Science.gov

Sample records for historically contaminated soils

  1. Extractability and Bioavailability of Pb and As in Historically Contaminated Orchard Soil: Effects of Compost Amendments

    PubMed Central

    Fleming, Margaret; Yiping, Tai; Ping, Zhuang; McBride, Murray B.

    2015-01-01

    The availability of Pb and As in an historically contaminated orchard soil, after amendment with compost and aging in the field, was determined by single-step chemical extraction with 1.0 M ammonium acetate at pH 4.8, sequential extraction using the modified BCR test, and a redworm bioassay in the laboratory. The efficiency of soil Pb extraction by ammonium acetate was greater at higher total soil Pb but was reduced by compost amendment. Conversely, the extraction efficiency of total soil As increased with compost amendment, but was not sensitive to total soil As. The redworm bioassay indicated Pb (but not As) bioavailability to be reduced by soil amendment with compost, a result consistent with the ammonium acetate extraction test but not reflected in modified BCR test. Electron microprobe studies of the orchard soil revealed Pb and As to be spatially associated in discrete particles along with phosphorus and iron. PMID:23474982

  2. Sea Level Rise Induced Arsenic Release from Historically Contaminated Coastal Soils.

    PubMed

    LeMonte, Joshua J; Stuckey, Jason W; Sanchez, Joshua Z; Tappero, Ryan; Rinklebe, Jörg; Sparks, Donald L

    2017-06-06

    Climate change-induced perturbations in the hydrologic regime are expected to impact biogeochemical processes, including contaminant mobility and cycling. Elevated levels of geogenic and anthropogenic arsenic are found along many coasts around the world, most notably in south and southeast Asia but also in the United States, particularly along the Mid-Atlantic coast. The mechanism by and the extent to which arsenic may be released in contaminated coastal soils due to sea level rise are unknown. Here we show a series of data from a coastal arsenic-contaminated soil exposed to sea and river waters in biogeochemical microcosm reactors across field-validated redox conditions. We find that reducing conditions lead to arsenic release from historically contaminated coastal soils through reductive dissolution of arsenic-bearing mineral oxides in both sea and river water inundations, with less arsenic release from seawater scenarios than river water due to inhibition of oxide dissolution. For the first time, we systematically display gradation of solid phase soil-arsenic speciation across defined redox windows from reducing to oxidizing conditions in natural waters by combining biogeochemical microcosm experiments and X-ray absorption spectroscopy. Our results demonstrate the threat of sea level rise stands to impact arsenic release from contaminated coastal soils by changing redox conditions.

  3. In situ phytoremediation of a soil historically contaminated by metals, hydrocarbons and polychlorobiphenyls.

    PubMed

    Doni, S; Macci, C; Peruzzi, E; Arenella, M; Ceccanti, B; Masciandaro, G

    2012-05-01

    In the past several years, industrial and agricultural activities have led to serious environmental pollution, resulting in a large number of contaminated sites. As a result, much recent research activity has focused on the application of bioremediation technologies as an environmentally friendly and economically feasible means for decontamination of polluted soil. In this study horse manure and Populus nigra (var. italica) (HM + P treatment) have been used, at real scale level, as an approach for bioremediation of a soil historically contaminated by metals (Pb, Cr, Cd, Zn, Cu and Ni) and organic contaminants, such as polychlorobiphenyls and petroleum hydrocarbon. After one year, the HM + P phytotreatment was effective in the reclamation of the polluted soil from both organic and inorganic contaminants. A reduction of about 80% in total petroleum hydrocarbon (TPH), and 60% in polychlorobiphenyls (PCBs) and total metals was observed in the HM + P treatment. In contrast, in the horse manure (HM) treatment, used as control, a reduction of only about 30% of TPH was obtained. In order to assess both effectiveness and evolution of the remediation system to a biologically active soil ecosystem, together with the pollution parameters, the parameters describing the evolution of the soil functionality (enzymatic activities and protein SDS-PAGE pattern) were investigated. A stimulation of the metabolic soil processes (increase in dehydrogenase activity) was observed in the HM + P compared to the HM treatment. Finally, preliminary protein SDS-PAGE results have permitted the identification of proteins that have been recovered in the HM + P soil with respect to the HM; this may become a basic tool for improving the biogeochemical status of soil during the decontamination through the identification of microbial populations that are active in soil decontamination.

  4. Remediation of a historically Pb contaminated soil using a model natural Mn oxide waste.

    PubMed

    McCann, Clare M; Gray, Neil D; Tourney, Janette; Davenport, Russell J; Wade, Matthew; Finlay, Nina; Hudson-Edwards, Karen A; Johnson, Karen L

    2015-11-01

    A natural Mn oxide (NMO) waste was assessed as an in situ remediation amendment for Pb contaminated sites. The viability of this was investigated using a 10 month lysimeter trial, wherein a historically Pb contaminated soil was amended with a 10% by weight model NMO. The model NMO was found to have a large Pb adsorption capacity (qmax 346±14 mg g(-1)). However, due to the heterogeneous nature of the Pb contamination in the soils (3650.54-9299.79 mg kg(-1)), no treatment related difference in Pb via geochemistry could be detected. To overcome difficulties in traditional geochemical techniques due to pollutant heterogeneity we present a new method for unequivocally proving metal sorption to in situ remediation amendments. The method combines two spectroscopic techniques; namely electron probe microanalysis (EPMA) and X-ray photoelectron spectroscopy (XPS). Using this we showed Pb immobilisation on NMO, which were Pb free prior to their addition to the soils. Amendment of the soil with exogenous Mn oxide had no effect on microbial functioning, nor did it perturb the composition of the dominant phyla. We conclude that NMOs show excellent potential as remediation amendments. Copyright © 2015 The Authors. Published by Elsevier Ltd.. All rights reserved.

  5. Isolation and characterisation of polychlorinated biphenyl (PCB) degrading fungi from a historically contaminated soil

    PubMed Central

    Tigini, Valeria; Prigione, Valeria; Di Toro, Sara; Fava, Fabio; Varese, Giovanna C

    2009-01-01

    Background Polychlorinated biphenyls (PCBs) are widespread toxic pollutants. Bioremediation might be an effective, cost competitive and environment-friendly solution for remediating environmental matrices contaminated by PCBs but it is still unsatisfactory, mostly for the limited biodegradation potential of bacteria involved in the processes. Very little is known about mitosporic fungi potential in PCB bioremediation and their occurrence in actual site historically contaminated soils. In the present study, we characterised the native mycoflora of an aged dump site soil contaminated by about 0.9 g kg-1 of Aroclor 1260 PCBs and its changing after aerobic biotreatment with a commercial complex source of bacteria and fungi. Fungi isolated from the soil resulting from 120 days of treatment were screened for their ability to adsorb or metabolise 3 target PCBs. Results The original contaminated soil contained low loads of few fungal species mostly belonging to the Scedosporium, Penicillium and Aspergillus genera. The fungal load and biodiversity generally decreased throughout the aerobic treatment. None of the 21 strains isolated from the treated soil were able to grow on biphenyl (200 mg L-1) or a mixture of 2-chlorobiphenyl, 4,4'-dichlorobiphenyl and 2,2',5,5'-tetrachlorobiphenyl (20 mg L-1 each) as sole carbon sources. However, 16 of them grew in a mineral medium containing the same PCBs mixture and glucose (10 g L-1). Five of the 6 isolates, which displayed the faster and more extensive growth under the latter conditions, were found to degrade the 3 PCBs apparently without the involvement of ligninolytic enzymes; they were identified as Penicillium chrysogenum, Scedosporium apiospermum, Penicillium digitatum and Fusarium solani. They are the first PCB degrading strains of such species reported so far in the literature. Conclusion The native mycoflora of the actual site aged heavily contaminated soil was mainly constituted by genera often reported as able to biodegrade

  6. Extractability and bioavailability of Pb and As in historically contaminated orchard soil: effects of compost amendments.

    PubMed

    Fleming, Margaret; Tai, Yiping; Zhuang, Ping; McBride, Murray B

    2013-06-01

    The availability of Pb and As in an historically contaminated orchard soil, after amendment with compost and aging in the field, was determined by single-step chemical extraction with 1.0 M ammonium acetate at pH 4.8, sequential extraction using the modified BCR test, and a redworm bioassay in the laboratory. The efficiency of soil Pb extraction by ammonium acetate was greater at higher total soil Pb but was reduced by compost amendment. Conversely, the extraction efficiency of total soil As increased with compost amendment, but was not sensitive to total soil As. The redworm bioassay indicated Pb (but not As) bioavailability to be reduced by soil amendment with compost, a result consistent with the ammonium acetate extraction test but not reflected in modified BCR test. Electron microprobe studies of the orchard soil revealed Pb and As to be spatially associated in discrete particles along with phosphorus and iron. Copyright © 2013 Elsevier Ltd. All rights reserved.

  7. Contamination, source, and input route of polycyclic aromatic hydrocarbons in historic wastewater-irrigated agricultural soils.

    PubMed

    Wang, Ning; Li, Hong-Bo; Long, Jin-Lin; Cai, Chao; Dai, Jiu-Lan; Zhang, Juan; Wang, Ren-Qing

    2012-12-01

    Contamination by polycyclic aromatic hydrocarbons (PAHs) of historic wastewater-irrigated agricultural topsoil (0-5 cm) and the contribution of groundwater irrigation and atmospheric deposition to soil PAHs were studied in a typical agricultural region, i.e. Hunpu region, Liaoning, China. Concentrations of total PAHs ranged from 0.43 to 2.64 mg kg⁻¹ in topsoil, being lower than those found in other wastewater-irrigated areas. The levels of PAHs in soil declined as the distance from a water source increased. Concentrations of individual PAHs were generally higher in upland than in paddy topsoils. The calculated nemerow composite index showed that agricultural soil in the region was "polluted" by PAHs. A human health risk assessment based on the total toxic equivalent concentration showed that the presence of elevated concentrations of PAHs in the soil might pose a great threat to the health of local residents. Ratios of pairs of PAHs and principal component analysis (PCA) showed that pyrogenesis, such as coal combustion, was the main source of PAHs, while petroleum, to some extent, also had a strong influence on PAHs contamination in upland soil. The distribution patterns of individual PAHs and composition of PAHs differed between irrigation groundwater and topsoil, but were similar between atmospheric deposition and topsoil. There were significant linear correlations (r = 0.90; p < 0.01) between atmospheric deposition rates and average concentrations of the 16 individual PAHs in soils, while no significant relationships were observed between irrigation groundwater and topsoil in levels of PAHs. These suggested that PAHs in agricultural soils were mainly introduced from atmospheric deposition, rather than from groundwater irrigation after the phasing out of wastewater irrigation in the region since 2002. This study provides a reference to ensure agricultural product safety, pollution control, and proper soil management.

  8. Screening of chelating ligands to enhance mercury accumulation from historically mercury-contaminated soils for phytoextraction.

    PubMed

    Wang, Jianxu; Xia, Jicheng; Feng, Xinbin

    2017-01-15

    Screening of optimal chelating ligands which not only have high capacities to enhance plant uptake of mercury (Hg) from soil but also can decrease bioavailable Hg concentration in soil is necessary to establish a viable chemically-assisted phytoextraction. Therefore, Brassica juncea was exposed to historically Hg-contaminated soil (total Hg, 90 mg kg(-1)) to investigate the efficiency of seven chelating agents [ammonium thiosulphate, sodium thiosulphate, ammonium sulfate, ammonium chloride, sodium nitrate, ethylenediaminetetraacetic acid (EDTA), and sodium sulfite] at enhancing Hg phytoextraction; the leaching of bioavailable Hg caused by these chelating agents was also investigated. The Hg concentration in control (treated with double-distilled water) plant tissues was below 1 mg kg(-1). The remarkably higher Hg concentration was found in plants receiving ammonium thiosulphate and sodium sulfite treatments. The bioaccumulation factors and translocation factors of ammonium thiosulphate and sodium sulfite treatments were significantly higher than those of the other treatments. The more efficient uptake of Hg by plants upon treatment with ammonium thiosulphate and sodium sulfite compared to the other treatments might be explained by the formation of special Hg-thiosulphate complexes that could be preferentially taken up by the roots and transported in plant tissues. The application of sulfite significantly increased bioavailable Hg concentration in soil compared with that in initial soil and control soil, whereas ammonium thiosulphate significantly decreased bioavailable Hg concentration. The apparent decrease of bioavailable Hg in ammonium thiosulphate-treated soil compared with that in sodium sulfite-treated soil might be attributable to the unstable Hg-thiosulphate complexes formed between thiosulphate and Hg; they could react to produce less bioavailable Hg in the soil. The results of this study indicate that ammonium thiosulphate may be an optimal chelating

  9. Arsenic and Lead Uptake by Vegetable Crops Grown on Historically Contaminated Orchard Soils

    PubMed Central

    2015-01-01

    Transfer of Pb and As into vegetables grown in orchard soils historically contaminated by Pb arsenate pesticides was measured in the greenhouse. Lettuce, carrots, green beans and tomatoes were grown on soils containing a range of total Pb (16.5–915 mg/kg) and As (6.9–211 mg/kg) concentrations. The vegetables were acid-digested and analyzed for total Pb and As using ICP-mass spectrometry. Vegetable contamination was dependent on soil total Pb and As content, pH, and vegetable species. Arsenic concentrations were highest in lettuce and green beans, lower in carrots, and much lower in tomato fruit. Transfer of Pb into lettuce and beans was generally lower than that of As, and Pb and As were strongly excluded from tomato fruit. Soil metal concentrations as high as 400 mg/kg Pb and 100 mg/kg As produced vegetables with concentrations of Pb and As below the limits of international health standards. PMID:26949393

  10. Natural attenuation of arsenic in soils near a highly contaminated historical mine waste dump.

    PubMed

    Drahota, Petr; Filippi, Michal; Ettler, Vojtěch; Rohovec, Jan; Mihaljevič, Martin; Sebek, Ondřej

    2012-01-01

    Arsenic-contaminated soils near historical As-rich mine waste in Jáchymov (Czech Rep.), resulting from the smelting and seepage of the mine waste pore water, were studied to examine As partitioning between solid phases and pore waters. Mineralogical and geochemical analyses showed that As is exclusively associated with unidentified amorphous Fe oxyhydroxides, poorly crystalline goethite and hematite as adsorbed and coprecipitated species (with up to 3.2 wt.% As). Adsorption of As by Fe oxyhydroxides is likely to be a major control on the migration of As in the soil pore water containing only up to 15 μg L(-1) As(V). The slight variations in the dissolved As(V) concentrations do not follow the total contents of As in the soil or adsorbed As, but appeared to be a function of pH-dependent sorption onto Fe oxyhydroxides. The geochemical modelling using PHREEQC-2 supported the efficiency of As(V) adsorption by Fe oxyhydroxides in the soil affected by As-rich waste solution seepage. It also suggested that active Fe oxyhydroxides has a strong attenuation capacity in soil that could effectively trap the aqueous As(V) from the unremitting waste seepage for the next approx. 11600 years.

  11. Bioaugmentation of a historically contaminated soil by polychlorinated biphenyls with Lentinus tigrinus

    PubMed Central

    2012-01-01

    Background Several species belonging to the ecological group of white-rot basidiomycetes are able to bring about the remediation of matrices contaminated by a large variety of anthropic organic pollutants. Among them, polychlorobiphenyls (PCBs) are characterized by a high recalcitrance due to both their low bioavailability and the inability of natural microbial communities to degrade them at significant rates and extents. Objective of this study was to assess the impact of a maize stalk-immobilized Lentinus tigrinus CBS 577.79 inoculant combined with soybean oil (SO), as a possible PCB-mobilizing agent, on the bioremediation and resident microbiota of an actual Aroclor 1260 historically contaminated soil under unsaturated solid-phase conditions. Results Best overall PCB depletions (33.6 ± 0.3%) and dechlorination (23.2 ± 1.3%) were found after 60 d incubation in the absence of SO where, however, the fungus appeared to exert adverse effects on both the growth of biphenyl- and chlorobenzoate-degrading bacteria and the abundance of genes coding for both biphenyl dioxygenase (bph) and catechol-2,3-dioxygenase. A significant (P < 0.001) linear inverse relationship between depletion yields and degree of chlorination was observed in both augmented and control microcosms in the absence of SO; conversely, this negative correlation was not evident in SO-amended microcosms where the additive inhibited the biodegradation of low chlorinated congeners. The presence of SO, in fact, resulted in lower abundances of both biphenyl-degrading bacteria and bph. Conclusions The PCB depletion extents obtained in the presence of L. tigrinus are by far higher than those reported in other remediation studies conducted under unsaturated solid phase conditions on actual site soils historically contaminated by Aroclor 1260. These results suggest that the bioaugmentation strategy with the maize stalk-immobilized mycelium of this species might be promising in the reclamation of PCB-contaminated

  12. (Contaminated soil)

    SciTech Connect

    Siegrist, R.L.

    1991-01-08

    The traveler attended the Third International Conference on Contaminated Soil, held in Karlsruhe, Germany. The Conference was a status conference for worldwide research and practice in contaminated soil assessment and environmental restoration, with more than 1500 attendees representing over 26 countries. The traveler made an oral presentation and presented a poster. At the Federal Institute for Water, Soil and Air Hygiene, the traveler met with Dr. Z. Filip, Director and Professor, and Dr. R. Smed-Hildmann, Research Scientist. Detailed discussions were held regarding the results and conclusions of a collaborative experiment concerning humic substance formation in waste-amended soils.

  13. Tracing potential soil contamination in the historical Solvay soda ash plant area, Jaworzno, Southern Poland.

    PubMed

    Sutkowska, Katarzyna; Teper, Leslaw; Stania, Monika

    2015-11-01

    This study of soil conditions was carried out on 30 meadow soil (podzol) samples from the vicinity of the soda ash heap in Jaworzno, supplemented by analyses of 18 samples of waste deposited on the heap. In all samples, the total content of macroelements (Ca and Na) and heavy metals (Cd, Cr, Ni, Pb and Zn) as well as pH were analysed. The element concentrations were measured using inductively coupled plasma optical emission spectrometry (ICP-OES). The materials examined were neutral to ultra-alkaline. Total accumulations (mg kg(-1)) of chemical elements in the soil vary from 130.24 to 14076.67 for Ca, 41.40-926.23 for Na, 0.03-3.34 for Cd, 0.94-103.62 for Cr, 0.94-35.89 for Ni, 3.51-76.47 for Pb and 12.05-279.13 for Zn, whereas quantities of the same elements in the waste samples vary from 171705.13 to 360487.94 for Ca, 517.64-3152.82 for Na, 0.2-9.89 for Cd, 1.16-20.40 for Cr, 1.08-9.79 for Ni, 0.1-146.05 for Pb and 10.26-552.35 for Zn. The vertical distribution of the metals was determined in each soil profile. Despite enrichment of heavy metals in the uppermost horizon on the top of the heap, the results lead to the conclusion that the relation of historical production of soda ash in Jaworzno to current contamination of the local soil environment is insignificant.

  14. Metabolic and bacterial diversity in soils historically contaminated by heavy metals and hydrocarbons.

    PubMed

    Vivas, Astrid; Moreno, Beatriz; del Val, Coral; Macci, Cristina; Masciandaro, Grazia; Benitez, Emilio

    2008-11-01

    The aim of this study was to characterize soils contaminated by different levels of heavy metals and hydrocarbons (Madonna Dell'Acqua, Pisa, Italy). The soils were chemically and biochemically analysed by measuring the standard chemical properties and some enzyme activities related to microbial activity (dehydrogenase activity) and the soil carbon cycle (total and extracellular beta-glucosidase activities). The metabolic capacities of soil microorganisms to degrade hydrocarbons through catechol 2,3-dioxygenase were also described. The microbial diversity of contaminated and uncontaminated soils was estimated by denaturing gradient gel electrophoresis (DGGE) of amplified 16S rDNA sequences. The PCR/single-strand conformation polymorphism (PCR/SSCP) method was used to estimate the genetic diversity of PAH-degrading genes in both contaminated and uncontaminated soils. A greater bacterial diversity and lower catechol 2,3-dioxygenase activity was detected in unpolluted soils. The complexity of the microbial community (Shannon and Simpson indices) as well as the dehydrogenase soil activity negatively correlated with contamination levels. The greatest PAH-degrading gene diversity and the most intense catechol 2,3-dioxygenase activity were found in the soils with the highest levels of hydrocarbons. Heavy metals and hydrocarbon pollution has caused a genetic and metabolic alteration in microbial communities, corresponding to a reduction in microbial activity. A multi-technique approach combining traditional biochemical methods with molecular-based techniques, along with some methodological improvements, may represent an important tool to expand our knowledge of the role of microbial diversity in contaminated soil.

  15. Draft Whole-Genome Sequence of the Alkaliphilic Alishewanella aestuarii Strain HH-ZS, Isolated from Historical Lime Kiln Waste-Contaminated Soil

    PubMed Central

    Salah, Zohier B.; Rout, Simon P.

    2016-01-01

    Here, we present the whole-genome sequence of an environmental Gram-negative Alishewanella aestuarii strain (HH-ZS), isolated from the hyperalkaline contaminated soil of a historical lime kiln in Buxton, United Kingdom. PMID:28034857

  16. Role of Autochthonous Filamentous Fungi in Bioremediation of a Soil Historically Contaminated with Aromatic Hydrocarbons

    PubMed Central

    D'Annibale, A.; Rosetto, F.; Leonardi, V.; Federici, F.; Petruccioli, M.

    2006-01-01

    Nine fungal strains isolated from an aged and heavily contaminated soil were identified and screened to assess their degradative potential. Among them, Allescheriella sp. strain DABAC 1, Stachybotrys sp. strain DABAC 3, and Phlebia sp. strain DABAC 9 were selected for remediation trials on the basis of Poly R-478 decolorization associated with lignin-modifying enzyme (LME) production. These autochthonous fungi were tested for the abilities to grow under nonsterile conditions and to degrade various aromatic hydrocarbons in the same contaminated soil. After 30 days, fungal colonization was clearly visible and was confirmed by ergosterol determination. In spite of subalkaline pH conditions and the presence of heavy metals, the autochthonous fungi produced laccase and Mn and lignin peroxidases. No LME activities were detected in control microcosms. All of the isolates led to a marked removal of naphthalene, dichloroaniline isomers, o-hydroxybiphenyl, and 1,1′-binaphthalene. Stachybotrys sp. strain DABAC 3 was the most effective isolate due to its ability to partially deplete the predominant contaminants 9,10-anthracenedione and 7H-benz[DE]anthracen-7-one. A release of chloride ions was observed in soil treated with either Allescheriella sp. strain DABAC 1 or Stachybotrys sp. strain DABAC 3, suggesting the occurrence of oxidative dehalogenation. The autochthonous fungi led to a significant decrease in soil toxicity, as assessed by both the Lepidium sativum L. germination test and the Collembola mortality test. PMID:16391021

  17. Addition of allochthonous fungi to a historically contaminated soil affects both remediation efficiency and bacterial diversity.

    PubMed

    Federici, Ermanno; Leonardi, Vanessa; Giubilei, Maria A; Quaratino, Daniele; Spaccapelo, Roberta; D'Annibale, Alessandro; Petruccioli, Maurizio

    2007-11-01

    Botryosphaeria rhodina DABAC P82 and Pleurotus pulmonarius CBS 664.97 were tested for their ability to grow and to degrade aromatic hydrocarbons in an aged contaminated soil. To evaluate the impact of indigenous microflora on the overall process, incubations were performed on both fumigated and nonfumigated soils. Fungal colonization by B. rhodina was unexpectedly lower in the fumigated than in the nonfumigated soil while the growth of P. pulmonarius showed an opposite response. Degradation performances and detoxification by both fungi in the nonfumigated soil were markedly higher than those observed in the fumigated one. Heterotrophic bacterial counts in nonfumigated soil augmented with either B. rhodina or P. pulmonarius were significantly higher than those of the corresponding incubation control (6.7 +/- 0.3 x 10(8) and 8.35 +/- 0.6 x 10(8), respectively, vs 9.2 +/- 0.3 x 10(7)). Bacterial communities of both incubation controls and fungal-augmented soil were compared by numerical analysis of denaturing gradient gel electrophoresis profiles of polymerase chain reaction (PCR)-amplified 16S ribosomal RNA (rRNA) genes and cloning and sequencing of PCR-amplified 16S rRNA genes. Besides increasing overall diversity, fungal augmentation led to considerable qualitative differences with respect to the pristine soil.

  18. Can biochar enhance the immobilisation of heavy metals in historically contaminated soils?

    NASA Astrophysics Data System (ADS)

    Karer, Jasmin; Zehetner, Franz; Dunst, Gerald; Wagner, Mario; Puschenreiter, Markus; Friesl-Hanl, Wolfgang; Soja, Gerhard

    2014-05-01

    The location of Arnoldstein in Carinthia, Austria, is an industrial heritage site with mining and smelting activities since about 600 years. Lead and zinc ores were processed for centuries - with impacts on the surrounding soil, being polluted with heavy metals such as Cd, Pb and Zn. Up to now, the concentrations of NH4NO3-extractable heavy metals are far above the trigger values for soils (derived for feed quality according Prüeß, 1994). Cu and Ni concentrations are low and do not contribute to the heavy metal contamination of the soils. The aim of our study was to investigate the effects of various biochar mixtures on immobilisation of heavy metals in this contaminated soil. If biochar successfully immobilises heavy metals, quality of biomass production could be improved. We conducted a pot experiment with ryegrass (Lolium multiflorum) consisting of three different biochar (BC) treatments mixed with compost, a gravel sludge combined with siderite bearing material as well as a lime treatment and an untreated control (n=5). In the analysed treatments, lime significantly lowered the NH4NO3-extractable heavy metal concentrations in the soil compared to the control, except for Cu. Similarly, throughout the study, a combination of gravel sludge and siderite bearing material led to an immobilisation of the heavy metals in the soil. On the contrary, the Miscanthus biochar mixed with compost had no effect on the immobilisation; however, Cu concentration was significantly lower than in all other treatments. The immobilisation of the heavy metals in the soil was generally not reflected in the plants (Lolium multiflorum), except for Zn, showing a significant decrease after lime, poplar BC and gravel sludge with siderite bearing material. However, Zn as well as Cd and Pb remained above the phytotoxicity level of 200 mg kg-1; lime treatment reduced the Zn concentration in Lolium multiflorum to 513 mg kg-1, gravel sludge to 531 mg kg-1 and poplar BC to 560 mg kg-1 while in

  19. Effects of humic substances and soya lecithin on the aerobic bioremediation of a soil historically contaminated by polycyclic aromatic hydrocarbons (PAHs).

    PubMed

    Fava, Fabio; Berselli, Sara; Conte, Pellegrino; Piccolo, Alessandro; Marchetti, Leonardo

    2004-10-20

    The high hydrophobicity of polycyclic aromatic hydrocarbons (PAHs) strongly reduces their bioavailability in aged contaminated soils, thus limiting their bioremediation. The biodegradation of PAHs in soils can be enhanced by employing surface-active agents. However, chemical surfactants are often recalcitrant and exert toxic effects in the amended soils. The effects of two biogenic materials as pollutant-mobilizing agents on the aerobic bioremediation of an aged-contaminated soil were investigated here. A soil historically contaminated by about 13 g kg(-1) of a large variety of PAHs, was amended with soya lecithin (SL) or humic substances (HS) at 1.5% w/w and incubated in aerobic solid-phase and slurry-phase reactors for 150 days. A slow and only partial biodegradation of low-molecular weight PAHs, along with a moderate depletion of the initial soil ecotoxicity, was observed in the control reactors. The overall removal of PAHs in the presence of SL or HS was faster and more extensive and accompanied by a larger soil detoxification, especially under slurry-phase conditions. The SL and HS could be metabolized by soil aerobic microorganisms and enhanced the occurrence of both soil PAHs and indigenous aerobic PAH-degrading bacteria in the reactor water phase. These results indicate that SL and HS are biodegradable and efficiently enhance PAH bioavailability in soil. These natural surfactants significantly intensified the aerobic bioremediation of a historically PAH-contaminated soil under treatment conditions similar to those commonly employed in large-scale soil bioremediation.

  20. Historical arsenic contamination of soil due to long-term phosphate fertiliser applications.

    PubMed

    Hartley, Tom N; Macdonald, Andy J; McGrath, Steve P; Zhao, Fang-Jie

    2013-09-01

    Archived samples from the Park Grass Experiment, established in 1856, were analysed to determine the impacts of long-term phosphate fertiliser applications on arsenic concentrations in soil and herbage. In plots receiving 35 kg P ha(-1) annually (+P), topsoil As concentrations almost doubled from an initial value of ∼10 mg kg(-1) during 1888-1947 and remained stable thereafter. The phosphate fertilisers used before 1948 contained 401-1575 mg As kg(-1), compared to 1.6-20.3 mg As kg(-1) in the later samples. Herbage samples from the +P plots collected during 1888-1947 contained significantly more As than those from the -P plots, but later samples did not differ significantly. Mass-balance calculations show that the increase in soil As can be explained by the As input from P fertiliser applications before 1948. The results demonstrate that the P fertilisers used on the Park Grass Experiment before 1948 caused substantial As contamination of the soil.

  1. Enhanced biodegradation of PAHs in historically contaminated soil by M. gilvum inoculated biochar.

    PubMed

    Xiong, Bijing; Zhang, Youchi; Hou, Yanwei; Arp, Hans Peter H; Reid, Brian J; Cai, Chao

    2017-09-01

    The inoculation of rice straw biochar with PAH-degrading Mycobacterium gilvum (1.27 × 10(11) ± 1.24 × 10(10) cell g(-1)), and the subsequent amendment of this composite material to PAHs contaminated (677 mg kg(-1)) coke plant soil, was conducted in order to investigate if would enhance PAHs biodegradation in soils. The microbe-biochar composite showed superior degradation capacity for phenanthrene, fluoranthene and pyrene. Phenanthrene loss in the microbe-biochar composite, free cell alone and biochar alone treatments was, respectively, 62.6 ± 3.2%, 47.3 ± 4.1% and non-significant (P > 0.05); whereas for fluoranthene loss it was 52.1 ± 2.3%; non-significant (P > 0.05) and non-significant (P > 0.05); and for pyrene loss it was 62.1 ± 0.9%; 19.7 ± 6.5% and 13.5 ± 2.8%. It was hypothesized that the improved remediation was underpinned by i) biochar enhanced mass transfer of PAHs from the soil to the carbonaceous biochar "sink", and ii) the subsequent degradation of the PAHs by the immobilized M. gilvum. To test this mechanism, a surfactant (Brij 30; 20 mg g(-1) soil), was added to impede PAHs mass transfer to biochar and sorption. The surfactant increased solution phase PAH concentrations and significantly (P < 0.05) reduced PAH degradation in the biochar immobilized M. gilvum treatments; indicating the enhanced degradation occurred between the immobilized M. gilvum and biochar sorbed PAHs. Copyright © 2017 Elsevier Ltd. All rights reserved.

