demonstrate that the Xenopus laevis Npm tail domain controls the binding of histones at its largest acidic stretch (A2) via direct competition with both the C-terminal basic stretch and basic nuclear localization signal. NMR and small-angle X-ray scattering (SAXS) structural analyses allowedmore » us to construct models of both the tail domain and the pentameric complex. Functional analyses demonstrate that these competitive intramolecular interactions negatively regulate Npm histone chaperone activity in vitro. Together these data establish a potentially generalizable mechanism of histone chaperone regulation via dynamic and specific intramolecular shielding of histone interaction sites.« less

  14. Arabidopsis kinetochore null2 is an upstream component for centromeric histone H3 variant cenH3 deposition at centromeres.

    PubMed

    Lermontova, Inna; Kuhlmann, Markus; Friedel, Swetlana; Rutten, Twan; Heckmann, Stefan; Sandmann, Michael; Demidov, Dmitri; Schubert, Veit; Schubert, Ingo

    2013-09-01

    The centromeric histone H3 variant cenH3 is an essential centromeric protein required for assembly, maintenance, and proper function of kinetochores during mitosis and meiosis. We identified a kinetochore null2 (KNL2) homolog in Arabidopsis thaliana and uncovered features of its role in cenH3 loading at centromeres. We show that Arabidopsis KNL2 colocalizes with cenH3 and is associated with centromeres during all stages of the mitotic cell cycle, except from metaphase to mid-anaphase. KNL2 is regulated by the proteasome degradation pathway. The KNL2 promoter is mainly active in meristematic tissues, similar to the cenH3 promoter. A knockout mutant for KNL2 shows a reduced level of cenH3 expression and reduced amount of cenH3 protein at chromocenters of meristematic nuclei, anaphase bridges during mitosis, micronuclei in pollen tetrads, and 30% seed abortion. Moreover, knl2 mutant plants display reduced expression of suppressor of variegation 3-9 homologs2, 4, and 9 and reduced DNA methylation, suggesting an impact of KNL2 on the epigenetic environment for centromere maintenance.

  15. Histone Lysine Methylases and Demethylases in the Landscape of Human Developmental Disorders.

    PubMed

    Faundes, Víctor; Newman, William G; Bernardini, Laura; Canham, Natalie; Clayton-Smith, Jill; Dallapiccola, Bruno; Davies, Sally J; Demos, Michelle K; Goldman, Amy; Gill, Harinder; Horton, Rachel; Kerr, Bronwyn; Kumar, Dhavendra; Lehman, Anna; McKee, Shane; Morton, Jenny; Parker, Michael J; Rankin, Julia; Robertson, Lisa; Temple, I Karen; Banka, Siddharth

    2018-01-04

    Histone lysine methyltransferases (KMTs) and demethylases (KDMs) underpin gene regulation. Here we demonstrate that variants causing haploinsufficiency of KMTs and KDMs are frequently encountered in individuals with developmental disorders. Using a combination of human variation databases and existing animal models, we determine 22 KMTs and KDMs as additional candidates for dominantly inherited developmental disorders. We show that KMTs and KDMs that are associated with, or are candidates for, dominant developmental disorders tend to have a higher level of transcription, longer canonical transcripts, more interactors, and a higher number and more types of post-translational modifications than other KMT and KDMs. We provide evidence to firmly associate KMT2C, ASH1L, and KMT5B haploinsufficiency with dominant developmental disorders. Whereas KMT2C or ASH1L haploinsufficiency results in a predominantly neurodevelopmental phenotype with occasional physical anomalies, KMT5B mutations cause an overgrowth syndrome with intellectual disability. We further expand the phenotypic spectrum of KMT2B-related disorders and show that some individuals can have severe developmental delay without dystonia at least until mid-childhood. Additionally, we describe a recessive histone lysine-methylation defect caused by homozygous or compound heterozygous KDM5B variants and resulting in a recognizable syndrome with developmental delay, facial dysmorphism, and camptodactyly. Collectively, these results emphasize the significance of histone lysine methylation in normal human development and the importance of this process in human developmental disorders. Our results demonstrate that systematic clinically oriented pathway-based analysis of genomic data can accelerate the discovery of rare genetic disorders. Copyright © 2017 American Society of Human Genetics. Published by Elsevier Inc. All rights reserved.

  16. Histone Arginine Methylation

    PubMed Central

    Lorenzo, Alessandra Di; Bedford, Mark T.

    2012-01-01

    Arginine methylation is a common posttranslational modification (PTM). This type of PTM occurs on both nuclear and cytoplasmic proteins, and is particularly abundant on shuttling proteins. In this review, we will focus on one aspect of this PTM: the diverse roles that arginine methylation of the core histone tails play in regulating chromatin function. A family of nine protein arginine methyltransferases (PRMTs) catalyze methylation reactions, and a subset target histones. Importantly, arginine methylation of histone tails can promote or prevent the docking of key transcriptional effector molecules, thus playing a central role in the orchestration of the histone code. PMID:21074527

  17. Modify the Histone to Win the Battle: Chromatin Dynamics in Plant–Pathogen Interactions

    PubMed Central

    Ramirez-Prado, Juan S.; Piquerez, Sophie J. M.; Bendahmane, Abdelhafid; Hirt, Heribert; Raynaud, Cécile; Benhamed, Moussa

    2018-01-01

    Relying on an immune system comes with a high energetic cost for plants. Defense responses in these organisms are therefore highly regulated and fine-tuned, permitting them to respond pertinently to the attack of a microbial pathogen. In recent years, the importance of the physical modification of chromatin, a highly organized structure composed of genomic DNA and its interacting proteins, has become evident in the research field of plant–pathogen interactions. Several processes, including DNA methylation, changes in histone density and variants, and various histone modifications, have been described as regulators of various developmental and defense responses. Herein, we review the state of the art in the epigenomic aspects of plant immunity, focusing on chromatin modifications, chromatin modifiers, and their physiological consequences. In addition, we explore the exciting field of understanding how plant pathogens have adapted to manipulate the plant epigenomic regulation in order to weaken their immune system and thrive in their host, as well as how histone modifications in eukaryotic pathogens are involved in the regulation of their virulence. PMID:29616066

  18. A histone-mimicking interdomain linker in a multidomain protein modulates multivalent histone binding

    PubMed Central

    Kostrhon, Sebastian; Kontaxis, Georg; Kaufmann, Tanja; Schirghuber, Erika; Kubicek, Stefan; Konrat, Robert

    2017-01-01

    N-terminal histone tails are subject to many posttranslational modifications that are recognized by and interact with designated reader domains in histone-binding proteins. BROMO domain adjacent to zinc finger 2B (BAZ2B) is a multidomain histone-binding protein that contains two histone reader modules, a plant homeodomain (PHD) and a bromodomain (BRD), linked by a largely disordered linker. Although previous studies have reported specificity of the PHD domain for the unmodified N terminus of histone H3 and of the BRD domain for H3 acetylated at Lys14 (H3K14ac), the exact mode of H3 binding by BAZ2B and its regulation are underexplored. Here, using isothermal titration calorimetry and NMR spectroscopy, we report that acidic residues in the BAZ2B PHD domain are essential for H3 binding and that BAZ2B PHD–BRD establishes a polyvalent interaction with H3K14ac. Furthermore, we provide evidence that the disordered interdomain linker modulates the histone-binding affinity by interacting with the PHD domain. In particular, lysine-rich stretches in the linker, which resemble the positively charged N terminus of histone H3, reduce the binding affinity of the PHD finger toward the histone substrate. Phosphorylation, acetylation, or poly(ADP-ribosyl)ation of the linker residues may therefore act as a cellular mechanism to transiently tune BAZ2B histone-binding affinity. Our findings further support the concept of interdomain linkers serving a dual role in substrate binding by appropriately positioning the adjacent domains and by electrostatically modulating substrate binding. Moreover, inhibition of histone binding by a histone-mimicking interdomain linker represents another example of regulation of protein–protein interactions by intramolecular mimicry. PMID:28864776

  19. Phylogeny-Based Systematization of Arabidopsis Proteins with Histone H1 Globular Domain1[OPEN

    PubMed Central

    Knizewski, Lukasz; Schmidt, Anja; Ginalski, Krzysztof

    2017-01-01

    H1 (or linker) histones are basic nuclear proteins that possess an evolutionarily conserved nucleosome-binding globular domain, GH1. They perform critical functions in determining the accessibility of chromatin DNA to trans-acting factors. In most metazoan species studied so far, linker histones are highly heterogenous, with numerous nonallelic variants cooccurring in the same cells. The phylogenetic relationships among these variants as well as their structural and functional properties have been relatively well established. This contrasts markedly with the rather limited knowledge concerning the phylogeny and structural and functional roles of an unusually diverse group of GH1-containing proteins in plants. The dearth of information and the lack of a coherent phylogeny-based nomenclature of these proteins can lead to misunderstandings regarding their identity and possible relationships, thereby hampering plant chromatin research. Based on published data and our in silico and high-throughput analyses, we propose a systematization and coherent nomenclature of GH1-containing proteins of Arabidopsis (Arabidopsis thaliana [L.] Heynh) that will be useful for both the identification and structural and functional characterization of homologous proteins from other plant species. PMID:28298478

  20. CREB-binding protein controls response to cocaine by acetylating histones at the fosB promoter in the mouse striatum

    PubMed Central

    Levine, Amir A.; Guan, Zhonghui; Barco, Angel; Xu, Shiqin; Kandel, Eric R.; Schwartz, James H.

    2005-01-01

    Remodeling chromatin is essential for cAMP-regulated gene expression, necessary not only for development but also for memory storage and other enduring mental states. Histone acetylation and deacetylation mediate long-lasting forms of synaptic plasticity in Aplysia as well as cognition in mice. Here, we show that histone acetylation by the cAMP-response element binding protein (CREB)-binding protein (CBP) mediates sensitivity to cocaine by regulating expression of the fosB gene and its splice variant, ΔfosB, a transcription factor previously implicated in addiction. Using the chromatin immunoprecipitation assay with antibodies against histone H4 or CBP, we find that CBP is recruited to the fosB promoter to acetylate histone H4 in response to acute exposure to cocaine. We show that mutant mice that lack one allele of the CBP gene and have normal levels of fosB expression are less sensitive to chronic (10-day) administration of cocaine than are wild-type mice. This decreased sensitivity is correlated with decreased histone acetylation and results in decreased fosB expression and diminished accumulation of ΔfosB. Thus, CBP, which forms part of the promoter complex with CREB, mediates sensitivity to cocaine by acetylating histones. PMID:16380431

  1. Msc1 acts through histone H2A.Z to promote chromosome stability in Schizosaccharomyces pombe.

    PubMed

    Ahmed, Shakil; Dul, Barbara; Qiu, Xinxing; Walworth, Nancy C

    2007-11-01

    As a central component of the DNA damage checkpoint pathway, the conserved protein kinase Chk1 mediates cell cycle progression when DNA damage is generated. Msc1 was identified as a multicopy suppressor capable of facilitating survival in response to DNA damage of cells mutant for chk1. We demonstrate that loss of msc1 function results in an increased rate of chromosome loss and that an msc1 null allele exhibits genetic interactions with mutants in key kinetochore components. Multicopy expression of msc1 robustly suppresses a temperature-sensitive mutant (cnp1-1) in the centromere-specific histone H3 variant CENP-A, and localization of CENP-A to the centromere is compromised in msc1 null cells. We present several lines of evidence to suggest that Msc1 carries out its function through the histone H2A variant H2A.Z, encoded by pht1 in fission yeast. Like an msc1 mutant, a pht1 mutant also exhibits chromosome instability and genetic interactions with kinetochore mutants. Suppression of cnp1-1 by multicopy msc1 requires pht1. Likewise, suppression of the DNA damage sensitivity of a chk1 mutant by multicopy msc1 also requires pht1. We present the first genetic evidence that histone H2A.Z may participate in centromere function in fission yeast and propose that Msc1 acts through H2A.Z to promote chromosome stability and cell survival following DNA damage.

  2. Msc1 Acts Through Histone H2A.Z to Promote Chromosome Stability in Schizosaccharomyces pombe

    PubMed Central

    Ahmed, Shakil; Dul, Barbara; Qiu, Xinxing; Walworth, Nancy C.

    2007-01-01

    As a central component of the DNA damage checkpoint pathway, the conserved protein kinase Chk1 mediates cell cycle progression when DNA damage is generated. Msc1 was identified as a multicopy suppressor capable of facilitating survival in response to DNA damage of cells mutant for chk1. We demonstrate that loss of msc1 function results in an increased rate of chromosome loss and that an msc1 null allele exhibits genetic interactions with mutants in key kinetochore components. Multicopy expression of msc1 robustly suppresses a temperature-sensitive mutant (cnp1-1) in the centromere-specific histone H3 variant CENP-A, and localization of CENP-A to the centromere is compromised in msc1 null cells. We present several lines of evidence to suggest that Msc1 carries out its function through the histone H2A variant H2A.Z, encoded by pht1 in fission yeast. Like an msc1 mutant, a pht1 mutant also exhibits chromosome instability and genetic interactions with kinetochore mutants. Suppression of cnp1-1 by multicopy msc1 requires pht1. Likewise, suppression of the DNA damage sensitivity of a chk1 mutant by multicopy msc1 also requires pht1. We present the first genetic evidence that histone H2A.Z may participate in centromere function in fission yeast and propose that Msc1 acts through H2A.Z to promote chromosome stability and cell survival following DNA damage. PMID:17947424

  3. Biphasic Incorporation of Centromeric Histone CENP-A in Fission Yeast

    PubMed Central

    Takayama, Yuko; Sato, Hiroshi; Saitoh, Shigeaki; Ogiyama, Yuki; Masuda, Fumie

    2008-01-01

    CENP-A is a centromere-specific histone H3 variant that is essential for kinetochore formation. Here, we report that the fission yeast Schizosaccharomyces pombe has at least two distinct CENP-A deposition phases across the cell cycle: S and G2. The S phase deposition requires Ams2 GATA factor, which promotes histone gene activation. In Δams2, CENP-A fails to retain during S, but it reaccumulates onto centromeres via the G2 deposition pathway, which is down-regulated by Hip1, a homologue of HIRA histone chaperon. Reducing the length of G2 in Δams2 results in failure of CENP-A accumulation, leading to chromosome missegregation. N-terminal green fluorescent protein-tagging reduces the centromeric association of CENP-A, causing cell death in Δams2 but not in wild-type cells, suggesting that the N-terminal tail of CENP-A may play a pivotal role in the formation of centromeric nucleosomes at G2. These observations imply that CENP-A is normally localized to centromeres in S phase in an Ams2-dependent manner and that the G2 pathway may salvage CENP-A assembly to promote genome stability. The flexibility of CENP-A incorporation during the cell cycle may account for the plasticity of kinetochore formation when the authentic centromere is damaged. PMID:18077559

  4. Coordinating cell cycle-regulated histone gene expression through assembly and function of the Histone Locus Body

    PubMed Central

    Duronio, Robert J.; Marzluff, William F.

    2017-01-01

    ABSTRACT Metazoan replication-dependent (RD) histone genes encode the only known cellular mRNAs that are not polyadenylated. These mRNAs end instead in a conserved stem-loop, which is formed by an endonucleolytic cleavage of the pre-mRNA. The genes for all 5 histone proteins are clustered in all metazoans and coordinately regulated with high levels of expression during S phase. Production of histone mRNAs occurs in a nuclear body called the Histone Locus Body (HLB), a subdomain of the nucleus defined by a concentration of factors necessary for histone gene transcription and pre-mRNA processing. These factors include the scaffolding protein NPAT, essential for histone gene transcription, and FLASH and U7 snRNP, both essential for histone pre-mRNA processing. Histone gene expression is activated by Cyclin E/Cdk2-mediated phosphorylation of NPAT at the G1-S transition. The concentration of factors within the HLB couples transcription with pre-mRNA processing, enhancing the efficiency of histone mRNA biosynthesis. PMID:28059623

  5. Histone Lysine Methylation and Neurodevelopmental Disorders.

    PubMed

    Kim, Jeong-Hoon; Lee, Jang Ho; Lee, Im-Soon; Lee, Sung Bae; Cho, Kyoung Sang

    2017-06-30

    Methylation of several lysine residues of histones is a crucial mechanism for relatively long-term regulation of genomic activity. Recent molecular biological studies have demonstrated that the function of histone methylation is more diverse and complex than previously thought. Moreover, studies using newly available genomics techniques, such as exome sequencing, have identified an increasing number of histone lysine methylation-related genes as intellectual disability-associated genes, which highlights the importance of accurate control of histone methylation during neurogenesis. However, given the functional diversity and complexity of histone methylation within the cell, the study of the molecular basis of histone methylation-related neurodevelopmental disorders is currently still in its infancy. Here, we review the latest studies that revealed the pathological implications of alterations in histone methylation status in the context of various neurodevelopmental disorders and propose possible therapeutic application of epigenetic compounds regulating histone methylation status for the treatment of these diseases.

  6. A brief histone in time: understanding the combinatorial functions of histone PTMs in the nucleosome context.

    PubMed

    Ng, Marlee K; Cheung, Peter

    2016-02-01

    It has been over 50 years since Allfrey et al. proposed that histone acetylation regulates RNA synthesis, and the study of histone modifications has progressed at an extraordinary pace for the past two decades. In this review, we provide a perspective on some key events and advances in our understanding of histone modifications. We also highlight reagents and tools from past to present that facilitated progress in this research field. Using histone H3 phosphorylation as an underlying thread, we review the rationale that led to the proposal of the histone code hypothesis, as well as examples that illustrate the concepts of combinatorial histone modifications and cross-talk pathways. We further highlight the importance of investigating these mechanisms in the context of nucleosomes rather than just at the histone level and present current and developing approaches for such studies. Overall, research on histone modifications has yielded great mechanistic insights into the regulation of genomic functions, and extending these studies using nucleosomes will further elucidate the complexity of these pathways in a more physiologically relevant context.

  7. One-pot refolding of core histones from bacterial inclusion bodies allows rapid reconstitution of histone octamer.

    PubMed

    Lee, Young-Tae; Gibbons, Garrett; Lee, Shirley Y; Nikolovska-Coleska, Zaneta; Dou, Yali

    2015-06-01

    We report an optimized method to purify and reconstitute histone octamer, which utilizes high expression of histones in inclusion bodies but eliminates the time consuming steps of individual histone purification. In the newly modified protocol, Xenopus laevis H2A, H2B, H3, and H4 are expressed individually into inclusion bodies of bacteria, which are subsequently mixed together and denatured in 8M guanidine hydrochloride. Histones are refolded and reconstituted into soluble octamer by dialysis against 2M NaCl, and metal-affinity purified through an N-terminal polyhistidine-tag added on the H2A. After cleavage of the polyhistidine-tag, histone octamer is further purified by size exclusion chromatography. We show that the nucleosomes reconstituted using the purified histone octamer above are fully functional. They serve as effective substrates for the histone methyltransferases DOT1L and MLL1. Small angle X-ray scattering further confirms that the reconstituted nucleosomes have correct structural integration of histone octamer and DNA as observed in the X-ray crystal structure. Our new protocol enables rapid reconstitution of histone octamer with an optimal yield. We expect this simplified approach to facilitate research using recombinant nucleosomes in vitro. Copyright © 2015 Elsevier Inc. All rights reserved.

  8. A Novel Kleefstra Syndrome-associated Variant That Affects the Conserved TPLX Motif within the Ankyrin Repeat of EHMT1 Leads to Abnormal Protein Folding*

    PubMed Central

    Blackburn, Patrick R.; Tischer, Alexander; Zimmermann, Michael T.; Kemppainen, Jennifer L.; Sastry, Sujatha; Knight Johnson, Amy E.; Cousin, Margot A.; Boczek, Nicole J.; Oliver, Gavin; Misra, Vinod K.; Gavrilova, Ralitza H.; Lomberk, Gwen; Auton, Matthew; Urrutia, Raul; Klee, Eric W.

    2017-01-01

    Kleefstra syndrome (KS) (Mendelian Inheritance in Man (MIM) no. 610253), also known as 9q34 deletion syndrome, is an autosomal dominant disorder caused by haploinsufficiency of euchromatic histone methyltransferase-1 (EHMT1). The clinical phenotype of KS includes moderate to severe intellectual disability with absent speech, hypotonia, brachycephaly, congenital heart defects, and dysmorphic facial features with hypertelorism, synophrys, macroglossia, protruding tongue, and prognathism. Only a few cases of de novo missense mutations in EHMT1 giving rise to KS have been described. However, some EHMT1 variants have been described in individuals presenting with autism spectrum disorder or mild intellectual disability, suggesting that the phenotypic spectrum resulting from EHMT1 alterations may be quite broad. In this report, we describe two unrelated patients with complex medical histories consistent with KS in whom next generation sequencing identified the same novel c.2426C>T (p.P809L) missense variant in EHMT1. To examine the functional significance of this novel variant, we performed molecular dynamics simulations of the wild type and p.P809L variant, which predicted that the latter would have a propensity to misfold, leading to abnormal histone mark binding. Recombinant EHMT1 p.P809L was also studied using far UV circular dichroism spectroscopy and intrinsic protein fluorescence. These functional studies confirmed the model-based hypotheses and provided evidence for protein misfolding and aberrant target recognition as the underlying pathogenic mechanism for this novel KS-associated variant. This is the first report to suggest that missense variants in EHMT1 that lead to protein misfolding and disrupted histone mark binding can lead to KS. PMID:28057753

  9. Nitric Oxide Modulates Histone Acetylation at Stress Genes by Inhibition of Histone Deacetylases.

    PubMed

    Mengel, Alexander; Ageeva, Alexandra; Georgii, Elisabeth; Bernhardt, Jörg; Wu, Keqiang; Durner, Jörg; Lindermayr, Christian

    2017-02-01

    Histone acetylation, which is an important mechanism to regulate gene expression, is controlled by the opposing action of histone acetyltransferases and histone deacetylases (HDACs). In animals, several HDACs are subjected to regulation by nitric oxide (NO); in plants, however, it is unknown whether NO affects histone acetylation. We found that treatment with the physiological NO donor S-nitrosoglutathione (GSNO) increased the abundance of several histone acetylation marks in Arabidopsis (Arabidopsis thaliana), which was strongly diminished in the presence of the NO scavenger 2-4-carboxyphenyl-4,4,5,5-tetramethylimidazoline-1-oxyl-3-oxide. This increase was likely triggered by NO-dependent inhibition of HDAC activity, since GSNO and S-nitroso-N-acetyl-dl-penicillamine significantly and reversibly reduced total HDAC activity in vitro (in nuclear extracts) and in vivo (in protoplasts). Next, genome-wide H3K9/14ac profiles in Arabidopsis seedlings were generated by chromatin immunoprecipitation sequencing, and changes induced by GSNO, GSNO/2-4-carboxyphenyl-4,4,5,5-tetramethylimidazoline-1-oxyl-3-oxide or trichostatin A (an HDAC inhibitor) were quantified, thereby identifying genes that display putative NO-regulated histone acetylation. Functional classification of these genes revealed that many of them are involved in the plant defense response and the abiotic stress response. Furthermore, salicylic acid, which is the major plant defense hormone against biotrophic pathogens, inhibited HDAC activity and increased histone acetylation by inducing endogenous NO production. These data suggest that NO affects histone acetylation by targeting and inhibiting HDAC complexes, resulting in the hyperacetylation of specific genes. This mechanism might operate in the plant stress response by facilitating the stress-induced transcription of genes. © 2017 American Society of Plant Biologists. All Rights Reserved.

  10. Histone H3 and the histone acetyltransferase Hat1p contribute to DNA double-strand break repair.

    PubMed

    Qin, Song; Parthun, Mark R

    2002-12-01

    The modification of newly synthesized histones H3 and H4 by type B histone acetyltransferases has been proposed to play a role in the process of chromatin assembly. The type B histone acetyltransferase Hat1p and specific lysine residues in the histone H3 NH(2)-terminal tail (primarily lysine 14) are redundantly required for telomeric silencing. As many gene products, including other factors involved in chromatin assembly, have been found to participate in both telomeric silencing and DNA damage repair, we tested whether mutations in HAT1 and the histone H3 tail were also sensitive to DNA-damaging agents. Indeed, mutations both in specific lysine residues in the histone H3 tail and in HAT1 resulted in sensitivity to methyl methanesulfonate. The DNA damage sensitivity of the histone H3 and HAT1 mutants was specific for DNA double-strand breaks, as these mutants were sensitive to the induction of an exogenous restriction endonuclease, EcoRI, but not to UV irradiation. While histone H3 mutations had minor effects on nonhomologous end joining, the primary defect in the histone H3 and HAT1 mutants was in the recombinational repair of DNA double-strand breaks. Epistasis analysis indicates that the histone H3 and HAT1 mutants may influence DNA double-strand break repair through Asf1p-dependent chromatin assembly.

  11. Unique fluorophores in the dimeric archaeal histones hMfB and hPyA1 reveal the impact of nonnative structure in a monomeric kinetic intermediate

    PubMed Central

    Stump, Matthew R.; Gloss, Lisa M.

    2008-01-01

    Homodimeric archaeal histones and heterodimeric eukaryotic histones share a conserved structure but fold through different kinetic mechanisms, with a correlation between faster folding/association rates and the population of kinetic intermediates. Wild-type hMfB (from Methanothermus fervidus) has no intrinsic fluorophores; Met35, which is Tyr in hyperthermophilic archaeal histones such as hPyA1 (from Pyrococcus strain GB-3A), was mutated to Tyr and Trp. Two Tyr-to-Trp mutants of hPyA1 were also characterized. All fluorophores were introduced into the long, central α-helix of the histone fold. Far-UV circular dichroism (CD) indicated that the fluorophores did not significantly alter the helical content of the histones. The equilibrium unfolding transitions of the histone variants were two-state, reversible processes, with ΔG°(H2O) values within 1 kcal/mol of the wild-type dimers. The hPyA1 Trp variants fold by two-state kinetic mechanisms like wild-type hPyA1, but with increased folding and unfolding rates, suggesting that the mutated residues (Tyr-32 and Tyr-36) contribute to transition state structure. Like wild-type hMfB, M35Y and M35W hMfB fold by a three-state mechanism, with a stopped-flow CD burst-phase monomeric intermediate. The M35 mutants populate monomeric intermediates with increased secondary structure and stability but exhibit decreased folding rates; this suggests that nonnative interactions occur from burial of the hydrophobic Tyr and Trp residues in this kinetic intermediate. These results implicate the long central helix as a key component of the structure in the kinetic monomeric intermediates of hMfB as well as the dimerization transition state in the folding of hPyA1. PMID:18096639

  12. Common coding variant in SERPINA1 increases the risk for large artery stroke

    PubMed Central

    Malik, Rainer; Dau, Therese; Gonik, Maria; Sivakumar, Anirudh; Deredge, Daniel J.; Edeleva, Evgeniia V.; Götzfried, Jessica; Pasterkamp, Gerard; Beaufort, Nathalie; Seixas, Susana; Bevan, Steve; Lincz, Lisa F.; Holliday, Elizabeth G.; Burgess, Annette I.; Rannikmäe, Kristiina; Minnerup, Jens; Kriebel, Jennifer; Waldenberger, Melanie; Müller-Nurasyid, Martina; Lichtner, Peter; Saleheen, Danish; Rothwell, Peter M.; Levi, Christopher; Attia, John; Sudlow, Cathie L. M.; Braun, Dieter; Markus, Hugh S.; Wintrode, Patrick L.; Berger, Klaus; Jenne, Dieter E.; Dichgans, Martin

    2017-01-01

    Large artery atherosclerotic stroke (LAS) shows substantial heritability not explained by previous genome-wide association studies. Here, we explore the role of coding variation in LAS by analyzing variants on the HumanExome BeadChip in a total of 3,127 cases and 9,778 controls from Europe, Australia, and South Asia. We report on a nonsynonymous single-nucleotide variant in serpin family A member 1 (SERPINA1) encoding alpha-1 antitrypsin [AAT; p.V213A; P = 5.99E-9, odds ratio (OR) = 1.22] and confirm histone deacetylase 9 (HDAC9) as a major risk gene for LAS with an association in the 3′-UTR (rs2023938; P = 7.76E-7, OR = 1.28). Using quantitative microscale thermophoresis, we show that M1 (A213) exhibits an almost twofold lower dissociation constant with its primary target human neutrophil elastase (NE) in lipoprotein-containing plasma, but not in lipid-free plasma. Hydrogen/deuterium exchange combined with mass spectrometry further revealed a significant difference in the global flexibility of the two variants. The observed stronger interaction with lipoproteins in plasma and reduced global flexibility of the Val-213 variant most likely improve its local availability and reduce the extent of proteolytic inactivation by other proteases in atherosclerotic plaques. Our results indicate that the interplay between AAT, NE, and lipoprotein particles is modulated by the gate region around position 213 in AAT, far away from the unaltered reactive center loop (357–360). Collectively, our findings point to a functionally relevant balance between lipoproteins, proteases, and AAT in atherosclerosis. PMID:28265093

  13. [Chromosomal proteins: histones and acid proteins].

    PubMed

    Salvini, M; Gabrielli, F

    1976-01-01

    Experimental data about the chemistry and the biology of chromosomal proteins are reviewed. Paragraphs include: aminoacid sequential data and post-translational covalent modications of histones, histone chemical differences in different tissues of the same species and in homologous organs of different species, histone synthesis subcellular localization and its association with DNA synthesis, histone synthesis transcriptional and translational control, histone synthesis during meiosis, oogenesis and early embryogenesis. The possible role of histones as controllers of gene expression is discussed and a model of primary structure of chromatine is proposed. The "acidic proteins" data concern the high tissue eterogenity of these proteins and their role in the steroid-hormon-controlled gene expression. The possible role of acidic proteins as general controllers of gene expression in eucariotic cells is discussed.

  14. Meiosis-specific loading of the centromere-specific histone CENH3 in Arabidopsis thaliana.

    PubMed

    Ravi, Maruthachalam; Shibata, Fukashi; Ramahi, Joseph S; Nagaki, Kiyotaka; Chen, Changbin; Murata, Minoru; Chan, Simon W L

    2011-06-01

    Centromere behavior is specialized in meiosis I, so that sister chromatids of homologous chromosomes are pulled toward the same side of the spindle (through kinetochore mono-orientation) and chromosome number is reduced. Factors required for mono-orientation have been identified in yeast. However, comparatively little is known about how meiotic centromere behavior is specialized in animals and plants that typically have large tandem repeat centromeres. Kinetochores are nucleated by the centromere-specific histone CENH3. Unlike conventional histone H3s, CENH3 is rapidly evolving, particularly in its N-terminal tail domain. Here we describe chimeric variants of CENH3 with alterations in the N-terminal tail that are specifically defective in meiosis. Arabidopsis thaliana cenh3 mutants expressing a GFP-tagged chimeric protein containing the H3 N-terminal tail and the CENH3 C-terminus (termed GFP-tailswap) are sterile because of random meiotic chromosome segregation. These defects result from the specific depletion of GFP-tailswap protein from meiotic kinetochores, which contrasts with its normal localization in mitotic cells. Loss of the GFP-tailswap CENH3 variant in meiosis affects recruitment of the essential kinetochore protein MIS12. Our findings suggest that CENH3 loading dynamics might be regulated differently in mitosis and meiosis. As further support for our hypothesis, we show that GFP-tailswap protein is recruited back to centromeres in a subset of pollen grains in GFP-tailswap once they resume haploid mitosis. Meiotic recruitment of the GFP-tailswap CENH3 variant is not restored by removal of the meiosis-specific cohesin subunit REC8. Our results reveal the existence of a specialized loading pathway for CENH3 during meiosis that is likely to involve the hypervariable N-terminal tail. Meiosis-specific CENH3 dynamics may play a role in modulating meiotic centromere behavior.

  15. Meiosis-Specific Loading of the Centromere-Specific Histone CENH3 in Arabidopsis thaliana

    PubMed Central

    Ravi, Maruthachalam; Shibata, Fukashi; Ramahi, Joseph S.; Nagaki, Kiyotaka; Chen, Changbin; Murata, Minoru; Chan, Simon W. L.

    2011-01-01

    Centromere behavior is specialized in meiosis I, so that sister chromatids of homologous chromosomes are pulled toward the same side of the spindle (through kinetochore mono-orientation) and chromosome number is reduced. Factors required for mono-orientation have been identified in yeast. However, comparatively little is known about how meiotic centromere behavior is specialized in animals and plants that typically have large tandem repeat centromeres. Kinetochores are nucleated by the centromere-specific histone CENH3. Unlike conventional histone H3s, CENH3 is rapidly evolving, particularly in its N-terminal tail domain. Here we describe chimeric variants of CENH3 with alterations in the N-terminal tail that are specifically defective in meiosis. Arabidopsis thaliana cenh3 mutants expressing a GFP-tagged chimeric protein containing the H3 N-terminal tail and the CENH3 C-terminus (termed GFP-tailswap) are sterile because of random meiotic chromosome segregation. These defects result from the specific depletion of GFP-tailswap protein from meiotic kinetochores, which contrasts with its normal localization in mitotic cells. Loss of the GFP-tailswap CENH3 variant in meiosis affects recruitment of the essential kinetochore protein MIS12. Our findings suggest that CENH3 loading dynamics might be regulated differently in mitosis and meiosis. As further support for our hypothesis, we show that GFP-tailswap protein is recruited back to centromeres in a subset of pollen grains in GFP-tailswap once they resume haploid mitosis. Meiotic recruitment of the GFP-tailswap CENH3 variant is not restored by removal of the meiosis-specific cohesin subunit REC8. Our results reveal the existence of a specialized loading pathway for CENH3 during meiosis that is likely to involve the hypervariable N-terminal tail. Meiosis-specific CENH3 dynamics may play a role in modulating meiotic centromere behavior. PMID:21695238

  16. Towards Breaking the Histone Code – Bayesian Graphical Models for Histone Modifications

    PubMed Central

    Mitra, Riten; Müller, Peter; Liang, Shoudan; Xu, Yanxun; Ji, Yuan

    2013-01-01

    Background Histones are proteins that wrap DNA around in small spherical structures called nucleosomes. Histone modifications (HMs) refer to the post-translational modifications to the histone tails. At a particular genomic locus, each of these HMs can either be present or absent, and the combinatory patterns of the presence or absence of multiple HMs, or the ‘histone codes,’ are believed to co-regulate important biological processes. We aim to use raw data on HM markers at different genomic loci to (1) decode the complex biological network of HMs in a single region and (2) demonstrate how the HM networks differ in different regulatory regions. We suggest that these differences in network attributes form a significant link between histones and genomic functions. Methods and Results We develop a powerful graphical model under Bayesian paradigm. Posterior inference is fully probabilistic, allowing us to compute the probabilities of distinct dependence patterns of the HMs using graphs. Furthermore, our model-based framework allows for easy but important extensions for inference on differential networks under various conditions, such as the different annotations of the genomic locations (e.g., promoters versus insulators). We applied these models to ChIP-Seq data based on CD4+ T lymphocytes. The results confirmed many existing findings and provided a unified tool to generate various promising hypotheses. Differential network analyses revealed new insights on co-regulation of HMs of transcriptional activities in different genomic regions. Conclusions The use of Bayesian graphical models and borrowing strength across different conditions provide high power to infer histone networks and their differences. PMID:23748248

  17. The rapidly evolving centromere-specific histone has stringent functional requirements in Arabidopsis thaliana.

    PubMed

    Ravi, Maruthachalam; Kwong, Pak N; Menorca, Ron M G; Valencia, Joel T; Ramahi, Joseph S; Stewart, Jodi L; Tran, Robert K; Sundaresan, Venkatesan; Comai, Luca; Chan, Simon W-L

    2010-10-01

    Centromeres control chromosome inheritance in eukaryotes, yet their DNA structure and primary sequence are hypervariable. Most animals and plants have megabases of tandem repeats at their centromeres, unlike yeast with unique centromere sequences. Centromere function requires the centromere-specific histone CENH3 (CENP-A in human), which replaces histone H3 in centromeric nucleosomes. CENH3 evolves rapidly, particularly in its N-terminal tail domain. A portion of the CENH3 histone-fold domain, the CENP-A targeting domain (CATD), has been previously shown to confer kinetochore localization and centromere function when swapped into human H3. Furthermore, CENP-A in human cells can be functionally replaced by CENH3 from distantly related organisms including Saccharomyces cerevisiae. We have used cenh3-1 (a null mutant in Arabidopsis thaliana) to replace endogenous CENH3 with GFP-tagged variants. A H3.3 tail domain-CENH3 histone-fold domain chimera rescued viability of cenh3-1, but CENH3's lacking a tail domain were nonfunctional. In contrast to human results, H3 containing the A. thaliana CATD cannot complement cenh3-1. GFP-CENH3 from the sister species A. arenosa functionally replaces A. thaliana CENH3. GFP-CENH3 from the close relative Brassica rapa was targeted to centromeres, but did not complement cenh3-1, indicating that kinetochore localization and centromere function can be uncoupled. We conclude that CENH3 function in A. thaliana, an organism with large tandem repeat centromeres, has stringent requirements for functional complementation in mitosis.

  18. Identification of the centromere-specific histone H3 variant in Lotus japonicus.

    PubMed

    Tek, Ahmet L; Kashihara, Kazunari; Murata, Minoru; Nagaki, Kiyotaka

    2014-03-15

    The centromere is a structurally and functionally specialized region present on every eukaryotic chromosome. Lotus japonicus is a model legume species for which there is very limited information on the centromere structure. Here we cloned and characterized the L. japonicus homolog of the centromere-specific histone H3 gene (LjCenH3) encoding a 159-amino acid protein. Using an Agrobacterium-based transformation system, LjCenH3 tagged with a green fluorescent protein was transferred into L. japonicus cells. The centromeric position of LjCENH3 protein was revealed on L. japonicus metaphase chromosomes by an immunofluorescence assay. The identification of LjCenH3 as a critical centromere landmark could pave the way for a better understanding of centromere structure in this model and other agriculturally important legume species. Published by Elsevier B.V.

  19. Chromatin replication: TRANSmitting the histone code

    PubMed Central

    Chang, Han-Wen; Studitsky, Vasily M.

    2017-01-01

    Efficient overcoming of the nucleosomal barrier and accurate maintenance of associated histone marks during chromatin replication are essential for normal functioning of the cell. Recent studies revealed new protein factors and histone modifications contributing to overcoming the nucleosomal barrier, and suggested an important role for DNA looping in survival of the original histones during replication. These studies suggest new possible mechanisms for transmitting the histone code to next generations of cells. PMID:28393112

  20. The chromatin-binding protein HMGN3 stimulates histone acetylation and transcription across the Glyt1 gene

    PubMed Central

    Barkess, Gráinne; Postnikov, Yuri; Campos, Chrisanne D.; Mishra, Shivam; Mohan, Gokula; Verma, Sakshi; Bustin, Michael; West, Katherine L.

    2013-01-01

    HMGNs are nucleosome-binding proteins that alter the pattern of histone modifications and modulate the binding of linker histones to chromatin. The HMGN3 family member exists as two splice forms, HMGN3a which is full-length and HMGN3b which lacks the C-terminal RD (regulatory domain). In the present study, we have used the Glyt1 (glycine transporter 1) gene as a model system to investigate where HMGN proteins are bound across the locus in vivo, and to study how the two HMGN3 splice variants affect histone modifications and gene expression. We demonstrate that HMGN1, HMGN2, HMGN3a and HMGN3b are bound across the Glyt1 gene locus and surrounding regions, and are not enriched more highly at the promoter or putative enhancer. We conclude that the peaks of H3K4me3 (trimethylated Lys4 of histone H3) and H3K9ac (acetylated Lys9 of histone H3) at the active Glyt1a promoter do not play a major role in recruiting HMGN proteins. HMGN3a/b binding leads to increased H3K14 (Lys14 of histone H3) acetylation and stimulates Glyt1a expression, but does not alter the levels of H3K4me3 or H3K9ac enrichment. Acetylation assays show that HMGN3a stimulates the ability of PCAF [p300/CREB (cAMP-response-element-binding protein)-binding protein-associated factor] to acetylate nucleosomal H3 in vitro, whereas HMGN3b does not. We propose a model where HMGN3a/b-stimulated H3K14 acetylation across the bodies of large genes such as Glyt1 can lead to more efficient transcription elongation and increased mRNA production. PMID:22150271

  1. The histone acetyltransferase p300 inhibitor C646 reduces pro-inflammatory gene expression and inhibits histone deacetylases

    PubMed Central

    van den Bosch, Thea; Boichenko, Alexander; Leus, Niek G. J.; Eleni Ourailidou, Maria; Wapenaar, Hannah; Rotili, Dante; Mai, Antonello; Imhof, Axel; Bischoff, Rainer; Haisma, Hidde J.; Dekker, Frank J.

    2016-01-01

    Lysine acetylations are reversible posttranslational modifications of histone and non-histone proteins that play important regulatory roles in signal transduction cascades and gene expression. Lysine acetylations are regulated by histone acetyltransferases as writers and histone deacetylases as erasers. Because of their role in signal transduction cascades, these enzymes are important players in inflammation. Therefore, applications of histone acetyltransferase inhibitors to reduce inflammatory responses are interesting. Among the few histone acetyltransferase inhibitors described, C646 is one of the most potent (Ki of 0.4 μM for histone acetyltransferase p300). C646 was described to regulate the NF-κB pathway; an important pathway in inflammatory responses, which is regulated by acetylation. Interestingly, this pathway has been implicated in asthma and COPD. Therefore we hypothesized that via regulation of the NF-κB signaling pathway, C646 can inhibit pro-inflammatory gene expression, and have potential for the treatment of inflammatory lung diseases. In line with this, here we demonstrate that C646 reduces pro-inflammatory gene expression in RAW264.7 murine macrophages and murine precision-cut lung slices. To unravel its effects on cellular substrates we applied mass spectrometry and found, counterintuitively, a slight increase in acetylation of histone H3. Based on this finding, and structural features of C646, we presumed inhibitory activity of C646 on histone deacetylases, and indeed found inhibition of histone deacetylases from 7 μM and higher concentrations. This indicates that C646 has potential for further development towards applications in the treatment of inflammation, however, its newly discovered lack of selectivity at higher concentrations needs to be taken into account. PMID:26718586

  2. Ecotype-specific and chromosome-specific expansion of variant centromeric satellites in Arabidopsis thaliana.

    PubMed

    Ito, Hidetaka; Miura, Asuka; Takashima, Kazuya; Kakutani, Tetsuji

    2007-01-01

    Despite the conserved roles and conserved protein machineries of centromeres, their nucleotide sequences can be highly diverse even among related species. The diversity reflects rapid evolution, but the underlying mechanism is largely unknown. One approach to monitor rapid evolution is examination of intra-specific variation. Here we report variant centromeric satellites of Arabidopsis thaliana found through survey of 103 natural accessions (ecotypes). Among them, a cluster of variant centromeric satellites was detected in one ecotype, Cape Verde Islands (Cvi). Recombinant inbred mapping revealed that the variant satellites are distributed in centromeric region of the chromosome 5 (CEN5) of this ecotype. This apparently recent variant accumulation is associated with large deletion of a pericentromeric region and the expansion of satellite region. The variant satellite was bound to HTR12 (centromeric variant histone H3), although expansion of the satellite was not associated with comparable increase in the HTR12 binding. The results suggest that variant satellites with centromere function can rapidly accumulate in one centromere, supporting the model that the satellite repeats in the array are homogenized by occasional unequal crossing-over, which has a potential to generate an expansion of local sequence variants within a centromere cluster.

  3. Nitric Oxide Modulates Histone Acetylation at Stress Genes by Inhibition of Histone Deacetylases1[OPEN

    PubMed Central

    Mengel, Alexander; Ageeva, Alexandra; Durner, Jörg

    2017-01-01

    Histone acetylation, which is an important mechanism to regulate gene expression, is controlled by the opposing action of histone acetyltransferases and histone deacetylases (HDACs). In animals, several HDACs are subjected to regulation by nitric oxide (NO); in plants, however, it is unknown whether NO affects histone acetylation. We found that treatment with the physiological NO donor S-nitrosoglutathione (GSNO) increased the abundance of several histone acetylation marks in Arabidopsis (Arabidopsis thaliana), which was strongly diminished in the presence of the NO scavenger 2-4-carboxyphenyl-4,4,5,5-tetramethylimidazoline-1-oxyl-3-oxide. This increase was likely triggered by NO-dependent inhibition of HDAC activity, since GSNO and S-nitroso-N-acetyl-dl-penicillamine significantly and reversibly reduced total HDAC activity in vitro (in nuclear extracts) and in vivo (in protoplasts). Next, genome-wide H3K9/14ac profiles in Arabidopsis seedlings were generated by chromatin immunoprecipitation sequencing, and changes induced by GSNO, GSNO/2-4-carboxyphenyl-4,4,5,5-tetramethylimidazoline-1-oxyl-3-oxide or trichostatin A (an HDAC inhibitor) were quantified, thereby identifying genes that display putative NO-regulated histone acetylation. Functional classification of these genes revealed that many of them are involved in the plant defense response and the abiotic stress response. Furthermore, salicylic acid, which is the major plant defense hormone against biotrophic pathogens, inhibited HDAC activity and increased histone acetylation by inducing endogenous NO production. These data suggest that NO affects histone acetylation by targeting and inhibiting HDAC complexes, resulting in the hyperacetylation of specific genes. This mechanism might operate in the plant stress response by facilitating the stress-induced transcription of genes. PMID:27980017

  4. Total chemical synthesis of modified histones

    NASA Astrophysics Data System (ADS)

    Qi, Yun-Kun; Ai, Hua-Song; Li, Yi-Ming; Yan, Baihui

    2018-02-01

    In the post-genome era, epigenetics has received increasing attentions in recent years. The post-translational modifications (PTMs) of four core histones play central roles in epigenetic regulation of eukaryotic genome by either directly altering the biophysical properties of nucleosomes or by recruiting other effector proteins. In order to study the biological functions and structural mechanisms of these histone PTMs, an obligatory step is to prepare a sufficient amount of homogeneously modified histones. This task cannot be fully accomplished either by recombinant technology or enzymatic modification. In this context, synthetic chemists have developed novel protein synthetic tools and state-of-the-art chemical ligation strategies for the preparation of homologous modified histones. In this review, we summarize the recent advances in the preparation of modified histones, focusing on the total chemical synthesis strategies. The importance and potential of synthetic chemistry for the study of histone code will be also discussed.

  5. Histones: Controlling Tumor Signaling Circuitry

    PubMed Central

    Martins, Manoela D.; Castilho, Rogerio M.

    2014-01-01

    Epigenetic modifications constitute the next frontier in tumor biology research. Post-translation modification of histones dynamically influences gene expression independent of alterations to the DNA sequence. These mechanisms are often mediated by histone linkers or by proteins associated with the recruitment of DNA-binding proteins, HDAC I and II interacting proteins and transcriptional activators, coactivators or corepressors. Early evidence suggested that histones and their modifiers are involved in sophisticated processes that modulate tumor behavior and cellular phenotype. In this review, we discuss how recent discoveries about chromatin modifications, particularly histone acetylation, are shaping our knowledge of cell biology and our understanding of the molecular circuitry governing tumor progression and consider whether recent insights may extend to novel therapeutic approaches. Furthermore, we discuss the latest oncogenomic findings in Head and Neck Squamous Cell Carcinoma (HNSCC) from studies using Next Generation Sequencing (NGS) technology and highlight the impact of mutations identified in histones and their modifiers. PMID:25177526

  6. Histone variant H3.3-mediated chromatin remodeling is essential for paternal genome activation in mouse preimplantation embryos.

    PubMed

    Kong, Qingran; Banaszynski, Laura A; Geng, Fuqiang; Zhang, Xiaolei; Zhang, Jiaming; Zhang, Heng; O'Neill, Claire L; Yan, Peidong; Liu, Zhonghua; Shido, Koji; Palermo, Gianpiero D; Allis, C David; Rafii, Shahin; Rosenwaks, Zev; Wen, Duancheng

    2018-03-09

    Derepression of chromatin-mediated transcriptional repression of paternal and maternal genomes is considered the first major step that initiates zygotic gene expression after fertilization. The histone variant H3.3 is present in both male and female gametes and is thought to be important for remodeling the paternal and maternal genomes for activation during both fertilization and embryogenesis. However, the underlying mechanisms remain poorly understood. Using our H3.3B-HA-tagged mouse model, engineered to report H3.3 expression in live animals and to distinguish different sources of H3.3 protein in embryos, we show here that sperm-derived H3.3 (sH3.3) protein is removed from the sperm genome shortly after fertilization and extruded from the zygotes via the second polar bodies (PBII) during embryogenesis. We also found that the maternal H3.3 (mH3.3) protein is incorporated into the paternal genome as early as 2 h postfertilization and is detectable in the paternal genome until the morula stage. Knockdown of maternal H3.3 resulted in compromised embryonic development both of fertilized embryos and of androgenetic haploid embryos. Furthermore, we report that mH3.3 depletion in oocytes impairs both activation of the Oct4 pluripotency marker gene and global de novo transcription from the paternal genome important for early embryonic development. Our results suggest that H3.3-mediated paternal chromatin remodeling is essential for the development of preimplantation embryos and the activation of the paternal genome during embryogenesis. © 2018 by The American Society for Biochemistry and Molecular Biology, Inc.

  7. Ion Mobility Separation of Variant Histone Tails Extending to the “Middle-down” Range

    PubMed Central

    Shvartsburg, Alexandre A.; Zheng, Yupeng; Smith, Richard D.; Kelleher, Neil L.

    2012-01-01

    Differential ion mobility spectrometry (FAIMS) can baseline-resolve multiple variants of post-translationally modified peptides extending to the 3 - 4 kDa range, which differ in the localization of a PTM as small as acetylation. Essentially orthogonal separations for different charge states expand the total peak capacity in proportion to the number of observed states that increases for longer polypeptides. This might enable resolving localization variants for yet larger peptides and even intact proteins. PMID:22559289

  8. Histone demethylase JMJD1A promotes alternative splicing of AR variant 7 (AR-V7) in prostate cancer cells.

    PubMed

    Fan, Lingling; Zhang, Fengbo; Xu, Songhui; Cui, Xiaolu; Hussain, Arif; Fazli, Ladan; Gleave, Martin; Dong, Xuesen; Qi, Jianfei

    2018-05-15

    Formation of the androgen receptor splicing variant 7 (AR-V7) is one of the major mechanisms by which resistance of prostate cancer to androgen deprivation therapy occurs. The histone demethylase JMJD1A (Jumonji domain containing 1A) functions as a key coactivator for AR by epigenetic regulation of H3K9 methylation marks. Here, we describe a role for JMJD1A in AR-V7 expression. While JMJD1A knockdown had no effect on full-length AR (AR-FL), it reduced AR-V7 levels in prostate cancer cells. Reexpression of AR-V7 in the JMJD1A-knockdown cells elevated expression of select AR targets and partially rescued prostate cancer cell growth in vitro and in vivo. The AR-V7 protein level correlated positively with JMJD1A in a subset of human prostate cancer specimens. Mechanistically, we found that JMJD1A promoted alternative splicing of AR-V7 through heterogeneous nuclear ribonucleoprotein F (HNRNPF), a splicing factor known to regulate exon inclusion. Knockdown of JMJD1A or HNRNPF inhibited splicing of AR-V7, but not AR-FL, in a minigene reporter assay. JMJD1A was found to interact with and promote the recruitment of HNRNPF to a cryptic exon 3b on AR pre-mRNA for the generation of AR-V7. Taken together, the role of JMJD1A in AR-FL coactivation and AR-V7 alternative splicing highlights JMJD1A as a potentially promising target for prostate cancer therapy.

  9. EpiProfile Quantifies Histone Peptides With Modifications by Extracting Retention Time and Intensity in High-resolution Mass Spectra*

    PubMed Central

    Yuan, Zuo-Fei; Lin, Shu; Molden, Rosalynn C.; Cao, Xing-Jun; Bhanu, Natarajan V.; Wang, Xiaoshi; Sidoli, Simone; Liu, Shichong; Garcia, Benjamin A.

    2015-01-01

    Histone post-translational modifications contribute to chromatin function through their chemical properties which influence chromatin structure and their ability to recruit chromatin interacting proteins. Nanoflow liquid chromatography coupled with high resolution tandem mass spectrometry (nanoLC-MS/MS) has emerged as the most suitable technology for global histone modification analysis because of the high sensitivity and the high mass accuracy of this approach that provides confident identification. However, analysis of histones with this method is even more challenging because of the large number and variety of isobaric histone peptides and the high dynamic range of histone peptide abundances. Here, we introduce EpiProfile, a software tool that discriminates isobaric histone peptides using the distinguishing fragment ions in their tandem mass spectra and extracts the chromatographic area under the curve using previous knowledge about peptide retention time. The accuracy of EpiProfile was evaluated by analysis of mixtures containing different ratios of synthetic histone peptides. In addition to label-free quantification of histone peptides, EpiProfile is flexible and can quantify different types of isotopically labeled histone peptides. EpiProfile is unique in generating layouts (i.e. relative retention time) of histone peptides when compared with manual quantification of the data and other programs (such as Skyline), filling the need of an automatic and freely available tool to quantify labeled and non-labeled modified histone peptides. In summary, EpiProfile is a valuable nanoflow liquid chromatography coupled with high resolution tandem mass spectrometry-based quantification tool for histone peptides, which can also be adapted to analyze nonhistone protein samples. PMID:25805797

  10. Endometriosis Is Characterized by a Distinct Pattern of Histone 3 and Histone 4 Lysine Modifications

    PubMed Central

    Monteiro, Janice B.; Colón-Díaz, Maricarmen; García, Miosotis; Gutierrez, Sylvia; Colón, Mariano; Seto, Edward; Laboy, Joaquín

    2014-01-01

    Background: The histone modification patterns in endometriosis have not been fully characterized. This gap in knowledge results in a poor understanding of the epigenetic mechanisms (and potential therapeutic targets) at play. We aimed to (1) assess global acetylation status of histone 3 (H3) and histone 4 (H4), (2) measure levels of H3 and H4 lysine (K) acetylation and methylation, and (3) to identify histone acetylation patterns in promoter regions of candidate genes in tissues from patients and controls. Methods: Global and K-specific acetylation/methylation levels of histones were measured in 24 lesions, 15 endometrium from patients, and 26 endometrium from controls. Chromatin immunoprecipitation (ChIP)–polymerase chain reaction was used to determine the histone acetylation status of the promoter regions of candidate genes in tissues. Results: The lesions were globally hypoacetylated at H3 (but not H4) compared to eutopic endometrium from controls. Lesions had significantly lower levels of H3K9ac and H4K16ac compared to eutopic endometrium from patients and controls. Tissues from patients were hypermethylated at H3K4, H3K9, and H3K27 compared to endometrium from controls. The ChIP analysis showed hypoacetylation of H3/H4 within promoter regions of candidate genes known to be downregulated in endometriosis (e.g., HOXA10, ESR1, CDH1, and p21WAF1/Cip1) in lesions versus control endometrium. The stereoidogenic factor 1 (SF1) promoter region was enriched for acetylated H3 and H4 in lesions versus control tissues, correlating with its reported high expression in lesions. Conclusions: This study describes the histone code of lesions and endometrium from patients with endometriosis and provides support for a possible role of histone modification in modulation of gene expression in endometriosis. PMID:23899551

  11. Histone ubiquitination: a tagging tail unfolds?

    PubMed

    Jason, Laure J M; Moore, Susan C; Lewis, John D; Lindsey, George; Ausió, Juan

    2002-02-01

    Despite the fact that histone H2A ubiquitination affects about 10-15% of this histone in most eukaryotic cells, histone ubiquitination is among one of the less-well-characterized post-translational histone modifications. Nevertheless, some important observations have been made in recent years. Whilst several enzymes had been known to ubiquitinate histones in vitro, recent studies in yeast have led to the unequivocal identification of the enzyme responsible for this post-translational modification in this organism. A strong functional co-relation to meiosis and spermiogenesis has also now been well documented, although its participation in other functional aspects of chromatin metabolism, such as transcription or DNA repair, still remains rather speculative and controversial. Because of its nature, histone ubiquitination represents the most bulky structural change to histones and as such it would be expected to exert an important effect on chromatin structure. Past and recent structural studies, however, indicate a surprising lack of effect of (H2A/H2B) ubiquitination on nucleosome architecture and of uH2A on chromatin folding. These results suggest that this modification may serve as a signal for recognition by functionally relevant trans-acting factors and/or operate synergistically in conjunction with other post-translational modifications such as for instance acetylation. Copyright 2002 Wiley Periodicals, Inc.

  12. Modes of Interaction of KMT2 Histone H3 Lysine 4 Methyltransferase/COMPASS Complexes with Chromatin

    PubMed Central

    Bochyńska, Agnieszka; Lüscher-Firzlaff, Juliane

    2018-01-01

    Regulation of gene expression is achieved by sequence-specific transcriptional regulators, which convey the information that is contained in the sequence of DNA into RNA polymerase activity. This is achieved by the recruitment of transcriptional co-factors. One of the consequences of co-factor recruitment is the control of specific properties of nucleosomes, the basic units of chromatin, and their protein components, the core histones. The main principles are to regulate the position and the characteristics of nucleosomes. The latter includes modulating the composition of core histones and their variants that are integrated into nucleosomes, and the post-translational modification of these histones referred to as histone marks. One of these marks is the methylation of lysine 4 of the core histone H3 (H3K4). While mono-methylation of H3K4 (H3K4me1) is located preferentially at active enhancers, tri-methylation (H3K4me3) is a mark found at open and potentially active promoters. Thus, H3K4 methylation is typically associated with gene transcription. The class 2 lysine methyltransferases (KMTs) are the main enzymes that methylate H3K4. KMT2 enzymes function in complexes that contain a necessary core complex composed of WDR5, RBBP5, ASH2L, and DPY30, the so-called WRAD complex. Here we discuss recent findings that try to elucidate the important question of how KMT2 complexes are recruited to specific sites on chromatin. This is embedded into short overviews of the biological functions of KMT2 complexes and the consequences of H3K4 methylation. PMID:29498679

  13. The elusive structural role of ubiquitinated histones.

    PubMed

    Moore, Susan C; Jason, Laure; Ausió, Juan

    2002-01-01

    It is increasingly apparent that histone posttranslational modifications are important in chromatin structure and dynamics. However, histone ubiquitination has received little attention. Histones H1, H3, H2A, and H2B can be ubiquitinated in vivo, but the most prevalent are uH2A and uH2B. The size of this modification suggests some sort of structural impact. Physiological observations suggest that ubiquitinated histones may have multiple functions and structural effects. Ubiquitinated histones have been correlated with transcriptionally active DNA, implying that it may prevent chromatin folding or help maintain an open conformation. Also, in some organisms during spermiogenesis, a process involving extensive chromatin remodeling, uH2A levels increase just prior to histone replacement by protamines. Determination of chromatin's structural changes resulting from histone ubiquitination is therefore important. Recent work using reconstituted nucleosomes and chromatin fibers containing uH2A indicate that in the absence of linker histones, ubiquitination has little structural impact. DNase I digests and analytical ultracentrifugation of reconstituted ubiquitinated nucleosomes show no structural differences. Solubility assays using reconstituted chromatin fibers in the presence of divalent ions demonstrate that uH2A fibers are slightly more prone to aggregation than controls, and analytical ultracentrifugation results with different MgCl2 and NaCl concentrations determined that chromatin folding is not affected by this modification. Additional work to assess possible synergistic affects with histone acetylation also precludes any structural implications. Protamine displacement experiments concluded that the presence of uH2A does not significantly affect the ability of the protamines to displace histones. In addition, uH2A does not interfere with histone H1 binding to the nucleosome. While work with uH2B remains insufficient to come to any definitive conclusions about its

  14. Broad chromosomal domains of histone modification patterns in C. elegans

    PubMed Central

    Liu, Tao; Rechtsteiner, Andreas; Egelhofer, Thea A.; Vielle, Anne; Latorre, Isabel; Cheung, Ming-Sin; Ercan, Sevinc; Ikegami, Kohta; Jensen, Morten; Kolasinska-Zwierz, Paulina; Rosenbaum, Heidi; Shin, Hyunjin; Taing, Scott; Takasaki, Teruaki; Iniguez, A. Leonardo; Desai, Arshad; Dernburg, Abby F.; Kimura, Hiroshi; Lieb, Jason D.; Ahringer, Julie; Strome, Susan; Liu, X. Shirley

    2011-01-01

    Chromatin immunoprecipitation identifies specific interactions between genomic DNA and proteins, advancing our understanding of gene-level and chromosome-level regulation. Based on chromatin immunoprecipitation experiments using validated antibodies, we define the genome-wide distributions of 19 histone modifications, one histone variant, and eight chromatin-associated proteins in Caenorhabditis elegans embryos and L3 larvae. Cluster analysis identified five groups of chromatin marks with shared features: Two groups correlate with gene repression, two with gene activation, and one with the X chromosome. The X chromosome displays numerous unique properties, including enrichment of monomethylated H4K20 and H3K27, which correlate with the different repressive mechanisms that operate in somatic tissues and germ cells, respectively. The data also revealed striking differences in chromatin composition between the autosomes and between chromosome arms and centers. Chromosomes I and III are globally enriched for marks of active genes, consistent with containing more highly expressed genes, compared to chromosomes II, IV, and especially V. Consistent with the absence of cytological heterochromatin and the holocentric nature of C. elegans chromosomes, markers of heterochromatin such as H3K9 methylation are not concentrated at a single region on each chromosome. Instead, H3K9 methylation is enriched on chromosome arms, coincident with zones of elevated meiotic recombination. Active genes in chromosome arms and centers have very similar histone mark distributions, suggesting that active domains in the arms are interspersed with heterochromatin-like structure. These data, which confirm and extend previous studies, allow for in-depth analysis of the organization and deployment of the C. elegans genome during development. PMID:21177964

  15. The histone codes for meiosis.

    PubMed

    Wang, Lina; Xu, Zhiliang; Khawar, Muhammad Babar; Liu, Chao; Li, Wei

    2017-09-01

    Meiosis is a specialized process that produces haploid gametes from diploid cells by a single round of DNA replication followed by two successive cell divisions. It contains many special events, such as programmed DNA double-strand break (DSB) formation, homologous recombination, crossover formation and resolution. These events are associated with dynamically regulated chromosomal structures, the dynamic transcriptional regulation and chromatin remodeling are mainly modulated by histone modifications, termed 'histone codes'. The purpose of this review is to summarize the histone codes that are required for meiosis during spermatogenesis and oogenesis, involving meiosis resumption, meiotic asymmetric division and other cellular processes. We not only systematically review the functional roles of histone codes in meiosis but also discuss future trends and perspectives in this field. © 2017 Society for Reproduction and Fertility.

  16. Cloning and characterization of the major histone H2A genes completes the cloning and sequencing of known histone genes of Tetrahymena thermophila.

    PubMed Central

    Liu, X; Gorovsky, M A

    1996-01-01

    A truncated cDNA clone encoding Tetrahymena thermophila histone H2A2 was isolated using synthetic degenerate oligonucleotide probes derived from H2A protein sequences of Tetrahymena pyriformis. The cDNA clone was used as a homologous probe to isolate a truncated genomic clone encoding H2A1. The remaining regions of the genes for H2A1 (HTA1) and H2A2 (HTA2) were then isolated using inverse PCR on circularized genomic DNA fragments. These partial clones were assembled into intact HTA1 and HTA2 clones. Nucleotide sequences of the two genes were highly homologous within the coding region but not in the noncoding regions. Comparison of the deduced amino acid sequences with protein sequences of T. pyriformis H2As showed only two and three differences respectively, in a total of 137 amino acids for H2A1, and 132 amino acids for H2A2, indicating the two genes arose before the divergence of these two species. The HTA2 gene contains a TAA triplet within the coding region, encoding a glutamine residue. In contrast with the T. thermophila HHO and HTA3 genes, no introns were identified within the two genes. The 5'- and 3'-ends of the histone H2A mRNAs; were determined by RNase protection and by PCR mapping using RACE and RLM-RACE methods. Both genes encode polyadenylated mRNAs and are highly expressed in vegetatively growing cells but only weakly expressed in starved cultures. With the inclusion of these two genes, T. thermophila is the first organism whose entire complement of known core and linker histones, including replication-dependent and basal variants, has been cloned and sequenced. PMID:8760889

  17. Imaging the fate of histone Cse4 reveals de novo replacement in S phase and subsequent stable residence at centromeres

    PubMed Central

    Wisniewski, Jan; Hajj, Bassam; Chen, Jiji; Mizuguchi, Gaku; Xiao, Hua; Wei, Debbie; Dahan, Maxime; Wu, Carl

    2014-01-01

    The budding yeast centromere contains Cse4, a specialized histone H3 variant. Fluorescence pulse-chase analysis of an internally tagged Cse4 reveals that it is replaced with newly synthesized molecules in S phase, remaining stably associated with centromeres thereafter. In contrast, C-terminally-tagged Cse4 is functionally impaired, showing slow cell growth, cell lethality at elevated temperatures, and extra-centromeric nuclear accumulation. Recent studies using such strains gave conflicting findings regarding the centromeric abundance and cell cycle dynamics of Cse4. Our findings indicate that internally tagged Cse4 is a better reporter of the biology of this histone variant. Furthermore, the size of centromeric Cse4 clusters was precisely mapped with a new 3D-PALM method, revealing substantial compaction during anaphase. Cse4-specific chaperone Scm3 displays steady-state, stoichiometric co-localization with Cse4 at centromeres throughout the cell cycle, while undergoing exchange with a nuclear pool. These findings suggest that a stable Cse4 nucleosome is maintained by dynamic chaperone-in-residence Scm3. DOI: http://dx.doi.org/10.7554/eLife.02203.001 PMID:24844245

  18. Rare variant associations with waist-to-hip ratio in European-American and African-American women from the NHLBI-Exome Sequencing Project.

    PubMed

    Kan, Mengyuan; Auer, Paul L; Wang, Gao T; Bucasas, Kristine L; Hooker, Stanley; Rodriguez, Alejandra; Li, Biao; Ellis, Jaclyn; Adrienne Cupples, L; Ida Chen, Yii-Der; Dupuis, Josée; Fox, Caroline S; Gross, Myron D; Smith, Joshua D; Heard-Costa, Nancy; Meigs, James B; Pankow, James S; Rotter, Jerome I; Siscovick, David; Wilson, James G; Shendure, Jay; Jackson, Rebecca; Peters, Ulrike; Zhong, Hua; Lin, Danyu; Hsu, Li; Franceschini, Nora; Carlson, Chris; Abecasis, Goncalo; Gabriel, Stacey; Bamshad, Michael J; Altshuler, David; Nickerson, Deborah A; North, Kari E; Lange, Leslie A; Reiner, Alexander P; Leal, Suzanne M

    2016-08-01

    Waist-to-hip ratio (WHR), a relative comparison of waist and hip circumferences, is an easily accessible measurement of body fat distribution, in particular central abdominal fat. A high WHR indicates more intra-abdominal fat deposition and is an established risk factor for cardiovascular disease and type 2 diabetes. Recent genome-wide association studies have identified numerous common genetic loci influencing WHR, but the contributions of rare variants have not been previously reported. We investigated rare variant associations with WHR in 1510 European-American and 1186 African-American women from the National Heart, Lung, and Blood Institute-Exome Sequencing Project. Association analysis was performed on the gene level using several rare variant association methods. The strongest association was observed for rare variants in IKBKB (P=4.0 × 10(-8)) in European-Americans, where rare variants in this gene are predicted to decrease WHRs. The activation of the IKBKB gene is involved in inflammatory processes and insulin resistance, which may affect normal food intake and body weight and shape. Meanwhile, aggregation of rare variants in COBLL1, previously found to harbor common variants associated with WHR and fasting insulin, were nominally associated (P=2.23 × 10(-4)) with higher WHR in European-Americans. However, these significant results are not shared between African-Americans and European-Americans that may be due to differences in the allelic architecture of the two populations and the small sample sizes. Our study indicates that the combined effect of rare variants contribute to the inter-individual variation in fat distribution through the regulation of insulin response.

  19. Human GRK4γ142V Variant Promotes Angiotensin II Type I Receptor-Mediated Hypertension via Renal Histone Deacetylase Type 1 Inhibition.

    PubMed

    Wang, Zheng; Zeng, Chunyu; Villar, Van Anthony M; Chen, Shi-You; Konkalmatt, Prasad; Wang, Xiaoyan; Asico, Laureano D; Jones, John E; Yang, Yu; Sanada, Hironobu; Felder, Robin A; Eisner, Gilbert M; Weir, Matthew R; Armando, Ines; Jose, Pedro A

    2016-02-01

    The influence of a single gene on the pathogenesis of essential hypertension may be difficult to ascertain, unless the gene interacts with other genes that are germane to blood pressure regulation. G-protein-coupled receptor kinase type 4 (GRK4) is one such gene. We have reported that the expression of its variant hGRK4γ(142V) in mice results in hypertension because of impaired dopamine D1 receptor. Signaling through dopamine D1 receptor and angiotensin II type I receptor (AT1R) reciprocally modulates renal sodium excretion and blood pressure. Here, we demonstrate the ability of the hGRK4γ(142V) to increase the expression and activity of the AT1R. We show that hGRK4γ(142V) phosphorylates histone deacetylase type 1 and promotes its nuclear export to the cytoplasm, resulting in increased AT1R expression and greater pressor response to angiotensin II. AT1R blockade and the deletion of the Agtr1a gene normalize the hypertension in hGRK4γ(142V) mice. These findings illustrate the unique role of GRK4 by targeting receptors with opposite physiological activity for the same goal of maintaining blood pressure homeostasis, and thus making the GRK4 a relevant therapeutic target to control blood pressure. © 2015 American Heart Association, Inc.

  20. Histone H3.3 maintains genome integrity during mammalian development

    PubMed Central

    Jang, Chuan-Wei; Shibata, Yoichiro; Starmer, Joshua; Yee, Della; Magnuson, Terry

    2015-01-01

    Histone H3.3 is a highly conserved histone H3 replacement variant in metazoans and has been implicated in many important biological processes, including cell differentiation and reprogramming. Germline and somatic mutations in H3.3 genomic incorporation pathway components or in H3.3 encoding genes have been associated with human congenital diseases and cancers, respectively. However, the role of H3.3 in mammalian development remains unclear. To address this question, we generated H3.3-null mouse models through classical genetic approaches. We found that H3.3 plays an essential role in mouse development. Complete depletion of H3.3 leads to developmental retardation and early embryonic lethality. At the cellular level, H3.3 loss triggers cell cycle suppression and cell death. Surprisingly, H3.3 depletion does not dramatically disrupt gene regulation in the developing embryo. Instead, H3.3 depletion causes dysfunction of heterochromatin structures at telomeres, centromeres, and pericentromeric regions of chromosomes, leading to mitotic defects. The resulting karyotypical abnormalities and DNA damage lead to p53 pathway activation. In summary, our results reveal that an important function of H3.3 is to support chromosomal heterochromatic structures, thus maintaining genome integrity during mammalian development. PMID:26159997

  1. Gas41 links histone acetylation to H2A.Z deposition and maintenance of embryonic stem cell identity.

    PubMed

    Hsu, Chih-Chao; Zhao, Dan; Shi, Jiejun; Peng, Danni; Guan, Haipeng; Li, Yuanyuan; Huang, Yaling; Wen, Hong; Li, Wei; Li, Haitao; Shi, Xiaobing

    2018-01-01

    The histone variant H2A.Z is essential for maintaining embryonic stem cell (ESC) identity in part by keeping developmental genes in a poised bivalent state. However, how H2A.Z is deposited into the bivalent domains remains unknown. In mammals, two chromatin remodeling complexes, Tip60/p400 and SRCAP, exchange the canonical histone H2A for H2A.Z in the chromatin. Here we show that Glioma Amplified Sequence 41 (Gas41), a shared subunit of the two H2A.Z-depositing complexes, functions as a reader of histone lysine acetylation and recruits Tip60/p400 and SRCAP to deposit H2A.Z into specific chromatin regions including bivalent domains. The YEATS domain of Gas41 bound to acetylated histone H3K27 and H3K14 both in vitro and in cells. The crystal structure of the Gas41 YEATS domain in complex with the H3K27ac peptide revealed that, similar to the AF9 and ENL YEATS domains, Gas41 YEATS forms a serine-lined aromatic cage for acetyllysine recognition. Consistently, mutations in the aromatic residues of the Gas41 YEATS domain abrogated the interaction. In mouse ESCs, knockdown of Gas41 led to flattened morphology of ESC colonies, as the result of derepression of differentiation genes. Importantly, the abnormal morphology was rescued by expressing wild-type Gas41, but not the YEATS domain mutated counterpart that does not recognize histone acetylation. Mechanically, we found that Gas41 depletion led to reduction of H2A.Z levels and a concomitant reduction of H3K27me3 levels on bivalent domains. Together, our study reveals an essential role of the Gas41 YEATS domain in linking histone acetylation to H2A.Z deposition and maintenance of ESC identity.

  2. High diagnostic accuracy of histone H4-IgG autoantibodies in systemic lupus erythematosus.

    PubMed

    Vordenbäumen, Stefan; Böhmer, Paloma; Brinks, Ralph; Fischer-Betz, Rebecca; Richter, Jutta; Bleck, Ellen; Rengers, Petra; Göhler, Heike; Zucht, Hans-Dieter; Budde, Petra; Schulz-Knappe, Peter; Schneider, Matthias

    2018-03-01

    Diagnosis of SLE relies on the detection of autoantibodies. We aimed to assess the diagnostic potential of histone H4 and H2A variant antibodies in SLE. IgG-autoantibodies to histones H4 (HIST1H4A), H2A type 2-A (HIST2H2AA3) and H2A type 2-C (HIST2H2AC) were measured along with a standard antibody (SA) set including SSA, SSB, Sm, U1-RNP and RPLP2 in a multiplex magnetic microsphere-based assay in 153 SLE patients [85% female, 41 (13.5) years] and 81 healthy controls [77% female, 43.3 (12.4) years]. Receiver operating characteristic analysis was performed to assess diagnostic performance of individual markers. Logistic regression analysis was performed on a random split of samples to determine the additional value of histone antibodies in comparison with SA by likelihood ratio test and determination of diagnostic accuracy in the remaining validation samples. Microsphere-based assay showed good interclass correlation (mean 0.85, range 0.73-0.99) and diagnostic performance in receiver operating characteristic analysis (area under the curve (AUC) range 84.8-93.2) compared with routine assay for SA parameters. HIST1H4A-IgG was the marker with the best individual diagnostic performance for SLE vs healthy (AUC 0.97, sensitivity 95% at 90% specificity). HIST1H4A-IgG was an independent significant predictor for the diagnosis of SLE in multivariate modelling (P < 0.0001), and significantly improved prediction of SLE over SA parameters alone (residual deviance 45.9 vs 97.1, P = 4.3 × 10-11). Diagnostic accuracy in the training and validation samples was 89 and 86% for SA, and 95 and 89% with the addition of HIST1H4A-IgG. HIST1H4A-IgG antibodies improve diagnostic accuracy for SLE vs healthy. © The Author(s) 2017. Published by Oxford University Press on behalf of the British Society for Rheumatology. All rights reserved. [br]For Permissions, please email: journals.permissions@oup.com

  3. Rare variant associations with waist-to-hip ratio in European-American and African-American women from the NHLBI-Exome Sequencing Project

    PubMed Central

    Kan, Mengyuan; Auer, Paul L; Wang, Gao T; Bucasas, Kristine L; Hooker, Stanley; Rodriguez, Alejandra; Li, Biao; Ellis, Jaclyn; Adrienne Cupples, L; Ida Chen, Yii-Der; Dupuis, Josée; Fox, Caroline S; Gross, Myron D; Smith, Joshua D; Heard-Costa, Nancy; Meigs, James B; Pankow, James S; Rotter, Jerome I; Siscovick, David; Wilson, James G; Shendure, Jay; Jackson, Rebecca; Peters, Ulrike; Zhong, Hua; Lin, Danyu; Hsu, Li; Franceschini, Nora; Carlson, Chris; Abecasis, Goncalo; Gabriel, Stacey; Bamshad, Michael J; Altshuler, David; Nickerson, Deborah A; North, Kari E; Lange, Leslie A; Reiner, Alexander P; Leal, Suzanne M

    2016-01-01

    Waist-to-hip ratio (WHR), a relative comparison of waist and hip circumferences, is an easily accessible measurement of body fat distribution, in particular central abdominal fat. A high WHR indicates more intra-abdominal fat deposition and is an established risk factor for cardiovascular disease and type 2 diabetes. Recent genome-wide association studies have identified numerous common genetic loci influencing WHR, but the contributions of rare variants have not been previously reported. We investigated rare variant associations with WHR in 1510 European-American and 1186 African-American women from the National Heart, Lung, and Blood Institute-Exome Sequencing Project. Association analysis was performed on the gene level using several rare variant association methods. The strongest association was observed for rare variants in IKBKB (P=4.0 × 10−8) in European-Americans, where rare variants in this gene are predicted to decrease WHRs. The activation of the IKBKB gene is involved in inflammatory processes and insulin resistance, which may affect normal food intake and body weight and shape. Meanwhile, aggregation of rare variants in COBLL1, previously found to harbor common variants associated with WHR and fasting insulin, were nominally associated (P=2.23 × 10−4) with higher WHR in European-Americans. However, these significant results are not shared between African-Americans and European-Americans that may be due to differences in the allelic architecture of the two populations and the small sample sizes. Our study indicates that the combined effect of rare variants contribute to the inter-individual variation in fat distribution through the regulation of insulin response. PMID:26757982

  4. Histone modifications influence mediator interactions with chromatin

    PubMed Central

    Zhu, Xuefeng; Zhang, Yongqiang; Bjornsdottir, Gudrun; Liu, Zhongle; Quan, Amy; Costanzo, Michael; Dávila López, Marcela; Westholm, Jakub Orzechowski; Ronne, Hans; Boone, Charles; Gustafsson, Claes M.; Myers, Lawrence C.

    2011-01-01

    The Mediator complex transmits activation signals from DNA bound transcription factors to the core transcription machinery. Genome wide localization studies have demonstrated that Mediator occupancy not only correlates with high levels of transcription, but that the complex also is present at transcriptionally silenced locations. We provide evidence that Mediator localization is guided by an interaction with histone tails, and that this interaction is regulated by their post-translational modifications. A quantitative, high-density genetic interaction map revealed links between Mediator components and factors affecting chromatin structure, especially histone deacetylases. Peptide binding assays demonstrated that pure wild-type Mediator forms stable complexes with the tails of Histone H3 and H4. These binding assays also showed Mediator—histone H4 peptide interactions are specifically inhibited by acetylation of the histone H4 lysine 16, a residue critical in transcriptional silencing. Finally, these findings were validated by tiling array analysis that revealed a broad correlation between Mediator and nucleosome occupancy in vivo, but a negative correlation between Mediator and nucleosomes acetylated at histone H4 lysine 16. Our studies show that chromatin structure and the acetylation state of histones are intimately connected to Mediator localization. PMID:21742760

  5. Porcine endothelium induces DNA-histone complex formation in human whole blood: a harmful effect of histone on coagulation and endothelial activation.

    PubMed

    Yoo, Hyun Ju; Kim, Ji-Eun; Gu, Ja Yoon; Lee, Sae Bom; Lee, Hyun Joo; Hwang, Ho Young; Hwang, Yoohwa; Kim, Young Tae; Kim, Hyun Kyung

    2016-11-01

    Neutrophils play a role in xenograft rejection. When neutrophils are stimulated, they eject the DNA-histone complex into the extracellular space, called neutrophil extracellular traps (NET). We investigated whether NET formation actively occurs in the xenograft and contributes to coagulation and endothelial activation. Human whole blood was incubated with porcine aortic endothelial cells (pEC) from wild-type or α1,3-galactosyltransferase gene-knockout (GTKO) pigs. In the supernatant plasma from human blood, the level of the DNA-histone complex was measured by ELISA, and thrombin generation was measured using a calibrated automated thrombogram. Histone-induced tissue factor and adhesion molecule expression were measured by flow cytometry. pEC from both wild-type and GTKO pigs significantly induced DNA-histone complex formation in human whole blood. The DNA-histone complex produced shortened the thrombin generation time and clotting time. Histone alone dose-dependently induced tissue factor and adhesion molecule expression in pEC. Aurintricarboxylic acid pretreatment partially inhibited pEC-induced DNA-histone complex formation. DNA-histone complex actively generated upon xenotransplantation is a novel target to inhibit coagulation and endothelial activation. To prevent tissue factor and adhesion molecule expression, a strategy to block soluble histone may be required in xenotransplantation. © 2016 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  6. Archaeal DNA on the histone merry-go-round.

    PubMed

    Bhattacharyya, Sudipta; Mattiroli, Francesca; Luger, Karolin

    2018-05-04

    How did the nucleosome, the fundamental building block of all eukaryotic chromatin, evolve? This central question has been impossible to address because the four core histones that make up the protein core of the nucleosome are so highly conserved in all eukaryotes. With the discovery of small, minimalist histone-like proteins in most known archaea, the likely origin of histones was identified. We recently determined the structure of an archaeal histone-DNA complex, revealing that archaeal DNA topology and protein-DNA interactions are astonishingly similar compared to the eukaryotic nucleosome. This was surprising since most archaeal histones form homodimers which consist only of the minimal histone fold and are devoid of histone tails and extensions. Unlike eukaryotic H2A-H2B and H3-H4 heterodimers that assemble into octameric particles wrapping ~150 bp DNA, archaeal histones form polymers around which DNA coils in a quasi-continuous superhelix. At any given point, this superhelix has the same geometry as nucleosomal DNA. This suggests that the architectural role of histones (i.e. the ability to bend DNA into a nucleosomal superhelix) was established before archaea and eukaryotes diverged, while the ability to form discrete particles, together with signaling functions of eukaryotic chromatin (i.e. epigenetic modifications) were secondary additions. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.

  7. Loss of centromeric histone H3 (CENH3) from centromeres precedes uniparental chromosome elimination in interspecific barley hybrids.

    PubMed

    Sanei, Maryam; Pickering, Richard; Kumke, Katrin; Nasuda, Shuhei; Houben, Andreas

    2011-08-16

    Uniparental chromosome elimination occurs in several interspecific hybrids of plants. We studied the mechanism underlying selective elimination of the paternal chromosomes during the early development of Hordeum vulgare × Hordeum bulbosum embryos. The following conclusions regarding the role of the centromere-specific histone H3 variant (CENH3) in the process of chromosome elimination were drawn: (i) centromere inactivity of H. bulbosum chromosomes triggers the mitosis-dependent process of uniparental chromosome elimination in unstable H. vulgare × H. bulbosum hybrids; (ii) centromeric loss of CENH3 protein rather than uniparental silencing of CENH3 genes causes centromere inactivity; (iii) in stable species combinations, cross-species incorporation of CENH3 occurs despite centromere-sequence differences, and not all CENH3 variants get incorporated into centromeres if multiple CENH3s are present in species combinations; and (iv) diploid barley species encode two CENH3 variants, the proteins of which are intermingled within centromeres throughout mitosis and meiosis.

  8. Emerging roles of lysine methylation on non-histone proteins.

    PubMed

    Zhang, Xi; Huang, Yaling; Shi, Xiaobing

    2015-11-01

    Lysine methylation is a common posttranslational modification (PTM) of histones that is important for the epigenetic regulation of transcription and chromatin in eukaryotes. Increasing evidence demonstrates that in addition to histones, lysine methylation also occurs on various non-histone proteins, especially transcription- and chromatin-regulating proteins. In this review, we will briefly describe the histone lysine methyltransferases (KMTs) that have a broad spectrum of non-histone substrates. We will use p53 and nuclear receptors, especially estrogen receptor alpha, as examples to discuss the dynamic nature of non-histone protein lysine methylation, the writers, erasers, and readers of these modifications, and the crosstalk between lysine methylation and other PTMs in regulating the functions of the modified proteins. Understanding the roles of lysine methylation in normal cells and during development will shed light on the complex biology of diseases associated with the dysregulation of lysine methylation on both histones and non-histone proteins.

  9. Histone Hl-DNA interaction. Influence of phosphorylation on the interaction of histone Hl with linear fragmented DNA.

    PubMed Central

    Glotov, B O; Nikolaev, L G; Kurochkin, S N; Severin, E S

    1977-01-01

    By measuring the fluorescence polarization of fluorescent histone H1 derivatives complexed with DNA, binding of the histone to DNA was studied as a function of ionic strength in the solution prior to and after the H1 phosphorylation on Ser-37 residue. Fluorescent labels were covalently linked either specifically to Tyr-72 residues or unspecifically to lysine residues in the H1 polypeptide chain. The values of the corresponding rotational relaxation times showed that at low ionic strength all the segments of the H1 molecule were immobilized on binding to DNA. The gradual increasing NaC1 concentration in the solution of H1-DNA complex was accompanied at first by additional retardation of the histone mobility in the complex, and then by progressive release of histone H1 from from the complex which was completed at 0.5-0.6 M NaC1 irrespective of phosphorylation. tat the same time the phosphorylation of histone H1 led to removal of the central and, presumably, N-terminal regions of H1 from DNA. PMID:194228

  10. Histone H1 phosphorylation is associated with transcription by RNA polymerases I and II

    PubMed Central

    Zheng, Yupeng; John, Sam; Pesavento, James J.; Schultz-Norton, Jennifer R.; Schiltz, R. Louis; Baek, Sonjoon; Nardulli, Ann M.; Hager, Gordon L.; Kelleher, Neil L.

    2010-01-01

    Histone H1 phosphorylation affects chromatin condensation and function, but little is known about how specific phosphorylations impact the function of H1 variants in higher eukaryotes. In this study, we show that specific sites in H1.2 and H1.4 of human cells are phosphorylated only during mitosis or during both mitosis and interphase. Antisera generated to individual H1.2/H1.4 interphase phosphorylations reveal that they are distributed throughout nuclei and enriched in nucleoli. Moreover, interphase phosphorylated H1.4 is enriched at active 45S preribosomal RNA gene promoters and is rapidly induced at steroid hormone response elements by hormone treatment. Our results imply that site-specific interphase H1 phosphorylation facilitates transcription by RNA polymerases I and II and has an unanticipated function in ribosome biogenesis and control of cell growth. Differences in the numbers, structure, and locations of interphase phosphorylation sites may contribute to the functional diversity of H1 variants. PMID:20439994

  11. Potential non-oncological applications of histone deacetylase inhibitors.

    PubMed

    Ververis, Katherine; Karagiannis, Tom C

    2011-01-01

    Histone deacetylase inhibitors have emerged as a new class of anticancer therapeutic drugs. Their clinical utility in oncology stems from their intrinsic cytotoxic properties and combinatorial effects with other conventional cancer therapies. To date, the histone deacetylase inhibitors suberoylanilide hydroxamic acid (Vorinostat, Zolinza®) and depsipeptide (Romidepsin, Istodax®) have been approved by the US Food and Drug Administration for the treatment of refractory cutaneous T-cell lymphoma. Further, there are currently over 100 clinical trials involving the use of histone deacetylase inhibitors in a wide range of solid and hematological malignancies. The therapeutic potential of histone deacetylase inhibitors has also been investigated for numerous other diseases. For example, the cytotoxic properties of histone deacetylase inhibitors are currently being harnessed as a potential treatment for malaria, whereas the efficacy of these compounds for HIV relies on de-silencing latent virus. The anti-inflammatory properties of histone deacetylase inhibitors are the predominant mechanisms for other diseases, such as hepatitis, systemic lupus erythematosus and a wide range of neurodegenerative conditions. Additionally, histone deacetylase inhibitors have been shown to be efficacious in animal models of cardiac hypertrophy and asthma. Broad-spectrum histone deacetylase inhibitors are clinically available and have been used almost exclusively in preclinical systems to date. However, it is emerging that class- or isoform-specific compounds, which are becoming more readily available, may be more efficacious particularly for non-oncological applications. The aim of this review is to provide an overview of the effects and clinical potential of histone deacetylase inhibitors in various diseases. Apart from applications in oncology, the discussion is focused on the potential efficacy of histone deacetylase inhibitors for the treatment of neurodegenerative diseases, cardiac

  12. Potential non-oncological applications of histone deacetylase inhibitors

    PubMed Central

    Ververis, Katherine; Karagiannis, Tom C

    2011-01-01

    Histone deacetylase inhibitors have emerged as a new class of anticancer therapeutic drugs. Their clinical utility in oncology stems from their intrinsic cytotoxic properties and combinatorial effects with other conventional cancer therapies. To date, the histone deacetylase inhibitors suberoylanilide hydroxamic acid (Vorinostat, Zolinza®) and depsipeptide (Romidepsin, Istodax®) have been approved by the US Food and Drug Administration for the treatment of refractory cutaneous T-cell lymphoma. Further, there are currently over 100 clinical trials involving the use of histone deacetylase inhibitors in a wide range of solid and hematological malignancies. The therapeutic potential of histone deacetylase inhibitors has also been investigated for numerous other diseases. For example, the cytotoxic properties of histone deacetylase inhibitors are currently being harnessed as a potential treatment for malaria, whereas the efficacy of these compounds for HIV relies on de-silencing latent virus. The anti-inflammatory properties of histone deacetylase inhibitors are the predominant mechanisms for other diseases, such as hepatitis, systemic lupus erythematosus and a wide range of neurodegenerative conditions. Additionally, histone deacetylase inhibitors have been shown to be efficacious in animal models of cardiac hypertrophy and asthma. Broad-spectrum histone deacetylase inhibitors are clinically available and have been used almost exclusively in preclinical systems to date. However, it is emerging that class- or isoform-specific compounds, which are becoming more readily available, may be more efficacious particularly for non-oncological applications. The aim of this review is to provide an overview of the effects and clinical potential of histone deacetylase inhibitors in various diseases. Apart from applications in oncology, the discussion is focused on the potential efficacy of histone deacetylase inhibitors for the treatment of neurodegenerative diseases, cardiac

  13. Cancer Chemoprotection Through Nutrient-mediated Histone Modifications

    PubMed Central

    Gao, Yifeng; Tollefsbol, Trygve O.

    2016-01-01

    Epigenetics, the study of heritable changes in gene expression without modifying the nucleotide sequence, is among the most important topics in medicinal chemistry and cancer chemoprotection. Among those changes, DNA methylation and histone modification have been shown to be associated with various types of cancers in a number of ways, many of which are regulated by dietary components that are mostly found in plants. Although, mechanisms of nutrient components affecting histone acetylation/deacetylation in cancer are widely studied, how those natural compounds affect cancer through other histone modifications, such as methylation, phosphorylation and ubiquitylation, is rarely reviewed. Thus, this review article discusses impacts recently studied on histone acetylation as well as other histone modifications by dietary components, such as genistein, resveratrol, curcumin, epigallocatechin-3-gallate (EGCG), 3,3′-diindolylmethane (DIM), diallyl disulfide, garcinol, procyanidin B3, quercetin, sulforaphane and other isothiocyanates, in various types of cancer. PMID:25891109

  14. Antibodies to H1 histone from the sera of HIV-infected patients recognize and catalyze site-specific degradation of this histone.

    PubMed

    Baranova, Svetlana V; Dmitrienok, Pavel S; Ivanisenko, Nikita V; Buneva, Valentina N; Nevinsky, Georgy A

    2017-03-01

    Histones and their posttranslational modifications have key roles in chromatin remodeling and gene transcription. Besides intranuclear functions, histones act as damage-associated molecules when they are released into the extracellular space. Administration of histones to animals leads to systemic inflammatory and toxic responses. Autoantibodies with enzymatic activities (abzymes) are distinctive feature of some autoimmune and viral diseases. Electrophoretically and immunologically homogeneous IgGs containing no canonical enzymes were isolated from sera of human immunodeficiency virus-infected patients by chromatography on several affinity sorbents. In contrast to canonical proteases (trypsin, chymotrypsin, and proteinase K), IgGs from human immunodeficiency virus-infected patients purified by affinity chromatography on Sepharose containing immobilized histones specifically recognized and hydrolyzed only histones but not many other tested globular proteins. Using matrix-assisted laser desorption/ionization mass spectrometry, the sites of H1 histone (193 amino acids [AAs]) cleavage by anti-H1 histone IgGs were determined for the first time. It was shown that 1 cluster of 2 major and 4 moderate sites of cleavage is located at the beginning (106-112 AAs) of the known antigenic determinants disposed at the long C-terminal sequence of H1. Two clusters of minor and very weak sites of the protein cleavage correspond to middle (8 sites, 138-158 AAs) and terminal (5 sites, 166-176 AAs) parts of the antigenic determinants. It was shown that in contrast to canonical proteases, N-terminal part of H1 histone (1-136 AAs) containing no antigenic determinants is an unpredictably very resistant against hydrolysis by abzymes, while it can be easily cleavage by canonical proteases. Because histones act as damage-associated molecules, abzymes against H1 and other histones can play important role in pathogenesis of acquired immune deficiency syndrome and probably other different

  15. Eviction of linker histone H1 by NAP-family histone chaperones enhances activated transcription.

    PubMed

    Zhang, Qian; Giebler, Holli A; Isaacson, Marisa K; Nyborg, Jennifer K

    2015-01-01

    In the Metazoan nucleus, core histones assemble the genomic DNA to form nucleosome arrays, which are further compacted into dense chromatin structures by the linker histone H1. The extraordinary density of chromatin creates an obstacle for accessing the genetic information. Regulation of chromatin dynamics is therefore critical to cellular homeostasis, and histone chaperones serve as prominent players in these processes. In the current study, we examined the role of specific histone chaperones in negotiating the inherently repressive chromatin structure during transcriptional activation. Using a model promoter, we demonstrate that the human nucleosome assembly protein family members hNap1 and SET/Taf1β stimulate transcription in vitro during pre-initiation complex formation, prior to elongation. This stimulatory effect is dependent upon the presence of activators, p300, and Acetyl-CoA. We show that transcription from our chromatin template is strongly repressed by H1, and that both histone chaperones enhance RNA synthesis by overcoming H1-induced repression. Importantly, both hNap1 and SET/Taf1β directly bind H1, and function to enhance transcription by evicting the linker histone from chromatin reconstituted with H1. In vivo studies demonstrate that SET/Taf1β, but not hNap1, strongly stimulates activated transcription from the chromosomally-integrated model promoter, consistent with the observation that SET/Taf1β is nuclear, whereas hNap1 is primarily cytoplasmic. Together, these observations indicate that SET/Taf1β may serve as a critical regulator of H1 dynamics and gene activation in vivo. These studies uncover a novel function for SET that mechanistically couples transcriptional derepression with H1 dynamics. Furthermore, they underscore the significance of chaperone-dependent H1 displacement as an essential early step in the transition of a promoter from a dense chromatin state into one that is permissive to transcription factor binding and robust

  16. Histone methylation and aging: Lessons learned from model systems

    PubMed Central

    McCauley, Brenna S.; Dang, Weiwei

    2014-01-01

    Aging induces myriad cellular and, ultimately, physiological changes that cause a decline in an organism's functional capabilities. Although the aging process and pathways that regulate it have been extensively studied, only in the last decade have we begun to appreciate that dynamic histone methylation may contribute to this process. In this review, we discuss recent work implicating histone methylation in aging. Loss of certain histone methyltransferases and demethylases changes lifespan in invertebrates, and alterations in histone methylation in aged organisms regulate lifespan and aging phenotypes, including oxidative stress-induced hormesis in yeast, insulin signaling in Caenorhabiditis elegans and mammals, and the senescence-associated secretory phenotype in mammals. In all cases where histone methylation has been shown to impact aging and aging phenotypes, it does so by regulating transcription, suggesting that this is a major mechanism of its action in this context. Histone methylation additionally regulates or is regulated by other cellular pathways that contribute to or combat aging. Given the numerous processes that regulate aging and histone methylation, and are in turn regulated by them, the role of histone methylation in aging is almost certainly underappreciated. PMID:24859460

  17. Use of Polyamine Derivatives as Selective Histone Deacetylase Inhibitors

    PubMed Central

    Woster, Patrick M.

    2014-01-01

    Histone acetylation and deacetylation, mediated by histone acetyltransferase and the 11 isoforms of histone deacetylase, play an important role in gene expression. Histone deacetylase inhibitors have found utility in the treatment of cancer by promoting the reexpression of aberrantly silenced genes that code for tumor suppressor factors. It is unclear which of the 11 histone deacetylase isoforms are important in human cancer. We have designed a series of polyaminohydroxamic acid (PAHA) and polyaminobenzamide (PABA) histone deacetylase inhibitors that exhibit selectivity among four histone deacetylase isoforms. Although all of the active inhibitors promote reexpression of tumor suppressor factors, they produce variable cellular effects ranging from stimulation of growth to cytostasis and cytotoxicity. This chapter describes the procedures used to quantify the global and isoform-specific inhibition caused by these inhibitors, and techniques used to measure cellular effects such as reexpression of tumor suppressor proteins and hyperacetylation of histones H3 and H4. Procedures are also described to examine the ability of PAHAs and PABAs to utilize the polyamine transport system and to induce overexpression of the early apoptotic factor annexin A1. PMID:21318894

  18. AB053. NRG1 rare variant effects in Hirschsprung disease patients

    PubMed Central

    Gunadi; Budi, Nova; Iskandar, Kristy; Adrianto, Indra

    2017-01-01

    Background Hirschsprung disease (HSCR) is a heterogeneous genetic disorder characterized by absence of ganglion cells along intestines resulting in functional bowel obstruction. NRG1 gene has been implicated in the intestinal ganglionosis. This study aimed to investigate the contribution of NRG1 gene into the HSCR development in Indonesian population. Methods We performed Sanger sequencing to find NRG1 variants in 54 HSCR patients. Results All patients were sporadic non-syndromic HSCR with 53/54 (98%) and 1/54 (2%) were short-segment and long-segment patients, respectively. NRG1 analysis showed one rare variant, c.397G > C (p.V133L), and three common variants, rs7834206, rs3735774, and rs75155858. The p.V133L was predicted to reside within in a region of high mammalian conservation, overlap with the promoter and enhancer histone marks of relevant tissues such as digestive and smooth muscle tissues and alter AP-4_2, BDP1_disc3, Egr-1_known1, Egr-1_known4, HEN1_2 transcription factor binding motifs. Furthermore, this variant was absent in 92 controls. Conclusions This study is the first report of NRG1 rare variant associated with HSCR patients in South-East Asian ancestry and adds insights into the NRG1 effect in the molecular pathogenesis of HSCR.

  19. X-exome sequencing identifies a HDAC8 variant in a large pedigree with X-linked intellectual disability, truncal obesity, gynaecomastia, hypogonadism and unusual face.

    PubMed

    Harakalova, Magdalena; van den Boogaard, Marie-Jose; Sinke, Richard; van Lieshout, Stef; van Tuil, Marc C; Duran, Karen; Renkens, Ivo; Terhal, Paulien A; de Kovel, Carolien; Nijman, Ies J; van Haelst, Mieke; Knoers, Nine V A M; van Haaften, Gijs; Kloosterman, Wigard; Hennekam, Raoul C M; Cuppen, Edwin; Ploos van Amstel, Hans Kristian

    2012-08-01

    We present a large Dutch family with seven males affected by a novel syndrome of X-linked intellectual disability, hypogonadism, gynaecomastia, truncal obesity, short stature and recognisable craniofacial manifestations resembling but not identical to Wilson-Turner syndrome. Seven female relatives show a much milder expression of the phenotype. We performed X chromosome exome (X-exome) sequencing in five individuals from this family and identified a novel intronic variant in the histone deacetylase 8 gene (HDAC8), c.164+5G>A, which disturbs the normal splicing of exon 2 resulting in exon skipping, and introduces a premature stop at the beginning of the histone deacetylase catalytic domain. The identified variant completely segregates in this family and was absent in 96 Dutch controls and available databases. Affected female carriers showed a notably skewed X-inactivation pattern in lymphocytes in which the mutated X-chromosome was completely inactivated. HDAC8 is a member of the protein family of histone deacetylases that play a major role in epigenetic gene silencing during development. HDAC8 specifically controls the patterning of the skull with the mouse HDAC8 knock-out showing craniofacial deformities of the skull. The present family provides the first evidence for involvement of HDAC8 in a syndromic form of intellectual disability.

  20. No need to be HAMLET or BAMLET to interact with histones: binding of monomeric alpha-lactalbumin to histones and basic poly-amino acids.

    PubMed

    Permyakov, Serge E; Pershikova, Irina V; Khokhlova, Tatyana I; Uversky, Vladimir N; Permyakov, Eugene A

    2004-05-18

    The ability of a specific complex of human alpha-lactalbumin with oleic acid (HAMLET) to induce cell death with selectivity for tumor and undifferentiated cells was shown recently to be mediated by interaction of HAMLET with histone proteins irreversibly disrupting chromatin structure [Duringer, C., et al. (2003) J. Biol. Chem. 278, 42131-42135]. Here we show that monomeric alpha-lactalbumin (alpha-LA) in the absence of fatty acids is also able to bind efficiently to the primary target of HAMLET, histone HIII, regardless of Ca(2+) content. Thus, the modification of alpha-LA by oleic acid is not required for binding to histones. We suggest that interaction of negatively charged alpha-LA with the basic histone stabilizes apo-alpha-LA and destabilizes the Ca(2+)-bound protein due to compensation for excess negative charge of alpha-LA's Ca(2+)-binding loop by positively charged residues of the histone. Spectrofluorimetric curves of titration of alpha-LA by histone H3 were well approximated by a scheme of cooperative binding of four alpha-LA molecules per molecule of histone, with an equilibrium dissociation constant of 1.0 microM. Such a stoichiometry of binding implies that the binding process is not site-specific with respect to histone and likely is driven by just electrostatic interactions. Co-incubation of positively charged poly-amino acids (poly-Lys and poly-Arg) with alpha-LA resulted in effects which were similar to those caused by histone HIII, confirming the electrostatic nature of the alpha-LA-histone interaction. In all cases that were studied, the binding was accompanied by aggregation. The data indicate that alpha-lactalbumin can be used as a basis for the design of antitumor agents, acting through disorganization of chromatin structure due to interaction between alpha-LA and histone proteins.

  1. Histone deacetylase inhibitors promote the tumoricidal effect of HAMLET.

    PubMed

    Brest, Patrick; Gustafsson, Mattias; Mossberg, Ann-Kristin; Gustafsson, Lotta; Duringer, Caroline; Hamiche, Ali; Svanborg, Catharina

    2007-12-01

    Histone deacetylase inhibitors (HDIs) and HAMLET (human alpha-lactalbumin made lethal to tumor cells) interact with histones, modify the structure of chromatin, and trigger tumor cell death. This study investigated how the combination of HDIs and HAMLET influences cell viability, histone acetylation, and DNA integrity. The pretreatment of tumor cells with HDIs was shown to enhance the lethal effect of HAMLET and the histone hyperacetylation response to HDIs increased even further after HAMLET treatment. HDIs and HAMLET were shown to target different histone domains as HAMLET bound tailless core histones, whereas HDIs modify the acetylation of the histone tail. DNA damage in response to HAMLET was increased by HDIs. The DNA repair response (p21WAFI expression) was induced by both agonists but abolished when the two agonists were combined. The results suggest that the synergy of HDIs and HAMLET is based on different but converging death pathways, both involving chromatin alterations. We speculate that HAMLET and HDIs might be combined to promote tumor cell death in vivo.

  2. Mis16 Independently Recognizes Histone H4 and the CENP-ACnp1-Specific Chaperone Scm3sp

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    An, Sojin; Kim, Hanseong; Cho, Uhn-Soo

    2015-09-04

    CENP-A is a centromere-specific histone H3 variant that is required for kinetochore assembly and accurate chromosome segregation. For it to function properly, CENP-A must be specifically localized to centromeres. In fission yeast, Scm3sp and the Mis18 complex, composed of Mis16, Eic1, and Mis18, function as a CENP-ACnp1-specific chaperone and a recruiting factor, respectively, and together ensure accurate delivery of CENP-ACnp1 to centromeres. Although how Scm3sp specifically recognizes CENP-ACnp1 has been revealed recently, the recruiting mechanism of CENP-ACnp1 via the Mis18 complex remains unknown. In this study, we have determined crystal structures of Schizosaccharomyces japonicus Mis16 alone and in complex withmore » the helix 1 of histone H4 (H4α1). Crystal structures followed by mutant analysis and affinity pull-downs have revealed that Mis16 recognizes both H4α1 and Scm3sp independently within the CENP-ACnp1/H4:Scm3sp complex. This observation suggests that Mis16 gains CENP-ACnp1 specificity by recognizing both Scm3sp and histone H4. Our studies provide insights into the molecular mechanisms underlying specific recruitment of CENP-ACnp1/H4:Scm3sp into centromeres.« less

  3. Histone acetylation regulates the time of replication origin firing.

    PubMed

    Vogelauer, Maria; Rubbi, Liudmilla; Lucas, Isabelle; Brewer, Bonita J; Grunstein, Michael

    2002-11-01

    The temporal firing of replication origins throughout S phase in yeast depends on unknown determinants within the adjacent chromosomal environment. We demonstrate here that the state of histone acetylation of surrounding chromatin is an important regulator of temporal firing. Deletion of RPD3 histone deacetylase causes earlier origin firing and concurrent binding of the replication factor Cdc45p to origins. In addition, increased acetylation of histones in the vicinity of the late origin ARS1412 by recruitment of the histone acetyltransferase Gcn5p causes ARS1412 alone to fire earlier. These data indicate that histone acetylation is a direct determinant of the timing of origin firing.

  4. Antibodies against H3 and H4 histones from the sera of HIV-infected patients catalyze site-specific degradation of these histones.

    PubMed

    Baranova, Svetlana V; Dmitrenok, Pavel S; Zubkova, Anastasiya D; Ivanisenko, Nikita V; Odintsova, Elena S; Buneva, Valentina N; Nevinsky, Georgy A

    2018-02-19

    Histones and their posttranslational modified forms play pivotal roles in chromatin functioning and gene transcription. Also, histones are harmful when they enter the intercellular space; their administration to animals results in systemic inflammatory and toxic responses. Autoantibodies having enzymatic activities (abzymes) are the specific feature of several autoimmune and viral diseases. Electrophoretically homogeneous IgGs containing no canonical proteases were purified from sera of HIV-infected patients by using several affinity chromatographies. In contrast to known canonical proteases, Abs from HIV-infected patients hydrolyzed exclusively only histones but no other control globular proteins. The H3 and H4 histone cleavage sites by antihistone IgGs were determined by matrix-assisted laser desorption/ionization mass spectrometry for the first time. Two clusters of H3 hydrolysis contain major (↕) and minor (*) cleavage sites: 18-K*Q*LA↕TK*A↕AR*KS↕A*P-30 and 34-G*VK*KPHR*YRPGTVA*L*R-50. H4 histone has only 1 cluster of cleavage sites containing additionally moderate (↓) cleavage sites: 15-A↕KR↕HR↕KVLR↓D*NIQ↓GIT*K-31. Sites of these histones cleavage correspond mainly to their known epitopes. It was surprising that most of the cleavage sites of histones are involved in the interaction with DNA of nucleosome core. Because histones act as damage-associated molecules, abzymes against H3 and H4 can play important role in pathogenesis of AIDs and probably other viral and immune diseases. Copyright © 2018 John Wiley & Sons, Ltd.

  5. The role of HIRA and maternal histones in sperm nucleus decondensation in the gibel carp and color crucian carp.

    PubMed

    Zhao, Zhan-Ke; Li, Wei; Wang, Meng-Yu; Zhou, Li; Wang, Jia-Lin; Wang, Yu-Feng

    2011-02-01

    The histone H3.3 chaperone HIRA is essential for chromatin assembly during male pronucleus formation in Drosophila. However, the role of HIRA during fertilization in vertebrates remains unclear. The gibel carp (Carassius auratus gibelio) is a unique gynogenetic crucian carp (gyno-carp). Heterologous sperm nuclei cannot decondense when incorporated in the egg, thus the eggs produce a clonal lineage of all females by typical gynogenesis. In contrast, after entering the egg, homologous sperm can undergo decondensation and sexual reproduction is activated, which may produce both female and male offspring. Therefore, this fish is a useful model for studying the mechanisms of fertilization. Herein, we first compared HIRA expression during embryogenesis between gyno-carp and the gonochoristic color crucian carp (Carassius auratus; gono-carp). In gono-carp, a dramatic reduction of HIRA protein occurs shortly after fertilization, whereas HIRA protein is consistently expressed during embryogenesis of gyno-carp. Next, we used immunodepletion and an in vitro sperm decondensation system, and found that complete removal of HIRA inhibited sperm decondensation in both of the fish. Immunofluorescence localization showed that in the condensed sperm nuclei of gono-carp incubated in gyno-carp egg extracts, HIRA was detected, but neither the histone H2A variant H2af1o nor acetylated histone H4 was observed. These results suggest that HIRA may be a critical factor required for sperm nucleus decondensation, while the defect in deposition of some maternal histones in the sperm nucleus could be one reason why heterologous sperm cannot decondense in the gibel carp egg. Copyright © 2011 Wiley-Liss, Inc.

  6. Dietary histone deacetylase inhibitors

    PubMed Central

    Dashwood, Roderick H.; Ho, Emily

    2009-01-01

    Sulforaphane (SFN) is an isothiocyanate found in cruciferous vegetables, such as broccoli and broccoli sprouts. This anticarcinogen was first identified as a potent inducer of Phase 2 detoxification enzymes, but evidence is mounting that SFN also acts through epigenetic mechanisms. SFN has been shown to inhibit histone deacetylase (HDAC) activity in human colon and prostate cancer lines, with an increase in global and local histone acetylation status, such as on the promoter regions of P21 and bax genes. SFN also inhibited the growth of prostate cancer xenografts and spontaneous intestinal polyps in mouse models, with evidence for altered histone acetylation and HDAC activities in vivo. In human subjects, a single ingestion of 68 g broccoli sprouts inhibited HDAC activity in circulating peripheral blood mononuclear cells 3-6 h after consumption, with concomitant induction of histone H3 and H4 acetylation. These findings provide evidence that one mechanism of cancer chemoprevention by SFN is via epigenetic changes associated with inhibition of HDAC activity. Other dietary agents such as butyrate, biotin, lipoic acid, garlic organosulfur compounds, and metabolites of vitamin E have structural features compatible with HDAC inhibition. The ability of dietary compounds to de-repress epigenetically silenced genes in cancer cells, and to activate these genes in normal cells, has important implications for cancer prevention and therapy. In a broader context, there is growing interest in dietary HDAC inhibitors and their impact on epigenetic mechanisms affecting other chronic conditions, such as cardiovascular disease, neurodegeneration and aging. PMID:17555985

  7. Detection of histone modifications in plant leaves.

    PubMed

    Jaskiewicz, Michal; Peterhansel, Christoph; Conrath, Uwe

    2011-09-23

    Chromatin structure is important for the regulation of gene expression in eukaryotes. In this process, chromatin remodeling, DNA methylation, and covalent modifications on the amino-terminal tails of histones H3 and H4 play essential roles(1-2). H3 and H4 histone modifications include methylation of lysine and arginine, acetylation of lysine, and phosphorylation of serine residues(1-2). These modifications are associated either with gene activation, repression, or a primed state of gene that supports more rapid and robust activation of expression after perception of appropriate signals (microbe-associated molecular patterns, light, hormones, etc.)(3-7). Here, we present a method for the reliable and sensitive detection of specific chromatin modifications on selected plant genes. The technique is based on the crosslinking of (modified) histones and DNA with formaldehyde(8,9), extraction and sonication of chromatin, chromatin immunoprecipitation (ChIP) with modification-specific antibodies(9,10), de-crosslinking of histone-DNA complexes, and gene-specific real-time quantitative PCR. The approach has proven useful for detecting specific histone modifications associated with C(4;) photosynthesis in maize(5,11) and systemic immunity in Arabidopsis(3).

  8. N terminus of Swr1 binds to histone H2AZ and provides a platform for subunit assembly in the chromatin remodeling complex.

    PubMed

    Wu, Wei-Hua; Wu, Chwen-Huey; Ladurner, Andreas; Mizuguchi, Gaku; Wei, Debbie; Xiao, Hua; Luk, Ed; Ranjan, Anand; Wu, Carl

    2009-03-06

    Variant histone H2AZ-containing nucleosomes are involved in the regulation of gene expression. In Saccharomyces cerevisiae, chromatin deposition of histone H2AZ is mediated by the fourteen-subunit SWR1 complex, which catalyzes ATP-dependent exchange of nucleosomal histone H2A for H2AZ. Previous work defined the role of seven SWR1 subunits (Swr1 ATPase, Swc2, Swc3, Arp6, Swc5, Yaf9, and Swc6) in maintaining complex integrity and H2AZ histone replacement activity. Here we examined the function of three additional SWR1 subunits, bromodomain containing Bdf1, actin-related protein Arp4 and Swc7, by analyzing affinity-purified mutant SWR1 complexes. We observed that depletion of Arp4 (arp4-td) substantially impaired the association of Bdf1, Yaf9, and Swc4. In contrast, loss of either Bdf1 or Swc7 had minimal effects on overall complex integrity. Furthermore, the basic H2AZ histone replacement activity of SWR1 in vitro required Arp4, but not Bdf1 or Swc7. Thus, three out of fourteen SWR1 subunits, Bdf1, Swc7, and previously noted Swc3, appear to have roles auxiliary to the basic histone replacement activity. The N-terminal region of the Swr1 ATPase subunit is necessary and sufficient to direct association of Bdf1 and Swc7, as well as Arp4, Act1, Yaf9 and Swc4. This same region contains an additional H2AZ-H2B specific binding site, distinct from the previously identified Swc2 subunit. These findings suggest that one SWR1 enzyme might be capable of binding two H2AZ-H2B dimers, and provide further insight on the hierarchy and interdependency of molecular interactions within the SWR1 complex.

  9. Epigenetic Transgenerational Inheritance of Altered Sperm Histone Retention Sites.

    PubMed

    Ben Maamar, Millissia; Sadler-Riggleman, Ingrid; Beck, Daniel; Skinner, Michael K

    2018-03-28

    A variety of environmental toxicants and factors have been shown to induce the epigenetic transgenerational inheritance of disease and phenotypic variation. Epigenetic alterations in the germline (sperm or egg) are required to transmit transgenerational phenotypes. The current study was designed to investigate the potential role of histones in sperm to help mediate the epigenetic transgenerational inheritance. The agricultural fungicide vinclozolin and the pesticide DDT (dichlorodiphenyltrichloroethane) were independently used to promote the epigenetic transgenerational inheritance of disease. Purified cauda epididymal sperm were collected from the transgenerational F3 generation control and exposure lineage male rats for histone analysis. A reproducible core of histone H3 retention sites was observed using an H3 chromatin immunoprecipitation (ChIP-Seq) analysis in control lineage sperm. Interestingly, the same core group of H3 retention sites plus additional differential histone retention sites (DHRs) were observed in the F3 generation exposure lineage sperm. Although new histone H3 retention sites were observed, negligible change in histone modification (methylation of H3K27me3) was observed between the control and exposure lineages. Observations demonstrate that in addition to alterations in sperm DNA methylation and ncRNA previously identified, the induction of differential histone retention sites (DHRs) also appear to be involved in environmentally induced epigenetic transgenerational inheritance.

  10. Tug of war: adding and removing histone lysine methylation in Arabidopsis.

    PubMed

    Xiao, Jun; Lee, Un-Sa; Wagner, Doris

    2016-12-01

    Histone lysine methylation plays a fundamental role in the epigenetic regulation of gene expression in multicellular eukaryotes, including plants. It shapes plant developmental and growth programs as well as responses to the environment. The methylation status of certain amino-acids, in particular of the histone 3 (H3) lysine tails, is dynamically controlled by opposite acting histone methyltransferase 'writers' and histone demethylase 'erasers'. The methylation status is interpreted by a third set of proteins, the histone modification 'readers', which specifically bind to a methylated amino-acid on the H3 tail. Histone methylation writers, readers, and erasers themselves are regulated by intrinsic or extrinsic stimuli; this forms a feedback loop that contributes to development and environmental adaptation in Arabidopsis and other plants. Recent studies have expanded our knowledge regarding the biological roles and dynamic regulation of histone methylation. In this review, we will discuss recent advances in understanding the regulation and roles of histone methylation in plants and animals. Copyright © 2016 Elsevier Ltd. All rights reserved.

  11. Replication-coupled chromatin assembly of newly synthesized histones: distinct functions for the histone tail domains.

    PubMed

    Ejlassi-Lassallette, Aïda; Thiriet, Christophe

    2012-02-01

    The maintenance of the genome during replication requires the assembly of nucleosomes with newly synthesized histones. Achieving the deposition of newly synthesized histones in chromatin implies their transport from the cytoplasm to the nucleus at the replication sites. Several lines of evidence have revealed critical functions of the histone tail domains in these conserved cellular processes. In this review, we discuss the role of the amino termini of the nucleosome building blocks, H2A/H2B and H3/H4, in different model systems. The experimental data showed that H2A/H2B tails and H3/H4 tails display distinct functions in nuclear import and chromatin assembly. Furthermore, we describe recent studies exploiting the unique properties of the slime mold, Physarum polycephalum , that have advanced understanding of the function of the highly conserved replication-dependent diacetylation of H4.

  12. ATP-citrate lyase links cellular metabolism to histone acetylation.

    PubMed

    Wellen, Kathryn E; Hatzivassiliou, Georgia; Sachdeva, Uma M; Bui, Thi V; Cross, Justin R; Thompson, Craig B

    2009-05-22

    Histone acetylation in single-cell eukaryotes relies on acetyl coenzyme A (acetyl-CoA) synthetase enzymes that use acetate to produce acetyl-CoA. Metazoans, however, use glucose as their main carbon source and have exposure only to low concentrations of extracellular acetate. We have shown that histone acetylation in mammalian cells is dependent on adenosine triphosphate (ATP)-citrate lyase (ACL), the enzyme that converts glucose-derived citrate into acetyl-CoA. We found that ACL is required for increases in histone acetylation in response to growth factor stimulation and during differentiation, and that glucose availability can affect histone acetylation in an ACL-dependent manner. Together, these findings suggest that ACL activity is required to link growth factor-induced increases in nutrient metabolism to the regulation of histone acetylation and gene expression.

  13. Neutrophil Extracellular Trap-Related Extracellular Histones Cause Vascular Necrosis in Severe GN.

    PubMed

    Kumar, Santhosh V R; Kulkarni, Onkar P; Mulay, Shrikant R; Darisipudi, Murthy N; Romoli, Simone; Thomasova, Dana; Scherbaum, Christina R; Hohenstein, Bernd; Hugo, Christian; Müller, Susanna; Liapis, Helen; Anders, Hans-Joachim

    2015-10-01

    Severe GN involves local neutrophil extracellular trap (NET) formation. We hypothesized a local cytotoxic effect of NET-related histone release in necrotizing GN. In vitro, histones from calf thymus or histones released by neutrophils undergoing NETosis killed glomerular endothelial cells, podocytes, and parietal epithelial cells in a dose-dependent manner. Histone-neutralizing agents such as antihistone IgG, activated protein C, or heparin prevented this effect. Histone toxicity on glomeruli ex vivo was Toll-like receptor 2/4 dependent, and lack of TLR2/4 attenuated histone-induced renal thrombotic microangiopathy and glomerular necrosis in mice. Anti-glomerular basement membrane GN involved NET formation and vascular necrosis, whereas blocking NET formation by peptidylarginine inhibition or preemptive anti-histone IgG injection significantly reduced all aspects of GN (i.e., vascular necrosis, podocyte loss, albuminuria, cytokine induction, recruitment or activation of glomerular leukocytes, and glomerular crescent formation). To evaluate histones as a therapeutic target, mice with established GN were treated with three different histone-neutralizing agents. Anti-histone IgG, recombinant activated protein C, and heparin were equally effective in abrogating severe GN, whereas combination therapy had no additive effects. Together, these results indicate that NET-related histone release during GN elicits cytotoxic and immunostimulatory effects. Furthermore, neutralizing extracellular histones is still therapeutic when initiated in established GN. Copyright © 2015 by the American Society of Nephrology.

  14. Structural and Functional Coordination of DNA and Histone Methylation

    PubMed Central

    Cheng, Xiaodong

    2014-01-01

    One of the most fundamental questions in the control of gene expression in mammals is how epigenetic methylation patterns of DNA and histones are established, erased, and recognized. This central process in controlling gene expression includes coordinated covalent modifications of DNA and its associated histones. This article focuses on structural aspects of enzymatic activities of histone (arginine and lysine) methylation and demethylation and functional links between the methylation status of the DNA and histones. An interconnected network of methyltransferases, demethylases, and accessory proteins is responsible for changing or maintaining the modification status of specific regions of chromatin. PMID:25085914

  15. Histone arginine methylations: their roles in chromatin dynamics and transcriptional regulation

    PubMed Central

    LITT, Michael; QIU, Yi; HUANG, Suming

    2017-01-01

    Synopsis PRMTs (protein arginine N-methyltransferases) specifically modify the arginine residues of key cellular and nuclear proteins as well as histone substrates. Like lysine methylation, transcriptional repression or activation is dependent upon the site and type of arginine methylation on histone tails. Recent discoveries imply that histone arginine methylation is an important modulator of dynamic chromatin regulation and transcriptional controls. However, under the shadow of lysine methylation, the roles of histone arginine methylation have been under-explored. The present review focuses on the roles of histone arginine methylation in the regulation of gene expression, and the interplays between histone arginine methylation, histone acetylation, lysine methylation and chromatin remodelling factors. In addition, we discuss the dynamic regulation of arginine methylation by arginine demethylases, and how dysregulation of PRMTs and their activities are linked to human diseases such as cancer. PMID:19220199

  16. The N-terminus of histone H2B, but not that of histone H3 or its phosphorylation, is essential for chromosome condensation

    PubMed Central

    de la Barre, Anne-Elisabeth; Angelov, Dimitri; Molla, Annie; Dimitrov, Stefan

    2001-01-01

    We have studied the role of individual histone N-termini and the phosphorylation of histone H3 in chromosome condensation. Nucleosomes, reconstituted with histone octamers containing different combinations of recombinant full-length and tailless histones, were used as competitors for chromosome assembly in Xenopus egg extracts. Nucleosomes reconstituted with intact octamers inhibited chromosome condensation as efficiently as the native ones, while tailless nucleosomes were unable to affect this process. Importantly, the addition to the extract of particles containing only intact histone H2B strongly interfered with chromosome formation while such an effect was not observed with particles lacking the N-terminal tail of H2B. This demonstrates that the inhibition effect observed in the presence of competitor nucleosomes is mainly due to the N-terminus of this histone, which, therefore, is essential for chromosome condensation. Nucleosomes in which all histones but H3 were tailless did not impede chromosome formation. In addition, when competitor nucleosome particles were reconstituted with full-length H2A, H2B and H4 and histone H3 mutated at the phosphorylable serine 10 or serine 28, their inhibiting efficiency was identical to that of the native particles. Hence, the tail of H3, whether intact or phosphorylated, is not important for chromosome condensation. A novel hypothesis, termed ‘the ready production label’ was suggested to explain the role of histone H3 phosphorylation during cell division. PMID:11707409

  17. Significance of the DNA-Histone Complex Level as a Predictor of Major Adverse Cardiovascular Events in Hemodialysis Patients: The Effect of Uremic Toxin on DNA-Histone Complex Formation.

    PubMed

    Jeong, Jong Cheol; Kim, Ji-Eun; Gu, Ja-Yoon; Yoo, Hyun Ju; Ryu, Ji Won; Kim, Dong Ki; Joo, Kwon Wook; Kim, Hyun Kyung

    2016-01-01

    Neutrophils can release the DNA-histone complex into circulation following exposure to inflammatory stimuli. This prospective study investigated whether the DNA-histone complex and other biomarkers could predict major cardiovascular adverse events (MACEs) in hemodialysis (HD) patients. The levels of circulating DNA-histone complexes, cell-free DNA, interleukin (IL)-6, and neutrophil elastase were measured in 60 HD patients and 28 healthy controls. MACE was assessed at 24 months. Uremic toxin-induced neutrophil released contents were measured in vitro. Compared with controls, HD patients showed higher levels of DNA-histone complexes and IL-6. The DNA-histone complex level was inversely associated with the Kt/V. In a multivariable Cox analysis, the high level of DNA-histone complexes was a significant independent predictor of MACE. The uremic toxins induced DNA-histone complex formation in normal neutrophils in vitro. The DNA-histone complex is a potentially useful marker to predict MACE in HD patients. Uremic toxins induced DNA-histone complex formation in vitro. © 2015 S. Karger AG, Basel.

  18. A histone H3K9M mutation traps histone methyltransferase Clr4 to prevent heterochromatin spreading

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shan, Chun-Min; Wang, Jiyong; Xu, Ke

    2016-09-20

    Histone lysine-to-methionine (K-to-M) mutations are associated with multiple cancers, and they function in a dominant fashion to block the methylation of corresponding lysines on wild type histones. However, their mechanisms of function are controversial. Here we show that in fission yeast, introducing the K9M mutation into one of the three histone H3 genes dominantly blocks H3K9 methylation on wild type H3 across the genome. In addition, H3K9M enhances the interaction of histone H3 tail with the H3K9 methyltransferase Clr4 in a SAM (S-adenosyl-methionine)-dependent manner, and Clr4 is trapped at nucleation sites to prevent its spreading and the formation of largemore » heterochromatin domains. We further determined the crystal structure of an H3K9M peptide in complex with human H3K9 methyltransferase G9a and SAM, which reveales that the methionine side chain had enhanced van der Waals interactions with G9a. Therefore, our results provide a detailed mechanism by which H3K9M regulates H3K9 methylation.« less

  19. Histone lysine methylation: critical regulator of memory and behavior.

    PubMed

    Jarome, Timothy J; Lubin, Farah D

    2013-01-01

    Histone lysine methylation is a well-established transcriptional mechanism for the regulation of gene expression changes in eukaryotic cells and is now believed to function in neurons of the central nervous system to mediate the process of memory formation and behavior. In mature neurons, methylation of histone proteins can serve to both activate and repress gene transcription. This is in stark contrast to other epigenetic modifications, including histone acetylation and DNA methylation, which have largely been associated with one transcriptional state in the brain. In this review, we discuss the evidence for histone methylation mechanisms in the coordination of complex cognitive processes such as long-term memory formation and storage. In addition, we address the current literature highlighting the role of histone methylation in intellectual disability, addiction, schizophrenia, autism, depression, and neurodegeneration. Further, we discuss histone methylation within the context of other epigenetic modifications and the potential advantages of exploring this newly identified mechanism of cognition, emphasizing the possibility that this molecular process may provide an alternative locus for intervention in long-term psychopathologies that cannot be clearly linked to genes or environment alone.

  20. Defects in Histone H3.3 Phosphorylation and ATRX Recruitment to Misaligned Chromosomes during Mitosis Contribute to the Development of Pediatric Glioblastomas

    DTIC Science & Technology

    2015-09-01

    somatic mutations leading to single amino acid substitutions in four genes : the p53 tumor suppressor, the histone variant H3.3, ATRX, and DAXX. As...pending minor revision. The second major impact of our work is the discovery that mutations in the H3.3 gene (K27M and G34R) – found to be driver...heterozygous mutations in this region of the H3.3 gene are particularly dangerous, and provides insights into how they drive cancer progression. b

  1. An Alternative Approach to ChIP-Seq Normalization Enables Detection of Genome-Wide Changes in Histone H3 Lysine 27 Trimethylation upon EZH2 Inhibition

    PubMed Central

    Yuan, Chih-Chi; Craske, Madeleine Lisa; Labhart, Paul; Guler, Gulfem D.; Arnott, David; Maile, Tobias M.; Busby, Jennifer; Henry, Chisato; Kelly, Theresa K.; Tindell, Charles A.; Jhunjhunwala, Suchit; Zhao, Feng; Hatton, Charlie; Bryant, Barbara M.

    2016-01-01

    Chromatin immunoprecipitation and DNA sequencing (ChIP-seq) has been instrumental in inferring the roles of histone post-translational modifications in the regulation of transcription, chromatin compaction and other cellular processes that require modulation of chromatin structure. However, analysis of ChIP-seq data is challenging when the manipulation of a chromatin-modifying enzyme significantly affects global levels of histone post-translational modifications. For example, small molecule inhibition of the methyltransferase EZH2 reduces global levels of histone H3 lysine 27 trimethylation (H3K27me3). However, standard ChIP-seq normalization and analysis methods fail to detect a decrease upon EZH2 inhibitor treatment. We overcome this challenge by employing an alternative normalization approach that is based on the addition of Drosophila melanogaster chromatin and a D. melanogaster-specific antibody into standard ChIP reactions. Specifically, the use of an antibody that exclusively recognizes the D. melanogaster histone variant H2Av enables precipitation of D. melanogaster chromatin as a minor fraction of the total ChIP DNA. The D. melanogaster ChIP-seq tags are used to normalize the human ChIP-seq data from DMSO and EZH2 inhibitor-treated samples. Employing this strategy, a substantial reduction in H3K27me3 signal is now observed in ChIP-seq data from EZH2 inhibitor treated samples. PMID:27875550

  2. An Alternative Approach to ChIP-Seq Normalization Enables Detection of Genome-Wide Changes in Histone H3 Lysine 27 Trimethylation upon EZH2 Inhibition.

    PubMed

    Egan, Brian; Yuan, Chih-Chi; Craske, Madeleine Lisa; Labhart, Paul; Guler, Gulfem D; Arnott, David; Maile, Tobias M; Busby, Jennifer; Henry, Chisato; Kelly, Theresa K; Tindell, Charles A; Jhunjhunwala, Suchit; Zhao, Feng; Hatton, Charlie; Bryant, Barbara M; Classon, Marie; Trojer, Patrick

    2016-01-01

    Chromatin immunoprecipitation and DNA sequencing (ChIP-seq) has been instrumental in inferring the roles of histone post-translational modifications in the regulation of transcription, chromatin compaction and other cellular processes that require modulation of chromatin structure. However, analysis of ChIP-seq data is challenging when the manipulation of a chromatin-modifying enzyme significantly affects global levels of histone post-translational modifications. For example, small molecule inhibition of the methyltransferase EZH2 reduces global levels of histone H3 lysine 27 trimethylation (H3K27me3). However, standard ChIP-seq normalization and analysis methods fail to detect a decrease upon EZH2 inhibitor treatment. We overcome this challenge by employing an alternative normalization approach that is based on the addition of Drosophila melanogaster chromatin and a D. melanogaster-specific antibody into standard ChIP reactions. Specifically, the use of an antibody that exclusively recognizes the D. melanogaster histone variant H2Av enables precipitation of D. melanogaster chromatin as a minor fraction of the total ChIP DNA. The D. melanogaster ChIP-seq tags are used to normalize the human ChIP-seq data from DMSO and EZH2 inhibitor-treated samples. Employing this strategy, a substantial reduction in H3K27me3 signal is now observed in ChIP-seq data from EZH2 inhibitor treated samples.

  3. Effect of leucine-to-methionine substitutions on the diffraction quality of histone chaperone SET/TAF-Ibeta/INHAT crystals.

    PubMed

    Senda, Miki; Muto, Shinsuke; Horikoshi, Masami; Senda, Toshiya

    2008-10-01

    One of the most frequent problems in crystallization is poor quality of the crystals. In order to overcome this obstacle several methods have been utilized, including amino-acid substitutions of the target protein. Here, an example is presented of crystal-quality improvement by leucine-to-methionine substitutions. A variant protein with three amino-acid substitutions enabled improvement of the crystal quality of the histone chaperone SET/TAF-Ibeta/INHAT when combined with optimization of the cryoconditions. This procedure improved the resolution of the SET/TAF-Ibeta/INHAT crystals from around 5.5 to 2.3 A without changing the crystallization conditions.

  4. Mediation analysis reveals a sex-dependent association between ABO gene variants and TG/HDL-C ratio that is suppressed by sE-selectin level.

    PubMed

    Teng, Ming-Sheng; Hsu, Lung-An; Wu, Semon; Chou, Hsin-Hua; Chang, Chi-Jen; Sun, Yu-Zen; Juan, Shu-Hui; Ko, Yu-Lin

    2013-06-01

    Previous investigations have revealed an association between the ABO locus/blood group and total cholesterol and inflammatory biomarker levels. We aimed to test the statistical association of ABO locus variants with lipid profiles and levels of thirteen inflammatory markers in a Taiwanese population. A sample population of 617 Taiwanese subjects was enrolled. Five ABO gene region polymorphisms were selected and genotyped. After adjusting for clinical covariates and inflammatory marker levels, the genetic-inferred ABO blood group genotypes were associated with sE-selectin level (P = 3.5 × 10(-36)). Significantly higher total and low-density lipoprotein cholesterol (LDL-C) levels were noted in individuals with blood group A (P = 7.2 × 10(-4) and P = 7.3 × 10(-4), respectively). Interestingly, after adjusting for sE-selectin level, significantly lower high-density lipoprotein cholesterol (HDL-C) level as well as higher triglyceride (TG) level and ratio of triglyceride to HDL-C (TG/HDL-C ratio) were noted in individuals with blood group A comparing to non-A individuals (P = 0.009, P = 0.004 and P = 0.001, respectively); these associations were also observed in the group A male subjects (P = 0.027, P = 0.001, and P = 0.002, respectively). Mediation analysis further revealed a suppression effect of sE-selectin level on the association between genetic-inferred ABO blood group genotypes and TG/HDL-C ratio in total participants (P = 1.18 × 10(-6)) and in males (P = 5.99 × 10(-5)). Genetic variants at the ABO locus independently affect sE-selectin level in Taiwanese subjects, while the association of ABO locus variants with TG/HDL-C ratio is suppressed by sE-selectin level in Taiwanese males. These results provided further evidence for the mechanism in the association of ABO blood groups with atherosclerotic cardiovascular diseases. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.

  5. A homogeneous cellular histone deacetylase assay suitable for compound profiling and robotic screening.

    PubMed

    Ciossek, Thomas; Julius, Heiko; Wieland, Heike; Maier, Thomas; Beckers, Thomas

    2008-01-01

    Most cellular assays that quantify the efficacy of histone deacetylase (HDAC) inhibitors measure hyperacetylation of core histone proteins H3 and H4. Here we describe a new approach, directly measuring cellular HDAC enzymatic activity using the substrate Boc-K(Ac)-7-amino-4-methylcoumarin (AMC). After penetration into HeLa cervical carcinoma or K562 chronic myeloid leukemia cells, the deacetylated product Boc-K-AMC is formed which, after cell lysis, is cleaved by trypsin, finally releasing the fluorophor AMC. The cellular potency of suberoylanilide hydroxamic acid, LBH589, trichostatin A, and MS275 as well-known HDAC inhibitors was determined using this assay. IC(50) values derived from concentration-effect curves correlated well with EC(50) values derived from a cellomics array scan histone H3 hyperacetylation assay. The cellular HDAC activity assay was adapted to a homogeneous format, fully compatible with robotic screening. Concentration-effect curves generated on a Tecan Genesis Freedom workstation were highly reproducible with a signal-to-noise ratio of 5.7 and a Z' factor of 0.88, indicating a very robust assay. Finally, a HDAC-inhibitor focused library was profiled in a medium-throughput screening campaign. Inhibition of cellular HDAC activity correlated well with cytotoxicity and histone H3 hyperacetylation in HeLa cells and with inhibition of human recombinant HDAC1 in a biochemical assay. Thus, by using Boc-K(Ac)-AMC as a cell-permeable HDAC substrate, the activity of various protein lysine-specific deacetylases including HDAC1-containing complexes is measurable in intact cells in a simple and homogeneous manner.

  6. Histone proteolysis: A proposal for categorization into ‘clipping’ and ‘degradation’

    PubMed Central

    Dhaenens, Maarten; Glibert, Pieter; Meert, Paulien; Vossaert, Liesbeth; Deforce, Dieter

    2015-01-01

    We propose for the first time to divide histone proteolysis into “histone degradation” and the epigenetically connoted “histone clipping”. Our initial observation is that these two different classes are very hard to distinguish both experimentally and biologically, because they can both be mediated by the same enzymes. Since the first report decades ago, proteolysis has been found in a broad spectrum of eukaryotic organisms. However, the authors often not clearly distinguish or determine whether degradation or clipping was studied. Given the importance of histone modifications in epigenetic regulation we further elaborate on the different ways in which histone proteolysis could play a role in epigenetics. Finally, unanticipated histone proteolysis has probably left a mark on many studies of histones in the past. In conclusion, we emphasize the significance of reviving the study of histone proteolysis both from a biological and an experimental perspective. PMID:25350939

  7. Evaluation of Proteomic Search Engines for the Analysis of Histone Modifications

    PubMed Central

    2015-01-01

    Identification of histone post-translational modifications (PTMs) is challenging for proteomics search engines. Including many histone PTMs in one search increases the number of candidate peptides dramatically, leading to low search speed and fewer identified spectra. To evaluate database search engines on identifying histone PTMs, we present a method in which one kind of modification is searched each time, for example, unmodified, individually modified, and multimodified, each search result is filtered with false discovery rate less than 1%, and the identifications of multiple search engines are combined to obtain confident results. We apply this method for eight search engines on histone data sets. We find that two search engines, pFind and Mascot, identify most of the confident results at a reasonable speed, so we recommend using them to identify histone modifications. During the evaluation, we also find some important aspects for the analysis of histone modifications. Our evaluation of different search engines on identifying histone modifications will hopefully help those who are hoping to enter the histone proteomics field. The mass spectrometry proteomics data have been deposited to the ProteomeXchange Consortium with the data set identifier PXD001118. PMID:25167464

  8. Evaluation of proteomic search engines for the analysis of histone modifications.

    PubMed

    Yuan, Zuo-Fei; Lin, Shu; Molden, Rosalynn C; Garcia, Benjamin A

    2014-10-03

    Identification of histone post-translational modifications (PTMs) is challenging for proteomics search engines. Including many histone PTMs in one search increases the number of candidate peptides dramatically, leading to low search speed and fewer identified spectra. To evaluate database search engines on identifying histone PTMs, we present a method in which one kind of modification is searched each time, for example, unmodified, individually modified, and multimodified, each search result is filtered with false discovery rate less than 1%, and the identifications of multiple search engines are combined to obtain confident results. We apply this method for eight search engines on histone data sets. We find that two search engines, pFind and Mascot, identify most of the confident results at a reasonable speed, so we recommend using them to identify histone modifications. During the evaluation, we also find some important aspects for the analysis of histone modifications. Our evaluation of different search engines on identifying histone modifications will hopefully help those who are hoping to enter the histone proteomics field. The mass spectrometry proteomics data have been deposited to the ProteomeXchange Consortium with the data set identifier PXD001118.

  9. Histone H3 phosphorylation near the nucleosome dyad alters chromatin structure

    PubMed Central

    North, Justin A.; Šimon, Marek; Ferdinand, Michelle B.; Shoffner, Matthew A.; Picking, Jonathan W.; Howard, Cecil J.; Mooney, Alex M.; van Noort, John; Poirier, Michael G.; Ottesen, Jennifer J.

    2014-01-01

    Nucleosomes contain ∼146 bp of DNA wrapped around a histone protein octamer that controls DNA accessibility to transcription and repair complexes. Posttranslational modification (PTM) of histone proteins regulates nucleosome function. To date, only modest changes in nucleosome structure have been directly attributed to histone PTMs. Histone residue H3(T118) is located near the nucleosome dyad and can be phosphorylated. This PTM destabilizes nucleosomes and is implicated in the regulation of transcription and repair. Here, we report gel electrophoretic mobility, sucrose gradient sedimentation, thermal disassembly, micrococcal nuclease digestion and atomic force microscopy measurements of two DNA–histone complexes that are structurally distinct from nucleosomes. We find that H3(T118ph) facilitates the formation of a nucleosome duplex with two DNA molecules wrapped around two histone octamers, and an altosome complex that contains one DNA molecule wrapped around two histone octamers. The nucleosome duplex complex forms within short ∼150 bp DNA molecules, whereas altosomes require at least ∼250 bp of DNA and form repeatedly along 3000 bp DNA molecules. These results are the first report of a histone PTM significantly altering the nucleosome structure. PMID:24561803

  10. Histone Core Phosphorylation Regulates DNA Accessibility*

    PubMed Central

    Brehove, Matthew; Wang, Tao; North, Justin; Luo, Yi; Dreher, Sarah J.; Shimko, John C.; Ottesen, Jennifer J.; Luger, Karolin; Poirier, Michael G.

    2015-01-01

    Nucleosome unwrapping dynamics provide transient access to the complexes involved in DNA transcription, repair, and replication, whereas regulation of nucleosome unwrapping modulates occupancy of these complexes. Histone H3 is phosphorylated at tyrosine 41 (H3Y41ph) and threonine 45 (H3T45ph). H3Y41ph is implicated in regulating transcription, whereas H3T45ph is involved in DNA replication and apoptosis. These modifications are located in the DNA-histone interface near where the DNA exits the nucleosome, and are thus poised to disrupt DNA-histone interactions. However, the impact of histone phosphorylation on nucleosome unwrapping and accessibility is unknown. We find that the phosphorylation mimics H3Y41E and H3T45E, and the chemically correct modification, H3Y41ph, significantly increase nucleosome unwrapping. This enhances DNA accessibility to protein binding by 3-fold. H3K56 acetylation (H3K56ac) is also located in the same DNA-histone interface and increases DNA unwrapping. H3K56ac is implicated in transcription regulation, suggesting that H3Y41ph and H3K56ac could function together. We find that the combination of H3Y41ph with H3K56ac increases DNA accessibility by over an order of magnitude. These results suggest that phosphorylation within the nucleosome DNA entry-exit region increases access to DNA binding complexes and that the combination of phosphorylation with acetylation has the potential to significantly influence DNA accessibility to transcription regulatory complexes. PMID:26175159

  11. Replication-Independent Histone Deposition by the HIR Complex and Asf1

    PubMed Central

    Green, Erin M.; Antczak, Andrew J.; Bailey, Aaron O.; Franco, Alexa A.; Wu, Kevin J.; Yates, John R.; Kaufman, Paul D.

    2010-01-01

    Summary The orderly deposition of histones onto DNA is mediated by conserved assembly complexes, including Chromatin Assembly Factor-1 (CAF-1) and the Hir proteins [1–4]. CAF-1 and the Hir proteins operate in distinct but functionally overlapping histone deposition pathways in vivo [5, 6]. The Hir proteins and CAF-1 share a common partner, the highly conserved histone H3/H4-binding protein Asf1, which binds the middle subunit of CAF-1 as well as to Hir proteins [7–11]. Asf1 binds to newly synthesized histones H3/H4 [12] and this complex stimulates histone deposition by CAF-1 [7, 12, 13]. In yeast, Asf1 is required for the contribution of the Hir proteins to gene silencing [7, 14]. Here, we demonstrate that Hir1, Hir2, Hir3 and Hpc2 comprise the HIR complex, which co-purifies with histone deposition protein Asf1. Together, the HIR complex and Asf1 deposit histones onto DNA in a replication-independent manner. Histone deposition by the HIR complex and Asf1 is impaired by a mutation in Asf1 that inhibits HIR binding. These data indicate that the HIR complex and Asf1 proteins function together as a conserved eukaryotic pathway for histone replacement throughout the cell cycle. PMID:16303565

  12. Extracellular DNA and histones: double-edged swords in immunothrombosis.

    PubMed

    Gould, T J; Lysov, Z; Liaw, P C

    2015-06-01

    The existence of extracellular DNA in human plasma, also known as cell-free DNA (cfDNA), was first described in the 1940s. In recent years, there has been a resurgence of interest in the functional significance of cfDNA, particularly in the context of neutrophil extracellular traps (NETs). cfDNA and histones are key components of NETs that aid in the host response to infection and inflammation. However, cfDNA and histones may also exert harmful effects by triggering coagulation, inflammation, and cell death and by impairing fibrinolysis. In this article, we will review the pathologic nature of cfDNA and histones in macrovascular and microvascular thrombosis, including venous thromboembolism, cancer, sepsis, and trauma. We will also discuss the prognostic value of cfDNA and histones in these disease states. Understanding the molecular and cellular pathways regulated by cfDNA and histones may provide novel insights to prevent pathological thrombus formation and vascular occlusion. © 2015 International Society on Thrombosis and Haemostasis.

  13. Disease-associated variants in different categories of disease located in distinct regulatory elements.

    PubMed

    Ma, Meng; Ru, Ying; Chuang, Ling-Shiang; Hsu, Nai-Yun; Shi, Li-Song; Hakenberg, Jörg; Cheng, Wei-Yi; Uzilov, Andrew; Ding, Wei; Glicksberg, Benjamin S; Chen, Rong

    2015-01-01

    The invention of high throughput sequencing technologies has led to the discoveries of hundreds of thousands of genetic variants associated with thousands of human diseases. Many of these genetic variants are located outside the protein coding regions, and as such, it is challenging to interpret the function of these genetic variants by traditional genetic approaches. Recent genome-wide functional genomics studies, such as FANTOM5 and ENCODE have uncovered a large number of regulatory elements across hundreds of different tissues or cell lines in the human genome. These findings provide an opportunity to study the interaction between regulatory elements and disease-associated genetic variants. Identifying these diseased-related regulatory elements will shed light on understanding the mechanisms of how these variants regulate gene expression and ultimately result in disease formation and progression. In this study, we curated and categorized 27,558 Mendelian disease variants, 20,964 complex disease variants, 5,809 cancer predisposing germline variants, and 43,364 recurrent cancer somatic mutations. Compared against nine different types of regulatory regions from FANTOM5 and ENCODE projects, we found that different types of disease variants show distinctive propensity for particular regulatory elements. Mendelian disease variants and recurrent cancer somatic mutations are 22-fold and 10- fold significantly enriched in promoter regions respectively (q<0.001), compared with allele-frequency-matched genomic background. Separate from these two categories, cancer predisposing germline variants are 27-fold enriched in histone modification regions (q<0.001), 10-fold enriched in chromatin physical interaction regions (q<0.001), and 6-fold enriched in transcription promoters (q<0.001). Furthermore, Mendelian disease variants and recurrent cancer somatic mutations share very similar distribution across types of functional effects. We further found that regulatory regions are

  14. Disease-associated variants in different categories of disease located in distinct regulatory elements

    PubMed Central

    2015-01-01

    Background The invention of high throughput sequencing technologies has led to the discoveries of hundreds of thousands of genetic variants associated with thousands of human diseases. Many of these genetic variants are located outside the protein coding regions, and as such, it is challenging to interpret the function of these genetic variants by traditional genetic approaches. Recent genome-wide functional genomics studies, such as FANTOM5 and ENCODE have uncovered a large number of regulatory elements across hundreds of different tissues or cell lines in the human genome. These findings provide an opportunity to study the interaction between regulatory elements and disease-associated genetic variants. Identifying these diseased-related regulatory elements will shed light on understanding the mechanisms of how these variants regulate gene expression and ultimately result in disease formation and progression. Results In this study, we curated and categorized 27,558 Mendelian disease variants, 20,964 complex disease variants, 5,809 cancer predisposing germline variants, and 43,364 recurrent cancer somatic mutations. Compared against nine different types of regulatory regions from FANTOM5 and ENCODE projects, we found that different types of disease variants show distinctive propensity for particular regulatory elements. Mendelian disease variants and recurrent cancer somatic mutations are 22-fold and 10- fold significantly enriched in promoter regions respectively (q<0.001), compared with allele-frequency-matched genomic background. Separate from these two categories, cancer predisposing germline variants are 27-fold enriched in histone modification regions (q<0.001), 10-fold enriched in chromatin physical interaction regions (q<0.001), and 6-fold enriched in transcription promoters (q<0.001). Furthermore, Mendelian disease variants and recurrent cancer somatic mutations share very similar distribution across types of functional effects. We further found that

  15. HDT701, a histone H4 deacetylase, negatively regulates plant innate immunity by modulating histone H4 acetylation of defense-related genes in rice.