  2. Comparative assessment of fungal augmentation treatments of a fine-textured and historically oil-contaminated soil.

    PubMed

    Covino, Stefano; Stella, Tatiana; D'Annibale, Alessandro; Lladó, Salvador; Baldrian, Petr; Čvančarová, Monika; Cajthaml, Tomas; Petruccioli, Maurizio

    2016-10-01

    The removal of aged hydrophobic contaminants from fine-textured soils is a challenging issue in remediation. The objective of this study was to compare the efficacy of augmentation treatments to that of biostimulation in terms of total aliphatic hydrocarbon (TAH) and toxicity removal from a historically contaminated clay soil and to assess their impact on the resident microbial community. To this aim, Pleurotus ostreatus, Botryosphaeria rhodina and a combination of both were used as the inoculants while the addition of a sterilized lignocellulose mixture to soil (1:5, w/w) was used as a biostimulation approach. As opposed to the non-amended control soil, where no changes in TAH concentration and residual toxicity were observed after 60days, the activation of specialized bacteria was found in the biostimulated microcosms resulting in significant TAH removal (79.8%). The bacterial community structure in B. rhodina-augmented microcosms did not differ from the biostimulated microcosms due to the inability of the fungus to be retained within the resident microbiota. Best TAH removals were observed in microcosms inoculated with P. ostreatus alone (Po) and in binary consortium with B. rhodina (BC) (86.8 and 88.2%, respectively). In these microcosms, contaminant degradation exceeded their bioavailability thresholds determined by sequential supercritical CO2 extraction. Illumina metabarcoding of 16S rRNA gene showed that the augmentation with Po and BC led to lower relative abundances of Gram(+) taxa, Actinobacteria in particular, than those in biostimulated microcosms. Best detoxification, with respect to the non-amended incubation control, was found in Po microcosms where a drop in collembola mortality (from 90 to 22%) occurred. At the end of incubation, in both Po and BC, the relative abundances of P. ostreatus sequences were higher than 60% thus showing the suitability of this fungus in bioaugmentation-based remediation applications.

  3. Comprehensive GC²/MS for the monitoring of aromatic tar oil constituents during biodegradation in a historically contaminated soil.

    PubMed

    Vasilieva, Viktoriya; Scherr, Kerstin E; Edelmann, Eva; Hasinger, Marion; Loibner, Andreas P

    2012-02-20

    The constituents of tar oil comprise a wide range of physico-chemically heterogeneous pollutants of environmental concern. Besides the sixteen polycyclic aromatic hydrocarbons defined as priority pollutants by the US-EPA (EPA-PAHs), a wide range of substituted (NSO-PAC) and alkylated (alkyl-PAC) aromatic tar oil compounds are gaining increased attention for their toxic, carcinogenic, mutagenic and/or teratogenic properties. Investigations on tar oil biodegradation in soil are in part hampered by the absence of an efficient analytical tool for the simultaneous analysis of this wide range of compounds with dissimilar analytical properties. Therefore, the present study sets out to explore the applicability of comprehensive two-dimensional gas chromatography (GC²/MS) for the simultaneous measurement of compounds with differing polarity or that are co-eluting in one-dimensional systems. Aerobic tar oil biodegradation in a historically contaminated soil was analyzed over 56 days in lab-scale bioslurry tests. Forty-three aromatic compounds were identified with GC²/MS in one single analysis. The number of alkyl chains on a molecule was found to prime over alkyl chain length in hampering compound biodegradation. In most cases, substitution of carbon with nitrogen and oxygen was related to increased compound degradation in comparison to unalkylated and sulphur- or unsubstituted PAH with a similar ring number.The obtained results indicate that GC²/MS can be employed for the rapid assessment of a large variety of structurally heterogeneous environmental contaminants. Its application can contribute to facilitate site assessment, development and control of microbial cleanup technologies for tar oil contaminated sites.

  4. Draft Whole-Genome Sequence of the Alkaliphilic Alishewanella aestuarii Strain HH-ZS, Isolated from Historical Lime Kiln Waste-Contaminated Soil.

    PubMed

    Salah, Zohier B; Rout, Simon P; Humphreys, Paul N

    2016-12-29

    Here, we present the whole-genome sequence of an environmental Gram-negative Alishewanella aestuarii strain (HH-ZS), isolated from the hyperalkaline contaminated soil of a historical lime kiln in Buxton, United Kingdom. Copyright © 2016 Salah et al.

  5. Biostimulation of the autochthonous bacterial community and bioaugmentation of selected bacterial strains for the depletion of Polycyclic Aromatic Hydrocarbons in a historically contaminated soil

    NASA Astrophysics Data System (ADS)

    DiGregorio, Simona; Ruffini Castglione, Monica; Gentini, Alessandro; Lorenzi, Roberto

    2015-04-01

    Polycyclic aromatic hydrocarbons (PAHs) are a large group of organic contaminants causing hazards to organisms including humans. The objective of the study was (1) to validate the biostimulation of the autochthonous bacterial population by the amendment of lignocellulosic matrices inoculated with white rot fungi, to be exploited for the depletion of PAHs (5687 ppm) in a historical contaminated soil. (2) to validate the isolation of autochthonous bacterial strains capable to use PAHs as sole carbon source and their massive bioaugmentation for PAH depletion in a historical contaminated soil. The validation has been performed at mesocosm and pilot scale (7 tons of soil in a biopile). The two approaches end up with the complete depletion of the PAHs. A genotoxicological assessment of the process and of the soil at the end of the process of decontamination has been performed. The process of soil decontamination showed an increase in the genotoxicity of either the soil and the deriving elutriates. The bioaugmetation of selected bacterial strains determined the complete detoxification of the decontaminated soil after 21 weeks. The microbial ecology of the system during the process of decontamination has been monitored.

  6. Evaluating soil contamination

    SciTech Connect

    Beyer, W.

    1990-07-01

    The compilation was designed to help U.S. Fish and Wildlife Service contaminant specialists evaluate the degree of contamination of a soil, based on chemical analyses. Included are regulatory criteria, opinions, brief descriptions of scientific articles, and miscellaneous information that might be useful in making risk assessments. The intent was to make hard-to-obtain material readily available to contaminant specialists, but not to critique the material or develop new criteria. The compilation is to be used with its index, which includes about 200 contaminants. Entries include soil contaminant criteria from other countries, contaminant guidelines for applying sewage sludge to soil, guidelines for evaluating sediments, background soil concentrations for various elements, citations to scientific articles that may help estimate the potential movement of soil contaminants into wildlife food chains, and a few odds and ends. Articles on earthworms were emphasized because they are a natural bridge between soil and many species of wildlife.

  7. Evaluating soil contamination

    USGS Publications Warehouse

    Beyer, W.N.

    1990-01-01

    This compilation was designed to help U.S. Fish and Wildlife Service contaminant specialists evaluate the degree of contamination of a soil, based on chemical analyses. Included are regulatory criteria, opinions, brief descriptions of scientific articles, and miscellaneous information that might be useful in making risk assessments. The intent was to make hard-to-obtain material readily available to contaminant specialists, but not to critique the material or develop new criteria. The compilation is to be used with its index, which includes about 200 contaminants. There are several entries for a few of the most thoroughly studied contaminants, but for most of them the information available is meager. Entries include soil contaminant criteria from other countries, contaminant guidelines for applying sewage sludge to soil, guidelines for evaluating sediments, background soil concentrations for various elements, citations to scientific articles that may help estimate the potential movement of soil contaminants into wildlife food chains, and a few odds and ends. Articles on earthworms were emphasized because they are a natural bridge between soil and many species of wildlife.

  8. Solubility and transport of Cr(III) in a historically contaminated soil - Evidence of a rapidly reacting dimeric Cr(III) organic matter complex.

    PubMed

    Löv, Åsa; Sjöstedt, Carin; Larsbo, Mats; Persson, Ingmar; Gustafsson, Jon Petter; Cornelis, Geert; Kleja, Dan B

    2017-09-20

    Chromium is a common soil contaminant and, although it has been studied widely, questions about its speciation and dissolutions kinetics remain unanswered. We combined information from an irrigation experiment performed with intact soil columns with data from batch experiments to evaluate solubility and mobilization mechanisms of Cr(III) in a historically contaminated soil (>65 years). Particulate and colloidal Cr(III) forms dominated transport in this soil, but their concentrations were independent of irrigation intensity (2-20 mm h(-1)). Extended X-ray absorption fine structure (EXAFS) measurements indicated that Cr(III) associated with colloids and particles, and with the solid phase, mainly existed as dimeric hydrolyzed Cr(III) bound to natural organic matter. Dissolution kinetics of this species were fast (≤1 day) at low pH (<3) and slightly slower (≤5 days) at neutral pH. Furthermore, it proved possible to describe the solubility of the dimeric Cr(III) organic matter complex with a geochemical equilibrium model using only generic binding parameters, opening the way for use of geochemical models in risk assessments of Cr(III)-contaminated sites. Copyright © 2017 The Authors. Published by Elsevier Ltd.. All rights reserved.

  9. Native oxy-PAHs, N-PACs, and PAHs in historically contaminated soils from Sweden, Belgium, and France: their soil-porewater partitioning behavior, bioaccumulation in Enchytraeus crypticus, and bioavailability.

    PubMed

    Arp, Hans Peter H; Lundstedt, Staffan; Josefsson, Sarah; Cornelissen, Gerard; Enell, Anja; Allard, Ann-Sofie; Kleja, Dan Berggren

    2014-10-07

    Soil quality standards are based on partitioning and toxicity data for laboratory-spiked reference soils, instead of real world, historically contaminated soils, which would be more representative. Here 21 diverse historically contaminated soils from Sweden, Belgium, and France were obtained, and the soil-porewater partitioning along with the bioaccumulation in exposed worms (Enchytraeus crypticus) of native polycyclic aromatic compounds (PACs) were quantified. The native PACs investigated were polycyclic aromatic hydrocarbons (PAHs) and, for the first time to be included in such a study, oxygenated-PAHs (oxy-PAHs) and nitrogen containing heterocyclic PACs (N-PACs). The passive sampler polyoxymethylene (POM) was used to measure the equilibrium freely dissolved porewater concentration, Cpw, of all PACs. The obtained organic carbon normalized partitioning coefficients, KTOC, show that sorption of these native PACs is much stronger than observed in laboratory-spiked soils (typically by factors 10 to 100), which has been reported previously for PAHs but here for the first time for oxy-PAHs and N-PACs. A recently developed KTOC model for historically contaminated sediments predicted the 597 unique, native KTOC values in this study within a factor 30 for 100% of the data and a factor 3 for 58% of the data, without calibration. This model assumes that TOC in pyrogenic-impacted areas sorbs similarly to coal tar, rather than octanol as typically assumed. Black carbon (BC) inclusive partitioning models exhibited substantially poorer performance. Regarding bioaccumulation, Cpw combined with liposome-water partition coefficients corresponded better with measured worm lipid concentrations, Clipid (within a factor 10 for 85% of all PACs and soils), than Cpw combined with octanol-water partition coefficients (within a factor 10 for 76% of all PACs and soils). E. crypticus mortality and reproducibility were also quantified. No enhanced mortality was observed in the 21 historically

  10. Conceptual design and experiments of electrochemistry-flushing technology for the remediation of historically Cr(Ⅵ)-contaminated soil.

    PubMed

    Li, Dong; Sun, Delin; Hu, Siyang; Hu, Jing; Yuan, Xingzhong

    2016-02-01

    A conceptual design and experiments, electrochemistry-flushing (E-flushing), using electrochemistry to enhance flushing efficiency for the remediation of Cr(Ⅵ)-contaminated soil is presented. The rector contained three compartments vertically superposed. The upper was airtight cathode compartment containing an iron-cathode. The middle was soil layer. The bottom was anode compartment containing an iron-anode and connected to a container by circulation pumps. H2 and OH(-) ions were produced at cathode. H2 increased the gas pressure in cathode compartment and drove flushing solution into soil layer forming flushing process. OH(-) ions entered into soil layer by eletromigration and hydraulic flow to enhance the desorption of Cr(Ⅵ). High potential gradient was applied to accelerate the electromigration of desorbed Cr(Ⅵ) ions and produced joule heat to increase soil temperature to enhance Cr(Ⅵ) desorption. In anode compartment, Fe(2+) ions produced at iron-anode reduced the desorbed Cr(Ⅵ) into Cr(3+) ions, which reacted with OH(-) ions forming Cr(OH)3. Experimental results show that Cr(Ⅵ) removal efficiency of E-flushing experiments was more than double of flushing experiments and reached the maximum of removal efficiency determined by desorption kinetics. All electrochemistry processes were positively used in E-flushing technology.

  11. Remediating munitions contaminated soils

    SciTech Connect

    Shea, P.J.; Comfort, S.D.

    1995-10-01

    The former Nebraska Ordnance Plant (NOP) at Mead, NE was a military loading, assembling, and packing facility that produced bombs, boosters and shells during World War II and the Korean War (1942-1945, 1950-1956). Ordnances were loaded with 2,4,6-trinitrotoluene (TNT), amatol (TNT and NH{sub 4}NO{sub 3}), tritonal (TNT and Al) and Composition B (hexahydro-1,3,5-trinitro-1,3,5-triazine [RDX] and TNT). Process waste waters were discharged into wash pits and drainage ditches. Soils within and surrounding these areas are contaminated with TNT, RDX and related compounds. A continuous core to 300 cm depth obtained from an NOP drainage ditch revealed high concentrations of TNT in the soil profile and substantial amounts of monoamino reduction products, 4-amino-2,6-dinitrotoluene (4ADNT) and 2-amino-4,6-dinitrotoluene (2ADNT). Surface soil contained TNT in excess of 5000 mg kg{sup -1} and is believed to contain solid phase TNT. This is supported by measuring soil solution concentrations at various soil to solution ratios (1:2 to 1:9) and obtaining similar TNT concentrations (43 and 80 mg L{sup -1}). Remediating munitions-contaminated soil at the NOP and elsewhere is of vital interest since many of the contaminants are carcinogenic, mutagenic or otherwise toxic to humans and the environment. Incineration, the most demonstrated remediation technology for munitions-containing soils, is costly and often unacceptable to the public. Chemical and biological remediation offer potentially cost-effective and more environmentally acceptable alternatives. Our research objectives are to: (a) characterize the processes affecting the transport and fate of munitions in highly contaminated soil; (b) identify effective chemical and biological treatments to degrade and detoxify residues; and (c) integrate these approaches for effective and practical remediation of soil contaminated with TNT, RDX, and other munitions residues.

  12. Remediation of contaminated soils

    SciTech Connect

    Radhakrishnan, R.; Ariza, C.H.

    1997-07-01

    At least three types of zones of contamination exist whenever there is a chemical release. The impact of Non-Aqueous-Phase Liquids (NAPL) on soils and groundwater, together with the ultimate transport and migration of constituent chemicals in their dissolved or sorbed states, had led environmentalists to develop several techniques for cleaning a contaminated soil. Zone 1 represents the unsaturated zone which could be contaminated to retention capacity by both Dense Non-Aqueous-Phase Liquids (DNAPL) and Light Non-Aqueous-Phase Liquids (LNAPL). Zone 2 represents residual DNAPL or LNAPL contamination found below the groundwater table in the saturated zone. Zone 3 is represented by either the presence of NAPL dissolved in the aqueous phase, volatilized in the unsaturated zone or sorbed to either saturated or unsaturated soils. Cleanup of petroleum contaminated soils is presented in this paper. Among several techniques developed for this purpose, in-situ biological remediation is discussed in detail as a technique that does not involve excavation, thus, the costs and disruption of excavating soil are eliminated.

  13. Contaminated soil stabilization demonstration

    SciTech Connect

    Kemp, C.J.; Sackschewsky, M.R.; Sampson, A.E.; Phillips, S.J.

    1991-10-01

    Long-term herbicide control along with a shotcrete cover was constructed at the Hanford Site in May 1991. The cover system allows for maintenance-free containment of contaminants by preventing wind and water transport of contaminants from the soil surface, preventing plant uptake of contaminants, and minimizing water infiltration through the soil column. The cover is composed of two parts: a commercial nonwoven geotextile material impregnated with trifluralin, and a >5-centimeter top cover of shotcrete containing polyethylene fibers. The herbicide-impregnated geotextile functions to prevent plant root growth into contaminated soil if any holes or cracks develop in the shotcrete layer. The herbicide component, trifluralin, is mixed into polymer nodules that degrade slowly over many years, thus releasing trifluralin slowly over time. The shotcrete topcover was sprayed using a sludge pump and air compressor to form a hard, impenetrable surface that prevents wind erosion and reduces water infiltration through the contaminated materials underneath. The benefits of the cover system are expected to last 20 to 30 years. 2 refs., 4 figs.

  14. Micromorphology and stable-isotope geochemistry of historical pedogenic siderite formed in PAH-contaminated alluvial clay soils, Tennessee, U.S.A

    USGS Publications Warehouse

    Driese, S.G.; Ludvigson, Greg A.; Roberts, J.A.; Fowle, D.A.; Gonzalez, Luis A.; Smith, J.J.; Vulava, V.M.; McKay, L.D.

    2010-01-01

    Alluvial clay soil samples from six boreholes advanced to depths of 400-450 cm (top of limestone bedrock) from the Chattanooga Coke Plant (CCP) site were examined micromorphologically and geochemically in order to determine if pedogenic siderite (FeCO3) was present and whether siderite occurrence was related to organic contaminant distribution. Samples from shallow depths were generally more heavily contaminated with polycyclic aromatic hydrocarbons (PAHs) than those at greater depth. The upper 1 m in most boreholes consisted of mixtures of anthropogenically remolded clay soil fill containing coal clinker, cinder grains, and limestone gravel; most layers of coarse fill were impregnated with creosote and coal tar. Most undisturbed soil (below 1 m depth) consisted of highly structured clays exhibiting fine subangular blocky ped structures, as well as redox-related features. Pedogenic siderite was abundant in the upper 2 m of most cores and in demonstrably historical (< 100 years old) soil matrices. Two morphologies were identified: (1) sphaerosiderite crystal spherulites ranging from 10 to 200 um in diameter, and (2) coccoid siderite comprising grape-like "clusters" of crystals 5-20 ??n in diameter. The siderite, formed in both macropores and within fine-grained clay matrices, indicates development of localized anaerobic, low-Eh conditions, possibly due to microbial degradation of organic contaminants. Stable-isotope compositions of the siderite have ??13C values spanning over 25%o (+7 to - 18%o VPDB) indicating fractionation of DIC by multiple microbial metabolic pathways, but with relatively constant ??18O values from (-4.8 ?? 0.66%o VPDB) defining a meteoric sphaerosiderite line (MSL). Calculated isotope equilibrium water ??18O values from pedogenic siderites at the CCP site are from 1 to 5 per mil lighter than the groundwater ??18O values that we estimate for the site. If confirmed by field studies in progress, this observation might call for a reevaluation of

  15. Soil washing and radioactive contamination

    SciTech Connect

    Gombert, D.; Bosley, J.B.

    1992-03-20

    Soil washing, a technique combining both physical and chemical processes to produce significant volume reduction of contaminated soils, is widely regarded as a panacea for the huge inventory of contaminated soils in the DOE Complex. While the technology has been demonstrated for organics and to some extent for metals, review of the publications available on the practical applications to radioactive sites, indicates that most volume reduction is a product of unique circumstances such as screening or floating out non-soil materials containing most of the contaminants, or leaching contaminants (uranium or TRU) that exist as anionic complexes (Grant, 1991) which are not held by the soil cation-exchange-capacity. In either case, the potential for success of the technology is extremely site and contaminant specific. The Environmental Protection Agency's (EPA) guidance on soil washing treatability studies suggests a 50% reduction of contamination in particles over 2mm as a reasonable cutoff for choosing soil washing for further development (EPA, 1991).

  16. Soil washing and radioactive contamination

    SciTech Connect

    Gombert, D.; Bosley, J.B.

    1992-03-20

    Soil washing, a technique combining both physical and chemical processes to produce significant volume reduction of contaminated soils, is widely regarded as a panacea for the huge inventory of contaminated soils in the DOE Complex. While the technology has been demonstrated for organics and to some extent for metals, review of the publications available on the practical applications to radioactive sites, indicates that most volume reduction is a product of unique circumstances such as screening or floating out non-soil materials containing most of the contaminants, or leaching contaminants (uranium or TRU) that exist as anionic complexes (Grant, 1991) which are not held by the soil cation-exchange-capacity. In either case, the potential for success of the technology is extremely site and contaminant specific. The Environmental Protection Agency`s (EPA) guidance on soil washing treatability studies suggests a 50% reduction of contamination in particles over 2mm as a reasonable cutoff for choosing soil washing for further development (EPA, 1991).

  17. Intensification of the aerobic bioremediation of an actual site soil historically contaminated by polychlorinated biphenyls (PCBs) through bioaugmentation with a non acclimated, complex source of microorganisms

    PubMed Central

    Di Toro, Sara; Zanaroli, Giulio; Fava, Fabio

    2006-01-01

    Background The biotreatability of actual-site polychlorinated biphenyl (PCB)-contaminated soils is often limited by their poor content of autochthonous pollutant-degrading microorganisms. In such cases, inoculation might be the solution for a successful bioremediation. Some pure and mixed cultures of characterized PCB degrading bacteria have been tested to this purpose. However, several failures have been recorded mostly due to the inability of inoculated microbes to compete with autochthonous microflora and to face the toxicity and the scarcity of nutrients occurring in the contaminated biotope. Complex microbial systems, such as compost or sludge, normally consisting of a large variety of robust microorganisms and essential nutrients, would have better chances to succeed in colonizing degraded contaminated soils. However, such sources of microorganisms have been poorly applied in soil bioremediation and in particular in the biotreatment of soil with PCBs. Thus, in this study the effects of Enzyveba, i.e. a consortium of non-adapted microorganisms developed from composted material, on the slurry- and solid-phase aerobic bioremediation of an actual-site, aged PCB-contaminated soil were studied. Results A slow and only partial biodegradation of low-chlorinated biphenyls, along with a moderate depletion of initial soil ecotoxicity, were observed in the not-inoculated reactors. Enzyveba significantly increased the availability and the persistence of aerobic PCB- and chlorobenzoic acid-degrading cultivable bacteria in the bioreactors, in particular during the earlier phase of treatment. It also markedly enhanced PCB-biodegradation rate and extent (from 50 to 100%) as well as the final soil detoxification, in particular under slurry-phase conditions. Taken together, data obtained suggest that Enzyveba enhanced the biotreatability of the selected soil by providing exogenous bacteria and fungi able to remove inhibitory or toxic intermediates of PCB biodegradation and

  18. Bioavailability and bioaccessibility of polycyclic aromatic hydrocarbons (PAHs) in historically contaminated soils after lab incubation with sewage sludge-derived biochars.

    PubMed

    Zielińska, Anna; Oleszczuk, Patryk

    2016-11-01

    The objective of this study was to estimate the effectiveness of application of sewage sludge-derived biochars for the immobilisation of freely dissolved (Cfree) and bioaccessible (Cbioacc) polycyclic aromatic hydrocarbons (PAHs) in contaminated soils. Soil SL-COK collected from the area of a coking plant and soil SL-BIT collected from the area of a plant producing bituminous materials were chosen for the study. The biochars were produced from sewage sludge at temperatures of 500 °C (BC500) or 700 °C (BC700). The biochars were mixed with the soil at the dose of 5% and incubated for a period of 60 d. The content of PAHs was determined with the use of polyoxymethylene (POM) (Cfree) or a solution of cyclodextrins and silicon rod elastomer (Cbioacc). Biochars reduced the content of Cfree and Cbioacc PAHs in soils. A higher level of reduction was noted for Cfree PAHs than for Cbioacc PAHs. Biochar produced at 700 °C was more effective in the reduction of Cfree and Cbioacc PAHs than biochar produced at 500 °C. It was found that in the soil in which the source of contamination were processes related with the production of bituminous materials (SL-BIT), the effect of reduction of Cfree and Cbioacc was greater than in soil SL-COK where the source of PAHs were coking processes. It also needs to be emphasised that soil SL-BIT, for which better reduction of PAHs was noted, was also characterised by a lower affinity towards those compounds than soil SL-COK.

  19. Predicting the Relative Bioavailability of DDT and Its Metabolites in Historically Contaminated Soils Using a Tenax-Improved Physiologically Based Extraction Test (TI-PBET).

    PubMed

    Li, Chao; Sun, Hongjie; Juhasz, Albert L; Cui, Xinyi; Ma, Lena Q

    2016-02-02

    Due to their static nature, physiologically based in vitro assays often fail to provide sufficient sorption capacity for hydrophobic organic contaminants (HOCs). The addition of a sorption sink to in vitro intestinal solution has the potential to mimic dynamic intestinal uptake for HOCs, thereby increasing their desorption from soil. However, the effectiveness of sorption sinks for improving in vitro assays needs to be compared with in vivo data. In this study, Tenax was added as a sorption sink into the physiologically based extraction test (PBET), while DDT and its metabolites (DDTr) were investigated as typical HOCs. Tenax added at 0.01-0.2 g to the PBET intestinal solution sorbed ∼100% of DDTr in 6.3-19 min, indicating its ability as an effective sorption sink. DDTr bioaccessibility in six contaminated soils using Tenax-improved PBET (TI-PBET; 27-56%) was 3.4-22 fold greater than results using the PBET (1.2-15%). In vivo DDTr relative bioavailability (RBA) was measured using a mouse adipose model with values of 17.9-65.4%. The inclusion of Tenax into PBET improved the in vivo-in vitro correlation from r(2) = 0.36 (slope = 2.1 for PBET) to r(2) = 0.62 (slope = 1.2 for TI-PBET), illustrating that the inclusion of Tenax as a sorption sink improved the in vitro prediction of DDTr RBA in contaminated soils.

  20. Assessing Metal Contamination in Lead Arsenate Contaminated Orchard Soils Using Near and Mid-Infrared Diffuse Reflectance Spectroscopy

    USDA-ARS?s Scientific Manuscript database

    Historic use of lead-arsenate as pesticide in apple orchards left many soils contaminated with arsenic (As) and lead (Pb). Notorious health effects and their severe soil contamination are of primary concerns for major regulatory agencies, and community at large. Wet chemistry methods for soil anal...

  1. Soil washing and radioactive contamination

    SciTech Connect

    Gombert, D. )

    1994-05-01

    This paper discusses the state of the technology and the unique challenges of treating radioactively contaminated soils, then focuses on how soil washing could be evaluated to provide definitive answers on when and where it should be employed. A logical, methodical approach must be designed to establish minimum acceptable criteria, determine what the controlling phenomena are, and then objectively evaluate whether a technology can potentially be applied to the problem. The Environmental Protection Agency's guidance on soil washing treatability studies suggests a 50 percent reduction of contamination in particles over 2 mm as a reasonable cutoff for choosing soil washing for further development. Once the decision has been made to attempt development, a systems approach is imperative to ensure a practical solution. 29 refs., 1 tab.

  2. Phytotoxicity of floodplain soils contaminated with trace metals along the Clark Fork River, Grant-Kohrs Ranch National Historic Site, Deer Lodge, Montana, USA

    SciTech Connect

    Rader, B.R.; Nimmo, D.W.R.; Chapman, P.L.

    1997-07-01

    Concentrations of metals in sediments and soils deposited along the floodplain of the Clark Fork River, within the Grant-Kohrs Ranch National Historic Site, Deer Lodge, Montana, USA, have exceeded maximum background concentrations in the United States for most metals tested. As a result of mining and smelting activities, portions of the Deer Lodge Valley, including the Grant-Kohrs Ranch, have received National Priority List Designation under the Comprehensive Environmental Response, Compensation and Liability Act. Using a series of plant germination tests, pH measurements, and metal analyses, this study investigated the toxicity of soils from floodplain slicken areas, bare spots devoid of vegetation, along the Clark Fork River. The slicken soils collected from the Grant-Kohrs Ranch were toxic to all four plant species tested. The most sensitive endpoint in the germination tests was root length and the least sensitive was emergence. Considering emergence, the most sensitive species was the resident grass species Agrostis gigantea. The sensitivities were reversed when root lengths were examined, with Echinochloa crusgalli showing the greatest sensitivity. Both elevated concentrations of metals and low pH were necessary to produce an acutely phytotoxic response in laboratory seed germination tests using slicken soils. Moreover, pH values on the Grant-Kohrs Ranch appear to be a better predictor of acutely phytotoxic conditions than total metal levels.

  3. Phytotoxicity of floodplain soils contaminated with trace metals along the clark fork river, Grant-Kohrs Ranch National Historic Site, Deer Lodge, Montana, United States

    USGS Publications Warehouse

    Rader, B.R.; Nimmo, D.W.R.; Chapman, P.L.