    PubMed

    Ding, Bo; Bellizzi, Maria del Rosario; Ning, Yuese; Meyers, Blake C; Wang, Guo-Liang

    2012-09-01

    Histone acetylation and deacetylation play an important role in the modification of chromatin structure and regulation of gene expression in eukaryotes. Chromatin acetylation status is modulated antagonistically by histone acetyltransferases and histone deacetylases (HDACs). In this study, we characterized the function of histone deacetylase701 (HDT701), a member of the plant-specific HD2 subfamily of HDACs, in rice (Oryza sativa) innate immunity. Transcription of HDT701 is increased in the compatible reaction and decreased in the incompatible reaction after infection by the fungal pathogen Magnaporthe oryzae. Overexpression of HDT701 in transgenic rice leads to decreased levels of histone H4 acetylation and enhanced susceptibility to the rice pathogens M. oryzae and Xanthomonas oryzae pv oryzae (Xoo). By contrast, silencing of HDT701 in transgenic rice causes elevated levels of histone H4 acetylation and elevated transcription of pattern recognition receptor (PRR) and defense-related genes, increased generation of reactive oxygen species after pathogen-associated molecular pattern elicitor treatment, as well as enhanced resistance to both M. oryzae and Xoo. We also found that HDT701 can bind to defense-related genes to regulate their expression. Taken together, these results demonstrate that HDT701 negatively regulates innate immunity by modulating the levels of histone H4 acetylation of PRR and defense-related genes in rice.

  16. Synergistic efficacy in human ovarian cancer cells by histone deacetylase inhibitor TSA and proteasome inhibitor PS-341.

    PubMed

    Fang, Yong; Hu, Yi; Wu, Peng; Wang, Beibei; Tian, Yuan; Xia, Xi; Zhang, Qinghua; Chen, Tong; Jiang, Xuefeng; Ma, Quanfu; Xu, Gang; Wang, Shixuan; Zhou, Jianfeng; Ma, Ding; Meng, Li

    2011-05-01

    Histone deacetylase inhibitors and proteasome inhibitor are all emerging as new classes of anticancer agents. We chose TSA and PS-341 to identify whether they have a synergistic efficacy on human ovarian cancer cells. After incubated with 500 nM TSA or/and 40 nM PS-341, we found that combined groups resulted in a striking increase of apoptosis and G2/M blocking rates, no matter in A2780, cisplatin-sensitive ovarian cancer cell line OV2008 or its resistant variant C13*. This demonstrated that TSA interacted synergistically with PS-341, which raised the possibility that combined the two drugs may represent a novel strategy in ovarian cancer.

  17. Mechanism of histone survival during transcription by RNA polymerase II

    PubMed Central

    Kulaeva, Olga I

    2010-01-01

    Transcription of eukaryotic genes by RNA polymerase II is typically accompanied by minimal exchange of histones H3/H4 carrying various covalent modifications. In vitro studies suggest that histone survival is accompanied by the formation of a small transient DNA loop on the surface of the histone octamer including a molecule of transcribing enzyme. PMID:21326897

  18. The Role of Histone Protein Modifications and Mutations in Histone Modifiers in Pediatric B-Cell Progenitor Acute Lymphoblastic Leukemia

    PubMed Central

    Janczar, Szymon; Janczar, Karolina; Pastorczak, Agata; Harb, Hani; Paige, Adam J. W.; Zalewska-Szewczyk, Beata; Danilewicz, Marian; Mlynarski, Wojciech

    2017-01-01

    While cancer has been long recognized as a disease of the genome, the importance of epigenetic mechanisms in neoplasia was acknowledged more recently. The most active epigenetic marks are DNA methylation and histone protein modifications and they are involved in basic biological phenomena in every cell. Their role in tumorigenesis is stressed by recent unbiased large-scale studies providing evidence that several epigenetic modifiers are recurrently mutated or frequently dysregulated in multiple cancers. The interest in epigenetic marks is especially due to the fact that they are potentially reversible and thus druggable. In B-cell progenitor acute lymphoblastic leukemia (BCP-ALL) there is a relative paucity of reports on the role of histone protein modifications (acetylation, methylation, phosphorylation) as compared to acute myeloid leukemia, T-cell ALL, or other hematologic cancers, and in this setting chromatin modifications are relatively less well studied and reviewed than DNA methylation. In this paper, we discuss the biomarker associations and evidence for a driver role of dysregulated global and loci-specific histone marks, as well as mutations in epigenetic modifiers in BCP-ALL. Examples of chromatin modifiers recurrently mutated/disrupted in BCP-ALL and associated with disease outcomes include MLL1, CREBBP, NSD2, and SETD2. Altered histone marks and histone modifiers and readers may play a particular role in disease chemoresistance and relapse. We also suggest that epigenetic regulation of B-cell differentiation may have parallel roles in leukemogenesis. PMID:28054944

  19. Histone-Targeted Nucleic Acid Delivery for Tissue Regenerative Applications

    NASA Astrophysics Data System (ADS)

    Munsell, Erik V.

    Nucleic acid delivery has garnered significant attention as an innovative therapeutic approach for treating a wide variety of diseases. However, the design of non-viral delivery systems that negotiate efficient intracellular trafficking and nuclear entry represents a significant challenge. Overcoming these hurdles requires a combination of well-controlled materials approaches with techniques to understand and direct cellular delivery. Recent investigations have highlighted the roles histone tail sequences play in directing nuclear delivery and retention, as well as activating DNA transcription. We established the ability to recapitulate these natural histone tail activities within non-viral gene nanocarriers, driving gene transfer/expression by enabling effective navigation to the nucleus via retrograde vesicular trafficking. A unique finding of this histone-targeted approach was that nanocarriers gained enhanced access to the nucleus during mitosis. The work described in this dissertation builds off of these fundamental insights to facilitate the translation of this histone-targeted delivery approach toward regenerative medicine applications. During native tissue repair, actively proliferating mesenchymal stem cells (MSCs) respond to a complex series of growth factor signals that direct their differentiation. Accordingly, the investigations in this work focused on utilizing the histone-targeted nanocarriers to enhance osteogenic growth factor gene transfer in dividing MSCs leading to augmented MSC chondrogenic differentiation, an essential first step in skeletal tissue repair. Concurrently, additional studies focused on optimizing the histone-targeted nanocarrier design strategy to enable improved plasmid DNA (pDNA) binding stability and tunable harnessing of native cellular processing pathways for enhanced gene transfer. Overall, the work presented herein demonstrated substantial increases in growth factor expression following histone-targeted gene transfer. This

  20. Citrullination regulates pluripotency and histone H1 binding to chromatin

    NASA Astrophysics Data System (ADS)

    Christophorou, Maria A.; Castelo-Branco, Gonçalo; Halley-Stott, Richard P.; Oliveira, Clara Slade; Loos, Remco; Radzisheuskaya, Aliaksandra; Mowen, Kerri A.; Bertone, Paul; Silva, José C. R.; Zernicka-Goetz, Magdalena; Nielsen, Michael L.; Gurdon, John B.; Kouzarides, Tony

    2014-03-01

    Citrullination is the post-translational conversion of an arginine residue within a protein to the non-coded amino acid citrulline. This modification leads to the loss of a positive charge and reduction in hydrogen-bonding ability. It is carried out by a small family of tissue-specific vertebrate enzymes called peptidylarginine deiminases (PADIs) and is associated with the development of diverse pathological states such as autoimmunity, cancer, neurodegenerative disorders, prion diseases and thrombosis. Nevertheless, the physiological functions of citrullination remain ill-defined, although citrullination of core histones has been linked to transcriptional regulation and the DNA damage response. PADI4 (also called PAD4 or PADV), the only PADI with a nuclear localization signal, was previously shown to act in myeloid cells where it mediates profound chromatin decondensation during the innate immune response to infection. Here we show that the expression and enzymatic activity of Padi4 are also induced under conditions of ground-state pluripotency and during reprogramming in mouse. Padi4 is part of the pluripotency transcriptional network, binding to regulatory elements of key stem-cell genes and activating their expression. Its inhibition lowers the percentage of pluripotent cells in the early mouse embryo and significantly reduces reprogramming efficiency. Using an unbiased proteomic approach we identify linker histone H1 variants, which are involved in the generation of compact chromatin, as novel PADI4 substrates. Citrullination of a single arginine residue within the DNA-binding site of H1 results in its displacement from chromatin and global chromatin decondensation. Together, these results uncover a role for citrullination in the regulation of pluripotency and provide new mechanistic insights into how citrullination regulates chromatin compaction.

  1. The histone modifications governing TFF1 transcription mediated by estrogen receptor.

    PubMed

    Li, Yanyan; Sun, Luyang; Zhang, Yu; Wang, Dandan; Wang, Feng; Liang, Jing; Gui, Bin; Shang, Yongfeng

    2011-04-22

    Transcription regulation by histone modifications is a major contributing factor to the structural and functional diversity in biology. These modifications are encrypted as histone codes or histone languages and function to establish and maintain heritable epigenetic codes that define the identity and the fate of the cell. Despite recent advances revealing numerous histone modifications associated with transcription regulation, how such modifications dictate the process of transcription is not fully understood. Here we describe spatial and temporal analyses of the histone modifications that are introduced during estrogen receptor α (ERα)-activated transcription. We demonstrated that aborting RNA polymerase II caused a disruption of the histone modifications that are associated with transcription elongation but had a minimal effect on modifications deposited during transcription initiation. We also found that the histone H3S10 phosphorylation mark is catalyzed by mitogen- and stress-activated protein kinase 1 (MSK1) and is recognized by a 14-3-3ζ/14-3-3ε heterodimer through its interaction with H3K4 trimethyltransferase SMYD3 and the p52 subunit of TFIIH. We showed that H3S10 phosphorylation is a prerequisite for H3K4 trimethylation. In addition, we demonstrated that SET8/PR-Set7/KMT5A is required for ERα-regulated transcription and its catalyzed H4K20 monomethylation is implicated in both transcription initiation and elongation. Our experiments provide a relatively comprehensive analysis of histone modifications associated with ERα-regulated transcription and define the biological meaning of several key components of the histone code that governs ERα-regulated transcription.

  2. Interactions of Histone Acetyltransferase p300 with the Nuclear Proteins Histone and HMGB1, As Revealed by Single Molecule Atomic Force Spectroscopy.

    PubMed

    Banerjee, S; Rakshit, T; Sett, S; Mukhopadhyay, R

    2015-10-22

    One of the important properties of the transcriptional coactivator p300 is histone acetyltransferase (HAT) activity that enables p300 to influence chromatin action via histone modulation. p300 can exert its HAT action upon the other nuclear proteins too--one notable example being the transcription-factor-like protein HMGB1, which functions also as a cytokine, and whose accumulation in the cytoplasm, as a response to tissue damage, is triggered by its acetylation. Hitherto, no information on the structure and stability of the complexes between full-length p300 (p300FL) (300 kDa) and the histone/HMGB1 proteins are available, probably due to the presence of unstructured regions within p300FL that makes it difficult to be crystallized. Herein, we have adopted the high-resolution atomic force microscopy (AFM) approach, which allows molecularly resolved three-dimensional contour mapping of a protein molecule of any size and structure. From the off-rate and activation barrier values, obtained using single molecule dynamic force spectroscopy, the biochemical proposition of preferential binding of p300FL to histone H3, compared to the octameric histone, can be validated. Importantly, from the energy landscape of the dissociation events, a model for the p300-histone and the p300-HMGB1 dynamic complexes that HAT forms, can be proposed. The lower unbinding forces of the complexes observed in acetylating conditions, compared to those observed in non-acetylating conditions, indicate that upon acetylation, p300 tends to weakly associate, probably as an outcome of charge alterations on the histone/HMGB1 surface and/or acetylation-induced conformational changes. To our knowledge, for the first time, a single molecule level treatment of the interactions of HAT, where the full-length protein is considered, is being reported.

  3. Aberrant histone deacetylase2-mediated histone modifications and synaptic plasticity in the amygdala predisposes to anxiety and alcoholism.

    PubMed

    Moonat, Sachin; Sakharkar, Amul J; Zhang, Huaibo; Tang, Lei; Pandey, Subhash C

    2013-04-15

    Epigenetic mechanisms have been implicated in psychiatric disorders, including alcohol dependence. However, the epigenetic basis and role of specific histone deacetylase (HDAC) isoforms in the genetic predisposition to anxiety and alcoholism is unknown. We measured amygdaloid HDAC activity, levels of HDAC isoforms, and histone H3 acetylation in selectively bred alcohol-preferring (P) and -nonpreferring (NP) rats. We employed HDAC2 small interfering RNA infusion into the central nucleus of amygdala (CeA) of P rats to determine the causal role of HDAC2 in anxiety-like and alcohol-drinking behaviors. Chromatin immunoprecipitation analysis was performed to examine the histone acetylation status of brain-derived neurotrophic factor (Bdnf) and activity-regulated cytoskeleton associated protein (Arc) genes. Golgi-Cox staining was performed to measure dendritic spine density. We found that P rats innately display higher nuclear HDAC activity and HDAC2 but not HDAC 1, 3, 4, 5, and 6 protein levels and lower acetylation of H3-K9 but not H3-K14, in the CeA and medial nucleus of amygdala compared with NP rats. Acute ethanol exposure decreased amygdaloid HDAC activity and HDAC2 protein levels, increased global and gene (Bdnf and Arc)-specific histone acetylation, and attenuated anxiety-like behaviors in P rats but had no effects in NP rats. The HDAC2 knockdown in the CeA attenuated anxiety-like behaviors and voluntary alcohol but not sucrose consumption in P rats and increased histone acetylation of Bdnf and Arc with a resultant increase in protein levels that correlated with increased dendritic spine density. These novel data demonstrate the role of HDAC2-mediated epigenetic mechanisms in anxiety and alcoholism. Published by Elsevier Inc.

  4. Structural Basis for the Histone Chaperone Activity of Asf1

    PubMed Central

    English, Christine M.; Adkins, Melissa W.; Carson, Joshua J.; Churchill, Mair E.A.; Tyler, Jessica K.

    2010-01-01

    SUMMARY Asf1 is a highly conserved chaperone of histones H3/H4 that assembles or disassembles chromatin during transcription, replication, and repair. The structure of the globular domain of Asf1 bound to H3/H4 determined by X-ray crystallography to a resolution of 1.7 Å shows how Asf1 binds the H3/H4 heterodimer, enveloping the C-terminus of histone H3 and physically blocking formation of the H3/H4 heterotetramer. Unexpectedly, the C-terminus of histone H4 that forms a mini-beta sheet with histone H2A in the nucleosome, undergoes a major conformational change upon binding to Asf1 and adds a beta strand to the Asf1 beta-sheet sandwich. Interactions with both H3 and H4 were required for Asf1 histone chaperone function in vivo and in vitro. The Asf1-H3/H4 structure suggests a “strand-capture” mechanism whereby the H4 tail acts as a lever to facilitate chromatin disassembly / assembly that may be used ubiquitously by histone chaperones. PMID:17081973

  5. Role of Histone Acetylation in the Assembly and Modulation of Chromatin Structures

    PubMed Central

    Annunziato, Anthony T.; Hansen, Jeffrey C.

    2000-01-01

    The acetylation of the core histone N-terminal “tail” domains is now recognized as a highly conserved mechanism for regulating chromatin functional states. The following article examines possible roles of acetylation in two critically important cellular processes: replication-coupled nucleosome assembly, and reversible transitions in chromatin higher order structure. After a description of the acetylation of newly synthesized histones, and of the likely acetyltransferases involved, an overview of histone octamer assembly is presented. Our current understanding of the factors thought to assemble chromatin in vivo is then described. Genetic and biochemical investigations of the function the histone tails, and their acetylation, in nucleosome assembly are detailed, followed by an analysis of the importance of histone deacetylation in the maturation of newly replicated chromatin. In the final section the involvement of the histone tail domains in chromatin higher order structures is addressed, along with the role of histone acetylation in chromatin folding. Suggestions for future research are offered in the concluding remarks. PMID:11097424

  6. EPC1/TIP60-Mediated Histone Acetylation Facilitates Spermiogenesis in Mice.

    PubMed

    Dong, Yixin; Isono, Kyo-Ichi; Ohbo, Kazuyuki; Endo, Takaho A; Ohara, Osamu; Maekawa, Mamiko; Toyama, Yoshiro; Ito, Chizuru; Toshimori, Kiyotaka; Helin, Kristian; Ogonuki, Narumi; Inoue, Kimiko; Ogura, Atsuo; Yamagata, Kazutsune; Kitabayashi, Issay; Koseki, Haruhiko

    2017-10-01

    Global histone hyperacetylation is suggested to play a critical role for replacement of histones by transition proteins and protamines to compact the genome during spermiogenesis. However, the underlying mechanisms for hyperacetylation-mediated histone replacement remains poorly understood. Here, we report that EPC1 and TIP60, two critical components of the mammalian nucleosome acetyltransferase of H4 (NuA4) complexes, are coexpressed in male germ cells. Strikingly, genetic ablation of either Epc1 or Tip60 disrupts hyperacetylation and impairs histone replacement, in turn causing aberrant spermatid development. Taking these observations together, we reveal an essential role of the NuA4 complexes for histone hyperacetylation and subsequent compaction of the spermatid genome. Copyright © 2017 American Society for Microbiology.

  7. Histone underacetylation is an ancient component of mammalian X chromosome inactivation

    PubMed Central

    Wakefield, Matthew J.; Keohane, Ann M.; Turner, Bryan M.; Graves, Jennifer A. Marshall

    1997-01-01

    Underacetylation of histone H4 is thought to be involved in the molecular mechanism of mammalian X chromosome inactivation, which is an important model system for large-scale genetic control in eukaryotes. However, it has not been established whether histone underacetylation plays a critical role in the multistep inactivation pathway. Here we demonstrate differential histone H4 acetylation between the X chromosomes of a female marsupial, Macropus eugenii. Histone underacetylation is the only molecular aspect of X inactivation known to be shared by marsupial and eutherian mammals. Its strong evolutionary conservation implies that, unlike DNA methylation, histone underacetylation was a feature of dosage compensation in a common mammalian ancestor, and is therefore likely to play a central role in X chromosome inactivation in all mammals. PMID:9275180

  8. Targeting Histone Deacetylases in Diseases: Where Are We?

    PubMed Central

    Benedetti, Rosaria; Conte, Mariarosaria

    2015-01-01

    Abstract Significance: Epigenetic inactivation of pivotal genes involved in cell growth is a hallmark of human pathologies, in particular cancer. Histone acetylation balance obtained through opposing actions of histone deacetylases (HDACs) and histone acetyltransferases is one epigenetic mechanism controlling gene expression and is, thus, associated with disease etiology and progression. Interfering pharmacologically with HDAC activity can correct abnormalities in cell proliferation, migration, vascularization, and death. Recent Advances: Histone deacetylase inhibitors (HDACi) represent a new class of cytostatic agents that interfere with the function of HDACs and are able to increase gene expression by indirectly inducing histone acetylation. Several HDACi, alone or in combination with DNA-demethylating agents, chemopreventive, or classical chemotherapeutic drugs, are currently being used in clinical trials for solid and hematological malignancies, and are, thus, promising candidates for cancer therapy. Critical Issues: (i) Non-specific (off-target) HDACi effects due to activities unassociated with HDAC inhibition. (ii) Advantages/disadvantages of non-selective or isoform-directed HDACi. (iii) Limited number of response-predictive biomarkers. (iv) Toxicity leading to dysfunction of critical biological processes. Future Directions: Selective HDACi could achieve enhanced clinical utility by reducing or eliminating the serious side effects associated with current first-generation non-selective HDACi. Isoform-selective and pan-HDACi candidates might benefit from the identification of biomarkers, enabling better patient stratification and prediction of response to treatment. Antioxid. Redox Signal. 23, 99–126. PMID:24382114

  9. Histone H3 Lysine Methylation in Cognition and Intellectual Disability Disorders

    ERIC Educational Resources Information Center

    Parkel, Sven; Lopez-Atalaya, Jose P.; Barco, Angel

    2013-01-01

    Recent research indicates that epigenetic mechanisms and, in particular, the post-translational modification (PTM) of histones may contribute to memory encoding and storage. Among the dozens of possible histone PTMs, the methylation/demethylation of lysines in the N-terminal tail of histone H3 exhibits particularly strong links with cognitive…

  10. Rare high-impact disease variants: properties and identifications.

    PubMed

    Park, Leeyoung; Kim, Ju Han

    2016-03-21

    Although many genome-wide association studies have been performed, the identification of disease polymorphisms remains important. It is now suspected that many rare disease variants induce the association signal of common variants in linkage disequilibrium (LD). Based on recent development of genetic models, the current study provides explanations of the existence of rare variants with high impacts and common variants with low impacts. Disease variants are neither necessary nor sufficient due to gene-gene or gene-environment interactions. A new method was developed based on theoretical aspects to identify both rare and common disease variants by their genotypes. Common disease variants were identified with relatively small odds ratios and relatively small sample sizes, except for specific situations in which the disease variants were in strong LD with a variant with a higher frequency. Rare disease variants with small impacts were difficult to identify without increasing sample sizes; however, the method was reasonably accurate for rare disease variants with high impacts. For rare variants, dominant variants generally showed better Type II error rates than recessive variants; however, the trend was reversed for common variants. Type II error rates increased in gene regions containing more than two disease variants because the more common variant, rather than both disease variants, was usually identified. The proposed method would be useful for identifying common disease variants with small impacts and rare disease variants with large impacts when disease variants have the same effects on disease presentation.

  11. Histone deacetylases in memory and cognition.

    PubMed

    Penney, Jay; Tsai, Li-Huei

    2014-12-09

    Over the past 30 years, lysine acetylation of histone and nonhistone proteins has become established as a key modulator of gene expression regulating numerous aspects of cell biology. Neuronal growth and plasticity are no exception; roles for lysine acetylation and deacetylation in brain function and dysfunction continue to be uncovered. Transcriptional programs coupling synaptic activity to changes in gene expression are critical to the plasticity mechanisms underlying higher brain functions. These transcriptional programs can be modulated by changes in histone acetylation, and in many cases, transcription factors and histone-modifying enzymes are recruited together to plasticity-associated genes. Lysine acetylation, catalyzed by lysine acetyltransferases (KATs), generally promotes cognitive performance, whereas the opposing process, catalyzed by histone lysine deacetylases (HDACs), appears to negatively regulate cognition in multiple brain regions. Consistently, mutation or deregulation of different KATs or HDACs contributes to neurological dysfunction and neurodegeneration. HDAC inhibitors have shown promise as a treatment to combat the cognitive decline associated with aging and neurodegenerative disease, as well as to ameliorate the symptoms of depression and posttraumatic stress disorder, among others. In this review, we discuss the evidence for the roles of HDACs in cognitive function as well as in neurological disorders and disease. In particular, we focus on HDAC2, which plays a central role in coupling lysine acetylation to synaptic plasticity and mediates many of the effects of HDAC inhibition in cognition and disease. Copyright © 2014, American Association for the Advancement of Science.

  12. Quantification of histone modification ChIP-seq enrichment for data mining and machine learning applications

    PubMed Central

    2011-01-01

    Background The advent of ChIP-seq technology has made the investigation of epigenetic regulatory networks a computationally tractable problem. Several groups have applied statistical computing methods to ChIP-seq datasets to gain insight into the epigenetic regulation of transcription. However, methods for estimating enrichment levels in ChIP-seq data for these computational studies are understudied and variable. Since the conclusions drawn from these data mining and machine learning applications strongly depend on the enrichment level inputs, a comparison of estimation methods with respect to the performance of statistical models should be made. Results Various methods were used to estimate the gene-wise ChIP-seq enrichment levels for 20 histone methylations and the histone variant H2A.Z. The Multivariate Adaptive Regression Splines (MARS) algorithm was applied for each estimation method using the estimation of enrichment levels as predictors and gene expression levels as responses. The methods used to estimate enrichment levels included tag counting and model-based methods that were applied to whole genes and specific gene regions. These methods were also applied to various sizes of estimation windows. The MARS model performance was assessed with the Generalized Cross-Validation Score (GCV). We determined that model-based methods of enrichment estimation that spatially weight enrichment based on average patterns provided an improvement over tag counting methods. Also, methods that included information across the entire gene body provided improvement over methods that focus on a specific sub-region of the gene (e.g., the 5' or 3' region). Conclusion The performance of data mining and machine learning methods when applied to histone modification ChIP-seq data can be improved by using data across the entire gene body, and incorporating the spatial distribution of enrichment. Refinement of enrichment estimation ultimately improved accuracy of model predictions. PMID

  13. Solar Simulated Ultraviolet Radiation Induces Global Histone Hypoacetylation in Human Keratinocytes.

    PubMed

    Zhang, Xiaoru; Kluz, Thomas; Gesumaria, Lisa; Matsui, Mary S; Costa, Max; Sun, Hong

    2016-01-01

    Ultraviolet radiation (UVR) from sunlight is the primary effector of skin DNA damage. Chromatin remodeling and histone post-translational modification (PTM) are critical factors in repairing DNA damage and maintaining genomic integrity, however, the dynamic changes of histone marks in response to solar UVR are not well characterized. Here we report global changes in histone PTMs induced by solar simulated UVR (ssUVR). A decrease in lysine acetylation of histones H3 and H4, particularly at positions of H3 lysine 9, lysine 56, H4 lysine 5, and lysine 16, was found in human keratinocytes exposed to ssUVR. These acetylation changes were highly associated with ssUVR in a dose-dependent and time-specific manner. Interestingly, H4K16ac, a mark that is crucial for higher order chromatin structure, exhibited a persistent reduction by ssUVR that was transmitted through multiple cell divisions. In addition, the enzymatic activities of histone acetyltransferases were significantly reduced in irradiated cells, which may account for decreased global acetylation. Moreover, depletion of histone deacetylase SIRT1 in keratinocytes rescued ssUVR-induced H4K16 hypoacetylation. These results indicate that ssUVR affects both HDAC and HAT activities, leading to reduced histone acetylation.

  14. CSR-1 RNAi pathway positively regulates histone expression in C. elegans

    PubMed Central

    Avgousti, Daphne C; Palani, Santhosh; Sherman, Yekaterina; Grishok, Alla

    2012-01-01

    Endogenous small interfering RNAs (endo-siRNAs) have been discovered in many organisms, including mammals. In C. elegans, depletion of germline-enriched endo-siRNAs found in complex with the CSR-1 Argonaute protein causes sterility and defects in chromosome segregation in early embryos. We discovered that knockdown of either csr-1, the RNA-dependent RNA polymerase (RdRP) ego-1, or the dicer-related helicase drh-3, leads to defects in histone mRNA processing, resulting in severe depletion of core histone proteins. The maturation of replication-dependent histone mRNAs, unlike that of other mRNAs, requires processing of their 3′UTRs through an endonucleolytic cleavage guided by the U7 snRNA, which is lacking in C. elegans. We found that CSR-1-bound antisense endo-siRNAs match histone mRNAs and mRNA precursors. Consistently, we demonstrate that CSR-1 directly binds to histone mRNA in an ego-1-dependent manner using biotinylated 2′-O-methyl RNA oligonucleotides. Moreover, we demonstrate that increasing the dosage of histone genes rescues the lethality associated with depletion of CSR-1 and EGO-1. These results support a positive and direct effect of RNAi on histone gene expression. PMID:22863779

  15. CSR-1 RNAi pathway positively regulates histone expression in C. elegans.

    PubMed

    Avgousti, Daphne C; Palani, Santhosh; Sherman, Yekaterina; Grishok, Alla

    2012-10-03

    Endogenous small interfering RNAs (endo-siRNAs) have been discovered in many organisms, including mammals. In C. elegans, depletion of germline-enriched endo-siRNAs found in complex with the CSR-1 Argonaute protein causes sterility and defects in chromosome segregation in early embryos. We discovered that knockdown of either csr-1, the RNA-dependent RNA polymerase (RdRP) ego-1, or the dicer-related helicase drh-3, leads to defects in histone mRNA processing, resulting in severe depletion of core histone proteins. The maturation of replication-dependent histone mRNAs, unlike that of other mRNAs, requires processing of their 3'UTRs through an endonucleolytic cleavage guided by the U7 snRNA, which is lacking in C. elegans. We found that CSR-1-bound antisense endo-siRNAs match histone mRNAs and mRNA precursors. Consistently, we demonstrate that CSR-1 directly binds to histone mRNA in an ego-1-dependent manner using biotinylated 2'-O-methyl RNA oligonucleotides. Moreover, we demonstrate that increasing the dosage of histone genes rescues the lethality associated with depletion of CSR-1 and EGO-1. These results support a positive and direct effect of RNAi on histone gene expression.

  16. Linker histone partial phosphorylation: effects on secondary structure and chromatin condensation

    PubMed Central

    Lopez, Rita; Sarg, Bettina; Lindner, Herbert; Bartolomé, Salvador; Ponte, Inma; Suau, Pedro; Roque, Alicia

    2015-01-01

    Linker histones are involved in chromatin higher-order structure and gene regulation. We have successfully achieved partial phosphorylation of linker histones in chicken erythrocyte soluble chromatin with CDK2, as indicated by HPCE, MALDI-TOF and Tandem MS. We have studied the effects of linker histone partial phosphorylation on secondary structure and chromatin condensation. Infrared spectroscopy analysis showed a gradual increase of β-structure in the phosphorylated samples, concomitant to a decrease in α-helix/turns, with increasing linker histone phosphorylation. This conformational change could act as the first step in the phosphorylation-induced effects on chromatin condensation. A decrease of the sedimentation rate through sucrose gradients of the phosphorylated samples was observed, indicating a global relaxation of the 30-nm fiber following linker histone phosphorylation. Analysis of specific genes, combining nuclease digestion and qPCR, showed that phosphorylated samples were more accessible than unphosphorylated samples, suggesting local chromatin relaxation. Chromatin aggregation was induced by MgCl2 and analyzed by dynamic light scattering (DLS). Phosphorylated chromatin had lower percentages in volume of aggregated molecules and the aggregates had smaller hydrodynamic diameter than unphosphorylated chromatin, indicating that linker histone phosphorylation impaired chromatin aggregation. These findings provide new insights into the effects of linker histone phosphorylation in chromatin condensation. PMID:25870416

  17. Nucleosome Recognition by the Piccolo NuA4 Histone Acetyltransferase Complex†

    PubMed Central

    Berndsen, Christopher E.; Selleck, William; McBryant, Steven J.; Hansen, Jeffrey C.; Tan, Song; Demi, John M.

    2007-01-01

    The mechanisms by which multisubunit histone acetyltransferase (HAT) complexes recognize and perform efficient acetylation on nucleosome substrates are largely unknown. Here, we use a variety of biochemical approaches and compare histone-based substrates of increasing complexity to determine the critical components of nucleosome recognition by the MOZ, Ybf2/Sas3, Sas2, Tip60 family HAT complex, Piccolo NuA4 (picNuA4). We find the histone tails to be dispensable for binding to both nucleosomes and free histones and that the H2A, H3, and H2B tails do not influence the ability of picNuA4 to tetra-acetylate the H4 tail within the nucleosome. Most notably, we discovered that the histone-fold domain (HFD) regions of histones, particularly residues 21–52 of H4, are critical for tight binding and efficient tail acetylation. Presented evidence suggests that picNuA4 recognizes the open surface of the nucleosome on which the HFD of H4 is located. This binding mechanism serves to direct substrate access to the tails of H4 and H2A and allows the enzyme to be “tethered”, thereby increasing the effective concentration of the histone tail and permitting successive cycles of H4 tail acetylation. PMID:17274630

  18. Solar Simulated Ultraviolet Radiation Induces Global Histone Hypoacetylation in Human Keratinocytes

    PubMed Central

    Zhang, Xiaoru; Kluz, Thomas; Gesumaria, Lisa; Matsui, Mary S.; Costa, Max; Sun, Hong

    2016-01-01

    Ultraviolet radiation (UVR) from sunlight is the primary effector of skin DNA damage. Chromatin remodeling and histone post-translational modification (PTM) are critical factors in repairing DNA damage and maintaining genomic integrity, however, the dynamic changes of histone marks in response to solar UVR are not well characterized. Here we report global changes in histone PTMs induced by solar simulated UVR (ssUVR). A decrease in lysine acetylation of histones H3 and H4, particularly at positions of H3 lysine 9, lysine 56, H4 lysine 5, and lysine 16, was found in human keratinocytes exposed to ssUVR. These acetylation changes were highly associated with ssUVR in a dose-dependent and time-specific manner. Interestingly, H4K16ac, a mark that is crucial for higher order chromatin structure, exhibited a persistent reduction by ssUVR that was transmitted through multiple cell divisions. In addition, the enzymatic activities of histone acetyltransferases were significantly reduced in irradiated cells, which may account for decreased global acetylation. Moreover, depletion of histone deacetylase SIRT1 in keratinocytes rescued ssUVR-induced H4K16 hypoacetylation. These results indicate that ssUVR affects both HDAC and HAT activities, leading to reduced histone acetylation. PMID:26918332

  19. Thermodynamics of ligand binding to histone deacetylase like amidohydrolase from Bordetella/Alcaligenes.

    PubMed

    Meyners, Christian; Baud, Matthias G J; Fuchter, Matthew J; Meyer-Almes, Franz-Josef

    2014-03-01

    Thermodynamic studies on ligand-protein binding have become increasingly important in the process of drug design. In combination with structural data and molecular dynamics simulations, thermodynamic studies provide relevant information about the mode of interaction between compounds and their target proteins and therefore build a sound basis for further drug optimization. Using the example of histone deacetylases (HDACs), particularly the histone deacetylase like amidohydrolase (HDAH) from Bordetella/Alcaligenes, a novel sensitive competitive fluorescence resonance energy transfer-based binding assay was developed and the thermodynamics of interaction of both fluorescent ligands and inhibitors to histone deacetylase like amidohydrolase were investigated. The assay consumes only small amounts of valuable target proteins and is suitable for fast kinetic and mechanistic studies as well as high throughput screening applications. Binding affinity increased with increasing length of aliphatic spacers (n = 4-7) between the hydroxamate moiety and the dansyl head group of ligand probes. Van't Hoff plots revealed an optimum in enthalpy contribution to the free energy of binding for the dansyl-ligand with hexyl spacer. The selectivity in the series of dansyl-ligands against human class I HDAC1 but not class II HDACs 4 and 6 increased with the ratio of ΔH(0)/ΔG(0). The data clearly emphasize the importance of thermodynamic signatures as useful general guidance for the optimization of ligands or rational drug design. Copyright © 2014 John Wiley & Sons, Ltd.

  20. NOK mediates glycolysis and nuclear PDC associated histone acetylation.

    PubMed

    Shi, Wei-Ye; Yang, Xiao; Huang, Bo; Shen, Wen H; Liu, Li

    2017-06-01

    NOK is a potent oncogene that can transform normal cells to cancer cells. We hypothesized that NOK might impact cancer cell metabolism and histone acetylation. We show that NOK localizes in the mitochondria, and while it minimally impacts tricarboxylic acid (TCA) cycle, it markedly inhibits the process of electron transport and oxidative phosphorylation processes and dramatically enhances aerobic glycolysis in cancer cells. NOK promotes the mitochondrial-nuclear translocation of pyruvate dehydrogenase complex (PDC), and enhances histone acetylation in the nucleus. Together, these findings show that NOK mediates glycolysis and nuclear PDC associated histone acetylation.

  1. Histone methylations in heart development, congenital and adult heart diseases.

    PubMed

    Zhang, Qing-Jun; Liu, Zhi-Ping

    2015-01-01

    Heart development comprises myocyte specification, differentiation and cardiac morphogenesis. These processes are regulated by a group of core cardiac transcription factors in a coordinated temporal and spatial manner. Histone methylation is an emerging epigenetic mechanism for regulating gene transcription. Interplay among cardiac transcription factors and histone lysine modifiers plays important role in heart development. Aberrant expression and mutation of the histone lysine modifiers during development and in adult life can cause either embryonic lethality or congenital heart diseases, and influences the response of adult hearts to pathological stresses. In this review, we describe current body of literature on the role of several common histone methylations and their modifying enzymes in heart development, congenital and adult heart diseases.

  2. Identification and Characterization of Switchgrass Histone H3 and CENH3 Genes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Miao, Jiamin; Frazier, Taylor; Huang, Linkai

    Switchgrass is one of the most promising energy crops and only recently has been employed for biofuel production. The draft genome of switchgrass was recently released; however, relatively few switchgrass genes have been functionally characterized. CENH3, the major histone protein found in centromeres, along with canonical H3 and other histones, plays an important role in maintaining genome stability and integrity. Despite their importance, the histone H3 genes of switchgrass have remained largely uninvestigated. In this study, we identified 17 putative switchgrass histone H3 genes in silico. Of these genes, 15 showed strong homology to histone H3 genes including six H3.1more » genes, three H3.3 genes, four H3.3-like genes and two H3.1-like genes. The remaining two genes were found to be homologous to CENH3. RNA-seq data derived from lowland cultivar Alamo and upland cultivar Dacotah allowed us to identify SNPs in the histone H3 genes and compare their differential gene expression. Interestingly, we also found that overexpression of switchgrass histone H3 and CENH3 genes in N. benthamiana could trigger cell death of the transformed plant cells. Localization and deletion analyses of the histone H3 and CENH3 genes revealed that nuclear localization of the N-terminal tail is essential and sufficient for triggering the cell death phenotype. Lastly, our results deliver insight into the mechanisms underlying the histone-triggered cell death phenotype and provide a foundation for further studying the variations of the histone H3 and CENH3 genes in switchgrass.« less

  3. Identification and Characterization of Switchgrass Histone H3 and CENH3 Genes

    DOE PAGES

    Miao, Jiamin; Frazier, Taylor; Huang, Linkai; ...

    2016-07-12

    Switchgrass is one of the most promising energy crops and only recently has been employed for biofuel production. The draft genome of switchgrass was recently released; however, relatively few switchgrass genes have been functionally characterized. CENH3, the major histone protein found in centromeres, along with canonical H3 and other histones, plays an important role in maintaining genome stability and integrity. Despite their importance, the histone H3 genes of switchgrass have remained largely uninvestigated. In this study, we identified 17 putative switchgrass histone H3 genes in silico. Of these genes, 15 showed strong homology to histone H3 genes including six H3.1more » genes, three H3.3 genes, four H3.3-like genes and two H3.1-like genes. The remaining two genes were found to be homologous to CENH3. RNA-seq data derived from lowland cultivar Alamo and upland cultivar Dacotah allowed us to identify SNPs in the histone H3 genes and compare their differential gene expression. Interestingly, we also found that overexpression of switchgrass histone H3 and CENH3 genes in N. benthamiana could trigger cell death of the transformed plant cells. Localization and deletion analyses of the histone H3 and CENH3 genes revealed that nuclear localization of the N-terminal tail is essential and sufficient for triggering the cell death phenotype. Lastly, our results deliver insight into the mechanisms underlying the histone-triggered cell death phenotype and provide a foundation for further studying the variations of the histone H3 and CENH3 genes in switchgrass.« less

  4. Absolute quantification of histone PTM marks by MRM-based LC-MS/MS.

    PubMed

    Gao, Jun; Liao, Rijing; Yu, Yanyan; Zhai, Huili; Wang, Yingqi; Sack, Ragna; Peters, Antoine H F M; Chen, Jiajia; Wu, Haiping; Huang, Zheng; Hu, Min; Qi, Wei; Lu, Chris; Atadja, Peter; Oyang, Counde; Li, En; Yi, Wei; Zhou, Shaolian

    2014-10-07

    The N-terminal tails of core histones harbor the sites of numerous post-translational modifications (PTMs) with important roles in the regulation of chromatin structure and function. Profiling histone PTM marks provides data that help understand the epigenetics events in cells and their connections with cancer and other diseases. Our previous study demonstrated that specific derivatization of histone peptides by NHS propionate significantly improved their chromatographic performance on reversed phase columns for LC/MS analysis. As a step forward, we recently developed a multiple reaction monitoring (MRM) based LC-MS/MS method to analyze 42 targeted histone peptides. By using stable isotopic labeled peptides as internal standards that are spiked into the reconstituted solutions, this method allows to measure absolute concentration of the tryptic peptides of H3 histone proteins extracted from cancer cell lines. The method was thoroughly validated for the accuracy and reproducibility through analyzing recombinant histone proteins and cellular samples. The linear dynamic range of the MRM assays was achieved in 3 orders of magnitude from 1 nM to 1 μM for all targeted peptides. Excellent intrabatch and interbatch reproducibility (<15% CV) was obtained. This method has been used to study translocated NSD2 (a histone lysine methyltransferase that catalyzes the histone lysine 36 methylation) function with its overexpression in KMS11 multiple myeloma cells. From the results we have successfully quantitated both individual and combinatorial histone marks in parental and NSD2 selective knockout KMS11 cells.

  5. Histone deacetylase inhibitors augment doxorubicin-induced DNA damage in cardiomyocytes.

    PubMed

    Ververis, Katherine; Rodd, Annabelle L; Tang, Michelle M; El-Osta, Assam; Karagiannis, Tom C

    2011-12-01

    Histone deacetylase inhibitors have emerged as a new class of anticancer therapeutics with suberoylanilide hydroxamic acid (Vorinostat) and depsipeptide (Romidepsin) already being approved for clinical use. Numerous studies have identified that histone deacetylase inhibitors will be most effective in the clinic when used in combination with conventional cancer therapies such as ionizing radiation and chemotherapeutic agents. One promising combination, particularly for hematologic malignancies, involves the use of histone deacetylase inhibitors with the anthracycline, doxorubicin. However, we previously identified that trichostatin A can potentiate doxorubicin-induced hypertrophy, the dose-limiting side-effect of the anthracycline, in cardiac myocytes. Here we have the extended the earlier studies and evaluated the effects of combinations of the histone deacetylase inhibitors, trichostatin A, valproic acid and sodium butyrate on doxorubicin-induced DNA double-strand breaks in cardiomyocytes. Using γH2AX as a molecular marker for the DNA lesions, we identified that all of the broad-spectrum histone deacetylase inhibitors tested augment doxorubicin-induced DNA damage. Furthermore, it is evident from the fluorescence photomicrographs of stained nuclei that the histone deacetylase inhibitors also augment doxorubicin-induced hypertrophy. These observations highlight the importance of investigating potential side-effects, in relevant model systems, which may be associated with emerging combination therapies for cancer.

  6. A Structural Perspective on Readout of Epigenetic Histone and DNA Methylation Marks

    PubMed Central

    Patel, Dinshaw J.

    2016-01-01

    SUMMARY This article outlines the protein modules that target methylated lysine histone marks and 5mC DNA marks, and the molecular principles underlying recognition. The article focuses on the structural basis underlying readout of isolated marks by single reader molecules, as well as multivalent readout of multiple marks by linked reader cassettes at the histone tail and nucleosome level. Additional topics addressed include the role of histone mimics, cross talk between histone marks, technological developments at the genome-wide level, advances using chemical biology approaches, the linkage between histone and DNA methylation, the role for regulatory lncRNAs, and the promise of chromatin-based therapeutic modalities. PMID:26931326

  7. Chemical and Biological Tools for the Preparation of Modified Histone Proteins

    PubMed Central

    Howard, Cecil J.; Yu, Ruixuan R.; Gardner, Miranda L.; Shimko, John C.; Ottesen, Jennifer J.

    2016-01-01

    Eukaryotic chromatin is a complex and dynamic system in which the DNA double helix is organized and protected by interactions with histone proteins. This system is regulated through, a large network of dynamic post-translational modifications (PTMs) exists to ensure proper gene transcription, DNA repair, and other processes involving DNA. Homogenous protein samples with precisely characterized modification sites are necessary to better understand the functions of modified histone proteins. Here, we discuss sets of chemical and biological tools that have been developed for the preparation of modified histones, with a focus on the appropriate choice of tool for a given target. We start with genetic approaches for the creation of modified histones, including the incorporation of genetic mimics of histone modifications, chemical installation of modification analogs, and the use of the expanded genetic code to incorporate modified amino acids. Additionally, we will cover the chemical ligation techniques that have been invaluable in the generation of complex modified histones that are indistinguishable from the natural counterparts. Finally, we will end with a prospectus on future directions of synthetic chromatin in living systems. PMID:25863817

  8. Post-Training Intrahippocampal Inhibition of Class I Histone Deacetylases Enhances Long-Term Object-Location Memory

    ERIC Educational Resources Information Center

    Hawk, Joshua D.; Florian, Cedrick; Abel, Ted

    2011-01-01

    Long-term memory formation involves covalent modification of the histone proteins that package DNA. Reducing histone acetylation by mutating histone acetyltransferases impairs long-term memory, and enhancing histone acetylation by inhibiting histone deacetylases (HDACs) improves long-term memory. Previous studies using HDAC inhibitors to enhance…

  9. The C Terminus of the Histone Chaperone Asf1 Cross-Links to Histone H3 in Yeast and Promotes Interaction with Histones H3 and H4

    PubMed Central

    Dennehey, Briana K.; Noone, Seth; Liu, Wallace H.; Smith, Luke

    2013-01-01

    The central histone H3/H4 chaperone Asf1 comprises a highly conserved globular core and a divergent C-terminal tail. While the function and structure of the Asf1 core are well known, the function of the tail is less well understood. Here, we have explored the role of the yeast (yAsf1) and human (hAsf1a and hAsf1b) Asf1 tails in Saccharomyces cerevisiae. We show, using a photoreactive, unnatural amino acid, that Asf1 tail residue 210 cross-links to histone H3 in vivo and, further, that loss of C-terminal tail residues 211 to 279 weakens yAsf1-histone binding affinity in vitro nearly 200-fold. Via several yAsf1 C-terminal truncations and yeast-human chimeric proteins, we found that truncations at residue 210 increase transcriptional silencing and that the hAsf1a tail partially substitutes for full-length yAsf1 with respect to silencing but that full-length hAsf1b is a better overall substitute for full-length yAsf1. In addition, we show that the C-terminal tail of Asf1 is phosphorylated at T270 in yeast. Loss of this phosphorylation site does not prevent coimmunoprecipitation of yAsf1 and Rad53 from yeast extracts, whereas amino acid residue substitutions at the Asf1-histone H3/H4 interface do. Finally, we show that residue substitutions in yAsf1 near the CAF-1/HIRA interface also influence yAsf1's function in silencing. PMID:23184661

  10. Core histone genes of Giardia intestinalis: genomic organization, promoter structure, and expression

    PubMed Central

    Yee, Janet; Tang, Anita; Lau, Wei-Ling; Ritter, Heather; Delport, Dewald; Page, Melissa; Adam, Rodney D; Müller, Miklós; Wu, Gang

    2007-01-01

    Background Giardia intestinalis is a protist found in freshwaters worldwide, and is the most common cause of parasitic diarrhea in humans. The phylogenetic position of this parasite is still much debated. Histones are small, highly conserved proteins that associate tightly with DNA to form chromatin within the nucleus. There are two classes of core histone genes in higher eukaryotes: DNA replication-independent histones and DNA replication-dependent ones. Results We identified two copies each of the core histone H2a, H2b and H3 genes, and three copies of the H4 gene, at separate locations on chromosomes 3, 4 and 5 within the genome of Giardia intestinalis, but no gene encoding a H1 linker histone could be recognized. The copies of each gene share extensive DNA sequence identities throughout their coding and 5' noncoding regions, which suggests these copies have arisen from relatively recent gene duplications or gene conversions. The transcription start sites are at triplet A sequences 1–27 nucleotides upstream of the translation start codon for each gene. We determined that a 50 bp region upstream from the start of the histone H4 coding region is the minimal promoter, and a highly conserved 15 bp sequence called the histone motif (him) is essential for its activity. The Giardia core histone genes are constitutively expressed at approximately equivalent levels and their mRNAs are polyadenylated. Competition gel-shift experiments suggest that a factor within the protein complex that binds him may also be a part of the protein complexes that bind other promoter elements described previously in Giardia. Conclusion In contrast to other eukaryotes, the Giardia genome has only a single class of core histone genes that encode replication-independent histones. Our inability to locate a gene encoding the linker histone H1 leads us to speculate that the H1 protein may not be required for the compaction of Giardia's small and gene-rich genome. PMID:17425802

  11. Histone acetyltransferase general control non-repressed protein 5 (GCN5) affects the fatty acid composition of Arabidopsis thaliana seeds by acetylating fatty acid desaturase3 (FAD3).

    PubMed

    Wang, Tianya; Xing, Jiewen; Liu, Xinye; Liu, Zhenshan; Yao, Yingyin; Hu, Zhaorong; Peng, Huiru; Xin, Mingming; Zhou, Dao-Xiu; Zhang, Yirong; Ni, Zhongfu

    2016-12-01

    Seed oils are important natural resources used in the processing and preparation of food. Histone modifications represent key epigenetic mechanisms that regulate gene expression, plant growth and development. However, histone modification events during fatty acid (FA) biosynthesis are not well understood. Here, we demonstrate that a mutation of the histone acetyltransferase GCN5 can decrease the ratio of α-linolenic acid (ALA) to linoleic acid (LA) in seed oil. Using RNA-Seq and ChIP assays, we identified FAD3, LACS2, LPP3 and PLAIIIβ as the targets of GCN5. Notably, the GCN5-dependent H3K9/14 acetylation of FAD3 determined the expression levels of FAD3 in Arabidopsis thaliana seeds, and the ratio of ALA/LA in the gcn5 mutant was rescued to the wild-type levels through the overexpression of FAD3. The results of this study indicated that GCN5 modulated FA biosynthesis by affecting the acetylation levels of FAD3. We provide evidence that histone acetylation is involved in FA biosynthesis in Arabidopsis seeds and might contribute to the optimization of the nutritional structure of edible oils through epigenetic engineering. © 2016 The Authors The Plant Journal © 2016 John Wiley & Sons Ltd.

  12. Herpes simplex virus VP16, but not ICP0, is required to reduce histone occupancy and enhance histone acetylation on viral genomes in U2OS osteosarcoma cells.

    PubMed

    Hancock, Meaghan H; Cliffe, Anna R; Knipe, David M; Smiley, James R

    2010-02-01

    The herpes simplex virus (HSV) genome rapidly becomes associated with histones after injection into the host cell nucleus. The viral proteins ICP0 and VP16 are required for efficient viral gene expression and have been implicated in reducing the levels of underacetylated histones on the viral genome, raising the possibility that high levels of underacetylated histones inhibit viral gene expression. The U2OS osteosarcoma cell line is permissive for replication of ICP0 and VP16 mutants and appears to lack an innate antiviral repression mechanism present in other cell types. We therefore used chromatin immunoprecipitation to determine whether U2OS cells are competent to load histones onto HSV DNA and, if so, whether ICP0 and/or VP16 are required to reduce histone occupancy and enhance acetylation in this cell type. High levels of underacetylated histone H3 accumulated at several locations on the viral genome in the absence of VP16 activation function; in contrast, an ICP0 mutant displayed markedly reduced histone levels and enhanced acetylation, similar to wild-type HSV. These results demonstrate that U2OS cells are competent to load underacetylated histones onto HSV DNA and uncover an unexpected role for VP16 in modulating chromatin structure at viral early and late loci. One interpretation of these findings is that ICP0 and VP16 affect viral chromatin structure through separate pathways, and the pathway targeted by ICP0 is defective in U2OS cells. We also show that HSV infection results in decreased histone levels on some actively transcribed genes within the cellular genome, demonstrating that viral infection alters cellular chromatin structure.

  13. Chemical and Biochemical Approaches in the Study of Histone Methylation and Demethylation

    PubMed Central

    Li, Keqin Kathy; Luo, Cheng; Wang, Dongxia; Jiang, Hualiang; Zheng, Y. George

    2014-01-01

    Histone methylation represents one of the most critical epigenetic events in DNA function regulation in eukaryotic organisms. Classic molecular biology and genetics tools provide significant knowledge about mechanisms and physiological roles of histone methyltransferases and demethylases in various cellular processes. In addition to this stream line, development and application of chemistry and chemistry-related techniques are increasingly involved in biological study, and provide information otherwise difficulty to obtain by standard molecular biology methods. Herein, we review recent achievements and progress in developing and applying chemical and biochemical approaches in the study of histone methylation, including chromatin immunoprecipitation (ChIP), chemical ligation, mass spectrometry (MS), biochemical assays, and inhibitor development. These technological advances allow histone methylation to be studied from genome-wide level to molecular and atomic levels. With ChIP technology, information can be obtained about precise mapping of histone methylation patterns at specific promoters, genes or other genomic regions. MS is particularly useful in detecting and analyzing methylation marks in histone and nonhistone protein substrates. Chemical approaches that permit site-specific incorporation of methyl groups into histone proteins greatly facilitate the investigation of the biological impacts of methylation at individual modification sites. Discovery and design of selective organic inhibitors of histone methyltransferases and demethylases provide chemical probes to interrogate methylation-mediated cellular pathways. Overall, these chemistry-related technological advances have greatly improved our understanding of the biological functions of histone methylation in normal physiology and diseased states, and also are of great potential to translate basic epigenetics research into diagnostic and therapeutic application in the clinic. PMID:22777714

  14. Population differences in platinum toxicity as a means to identify novel genetic susceptibility variants

    PubMed Central

    O'Donnell, Peter H.; Gamazon, Eric; Zhang, Wei; Stark, Amy L.; Kistner-Griffin, Emily O.; Huang, R. Stephanie; Dolan, M. Eileen

    2010-01-01

    Objectives Clinical studies show that Asians (ASN) are more susceptible to toxicities associated with platinum-containing regimens. We hypothesized that studying ASN as an `enriched phenotype' population could enable the discovery of novel genetic determinants of platinum susceptibility. Methods Using well-genotyped lymphoblastoid cell lines from the HapMap, we determined cisplatin and carboplatin cytotoxicity phenotypes (IC50s) for ASN, Caucasians (CEU), and Africans (YRI). IC50s were used in genome-wide association studies. Results ASN were most sensitive to platinums, corroborating clinical findings. ASN genome-wide association studies produced 479 single-nucleotide polymorphisms (SNPs) associating with cisplatin susceptibility and 199 with carboplatin susceptibility (P<10−4). Considering only the most significant variants (P< 9.99 × 10−6), backwards elimination was then used to identify reduced-model SNPs, which robustly described the drug phenotypes within ASN. These SNPs comprised highly descriptive genetic signatures of susceptibility, with 12 SNPs explaining more than 95% of the susceptibility phenotype variation for cisplatin, and eight SNPs approximately 75% for carboplatin. To determine the possible function of these variants in ASN, the SNPs were tested for association with differential expression of target genes. SNPs were highly associated with the expression of multiple target genes, and notably, the histone H3 family was implicated for both drugs, suggesting a platinum-class mechanism. Histone H3 has repeatedly been described as regulating the formation of platinum-DNA adducts, but this is the first evidence that specific genetic variants might mediate these interactions in a pharmacogenetic manner. Finally, to determine whether any ASN-identified SNPs might also be important in other human populations, we interrogated all 479/199 SNPs for association with platinum susceptibility in an independent combined CEU/YRI population. Three unique SNPs

  15. The Histone Demethylase Jhdm1a Regulates Hepatic Gluconeogenesis

    PubMed Central

    Zou, Tie; Yao, Annie Y.; Cooper, Marcus P.; Boyartchuk, Victor; Wang, Yong-Xu

    2012-01-01

    Hepatic gluconeogenesis is required for maintaining blood glucose homeostasis; yet, in diabetes mellitus, this process is unrestrained and is a major contributor to fasting hyperglycemia. To date, the impacts of chromatin modifying enzymes and chromatin landscape on gluconeogenesis are poorly understood. Through catalyzing the removal of methyl groups from specific lysine residues in the histone tail, histone demethylases modulate chromatin structure and, hence, gene expression. Here we perform an RNA interference screen against the known histone demethylases and identify a histone H3 lysine 36 (H3K36) demethylase, Jhdm1a, as a key negative regulator of gluconeogenic gene expression. In vivo, silencing of Jhdm1a promotes liver glucose synthesis, while its exogenous expression reduces blood glucose level. Importantly, the regulation of gluconeogenesis by Jhdm1a requires its demethylation activity. Mechanistically, we find that Jhdm1a regulates the expression of a major gluconeogenic regulator, C/EBPα. This is achieved, at least in part, by its USF1-dependent association with the C/EBPα promoter and its subsequent demethylation of dimethylated H3K36 on the C/EBPα locus. Our work provides compelling evidence that links histone demethylation to transcriptional regulation of gluconeogenesis and has important implications for the treatment of diabetes. PMID:22719268

  16. Prostate Cancer Prevention by Sulforaphane, a Novel Dietary Histone Deacetylase Inhibitor

    DTIC Science & Technology

    2008-01-01

    sulforaphane , a novel dietary histone deacetylase inhibitor PRINCIPAL INVESTIGATOR: Yu Zhen CONTRACTING ORGANIZATION: Oregon State...ANNUAL 3. DATES COVERED 1 JAN 2007 - 31 DEC 2007 4. TITLE AND SUBTITLE Prostate cancer prevention by sulforaphane , a novel dietary histone deacetylase...Prostate cancer is the second leading cause of cancer related death in men. To test Sulforaphane (SFN) as a novel histone deacetylases (HDAC) inhibitor

  17. Histone 2A stimulates glucose-6-phosphatase activity by permeabilization of liver microsomes.

    PubMed

    Benedetti, Angelo; Fulceri, Rosella; Allan, Bernard B; Houston, Pamela; Sukhodub, Andrey L; Marcolongo, Paola; Ethell, Brian; Burchell, Brian; Burchell, Ann

    2002-10-15

    Histone 2A increases glucose-6-phosphatase activity in liver microsomes. The effect has been attributed either to the conformational change of the enzyme, or to the permeabilization of microsomal membrane that allows the free access of substrate to the intraluminal glucose-6-phosphatase catalytic site. The aim of the present study was the critical reinvestigation of the mechanism of action of histone 2A. It has been found that the dose-effect curve of histone 2A is different from that of detergents and resembles that of the pore-forming alamethicin. Inhibitory effects of EGTA on glucose-6-phosphatase activity previously reported in histone 2A-treated microsomes have been also found in alamethicin-permeabilized vesicles. The effect of EGTA cannot therefore simply be an antagonization of the effect of histone 2A. Histone 2A stimulates the activity of another latent microsomal enzyme, UDP-glucuronosyltransferase, which has an intraluminal catalytic site. Finally, histone 2A renders microsomal vesicles permeable to non-permeant compounds. Taken together, the results demonstrate that histone 2A stimulates glucose-6-phosphatase activity by permeabilizing the microsomal membrane.

  18. Histone 2A stimulates glucose-6-phosphatase activity by permeabilization of liver microsomes.

    PubMed Central

    Benedetti, Angelo; Fulceri, Rosella; Allan, Bernard B; Houston, Pamela; Sukhodub, Andrey L; Marcolongo, Paola; Ethell, Brian; Burchell, Brian; Burchell, Ann

    2002-01-01

    Histone 2A increases glucose-6-phosphatase activity in liver microsomes. The effect has been attributed either to the conformational change of the enzyme, or to the permeabilization of microsomal membrane that allows the free access of substrate to the intraluminal glucose-6-phosphatase catalytic site. The aim of the present study was the critical reinvestigation of the mechanism of action of histone 2A. It has been found that the dose-effect curve of histone 2A is different from that of detergents and resembles that of the pore-forming alamethicin. Inhibitory effects of EGTA on glucose-6-phosphatase activity previously reported in histone 2A-treated microsomes have been also found in alamethicin-permeabilized vesicles. The effect of EGTA cannot therefore simply be an antagonization of the effect of histone 2A. Histone 2A stimulates the activity of another latent microsomal enzyme, UDP-glucuronosyltransferase, which has an intraluminal catalytic site. Finally, histone 2A renders microsomal vesicles permeable to non-permeant compounds. Taken together, the results demonstrate that histone 2A stimulates glucose-6-phosphatase activity by permeabilizing the microsomal membrane. PMID:12097138

  19. Aberrant levels of histone H3 acetylation induce spermatid anomaly in mouse testis.

    PubMed

    Dai, Lei; Endo, Daisuke; Akiyama, Naotaro; Yamamoto-Fukuda, Tomomi; Koji, Takehiko

    2015-02-01

    Histone acetylation is involved in the regulation of chromatin structure and gene function. We reported previously that histone H3 acetylation pattern is subject to dynamic changes and limited to certain stages of germ cell differentiation during murine spermatogenesis, suggesting a crucial role for acetylation in the process. In the present study, we investigated the effects of hyper- and hypo-acetylation on spermatogenesis. Changes in acetylation level were induced by either in vivo administration of sodium phenylbutyrate, a histone deacetylase inhibitor, or by knockdown of histone acetyltransferases using short hairpin RNA plasmids transfection. Administration of sodium phenylbutyrate induced accumulation of acetylated histone H3 at lysine 9 and lysine 18 in round spermatids, together with spermatid morphological abnormalities and induction of apoptosis through a Bax-related pathway. Knockdown of steroid receptor coactivator 1, a member of histone acetyltransferases, but not general control of amino acid synthesis 5 nor elongator protein 3 by in vivo electroporation of shRNA plasmids, reduced acetylated histone H3 at lysine 9 in round spermatids, and induced morphological abnormalities. We concluded that the proper regulation of histone H3 acetylation levels is important for spermatid differentiation and complex chromatin remodeling during spermiogenesis.

  20. POTAMOS mass spectrometry calculator: computer aided mass spectrometry to the post-translational modifications of proteins. A focus on histones.

    PubMed

    Vlachopanos, A; Soupsana, E; Politou, A S; Papamokos, G V

    2014-12-01

    Mass spectrometry is a widely used technique for protein identification and it has also become the method of choice in order to detect and characterize the post-translational modifications (PTMs) of proteins. Many software tools have been developed to deal with this complication. In this paper we introduce a new, free and user friendly online software tool, named POTAMOS Mass Spectrometry Calculator, which was developed in the open source application framework Ruby on Rails. It can provide calculated mass spectrometry data in a time saving manner, independently of instrumentation. In this web application we have focused on a well known protein family of histones whose PTMs are believed to play a crucial role in gene regulation, as suggested by the so called "histone code" hypothesis. The PTMs implemented in this software are: methylations of arginines and lysines, acetylations of lysines and phosphorylations of serines and threonines. The application is able to calculate the kind, the number and the combinations of the possible PTMs corresponding to a given peptide sequence and a given mass along with the full set of the unique primary structures produced by the possible distributions along the amino acid sequence. It can also calculate the masses and charges of a fragmented histone variant, which carries predefined modifications already implemented. Additional functionality is provided by the calculation of the masses of fragments produced upon protein cleavage by the proteolytic enzymes that are most widely used in proteomics studies. Copyright © 2014 Elsevier Ltd. All rights reserved.

  1. Actin and DNA Protect Histones from Degradation by Bacterial Proteases but Inhibit Their Antimicrobial Activity

    PubMed Central

    Sol, Asaf; Skvirsky, Yaniv; Blotnick, Edna; Bachrach, Gilad; Muhlrad, Andras

    2016-01-01

    Histones are small polycationic proteins located in the cell nucleus. Together, DNA and histones are integral constituents of the nucleosomes. Upon apoptosis, necrosis, and infection – induced cell death, histones are released from the cell. The extracellular histones have strong antimicrobial activity but are also cytotoxic and thought as mediators of cell death in sepsis. The antimicrobial activity of the cationic extracellular histones is inhibited by the polyanionic DNA and F-actin, which also become extracellular upon cell death. DNA and F-actin protect histones from degradation by the proteases of Pseudomonas aeruginosa and Porphyromonas gingivalis. However, though the integrity of the histones is protected, the activity of histones as antibacterial agents is lost. The inhibition of the histone’s antibacterial activity and their protection from proteolysis by DNA and F-actin indicate a tight electrostatic interaction between the positively charged histones and negatively charged DNA and F-actin, which may have physiological significance in maintaining the equilibrium between the beneficial antimicrobial activity of extracellular histones and their cytotoxic effects. PMID:27555840

  2. Histone phosphorylation: its role during cell cycle and centromere identity in plants.

    PubMed

    Zhang, B; Dong, Q; Su, H; Birchler, J A; Han, F

    2014-01-01

    As the main protein components of chromatin, histones can alter the structural/functional capabilities of chromatin by undergoing extensive post-translational modifications (PTMs) such as phosphorylation, methylation, acetylation, ubiquitination, sumoylation, and so on. These PTMs are thought to transmit signals from the chromatin to the cell machinery to regulate various processes. Histone phosphorylation is associated with chromosome condensation/segregation, activation of transcription, and DNA damage repair. In this review, we focus on how different histone phosphorylations mark for chromatin change during the cell cycle, the relationship between histone phosphorylation and functional centromeres, and the candidate kinases that trigger and the phosphatase or kinase inhibitors that alter histone phosphorylation. Finally, we review the crosstalk between different PTMs. © 2014 S. Karger AG, Basel.

  3. Evidence for the implication of the histone code in building the genome structure.

    PubMed

    Prakash, Kirti; Fournier, David

    2018-02-01

    Histones are punctuated with small chemical modifications that alter their interaction with DNA. One attractive hypothesis stipulates that certain combinations of these histone modifications may function, alone or together, as a part of a predictive histone code to provide ground rules for chromatin folding. We consider four features that relate histone modifications to chromatin folding: charge neutralisation, molecular specificity, robustness and evolvability. Next, we present evidence for the association among different histone modifications at various levels of chromatin organisation and show how these relationships relate to function such as transcription, replication and cell division. Finally, we propose a model where the histone code can set critical checkpoints for chromatin to fold reversibly between different orders of the organisation in response to a biological stimulus. Copyright © 2017 Elsevier B.V. All rights reserved.

  4. Genome-Wide Association Study Reveals Four Loci for Lipid Ratios in the Korean Population and the Constitutional Subgroup.

    PubMed

    Kim, Taehyeung; Park, Ah Yeon; Baek, Younghwa; Cha, Seongwon

    2017-01-01

    Circulating lipid ratios are considered predictors of cardiovascular risks and metabolic syndrome, which cause coronary heart diseases. One constitutional type of Korean medicine prone to weight accumulation, the Tae-Eum type, predisposes the consumers to metabolic syndrome, hypertension, diabetes mellitus, etc. Here, we aimed to identify genetic variants for lipid ratios using a genome-wide association study (GWAS) and followed replication analysis in Koreans and constitutional subgroups. GWASs in 5,292 individuals of the Korean Genome and Epidemiology Study and replication analyses in 2,567 subjects of the Korea medicine Data Center were performed to identify genetic variants associated with triglyceride (TG) to HDL cholesterol (HDLC), LDL cholesterol (LDLC) to HDLC, and non-HDLC to HDLC ratios. For subgroup analysis, a computer-based constitution analysis tool was used to categorize the constitutional types of the subjects. In the discovery stage, seven variants in four loci, three variants in three loci, and two variants in one locus were associated with the ratios of log-transformed TG:HDLC (log[TG]:HDLC), LDLC:HDLC, and non-HDLC:HDLC, respectively. The associations of the GWAS variants with lipid ratios were replicated in the validation stage: for the log[TG]:HDLC ratio, rs6589566 near APOA5 and rs4244457 and rs6586891 near LPL; for the LDLC:HDLC ratio, rs4420638 near APOC1 and rs17445774 near C2orf47; and for the non-HDLC:HDLC ratio, rs6589566 near APOA5. Five of these six variants are known to be associated with TG, LDLC, and/or HDLC, but rs17445774 was newly identified to be involved in lipid level changes in this study. Constitutional subgroup analysis revealed effects of variants associated with log[TG]:HDLC and non-HDLC:HDLC ratios in both the Tae-Eum and non-Tae-Eum types, whereas the effect of the LDLC:HDLC ratio-associated variants remained only in the Tae-Eum type. In conclusion, we identified three log[TG]:HDLC ratio-associated variants, two LDLC

  5. Genome-Wide Association Study Reveals Four Loci for Lipid Ratios in the Korean Population and the Constitutional Subgroup

    PubMed Central

    Kim, Taehyeung; Park, Ah Yeon; Baek, Younghwa

    2017-01-01

    Circulating lipid ratios are considered predictors of cardiovascular risks and metabolic syndrome, which cause coronary heart diseases. One constitutional type of Korean medicine prone to weight accumulation, the Tae-Eum type, predisposes the consumers to metabolic syndrome, hypertension, diabetes mellitus, etc. Here, we aimed to identify genetic variants for lipid ratios using a genome-wide association study (GWAS) and followed replication analysis in Koreans and constitutional subgroups. GWASs in 5,292 individuals of the Korean Genome and Epidemiology Study and replication analyses in 2,567 subjects of the Korea medicine Data Center were performed to identify genetic variants associated with triglyceride (TG) to HDL cholesterol (HDLC), LDL cholesterol (LDLC) to HDLC, and non-HDLC to HDLC ratios. For subgroup analysis, a computer-based constitution analysis tool was used to categorize the constitutional types of the subjects. In the discovery stage, seven variants in four loci, three variants in three loci, and two variants in one locus were associated with the ratios of log-transformed TG:HDLC (log[TG]:HDLC), LDLC:HDLC, and non-HDLC:HDLC, respectively. The associations of the GWAS variants with lipid ratios were replicated in the validation stage: for the log[TG]:HDLC ratio, rs6589566 near APOA5 and rs4244457 and rs6586891 near LPL; for the LDLC:HDLC ratio, rs4420638 near APOC1 and rs17445774 near C2orf47; and for the non-HDLC:HDLC ratio, rs6589566 near APOA5. Five of these six variants are known to be associated with TG, LDLC, and/or HDLC, but rs17445774 was newly identified to be involved in lipid level changes in this study. Constitutional subgroup analysis revealed effects of variants associated with log[TG]:HDLC and non-HDLC:HDLC ratios in both the Tae-Eum and non-Tae-Eum types, whereas the effect of the LDLC:HDLC ratio-associated variants remained only in the Tae-Eum type. In conclusion, we identified three log[TG]:HDLC ratio-associated variants, two LDLC

  6. Herpes Simplex Virus VP16, but Not ICP0, Is Required To Reduce Histone Occupancy and Enhance Histone Acetylation on Viral Genomes in U2OS Osteosarcoma Cells▿ †

    PubMed Central

    Hancock, Meaghan H.; Cliffe, Anna R.; Knipe, David M.; Smiley, James R.

    2010-01-01

    The herpes simplex virus (HSV) genome rapidly becomes associated with histones after injection into the host cell nucleus. The viral proteins ICP0 and VP16 are required for efficient viral gene expression and have been implicated in reducing the levels of underacetylated histones on the viral genome, raising the possibility that high levels of underacetylated histones inhibit viral gene expression. The U2OS osteosarcoma cell line is permissive for replication of ICP0 and VP16 mutants and appears to lack an innate antiviral repression mechanism present in other cell types. We therefore used chromatin immunoprecipitation to determine whether U2OS cells are competent to load histones onto HSV DNA and, if so, whether ICP0 and/or VP16 are required to reduce histone occupancy and enhance acetylation in this cell type. High levels of underacetylated histone H3 accumulated at several locations on the viral genome in the absence of VP16 activation function; in contrast, an ICP0 mutant displayed markedly reduced histone levels and enhanced acetylation, similar to wild-type HSV. These results demonstrate that U2OS cells are competent to load underacetylated histones onto HSV DNA and uncover an unexpected role for VP16 in modulating chromatin structure at viral early and late loci. One interpretation of these findings is that ICP0 and VP16 affect viral chromatin structure through separate pathways, and the pathway targeted by ICP0 is defective in U2OS cells. We also show that HSV infection results in decreased histone levels on some actively transcribed genes within the cellular genome, demonstrating that viral infection alters cellular chromatin structure. PMID:19939931

  7. Treatment of chronic kidney diseases with histone deacetylase inhibitors

    PubMed Central

    Liu, Na; Zhuang, Shougang

    2015-01-01

    Histone deacetylases (HDACs) induce deacetylation of both histone and non-histone proteins and play a critical role in the modulation of physiological and pathological gene expression. Pharmacological inhibition of HDAC has been reported to attenuate progression of renal fibrogenesis in obstructed kidney and reduce cyst formation in polycystic kidney disease. HDAC inhibitors (HDACis) are also able to ameliorate renal lesions in diabetes nephropathy, lupus nephritis, aristolochic acid nephropathy, and transplant nephropathy. The beneficial effects of HDACis are associated with their anti-fibrosis, anti-inflammation, and immunosuppressant effects. In this review, we summarize recent advances on the treatment of various chronic kidney diseases with HDACis in pre-clinical models. PMID:25972812

  8. ANGPT2 Genetic Variant Is Associated with Trauma-associated Acute Lung Injury and Altered Plasma Angiopoietin-2 Isoform Ratio

    PubMed Central

    Meyer, Nuala J.; Li, Mingyao; Feng, Rui; Bradfield, Jonathan; Gallop, Robert; Bellamy, Scarlett; Fuchs, Barry D.; Lanken, Paul N.; Albelda, Steven M.; Rushefski, Melanie; Aplenc, Richard; Abramova, Helen; Atochina-Vasserman, Elena N.; Beers, Michael F.; Calfee, Carolyn S.; Cohen, Mitchell J.; Pittet, Jean-Francois; Christiani, David C.; O'Keefe, Grant E.; Ware, Lorraine B.; May, Addison K.; Wurfel, Mark M.; Hakonarson, Hakon; Christie, Jason D.