    1997-01-01

    Concentrations of metals in sediments and soils deposited along the floodplain of the Clark Fork River, within the Grant-Kohrs Ranch National Historic Site, Deer Lodge, Montana, USA, have exceeded maximum background concentrations in the United States for most metals tested. As a result of mining and smelting activities, portions of the Deer Lodge Valley, including the Grant-Kohrs Ranch, have received National Priority List Designation under the Comprehensive Environmental Response, Compensation and Liability Act. Using a series of plant germination tests, pH measurements, and metal analyses, this study investigated the toxicity of soils from floodplain 'slicken' areas, bare spots devoid of vegetation, along the Clark Fork River. The slicken soils collected from the Grant-Kohrs Ranch were toxic to all four plant species tested. The most sensitive endpoint in the germination tests was root length and the least sensitive was emergence. Considering emergence, the most sensitive species was the resident grass species Agrostis gigantea. The sensitivities were reversed when root lengths were examined, with Echinochloa crusgalli showing the greatest sensitivity. Both elevated concentrations of metals and low pH were necessary to produce an acutely phytotoxic response in laboratory seed germination tests using slicken soils. Moreover, pH values on the Grant-Kohrs Ranch appear to be a better predictor of acutely phytotoxic conditions than total metal levels.

  4. Tracing thallium contamination in soils using isotopes

    NASA Astrophysics Data System (ADS)

    Vaněk, Aleš; Grösslová, Zuzana; Mihaljevič, Martin; Ettler, Vojtěch; Trubač, Jakub; Teper, Leslaw; Cabala, Jerzy; Rohovec, Jan; Penížek, Vít; Zádorová, Tereza; Pavlů, Lenka; Holubík, Ondřej; Drábek, Ondřej; Němeček, Karel; Houška, Jakub; Ash, Christopher

    2017-04-01

    We report the thallium (Tl) isotope record in moderately contaminated soils, which have been historically affected by emissions from coal-fired power plants. Our findings clearly demonstrate that Tl of anthropogenic (high-temperature) origin with light isotope composition was deposited onto the studied soils, where heavier Tl (ɛ205Tl -1) naturally occurs. The results show a positive linear relationship (R2 = 0.71) between 1/Tl and the isotope record, as determined for all the soils and bedrocks, also indicative of binary Tl mixing between two dominant reservoirs. We also identified significant Tl isotope variations within the products from coal combustion and thermo-desorption experiments with local Tl-rich coal pyrite. Bottom ash exhibited the heaviest Tl isotope composition (ɛ205Tl 0), followed by fly ash (ɛ205Tl between -2.5 and -2.8) and volatile Tl fractions (ɛ205Tl between -6.2 and -10.3), suggesting partial Tl isotope fractionations. Despite the evident role of soil processes in the isotope redistribution, we demonstrate that Tl contamination can be traced in soils, and propose that the isotope data represent a possible tool to aid our understanding of post-depositional Tl dynamics in surface environments for the future. This research was supported by the Czech Science Foundation (grant no. 14-01866S and 17-03211S).

  5. Sources and Practices Contributing to Soil Contamination

    Treesearch

    A.S. Knox; A.P. Gamerdinger; D.C. Adriano; R.K. Kolka; D.I. Kaplan

    1999-01-01

    The term soil contamination can have different connotations because anthropogehic sources of contaminants have affected virtually every natural ecosystem in the world; a commonly held view is that contamination occurs when the soil composition deiiates from the normal composition (Adriano et al., 1997). Other specialists have defined soil pollution as the presence of...

  6. Contaminant resorption during soil washing

    SciTech Connect

    Gombert, D.

    1993-10-01

    To evaluate the applicability of soil washing to a specific site requires some basic research in how contaminants are bound. Much can be learned from sequential extraction methodology based on micronutrient bioavailability studies wherein the soil matrix is chemically dissected to selectively remove particular fixation mechanisms independently. This procedure uses a series of progressively more aggressive solvents to dissolve the principle phases that make up a soil, however, the published studies do not appear to consider the potential for a contaminant released from one type of site to resorb on another site during an extraction. This physical model assumes no ion exchange or adsorption at sites either previously occupied by other ions, or exposed by the dissolution. Therefore, to make engineering use of the sequential extraction data, the release of contamination must be evaluated relative to the effects of resorption. Time release studies were conducted to determine the optimum duration for extraction to maximize complete destruction of the target matrix fraction while minimizing contaminant resorption. Tests with and without a potassium brine present to inhibit cesium resorption indicated extraction efficiency could be enhanced by as much as a factor of ten using the brine.

  7. Electrorestoration of metal contaminated soils

    SciTech Connect

    Hicks, R.E.; Tondorf, S. )

    1994-11-01

    The removal of metals from contaminated soils using electric fields has been successfully demonstrated in the laboratory, yet field trials have yielded anomalous results. Poor performance may be attributed to interaction of the metals with naturally occurring electrolytes, humic substances, and co-disposed wastes. Immobilization of contaminants in a narrow band in the soil, analogous to isoelectric focusing, was reproduced experimentally and simulated with a mathematical model. It was shown that the focusing effect can be eliminated by controlling the pH at the cathode using a water rinse. Immobilization resulting from precipitation with carbonates and codisposed wastes may additionally require chelating agents and control of the redox potential to effect removal. Pourbaix diagrams provide a means for rapidly identifying pH and redox conditions suitable for mobilizing metal wastes. Optimum operating conditions can then be determined using a mathematical model that incorporates the appropriate metal speciation chemistry. 32 refs., 10 figs., 1 tab.

  8. Multi-step soil washing to remove contaminants from soil

    SciTech Connect

    Skriba, M.C.

    1993-12-31

    The advantage of the soil washing approach to remove contaminants from soils is discussed. This report also describes 2 cases in which uranium and plutonium are dispersed in soils. Removal efficiencies are described.

  9. Phytoremediation of Metal-Contaminated Soils

    SciTech Connect

    Shtangeeva, I.; Laiho, J.V-P.; Kahelin, H.; Gobran, G.R.

    2004-03-31

    Recent concerns regarding environmental contamination have necessitated the development of appropriate technologies to assess the presence and mobility of metals in soil and estimate possible ways to decrease the level of soil metal contamination. Phytoremediation is an emerging technology that may be used to cleanup contaminated soils. Successful application of phytoremediation, however, depends upon various factors that must be carefully investigated and properly considered for specific site conditions. To efficiently affect the metal removal from contaminated soils we used the ability of plants to accumulate different metals and agricultural practices to improve soil quality and enhance plant biomass. Pot experiments were conducted to study metal transport through bulk soil to the rhizosphere and stimulate transfer of the metals to be more available for plants' form. The aim of the experimental study was also to find fertilizers that could enhance uptake of metals and their removal from contaminated soil.

  10. Historical climate controls soil respiration responses to current soil moisture.

    PubMed

    Hawkes, Christine V; Waring, Bonnie G; Rocca, Jennifer D; Kivlin, Stephanie N

    2017-06-13

    Ecosystem carbon losses from soil microbial respiration are a key component of global carbon cycling, resulting in the transfer of 40-70 Pg carbon from soil to the atmosphere each year. Because these microbial processes can feed back to climate change, understanding respiration responses to environmental factors is necessary for improved projections. We focus on respiration responses to soil moisture, which remain unresolved in ecosystem models. A common assumption of large-scale models is that soil microorganisms respond to moisture in the same way, regardless of location or climate. Here, we show that soil respiration is constrained by historical climate. We find that historical rainfall controls both the moisture dependence and sensitivity of respiration. Moisture sensitivity, defined as the slope of respiration vs. moisture, increased fourfold across a 480-mm rainfall gradient, resulting in twofold greater carbon loss on average in historically wetter soils compared with historically drier soils. The respiration-moisture relationship was resistant to environmental change in field common gardens and field rainfall manipulations, supporting a persistent effect of historical climate on microbial respiration. Based on these results, predicting future carbon cycling with climate change will require an understanding of the spatial variation and temporal lags in microbial responses created by historical rainfall.

  11. Phytoremediation of Soils Contaminated by Chlorinnated Hydrocarbons

    NASA Astrophysics Data System (ADS)

    Cho, C.; Sung, K.; Corapcioglu, M.

    2001-12-01

    In recent years, the possible use of deep rooted plants for phytoremediation of soil contaminants has been offered as a potential alternative for waste management, particularly for in situ remediation of large volumes of contaminated soils. Major objectives of this study are to evaluate the effectiveness of a warm season grass (Eastern Gamagrass) and a cool season prairie grass (Annual Ryegrass) in the phytoremediation of the soil contaminated with volatile organic compounds e.g., trichloroethylene (TCE), tetrachloroethylene (PCE), and 1,1,1-trichloroethane (TCA) and to determine the main mechanisms of target contaminant dissipation. The preliminary tests and laboratory scale tests were conducted to identify the main mechanisms for phytoremediation of the target contaminants, and to apply the technique in green house application under field conditions. The results of microcosm and bioreactor experiments showed that volatilization can be the dominant pathway of the target contaminant mass losses in soils. Toxicity tests, conducted in nutrient solution in the growth room, and in the greenhouse, showed that both Eastern gamagrass and Annual ryegrass could grow without harmful effects at up to 400 ppm each of all three contaminants together. Preliminary greenhouse experimentw were conducted with the 1.5 m long and 0.3 m diameter PVC columns. Soil gas concentrations monitored and microbial biomass in bulk and rhizosphere soil, root properties, and contaminant concentration in soil after 100 days were analyzed. The results showed that the soil gas concentration of contaminants has rapidly decreased especially in the upper soil and the contaminant concentraitons in soil were also significantly decreased to 0.024, 0.228, and 0.002 of C/Co for TCE, PCE and TCA, respectively. Significant plant effects were not found however showed contaminant loss through volatilization and plant contamination by air.

  12. SOIL WASHING TREATABILITY TESTS FOR PESTICIDE- CONTAMINATED SOIL

    EPA Science Inventory

    The 1987 Sand Creek Operable Unit 5 record of decision (ROD) identified soil washing as the selected technology to remediate soils contaminated with high levels of organochlorine pesticides, herbicides, and metals. Initial treatability tests conducted to assess the applicability...

  13. SOIL WASHING TREATABILITY TESTS FOR PESTICIDE- CONTAMINATED SOIL

    EPA Science Inventory

    The 1987 Sand Creek Operable Unit 5 record of decision (ROD) identified soil washing as the selected technology to remediate soils contaminated with high levels of organochlorine pesticides, herbicides, and metals. Initial treatability tests conducted to assess the applicability...

  14. Improving soil contamination monitoring in Hungary

    NASA Astrophysics Data System (ADS)

    Dombos, M.; Szabó, J.; Anton, A.; Pásztor, L.

    2009-04-01

    Development of national surveys and monitoring activities of soil contamination is currently one of the most important challenges in soil protection studies. In Hungary, the national Soil Information and Monitoring System (SIMS) has been established aiming to estimate changes in soil contaminants in agricultural lands and identify contaminated sites. However, besides the relatively high sample sizes of TIM (1236 point measurements) accuracies of the derived information on soil contamination are not known. The objectives of MONTABIO project are (1) to estimate the accuracy of SIMS by using additional up-to-date samplings of the typical soil contaminants using new field measurement methods; and (2) to develop spatial sampling design to improve the accuracy of the monitoring system. Towards aim (1) we measured toxic inorganic pollutants: heavy-metals, organic pollutants: pesticide residues and hydrocarbons in fields with different agricultural practices. Soil, soil water sampling and chemical analyses were completed according to standards. Differences and statistical power of the datasets provided by SIMS and our field sampling will be evaluated. In the interest of aim (2) regionalization of soil contamination coupled with further information (actual agricultural practices, soil physical and chemical parameters) will be conducted to optimize the spatial allocation of sampling points, to identify the relevant affecting factors and to minimize the required sample sizes.

  15. Hydrogen peroxide treatment of TCE contaminated soil

    SciTech Connect

    Hurst, D.H.; Robinson, K.G.; Siegrist, R.L.

    1993-12-31

    Solvent contaminated soils are ubiquitous in the industrial world and represent a significant environmental hazard due to their persistence and potentially negative impacts on human health and the environment. Environmental regulations favor treatment of soils with options which reduce the volume and toxicity of contaminants in place. One such treatment option is the in-situ application of hydrogen peroxide to soils contaminated with chlorinated solvents such as trichloroethylene (TCE). This study investigated hydrogen peroxide mass loading rates on removal of TCE from soils of varying organic matter content. Batch experiments conducted on contaminated loam samples using GC headspace analysis showed up to 80% TCE removal upon peroxide treatment. Column experiments conducted on sandy loam soils with high organic matter content showed only 25% TCE removal, even at hydrogen peroxide additions of 25 g peroxide per kg soil.

  16. In situ removal of contamination from soil

    SciTech Connect

    Lindgren, Eric R.; Brady, Patrick V.

    1997-01-01

    A process of remediation of cationic heavy metal contamination from soil utilizes gas phase manipulation to inhibit biodegradation of a chelating agent that is used in an electrokinesis process to remove the contamination, and further gas phase manipulation to stimulate biodegradation of the chelating agent after the contamination has been removed. The process ensures that the chelating agent is not attacked by bioorganisms in the soil prior to removal of the contamination, and that the chelating agent does not remain as a new contaminant after the process is completed.

  17. In situ removal of contamination from soil

    DOEpatents

    Lindgren, E.R.; Brady, P.V.

    1997-10-14

    A process of remediation of cationic heavy metal contamination from soil utilizes gas phase manipulation to inhibit biodegradation of a chelating agent that is used in an electrokinesis process to remove the contamination. The process also uses further gas phase manipulation to stimulate biodegradation of the chelating agent after the contamination has been removed. The process ensures that the chelating agent is not attacked by bioorganisms in the soil prior to removal of the contamination, and that the chelating agent does not remain as a new contaminant after the process is completed. 5 figs.

  18. Soil creep and historic landscape changes

    NASA Astrophysics Data System (ADS)

    Lucke, Bernhard

    2017-04-01

    Many erosion models assume that soil sediments are transported grain-by-grain, and thus calculate loss and deposition according to parameters such as bulk density and average grain size. However, clay-rich soils, such as the widespread Red Mediterranean Soils or Terrae Rossae that are often found near important archaeological sites, can behave differently. This is illustrated by a case study of historic landscape changes in Jordan, where evidence for soil creep as main process of soil movement was found in the context of ancient cemeteries. Due to a dominance of smectites, the Red Mediterranean Soils in this area shrink and form cracks during the dry period. Because of the cracks and underlying limestone karst, they can swallow strong rains without high erosion risk. However, when water-saturated, these soils expand and can start creeping. Buried geoarchaeological features like small water channels on formerly cleared rocks suggest that soils can move a few cm uplslope when wet, and buried graves illustrate that soil creep can create new level surfaces, sealing cavities but not completely filling them. Such processes seem associated with slumping and earth flows as instable rocks might collapse under the weight of a creeping soil. While it is very difficult to measure such processes, landscape archaeology offers at least an indirect approach that could be suited to estimate the scale and impact of soil creep. Analogies with modern rainfalls, including record levels of precipitation during the winter 1991/1992, indicate that similar levels of soil moisture have not been reached during times of modern instrumental rainfall monitoring. This suggests that very strong deluges must have occurred during historical periods, that could potentially cause tremendous damage to modern infrastructure if happening again.

  19. Bioremediation of munitions-contaminated soils

    SciTech Connect

    Tuomi, E.; Coover, M.; Stroo, H.

    1994-12-31

    Military installations nationwide are required to cleanup soils contaminated with ordnance compounds, such as 2,4,6-Trinitrotoluene (TNT), octahydro-1,3,5,7-tetranitro-1,3,5,7-tetraazocine (HMX), and 1,3,5-2,4,2-triazine (RDX), introduced into the environment during the manufacture, use, storage, and disposal of explosives. Numerous laboratory and field studies have confirmed the effectiveness of aerobic biological treatment (composting) for remediation of soils contaminated with these and related nitroaromatics. Composting involves the incubation of contaminated soils with organic amendments under thermophilic conditions (i.e., temperatures between 40 and 70 C). Recently, the remediation of soils contaminated with nitroaromatics has also been demonstrated under anaerobic treatment conditions in bench- and field-scale studies. These studies have involved the incubation of soils in closed reactors or flooded soil cells with obligate anaerobic bacteria. Presented in this paper are the results of parallel bench-scale anaerobic and aerobic treatability studies carried out to aid in the selection of a treatment remedy for nitroaromatic contaminated soils. Bench-scale composting reactors were established by adding organic substrates to each soil at a 70% loading (on a volume basis). To investigate the anaerobic treatment of ordnance compounds, the SIMPLOT proprietary process was evaluated using a consortium of anaerobic bacteria. This process effectively remediated soil contaminated with Dinoseb, a related nitroaromatic compound, when tested in a field demonstration of the technology.

  20. Analysis of soils contaminated with petroleum constituents

    SciTech Connect

    O'Shay, T.A. ); Hoddinott, K. )

    1994-01-01

    This symposium was held in Atlanta, Georgia on June 24, 1993. The purpose of the symposium was to provide a forum for exchange of information on petroleum contaminated soils. When spilled on the ground, petroleum products can cause massive problems in the environment. In this Special Technical Publication (STP), papers were selected in two categories; the analytical procedures for soil contaminated with petroleum hydrocarbons and the behavior of hydrocarbon contaminated soils. Individual papers have been processed separately for inclusion in the appropriate data bases.

  1. Assessing inhalation exposure from airborne soil contaminants

    SciTech Connect

    Shinn, J.H.

    1998-04-01

    A method of estimation of inhalation exposure to airborne soil contaminants is presented. this method is derived from studies of airborne soil particles with radioactive tags. The concentration of contaminants in air (g/m{sup 3}) can be derived from the product of M, the suspended respirable dust mass concentration (g/m{sup 3}), S, the concentration of contaminant in the soil (g/g), and E{sub f}, an enhancement factor. Typical measurement methods and values of M, and E{sub f} are given along with highlights of experiences with this method.

  2. FORMATION OF CHLOROPYROMORPHITE IN A LEAD-CONTAMINATED SOIL AMENDED WITH HYDROXYAPATITE

    EPA Science Inventory

    To evaluate conversion of soil Pb to pyromorphite, a Pb contaminated soil collected adjacent to a historical smelter was reacted with hydroxyapatite in a traditional incubation experiment and in a dialysis system in which the soil and hydroxyapatite solids were separated by a dia...

  3. FORMATION OF CHLOROPYROMORPHITE IN A LEAD-CONTAMINATED SOIL AMENDED WITH HYDROXYAPATITE

    EPA Science Inventory

    To evaluate conversion of soil Pb to pyromorphite, a Pb contaminated soil collected adjacent to a historical smelter was reacted with hydroxyapatite in a traditional incubation experiment and in a dialysis system in which the soil and hydroxyapatite solids were separated by a dia...

  4. SOIL VAPOR EXTRACTION COLUMN EXPERIMENTS ON GASOLINE CONTAMINATED SOIL

    EPA Science Inventory

    Soil vapor extraction (SVE) is a technique that is used to remove volatile organic compounds from unsaturated soils. Air is pumped through and from the contaminated zone to remove vapor phase constituents. In the work, laboratory soil column experiments were conducted using a gas...

  5. SOIL VAPOR EXTRACTION COLUMN EXPERIMENTS ON GASOLINE CONTAMINATED SOIL

    EPA Science Inventory

    Soil vapor extraction (SVE) is a technique that is used to remove volatile organic compounds from unsaturated soils. Air is pumped through and from the contaminated zone to remove vapor phase constituents. In the work, laboratory soil column experiments were conducted using a gas...

  6. A petroleum contaminated soil bioremediation facility

    SciTech Connect

    Lombard, K.; Hazen, T.

    1994-06-01

    The amount of petroleum contaminated soil (PCS) at the Savannah River site (SRS) that has been identified, excavated and is currently in storage has increased several fold during the last few years. Several factors have contributed to this problem: (1) South Carolina Department of Health ad Environmental control (SCDHEC) lowered the sanitary landfill maximum concentration for total petroleum hydrocarbons (TPH) in the soil from 500 to 100 parts per million (ppm), (2) removal and replacement of underground storage tanks at several sites, (3) most recently SCDHEC disallowed aeration for treatment of contaminated soil, and (4) discovery of several very large contaminated areas of soil associated with leaking underground storage tanks (LUST), leaking pipes, disposal areas, and spills. Thus, SRS has an urgent need to remediate large quantities of contaminated soil that are currently stockpiled and the anticipated contaminated soils to be generated from accidental spills. As long as we utilize petroleum based compounds at the site, we will continue to generate contaminated soil that will require remediation.

  7. Arsenic solid-phase speciation and reversible binding in long-term contaminated soils.

    PubMed

    Rahman, M S; Clark, M W; Yee, L H; Comarmond, M J; Payne, T E; Kappen, P; Mokhber-Shahin, L

    2017-02-01

    Historic arsenic contamination of soils occurs throughout the world from mining, industrial and agricultural activities. In Australia, the control of cattle ticks using arsenicals from the late 19th to mid 20th century has led to some 1600 contaminated sites in northern New South Wales. The effect of aging in As-mobility in two dip-site soil types, ferralitic and sandy soils, are investigated utilizing isotopic exchange techniques, and synchrotron X-ray adsorption spectroscopy (XAS). Findings show that historic soil arsenic is highly bound to the soils with >90% irreversibly bound. However, freshly added As (either added to historically loaded soils or pristine soils) has a significantly higher degree of As-accessibility. XAS data indicates that historic soil arsenic is dominated as Ca- (svenekite, & weilite), Al-(mansfieldite), and Fe- (scorodite) like mineral precipitates, whereas freshly added As is dominated by mineral adsorption surfaces, particularly the iron oxy-hydroxides (goethite and hematite), but also gibbsite and kaolin surfaces. SEM data further confirmed the presence of scorodite and mansfieldite formation in the historic contaminated soils. These data suggest that aging of historic soil-As has allowed neoformational mineral recrystallisation from surface sorption processes, which greatly reduces As-mobility and accessibility. Copyright © 2016 Elsevier Ltd. All rights reserved.

  8. Cleanup of contaminated soil -- Unreal risk assumptions: Contaminant degradation

    SciTech Connect

    Schiffman, A.

    1995-12-31

    Exposure assessments for development of risk-based soil cleanup standards or criteria assume that contaminant mass in soil is infinite and conservative (constant concentration). This assumption is not real for most organic chemicals. Contaminant mass is lost from soil and ground water when organic chemicals degrade. Factors to correct for chemical mass lost by degradation are derived from first-order kinetics for 85 organic chemicals commonly listed by USEPA and state agencies. Soil cleanup criteria, based on constant concentration, are then corrected for contaminant mass lost. For many chemicals, accounting for mass lost yields large correction factors to risk-based soil concentrations. For degradation in ground water and soil, correction factors range from greater than one to several orders of magnitude. The long exposure durations normally used in exposure assessments (25 to 70 years) result in large correction factors to standards even for carcinogenic chemicals with long half-lives. For the ground water pathway, a typical soil criterion for TCE of 1 mg/kg would be corrected to 11 mg/kg. For noncarcinogens, correcting for mass lost means that risk algorithms used to set soil cleanup requirements are inapplicable for many chemicals, especially for long periods of exposure.

  9. Eco-monitoring of highly contaminated areas: historic heavy metal contamination in tree ring records

    NASA Astrophysics Data System (ADS)

    Baross, Norbert; Jordán, Győző; Albert, Julianna; Abdaal, Ahmed; Anton, Attila

    2014-05-01

    This study examines and compares tree rings of trees grown in a mining area highly contaminated with heavy metals. Tree rings offers an excellent opportunity for eco-monitoring polluted areas. Contamination dispersion from the source to the receptors can be studied in time and space. The sampled area is located in the eastern part of the Matra Mts. of the Inner-Carpathian calc-alkaline Volcanic Arc (Hungary) with abundant historical ore (Pb, Zn, Cu, etc.) mining in the area. Dense forests are composed of the most typical association of the Turkey oak (Quercus cerris). Scots pine (Pinus sylvestris), European black pine (Pinus nigra), oak (Quercus robur), beech (Fagus sylvatica), and hornbeam (Carpinus betulus) also occurs in the landscape. Sampled trees are located within a 1km radius of the abandoned historic ore mines. Sample sites were located above the old mines and waste rock heaps, under the waste rock heaps and on the floodplain of the Ilona Creek. The sampled trees were selected by the following criteria: the tree should be healthy, showing no signs of thunderbolt or diseases and having a minimum diameter of 50 cm. Samples were taken with a tree borer at the height of 150 cm. At the same time, soil samples were also taken near the trees in a 25 cm depth. Prior to laboratory analysis, the samples measured and air dried. Every fifth years tree ring was taken from the samples under microscope, working backwards from the most recent outer ring (2012, the year of the sampling). Samples were digested with a mixture of H2SO4 and H2O2m in Teflon vessels in a microwave unit. The samples were analyzed by ICP-OES instrument. The results were evaluated with statistical method. Results revealed a consistent picture showing distinct locations and years of the contamination history in the former mining area. Some elements are built into the trees more efficiently than other elements depending on mobility in the soil solution that is influenced by soil chemical properties

  10. Dutch refinery remediating contaminated soils on site

    SciTech Connect

    Not Available

    1994-02-07

    A Rotterdam refinery is treating 10,000 metric tons of petroleum-contaminated soils in above ground bioremediation cells equipped with vapor-extraction systems. The treatment process, designed by Groundwater Technology Inc., Norwood, Mass., the refinery's remediation consultant, is degrading the hydrocarbons to meet strict Dutch standards. Project completion is expected by Spring, requiring a total of only about 9 months. The contamination was accumulated in more than 25 years of refining operations at the site. As part of the construction of a new hydrocracker, the refinery was required to remediate the soils and take measures to reduce groundwater contamination.

  11. MEMBRANE TECHNOLOGIES FOR REMEDIATING CONTAMINATED SOILS: A CRITICAL REVIEW

    EPA Science Inventory

    Regulatory compliance requires the cleanup of soils contaminated with toxic organic and metallic compounds. Several chemical and thermal detoxification technologies have been tested on soils excavated from contaminated sites. Soil washing with aqueous solutions transfers the cont...

  12. MEMBRANE TECHNOLOGIES FOR REMEDIATING CONTAMINATED SOILS: A CRITICAL REVIEW

    EPA Science Inventory

    Regulatory compliance requires the cleanup of soils contaminated with toxic organic and metallic compounds. Several chemical and thermal detoxification technologies have been tested on soils excavated from contaminated sites. Soil washing with aqueous solutions transfers the cont...

  13. Contaminated soils salinity, a threat for phytoextraction?

    PubMed

    Sirguey, Catherine; Ouvrard, Stéphanie

    2013-04-01

    Phytoremediation, given the right choice of plant, may be theoretically applicable to multi-contamination. Laboratory and some field trials have proven successful, but this ideal technique is in all cases dependent on plant growth ability on (generally) low-fertility soil or media. While contaminant concentration has often been proposed as an explanation for plant growth limitation, other factors, commonly occurring in industrial soils, such as salinity, should be considered. The present work highlights the fact that besides contaminants (trace elements and PAH), soil salinity may strongly affect germination and growth of the hyperaccumulator Noccaea caerulescens. Elevated concentrations of nitrate proved highly toxic for seed germination. At the growth stage the salt effect (sulfate) seemed less significant and the limited biomass production observed could be attributed mostly to organic contamination.

  14. Surfactant screening of diesel-contaminated soil

    SciTech Connect

    Peters, R.W.; Montemagno, C.D.; Shem, L. ); Lewis, B.A. . Dept. of Civil Engineering)

    1990-01-01

    At one installation, approximately 60,000 gal of No. 2 diesel fuel leaked into the subsurface environment, with contamination at depths of 6 to 34 m below the surface. Argonne National Laboratory was contracted to perform treatability studies for site remediation. The treatability studies focused on four separate phases: (1) leachability studies on the various contaminated soil borings, (2) air stripping studies, (3) bioremediation studies, and (4) surfactant screening/surfactant flooding studies. This paper summarizes the fourth phase of the research program in which twenty-one surfactants were screened for possible use to mobilize the organics from the contaminated soil prior to bioremediation. Anionic surfactants resulted in the greatest degree of diesel mobilization. The most promising surfactants will be employed on actual contaminated soil samples obtained from the site. 18 refs., 16 figs., 1 tab.

  15. Mechanochemical remediation of PCB contaminated soil.

    PubMed

    Wang, Haizhu; Hwang, Jisu; Huang, Jun; Xu, Ying; Yu, Gang; Li, Wenchao; Zhang, Kunlun; Liu, Kai; Cao, Zhiguo; Ma, Xiaohui; Wei, Zhipeng; Wang, Quhui

    2017-02-01

    Soil contaminated by polychlorinated biphenyls (PCBs) is a ubiquitous problem in the world, which can cause significant risks to human health and the environment. Mechanochemical destruction (MCD) has been recognized as a promising technology for the destruction of persistent organic pollutants (POPs) and other organic molecules in both solid waste and contaminated soil. However, few studies have been published about the application of MCD technology for the remediation of PCB contaminated soil. In the present study, the feasibility of destroying PCBs in contaminated soil by co-grinding with and without additives in a planetary ball mill was investigated. After 4 h milling time, more than 96% of PCBs in contaminated soil samples were destroyed. The residual concentrations of PCBs decreased from 1000 mg/kg to below the provisional Basel Convention limit of less than 50 mg/kg. PCDD/F present in the original soil at levels of 4200 ng TEQ/kg was also destroyed with even a slightly higher destruction efficiency. Only minor dechlorinations of the PCBs were observed and the destruction of the hydrocarbon skeleton is proposed as the main degradation pathway of PCBs.

  16. Soil washing of fluorine contaminated soil using various washing solutions.

    PubMed

    Moon, Deok Hyun; Jo, Raehyun; Koutsospyros, Agamemnon; Cheong, Kyung Hoon; Park, Jeong-Hun

    2015-03-01

    Bench-scale soil washing experiments were conducted to remove fluoride from contaminated soils. Five washing solutions including hydrochloric acid (HCl), nitric acid (HNO3), sodium hydroxide (NaOH), sulfuric acid (H2SO4) and tartaric acid (C4H6O6) were tested. The concentration of the washing solutions used ranged from 0.1 to 3 M with a liquid to solid ratio of 10. The soil washing results showed that the most effective washing solution for the removal of fluoride from contaminated soils was HCl. The highest fluoride removal results of approximately 97 % from the contaminated soil were obtained using 3 M HCl. The fluoride removal efficiency of the washing solution increases in the following order: C4H6O6 < NaOH < H2SO4 < HNO3 < HCl.

  17. CONTAMINATED SOIL VOLUME ESTIMATE TRACKING METHODOLOGY

    SciTech Connect

    Durham, L.A.; Johnson, R.L.; Rieman, C.; Kenna, T.; Pilon, R.

    2003-02-27

    The U.S. Army Corps of Engineers (USACE) is conducting a cleanup of radiologically contaminated properties under the Formerly Utilized Sites Remedial Action Program (FUSRAP). The largest cost element for most of the FUSRAP sites is the transportation and disposal of contaminated soil. Project managers and engineers need an estimate of the volume of contaminated soil to determine project costs and schedule. Once excavation activities begin and additional remedial action data are collected, the actual quantity of contaminated soil often deviates from the original estimate, resulting in cost and schedule impacts to the project. The project costs and schedule need to be frequently updated by tracking the actual quantities of excavated soil and contaminated soil remaining during the life of a remedial action project. A soil volume estimate tracking methodology was developed to provide a mechanism for project managers and engineers to create better project controls of costs and schedule. For the FUSRAP Linde site, an estimate of the initial volume of in situ soil above the specified cleanup guidelines was calculated on the basis of discrete soil sample data and other relevant data using indicator geostatistical techniques combined with Bayesian analysis. During the remedial action, updated volume estimates of remaining in situ soils requiring excavation were calculated on a periodic basis. In addition to taking into account the volume of soil that had been excavated, the updated volume estimates incorporated both new gamma walkover surveys and discrete sample data collected as part of the remedial action. A civil survey company provided periodic estimates of actual in situ excavated soil volumes. By using the results from the civil survey of actual in situ volumes excavated and the updated estimate of the remaining volume of contaminated soil requiring excavation, the USACE Buffalo District was able to forecast and update project costs and schedule. The soil volume

  18. Ecological Role of Soils upon Radioactive Contamination

    NASA Astrophysics Data System (ADS)

    Tsvetnov, Evgeny; Shcheglov, Alexei; Tsvenova, Olga

    2016-04-01

    The ecological role of soils upon radioactive contamination is clearly manifested in the system of notions about ecosystems services, i.e., benefits gained by humans from ecosystems and their components, including soils (Millennium Ecosystem Assessment, 2005). For the soils, these services are considered on the basis of soil functions in the biosphere that belong to the protective ecosystem functions within the group of soil functions known under the names of "Buffer and protective biogeocenotic shield" (at the level of particular biogeocenoses) and "Protective shield of the biosphere" (at the global biospheric level) (according to Dobrovol'skii & Nikitin, 2005). With respect to radionuclides, this group includes (1) the depositing function, i.e., the accumulation and long-term sequestration of radioactive substances by the soil after atmospheric fallout; (2) the geochemical function, i.e., the regulation of horizontal and vertical fluxes of radionuclides in the system of geochemically conjugated landscapes and in the soil-groundwater and soil-plant systems; and (3) the dose-forming function that is manifested by the shielding capacity of the soil with respect to the external ionizing radiation (lowering of the dose from external radiation) and by the regulation of the migration of radionuclides in the trophic chain (lowering of the dose from internal radiation). The depositing and geochemical functions of the soils are interrelated, which is seen from quantitative estimates of the dynamics of the fluxes of radionuclides in the considered systems (soil-plant, soil-groundwater, etc.). The downward migration of radionuclides into the lower soil layers proceeds very slowly: for decades, more than 90% of the pool of radionuclides is stored in the topmost 10 cm of the soil profile. In the first 3-5 years after the fallout, the downward migration of radionuclides with infiltrating water flows decreases from several percent to decimals and hundredths of percent from the

  19. Some aspects of remediation of contaminated soils

    NASA Astrophysics Data System (ADS)

    Bech, Jaume; Korobova, Elena; Abreu, Manuela; Bini, Claudio; Chon, Hyo-Taek; Pérez-Sirvent, Carmen; Roca, Núria

    2014-05-01

    Soils are essential components of the environment, a limited precious and fragile resource, the quality of which should be preserved. The concentration, chemical form and distribution of potential harmful elements in soils depends on parent rocks, weathering, soil type and soil use. However, their concentration can be altered by mismanagement of industrial and mining activities, energy generation, traffic increase, overuse of agrochemicals, sewage sludge and waste disposal, causing contamination, environmental problems and health concerns. Heavy metals, some metalloids and radionuclides are persistent in the environment. This persistence hampers the cost/efficiency of remediation technologies. The choice of the most appropriate soil remediation techniques depends of many factors and essentially of the specific site. This contribution aims to offer an overview of the main remediation methods in contaminated soils. There are two main groups of technologies: the first group dealing with containment and confinement, minimizing their toxicity, mobility and bioavailability. Containment measures include covering, sealing, encapsulation and immobilization and stabilization. The second group, remediation with decontamination, is based on the remotion, clean up and/or destruction of contaminants. This group includes mechanical procedures, physical separations, chemical technologies such as soil washing with leaching or precipitation of harmful elements, soil flushing, thermal treatments and electrokinetic technologies. There are also two approaches of biological nature: bioremediation and phytoremediation. Case studies from Chile, Ecuador, Italy, Korea, Peru, Portugal, Russia and Spain, will be discussed in accordance with the time available.

  20. Bioremediation of glyphosate-contaminated soils.

    PubMed

    Ermakova, Inna T; Kiseleva, Nina I; Shushkova, Tatyana; Zharikov, Mikhail; Zharikov, Gennady A; Leontievsky, Alexey A

    2010-09-01

    Based on the results of laboratory and field experiments, we performed a comprehensive assessment of the bioremediation efficiency of glyphosate-contaminated soddy-podzol soil. The selected bacterial strains Achromobacter sp. Kg 16 (VKM B-2534D) and Ochrobactrum anthropi GPK 3 (VKM B-2554D) were used for the aerobic degradation of glyphosate. They demonstrated high viability in soil with the tenfold higher content of glyphosate than the recommended dose for the single in situ treatment of weeds. The strains provided a two- to threefold higher rate of glyphosate degradation as compared to indigenous soil microbial community. Within 1-2 weeks after the strain introduction, the glyphosate content of the treated soil decreased and integral toxicity and phytotoxicity diminished to values of non-contaminated soil. The decrease in the glyphosate content restored soil biological activity, as is evident from a more than twofold increase in the dehydrogenase activity of indigenous soil microorganisms and their biomass (1.2-fold and 1.6-fold for saprotrophic bacteria and fungi, respectively). The glyphosate-degrading strains used in this study are not pathogenic for mammals and do not exhibit integral toxicity and phytotoxicity. Therefore, these strains are suitable for the efficient, ecologically safe, and rapid bioremediation of glyphosate-contaminated soils.

  1. Legacy soil contamination at abandoned mine sites: making a case for guidance on soil protection.

    PubMed

    Kostarelos, Konstantinos; Gavriel, Ifigenia; Stylianou, Marinos; Zissimos, Andreas M; Morisseau, Eleni; Dermatas, Dimitris

    2015-03-01

    Within the European Union, guidance in the form of a uniform Soil Directive does not exist and member states are left to enact their own legislation governing historic soil contamination. Several historic or "legacy" sites exist in Cyprus - an EU member state with a long history of mining and a significant number of abandoned mining sites. The gold-silver enrichment plant of Mitsero village was abandoned 70 years ago, yet soil samples inside and outside the plant were extremely low in pH, exhibited high leachability of heavy metals and high cyanide levels. Water samples collected from an ephemeral stream located down-gradient of the site contained high levels of heavy metals. Two abandoned open-pit mines (Kokkinopezoula and Mathiatis) were investigated, where elevated metal content in soil samples from the surrounding streams and spoil heaps, and extremely low pH and high metal content in water samples from the mine crater were measured.

  2. Remediation processes for heavy metals contaminated soils

    SciTech Connect

    Torma, G.A.; Torma, A.E.; Hsu, Pei-Cheng

    1996-12-31

    This paper provides information on selected technologies available for remediation of metal contaminated soils and industrial effluent solutions. Because some of the industrial sites are contaminated with organics (solvents, gasolines and oils), an effort has been made to introduce the most frequently used cost-effective cleanup methods, such as {open_quotes}bioventing{close_quotes} and {open_quotes}composting.{close_quotes} The microorganisms involved in these processes are capable of degrading organic soil contaminants to environmentally harmless compounds: water and carbon dioxide. Heavy metals and radionuclides contaminated mining and industrial sites can be remediated by using adapted heap and dump leaching technologies, which can be chemical in nature or bio-assisted. The importance of volume reduction by physical separation is discussed. A special attention is devoted to the remediation of soils by leaching (soil washing) to remove heavy metal contaminants, such as chromium, lead, nickel and cadmium. Furthermore, the applicability of biosorption technology in the remediation of heavy metals and radionuclides contaminated industrial waste waters and acidic mining effluent solutions was indicated. 60 refs., 9 figs.

  3. Effect of soil properties, heavy metals and emerging contaminants in the soil nematodes diversity.

    PubMed

    Gutiérrez, Carmen; Fernández, Carlos; Escuer, Miguel; Campos-Herrera, Raquel; Beltrán Rodríguez, M Eulalia; Carbonell, Gregoria; Rodríguez Martín, Jose Antonio

    2016-06-01

    Among soil organisms, nematodes are seen as the most promising candidates for bioindications of soil health. We hypothesized that the soil nematode community structure would differ in three land use areas (agricultural, forest and industrial soils), be modulated by soil parameters (N, P, K, pH, SOM, CaCO3, granulometric fraction, etc.), and strongly affected by high levels of heavy metals (Cd, Pb, Zn, Cr, Ni, Cu, and Hg) and emerging contaminants (pharmaceuticals and personal care products, PPCPs). Although these pollutants did not significantly affect the total number of free-living nematodes, diversity and structure community indices vastly altered. Our data showed that whereas nematodes with r-strategy were tolerant, genera with k-strategy were negatively affected by the selected pollutants. These effects diminished in soils with high levels of heavy metals given their adaptation to the historical pollution in this area, but not to emerging pollutants like PPCPs.

  4. Contaminated Soil Volume Estimation at the Maywood Site - 12292

    SciTech Connect

    Johnson, Robert; Quinn, John; Durham, Lisa; Moore, James; Hays, David

    2012-07-01

    As part of the ongoing remediation process at the Maywood Formerly Utilized Sites Remedial Action Program properties, Argonne National Laboratory assisted the U.S. Army Corps of Engineers (USACE) New York District in revising contaminated soil volume estimates for the remaining areas of the Stepan/Sears properties that require soil remediation. As part of the volume estimation process, an initial conceptual site model (ICSM) was prepared for the entire site that captured existing information (with the exception of soil sampling results) pertinent to the possible location of surface and subsurface contamination above cleanup requirements. This ICSM was based on historical anecdotal information, aerial photographs, and the logs from several hundred soil cores that identified the depth of fill material and the depth to bedrock under the site. Specialized geostatistical software developed by Argonne was used to update the ICSM with historical sampling results and down-hole gamma survey information for hundreds of soil core locations; both sampling results and down-hole gamma data were coded to identify whether the results indicated the presence of contamination above site cleanup requirements. Significant effort was invested in developing complete electronic data sets for the site by incorporating data contained in various scanned documents, maps, etc. The updating process yielded both a best guess estimate of contamination volumes and upper and lower bounds on the volume estimate that reflected the estimate's uncertainty. The site-wide contaminated volume estimate (with associated uncertainty) was adjusted to reflect areas where remediation was complete; the result was a revised estimate of the remaining soil volumes requiring remediation that the USACE could use for planning. Other environmental projects may benefit from this process for estimating the volume of contaminated soil. A comparison of sample and DHG results for various stations with the site ICSM provides

  5. Phytoremediation of soils contaminated by cadmium

    NASA Astrophysics Data System (ADS)

    Watai, H.; Miyazaki, T.; Fujikawa, T.; Mizoguchi, M.

    2004-12-01

    Phytoremediation is a technique to clean up soils contaminated with heavy metals. Advantages of this method are that (1) This technique is suitable to cleanup soils slightly contaminated with heavy metals in relatively wide area. (2) The expense for clean up is lower than civil engineering techniques. (3) This method can remove heavy metals fundamentally from contaminated. (4) The heavy metals are able to recycle by ashing of plants. Many researches have been done on the phytoremediation up to now, but almost all these researches were devoted to clarify the phytoremediation from the view point of plants themselves. However, few efforts have been devoted to analyze the migrations of heavy metals in soils during the phytoremediation process. The objective of this study is to clarify the features of Cd migration when plant roots are absorbing Cd from the ambient soils. Especially, we focused on finding the Cd migration pattern by changing the soil condition such as plant growing periods, planting densities, and the initial Cd concentration in soils. We planted sunflowers in columns filled with Cd contaminated soils because sunflower is a well-known hyperaccumulator of Cd from soils. By cutting the shoots of plants at the soil surface, and by keeping the plant roots in the soils without disturbance, the Cd concentrations, moisture contents, pH distributions, EC distributions, and dry weight of residual roots in the soils were carefully analyzed. The experimental results showed that (1)The growth of the planted sunflowers were suffered by applying of Cd. (2)The decrease of suction was affected by water uptake by roots at the depth from 0 to 5 cm. Water contents with plants in soils decrease more than without plants. (3)Cd adsorption by roots was predominant within 5cm from soil surface. In addition, it was also shown that there was an optimal Cd concentration where Cd is most effectively adsorbed by the plant. In this experiment we found that 40 to 60 mg kg-1 was the

  6. Electroremediation of PCB contaminated soil combined with iron nanoparticles: Effect of the soil type.

    PubMed

    Gomes, Helena I; Dias-Ferreira, Celia; Ottosen, Lisbeth M; Ribeiro, Alexandra B

    2015-07-01

    Polychlorinated biphenyls (PCB) are carcinogenic and persistent organic pollutants that accumulate in soils and sediments. Currently, there is no cost-effective and sustainable remediation technology for these contaminants. In this work, a new combination of electrodialytic remediation and zero valent iron particles in a two-compartment cell is tested and compared to a more conventional combination of electrokinetic remediation and nZVI in a three-compartment cell. In the new two-compartment cell, the soil is suspended and stirred simultaneously with the addition of zero valent iron nanoparticles. Remediation experiments are made with two different historically PCB contaminated soils, which differ in both soil composition and contamination source. Soil 1 is a mix of soils with spills of transformer oils, while Soil 2 is a superficial soil from a decommissioned school where PCB were used as windows sealants. Saponin, a natural surfactant, was also tested to increase the PCB desorption from soils and enhance dechlorination. Remediation of Soil 1 (with highest pH, carbonate content, organic matter and PCB concentrations) obtained the maximum 83% and 60% PCB removal with the two-compartment and the three-compartment cell, respectively. The highest removal with Soil 2 were 58% and 45%, in the two-compartment and the three-compartment cell, respectively, in the experiments without direct current. The pH of the soil suspension in the two-compartment treatment appears to be a determining factor for the PCB dechlorination, and this cell allowed a uniform distribution of the nanoparticles in the soil, while there was iron accumulation in the injection reservoir in the three-compartment cell. Copyright © 2015 Elsevier Ltd. All rights reserved.

  7. Soil biotransformation of thiodiglycol, the hydrolysis product of mustard gas: understanding the factors governing remediation of mustard gas contaminated soil.

    PubMed

    Li, Hong; Muir, Robert; McFarlane, Neil R; Soilleux, Richard J; Yu, Xiaohong; Thompson, Ian P; Jackman, Simon A

    2013-02-01

    Thiodiglycol (TDG) is both the precursor for chemical synthesis of mustard gas and the product of mustard gas hydrolysis. TDG can also react with intermediates of mustard gas degradation to form more toxic and/or persistent aggregates, or reverse the pathway of mustard gas degradation. The persistence of TDG have been observed in soils and in the groundwater at sites contaminated by mustard gas 60 years ago. The biotransformation of TDG has been demonstrated in three soils not previously exposed to the chemical. TDG biotransformation occurred via the oxidative pathway with an optimum rate at pH 8.25. In contrast with bacteria isolated from historically contaminated soil, which could degrade TDG individually, a consortium of three bacterial strains isolated from the soil never contaminated by mustard gas was able to grow on TDG in minimal medium and in hydrolysate derived from an historical mustard gas bomb. Exposure to TDG had little impacts on the soil microbial physiology or on community structure. Therefore, the persistency of TDG in soils historically contaminated by mustard gas might be attributed to the toxicity of mustard gas to microorganisms and the impact to soil chemistry during the hydrolysis. TDG biodegradation may form part of a remediation strategy for mustard gas contaminated sites, and may be enhanced by pH adjustment and aeration.

  8. Extraction behavior of metallic contaminants and soil constituents from contaminated soils.

    PubMed

    Tokunaga, S; Park, S W; Ulmanu, M

    2005-06-01

    With an aim of developing an effective remediation technology for soils contaminated by heavy metals and metalloids, the extraction behavior of metallic contaminants as well as those of soil constituents was studied on a laboratory scale. Three contaminated soils collected from a former metal recycling plant were examined. These three soils were found to be contaminated by As, Cu, Pb, Sb, Se and Zn as compared to the non-contaminated soil. The pH-dependent extraction behavior of various elements from the soils was measured in a wide pH range and categorized into three groups. Hydrochloric acid (HCl), H2SO4, H3PO4, HNO3, sodium citrate, sodium tartrate, disodium dihydrogen ethylenediaminetetraacetate and diethylenetriaminepentaacetic acid were evaluated as extractants for removing contaminants from the soils. Extraction behavior of the soil constituents was also studied. The efficiency of the extraction was evaluated by the Japanese content and leaching tests. The stabilization of Pb remaining in the soil after the extraction process was conducted by the addition of iron(III) and calcium chloride.

  9. Soil contamination evaluations: Earthworms as indicators of soil quality

    SciTech Connect

    Linder, G.; Wilbom, D.

    1995-12-31

    Earthworms have frequently been evaluated in the field and laboratory as representatives of the soil community that are indicative of their habitat`s quality. Within a landscape or at a contaminated site, soil quality, or soil health, has become increasingly critical to cleanup-related issues that revolve around questions of ``how clean is clean`` and the bioaccumulation of soil contaminants. Through an overview of numerous field and laboratory studies, the role that earthworms have played in evaluating soil contamination will be reviewed with a particular focus on evaluations of the bioaccumulation potential of chemicals in soil. Within ecological contexts, earthworms can provide information regarding immediately observable adverse affects related, for example, to acute toxicity. Additionally, earthworms can provide information directly related to the bioaccumulation potential of a chemical and trophic transfer of environmental chemicals, especially through the food-chain. Within the decision-making process, soil contamination evaluations must consider future land-use, as well as current and future expressions of adverse biological and ecological effects under field conditions, potentially following remediation. Through integrated field and laboratory studies using earthworms, the authors have been able to identify adversely affected soil communities and have been able to provide information for assessing adverse ecological effects potentially caused by contaminants. Field surveys and on-site or in situ biological testing with earthworms, however, can not alone identify causes of effects. As such, standardized biological tests have been routinely completed in the laboratory so linkages between expression of effects and contaminants could be more readily addressed in conjunction with appropriate chemical data from the field.

  10. Enhanced biodegradation of creosote-contaminated soil

    SciTech Connect

    Carriere, P.P.E.; Mesania, F.A.

    1995-12-31

    Bioremediation, a viable option for treatment of creosote-contaminated soil, can be enhanced by the use of surfactant. A study was conducted to investigate the effect of a non-ionic surfactant, Triton X-100, on biodegradation of creosote-contaminated soil. Abiotic soil desorption experiments were performed to determine the kinetics of release of selected polynuclear aromatic hydrocarbon (PAH) compounds. Respirometric experiments were also conducted to evaluate the effect of nonionic surfactant on biodegradation. The N-Con system respirometer was used to monitor the oxygen uptake by the microorganisms. The abiotic experiments results indicated that the addition of surfactant to soil/water systems increased the desorption of PAH compounds. It was also observed that the desorption rate of PAH compounds depended on their molecular weight. The 3- and 4-ring PAH compounds showed higher and faster desorption rates than the 5- and 6-ring PAHs. The respirometric experiments indicated that an increase in soil contamination level from 112.5 to 771.8 mg/kg showed an increase in oxygen uptake. But for a soil contamination level of 1,102.5 mg/kg, the oxygen uptake was similar to the contamination level of 771.8 mg/kg. This might be due to toxicity by the surfactant or the solubilized PAHs at high concentration or interference with contaminant transport into the cell or to reversible physical-chemical interferences with the activity of enzymes involved in the PAH degradation. The increase in PAH availability to the microorganisms in the aqueous phase produced an increase in oxygen consumption that is proportional to the biodegradation of organic compounds.

  11. Phytotoxicity of zinc and manganese to seedlings grown in soil contaminated by zinc smelting

    USDA-ARS?s Scientific Manuscript database

    Historic emissions from two zinc smelters have damaged the forest on Blue Mountain near Palmerton, Pennsylvania, USA. Seedlings of soybeans and five tree species were grown in a greenhouse in a series of mixtures of smelter-contaminated and reference soils. As little as 10% Palmerton soil mixed wi...

  12. Phytoremediation of organic contaminants in soils.

    PubMed

    Alkorta, I; Garbisu, C

    2001-09-01

    Soil pollution, a very important environmental problem, has been attracting considerable public attention over the last decades. Unfortunately, the enormous costs associated with the removal of pollutants from soils by means of traditional physicochemical methods have been encouraging companies to ignore the problem. Phytoremediation is an emerging technology that uses plants to clean up pollutants in the environment. As overwhelmingly positive results have become available regarding the ability of plants to degrade certain organic compounds, more and more people are getting involved in the phytoremediation of organic contaminants. Phytoremediation of organics appears a very promising technology for the removal of these contaminants from polluted sites.

  13. Soil contamination standards for protection of personnel

    SciTech Connect

    Rittmann, P.D.

    1998-04-16

    The objective of this report is to recommend soil contamination levels that will ensure that radionuclide intakes by unprotected workers are likely to give internal doses below selected dose limits during the working year. The three internal dose limits are 1, 100, and 500 mrem per year. In addition, photon, beta, and alpha instrument readings are estimated for these soil concentration limits. Two exposure pathways are considered: the first is inhalation of resuspended dust and the second is ingestion of trace amounts of soil. In addition, radioactive decay and ingrowth of progeny during the year of exposure is included. External dose from the soil contamination is not included because monitoring and control of external exposures is carried out independently from internal exposures, which are the focus of this report. The methods used are similar to those used by Carbaugh and Bihl (1993) to set bioassay criteria for such workers.

  14. Bioremediation of oil sludge-contaminated soil.

    PubMed

    Vasudevan, N; Rajaram, P

    2001-05-01

    Bioremediation has become an important method for the restoration of oil-polluted environments by the use of indigenous or selected microbial flora. Several factors such as aeration, use of inorganic nutrients or fertilizers and the type of microbial species play a major role in the remediation of oil-contaminated sites. Experiments were undertaken for bioremediation of oil sludge-contaminated soil in the presence of a bacterial consortium, inorganic nutrients, compost and a bulking agent (wheat bran). Experiments were conducted in glass troughs for the 90-day period. Bulked soil showed more rapid degradation of oil compared to all other amendments. During the experimental period, wheat bran-amended soil showed 76% hydrocarbon removal compared to 66% in the case of inorganic nutrients-amended soil. A corresponding increase in the number of bacterial populations was also noticed. Addition of the bacterial consortium in different amendments significantly enhanced the removal of oil from the petroleum sludge from different treatment units.

  15. Chelant soil-washing technology for metal-contaminated soil.

    PubMed

    Voglar, David; Lestan, Domen

    2014-01-01

    We demonstrate here, in a pilot-scale experiment, the feasibility of ethylenediaminetetraacetate (EDTA)based washing technology for soils contaminated with potentially toxic metals. Acid precipitation coupled to initial alkaline toxic metal removal and an electrochemical advanced oxidation process were used for average recovery of 76 +/- 2% of EDTA per batch and total recycle of water in a closed process loop. No waste water was generated; solid wastes were efficiently bitumen-stabilized before disposal. The technology embodiment, using conventional process equipment, such as a mixer for soil extraction, screen for soil/gravel separation, filter chamber presses for soil/liquid and recycled EDTA separation and soil rinsing, continuous centrifuge separator for removal of precipitated metals and electrolytic cells for process water cleansing, removed up to 72%, 25% and 66% of Pb, Zn and Cd from garden soil contaminated with up to 6960, 3797 and 32.6 mg kg(-1) of Pb, Zn and Cd, respectively, in nine 60kg soil batches. Concentrations of Pb and Zn remaining in the remediated soil and bioaccessible from the simulated human intestinal phase soil were reduced by 97% and 96% and were brought under the level of determination for Cd. In the most cost-effective operation mode, the material and energy costs of remediation amounted to 50.5 Euros ton(-1) soil and the total cost to 299 Euros ton(-1).

  16. Heavy Metal Contaminated Soil Treatment: Conceptual Development

    DTIC Science & Technology

    1987-02-01

    circuit without trans- ferring hear from a metallic resistance element. Contaminated soils may be accepted directly with little or (to pretreatment ...with metals has been demon-- strated. No pretreatment for organics destruction would be required. The system can also readily handle liquid wastes and...applications as a pretreatment /recovery step. J 38 0458Bi 3.7.3 Long term stability/performance. The process would remove metals from the soil. Therefore, if

  17. Integrated system for remediation of contaminated soils

    SciTech Connect

    Khodadoust, A.P.; Sorial, G.A.; Wilson, G.J.; Suidan, M.T.; Griffiths, R.A.; Brenner, R.C.

    1999-11-01

    A pilot-scale study was conducted to evaluate an integrated system for the remediation of soils contaminated primarily with pentachlorophenol (PCP), a wood preserver. The integrated soil remediation system consisting of three unit processes (1) Soil solvent washing; (2) solvent recovery; and (3) biotreatment of the contaminant residual. Pilot-scale countercurrent solvent washing was carried out using a 95% ethanol solution--a solvent that in an earlier bench-scale study was found to be effective in removing PCP and hydrocarbons (HCs) from soils. Three-stage countercurrent solvent washing of a field-contaminated soil was performed using batches of 7.5 kg of soil and 30 L of solvent. The washed soil was rinsed with water in a single stage after three countercurrent wash stages. Pilot-scale, three-stage countercurrent solvent washing with 95% ethanol reduced the PCP and HC contamination on the soil by 98 and 95%, respectively. The spent solvent and the spent rinse water were combined as the spent wash fluid for further treatment. A pilot-scale distillation unit was used to recover the ethanol from the spent wash fluid. The HC constituents of the spent wash fluid were removed by pH adjustment prior to feeding the spent wash fluid to a distillation unit. Greater than 96% of the ethanol in the spent wash fluid was recovered in the distillate stream, whereas PCP was captured in the bottoms stream. The bottoms stream was treated sequentially in anaerobic and aerobic granular-activated carbon fluidized-bed reactors. Complete mineralization of PCP was achieved using this treatment train.

  18. Bioremediation of hydrocarbon-contaminated polar soils.

    PubMed

    Aislabie, Jackie; Saul, David J; Foght, Julia M

    2006-06-01

    Bioremediation is increasingly viewed as an appropriate remediation technology for hydrocarbon-contaminated polar soils. As for all soils, the successful application of bioremediation depends on appropriate biodegradative microbes and environmental conditions in situ. Laboratory studies have confirmed that hydrocarbon-degrading bacteria typically assigned to the genera Rhodococcus, Sphingomonas or Pseudomonas are present in contaminated polar soils. However, as indicated by the persistence of spilled hydrocarbons, environmental conditions in situ are suboptimal for biodegradation in polar soils. Therefore, it is likely that ex situ bioremediation will be the method of choice for ameliorating and controlling the factors limiting microbial activity, i.e. low and fluctuating soil temperatures, low levels of nutrients, and possible alkalinity and low moisture. Care must be taken when adding nutrients to the coarse-textured, low-moisture soils prevalent in continental Antarctica and the high Arctic because excess levels can inhibit hydrocarbon biodegradation by decreasing soil water potentials. Bioremediation experiments conducted on site in the Arctic indicate that land farming and biopiles may be useful approaches for bioremediation of polar soils.

  19. Migration of Contaminated Soil and Airborne Particulates to Indoor Dust

    PubMed Central

    Layton, David W.; Beamer, Paloma I.

    2009-01-01

    We have developed a modeling and measurement framework for assessing transport of contaminated soils and airborne particulates into a residence, their subsequent distribution indoors via resuspension and deposition processes, and removal by cleaning and building exhalation of suspended particles. The model explicitly accounts for the formation of house dust as a mixture of organic matter (OM) such as shed skin cells and organic fibers, soil tracked-in on footwear, and particulate matter (PM) derived from the infiltration of outdoor air. We derived formulas for use with measurements of inorganic contaminants, crustal tracers, OM, and PM to quantify selected transport parameters. Application of the model to residences in the U.S. Midwest indicates that As in ambient air can account for nearly 60% of the As input to floor dust, with soil track-in representing the remainder. Historic data on Pb contamination in Sacramento, CA, was used to reconstruct sources of Pb in indoor dust, showing that airborne Pb was likely the dominant source in the early 1980s. However, as airborne Pb levels declined due to the phase out of leaded gasoline, soil resuspension and track-in eventually became the primary sources of Pb in house dust. PMID:19924944

  20. Migration of contaminated soil and airborne particulates to indoor dust.

    PubMed

    Layton, David W; Beamer, Paloma I

    2009-11-01

    We have developed a modeling and measurement framework for assessing transport of contaminated soils and airborne particulates into a residence, their subsequent distribution indoors via resuspension and deposition processes, and removal by cleaning and building exhalation of suspended particles. The model explicitly accounts for the formation of house dust as a mixture of organic matter (OM) such as shed skin cells and organic fibers, soil tracked-in on footwear, and particulate matter (PM) derived from the infiltration of outdoor air. We derived formulas for use with measurements of inorganic contaminants, crustal tracers, OM, and PM to quantify selected transport parameters. Application of the model to residences in the U.S. Midwest indicates that As in ambient air can account for nearly 60% of the As input to floor dust, with soil track-in representing the remainder. Historic data on Pb contamination in Sacramento, CA, were used to reconstruct sources of Pb in indoor dust, showing that airborne Pb was likely the dominant source in the early 1980s. However, as airborne Pb levels declined due to the phase-out of leaded gasoline, soil resuspension and track-in eventually became the primary sources of Pb in house dust.