    2011-01-01

    Rationale: Acute lung injury (ALI) acts as a complex genetic trait, yet its genetic risk factors remain incompletely understood. Large-scale genotyping has not previously been reported for ALI. Objectives: To identify ALI risk variants after major trauma using a large-scale candidate gene approach. Methods: We performed a two-stage genetic association study. We derived findings in an African American cohort (n = 222) using a cardiopulmonary disease–centric 50K single nucleotide polymorphism (SNP) array. Genotype and haplotype distributions were compared between subjects with ALI and without ALI, with adjustment for clinical factors. Top performing SNPs (P < 10−4) were tested in a multicenter European American trauma-associated ALI case-control population (n = 600 ALI; n = 2,266 population-based control subjects) for replication. The ALI-associated genomic region was sequenced, analyzed for in silico prediction of function, and plasma was assayed by ELISA and immunoblot. Measurements and Main Results: Five SNPs demonstrated a significant association with ALI after adjustment for covariates in Stage I. Two SNPs in ANGPT2 (rs1868554 and rs2442598) replicated their significant association with ALI in Stage II. rs1868554 was robust to multiple comparison correction: odds ratio 1.22 (1.06–1.40), P = 0.0047. Resequencing identified predicted novel splice sites in linkage disequilibrium with rs1868554, and immunoblots showed higher proportion of variant angiopoietin-2 (ANG2) isoform associated with rs1868554T (0.81 vs. 0.48; P = 0.038). Conclusions: An ANGPT2 region is associated with both ALI and variation in plasma angiopoietin-2 isoforms. Characterization of the variant isoform and its genetic regulation may yield important insights about ALI pathogenesis and susceptibility. PMID:21257790

  9. Growth-Phase-Specific Modulation of Cell Morphology and Gene Expression by an Archaeal Histone Protein.

    PubMed

    Dulmage, Keely A; Todor, Horia; Schmid, Amy K

    2015-09-08

    In all three domains of life, organisms use nonspecific DNA-binding proteins to compact and organize the genome as well as to regulate transcription on a global scale. Histone is the primary eukaryotic nucleoprotein, and its evolutionary roots can be traced to the archaea. However, not all archaea use this protein as the primary DNA-packaging component, raising questions regarding the role of histones in archaeal chromatin function. Here, quantitative phenotyping, transcriptomic, and proteomic assays were performed on deletion and overexpression mutants of the sole histone protein of the hypersaline-adapted haloarchaeal model organism Halobacterium salinarum. This protein is highly conserved among all sequenced haloarchaeal species and maintains hallmark residues required for eukaryotic histone functions. Surprisingly, despite this conservation at the sequence level, unlike in other archaea or eukaryotes, H. salinarum histone is required to regulate cell shape but is not necessary for survival. Genome-wide expression changes in histone deletion strains were global, significant but subtle in terms of fold change, bidirectional, and growth phase dependent. Mass spectrometric proteomic identification of proteins from chromatin enrichments yielded levels of histone and putative nucleoid-associated proteins similar to those of transcription factors, consistent with an open and transcriptionally active genome. Taken together, these data suggest that histone in H. salinarum plays a minor role in DNA compaction but important roles in growth-phase-dependent gene expression and regulation of cell shape. Histone function in haloarchaea more closely resembles a regulator of gene expression than a chromatin-organizing protein like canonical eukaryotic histone. Histones comprise the major protein component of eukaryotic chromatin and are required for both genome packaging and global regulation of expression. The current paradigm maintains that archaea whose genes encode

  10. Chromatin Proteomics Reveals Variable Histone Modifications during the Life Cycle of Trypanosoma cruzi.

    PubMed

    de Jesus, Teresa Cristina Leandro; Nunes, Vinícius Santana; Lopes, Mariana de Camargo; Martil, Daiana Evelin; Iwai, Leo Kei; Moretti, Nilmar Silvio; Machado, Fabrício Castro; de Lima-Stein, Mariana L; Thiemann, Otavio Henrique; Elias, Maria Carolina; Janzen, Christian; Schenkman, Sergio; da Cunha, Julia Pinheiro Chagas

    2016-06-03

    Histones are well-conserved proteins that form the basic structure of chromatin in eukaryotes and undergo several post-translational modifications, which are important for the control of transcription, replication, DNA damage repair, and chromosome condensation. In early branched organisms, histones are less conserved and appear to contain alternative sites for modifications, which could reveal evolutionary unique functions of histone modifications in gene expression and other chromatin-based processes. Here, by using high-resolution mass spectrometry, we identified and quantified histone post-translational modifications in two life cycle stages of Trypanosoma cruzi, the protozoan parasite that causes Chagas disease. We detected 44 new modifications, namely: 18 acetylations, seven monomethylations, seven dimethylations, seven trimethylations, and four phosphorylations. We found that replicative (epimastigote stage) contains more histone modifications than nonreplicative and infective parasites (trypomastigote stage). Acetylations of lysines at the C-terminus of histone H2A and methylations of lysine 23 of histone H3 were found to be enriched in trypomastigotes. In contrast, phosphorylation in serine 23 of H2B and methylations of lysine 76 of histone H3 predominates in proliferative states. The presence of one or two methylations in the lysine 76 was found in cells undergoing mitosis and cytokinesis, typical of proliferating parasites. Our findings provide new insights into the role of histone modifications related to the control of gene expression and cell-cycle regulation in an early divergent organism.

  11. Structural and Histone Binding Ability Characterizations of Human PWWP Domains

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wu, Hong; Zeng, Hong; Lam, Robert

    2013-09-25

    The PWWP domain was first identified as a structural motif of 100-130 amino acids in the WHSC1 protein and predicted to be a protein-protein interaction domain. It belongs to the Tudor domain 'Royal Family', which consists of Tudor, chromodomain, MBT and PWWP domains. While Tudor, chromodomain and MBT domains have long been known to bind methylated histones, PWWP was shown to exhibit histone binding ability only until recently. The PWWP domain has been shown to be a DNA binding domain, but sequence analysis and previous structural studies show that the PWWP domain exhibits significant similarity to other 'Royal Family' members,more » implying that the PWWP domain has the potential to bind histones. In order to further explore the function of the PWWP domain, we used the protein family approach to determine the crystal structures of the PWWP domains from seven different human proteins. Our fluorescence polarization binding studies show that PWWP domains have weak histone binding ability, which is also confirmed by our NMR titration experiments. Furthermore, we determined the crystal structures of the BRPF1 PWWP domain in complex with H3K36me3, and HDGF2 PWWP domain in complex with H3K79me3 and H4K20me3. PWWP proteins constitute a new family of methyl lysine histone binders. The PWWP domain consists of three motifs: a canonical {beta}-barrel core, an insertion motif between the second and third {beta}-strands and a C-terminal {alpha}-helix bundle. Both the canonical {beta}-barrel core and the insertion motif are directly involved in histone binding. The PWWP domain has been previously shown to be a DNA binding domain. Therefore, the PWWP domain exhibits dual functions: binding both DNA and methyllysine histones.« less

  12. Epigenetic targeting of histone deacetylase: therapeutic potential in Parkinson's disease?

    PubMed

    Harrison, Ian F; Dexter, David T

    2013-10-01

    Parkinson's disease (PD) is the most common movement disorder affecting more than 4million people worldwide. The primary motor symptoms of the disease are due to degeneration of dopaminergic nigrostriatal neurons. Dopamine replacement therapies have therefore revolutionised disease management by partially controlling these symptoms. However these drugs can produce debilitating side effects when used long term and do not protect degenerating neurons against death. Recent evidence has highlighted a pathological imbalance in PD between the acetylation and deacetylation of the histone proteins around which deoxyribonucleic acid (DNA) is coiled, in favour of excessive histone deacetylation. This mechanism of adding/removing acetyl groups to histone lysine residues is one of many epigenetic regulatory processes which control the expression of genes, many of which will be essential for neuronal survival. Hence, such epigenetic modifications may have a pathogenic role in PD. It has therefore been hypothesised that if this pathological imbalance can be corrected with the use of histone deacetylase inhibiting agents then neurodegeneration observed in PD can be ameliorated. This article will review the current literature with regard to epigenetic changes in PD and the use of histone deacetylase inhibitors (HDACIs) in PD: examining the evidence of the neuroprotective effects of numerous HDACIs in cellular and animal models of Parkinsonian cell death. Ultimately answering the question: does epigenetic targeting of histone deacetylases hold therapeutic potential in PD? Copyright © 2013 Elsevier Inc. All rights reserved.

  13. [PHI regulates histone methylation and acetylation in Burkitt lymphoma Daudi cell line].

    PubMed

    Hong, Ling-Ling; Ma, Xu-Dong; Huang, Yi-Qun

    2011-02-01

    This study was purposed to investigate the effects of phenylhexyl isothiocyanate (PHI) on Burkitt lymphoma Daudi cell line and regulation of histone acetylation and methylation in Daudi cells, and to explore the potential mechanism. The apoptotic rate of Daudi cells treated with PHI was measured by flow cytometry, the changes of histone H3 and H4 acetylation, histone H3K9 and H3K4 methylation in Daudi cells treated with PHI were detected by Western blot. The results showed that PHI could induce apoptosis of Daudi cells, increased the acetylation level of H3 and H4, enhanced the methylation of H3K4, but reduced the methylation of H3K9. It is concluded that the PHI can up-regulate the acetylation level of histone H3 associated with transcription stimulation and the methylation of histone H3K4, down-regulate the methylation on histone H3K9 associated with transcription inhibition, promotes the apoptosis of Daudi cells. PHI may be a potential agent for target therapy of lymphoma.

  14. Lysine acetylome profiling uncovers novel histone deacetylase substrate proteins in Arabidopsis.

    PubMed

    Hartl, Markus; Füßl, Magdalena; Boersema, Paul J; Jost, Jan-Oliver; Kramer, Katharina; Bakirbas, Ahmet; Sindlinger, Julia; Plöchinger, Magdalena; Leister, Dario; Uhrig, Glen; Moorhead, Greg Bg; Cox, Jürgen; Salvucci, Michael E; Schwarzer, Dirk; Mann, Matthias; Finkemeier, Iris

    2017-10-23

    Histone deacetylases have central functions in regulating stress defenses and development in plants. However, the knowledge about the deacetylase functions is largely limited to histones, although these enzymes were found in diverse subcellular compartments. In this study, we determined the proteome-wide signatures of the RPD3/HDA1 class of histone deacetylases in Arabidopsis Relative quantification of the changes in the lysine acetylation levels was determined on a proteome-wide scale after treatment of Arabidopsis leaves with deacetylase inhibitors apicidin and trichostatin A. We identified 91 new acetylated candidate proteins other than histones, which are potential substrates of the RPD3/HDA1-like histone deacetylases in Arabidopsis , of which at least 30 of these proteins function in nucleic acid binding. Furthermore, our analysis revealed that histone deacetylase 14 (HDA14) is the first organellar-localized RPD3/HDA1 class protein found to reside in the chloroplasts and that the majority of its protein targets have functions in photosynthesis. Finally, the analysis of HDA14 loss-of-function mutants revealed that the activation state of RuBisCO is controlled by lysine acetylation of RuBisCO activase under low-light conditions. © 2017 The Authors. Published under the terms of the CC BY 4.0 license.

  15. Histone H4 acetylation regulates behavioral inter-individual variability in zebrafish.

    PubMed

    Román, Angel-Carlos; Vicente-Page, Julián; Pérez-Escudero, Alfonso; Carvajal-González, Jose M; Fernández-Salguero, Pedro M; de Polavieja, Gonzalo G

    2018-04-25

    Animals can show very different behaviors even in isogenic populations, but the underlying mechanisms to generate this variability remain elusive. We use the zebrafish (Danio rerio) as a model to test the influence of histone modifications on behavior. We find that laboratory and isogenic zebrafish larvae show consistent individual behaviors when swimming freely in identical wells or in reaction to stimuli. This behavioral inter-individual variability is reduced when we impair the histone deacetylation pathway. Individuals with high levels of histone H4 acetylation, and specifically H4K12, behave similarly to the average of the population, but those with low levels deviate from it. More precisely, we find a set of genomic regions whose histone H4 acetylation is reduced with the distance between the individual and the average population behavior. We find evidence that this modulation depends on a complex of Yin-yang 1 (YY1) and histone deacetylase 1 (HDAC1) that binds to and deacetylates these regions. These changes are not only maintained at the transcriptional level but also amplified, as most target regions are located near genes encoding transcription factors. We suggest that stochasticity in the histone deacetylation pathway participates in the generation of genetic-independent behavioral inter-individual variability.

  16. Gallic Acid Decreases Inflammatory Cytokine Secretion Through Histone Acetyltransferase/Histone Deacetylase Regulation in High Glucose-Induced Human Monocytes.

    PubMed

    Lee, Wooje; Lee, Sang Yeol; Son, Young-Jin; Yun, Jung-Mi

    2015-07-01

    Hyperglycemia contributes to diabetes and several diabetes-related complications. Gallic acid is a polyhydroxy phenolic compound found in various natural products. In this study, we investigated the effects and mechanism of gallic acid on proinflammatory cytokine secretion in high glucose-induced human monocytes (THP-1 cells). THP-1 cells were cultured under normoglycemic or hyperglycemic conditions, in the absence or presence of gallic acid. Hyperglycemic conditions significantly induced histone acetylation, nuclear factor-κB (NF-κB) activation, and proinflammatory cytokine release from THP-1 cells, whereas gallic acid suppressed NF-κB activity and cytokine release. It also significantly reduced CREB-binding protein/p300 (CBP/p300, a NF-κB coactivator) gene expression, acetylation levels, and CBP/p300 histone acetyltransferase (HAT) activity. In addition, histone deacetylase 2 (HDAC2) expression was significantly induced. These results suggest that gallic acid inhibits hyperglycemic-induced cytokine production in monocytes through epigenetic changes involving NF-κB. Therefore, gallic acid may have potential for the treatment and prevention of diabetes and its complications.

  17. Berberine acts as a putative epigenetic modulator by affecting the histone code.

    PubMed

    Wang, Zhixiang; Liu, Yuan; Xue, Yong; Hu, Haiyan; Ye, Jieyu; Li, Xiaodong; Lu, Zhigang; Meng, Fanyi; Liang, Shuang

    2016-10-01

    Berberine, an isoquinoline plant alkaloid, exhibits a wide range of biochemical and pharmacological effects. However, the precise mechanism of these bioactivities remains poorly understood. In this study, we found significant similarity between berberine and two epigenetic modulators (CG-1521 and TSA). Reverse-docking using berberine as a ligand identified lysine-N-methyltransferase as a putative target of berberine. These findings suggested the potential role of berberine in epigenetic modulation. The results of PCR array analysis of epigenetic chromatin modification enzymes supported our hypothesis. Furthermore, the analysis showed that enzymes involved in histone acetylation and methylation were predominantly affected by treatment with berberine. Up-regulation of histone acetyltransferase CREBBP and EP300, histone deacetylase SIRT3, histone demethylase KDM6A as well as histone methyltransferase SETD7, and down-regulation of histone acetyltransferase HDAC8, histone methyltransferase WHSC1I, WHSC1II and SMYD3, in addition to 38 genes from histone clusters 1-3 were observed in berberine-treated cells using real-time PCR. In parallel, western blotting analyses revealed that the expression of H3K4me3, H3K27me3 and H3K36me3 proteins decreased with berberine treatment. These results were further confirmed in acute myelocytic leukemia (AML) cell lines HL-60/ADR and KG1-α. Taken together, this study suggests that berberine might modulate the expression of epigenetic regulators important for many downstream pathways, resulting in the variation of its bioactivities. Copyright © 2016 The Authors. Published by Elsevier Ltd.. All rights reserved.

  18. Genetic Variants Associated with Optic Nerve Vertical Cup-to-Disc Ratio Are Risk Factors for Primary Open Angle Glaucoma in a US Caucasian Population

    PubMed Central

    Fan, Bao Jian; Wang, Dan Yi; Pasquale, Louis R.; Haines, Jonathan L.

    2011-01-01

    Purpose. Genetically complex disorders, such as primary open angle glaucoma (POAG), may include highly heritable quantitative traits as part of the overall phenotype, and mapping genes influencing the related quantitative traits may effectively identify genetic risk factors predisposing to the complex disease. Recent studies have identified SNPs associated with optic nerve area and vertical cup-to-disc ratio (VCDR). The purpose of this study was to evaluate the association between these SNPs and POAG in a US Caucasian case-control sample. Methods. Five SNPs previously associated with optic disc area, or VCDR, were genotyped in 539 POAG cases and 336 controls. Genotype data were analyzed for single SNP associations and SNP interactions with VCDR and POAG. Results. SNPs associated with VCDR rs1063192 (CDKN2B) and rs10483727 (SIX1/SIX6) were also associated with POAG (P = 0.0006 and P = 0.0043 for rs1063192 and rs10483727, respectively). rs1063192, associated with smaller VCDR, had a protective effect (odds ratio [OR] = 0.73; 95% confidence interval [CI], 0.58–0.90), whereas rs10483727, associated with larger VCDR, increased POAG risk (OR = 1.33; 95% CI, 1.08–1.65). POAG risk associated with increased VCDR was significantly influenced by the C allele of rs1900004 (ATOH7), associated with increased optic nerve area (P-interaction = 0.025; OR = 1.89; 95% CI, 1.22–2.94). Conclusions. Genetic variants influencing VCDR are associated with POAG in a US Caucasian population. Variants associated with optic nerve area are not independently associated with disease but can influence the effects of VCDR variants suggesting that increased optic disc area can significantly contribute to POAG risk when coupled with risk factors controlling VCDR. PMID:21398277

  19. Clipping of arginine-methylated histone tails by JMJD5 and JMJD7

    PubMed Central

    Liu, Haolin; Wang, Chao; Lee, Schuyler; Deng, Yu; Wither, Matthew; Oh, Sangphil; Ning, Fangkun; Dege, Carissa; Zhang, Qianqian; Liu, Xinjian; Johnson, Aaron M.; Zang, Jianye; Janknecht, Ralf; Hansen, Kirk; Marrack, Philippa; Li, Chuan-Yuan; Kappler, John W.; Hagman, James; Zhang, Gongyi

    2017-01-01

    Two of the unsolved, important questions about epigenetics are: do histone arginine demethylases exist, and is the removal of histone tails by proteolysis a major epigenetic modification process? Here, we report that two orphan Jumonji C domain (JmjC)-containing proteins, JMJD5 and JMJD7, have divalent cation-dependent protease activities that preferentially cleave the tails of histones 2, 3, or 4 containing methylated arginines. After the initial specific cleavage, JMJD5 and JMJD7, acting as aminopeptidases, progressively digest the C-terminal products. JMJD5-deficient fibroblasts exhibit dramatically increased levels of methylated arginines and histones. Furthermore, depletion of JMJD7 in breast cancer cells greatly decreases cell proliferation. The protease activities of JMJD5 and JMJD7 represent a mechanism for removal of histone tails bearing methylated arginine residues and define a potential mechanism of transcription regulation. PMID:28847961

  20. Histone deacetylases as targets for treatment of multiple diseases

    PubMed Central

    TANG, Jinhua; YAN, Haidong; ZHUANG, Shougang

    2015-01-01

    HDACs (histone deacetylases) are a group of enzymes that deacetylate histones as well as non-histone proteins. They are known as modulators of gene transcription and are associated with proliferation and differentiation of a variety of cell types and the pathogenesis of some diseases. Recently, HDACs have come to be considered crucial targets in various diseases, including cancer, interstitial fibrosis, autoimmune and inflammatory diseases, and metabolic disorders. Pharmacological inhibitors of HDACs have been used or tested to treat those diseases. In the present review, we will examine the application of HDAC inhibitors in a variety of diseases with the focus on their effects of anti-cancer, fibrosis, anti-inflammatory, immunomodulatory activity and regulating metabolic disorders. PMID:23414309

  1. Antimicrobial Histones and DNA Traps in Invertebrate Immunity

    PubMed Central

    Poirier, Aurore C.; Schmitt, Paulina; Rosa, Rafael D.; Vanhove, Audrey S.; Kieffer-Jaquinod, Sylvie; Rubio, Tristan P.; Charrière, Guillaume M.; Destoumieux-Garzón, Delphine

    2014-01-01

    Although antimicrobial histones have been isolated from multiple metazoan species, their role in host defense has long remained unanswered. We found here that the hemocytes of the oyster Crassostrea gigas release antimicrobial H1-like and H5-like histones in response to tissue damage and infection. These antimicrobial histones were shown to be associated with extracellular DNA networks released by hemocytes, the circulating immune cells of invertebrates, in response to immune challenge. The hemocyte-released DNA was found to surround and entangle vibrios. This defense mechanism is reminiscent of the neutrophil extracellular traps (ETs) recently described in vertebrates. Importantly, oyster ETs were evidenced in vivo in hemocyte-infiltrated interstitial tissues surrounding wounds, whereas they were absent from tissues of unchallenged oysters. Consistently, antimicrobial histones were found to accumulate in oyster tissues following injury or infection with vibrios. Finally, oyster ET formation was highly dependent on the production of reactive oxygen species by hemocytes. This shows that ET formation relies on common cellular and molecular mechanisms from vertebrates to invertebrates. Altogether, our data reveal that ET formation is a defense mechanism triggered by infection and tissue damage, which is shared by relatively distant species suggesting either evolutionary conservation or convergent evolution within Bilateria. PMID:25037219

  2. Inferring nucleosome positions with their histone mark annotation from ChIP data

    PubMed Central

    Mammana, Alessandro; Vingron, Martin; Chung, Ho-Ryun

    2013-01-01

    Motivation: The nucleosome is the basic repeating unit of chromatin. It contains two copies each of the four core histones H2A, H2B, H3 and H4 and about 147 bp of DNA. The residues of the histone proteins are subject to numerous post-translational modifications, such as methylation or acetylation. Chromatin immunoprecipitiation followed by sequencing (ChIP-seq) is a technique that provides genome-wide occupancy data of these modified histone proteins, and it requires appropriate computational methods. Results: We present NucHunter, an algorithm that uses the data from ChIP-seq experiments directed against many histone modifications to infer positioned nucleosomes. NucHunter annotates each of these nucleosomes with the intensities of the histone modifications. We demonstrate that these annotations can be used to infer nucleosomal states with distinct correlations to underlying genomic features and chromatin-related processes, such as transcriptional start sites, enhancers, elongation by RNA polymerase II and chromatin-mediated repression. Thus, NucHunter is a versatile tool that can be used to predict positioned nucleosomes from a panel of histone modification ChIP-seq experiments and infer distinct histone modification patterns associated to different chromatin states. Availability: The software is available at http://epigen.molgen.mpg.de/nuchunter/. Contact: chung@molgen.mpg.de Supplementary information: Supplementary data are available at Bioinformatics online. PMID:23981350

  3. Spectroscopic detection of etoposide binding to chromatin components: The role of histone proteins

    NASA Astrophysics Data System (ADS)

    Chamani, Elham; Rabbani-Chadegani, Azra; Zahraei, Zohreh

    2014-12-01

    Chromatin has been introduced as a main target for most anticancer drugs. Etoposide is known as a topoisomerase II inhibitor, but its effect on chromatin components is unknown. This report, for the first time, describes the effect of etoposide on DNA, histones and DNA-histones complex in the structure of nucleosomes employing thermal denaturation, fluorescence, UV absorbance and circular dichroism spectroscopy techniques. The results showed that the binding of etoposide decreased UV absorbance and fluorescence emission intensity, altered secondary structure of chromatin and hypochromicity was occurred in thermal denaturation profiles. The drug exhibited higher affinity to chromatin compared to DNA. Quenching of drug chromophores with tyrosine residues of histones indicated that globular domain of histones is the site of etoposide binding. Moreover, the binding of etoposide to histones altered their secondary structure accompanied with hypochromicity revealing compaction of histones in the presence of the drug. From the results it is concludes that apart from topoisomerase II, chromatin components especially its protein moiety can be introduced as a new site of etoposide binding and histone proteins especially H1 play a fundamental role in this process and anticancer activity of etoposide.

  4. Partial purification of histone H3 proteolytic activity from the budding yeast Saccharomyces cerevisiae.

    PubMed

    Azad, Gajendra Kumar; Tomar, Raghuvir Singh

    2016-06-01

    The proteolytic clipping of histone tails has recently emerged as a novel form of irreversible post-translational modification (PTM) of histones. Histone clipping has been implicated as a regulatory process leading to the permanent removal of PTMs from histone proteins. However, there is scarcity of literature that describes the identification and characterization of histone-specific proteases. Here, we employed various biochemical methods to report histone H3-specific proteolytic activity from budding yeast. Our results demonstrate that H3 proteolytic activity was associated with sepharose bead matrices and activity was not affected by a variety of stress conditions. We have also identified the existence of an unknown protein that acts as a physiological inhibitor of the H3-clipping activity of yeast H3 protease. Moreover, through protease inhibition assays, we have also characterized yeast H3 protease as a serine protease. Interestingly, unlike glutamate dehydrogenase (GDH), yeast H3 proteolytic activity was not inhibited by Stefin B. Together, our findings suggest the existence of a novel H3 protease in yeast that is different from other reported histone H3 proteases. The presence of histone H3 proteolytic activity, along with the physiological inhibitor in yeast, suggests an interesting molecular mechanism that regulates the activity of histone proteases. Copyright © 2016 John Wiley & Sons, Ltd. Copyright © 2016 John Wiley & Sons, Ltd.

  5. Targeting Histone Abnormality in Triple Negative Breast Cancer

    DTIC Science & Technology

    2015-08-01

    Casero RA, Davidson NE. Molecular mechanisms of polyamine analogues in cancer cells. Anti - Cancer Drugs, 16(3): 229-241, 2005. PMID: 15711175 18 3...1 AWARD NUMBER: W81XWH-14-1-0237 TITLE: Targeting Histone Abnormality in Triple-Negative Breast Cancer PRINCIPAL INVESTIGATOR: Yi...TITLE AND SUBTITLE 5a. CONTRACT NUMBER Targeting Histone Abnormality in Triple-Negative Breast Cancer 5b. GRANT NUMBER W81XWH-14-1-0237 5c

  6. Inhibition of Histone Acetylation by ANP32A Induces Memory Deficits.

    PubMed

    Chai, Gao-Shang; Feng, Qiong; Ma, Rong-Hong; Qian, Xiao-Hang; Luo, Dan-Ju; Wang, Zhi-Hao; Hu, Yu; Sun, Dong-Sheng; Zhang, Jun-Fei; Li, Xiao; Li, Xiao-Guang; Ke, Dan; Wang, Jian-Zhi; Yang, Xi-Fei; Liu, Gong-Ping

    2018-01-01

    There is accumulating evidence that decreased histone acetylation is involved in normal aging and neurodegenerative diseases. Recently, we found that ANP32A, a key component of INHAT (inhibitor of acetyltransferases) that suppresses histone acetylation, increased in aged and cognitively impaired C57 mice and expressing wild-type human full length tau (htau) transgenic mice. Downregulating ANP32A restored cognitive function and synaptic plasticity through upregulation of the expressions of synaptic-related proteins via increasing histone acetylation. However, there is no direct evidence that ANP32A can induce neurodegeneration and memory deficits. In the present study, we overexpressed ANP32A in the hippocampal CA3 region of C57 mice and found that ANP32A overexpression induced cognitive abilities and synaptic plasticity deficits, with decreased synaptic-related protein expression and histone acetylation. Combined with our recent studies, our findings reveal that upregulated ANP32A induced-suppressing histone acetylation may underlie the cognitive decline in neurodegenerative disease, and suppression of ANP32A may represent a promising therapeutic approach for neurodegenerative diseases including Alzheimer's disease.

  7. Structure and Activity of the Peptidyl-Prolyl Isomerase Domain from the Histone Chaperone Fpr4 toward Histone H3 Proline Isomerization*

    PubMed Central

    Monneau, Yoan R.; Soufari, Heddy; Nelson, Christopher J.; Mackereth, Cameron D.

    2013-01-01

    The FK506-binding protein (FKBP) family of peptidyl-prolyl isomerases (PPIases) is characterized by a common catalytic domain that binds to the inhibitors FK506 and rapamycin. As one of four FKBPs within the yeast Saccharomyces cerevisiae, Fpr4 has been described as a histone chaperone, and is in addition implicated in epigenetic function in part due to its mediation of cis-trans conversion of proline residues within histone tails. To better understand the molecular details of this activity, we have determined the solution structure of the Fpr4 C-terminal PPIase domain by using NMR spectroscopy. This canonical FKBP domain actively increases the rate of isomerization of three decapeptides derived from the N terminus of yeast histone H3, whereas maintaining intrinsic cis and trans populations. Observation of the uncatalyzed and Fpr4-catalyzed isomerization rates at equilibrium demonstrate Pro16 and Pro30 of histone H3 as the major proline targets of Fpr4, with little activity shown against Pro38. This alternate ranking of the three target prolines, as compared with affinity determination or the classical chymotrypsin-based fluorescent assay, reveals the mechanistic importance of substrate residues C-terminal to the peptidyl-prolyl bond. PMID:23888048

  8. Single-Nucleosome Mapping of Histone Modifications in S. cerevisiae

    PubMed Central

    Kim, Minkyu; Buratowski, Stephen; Schreiber, Stuart L; Friedman, Nir

    2005-01-01

    Covalent modification of histone proteins plays a role in virtually every process on eukaryotic DNA, from transcription to DNA repair. Many different residues can be covalently modified, and it has been suggested that these modifications occur in a great number of independent, meaningful combinations. Published low-resolution microarray studies on the combinatorial complexity of histone modification patterns suffer from confounding effects caused by the averaging of modification levels over multiple nucleosomes. To overcome this problem, we used a high-resolution tiled microarray with single-nucleosome resolution to investigate the occurrence of combinations of 12 histone modifications on thousands of nucleosomes in actively growing S. cerevisiae. We found that histone modifications do not occur independently; there are roughly two groups of co-occurring modifications. One group of lysine acetylations shows a sharply defined domain of two hypo-acetylated nucleosomes, adjacent to the transcriptional start site, whose occurrence does not correlate with transcription levels. The other group consists of modifications occurring in gradients through the coding regions of genes in a pattern associated with transcription. We found no evidence for a deterministic code of many discrete states, but instead we saw blended, continuous patterns that distinguish nucleosomes at one location (e.g., promoter nucleosomes) from those at another location (e.g., over the 3′ ends of coding regions). These results are consistent with the idea of a simple, redundant histone code, in which multiple modifications share the same role. PMID:16122352

  9. The Functional Analysis of Histone Acetyltransferase MOF in Tumorigenesis

    PubMed Central

    Su, Jiaming; Wang, Fei; Cai, Yong; Jin, Jingji

    2016-01-01

    Changes in chromatin structure and heritably regulating the gene expression by epigenetic mechanisms, such as histone post-translational modification, are involved in most cellular biological processes. Thus, abnormal regulation of epigenetics is implicated in the occurrence of various diseases, including cancer. Human MOF (males absent on the first) is a member of the MYST (Moz-Ybf2/Sas3-Sas2-Tip60) family of histone acetyltransferases (HATs). As a catalytic subunit, MOF can form at least two distinct multiprotein complexes (MSL and NSL) in human cells. Both complexes can acetylate histone H4 at lysine 16 (H4K16); however, the NSL complex possesses broader substrate specificity and can also acetylate histone H4 at lysines 5 and 8 (H4K5 and H4K8), suggesting the complexity of the intracellular functions of MOF. Silencing of MOF in cells leads to genomic instability, inactivation of gene transcription, defective DNA damage repair and early embryonic lethality. Unbalanced MOF expression and its corresponding acetylation of H4K16 have been found in certain primary cancer tissues, including breast cancer, medulloblastoma, ovarian cancer, renal cell carcinoma, colorectal carcinoma, gastric cancer, as well as non-small cell lung cancer. In this review, we provide a brief overview of MOF and its corresponding histone acetylation, introduce recent research findings that link MOF functions to tumorigenesis and speculate on the potential role that may be relevant to tumorigenic pathways. PMID:26784169

  10. The Functional Analysis of Histone Acetyltransferase MOF in Tumorigenesis.

    PubMed

    Su, Jiaming; Wang, Fei; Cai, Yong; Jin, Jingji

    2016-01-14

    Changes in chromatin structure and heritably regulating the gene expression by epigenetic mechanisms, such as histone post-translational modification, are involved in most cellular biological processes. Thus, abnormal regulation of epigenetics is implicated in the occurrence of various diseases, including cancer. Human MOF (males absent on the first) is a member of the MYST (Moz-Ybf2/Sas3-Sas2-Tip60) family of histone acetyltransferases (HATs). As a catalytic subunit, MOF can form at least two distinct multiprotein complexes (MSL and NSL) in human cells. Both complexes can acetylate histone H4 at lysine 16 (H4K16); however, the NSL complex possesses broader substrate specificity and can also acetylate histone H4 at lysines 5 and 8 (H4K5 and H4K8), suggesting the complexity of the intracellular functions of MOF. Silencing of MOF in cells leads to genomic instability, inactivation of gene transcription, defective DNA damage repair and early embryonic lethality. Unbalanced MOF expression and its corresponding acetylation of H4K16 have been found in certain primary cancer tissues, including breast cancer, medulloblastoma, ovarian cancer, renal cell carcinoma, colorectal carcinoma, gastric cancer, as well as non-small cell lung cancer. In this review, we provide a brief overview of MOF and its corresponding histone acetylation, introduce recent research findings that link MOF functions to tumorigenesis and speculate on the potential role that may be relevant to tumorigenic pathways.

  11. Sensory Gating and Alpha-7 Nicotinic Receptor Gene Allelic Variants in Schizoaffective Disorder, Bipolar Type

    PubMed Central

    Martin, Laura F.; Leonard, Sherry; Hall, Mei-Hua; Tregellas, Jason R.; Freedman, Robert; Olincy, Ann

    2011-01-01

    Objectives Single nucleotide allelic variants in the promoter region of the chromosome 15 alpha-7 acetylcholine nicotinic receptor gene (CHRNA7) are associated with both schizophrenia and the P50 auditory evoked potential sensory gating deficit. The purpose of this study was to determine if CHRNA7 promoter allelic variants are also associated with abnormal P50 ratios in persons with schizoaffective disorder, bipolar type. Methods P50 auditory evoked potentials were recorded in a paired stimulus paradigm in 17 subjects with schizoaffective disorder, bipolar type. The P50 test to conditioning ratio was used as the measure of sensory gating. Mutation screening of the CHRNA7 promoter region was performed on the subjects’ DNA samples. Comparisons to previously obtained data from persons with schizophrenia and controls were made. Results Subjects with schizophrenia, regardless of allele status, had an abnormal mean P50 ratio. Subjects with schizoaffective disorder, bipolar type and a variant allele had an abnormal mean P50 ratio, whereas those schizoaffective subjects with the common alleles had a normal mean P50 ratio. Normal control subjects had a normal mean ratio, but controls with variant alleles had higher P50 ratios. Conclusions In persons with bipolar type schizoaffective disorder, CHRNA7 promoter region allelic variants are linked to the capacity to inhibit the P50 auditory evoked potential and thus are associated with a type of illness genetically and biologically more similar to schizophrenia. PMID:17192894

  12. A Combinatorial H4 Tail Library to Explore the Histone Code

    PubMed Central

    Garske, Adam L.; Craciun, Gheorghe; Denu, John M.

    2008-01-01

    Histone modifications modulate chromatin structure and function. A posttranslational modification-randomized, combinatorial library based on the first twenty-one residues of histone H4 was designed for systematic examination of proteins that interpret a histone code. The 800-member library represented all permutations of most known modifications within the N-terminal tail of histone H4. To determine its utility in a protein-binding assay, the on-bead library was screened with an antibody directed against phosphoserine 1 of H4. Among the hits, 59/60 sequences were phosphorylated at S1, while 30/30 of those selected from the non-hits were unphosphorylated. A 512-member version of the library was then used to determine the binding specificity of the double tudor domain of hJMJD2A, a histone demethylase involved in transcriptional repression. Global linear least squares fitting of modifications from the identified peptides (40 hits and 34 non-hits) indicated that methylation of K20 was the primary determinant for binding, but that phosphorylation/acetylation on neighboring sites attenuated the interaction. To validate the on-bead screen, isothermal titration calorimetry was performed with thirteen H4 peptides. Dissociation constants ranged from 1 mM - 1μM and corroborated the screening results. The general approach should be useful for probing the specificity of any histone-binding protein. PMID:18616348

  13. Mean field study of a propagation-turnover lattice model for the dynamics of histone marking

    NASA Astrophysics Data System (ADS)

    Yao, Fan; Li, FangTing; Li, TieJun

    2017-02-01

    We present a mean field study of a propagation-turnover lattice model, which was proposed by Hodges and Crabtree [Proc. Nat. Acad. Sci. 109, 13296 (2012)] for understanding how posttranslational histone marks modulate gene expression in mammalian cells. The kinetics of the lattice model consists of nucleation, propagation and turnover mechanisms, and exhibits second-order phase transition for the histone marking domain. We showed rigorously that the dynamics essentially depends on a non-dimensional parameter κ = k +/ k -, the ratio between the propagation and turnover rates, which has been observed in the simulations. We then studied the lowest order mean field approximation, and observed the phase transition with an analytically obtained critical parameter. The boundary layer analysis was utilized to investigate the structure of the decay profile of the mark density. We also studied the higher order mean field approximation to achieve sharper estimate of the critical transition parameter and more detailed features. The comparison between the simulation and theoretical results shows the validity of our theory.

  14. Functional Roles of Acetylated Histone Marks at Mouse Meiotic Recombination Hot Spots

    PubMed Central

    Wu, Zhen; Fallahi, Mohammad; Ouizem, Souad; Liu, Qin; Li, Weimin; Costi, Roberta; Roush, William R.; Bois, Philippe R. J.

    2016-01-01

    ABSTRACT Meiotic recombination initiates following the formation of DNA double-strand breaks (DSBs) by the Spo11 endonuclease early in prophase I, at discrete regions in the genome coined “hot spots.” In mammals, meiotic DSB site selection is directed in part by sequence-specific binding of PRDM9, a polymorphic histone H3 (H3K4Me3) methyltransferase. However, other chromatin features needed for meiotic hot spot specification are largely unknown. Here we show that the recombinogenic cores of active hot spots in mice harbor several histone H3 and H4 acetylation and methylation marks that are typical of open, active chromatin. Further, deposition of these open chromatin-associated histone marks is dynamic and is manifest at spermatogonia and/or pre-leptotene-stage cells, which facilitates PRDM9 binding and access for Spo11 to direct the formation of DSBs, which are initiated at the leptotene stage. Importantly, manipulating histone acetylase and deacetylase activities established that histone acetylation marks are necessary for both hot spot activity and crossover resolution. We conclude that there are functional roles for histone acetylation marks at mammalian meiotic recombination hot spots. PMID:27821479

  15. Abundance of intrinsic structural disorder in the histone H1 subtypes.

    PubMed

    Kowalski, Andrzej

    2015-12-01

    The intrinsically disordered proteins consist of partially structured regions linked to the unstructured stretches, which consequently form the transient and dynamic conformational ensembles. They undergo disorder to order transition upon binding their partners. Intrinsic disorder is attributed to histones H1, perceived as assemblers of chromatin structure and the regulators of DNA and proteins activity. In this work, the comparison of intrinsic disorder abundance in the histone H1 subtypes was performed both by the analysis of their amino acid composition and by the prediction of disordered stretches, as well as by identifying molecular recognition features (MoRFs) and ANCHOR protein binding regions (APBR) that are responsible for recognition and binding. Both human and model organisms-animals, plants, fungi and protists-have H1 histone subtypes with the properties typical of disordered state. They possess a significantly higher content of hydrophilic and charged amino acid residues, arranged in the long regions, covering over half of the whole amino acid residues in chain. Almost complete disorder corresponds to histone H1 terminal domains, including MoRFs and ANCHOR. Those motifs were also identified in a more ordered histone H1 globular domain. Compared to the control (globular and fibrous) proteins, H1 histones demonstrate the increased folding rate and a higher proportion of low-complexity segments. The results of this work indicate that intrinsic disorder is an inherent structural property of histone H1 subtypes and it is essential for establishing a protein conformation which defines functional outcomes affecting on DNA- and/or partner protein-dependent cell processes. Copyright © 2015 Elsevier Ltd. All rights reserved.

  16. Changes to histone modifications following prenatal alcohol exposure: An emerging picture.

    PubMed

    Chater-Diehl, Eric J; Laufer, Benjamin I; Singh, Shiva M

    2017-05-01

    Epigenetic mechanisms are important for facilitating gene-environment interactions in many disease etiologies, including Fetal Alcohol Spectrum Disorders (FASD). Extensive research into the role of DNA methylation and miRNAs in animal models has illuminated the complex role of these mechanisms in FASD. In contrast, histone modifications have not been as well researched, due in part to being less stable than DNA methylation and less well-characterized in disease. It is now apparent that even changes in transient marks can have profound effects if they alter developmental trajectories. In addition, many histone methylations are now known to be relatively stable and can propagate themselves. As technologies and knowledge have advanced, a small group has investigated the role of histone modifications in FASD. Here, we synthesize the data on the effects of prenatal alcohol exposure (PAE) on histone modifications. Several key points are evident. AS with most alcohol-induced outcomes, timing and dosage differences yield variable effects. Nevertheless, these studies consistently find enrichment of H3K9ac, H3K27me2,3, and H3K9me2, and increased expression of histone acetyltransferases and methyltransferases. The consistency of these alterations may implicate them as key mechanisms underlying FASD. Histone modification changes do not often correlate with gene expression changes, though some important examples exist. Encouragingly, attempts to reproduce specific histone modification changes are very often successful. We comment on possible directions for future studies, focusing on further exploration of current trends, expansion of time-point and dosage regimes, and evaluation of biomarker potential. Copyright © 2017 Elsevier Inc. All rights reserved.

  17. Role of novel histone modifications in cancer

    PubMed Central

    Shanmugam, Muthu K.; Arfuso, Frank; Arumugam, Surendar; Chinnathambi, Arunachalam; Jinsong, Bian; Warrier, Sudha; Wang, Ling Zhi; Kumar, Alan Prem; Ahn, Kwang Seok; Sethi, Gautam; Lakshmanan, Manikandan

    2018-01-01

    Oncogenesis is a multistep process mediated by a variety of factors including epigenetic modifications. Global epigenetic post-translational modifications have been detected in almost all cancers types. Epigenetic changes appear briefly and do not involve permanent changes to the primary DNA sequence. These epigenetic modifications occur in key oncogenes, tumor suppressor genes, and transcription factors, leading to cancer initiation and progression. The most commonly observed epigenetic changes include DNA methylation, histone lysine methylation and demethylation, histone lysine acetylation and deacetylation. However, there are several other novel post-translational modifications that have been observed in recent times such as neddylation, sumoylation, glycosylation, phosphorylation, poly-ADP ribosylation, ubiquitination as well as transcriptional regulation and these have been briefly discussed in this article. We have also highlighted the diverse epigenetic changes that occur during the process of tumorigenesis and described the role of histone modifications that can occur on tumor suppressor genes as well as oncogenes, which regulate tumorigenesis and can thus form the basis of novel strategies for cancer therapy. PMID:29541423

  18. Core Histones and HIRIP3, a Novel Histone-Binding Protein, Directly Interact with WD Repeat Protein HIRA

    PubMed Central

    Lorain, Stéphanie; Quivy, Jean-Pierre; Monier-Gavelle, Frédérique; Scamps, Christine; Lécluse, Yann; Almouzni, Geneviève; Lipinski, Marc

    1998-01-01

    The human HIRA gene has been named after Hir1p and Hir2p, two corepressors which together appear to act on chromatin structure to control gene transcription in Saccharomyces cerevisiae. HIRA homologs are expressed in a regulated fashion during mouse and chicken embryogenesis, and the human gene is a major candidate for the DiGeorge syndrome and related developmental disorders caused by a reduction to single dose of a fragment of chromosome 22q. Western blot analysis and double-immunofluorescence experiments using a specific antiserum revealed a primary nuclear localization of HIRA. Similar to Hir1p, HIRA contains seven amino-terminal WD repeats and probably functions as part of a multiprotein complex. HIRA and core histone H2B were found to physically interact in a yeast double-hybrid protein interaction trap, in GST pull-down assays, and in coimmunoprecipitation experiments performed from cellular extracts. In vitro, HIRA also interacted with core histone H4. H2B- and H4-binding domains were overlapping but distinguishable in the carboxy-terminal region of HIRA, and the region for HIRA interaction was mapped to the amino-terminal tail of H2B and the second α helix of H4. HIRIP3 (HIRA-interacting protein 3) is a novel gene product that was identified from its HIRA-binding properties in the yeast protein interaction trap. In vitro, HIRIP3 directly interacted with HIRA but also with core histones H2B and H3, suggesting that a HIRA-HIRIP3-containing complex could function in some aspects of chromatin and histone metabolism. Insufficient production of HIRA, which we report elsewhere interacts with homeodomain-containing DNA-binding factors during mammalian embryogenesis, could perturb the stoichiometric assembly of multimolecular complexes required for normal embryonic development. PMID:9710638

  19. Histone Deacetylase Inhibitors as Anticancer Drugs.

    PubMed

    Eckschlager, Tomas; Plch, Johana; Stiborova, Marie; Hrabeta, Jan

    2017-07-01

    Carcinogenesis cannot be explained only by genetic alterations, but also involves epigenetic processes. Modification of histones by acetylation plays a key role in epigenetic regulation of gene expression and is controlled by the balance between histone deacetylases (HDAC) and histone acetyltransferases (HAT). HDAC inhibitors induce cancer cell cycle arrest, differentiation and cell death, reduce angiogenesis and modulate immune response. Mechanisms of anticancer effects of HDAC inhibitors are not uniform; they may be different and depend on the cancer type, HDAC inhibitors, doses, etc. HDAC inhibitors seem to be promising anti-cancer drugs particularly in the combination with other anti-cancer drugs and/or radiotherapy. HDAC inhibitors vorinostat, romidepsin and belinostat have been approved for some T-cell lymphoma and panobinostat for multiple myeloma. Other HDAC inhibitors are in clinical trials for the treatment of hematological and solid malignancies. The results of such studies are promising but further larger studies are needed. Because of the reversibility of epigenetic changes during cancer development, the potency of epigenetic therapies seems to be of great importance. Here, we summarize the data on different classes of HDAC inhibitors, mechanisms of their actions and discuss novel results of preclinical and clinical studies, including the combination with other therapeutic modalities.

  20. Histone Deacetylase Inhibitors as Anticancer Drugs

    PubMed Central

    Eckschlager, Tomas; Plch, Johana; Stiborova, Marie; Hrabeta, Jan

    2017-01-01

    Carcinogenesis cannot be explained only by genetic alterations, but also involves epigenetic processes. Modification of histones by acetylation plays a key role in epigenetic regulation of gene expression and is controlled by the balance between histone deacetylases (HDAC) and histone acetyltransferases (HAT). HDAC inhibitors induce cancer cell cycle arrest, differentiation and cell death, reduce angiogenesis and modulate immune response. Mechanisms of anticancer effects of HDAC inhibitors are not uniform; they may be different and depend on the cancer type, HDAC inhibitors, doses, etc. HDAC inhibitors seem to be promising anti-cancer drugs particularly in the combination with other anti-cancer drugs and/or radiotherapy. HDAC inhibitors vorinostat, romidepsin and belinostat have been approved for some T-cell lymphoma and panobinostat for multiple myeloma. Other HDAC inhibitors are in clinical trials for the treatment of hematological and solid malignancies. The results of such studies are promising but further larger studies are needed. Because of the reversibility of epigenetic changes during cancer development, the potency of epigenetic therapies seems to be of great importance. Here, we summarize the data on different classes of HDAC inhibitors, mechanisms of their actions and discuss novel results of preclinical and clinical studies, including the combination with other therapeutic modalities. PMID:28671573

  1. Preparative two-step purification of recombinant H1.0 linker histone and its domains.

    PubMed

    Ivic, Nives; Bilokapic, Silvija; Halic, Mario

    2017-01-01

    H1 linker histones are small basic proteins that have a key role in the formation and maintenance of higher-order chromatin structures. Additionally, many examples have shown that linker histones play an important role in gene regulation, modulated by their various subtypes and posttranslational modifications. Obtaining high amounts of very pure linker histones, especially for efficient antibody production, remains a demanding and challenging procedure. Here we present an easy and fast method to purify human linker histone H1.0 overexpressed in Escherichia coli, as well as its domains: N-terminal/globular domain and C-terminal intrinsically disordered domain. This purification protocol relies on a simple affinity chromatography step followed by cation exchange due to the highly basic properties of histone proteins. Therefore, this protocol can also be applied to other linker histones. Highly pure proteins in amounts sufficient for most biochemical experiments can be obtained. The functional quality of purified H1.0 histone and its domains has been confirmed by pull-down, gel-mobility shift assays and the nuclear import assay.

  2. ERK/MAPK Regulates Hippocampal Histone Phosphorylation Following Contextual Fear Conditioning

    ERIC Educational Resources Information Center

    Levenson, Jonathan M.; Sweatt, J. David; Chwang, Wilson B.; O'Riordan, Kenneth J.

    2006-01-01

    Long-term memory formation is regulated by many distinct molecular mechanisms that control gene expression. An emerging model for effecting a stable, coordinated pattern of gene transcription involves epigenetic tagging through modifications of histones or DNA. In this study, we investigated the regulation of histone phosphorylation in the…

  3. Human linker histones: interplay between phosphorylation and O-β-GlcNAc to mediate chromatin structural modifications

    PubMed Central

    2011-01-01

    Eukaryotic chromatin is a combination of DNA and histone proteins. It is established fact that epigenetic mechanisms are associated with DNA and histones. Initial studies emphasize on core histones association with DNA, however later studies prove the importance of linker histone H1 epigenetic. There are many types of linker histone H1 found in mammals. These subtypes are cell specific and their amount in different types of cells varies as the cell functions. Many types of post-translational modifications which occur on different residues in each subtype of linker histone H1 induce conformational changes and allow the different subtypes of linker histone H1 to interact with chromatin at different stages during cell cycle which results in the regulation of transcription and gene expression. Proposed O-glycosylation of linker histone H1 promotes condensation of chromatin while phosphorylation of linker histone H1 is known to activate transcription and gene regulation by decondensation of chromatin. Interplay between phosphorylation and O-β-GlcNAc modification on Ser and Thr residues in each subtype of linker histone H1 in Homo sapiens during cell cycle may result in diverse functional regulation of proteins. This in silico study describes the potential phosphorylation, o-glycosylation and their possible interplay sites on conserved Ser/Thr residues in various subtypes of linker histone H1 in Homo sapiens. PMID:21749719

  4. In vivo treatment by diallyl disulfide increases histone acetylation in rat colonocytes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Druesne-Pecollo, Nathalie; Chaumontet, Catherine; Pagniez, Anthony

    2007-03-02

    Diallyl disulfide (DADS) is an organosulfur compound from garlic which exhibits various anticarcinogenic properties including inhibition of tumor cell proliferation. DADS antiproliferative effects were previously associated with an increase in histone acetylation in two human tumor colon cell lines, suggesting that DADS-induced histone hyperacetylation could be one of the mechanisms involved in its protective properties on colon carcinogenesis. The effects of DADS on histone H4 and H3 acetylation levels were investigated in vivo in colonocytes isolated from non-tumoral rat. Administrated by intracaecal perfusion or gavage, DADS increases histone H4 and H3 acetylation in colonocytes. Moreover, data generated using cDNA expressionmore » arrays suggest that DADS could modulate the expression of a subset of genes. These results suggest the involvement of histone acetylation in modulation of gene expression by DADS in normal rat colonocytes, which might play a role in its biological effects as well as in its anticarcinogenic properties in vivo.« less

  5. Zac1 is a histone acetylation-regulated NF-κB suppressor that mediates histone deacetylase inhibitor-induced apoptosis.

    PubMed

    Shu, G; Tang, Y; Zhou, Y; Wang, C; Song, J-G

    2011-12-01

    Histone deacetylase (HDAC) inhibitors are a class of promising anticancer reagents. They are able to induce apoptosis in embryonic carcinoma (EC) cells. However, the underlying mechanism remains poorly understood. Here we show that increased expression of zinc-finger protein regulator of apoptosis and cell-cycle arrest (Zac1) is implicated in HDAC inhibitor-induced apoptosis in F9 and P19 EC cells. By chromatin immunoprecipitation analysis we identified that increased Zac1 expression is mediated by histone acetylation of the Zac1 promoter region. Knockdown of Zac1 inhibited HDAC inhibitor-induced cell apoptosis. Moreover, HDAC inhibitors repressed nuclear factor-κB (NF-κB) activity, and this effect is abrogated by Zac1 knockdown. Consistently, Zac1 overexpression suppressed cellular NF-κB activity. Further investigation showed that Zac1 inhibits NF-κB activity by interacting with the C-terminus of the p65 subunit, which suppresses the phosphorylation of p65 at Ser468 and Ser536 residues. These results indicate that Zac1 is a histone acetylation-regulated suppressor of NF-κB, which is induced and implicated in HDAC inhibitor-mediated EC cell apoptosis.

  6. Global Regulation of Plant Immunity by Histone Lysine Methyl Transferases

    PubMed Central

    Lee, Sanghun; Xu, Siming; Lee, Sang Yeol; Yun, Dae-Jin; Mengiste, Tesfaye

    2016-01-01

    Posttranslational modification of histones modulates gene expression affecting diverse biological functions. We showed that the Arabidopsis thaliana histone methyl transferases SET DOMAIN GROUP8 (SDG8) and SDG25 regulate pep1-, flg22-, and effector-triggered immunity as well as systemic acquired resistance. Genome-wide basal and induced transcriptome changes regulated by SDG8 and/or SDG25 showed that two genes of the SDG-dependent transcriptome, CAROTENOID ISOMERASE2 (CCR2) and ECERIFERUM3 (CER3), were also required for plant immunity, establishing mechanisms in defense functions for SDG8 and SDG25. CCR2 catalyzes the biosynthesis of carotenoids, whereas CER3 is involved in the biosynthesis of cuticular wax. SDG8 and SDG25 affected distinct and overlapping global and locus-specific histone H3 lysine 4 (H3K4) and histone H3 lysine 36 (H3K36) methylations. Loss of immunity in sdg mutants was attributed to altered global and CCR2- and CER3-specific histone lysine methylation (HLM). Loss of immunity in sdg, ccr2, and cer3 mutants was also associated with diminished accumulation of lipids and loss of cuticle integrity. In addition, sdg8 and sdg25 mutants were impaired in H2B ubiquitination (H2Bubn) at CCR2, CER3, and H2Bubn regulated R gene, SNC1, revealing crosstalk between the two types of histone modifications. In summary, SDG8 and SDG25 contribute to plant immunity directly through HLM or indirectly through H2Bubn and by regulating expression of plant immunity genes, accumulation of lipids, biosynthesis of carotenoids, and maintenance of cuticle integrity. PMID:27354553

  7. Histones and their modifications in ovarian cancer - drivers of disease and therapeutic targets.

    PubMed

    Marsh, Deborah J; Shah, Jaynish S; Cole, Alexander J

    2014-01-01

    Epithelial ovarian cancer has the highest mortality of the gynecological malignancies. High grade serous epithelial ovarian cancer (SEOC) is the most common subtype, with the majority of women presenting with advanced disease where 5-year survival is around 25%. Platinum-based chemotherapy in combination with paclitaxel remains the most effective treatment despite platinum therapies being introduced almost 40 years ago. Advances in molecular medicine are underpinning new strategies for the treatment of cancer. Major advances have been made by international initiatives to sequence cancer genomes. For SEOC, with the exception of TP53 that is mutated in virtually 100% of these tumors, there is no other gene mutated at high frequency. There is extensive copy number variation, as well as changes in methylation patterns that will influence gene expression. To date, the role of histones and their post-translational modifications in ovarian cancer is a relatively understudied field. Post-translational histone modifications play major roles in gene expression as they direct the configuration of chromatin and so access by transcription factors. Histone modifications include methylation, acetylation, and monoubiquitination, with involvement of enzymes including histone methyltransferases, histone acetyltransferases/deacetylases, and ubiquitin ligases/deubiquitinases, respectively. Complexes such as the Polycomb repressive complex also play roles in the control of histone modifications and more recently roles for long non-coding RNA and microRNAs are emerging. Epigenomic-based therapies targeting histone modifications are being developed and offer new approaches for the treatment of ovarian cancer. Here, we discuss histone modifications and their aberrant regulation in malignancy and specifically in ovarian cancer. We review current and upcoming histone-based therapies that have the potential to inform and improve treatment strategies for women with ovarian cancer.

  8. Profiling Changes in Histone Post-translational Modifications by Top-Down Mass Spectrometry.

    PubMed

    Zhou, Mowei; Wu, Si; Stenoien, David L; Zhang, Zhaorui; Connolly, Lanelle; Freitag, Michael; Paša-Tolić, Ljiljana

    2017-01-01

    Top-down mass spectrometry is a valuable tool for understanding gene expression through characterization of combinatorial histone post-translational modifications (i.e., histone code). In this protocol, we describe a top-down workflow that employs liquid chromatography (LC) coupled to mass spectrometry (MS), for fast global profiling of changes in histone proteoforms, and apply LCMS top-down approach for comparative analysis of a wild-type and a mutant fungal species. The proteoforms exhibiting differential abundances can be subjected to further targeted studies by other MS or orthogonal (e.g., biochemical) assays. This method can be generally adapted for screening of changes in histone modifications between samples such as wild type vs. mutant or healthy vs. diseased.

  9. Chromatin histone modifications and rigidity affect nuclear morphology independent of lamins

    PubMed Central

    Stephens, Andrew D.; Liu, Patrick Z.; Banigan, Edward J.; Almassalha, Luay M.; Backman, Vadim; Adam, Stephen A.; Goldman, Robert D.; Marko, John F.

    2018-01-01

    Nuclear shape and architecture influence gene localization, mechanotransduction, transcription, and cell function. Abnormal nuclear morphology and protrusions termed “blebs” are diagnostic markers for many human afflictions including heart disease, aging, progeria, and cancer. Nuclear blebs are associated with both lamin and chromatin alterations. A number of prior studies suggest that lamins dictate nuclear morphology, but the contributions of altered chromatin compaction remain unclear. We show that chromatin histone modification state dictates nuclear rigidity, and modulating it is sufficient to both induce and suppress nuclear blebs. Treatment of mammalian cells with histone deacetylase inhibitors to increase euchromatin or histone methyltransferase inhibitors to decrease heterochromatin results in a softer nucleus and nuclear blebbing, without perturbing lamins. Conversely, treatment with histone demethylase inhibitors increases heterochromatin and chromatin nuclear rigidity, which results in reduced nuclear blebbing in lamin B1 null nuclei. Notably, increased heterochromatin also rescues nuclear morphology in a model cell line for the accelerated aging disease Hutchinson–Gilford progeria syndrome caused by mutant lamin A, as well as cells from patients with the disease. Thus, chromatin histone modification state is a major determinant of nuclear blebbing and morphology via its contribution to nuclear rigidity. PMID:29142071

  10. Time-of-flights and traps: from the Histone Code to Mars.

    PubMed

    Cotter, Robert J; Swatkoski, Stepehen; Becker, Luann; Evans-Nguyen, Theresa

    2010-01-01

    Two very different analytical instruments are featured in this perspective paper on mass spectrometer design and development. The first instrument, based upon the curved-field reflectron developed in the Johns Hopkins Middle Atlantic Mass Spectrometry Laboratory, is a tandem time-of-flight mass spectrometer whose performance and practicality are illustrated by applications to a series of research projects addressing the acetylation, deacetylation and ADP-ribosylation of histone proteins. The chemical derivatization of lysine-rich, hyperacetylated histones as their deuteroacetylated analogs enables one to obtain an accurate quantitative assessment of the extent of acetylation at each site. Chemical acetylation of histone mixtures is also used to determine the lysine targets of sirtuins, an important class of histone deacetylases (HDACs), by replacing the deacetylated residues with biotin. Histone deacetylation by sirtuins requires the co-factor NAD+, as does the attachment of ADP-ribose. The second instrument, a low voltage and low power ion trap mass spectrometer known as the Mars Organic Mass Analyzer (MOMA), is a prototype for an instrument expected to be launched in 2018. Like the tandem mass spectrometer, it is also expected to have applicability to environmental and biological analyses and, ultimately, to clinical care.

  11. JNK1 regulates histone acetylation in trigeminal neurons following chemical stimulation

    PubMed Central

    Wu, Jing; Zhang, Xuan; Nauta, Haring J; Lin, Qing; Li, Junfa; Fang, Li

    2008-01-01

    Trigeminal nerve fibers in nasal and oral cavities are sensitive to various environmental hazardous stimuli, which trigger many neurotoxic problems such as chronic migraine headache and trigeminal irritated disorders. However, the role of JNK kinase cascade and its epigenetic modulation of histone remodeling in trigeminal ganglion (TG) neurons activated by environmental neurotoxins remains unknown. Here we investigated the role of JNK/c-Jun cascade in the regulation of acetylation of H3 histone in TG neurons following in vitro stimulation by a neuro-inflammatory agent, mustard oil (MO). We found that MO stimulation elicited JNK/c-Jun pathway significantly by enhancing phospho-JNK1, phospho-c-Jun expression, and c-Jun activity, which were correlated with an elevated acetylated H3 histone in TG neurons. However, increases in phospho-c-Jun and c-Jun activity were significantly blocked by a JNK inhibitor, SP600125. We also found that altered H3 histone remodeling, assessed by H3 acetylation in triggered TG neurons, was reduced by SP600125. The study suggests that the activated JNK signaling in regulation of histone remodeling may contribute to neuro-epigentic changes in peripheral sensory neurons following environmental neurotoxic exposure. PMID:18822271

  12. Time-of-flights and traps: from the Histone Code to Mars*

    PubMed Central

    Swatkoski, Stephen; Becker, Luann; Evans-Nguyen, Theresa

    2011-01-01

    Two very different analytical instruments are featured in this perspective paper on mass spectrometer design and development. The first instrument, based upon the curved-field reflectron developed in the Johns Hopkins Middle Atlantic Mass Spectrometry Laboratory, is a tandem time-of-flight mass spectrometer whose performance and practicality are illustrated by applications to a series of research projects addressing the acetylation, deacetylation and ADP-ribosylation of histone proteins. The chemical derivatization of lysine-rich, hyperacetylated histones as their deuteroacetylated analogs enables one to obtain an accurate quantitative assessment of the extent of acetylation at each site. Chemical acetylation of histone mixtures is also used to determine the lysine targets of sirtuins, an important class of histone deacetylases (HDACs), by replacing the deacetylated residues with biotin. Histone deacetylation by sirtuins requires the co-factor NAD+, as does the attachment of ADP-ribose. The second instrument, a low voltage and low power ion trap mass spectrometer known as the Mars Organic Mass Analyzer (MOMA), is a prototype for an instrument expected to be launched in 2018. Like the tandem mass spectrometer, it is also expected to have applicability to environmental and biological analyses and, ultimately, to clinical care. PMID:20530839

  13. Selective Biological Responses of Phagocytes and Lungs to Purified Histones.

    PubMed

    Fattahi, Fatemeh; Grailer, Jamison J; Lu, Hope; Dick, Rachel S; Parlett, Michella; Zetoune, Firas S; Nuñez, Gabriel; Ward, Peter A

    2017-01-01

    Histones invoke strong proinflammatory responses in many different organs and cells. We assessed biological responses to purified or recombinant histones, using human and murine phagocytes and mouse lungs. H1 had the strongest ability in vitro to induce cell swelling independent of requirements for toll-like receptors (TLRs) 2 or 4. These responses were also associated with lactate dehydrogenase release. H3 and H2B were the strongest inducers of [Ca2+]i elevations in phagocytes. Cytokine and chemokine release from mouse and human phagocytes was predominately a function of H2A and H2B. Double TLR2 and TLR4 knockout (KO) mice had dramatically reduced cytokine release induced in macrophages exposed to individual histones. In contrast, macrophages from single TLR-KO mice showed few inhibitory effects on cytokine production. Using the NLRP3 inflammasome protocol, release of mature IL-1β was predominantly a feature of H1. Acute lung injury following the airway delivery of histones suggested that H1, H2A, and H2B were linked to alveolar leak of albumin and the buildup of polymorphonuclear neutrophils as well as the release of chemokines and cytokines into bronchoalveolar fluids. These results demonstrate distinct biological roles for individual histones in the context of inflammation biology and the requirement of both TLR2 and TLR4. © 2017 S. Karger AG, Basel.

  14. Protein mass analysis of histones.

    PubMed

    Galasinski, Scott C; Resing, Katheryn A; Ahn, Natalie G

    2003-09-01

    Posttranslational modification of chromatin-associated proteins, including histones and high-mobility-group (HMG) proteins, provides an important mechanism to control gene expression, genome integrity, and epigenetic inheritance. Protein mass analysis provides a rapid and unbiased approach to monitor multiple chemical modifications on individual molecules. This review describes methods for acid extraction of histones and HMG proteins, followed by separation by reverse-phase chromatography coupled to electrospray ionization mass spectrometry (LC/ESI-MS). Posttranslational modifications are detected by analysis of full-length protein masses. Confirmation of protein identity and modification state is obtained through enzymatic digestion and peptide sequencing by MS/MS. For differentially modified forms of each protein, the measured intensities are semiquantitative and allow determination of relative abundance and stoichiometry. The method simultaneously detects covalent modifications on multiple proteins and provides a facile assay for comparing chromatin modification states between different cell types and/or cellular responses.

  15. A Metabolic Function for Phospholipid and Histone Methylation.

    PubMed

    Ye, Cunqi; Sutter, Benjamin M; Wang, Yun; Kuang, Zheng; Tu, Benjamin P

    2017-04-20

    S-adenosylmethionine (SAM) is the methyl donor for biological methylation modifications that regulate protein and nucleic acid functions. Here, we show that methylation of a phospholipid, phosphatidylethanolamine (PE), is a major consumer of SAM. The induction of phospholipid biosynthetic genes is accompanied by induction of the enzyme that hydrolyzes S-adenosylhomocysteine (SAH), a product and inhibitor of methyltransferases. Beyond its function for the synthesis of phosphatidylcholine (PC), the methylation of PE facilitates the turnover of SAM for the synthesis of cysteine and glutathione through transsulfuration. Strikingly, cells that lack PE methylation accumulate SAM, which leads to hypermethylation of histones and the major phosphatase PP2A, dependency on cysteine, and sensitivity to oxidative stress. Without PE methylation, particular sites on histones then become methyl sinks to enable the conversion of SAM to SAH. These findings reveal an unforeseen metabolic function for phospholipid and histone methylation intrinsic to the life of a cell. Copyright © 2017 Elsevier Inc. All rights reserved.

  16. [Comparative investigation of the non-histone proteins of chromatin from pigeon erythroblasts and erythrocytes].

    PubMed

    Fedina, A B; Gazarian, G G

    1976-01-01

    Chromosomal non-histone proteins are obtained from nuclei of two types of pigeon erythroid cells: erythroblasts (cells active in RNA synthesis) and erythrocytes (cells with repressed RNA synthesis). They are well soluble in solutions of low ionic strength. Electrophoretic separation of the obtained non-histone proteins in polyacrylamide gels with urea and SDS shows the presence of qualitative differences in the pattern of non-histone proteins of chromatine from erythroblasts and erythrocytes. By electrophoresis in urea some protein bands of non-histone proteins of chromatine from erythroblasts were found which disappear with the aging of cells. At the same time two protein fractions were observed in chromatine from erythrocytes which were absent in that of erythroblasts. Disappearance of some high molecular weight protein fractions from erythrocyte chromatine as compared to erythroblasts was observed by separation of the non-histone proteins in the presence of SDS. These fractions of the non-histone proteins disappearing during aging of cells are well extractable from erythroblast chromatine by 0.35 M NaCl solution. In the in vitro system with E. coli RNA polymerase addition of non-histone proteins of chromatine from erythroblasts to chromatine from erythrocytes increases RNA synthesis 2--3 times. At the same time addition of non-histone proteins from erythrocytes is either without any influence on this process or somewhat inhibiting.

  17. Global Regulation of Plant Immunity by Histone Lysine Methyl Transferases.

    PubMed

    Lee, Sanghun; Fu, Fuyou; Xu, Siming; Lee, Sang Yeol; Yun, Dae-Jin; Mengiste, Tesfaye

    2016-07-01

    Posttranslational modification of histones modulates gene expression affecting diverse biological functions. We showed that the Arabidopsis thaliana histone methyl transferases SET DOMAIN GROUP8 (SDG8) and SDG25 regulate pep1-, flg22-, and effector-triggered immunity as well as systemic acquired resistance. Genome-wide basal and induced transcriptome changes regulated by SDG8 and/or SDG25 showed that two genes of the SDG-dependent transcriptome, CAROTENOID ISOMERASE2 (CCR2) and ECERIFERUM3 (CER3), were also required for plant immunity, establishing mechanisms in defense functions for SDG8 and SDG25. CCR2 catalyzes the biosynthesis of carotenoids, whereas CER3 is involved in the biosynthesis of cuticular wax. SDG8 and SDG25 affected distinct and overlapping global and locus-specific histone H3 lysine 4 (H3K4) and histone H3 lysine 36 (H3K36) methylations. Loss of immunity in sdg mutants was attributed to altered global and CCR2- and CER3-specific histone lysine methylation (HLM). Loss of immunity in sdg, ccr2, and cer3 mutants was also associated with diminished accumulation of lipids and loss of cuticle integrity. In addition, sdg8 and sdg25 mutants were impaired in H2B ubiquitination (H2Bubn) at CCR2, CER3, and H2Bubn regulated R gene, SNC1, revealing crosstalk between the two types of histone modifications. In summary, SDG8 and SDG25 contribute to plant immunity directly through HLM or indirectly through H2Bubn and by regulating expression of plant immunity genes, accumulation of lipids, biosynthesis of carotenoids, and maintenance of cuticle integrity. © 2016 American Society of Plant Biologists. All rights reserved.

  18. Biochemical systems approaches for the analysis of histone modification readout.

    PubMed

    Soldi, Monica; Bremang, Michael; Bonaldi, Tiziana

    2014-08-01

    Chromatin is the macromolecular nucleoprotein complex that governs the organization of genetic material in the nucleus of eukaryotic cells. In chromatin, DNA is packed with histone proteins into nucleosomes. Core histones are prototypes of hyper-modified proteins, being decorated by a large number of site-specific reversible and irreversible post-translational modifications (PTMs), which contribute to the maintenance and modulation of chromatin plasticity, gene activation, and a variety of other biological processes and disease states. The observations of the variety, frequency and co-occurrence of histone modifications in distinct patterns at specific genomic loci have led to the idea that hPTMs can create a molecular barcode, read by effector proteins that translate it into a specific transcriptional state, or process, on the underlying DNA. However, despite the fact that this histone-code hypothesis was proposed more than 10 years ago, the molecular details of its working mechanisms are only partially characterized. In particular, two questions deserve specific investigation: how the different modifications associate and synergize into patterns and how these PTM configurations are read and translated by multi-protein complexes into a specific functional outcome on the genome. Mass spectrometry (MS) has emerged as a versatile tool to investigate chromatin biology, useful for both identifying and validating hPTMs, and to dissect the molecular determinants of histone modification readout systems. We review here the MS techniques and the proteomics methods that have been developed to address these fundamental questions in epigenetics research, emphasizing approaches based on the proteomic dissection of distinct native chromatin regions, with a critical evaluation of their present challenges and future potential. This article is part of a Special Issue entitled: Molecular mechanisms of histone modification function. Copyright © 2014 Elsevier B.V. All rights reserved.