  1. Incineration of PCB-contaminated soils: Effect on soil properties

    SciTech Connect

    Chaouki, J.; Guy, C.; Gonzalez, A.; Mourot, P.; Masciotra, P.

    1995-12-31

    An experimental program was conducted to determine the effect of fluidized bed combustion on the properties and characteristics of a soil lightly contaminated with PCBs. The following properties of a soil sample and its leachate were characterized before and after incineration: pH, particle size distribution, and contaminant content. Three runs were carried out on a pilot scale fluidized bed at identical conditions, with three different soil samples: set point temperature of 870 {+-} 40 C and minimal residence time of 30 min. The main conclusions can be summarized as follows: under the operating conditions of the test, PCBs present in soil are eliminated to below the detection level; the runs showed good reproducibility; soil pH increases from 8.6 {+-} 0.1 to 10.7 {+-} 0.2 because of the natural limestone (CaCO{sub 3}), which calcines and then hydrolyzes to basic calcium hydroxide (Ca(OH){sub 2}); the incineration seems to lead to soil agglomeration; soil heavy metal content is decreased significantly after incineration; soil leachate heavy metal content is not significantly affected by incineration, except for chromium (from 0.02 to 0.06 mg/L) and zinc (from 0.1 to 0.25 mg/L); treated soil leachate content for organics and organochlorines is below the detection level.

  2. Evaluation of soil washing for radiologically contaminated soils

    SciTech Connect

    Gombert, D. II

    1994-03-01

    Soil washing has been applied internationally to decontaminate soils due to the widespread increase in environmental awareness manifested in the United States by promulgation of the Comprehensive Environmental Response, Compensation and Liability Act, yet we continue to lack understanding on why the technique works in one application and not in another. A soil washing process typically integrates a variety of modules, each designed to decontaminate the matrix by destroying a particular phase or segregating a particle size fraction in which the contaminants are concentrated. The more known about how the contaminants are fixed, the more likely the process will succeed. Much can be learned from bioavailability studies on heavy metals in soils. Sequential extraction experiments designed to destroy one fixation mechanism at a time can be used to determine how contaminants are bound. This knowledge provides a technical basis for designing a processing strategy to efficiently decontaminate soil while creating a minimum of secondary wastes. In this study, a soil from the Idaho National Engineering Laboratory was physically and chemically characterized, then sequentially extracted to determine if soil washing could be effectively used to remove cesium, cobalt and chromium.

  3. Mutagens in contaminated soil: a review.

    PubMed

    White, Paul A; Claxton, Larry D

    2004-11-01

    The intentional and accidental discharges of toxic pollutants into the lithosphere results in soil contamination. In some cases (e.g., wood preserving wastes, coal-tar, airborne combustion by-products), the contaminated soil constitutes a genotoxic hazard. This work is a comprehensive review of published information on soil mutagenicity. In total, 1312 assessments of genotoxic activity from 118 works were examined. The majority of the assessments (37.6%) employed the Salmonella mutagenicity test with strains TA98 and/or TA100. An additional 37.6% of the assessments employed a variety of plant species (e.g., Tradescantia clone 4430, Vicia faba, Zea mays, Allium cepa) to assess mutagenic activity. The compiled data on Salmonella mutagenicity indicates significant differences (p<0.0001) in mean potency (revertents per gram dry weight) between industrial, urban, and rural/agricultural sites. Additional analyses showed significant empirical relationships between S9-activated TA98 mutagenicity and soil polycyclic aromatic hydrocarbon (PAH) concentration (r2=0.19 to 0.25, p<0.0001), and between direct-acting TA98 mutagenicity and soil dinitropyrene (DNP) concentration (r2=0.87, p<0.0001). The plant assay data revealed excellent response ranges and significant differences between heavily contaminated, industrial, rural/agricultural, and reference sites, for the anaphase aberration in Allium cepa (direct soil contact) and the waxy locus mutation assay in Zea mays (direct soil contact). The Tradescantia assays appeared to be less responsive, particularly for exposures to aqueous soil leachates. Additional data analyses showed empirical relationships between anaphase aberrations in Allium, or mutations in Arabidopsis, and the 137Cs contamination of soils. Induction of micronuclei in Tradescantia is significantly related to the soil concentration of several metals (e.g., Sb, Cu, Cr, As, Pb, Cd, Ni, Zn). Review of published remediation exercises showed effective removal of

  4. REMEDIATION OF RADIUM FROM CONTAMINATED SOIL

    EPA Science Inventory

    The objective of this study was to demonstrate the application of a physico-chemical separation process for the removal of radium from a sample of contaminated soil at the Ottawa, Illinois, site near Chicago. The size/activity distribution analyzed among the particles coarser tha...

  5. REMEDIATING PESTICIDE CONTAMINATED SOILS USING SOLVENT EXTRACTION

    EPA Science Inventory

    Bench-scale solvent extraction studies were performed on soil samples obtained from a Superfund site contaminated with high levels of p,p'-DDT, p,p'-DDD,, p,p'-DDE and toxaphene. The effectiveness of the solvent extraction process was assessed using methanol and 2-propanol as sol...

  6. REMEDIATION OF RADIUM FROM CONTAMINATED SOIL

    EPA Science Inventory

    The objective of this study was to demonstrate the application of a physico-chemical separation process for the removal of radium from a sample of contaminated soil at the Ottawa, Illinois, site near Chicago. The size/activity distribution analyzed among the particles coarser tha...

  7. INCINERATION TREATMENT OF ARSENIC-CONTAMINATED SOIL

    EPA Science Inventory

    An incineration test program was conducted at the U.S. Environmental Protection Agency's Incineration Research Facility to evaluate the potential of incineration as a treatment option for contaminated soils at the Baird and McGuire Superfund site in Holbrook, Massachusetts. The p...

  8. REMEDIATING PESTICIDE CONTAMINATED SOILS USING SOLVENT EXTRACTION

    EPA Science Inventory

    Bench-scale solvent extraction studies were performed on soil samples obtained from a Superfund site contaminated with high levels of p,p'-DDT, p,p'-DDD,, p,p'-DDE and toxaphene. The effectiveness of the solvent extraction process was assessed using methanol and 2-propanol as sol...

  9. INCINERATION TREATMENT OF ARSENIC-CONTAMINATED SOIL

    EPA Science Inventory

    An incineration test program was conducted at the U.S. Environmental Protection Agency's Incineration Research Facility to evaluate the potential of incineration as a treatment option for contaminated soils at the Baird and McGuire Superfund site in Holbrook, Massachusetts. The p...

  10. Soil mixing of stratified contaminated sands.

    PubMed

    Al-Tabba, A; Ayotamuno, M J; Martin, R J

    2000-02-01

    Validation of soil mixing for the treatment of contaminated ground is needed in a wide range of site conditions to widen the application of the technology and to understand the mechanisms involved. Since very limited work has been carried out in heterogeneous ground conditions, this paper investigates the effectiveness of soil mixing in stratified sands using laboratory-scale augers. This enabled a low cost investigation of factors such as grout type and form, auger design, installation procedure, mixing mode, curing period, thickness of soil layers and natural moisture content on the unconfined compressive strength, leachability and leachate pH of the soil-grout mixes. The results showed that the auger design plays a very important part in the mixing process in heterogeneous sands. The variability of the properties measured in the stratified soils and the measurable variations caused by the various factors considered, highlighted the importance of duplicating appropriate in situ conditions, the usefulness of laboratory-scale modelling of in situ conditions and the importance of modelling soil and contaminant heterogeneities at the treatability study stage.

  11. Guide to treatment technology for contaminated soils

    SciTech Connect

    Tran, H.; Aylward, R.

    1992-08-04

    This document is a guide for the screening of alternative treatment technologies for contaminated soils. The contents of this guide are organized into: 1. Introduction, II. Utilizing the table, III. Tables: Contamination Versus Technology, TV. Contaminant Waste Groups, and V. References. The four Contaminations Versus Technology tables are designed to identify the effectiveness and/or potential applicability of technologies to some or all compounds within specific waste groups. The tables also present limitations and special use considerations for the particular treatment technology. The phase of development of the technology is also included in the table. The phases are: Available, Innovative, and Emerging technologies. The technologies presented in this guide are organized according to the method of treatment. The four (4) treatment methods are Biological, Solidification/Stabilization, Thermal, and Chemical/Physical Treatment. There are several processing methods; some are well developed and proven, and others are in the development stage.

  12. Guide to treatment technology for contaminated soils

    SciTech Connect

    Tran, H.; Aylward, R.

    1992-08-04

    This document is a guide for the screening of alternative treatment technologies for contaminated soils. The contents of this guide are organized into: 1. Introduction, II. Utilizing the table, III. Tables: Contamination Versus Technology, TV. Contaminant Waste Groups, and V. References. The four Contaminations Versus Technology tables are designed to identify the effectiveness and/or potential applicability of technologies to some or all compounds within specific waste groups. The tables also present limitations and special use considerations for the particular treatment technology. The phase of development of the technology is also included in the table. The phases are: Available, Innovative, and Emerging technologies. The technologies presented in this guide are organized according to the method of treatment. The four (4) treatment methods are Biological, Solidification/Stabilization, Thermal, and Chemical/Physical Treatment. There are several processing methods; some are well developed and proven, and others are in the development stage.

  13. Removal of depleted uranium from contaminated soils.

    PubMed

    Choy, Christine Chin; Korfiatis, George P; Meng, Xiaoguang

    2006-08-10

    Contamination of soil and water with depleted uranium (DU) has increased public health concerns due to the chemical toxicity of DU at elevated dosages. For this reason, there is great interest in developing methods for DU removal from contaminated sources. Two DU laden soils, taken from U.S. Army sites, were characterized for particle size distribution, total uranium concentration and removable uranium. Soil A was found to be a well graded sand containing a total of 3210 mg/kg DU (3.99 x 10(4) Bq/kg, where a Becquerel (Bq) is a unit of radiation). About 83% of the DU in the fines fraction (particle diameter <0.075 mm, total DU 7732 mg/kg (9.61 x 10(4) Bq/kg)) was associated with the carbonate, iron and manganese oxide and organic matter fractions of the material. Soil B was classified as a sandy silt with total DU of 1560 mg/kg (1.94 x 10(4) Bq/kg). The DU content in the fines fraction was 5171 mg/kg (6.43 x 10(4) Bq/kg). Sequential extraction of the Soil B fines fraction indicated that 64% of the DU was present either as soluble U(VI) minerals or as insoluble U(IV). Citric acid, sodium bicarbonate and hydrogen peroxide were used in batch experiments to extract DU from the fines fraction of both soils. Citric acid and sodium bicarbonate were relatively successful for Soil A (50-60% DU removal), but not for Soil B (20-35% DU removal). Hydrogen peroxide was found to significantly increase DU extraction from both soils, attaining removals up to 60-80%.

  14. Mercury contamination from historical gold mining in California

    USGS Publications Warehouse

    Alpers, Charles N.; Hunerlach, Michael P.; May, Jason T.; Hothem, Roger L.

    2005-01-01

    Mercury contamination from historical gold mines represents a potential risk to human health and the environment. This fact sheet provides background information on the use of mercury in historical gold mining and processing operations in California, with emphasis on historical hydraulic mining areas. It also describes results of recent USGS projects that address the potential risks associated with mercury contamination. Miners used mercury (quicksilver) to recover gold throughout the western United States. Gold deposits were either hardrock (lode, gold-quartz veins) or placer (alluvial, unconsolidated gravels). Underground methods (adits and shafts) were used to mine hardrock gold deposits. Hydraulic, drift, or dredging methods were used to mine the placer gold deposits. Mercury was used to enhance gold recovery in all the various types of mining operations; historical records indicate that more mercury was used and lost at hydraulic mines than at other types of mines. On the basis of USGS studies and other recent work, a better understanding is emerging of mercury distribution, ongoing transport, transformation processes, and the extent of biological uptake in areas affected by historical gold mining. This information has been used extensively by federal, state, and local agencies responsible for resource management and public health in California.

  15. Remediation of Mercury Contaminated Soils at the Miramas Site - 12243

    SciTech Connect

    Potier, G.; Chambon, F.

    2012-07-01

    Beneficial 'new' use of the Miramas Site is the remediation objective for a former light isotope manufacturing facility. Remediation operations will remove contaminated soils and materials and deconstruct facilities. The remediation objective is faced with project challenges and regulatory requirements that dictate/influence the outcome. The operation consists of the remediation of approximately 100,000 cubic meters of soil and the decommissioning of facilities. The types and ranges of waste are the result of historical processing activities (chemical facilities, pyrotechnic components storage, mining component treatment and light isotope manufacturing activities). Mercury is the primary component of the waste, but metals and organic compounds are also possible waste components. A thermal desorption process is used to remove Mercury from the polluted soil while a biological treatment is considered to the organic nitrate compound removal. A focus is done on the technologies used to remediate the Mercury contaminated soil. After few months of operation, the first results confirm that the technology choices were relevant and the soil remediation project is a success. The first successful month of operation at an industrial scale demonstrate that the Thermal Desorption is an efficient and relevant process to remediate large quantity of mercury contaminated soils. The project is on cost and the mercury removal should be end by 2014. The scrubbing is a good way to limit the volume of material to be treated with the Thermal Desorption Unit. The biological treatment is a promising process for the organic nitrate compound removal and testing at a pilot scale will be done in 2012. (authors)

  16. Considerations for sampling contaminants in agricultural soils.

    PubMed

    Ramsey, Charles A

    2015-01-01

    Sampling agricultural soils for contaminants is relatively new. Existing standard sampling protocols used for the evaluation of soil nutrients are likely insufficient for contaminants. The main reasons are the very low analyte levels and differences in heterogeneity between nutrients and contaminants. To evaluate the adequacy of existing sampling protocols or to develop new protocols, a systematic scientific approach is needed. This approach begins with the development of the Sample Quality Criteria followed by a realistic understanding of the properties of the material to be sampled, most notably its heterogeneity. The Sample Quality Criteria and material properties are inputs into the Theory of Sampling. With these inputs, the Theory of Sampling can be used to determine the specifics of the sampling protocol (e.g., mass, number of increments, tool selection) that must be implemented to control error to reliably estimate the concentration of the analyte(s) of interest. Development of sampling protocols in this manner will ensure sample representativeness and therefore improve data equivalency among various parties involved. This is the only way to provide a sound technical basis for defensible decision making to ensure increased safety of food and feed, specifically with respect to contaminants in agricultural soils.

  17. Bioremediation of soils contaminated with explosives.

    PubMed

    Lewis, Thomas A; Newcombe, David A; Crawford, Ronald L

    2004-04-01

    The large-scale industrial production and processing of munitions such as 2,4,6-trinitrotoluene (TNT) over the past 100 years led to the disposal of wastes containing explosives and nitrated organic by-products into the environment. In the US, the Army alone has estimated that over 1.2 million tons of soil have been contaminated with explosives, and the impact of explosives contamination in other countries is of similar magnitude. In recent years, growing concern about the health and ecological threats posed by man-made chemicals have led to studies of the toxicology of explosives, which have identified toxic and mutagenic effects of the common military explosives and their transformation products (Bruns-Nagel et al., 1999a; Fuchs et al., 2001; Homma-Takeda et al., 2002; Honeycutt et al., 1996; Rosenblatt et al., 1991; Spanggord et al., 1982; Tan et al., 1992 and Won et al., 1976). Because the cleanup of areas contaminated by explosives is now mandated because of public health concerns, considerable effort has been invested in finding economical remediation technologies. Biological treatment processes are often considered, since these are usually the least expensive means of destroying organic pollution. This review examines the most important groups of chemicals that must be treated at sites contaminated by explosives processing, the chemical and biological transformations they undergo, and commercial processes developed to exploit these transformations for treatment of contaminated soil. We critically examine about 150 papers on the topic, including approximately 60 published within the past 5 years.

  18. Method for treatment of soils contaminated with organic pollutants

    DOEpatents

    Wickramanayake, Godage B.

    1993-01-01

    A method for treating soil contaminated by organic compounds wherein an ozone containing gas is treated with acid to increase the stability of the ozone in the soil environment and the treated ozone applied to the contaminated soil to decompose the organic compounds. The soil may be treated in situ or may be removed for treatment and refilled.

  19. Soil properties controlling Zn speciation and fractionation in contaminated soils

    NASA Astrophysics Data System (ADS)

    Jacquat, Olivier; Voegelin, Andreas; Kretzschmar, Ruben

    2009-09-01

    We determined the speciation of Zn in 49 field soils differing widely in pH (4.1-7.7) and total Zn content (251-30,090 mg/kg) by using extended X-ray absorption fine structure (EXAFS) spectroscopy. All soils had been contaminated since several decades by inputs of aqueous Zn with runoff-water from galvanized power line towers. Pedogenic Zn species identified by EXAFS spectroscopy included Zn in hydroxy-interlayered minerals (Zn-HIM), Zn-rich phyllosilicates, Zn-layered double hydroxide (Zn-LDH), hydrozincite, and octahedrally and tetrahedrally coordinated sorbed or complexed Zn. Zn-HIM was only observed in (mostly acidic) soils containing less than 2000 mg/kg of Zn, reflecting the high affinity but limited sorption capacity of HIM. Zn-bearing precipitates, such as Zn-LDH and Zn-rich trioctahedral phyllosilicates, became more dominant with increasing pH and increasing total Zn content relative to available adsorption sites. Zn-LDH was the most abundant Zn-precipitate and was detected in soils with pH > 5.2. Zn-rich phyllosilicates were detected even at lower soil pH, but were generally less abundant than Zn-LDH. Hydrozincite was only identified in two calcareous soils with extremely high Zn contents. In addition to Zn-LDH, large amounts of Zn in highly contaminated soils were mainly accumulated as sorbed/complexed Zn in tetrahedral coordination. Soils grouped according to their Zn speciation inferred from EXAFS spectroscopy mainly differed with respect to soil pH and total Zn content. Clear differences were observed with respect to Zn fractionation by sequential extraction: From Zn-HIM containing soils, most of the total Zn was recovered in the exchangeable and the most recalcitrant fractions. In contrast, from soils containing the highest percentage of Zn-precipitates, Zn was mainly extracted in intermediate extraction steps. The results of this study demonstrate that soil pH and Zn contamination level relative to available adsorption sites are the most important

  20. Chemical oxidation of TCE contaminated soils

    SciTech Connect

    Gates, D.D.; Siegrist, R.L.; Cline, S.R.

    1995-12-31

    Chemical oxidation of contaminated soils and sediments has been evaluated as a potential in situ mediation technique. The objective of this research was to compare two potential chemical oxidants; hydrogen peroxide (H{sub 2}O{sub 2}) plus iron (Fenton`s reagent) and potassium permanganate (KMnO{sub 4}). The TCE reduction efficiency for both oxidants was determined during a series of bench-scale experiments. The persistence of the two oxidants in soil systems and the effect of the oxidants on bulk soil properties were also evaluated. In clay soil systems, KMnO{sub 4} was able to reduce the TCE content by 99% from an average initial concentration of 130 mg/kg to a average posttreatment concentration of 4 mg/kg. TCE reductions achieved with H{sub 2}O{sub 2} were slightly lower (86%) and appeared to depend on both the soil pH and the iron concentration. The results ofthe laboratory studies have beenusedasthebasisforseveral completed and proposed field demonstrations of the in situ chemical oxidation of sites contaminated with volatile organic compounds including TCE.

  1. Effects of climatic modalities on polycyclic aromatic hydrocarbons (PAHs) availability and attenuation in historically contaminated Technosol

    NASA Astrophysics Data System (ADS)

    Dagois, Robin; Schwartz, Christophe; Faure, Pierre

    2014-05-01

    Since the decline of industrial activities in France, large areas of polycyclic aromatic hydrocarbon (PAHs)-contaminated soils have remained derelict. Thus, the fate of PAHs in such soils through natural attenuation process needs to be assessed. On the long-term scale (10-100 years), climate will greatly contribute to the evolution of soil physico-chemical properties and by consequences PAHs availability. In our study, we examined the effect of three contrasted climatic conditions (freeze-thawing, wetting-drying and high temperature) on soil aging processes of 11 historically contaminated soils and consequences on the availability of polycyclic aromatic compounds (including the 16 priority pollutants PAHs). Batch experiments were set-up for each modality; freeze-dried soil underwent variation of humidity and/or temperature. In a first step, PACs availability was roughly evaluated, with a water-extraction method using a H2O2 + CaCl2 solution. Dissolved organic carbon (DOC) content was measured in these extracts before and after applying the climatic modalities. Difference in DOC indicated an effect of the climatic modality on PACs availability. If an effect was noticed, available PACs was then accurately measured using (i) an hydrogen-peroxide oxidation on the soils followed (ii) a dichloromethane (DCM) extraction and a Gas Chromatography - Mass Spectrometer (GC-MS) quantification of the remaining PACs (i.e. unavailable). Variation of PACs availability will greatly help to understand the mechanisms associated between PACs desorption/sequestration and the abiotic influence of climate. Results of this work will further help understanding and predict the rate of natural attenuation of PACs in contaminated soils for the incoming decades.

  2. Bioremediation of uranium contaminated soils and wastes

    SciTech Connect

    Francis, A.J.

    1998-12-31

    Contamination of soils, water, and sediments by radionuclides and toxic metals from uranium mill tailings, nuclear fuel manufacturing and nuclear weapons production is a major concern. Studies of the mechanisms of biotransformation of uranium and toxic metals under various microbial process conditions has resulted in the development of two treatment processes: (1) stabilization of uranium and toxic metals with reduction in waste volume and (2) removal and recovery of uranium and toxic metals from wastes and contaminated soils. Stabilization of uranium and toxic metals in wastes is accomplished by exploiting the unique metabolic capabilities of the anaerobic bacterium, Clostridium sp. The radionuclides and toxic metals are solubilized by the bacteria directly by enzymatic reductive dissolution, or indirectly due to the production of organic acid metabolites. The radionuclides and toxic metals released into solution are immobilized by enzymatic reductive precipitation, biosorption and redistribution with stable mineral phases in the waste. Non-hazardous bulk components of the waste volume. In the second process uranium and toxic metals are removed from wastes or contaminated soils by extracting with the complexing agent citric acid. The citric-acid extract is subjected to biodegradation to recover the toxic metals, followed by photochemical degradation of the uranium citrate complex which is recalcitrant to biodegradation. The toxic metals and uranium are recovered in separate fractions for recycling or for disposal. The use of combined chemical and microbiological treatment process is more efficient than present methods and should result in considerable savings in clean-up and disposal costs.

  3. Remediating pesticide contaminated soils using solvent extraction

    SciTech Connect

    Sahle-Demessie, E.; Meckes, M.C.; Richardson, T.L.

    1996-12-31

    Bench-scale solvent extraction studies were performed on soil samples obtained from a Superfund site contaminated with high levels of p,p{prime}-DDT, p,p{prime}-DDE and toxaphene. The effectiveness of the solvent extraction process was assessed using methanol and 2-propanol as solvents over a wide range of operating conditions. It was demonstrated that a six-stage methanol extraction using a solvent-to-soil ratio of 1.6 can decrease pesticide levels in the soil by more than 99% and reduce the volume of material requiring further treatment by 25 times or more. The high solubility of the pesticides in methanol resulted in rapid extraction rates, with the system reaching quasi-equilibrium state in 30 minutes. The extraction efficiency was influenced by the number of extraction stages, the solvent-to-soil ratio, and the soil moisture content. Various methods were investigated to regenerate and recycle the solvent. Evaporation and solvent stripping are low cost and reliable methods for removing high pesticide concentrations from the solvent. For low concentrations, GAC adsorption may be used. Precipitating and filtering pesticides by adding water to the methanol/pesticide solution was not successful when tested with soil extracts. 26 refs., 10 figs., 6 tabs.

  4. Arsenic and lead contamination in urban soils of Villa de la Paz (Mexico) affected by historical mine wastes and its effect on children's health studied by micronucleated exfoliated cells assay.

    PubMed

    Gamiño-Gutiérrez, Sandra P; González-Pérez, C Ivonne; Gonsebatt, María E; Monroy-Fernández, Marcos G

    2013-02-01

    Environmental geochemical and health studies were carried out in urban areas of Villa de la Paz, S.L.P. (Mexico), where mining activities have been developed for more of 200 years, leading to the pollution of surface soil by arsenic and heavy metals (Pb, Cd, Cu, Zn). The analysis of urban soils to determine total and bioaccessibility concentrations of As and Pb, demonstrated a combined contribution of the natural and anthropogenic concentrations in the site, at levels higher than the environmental guideline values that provoke a human health risk. Contour soil mapping confirmed that historical mine waste deposits without environmental control measures, are the main source of pollution soil by As and Pb in the site. Exposure (Pb in blood and As in urine) and effect (micronucleated exfoliated cells assay) biological monitoring were then carried out in the childhood population of the site and in a control site. The exposure biological monitoring demonstrated that at least 20-30 % of children presented Pb and As exposure values higher than the national and international maximum intervention values. The effect biomonitoring by MEC assay confirmed that there is a genotoxic damage in local childhood population that could be associated with the arsenic exposure in the site.

  5. Mercury Contamination from Historic Gold Mining in California

    USGS Publications Warehouse

    Alpers, Charles N.; Hunerlach, Michael P.

    2000-01-01

    Mercury contamination from historic gold mines represents a potential risk to human health and the environment. This fact sheet provides background information on the use of mercury in historic gold mining and processing operations in California, and describes a new USGS project that addresses the potential risks associated with mercury from these sources, with emphasis on historic hydraulic mining areas. Miners used mercury (quicksilver) to recover gold throughout the western United States at both placer (alluvial) and hardrock (lode) mines. The vast majority of mercury lost to the environment in California was from placer-goldmines, which used hydraulic, drift, and dredging methods. At hydraulic mines, placer ores were broken down with monitors (or water cannons, fig. 1) and the resulting slurry was directed throughsluices and drainage tunnels, where goldparticles combined with liquid mercury to form gold?mercury amalgam. Loss ofmercury in this process was 10 to 30 percent per season (Bowie, 1905), resulting in highly contaminated sediments at mine sites (fig. 2). Elevated mercury concentrations in present-day mine waters and sediments indicate thathundreds to thousands of pounds of mercury remain at each of the many sites affected by hydraulic mining. High mercury levels in fish, amphibians, and invertebrates downstream of the hydraulic mines are a consequence of historic mercury use. On the basis of USGS studies and other recent work, a better understanding is emerging of mercury distribution, ongoing transport, transformation processes, and the extent of biological uptake in areas affected by historic gold mining. This information will be useful to agencies responsible for prudent land and resource management and for protecting public health.

  6. Ecological evaluation of oil-contaminated soils (Sakhalin) using enchytraeidae

    NASA Astrophysics Data System (ADS)

    Kovaleva, E. I.; Yakovlev, A. S.; Nikolaenko (Kegiyan), M. G.; Makarov, A. O.; Makarov, A. A.

    2017-03-01

    The ecological status of oil-contaminated soils of Sakhalin and their background analogues has been evaluated with the use of soil invertebrates. The survival rates of Enchytraeus albidus in soils with different textures and the contents of organic carbon and nutrients have been compared. The indicative role of soil mesofauna ( Enchytraeus albidus) for the ecological evaluation of oil-contaminated soils with due account for their properties has been shown. The permissible residual concentration of oil hydrocarbons in some soils of Sakhalin—acid brown forest soils (Umbrisols), high-moor peat soils (Histosols), acid meadow alluvial soils (Fluvisols), cultivated meadow soddy soils (Anthrosols), and mucky-podzolic surface-gleyed soils (Gleysols)— has been determined from data on the response of Enchytraeus albidus to different levels of the soil contamination with oil hydrocarbons.

  7. The organic contamination level based on the total soil mass is not a proper index of the soil contamination intensity

    USGS Publications Warehouse

    Hung, H.-W.; Daniel, Sheng G.; Lin, T.-F.; Su, Y.; Chiou, C.T.

    2009-01-01

    Concentrations of organic contaminants in common productive soils based on the total soil mass give a misleading account of actual contamination effects. This is attributed to the fact that productive soils are essentially water-saturated, with the result that the soil uptake of organic compounds occurs principally by partition into the soil organic matter (SOM). This report illustrates that the soil contamination intensity of a compound is governed by the concentration in the SOM (Com) rather than by the concentration in whole soil (Cs). Supporting data consist of the measured levels and toxicities of many pesticides in soils of widely differing SOM contents and the related levels in in-situ crops that defy explanation by the Cs values. This SOM-based index is timely needed for evaluating the contamination effects of food crops grown in different soils and for establishing a dependable priority ranking for intended remediation of numerous contamination sites.

  8. Adaptive spatial sampling of contaminated soil

    SciTech Connect

    Cox, L.A. Jr.

    1999-12-01

    Suppose that a residential neighborhood may have been contaminated by a nearby abandoned hazardous waste site. The suspected contamination consists of elevated soil concentrations o chemicals that are also found in the absence of site-related contamination. How should a risk manager decide which residential properties to sample and which ones to clean? This paper introduces an adaptive spatial sampling approach which uses initial observations to guide subsequent search. Unlike some recent model-based spatial data analysis methods, it does not require any specific statistical model for the spatial distribution of hazards, but instead constructs an increasingly accurate nonparametric approximation to it as sampling proceeds. Possible cost-effective sampling and cleanup decision rules are described by decision parameters such as the number of randomly selected locations used to initialize the process, the number of highest-concentration locations searched around, the number of samples taken at each location, a stopping rule, and a remediation action threshold. These decision parameters are optimized by simulating the performance of each decision rule. The simulation is performed using the data collected so far to impute multiple probably values of unknown soil concentration distributions during each simulation run.