  19. Histone Methylation in Nickel-Smelting Industrial Workers

    PubMed Central

    Ma, Li; Bai, Yana; Pu, Hongquan; Gou, Faxiang; Dai, Min; Wang, Hui; He, Jie; Zheng, Tongzhang; Cheng, Ning

    2015-01-01

    Background Nickel is an essential trace metal naturally found in the environment. It is also common in occupational settings, where it associates with various levels of both occupational and nonoccupational exposure In vitro studies have shown that nickel exposure can lead to intracellular accumulation of Ni2+, which has been associated with global decreases in DNA methylation, increases in chromatin condensation, reductions in H3K9me2, and elevated levels of H3K4me3. Histone modifications play an important role in modulating chromatin structure and gene expression. For example, tri-methylation of histone H3k4 has been found to be associated with transcriptional activation, and tri-methylation of H3k27 has been found to be associated with transcriptional repression. Aberrant histone modifications have been found to be associated with various human diseases, including cancer. The purpose of this work was to identify biomarkers for populations with occupational nickel exposure and to examine the relationship between histone methylation and nickel exposure. This may provide a scientific indicator of early health impairment and facilitate exploration of the molecular mechanism underlying cancer pathogenesis. Methods One hundred and forty subjects with occupational exposure to Ni and 140 referents were recruited. H3K4 and H3K27 trimethylation levels were measured in subjects’ blood cells. Results H3K4me3 levels were found to be higher in nickel smelting workers (47.24±20.85) than in office workers (22.65±8.81; P = 0.000), while the opposite was found for levels of H3K27me3(nickel smelting workers, 13.88± 4.23; office workers, 20.67± 5.96; P = 0.000). H3K4me3 was positively (r = 0.267, P = 0.001) and H3K27 was negatively (r = -0.684, P = 0.000) associated with age and length of service in smelting workers. Conclusion This study indicated that occupational exposure to Ni is associated with alterations in levels of histone modification. PMID:26474320

  20. From meiosis to postmeiotic events: the secrets of histone disappearance.

    PubMed

    Gaucher, Jonathan; Reynoird, Nicolas; Montellier, Emilie; Boussouar, Fayçal; Rousseaux, Sophie; Khochbin, Saadi

    2010-02-01

    One of the most obscure phenomena in modern biology is the near genome-wide displacement of histones that occurs during the postmeiotic phases of spermatogenesis in many species. Here we review the literature to show that, during spermatogenic differentiation, three major molecular mechanisms come together to 'prepare' the nucleosomes for facilitated disassembly and histone removal.

  1. Binge alcohol alters PNPLA3 levels in liver through epigenetic mechanism involving histone H3 acetylation.

    PubMed

    Restrepo, Ricardo J; Lim, Robert W; Korthuis, Ronald J; Shukla, Shivendra D

    2017-05-01

    The human PNPLA3 (patatin-like phospholipase domain-containing 3) gene codes for a protein which is highly expressed in adipose tissue and liver, and is implicated in lipid homeostasis. While PNPLA3 protein contains regions homologous to functional lipolytic proteins, the regulation of its tissue expression is reflective of lipogenic genes. A naturally occurring genetic variant of PNPLA3 in humans has been linked to increased susceptibility to alcoholic liver disease. We have examined the modulatory effect of alcohol on PNPLA3 protein and mRNA expression as well as the association of its gene promoter with acetylated histone H3K9 by chromatin immunoprecipitation (ChIP) assay in rat hepatocytes in vitro, and in vivo in mouse and rat models of acute binge, chronic, and chronic followed by acute binge ethanol administration. Protein expression of PNPLA3 was significantly increased by alcohol in all three models used. PNPLA3 mRNA also increased, albeit to a varying degree. ChIP assay using H3AcK9 antibody showed increased association with the promoter of PNPLA3 in hepatocytes and in mouse liver. This was less evident in rat livers in vivo except under chronic treatment. It is concluded for the first time that histone acetylation plays a role in the modulation of PNPLA3 levels in the liver exposed to binge ethanol both in vitro and in vivo. Copyright © 2017 Elsevier Inc. All rights reserved.

  2. Binge alcohol alters PNPLA3 levels in liver through epigenetic mechanism involving histone H3 acetylation

    PubMed Central

    Restrepo, Ricardo J.; Lim, Robert W.; Korthuis, Ronald J.; Shukla, Shivendra D.

    2017-01-01

    The human PNPLA3 (patatin-like phospholipase domain-containing 3) gene codes for a protein which is highly expressed in adipose tissue and liver, and is implicated in lipid homeostasis. While PNPLA3 protein contains regions homologous to functional lipolytic proteins, the regulation of its tissue expression is reflective of lipogenic genes. A naturally occurring genetic variant of PNPLA3 in humans has been linked to increased susceptibility to alcoholic liver disease. We have examined the modulatory effect of alcohol on PNPLA3 protein and mRNA expression as well as the association of its gene promoter with acetylated histone H3K9 by chromatin immunoprecipitation (ChIP) assay in rat hepatocytes in vitro, and in vivo in mouse and rat models of acute binge, chronic, and chronic followed by acute binge ethanol administration. Protein expression of PNPLA3 was significantly increased by alcohol in all three models used. PNPLA3 mRNA also increased, albeit to a varying degree. ChIP assay using H3AcK9 antibody showed increased association with the promoter of PNPLA3 in hepatocytes and in mouse liver. This was less evident in rat livers in vivo except under chronic treatment. It is concluded for the first time that histone acetylation plays a role in the modulation of PNPLA3 levels in the liver exposed to binge ethanol both in vitro and in vivo. PMID:28433418

  3. Zinc binding groups for histone deacetylase inhibitors.

    PubMed

    Zhang, Lei; Zhang, Jian; Jiang, Qixiao; Zhang, Li; Song, Weiguo

    2018-12-01

    Zinc binding groups (ZBGs) play a crucial role in targeting histone deacetylase inhibitors (HDACIs) to the active site of histone deacetylases (HDACs), thus determining the potency of HDACIs. Due to the high affinity to the zinc ion, hydroxamic acid is the most commonly used ZBG in the structure of HDACs. An alternative ZBG is benzamide group, which features excellent inhibitory selectivity for class I HDACs. Various ZBGs have been designed and tested to improve the activity and selectivity of HDACIs, and to overcome the pharmacokinetic limitations of current HDACIs. Herein, different kinds of ZBGs are reviewed and their features have been discussed for further design of HDACIs.

  4. Histone H3.3 mutations drive paediatric glioblastoma through upregulation of MYCN

    PubMed Central

    Bjerke, Lynn; Mackay, Alan; Nandhabalan, Meera; Burford, Anna; Jury, Alexa; Popov, Sergey; Bax, Dorine A; Carvalho, Diana; Taylor, Kathryn R; Vinci, Maria; Bajrami, Ilirjana; McGonnell, Imelda M; Lord, Christopher J; Reis, Rui M; Hargrave, Darren; Ashworth, Alan; Workman, Paul; Jones, Chris

    2013-01-01

    Glioblastomas of children and young adults have a median survival of only 12-15months and are clinically and biologically distinct from histologically similar cancers in older adults1. They are defined by highly specific mutations in the gene encoding the histone H3.3 variant H3F3A2, occurring either at or close to key residues marked by methylation for regulation of transcription – K27 and G34. Here we show that the cerebral hemispheric-specific G34 mutation drives a distinct expression signature through differential genomic binding of the K36 trimethylation mark (H3K36me3). The transcriptional program induced recapitulates that of the developing forebrain, and involves numerous markers of stem cell maintenance, cell fate decisions and self-renewal. Critically, H3F3A G34 mutations cause profound upregulation of MYCN, a potent oncogene which is causative of glioblastomas when expressed in the correct developmental context. This driving aberration is selectively targetable in this patient population by inhibiting kinases responsible for stabilisation of the protein. PMID:23539269

  5. Dynamics of gene expression with positive feedback to histone modifications at bivalent domains

    NASA Astrophysics Data System (ADS)

    Huang, Rongsheng; Lei, Jinzhi

    2018-03-01

    Experiments have shown that in embryonic stem cells, the promoters of many lineage-control genes contain “bivalent domains”, within which the nucleosomes possess both active (H3K4me3) and repressive (H3K27me3) marks. Such bivalent modifications play important roles in maintaining pluripotency in embryonic stem cells. Here, to investigate gene expression dynamics when there are regulations in bivalent histone modifications and random partition in cell divisions, we study how positive feedback to histone methylation/demethylation controls the transition dynamics of the histone modification patterns along with cell cycles. We constructed a computational model that includes dynamics of histone marks, three-stage chromatin state transitions, transcription and translation, feedbacks from protein product to enzymes to regulate the addition and removal of histone marks, and the inheritance of nucleosome state between cell cycles. The model reveals how dynamics of both nucleosome state transition and gene expression are dependent on the enzyme activities and feedback regulations. Results show that the combination of stochastic histone modification at each cell division and the deterministic feedback regulation work together to adjust the dynamics of chromatin state transition in stem cell regenerations.

  6. Charge State of the Globular Histone Core Controls Stability of the Nucleosome

    PubMed Central

    Fenley, Andrew T.; Adams, David A.; Onufriev, Alexey V.

    2010-01-01

    Presented here is a quantitative model of the wrapping and unwrapping of the DNA around the histone core of the nucleosome that suggests a mechanism by which this transition can be controlled: alteration of the charge state of the globular histone core. The mechanism is relevant to several classes of posttranslational modifications such as histone acetylation and phosphorylation; several specific scenarios consistent with recent in vivo experiments are considered. The model integrates a description based on an idealized geometry with one based on the atomistic structure of the nucleosome, and the model consistently accounts for both the electrostatic and nonelectrostatic contributions to the nucleosome free energy. Under physiological conditions, isolated nucleosomes are predicted to be very stable (38 ± 7 kcal/mol). However, a decrease in the charge of the globular histone core by one unit charge, for example due to acetylation of a single lysine residue, can lead to a significant decrease in the strength of association with its DNA. In contrast to the globular histone core, comparable changes in the charge state of the histone tail regions have relatively little effect on the nucleosome's stability. The combination of high stability and sensitivity explains how the nucleosome is able to satisfy the seemingly contradictory requirements for thermodynamic stability while allowing quick access to its DNA informational content when needed by specific cellular processes such as transcription. PMID:20816070

  7. Drosophila Symplekin localizes dynamically to the histone locus body and tricellular junctions.

    PubMed

    Tatomer, Deirdre C; Rizzardi, Lindsay F; Curry, Kaitlin P; Witkowski, Alison M; Marzluff, William F; Duronio, Robert J

    2014-01-01

    The scaffolding protein Symplekin is part of multiple complexes involved in generating and modifying the 3' end of mRNAs, including cleavage-polyadenylation, histone pre-mRNA processing and cytoplasmic polyadenylation. To study these functions in vivo, we examined the localization of Symplekin during development and generated mutations of the Drosophila Symplekin gene. Mutations in Symplekin that reduce Symplekin protein levels alter the efficiency of both poly A(+) and histone mRNA 3' end formation resulting in lethality or sterility. Histone mRNA synthesis takes place at the histone locus body (HLB) and requires a complex composed of Symplekin and several polyadenylation factors that associates with the U7 snRNP. Symplekin is present in the HLB in the early embryo when Cyclin E/Cdk2 is active and histone genes are expressed and is absent from the HLB in cells that have exited the cell cycle. During oogenesis, Symplekin is preferentially localized to HLBs during S-phase in endoreduplicating follicle cells when histone mRNA is synthesized. After the completion of endoreplication, Symplekin accumulates in the cytoplasm, in addition to the nucleoplasm, and localizes to tricellular junctions of the follicle cell epithelium. This localization depends on the RNA binding protein ypsilon schachtel. CPSF-73 and a number of mRNAs are localized at this same site, suggesting that Symplekin participates in cytoplasmic polyadenylation at tricellular junctions.

  8. Inhibitors of enzymes catalyzing modifications to histone lysine residues: structure, function and activity.

    PubMed

    Lillico, Ryan; Stesco, Nicholas; Khorshid Amhad, Tina; Cortes, Claudia; Namaka, Mike P; Lakowski, Ted M

    2016-05-01

    Gene expression is partly controlled by epigenetic mechanisms including histone-modifying enzymes. Some diseases are caused by changes in gene expression that can be mitigated by inhibiting histone-modifying enzymes. This review covers the enzyme inhibitors targeting histone lysine modifications. We summarize the enzymatic mechanisms of histone lysine acetylation, deacetylation, methylation and demethylation and discuss the biochemical roles of these modifications in gene expression and in disease. We discuss inhibitors of lysine acetylation, deacetylation, methylation and demethylation defining their structure-activity relationships and their potential mechanisms. We show that there are potentially indiscriminant off-target effects on gene expression even with the use of selective epigenetic enzyme inhibitors.

  9. Pharmacogenomics and histone deacetylase inhibitors

    PubMed Central

    Goey, Andrew KL; Sissung, Tristan M; Peer, Cody J; Figg, William D

    2016-01-01

    The histone deacetylase inhibitor valproic acid (VPA) has been used for many decades in neurology and psychiatry. The more recent introduction of the histone deacetylase inhibitors (HDIs) belinostat, romidepsin and vorinostat for treatment of hematological malignancies indicates the increasing popularity of these agents. Belinostat, romidepsin and vorinostat are metabolized or transported by polymorphic enzymes or drug transporters. Thus, genotype-directed dosing could improve pharmacotherapy by reducing the risk of toxicities or preventing suboptimal treatment. This review provides an overview of clinical studies on the effects of polymorphisms on the pharmacokinetics, efficacy or toxicities of HDIs including belinostat, romidepsin, vorinostat, panobinostat, VPA and a number of novel compounds currently being tested in Phase I and II trials. Although pharmacogenomic studies for HDIs are scarce, available data indicate that therapy with belinostat (UGT1A1), romidepsin (ABCB1), vorinostat (UGT2B17) or VPA (UGT1A6) could be optimized by upfront genotyping. PMID:27767376

  10. Experimental study on inhibitory effects of histone deacetylase inhibitor MS-275 and TSA on bladder cancer cells.

    PubMed

    Qu, Wei; Kang, Yin-Dong; Zhou, Mei-Sheng; Fu, Li-Li; Hua, Zhen-Hao; Wang, Li-Ming

    2010-01-01

    To investigate the inhibitory effect of histone deacetylase (HDAC) inhibitors (MS-275 and TSA) on T24 human bladder cancer cells in vitro, and explore the possible mechanism. The MTT assay was employed to evaluate the inhibitory effect of MS-275 and TSA on T24 cell growth. FCM was used to analyze the variation of T24 cell cycle distribution and the apoptotic ratio after T24 cells were treated with MS-275 and TSA. Histone acetylation level was detected by Western blot. mRNA expression of p21 WAF1/CIP1, cyclin A, and cyclin E was measured by FQ-PCR. Dynamic changes of Bcl-2 and bax expression were detected by FCM. MS-275 and TSA inhibited T24 cell growth in a concentration and time-dependent manner. Treatment with 4 μmol/l MS-275 or 0.4 μmol/l TSA blocked cell cycling in the G0/G1 phase and induced a significant increase in cell apoptosis. MS-275 and TSA significantly increased the level of histone acetylation, induced p21CIP1WAF1 mRNA expression, and inhibited cyclin A mRNA expression, though no significant effect was observed on cyclin E. Bcl-2 expression was down-regulated, while bax expression was up-regulated. HDAC inhibitors can block bladder cancer cell cycle in vitro and induce apoptosis. The molecular mechanism may be associated with increased level of histone acetylation, down-regulation of p21WAF1/CIP1 expression, up-regulation of cyclin A expression, and dynamic change of bcl-2 and bax expression. Copyright © 2010 Elsevier Inc. All rights reserved.

  11. Histone deacetylases regulate multicellular development in the social amoeba Dictyostelium discoideum.

    PubMed

    Sawarkar, Ritwick; Visweswariah, Sandhya S; Nellen, Wolfgang; Nanjundiah, Vidyanand

    2009-09-04

    Epigenetic modifications of histones regulate gene expression and lead to the establishment and maintenance of cellular phenotypes during development. Histone acetylation depends on a balance between the activities of histone acetyltransferases and histone deacetylases (HDACs) and influences transcriptional regulation. In this study, we analyse the roles of HDACs during growth and development of one of the cellular slime moulds, the social amoeba Dictyostelium discoideum. The inhibition of HDAC activity by trichostatin A results in histone hyperacetylation and a delay in cell aggregation and differentiation. Cyclic AMP oscillations are normal in starved amoebae treated with trichostatin A but the expression of a subset of cAMP-regulated genes is delayed. Bioinformatic analysis indicates that there are four genes encoding putative HDACs in D. discoideum. Using biochemical, genetic and developmental approaches, we demonstrate that one of these four genes, hdaB, is dispensable for growth and development under laboratory conditions. A knockout of the hdaB gene results in a social context-dependent phenotype: hdaB(-) cells develop normally but sporulate less efficiently than the wild type in chimeras. We infer that HDAC activity is important for regulating the timing of gene expression during the development of D. discoideum and for defining aspects of the phenotype that mediate social behaviour in genetically heterogeneous groups.

  12. Differentiation of eosinophilic leukemia EoL-1 cells into eosinophils induced by histone deacetylase inhibitors.

    PubMed

    Ishihara, Kenji; Takahashi, Aki; Kaneko, Motoko; Sugeno, Hiroki; Hirasawa, Noriyasu; Hong, JangJa; Zee, OkPyo; Ohuchi, Kazuo

    2007-03-06

    EoL-1 cells differentiate into eosinophils in the presence of n-butyrate, but the mechanism has remained to be elucidated. Because n-butyrate can inhibit histone deacetylases, we hypothesized that the inhibition of histone deacetylases induces the differentiation of EoL-1 cells into eosinophils. In this study, using n-butyrate and two other histone deacetylase inhibitors, apicidin and trichostatin A, we have analyzed the relationship between the inhibition of histone deacetylases and the differentiation into eosinophils in EoL-1 cells. It was demonstrated that apicidin and n-butyrate induced a continuous acetylation of histones H4 and H3, inhibited the proliferation of EoL-1 cells without attenuating the level of FIP1L1-PDGFRA mRNA, and induced the expression of markers for mature eosinophils such as integrin beta7, CCR1, and CCR3 on EoL-1 cells, while trichostatin A evoked a transient acetylation of histones and induced no differentiation into eosinophils. These findings suggest that the continuous inhibition of histone deacetylases in EoL-1 cells induces the differentiation into mature eosinophils.

  13. Identifying chromatin readers using a SILAC-based histone peptide pull-down approach.

    PubMed

    Vermeulen, Michiel

    2012-01-01

    Posttranslational modifications (PTMs) on core histones regulate essential processes inside the nucleus such as transcription, replication, and DNA repair. An important function of histone PTMs is the recruitment or stabilization of chromatin-modifying proteins, which are also called chromatin "readers." We have developed a generic SILAC-based peptide pull-down approach to identify such readers for histone PTMs in an unbiased manner. In this chapter, the workflow behind this method will be presented in detail. Copyright © 2012 Elsevier Inc. All rights reserved.

  14. Regulation of alternative splicing by local histone modifications: potential roles for RNA-guided mechanisms

    PubMed Central

    Zhou, Hua-Lin; Luo, Guangbin; Wise, Jo Ann; Lou, Hua

    2014-01-01

    The molecular mechanisms through which alternative splicing and histone modifications regulate gene expression are now understood in considerable detail. Here, we discuss recent studies that connect these two previously separate avenues of investigation, beginning with the unexpected discoveries that nucleosomes are preferentially positioned over exons and DNA methylation and certain histone modifications also show exonic enrichment. These findings have profound implications linking chromatin structure, histone modification and splicing regulation. Complementary single gene studies provided insight into the mechanisms through which DNA methylation and histones modifications modulate alternative splicing patterns. Here, we review an emerging theme resulting from these studies: RNA-guided mechanisms integrating chromatin modification and splicing. Several groundbreaking papers reported that small noncoding RNAs affect alternative exon usage by targeting histone methyltransferase complexes to form localized facultative heterochromatin. More recent studies provided evidence that pre-messenger RNA itself can serve as a guide to enable precise alternative splicing regulation via local recruitment of histone-modifying enzymes, and emerging evidence points to a similar role for long noncoding RNAs. An exciting challenge for the future is to understand the impact of local modulation of transcription elongation rates on the dynamic interplay between histone modifications, alternative splicing and other processes occurring on chromatin. PMID:24081581

  15. Histone and RNA-binding protein interaction creates crosstalk network for regulation of alternative splicing.

    PubMed

    Kim, Yong-Eun; Park, Chungoo; Kim, Kyoon Eon; Kim, Kee K

    2018-04-30

    Alternative splicing is an essential process in eukaryotes, as it increases the complexity of gene expression by generating multiple proteins from a single pre-mRNA. However, information on the regulatory mechanisms for alternative splicing is lacking, because splicing occurs over a short period via the transient interactions of proteins within functional complexes of the spliceosome. Here, we investigated in detail the molecular mechanisms connecting alternative splicing with epigenetic mechanisms. We identified interactions between histone proteins and splicing factors such as Rbfox2, Rbfox3, and splicing factor proline and glutamine rich protein (SFPQ) by in vivo crosslinking and immunoprecipitation. Furthermore, we confirmed that splicing factors were bound to specific modified residues of histone proteins. Additionally, changes in histone methylation due to histone methyltransferase inhibitor treatment notably affected alternative splicing in selected genes. Therefore, we suggested that there may be crosstalk mechanisms connecting histone modifications and RNA-binding proteins that increase the local concentration of RNA-binding proteins in alternative exon loci of nucleosomes by binding specific modified histone proteins, leading to alternative splicing. This crosstalk mechanism may play a major role in epigenetic processes such as histone modification and the regulation of alternative splicing. Copyright © 2018 Elsevier Inc. All rights reserved.

  16. Histone H4 acetylation required for chromatin decompaction during DNA replication.

    PubMed

    Ruan, Kun; Yamamoto, Takaharu G; Asakawa, Haruhiko; Chikashige, Yuji; Kimura, Hiroshi; Masukata, Hisao; Haraguchi, Tokuko; Hiraoka, Yasushi

    2015-07-30

    Faithful DNA replication is a prerequisite for cell proliferation. Several cytological studies have shown that chromosome structures alter in the S-phase of the cell cycle. However, the molecular mechanisms behind the alteration of chromosome structures associated with DNA replication have not been elucidated. Here, we investigated chromatin structures and acetylation of specific histone residues during DNA replication using the meiotic nucleus of the fission yeast Schizosaccharomyces pombe. The S. pombe meiotic nucleus provides a unique opportunity for measuring the levels of compaction of chromatin along the chromosome in a defined orientation. By direct measurement of chromatin compaction in living cells, we demonstrated that decompaction of chromatin occurs during meiotic DNA replication. This chromatin decompaction was suppressed by depletion of histone acetyltransferase Mst1 or by arginine substitution of specific lysine residues (K8 and K12) of histone H4. These results suggest that acetylation of histone H4 residues K8 and K12 plays a critical role in loosening chromatin structures during DNA replication.

  17. Linker Histone Phosphorylation Regulates Global Timing of Replication Origin Firing*S⃞

    PubMed Central

    Thiriet, Christophe; Hayes, Jeffrey J.

    2009-01-01

    Despite the presence of linker histone in all eukaryotes, the primary function(s) of this histone have been difficult to clarify. Knock-out experiments indicate that H1s play a role in regulation of only a small subset of genes but are an essential component in mouse development. Here, we show that linker histone (H1) is involved in the global regulation of DNA replication in Physarum polycephalum. We find that genomic DNA of H1 knock-down cells is more rapidly replicated, an effect due at least in part to disruption of the native timing of replication fork firing. Immunoprecipitation experiments demonstrate that H1 is transiently lost from replicating chromatin via a process facilitated by phosphorylation. Our results suggest that linker histones generate a chromatin environment refractory to replication and that their transient removal via protein phosphorylation during S phase is a critical step in the epigenetic regulation of replication timing. PMID:19015270

  18. Generalized nucleation and looping model for epigenetic memory of histone modifications

    PubMed Central

    Erdel, Fabian; Greene, Eric C.

    2016-01-01

    Histone modifications can redistribute along the genome in a sequence-independent manner, giving rise to chromatin position effects and epigenetic memory. The underlying mechanisms shape the endogenous chromatin landscape and determine its response to ectopically targeted histone modifiers. Here, we simulate linear and looping-driven spreading of histone modifications and compare both models to recent experiments on histone methylation in fission yeast. We find that a generalized nucleation-and-looping mechanism describes key observations on engineered and endogenous methylation domains including intrinsic spatial confinement, independent regulation of domain size and memory, variegation in the absence of antagonists, and coexistence of short- and long-term memory at loci with weak and strong constitutive nucleation. These findings support a straightforward relationship between the biochemical properties of chromatin modifiers and the spatiotemporal modification pattern. The proposed mechanism gives rise to a phase diagram for cellular memory that may be generally applicable to explain epigenetic phenomena across different species. PMID:27382173

  19. Accuracy and equivalence testing of crown ratio models and assessment of their impact on diameter growth and basal area increment predictions of two variants of the Forest Vegetation Simulator

    Treesearch

    Laura P. Leites; Andrew P. Robinson; Nicholas L. Crookston

    2009-01-01

    Diameter growth (DG) equations in many existing forest growth and yield models use tree crown ratio (CR) as a predictor variable. Where CR is not measured, it is estimated from other measured variables. We evaluated CR estimation accuracy for the models in two Forest Vegetation Simulator variants: the exponential and the logistic CR models used in the North...

  20. Distinct Motion of GFP-Tagged Histone Expressing Cells Under AC Electrokinetics in Electrode-Multilayered Microfluidic Device.

    PubMed

    Yao, Jiafeng; Sugawara, Michiko; Obara, Hiromichi; Mizutani, Takeomi; Takei, Masahiro

    2017-12-01

    The distinct motion of GFP-tagged histone expressing cells (Histone-GFP type cells) has been investigated under ac electrokinetics in an electrode-multilayered microfluidic device as compared with Wild type cells and GFP type cells in terms of different intracellular components. The Histone-GFP type cells were modified by the transfection of green fluorescent protein-fused histone from the human lung fibroblast cell line. The velocity of the Histone-GFP type cells obtained by particle tracking velocimetry technique is faster than Wild type cells by 24.9% and GFP type cells by 57.1%. This phenomenon is caused by the more amount of proteins in the intracellular of single Histone-GFP type cell than that of the Wild type and GFP type cells. The more amount of proteins in the Histone-GFP type cells corresponds to a lower electric permittivity ϵ c of the cells, which generates a lower dielectrophoretic force exerting on the cells. The velocity of Histone-GFP type cells is well agreed with Eulerian-Lagrangian two-phase flow simulation by 4.2% mean error, which proves that the fluid motion driven by thermal buoyancy and electrothermal force dominates the direction of cells motion, while the distinct motion of Histone-GFP type cells is caused by dielectrophoretic force. The fluid motion does not generate a distinct drag motion for Histone-GFP type cells because the Histone-GFP type cells have the same size to the Wild type and GFP type cells. These results clarified the mechanism of cells motion in terms of intracellular components, which helps to improve the cell manipulation efficiency with electrokinetics.

  1. Paternal poly (ADP-ribose) metabolism modulates retention of inheritable sperm histones and early embryonic gene expression.

    PubMed

    Ihara, Motomasa; Meyer-Ficca, Mirella L; Leu, N Adrian; Rao, Shilpa; Li, Fan; Gregory, Brian D; Zalenskaya, Irina A; Schultz, Richard M; Meyer, Ralph G

    2014-05-01

    To achieve the extreme nuclear condensation necessary for sperm function, most histones are replaced with protamines during spermiogenesis in mammals. Mature sperm retain only a small fraction of nucleosomes, which are, in part, enriched on gene regulatory sequences, and recent findings suggest that these retained histones provide epigenetic information that regulates expression of a subset of genes involved in embryo development after fertilization. We addressed this tantalizing hypothesis by analyzing two mouse models exhibiting abnormal histone positioning in mature sperm due to impaired poly(ADP-ribose) (PAR) metabolism during spermiogenesis and identified altered sperm histone retention in specific gene loci genome-wide using MNase digestion-based enrichment of mononucleosomal DNA. We then set out to determine the extent to which expression of these genes was altered in embryos generated with these sperm. For control sperm, most genes showed some degree of histone association, unexpectedly suggesting that histone retention in sperm genes is not an all-or-none phenomenon and that a small number of histones may remain associated with genes throughout the genome. The amount of retained histones, however, was altered in many loci when PAR metabolism was impaired. To ascertain whether sperm histone association and embryonic gene expression are linked, the transcriptome of individual 2-cell embryos derived from such sperm was determined using microarrays and RNA sequencing. Strikingly, a moderate but statistically significant portion of the genes that were differentially expressed in these embryos also showed different histone retention in the corresponding gene loci in sperm of their fathers. These findings provide new evidence for the existence of a linkage between sperm histone retention and gene expression in the embryo.

  2. Paternal Poly (ADP-ribose) Metabolism Modulates Retention of Inheritable Sperm Histones and Early Embryonic Gene Expression

    PubMed Central

    Leu, N. Adrian; Rao, Shilpa; Li, Fan; Gregory, Brian D.; Zalenskaya, Irina A.; Schultz, Richard M.; Meyer, Ralph G.

    2014-01-01

    To achieve the extreme nuclear condensation necessary for sperm function, most histones are replaced with protamines during spermiogenesis in mammals. Mature sperm retain only a small fraction of nucleosomes, which are, in part, enriched on gene regulatory sequences, and recent findings suggest that these retained histones provide epigenetic information that regulates expression of a subset of genes involved in embryo development after fertilization. We addressed this tantalizing hypothesis by analyzing two mouse models exhibiting abnormal histone positioning in mature sperm due to impaired poly(ADP-ribose) (PAR) metabolism during spermiogenesis and identified altered sperm histone retention in specific gene loci genome-wide using MNase digestion-based enrichment of mononucleosomal DNA. We then set out to determine the extent to which expression of these genes was altered in embryos generated with these sperm. For control sperm, most genes showed some degree of histone association, unexpectedly suggesting that histone retention in sperm genes is not an all-or-none phenomenon and that a small number of histones may remain associated with genes throughout the genome. The amount of retained histones, however, was altered in many loci when PAR metabolism was impaired. To ascertain whether sperm histone association and embryonic gene expression are linked, the transcriptome of individual 2-cell embryos derived from such sperm was determined using microarrays and RNA sequencing. Strikingly, a moderate but statistically significant portion of the genes that were differentially expressed in these embryos also showed different histone retention in the corresponding gene loci in sperm of their fathers. These findings provide new evidence for the existence of a linkage between sperm histone retention and gene expression in the embryo. PMID:24810616

  3. The relationship between gene transcription and combinations of histone modifications

    NASA Astrophysics Data System (ADS)

    Cui, Xiangjun; Li, Hong; Luo, Liaofu

    2012-09-01

    Histone modification is an important subject of epigenetics which plays an intrinsic role in transcriptional regulation. It is known that multiple histone modifications act in a combinatorial fashion. In this study, we demonstrated that the pathways within constructed Bayesian networks can give an indication for the combinations among 12 histone modifications which have been studied in the TSS+1kb region in S. cerevisiae. After Bayesian networks for the genes with high transcript levels (H-network) and low transcript levels (L-network) were constructed, the combinations of modifications within the two networks were analyzed from the view of transcript level. The results showed that different combinations played dissimilar roles in the regulation of gene transcription when there exist differences for gene expression at transcription level.

  4. Characterization of Histone H2A Derived Antimicrobial Peptides, Harriottins, from Sicklefin Chimaera Neoharriotta pinnata (Schnakenbeck, 1931) and Its Evolutionary Divergence with respect to CO1 and Histone H2A.

    PubMed

    Sathyan, Naveen; Philip, Rosamma; Chaithanya, E R; Anil Kumar, P R; Sanjeevan, V N; Singh, I S Bright

    2013-01-01

    Antimicrobial peptides (AMPs) are humoral innate immune components of fishes that provide protection against pathogenic infections. Histone derived antimicrobial peptides are reported to actively participate in the immune defenses of fishes. Present study deals with identification of putative antimicrobial sequences from the histone H2A of sicklefin chimaera, Neoharriotta pinnata. A 52 amino acid residue termed Harriottin-1, a 40 amino acid Harriottin-2, and a 21 mer Harriottin-3 were identified to possess antimicrobial sequence motif. Physicochemical properties and molecular structure of Harriottins are in agreement with the characteristic features of antimicrobial peptides, indicating its potential role in innate immunity of sicklefin chimaera. The histone H2A sequence of sicklefin chimera was found to differ from previously reported histone H2A sequences. Phylogenetic analysis based on histone H2A and cytochrome oxidase subunit-1 (CO1) gene revealed N. pinnata to occupy an intermediate position with respect to invertebrates and vertebrates.

  5. Characterization of Histone H2A Derived Antimicrobial Peptides, Harriottins, from Sicklefin Chimaera Neoharriotta pinnata (Schnakenbeck, 1931) and Its Evolutionary Divergence with respect to CO1 and Histone H2A

    PubMed Central

    Sathyan, Naveen; Philip, Rosamma; Chaithanya, E. R.; Anil Kumar, P. R.; Sanjeevan, V. N.; Singh, I. S. Bright

    2013-01-01

    Antimicrobial peptides (AMPs) are humoral innate immune components of fishes that provide protection against pathogenic infections. Histone derived antimicrobial peptides are reported to actively participate in the immune defenses of fishes. Present study deals with identification of putative antimicrobial sequences from the histone H2A of sicklefin chimaera, Neoharriotta pinnata. A 52 amino acid residue termed Harriottin-1, a 40 amino acid Harriottin-2, and a 21 mer Harriottin-3 were identified to possess antimicrobial sequence motif. Physicochemical properties and molecular structure of Harriottins are in agreement with the characteristic features of antimicrobial peptides, indicating its potential role in innate immunity of sicklefin chimaera. The histone H2A sequence of sicklefin chimera was found to differ from previously reported histone H2A sequences. Phylogenetic analysis based on histone H2A and cytochrome oxidase subunit-1 (CO1) gene revealed N. pinnata to occupy an intermediate position with respect to invertebrates and vertebrates. PMID:27398241

  6. The Role of Histone Tails in the Nucleosome: A Computational Study

    PubMed Central

    Erler, Jochen; Zhang, Ruihan; Petridis, Loukas; Cheng, Xiaolin; Smith, Jeremy C.; Langowski, Jörg

    2014-01-01

    Histone tails play an important role in gene transcription and expression. We present here a systematic computational study of the role of histone tails in the nucleosome, using replica exchange molecular dynamics simulations with an implicit solvent model and different well-established force fields. We performed simulations for all four histone tails, H4, H3, H2A, and H2B, isolated and with inclusion of the nucleosome. The results confirm predictions of previous theoretical studies for the secondary structure of the isolated tails but show a strong dependence on the force field used. In the presence of the entire nucleosome for all force fields, the secondary structure of the histone tails is destabilized. Specific contacts are found between charged lysine and arginine residues and DNA phosphate groups and other binding sites in the minor and major DNA grooves. Using cluster analysis, we found a single dominant configuration of binding to DNA for the H4 and H2A histone tails, whereas H3 and H2B show multiple binding configurations with an equal probability. The leading stabilizing contribution for those binding configurations is the attractive interaction between the positively charged lysine and arginine residues and the negatively charged phosphate groups, and thus the resulting charge neutralization. Finally, we present results of molecular dynamics simulations in explicit solvent to confirm our conclusions. Results from both implicit and explicit solvent models show that large portions of the histone tails are not bound to DNA, supporting the complex role of these tails in gene transcription and expression and making them possible candidates for binding sites of transcription factors, enzymes, and other proteins. PMID:25517156

  7. Excess free histone H3 localizes to centrosomes for proteasome-mediated degradation during mitosis in metazoans.

    PubMed

    Wike, Candice L; Graves, Hillary K; Wason, Arpit; Hawkins, Reva; Gopalakrishnan, Jay; Schumacher, Jill; Tyler, Jessica K

    2016-08-17

    The cell tightly controls histone protein levels in order to achieve proper packaging of the genome into chromatin, while avoiding the deleterious consequences of excess free histones. Our accompanying study has shown that a histone modification that loosens the intrinsic structure of the nucleosome, phosphorylation of histone H3 on threonine 118 (H3 T118ph), exists on centromeres and chromosome arms during mitosis. Here, we show that H3 T118ph localizes to centrosomes in humans, flies, and worms during all stages of mitosis. H3 abundance at the centrosome increased upon proteasome inhibition, suggesting that excess free histone H3 localizes to centrosomes for degradation during mitosis. In agreement, we find ubiquitinated H3 specifically during mitosis and within purified centrosomes. These results suggest that targeting of histone H3 to the centrosome for proteasome-mediated degradation is a novel pathway for controlling histone supply, specifically during mitosis.

  8. Biomimetic Artificial Epigenetic Code for Targeted Acetylation of Histones.

    PubMed

    Taniguchi, Junichi; Feng, Yihong; Pandian, Ganesh N; Hashiya, Fumitaka; Hidaka, Takuya; Hashiya, Kaori; Park, Soyoung; Bando, Toshikazu; Ito, Shinji; Sugiyama, Hiroshi

    2018-06-13

    While the central role of locus-specific acetylation of histone proteins in eukaryotic gene expression is well established, the availability of designer tools to regulate acetylation at particular nucleosome sites remains limited. Here, we develop a unique strategy to introduce acetylation by constructing a bifunctional molecule designated Bi-PIP. Bi-PIP has a P300/CBP-selective bromodomain inhibitor (Bi) as a P300/CBP recruiter and a pyrrole-imidazole polyamide (PIP) as a sequence-selective DNA binder. Biochemical assays verified that Bi-PIPs recruit P300 to the nucleosomes having their target DNA sequences and extensively accelerate acetylation. Bi-PIPs also activated transcription of genes that have corresponding cognate DNA sequences inside living cells. Our results demonstrate that Bi-PIPs could act as a synthetic programmable histone code of acetylation, which emulates the bromodomain-mediated natural propagation system of histone acetylation to activate gene expression in a sequence-selective manner.

  9. Histone deacetylation during brain development is essential for permanent masculinization of sexual behavior.

    PubMed

    Matsuda, Ken Ichi; Mori, Hiroko; Nugent, Bridget M; Pfaff, Donald W; McCarthy, Margaret M; Kawata, Mitsuhiro

    2011-07-01

    Epigenetic histone modifications are emerging as important mechanisms for conveyance of and maintenance of effects of the hormonal milieu to the developing brain. We hypothesized that alteration of histone acetylation status early in development by sex steroid hormones is important for sexual differentiation of the brain. It was found that during the critical period for sexual differentiation, histones associated with promoters of essential genes in masculinization of the brain (estrogen receptor α and aromatase) in the medial preoptic area, an area necessary for male sexual behavior, were differentially acetylated between the sexes. Consistent with these findings, binding of histone deacetylase (HDAC) 2 and 4 to the promoters was higher in males than in females. To examine the involvement of histone deacetylation on masculinization of the brain at the behavioral level, we inhibited HDAC in vivo by intracerebroventricular infusion of the HDAC inhibitor trichostatin A or antisense oligodeoxynucleotide directed against the mRNA for HDAC2 and -4 in newborn male rats. Aspects of male sexual behavior in adulthood were significantly reduced by administration of either trichostatin A or antisense oligodeoxynucleotide. These results demonstrate that HDAC activity during the early postnatal period plays a crucial role in the masculinization of the brain via modifications of histone acetylation status.

  10. Biallelic germline and somatic mutations in malignant mesothelioma: multiple mutations in transcription regulators including mSWI/SNF genes.

    PubMed

    Yoshikawa, Yoshie; Sato, Ayuko; Tsujimura, Tohru; Otsuki, Taiichiro; Fukuoka, Kazuya; Hasegawa, Seiki; Nakano, Takashi; Hashimoto-Tamaoki, Tomoko

    2015-02-01

    We detected low levels of acetylation for histone H3 tail lysines in malignant mesothelioma (MM) cell lines resistant to histone deacetylase inhibitors. To identify the possible genetic causes related to the low histone acetylation levels, whole-exome sequencing was conducted with MM cell lines established from eight patients. A mono-allelic variant of BRD1 was common to two MM cell lines with very low acetylation levels. We identified 318 homozygous protein-damaging variants/mutations (18-78 variants/mutations per patient); annotation analysis showed enrichment of the molecules associated with mammalian SWI/SNF (mSWI/SNF) chromatin remodeling complexes and co-activators that facilitate initiation of transcription. In seven of the patients, we detected a combination of variants in histone modifiers or transcription factors/co-factors, in addition to variants in mSWI/SNF. Direct sequencing showed that homozygous mutations in SMARCA4, PBRM1 and ARID2 were somatic. In one patient, homozygous germline variants were observed for SMARCC1 and SETD2 in chr3p22.1-3p14.2. These exhibited extended germline homozygosity and were in regions containing somatic mutations, leading to a loss of BAP1 and PBRM1 expression in MM cell line. Most protein-damaging variants were heterozygous in normal tissues. Heterozygous germline variants were often converted into hemizygous variants by mono-allelic deletion, and were rarely homozygous because of acquired uniparental disomy. Our findings imply that MM might develop through the somatic inactivation of mSWI/SNF complex subunits and/or histone modifiers, including BAP1, in subjects that have rare germline variants of these transcription regulators and/or transcription factors/co-factors, and in regions prone to mono-allelic deletion during oncogenesis. © 2014 UICC.

  11. Histone deacetylase inhibitors: can we consider potent anti-neoplastic agents for the treatment of asthma?

    PubMed

    Royce, Simon G; Ververis, Katherine; Karagiannis, Tom C

    2012-01-01

    Histone deacetylase inhibitors have emerged as a new class of anti-cancer therapeutics due to their potent anti-proliferative and apoptotic effects in malignant cells. Accumulating evidence is indicating that histone deacetylase inhibitors may also have potential clinical utility in non-oncological applications, including asthma. However, the potential of histone deacetylase inhibitors in asthma remains controversial. For example, the mechanisms of action of the broad-spectrum histone deacetylase inhibitor, Trichostatin A, in animal models of allergic airways disease are conflicting. Further, there is evidence suggesting potential problems associated with histone deacetylase 2 inhibition and conventional glucocorticosteroid therapy. Similarly, disparate findings are emerging following modulation of the class III, sirtuin 1 enzyme. Indeed, it is becoming apparent that the mechanism of action may not be related to histone deacetylase inhibition activity per se. Further, there is only limited evidence that these compounds possess anti-inflammatory effects in models of asthma. In this review, we provide an overview of the biology of the metal-dependent and sirtuin deacetylases in the context of asthma. The controversies surrounding the potential use of histone deacetylase inhibitors in asthma are discussed and future directions involving the investigation of more specific analogues are explored.

  12. Beyond the walls of the nucleus: the role of histones in cellular signaling and innate immunity.

    PubMed

    Parseghian, Missag H; Luhrs, Keith A

    2006-08-01

    Although they are one of the oldest family of proteins known (first described in 1884 by Kossel), histones continue to surprise researchers with their ever expanding roles in biology. In the past 25 years, the view of core histone octamers as a simple spool around which DNA in the nucleus is wound and linker histones as mere fasteners clipping it all together has transformed into the realization that histones play a vital role in transcriptional regulation. Through post-translational modifications, histones control the accessibility of transcription factors and a host of other proteins to multiple, conceivably thousands of, genes at once. While researchers have spent decades deciphering the role of histones in the overall structure of chromatin, it might surprise some to find that an entirely separate faction of scientists have focused on the role of histones beyond the confines of the nuclear envelope. In the past decade, there has been an accumulation of observations that suggest that histones can be found at the mitochondrion during the onset of apoptotic signaling and even at the cell surface, acting as a receptor for bacterial and viral proteins. More provocatively, immunologists are becoming convinced that they can also be found in the lumen of several tissues, acting as antimicrobial agents--critical components of an ancient innate immune system. Perhaps nowhere is this observation as dramatic as in the ability of neutrophils to entrap bacterial pathogens by casting out "nets" of DNA and histones that not only act as a physical barrier, but also display bactericidal activity. As our views regarding the role of histones inside and outside the cell evolve, some have begun to develop therapies that either utilize or target histones in the fight against cancer, microbial infection, and autoimmune disease. It is our goal here to begin the process of merging the dichotomous lives of histones both within and without the nuclear membrane.

  13. Variations of Histone Modification Patterns: Contributions of Inter-plant Variability and Technical Factors

    PubMed Central

    Brabencová, Sylva; Ihnatová, Ivana; Potěšil, David; Fojtová, Miloslava; Fajkus, Jiří; Zdráhal, Zbyněk; Lochmanová, Gabriela

    2017-01-01

    Inter-individual variability of conspecific plants is governed by differences in their genetically determined growth and development traits, environmental conditions, and adaptive responses under epigenetic control involving histone post-translational modifications. The apparent variability in histone modifications among plants might be increased by technical variation introduced in sample processing during epigenetic analyses. Thus, to detect true variations in epigenetic histone patterns associated with given factors, the basal variability among samples that is not associated with them must be estimated. To improve knowledge of relative contribution of biological and technical variation, mass spectrometry was used to examine histone modification patterns (acetylation and methylation) among Arabidopsis thaliana plants of ecotypes Columbia 0 (Col-0) and Wassilewskija (Ws) homogenized by two techniques (grinding in a cryomill or with a mortar and pestle). We found little difference in histone modification profiles between the ecotypes. However, in comparison of the biological and technical components of variability, we found consistently higher inter-individual variability in histone mark levels among Ws plants than among Col-0 plants (grown from seeds collected either from single plants or sets of plants). Thus, more replicates of Ws would be needed for rigorous analysis of epigenetic marks. Regarding technical variability, the cryomill introduced detectably more heterogeneity in the data than the mortar and pestle treatment, but mass spectrometric analyses had minor apparent effects. Our study shows that it is essential to consider inter-sample variance and estimate suitable numbers of biological replicates for statistical analysis for each studied organism when investigating changes in epigenetic histone profiles. PMID:29270186

  14. Variations of Histone Modification Patterns: Contributions of Inter-plant Variability and Technical Factors.

    PubMed

    Brabencová, Sylva; Ihnatová, Ivana; Potěšil, David; Fojtová, Miloslava; Fajkus, Jiří; Zdráhal, Zbyněk; Lochmanová, Gabriela

    2017-01-01

    Inter-individual variability of conspecific plants is governed by differences in their genetically determined growth and development traits, environmental conditions, and adaptive responses under epigenetic control involving histone post-translational modifications. The apparent variability in histone modifications among plants might be increased by technical variation introduced in sample processing during epigenetic analyses. Thus, to detect true variations in epigenetic histone patterns associated with given factors, the basal variability among samples that is not associated with them must be estimated. To improve knowledge of relative contribution of biological and technical variation, mass spectrometry was used to examine histone modification patterns (acetylation and methylation) among Arabidopsis thaliana plants of ecotypes Columbia 0 (Col-0) and Wassilewskija (Ws) homogenized by two techniques (grinding in a cryomill or with a mortar and pestle). We found little difference in histone modification profiles between the ecotypes. However, in comparison of the biological and technical components of variability, we found consistently higher inter-individual variability in histone mark levels among Ws plants than among Col-0 plants (grown from seeds collected either from single plants or sets of plants). Thus, more replicates of Ws would be needed for rigorous analysis of epigenetic marks. Regarding technical variability, the cryomill introduced detectably more heterogeneity in the data than the mortar and pestle treatment, but mass spectrometric analyses had minor apparent effects. Our study shows that it is essential to consider inter-sample variance and estimate suitable numbers of biological replicates for statistical analysis for each studied organism when investigating changes in epigenetic histone profiles.

  15. HDA1 and HDA3 are components of a yeast histone deacetylase (HDA) complex.

    PubMed

    Carmen, A A; Rundlett, S E; Grunstein, M

    1996-06-28

    Histone acetylation is maintained through the action of histone acetyltransferases and deacetylases and has been correlated with increased gene activity. To investigate the functional role of these enzymes in the regulation of transcription, we have purified from Saccharomyces cerevisiae two histone deacetylase activities, HDA and HDB, with molecular masses of approximately 350 and 600 kDa, respectively. In vitro, the HDA activity deacetylates all four core histones, has a preference for histone H3, and is strongly inhibited by trichostatin A (a specific inhibitor of histone deacetylases). HDB is considerably less sensitive to trichostatin A. We report the extensive purification of the HDA activity and the identification of peptides (p75, p73, p72, and p71) whose presence correlates with deacetylase activity on native polyacrylamide gels. An antibody to p75 immunoprecipitates peptides with molecular masses similar to those in the 350-kDa complex. Additionally, antibodies to p75 and p71 specifically precipitate histone deacetylase activity and co-immunoprecipitate each other. Gene disruptions of p75 (HDA1) or p71 (HDA3) cause the loss of the 350-kDa (but not the 600-kDa) activity from our chromatography profiles. These data argue strongly that HDA1 and HDA3 are subunits of the HDA complex, which is structurally distinct from the second, HDB complex.

  16. VarBin, a novel method for classifying true and false positive variants in NGS data

    PubMed Central

    2013-01-01

    Background Variant discovery for rare genetic diseases using Illumina genome or exome sequencing involves screening of up to millions of variants to find only the one or few causative variant(s). Sequencing or alignment errors create "false positive" variants, which are often retained in the variant screening process. Methods to remove false positive variants often retain many false positive variants. This report presents VarBin, a method to prioritize variants based on a false positive variant likelihood prediction. Methods VarBin uses the Genome Analysis Toolkit variant calling software to calculate the variant-to-wild type genotype likelihood ratio at each variant change and position divided by read depth. The resulting Phred-scaled, likelihood-ratio by depth (PLRD) was used to segregate variants into 4 Bins with Bin 1 variants most likely true and Bin 4 most likely false positive. PLRD values were calculated for a proband of interest and 41 additional Illumina HiSeq, exome and whole genome samples (proband's family or unrelated samples). At variant sites without apparent sequencing or alignment error, wild type/non-variant calls cluster near -3 PLRD and variant calls typically cluster above 10 PLRD. Sites with systematic variant calling problems (evident by variant quality scores and biases as well as displayed on the iGV viewer) tend to have higher and more variable wild type/non-variant PLRD values. Depending on the separation of a proband's variant PLRD value from the cluster of wild type/non-variant PLRD values for background samples at the same variant change and position, the VarBin method's classification is assigned to each proband variant (Bin 1 to Bin 4). Results To assess VarBin performance, Sanger sequencing was performed on 98 variants in the proband and background samples. True variants were confirmed in 97% of Bin 1 variants, 30% of Bin 2, and 0% of Bin 3/Bin 4. Conclusions These data indicate that VarBin correctly classifies the majority of true

  17. Structural Insight Into Histone Recognition by the ING PHD Fingers

    PubMed Central

    Champagne, Karen S.; Kutateladze, Tatiana G.

    2009-01-01

    The Inhibitor of Growth (ING) tumor suppressors are implicated in oncogenesis, control of DNA damage repair, cellular senescence and apoptosis. All members of the ING family contain unique amino-terminal regions and a carboxy-terminal plant homeodomain (PHD) finger. While the amino-terminal domains associate with a number of protein effectors including distinct components of histone deacetylase (HDAC) and histone acetyltransferase (HAT) complexes, the PHD finger binds strongly and specifically to histone H3 trimethylated at lysine 4 (H3K4me3). In this review we describe the molecular mechanism of H3K4me3 recognition by the ING1-5 PHD fingers, analyze the determinants of the histone specificity and compare the biological activities and structures within subsets of PHD fingers. The atomic-resolution structures of the ING PHD fingers in complex with a H3K4me3 peptide reveal that the histone tail is bound in a large and deep binding site encompassing nearly one-third of the protein surface. An extensive network of intermolecular hydrogen bonds, hydrophobic and cation-π contacts, and complementary surface interactions coordinate the first six residues of the H3K4me3 peptide. The trimethylated Lys4 occupies an elongated groove, formed by the highly conserved aromatic and hydrophobic residues of the PHD finger, whereas the adjacent groove accommodates Arg2. The two grooves are connected by a narrow channel, the small size of which defines the PHD finger’s specificity, excluding interactions with other modified histone peptides. Binding of the ING PHD fingers to H3K4me3 plays a critical role in regulating chromatin acetylation. The ING proteins function as tethering molecules that physically link the HDAC and HAT enzymatic complexes to chromatin. In this review we also highlight progress recently made in understanding the molecular basis underlying biological and tumorigenic activities of the ING tumor suppressors. PMID:19442115

  18. Gamma irradiation or hydrocortisone treatment of rats increases the proteinase activity associated with histones of thymus nuclei

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kutsyi, M.P.; Gaziev, A.I.

    An increase in the activity of histone-associated rat thymus nucleus proteinases specific for histones H2A, H2B and H1 was shown after {gamma} irradiation or hydrocortisone treatment of animals. Histone H1-specific proteinase activity is dependent on DNA and increases in the presence of denatured DNA, whereas proteinases specific for core histones are inhibited in the presence of denatured DNA. The increase in the activity of histone-associated proteinases depends on the radiation dose and the time after irradiation or hydrocortisone injection. In the presence of dithiothreitol and sodium dodecyl sulfate, these proteinases dissociate from histones. It was found by gel electrophoresis thatmore » several proteinases of various molecular masses are closely associated with histones obtained from thymus nuclei of irradiated or hydrocortisone-treated rats. 43 refs., 7 figs.« less

  19. Combinatorial modification of human histone H4 quantitated by two-dimensional liquid chromatography coupled with top down mass spectrometry.

    PubMed

    Pesavento, James J; Bullock, Courtney R; LeDuc, Richard D; Mizzen, Craig A; Kelleher, Neil L

    2008-05-30

    Quantitative proteomics has focused heavily on correlating protein abundances, ratios, and dynamics by developing methods that are protein expression-centric (e.g. isotope coded affinity tag, isobaric tag for relative and absolute quantification, etc.). These methods effectively detect changes in protein abundance but fail to provide a comprehensive perspective of the diversity of proteins such as histones, which are regulated by post-translational modifications. Here, we report the characterization of modified forms of HeLa cell histone H4 with a dynamic range >10(4) using a strictly Top Down mass spectrometric approach coupled with two dimensions of liquid chromatography. This enhanced dynamic range enabled the precise characterization and quantitation of 42 forms uniquely modified by combinations of methylation and acetylation, including those with trimethylated Lys-20, monomethylated Arg-3, and the novel dimethylated Arg-3 (each <1% of all H4 forms). Quantitative analyses revealed distinct trends in acetylation site occupancy depending on Lys-20 methylation state. Because both modifications are dynamically regulated through the cell cycle, we simultaneously investigated acetylation and methylation kinetics through three cell cycle phases and used these data to statistically assess the robustness of our quantitative analysis. This work represents the most comprehensive analysis of histone H4 forms present in human cells reported to date.

  20. Differential protein acetylation induced by novel histone deacetylase inhibitors.

    PubMed

    Glaser, K B; Li, J; Pease, L J; Staver, M J; Marcotte, P A; Guo, J; Frey, R R; Garland, R B; Heyman, H R; Wada, C K; Vasudevan, A; Michaelides, M R; Davidsen, S K; Curtin, M L

    2004-12-17

    Histone deacetylase (HDAC) inhibitors induce the hyperacetylation of nucleosomal histones in carcinoma cells resulting in the expression of repressed genes that cause growth arrest, terminal differentiation, and/or apoptosis. In vitro selectivity of several novel hydroxamate HDAC inhibitors including succinimide macrocyclic hydroxamates and the non-hydroxamate alpha-ketoamide inhibitors was investigated using isolated enzyme preparations and cellular assays. In vitro selectivity for the HDAC isozymes (HDAC1/2, 3, 4/3, and 6) was not observed for these HDAC inhibitors or the reference HDAC inhibitors, MS-275 and SAHA. In T24 and HCT116 cells these compounds caused the accumulation of acetylated histones H3 and H4; however, the succinimide macrocyclic hydroxamates and the alpha-ketoamides did not cause the accumulation of acetylated alpha-tubulin. These data suggest "selectivity" can be observed at the cellular level with HDAC inhibitors and that the nature of the zinc-chelating moiety is an important determinant of activity against tubulin deacetylase.

  1. Epigenetic stability in the adult mouse cortex under conditions of pharmacologically induced histone acetylation.

    PubMed

    Benoit, Jamie; Ayoub, Albert; Rakic, Pasko

    2016-11-01

    Histone acetylation is considered a major epigenetic process that affects brain development and synaptic plasticity, as well as learning and memory. The transcriptional effectors and morphological changes responsible for plasticity as a result of long-term modifications to histone acetylation are not fully understood. To this end, we pharmacologically inhibited histone deacetylation using Trichostatin A in adult (6-month-old) mice and found significant increases in the levels of the acetylated histone marks H3Lys9, H3Lys14 and H4Lys12. High-resolution transcriptome analysis of diverse brain regions uncovered few differences in gene expression between treated and control animals, none of which were plasticity related. Instead, after increased histone acetylation, we detected a large number of novel transcriptionally active regions, which correspond to long non-coding RNAs (lncRNAs). We also surprisingly found no significant changes in dendritic spine plasticity in layers 1 and 2/3 of the visual cortex using long-term in vivo two-photon imaging. Our results indicate that chronic pharmacologically induced histone acetylation can be decoupled from gene expression and instead, may potentially exert a post-transcriptional effect through the differential production of lncRNAs.

  2. Profiling post-translational modifications of histones in human monocyte-derived macrophages.

    PubMed

    Olszowy, Pawel; Donnelly, Maire Rose; Lee, Chanho; Ciborowski, Pawel

    2015-01-01

    Histones and their post-translational modifications impact cellular function by acting as key regulators in the maintenance and remodeling of chromatin, thus affecting transcription regulation either positively (activation) or negatively (repression). In this study we describe a comprehensive, bottom-up proteomics approach to profiling post-translational modifications (acetylation, mono-, di- and tri-methylation, phosphorylation, biotinylation, ubiquitination, citrullination and ADP-ribosylation) in human macrophages, which are primary cells of the innate immune system. As our knowledge expands, it becomes more evident that macrophages are a heterogeneous population with potentially subtle differences in their responses to various stimuli driven by highly complex epigenetic regulatory mechanisms. To profile post-translational modifications (PTMs) of histones in macrophages we used two platforms of liquid chromatography and mass spectrometry. One platform was based on Sciex5600 TripleTof and the second one was based on VelosPro Orbitrap Elite ETD mass spectrometers. We provide side-by-side comparison of profiling using two mass spectrometric platforms, ion trap and qTOF, coupled with the application of collisional induced and electron transfer dissociation. We show for the first time methylation of a His residue in macrophages and demonstrate differences in histone PTMs between those currently reported for macrophage cell lines and what we identified in primary cells. We have found a relatively low level of histone PTMs in differentiated but resting human primary monocyte derived macrophages. This study is the first comprehensive profiling of histone PTMs in primary human MDM. Our study implies that epigenetic regulatory mechanisms operative in transformed cell lines and primary cells are overlapping to a limited extent. Our mass spectrometric approach provides groundwork for the investigation of how histone PTMs contribute to epigenetic regulation in primary human

  3. Cell cycle-dependent O-GlcNAc modification of tobacco histones and their interaction with the tobacco lectin.

    PubMed

    Delporte, Annelies; De Zaeytijd, Jeroen; De Storme, Nico; Azmi, Abdelkrim; Geelen, Danny; Smagghe, Guy; Guisez, Yves; Van Damme, Els J M

    2014-10-01

    The Nicotiana tabacum agglutinin or Nictaba is a nucleocytoplasmic lectin that is expressed in tobacco after the plants have been exposed to jasmonate treatment or insect herbivory. Nictaba specifically recognizes GlcNAc residues. Recently, it was shown that Nictaba is interacting in vitro with the core histone proteins from calf thymus. Assuming that plant histones - similar to their animal counterparts - undergo O-GlcNAcylation, this interaction presumably occurs through binding of the lectin to the O-GlcNAc modification present on the histones. Hereupon, the question was raised whether this modification also occurs in plants and if it is cell cycle dependent. To this end, histones were purified from tobacco BY-2 suspension cells and the presence of O-GlcNAc modifications was checked. Concomitantly, O-GlcNAcylation of histone proteins was studied. Our data show that similar to animal histones plant histones are modified by O-GlcNAc in a cell cycle-dependent fashion. In addition, the interaction between Nictaba and tobacco histones was confirmed using lectin chromatography and far Western blot analysis. Collectively these findings suggest that Nictaba can act as a modulator of gene transcription through its interaction with core histones. Copyright © 2014 Elsevier Masson SAS. All rights reserved.

  4. Vitamin K3 triggers human leukemia cell death through hydrogen peroxide generation and histone hyperacetylation.

    PubMed

    Lin, Changjun; Kang, Jiuhong; Zheng, Rongliang

    2005-10-01

    Vitamin K3 (VK3) is a well-known anticancer agent, but its mechanism remains elusive. In the present study, VK3 was found to simultaneously induce cell death, reactive oxygen species (ROS) generation, including superoxide anion (O2*-) and hydrogen peroxide (H2O2) generation, and histone hyperacetylation in human leukemia HL-60 cells in a concentration- and time-dependent manner. Catalase (CAT), an antioxidant enzyme that specifically scavenges H2O2, could significantly diminish both histone acetylation increase and cell death caused by VK3, whereas superoxide dismutase (SOD), an enzyme that specifically eliminates O2*-, showed no effect on both of these, leading to the conclusion that H2O2 generation, but not O2*- generation, contributes to VK3-induced histone hyperacetylation and cell death. This conclusion was confirmed by the finding that enhancement of VK3-induced H2O2 generation by vitamin C (VC) could significantly promote both the histone hyperacetylation and cell death. Further studies suggested that histone hyperacetylation played an important role in VK3-induced cell death, since sodium butyrate, a histone deacetylase (HDAC) inhibitor, showed no effect on ROS generation, but obviously potentiated VK3-induced histone hyperacetylation and cell death. Collectively, these results demonstrate a novel mechanism for the anticancer activity of VK3, i.e., VK3 induced tumor cell death through H2O2 generation, which then further induced histone hyperacetylation.

  5. Structure and function of histone acetyltransferase MOF

    PubMed Central

    Chen, Qiao Yi; Costa, Max; Sun, Hong

    2016-01-01

    MOF was first identified in Drosophila melanogaster as an important component of the dosage compensation complex. As a member of MYST family of histone acetyltransferase, MOF specifically deposits the acetyl groups to histone H4 lysine 16. Throughout evolution, MOF and its mammalian ortholog have retained highly conserved substrate specificity and similar enzymatic activities. MOF plays important roles in dosage compensation, ESC self-renewal, DNA damage and repair, cell survival, and gene expression regulation. Dysregulation of MOF has been implicated in tumor formation and progression of many types of human cancers. This review will discuss the structure and activity of mammalian hMOF as well as its function in H4K16 acetylation, DNA damage response, stem cell pluripotency, and carcinogenesis. PMID:28503659

  6. Structure and function of histone acetyltransferase MOF.

    PubMed

    Chen, Qiao Yi; Costa, Max; Sun, Hong

    2015-01-01

    MOF was first identified in Drosophila melanogaster as an important component of the dosage compensation complex. As a member of MYST family of histone acetyltransferase, MOF specifically deposits the acetyl groups to histone H4 lysine 16. Throughout evolution, MOF and its mammalian ortholog have retained highly conserved substrate specificity and similar enzymatic activities. MOF plays important roles in dosage compensation, ESC self-renewal, DNA damage and repair, cell survival, and gene expression regulation. Dysregulation of MOF has been implicated in tumor formation and progression of many types of human cancers. This review will discuss the structure and activity of mammalian hMOF as well as its function in H4K16 acetylation, DNA damage response, stem cell pluripotency, and carcinogenesis.

  7. Recent Achievements in Characterizing the Histone Code and Approaches to Integrating Epigenomics and Systems Biology.

    PubMed

    Janssen, K A; Sidoli, S; Garcia, B A

    2017-01-01

    Functional epigenetic regulation occurs by dynamic modification of chromatin, including genetic material (i.e., DNA methylation), histone proteins, and other nuclear proteins. Due to the highly complex nature of the histone code, mass spectrometry (MS) has become the leading technique in identification of single and combinatorial histone modifications. MS has now overcome antibody-based strategies due to its automation, high resolution, and accurate quantitation. Moreover, multiple approaches to analysis have been developed for global quantitation of posttranslational modifications (PTMs), including large-scale characterization of modification coexistence (middle-down and top-down proteomics), which is not currently possible with any other biochemical strategy. Recently, our group and others have simplified and increased the effectiveness of analyzing histone PTMs by improving multiple MS methods and data analysis tools. This review provides an overview of the major achievements in the analysis of histone PTMs using MS with a focus on the most recent improvements. We speculate that the workflow for histone analysis at its state of the art is highly reliable in terms of identification and quantitation accuracy, and it has the potential to become a routine method for systems biology thanks to the possibility of integrating histone MS results with genomics and proteomics datasets. © 2017 Elsevier Inc. All rights reserved.

  8. Antibodies to H2a and H2b histones from the sera of HIV-infected patients catalyze site-specific degradation of these histones.

    PubMed

    Baranova, Svetlana V; Dmitrienok, Pavel S; Ivanisenko, Nikita V; Buneva, Valentina N; Nevinsky, Georgy A

    2017-06-01

    Histones and their post-translational modifications have key roles in chromatin remodeling and gene transcription. Besides intranuclear functions, histones act as damage-associated molecules when they are released into the extracellular space. Administration of histones to animals leads to systemic inflammatory and toxic responses. Autoantibodies with enzymatic activities (abzymes) are distinctive features of some autoimmune and viral diseases. Electrophoretically homogeneous IgGs containing no canonical enzymes were isolated from the sera of HIV-infected patients by chromatography on several affinity sorbents including anti-histone Sepharose. In contrast to canonical proteases (trypsin, chymotrypsin, proteinase K), IgGs from HIV-infected patients specifically hydrolyzed only histones but not many other tested globular proteins. Using MALDI mass spectrometry the sites of H2a and H2b histone cleavage by anti-histone IgGs were determined for the first time. One cluster of H2a hydrolysis contains two major (↕) and four moderate (↓) cleavage sites: 31-H↓R↓L↓L↓R↕K G↕N-38. One major and two moderate sites of cleavage were revealed in the second cluster: 14-A↕KSRS↓SRA↓G-22. The third cluster corresponding to the H2a C-terminal part contains only five minor (†) sites of cleavage: 82-H†LQLAIRNDEELN†KLLG†RV†T†I-102. It was shown that two major and four moderate sites of cleavage were present in the main cluster of H2b hydrolysis: 46-K↕QvhpD↓TgiS↓SkA↓M↕GiM↓N-63. Two moderate sites of cleavage correspond to a relatively short 6-mer cluster: 12-K↓GskK↓A-17. The third relatively long 9-mer cluster contains one major and two minor sites of H2b cleavage: 80-L↕AHYN†KRS†T-88. In the nucleosome core particle, most of the major and moderate cleavage sites are located at the H2a/H2b interaction interface. Minor cleavage sites of H2a are involved in binding with H3 in the nucleosome core. Two moderate cleavage sites of H2b and one

  9. Profiling Changes in Histone Post-translational Modifications by Top-Down Mass Spectrometry

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhou, Mowei; Wu, Si; Stenoien, David L.

    Top-down mass spectrometry is a valuable tool for charactering post-translational modifications on histones for understanding of gene control and expression. In this protocol, we describe a top-down workflow using liquid chromatography coupled to mass spectrometry for fast global profiling of changes in histone proteoforms between a wild-type and a mutant of a fungal species. The proteoforms exhibiting different abundances can be subjected to further targeted studies by other mass spectrometric or biochemical assays. This method can be generally adapted for preliminary screening for changes in histone modifications between samples such as wild-type vs. mutant, and control vs. disease.

  10. A basic domain in the histone H2B N-terminal tail is important for nucleosome assembly by FACT

    PubMed Central

    Mao, Peng; Kyriss, McKenna N. M.; Hodges, Amelia J.; Duan, Mingrui; Morris, Robert T.; Lavine, Mark D.; Topping, Traci B.; Gloss, Lisa M.; Wyrick, John J.

    2016-01-01

    Nucleosome assembly in vivo requires assembly factors, such as histone chaperones, to bind to histones and mediate their deposition onto DNA. In yeast, the essential histone chaperone FACT (FAcilitates Chromatin Transcription) functions in nucleosome assembly and H2A–H2B deposition during transcription elongation and DNA replication. Recent studies have identified candidate histone residues that mediate FACT binding to histones, but it is not known which histone residues are important for FACT to deposit histones onto DNA during nucleosome assembly. In this study, we report that the histone H2B repression (HBR) domain within the H2B N-terminal tail is important for histone deposition by FACT. Deletion of the HBR domain causes significant defects in histone occupancy in the yeast genome, particularly at HBR-repressed genes, and a pronounced increase in H2A–H2B dimers that remain bound to FACT in vivo. Moreover, the HBR domain is required for purified FACT to efficiently assemble recombinant nucleosomes in vitro. We propose that the interaction between the highly basic HBR domain and DNA plays an important role in stabilizing the nascent nucleosome during the process of histone H2A–H2B deposition by FACT. PMID:27369377

  11. Explorative study on isoform-selective histone deacetylase inhibitors.

    PubMed

    Suzuki, Takayoshi

    2009-09-01

    Histone deacetylases (HDACs) catalyze the deacetylation of the acetylated lysine residues of histones and non-histone proteins, and are involved in various fundamental life phenomena, such as gene expression and cell cycle progression. Thus far, eighteen HDAC family members (HDAC1-11 and SIRT1-7) have been identified, but the functions of the HDAC isoforms are not yet fully understood. In addition, some of the HDAC isoforms have been suggested to be associated with various disease states, including cancer and neurodegenerative disorders. Therefore, isoform-selective HDAC inhibitors are of great interest, not only as tools for probing the biological functions of the isoforms, but also as candidate therapeutic agents with few side effects. It was against this background that we initiated research programs to identify isoform-selective HDAC inhibitors. We designed HDAC inhibitors based on the three-dimensional structure of the enzyme and on the proposed catalytic mechanism of HDACs, and found several isoform-selective HDAC inhibitors. Furthermore, we elucidated the functions of HDAC6 by chemical genetic approaches using these inhibitors. The results of this research also suggested the feasibility of using isoform-selective HDAC inhibitors as therapeutic agents.

  12. Nucleoplasmin Binds Histone H2A-H2B Dimers through Its Distal Face*

    PubMed Central

    Ramos, Isbaal; Martín-Benito, Jaime; Finn, Ron; Bretaña, Laura; Aloria, Kerman; Arizmendi, Jesús M.; Ausió, Juan; Muga, Arturo; Valpuesta, José M.; Prado, Adelina

    2010-01-01

    Nucleoplasmin (NP) is a pentameric chaperone that regulates the condensation state of chromatin extracting specific basic proteins from sperm chromatin and depositing H2A-H2B histone dimers. It has been proposed that histones could bind to either the lateral or distal face of the pentameric structure. Here, we combine different biochemical and biophysical techniques to show that natural, hyperphosphorylated NP can bind five H2A-H2B dimers and that the amount of bound ligand depends on the overall charge (phosphorylation level) of the chaperone. Three-dimensional reconstruction of NP/H2A-H2B complex carried out by electron microscopy reveals that histones interact with the chaperone distal face. Limited proteolysis and mass spectrometry indicate that the interaction results in protection of the histone fold and most of the H2A and H2B C-terminal tails. This structural information can help to understand the function of NP as a histone chaperone. PMID:20696766

  13. Histone H3 is absent from organelle nucleoids in BY-2 cultured tobacco cells.

    PubMed

    Takusagawa, Mari; Tamotsu, Satoshi; Sakai, Atsushi

    2013-07-01

    The core histone proteins (H2A, H2B, H3 and H4) are nuclear-localised proteins that play a central role in the formation of nucleosome structure. They have long been considered to be absent from extra-nuclear, DNA-containing organelles; that is plastids and mitochondria. Recently, however, the targeting of core histone H3 to mitochondria, and the presence of nucleosome-like structures in mitochondrial nucleoids, were proposed in cauliflower and tobacco respectively. Thus, we examined whether histone H3 was present in plant organelles and participated in the organisation of nucleoid structure, using highly purified organelles and organelle nucleoids isolated from BY-2 cultured tobacco cells. Immunofluorescence microscopic observations and Western blotting analyses demonstrated that histone H3 was absent from organelles and organelle nucleoids, consistent with the historical hypothesis. Thus, the organisation of organelle nucleoids, including putative nucleosome-like repetitive structures, should be constructed and maintained without participation of histone H3. © 2013 International Federation for Cell Biology.

  14. Point mutation of H3/H4 histones affects acetic acid tolerance in Saccharomyces cerevisiae.

    PubMed

    Liu, Xiangyong; Zhang, Xiaohua; Zhang, Zhaojie

    2014-10-10

    The molecular mechanism of acetic acid tolerance in yeast remains unclear despite of its importance for efficient cellulosic ethanol production. In this study, we examined the effects of histone H3/H4 point mutations on yeast acetic acid tolerance by comprehensively screening a histone H3/H4 mutant library. A total of 24 histone H3/H4 mutants (six acetic acid resistant and 18 sensitive) were identified. Compared to the wild-type strain, the histone acetic acid-resistant mutants exhibited improved ethanol fermentation performance under acetic acid stress. Genome-wide transcriptome analysis revealed that changes in the gene expression in the acetic acid-resistant mutants H3 K37A and H4 K16Q were mainly related to energy production, antioxidative stress. Our results provide novel insights into yeast acetic acid tolerance on the basis of histone, and suggest a novel approach to improve ethanol production by altering the histone H3/H4 sequences. Copyright © 2014 Elsevier B.V. All rights reserved.

  15. Antibodies to histones in systemic lupus erythematosus: prevalence, specificity, and relationship to clinical and laboratory features.

    PubMed Central

    Cohen, M G; Pollard, K M; Webb, J

    1992-01-01

    Antibodies to histones (AHA) are commonly found in patients with systemic lupus erythematosus (SLE). However, the full profile of AHA and their clinical associations remains unclear. A total of 111 patients with SLE were studied, including 13 patients in whom multiple serum samples were available over several years. IgM, IgG, and IgA antibodies to total core histones, histone complexes, and individual histones were determined by highly sensitive enzyme linked immunosorbent assays (ELISAs). Antibodies to histones were detected in 74% of serum samples, though only at low levels in half of these. Antibodies to each of the individual histones (H1, H2A, H2B, H3, H4) occurred with similar frequencies except for IgG and IgA antibodies to H4, which were uncommon. In contrast, antibodies to the histone complexes H2A-H2B and H3-H4 were detected in only two serum samples and thus do not appear to be a feature of SLE. All three major isotypes of AHA were common and usually occurred with similar frequencies to one another for the various histone specificities. There were few clinical or laboratory associations with AHA; the strongest was between IgG antibodies to total core histones and antibodies to native DNA. Similarly, there was no association between the presence of AHA and disease activity. However, for the patients as a group and in one patient alone, periods of SLE disease activity were associated with higher levels of AHA. Although the profile of antibodies to individual histones varied with time, no profile was identified that corresponded with any specific disease manifestations. It is concluded from this study that although AHA are common in patients with SLE, their clinical value in this syndrome must, at present, be considered limited. PMID:1540040

  16. Inhibitors of histone demethylation and histone deacetylation cooperate in regulating gene expression and inhibiting growth in human breast cancer cells

    PubMed Central

    Vasilatos, Shauna N.; Boric, Lamia; Shaw, Patrick G.; Davidson, Nancy E.

    2013-01-01

    Abnormal activities of histone lysine demethylases (KDMs) and lysine deacetylases (HDACs) are associated with aberrant gene expression in breast cancer development. However, the precise molecular mechanisms underlying the crosstalk between KDMs and HDACs in chromatin remodeling and regulation of gene transcription are still elusive. In this study, we showed that treatment of human breast cancer cells with inhibitors targeting the zinc cofactor dependent class I/II HDAC, but not NAD+ dependent class III HDAC, led to significant increase of H3K4me2 which is a specific substrate of histone lysine-specific demethylase 1 (LSD1) and a key chromatin mark promoting transcriptional activation. We also demonstrated that inhibition of LSD1 activity by a pharmacological inhibitor, pargyline, or siRNA resulted in increased acetylation of H3K9 (AcH3K9). However, siRNA knockdown of LSD2, a homolog of LSD1, failed to alter the level of AcH3K9, suggesting that LSD2 activity may not be functionally connected with HDAC activity. Combined treatment with LSD1 and HDAC inhibitors resulted in enhanced levels of H3K4me2 and AcH3K9, and exhibited synergistic growth inhibition of breast cancer cells. Finally, microarray screening identified a unique subset of genes whose expression was significantly changed by combination treatment with inhibitors of LSD1 and HDAC. Our study suggests that LSD1 intimately interacts with histone deacetylases in human breast cancer cells. Inhibition of histone demethylation and deacetylation exhibits cooperation and synergy in regulating gene expression and growth inhibition, and may represent a promising and novel approach for epigenetic therapy of breast cancer. PMID:21452019

  17. Drosophila stem loop binding protein coordinates accumulation of mature histone mRNA with cell cycle progression

    PubMed Central

    Sullivan, Eileen; Santiago, Carlos; Parker, Emily D.; Dominski, Zbigniew; Yang, Xiaocui; Lanzotti, David J.; Ingledue, Tom C.; Marzluff, William F.; Duronio, Robert J.

    2001-01-01

    Replication-associated histone genes encode the only metazoan mRNAs that lack polyA tails, ending instead in a conserved 26-nt sequence that forms a stem–loop. Most of the regulation of mammalian histone mRNA is posttranscriptional and mediated by this unique 3′ end. Stem–loop–binding protein (SLBP) binds to the histone mRNA 3′ end and is thought to participate in all aspects of histone mRNA metabolism, including cell cycle regulation. To examine SLBP function genetically, we have cloned the gene encoding Drosophila SLBP (dSLBP) by a yeast three-hybrid method and have isolated mutations in dSLBP. dSLBP function is required both zygotically and maternally. Strong dSLBP alleles cause zygotic lethality late in development and result in production of stable histone mRNA that accumulates in nonreplicating cells. These histone mRNAs are cytoplasmic and have polyadenylated 3′ ends like other polymerase II transcripts. Hypomorphic dSLBP alleles support zygotic development but cause female sterility. Eggs from these females contain dramatically reduced levels of histone mRNA, and mutant embryos are not able to complete the syncytial embryonic cycles. This is in part because of a failure of chromosome condensation at mitosis that blocks normal anaphase. These data demonstrate that dSLBP is required in vivo for 3′ end processing of histone pre-mRNA, and that this is an essential function for development. Moreover, dSLBP-dependent processing plays an important role in coupling histone mRNA production with the cell cycle. PMID:11157774

  18. Prokaryotic histone-like protein interacting with RNA polymerase.

    PubMed Central

    Lathe, R; Buc, H; Lecocq, J P; Bautz, E K

    1980-01-01

    firA mutation of Escherichia coli can render RNA synthesis thermosensitive and confer abnormal sensitivity to rifampicin, an antibiotic that specifically inhibits the activity of RNA polymerase. We previously described the cloning of a chromosomal HindIII fragment containing the firA gene, and we now present strong evidence that the product of this gene is a 17,000-dalton polypeptide which, by various criteria, closely resembles the eukaryotic histones. This protein forms the largest of a unique set of three abundant histone-like proteins (HLP) found in E. coli and is hence referred to as HLPI. We discuss possible routes by which these proteins might affect transcription. Images PMID:6447875

  19. Middle-Down and Chemical Proteomic Approaches to Reveal Histone H4 Modification Dynamics in Cell Cycle: Label-Free Semi-Quantification of Histone Tail Peptide Modifications Including Phosphorylation and Highly Sensitive Capture of Histone PTM Binding Proteins Using Photo-Reactive Crosslinkers

    PubMed Central

    Yamamoto, Kazuki; Chikaoka, Yoko; Hayashi, Gosuke; Sakamoto, Ryosuke; Yamamoto, Ryuji; Sugiyama, Akira; Kodama, Tatsuhiko; Okamoto, Akimitsu; Kawamura, Takeshi

    2015-01-01

    Mass spectrometric proteomics is an effective approach for identifying and quantifying histone post-translational modifications (PTMs) and their binding proteins, especially in the cases of methylation and acetylation. However, another vital PTM, phosphorylation, tends to be poorly quantified because it is easily lost and inefficiently ionized. In addition, PTM binding proteins for phosphorylation are sometimes resistant to identification because of their variable binding affinities. Here, we present our efforts to improve the sensitivity of detection of histone H4 tail peptide phosphorylated at serine 1 (H4S1ph) and our successful identification of an H4S1ph binder candidate by means of a chemical proteomics approach. Our nanoLC-MS/MS system permitted semi-quantitative label-free analysis of histone H4 PTM dynamics of cell cycle-synchronized HeLa S3 cells, including phosphorylation, methylation, and acetylation. We show that H4S1ph abundance on nascent histone H4 unmethylated at lysine 20 (H4K20me0) peaks from late S-phase to M-phase. We also attempted to characterize effects of phosphorylation at H4S1 on protein–protein interactions. Specially synthesized photoaffinity bait peptides specifically captured 14-3-3 proteins as novel H4S1ph binding partners, whose interaction was otherwise undetectable by conventional peptide pull-down experiments. This is the first report that analyzes dynamics of PTM pattern on the whole histone H4 tail during cell cycle and enables the identification of PTM binders with low affinities using high-resolution mass spectrometry and photo-affinity bait peptides. PMID:26819910

  20. Dynamic changes in the interchromosomal interaction of early histone gene loci during development of sea urchin.

    PubMed

    Matsushita, Masaya; Ochiai, Hiroshi; Suzuki, Ken-Ichi T; Hayashi, Sayaka; Yamamoto, Takashi; Awazu, Akinori; Sakamoto, Naoaki

    2017-12-15

    The nuclear positioning and chromatin dynamics of eukaryotic genes are closely related to the regulation of gene expression, but they have not been well examined during early development, which is accompanied by rapid cell cycle progression and dynamic changes in nuclear organization, such as nuclear size and chromatin constitution. In this study, we focused on the early development of the sea urchin Hemicentrotus pulcherrimus and performed three-dimensional fluorescence in situ hybridization of gene loci encoding early histones (one of the types of histone in sea urchin). There are two non-allelic early histone gene loci per sea urchin genome. We found that during the morula stage, when the early histone gene expression levels are at their maximum, interchromosomal interactions were often formed between the early histone gene loci on separate chromosomes and that the gene loci were directed to locate to more interior positions. Furthermore, these interactions were associated with the active transcription of the early histone genes. Thus, such dynamic interchromosomal interactions may contribute to the efficient synthesis of early histone mRNA during the morula stage of sea urchin development. © 2017. Published by The Company of Biologists Ltd.

  1. An extensive analysis of the hereditary hemochromatosis gene HFE and neighboring histone genes: associations with childhood leukemia.

    PubMed

    Davis, Charronne F; Dorak, M Tevfik

    2010-04-01

    The most common mutation of the HFE gene C282Y has shown a risk association with childhood acute lymphoblastic leukemia (ALL) in Welsh and Scottish case-control studies. This finding has not been replicated outside Britain. Here, we present a thorough analysis of the HFE gene in a panel of HLA homozygous reference cell lines and in the original population sample from South Wales (117 childhood ALL cases and 414 newborn controls). The 21 of 24 variants analyzed were from the HFE gene region extending 52 kb from the histone gene HIST1H1C to HIST1H1T. We identified the single-nucleotide polymorphism (SNP) rs807212 as a tagging SNP for the most common HFE region haplotype, which contains wild-type alleles of all HFE variants examined. This intergenic SNP rs807212 yielded a strong male-specific protective association (per allele OR = 0.38, 95% CI = 0.22-0.64, P (trend) = 0.0002; P = 0.48 in females), which accounted for the original C282Y risk association. In the HapMap project data, rs807212 was in strong linkage disequilibrium with 25 other SNPs spanning 151 kb around HFE. Minor alleles of these 26 SNPs characterized the most common haplotype for the HFE region, which lacked all disease-associated HFE variants. The HapMap data suggested positive selection in this region even in populations where the HFE C282Y mutation is absent. These results have implications for the sex-specific associations observed in this region and suggest the inclusion of rs807212 in future studies of the HFE gene and the extended HLA class I region.

  2. H3.3 demarcates GC-rich coding and subtelomeric regions and serves as potential memory mark for virulence gene expression in Plasmodium falciparum

    PubMed Central

    Fraschka, Sabine Anne-Kristin; Henderson, Rob Wilhelmus Maria; Bártfai, Richárd

    2016-01-01

    Histones, by packaging and organizing the DNA into chromatin, serve as essential building blocks for eukaryotic life. The basic structure of the chromatin is established by four canonical histones (H2A, H2B, H3 and H4), while histone variants are more commonly utilized to alter the properties of specific chromatin domains. H3.3, a variant of histone H3, was found to have diverse localization patterns and functions across species but has been rather poorly studied in protists. Here we present the first genome-wide analysis of H3.3 in the malaria-causing, apicomplexan parasite, P. falciparum, which revealed a complex occupancy profile consisting of conserved and parasite-specific features. In contrast to other histone variants, PfH3.3 primarily demarcates euchromatic coding and subtelomeric repetitive sequences. Stable occupancy of PfH3.3 in these regions is largely uncoupled from the transcriptional activity and appears to be primarily dependent on the GC-content of the underlying DNA. Importantly, PfH3.3 specifically marks the promoter region of an active and poised, but not inactive antigenic variation (var) gene, thereby potentially contributing to immune evasion. Collectively, our data suggest that PfH3.3, together with other histone variants, indexes the P. falciparum genome to functionally distinct domains and contribute to a key survival strategy of this deadly pathogen. PMID:27555062

  3. Somatic mutations of the histone H3K27 demethylase, UTX, in human cancer

    PubMed Central

    van Haaften, Gijs; Dalgliesh, Gillian L; Davies, Helen; Chen, Lina; Bignell, Graham; Greenman, Chris; Edkins, Sarah; Hardy, Claire; O’Meara, Sarah; Teague, Jon; Butler, Adam; Hinton, Jonathan; Latimer, Calli; Andrews, Jenny; Barthorpe, Syd; Beare, Dave; Buck, Gemma; Campbell, Peter J; Cole, Jennifer; Dunmore, Rebecca; Forbes, Simon; Jia, Mingming; Jones, David; Kok, Chai Yin; Leroy, Catherine; Lin, Meng-Lay; McBride, David J; Maddison, Mark; Maquire, Simon; McLay, Kirsten; Menzies, Andrew; Mironenko, Tatiana; Lee, Mulderrig; Mudie, Laura; Pleasance, Erin; Shepherd, Rebecca; Smith, Raffaella; Stebbings, Lucy; Stephens, Philip; Tang, Gurpreet; Tarpey, Patrick S; Turner, Rachel; Turrell, Kelly; Varian, Jennifer; West, Sofie; Widaa, Sara; Wray, Paul; Collins, V Peter; Ichimura, Koichi; Law, Simon; Wong, John; Yuen, Siu Tsan; Leung, Suet Yi; Tonon, Giovanni; DePinho, Ronald A; Tai, Yu-Tzu; Anderson, Kenneth C; Kahnoski, Richard J.; Massie, Aaron; Khoo, Sok Kean; Teh, Bin Tean; Stratton, Michael R; Futreal, P Andrew

    2010-01-01

    Somatically acquired epigenetic changes are present in many cancers. Epigenetic regulation is maintained via post-translational modifications of core histones. Here, we describe inactivating somatic mutations in the histone lysine demethylase, UTX, pointing to histone H3 lysine methylation deregulation in multiple tumour types. UTX reintroduction into cancer cells with inactivating UTX mutations resulted in slowing of proliferation and marked transcriptional changes. These data identify UTX as a new human cancer gene. PMID:19330029

  4. Relationship between the structure of SET/TAF-Ibeta/INHAT and its histone chaperone activity.

    PubMed

    Muto, Shinsuke; Senda, Miki; Akai, Yusuke; Sato, Lui; Suzuki, Toru; Nagai, Ryozo; Senda, Toshiya; Horikoshi, Masami

    2007-03-13

    Histone chaperones assemble and disassemble nucleosomes in an ATP-independent manner and thus regulate the most fundamental step in the alteration of chromatin structure. The molecular mechanisms underlying histone chaperone activity remain unclear. To gain insights into these mechanisms, we solved the crystal structure of the functional domain of SET/TAF-Ibeta/INHAT at a resolution of 2.3 A. We found that SET/TAF-Ibeta/INHAT formed a dimer that assumed a "headphone"-like structure. Each subunit of the SET/TAF-Ibeta/INHAT dimer consisted of an N terminus, a backbone helix, and an "earmuff" domain. It resembles the structure of the related protein NAP-1. Comparison of the crystal structures of SET/TAF-Ibeta/INHAT and NAP-1 revealed that the two proteins were folded similarly except for an inserted helix. However, their backbone helices were shaped differently, and the relative dispositions of the backbone helix and the earmuff domain between the two proteins differed by approximately 40 degrees . Our biochemical analyses of mutants revealed that the region of SET/TAF-Ibeta/INHAT that is engaged in histone chaperone activity is the bottom surface of the earmuff domain, because this surface bound both core histones and double-stranded DNA. This overlap or closeness of the activity surface and the binding surfaces suggests that the specific association among SET/TAF-Ibeta/INHAT, core histones, and double-stranded DNA is requisite for histone chaperone activity. These findings provide insights into the possible mechanisms by which histone chaperones assemble and disassemble nucleosome structures.

  5. Detection of Histone H3 mutations in cerebrospinal fluid-derived tumor DNA from children with diffuse midline glioma.

    PubMed

    Huang, Tina Y; Piunti, Andrea; Lulla, Rishi R; Qi, Jin; Horbinski, Craig M; Tomita, Tadanori; James, C David; Shilatifard, Ali; Saratsis, Amanda M

    2017-04-17

    Diffuse midline gliomas (including diffuse intrinsic pontine glioma, DIPG) are highly morbid glial neoplasms of the thalamus or brainstem that typically arise in young children and are not surgically resectable. These tumors are characterized by a high rate of histone H3 mutation, resulting in replacement of lysine 27 with methionine (K27M) in genes encoding H3 variants H3.3 (H3F3A) and H3.1 (HIST1H3B). Detection of these gain-of-function mutations has clinical utility, as they are associated with distinct tumor biology and clinical outcomes. Given the paucity of tumor tissue available for molecular analysis and relative morbidity of midline tumor biopsy, CSF-derived tumor DNA from patients with diffuse midline glioma may serve as a viable alternative for clinical detection of histone H3 mutation. We demonstrate the feasibility of two strategies to detect H3 mutations in CSF-derived tumor DNA from children with brain tumors (n = 11) via either targeted Sanger sequencing of H3F3A and HIST1H3B, or H3F3A c.83 A > T detection via nested PCR with mutation-specific primers. Of the six CSF specimens from children with diffuse midline glioma in our cohort, tumor DNA sufficient in quantity and quality for analysis was isolated from five (83%), with H3.3K27M detected in four (66.7%). In addition, H3.3G34V was identified in tumor DNA from a patient with supratentorial glioblastoma. Test sensitivity (87.5%) and specificity (100%) was validated via immunohistochemical staining and Sanger sequencing in available matched tumor tissue specimens (n = 8). Our results indicate that histone H3 gene mutation is detectable in CSF-derived tumor DNA from children with brain tumors, including diffuse midline glioma, and suggest the feasibility of "liquid biopsy" in lieu of, or to complement, tissue diagnosis, which may prove valuable for stratification to targeted therapies and monitoring treatment response.

  6. DNA and histone methylation in gastric carcinogenesis

    PubMed Central

    Calcagno, Danielle Queiroz; Gigek, Carolina Oliveira; Chen, Elizabeth Suchi; Burbano, Rommel Rodriguez; Smith, Marília de Arruda Cardoso

    2013-01-01

    Epigenetic alterations contribute significantly to the development and progression of gastric cancer, one of the leading causes of cancer death worldwide. Epigenetics refers to the number of modifications of the chromatin structure that affect gene expression without altering the primary sequence of DNA, and these changes lead to transcriptional activation or silencing of the gene. Over the years, the study of epigenetic processes has increased, and novel therapeutic approaches that target DNA methylation and histone modifications have emerged. A greater understanding of epigenetics and the therapeutic potential of manipulating these processes is necessary for gastric cancer treatment. Here, we review recent research on the effects of aberrant DNA and histone methylation on the onset and progression of gastric tumors and the development of compounds that target enzymes that regulate the epigenome. PMID:23482412

  7. Variations in DNA methylation, acetylated histone H4, and methylated histone H3 during Pinus radiata needle maturation in relation to the loss of in vitro organogenic capability.

    PubMed

    Valledor, Luis; Meijón, Mónica; Hasbún, Rodrigo; Jesús Cañal, Maria; Rodríguez, Roberto

    2010-03-15

    Needle differentiation is a very complex process associated with the formation of a mature photosynthetic organ. From meristem differentiation to leaf maturation, gene control must play an important role switching required genes on and off to define tissue functions, with the epigenetic code being one of the main regulation mechanisms. In this work, we examined the connections between the variation in the levels of some epigenetic players (DNA methylation, acetylated histone H4 and histone H3 methylation at Lys 4 and Lys 9) at work during needle maturation. Our results indicate that needle maturation, which is associated with a decrease in organogenic capability, is related to an increase in heterochromatin-related epigenetic markers (high DNA methylation and low acetylated histone H4 levels, and the presence of histone H3 methylated at lys 9). Immunohistochemical analyses also showed that the DNA methylation of palisade parenchyma cell layers during the transition from immature to mature scions is associated with the loss of the capacity to induce adventitious organs. Copyright 2009 Elsevier GmbH. All rights reserved.

  8. Histone deacetylase inhibition modulates histone acetylation at gene promoter regions and affects genome-wide gene transcription in Schistosoma mansoni

    PubMed Central

    Anderson, Letícia; Gomes, Monete Rajão; daSilva, Lucas Ferreira; Pereira, Adriana da Silva Andrade; Mourão, Marina M.; Romier, Christophe; Pierce, Raymond

    2017-01-01

    Background Schistosomiasis is a parasitic disease infecting hundreds of millions of people worldwide. Treatment depends on a single drug, praziquantel, which kills the Schistosoma spp. parasite only at the adult stage. HDAC inhibitors (HDACi) such as Trichostatin A (TSA) induce parasite mortality in vitro (schistosomula and adult worms), however the downstream effects of histone hyperacetylation on the parasite are not known. Methodology/Principal findings TSA treatment of adult worms in vitro increased histone acetylation at H3K9ac and H3K14ac, which are transcription activation marks, not affecting the unrelated transcription repression mark H3K27me3. We investigated the effect of TSA HDACi on schistosomula gene expression at three different time points, finding a marked genome-wide change in the transcriptome profile. Gene transcription activity was correlated with changes on the chromatin acetylation mark at gene promoter regions. Moreover, combining expression data with ChIP-Seq public data for schistosomula, we found that differentially expressed genes having the H3K4me3 mark at their promoter region in general showed transcription activation upon HDACi treatment, compared with those without the mark, which showed transcription down-regulation. Affected genes are enriched for DNA replication processes, most of them being up-regulated. Twenty out of 22 genes encoding proteins involved in reducing reactive oxygen species accumulation were down-regulated. Dozens of genes encoding proteins with histone reader motifs were changed, including SmEED from the PRC2 complex. We targeted SmEZH2 methyltransferase PRC2 component with a new EZH2 inhibitor (GSK343) and showed a synergistic effect with TSA, significantly increasing schistosomula mortality. Conclusions/Significance Genome-wide gene expression analyses have identified important pathways and cellular functions that were affected and may explain the schistosomicidal effect of TSA HDACi. The change in expression

  9. Synthesis of histone proteins by CPE ligation using a recombinant peptide as the C-terminal building block.

    PubMed

    Kawakami, Toru; Yoshikawa, Ryo; Fujiyoshi, Yuki; Mishima, Yuichi; Hojo, Hironobu; Tajima, Shoji; Suetake, Isao

    2015-11-01

    The post-translational modification of histones plays an important role in gene expression. We report herein on a method for synthesizing such modified histones by ligating chemically prepared N-terminal peptides and C-terminal recombinant peptide building blocks. Based on their chemical synthesis, core histones can be categorized as two types; histones H2A, H2B and H4 which contain no Cys residues, and histone H3 which contains a Cys residue(s) in the C-terminal region. A combination of native chemical ligation and desulphurization can be simply used to prepare histones without Cys residues. For the synthesis of histone H3, the endogenous Cys residue(s) must be selectively protected, while keeping the N-terminal Cys residue of the C-terminal building block that is introduced for purposes of chemical ligation unprotected. To this end, a phenacyl group was successfully utilized to protect endogenous Cys residue(s), and the recombinant peptide was ligated with a peptide containing a Cys-Pro ester (CPE) sequence as a thioester precursor. Using this approach it was possible to prepare all of the core histones H2A, H2B, H3 and H4 with any modifications. The resulting proteins could then be used to prepare a core histone library of proteins that have been post-translationally modified. © The Authors 2015. Published by Oxford University Press on behalf of the Japanese Biochemical Society. All rights reserved.

  10. Histone- and protamine-DNA association: conservation of different patterns within the beta-globin domain in human sperm.

    PubMed

    Gardiner-Garden, M; Ballesteros, M; Gordon, M; Tam, P P

    1998-06-01

    Most DNA in human sperm is bound to highly basic proteins called protamines, but a small proportion is complexed with histones similar to those found in active chromatin. This raises the intriguing possibility that histones in sperm are marking sets of genes that will be preferentially activated during early development. We have examined the chromatin structure of members of the beta-globin gene family, which are expressed at different times in development, and the protamine 2 gene, which is expressed in spermatids prior to the widespread displacement of histones by transition proteins. The genes coding for epsilon and gamma globin, which are active in the embryonic yolk sac, contain regions which are histone associated in the sperm. No histone-associated regions are present at the sites tested within the beta- and delta-globin genes which are silent in the embryonic yolk sac. The trends of histone or protamine association are consistent for samples from the same person, and no significant between-subject variations in these trends are found for 13 of the 15 fragments analyzed in the two donors. The results suggest that sperm chromatin structures are generally similar in different men but that the length of the histone-associated regions can vary. The association of sperm DNA with histones or protamines sometimes changes within as little as 400 bp of DNA, suggesting that there is fine control over the retention of histones.

  11. Histone and ribosomal RNA repetitive gene clusters of the boll weevil are linked in a tandem array.

    PubMed

    Roehrdanz, R; Heilmann, L; Senechal, P; Sears, S; Evenson, P

    2010-08-01

    Histones are the major protein component of chromatin structure. The histone family is made up of a quintet of proteins, four core histones (H2A, H2B, H3 & H4) and the linker histones (H1). Spacers are found between the coding regions. Among insects this quintet of genes is usually clustered and the clusters are tandemly repeated. Ribosomal DNA contains a cluster of the rRNA sequences 18S, 5.8S and 28S. The rRNA genes are separated by the spacers ITS1, ITS2 and IGS. This cluster is also tandemly repeated. We found that the ribosomal RNA repeat unit of at least two species of Anthonomine weevils, Anthonomus grandis and Anthonomus texanus (Coleoptera: Curculionidae), is interspersed with a block containing the histone gene quintet. The histone genes are situated between the rRNA 18S and 28S genes in what is known as the intergenic spacer region (IGS). The complete reiterated Anthonomus grandis histone-ribosomal sequence is 16,248 bp.

  12. Sodium Valproate, a Histone Deacetylase Inhibitor, Is Associated With Reduced Stroke Risk After Previous Ischemic Stroke or Transient Ischemic Attack

    PubMed Central

    Brookes, Rebecca L.; Crichton, Siobhan; Wolfe, Charles D.A.; Yi, Qilong; Li, Linxin; Hankey, Graeme J.; Rothwell, Peter M.

    2018-01-01

    Background and Purpose— A variant in the histone deacetylase 9 (HDAC9) gene is associated with large artery stroke. Therefore, inhibiting HDAC9 might offer a novel secondary preventative treatment for ischemic stroke. The antiepileptic drug sodium valproate (SVA) is a nonspecific inhibitor of HDAC9. We tested whether SVA therapy given after ischemic stroke was associated with reduced recurrent stroke rate. Methods— Data were pooled from 3 prospective studies recruiting patients with previous stroke or transient ischemic attack and long-term follow-up: the South London Stroke Register, The Vitamins to Prevent Stroke Study, and the Oxford Vascular Study. Patients receiving SVA were compared with patients who received antiepileptic drugs other than SVA using survival analysis and Cox Regression. Results— A total of 11 949 patients with confirmed ischemic event were included. Recurrent stroke rate was lower in patient taking SVA (17 of 168) than other antiepileptic drugs (105 of 530; log-rank survival analysis P=0.002). On Cox regression, controlling for potential cofounders, SVA remained associated with reduced stroke (hazard ratio=0.44; 95% confidence interval: 0.3–0.7; P=0.002). A similar result was obtained when patients taking SVA were compared with all cases not taking SVA (Cox regression, hazard ratio=0.47; 95% confidence interval: 0.29–0.77; P=0.003). Conclusions— These results suggest that exposure to SVA, an inhibitor of HDAC, may be associated with a lower recurrent stroke risk although we cannot exclude residual confounding in this study design. This supports the hypothesis that HDAC9 is important in the ischemic stroke pathogenesis and that its inhibition, by SVA or a more specific HDAC9 inhibitor, is worthy of evaluation as a treatment to prevent recurrent ischemic stroke. PMID:29247141

  13. Sodium Valproate, a Histone Deacetylase Inhibitor, Is Associated With Reduced Stroke Risk After Previous Ischemic Stroke or Transient Ischemic Attack.

    PubMed

    Brookes, Rebecca L; Crichton, Siobhan; Wolfe, Charles D A; Yi, Qilong; Li, Linxin; Hankey, Graeme J; Rothwell, Peter M; Markus, Hugh S

    2018-01-01

    A variant in the histone deacetylase 9 ( HDAC9 ) gene is associated with large artery stroke. Therefore, inhibiting HDAC9 might offer a novel secondary preventative treatment for ischemic stroke. The antiepileptic drug sodium valproate (SVA) is a nonspecific inhibitor of HDAC9. We tested whether SVA therapy given after ischemic stroke was associated with reduced recurrent stroke rate. Data were pooled from 3 prospective studies recruiting patients with previous stroke or transient ischemic attack and long-term follow-up: the South London Stroke Register, The Vitamins to Prevent Stroke Study, and the Oxford Vascular Study. Patients receiving SVA were compared with patients who received antiepileptic drugs other than SVA using survival analysis and Cox Regression. A total of 11 949 patients with confirmed ischemic event were included. Recurrent stroke rate was lower in patient taking SVA (17 of 168) than other antiepileptic drugs (105 of 530; log-rank survival analysis P =0.002). On Cox regression, controlling for potential cofounders, SVA remained associated with reduced stroke (hazard ratio=0.44; 95% confidence interval: 0.3-0.7; P =0.002). A similar result was obtained when patients taking SVA were compared with all cases not taking SVA (Cox regression, hazard ratio=0.47; 95% confidence interval: 0.29-0.77; P =0.003). These results suggest that exposure to SVA, an inhibitor of HDAC, may be associated with a lower recurrent stroke risk although we cannot exclude residual confounding in this study design. This supports the hypothesis that HDAC9 is important in the ischemic stroke pathogenesis and that its inhibition, by SVA or a more specific HDAC9 inhibitor, is worthy of evaluation as a treatment to prevent recurrent ischemic stroke. © 2017 The Authors.

  14. SET oncoprotein accumulation regulates transcription through DNA demethylation and histone hypoacetylation.

    PubMed

    Almeida, Luciana O; Neto, Marinaldo P C; Sousa, Lucas O; Tannous, Maryna A; Curti, Carlos; Leopoldino, Andreia M

    2017-04-18

    Epigenetic modifications are essential in the control of normal cellular processes and cancer development. DNA methylation and histone acetylation are major epigenetic modifications involved in gene transcription and abnormal events driving the oncogenic process. SET protein accumulates in many cancer types, including head and neck squamous cell carcinoma (HNSCC); SET is a member of the INHAT complex that inhibits gene transcription associating with histones and preventing their acetylation. We explored how SET protein accumulation impacts on the regulation of gene expression, focusing on DNA methylation and histone acetylation. DNA methylation profile of 24 tumour suppressors evidenced that SET accumulation decreased DNA methylation in association with loss of 5-methylcytidine, formation of 5-hydroxymethylcytosine and increased TET1 levels, indicating an active DNA demethylation mechanism. However, the expression of some suppressor genes was lowered in cells with high SET levels, suggesting that loss of methylation is not the main mechanism modulating gene expression. SET accumulation also downregulated the expression of 32 genes of a panel of 84 transcription factors, and SET directly interacted with chromatin at the promoter of the downregulated genes, decreasing histone acetylation. Gene expression analysis after cell treatment with 5-aza-2'-deoxycytidine (5-AZA) and Trichostatin A (TSA) revealed that histone acetylation reversed transcription repression promoted by SET. These results suggest a new function for SET in the regulation of chromatin dynamics. In addition, TSA diminished both SET protein levels and SET capability to bind to gene promoter, suggesting that administration of epigenetic modifier agents could be efficient to reverse SET phenotype in cancer.

  15. Histone H1 chaperone activity of TAF-I is regulated by its subtype-dependent intramolecular interaction.

    PubMed

    Kajitani, Kaori; Kato, Kohsuke; Nagata, Kyosuke

    2017-04-01

    Linker histone H1 is involved in the regulation of gene activity through the maintenance of higher-order chromatin structure. Previously, we have shown that template activating factor-I (TAF-I or protein SET) is involved in linker histone H1 dynamics as a histone H1 chaperone. In human and murine cells, two TAF-I subtypes exist, namely TAF-Iα and TAF-Iβ. TAF-I has a highly acidic amino acid cluster in its C-terminal region and forms homo- or heterodimers through its dimerization domain. Both dimer formation and the C-terminal region of TAF-I are essential for the histone chaperone activity. TAF-Iα exhibits less histone chaperone activity compared with TAF-Iβ even though TAF-Iα and β differ only in their N-terminal regions. However, it is unclear how subtype-specific TAF-I activities are regulated. Here, we have shown that the N-terminal region of TAF-Iα autoinhibits its histone chaperone activity via intramolecular interaction with its C-terminal region. When the interaction between the N- and C-terminal regions of TAF-Iα is disrupted, TAF-Iα shows a histone chaperone activity similar to that of TAF-Iβ. Taken together, these results provide mechanistic insights into the concept that fine tuning of TAF-I histone H1 chaperone activity relies on the subtype compositions of the TAF-I dimer. © 2017 Molecular Biology Society of Japan and John Wiley & Sons Australia, Ltd.

  16. De Novo Coding Variants Are Strongly Associated with Tourette Disorder

    PubMed Central

    Willsey, A. Jeremy; Fernandez, Thomas V.; Yu, Dongmei; King, Robert A.; Dietrich, Andrea; Xing, Jinchuan; Sanders, Stephan J.; Mandell, Jeffrey D.; Huang, Alden Y.; Richer, Petra; Smith, Louw; Dong, Shan; Samocha, Kaitlin E.; Neale, Benjamin M.; Coppola, Giovanni; Mathews, Carol A.; Tischfield, Jay A.; Scharf, Jeremiah M.; State, Matthew W.; Heiman, Gary A.

    2017-01-01

    SUMMARY Whole-exome sequencing (WES) and de novo variant detection have proven a powerful approach to gene discovery in complex neurodevelopmental disorders. We have completed WES of 325 Tourette disorder trios from the Tourette International Collaborative Genetics cohort and a replication sample of 186 trios from the Tourette Syndrome Association International Consortium on Genetics (511 total). We observe strong and consistent evidence for the contribution of de novo likely gene-disrupting (LGD) variants (rate ratio [RR] 2.32, p = 0.002). Additionally, de novo damaging variants (LGD and probably damaging missense) are overrepresented in probands (RR 1.37, p = 0.003). We identify four likely risk genes with multiple de novo damaging variants in unrelated probands: WWC1 (WW and C2 domain containing 1), CELSR3 (Cadherin EGF LAG seven-pass G-type receptor 3), NIPBL (Nipped-B-like), and FN1 (fibronectin 1). Overall, we estimate that de novo damaging variants in approximately 400 genes contribute risk in 12% of clinical cases. PMID:28472652

  17. Aberrant histone acetylation contributes to elevated interleukin-6 production in rheumatoid arthritis synovial fibroblasts.

    PubMed

    Wada, Takuma Tsuzuki; Araki, Yasuto; Sato, Kojiro; Aizaki, Yoshimi; Yokota, Kazuhiro; Kim, Yoon Taek; Oda, Hiromi; Kurokawa, Riki; Mimura, Toshihide

    2014-02-21

    Accumulating evidence indicates that epigenetic aberrations have a role in the pathogenesis of rheumatoid arthritis (RA). However, reports on histone modifications are as yet quite limited in RA. Interleukin (IL)-6 is an inflammatory cytokine which is known to be involved in the pathogenesis of RA. Here we report the role of histone modifications in elevated IL-6 production in RA synovial fibroblasts (SFs). The level of histone H3 acetylation (H3ac) in the IL-6 promoter was significantly higher in RASFs than osteoarthritis (OA) SFs. This suggests that chromatin structure is in an open or loose state in the IL-6 promoter in RASFs. Furthermore, curcumin, a histone acetyltransferase (HAT) inhibitor, significantly reduced the level of H3ac in the IL-6 promoter, as well as IL-6 mRNA expression and IL-6 protein secretion by RASFs. Taken together, it is suggested that hyperacetylation of histone H3 in the IL-6 promoter induces the increase in IL-6 production by RASFs and thereby participates in the pathogenesis of RA. Copyright © 2014 Elsevier Inc. All rights reserved.

  18. Optimized methods of chromatin immunoprecipitation for profiling histone modifications in industrial microalgae Nannochloropsis spp.

    PubMed

    Wei, Li; Xu, Jian

    2018-06-01

    Epigenetic factors such as histone modifications play integral roles in plant development and stress response, yet their implications in algae remain poorly understood. In the industrial oleaginous microalgae Nannochloropsis spp., the lack of an efficient methodology for chromatin immunoprecipitation (ChIP), which determines the specific genomic location of various histone modifications, has hindered probing the epigenetic basis of their photosynthetic carbon conversion and storage as oil. Here, a detailed ChIP protocol was developed for Nannochloropsis oceanica, which represents a reliable approach for the analysis of histone modifications, chromatin state, and transcription factor-binding sites at the epigenetic level. Using ChIP-qPCR, genes related to photosynthetic carbon fixation in this microalga were systematically assessed. Furthermore, a ChIP-Seq protocol was established and optimized, which generated a genome-wide profile of histone modification events, using histone mark H3K9Ac as an example. These results are the first step for appreciation of the chromatin landscape in industrial oleaginous microalgae and for epigenetics-based microalgal feedstock development. © 2018 Phycological Society of America.

  19. Epigenetic Repression of Matrix Metalloproteinases in Myofibroblastic Hepatic Stellate Cells through Histone Deacetylases 4

    PubMed Central

    Qin, Lan; Han, Yuan-Ping

    2010-01-01

    Matrix metalloproteinases (MMPs), which are highly expressed in acute injury, are progressively repressed or silenced in fibrotic liver, favoring extracellular matrix accumulation, while the underlying mechanism is largely unknown. Similarly, normal/quiescent hepatic stellate cells (HSCs) express high levels of MMPs in response to injury signals, such as interleukin-1. After transdifferentiation, the myofibroblastic HSCs are incapable of expressing many MMPs; however, the major signaling pathways required for MMP expression are intact, indicating that repression is at the level of the chromatin. Indeed, both the MMP9 and MMP13 genes are inaccessible to transcription factors and RNA polymerase II, in association with impaired histone acetylation in their promoters. In accordance with impaired histone acetylation at the cellular level, histone deacetylase-4 is accumulated during HSC transdifferentiation. Furthermore, ectopic expression of histone deacetylase-4 in quiescent HSCs results in repression of MMP promoter activities as well as endogenous MMP9 protein expression. Thus, our findings suggest that a histone deacetylase-4-dependent mechanism underlies the epigenetic silencing of MMP genes during tissue fibrogenesis. PMID:20847282

  20. Genome-wide analyses of four major histone modifications in Arabidopsis hybrids at the germinating seed stage.

    PubMed

    Zhu, Anyu; Greaves, Ian K; Dennis, Elizabeth S; Peacock, W James

    2017-02-07

    Hybrid vigour (heterosis) has been used for decades in cropping agriculture, especially in the production of maize and rice, because hybrid varieties exceed their parents in plant biomass and seed yield. The molecular basis of hybrid vigour is not fully understood. Previous studies have suggested that epigenetic systems could play a role in heterosis. In this project, we investigated genome-wide patterns of four histone modifications in Arabidopsis hybrids in germinating seeds. We found that although hybrids have similar histone modification patterns to the parents in most regions of the genome, they have altered patterns at specific loci. A small subset of genes show changes in histone modifications in the hybrids that correlate with changes in gene expression. Our results also show that genome-wide patterns of histone modifications in geminating seeds parallel those at later developmental stages of seedlings. Ler/C24 hybrids showed similar genome-wide patterns of histone modifications as the parents at an early germination stage. However, a small subset of genes, such as FLC, showed correlated changes in histone modification and in gene expression in the hybrids. The altered patterns of histone modifications for those genes in hybrids could be related to some heterotic traits in Arabidopsis, such as flowering time, and could play a role in hybrid vigour establishment.

  1. Silver nanoparticle-induced hemoglobin decrease involves alteration of histone 3 methylation status.

    PubMed

    Qian, Yi; Zhang, Jie; Hu, Qinglin; Xu, Ming; Chen, Yue; Hu, Guoqing; Zhao, Meirong; Liu, Sijin

    2015-11-01

    Silver nanoparticles (nanosilver, AgNPs) have been shown to induce toxicity in vitro and in vivo; however, the molecular bases underlying the detrimental effects have not been thoroughly understood. Although there are numerous studies on its genotoxicity, only a few studies have investigated the epigenetic changes, even less on the changes of histone modifications by AgNPs. In the current study, we probed the AgNP-induced alterations to histone methylation that could be responsible for globin reduction in erythroid cells. AgNP treatment caused a significant reduction of global methylation level for histone 3 (H3) in erythroid MEL cells at sublethal concentrations, devoid of oxidative stress. The ChIP-PCR analyses demonstrated that methylation of H3 at lysine (Lys) 4 (H3K4) and Lys 79 (H3K79) on the β-globin locus was greatly reduced. The reduction in methylation could be attributed to decreased histone methyltransferase DOT-1L and MLL levels as well as the direct binding between AgNPs to H3/H4 that provide steric hindrance to prevent methylation as predicted by the all-atom molecular dynamics simulations. This direct interaction was further proved by AgNP-mediated pull-down assay and immunoprecipitation assay. These changes, together with decreased RNA polymerase II activity and chromatin binding at this locus, resulted in decreased hemoglobin production. By contrast, Ag ion-treated cells showed no alterations in histone methylation level. Taken together, these results showed a novel finding in which AgNPs could alter the methylation status of histone. Our study therefore opens a new avenue to study the biological effects of AgNPs at sublethal concentrations from the perspective of epigenetic mechanisms. Copyright © 2015 Elsevier Ltd. All rights reserved.

  2. Hippocampal histone acetylation regulates object recognition and the estradiol-induced enhancement of object recognition

    PubMed Central

    Zhao, Zaorui; Fan, Lu; Fortress, Ashley M.; Boulware, Marissa I.; Frick, Karyn M.

    2012-01-01

    Histone acetylation has recently been implicated in learning and memory processes, yet necessity of histone acetylation for such processes has not been demonstrated using pharmacological inhibitors of histone acetyltransferases (HATs). As such, the present study tested whether garcinol, a potent HAT inhibitor in vitro, could impair hippocampal memory consolidation and block the memory-enhancing effects of the modulatory hormone 17β-estradiol (E2). We first showed that bilateral infusion of garcinol (0.1, 1, or 10 μg/side) into the dorsal hippocampus (DH) immediately after training impaired object recognition memory consolidation in ovariectomized female mice. A behaviorally effective dose of garcinol (10 μg/side) also significantly decreased DH HAT activity. We next examined whether DH infusion of a behaviorally subeffective dose of garcinol (1 ng/side) could block the effects of DH E2 infusion on object recognition and epigenetic processes. Immediately after training, ovariectomized female mice received bilateral DH infusions of vehicle, E2 (5 μg/side), garcinol (1 ng/side), or E2 plus garcinol. Forty-eight hours later, garcinol blocked the memory-enhancing effects of E2. Garcinol also reversed the E2-induced increase in DH histone H3 acetylation, HAT activity, and levels of the de novo methyltransferase DNMT3B, as well as the E2-induced decrease in levels of the memory repressor protein histone deacetylase 2 (HDAC2). Collectively, these findings suggest that histone acetylation is critical for object recognition memory consolidation and the beneficial effects of E2 on object recognition. Importantly, this work demonstrates that the role of histone acetylation in memory processes can be studied using a HAT inhibitor. PMID:22396409

  3. DNA methylation pathways and their crosstalk with histone methylation

    PubMed Central

    Du, Jiamu; Johnson, Lianna M.; Jacobsen, Steven E.; Patel, Dinshaw J.

    2015-01-01

    Methylation of DNA and of histone 3 at Lys 9 (H3K9) are highly correlated with gene silencing in eukaryotes from fungi to humans. Both of these epigenetic marks need to be established at specific regions of the genome and then maintained at these sites through cell division. Protein structural domains that specifically recognize methylated DNA and methylated histones are key for targeting enzymes that catalyse these marks to appropriate genome sites. Genetic, genomic, structural and biochemical data reveal connections between these two epigenetic marks, and these domains mediate much of the crosstalk. PMID:26296162

  4. The histone acetyltransferase MOF overexpression blunts cardiac hypertrophy by targeting ROS in mice.

    PubMed

    Qiao, Weiwei; Zhang, Weili; Gai, Yusheng; Zhao, Lan; Fan, Juexin

    2014-06-13

    Imbalance between histone acetylation/deacetylation critically participates in the expression of hypertrophic fetal genes and development of cardiac hypertrophy. While histone deacetylases play dual roles in hypertrophy, current evidence reveals that histone acetyltransferase such as p300 and PCAF act as pro-hypertrophic factors. However, it remains elusive whether some histone acetyltransferases can prevent the development of hypertrophy. Males absent on the first (MOF) is a histone acetyltransferase belonging to the MYST (MOZ, Ybf2/Sas3, Sas2 and TIP60) family. Here in this study, we reported that MOF expression was down-regulated in failing human hearts and hypertrophic murine hearts at protein and mRNA levels. To evaluate the roles of MOF in cardiac hypertrophy, we generated cardiac-specific MOF transgenic mice. MOF transgenic mice did not show any differences from their wide-type littermates at baseline. However, cardiac-specific MOF overexpression protected mice from transverse aortic constriction (TAC)-induced cardiac hypertrophy, with reduced radios of heart weight (HW)/body weight (BW), lung weight/BW and HW/tibia length, decreased left ventricular wall thickness and increased fractional shortening. We also observed lower expression of hypertrophic fetal genes in TAC-challenged MOF transgenic mice compared with that of wide-type mice. Mechanically, MOF overexpression increased the expression of Catalase and MnSOD, which blocked TAC-induced ROS and ROS downstream c-Raf-MEK-ERK pathway that promotes hypertrophy. Taken together, our findings identify a novel anti-hypertrophic role of MOF, and MOF is the first reported anti-hypertrophic histone acetyltransferase. Copyright © 2014 Elsevier Inc. All rights reserved.

  5. GTRAC: fast retrieval from compressed collections of genomic variants

    PubMed Central

    Tatwawadi, Kedar; Hernaez, Mikel; Ochoa, Idoia; Weissman, Tsachy

    2016-01-01

    Motivation: The dramatic decrease in the cost of sequencing has resulted in the generation of huge amounts of genomic data, as evidenced by projects such as the UK10K and the Million Veteran Project, with the number of sequenced genomes ranging in the order of 10 K to 1 M. Due to the large redundancies among genomic sequences of individuals from the same species, most of the medical research deals with the variants in the sequences as compared with a reference sequence, rather than with the complete genomic sequences. Consequently, millions of genomes represented as variants are stored in databases. These databases are constantly updated and queried to extract information such as the common variants among individuals or groups of individuals. Previous algorithms for compression of this type of databases lack efficient random access capabilities, rendering querying the database for particular variants and/or individuals extremely inefficient, to the point where compression is often relinquished altogether. Results: We present a new algorithm for this task, called GTRAC, that achieves significant compression ratios while allowing fast random access over the compressed database. For example, GTRAC is able to compress a Homo sapiens dataset containing 1092 samples in 1.1 GB (compression ratio of 160), while allowing for decompression of specific samples in less than a second and decompression of specific variants in 17 ms. GTRAC uses and adapts techniques from information theory, such as a specialized Lempel-Ziv compressor, and tailored succinct data structures. Availability and Implementation: The GTRAC algorithm is available for download at: https://github.com/kedartatwawadi/GTRAC Contact: kedart@stanford.edu Supplementary information: Supplementary data are available at Bioinformatics online. PMID:27587665

  6. Analysis of the NuRD subunits reveals a histone deacetylase core complex and a connection with DNA methylation

    PubMed Central

    Zhang, Yi; Ng, Huck-Hui; Erdjument-Bromage, Hediye; Tempst, Paul; Bird, Adrian; Reinberg, Danny

    1999-01-01

    ATP-dependent nucleosome remodeling and core histone acetylation and deacetylation represent mechanisms to alter nucleosome structure. NuRD is a multisubunit complex containing nucleosome remodeling and histone deacetylase activities. The histone deacetylases HDAC1 and HDAC2 and the histone binding proteins RbAp48 and RbAp46 form a core complex shared between NuRD and Sin3-histone deacetylase complexes. The histone deacetylase activity of the core complex is severely compromised. A novel polypeptide highly related to the metastasis-associated protein 1, MTA2, and the methyl-CpG-binding domain-containing protein, MBD3, were found to be subunits of the NuRD complex. MTA2 modulates the enzymatic activity of the histone deacetylase core complex. MBD3 mediates the association of MTA2 with the core histone deacetylase complex. MBD3 does not directly bind methylated DNA but is highly related to MBD2, a polypeptide that binds to methylated DNA and has been reported to possess demethylase activity. MBD2 interacts with the NuRD complex and directs the complex to methylated DNA. NuRD may provide a means of gene silencing by DNA methylation. PMID:10444591

  7. Profiling of Histone Post-Translational Modifications in Mouse Brain with High-Resolution Top-Down Mass Spectrometry.

    PubMed

    Zhou, Mowei; Paša-Tolić, Ljiljana; Stenoien, David L

    2017-02-03

    As histones play central roles in most chromosomal functions including regulation of DNA replication, DNA damage repair, and gene transcription, both their basic biology and their roles in disease development have been the subject of intense study. Because multiple post-translational modifications (PTMs) along the entire protein sequence are potential regulators of histones, a top-down approach, where intact proteins are analyzed, is ultimately required for complete characterization of proteoforms. However, significant challenges remain for top-down histone analysis primarily because of deficiencies in separation/resolving power and effective identification algorithms. Here we used state-of-the-art mass spectrometry and a bioinformatics workflow for targeted data analysis and visualization. The workflow uses ProMex for intact mass deconvolution, MSPathFinder as a search engine, and LcMsSpectator as a data visualization tool. When complemented with the open-modification tool TopPIC, this workflow enabled identification of novel histone PTMs including tyrosine bromination on histone H4 and H2A, H3 glutathionylation, and mapping of conventional PTMs along the entire protein for many histone subunits.

  8. Role of histone deacetylases in gene regulation at nuclear lamina.

    PubMed

    Milon, Beatrice C; Cheng, Haibo; Tselebrovsky, Mikhail V; Lavrov, Sergei A; Nenasheva, Valentina V; Mikhaleva, Elena A; Shevelyov, Yuri Y; Nurminsky, Dmitry I

    2012-01-01

    Theoretical models suggest that gene silencing at the nuclear periphery may involve "closing" of chromatin by transcriptional repressors, such as histone deacetylases (HDACs). Here we provide experimental evidence confirming these predictions. Histone acetylation, chromatin compactness, and gene repression in lamina-interacting multigenic chromatin domains were analyzed in Drosophila S2 cells in which B-type lamin, diverse HDACs, and lamina-associated proteins were downregulated by dsRNA. Lamin depletion resulted in decreased compactness of the repressed multigenic domain associated with its detachment from the lamina and enhanced histone acetylation. Our data reveal the major role for HDAC1 in mediating deacetylation, chromatin compaction, and gene silencing in the multigenic domain, and an auxiliary role for HDAC3 that is required for retention of the domain at the lamina. These findings demonstrate the manifold and central involvement of class I HDACs in regulation of lamina-associated genes, illuminating a mechanism by which these enzymes can orchestrate normal and pathological development.

  9. Cot, a novel kinase of histone H3, induces cellular transformation through up-regulation of c-fos transcriptional activity.

    PubMed

    Choi, Hong Seok; Kang, Bong Seok; Shim, Jung-Hyun; Cho, Yong-Yeon; Choi, Bu Young; Bode, Ann M; Dong, Zigang

    2008-01-01

    Post-translational modification of histones is critical for gene expression, mitosis, cell growth, apoptosis, and cancer development. Thus, finding protein kinases that are responsible for the phosphorylation of histones at critical sites is considered an important step in understanding the process of histone modification. The serine/threonine kinase Cot is a member of the mitogen-activated protein kinase (MAPK) kinase kinase family. We show here that Cot can phosphorylate histone H3 at Ser-10 in vivo and in vitro, and that the phosphorylation of histone H3 at Ser-10 is required for Cot-induced cell transformation. We found that activated Cot is recruited to the c-fos promoter resulting in increased activator protein-1 (AP-1) transactivation. The formation of the Cot-c-fos promoter complex was also apparent when histone H3 was phosphorylated at Ser-10. Furthermore, the use of dominant negative mutants of histone H3 revealed that Cot was required for phosphorylation of histone H3 at Ser-10 to induce neoplastic cell transformation. These results revealed an important function of Cot as a newly discovered histone H3 kinase. Moreover, the transforming ability of Cot results from the coordinated activation of histone H3, which ultimately converges on the regulation of the transcriptional activity of the c-fos promoter, followed by AP-1 transactivation activity.

  10. Demonstration of separate phosphotyrosyl- and phosphoseryl- histone phosphatase activities in the plasma membranes of a human astrocytoma.

    PubMed

    Leis, J F; Knowles, A F; Kaplan, N O

    1985-06-01

    A plasma membrane preparation from a human astrocytoma contained p-nitrophenyl phosphate (pNPP), phosphotyrosyl histone, and phosphoseryl histone hydrolysis activities. The pNPPase and phosphotyrosyl histone phosphatase activities were inhibited by vanadate, whereas the phosphoseryl histone phosphatase activity was not; the latter activity was inhibited by pyrophosphate and nucleoside di- and triphosphates. When the membranes were solubilized by Triton X-100 and the solubilized proteins were subjected to column chromatography on DEAE-Sephadex, Sepharose 6B-C1, and wheat germ agglutinin-Sepharose 4B columns, the pNPPase activity from the phosphoseryl histone phosphatase activity. The results from column chromatography also indicated that there may be multiple phosphotyrosyl and phosphoseryl protein phosphatases in the plasma membranes.

  11. Competition between histone and transcription factor binding regulates the onset of transcription in zebrafish embryos.

    PubMed

    Joseph, Shai R; Pálfy, Máté; Hilbert, Lennart; Kumar, Mukesh; Karschau, Jens; Zaburdaev, Vasily; Shevchenko, Andrej; Vastenhouw, Nadine L

    2017-04-20

    Upon fertilization, the genome of animal embryos remains transcriptionally inactive until the maternal-to-zygotic transition. At this time, the embryo takes control of its development and transcription begins. How the onset of zygotic transcription is regulated remains unclear. Here, we show that a dynamic competition for DNA binding between nucleosome-forming histones and transcription factors regulates zebrafish genome activation. Taking a quantitative approach, we found that the concentration of non-DNA-bound core histones sets the time for the onset of transcription. The reduction in nuclear histone concentration that coincides with genome activation does not affect nucleosome density on DNA, but allows transcription factors to compete successfully for DNA binding. In agreement with this, transcription factor binding is sensitive to histone levels and the concentration of transcription factors also affects the time of transcription. Our results demonstrate that the relative levels of histones and transcription factors regulate the onset of transcription in the embryo.

  12. Schedule of Spermatogenesis in the Pulmonate Snail Helix aspersa, with Special Reference to Histone Transition

    PubMed Central

    Bloch, David P.; Hew, Howard Y. C.

    1960-01-01

    The schedule of spermatogenesis is determined from the times necessary for cells labeled with tritium thymidine during premeiotic DNA synthesis to pass through the successive spermatogenic stages. A transition from a typically somatic histone rich in lysine, to a histone rich in arginine is shown to occur during spermatid stages. A later shift to a protamine is observed in the maturing sperm. These changes are characterized by the use of in situ staining methods. The transition to an arginine-rich histone is accompanied by incorporation of tritium-labeled arginine, hence reflects synthesis of new protein. Comparison of the timing of arginine and thymidine incorporation, and independent measurements of DNA, show that in contrast to the case of premitotic chromosome duplication, the histone synthesis in the spermatid is unaccompanied by DNA synthesis. During the initial histone change, fine filaments are formed within the nucleus, which aggregate to form lamellae. This fine structure is lost during maturation of the sperm. PMID:13801496

  13. HDAC inhibitors induce global changes in histone lysine and arginine methylation and alter expression of lysine demethylases.

    PubMed

    Lillico, Ryan; Sobral, Marina Gomez; Stesco, Nicholas; Lakowski, Ted M

    2016-02-05

    Histone deacetylase (HDAC) inhibitors are cancer treatments that inhibit the removal of the epigenetic modification acetyllysine on histones, resulting in altered gene expression. Such changes in expression may influence other histone epigenetic modifications. We describe a validated liquid chromatography-tandem mass spectrometry (LC-MS/MS) method to quantify lysine acetylation and methylation and arginine methylation on histones extracted from cultured cells treated with HDAC inhibitors. The HDAC inhibitors vorinostat, mocetinostat and entinostat induced 400-600% hyperacetylation in HEK 293 and K562 cells. All HDAC inhibitors decreased histone methylarginines in HEK 293 cells but entinostat produced dose dependent reductions in asymmetric dimethylarginine, not observed in K562 cells. Vorinostat produced increases in histone lysine methylation and decreased expression of some lysine demethylases (KDM), measured by quantitative PCR. Entinostat had variable effects on lysine methylation and decreased expression of some KDM while increasing expression of others. Mocetinostat produced dose dependent increases in histone lysine methylation by LC-MS/MS. This was corroborated with a multiplex colorimetric assay showing increases in histone H3 lysine 4, 9, 27, 36 and 79 methylation. Increases in lysine methylation were correlated with dose dependent decreases in the expression of seven KDM. Mocetinostat functions as an HDAC inhibitor and a de facto KDM inhibitor. Copyright © 2015 Elsevier B.V. All rights reserved.

  14. The effect of rare variants on inflation of the test statistics in case-control analyses.

    PubMed

    Pirie, Ailith; Wood, Angela; Lush, Michael; Tyrer, Jonathan; Pharoah, Paul D P

    2015-02-20

    The detection of bias due to cryptic population structure is an important step in the evaluation of findings of genetic association studies. The standard method of measuring this bias in a genetic association study is to compare the observed median association test statistic to the expected median test statistic. This ratio is inflated in the presence of cryptic population structure. However, inflation may also be caused by the properties of the association test itself particularly in the analysis of rare variants. We compared the properties of the three most commonly used association tests: the likelihood ratio test, the Wald test and the score test when testing rare variants for association using simulated data. We found evidence of inflation in the median test statistics of the likelihood ratio and score tests for tests of variants with less than 20 heterozygotes across the sample, regardless of the total sample size. The test statistics for the Wald test were under-inflated at the median for variants below the same minor allele frequency. In a genetic association study, if a substantial proportion of the genetic variants tested have rare minor allele frequencies, the properties of the association test may mask the presence or absence of bias due to population structure. The use of either the likelihood ratio test or the score test is likely to lead to inflation in the median test statistic in the absence of population structure. In contrast, the use of the Wald test is likely to result in under-inflation of the median test statistic which may mask the presence of population structure.

  15. Effect of Cell Aspect Ratio on Swarming Bacteria

    NASA Astrophysics Data System (ADS)

    Ilkanaiv, Bella; Kearns, Daniel B.; Ariel, Gil; Be'er, Avraham

    2017-04-01

    Swarming bacteria collectively migrate on surfaces using flagella, forming dynamic whirls and jets that consist of millions of individuals. Because some swarming bacteria elongate prior to actual motion, cell aspect ratio may play a significant role in the collective dynamics. Extensive research on self-propelled rodlike particles confirms that elongation promotes alignment, strongly affecting the dynamics. Here, we study experimentally the collective dynamics of variants of swarming Bacillus subtilis that differ in length. We show that the swarming statistics depends on the aspect ratio in a critical, fundamental fashion not predicted by theory. The fastest motion was obtained for the wild-type and variants that are similar in length. However, shorter and longer cells exhibit anomalous, non-Gaussian statistics and nonexponential decay of the autocorrelation function, indicating lower collective motility. These results suggest that the robust mechanisms to maintain aspect ratios may be important for efficient swarming motility. Wild-type cells are optimal in this sense.

  16. Activity-induced histone modifications govern Neurexin-1 mRNA splicing and memory preservation.

    PubMed

    Ding, Xinlu; Liu, Sanxiong; Tian, Miaomiao; Zhang, Wenhao; Zhu, Tao; Li, Dongdong; Wu, Jiawei; Deng, HaiTeng; Jia, Yichang; Xie, Wei; Xie, Hong; Guan, Ji-Song

    2017-05-01

    Epigenetic mechanisms regulate the formation, consolidation and reconsolidation of memories. However, the signaling path from neuronal activation to epigenetic modifications within the memory-related brain circuit remains unknown. We report that learning induces long-lasting histone modifications in hippocampal memory-activated neurons to regulate memory stability. Neuronal activity triggers a late-onset shift in Nrxn1 splice isoform choice at splicing site 4 by accumulating a repressive histone marker, H3K9me3, to modulate the splicing process. Activity-dependent phosphorylation of p66α via AMP-activated protein kinase recruits HDAC2 and Suv39h1 to establish repressive histone markers and changes the connectivity of the activated neurons. Removal of Suv39h1 abolished the activity-dependent shift in Nrxn1 splice isoform choice and reduced the stability of established memories. We uncover a cell-autonomous process for memory preservation in which memory-related neurons initiate a late-onset reduction of their rewiring capacities through activity-induced histone modifications.

  17. Immunohistochemical Analysis of Histone H3 Modifications in Germ Cells during Mouse Spermatogenesis

    PubMed Central

    Song, Ning; Liu, Jie; An, Shucai; Nishino, Tomoya; Hishikawa, Yoshitaka; Koji, Takehiko

    2011-01-01

    Histone modification has been implicated in the regulation of mammalian spermatogenesis. However, the association of differently modified histone H3 with a specific stage of germ cells during spermatogenesis is not fully understood. In this study, we examined the localization of variously modified histone H3 in paraffin-embedded sections of adult mouse testis immunohistochemically, focusing on acetylation at lysine 9 (H3K9ac), lysine 18 (H3K18ac), and lysine 23 (H3K23ac); tri-methylation at lysine 4 (H3K4me3) and lysine 27 (H3K27me3); and phosphorylation at serine 10 (H3S10phos). As a result, we found that there was a significant fluctuation in the modifications; in spermatogonia, the stainings for H3K9ac, H3K18ac, and H3K23ac were strong while that for H3K4me3 was weak. In spermatocytes, the stainings for H3K9ac, H3K18ac, H3K23ac, and H3K4me3 were reduced in the preleptotene to pachytene stage, but in diplotene stage the stainings for H3K18ac, H3K23ac, and H3K4me3 seemed to become intense again. The staining for H3K27me3 was nearly constant throughout these stages. In the ensuing spermiogenesis, a dramatic acetylation and methylation of histone H3 was found in the early elongated spermatids and then almost all signals disappeared in the late elongated spermatids, in parallel with the replacement from histones to protamines. In addition, we confirmed that the staining of histone H3S10phos was exclusively associated with mitotic and meiotic cell division. Based upon the above results, we indicated that the modification pattern of histone H3 is subject to dynamic change and specific to a certain stage of germ cell differentiation during mouse spermatogenesis. PMID:21927517

  18. Immunohistochemical Analysis of Histone H3 Modifications in Germ Cells during Mouse Spermatogenesis.

    PubMed

    Song, Ning; Liu, Jie; An, Shucai; Nishino, Tomoya; Hishikawa, Yoshitaka; Koji, Takehiko

    2011-08-27

    Histone modification has been implicated in the regulation of mammalian spermatogenesis. However, the association of differently modified histone H3 with a specific stage of germ cells during spermatogenesis is not fully understood. In this study, we examined the localization of variously modified histone H3 in paraffin-embedded sections of adult mouse testis immunohistochemically, focusing on acetylation at lysine 9 (H3K9ac), lysine 18 (H3K18ac), and lysine 23 (H3K23ac); tri-methylation at lysine 4 (H3K4me3) and lysine 27 (H3K27me3); and phosphorylation at serine 10 (H3S10phos). As a result, we found that there was a significant fluctuation in the modifications; in spermatogonia, the stainings for H3K9ac, H3K18ac, and H3K23ac were strong while that for H3K4me3 was weak. In spermatocytes, the stainings for H3K9ac, H3K18ac, H3K23ac, and H3K4me3 were reduced in the preleptotene to pachytene stage, but in diplotene stage the stainings for H3K18ac, H3K23ac, and H3K4me3 seemed to become intense again. The staining for H3K27me3 was nearly constant throughout these stages. In the ensuing spermiogenesis, a dramatic acetylation and methylation of histone H3 was found in the early elongated spermatids and then almost all signals disappeared in the late elongated spermatids, in parallel with the replacement from histones to protamines. In addition, we confirmed that the staining of histone H3S10phos was exclusively associated with mitotic and meiotic cell division. Based upon the above results, we indicated that the modification pattern of histone H3 is subject to dynamic change and specific to a certain stage of germ cell differentiation during mouse spermatogenesis.

  19. Trimethylation of histone H3 lysine 4 impairs methylation of histone H3 lysine 9

    PubMed Central

    LeRoy, Gary; Bua, Dennis J; Garcia, Benjamin A; Gozani, Or; Richard, Stéphane

    2010-01-01

    Chromatin is broadly compartmentalized in two defined states: euchromatin and heterochromatin. Generally, euchromatin is trimethylated on histone H3 lysine 4 (H3K4me3) while heterochromatin contains the H3K9me3 mark. The H3K9me3 modification is added by lysine methyltransferases (KMTs) such as SETDB1. Herein, we show that SETDB1 interacts with its substrate H3, but only in the absence of the euchromatic mark H3K4me3. In addition, we show that SETDB1 fails to methylate substrates containing the H3K4me3 mark. Likewise, the functionally related H3K9 KMTs G9A, GLP and SUV39H1 also fail to bind and to methylate H3K4me3 substrates. Accordingly, we provide in vivo evidence that H3K9me2-enriched histones are devoid of H3K4me2/3 and that histones depleted of H3K4me2/3 have elevated H3K9me2/3. The correlation between the loss of interaction of these KMTs with H3K4me3 and concomitant methylation impairment leads to the postulate that at least these four KMTs require stable interaction with their respective substrates for optimal activity. Thus, novel substrates could be discovered via the identification of KMT interacting proteins. Indeed, we find that SETDB1 binds to and methylates a novel substrate, the inhibitor of growth protein ING2, while SUV39H1 binds to and methylates the heterochromatin protein HP1α. Thus, our observations suggest a mechanism of post-translational regulation of lysine methylation and propose a potential mechanism for the segregation of the biologically opposing marks, H3K4me3 and H3K9me3. Furthermore, the correlation between H3-KMTs interaction and substrate methylation highlights that the identification of novel KMT substrates may be facilitated by the identification of interaction partners. PMID:21124070

  20. Somatic mutations of the histone H3K27 demethylase gene UTX in human cancer.

    PubMed

    van Haaften, Gijs; Dalgliesh, Gillian L; Davies, Helen; Chen, Lina; Bignell, Graham; Greenman, Chris; Edkins, Sarah; Hardy, Claire; O'Meara, Sarah; Teague, Jon; Butler, Adam; Hinton, Jonathan; Latimer, Calli; Andrews, Jenny; Barthorpe, Syd; Beare, Dave; Buck, Gemma; Campbell, Peter J; Cole, Jennifer; Forbes, Simon; Jia, Mingming; Jones, David; Kok, Chai Yin; Leroy, Catherine; Lin, Meng-Lay; McBride, David J; Maddison, Mark; Maquire, Simon; McLay, Kirsten; Menzies, Andrew; Mironenko, Tatiana; Mulderrig, Lee; Mudie, Laura; Pleasance, Erin; Shepherd, Rebecca; Smith, Raffaella; Stebbings, Lucy; Stephens, Philip; Tang, Gurpreet; Tarpey, Patrick S; Turner, Rachel; Turrell, Kelly; Varian, Jennifer; West, Sofie; Widaa, Sara; Wray, Paul; Collins, V Peter; Ichimura, Koichi; Law, Simon; Wong, John; Yuen, Siu Tsan; Leung, Suet Yi; Tonon, Giovanni; DePinho, Ronald A; Tai, Yu-Tzu; Anderson, Kenneth C; Kahnoski, Richard J; Massie, Aaron; Khoo, Sok Kean; Teh, Bin Tean; Stratton, Michael R; Futreal, P Andrew

    2009-05-01

    Somatically acquired epigenetic changes are present in many cancers. Epigenetic regulation is maintained via post-translational modifications of core histones. Here, we describe inactivating somatic mutations in the histone lysine demethylase gene UTX, pointing to histone H3 lysine methylation deregulation in multiple tumor types. UTX reintroduction into cancer cells with inactivating UTX mutations resulted in slowing of proliferation and marked transcriptional changes. These data identify UTX as a new human cancer gene.

  1. Genome-wide histone acetylation is altered in a transgenic mouse model of Huntington's disease.

    PubMed

    McFarland, Karen N; Das, Sudeshna; Sun, Ting Ting; Leyfer, Dmitri; Xia, Eva; Sangrey, Gavin R; Kuhn, Alexandre; Luthi-Carter, Ruth; Clark, Timothy W; Sadri-Vakili, Ghazaleh; Cha, Jang-Ho J

    2012-01-01

    In Huntington's disease (HD; MIM ID #143100), a fatal neurodegenerative disorder, transcriptional dysregulation is a key pathogenic feature. Histone modifications are altered in multiple cellular and animal models of HD suggesting a potential mechanism for the observed changes in transcriptional levels. In particular, previous work has suggested an important link between decreased histone acetylation, particularly acetylated histone H3 (AcH3; H3K9K14ac), and downregulated gene expression. However, the question remains whether changes in histone modifications correlate with transcriptional abnormalities across the entire transcriptome. Using chromatin immunoprecipitation paired with microarray hybridization (ChIP-chip), we interrogated AcH3-gene interactions genome-wide in striata of 12-week old wild-type (WT) and transgenic (TG) R6/2 mice, an HD mouse model, and correlated these interactions with gene expression levels. At the level of the individual gene, we found decreases in the number of sites occupied by AcH3 in the TG striatum. In addition, the total number of genes bound by AcH3 was decreased. Surprisingly, the loss of AcH3 binding sites occurred within the coding regions of the genes rather than at the promoter region. We also found that the presence of AcH3 at any location within a gene strongly correlated with the presence of its transcript in both WT and TG striatum. In the TG striatum, treatment with histone deacetylase (HDAC) inhibitors increased global AcH3 levels with concomitant increases in transcript levels; however, AcH3 binding at select gene loci increased only slightly. This study demonstrates that histone H3 acetylation at lysine residues 9 and 14 and active gene expression are intimately tied in the rodent brain, and that this fundamental relationship remains unchanged in an HD mouse model despite genome-wide decreases in histone H3 acetylation.

  2. A NAP-Family Histone Chaperone Functions in Abiotic Stress Response and Adaptation1[OPEN

    PubMed Central

    Pareek, Ashwani; Singla-Pareek, Sneh Lata

    2016-01-01

    Modulation of gene expression is one of the most significant molecular mechanisms of abiotic stress response in plants. Via altering DNA accessibility, histone chaperones affect the transcriptional competence of genomic loci. However, in contrast to other factors affecting chromatin dynamics, the role of plant histone chaperones in abiotic stress response and adaptation remains elusive. Here, we studied the physiological function of a stress-responsive putative rice (Oryza sativa) histone chaperone of the NAP superfamily: OsNAPL6. We show that OsNAPL6 is a nuclear-localized H3/H4 histone chaperone capable of assembling a nucleosome-like structure. Utilizing overexpression and knockdown approaches, we found a positive correlation between OsNAPL6 expression levels and adaptation to multiple abiotic stresses. Results of comparative transcriptome profiling and promoter-recruitment studies indicate that OsNAPL6 functions during stress response via modulation of expression of various genes involved in diverse functions. For instance, we show that OsNAPL6 is recruited to OsRad51 promoter, activating its expression and leading to more efficient DNA repair and abrogation of programmed cell death under salinity and genotoxic stress conditions. These results suggest that the histone chaperone OsNAPL6 may serve a regulatory role in abiotic stress physiology possibly via modulating nucleosome dynamics at various stress-associated genomic loci. Taken together, our findings establish a hitherto unknown link between histone chaperones and abiotic stress response in plants. PMID:27342307

  3. An efficient immunodetection method for histone modifications in plants.

    PubMed

    Nic-Can, Geovanny; Hernández-Castellano, Sara; Kú-González, Angela; Loyola-Vargas, Víctor M; De-la-Peña, Clelia

    2013-12-16

    Epigenetic mechanisms can be highly dynamic, but the cross-talk among them and with the genome is still poorly understood. Many of these mechanisms work at different places in the cell and at different times of organism development. Covalent histone modifications are one of the most complex and studied epigenetic mechanisms involved in cellular reprogramming and development in plants. Therefore, the knowledge of the spatial distribution of histone methylation in different tissues is important to understand their behavior on specific cells. Based on the importance of epigenetic marks for biology, we present a simplified, inexpensive and efficient protocol for in situ immunolocalization on different tissues such as flowers, buds, callus, somatic embryo and meristematic tissue from several plants of agronomical and biological importance. Here, we fully describe all the steps to perform the localization of histone modifications. Using this method, we were able to visualize the distribution of H3K4me3 and H3K9me2 without loss of histological integrity of tissues from several plants, including Agave tequilana, Capsicum chinense, Coffea canephora and Cedrela odorata, as well as Arabidopsis thaliana. There are many protocols to study chromatin modifications; however, most of them are expensive, difficult and require sophisticated equipment. Here, we provide an efficient protocol for in situ localization of histone methylation that dispenses with the use of expensive and sensitive enzymes. The present method can be used to investigate the cellular distribution and localization of a wide array of proteins, which could help to clarify the biological role that they play at specific times and places in different tissues of various plant species.

  4. Neural crest development and craniofacial morphogenesis is coordinated by nitric oxide and histone acetylation

    PubMed Central

    Kong, Yawei; Grimaldi, Michael; Curtin, Eugene; Dougherty, Max; Kaufman, Charles; White, Richard M.; Zon, Leonard I.; Liao, Eric C.