  9. Bioremediation of petroleum contaminated soil using vegetation. A microbial study

    SciTech Connect

    Lee, E.; Banks, M.K. )

    1993-12-01

    The degradation of selected petroleum hydrocarbons in the rhizosphere of alfalfa was investigated in a greenhouse experiment. Petroleum contaminated and uncontaminated soils were spiked with 100 ppm of polynuclear aromatic and aliphatic hydrocarbons. Unspiked, uncontaminated soil was used as a control. Microbial counts for soils with and without plants for each soil treatment were performed 4, 8, 16, and 24 weeks after planting. Microbial numbers were substantially greater in soil with plants when compared to soil containing no plants, indicating that plant roots enhanced microbial populations in contaminated soil. Soil treatments had no effect on microbial numbers in the presence of plants. 12 refs., 3 figs., 1 tab.

  10. Transuranium-element-contaminated soil cleanup

    SciTech Connect

    Bramlitt, E.T.

    1987-01-01

    Johnston Atoll (JA) is a small (270-ha), but strategic, US possession in the Pacific Ocean, which was previously used in nuclear weapons testing. Nuclear devices were launched by missile for detonations at very high altitudes. In 1962, one missile failed on the launch pad and two failed overhead. The devices were destructed without nuclear yield, but transuranium (TRU) elements were dispersed. Cleanup was swift and incomplete. A 2-ha area was placed under radiological controls and restricted from use due to residual contamination. Planning was begun in 1983 for a total JA cleanup to provide additional (unrestricted) land to meet future requirements. A TRUe soil cleanup is programmed to begin at JA in 1988 utilizing a full-scale mining plant. The plant should be able to process all contaminated soil by 1992 and produce less than approx. 2000 m/sup 3/ of concentrated waste. This cleanup will increase the amount of land available for unrestricted use and provide a source of usable soil, which presently must be imported to JA.

  11. BIOREMEDIATION OF URANIUM CONTAMINATED SOILS AND WASTES.

    SciTech Connect

    FRANCIS,A.J.

    1998-09-17

    Contamination of soils, water, and sediments by radionuclides and toxic metals from uranium mill tailings, nuclear fuel manufacturing and nuclear weapons production is a major concern. Studies of the mechanisms of biotransformation of uranium and toxic metals under various microbial process conditions has resulted in the development of two treatment processes: (i) stabilization of uranium and toxic metals with reduction in waste volume and (ii) removal and recovery of uranium and toxic metals from wastes and contaminated soils. Stabilization of uranium and toxic metals in wastes is accomplished by exploiting the unique metabolic capabilities of the anaerobic bacterium, Clostridium sp. The radionuclides and toxic metals are solubilized by the bacteria directly by enzymatic reductive dissolution, or indirectly due to the production of organic acid metabolites. The radionuclides and toxic metals released into solution are immobilized by enzymatic reductive precipitation, biosorption and redistribution with stable mineral phases in the waste. Non-hazardous bulk components of the waste such as Ca, Fe, K, Mg and Na released into solution are removed, thus reducing the waste volume. In the second process uranium and toxic metals are removed from wastes or contaminated soils by extracting with the complexing agent citric acid. The citric-acid extract is subjected to biodegradation to recover the toxic metals, followed by photochemical degradation of the uranium citrate complex which is recalcitrant to biodegradation. The toxic metals and uranium are recovered in separate fractions for recycling or for disposal. The use of combined chemical and microbiological treatment process is more efficient than present methods and should result in considerable savings in clean-up and disposal costs.

  12. Ecological risk assessment of contaminated soil.

    PubMed

    Jensen, John; Pedersen, Marianne Bruus

    2006-01-01

    This review has described three cases of ecological risk assessment. The cases include two heavy metals (Cu and Zn) and an anthropogenic organic chemical (DDT). It concludes that there are at least two major constraints hampering the use of laboratory tests to predict effects under natural field conditions. One key issue is bioavailability, and another is suboptimal conditions or multiple stresses in the field such as climatic stress (drought, frost), predators, competition, or food shortage. On the basis of the presented case studies, it was possible to answer three essential questions often raised in connection to ecological risk assessment of contaminated sites. 1. To what extend does soil screening level (SSL) estimate the risk? The SSL are generally derived at levels corresponding to the lowest observed effect levels in laboratory studies, which often is close to the background levels found in many soils. In the cases of zinc and especially DDT, the SSL seemed quite conservative, whereas for copper they resemble the level at which changes in the community structure of soil microarthropods and the plant community have been observed at contaminated sites. The SSL correspond as a whole relatively well with concentrations where no effects or only minor effects were observed in controlled field studies. However, large variation in field surveys can often make it difficult to conclude to what extent the SSL corresponded to no-effect levels in the field. 2. Do bioassays represent a more realistic risk estimate? Here, there is no firm conclusion. The zinc study in UK showed a better relationship between the outcome of ex situ bioassays and field observations than the SSL. The latter overestimated the risk compared to field observations. However, this would be species dependent, as the sensitivity to metals may vary considerably between recognized test species, even within the same group of organisms, such as Folsomia candida and Folsomia fimetaria or Eisenia fetida

  13. REVIEW OF SEPARATION TECHNOLOGIES FOR TREATING PESTICIDE-CONTAMINATED SOIL

    EPA Science Inventory

    Pesticide contamination results from manufacturing, improper storage, handling, or disposal of pesticides, and from agricultural processes. Since most pesticides are mixtures of different compounds, selecting a remedy for pesticide-contaminated soils can be a complicated process....

  14. REVIEW OF SEPARATION TECHNOLOGIES FOR TREATING PESTICIDE-CONTAMINATED SOIL

    EPA Science Inventory

    Pesticide contamination results from manufacturing, improper storage, handling, or disposal of pesticides, and from agricultural processes. Since most pesticides are mixtures of different compounds, selecting a remedy for pesticide-contaminated soils can be a complicated process....

  15. DNA damage caused by pesticide-contaminated soil.

    PubMed

    Krishnamurthi, K; Saravana Devi, S; Chakrabarti, T

    2006-12-01

    To determine the DNA damaging potential and the genotoxicity of individual compounds in pesticide contaminated soil. In the present study, DNA damaging potential of pesticide-contaminated soil and the genotoxicity of individual compounds present in the soil were assessed using fluorimetric analysis of DNA unwinding assay. The contaminated soil sample showed 79% (P < 0.001) of DNA strand break, whereas technical grade of major carbaryl and alpha-naphthol constituents of the contaminated soil showed 64% (P < 0.01) and 60% (P < 0.02) damage respectively. Our results indicate that the toxicity caused by contaminated soil is mainly due to carbaryl and alpha-napthol, which are the major constituents of the soil sample analyzed by GC-MS.

  16. Soils as a buffer of contaminants in catchments

    NASA Astrophysics Data System (ADS)

    Evrard, Olivier

    2014-05-01

    Human activities deliver large quantities of contaminants into the environment through atmospheric emissions or direct releases. As many of those contaminants are particle-reactive, they bind strongly to the finest particles or on their organic matter fraction once they deposit onto soils. Contaminants may subsequently migrate in depth of the soil depending on their physico-chemical characteristics. They may also be redistributed along hillslopes in association with particles during soil erosion events and may be subsequently supplied to rivers, preventing to meet the international environmental targets (e.g. in the framework of the EU Water Framework Directive). In regions where soil erosion rates are low to moderate, a large quantity of particle-reactive contaminants may accumulate in soils that constitute a reservoir of pollutants that may be delivered to rivers during decades or centuries. This session will focus on the specific role played by soils as a reservoir of contaminants at the catchment scale. A better understanding of this role and a quantification of the persistence of contaminants in this reservoir will provide crucial insights to guide the implementation of efficient mitigation measures. Contributions to this session may address any aspect of particle-borne contaminant transfer at the catchment scale, with an emphasis on the role played by soils in their storage and transfer. Field-based or modeling studies may focus either on specific pollutants or on a wider range of substances, e.g. metals, radionuclides, organic contaminants. Key themes may include: • Contaminant budget at the hillslope vs. the catchment scales; • Evaluation of the contribution of the regional vs. local contamination sources; • Evaluation of the contaminant removal from soils by degradation vs. soil erosion; • Quantifying the persistence of contaminants in soils; • Discrimination between the legacy and the contemporary supply of contaminants to soils.

  17. Biodegradation of Hydrocarbon Contaminants by Patuxent River Soil Microbial Communities.

    DTIC Science & Technology

    1992-06-01

    Engineering University of North Carolina BIODEGRADATION OF HYDROCARBON CONTAMINANTS BY PATUXENT RIVER SOIL MICROBIAL COMMUNITIES Abstract This study...on those rates and adaptation times. Tests were conducted by adding C-labeled compounds to jet fuel- contaminated soil from the fuel farm at the...BIODEGRADATION OF HYDRO- L CARBON CONTAMINANTS BY PATUXENT PR - RM33E80 RIVER SOIL MICROBIAL COMMUNITI c - N6258349-P-7594 & umu WU - DN668037 Dr. Frederic K

  18. [Methodology of enacting standards for remediation of contaminated soils].

    PubMed

    Zhou, Qixing

    2004-02-01

    Remediation technology for contaminated soils is being developed rapidly in recent years. However, there is a hysteresis in enacting remediation standards for contaminated soils. In particular, no corresponding research has been done in China. Methodology of enacting standards for the remediation of contaminated soils is discussed in order to promote the work in this field. It is emphasized that technological cleanup levels including limits of detection, environmental background levels and regulatory cleanup levels should be fully considered in the enactment of remediation standards.

  19. System for the removal of contaminant soil-gas vapors

    DOEpatents

    Weidner, J.R.; Downs, W.C.; Kaser, T.G.; Hall, H.J.

    1997-12-16

    A system extracts contaminated vapors from soil or other subsurface regions by using changes in barometric pressure to operate sensitive check valves that control air entry and removal from wells in the ground. The system creates an efficient subterranean flow of air through a contaminated soil plume and causes final extraction of the contaminants from the soil to ambient air above ground without any external energy sources. 4 figs.

  20. System for the removal of contaminant soil-gas vapors

    DOEpatents

    Weidner, Jerry R.; Downs, Wayne C.; Kaser, Timothy G.; Hall, H. James

    1997-01-01

    A system extracts contaminated vapors from soil or other subsurface regions by using changes in barometric pressure to operate sensitive check valves that control air entry and removal from wells in the ground. The system creates an efficient subterranean flow of air through a contaminated soil plume and causes final extraction of the contaminants from the soil to ambient air above ground without any external energy sources.

  1. Soil contamination in China: current status and mitigation strategies.

    PubMed

    Zhao, Fang-Jie; Ma, Yibing; Zhu, Yong-Guan; Tang, Zhong; McGrath, Steve P

    2015-01-20

    China faces great challenges in protecting its soil from contamination caused by rapid industrialization and urbanization over the last three decades. Recent nationwide surveys show that 16% of the soil samples, 19% for the agricultural soils, are contaminated based on China’s soil environmental quality limits, mainly with heavy metals and metalloids. Comparisons with other regions of the world show that the current status of soil contamination, based on the total contaminant concentrations, is not worse in China. However, the concentrations of some heavy metals in Chinese soils appear to be increasing at much greater rates. Exceedance of the contaminant limits in food crops is widespread in some areas, especially southern China, due to elevated inputs of contaminants, acidic nature of the soil and crop species or cultivars prone to heavy metal accumulation. Minimizing the transfer of contaminants from soil to the food chain is a top priority. A number of options are proposed, including identification of the sources of contaminants to agricultural systems, minimization of contaminant inputs, reduction of heavy metal phytoavailability in soil with liming or other immobilizing materials, selection and breeding of low accumulating crop cultivars, adoption of appropriate water and fertilizer management, bioremediation, and change of land use to grow nonfood crops. Implementation of these strategies requires not only technological advances, but also social-economic evaluation and effective enforcement of environmental protection law.

  2. Recent Developments for In Situ Treatment of Metal Contaminated Soils

    EPA Pesticide Factsheets

    This report assists the remedy selection process by providing information on four in situ technologies for treating soil contaminated with metals. The four approaches are electrokinetic remediation, phytoremediation, soil flushing, and...

  3. Mouse Assay for Determination of Arsenic Bioavailability in Contaminated Soils

    EPA Science Inventory

    Background: Accurate assessment of human exposure estimates from arsenic-contaminated soils depends upon estimating arsenic (As) soil bioavailability. Development of bioavailability assays provides data needed for human health risk assessments and supports development and valida...

  4. Mouse Assay for Determination of Arsenic Bioavailability in Contaminated Soils

    EPA Science Inventory

    Background: Accurate assessment of human exposure estimates from arsenic-contaminated soils depends upon estimating arsenic (As) soil bioavailability. Development of bioavailability assays provides data needed for human health risk assessments and supports development and valida...

  5. The effect of contaminant aging upon soil washing removal efficiencies for lead contaminated soils

    SciTech Connect

    Cline, S.R.; Reed, B.E.; Moore, R.E.

    1994-10-01

    The objective of this research was to investigate lead removal efficiencies from various soils using a variety of washing solutions. Most soil types have a strong affinity for lead. Thus, it is plausible to expect washing solutions that are capable of removing lead could also remove other divalent heavy metals. Four soil samples from the eastern US were collected and characterized for this study. The study soils were then spiked to approximate lead concentrations of 1,000 and 10,000 mg Pb/kg soil. The efficiencies of six washing solutions in removing lead from the contaminated soils were then investigated via lab-scale batch washing experiments. Unlike current field-scale soil washing practices, all particle size fractions were washed and recovered in these experiments. (Solutions investigated include: tap water, HCl, EDTA, HNO{sub 3}, CH{sub 3}COOH, and CaCl{sub 2}.) In order to examine the effect of aging upon soil washing efficiencies, some of the spiked soils were washed a second time after an aging period of nearly 2 years.

  6. Dioxin contamination in soils of Southern Vietnam.

    PubMed

    Mai, Tuan Anh; Doan, Thanh Vu; Tarradellas, Joseph; de Alencastro, Luiz Felippe; Grandjean, Dominique

    2007-04-01

    Dioxin is the common name for polychlorinated dibenzo-p-dioxins (PCDDs) and polychlorinated dibenzofurans (PCDFs), and is abbreviated as PCDD/Fs. In the case of Southern Vietnam, is of high concern dioxin contamination in the areas affected by past-use chemical defoliants. Our study related to the zone considered as a "hot spot"--Bien Hoa Airbase and surrounding areas (Bien Hung Lake). Although the war ended over 30 years ago, the adverse effects on this territory still continue. Soil and sediment were selected for our research as they act as a sink for PCDD/Fs. The samples were taken and analyzed in CECOTOX laboratory following certified procedures. The total amounts of PCDD/Fs (2,3,7,8 related congeners) in the samples were converted into WHO-TEQ and compared with standard values proposed by Canadian environmental quality guidelines. The obtained data shows a relatively high risk (up to 20.4 times higher than (probable effect level) PEL value for sediment and 46 times higher than standard value for soil). The research is continuing on the assessment of dioxin transport in food chain. Moreover, considering the obtained data a complete solution should be found urgently to solve the problem of dioxin contamination in the studied areas.

  7. Calculation of dose distribution above contaminated soil

    NASA Astrophysics Data System (ADS)

    Kuroda, Junya; Tenzou, Hideki; Manabe, Seiya; Iwakura, Yukiko

    2017-07-01

    The purpose of this study was to assess the relationship between altitude and the distribution of the ambient dose rate in the air over soil decontamination area by using PHITS simulation code. The geometry configuration was 1000 m ×1000 m area and 1m in soil depth and 100m in altitude from the ground to simulate the area of residences or a school grounds. The contaminated region is supposed to be uniformly contaminated by Cs-137 γ radiation sources. The air dose distribution and space resolution was evaluated for flux of the gamma rays at each altitude, 1, 5, 10, and 20m. The effect of decontamination was calculated by defining sharpness S. S was the ratio of an average flux and a flux at the center of denomination area in each altitude. The suitable flight altitude of the drone is found to be less than 15m above a residence and 31m above a school grounds to confirm the decontamination effect. The calculation results can be a help to determine a flight planning of a drone to minimize the clash risk.

  8. Testing amendments for remediation of military range contaminated soil

    USDA-ARS?s Scientific Manuscript database

    Military range soils are often strongly contaminated with metals. Information on effectiveness of remediation techniques on these soils is scarce. We tested effectiveness of compost and mineral treatments for remediation of military range soil collected in Aberdeen, MD. The soil was barren due to...

  9. Comprehensive methodology for ecological risk assessment of contaminated soils

    SciTech Connect

    Kuperman, R.G.

    1994-12-31

    Development of a comprehensive methodology for ecological risk assessment and monitoring of contaminated soils is essential to assess the impacts of environmental contaminants on soil community and biologically-mediated processes in soil. The proposed four-step plan involves (1) a thorough survey of the soil community to establish biodiversity and a base-line community structure, (2) toxicity trials on indicator species and whole soil invertebrate communities, (3) laboratory and field tests on indicator processes and (4) the use of statistical and simulation models to ascertain changes in the soil ecosystems. This methodology was used in portions of the US Army`s Aberdeen Proving Ground, Maryland as part of an ecological risk assessment. Previous soil analyses showed extensive surface soil contamination with metals, nitrate and PCBs. Preliminary results from field surveys of soil invertebrate communities showed significant reductions in total abundance of animals, reductions in the abundance of several taxonomic and functional groups of soil invertebrates, and changes in the activity of epigeic arthropods in contaminated areas when compared with the local ``background`` area. Laboratory tests also demonstrated that microbial activity and success of egg hatching of ground beetle Harpalus pensylvanicus were reduced in contaminated soils. These results suggest that impacts to soil ecosystems should be explicitly considered in ecological risk assessment. The proposed comprehensive methodology appears to offer an efficient and potentially cost saving tool for remedial investigations of contaminated sites.

  10. Survival, growth, detoxifying and antioxidative responses of earthworms (Eisenia fetida) exposed to soils with industrial DDT contamination.

    PubMed

    Shi, Yajuan; Zhang, Qiangbin; Huang, Dunqi; Zheng, Xiaoqi; Shi, Yajing

    2016-03-01

    The survival, growth, activity of the biotransformation system phase II enzyme glutathione-S-transferase (GST) and the oxidative defense enzyme catalase (CAT) of earthworms exposed to the contaminated soils from a former DDT plant and reference soils were investigated, and compared with the corresponding indicators in simulated soil-earthworm system, unpolluted natural soils with spiked-in DDT series, to identify the toxic effects of DDT on earthworms and their cellular defense system in complex soil system. The results indicated that DDT level in the contaminated soils was significantly higher than that in the reference soils with similar level of other pollutants and soil characters. The mortality, growth inhibition rates, GST and CST activities of earthworms exposed to the contaminated soils were significantly higher than that in reference soils. The contribution of historical DDT in contaminated soils to earthworms was confirmed by the DDT spiked tests. DDT spiked in soils at rates of higher than 200 mg·kg(-1) was significantly toxic to both the survival and the growth of earthworms. DDT significantly stimulated GST and CAT activity in earthworms after 14 days. The CAT and GST activities were also stimulated by DDT exposure at rates of 100 mg·kg(-1) after chronic exposure (42 days). The results provide implications for validating the extrapolation from laboratory simulated soils criteria to contaminated soils and for making site risk assessments. Copyright © 2015 Elsevier B.V. All rights reserved.

  11. Impact of historical mining assessed in soils by kinetic extraction and lead isotopic ratios.

    PubMed

    Camizuli, E; Monna, F; Bermond, A; Manouchehri, N; Besançon, S; Losno, R; van Oort, F; Labanowski, J; Perreira, A; Chateau, C; Alibert, P

    2014-02-15

    The aim of this study is to estimate the long-term behaviour of trace metals, in two soils differently impacted by past mining. Topsoils from two 1 km(2) zones in the forested Morvan massif (France) were sampled to assess the spatial distribution of Cd, Cu, Pb and Zn. The first zone had been contaminated by historical mining. As expected, it exhibits higher trace-metal levels and greater spatial heterogeneity than the second non-contaminated zone, supposed to represent the local background. One soil profile from each zone was investigated in detail to estimate metal behaviour, and hence, bioavailability. Kinetic extractions were performed using EDTA on three samples: the A horizon from both soil profiles and the B horizon from the contaminated soil. For all three samples, kinetic extractions can be modelled by two first-order reactions. Similar kinetic behaviour was observed for all metals, but more metal was extracted from the contaminated A horizon than from the B horizon. More surprising is the general predominance of the residual fraction over the "labile" and "less labile" pools. Past anthropogenic inputs may have percolated over time through the soil profiles because of acidic pH conditions. Stable organo-metallic complexes may also have been formed over time, reducing metal availability. These processes are not mutually exclusive. After kinetic extraction, the lead isotopic compositions of the samples exhibited different signatures, related to contamination history and intrinsic soil parameters. However, no variation in lead signature was observed during the extraction experiment, demonstrating that the "labile" and "less labile" lead pools do not differ in terms of origin. Even if trace metals resulting from past mining and metallurgy persist in soils long after these activities have ceased, kinetic extractions suggest that metals, at least for these particular forest soils, do not represent a threat for biota.

  12. Full-scale anaerobic bioremediation of trinitrotoluene (TNT) contaminated soil

    SciTech Connect

    Funk, S.B.; Crawford, D.L.; Crawford, R.L.

    1995-12-31

    An anaerobic bioremediation process for the degradation of nitroaromatic compounds in soil was demonstrated. This ex situ process was demonstrated full-scale at a 2,4,6-trinitrotoluene (TNT)-contaminated site near Weldon Spring, MO. A bioreactor was loaded with approx 23 m{sup 3} of TNT-contaminated soil in the form of a 50:50 soil: water slurry. This slurry was augmented with a starchy carbon source (1-2% w/v) and buffered with phosphate to near-neutral pH. Indigenous soil bacteria utilized the oxygen, making the slurry anaerobic within 1-2 d. Anaerobes then degraded the TNT (3000 mg/kg) in approx 11 wk. A relatively long treatment time for the bioremediation of the TNT-contaminated soil was necessary, possibly because of the cool ambient temperatures, high clay content of the soil, high level of contamination, and high level of recalcitrance of TNT in soils.

  13. Phytotoxicity of zinc and manganese to seedlings grown in soil contaminated by zinc smelting

    USGS Publications Warehouse

    Beyer, W.N.; Green, C.E.; Beyer, M.; Chaney, R.L.

    2013-01-01

    Historic emissions from two zinc smelters have injured the forest on Blue Mountain near Palmerton, Pennsylvania, USA. Seedlings of soybeans and five tree species were grown in a greenhouse in a series of mixtures of smelter-contaminated and reference soils and then phytotoxic thresholds were calculated. As little as 10% Palmerton soil mixed with reference soil killed or greatly stunted seedlings of most species. Zinc was the principal cause of the phytotoxicity to the tree seedlings, although Mn and Cd may also have been phytotoxic in the most contaminated soil mixtures. Calcium deficiency seemed to play a role in the observed phytotoxicity. Exposed soybeans showed symptoms of Mn toxicity. A test of the effect of liming on remediation of the Zn and Mn phytotoxicity caused a striking decrease in Sr-nitrate extractable metals in soils and demonstrated that liming was critical to remediation and restoration.

  14. Phytotoxicity of zinc and manganese to seedlings grown in soil contaminated by zinc smelting.

    PubMed

    Beyer, W N; Green, C E; Beyer, M; Chaney, R L

    2013-08-01

    Historic emissions from two zinc smelters have injured the forest on Blue Mountain near Palmerton, Pennsylvania, USA. Seedlings of soybeans and five tree species were grown in a greenhouse in a series of mixtures of smelter-contaminated and reference soils and then phytotoxic thresholds were calculated. As little as 10% Palmerton soil mixed with reference soil killed or greatly stunted seedlings of most species. Zinc was the principal cause of the phytotoxicity to the tree seedlings, although Mn and Cd may also have been phytotoxic in the most contaminated soil mixtures. Calcium deficiency seemed to play a role in the observed phytotoxicity. Exposed soybeans showed symptoms of Mn toxicity. A test of the effect of liming on remediation of the Zn and Mn phytotoxicity caused a striking decrease in Sr-nitrate extractable metals in soils and demonstrated that liming was critical to remediation and restoration. Published by Elsevier Ltd.

  15. HISTORICAL RECONSTRUCTION OF CONTAMINANT AND ECOLOGICAL CONDITIONS IN NEW BEDFORD HARBOR, MASSACHUSETTS

    EPA Science Inventory

    One problem encountered when trying to establish goals for remediation or restoration of contaminated waterways is the determination of appropriate reference conditions. As an alternative to comparison of reference sites with contaminated waterways, historical reconstruction of p...

  16. HISTORICAL RECONSTRUCTION OF CONTAMINANT AND ECOLOGICAL CONDITIONS IN AN URBAN SETTING

    EPA Science Inventory

    One problem encountered when trying to establish goals for remediation or restoration of contaminated waterways is the determination of appropriate reference conditions. As an alternative to comparison of reference sites with contaminated waterways, historical reconstruction of p...

  17. HISTORICAL RECONSTRUCTION OF CONTAMINANT AND ECOLOGICAL CONDITIONS IN AN URBAN SETTING

    EPA Science Inventory

    One problem encountered when trying to establish goals for remediation or restoration of contaminated waterways is the determination of appropriate reference conditions. As an alternative to comparison of reference sites with contaminated waterways, historical reconstruction of p...

  18. HISTORICAL RECONSTRUCTION OF CONTAMINANT AND ECOLOGICAL CONDITIONS IN NEW BEDFORD HARBOR, MASSACHUSETTS

    EPA Science Inventory

    One problem encountered when trying to establish goals for remediation or restoration of contaminated waterways is the determination of appropriate reference conditions. As an alternative to comparison of reference sites with contaminated waterways, historical reconstruction of p...

  19. North American osprey populations and contaminants: Historic and contemporary perspectives

    USGS Publications Warehouse

    Henny, Charles J.; Grove, Robert A.; Kaiser, James L.; Johnson, Branden L.

    2010-01-01

    Osprey (Pandion haliaetus) populations were adversely affected by DDT and perhaps other contaminants in the United States and elsewhere. Reduced productivity, eggshell thinning, and high DDE concentrations in eggs were the signs associated with declining osprey populations in the 1950s, 1960s, and 1970s. The species was one of the first studied on a large scale to bring contaminant issues into focus. Although few quantitative population data were available prior to the 1960s, many osprey populations in North America were studied during the 1960s and 1970s with much learned about basic life history and biology. This article reviews the historical and current effects of contaminants on regional osprey populations. Breeding populations in many regions of North America showed post-DDT-era (1972) population increases of varying magnitudes, with many populations now appearing to stabilize at much higher numbers than initially reported in the 1970s and 1980s. However, the magnitude of regional population increases in the United States between 1981 (first Nationwide Survey, ≈8,000 pairs), when some recovery had already occurred, 1994 (second survey, ≈14,200), and 2001 (third survey, ≈16,000–19,000), or any other years, is likely not a simple response to the release from earlier contaminant effects, but a response to multi-factorial effects. This indirect "contaminant effects" measurement comparing changes (i.e., recovery) in post-DDT-era population numbers over time is probably confounded by changing human attitudes toward birds of prey (shooting, destroying nests, etc.), changing habitats, changing fish populations, and perhaps competition from other species. The species' adaptation to newly created reservoirs and its increasing use of artificial nesting structures (power poles, nesting platforms, cell towers, channel markers, offshore duck blinds, etc.) are two important factors. The timing of the initial use of artificial nesting structures, which replaced

  20. North American osprey populations and contaminants: historic and contemporary perspectives.

    PubMed

    Henny, Charles J; Grove, Robert A; Kaiser, James L; Johnson, Branden L

    2010-10-01

    Osprey (Pandion haliaetus) populations were adversely affected by DDT and perhaps other contaminants in the United States and elsewhere. Reduced productivity, eggshell thinning, and high DDE concentrations in eggs were the signs associated with declining osprey populations in the 1950s, 1960s, and 1970s. The species was one of the first studied on a large scale to bring contaminant issues into focus. Although few quantitative population data were available prior to the 1960s, many osprey populations in North America were studied during the 1960s and 1970s with much learned about basic life history and biology. This article reviews the historical and current effects of contaminants on regional osprey populations. Breeding populations in many regions of North America showed post-DDT-era (1972) population increases of varying magnitudes, with many populations now appearing to stabilize at much higher numbers than initially reported in the 1970s and 1980s. However, the magnitude of regional population increases in the United States between 1981 (first Nationwide Survey, ∼8,000 pairs), when some recovery had already occurred, 1994 (second survey, ∼14,200), and 2001 (third survey, ∼16,000-19,000), or any other years, is likely not a simple response to the release from earlier contaminant effects, but a response to multi-factorial effects. This indirect "contaminant effects" measurement comparing changes (i.e., recovery) in post-DDT-era population numbers over time is probably confounded by changing human attitudes toward birds of prey (shooting, destroying nests, etc.), changing habitats, changing fish populations, and perhaps competition from other species. The species' adaptation to newly created reservoirs and its increasing use of artificial nesting structures (power poles, nesting platforms, cell towers, channel markers, offshore duck blinds, etc.) are two important factors. The timing of the initial use of artificial nesting structures, which replaced

  1. North American osprey populations and contaminants: Historic and contemporary perspectives

    USGS Publications Warehouse

    Henny, Charles J.; Grove, Robert A.; Kaiser, James L.; Johnson, Branden L.