    2015-01-01

    Cranial neural crest (CNC) cells are patterned and coalesce to facial prominences that undergo convergence and extension to generate the craniofacial form. We applied a chemical genetics approach to identify pathways that regulate craniofacial development during embryogenesis. Treatment with the nitric oxide synthase inhibitor TRIM abrogated first pharyngeal arch structures and induced ectopic ceratobranchial formation. TRIM promoted a progenitor CNC fate and inhibited chondrogenic differentiation, which were mediated through impaired nitric oxide (NO) production without appreciable effect on global protein S-nitrosylation. Instead, TRIM perturbed hox gene patterning and caused histone hypoacetylation. Rescue of TRIM phenotype was achieved with over-expression of histone acetyltransferase kat6a, inhibition of histone deacetylase, and complimentary NO. These studies demonstrate that NO signaling and histone acetylation are coordinated mechanisms that regulate CNC patterning, differentiation and convergence during craniofacial morphogenesis. PMID:24684905

  5. Nuclear lactate dehydrogenase modulates histone modification in human hepatocytes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Castonguay, Zachary; Auger, Christopher; Thomas, Sean C.

    Highlights: • Nuclear LDH is up-regulated under oxidative stress. • SIRT1 is co-immunoprecipitated bound to nuclear LDH. • Nuclear LDH is involved in histone deacetylation and epigenetics. - Abstract: It is becoming increasingly apparent that the nucleus harbors metabolic enzymes that affect genetic transforming events. Here, we describe a nuclear isoform of lactate dehydrogenase (nLDH) and its ability to orchestrate histone deacetylation by controlling the availability of nicotinamide adenine dinucleotide (NAD{sup +}), a key ingredient of the sirtuin-1 (SIRT1) deacetylase system. There was an increase in the expression of nLDH concomitant with the presence of hydrogen peroxide (H{sub 2}O{sub 2})more » in the culture medium. Under oxidative stress, the NAD{sup +} generated by nLDH resulted in the enhanced deacetylation of histones compared to the control hepatocytes despite no discernable change in the levels of SIRT1. There appeared to be an intimate association between nLDH and SIRT1 as these two enzymes co-immunoprecipitated. The ability of nLDH to regulate epigenetic modifications by manipulating NAD{sup +} reveals an intricate link between metabolism and the processing of genetic information.« less

  6. Evolution of a Histone H4-K16 Acetyl-Specific DNA Aptamer

    PubMed Central

    Williams, Berea A. R.; Lin, Liyun; Lindsay, Stuart M.; Chaput, John C.

    2009-01-01

    We report the in vitro selection of DNA aptamers that bind to histone H4 proteins acetylated at lysine 16. The best aptamer identified in this selection binds to the target protein with a Kd of 21 nM, and discriminates against both the non-acetylated protein and histone H4 proteins acetylated at lysine 8. Comparative binding assays performed with a chip-quality antibody reveal that this aptamer binds to the acetylated histone target with similar affinity to a commercial antibody, but shows significantly greater specificity (15-fold versus 2,400-fold) for the target molecule. This result demonstrates that aptamers that are both modification and location specific can be generated to bind specific protein post-translational modifications. PMID:19385619

  7. Genetic predisposition to obesity and lifestyle factors--the combined analyses of twenty-six known BMI- and fourteen known waist:hip ratio (WHR)-associated variants in the Finnish Diabetes Prevention Study.

    PubMed

    Jääskeläinen, Tiina; Paananen, Jussi; Lindström, Jaana; Eriksson, Johan G; Tuomilehto, Jaakko; Uusitupa, Matti

    2013-11-01

    Recent genome-wide association studies have identified multiple loci associated with BMI or the waist:hip ratio (WHR). However, evidence on gene-lifestyle interactions is still scarce, and investigation of the effects of well-documented dietary and other lifestyle data is warranted to assess whether genetic risk can be modified by lifestyle. We assessed whether previously established BMI and WHR genetic variants associate with obesity and weight change in the Finnish Diabetes Prevention Study, and whether the associations are modified by dietary factors or physical activity. Individuals (n 459) completed a 3 d food record and were genotyped for twenty-six BMI- and fourteen WHR-related variants. The effects of the variants individually and in combination were investigated in relation to obesity and to 1- and 3-year weight change by calculating genetic risk scores (GRS). The GRS were separately calculated for BMI and the WHR by summing the increasing alleles weighted by their published effect sizes. At baseline, the GRS were not associated with total intakes of energy, macronutrients or fibre. The mean 1- and 3-year weight changes were not affected by the BMI or WHR GRS. During the 3-year follow-up, a trend for higher BMI by the GRS was detected especially in those who reported a diet low in fibre (P for interaction=0·065). Based on the present findings, it appears unlikely that obesity-predisposing variants substantially modify the effect of lifestyle modification on the success of weight reduction in the long term. In addition, these findings suggest that the association between the BMI-related genetic variants and obesity could be modulated by the diet.

  8. Epigenetic Metabolite Acetate Inhibits Class I/II Histone Deacetylases, Promotes Histone Acetylation, and Increases HIV-1 Integration in CD4+ T Cells.

    PubMed

    Bolduc, Jean-François; Hany, Laurent; Barat, Corinne; Ouellet, Michel; Tremblay, Michel J

    2017-08-15

    In this study, we investigated the effect of acetate, the most concentrated short-chain fatty acid (SCFA) in the gut and bloodstream, on the susceptibility of primary human CD4 + T cells to HIV-1 infection. We report that HIV-1 replication is increased in CD3/CD28-costimulated CD4 + T cells upon acetate treatment. This enhancing effect correlates with increased expression of the early activation marker CD69 and impaired class I/II histone deacetylase (HDAC) activity. In addition, acetate enhances acetylation of histones H3 and H4 and augments HIV-1 integration into the genome of CD4 + T cells. Thus, we propose that upon antigen presentation, acetate influences class I/II HDAC activity that transforms condensed chromatin into a more relaxed structure. This event leads to a higher level of viral integration and enhanced HIV-1 production. In line with previous studies showing reactivation of latent HIV-1 by SCFAs, we provide evidence that acetate can also increase the susceptibility of primary human CD4 + T cells to productive HIV-1 infection. IMPORTANCE Alterations in the fecal microbiota and intestinal epithelial damage involved in the gastrointestinal disorder associated with HIV-1 infection result in microbial translocation that leads to disease progression and virus-related comorbidities. Indeed, notably via production of short-chain fatty acids, bacteria migrating from the lumen to the intestinal mucosa could influence HIV-1 replication by epigenetic regulatory mechanisms, such as histone acetylation. We demonstrate that acetate enhances virus production in primary human CD4 + T cells. Moreover, we report that acetate impairs class I/II histone deacetylase activity and increases integration of HIV-1 DNA into the host genome. Therefore, it can be postulated that bacterial metabolites such as acetate modulate HIV-1-mediated disease progression. Copyright © 2017 American Society for Microbiology.

  9. Epigenetic control of skull morphogenesis by histone deacetylase 8

    PubMed Central

    Haberland, Michael; Mokalled, Mayssa H.; Montgomery, Rusty L.; Olson, Eric N.

    2009-01-01

    Histone deacetylases (Hdacs) are transcriptional repressors with crucial roles in mammalian development. Here we provide evidence that Hdac8 specifically controls patterning of the skull by repressing a subset of transcription factors in cranial neural crest cells. Global deletion of Hdac8 in mice leads to perinatal lethality due to skull instability, and this is phenocopied by conditional deletion of Hdac8 in cranial neural crest cells. Hdac8 specifically represses the aberrant expression of homeobox transcription factors such as Otx2 and Lhx1. These findings reveal how the identity and patterning of vertebrate-specific portions of the skull are epigenetically controlled by a histone deacetylase. PMID:19605684

  10. H3.Y discriminates between HIRA and DAXX chaperone complexes and reveals unexpected insights into human DAXX-H3.3-H4 binding and deposition requirements

    PubMed Central

    Zink, Lisa-Maria; Delbarre, Erwan; Eberl, H. Christian; Keilhauer, Eva C.; Bönisch, Clemens; Pünzeler, Sebastian; Bartkuhn, Marek; Collas, Philippe; Mann, Matthias

    2017-01-01

    Abstract Histone chaperones prevent promiscuous histone interactions before chromatin assembly. They guarantee faithful deposition of canonical histones and functionally specialized histone variants into chromatin in a spatial- and temporally-restricted manner. Here, we identify the binding partners of the primate-specific and H3.3-related histone variant H3.Y using several quantitative mass spectrometry approaches, and biochemical and cell biological assays. We find the HIRA, but not the DAXX/ATRX, complex to recognize H3.Y, explaining its presence in transcriptionally active euchromatic regions. Accordingly, H3.Y nucleosomes are enriched in the transcription-promoting FACT complex and depleted of repressive post-translational histone modifications. H3.Y mutational gain-of-function screens reveal an unexpected combinatorial amino acid sequence requirement for histone H3.3 interaction with DAXX but not HIRA, and for H3.3 recruitment to PML nuclear bodies. We demonstrate the importance and necessity of specific H3.3 core and C-terminal amino acids in discriminating between distinct chaperone complexes. Further, chromatin immunoprecipitation sequencing experiments reveal that in contrast to euchromatic HIRA-dependent deposition sites, human DAXX/ATRX-dependent regions of histone H3 variant incorporation are enriched in heterochromatic H3K9me3 and simple repeat sequences. These data demonstrate that H3.Y's unique amino acids allow a functional distinction between HIRA and DAXX binding and its consequent deposition into open chromatin. PMID:28334823

  11. Histone Deacetylase (HDAC) Inhibitors: Current Evidence for Therapeutic Activities in Pancreatic Cancer.

    PubMed

    Damaskos, Christos; Garmpis, Nikolaos; Karatzas, Theodore; Nikolidakis, Lampros; Kostakis, Ioannis D; Garmpi, Anna; Karamaroudis, Stefanos; Boutsikos, Georgios; Damaskou, Zoi; Kostakis, Alkiviadis; Kouraklis, Gregory

    2015-06-01

    Pancreatic carcinoma is one of the leading causes of cancer death. Current standard treatments include surgical resection, chemotherapy and radiotherapy but patient's prognosis remains poor and present severe side-effects. Contemporary oncology found a wide variety of novel anticancer drugs that regulate the epigenetic mechanisms of tumor genesis. Histone deacetylases (HDACs) are enzymes with pleiotropic activities that control critical functions of the cell through regulation of the acetylation states of histone proteins and other non-histone protein targets. They are divided into four groups, each with different localization in the cell, role and structure. Histone deacetylase inhibitors (HDACIs) are substances, which inhibit the function of HDACs. We recognize four leading groups (hydroxamic acid, cyclic tetrapeptide, benzamide, aliphatic acid). There are many HDACIs currently in pre-clinical and two (vorinostat, romidepsin) in clinical stages of investigation for pancreatic cancer. Numerous studies argue for the use HDACIs as monotherapy, others suggest that combination of HDACIs with other antitumor drugs has better therapeutic results. This review focuses on the use of HDACIs as novel anticancer drugs and will explain the mechanisms of therapeutic effect on pancreatic cancer. Copyright© 2015 International Institute of Anticancer Research (Dr. John G. Delinassios), All rights reserved.

  12. Coordinated action of histone modification and microRNA regulations in human genome.

    PubMed

    Wang, Xuan; Zheng, Guantao; Dong, Dong

    2015-10-10

    Both histone modifications and microRNAs (miRNAs) play pivotal role in gene expression regulation. Although numerous studies have been devoted to explore the gene regulation by miRNA and epigenetic regulations, their coordinated actions have not been comprehensively examined. In this work, we systematically investigated the combinatorial relationship between miRNA and epigenetic regulation by taking advantage of recently published whole genome-wide histone modification data and high quality miRNA targeting data. The results showed that miRNA targets have distinct histone modification patterns compared with non-targets in their promoter regions. Based on this finding, we proposed a machine learning approach to fit predictive models on the task to discern whether a gene is targeted by a specific miRNA. We found a considerable advantage in both sensitivity and specificity in diverse human cell lines. Finally, we found that our predicted miRNA targets are consistently annotated with Gene Ontology terms. Our work is the first genome-wide investigation of the coordinated action of miRNA and histone modification regulations, which provide a guide to deeply understand the complexity of transcriptional regulation. Copyright © 2015 Elsevier B.V. All rights reserved.

  13. Phylogenetic analysis, subcellular localization, and expression patterns of RPD3/HDA1 family histone deacetylases in plants

    PubMed Central

    Alinsug, Malona V; Yu, Chun-Wei; Wu, Keqiang

    2009-01-01

    Background Although histone deacetylases from model organisms have been previously identified, there is no clear basis for the classification of histone deacetylases under the RPD3/HDA1 superfamily, particularly on plants. Thus, this study aims to reconstruct a phylogenetic tree to determine evolutionary relationships between RPD3/HDA1 histone deacetylases from six different plants representing dicots with Arabidopsis thaliana, Populus trichocarpa, and Pinus taeda, monocots with Oryza sativa and Zea mays, and the lower plants with Physcomitrella patens. Results Sixty two histone deacetylases of RPD3/HDA1 family from the six plant species were phylogenetically analyzed to determine corresponding orthologues. Three clusters were formed separating Class I, Class II, and Class IV. We have confirmed lower and higher plant orthologues for AtHDA8 and AtHDA14, classifying both genes as Class II histone deacetylases in addition to AtHDA5, AtHDA15, and AtHDA18. Since Class II histone deacetylases in other eukaryotes have been known to undergo nucleocytoplasmic transport, it remains unknown whether such functional regulation also happens in plants. Thus, bioinformatics studies using different programs and databases were conducted to predict their corresponding localization sites, nuclear export signal, nuclear localization signal, as well as expression patterns. We also found new conserved domains in most of the RPD3/HDA1 histone deacetylases which were similarly conserved in its corresponding orthologues. Assessing gene expression patterns using Genevestigator, it appears that RPD3/HDA1 histone deacetylases are expressed all throughout the plant parts and developmental stages of the plant. Conclusion The RPD3/HDA1 histone deacetylase family in plants is divided into three distinct groups namely, Class I, Class II, and Class IV suggesting functional diversification. Class II comprises not only AtHDA5, AtHDA15, and AtHDA18 but also includes AtHDA8 and AtHDA14. New conserved

  14. GTRAC: fast retrieval from compressed collections of genomic variants.

    PubMed

    Tatwawadi, Kedar; Hernaez, Mikel; Ochoa, Idoia; Weissman, Tsachy

    2016-09-01

    The dramatic decrease in the cost of sequencing has resulted in the generation of huge amounts of genomic data, as evidenced by projects such as the UK10K and the Million Veteran Project, with the number of sequenced genomes ranging in the order of 10 K to 1 M. Due to the large redundancies among genomic sequences of individuals from the same species, most of the medical research deals with the variants in the sequences as compared with a reference sequence, rather than with the complete genomic sequences. Consequently, millions of genomes represented as variants are stored in databases. These databases are constantly updated and queried to extract information such as the common variants among individuals or groups of individuals. Previous algorithms for compression of this type of databases lack efficient random access capabilities, rendering querying the database for particular variants and/or individuals extremely inefficient, to the point where compression is often relinquished altogether. We present a new algorithm for this task, called GTRAC, that achieves significant compression ratios while allowing fast random access over the compressed database. For example, GTRAC is able to compress a Homo sapiens dataset containing 1092 samples in 1.1 GB (compression ratio of 160), while allowing for decompression of specific samples in less than a second and decompression of specific variants in 17 ms. GTRAC uses and adapts techniques from information theory, such as a specialized Lempel-Ziv compressor, and tailored succinct data structures. The GTRAC algorithm is available for download at: https://github.com/kedartatwawadi/GTRAC CONTACT: : kedart@stanford.edu Supplementary data are available at Bioinformatics online. © The Author 2016. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  15. Targeting histone deacetylase inhibitors for anti-malarial therapy.

    PubMed

    Andrews, Katherine T; Tran, Thanh N; Wheatley, Nicole C; Fairlie, David P

    2009-01-01

    It is now clear that histone acetylation plays key roles in regulating gene transcription in both eukaryotes and prokaryotes, the acetylated form inducing gene expression while deacetylation silences genes. Recent studies have identified roles for histone acetyltransferases (HATs) and/or histone deacetylases (HDACs) in a number of parasites including Entamoeba histolytica, Toxoplasma gondii, Schistosoma mansoni, Cryptosporidium sp., Leishmania donovani, Neospora caninum, and Plasmodium falciparum. Here we survey fairly limited efforts to date in profiling antimalarial activities of HDAC inhibitors, showing that such compounds are potent inhibitors of the growth of P. falciparum in vitro and in vivo. Most of the compounds evaluated so far have borne a zinc-binding hydroxamate group that tends to be metabolized in vivo, and thus new zinc-binding groups need to be incorporated into second generation inhibitors in order to mask the catalytic zinc in the active site of HDACs. Also the development of compounds that are selective for parasitic HDACs over mammalian HDACs is still in relative infancy and it will take some time to derive antiparasitic HDAC inhibitor compounds with minimal toxicity for the host and acceptable pharmacokinetic and pharmacodynamic profiles for human treatment. Nevertheless, results to date suggest that HDAC inhibitor development represents a promising new approach to the potential treatment of parasitic infections, including those induced by malaria protozoa, and may offer new therapeutic targets within increasingly drug-resistant malarial parasites.

  16. Competition between histone and transcription factor binding regulates the onset of transcription in zebrafish embryos

    PubMed Central

    Joseph, Shai R; Pálfy, Máté; Hilbert, Lennart; Kumar, Mukesh; Karschau, Jens; Zaburdaev, Vasily; Shevchenko, Andrej; Vastenhouw, Nadine L

    2017-01-01

    Upon fertilization, the genome of animal embryos remains transcriptionally inactive until the maternal-to-zygotic transition. At this time, the embryo takes control of its development and transcription begins. How the onset of zygotic transcription is regulated remains unclear. Here, we show that a dynamic competition for DNA binding between nucleosome-forming histones and transcription factors regulates zebrafish genome activation. Taking a quantitative approach, we found that the concentration of non-DNA-bound core histones sets the time for the onset of transcription. The reduction in nuclear histone concentration that coincides with genome activation does not affect nucleosome density on DNA, but allows transcription factors to compete successfully for DNA binding. In agreement with this, transcription factor binding is sensitive to histone levels and the concentration of transcription factors also affects the time of transcription. Our results demonstrate that the relative levels of histones and transcription factors regulate the onset of transcription in the embryo. DOI: http://dx.doi.org/10.7554/eLife.23326.001 PMID:28425915

  17. Synergistic Modification Induced Specific Recognition between Histone and TRIM24 via Fluctuation Correlation Network Analysis

    NASA Astrophysics Data System (ADS)

    Zhang, Jinmai; Luo, Huajie; Liu, Hao; Ye, Wei; Luo, Ray; Chen, Hai-Feng

    2016-04-01

    Histone modification plays a key role in gene regulation and gene expression. TRIM24 as a histone reader can recognize histone modification. However the specific recognition mechanism between TRIM24 and histone modification is unsolved. Here, systems biology method of dynamics correlation network based on molecular dynamics simulation was used to answer the question. Our network analysis shows that the dynamics correlation network of H3K23ac is distinctly different from that of wild type and other modifications. A hypothesis of “synergistic modification induced recognition” is then proposed to link histone modification and TRIM24 binding. These observations were further confirmed from community analysis of networks with mutation and network perturbation. Finally, a possible recognition pathway is also identified based on the shortest path search for H3K23ac. Significant difference of recognition pathway was found among different systems due to methylation and acetylation modifications. The analysis presented here and other studies show that the dynamic network-based analysis might be a useful general strategy to study the biology of protein post-translational modification and associated recognition.

  18. De Novo Coding Variants Are Strongly Associated with Tourette Disorder.

    PubMed

    Willsey, A Jeremy; Fernandez, Thomas V; Yu, Dongmei; King, Robert A; Dietrich, Andrea; Xing, Jinchuan; Sanders, Stephan J; Mandell, Jeffrey D; Huang, Alden Y; Richer, Petra; Smith, Louw; Dong, Shan; Samocha, Kaitlin E; Neale, Benjamin M; Coppola, Giovanni; Mathews, Carol A; Tischfield, Jay A; Scharf, Jeremiah M; State, Matthew W; Heiman, Gary A

    2017-05-03

    Whole-exome sequencing (WES) and de novo variant detection have proven a powerful approach to gene discovery in complex neurodevelopmental disorders. We have completed WES of 325 Tourette disorder trios from the Tourette International Collaborative Genetics cohort and a replication sample of 186 trios from the Tourette Syndrome Association International Consortium on Genetics (511 total). We observe strong and consistent evidence for the contribution of de novo likely gene-disrupting (LGD) variants (rate ratio [RR] 2.32, p = 0.002). Additionally, de novo damaging variants (LGD and probably damaging missense) are overrepresented in probands (RR 1.37, p = 0.003). We identify four likely risk genes with multiple de novo damaging variants in unrelated probands: WWC1 (WW and C2 domain containing 1), CELSR3 (Cadherin EGF LAG seven-pass G-type receptor 3), NIPBL (Nipped-B-like), and FN1 (fibronectin 1). Overall, we estimate that de novo damaging variants in approximately 400 genes contribute risk in 12% of clinical cases. VIDEO ABSTRACT. Copyright © 2017 Elsevier Inc. All rights reserved.

  19. Histone titration against the genome sets the DNA-to-cytoplasm threshold for the Xenopus midblastula transition

    PubMed Central

    Amodeo, Amanda A.; Jukam, David; Straight, Aaron F.; Skotheim, Jan M.

    2015-01-01

    During early development, animal embryos depend on maternally deposited RNA until zygotic genes become transcriptionally active. Before this maternal-to-zygotic transition, many species execute rapid and synchronous cell divisions without growth phases or cell cycle checkpoints. The coordinated onset of transcription, cell cycle lengthening, and cell cycle checkpoints comprise the midblastula transition (MBT). A long-standing model in the frog, Xenopus laevis, posits that MBT timing is controlled by a maternally loaded inhibitory factor that is titrated against the exponentially increasing amount of DNA. To identify MBT regulators, we developed an assay using Xenopus egg extract that recapitulates the activation of transcription only above the DNA-to-cytoplasm ratio found in embryos at the MBT. We used this system to biochemically purify factors responsible for inhibiting transcription below the threshold DNA-to-cytoplasm ratio. This unbiased approach identified histones H3 and H4 as concentration-dependent inhibitory factors. Addition or depletion of H3/H4 from the extract quantitatively shifted the amount of DNA required for transcriptional activation in vitro. Moreover, reduction of H3 protein in embryos induced premature transcriptional activation and cell cycle lengthening, and the addition of H3/H4 shortened post-MBT cell cycles. Our observations support a model for MBT regulation by DNA-based titration and suggest that depletion of free histones regulates the MBT. More broadly, our work shows how a constant concentration DNA binding molecule can effectively measure the amount of cytoplasm per genome to coordinate division, growth, and development. PMID:25713373

  20. A novel TFF2 splice variant (ΔEX2TFF2) correlates with longer overall survival time in cholangiocarcinoma

    PubMed Central

    KAMLUA, SURASEE; PATRAKITKOMJORN, SIRIPORN; JEARANAIKOON, PATCHAREE; MENHENIOTT, TREVELYAN R.; GIRAUD, ANDREW S.; LIMPAIBOON, TEMDUANG

    2012-01-01

    Trefoil factor 2 (TFF2) is a member of trefoil factor family found to be overexpressed in many cancers including cholangiocarcinoma (CCA). The majority of studies have focused on wild-type TFF2 (wtTFF2) expression, but information regarding alternative splicing variants of TFF2 mRNA has not been reported. In this study, we aimed to identify and quantify a novel TFF2 splice variant in cholangiocarcinoma (CCA). Seventy-eight tumors and 15 normal adjacent tissues were quantified for the expression of the TFF2 splice variant relative to wild-type (wt) TFF2 mRNA using quantitative reverse transcriptase polymerase chain reaction (QRT-PCR). The ratio of TFF2 splice variant against wtTFF2 was analyzed for associations with clinical parameters. We found a novel TFF2 splice variant, exon 2 skipping (ΔEX2TFF2), resulting in a stop codon (TAG) at exon 1. The ΔEX2TFF2/wtTFF2 ratio in tumors was significantly higher than in normal tissue (P<0.01). Interestingly, high ΔEX2TFF2/wtTFF2 ratio was significantly associated with good prognosis compared with low ratio (P=0.017). In contrast, the presence of wtTFF2 protein was associated with poor survival of CCA patients (P=0.034). This is the first report of a trefoil factor splice variant and its potential application as a prognostic biomarker in CCA. PMID:22159958

  1. Study designs for identification of rare disease variants in complex diseases: the utility of family-based designs.

    PubMed

    Ionita-Laza, Iuliana; Ottman, Ruth

    2011-11-01

    The recent progress in sequencing technologies makes possible large-scale medical sequencing efforts to assess the importance of rare variants in complex diseases. The results of such efforts depend heavily on the use of efficient study designs and analytical methods. We introduce here a unified framework for association testing of rare variants in family-based designs or designs based on unselected affected individuals. This framework allows us to quantify the enrichment in rare disease variants in families containing multiple affected individuals and to investigate the optimal design of studies aiming to identify rare disease variants in complex traits. We show that for many complex diseases with small values for the overall sibling recurrence risk ratio, such as Alzheimer's disease and most cancers, sequencing affected individuals with a positive family history of the disease can be extremely advantageous for identifying rare disease variants. In contrast, for complex diseases with large values of the sibling recurrence risk ratio, sequencing unselected affected individuals may be preferable.

  2. Mutation of A677 in histone methyltransferase EZH2 in human B-cell lymphoma promotes hypertrimethylation of histone H3 on lysine 27 (H3K27)

    PubMed Central

    McCabe, Michael T.; Graves, Alan P.; Ganji, Gopinath; Diaz, Elsie; Halsey, Wendy S.; Jiang, Yong; Smitheman, Kimberly N.; Ott, Heidi M.; Pappalardi, Melissa B.; Allen, Kimberly E.; Chen, Stephanie B.; Della Pietra, Anthony; Dul, Edward; Hughes, Ashley M.; Gilbert, Seth A.; Thrall, Sara H.; Tummino, Peter J.; Kruger, Ryan G.; Brandt, Martin; Schwartz, Benjamin; Creasy, Caretha L.

    2012-01-01

    Trimethylation of histone H3 on lysine 27 (H3K27me3) is a repressive posttranslational modification mediated by the histone methyltransferase EZH2. EZH2 is a component of the polycomb repressive complex 2 and is overexpressed in many cancers. In B-cell lymphomas, its substrate preference is frequently altered through somatic mutation of the EZH2 Y641 residue. Herein, we identify mutation of EZH2 A677 to a glycine (A677G) among lymphoma cell lines and primary tumor specimens. Similar to Y641 mutant cell lines, an A677G mutant cell line revealed aberrantly elevated H3K27me3 and decreased monomethylated H3K27 (H3K27me1) and dimethylated H3K27 (H3K27me2). A677G EZH2 possessed catalytic activity with a substrate specificity that was distinct from those of both WT EZH2 and Y641 mutants. Whereas WT EZH2 displayed a preference for substrates with less methylation [unmethylated H3K27 (H3K27me0):me1:me2 kcat/Km ratio = 9:6:1] and Y641 mutants preferred substrates with greater methylation (H3K27me0:me1:me2 kcat/Km ratio = 1:2:13), the A677G EZH2 demonstrated nearly equal efficiency for all three substrates (H3K27me0:me1:me2 kcat/Km ratio = 1.1:0.6:1). When transiently expressed in cells, A677G EZH2, but not WT EZH2, increased global H3K27me3 and decreased H3K27me2. Structural modeling of WT and mutant EZH2 suggested that the A677G mutation acquires the ability to methylate H3K27me2 through enlargement of the lysine tunnel while preserving activity with H3K27me0/me1 substrates through retention of the Y641 residue that is crucial for orientation of these smaller substrates. This mutation highlights the interplay between Y641 and A677 residues in the substrate specificity of EZH2 and identifies another lymphoma patient population that harbors an activating mutation of EZH2. PMID:22323599

  3. Mutation of A677 in histone methyltransferase EZH2 in human B-cell lymphoma promotes hypertrimethylation of histone H3 on lysine 27 (H3K27).

    PubMed

    McCabe, Michael T; Graves, Alan P; Ganji, Gopinath; Diaz, Elsie; Halsey, Wendy S; Jiang, Yong; Smitheman, Kimberly N; Ott, Heidi M; Pappalardi, Melissa B; Allen, Kimberly E; Chen, Stephanie B; Della Pietra, Anthony; Dul, Edward; Hughes, Ashley M; Gilbert, Seth A; Thrall, Sara H; Tummino, Peter J; Kruger, Ryan G; Brandt, Martin; Schwartz, Benjamin; Creasy, Caretha L

    2012-02-21

    Trimethylation of histone H3 on lysine 27 (H3K27me3) is a repressive posttranslational modification mediated by the histone methyltransferase EZH2. EZH2 is a component of the polycomb repressive complex 2 and is overexpressed in many cancers. In B-cell lymphomas, its substrate preference is frequently altered through somatic mutation of the EZH2 Y641 residue. Herein, we identify mutation of EZH2 A677 to a glycine (A677G) among lymphoma cell lines and primary tumor specimens. Similar to Y641 mutant cell lines, an A677G mutant cell line revealed aberrantly elevated H3K27me3 and decreased monomethylated H3K27 (H3K27me1) and dimethylated H3K27 (H3K27me2). A677G EZH2 possessed catalytic activity with a substrate specificity that was distinct from those of both WT EZH2 and Y641 mutants. Whereas WT EZH2 displayed a preference for substrates with less methylation [unmethylated H3K27 (H3K27me0):me1:me2 k(cat)/K(m) ratio = 9:6:1] and Y641 mutants preferred substrates with greater methylation (H3K27me0:me1:me2 k(cat)/K(m) ratio = 1:2:13), the A677G EZH2 demonstrated nearly equal efficiency for all three substrates (H3K27me0:me1:me2 k(cat)/K(m) ratio = 1.1:0.6:1). When transiently expressed in cells, A677G EZH2, but not WT EZH2, increased global H3K27me3 and decreased H3K27me2. Structural modeling of WT and mutant EZH2 suggested that the A677G mutation acquires the ability to methylate H3K27me2 through enlargement of the lysine tunnel while preserving activity with H3K27me0/me1 substrates through retention of the Y641 residue that is crucial for orientation of these smaller substrates. This mutation highlights the interplay between Y641 and A677 residues in the substrate specificity of EZH2 and identifies another lymphoma patient population that harbors an activating mutation of EZH2.

  4. Targeting histone deacetylases in endometrial cancer: a paradigm-shifting therapeutic strategy?

    PubMed

    Garmpis, N; Damaskos, C; Garmpi, A; Spartalis, E; Kalampokas, E; Kalampokas, T; Margonis, G-A; Schizas, D; Andreatos, N; Angelou, A; Lavaris, A; Athanasiou, A; Apostolou, K G; Spartalis, M; Damaskou, Z; Daskalopoulou, A; Diamantis, E; Tsivelekas, K; Alavanos, A; Valsami, S; Moschos, M M; Sampani, A; Nonni, A; Antoniou, E A; Mantas, D; Tsourouflis, G; Markatos, K; Kontzoglou, K; Perrea, D; Nikiteas, N; Kostakis, A; Dimitroulis, D

    2018-02-01

    Endometrial cancer is increasingly prevalent in western societies and affects mainly postmenopausal women; notably incidence rates have been rising by 1.9% per year on average since 2005. Although the early-stage endometrial cancer can be effectively managed with surgery, more advanced stages of the disease require multimodality treatment with varying results. In recent years, endometrial cancer has been extensively studied at the molecular level in an attempt to develop effective therapies. Recently, a family of compounds that alter epigenetic expression, namely histone deacetylase inhibitors, have shown promise as possible therapeutic agents in endometrial cancer. The present review aims to discuss the therapeutic potential of these agents. This literature review was performed using the MEDLINE database; the search terms histone, deacetylase, inhibitors, endometrial, targeted therapies for endometrial cancer were employed to identify relevant studies. We only reviewed English language publications and also considered studies that were not entirely focused on endometrial cancer. Ultimately, sixty-four articles published until January 2018 were incorporated into our review. Studies in cell cultures have demonstrated that histone deacetylase inhibitors exert their antineoplastic activity by promoting expression of p21WAF1 and p27KIP1, cyclin-dependent kinase inhibitors, that have important roles in cell cycle regulation; importantly, the transcription of specific genes (e.g., E-cadherin, PTEN) that are commonly silenced in endometrial cancer is also enhanced. In addition to these abstracts effects, novel compounds with histone deacetylase inhibitor activity (e.g., scriptaid, trichostatin, entinostat) have also demonstrated significant antineoplastic activity both in vitro and in vivo, by liming tumor growth, inducing apoptosis, inhibiting angiogenesis and potentiating the effects of chemotherapy. The applications of histone deacetylase inhibitors in endometrial

  5. Inhibition of histone acetylation by curcumin reduces alcohol-induced fetal cardiac apoptosis.

    PubMed

    Yan, Xiaochen; Pan, Bo; Lv, Tiewei; Liu, Lingjuan; Zhu, Jing; Shen, Wen; Huang, Xupei; Tian, Jie

    2017-01-05

    Prenatal alcohol exposure may cause cardiac development defects, however, the underlying mechanisms are not yet clear. In the present study we have investigated the roles of histone modification by curcumin on alcohol induced fetal cardiac abnormalities during the development. Q-PCR and Western blot results showed that alcohol exposure increased gene and active forms of caspase-3 and caspase-8, while decreased gene and protein of bcl-2. ChIP assay results showed that, alcohol exposure increased the acetylation of histone H3K9 near the promoter region of caspase-3 and caspase-8, and decreased the acetylation of histone H3K9 near the promoter region of bcl-2. TUNEL assay data revealed that alcohol exposure increased the apoptosis levels in the embryonic hearts. In vitro experiments demonstrated that curcumin treatment could reverse the up-regulation of active forms of caspase-3 and caspase-8, and down-regulation of bcl-2 induced by alcohol treatment. In addition, curcumin also corrected the high level of histone H3K9 acetylation induced by alcohol. Moreover, the high apoptosis level induced by alcohol was reversed after curcumin treatment in cardiac cells. These findings indicate that histone modification may play an important role in mediating alcohol induced fetal cardiac apoptosis, possibly through the up-regulation of H3K9 acetylation near the promoter regions of apoptotic genes. Curcumin treatment may correct alcohol-mediated fetal cardiac apoptosis, suggesting that curcumin may play a protective role against alcohol abuse caused cardiac damage during pregnancy.

  6. Boric acid inhibits embryonic histone deacetylases: A suggested mechanism to explain boric acid-related teratogenicity

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Di Renzo, Francesca; Cappelletti, Graziella; Broccia, Maria L.

    2007-04-15

    Histone deacetylases (HDAC) control gene expression by changing histonic as well as non histonic protein conformation. HDAC inhibitors (HDACi) are considered to be among the most promising drugs for epigenetic treatment for cancer. Recently a strict relationship between histone hyperacetylation in specific tissues of mouse embryos exposed to two HDACi (valproic acid and trichostatin A) and specific axial skeleton malformations has been demonstrated. The aim of this study is to verify if boric acid (BA), that induces in rodents malformations similar to those valproic acid and trichostatin A-related, acts through similar mechanisms: HDAC inhibition and histone hyperacetylation. Pregnant mice weremore » treated intraperitoneally with a teratogenic dose of BA (1000 mg/kg, day 8 of gestation). Western blot analysis and immunostaining were performed with anti hyperacetylated histone 4 (H4) antibody on embryos explanted 1, 3 or 4 h after treatment and revealed H4 hyperacetylation at the level of somites. HDAC enzyme assay was performed on embryonic nuclear extracts. A significant HDAC inhibition activity (compatible with a mixed type partial inhibition mechanism) was evident with BA. Kinetic analyses indicate that BA modifies substrate affinity by a factor {alpha} = 0.51 and maximum velocity by a factor {beta} = 0.70. This work provides the first evidence for HDAC inhibition by BA and suggests such a molecular mechanism for the induction of BA-related malformations.« less

  7. Involvement of histone methylation in macrophage apoptosis and unstable plaque formation in methionine-induced hyperhomocysteinemic ApoE-/- mice.

    PubMed

    Cong, Guangzhi; Yan, Ru; Huang, Hui; Wang, Kai; Yan, Ning; Jin, Ping; Zhang, Na; Hou, Jianjun; Chen, Dapeng; Jia, Shaobin

    2017-03-15

    Hyperhomocysteinemia (Hhcy) is an independent risk factor of atherosclerosis and promotes unstable plaque formation. Epigenetic mechanisms play an important role in the pathogenesis of atherosclerosis induced by Hhcy. However, the exact mechanism is still undefined. Lesional apoptotic cells and necrotic core formation contribute greatly to the progression of plaque. The present study sought to determine whether modification of histone methylation is involved in macrophage apoptosis and unstable plaque formation in the condition of Hhcy. The unstable plaque formation, lesional apoptotic cells and status of histone methylation were monitored in the aortas of Hhcy ApoE -/- mice induced by a high-methionine (HM) diet for 20weeks. Involvement of histone methylation in macrophage apoptosis and foam cell formation were assessed in macrophage Raw 264.7 cells after being challenged with homocysteine alone or in combination with the histone methylation inhibitor BIX 01294. The unstable plaque formation and lesion apoptotic cells are increased in ApoE -/ - mice supplemented with high-methionine (HM), accompanied with a decreased expression of histone H3 lysine 9 dimethylation. Hhcy increases the apoptosis of macrophages and inhibits the histone H3 lysine 9 dimethylation, as well as the expression of histone methyltransferase G9a in vitro. Inhibition of histone methylation by BIX01294 enhances macrophage apoptosis and foam cell formation in vitro. Our data suggest that Hhcy promotes the progression of atherosclerosis via macrophage apoptosis. Histone methylation might be involved in macrophage apoptosis and unstable plaque formation in methionine induced hyperhomocysteinemic ApoE -/- mice. Copyright © 2017 Elsevier Inc. All rights reserved.

  8. Molecular insights into the recognition of N-terminal histone modifications by the BRPF1 bromodomain

    PubMed Central

    Poplawski, Amanda; Hu, Kaifeng; Lee, Woonghee; Natesan, Senthil; Peng, Danni; Carlson, Samuel; Shi, Xiaobing; Balaz, Stefan; Markley, John L.; Glass, Karen C.

    2014-01-01

    The monocytic leukemic zinc-finger (MOZ) histone acetyltransferase (HAT) acetylates free histones H3, H4, H2A, and H2B in vitro and is associated with up-regulation of gene transcription. The MOZ HAT functions as a quaternary complex with the bromodomain-PHD finger protein 1 (BRPF1), inhibitor of growth 5 (ING5), and hEaf6 subunits. BRPF1 links the MOZ catalytic subunit to the ING5 and hEaf6 subunits, thereby promoting MOZ HAT activity. Human BRPF1 contains multiple effector domains with known roles in gene transcription, and chromatin binding and remodeling. However, the biological function of the BRPF1 bromodomain remains unknown. Our findings reveal novel interactions of the BRPF1 bromodomain with multiple acetyllysine residues on the N-terminus of histones, and show it preferentially selects for H2AK5ac, H4K12ac and H3K14ac. We used chemical shift perturbation data from NMR titration experiments to map the BRPF1 bromodomain ligand binding pocket and identified key residues responsible for coordination of the post-translationally modified histones. Extensive molecular dynamics simulations were used to generate structural models of bromodomain-histone ligand complexes, to analyze H-bonding and other interactions, and to calculate the binding free energies. Our results outline the molecular mechanism driving binding specificity of the BRPF1 bromodomain for discrete acetyllysine residues on the N-terminal histone tails. Together these data provide insights on how histone recognition by the bromodomain directs the biological function of BRPF1, ultimately targeting the MOZ HAT complex to chromatin substrates. PMID:24333487

  9. Improved Therapeutic Effect against Leukemia by a Combination of the Histone Methyltransferase Inhibitor Chaetocin and the Histone Deacetylase Inhibitor Trichostatin A

    PubMed Central

    Tran, Huong Thi Thanh; Kim, Hee Nam; Lee, Il-Kwon; Nguyen-Pham, Thanh-Nhan; Ahn, Jae-Sook; Kim, Yeo-Kyeoung; Lee, Je-Jung; Park, Kyeong-Soo; Kook, Hoon

    2013-01-01

    SUV39H1 is a histone 3 lysine 9 (H3K9)-specific methyltransferase that is important for heterochromatin formation and the regulation of gene expression. Chaetocin specifically inhibits SUV39H1, resulted in H3K9 methylation reduction as well as reactivation of silenced genes in cancer cells. Histone deacetylase (HDAC) inhibitors inhibit deacetylases and accumulate high levels of acetylation lead to cell cycle arrest and apoptosis. In this study, we demonstrated that treatment with chaetocin enhanced apoptosis in human leukemia HL60, KG1, Kasumi, K562, and THP1 cells. In addition, chaetocin induced the expression of cyclin-dependent kinase inhibitor 2B (p15), E-cadherin (CDH1) and frizzled family receptor 9 (FZD9) through depletion of SUV39H1 and reduced H3K9 methylation in their promoters. Co-treatment with chaetocin and HDAC inhibitor trichostatin A (TSA) dramatically increased apoptosis and produced greater activation of genes. Furthermore, this combined treatment significantly increased loss of SUV39H1 and reduced histone H3K9 trimethylation responses accompanied by increased acetylation. Importantly, co-treatment with chaetocin and TSA produced potent antileukemic effects in leukemia cells derived from patients. These in vitro findings suggest that combination therapy with SUV39H1 and HDAC inhibitors may be of potential value in the treatment of leukemia. PMID:23400519

  10. Role of the histone deacetylase complex in acute promyelocytic leukaemia.

    PubMed

    Lin, R J; Nagy, L; Inoue, S; Shao, W; Miller, W H; Evans, R M

    1998-02-19

    Non-liganded retinoic acid receptors (RARs) repress transcription of target genes by recruiting the histone deacetylase complex through a class of silencing mediators termed SMRT or N-CoR. Mutant forms of RARalpha, created by chromosomal translocations with either the PML (for promyelocytic leukaemia) or the PLZF (for promyelocytic leukaemia zinc finger) locus, are oncogenic and result in human acute promyelocytic leukaemia (APL). PML-RARalpha APL patients achieve complete remission following treatments with pharmacological doses of retinoic acids (RA); in contrast, PLZF-RARalpha patients respond very poorly, if at all. Here we report that the association of these two chimaeric receptors with the histone deacetylase (HDAC) complex helps to determine both the development of APL and the ability of patients to respond to retinoids. Consistent with these observations, inhibitors of histone deacetylase dramatically potentiate retinoid-induced differentiation of RA-sensitive, and restore retinoid responses of RA-resistant, APL cell lines. Our findings suggest that oncogenic RARs mediate leukaemogenesis through aberrant chromatin acetylation, and that pharmacological manipulation of nuclear receptor co-factors may be a useful approach in the treatment of human disease.

  11. Evolution of histone 2A for chromatin compaction in eukaryotes

    PubMed Central

    Macadangdang, Benjamin R; Oberai, Amit; Spektor, Tanya; Campos, Oscar A; Sheng, Fang; Carey, Michael F; Vogelauer, Maria; Kurdistani, Siavash K

    2014-01-01

    During eukaryotic evolution, genome size has increased disproportionately to nuclear volume, necessitating greater degrees of chromatin compaction in higher eukaryotes, which have evolved several mechanisms for genome compaction. However, it is unknown whether histones themselves have evolved to regulate chromatin compaction. Analysis of histone sequences from 160 eukaryotes revealed that the H2A N-terminus has systematically acquired arginines as genomes expanded. Insertion of arginines into their evolutionarily conserved position in H2A of a small-genome organism increased linear compaction by as much as 40%, while their absence markedly diminished compaction in cells with large genomes. This effect was recapitulated in vitro with nucleosomal arrays using unmodified histones, indicating that the H2A N-terminus directly modulates the chromatin fiber likely through intra- and inter-nucleosomal arginine–DNA contacts to enable tighter nucleosomal packing. Our findings reveal a novel evolutionary mechanism for regulation of chromatin compaction and may explain the frequent mutations of the H2A N-terminus in cancer. DOI: http://dx.doi.org/10.7554/eLife.02792.001 PMID:24939988

  12. Inferring coarse-grain histone-DNA interaction potentials from high-resolution structures of the nucleosome

    NASA Astrophysics Data System (ADS)

    Meyer, Sam; Everaers, Ralf

    2015-02-01

    The histone-DNA interaction in the nucleosome is a fundamental mechanism of genomic compaction and regulation, which remains largely unknown despite increasing structural knowledge of the complex. In this paper, we propose a framework for the extraction of a nanoscale histone-DNA force-field from a collection of high-resolution structures, which may be adapted to a larger class of protein-DNA complexes. We applied the procedure to a large crystallographic database extended by snapshots from molecular dynamics simulations. The comparison of the structural models first shows that, at histone-DNA contact sites, the DNA base-pairs are shifted outwards locally, consistent with locally repulsive forces exerted by the histones. The second step shows that the various force profiles of the structures under analysis derive locally from a unique, sequence-independent, quadratic repulsive force-field, while the sequence preferences are entirely due to internal DNA mechanics. We have thus obtained the first knowledge-derived nanoscale interaction potential for histone-DNA in the nucleosome. The conformations obtained by relaxation of nucleosomal DNA with high-affinity sequences in this potential accurately reproduce the experimental values of binding preferences. Finally we address the more generic binding mechanisms relevant to the 80% genomic sequences incorporated in nucleosomes, by computing the conformation of nucleosomal DNA with sequence-averaged properties. This conformation differs from those found in crystals, and the analysis suggests that repulsive histone forces are related to local stretch tension in nucleosomal DNA, mostly between adjacent contact points. This tension could play a role in the stability of the complex.

  13. Whole-exome sequencing identifies common and rare variant metabolic QTLs in a Middle Eastern population.

    PubMed

    Yousri, Noha A; Fakhro, Khalid A; Robay, Amal; Rodriguez-Flores, Juan L; Mohney, Robert P; Zeriri, Hassina; Odeh, Tala; Kader, Sara Abdul; Aldous, Eman K; Thareja, Gaurav; Kumar, Manish; Al-Shakaki, Alya; Chidiac, Omar M; Mohamoud, Yasmin A; Mezey, Jason G; Malek, Joel A; Crystal, Ronald G; Suhre, Karsten

    2018-01-23

    Metabolomics-genome-wide association studies (mGWAS) have uncovered many metabolic quantitative trait loci (mQTLs) influencing human metabolic individuality, though predominantly in European cohorts. By combining whole-exome sequencing with a high-resolution metabolomics profiling for a highly consanguineous Middle Eastern population, we discover 21 common variant and 12 functional rare variant mQTLs, of which 45% are novel altogether. We fine-map 10 common variant mQTLs to new metabolite ratio associations, and 11 common variant mQTLs to putative protein-altering variants. This is the first work to report common and rare variant mQTLs linked to diseases and/or pharmacological targets in a consanguineous Arab cohort, with wide implications for precision medicine in the Middle East.

  14. FLASH is essential during early embryogenesis and cooperates with p73 to regulate histone gene transcription.

    PubMed

    De Cola, A; Bongiorno-Borbone, L; Bianchi, E; Barcaroli, D; Carletti, E; Knight, R A; Di Ilio, C; Melino, G; Sette, C; De Laurenzi, V

    2012-02-02

    Replication-dependent histone gene expression is a fundamental process occurring in S-phase under the control of the cyclin-E/CDK2 complex. This process is regulated by a number of proteins, including Flice-Associated Huge Protein (FLASH) (CASP8AP2), concentrated in specific nuclear organelles known as HLBs. FLASH regulates both histone gene transcription and mRNA maturation, and its downregulation in vitro results in the depletion of the histone pull and cell-cycle arrest in S-phase. Here we show that the transcription factor p73 binds to FLASH and is part of the complex that regulates histone gene transcription. Moreover, we created a novel gene trap to disrupt FLASH in mice, and we show that homozygous deletion of FLASH results in early embryonic lethality, owing to arrest of FLASH(-/-) embryos at the morula stage. These results indicate that FLASH is an essential, non-redundant regulator of histone transcription and cell cycle during embryogenesis.

  15. The impact of solubility and electrostatics on fibril formation by the H3 and H4 histones

    PubMed Central

    Topping, Traci B; Gloss, Lisa M

    2011-01-01

    The goal of this study was to examine fibril formation by the heterodimeric eukaryotic histones (H2A-H2B and H3-H4) and homodimeric archaeal histones (hMfB and hPyA1). The histone fold dimerization motif is an obligatorily domain-swapped structure comprised of two fused helix:β-loop:helix motifs. Domain swapping has been proposed as a mechanism for the evolution of protein oligomers as well as a means to form precursors in the formation of amyloid-like fibrils. Despite sharing a common fold, the eukaryotic histones of the core nucleosome and archaeal histones fold by kinetic mechanisms of differing complexity with transient population of partially folded monomeric and/or dimeric species. No relationship was apparent between fibrillation propensity and equilibrium stability or population of kinetic intermediates. Only H3 and H4, as isolated monomers and as a heterodimer, readily formed fibrils at room temperature, and this propensity correlates with the significantly lower solubility of these polypeptides. The fibrils were characterized by ThT fluorescence, FTIR, and far-UV CD spectroscopies and electron microscopy. The helical histone fold comprises the protease-resistant core of the fibrils, with little or no protease protection of the poorly structured N-terminal tails. The highly charged tails inhibit fibrillation through electrostatic repulsion. Kinetic studies indicate that H3 and H4 form a co-fibril, with simultaneous incorporation of both histones. The potential impact of H3 and H4 fibrillation on the cytotoxicity of extracellular histones and α-synuclein-mediated neurotoxicity and fibrillation is considered. PMID:21953551

  16. Epigenetic Regulation of the NR4A Orphan Nuclear Receptor NOR1 By Histone Acetylation

    PubMed Central

    Zhao, Yue; Nomiyama, Takashi; Findeisen, Hannes M.; Qing, Hua; Aono, Jun; Jones, Karrie L.; Heywood, Elizabeth B.; Bruemmer, Dennis

    2014-01-01

    The nuclear receptor NOR1 is an immediate-early response gene implicated in the transcriptional control of proliferation. Since the expression level of NOR1 is rapidly induced through cAMP response element binding (CREB) protein-dependent promoter activation, we investigated the contribution of histone acetylation to this transient induction. We demonstrate that NOR1 transcription is induced by histone deacetylase (HDAC) inhibition and by depletion of HDAC1 and HDAC3. HDAC inhibition activated the NOR1 promoter, increased histone acetylation and augmented the recruitment of phosphorylated CREB to the promoter. Furthermore, HDAC inhibition increased Ser133 phosphorylation of CREB and augmented NOR1 protein stability. These data outline previously unrecognized mechanisms of NOR1 regulation and illustrate a key role for histone acetylation in the rapid induction of NOR1. PMID:25451221

  17. Glutamine methylation in histone H2A is an RNA-polymerase-I-dedicated modification

    NASA Astrophysics Data System (ADS)

    Tessarz, Peter; Santos-Rosa, Helena; Robson, Sam C.; Sylvestersen, Kathrine B.; Nelson, Christopher J.; Nielsen, Michael L.; Kouzarides, Tony

    2014-01-01

    Nucleosomes are decorated with numerous post-translational modifications capable of influencing many DNA processes. Here we describe a new class of histone modification, methylation of glutamine, occurring on yeast histone H2A at position 105 (Q105) and human H2A at Q104. We identify Nop1 as the methyltransferase in yeast and demonstrate that fibrillarin is the orthologue enzyme in human cells. Glutamine methylation of H2A is restricted to the nucleolus. Global analysis in yeast, using an H2AQ105me-specific antibody, shows that this modification is exclusively enriched over the 35S ribosomal DNA transcriptional unit. We show that the Q105 residue is part of the binding site for the histone chaperone FACT (facilitator of chromatin transcription) complex. Methylation of Q105 or its substitution to alanine disrupts binding to FACT in vitro. A yeast strain mutated at Q105 shows reduced histone incorporation and increased transcription at the ribosomal DNA locus. These features are phenocopied by mutations in FACT complex components. Together these data identify glutamine methylation of H2A as the first histone epigenetic mark dedicated to a specific RNA polymerase and define its function as a regulator of FACT interaction with nucleosomes.

  18. The conformation of the histone H3 tail inhibits association of the BPTF PHD finger with the nucleosome

    PubMed Central

    Morrison, Emma A; Bowerman, Samuel; Sylvers, Kelli L

    2018-01-01

    Histone tails harbor a plethora of post-translational modifications that direct the function of chromatin regulators, which recognize them through effector domains. Effector domain/histone interactions have been broadly studied, but largely using peptide fragments of histone tails. Here, we extend these studies into the nucleosome context and find that the conformation adopted by the histone H3 tails is inhibitory to BPTF PHD finger binding. Using NMR spectroscopy and MD simulations, we show that the H3 tails interact robustly but dynamically with nucleosomal DNA, substantially reducing PHD finger association. Altering the electrostatics of the H3 tail via modification or mutation increases accessibility to the PHD finger, indicating that PTM crosstalk can regulate effector domain binding by altering nucleosome conformation. Together, our results demonstrate that the nucleosome context has a dramatic impact on signaling events at the histone tails, and highlights the importance of studying histone binding in the context of the nucleosome. PMID:29648537

  19. Genome-wide association study reveals sex-specific selection signals against autosomal nucleotide variants.

    PubMed

    Ryu, Dongchan; Ryu, Jihye; Lee, Chaeyoung

    2016-05-01

    A genome-wide association study (GWAS) was conducted to examine genetic associations of common autosomal nucleotide variants with sex in a Korean population with 4183 males and 4659 females. Nine genetic association signals were identified in four intragenic and five intergenic regions (P<5 × 10(-8)). Further analysis with an independent data set confirmed two intragenic association signals in the genes encoding protein phosphatase 1, regulatory subunit 12B (PPP1R12B, intron 12, rs1819043) and dynein, axonemal, heavy chain 11 (DNAH11, intron 61, rs10255013), which are directly involved in the reproductive system. This study revealed autosomal genetic variants associated with sex ratio by GWAS for the first time. This implies that genetic variants in proximity to the association signals may influence sex-specific selection and contribute to sex ratio variation. Further studies are required to reveal the mechanisms underlying sex-specific selection.

  20. Human borna disease virus infection impacts host proteome and histone lysine acetylation in human oligodendroglia cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, Xia; Department of Neurology, The Fifth People's Hospital of Shanghai, School of Medicine, Fudan University, Shanghai, 200240; Zhao, Libo

    2014-09-15

    Background: Borna disease virus (BDV) replicates in the nucleus and establishes persistent infections in mammalian hosts. A human BDV strain was used to address the first time, how BDV infection impacts the proteome and histone lysine acetylation (Kac) of human oligodendroglial (OL) cells, thus allowing a better understanding of infection-driven pathophysiology in vitro. Methods: Proteome and histone lysine acetylation were profiled through stable isotope labeling for cell culture (SILAC)-based quantitative proteomics. The quantifiable proteome was annotated using bioinformatics. Histone acetylation changes were validated by biochemistry assays. Results: Post BDV infection, 4383 quantifiable differential proteins were identified and functionally annotated tomore » metabolism pathways, immune response, DNA replication, DNA repair, and transcriptional regulation. Sixteen of the thirty identified Kac sites in core histones presented altered acetylation levels post infection. Conclusions: BDV infection using a human strain impacted the whole proteome and histone lysine acetylation in OL cells. - Highlights: • A human strain of BDV (BDV Hu-H1) was used to infect human oligodendroglial cells (OL cells). • This study is the first to reveal the host proteomic and histone Kac profiles in BDV-infected OL cells. • BDV infection affected the expression of many transcription factors and several HATs and HDACs.« less

  1. KDM5A demethylase: Erasing histone modifications to promote repair of DNA breaks

    PubMed Central

    2017-01-01

    Repairing DNA breaks within the complexity of the cell chromatin is challenging. In this issue, Gong et al. (2017. J. Cell Biol. https://doi.org/10.1083/jcb.201611135) identify the histone demethylase KDM5A as a critical editor of the cells’ “histone code” that is required to recruit DNA repair complexes to DNA breaks. PMID:28572116

  2. Identifying and Overcoming Mechanisms of Histone Deacetylase Inhibitor Resistance | Center for Cancer Research

    Cancer.gov

    Histone deacetylase inhibitors (HDIs), such as romidepsin, can inhibit the growth of cancer cells and induce their apoptosis by increasing histone acetylation and altering gene expression. Romidepsin has even been approved by the Food and Drug Administration for the treatment of two types of non-Hodgkin lymphoma, cutaneous T cell lymphoma (CTCL) and peripheral T cell lymphoma.

  3. Interferon regulatory factor 1 and histone H4 acetylation in systemic lupus erythematosus

    PubMed Central

    Leung, Yiu Tak; Shi, Lihua; Maurer, Kelly; Song, Li; Zhang, Zhe; Petri, Michelle; Sullivan, Kathleen E

    2015-01-01

    Histone acetylation modulates gene expression and has been described as increased in systemic lupus erythematosus (SLE). We investigated interferon regulatory factor 1 (IRF1) interactions that influence H4 acetylation (H4ac) in SLE. Intracellular flow cytometry for H4 acetylated lysine (K) 5, K8, K12, and K16 was performed. Histone acetylation was defined in monocytes and T cells from controls and SLE patients. RNA-Seq studies were performed on monocytes to look for an imbalance in histone acetyltransferases and histone deacetylase enzyme expression. Expression levels were validated using real-time quantitative RT-PCR. IRF1 induction of H4ac was evaluated using D54MG cells overexpressing IRF1. IRF1 protein interactions were studied using co-immunoprecipitation assays. IRF1-dependent recruitment of histone acetyltransferases to target genes was examined by ChIP assays using p300 antibody. Flow cytometry data showed significantly increased H4K5, H4K8, H4K12, and H4K16 acetylation in SLE monocytes. HDAC3 and HDAC11 gene expression were decreased in SLE monocytes. PCAF showed significantly higher gene expression in SLE than controls. IRF1-overexpressing D54MG cells were associated with significantly increased H4K5, H4K8, and H4K12 acetylation compared to vector-control D54MG cells both globally and at specific target genes. Co-immunoprecipitation studies using D54MG cells revealed IRF1 protein-protein interactions with PCAF, P300, CBP, GCN5, ATF2, and HDAC3. ChIP experiments demonstrated increased p300 recruitment to known IRF1 targets in D54MG cells overexpressing IRF1. In contrast, p300 binding to IRF1 targets decreased in D54MG cells with IRF1 knockdown. SLE appears to be associated with an imbalance in histone acetyltransferases and histone deacetylase enzymes favoring pathologic H4 acetylation. Furthermore, IRF1 directly interacts with chromatin modifying enzymes, supporting a model where recruitment to specific target genes is mediated in part by IRF1. PMID

  4. Pathological histone acetylation in Parkinson's disease: Neuroprotection and inhibition of microglial activation through SIRT 2 inhibition.

    PubMed

    Harrison, Ian F; Smith, Andrew D; Dexter, David T

    2018-02-14

    Parkinson's disease (PD) is associated with degeneration of nigrostriatal neurons due to intracytoplasmic inclusions composed predominantly of a synaptic protein called α-synuclein. Accumulations of α-synuclein are thought to 'mask' acetylation sites on histone proteins, inhibiting the action of histone acetyltransferase (HAT) enzymes in their equilibrium with histone deacetylases (HDACs), thus deregulating the dynamic control of gene transcription. It is therefore hypothesised that the misbalance in the actions of HATs/HDACs in neurodegeneration can be rectified with the use of HDAC inhibitors, limiting the deregulation of transcription and aiding neuronal homeostasis and neuroprotection in disorders such as PD. Here we quantify histone acetylation in the Substantia Nigra pars compacta (SNpc) in the brains of control, early and late stage PD cases to determine if histone acetylation is a function of disease progression. PD development is associated with Braak-dependent increases in histone acetylation. Concurrently, we show that as expected disease progression is associated with reduced markers of dopaminergic neurons and increased markers of activated microglia. We go on to demonstrate that in vitro, degenerating dopaminergic neurons exhibit histone hypoacetylation whereas activated microglia exhibit histone hyperacetylation. This suggests that the disease-dependent increase in histone acetylation observed in human PD cases is likely a combination of the contributions of both degenerating dopaminergic neurons and infiltrating activated microglia. The HDAC SIRT 2 has become increasingly implicated as a novel target for mediation of neuroprotection in PD: the neuronal and microglial specific effects of its inhibition however remain unclear. We demonstrate that SIRT 2 expression in the SNpc of PD brains remains relatively unchanged from controls and that SIRT 2 inhibition, via AGK2 treatment of neuronal and microglial cultures, results in neuroprotection of

  5. [Change in histone proteins in rat liver chromatin during exposure of the animal to functional stress].

    PubMed

    Panin, L E; Svechnikova, I G; Maianskaia, N N

    1996-01-01

    Pattern of rat liver histones at intensive physical exercises with preliminary injection of lysosomotropic drugs was studied by method of electrophoresis in PAAG. Elevation of the acetylated forms of histone H4 was revealed. The increased proteolysis of lysine-rich histones (H1, H2A, H2B) was shown in swimming rats previously stimulated by prodigiosan. The possible role of lysosomal proteinases of liver cells in mechanism of chromatine activation is discussed.

  6. A genome-wide survey of CD4+ lymphocyte regulatory genetic variants identifies novel asthma genes

    PubMed Central

    Sharma, Sunita; Zhou, Xiaobo; Thibault, Derek M.; Himes, Blanca E.; Liu, Andy; Szefler, Stanley J.; Strunk, Robert; Castro, Mario; Hansel, Nadia N.; Diette, Gregory B.; Vonakis, Becky M.; Adkinson, N. Franklin; Avila, Lydiana; Soto-Quiros, Manuel; Barraza-Villareal, Albino; Lemanske, Robert F.; Solway, Julian; Krishnan, Jerry; White, Steven R.; Cheadle, Chris; Berger, Alan E.; Fan, Jinshui; Boorgula, Meher Preethi; Nicolae, Dan; Gilliland, Frank; Barnes, Kathleen; London, Stephanie J.; Martinez, Fernando; Ober, Carole; Celedón, Juan C.; Carey, Vincent J.; Weiss, Scott T.; Raby, Benjamin A.

    2014-01-01

    Background Genome-wide association studies have yet to identify the majority of genetic variants involved in asthma. We hypothesized that expression quantitative trait locus (eQTL) mapping can identify novel asthma genes by enabling prioritization of putative functional variants for association testing. Objective We evaluated 6,706 cis-acting expression-associated variants (eSNP) identified through a genome-wide eQTL survey of CD4+ lymphocytes for association with asthma. Methods eSNP were tested for association with asthma in 359 asthma cases and 846 controls from the Childhood Asthma Management Program, with verification using family-based testing. Significant associations were tested for replication in 579 parent-child trios with asthma from Costa Rica. Further functional validation was performed by Formaldehyde Assisted Isolation of Regulatory Elements (FAIRE)-qPCR and Chromatin-Immunoprecipitation (ChIP)-PCR in lung derived epithelial cell lines (Beas-2B and A549) and Jurkat cells, a leukemia cell line derived from T lymphocytes. Results Cis-acting eSNP demonstrated associations with asthma in both cohorts. We confirmed the previously-reported association of ORMDL3/GSDMB variants with asthma (combined p=2.9 × 108). Reproducible associations were also observed for eSNP in three additional genes: FADS2 (p=0.002), NAGA (p=0.0002), and F13A1 (p=0.0001). We subsequently demonstrated that FADS2 mRNA is increased in CD4+ lymphocytes in asthmatics, and that the associated eSNPs reside within DNA segments with histone modifications that denote open chromatin status and confer enhancer activity. Conclusions Our results demonstrate the utility of eQTL mapping in the identification of novel asthma genes, and provide evidence for the importance of FADS2, NAGA, and F13A1 in the pathogenesis of asthma. PMID:24934276

  7. Inactive DNMT3B Splice Variants Modulate De Novo DNA Methylation

    PubMed Central

    Gordon, Catherine A.; Hartono, Stella R.; Chédin, Frédéric

    2013-01-01

    Inactive DNA methyltransferase (DNMT) 3B splice isoforms are associated with changes in DNA methylation, yet the mechanisms by which they act remain largely unknown. Using biochemical and cell culture assays, we show here that the inactive DNMT3B3 and DNMT3B4 isoforms bind to and regulate the activity of catalytically competent DNMT3A or DNMT3B molecules. DNMT3B3 modestly stimulated the de novo methylation activity of DNMT3A and also counteracted the stimulatory effects of DNMT3L, therefore leading to subtle and contrasting effects on activity. DNMT3B4, by contrast, significantly inhibited de novo DNA methylation by active DNMT3 molecules, most likely due to its ability to reduce the DNA binding affinity of co-complexes, thereby sequestering them away from their substrate. Immunocytochemistry experiments revealed that in addition to their effects on the intrinsic catalytic function of active DNMT3 enzymes, DNMT3B3 and DNMT34 drive distinct types of chromatin compaction and patterns of histone 3 lysine 9 tri-methylation (H3K9me3) deposition. Our findings suggest that regulation of active DNMT3 members through the formation of co-complexes with inactive DNMT3 variants is a general mechanism by which DNMT3 variants function. This may account for some of the changes in DNA methylation patterns observed during development and disease. PMID:23894490

  8. The histone acetyltransferase component TRRAP is targeted for destruction during the cell cycle.

    PubMed

    Ichim, G; Mola, M; Finkbeiner, M G; Cros, M-P; Herceg, Z; Hernandez-Vargas, H

    2014-01-09

    Chromosomes are dynamic structures that must be reversibly condensed and unfolded to accommodate mitotic division and chromosome segregation. Histone modifications are involved in the striking chromatin reconfiguration taking place during mitosis. However, the mechanisms that regulate activity and function of histone-modifying factors as cells enter and exit mitosis are poorly understood. Here, we show that the anaphase-promoting complex or cyclosome (APC/C) is involved in the mitotic turnover of TRRAP (TRansformation/tRanscription domain-Associated Protein), a common component of histone acetyltransferase (HAT) complexes, and that the pre-mitotic degradation of TRRAP is mediated by the APC/C ubiquitin ligase activators Cdc20 and Cdh1. Ectopic expression of both Cdh1 and Cdc20 reduced the levels of coexpressed TRRAP protein and induced its ubiquitination. TRRAP overexpression or stabilization induces multiple mitotic defects, including lagging chromosomes, chromosome bridges and multipolar spindles. In addition, lack of sister chromatid cohesion and impaired chromosome condensation were found after TRRAP overexpression or stabilization. By using a truncated form of TRRAP, we show that mitotic delay is associated with a global histone H4 hyperacetylation induced by TRRAP overexpression. These results demonstrate that the chromatin modifier TRRAP is targeted for destruction in a cell cycle-dependent fashion. They also suggest that degradation of TRRAP by the APC/C is necessary for a proper condensation of chromatin and proper chromosome segregation. Chromatin compaction mediated by histone modifiers may represent a fundamental arm for APC/C orchestration of the mitotic machinery.

  9. Identification of distinct SET/TAF-Ibeta domains required for core histone binding and quantitative characterisation of the interaction.

    PubMed

    Karetsou, Zoe; Emmanouilidou, Anastasia; Sanidas, Ioannis; Liokatis, Stamatis; Nikolakaki, Eleni; Politou, Anastasia S; Papamarcaki, Thomais

    2009-04-09

    The assembly of nucleosomes to higher-order chromatin structures is finely tuned by the relative affinities of histones for chaperones and nucleosomal binding sites. The myeloid leukaemia protein SET/TAF-Ibeta belongs to the NAP1 family of histone chaperones and participates in several chromatin-based mechanisms, such as chromatin assembly, nucleosome reorganisation and transcriptional activation. To better understand the histone chaperone function of SET/TAF-Ibeta, we designed several SET/TAF-Ibeta truncations, examined their structural integrity by circular Dichroism and assessed qualitatively and quantitatively the histone binding properties of wild-type protein and mutant forms using GST-pull down experiments and fluorescence spectroscopy-based binding assays. Wild type SET/TAF-Ibeta binds to histones H2B and H3 with Kd values of 2.87 and 0.15 microM, respectively. The preferential binding of SET/TAF-Ibeta to histone H3 is mediated by its central region and the globular part of H3. On the contrary, the acidic C-terminal tail and the amino-terminal dimerisation domain of SET/TAF-Ibeta, as well as the H3 amino-terminal tail, are dispensable for this interaction. This type of analysis allowed us to assess the relative affinities of SET/TAF-Ibeta for different histones and identify the domains of the protein required for effective histone recognition. Our findings are consistent with recent structural studies of SET/TAF-Ibeta and can be valuable to understand the role of SET/TAF-Ibeta in chromatin function.

  10. Neutrophil Extracellular Traps Directly Induce Epithelial and Endothelial Cell Death: A Predominant Role of Histones

    PubMed Central

    Saffarzadeh, Mona; Juenemann, Christiane; Queisser, Markus A.; Lochnit, Guenter; Barreto, Guillermo; Galuska, Sebastian P.; Lohmeyer, Juergen; Preissner, Klaus T.

    2012-01-01

    Neutrophils play an important role in innate immunity by defending the host organism against invading microorganisms. Antimicrobial activity of neutrophils is mediated by release of antimicrobial peptides, phagocytosis as well as formation of neutrophil extracellular traps (NET). These structures are composed of DNA, histones and granular proteins such as neutrophil elastase and myeloperoxidase. This study focused on the influence of NET on the host cell functions, particularly on human alveolar epithelial cells as the major cells responsible for gas exchange in the lung. Upon direct interaction with epithelial and endothelial cells, NET induced cytotoxic effects in a dose-dependent manner, and digestion of DNA in NET did not change NET-mediated cytotoxicity. Pre-incubation of NET with antibodies against histones, with polysialic acid or with myeloperoxidase inhibitor but not with elastase inhibitor reduced NET-mediated cytotoxicity, suggesting that histones and myeloperoxidase are responsible for NET-mediated cytotoxicity. Although activated protein C (APC) did decrease the histone-induced cytotoxicity in a purified system, it did not change NET-induced cytotoxicity, indicating that histone-dependent cytotoxicity of NET is protected against APC degradation. Moreover, in LPS-induced acute lung injury mouse model, NET formation was documented in the lung tissue as well as in the bronchoalveolar lavage fluid. These data reveal the important role of protein components in NET, particularly histones, which may lead to host cell cytotoxicity and may be involved in lung tissue destruction. PMID:22389696

  11. Boric acid-dependent decrease in regulatory histone H3 acetylation is not mutagenic in yeast.

    PubMed

    Pointer, Benjamin R; Schmidt, Martin

    2016-07-01

    Candida albicans is a dimorphic yeast commonly found on human mucosal membranes that switches from yeast to hyphal morphology in response to environmental factors. The change to hyphal growth requires histone H3 modifications by the yeast-specific histone acetyltransferase Rtt109. In addition to its role in morphogenesis, Rtt109-dependent acetylation of histone H3 lysine residues 9 and 56 has regulatory functions during DNA replication and repair. Boric acid (BA) is a broad-spectrum agent that specifically inhibits C. albicans hyphal growth, locking the fungus in its harmless commensal yeast state. The present study characterizes the effect of BA on C. albicans histone acetylation in respect to specificity, time-course and significance. We demonstrate that sublethal concentrations of BA reduce H3K9/H3K56 acetylation, both on a basal level and in response to genotoxic stress. Acetylation at other selected histone sites were not affected by BA. qRT-PCR expression analysis of the DNA repair gene Rad51 indicated no elevated level of genotoxic stress during BA exposure. A forward-mutation analysis demonstrated the BA does not increase spontaneous or induced mutations. The findings suggest that DNA repair remains effective even when histone H3 acetylation decreases and dispels the notion that BA treatment impairs genome integrity in yeast. © FEMS 2016. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  12. Molecular variants of HPV type 16 E6 among Mexican women with LSIL and invasive cancer.

    PubMed

    del Refugio González-Losa, María; Laviada Mier y Teran, Miguel A; Puerto-Solís, Marylín; García-Carrancá, Alejandro

    2004-02-01

    Cervical cancer is the second most common cancer in women worldwide. Infection with human papillomavirus (HPV) 16 is an important risk factor associated with cervical cancer, more than 50% of cervical cancer tissues have DNA of HPV 16. Intratypic variants have been reported, although they differ in prevalence, biological and biochemical properties, their implication in the aetiology of cervical cancer is still uncertain. To identify HPV type 16 E6 variants among Mexican women with diagnosis of low-grade squamous intraepithelial lesion (LSIL) or invasive cancer (IC). Forty HPV16-positive samples were included, 15 were from women with LSIL, 25 from women with IC; 610 pb from the E6 gene were amplified by PCR and the variant status subsequently determined by hybridization with 27 biotinilated probes. Statistical analysis was performed with chi2, odds ratio (OR). In the LSIL group we only found ten (66%) EP and five (33%) EP350G variants. In the IC group, four variants were found; 11 (44%) AA, seven (28%) EP, six (24%) EP350G, one (4%) Af2. Comparison of the frequency of variants differed from EP in both groups of patients (P=0.01) with an odds ratio (OR) of 5.14 (CI 95% [1.07-26.56]). This study demonstrates an association between HPV type 16 variants different from prototype (EP) and invasive cervical cancer.

  13. Arsenic Induces Polyadenylation of Canonical Histone mRNA by Down-regulating Stem-Loop-binding Protein Gene Expression*

    PubMed Central

    Brocato, Jason; Fang, Lei; Chervona, Yana; Chen, Danqi; Kiok, Kathrin; Sun, Hong; Tseng, Hsiang-Chi; Xu, Dazhong; Shamy, Magdy; Jin, Chunyuan; Costa, Max

    2014-01-01

    The replication-dependent histone genes are the only metazoan genes whose messenger RNA (mRNA) does not terminate with a poly(A) tail at the 3′-end. Instead, the histone mRNAs display a stem-loop structure at their 3′-end. Stem-loop-binding protein (SLBP) binds the stem-loop and regulates canonical histone mRNA metabolism. Here we report that exposure to arsenic, a carcinogenic metal, decreased cellular levels of SLBP by inducing its proteasomal degradation and inhibiting SLBP transcription via epigenetic mechanisms. Notably, arsenic exposure dramatically increased polyadenylation of canonical histone H3.1 mRNA possibly through down-regulation of SLBP expression. The polyadenylated H3.1 mRNA induced by arsenic was not susceptible to normal degradation that occurs at the end of S phase, resulting in continued presence into mitosis, increased total H3.1 mRNA, and increased H3 protein levels. Excess expression of canonical histones have been shown to increase sensitivity to DNA damage as well as increase the frequency of missing chromosomes and induce genomic instability. Thus, polyadenylation of canonical histone mRNA following arsenic exposure may contribute to arsenic-induced carcinogenesis. PMID:25266719

  14. Hst3 and Hst4 histone deacetylases regulate replicative lifespan by preventing genome instability in Saccharomyces cerevisiae.

    PubMed

    Hachinohe, Mayumi; Hanaoka, Fumio; Masumoto, Hiroshi

    2011-04-01

    The acetylation of histone H3 on lysine 56 (H3-K56) occurs during S phase and contributes to the processes of DNA damage repair and histone gene transcription. Hst3 and Hst4 have been implicated in the removal of histone H3-K56 acetylation in Saccharomyces cerevisiae. Here, we show that Hst3 and Hst4 regulate the replicative lifespan of S. cerevisiae mother cells. An hst3Δ hst4Δ double-mutant strain, in which acetylation of histone H3-K56 persists throughout the genome during the cell cycle, exhibits genomic instability, which is manifested by a loss of heterozygosity with cell aging. Furthermore, we show that in the absence of other proteins Hst3 and Hst4 can deacetylate nucleosomal histone H3-K56 in a nicotinamide adenine dinucleotide(NAD)(+) -dependent manner. Our results suggest that Hst3 and Hst4 regulate replicative lifespan through their ability to deacetylate histone H3-K56 to minimize genomic instability. © 2011 The Authors. Journal compilation © 2011 by the Molecular Biology Society of Japan/Blackwell Publishing Ltd.

  15. Selective inhibitors of zinc-dependent histone deacetylases. Therapeutic targets relevant to cancer.

    PubMed

    Kollar, Jakub; Frecer, Vladimir

    2015-01-01

    Histone deacetylases (HDACs), which act on acetylated histones and/or other non-histone protein substrates, represent validated epigenetic targets for the treatment of cancer and other human diseases. The inhibition of HDAC activity was shown to induce cell cycle arrest, differentiation, apoptosis as well as a decrease in proliferation, angiogenesis, migration, and cell resistance to chemotherapy. Targeting single HDAC isoforms with selective inhibitors will help to reveal the role of individual HDACs in cancer development or uncover further biological consequences of protein acetylation. This review focuses on conventional zinc-containing HDACs. In its first part, the biological role of individual HDACs in various types of cancer is summarized. In the second part, promising HDAC inhibitors showing activity both in enzymatic and cell-based assays are surveyed with an emphasis on the inhibitors selective to the individual HDACs.

  16. Both H4K20 mono-methylation and H3K56 acetylation mark transcription-dependent histone turnover in fission yeast

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yang, Hanna; Kwon, Chang Seob; Choi, Yoonjung, E-mail: jjungii@kaist.ac.kr

    Nucleosome dynamics facilitated by histone turnover is required for transcription as well as DNA replication and repair. Histone turnover is often associated with various histone modifications such as H3K56 acetylation (H3K56Ac), H3K36 methylation (H3K36me), and H4K20 methylation (H4K20me). In order to correlate histone modifications and transcription-dependent histone turnover, we performed genome wide analyses for euchromatic regions in G2/M-arrested fission yeast. The results show that transcription-dependent histone turnover at 5′ promoter and 3′ termination regions is directly correlated with the occurrence of H3K56Ac and H4K20 mono-methylation (H4K20me1) in actively transcribed genes. Furthermore, the increase of H3K56Ac and H4K20me1 and antisense RNAmore » production was observed in the absence of the histone H3K36 methyltransferase Set2 and histone deacetylase complex (HDAC) that are involved in the suppression of histone turnover within the coding regions. These results together indicate that H4K20me1 as well as H3K56Ac are bona fide marks for transcription-dependent histone turnover in fission yeast.« less

  17. G9a histone methyltransferase plays a dominant role in euchromatic histone H3 lysine 9 methylation and is essential for early embryogenesis

    PubMed Central

    Tachibana, Makoto; Sugimoto, Kenji; Nozaki, Masami; Ueda, Jun; Ohta, Tsutomu; Ohki, Misao; Fukuda, Mikiko; Takeda, Naoki; Niida, Hiroyuki; Kato, Hiroyuki; Shinkai, Yoichi

    2002-01-01

    Covalent modification of histone tails is crucial for transcriptional regulation, mitotic chromosomal condensation, and heterochromatin formation. Histone H3 lysine 9 (H3-K9) methylation catalyzed by the Suv39h family proteins is essential for establishing the architecture of pericentric heterochromatin. We recently identified a mammalian histone methyltransferase (HMTase), G9a, which has strong HMTase activity towards H3-K9 in vitro. To investigate the in vivo functions of G9a, we generated G9a-deficient mice and embryonic stem (ES) cells. We found that H3-K9 methylation was drastically decreased in G9a-deficient embryos, which displayed severe growth retardation and early lethality. G9a-deficient ES cells also exhibited reduced H3-K9 methylation compared to wild-type cells, indicating that G9a is a dominant H3-K9 HMTase in vivo. Importantly, the loss of G9a abolished methylated H3-K9 mostly in euchromatic regions. Finally, G9a exerted a transcriptionally suppressive function that depended on its HMTase activity. Our results indicate that euchromatic H3-K9 methylation regulated by G9a is essential for early embryogenesis and is involved in the transcriptional repression of developmental genes. PMID:12130538

  18. An atlas of histone deacetylase expression in breast cancer: fluorescence methodology for comparative semi-quantitative analysis

    PubMed Central

    Ververis, Katherine; Karagiannis, Tom C

    2012-01-01

    The histone deacetylase inhibitors, suberoylanilide hydroxamic acid (Vorinostat, Zolinza™) and depsipeptide (Romidepsin, Istodax™) have been approved by the US Food and Drug Administration for the treatment of refractory cutaneous T-cell lymphoma. Numerous histone deacetylase inhibitors are currently undergoing clinical trials, predominantly in combination with other cancer modalities, for the treatment of various haematological and solid malignancies. Most of the traditional compounds are known as broad-spectrum or pan-histone deacetylase inhibitors, possessing activity against a number of the 11 metal-dependent enzymes. One of the main questions in the field is whether class- or isoform-specific compounds would offer a therapeutic benefit compared to broad-spectrum inhibitors. Therefore, analysis of the relative expression of the different histone deacetylase enzymes in cancer cells and tissues is important to determine whether there are specific targets. We used a panel of antibodies directed against the 11 known mammalian histone deacetylases to determine expression levels in MCF7 breast cancer cells and in tissue representative of invasive ductal cell carcinoma and ductal carcinoma in situ. Firstly, we utilized a semi-quantitative method based on immunofluorescence staining to examine expression of the different histone deacetylases in MCF7 cells. Our findings indicate high expression levels of HDAC1, 3 and 6 in accordance with findings from others using RT-PCR and immunoblotting. Following validation of our approach we examined the expression of the different isoforms in representative control and breast cancer tissue. In general, our findings indicate higher expression of class I histone deacetylases compared to class II enzymes in breast cancer tissue. Analysis of individual cancer cells in the same tissue indicated marked heterogeneity in the expression of most class I enzymes indicating potential complications with the use of class- or isoform

  19. An atlas of histone deacetylase expression in breast cancer: fluorescence methodology for comparative semi-quantitative analysis.

    PubMed

    Ververis, Katherine; Karagiannis, Tom C

    2012-01-01

    The histone deacetylase inhibitors, suberoylanilide hydroxamic acid (Vorinostat, Zolinza™) and depsipeptide (Romidepsin, Istodax™) have been approved by the US Food and Drug Administration for the treatment of refractory cutaneous T-cell lymphoma. Numerous histone deacetylase inhibitors are currently undergoing clinical trials, predominantly in combination with other cancer modalities, for the treatment of various haematological and solid malignancies. Most of the traditional compounds are known as broad-spectrum or pan-histone deacetylase inhibitors, possessing activity against a number of the 11 metal-dependent enzymes. One of the main questions in the field is whether class- or isoform-specific compounds would offer a therapeutic benefit compared to broad-spectrum inhibitors. Therefore, analysis of the relative expression of the different histone deacetylase enzymes in cancer cells and tissues is important to determine whether there are specific targets. We used a panel of antibodies directed against the 11 known mammalian histone deacetylases to determine expression levels in MCF7 breast cancer cells and in tissue representative of invasive ductal cell carcinoma and ductal carcinoma in situ. Firstly, we utilized a semi-quantitative method based on immunofluorescence staining to examine expression of the different histone deacetylases in MCF7 cells. Our findings indicate high expression levels of HDAC1, 3 and 6 in accordance with findings from others using RT-PCR and immunoblotting. Following validation of our approach we examined the expression of the different isoforms in representative control and breast cancer tissue. In general, our findings indicate higher expression of class I histone deacetylases compared to class II enzymes in breast cancer tissue. Analysis of individual cancer cells in the same tissue indicated marked heterogeneity in the expression of most class I enzymes indicating potential complications with the use of class- or isoform

  20. Cellulase variants

    DOEpatents

    Blazej, Robert; Toriello, Nicholas; Emrich, Charles; Cohen, Richard N.; Koppel, Nitzan

    2015-07-14

    This invention provides novel variant cellulolytic enzymes having improved activity and/or stability. In certain embodiments the variant cellulotyic enzymes comprise a glycoside hydrolase with or comprising a substitution at one or more positions corresponding to one or more of residues F64, A226, and/or E246 in Thermobifida fusca Cel9A enzyme. In certain embodiments the glycoside hydrolase is a variant of a family 9 glycoside hydrolase. In certain embodiments the glycoside hydrolase is a variant of a theme B family 9 glycoside hydrolase.

  1. A Common histone modification code on C4 genes in maize and its conservation in Sorghum and Setaria italica.

    PubMed

    Heimann, Louisa; Horst, Ina; Perduns, Renke; Dreesen, Björn; Offermann, Sascha; Peterhansel, Christoph

    2013-05-01

    C4 photosynthesis evolved more than 60 times independently in different plant lineages. Each time, multiple genes were recruited into C4 metabolism. The corresponding promoters acquired new regulatory features such as high expression, light induction, or cell type-specific expression in mesophyll or bundle sheath cells. We have previously shown that histone modifications contribute to the regulation of the model C4 phosphoenolpyruvate carboxylase (C4-Pepc) promoter in maize (Zea mays). We here tested the light- and cell type-specific responses of three selected histone acetylations and two histone methylations on five additional C4 genes (C4-Ca, C4-Ppdk, C4-Me, C4-Pepck, and C4-RbcS2) in maize. Histone acetylation and nucleosome occupancy assays indicated extended promoter regions with regulatory upstream regions more than 1,000 bp from the transcription initiation site for most of these genes. Despite any detectable homology of the promoters on the primary sequence level, histone modification patterns were highly coregulated. Specifically, H3K9ac was regulated by illumination, whereas H3K4me3 was regulated in a cell type-specific manner. We further compared histone modifications on the C4-Pepc and C4-Me genes from maize and the homologous genes from sorghum (Sorghum bicolor) and Setaria italica. Whereas sorghum and maize share a common C4 origin, C4 metabolism evolved independently in S. italica. The distribution of histone modifications over the promoters differed between the species, but differential regulation of light-induced histone acetylation and cell type-specific histone methylation were evident in all three species. We propose that a preexisting histone code was recruited into C4 promoter control during the evolution of C4 metabolism.

  2. Labelling of histone H5 and its interaction with DNA. 1. Histone H5 labelling with fluorescein isothiocyanate.

    PubMed

    Favazza, M; Lerho, M; Houssier, C

    1990-06-01

    Histone H5 has been labelled with fluorescein isothiocyanate (FITC) with particular attention to the reaction conditions (pH, reaction time and input FITC/H5 molar ratio) and to the complete elimination of non-covalently bound dye. We preferred to use reaction conditions which yielded non-specific uniform labelling rather than specific alpha-NH2 terminal labelling, in order to obtain higher sensitivity in further studies dealing with the detection of perturbation at the binding sites of H5 on DNA. FITC-labelled H5 was further characterized by absorption and circular dichroism spectroscopy, and the fluorescein probe titrated in the 4-8 pH range. The structural integrity of H5 was found to be preserved after labelling. The positive electrostatic potential of the environment in which the FITC probe is embedded in the arginine/lysine-rich tails of H5 is believed to be responsible for the drop of pK of 1 unit found for H5-FITC as compared to free FITC. For the globular part of H5, the pK of covalently-bound FITC was only slightly lowered; this is a consequence of the much lower content in positively-charged amino-acid side chains in this region.

  3. VariantBam: filtering and profiling of next-generational sequencing data using region-specific rules.

    PubMed

    Wala, Jeremiah; Zhang, Cheng-Zhong; Meyerson, Matthew; Beroukhim, Rameen

    2016-07-01

    We developed VariantBam, a C ++ read filtering and profiling tool for use with BAM, CRAM and SAM sequencing files. VariantBam provides a flexible framework for extracting sequencing reads or read-pairs that satisfy combinations of rules, defined by any number of genomic intervals or variant sites. We have implemented filters based on alignment data, sequence motifs, regional coverage and base quality. For example, VariantBam achieved a median size reduction ratio of 3.1:1 when applied to 10 lung cancer whole genome BAMs by removing large tags and selecting for only high-quality variant-supporting reads and reads matching a large dictionary of sequence motifs. Thus VariantBam enables efficient storage of sequencing data while preserving the most relevant information for downstream analysis. VariantBam and full documentation are available at github.com/jwalabroad/VariantBam rameen@broadinstitute.org Supplementary data are available at Bioinformatics online. © The Author 2016. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  4. Arabidopsis Histone Reader EMSY-LIKE 1 Binds H3K36 and Suppresses Geminivirus Infection.

    PubMed

    Coursey, Tami; Milutinovic, Milica; Regedanz, Elizabeth; Brkljacic, Jelena; Bisaro, David M

    2018-06-06

    Histone post-translational modifications (PTMs) impart information that regulates chromatin structure and activity. Their effects are mediated by histone reader proteins that bind specific PTMs to modify chromatin and/or recruit appropriate effectors to alter the chromatin landscape. Despite their crucial juxtaposition between information and functional outcome, relatively few plant histone readers have been identified, and nothing is known about their impact on viral chromatin and pathogenesis. We used the geminivirus Cabbage leaf curl virus (CaLCuV) as a model to functionally characterize two recently identified reader proteins, EMSY-LIKE 1 and 3 (EML1 and EML3), which contain Tudor-like Agenet domains predictive of histone PTM binding function. Here, we show that mutant Arabidopsis plants exhibit contrasting hypersusceptible ( eml1 ) and tolerant ( eml3 ) responses to CaLCuV infection, and that EML1 deficiency correlates with RNA polymerase II (Pol II) enrichment on viral chromatin and upregulated viral gene expression. Consistent with reader activity, EML1 and EML3 associate with nucleosomes and with CaLCuV chromatin, suggesting a direct impact on pathogenesis. We also demonstrate that EML1 and EML3 bind peptides containing histone H3 lysine 36 (H3K36), a PTM usually associated with active gene expression. The interaction encompasses multiple H3K36 PTMs, including methylation and acetylation, suggesting nuanced regulation. Further, EML1 and EML3 associate with similar regions of viral chromatin, implying possible competition between the two readers. Regions of EML1 and EML3 association correlate with sites of trimethylated H3K36 (H3K36me3) enrichment, consistent with regulation of geminivirus chromatin by direct EML targeting. IMPORTANCE Histone PTMs convey information that regulates chromatin compaction and DNA accessibility. Histone reader proteins bind specific PTMs and translate their effects by modifying chromatin and/or by recruiting effectors that alter

  5. Histone modifications associated with both A and B chromosomes of maize.

    PubMed

    Jin, Weiwei; Lamb, Jonathan C; Zhang, Wenli; Kolano, Bozena; Birchler, James A; Jiang, Jiming

    2008-01-01

    We report the distribution of several histone modifications along the arms and in centromeric regions of somatic chromosomes of maize, including the supernumerary B chromosome. Acetylated H3 and H4 as well as H3K4me2, modifications associated with euchromatin, were enriched in the distal parts of the A chromosomes, but were progressively depleted toward the centromeres of the A chromosomes and were depleted in the heterochromatic portions of the B chromosome. Classical histone modifications associated with heterochromatin, including H3K9me2, H3K27me1 and H3K27me2, were distributed throughout both A and B chromosomes. However, H3K27me2 showed a reduced level on the B chromosome compared with the A chromosomes and was not associated with some classes of constitutive heterochromatin. We monitored the presence of each histone modification in the centromeric regions using a YFP-tagged centromere-specific histone, CENH3. We observed the presence of H3K9me2 and absence of H3K4me2 in the centromeric regions of both A and B chromosomes of maize, which is in contrast to the presence of H3K4me2 and absence of H3K9me2 in animal centromeres. These results show a diversity of epigenetic modifications associated with centromeric chromatin in different eukaryotes.

  6. Germline mutations affecting the histone H4 core cause a developmental syndrome by altering DNA damage response and cell cycle control.

    PubMed

    Tessadori, Federico; Giltay, Jacques C; Hurst, Jane A; Massink, Maarten P; Duran, Karen; Vos, Harmjan R; van Es, Robert M; Scott, Richard H; van Gassen, Koen L I; Bakkers, Jeroen; van Haaften, Gijs

    2017-11-01

    Covalent modifications of histones have an established role as chromatin effectors, as they control processes such as DNA replication and transcription, and repair or regulate nucleosomal structure. Loss of modifications on histone N tails, whether due to mutations in genes belonging to histone-modifying complexes or mutations directly affecting the histone tails, causes developmental disorders or has a role in tumorigenesis. More recently, modifications affecting the globular histone core have been uncovered as being crucial for DNA repair, pluripotency and oncogenesis. Here we report monoallelic missense mutations affecting lysine 91 in the histone H4 core (H4K91) in three individuals with a syndrome of growth delay, microcephaly and intellectual disability. Expression of the histone H4 mutants in zebrafish embryos recapitulates the developmental anomalies seen in the patients. We show that the histone H4 alterations cause genomic instability, resulting in increased apoptosis and cell cycle progression anomalies during early development. Mechanistically, our findings indicate an important role for the ubiquitination of H4K91 in genomic stability during embryonic development.

  7. Profiling of Histone Post-Translational Modifications in Mouse Brain with High-Resolution Top-Down Mass Spectrometry

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhou, Mowei; Paša-Tolić, Ljiljana; Stenoien, David L.

    Histones play central roles in most chromosomal functions and both their basic biology and roles in disease have been the subject of intense study. Since multiple PTMs along the entire protein sequence are potential regulators of histones, a top-down approach, where intact proteins are analyzed, is ultimately required for complete characterization of proteoforms. However, significant challenges remain for top-down histone analysis primarily because of deficiencies in separation/resolving power and effective identification algorithms. Here, we used state of the art mass spectrometry and a bioinformatics workflow for targeted data analysis and visualization. The workflow uses ProMex for intact mass deconvolution, MSPathFindermore » as search engine, and LcMsSpectator as a data visualization tool. ProMex sums across retention time to maximize sensitivity and accuracy for low abundance species in MS1deconvolution. MSPathFinder searches the MS2 data against protein sequence databases with user-defined modifications. LcMsSpectator presents the results from ProMex and MSPathFinder in a format that allows quick manual evaluation of critical attributes for high-confidence identifications. When complemented with the open-modification tool TopPIC, this workflow enabled identification of novel histone PTMs including tyrosine bromination on histone H4 and H2A, H3 glutathionylation, and mapping of conventional PTMs along the entire protein for many histone subunits.« less

  8. The Clinical Next-Generation Sequencing Database: A Tool for the Unified Management of Clinical Information and Genetic Variants to Accelerate Variant Pathogenicity Classification.

    PubMed

    Nishio, Shin-Ya; Usami, Shin-Ichi

    2017-03-01

    Recent advances in next-generation sequencing (NGS) have given rise to new challenges due to the difficulties in variant pathogenicity interpretation and large dataset management, including many kinds of public population databases as well as public or commercial disease-specific databases. Here, we report a new database development tool, named the "Clinical NGS Database," for improving clinical NGS workflow through the unified management of variant information and clinical information. This database software offers a two-feature approach to variant pathogenicity classification. The first of these approaches is a phenotype similarity-based approach. This database allows the easy comparison of the detailed phenotype of each patient with the average phenotype of the same gene mutation at the variant or gene level. It is also possible to browse patients with the same gene mutation quickly. The other approach is a statistical approach to variant pathogenicity classification based on the use of the odds ratio for comparisons between the case and the control for each inheritance mode (families with apparently autosomal dominant inheritance vs. control, and families with apparently autosomal recessive inheritance vs. control). A number of case studies are also presented to illustrate the utility of this database. © 2016 The Authors. **Human Mutation published by Wiley Periodicals, Inc.

  9. Large-Scale Gene-Centric Analysis Identifies Novel Variants for Coronary Artery Disease

    PubMed Central

    2011-01-01

    Coronary artery disease (CAD) has a significant genetic contribution that is incompletely characterized. To complement genome-wide association (GWA) studies, we conducted a large and systematic candidate gene study of CAD susceptibility, including analysis of many uncommon and functional variants. We examined 49,094 genetic variants in ∼2,100 genes of cardiovascular relevance, using a customised gene array in 15,596 CAD cases and 34,992 controls (11,202 cases and 30,733 controls of European descent; 4,394 cases and 4,259 controls of South Asian origin). We attempted to replicate putative novel associations in an additional 17,121 CAD cases and 40,473 controls. Potential mechanisms through which the novel variants could affect CAD risk were explored through association tests with vascular risk factors and gene expression. We confirmed associations of several previously known CAD susceptibility loci (eg, 9p21.3:p<10−33; LPA:p<10−19; 1p13.3:p<10−17) as well as three recently discovered loci (COL4A1/COL4A2, ZC3HC1, CYP17A1:p<5×10−7). However, we found essentially null results for most previously suggested CAD candidate genes. In our replication study of 24 promising common variants, we identified novel associations of variants in or near LIPA, IL5, TRIB1, and ABCG5/ABCG8, with per-allele odds ratios for CAD risk with each of the novel variants ranging from 1.06–1.09. Associations with variants at LIPA, TRIB1, and ABCG5/ABCG8 were supported by gene expression data or effects on lipid levels. Apart from the previously reported variants in LPA, none of the other ∼4,500 low frequency and functional variants showed a strong effect. Associations in South Asians did not differ appreciably from those in Europeans, except for 9p21.3 (per-allele odds ratio: 1.14 versus 1.27 respectively; P for heterogeneity = 0.003). This large-scale gene-centric analysis has identified several novel genes for CAD that relate to diverse biochemical and cellular functions and

  10. Large-scale gene-centric analysis identifies novel variants for coronary artery disease.

    PubMed

    2011-09-01

    Coronary artery disease (CAD) has a significant genetic contribution that is incompletely characterized. To complement genome-wide association (GWA) studies, we conducted a large and systematic candidate gene study of CAD susceptibility, including analysis of many uncommon and functional variants. We examined 49,094 genetic variants in ∼2,100 genes of cardiovascular relevance, using a customised gene array in 15,596 CAD cases and 34,992 controls (11,202 cases and 30,733 controls of European descent; 4,394 cases and 4,259 controls of South Asian origin). We attempted to replicate putative novel associations in an additional 17,121 CAD cases and 40,473 controls. Potential mechanisms through which the novel variants could affect CAD risk were explored through association tests with vascular risk factors and gene expression. We confirmed associations of several previously known CAD susceptibility loci (eg, 9p21.3:p<10(-33); LPA:p<10(-19); 1p13.3:p<10(-17)) as well as three recently discovered loci (COL4A1/COL4A2, ZC3HC1, CYP17A1:p<5×10(-7)). However, we found essentially null results for most previously suggested CAD candidate genes. In our replication study of 24 promising common variants, we identified novel associations of variants in or near LIPA, IL5, TRIB1, and ABCG5/ABCG8, with per-allele odds ratios for CAD risk with each of the novel variants ranging from 1.06-1.09. Associations with variants at LIPA, TRIB1, and ABCG5/ABCG8 were supported by gene expression data or effects on lipid levels. Apart from the previously reported variants in LPA, none of the other ∼4,500 low frequency and functional variants showed a strong effect. Associations in South Asians did not differ appreciably from those in Europeans, except for 9p21.3 (per-allele odds ratio: 1.14 versus 1.27 respectively; P for heterogeneity = 0.003). This large-scale gene-centric analysis has identified several novel genes for CAD that relate to diverse biochemical and cellular functions and

  11. Common and rare variants associated with kidney stones and biochemical traits.

    PubMed

    Oddsson, Asmundur; Sulem, Patrick; Helgason, Hannes; Edvardsson, Vidar O; Thorleifsson, Gudmar; Sveinbjörnsson, Gardar; Haraldsdottir, Eik; Eyjolfsson, Gudmundur I; Sigurdardottir, Olof; Olafsson, Isleifur; Masson, Gisli; Holm, Hilma; Gudbjartsson, Daniel F; Thorsteinsdottir, Unnur; Indridason, Olafur S; Palsson, Runolfur; Stefansson, Kari

    2015-08-14

    Kidney stone disease is a complex disorder with a strong genetic component. We conducted a genome-wide association study of 28.3 million sequence variants detected through whole-genome sequencing of 2,636 Icelanders that were imputed into 5,419 kidney stone cases, including 2,172 cases with a history of recurrent kidney stones, and 279,870 controls. We identify sequence variants associating with kidney stones at ALPL (rs1256328[T], odds ratio (OR)=1.21, P=5.8 × 10(-10)) and a suggestive association at CASR (rs7627468[A], OR=1.16, P=2.0 × 10(-8)). Focusing our analysis on coding sequence variants in 63 genes with preferential kidney expression we identify two rare missense variants SLC34A1 p.Tyr489Cys (OR=2.38, P=2.8 × 10(-5)) and TRPV5 p.Leu530Arg (OR=3.62, P=4.1 × 10(-5)) associating with recurrent kidney stones. We also observe associations of the identified kidney stone variants with biochemical traits in a large population set, indicating potential biological mechanism.

  12. Functional non-synonymous variants of ABCG2 and gout risk.

    PubMed

    Stiburkova, Blanka; Pavelcova, Katerina; Zavada, Jakub; Petru, Lenka; Simek, Pavel; Cepek, Pavel; Pavlikova, Marketa; Matsuo, Hirotaka; Merriman, Tony R; Pavelka, Karel

    2017-11-01

    Common dysfunctional variants of ATP binding cassette subfamily G member 2 (Junior blood group) (ABCG2), a high-capacity urate transporter gene, that result in decreased urate excretion are major causes of hyperuricemia and gout. In the present study, our objective was to determine the frequency and effect on gout of common and rare non-synonymous and other functional allelic variants in the ABCG2 gene. The main cohort recruited from the Czech Republic consisted of 145 gout patients; 115 normouricaemic controls were used for comparison. We amplified, directly sequenced and analysed 15 ABCG2 exons. The associations between genetic variants and clinical phenotype were analysed using the t-test, Fisher's exact test and a logistic and linear regression approach. Data from a New Zealand Polynesian sample set and the UK Biobank were included for the p.V12M analysis. In the ABCG2 gene, 18 intronic (one dysfunctional splicing) and 11 exonic variants were detected: 9 were non-synonymous (2 common, 7 rare including 1 novel), namely p.V12M, p.Q141K, p.R147W, p.T153M, p.F373C, p.T434M, p.S476P, p.D620N and p.K360del. The p.Q141K (rs2231142) variant had a significantly higher minor allele frequency (0.23) in the gout patients compared with the European-origin population (0.09) and was significantly more common among gout patients than among normouricaemic controls (odds ratio = 3.26, P < 0.0001). Patients with non-synonymous allelic variants had an earlier onset of gout (42 vs 48 years, P = 0.0143) and a greater likelihood of a familial history of gout (41% vs 27%, odds ratio = 1.96, P = 0.053). In a meta-analysis p.V12M exerted a protective effect from gout (P < 0.0001). Genetic variants of ABCG2, common and rare, increased the risk of gout. Non-synonymous allelic variants of ABCG2 had a significant effect on earlier onset of gout and the presence of a familial gout history. ABCG2 should thus be considered a common and significant risk factor for gout. © The Author 2017

  13. All roads lead to chromatin: multiple pathways for histone deposition.

    PubMed

    Li, Qing; Burgess, Rebecca; Zhang, Zhiguo

    2013-01-01

    Chromatin, a complex of DNA and associated proteins, governs diverse processes including gene transcription, DNA replication and DNA repair. The fundamental unit of chromatin is the nucleosome, consisting of 147 bp of DNA wound about 1.6 turns around a histone octamer of one (H3-H4)2 tetramer and two H2A-H2B dimers. In order to form nucleosomes, (H3-H4)2 tetramers are deposited first, followed by the rapid deposition of H2A-H2B. It is believed that the assembly of (H3-H4)2 tetramers into nucleosomes is the rate-limiting step of nucleosome assembly. Moreover, assembly of H3-H4 into nucleosomes following DNA replication, DNA repair and gene transcription is likely to be a key step in the inheritance of epigenetic information and maintenance of genome integrity. In this review, we discuss how nucleosome assembly of H3-H4 is regulated by concerted actions of histone chaperones and modifications on newly synthesized H3 and H4. This article is part of a Special Issue entitled: Histone chaperones and Chromatin assembly.

  14. All roads lead to chromatin: Multiple pathways for histone deposition.

    PubMed

    Li, Qing; Burgess, Rebecca; Zhang, Zhiguo

    2012-03-01

    Chromatin, a complex of DNA and associated proteins, governs diverse processes including gene transcription, DNA replication and DNA repair. The fundamental unit of chromatin is the nucleosome, consisting of 147bp of DNA wound about 1.6 turns around a histone octamer of one (H3-H4)(2) tetramer and two H2A-H2B dimers. In order to form nucleosomes, (H3-H4)(2) tetramers are deposited first, followed by the rapid deposition of H2A-H2B. It is believed that the assembly of (H3-H4)(2) tetramers into nucleosomes is the rate-limiting step of nucleosome assembly. Moreover, assembly of H3-H4 into nucleosomes following DNA replication, DNA repair and gene transcription is likely to be a key step in the inheritance of epigenetic information and maintenance of genome integrity. In this review, we discuss how nucleosome assembly of H3-H4 is regulated by concerted actions of histone chaperones and modifications on newly synthesized H3 and H4. This article is part of a Special Issue entitled: Histone chaperones and Chromatin assembly. Copyright © 2011. Published by Elsevier B.V.

  15. Identification of distinct SET/TAF-Iβ domains required for core histone binding and quantitative characterisation of the interaction

    PubMed Central

    Karetsou, Zoe; Emmanouilidou, Anastasia; Sanidas, Ioannis; Liokatis, Stamatis; Nikolakaki, Eleni; Politou, Anastasia S; Papamarcaki, Thomais

    2009-01-01

    Background The assembly of nucleosomes to higher-order chromatin structures is finely tuned by the relative affinities of histones for chaperones and nucleosomal binding sites. The myeloid leukaemia protein SET/TAF-Iβ belongs to the NAP1 family of histone chaperones and participates in several chromatin-based mechanisms, such as chromatin assembly, nucleosome reorganisation and transcriptional activation. To better understand the histone chaperone function of SET/TAF-Iβ, we designed several SET/TAF-Iβ truncations, examined their structural integrity by circular Dichroism and assessed qualitatively and quantitatively the histone binding properties of wild-type protein and mutant forms using GST-pull down experiments and fluorescence spectroscopy-based binding assays. Results Wild type SET/TAF-Iβ binds to histones H2B and H3 with Kd values of 2.87 and 0.15 μM, respectively. The preferential binding of SET/TAF-Iβ to histone H3 is mediated by its central region and the globular part of H3. On the contrary, the acidic C-terminal tail and the amino-terminal dimerisation domain of SET/TAF-Iβ, as well as the H3 amino-terminal tail, are dispensable for this interaction. Conclusion This type of analysis allowed us to assess the relative affinities of SET/TAF-Iβ for different histones and identify the domains of the protein required for effective histone recognition. Our findings are consistent with recent structural studies of SET/TAF-Iβ and can be valuable to understand the role of SET/TAF-Iβ in chromatin function. PMID:19358706

  16. Histone Deacetylase Inhibition Promotes Osteoblast Maturation by Altering the Histone H4 Epigenome and Reduces Akt Phosphorylation*

    PubMed Central

    Dudakovic, Amel; Evans, Jared M.; Li, Ying; Middha, Sumit; McGee-Lawrence, Meghan E.; van Wijnen, Andre J.; Westendorf, Jennifer J.

    2013-01-01

    Bone has remarkable regenerative capacity, but this ability diminishes during aging. Histone deacetylase inhibitors (HDIs) promote terminal osteoblast differentiation and extracellular matrix production in culture. The epigenetic events altered by HDIs in osteoblasts may hold clues for the development of new anabolic treatments for osteoporosis and other conditions of low bone mass. To assess how HDIs affect the epigenome of committed osteoblasts, MC3T3 cells were treated with suberoylanilide hydroxamic acid (SAHA) and subjected to microarray gene expression profiling and high-throughput ChIP-Seq analysis. As expected, SAHA induced differentiation and matrix calcification of osteoblasts in vitro. ChIP-Seq analysis revealed that SAHA increased histone H4 acetylation genome-wide and in differentially regulated genes, except for the 500 bp upstream of transcriptional start sites. Pathway analysis indicated that SAHA increased the expression of insulin signaling modulators, including Slc9a3r1. SAHA decreased phosphorylation of insulin receptor β, Akt, and the Akt substrate FoxO1, resulting in FoxO1 stabilization. Thus, SAHA induces genome-wide H4 acetylation and modulates the insulin/Akt/FoxO1 signaling axis, whereas it promotes terminal osteoblast differentiation in vitro. PMID:23940046

  17. Mutations in the BAF-Complex Subunit DPF2 Are Associated with Coffin-Siris Syndrome.

    PubMed

    Vasileiou, Georgia; Vergarajauregui, Silvia; Endele, Sabine; Popp, Bernt; Büttner, Christian; Ekici, Arif B; Gerard, Marion; Bramswig, Nuria C; Albrecht, Beate; Clayton-Smith, Jill; Morton, Jenny; Tomkins, Susan; Low, Karen; Weber, Astrid; Wenzel, Maren; Altmüller, Janine; Li, Yun; Wollnik, Bernd; Hoganson, George; Plona, Maria-Renée; Cho, Megan T; Thiel, Christian T; Lüdecke, Hermann-Josef; Strom, Tim M; Calpena, Eduardo; Wilkie, Andrew O M; Wieczorek, Dagmar; Engel, Felix B; Reis, André

    2018-03-01

    Variants affecting the function of different subunits of the BAF chromatin-remodelling complex lead to various neurodevelopmental syndromes, including Coffin-Siris syndrome. Furthermore, variants in proteins containing PHD fingers, motifs recognizing specific histone tail modifications, have been associated with several neurological and developmental-delay disorders. Here, we report eight heterozygous de novo variants (one frameshift, two splice site, and five missense) in the gene encoding the BAF complex subunit double plant homeodomain finger 2 (DPF2). Affected individuals share common clinical features described in individuals with Coffin-Siris syndrome, including coarse facial features, global developmental delay, intellectual disability, speech impairment, and hypoplasia of fingernails and toenails. All variants occur within the highly conserved PHD1 and PHD2 motifs. Moreover, missense variants are situated close to zinc binding sites and are predicted to disrupt these sites. Pull-down assays of recombinant proteins and histone peptides revealed that a subset of the identified missense variants abolish or impaire DPF2 binding to unmodified and modified H3 histone tails. These results suggest an impairment of PHD finger structural integrity and cohesion and most likely an aberrant recognition of histone modifications. Furthermore, the overexpression of these variants in HEK293 and COS7 cell lines was associated with the formation of nuclear aggregates and the recruitment of both wild-type DPF2 and BRG1 to these aggregates. Expression analysis of truncating variants found in the affected individuals indicated that the aberrant transcripts escape nonsense-mediated decay. Altogether, we provide compelling evidence that de novo variants in DPF2 cause Coffin-Siris syndrome and propose a dominant-negative mechanism of pathogenicity. Copyright © 2018 American Society of Human Genetics. Published by Elsevier Inc. All rights reserved.

  18. Histone H4 hyperacetylation and rapid turnover of its acetyl groups in transcriptionally inactive rooster testis spermatids.

    PubMed Central

    Oliva, R; Mezquita, C

    1982-01-01

    In order to study the relationship between acetylation of histones, chromatin structure and gene activity, the distribution and turnover of acetyl groups among nucleosomal core histones and the extent of histone H4 acetylation were examined in rooster testis cell nuclei at different stages of spermatogenesis. Histone H4 was the predominant acetylated histone in mature testes. Hyperacetylation of H4 and rapid turnover of its acetyl groups are not univocally correlated with transcriptional activity since they were detected in both genetically active testicular cells and genetically inactive elongated spermatids. During the transition from nucleohistone to nucleoprotamine in elongated spermatids the chromatin undergoes dramatic structural changes with exposition of binding sites on DNA (1). Hyperacetylation of H4 and rapid turnover of its acetyl groups could be correlated with the particular conformation of chromatin in elongated spermatids and might represent a necessary condition for binding of chromosomal proteins to DNA. Images PMID:7162988

  19. Epigenetic regulation of the NR4A orphan nuclear receptor NOR1 by histone acetylation.

    PubMed

    Zhao, Yue; Nomiyama, Takashi; Findeisen, Hannes M; Qing, Hua; Aono, Jun; Jones, Karrie L; Heywood, Elizabeth B; Bruemmer, Dennis

    2014-12-20

    The nuclear receptor NOR1 is an immediate-early response gene implicated in the transcriptional control of proliferation. Since the expression level of NOR1 is rapidly induced through cAMP response element binding (CREB) protein-dependent promoter activation, we investigated the contribution of histone acetylation to this transient induction. We demonstrate that NOR1 transcription is induced by histone deacetylase (HDAC) inhibition and by depletion of HDAC1 and HDAC3. HDAC inhibition activated the NOR1 promoter, increased histone acetylation and augmented the recruitment of phosphorylated CREB to the promoter. Furthermore, HDAC inhibition increased Ser133 phosphorylation of CREB and augmented NOR1 protein stability. These data outline previously unrecognized mechanisms of NOR1 regulation and illustrate a key role for histone acetylation in the rapid induction of NOR1. Copyright © 2014 Federation of European Biochemical Societies. Published by Elsevier B.V. All rights reserved.

  20. Arabidopsis DNA methyltransferase AtDNMT2 associates with histone deacetylase AtHD2s activity

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Song, Yuan; Southern Crop Protection and Food Research Centre, Agriculture and Agri-Food Canada, 1391 Sandford Street, London, ON, Canada N5V4T3; Wu, Keqiang

    2010-05-28

    DNA methyltransferase2 (DNMT2) is always deemed to be enigmatic, because it contains highly conserved DNA methyltransferase motifs but lacks the DNA methylation catalytic capability. Here we show that Arabidopsis DNA methyltransferase2 (AtDNMT2) is localized in nucleus and associates with histone deacetylation. Bimolecular fluorescence complementation and pull-down assays show AtDNMT2 interacts with type-2 histone deacetylases (AtHD2s), a unique type of histone deacetylase family in plants. Through analyzing the expression of AtDNMT2: ss-glucuronidase (GUS) fusion protein, we demonstrate that AtDNMT2 has the ability to repress gene expression at transcription level. Meanwhile, the expression of AtDNMT2 gene is altered in athd2c mutant plants.more » We propose that AtDNMT2 possibly involves in the activity of histone deacetylation and plant epigenetic regulatory network.« less

  1. Histone Deacetylase (HDAC) Inhibitors - Emerging Roles in Neuronal Memory, Learning, Synaptic Plasticity and Neural Regeneration

    PubMed Central

    Ahmad Ganai, Shabir; Ramadoss, Mahalakshmi; Mahadevan, Vijayalakshmi

    2016-01-01

    Epigenetic regulation of neuronal signalling through histone acetylation dictates transcription programs that govern neuronal memory, plasticity and learning paradigms. Histone Acetyl Transferases (HATs) and Histone Deacetylases (HDACs) are antagonistic enzymes that regulate gene expression through acetylation and deacetylation of histone proteins around which DNA is wrapped inside a eukaryotic cell nucleus. The epigenetic control of HDACs and the cellular imbalance between HATs and HDACs dictate disease states and have been implicated in muscular dystrophy, loss of memory, neurodegeneration and autistic disorders. Altering gene expression profiles through inhibition of HDACs is now emerging as a powerful technique in therapy. This review presents evolving applications of HDAC inhibitors as potential drugs in neurological research and therapy. Mechanisms that govern their expression profiles in neuronal signalling, plasticity and learning will be covered. Promising and exciting possibilities of HDAC inhibitors in memory formation, fear conditioning, ischemic stroke and neural regeneration have been detailed. PMID:26487502

  2. Histone Deacetylase (HDAC) Inhibitors - emerging roles in neuronal memory, learning, synaptic plasticity and neural regeneration.

    PubMed

    Ganai, Shabir Ahmad; Ramadoss, Mahalakshmi; Mahadevan, Vijayalakshmi

    2016-01-01

    Epigenetic regulation of neuronal signalling through histone acetylation dictates transcription programs that govern neuronal memory, plasticity and learning paradigms. Histone Acetyl Transferases (HATs) and Histone Deacetylases (HDACs) are antagonistic enzymes that regulate gene expression through acetylation and deacetylation of histone proteins around which DNA is wrapped inside a eukaryotic cell nucleus. The epigenetic control of HDACs and the cellular imbalance between HATs and HDACs dictate disease states and have been implicated in muscular dystrophy, loss of memory, neurodegeneration and autistic disorders. Altering gene expression profiles through inhibition of HDACs is now emerging as a powerful technique in therapy. This review presents evolving applications of HDAC inhibitors as potential drugs in neurological research and therapy. Mechanisms that govern their expression profiles in neuronal signalling, plasticity and learning will be covered. Promising and exciting possibilities of HDAC inhibitors in memory formation, fear conditioning, ischemic stroke and neural regeneration have been detailed.

  3. Accuracy of circulating histones in predicting persistent organ failure and mortality in patients with acute pancreatitis.

    PubMed

    Liu, T; Huang, W; Szatmary, P; Abrams, S T; Alhamdi, Y; Lin, Z; Greenhalf, W; Wang, G; Sutton, R; Toh, C H

    2017-08-01

    Early prediction of acute pancreatitis severity remains a challenge. Circulating levels of histones are raised early in mouse models and correlate with disease severity. It was hypothesized that circulating histones predict persistent organ failure in patients with acute pancreatitis. Consecutive patients with acute pancreatitis fulfilling inclusion criteria admitted to Royal Liverpool University Hospital were enrolled prospectively between June 2010 and March 2014. Blood samples were obtained within 48 h of abdominal pain onset and relevant clinical data during the hospital stay were collected. Healthy volunteers were enrolled as controls. The primary endpoint was occurrence of persistent organ failure. The predictive values of circulating histones, clinical scores and other biomarkers were determined. Among 236 patients with acute pancreatitis, there were 156 (66·1 per cent), 57 (24·2 per cent) and 23 (9·7 per cent) with mild, moderate and severe disease respectively, according to the revised Atlanta classification. Forty-seven healthy volunteers were included. The area under the receiver operating characteristic (ROC) curve (AUC) for circulating histones in predicting persistent organ failure and mortality was 0·92 (95 per cent c.i. 0·85 to 0·99) and 0·96 (0·92 to 1·00) respectively; histones were at least as accurate as clinical scores or biochemical markers. For infected pancreatic necrosis and/or sepsis, the AUC was 0·78 (0·62 to 0·94). Histones did not predict or correlate with local pancreatic complications, but correlated negatively with leucocyte cell viability (r = -0·511, P = 0·001). Quantitative assessment of circulating histones in plasma within 48 h of abdominal pain onset can predict persistent organ failure and mortality in patients with acute pancreatitis. Early death of immune cells may contribute to raised circulating histone levels in acute pancreatitis. © 2017 The Authors. BJS published by John Wiley & Sons Ltd on behalf of BJS

  4. Cattle with increased severity of bovine respiratory disease complex exhibit decreased capacity to protect against histone cytotoxicity.

    PubMed

    Matera, J A; Wilson, B K; Hernandez Gifford, J A; Step, D L; Krehbiel, C R; Gifford, C A

    2015-04-01

    Bovine respiratory disease complex (BRDC) is the leading cause of morbidity and mortality in feedlot cattle. Significant inflammation and lesions are often observed in lungs of infected cattle. During acute inflammatory responses, histones contribute to mortality in rodents and humans and serum proteins can protect against histone-induced cytotoxicity. We hypothesized that cattle experiencing chronic or fatal cases of BRDC have reduced ability to protect against cytotoxic effects of histones. Serum samples were collected from 66 bull calves at the time of normal feedlot processing procedures. Animals were retrospectively assigned to groups consisting of calves never treated for BRDC (control [CONT]; n = 10), calves treated with antimicrobials once for BRDC (1T; n = 16), calves treated twice for BRDC (2T; n = 13), calves treated 3 times for BRDC (3T; n = 14), or calves treated 4 times for BRDC (4T; n = 13). Samples were also collected each time animals received antimicrobial treatment; animals within a group were further sorted by calves that recovered and calves that died to test histone cytotoxicity. Bovine kidney cells were cultured in duplicate in 96-well plates and exposed to 0 or 50 μg/mL of total histones for 18 h with 1% serum from each animal. Cell viability was assessed by the addition of resazurin for 6 h followed by fluorescent quantification. Fluorescent values from serum alone were subtracted from values obtained for histone treatment for each animal. Serum from CONT, 1T, and 2T at initial processing all exhibited a similar (P > 0.10) response to histone treatment with fluorescent values of -312 ± 557, -1,059 ± 441, and -975 ± 489, respectively. However, 3T and 4T demonstrated an impaired capacity (P < 0.05) to protect against histones (-2,778 ± 471 and -3,026 ± 489) at initial processing when compared to the other groups. When sorted by mortality within group, calves that were treated twice and recovered (-847 ± 331) demonstrated a greater (P

  5. Asymmetric histone modifications between the original and derived loci of human segmental duplications

    PubMed Central

    Zheng, Deyou

    2008-01-01

    Background Sequencing and annotation of several mammalian genomes have revealed that segmental duplications are a common architectural feature of primate genomes; in fact, about 5% of the human genome is composed of large blocks of interspersed segmental duplications. These segmental duplications have been implicated in genomic copy-number variation, gene novelty, and various genomic disorders. However, the molecular processes involved in the evolution and regulation of duplicated sequences remain largely unexplored. Results In this study, the profile of about 20 histone modifications within human segmental duplications was characterized using high-resolution, genome-wide data derived from a ChIP-Seq study. The analysis demonstrates that derivative loci of segmental duplications often differ significantly from the original with respect to many histone methylations. Further investigation showed that genes are present three times more frequently in the original than in the derivative, whereas pseudogenes exhibit the opposite trend. These asymmetries tend to increase with the age of segmental duplications. The uneven distribution of genes and pseudogenes does not, however, fully account for the asymmetry in the profile of histone modifications. Conclusion The first systematic analysis of histone modifications between segmental duplications demonstrates that two seemingly 'identical' genomic copies are distinct in their epigenomic properties. Results here suggest that local chromatin environments may be implicated in the discrimination of derived copies of segmental duplications from their originals, leading to a biased pseudogenization of the new duplicates. The data also indicate that further exploration of the interactions between histone modification and sequence degeneration is necessary in order to understand the divergence of duplicated sequences. PMID:18598352

  6. Genome-wide analysis of histone modifiers in tomato: gaining an insight into their developmental roles.

    PubMed

    Aiese Cigliano, Riccardo; Sanseverino, Walter; Cremona, Gaetana; Ercolano, Maria R; Conicella, Clara; Consiglio, Federica M

    2013-01-28

    Histone post-translational modifications (HPTMs) including acetylation and methylation have been recognized as playing a crucial role in epigenetic regulation of plant growth and development. Although Solanum lycopersicum is a dicot model plant as well as an important crop, systematic analysis and expression profiling of histone modifier genes (HMs) in tomato are sketchy. Based on recently released tomato whole-genome sequences, we identified in silico 32 histone acetyltransferases (HATs), 15 histone deacetylases (HDACs), 52 histone methytransferases (HMTs) and 26 histone demethylases (HDMs), and compared them with those detected in Arabidopsis (Arabidopsis thaliana), maize (Zea mays) and rice (Oryza sativa) orthologs. Comprehensive analysis of the protein domain architecture and phylogeny revealed the presence of non-canonical motifs and new domain combinations, thereby suggesting for HATs the existence of a new family in plants. Due to species-specific diversification during evolutionary history tomato has fewer HMs than Arabidopsis. The transcription profiles of HMs within tomato organs revealed a broad functional role for some HMs and a more specific activity for others, suggesting key HM regulators in tomato development. Finally, we explored S. pennellii introgression lines (ILs) and integrated the map position of HMs, their expression profiles and the phenotype of ILs. We thereby proved that the strategy was useful to identify HM candidates involved in carotenoid biosynthesis in tomato fruits. In this study, we reveal the structure, phylogeny and spatial expression of members belonging to the classical families of HMs in tomato. We provide a framework for gene discovery and functional investigation of HMs in other Solanaceae species.

  7. Snipper, an Eri1 homologue, affects histone mRNA abundance and is crucial for normal Drosophila melanogaster development.

    PubMed

    Alexiadis, Anastasios; Delidakis, Christos; Kalantidis, Kriton

    2017-07-01

    The conserved 3'-5' RNA exonuclease ERI1 is implicated in RNA interference inhibition, 5.8S rRNA maturation and histone mRNA maturation and turnover. The single ERI1 homologue in Drosophila melanogaster Snipper (Snp) is a 3'-5' exonuclease, but its in vivo function remains elusive. Here, we report Snp requirement for normal Drosophila development, since its perturbation leads to larval arrest and tissue-specific downregulation results in abnormal tissue development. Additionally, Snp directly interacts with histone mRNA, and its depletion results in drastic reduction in histone transcript levels. We propose that Snp protects the 3'-ends of histone mRNAs and upon its absence, histone transcripts are readily degraded. This in turn may lead to cell cycle delay or arrest, causing growth arrest and developmental perturbations. © 2017 Federation of European Biochemical Societies.

  8. Histone modifier gene mutations in peripheral T-cell lymphoma not otherwise specified.

    PubMed

    Ji, Meng-Meng; Huang, Yao-Hui; Huang, Jin-Yan; Wang, Zhao-Fu; Fu, Di; Liu, Han; Liu, Feng; Leboeuf, Christophe; Wang, Li; Ye, Jing; Lu, Yi-Ming; Janin, Anne; Cheng, Shu; Zhao, Wei-Li

    2018-04-01

    Due to heterogeneous morphological and immunophenotypic features, approximately 50% of peripheral T-cell lymphomas are unclassifiable and categorized as peripheral T-cell lymphomas, not otherwise specified. These conditions have an aggressive course and poor clinical outcome. Identification of actionable biomarkers is urgently needed to develop better therapeutic strategies. Epigenetic alterations play a crucial role in tumor progression. Histone modifications, particularly methylation and acetylation, are generally involved in chromatin state regulation. Here we screened the core set of genes related to histone methylation ( KMT2D , SETD2 , KMT2A , KDM6A ) and acetylation ( EP300 , CREBBP ) and identified 59 somatic mutations in 45 of 125 (36.0%) patients with peripheral T-cell lymphomas, not otherwise specified. Histone modifier gene mutations were associated with inferior progression-free survival time of the patients, irrespective of chemotherapy regimens, but an increased response to the histone deacetylase inhibitor chidamide. In vitro , chidamide significantly inhibited the growth of EP300-mutated T-lymphoma cells and KMT2D-mutated T-lymphoma cells when combined with the hypomethylating agent decitabine. Mechanistically, decitabine acted synergistically with chidamide to enhance the interaction of KMT2D with transcription factor PU.1, regulated H3K4me-associated signaling pathways, and sensitized T-lymphoma cells to chidamide. In a xenograft KMT2D-mutated T-lymphoma model, dual treatment with chidamide and decitabine significantly retarded tumor growth and induced cell apoptosis through modulation of the KMT2D/H3K4me axis. Our work thus contributes to the understanding of aberrant histone modification in peripheral T-cell lymphomas, not otherwise specified and the stratification of a biological subset that can benefit from epigenetic treatment. Copyright© 2018 Ferrata Storti Foundation.

  9. A Role for Histone Deacetylases in the Cellular and Behavioral Mechanisms Underlying Learning and Memory

    ERIC Educational Resources Information Center

    Mahgoub, Melissa; Monteggia, Lisa M.

    2014-01-01

    Histone deacetylases (HDACs) are a family of chromatin remodeling enzymes that restrict access of transcription factors to the DNA, thereby repressing gene expression. In contrast, histone acetyltransferases (HATs) relax the chromatin structure allowing for an active chromatin state and promoting gene transcription. Accumulating data have…

  10. Genome-wide meta-analysis of common variant differences between men and women

    PubMed Central

    Boraska, Vesna; Jerončić, Ana; Colonna, Vincenza; Southam, Lorraine; Nyholt, Dale R.; William Rayner, Nigel; Perry, John R.B.; Toniolo, Daniela; Albrecht, Eva; Ang, Wei; Bandinelli, Stefania; Barbalic, Maja; Barroso, Inês; Beckmann, Jacques S.; Biffar, Reiner; Boomsma, Dorret; Campbell, Harry; Corre, Tanguy; Erdmann, Jeanette; Esko, Tõnu; Fischer, Krista; Franceschini, Nora; Frayling, Timothy M.; Girotto, Giorgia; Gonzalez, Juan R.; Harris, Tamara B.; Heath, Andrew C.; Heid, Iris M.; Hoffmann, Wolfgang; Hofman, Albert; Horikoshi, Momoko; Hua Zhao, Jing; Jackson, Anne U.; Hottenga, Jouke-Jan; Jula, Antti; Kähönen, Mika; Khaw, Kay-Tee; Kiemeney, Lambertus A.; Klopp, Norman; Kutalik, Zoltán; Lagou, Vasiliki; Launer, Lenore J.; Lehtimäki, Terho; Lemire, Mathieu; Lokki, Marja-Liisa; Loley, Christina; Luan, Jian'an; Mangino, Massimo; Mateo Leach, Irene; Medland, Sarah E.; Mihailov, Evelin; Montgomery, Grant W.; Navis, Gerjan; Newnham, John; Nieminen, Markku S.; Palotie, Aarno; Panoutsopoulou, Kalliope; Peters, Annette; Pirastu, Nicola; Polašek, Ozren; Rehnström, Karola; Ripatti, Samuli; Ritchie, Graham R.S.; Rivadeneira, Fernando; Robino, Antonietta; Samani, Nilesh J.; Shin, So-Youn; Sinisalo, Juha; Smit, Johannes H.; Soranzo, Nicole; Stolk, Lisette; Swinkels, Dorine W.; Tanaka, Toshiko; Teumer, Alexander; Tönjes, Anke; Traglia, Michela; Tuomilehto, Jaakko; Valsesia, Armand; van Gilst, Wiek H.; van Meurs, Joyce B.J.; Smith, Albert Vernon; Viikari, Jorma; Vink, Jacqueline M.; Waeber, Gerard; Warrington, Nicole M.; Widen, Elisabeth; Willemsen, Gonneke; Wright, Alan F.; Zanke, Brent W.; Zgaga, Lina; Boehnke, Michael; d'Adamo, Adamo Pio; de Geus, Eco; Demerath, Ellen W.; den Heijer, Martin; Eriksson, Johan G.; Ferrucci, Luigi; Gieger, Christian; Gudnason, Vilmundur; Hayward, Caroline; Hengstenberg, Christian; Hudson, Thomas J.; Järvelin, Marjo-Riitta; Kogevinas, Manolis; Loos, Ruth J.F.; Martin, Nicholas G.; Metspalu, Andres; Pennell, Craig E.; Penninx, Brenda W.; Perola, Markus; Raitakari, Olli; Salomaa, Veikko; Schreiber, Stefan; Schunkert, Heribert; Spector, Tim D.; Stumvoll, Michael; Uitterlinden, André G.; Ulivi, Sheila; van der Harst, Pim; Vollenweider, Peter; Völzke, Henry; Wareham, Nicholas J.; Wichmann, H.-Erich; Wilson, James F.; Rudan, Igor; Xue, Yali; Zeggini, Eleftheria

    2012-01-01

    The male-to-female sex ratio at birth is constant across world populations with an average of 1.06 (106 male to 100 female live births) for populations of European descent. The sex ratio is considered to be affected by numerous biological and environmental factors and to have a heritable component. The aim of this study was to investigate the presence of common allele modest effects at autosomal and chromosome X variants that could explain the observed sex ratio at birth. We conducted a large-scale genome-wide association scan (GWAS) meta-analysis across 51 studies, comprising overall 114 863 individuals (61 094 women and 53 769 men) of European ancestry and 2 623 828 common (minor allele frequency >0.05) single-nucleotide polymorphisms (SNPs). Allele frequencies were compared between men and women for directly-typed and imputed variants within each study. Forward-time simulations for unlinked, neutral, autosomal, common loci were performed under the demographic model for European populations with a fixed sex ratio and a random mating scheme to assess the probability of detecting significant allele frequency differences. We do not detect any genome-wide significant (P < 5 × 10−8) common SNP differences between men and women in this well-powered meta-analysis. The simulated data provided results entirely consistent with these findings. This large-scale investigation across ∼115 000 individuals shows no detectable contribution from common genetic variants to the observed skew in the sex ratio. The absence of sex-specific differences is useful in guiding genetic association study design, for example when using mixed controls for sex-biased traits. PMID:22843499

  11. Silencing of IFN-stimulated gene transcription is regulated by histone H1 and its chaperone TAF-I

    PubMed Central

    Kadota, Shinichi; Nagata, Kyosuke

    2014-01-01

    Chromatin structure and its alteration play critical roles in the regulation of transcription. However, the transcriptional silencing mechanism with regard to the chromatin structure at an unstimulated state of the interferon (IFN)-stimulated gene (ISG) remains unclear. Here we investigated the role of template activating factor-I (TAF-I, also known as SET) in ISG transcription. Knockdown (KD) of TAF-I increased ISG transcript and simultaneously reduced the histone H1 level on the ISG promoters during the early stages of transcription after IFN stimulation from the unstimulated state. The transcription factor levels on the ISG promoters were increased in TAF-I KD cells only during the early stages of transcription. Furthermore, histone H1 KD also increased ISG transcript. TAF-I and histone H1 double KD did not show the additive effect in ISG transcription, suggesting that TAF-I and histone H1 may act on the same regulatory pathway to control ISG transcription. In addition, TAF-I KD and histone H1 KD affected the chromatin structure near the ISG promoters. On the basis of these findings, we propose that TAF-I and its target histone H1 are key regulators of the chromatin structure at the ISG promoter to maintain the silent state of ISG transcription. PMID:24878923

  12. Histone deacetylase 3 (HDAC 3) as emerging drug target in NF-κB-mediated inflammation

    PubMed Central

    Leus, Niek G.J.; Zwinderman, Martijn R.H.; Dekker, Frank J.

    2016-01-01

    Activation of inflammatory gene expression is regulated, among other factors, by post-translational modifications of histone proteins. The most investigated type of histone modifications are lysine acetylations. Histone deacetylases (HDACs) remove acetylations from lysines, thereby influencing (inflammatory) gene expression. Intriguingly, apart from histones, HDACs also target non-histone proteins. The nuclear factor κB (NF-κB) pathway is an important regulator in the expression of numerous inflammatory genes, and acetylation plays a crucial role in regulating its responses. Several studies have shed more light on the role of HDAC 1-3 in inflammation with a particular pro-inflammatory role for HDAC 3. Nevertheless, the HDAC-NF-κB interactions in inflammatory signalling have not been fully understood. An important challenge in targeting the regulatory role of HDACs in the NF-κB pathway is the development of highly potent small molecules that selectively target HDAC iso-enzymes. This review focuses on the role of HDAC 3 in (NF-κB-mediated) inflammation and NF-κB lysine acetylation. In addition, we address the application of frequently used small molecule HDAC inhibitors as an approach to attenuate inflammatory responses, and their potential as novel therapeutics. Finally, recent progress and future directions in medicinal chemistry efforts aimed at HDAC 3-selective inhibitors are discussed. PMID:27371876

  13. LSD1 knockdown reveals novel histone lysine methylation in human breast cancer MCF-7 cells.

    PubMed

    Jin, Yue; Huo, Bo; Fu, Xueqi; Cheng, Zhongyi; Zhu, Jun; Zhang, Yu; Hao, Tian; Hu, Xin

    2017-08-01

    Histone lysine methylation, which plays an important role in the regulation of gene expression, genome stability, chromosome conformation and cell differentiation, is a dynamic process that is collaboratively regulated by lysine methyltransferases (KMTs) and lysine demethylases (KDMs). LSD1, the first identified KDMs, catalyzes the demethylation of mono- and di-methylated H3K4 and H3K9. Here, we systematically investigated the effects of LSD1 knockdown on histone methylations. Surprisingly, in addition to H3K4 and H3K9, the methylation level on other histone lysines, such as H3K27, H3K36 and H3K79, are also increased. The expression of SOX2, E-cadherin and FoxA2 are increased upon LSD1 knockdown, and the methylation level of H3K4, H3K27 and H3K36 in the promoter region of these genes are all changed after LSD1 knockdown. Our results show that LSD1 knockdown has a broad effect on histone lysine methylation, which indicates that LSD1 regulates histone lysine methylation in collaboration with other KMTs and KDMs. Copyright © 2017 Elsevier Masson SAS. All rights reserved.

  14. The C. elegans histone deacetylase HDA-1 is required for cell migration and axon pathfinding.

    PubMed

    Zinovyeva, Anna Y; Graham, Serena M; Cloud, Veronica J; Forrester, Wayne C

    2006-01-01

    Histone proteins play integral roles in chromatin structure and function. Histones are subject to several types of posttranslational modifications, including acetylation, which can produce transcriptional activation. The converse, histone deacetylation, is mediated by histone deacetylases (HDACs) and often is associated with transcriptional silencing. We identified a new mutation, cw2, in the Caenorhabditis elegans hda-1 gene, which encodes a histone deacetylase. Previous studies showed that a mutation in hda-1, e1795, or reduction of hda-1 RNA by RNAi causes defective vulval and gonadal development leading to sterility. The hda-1(cw2) mutation causes defective vulval development and reduced fertility, like hda-1(e1795), albeit with reduced severity. Unlike the previously reported hda-1 mutation, hda-1(cw2) mutants are viable as homozygotes, although many die as embryos or larvae, and are severely uncoordinated. Strikingly, in hda-1(cw2) mutants, axon pathfinding is defective; specific axons often appear to wander randomly or migrate in the wrong direction. In addition, the long range migrations of three neuron types and fasciculation of the ventral nerve cord are defective. Together, our studies define a new role for HDA-1 in nervous system development, and provide the first evidence for HDAC function in regulating neuronal axon guidance.

  15. The effect of PCSK1 variants on waist, waist-hip ratio and glucose metabolism is modified by sex and glucose tolerance status.

    PubMed

    Gjesing, Anette P; Vestmar, Marie A; Jørgensen, Torben; Heni, Martin; Holst, Jens J; Witte, Daniel R; Hansen, Torben; Pedersen, Oluf

    2011-01-01

    We aimed to evaluate the effects of the G-allele of rs6232 and the C-allele of rs6235 within PCSK1 on measures of body fat and glucose homeostasis in Danish individuals and to assess interactions of genotypes with age, sex and glucose tolerance status. Data were included in meta-analyses of additional Europeans. Rs6232 and rs6235 were genotyped in 6,164 Danes from the Inter99 study of middle-aged people. Results from these analyses were combined with previously published studies in meta-analyses of a total of 27,786 individuals. The impact of the variants was also investigated in a subset of 62 glucose-tolerant men during a meal challenge including measures of serum incretins. In men we found an effect on body composition in sex-stratified analyses where the rs6235 C-allele conferred an increased waist circumference of 0.8 cm per allele (0.2-1.5, p = 0.008) and increased waist-to-hip ratio of 0.004 (0.0005-0.008, p = 0.027). In the meta-analyses where men and women were combined, the rs6232 G-allele associated with increased waist-to-hip ratio (p = 0.02) and the rs6235 C-allele associated with increased waist circumference (p = 0.01). Furthermore, the rs6235 C-allele was associated nominally with a 0.6% (0.1-1%, p = 0.01) reduction in fasting glucose, it interacted with glucose tolerance status for traits related to glucose metabolism and analysis among individuals having abnormal glucose tolerance revealed a 5% (-0.7-9%, p = 0.02) elevated level of acute insulin response for this variant. Finally, we found that the rs6232 G-allele associated with higher levels of GLP-1, GLP-2 and glucagon and that the rs6235 C-allele associated with higher levels of GIP and glucagon during a meal-test. PCSK1 rs6232 G-allele and rs6235 C-allele have an effect on body composition which may be modified by sex, whereas the effect of rs6235 C-allele on fasting and stimulated circulating plasma glucose and hormone levels may be influenced by glucose tolerance

  16. Systematic comparison of variant calling pipelines using gold standard personal exome variants

    PubMed Central

    Hwang, Sohyun; Kim, Eiru; Lee, Insuk; Marcotte, Edward M.

    2015-01-01

    The success of clinical genomics using next generation sequencing (NGS) requires the accurate and consistent identification of personal genome variants. Assorted variant calling methods have been developed, which show low concordance between their calls. Hence, a systematic comparison of the variant callers could give important guidance to NGS-based clinical genomics. Recently, a set of high-confident variant calls for one individual (NA12878) has been published by the Genome in a Bottle (GIAB) consortium, enabling performance benchmarking of different variant calling pipelines. Based on the gold standard reference variant calls from GIAB, we compared the performance of thirteen variant calling pipelines, testing combinations of three read aligners—BWA-MEM, Bowtie2, and Novoalign—and four variant callers—Genome Analysis Tool Kit HaplotypeCaller (GATK-HC), Samtools mpileup, Freebayes and Ion Proton Variant Caller (TVC), for twelve data sets for the NA12878 genome sequenced by different platforms including Illumina2000, Illumina2500, and Ion Proton, with various exome capture systems and exome coverage. We observed different biases toward specific types of SNP genotyping errors by the different variant callers. The results of our study provide useful guidelines for reliable variant identification from deep sequencing of personal genomes. PMID:26639839

  17. Mediator, TATA-binding Protein, and RNA Polymerase II Contribute to Low Histone Occupancy at Active Gene Promoters in Yeast*

    PubMed Central

    Ansari, Suraiya A.; Paul, Emily; Sommer, Sebastian; Lieleg, Corinna; He, Qiye; Daly, Alexandre Z.; Rode, Kara A.; Barber, Wesley T.; Ellis, Laura C.; LaPorta, Erika; Orzechowski, Amanda M.; Taylor, Emily; Reeb, Tanner; Wong, Jason; Korber, Philipp; Morse, Randall H.

    2014-01-01

    Transcription by RNA polymerase II (Pol II) in eukaryotes requires the Mediator complex, and often involves chromatin remodeling and histone eviction at active promoters. Here we address the role of Mediator in recruitment of the Swi/Snf chromatin remodeling complex and its role, along with components of the preinitiation complex (PIC), in histone eviction at inducible and constitutively active promoters in the budding yeast Saccharomyces cerevisiae. We show that recruitment of the Swi/Snf chromatin remodeling complex to the induced CHA1 promoter, as well as its association with several constitutively active promoters, depends on the Mediator complex but is independent of Mediator at the induced MET2 and MET6 genes. Although transcriptional activation and histone eviction at CHA1 depends on Swi/Snf, Swi/Snf recruitment is not sufficient for histone eviction at the induced CHA1 promoter. Loss of Swi/Snf activity does not affect histone occupancy of several constitutively active promoters; in contrast, higher histone occupancy is seen at these promoters in Mediator and PIC component mutants. We propose that an initial activator-dependent, nucleosome remodeling step allows PIC components to outcompete histones for occupancy of promoter sequences. We also observe reduced promoter association of Mediator and TATA-binding protein in a Pol II (rpb1-1) mutant, indicating mutually cooperative binding of these components of the transcription machinery and indicating that it is the PIC as a whole whose binding results in stable histone eviction. PMID:24727477

  18. Role of histone deacetylases in pancreas: Implications for pathogenesis and therapy

    PubMed Central

    Klieser, Eckhard; Swierczynski, Stefan; Mayr, Christian; Schmidt, Johanna; Neureiter, Daniel; Kiesslich, Tobias; Illig, Romana

    2015-01-01

    In the last years, our knowledge of the pathogenesis in acute and chronic pancreatitis (AP/CP) as well as in pancreatic cancerogenesis has significantly diversified. Nevertheless, the medicinal therapeutic options are still limited and therapeutic success and patient outcome are poor. Epigenetic deregulation of gene expression is known to contribute to development and progression of AP and CP as well as of pancreatic cancer. Therefore, the selective inhibition of aberrantly active epigenetic regulators can be an effective option for future therapies. Histone deacetylases (HDACs) are enzymes that remove an acetyl group from histone tails, thereby causing chromatin compaction and repression of transcription. In this review we present an overview of the currently available literature addressing the role of HDACs in the pancreas and in pancreatic diseases. In pancreatic cancerogenesis, HDACs play a role in the important process of epithelial-mesenchymal-transition, ubiquitin-proteasome pathway and, hypoxia-inducible-factor-1-angiogenesis. Finally, we focus on HDACs as potential therapeutic targets by summarizing currently available histone deacetylase inhibitors. PMID:26691388

  19. [An investigation of trichloroethylene-induced effects on histone methylation in L-02 hepatic cells].

    PubMed

    Deng, R X; Ren, X H; Ruan, J W; Zheng, J; Zhong, J C; Lu, W X; Zou, X Q; Liu, J J

    2017-04-06

    Objective: To further explore TCE-induced hepatotoxicity and its mechanisms by identification of trichloroethylene (TCE) induced abnormal histone methylation in human liver cells. Methods: L-02 cells were treated with 0 and 8 mmol/L TCE for 24 h. Histones were extracted by acid. Liquid chromatography electrospray ionization tandem mass spectrometry (ESI-LC-MS/MS) were used to identify and quantify TCE related histone methylations. TCE induced abnormal methylation of H3K79 me2 and H3K79 me3 were validated by Western blot analysis. The further analysis of the function of histone abnormal methylation modifications were done by single cell gel electrophoresis (SCGE) and Western blot analysis of p53 and ɤH2AX. Results: After treatment with TCE for 24 h in L-02 cells, the 36 TCE related histone methylation sites in 28 peptide segments were identified by MS. After treatment with TCE in concentrations of 0 and 8.0 mmol/L in L-02 cells for 24 h, the relative expression level of histone H3K79 me3 were 1.00±0.06, 0.70±0.09 ( t= 15.01, P= 0.015); the relative expression level of histone H3K79 me2 were 1.00±0.05, 0.74±0.07 ( t= 16.69, P= 0.018); the Olive Tail Moment about DNA damage were 1.46±0.28, 3.12± 0.68 ( t= 15.22, P= 0.018); the relative expression levels of p53 were 1.00±0.04, 1.24±0.04 ( t= 18.71, P= 0.012); and the relative expression levels of ɤH2AX were 1.00 ± 0.03, 1.56 ± 0.11 ( t= 8.32, P= 0 045). Conclusion: TCE can induce changes in the relative expression level of H3K79 me2 and H3K79 me3 in L-02 cell, and induce DNA damage, suggesting that TCE may induce changes in the relative expression level of H3K79 me2 and H3K79 me3 by DNA damage.

  20. ANTIGEN-INDUCED CHANGES IN LYMPHOID CELL HISTONES

    PubMed Central

    Black, Maurice M.; Ansley, Hudson R.

    1967-01-01

    In this study we have examined the solubility of deoxyribonucleoprotein (DNP) isolated from control and antigen-affected thymocytes. 2-M sodium chloride extracts containing the DNP of rat thymus glands were serially diluted. A comparison was made of the effect of dilution on fiber formation in the control and test series. Fiber formation is usually complete for the control material at a salt concentration between 0.63 and 0.57 M. The test material shows some fiber formation within this range. However, a significant portion of the DNP is precipitated at dilutions of 0.54–0.48 M. Ammoniacal silver (A-S) stains the control fibers a characteristic yellowish color. With the test material, those fibers formed within the control range tended to be stained yellowish brown by A-S, whereas those formed only after greater dilution stained blackish. These data, coupled with our previous observations on altered A-S staining, clearly demonstrate an antigen-induced physical and/or chemical alteration of the histone or histone-DNA complex of lymphoid cell chromatin. PMID:4168881