    2010-01-01

    Osprey (Pandion haliaetus) populations were adversely affected by DDT and perhaps other contaminants in the United States and elsewhere. Reduced productivity, eggshell thinning, and high DDE concentrations in eggs were the signs associated with declining osprey populations in the 1950s, 1960s, and 1970s. The species was one of the first studied on a large scale to bring contaminant issues into focus. Although few quantitative population data were available prior to the 1960s, many osprey populations in North America were studied during the 1960s and 1970s with much learned about basic life history and biology. This article reviews the historical and current effects of contaminants on regional osprey populations. Breeding populations in many regions of North America showed post-DDT-era (1972) population increases of varying magnitudes, with many populations now appearing to stabilize at much higher numbers than initially reported in the 1970s and 1980s. However, the magnitude of regional population increases in the United States between 1981 (first Nationwide Survey, ∼8,000 pairs), when some recovery had already occurred, 1994 (second survey, ∼14,200), and 2001 (third survey, ∼16,000–19,000), or any other years, is likely not a simple response to the release from earlier contaminant effects, but a response to multi-factorial effects. This indirect “contaminant effects” measurement comparing changes (i.e., recovery) in post-DDT-era population numbers over time is probably confounded by changing human attitudes toward birds of prey (shooting, destroying nests, etc.), changing habitats, changing fish populations, and perhaps competition from other species. The species' adaptation to newly created reservoirs and its increasing use of artificial nesting structures (power poles, nesting platforms, cell towers, channel markers, offshore duck blinds, etc.) are two important factors. The timing of the initial use of artificial nesting structures, which replaced

  2. Historical contamination of the Anacostia River, Washington, D.C.

    PubMed

    Velinsky, David J; Riedel, Gerhardt F; Ashley, Jeffrey T F; Cornwell, Jeffrey C

    2011-12-01

    The tidal Anacostia River in Washington DC has long been impacted by various sources of chemical pollution over the past 200 years. To explore more recent inputs of various chemicals, six sediment cores were collected for dating and chemical analysis in the downstream section of the tidal Anacostia River. Profiles of contaminants in sediment cores can be useful in determining management direction and effectiveness of pollution controls over time. There were two main objectives for this investigation: (1) determine current sediment contaminant levels; (2) determine a historical perspective of the sediment changes in contamination using (137)Cs and (210)Pb dating. The determination of an age-depth relationship using (210)Pb and (137)Cs dating gave somewhat different results, suggesting that the assumptions of (210)Pb dating were not met. Using the (137)Cs horizon allowed an assignment of approximate sediment accumulation rates and hence an age-depth relationship to contaminant events in the upper portions of the cores. Total PAHs showed higher concentrations at depth and lower surface concentrations. In the upper sections, PAHs were a mixture of combustion and petrogenic sources, while at depth the signature appeared to be of natural origins. Total PCBs, DDTs and chlordane concentrations showed a maximum in recent sediments, decreasing towards the surface. PCBs had lower molecular weight congeners near the surface and higher molecular weights at depth. A phthalate ester, DEHP, appeared in the mid 1940-1950s, and decreased towards the surface. Trace elements fell roughly into three groups. Fe, Mn, and As were in approximately constant proportion to Al, except in some deeper, sandy sediments, where they showed enrichments linked to redox conditions. Ag, Cd, Cu, Hg, Pb, and Zn had low concentrations in the deepest sediments, high concentrations at mid-depths, and declines to intermediate levels at the surface. Ni and Cr followed neither of these patterns closely. We

  3. BIOAVAILABILITY OF METALS IN CONTAMINATED SOIL AND DUST

    EPA Science Inventory

    Due to widespread metal contamination, it is necessary to characterize soils suspected of metal contamination and determine if the metal levels in these soils pose a hazard. Metal toxicity is often not directly related to the total concentration of metals present due to a numb...

  4. BIOAVAILABILITY OF METALS IN CONTAMINATED SOIL AND DUST

    EPA Science Inventory

    Due to widespread metal contamination, it is necessary to characterize soils suspected of metal contamination and determine if the metal levels in these soils pose a hazard. Metal toxicity is often not directly related to the total concentration of metals present due to a numb...

  5. Depth-resolved microbial community analyses in two contrasting soil cores contaminated by antimony and arsenic.

    PubMed

    Xiao, Enzong; Krumins, Valdis; Xiao, Tangfu; Dong, Yiran; Tang, Song; Ning, Zengping; Huang, Zhengyu; Sun, Weimin

    2017-02-01

    Investigation of microbial communities of soils contaminated by antimony (Sb) and arsenic (As) is necessary to obtain knowledge for their bioremediation. However, little is known about the depth profiles of microbial community composition and structure in Sb and As contaminated soils. Our previous studies have suggested that historical factors (i.e., soil and sediment) play important roles in governing microbial community structure and composition. Here, we selected two different types of soil (flooded paddy soil versus dry corn field soil) with co-contamination of Sb and As to study interactions between these metalloids, geochemical parameters and the soil microbiota as well as microbial metabolism in response to Sb and As contamination. Comprehensive geochemical analyses and 16S rRNA amplicon sequencing were used to shed light on the interactions of the microbial communities with their environments. A wide diversity of taxonomical groups was present in both soil cores, and many were significantly correlated with geochemical parameters. Canonical correspondence analysis (CCA) and co-occurrence networks further elucidated the impact of geochemical parameters (including Sb and As contamination fractions and sulfate, TOC, Eh, and pH) on vertical distribution of soil microbial communities. Metagenomes predicted from the 16S data using PICRUSt included arsenic metabolism genes such as arsenate reductase (ArsC), arsenite oxidase small subunit (AoxA and AoxB), and arsenite transporter (ArsA and ACR3). In addition, predicted abundances of arsenate reductase (ArsC) and arsenite oxidase (AoxA and AoxB) genes were significantly correlated with Sb contamination fractions, These results suggest potential As biogeochemical cycling in both soil cores and potentially dynamic Sb biogeochemical cycling as well.

  6. Integrated system for treating soil contaminated with wood treating wastes

    SciTech Connect

    Acheson, C.M.; Brenner, R.C.; Khodadoust, A.P.

    1995-10-01

    Approximately 20% of the hazardous waste sites undergoing bioremediation are contaminated with wood treating wastes, primarily compounds such as pentachlorophenol (PCP), creosote, polycyclic aromatic hydrocarbons (PAHs), and other hydrocarbons. A process that combines soil washing with sequential anaerobic and aerobic biotreatment is being integrated to remediate soil contaminated with these wood treating wastes. By extracting the target compound from the soil, soil washing facilitates degradation by mobilizing the target compound and expanding the range of feasible remediation technologies. Additional flexibility is possible since soil washing can be conducted in an in-situ or ex-situ format. In this process, the wash solution is initially bioremediated in an anaerobic environment. Mineralization of the target compound is completed aerobically. Based on preliminary results, the integrated process could meet the target cleanup level for PCP in approximately 45% of the bioremediation sites. Process development began by independently evaluating soil washing and target compound degradation. PCP contaminated soils were the initial focus, but this work is currently being extended to include soils contaminated with both PCP and PAHs. In addition, based on promising results from the soil washing and degradation evaluations, these individual unit operations are being integrated to form a complete process to remediate soils contaminated with wood treating wastes. This complete process incorporates soil washing, soil wash solution recycling, and biodegradation of the target compounds and is outlined.

  7. Airborne soil particulates as vehicles for Salmonella contamination of tomatoes.

    PubMed

    Kumar, Govindaraj Dev; Williams, Robert C; Al Qublan, Hamzeh M; Sriranganathan, Nammalwar; Boyer, Renee R; Eifert, Joseph D

    2017-02-21

    The presence of dust is ubiquitous in the produce growing environment and its deposition on edible crops could occur. The potential of wind-distributed soil particulate to serve as a vehicle for S. Newport transfer to tomato blossoms and consequently, to fruits, was explored. Blossoms were challenged with previously autoclaved soil containing S. Newport (9.39log CFU/g) by brushing and airborne transfer. One hundred percent of blossoms brushed with S. Newport-contaminated soil tested positive for presence of the pathogen one week after contact (P<0.0001). Compressed air was used to simulate wind currents and direct soil particulates towards blossoms. Airborne soil particulates resulted in contamination of 29% of the blossoms with S. Newport one week after contact. Biophotonic imaging of blossoms post-contact with bioluminescent S. Newport-contaminated airborne soil particulates revealed transfer of the pathogen on petal, stamen and pedicel structures. Both fruits and calyxes that developed from blossoms contaminated with airborne soil particulates were positive for presence of S. Newport in both fruit (66.6%) and calyx (77.7%). Presence of S. Newport in surface-sterilized fruit and calyx tissue tested indicated internalization of the pathogen. These results show that airborne soil particulates could serve as a vehicle for Salmonella. Hence, Salmonella contaminated dust and soil particulate dispersion could contribute to pathogen contamination of fruit, indicating an omnipresent yet relatively unexplored contamination route.

  8. Use of Isotope Dilution Method To Predict Bioavailability of Organic Pollutants in Historically Contaminated Sediments

    PubMed Central

    2015-01-01

    Many cases of severe environmental contamination arise from historical episodes, where recalcitrant contaminants have resided in the environment for a prolonged time, leading to potentially decreased bioavailability. Use of bioavailable concentrations over bulk chemical levels improves risk assessment and may play a critical role in determining the need for remediation or assessing the effectiveness of risk mitigation operations. In this study, we applied the principle of isotope dilution to quantify bioaccessibility of legacy contaminants DDT and PCBs in marine sediments from a Superfund site. After addition of 13C or deuterated analogues to a sediment sample, the isotope dilution reached a steady state within 24 h of mixing. At the steady state, the accessible fraction (E) derived by the isotope dilution method (IDM) ranged from 0.28 to 0.89 and was substantially smaller than 1 for most compounds, indicating reduced availability of the extensively aged residues. A strong linear relationship (R2 = 0.86) was found between E and the sum of rapid (Fr) and slow (Fs) desorption fractions determined by sequential Tenax desorption. The IDM-derived accessible concentration (Ce) was further shown to correlate closely with tissue residue in the marine benthic polychaete Neanthes arenaceodentata exposed in the same sediments. As shown in this study, the IDM approach involves only a few simple steps and may be readily adopted in laboratories equipped with mass spectrometers. This novel method is expected to be especially useful for historically contaminated sediments or soils, for which contaminant bioavailability may have changed significantly due to aging and other sequestration processes. PMID:24946234

  9. Use of isotope dilution method to predict bioavailability of organic pollutants in historically contaminated sediments.

    PubMed

    Jia, Fang; Bao, Lian-Jun; Crago, Jordan; Schlenk, Daniel; Gan, Jay

    2014-07-15

    Many cases of severe environmental contamination arise from historical episodes, where recalcitrant contaminants have resided in the environment for a prolonged time, leading to potentially decreased bioavailability. Use of bioavailable concentrations over bulk chemical levels improves risk assessment and may play a critical role in determining the need for remediation or assessing the effectiveness of risk mitigation operations. In this study, we applied the principle of isotope dilution to quantify bioaccessibility of legacy contaminants DDT and PCBs in marine sediments from a Superfund site. After addition of 13C or deuterated analogues to a sediment sample, the isotope dilution reached a steady state within 24 h of mixing. At the steady state, the accessible fraction (E) derived by the isotope dilution method (IDM) ranged from 0.28 to 0.89 and was substantially smaller than 1 for most compounds, indicating reduced availability of the extensively aged residues. A strong linear relationship (R2=0.86) was found between E and the sum of rapid (Fr) and slow (Fs) desorption fractions determined by sequential Tenax desorption. The IDM-derived accessible concentration (Ce) was further shown to correlate closely with tissue residue in the marine benthic polychaete Neanthes arenaceodentata exposed in the same sediments. As shown in this study, the IDM approach involves only a few simple steps and may be readily adopted in laboratories equipped with mass spectrometers. This novel method is expected to be especially useful for historically contaminated sediments or soils, for which contaminant bioavailability may have changed significantly due to aging and other sequestration processes.

  10. Accumulation of heavy metals in oil-contaminated peat soils

    NASA Astrophysics Data System (ADS)

    Vodyanitskii, Yu. N.; Savichev, A. T.; Trofimov, S. Ya.; Shishkonakova, E. A.

    2012-10-01

    X-ray fluorescence and X-ray radiometry represent easy and simple methods to determine concentrations of heavy metals in the ash of peat soils contaminated with oil and can be applied for soil monitoring purposes. Oil spills on peat bogs produce two contamination zones differing in the composition of heavy metals. In the zone of primary contamination, the peat surface is covered by a bitumen crust with V, Ni, Sr, Ba, Ce, and La accumulating there. This zone adjoins the zone of secondary peat contamination, where heavy alkaline-earth metals (Sr, Ba) and lanthanides (Ce and La) are accumulated to a lesser extent. Biological preparations recommended for remediation of oil-contaminated peat soils should be tolerant to high concentrations of heavy metals, particularly, V, Ni, and Ba that are present in the oil contaminated soils in relatively high amounts.

  11. Biodegradation and bioremediation of endosulfan contaminated soil.

    PubMed

    Kumar, Mohit; Lakshmi, C Vidya; Khanna, Sunil

    2008-05-01

    Among the three mixed bacterial culture AE, BE, and CE, developed by enrichment technique with endosulfan as sole carbon source, consortium CE was found to be the most efficient with 72% and 87% degradation of alpha-endosulfan and beta-endosulfan, respectively, in 20 days. In soil microcosm, consortium AE, BE and CE degraded alpha-endosulfan by 57%, 88% and 91%, respectively, whereas beta-endosulfan was degraded by 4%, 60% and 67% after 30 days. Ochrobacterum sp., Arthrobacter sp., and Burkholderia sp., isolated and identified on the basis of 16s rDNA gene sequence, individually showed in situ biodegradation of alpha-endosulfan in contaminated soil microcosm by 61, 73, and 74, respectively, whereas degradation of beta-endosulfan was 63, 75, and 62, respectively, after 6 weeks of incubation over the control which showed 26% and 23 % degradation of alpha-endosulfan and beta-endosulfan, respectively. Population survival of Ochrobacterum sp., Arthrobacter sp., and Burkholderia sp., by plate count on Luria Broth with carbenicillin showed 75-88% survival of these isolates as compared to 36-48% of survival obtained from PCR fingerprinting. Arthrobacter sp. oxidized endosulfan to endosulfan sulfate which was further metabolized but no known metabolite of endosulfan sulfate was detected.

  12. Current methods for evaluating the bioavailability of chemicals from contaminated soils using soil invertebrates

    SciTech Connect

    Lanno, R.P.

    1995-12-31

    Contaminated soils are an extremely complex, variable matrix where many modifying factors of toxicity (e.g., particle size, organic matter content) alter the availability of chemicals to biota. Although many methods have been standardized for assessing the toxicity of contaminated soils to invertebrates and plants, few studies have actually addressed the issue of contaminant bioavailability from soils. Since bioavailability is a measure of uptake of contaminants from the soil by living organisms, one approach to determining bioavailability is to measure residues of contaminants in biota. Body residues related to a specific lethal or sublethal toxicity endpoint offer the unique opportunity to relate bioavailability to biological response. This paper will present an overview of the use of body residues in assessing the bioavailability of soil contaminants by earthworms and soil arthropods. The applications of body residues in the development of soil quality guidelines will also be discussed.

  13. Urban Community Gardeners' Knowledge and Perceptions of Soil Contaminant Risks

    PubMed Central

    Kim, Brent F.; Poulsen, Melissa N.; Margulies, Jared D.; Dix, Katie L.; Palmer, Anne M.; Nachman, Keeve E.

    2014-01-01

    Although urban community gardening can offer health, social, environmental, and economic benefits, these benefits must be weighed against the potential health risks stemming from exposure to contaminants such as heavy metals and organic chemicals that may be present in urban soils. Individuals who garden at or eat food grown in contaminated urban garden sites may be at risk of exposure to such contaminants. Gardeners may be unaware of these risks and how to manage them. We used a mixed quantitative/qualitative research approach to characterize urban community gardeners' knowledge and perceptions of risks related to soil contaminant exposure. We conducted surveys with 70 gardeners from 15 community gardens in Baltimore, Maryland, and semi-structured interviews with 18 key informants knowledgeable about community gardening and soil contamination in Baltimore. We identified a range of factors, challenges, and needs related to Baltimore community gardeners' perceptions of risk related to soil contamination, including low levels of concern and inconsistent levels of knowledge about heavy metal and organic chemical contaminants, barriers to investigating a garden site's history and conducting soil tests, limited knowledge of best practices for reducing exposure, and a need for clear and concise information on how best to prevent and manage soil contamination. Key informants discussed various strategies for developing and disseminating educational materials to gardeners. For some challenges, such as barriers to conducting site history and soil tests, some informants recommended city-wide interventions that bypass the need for gardener knowledge altogether. PMID:24516570

  14. Urban community gardeners' knowledge and perceptions of soil contaminant risks.

    PubMed

    Kim, Brent F; Poulsen, Melissa N; Margulies, Jared D; Dix, Katie L; Palmer, Anne M; Nachman, Keeve E

    2014-01-01

    Although urban community gardening can offer health, social, environmental, and economic benefits, these benefits must be weighed against the potential health risks stemming from exposure to contaminants such as heavy metals and organic chemicals that may be present in urban soils. Individuals who garden at or eat food grown in contaminated urban garden sites may be at risk of exposure to such contaminants. Gardeners may be unaware of these risks and how to manage them. We used a mixed quantitative/qualitative research approach to characterize urban community gardeners' knowledge and perceptions of risks related to soil contaminant exposure. We conducted surveys with 70 gardeners from 15 community gardens in Baltimore, Maryland, and semi-structured interviews with 18 key informants knowledgeable about community gardening and soil contamination in Baltimore. We identified a range of factors, challenges, and needs related to Baltimore community gardeners' perceptions of risk related to soil contamination, including low levels of concern and inconsistent levels of knowledge about heavy metal and organic chemical contaminants, barriers to investigating a garden site's history and conducting soil tests, limited knowledge of best practices for reducing exposure, and a need for clear and concise information on how best to prevent and manage soil contamination. Key informants discussed various strategies for developing and disseminating educational materials to gardeners. For some challenges, such as barriers to conducting site history and soil tests, some informants recommended city-wide interventions that bypass the need for gardener knowledge altogether.

  15. Developing an integration tool for soil contamination assessment

    NASA Astrophysics Data System (ADS)

    Anaya-Romero, Maria; Zingg, Felix; Pérez-Álvarez, José Miguel; Madejón, Paula; Kotb Abd-Elmabod, Sameh

    2015-04-01

    In the last decades, huge soil areas have been negatively influenced or altered in multiples forms. Soils and, consequently, underground water, have been contaminated by accumulation of contaminants from agricultural activities (fertilizers and pesticides) industrial activities (harmful material dumping, sludge, flying ashes) and urban activities (hydrocarbon, metals from vehicle traffic, urban waste dumping). In the framework of the RECARE project, local partners across Europe are focusing on a wide range of soil threats, as soil contamination, and aiming to develop effective prevention, remediation and restoration measures by designing and applying targeted land management strategies (van Lynden et al., 2013). In this context, the Guadiamar Green Corridor (Southern Spain) was used as a case study, aiming to obtain soil data and new information in order to assess soil contamination. The main threat in the Guadiamar valley is soil contamination after a mine spill occurred on April 1998. About four hm3 of acid waters and two hm3 of mud, rich in heavy metals, were released into the Agrio and Guadiamar rivers affecting more than 4,600 ha of agricultural and pasture land. Main trace elements contaminating soil and water were As, Cd, Cu, Pb, Tl and Zn. The objective of the present research is to develop informatics tools that integrate soil database, models and interactive platforms for soil contamination assessment. Preliminary results were obtained related to the compilation of harmonized databases including geographical, hydro-meteorological, soil and socio-economic variables based on spatial analysis and stakeholder's consultation. Further research will be modellization and upscaling at the European level, in order to obtain a scientifically-technical predictive tool for the assessment of soil contamination.

  16. Critical evaluation of soil contamination assessment methods for trace metals.

    PubMed

    Desaules, André

    2012-06-01

    Correctly distinguishing between natural and anthropogenic trace metal contents in soils is crucial for assessing soil contamination. A series of assessment methods is critically outlined. All methods rely on assumptions of reference values for natural content. According to the adopted reference values, which are based on various statistical and geochemical procedures, there is a considerable range and discrepancy in the assessed soil contamination results as shown by the five methods applied to three weakly contaminated sites. This is a serious indication of their high methodological specificity and bias. No method with off-site reference values could identify any soil contamination in the investigated trace metals (Pb, Cu, Zn, Cd, Ni), while the specific and sensitive on-site reference methods did so for some sites. Soil profile balances are considered to produce the most plausible site-specific results, provided the numerous assumptions are realistic and the required data reliable. This highlights the dilemma between model and data uncertainty. Data uncertainty, however, is a neglected issue in soil contamination assessment so far. And the model uncertainty depends much on the site-specific realistic assumptions of pristine natural trace metal contents. Hence, the appropriate assessment of soil contamination is a subtle optimization exercise of model versus data uncertainty and specification versus generalization. There is no general and accurate reference method and soil contamination assessment is still rather fuzzy, with negative implications for the reliability of subsequent risk assessments.

  17. Micrometeorological methods for measurements of mercury emissions over contaminated soils

    SciTech Connect

    Kim, K.H.; Lindberg, S.E.; Hanson, P.J.; Owens, J.; Myers, T.P.

    1993-12-31

    As part of a larger study involving development and application of field and laboratory methods (micrometeorological, dynamic enclosure chamber, and controlled laboratory chamber methods) to measure the air/surface exchange of Hg vapor, we performed a series of preliminary measurements over contaminated soils. From March--April 1993, we used the modified Bowen ratio (MBR) method to measure emission rates of mercury over a floodplain contaminated with mercury near Oak Ridge, TN. The mercury emission rates measured from contaminated EFPC soils using the MBR method during early spring show that (1) in all cases, the contaminated soils acted as a source of mercury to the atmosphere with source strengths ranging from 17 to 160 ng m{sup {minus}2} h{sup {minus}1}; and (2) the strengths of mercury emissions can be greatly influenced by the combined effects of surface soil temperature, residence time of air masses over the source area, and turbulence conditions. The mercury fluxes measured in a controlled flow chamber indicate that contaminated soils can exhibit up to an order of magnitude higher emission rates of Hg under conditions of elevated soil temperature, soil structure disturbance, and high turbulence. Mercury emissions from contaminated soils exceeded emissions from background soils by one to two orders of magnitude.

  18. Apparatus for treatment of soils contaminated with organic pollutants

    DOEpatents

    Wickramanayake, Godage B.

    1993-01-01

    An apparatus for treating soil contaminated by organic compounds wherein an ozone containing gas is treated with acid to increase the stability of the ozone in the soil environment and the treated ozone applied to the contaminated soil in a manner adapted to decompose the organic compounds; one embodiment of the apparatus comprises a means to supply ozone as a gas-ozone mixture, a stability means to treat ozone obtained from the supply and distribution means to apply the stabilized gas-ozone to soil. The soil may be treated in situ or may be removed for treatment and refilled.

  19. Spectral induced polarization signature of contaminated soil

    NASA Astrophysics Data System (ADS)

    Schwartz, N.; Huisman, J. A.; Shefer, I.; Furman, A.

    2012-04-01

    Spectral induced polarization (SIP) signatures of porous media contaminated with non aqueous phase liquids (NAPL) were measured using an accurate impedance meter. The samples were prepared by mixing air-dried sand with 15% by weight of bentonite clay, tap water and either diesel fuel or motor oil. Next, the soil was packed in a column and left for 24 hr before electrical measurements were performed. For all the samples, water saturation was constant (Sw = 0.47) and the NAPL saturation was 0 (control), 5, or 15 percent. Counter-intuitively, the results show that addition of NAPL to the porous media resulted in an increase of the real part of the complex conductivity. Evidently, for each type of contaminant, an increase in the contaminant saturation resulted in an increase in the real part of the conductivity. The imaginary part of the complex conductivity showed a reversed behavior: higher NAPL saturation resulted in a reduction of the imaginary part of the complex conductivity. For both the real and the imaginary part of the complex conductivity, the effect of NAPL on the complex electrical conductivity was more significant for motor oil than for diesel fuel. In addition to the electrical measurements, we also performed an extraction experiment to examine the effect of the presence of NAPL on the electrical conductivity (EC) of the pore water. The results from the extraction experiment showed that addition of NAPL to the porous media resulted in an increase of the pore water EC. We argue that this increase in the real part of the complex conductivity is related to adsorption of organic polar compounds from the NAPL onto the mineral surface and the associated release of inorganic ions from the mineral surface to the pore water. These exchange processes affect both the surface and the pore water conductivity. In addition, we suggest that the decrease in polarization (associated with the imaginary part of the complex conductivity) of the NAPL contaminated porous media

  20. Relative bioavailability of arsenic contaminated soils in a mouse model

    EPA Science Inventory

    Exposure to As contaminated soils compels extensive soil cleanups so that human health risks are minimized. In order to improve exposure estimates and potentially reduce remediation costs, determination of the bioavailability of As in soils is needed. The objective of this study ...

  1. THE IMPORTANCE OF BIOAVAILABILITY IN REMEDIATION OF METAL CONTAMINATED SOILS

    EPA Science Inventory

    Reduction in exposure to soil metal contamination has typically been accomplished by soil removal and off site disposal, by covering, or by diluting with uncontaminated soil. Cost, logistical concerns, and regulatory requirements associated with excavation and disposal or ex-situ...

  2. THE IMPORTANCE OF BIOAVAILABILITY IN REMEDIATION OF METAL CONTAMINATED SOILS

    EPA Science Inventory

    Reduction in exposure to soil metal contamination has typically been accomplished by soil removal and off site disposal, by covering, or by diluting with uncontaminated soil. Cost, logistical concerns, and regulatory requirements associated with excavation and disposal or ex-situ...

  3. Relative bioavailability of arsenic contaminated soils in a mouse model

    EPA Science Inventory

    Exposure to As contaminated soils compels extensive soil cleanups so that human health risks are minimized. In order to improve exposure estimates and potentially reduce remediation costs, determination of the bioavailability of As in soils is needed. The objective of this study ...

  4. Waste reduction by separation of contaminated soils during environmental restoration

    SciTech Connect

    Roybal, J.A.; Conway, R.; Galloway, B.; Vinsant, E.; Slavin, P.; Guerin, D.

    1998-06-01

    During cleanup of contaminated sites, Sandia National Laboratories, New Mexico (SNL/NM) frequently encounters soils with low-level radioactive contamination. The contamination is not uniformly distributed, but occurs within areas of clean soil. Because it is difficult to characterize heterogeneously contaminated soils in detail and to excavate such soils precisely using heavy equipment, it is common for large quantities of uncontaminated soil to be removed during excavation of contaminated sites. This practice results in the commingling and disposal of clean and contaminated material as low-level waste (LLW), or possibly low-level mixed waste (LLMW). Until recently, volume reduction of radioactively contaminated soil depended on manual screening and analysis of samples, which is a costly and impractical approach and does not uphold As Low As Reasonably Achievable (ALARA) principles. To reduce the amount of LLW and LLMW generated during the excavation process, SNL/NM is evaluating two alternative technologies. The first of these, the Segmented Gate System (SGS), is an automated system that located and removes gamma-ray emitting radionuclides from a host matrix (soil, sand, dry sludge). The matrix materials is transported by a conveyor to an analyzer/separation system, which segregates the clean and contaminated material based on radionuclide activity level. The SGS was used to process radioactively contaminated soil from the excavation of the Radioactive Waste Landfill. The second technology, Large Area Gamma Spectroscopy (LAGS), utilizes a gamma spec analyzer suspended over a slab upon which soil is spread out to a uniform depth. A counting period of approximately 30 minutes is used to obtain a full-spectrum analysis for the isotopes of interest. The LAGS is being tested on the soil that is being excavated from the Classified Waste Landfill.

  5. Heavy metal migration in soils and rocks at historical smelting sites.

    PubMed

    Maskall, J; Whitehead, K; Thornton, I

    1995-09-01

    The vertical migration of metals through soils and rocks was investigated at five historical lead smelting sites ranging in age between 220 and 1900 years. Core samples were taken through metal-contaminated soils and the underlying strata. Concentration profiles of lead and zinc are presented from which values for the distances and rates of migration have been derived. Slag-rich soil horizons contain highly elevated metal concentrations and some contamination of underlying strata has occurred at all sites. However, the amounts of lead and zinc that have migrated from soils and been retained at greater depths are comparatively low. This low metal mobility in contaminated soils is partly attributed to the elevation of soil pH by the presence of calcium and carbonate originating from slag wastes and perhaps gangue minerals. Distances and rates of vertical migration were higher at those sites with soils underlain by sandstone than at those with soils underlain by clay. For sites with the same parent material, metal mobility appears to be increased at lower soil pH. The mean migration rates for lead and zinc reach maxima of 0.75 and 0.46 cm yr(-1) respectively in sandstone at Bole A where the elements have moved mean distances of 4.3 and 2.6 m respectively. There is some evidence that metal transport in the sandstone underlying Bole A and Cupola B occurs preferentially along rock fractures. The migration of lead and zinc is attenuated by subsurface clays leading to relatively low mean migration rates which range from 0.03 to 0.31 cm yr(-1) with many values typical of migration solely by diffusion. However, enhanced metal migration in clays at Cupola A suggest a preferential transport mechanism possibly in cracks or biopores.

  6. Biological Treatment of Petroleum in Radiologically Contaminated Soil

    SciTech Connect

    BERRY, CHRISTOPHER

    2005-11-14

    This chapter describes ex situ bioremediation of the petroleum portion of radiologically co-contaminated soils using microorganisms isolated from a waste site and innovative bioreactor technology. Microorganisms first isolated and screened in the laboratory for bioremediation of petroleum were eventually used to treat soils in a bioreactor. The bioreactor treated soils contaminated with over 20,000 mg/kg total petroleum hydrocarbon and reduced the levels to less than 100 mg/kg in 22 months. After treatment, the soils were permanently disposed as low-level radiological waste. The petroleum and radiologically contaminated soil (PRCS) bioreactor operated using bioventing to control the supply of oxygen (air) to the soil being treated. The system treated 3.67 tons of PCRS amended with weathered compost, ammonium nitrate, fertilizer, and water. In addition, a consortium of microbes (patent pending) isolated at the Savannah River National Laboratory from a petroleum-contaminated site was added to the PRCS system. During operation, degradation of petroleum waste was accounted for through monitoring of carbon dioxide levels in the system effluent. The project demonstrated that co-contaminated soils could be successfully treated through bioventing and bioaugmentation to remove petroleum contamination to levels below 100 mg/kg while protecting workers and the environment from radiological contamination.

  7. Screening of plants for phytoremediation of oil-contaminated soil.

    PubMed

    Ikeura, Hiromi; Kawasaki, Yu; Kaimi, Etsuko; Nishiwaki, Junko; Noborio, Kosuke; Tamaki, Masahiko

    2016-01-01

    Several species of ornamental flowering plants were evaluated regarding their phytoremediation ability for the cleanup of oil-contaminated soil in Japanese environmental conditions. Thirty-three species of plants were grown in oil-contaminated soil, and Mimosa, Zinnia, Gazania, and cypress vine were selected for further assessment on the basis of their favorable initial growth. No significant difference was observed in the above-ground and under-ground dry matter weight of Gazania 180 days after sowing between contaminated and non-contaminated plots. However, the other 3 species of plants died by the 180th day, indicating that Gazania has an especially strong tolerance for oil-contaminated soil. The total petroleum hydrocarbon concentration of the soils in which the 4 species of plants were grown decreased by 45-49% by the 180th day. Compared to an irrigated plot, the dehydrogenase activity of the contaminated soil also increased significantly, indicating a phytoremediation effect by the 4 tested plants. Mimosa, Zinnia, and cypress vine all died by the 180th day after seeding, but the roots themselves became a source of nutrients for the soil microorganisms, which led to a phytoremediation effect by increase in the oil degradation activity. It has been indicated that Gazania is most appropriate for phytoremediation of oil-contaminated soil.

  8. Bioremediation of gasoline-contaminated soil using poultry litter

    SciTech Connect

    Gupta, G; Tao, J.

    1996-10-01

    Contaminated soil, excavated from around a leaking underground gasoline storage tank, is commonly subjected to thermal degradation to remove the gasoline. Bioremediation as an alternative treatment technology is now becoming popular. The important hydrocarbon-degrading bacteria include Pseudomonas, Arthrobacter, and Flavobacterium. Poultry litter contains a large number of microorganisms, including Pseudomonas, as well as many inorganic nutrients and organic biomass that may assist in biodegrading gasoline in contaminated soil. During bioremediation of contaminated soil, microbial densities are known to increase by 2-3 orders of magnitude. However, bioremediation may result in a increase in the toxic characteristics of the soil due to the production of potentially toxic degradation intermediates. The objective of this research was to study the influence of the addition of poultry litter on the bioremediation of gasoline-contaminated soil by quantifying the changes in the densities of microorganisms and by monitoring the toxicity of the degradation products. 25 refs., 5 figs., 2 tabs.

  9. SOIL DESICCATION TECHNIQUES STRATEGIES FOR IMMOBILIZATION OF DEEP VADOSE CONTAMINANTS AT THE HANFORD CENTRAL PLATEAU

    SciTech Connect

    BENECKE MW; CHRONISTER GB; TRUEX MJ

    2012-01-30

    Deep vadose zone contamination poses some of the most difficult remediation challenges for the protection of groundwater at the Hanford Site where processes and technologies are being developed and tested for use in the on-going effort to remediate mobile contamination in the deep vadose zone, the area deep beneath the surface. Historically, contaminants were discharged to the soil along with significant amounts of water, which continues to drive contaminants deeper in the vadose zone toward groundwater. Soil desiccation is a potential in situ remedial technology well suited for the arid conditions and the thick vadose zone at the Hanford Site. Desiccation techniques could reduce the advance of contaminants by removing the pore water to slow the rate of contaminants movement toward groundwater. Desiccation technologies have the potential to halt or slow the advance of contaminants in unsaturated systems, as well as aid in reduction of contaminants from these same areas. Besides reducing the water flux, desiccation also establishes capillary breaks that would require extensive rewetting to resume pore water transport. More importantly, these techniques have widespread application, whether the need is to isolate radio nuclides or address chemical contaminant issues. Three different desiccation techniques are currently being studied at Hanford.

  10. Microscopic characterization of radionuclide contaminated soils to assist remediation efforts

    SciTech Connect

    Buck, E.C.; Brown, N.R.; Dietz, N.L.; Fortner, J.A.; Bates, J.K.

    1994-11-01

    A combination of optical, scanning, and analytical electron microscopies have been used to describe the nature of radionuclide contamination at several sites. These investigations were conducted to provide information for remediation efforts. This technique has been used successfully with uranium-contaminated soils from Fernald, OH, and Portsmouth, OH, thorium-contaminated soil from a plant in Tennessee, plutonium-contamination sand from Johnston Island in the Pacific Ocean, and incinerator ash from Los Alamos, NM. Selecting the most suitable method for cleaning a particular site is difficult if the nature of the contamination is not understood. Microscopic characterization allows the most appropriate method to be selected for removing the contamination and can show the effect a particular method is having on the soil. A method of sample preparation has been developed that allows direct comparison of scanning electron microscopy (SEM) and transmission electron microscopy (TEM) images, enabling characterization of TEM samples to be more representative of the bulk sample.

  11. Bioventing remediation and ecotoxicity evaluation of phenanthrene-contaminated soil.

    PubMed

    García Frutos, F Javier; Escolano, Olga; García, Susana; Babín, Mar; Fernández, M Dolores

    2010-11-15

    The objectives of soil remediation processes are usually based on threshold levels of soil contaminants. However, during remediation processes, changes in bioavailability and metabolite production can occur, making it necessary to incorporate an ecotoxicity assessment to estimate the risk to ecological receptors. The evolution of contaminants and soil ecotoxicity of artificially phenanthrene-contaminated soil (1000 mg/kg soil) during soil treatment through bioventing was studied in this work. Bioventing was performed in glass columns containing 5.5 kg of phenanthrene-contaminated soil and uncontaminated natural soil over a period of 7 months. Optimum conditions of mineralisation (humidity=60% WHC; C/N/P=100:20:1) were determined in a previous work. The evolution of oxygen consumption, carbon dioxide production, phenanthrene concentration and soil toxicity were studied on sacrificed columns at periods of 0, 3 and 7 months. Toxicity to soil and aquatic organisms was determined using a multispecies system in the soil columns (MS-3). In the optimal bioventing treatability test, we obtained a reduction rate in phenanthrene concentration higher that 93% after 7 months of treatment. The residual toxicity obtained at the end of the treatment was not attributed to the low phenanthrene concentration, but to the ammonia used to restore the optimal C/N ratio. Copyright © 2010 Elsevier B.V. All rights reserved.

  12. Hydrocarbon status of soils under different ages of oil contamination

    NASA Astrophysics Data System (ADS)

    Gennadiev, A. N.; Pikovskii, Yu. I.; Kovach, R. G.; Koshovskii, T. S.; Khlynina, N. I.

    2016-05-01

    Modifications of the hydrocarbon status (HCS) of soils at the stages of the injection input of oil pollutants and the subsequent self-purification of the soil layer from technogenesis products have been revealed in studies conducted on an oil field. Comparison with the HCS of background soils has been performed. Changes in the composition and concentration of bitumoids, polycyclic aromatic hydrocarbons (PAHs), and hydrocarbon gases have been established. The HCS of a freshly contaminated soil is characterized by the predominance of butane (the highest component) in the gaseous phase, an abrupt increase in the concentration of second-kind bitumoids, and a 100-fold increase in the content of PAHs compared to the background soil. In the old contaminated soil, free and fixed methane becomes the predominant gas; the content of bitumoids in the upper soil horizons is lower than in the freshly contaminated soils by two orders of magnitude but higher than in the background soil by an order of magnitude; the PAH composition in the soil with old residual contamination remains slightly more diverse than in the background soil.

  13. Pleasure Boatyard Soils are Often Highly Contaminated

    NASA Astrophysics Data System (ADS)

    Eklund, Britta; Eklund, David

    2014-05-01

    The contamination in pleasure boatyards has been investigated. Measured concentrations of copper, zinc, lead, mercury, cadmium, tributyltin (TBT), the 16 most common polycyclic aromatic hydrocarbons (∑16 PAHs), and the seven most common polychlorinated biphenyls (∑7 PCBs) from investigations at 34 boatyards along the Swedish coast have been compiled. The maximum concentrations were 7,700 for Cu, 10,200, for Zn, 40,100 for Pb, 188 for Hg, 18 for Cd, 107 for TBT, 630 for carcinogenic PAHs, 1,480 for ∑16 PAHs, and 3.8 mg/kg DW for ∑7 PCB; all 10-2,000 higher than the Swedish environmental qualitative guidelines. In addition, the mean of the median values found at the 34 places shows that the lower guidance value for sensitive use of land was exceeded for the ∑7 PCBs, carcinogenic PAHs, TBT, Pb, Hg, and Cu by a factor of 380, 6.8, 3.6, 2.9, 2.2 and 1.7, respectively. The even higher guideline value for industrial use was exceeded for the ∑7 PCBs and TBT by a factor of 15 and 1.8, respectively. TBT, PAHs, Pb, Cd, and Hg are prioritized substances in the European Water Framework Directive and should be phased out as quickly as possible. Because of the risk of leakage from boatyards, precautions should be taken. The high concentrations measured are considered to be dangerous for the environment and human health and highlight the urgent need for developing and enforcing pleasure boat maintenance guidelines to minimize further soil and nearby water contamination.

  14. Frozen Soil Barrier. Subsurface Contaminants Focus Area. OST Reference No. 51

    SciTech Connect

    None, None

    1999-09-01

    Problem: Hazardous and radioactive materials have historically been disposed of at the surface during operations at Department of Energy facilities. These contaminants have entered the subsurface, contaminating soils and groundwater resources. Remediation of these groundwater plumes using the baseline technology of pump and treat is expensive and takes a long time to complete. Containment of these groundwater plumes can be alternative or an addition to the remediation activities. Standard containment technologies include slurry walls, sheet piling, and grouting. These are permanent structures that once installed are difficult to remove. How It Works: Frozen Soil Barrier technology provides a containment alternative, with the key difference being that the barrier can be easily removed after a period of time, such as after the remediation or removal of the source is completed. Frozen Soil Barrier technology can be used to isolate and control the migration of underground radioactive or other hazardous contaminants subject to transport by groundwater flow. Frozen Soil Barrier technology consists of a series of subsurface heat transfer devices, known as thermoprobes, which are installed around a contaminant source and function to freeze the soil pore water. The barrier can easily be maintained in place until remediation or removal of the contaminants is complete, at which time the barrier is allowed to thaw.

  15. Biosurfactant technology for remediation of cadmium and lead contaminated soils.

    PubMed

    Juwarkar, Asha A; Nair, Anupa; Dubey, Kirti V; Singh, S K; Devotta, Sukumar

    2007-08-01

    This research focuses on column experiments conducted to evaluate the potential of environmentally compatible rhamnolipid biosurfactant produced by Pseudomonas aeruginosa strain BS2 to remove heavy metals (Cd and Pb) from artificially contaminated soil. Results have shown that di-rhamnolipid removes not only the leachable or available fraction of Cd and Pb but also the bound metals as compared to tap water which removed the mobile fraction only. Washing of contaminated soil with tap water revealed that approximately 2.7% of Cd and 9.8% of Pb in contaminated soil was in freely available or weakly bound forms whereas washing with rhamnolipid removed 92% of Cd and 88% of Pb after 36 h of leaching. This indicated that di-rhamnolipid selectively favours mobilization of metals in the order of Cd>Pb. Biosurfactant specificity observed towards specific metal will help in preferential elution of specific contaminant using di-rhamnolipid. It was further observed that pH of the leachates collected from heavy metal contaminated soil column treated with di-rhamnolipid solution was low (6.60-6.78) as compared to that of leachates from heavy metal contaminated soil column treated with tap water (pH 6.90-7.25), which showed high dissolution of metal species from the contaminated soil and effective leaching of metals with treatment with biosurfactant. The microbial population of the contaminated soil was increased after removal of metals by biosurfactant indicating the decrease of toxicity of metals to soil microflora. This study shows that biosurfactant technology can be an effective and nondestructive method for bioremediation of cadmium and lead contaminated soil.

  16. Geochemical sources, forms and phases of soil contamination in an industrial city.

    PubMed

    Harvey, P J; Rouillon, M; Dong, C; Ettler, V; Handley, H K; Taylor, M P; Tyson, E; Tennant, P; Telfer, V; Trinh, R

    2017-04-15

    This study examines current soil contamination in an Australian industrial city, Newcastle. Public (roadside verges and parks) and private (homes) surface soils (n=170) contained metal(loid)s elevated above their respective Australian Health Investigation Levels (HIL). Lead (Pb), the most common contaminant in the city, exceeds the HIL for residential soils (HIL-A, 300mg/kg) in 88% of private soils (median: 1140mg/kg). In-vitro Pb bio-accessibility analysis of selected soils (n=11) using simulated gastric fluid showed a high affinity for Pb solubilisation (maximum Pb concentration: 5190mg/kg, equating to 45% Pb bio-accessibility). Highly soluble Pb-laden Fe- and Mn-oxides likely contribute to the bio-accessibility of the Pb. Public and private space surface soils contain substantially less radiogenic Pb (range: (208)Pb/(207)Pb: 2.345-2.411, (206)Pb/(207)Pb: 1.068-1.312) than local background soil ((208)Pb/(207)Pb: 2.489, (206)Pb/(207)Pb: 1.198), indicating anthropogenic contamination from the less radiogenic Broken Hill type Pb ores ((208)Pb/(207)Pb: 2.319, (206)Pb/(207)Pb: 1.044). Source apportionment using Pb isotopic ratio quantification and soil mineralogy indicate the city's historic copper and steel industries contributed the majority of the soil contaminants through atmospheric deposition and use of slag waste as fill material. High-temperature silicates and oxides combined with rounded particles in the soil are characteristic of smelter dust emissions. Additionally, a preliminary investigation of polycyclic aromatic hydrocarbons in soils, sometimes associated with ferrous metal smelting, coal processing or burning of fossil fuels, shows that these too pose a health exposure risk (calculated in comparison to benzo(a)pyrene: n=12, max: 13.5mg/kg, HIL: 3mg/kg). Copyright © 2017 Elsevier B.V. All rights reserved.

  17. Bioremediation of leachate and soil contaminated with petroleum products

    SciTech Connect

    Yocum, P.S.

    1994-01-01

    Petroleum products are generally accepted to be biodegradable, whether they are contaminating a liquid or solid phase. Considerable reference material exist to support this ascertain. However, no parameters exist for design of engineered treatment systems and little is known about how mixed cultures degrade sparingly soluble substrates, particularly in the soil environment. Further the heterogeneity of contaminant distribution in the soil environment, inhibit understanding of the processes involved. This dissertation is an attempt to provide methodologies for the assessment of biodegradation of petroleum products in these environments, together with development of procedures applicable to assessment of remediation in soils with heterogenous distribution of contaminants.

  18. Mycobacterium Diversity and Pyrene Mineralization in Petroleum-Contaminated Soils

    PubMed Central

    Cheung, Pui-Yi; Kinkle, Brian K.

    2001-01-01

    Degradative strains of fast-growing Mycobacterium spp. are commonly isolated from polycyclic aromatic hydrocarbon (PAH)-contaminated soils. Little is known, however, about the ecology and diversity of indigenous populations of these fast-growing mycobacteria in contaminated environments. In the present study 16S rRNA genes were PCR amplified using Mycobacterium-specific primers and separated by temperature gradient gel electrophoresis (TGGE), and prominent bands were sequenced to compare the indigenous Mycobacterium community structures in four pairs of soil samples taken from heavily contaminated and less contaminated areas at four different sites. Overall, TGGE profiles obtained from heavily contaminated soils were less diverse than those from less contaminated soils. This decrease in diversity may be due to toxicity, since significantly fewer Mycobacterium phylotypes were detected in soils determined to be toxic by the Microtox assay than in nontoxic soils. Sequencing and phylogenetic analysis of prominent TGGE bands indicated that novel strains dominated the soil Mycobacterium community. Mineralization studies using [14C]pyrene added to four petroleum-contaminated soils, with and without the addition of the known pyrene degrader Mycobacterium sp. strain RJGII-135, indicated that inoculation increased the level of degradation in three of the four soils. Mineralization results obtained from a sterilized soil inoculated with strain RJGII-135 suggested that competition with indigenous microorganisms may be a significant factor affecting biodegradation of PAHs. Pyrene-amended soils, with and without inoculation with strain RJGII-135, experienced both increases and decreases in the population sizes of the inoculated strain and indigenous Mycobacterium populations during incubation. PMID:11319104

  19. The tolerance efficiency of Panicum maximum and Helianthus annuus in TNT-contaminated soil and nZVI-contaminated soil.

    PubMed

    Jiamjitrpanich, Waraporn; Parkpian, Preeda; Polprasert, Chongrak; Laurent, François; Kosanlavit, Rachain

    2012-01-01

    This study was designed to compare the initial method for phytoremediation involving germination and transplantation. The study was also to determine the tolerance efficiency of Panicum maximum (Purple guinea grass) and Helianthus annuus (Sunflower) in TNT-contaminated soil and nZVI-contaminated soil. It was found that the transplantation of Panicum maximum and Helianthus annuus was more suitable than germination as the initiate method of nano-phytoremediation potting test. The study also showed that Panicum maximum was more tolerance than Helianthus annuus in TNT and nZVI-contaminated soil. Therefore, Panicum maximum in the transplantation method should be selected as a hyperaccumulated plant for nano-phytoremediation potting tests. Maximum tolerance dosage of Panicum maximum to TNT-concentration soil was 320 mg/kg and nZVI-contaminated soil was 1000 mg/kg in the transplantation method.

  20. Soil Contamination and Remediation Strategies. Current research and future challenge

    NASA Astrophysics Data System (ADS)

    Petruzzelli, G.

    2012-04-01

    Soil contamination: the heritage of industrial development Contamination is only a part of a whole set of soil degradation processes, but it is one of paramount importance since soil pollution greatly influences the quality of water, food and human health. Soil contamination has been identified as an important issue for action in the European strategy for soil protection, it has been estimated that 3.5 million of sites are potentially contaminated in Europe. Contaminated soils have been essentially discovered in industrial sites landfills and energy production plants, but accumulation of heavy metals and organic compounds can be found also in agricultural land . Remediation strategies. from incineration to bioremediation The assessment of soil contamination is followed by remedial action. The remediation of contaminated soils started using consolidates technologies (incineration inertization etc.) previously employed in waste treatment,. This has contributed to consider a contaminated soil as an hazardous waste. This rough approximation was unfortunately transferred in many legislations and on this basis soil knowledge have been used only marginally in the clean up procedures. For many years soil quality has been identified by a value of concentration of a contaminant and excavation and landfill disposal of soil has been largely used. In the last years the knowledge of remediation technology has rapidly grown, at present many treatment processes appear to be really feasible at field scale, and soil remediation is now based on risk assessment procedures. Innovative technologies, largely dependent on soil properties, such as in situ chemical oxidation, electroremediation, bioventing, soil vapor extraction etc. have been successfully applied. Hazardous organic compounds are commonly treated by biological technologies, biorememdiation and phytoremediation, being the last partially applied also for metals. Technologies selection is no longer exclusively based on

  1. Bioremediation of lead contaminated soil with Rhodobacter sphaeroides.

    PubMed

    Li, Xiaomin; Peng, Weihua; Jia, Yingying; Lu, Lin; Fan, Wenhong

    2016-08-01

    Bioremediation with microorganisms is a promising technique for heavy metal contaminated soil. Rhodobacter sphaeroides was previously isolated from oil field injection water and used for bioremediation of lead (Pb) contaminated soil in the present study. Based on the investigation of the optimum culturing conditions and the tolerance to Pb, we employed the microorganism for the remediation of Pb contaminated soil simulated at different contamination levels. It was found that the optimum temperature, pH, and inoculum size for R. sphaeroides is 30-35 °C, 7, and 2 × 10(8) mL(-1), respectively. Rhodobacter sphaeroides did not remove the Pb from soil but did change its speciation. During the bioremediation process, more available fractions were transformed to less accessible and inert fractions; in particular, the exchangeable phase was dramatically decreased while the residual phase was substantially increased. A wheat seedling growing experiment showed that Pb phytoavailability was reduced in amended soils. Results inferred that the main mechanism by which R. sphaeroides treats Pb contaminated soil is the precipitation formation of inert compounds, including lead sulfate and lead sulfide. Although the Pb bioremediation efficiency on wheat was not very high (14.78% root and 24.01% in leaf), R. sphaeroides remains a promising alternative for Pb remediation in contaminated soil. Copyright © 2016 Elsevier Ltd. All rights reserved.

  2. Kinetics of Cd Release from Some Contaminated Calcareous Soils

    SciTech Connect

    Sajadi Tabar, S.; Jalali, M.

    2013-03-15

    Contamination of soils with heavy metals may pose long-term risk to groundwater quality leading to health implications. Bioavailability of heavy metals, like cadmium (Cd) is strongly affected by sorption and desorption processes. The release of heavy metals from contaminated soils is a major contamination risks to natural waters. The release of Cd from contaminated soils is strongly influenced by its mobility and bioavailability. In this study, the kinetics of Cd desorption from ten samples of contaminated calcareous soils, with widely varying physicochemical properties, were studied using 0.01 M EDTA extraction. The median percentage of Cd released was about 27.7% of the total extractable Cd in the soils. The release of Cd was characterized by an initial fast release rate (of labile fractions) followed by a slower release rate (of less labile fractions) and a model of two first-order reactions adequately describes the observed release of Cd from the studied soil samples. There was positive correlation between the amount of Cd released at first phase of release and Cd in exchangeable fraction, indicating that this fraction of Cd is the main fraction controlling the Cd in the kinetic experiments. There was strongly negative correlation between the amount of Cd released at first and second phases of release and residual fraction, suggesting that this fraction did not contribute in Cd release in the kinetic experiments. The results can be used to provide information for evaluation of Cd potential toxicity and ecological risk from contaminated calcareous soils.

  3. Laboratory and greenhouse assessment of phytoremediation of petroleum contaminated soils

    SciTech Connect

    Banks, M.K.; Schwab, A.P.; Wang, X.

    1996-12-31

    Phytoremediation of soils contaminated with petroleum and associated priority pollutants was evaluated in greenhouse and laboratory experiments. Mineralization of several PAHs was measured in rhizosphere soil, non-rhizosphere soil, and sterile soil amended with simulated root exudates. The least amount of mineralization was observed in sterile soil, but there were no differences among all other soils. Mineralization of 14 C-benzo[a]pyrene was determined in chambers to determine the effects of tall fescue on dissipation of this compound. After 180 days, the soils with fescue had more than twice the mineralization than soils without plants. In the soils with plants, evolution of 14CO2 from the soil was five times greater than from the plant biomass. These experiments demonstrate that the presence of plants is a necessary part of the phytoremediation process. There appears to be no residual rhizosphere effect, and the simple exudation of organic compounds does not mimic fully the presence of roots.

  4. Humus-assisted cleaning of heavy metal contaminated soils

    NASA Astrophysics Data System (ADS)

    Borggaard, Ole K.; Rasmussen, Signe B.

    2016-04-01

    Contamination of soils with non-degradable heavy metals (HMs) because of human acticities is globally a serious problem threatening human health and ecosystem functioning. To avoid negative effects, HMs must be removed either on-site by plant uptake (phytoremediation) or off-site by extraction (soil washing). In both strategies, HM solubility must be augmented by means of a strong ligand (complexant). Often polycarboxylates such as EDTA and NTA are used but these ligands are toxic, synthetic (non-natural) and may promote HM leaching. Instead naturally occurring soluble humic substances (HS) were tested as means for cleaning HM contaminated soils; HS samples from beech and spruce litter, compost percolate and processed cow slurry were tested. Various long-term HM contaminated soils were extracted with solutions of EDTA, NTA or HS at different pH by single-step and multiple-step extraction mode. The results showed that each of the three complexant types increased HM solubility but the pH-dependent HM extraction efficiency decreased in the order: EDTA ≈ NTA > HS. However, the naturally occurring HS seems suitable for cleaning As, Cd, Cu and Zn contaminated soils both in relation to phytoremediation of moderately contaminated soils and washing of strongly contaminated soils. On the other hand, HS was found unsuited as cleaning agent for Pb polluted calcareous soils. If future field experiments confirm these laboratory results, we have a new cheap and environmentally friendly method for solving a great pollution problem, i.e. cleaning of heavy metal contaminated soils. In addition, humic substances possess additional benefits such as improving soil structure and stimulating microbial activity.

  5. Quantifying Diffuse Contamination: Method and Application to Pb in Soil.

    PubMed

    Fabian, Karl; Reimann, Clemens; de Caritat, Patrice

    2017-06-20

    A new method for detecting and quantifying diffuse contamination at the continental to regional scale is based on the analysis of cumulative distribution functions (CDFs). It uses cumulative probability (CP) plots for spatially representative data sets, preferably containing >1000 determinations. Simulations demonstrate how different types of contamination influence elemental CDFs of different sample media. It is found that diffuse contamination is characterized by a distinctive shift of the low-concentration end of the distribution of the studied element in its CP plot. Diffuse contamination can be detected and quantified via either (1) comparing the distribution of the contaminating element to that of an element with a geochemically comparable behavior but no contamination source (e.g., Pb vs Rb), or (2) comparing the top soil distribution of an element to the distribution of the same element in subsoil samples from the same area, taking soil forming processes into consideration. Both procedures are demonstrated for geochemical soil data sets from Europe, Australia, and the U.S.A. Several different data sets from Europe deliver comparable results at different scales. Diffuse Pb contamination in surface soil is estimated to be <0.5 mg/kg for Australia, 1-3 mg/kg for Europe, and 1-2 mg/kg, or at least <5 mg/kg, for the U.S.A. The analysis presented here also allows recognition of local contamination sources and can be used to efficiently monitor diffuse contamination at the continental to regional scale.

  6. Considerations in Deciding to Treat Contaminated Unsaturated Soils In Situ

    EPA Pesticide Factsheets

    The purpose of this Issue Paper is to assist the user in deciding if in situ treatment of contaminated soil is a potentially feasible remedial alternative and to assist in the process of reviewing and screening in situ technologies.

  7. Reductive Dehalogenation of Organic Contaminants in Soils and Ground Water

    EPA Pesticide Factsheets

    Reductive dehalogenation is a process which may prove to be of paramount importance in dealing with a particularly persistent class of contaminants often found in soil and ground water at superfund sites.

  8. Assessing soil and groundwater contamination in a metropolitan redevelopment project.

    PubMed

    Yun, Junki; Lee, Ju Young; Khim, Jeehyeong; Ji, Won Hyun

    2013-08-01

    The purpose of this study was to assess contaminated soil and groundwater for the urban redevelopment of a rapid transit railway and a new mega-shopping area. Contaminated soil and groundwater may interfere with the progress of this project, and residents and shoppers may be exposed to human health risks. The study area has been remediated after application of first remediation technologies. Of the entire area, several sites were still contaminated by waste materials and petroleum. For zinc (Zn) contamination, high Zn concentrations were detected because waste materials were disposed in the entire area. For petroleum contamination, high total petroleum hydrocarbon (TPH) and hydrocarbon degrading microbe concentrations were observed at the depth of 7 m because the underground petroleum storage tank had previously been located at this site. Correlation results suggest that TPH (soil) concentration is still related with TPH (groundwater) concentration. The relationship is taken into account in the Spearman coefficient (α).

  9. Decreasing the contamination and toxicity of a heavily contaminated soil by in situ bioremediation

    NASA Astrophysics Data System (ADS)

    Groudev, Stoyan; Georgiev, Plamen; Spasova, Irena; Nikolova, Marina

    2013-04-01

    An experimental plot of 140 m2 consisting of acidic soil heavily contaminated with uranium, non-ferrous metals (mainly Cu, Zn and Cd) and arsenic was treated in situ under real field conditions using the activity of the indigenous soil microflora. This activity was enhanced by suitable changes of some essential environmental factors such as pH and water, oxygen and nutrient contents of the soil. The treatment was connected with solubilization and removal of contaminants from the top soil layers (horizon A) due to the joint action of the soil microorganisms (mainly acidophilic chemolithotrophic bacteria) and leach solutions (diluted sulphuric acid). The dissolved contaminants were transferred to the soil horizon B and were removed from the soil profile through a system of drainage collecting pipes. The contaminated soil effluents were treated by means of a multi-component passive system consisting of an anoxic alkalizing drain, a permeable reactive multibarrier and a rock filter. The contamination and toxicity of the soil were regularly tested during the cleaning procedure and were considerably decreased at the end of the treatment.

  10. Mercury species in formerly contaminated soils and released soil gases.

    PubMed

    Sysalová, Jiřina; Kučera, Jan; Drtinová, Barbora; Červenka, Rostislav; Zvěřina, Ondřej; Komárek, Josef; Kameník, Jan

    2017-04-15

    Total mercury (T-Hg), elemental mercury (Hg(0)), methylmercury (MeHg(+)), phenylmercury (PhHg(+)), and gaseous elemental mercury (GEM) species were determined in soils formerly contaminated by different processes from two sites in the Czech Republic. Analytical methods involved atomic absorption spectrometry (AAS) using a single-purpose Advanced Mercury Analyser AMA-254 and radiochemical neutron activation analysis (RNAA) for T-Hg determination, a thermal desorption method was used for Hg(0) determination, gas chromatography coupled with atomic fluorescence spectrometry (GC-AFS) was employed for assay of MeHg(+) and PhHg(+), while GEM measurement was carried out using a portable Zeeman-AAS device Lumex RA-915(+). The first sampling site was in the surroundings of a former PhHgCl-based fungicide processing plant next to Příbram (central Bohemia). Although the use of Hg-based fungicides as seed mordant have been banned, and their production stopped at the end of 1980's, highly elevated Hg contents in soil are still observed in the vicinity of the former plant, reaching T-Hg values >13mgkg(-1). The second sampling site was an abandoned mining area named Jedová hora Hill near Hořovice (central Bohemia), where cinnabar (HgS) was occasionally mined as by-product of Fe ores hematite and siderite. Mining activities have been stopped here in 1857. Very high contents of T-Hg are still found at this site, up to 144mgkg(-1). In most cases we found a statistically significant correlation between T-Hg and Hg(0) values regardless of the pollution source. On the contrary, insignificant correlation was observed neither between T-Hg and GEM values, nor between GEM and Hg(0). Concentrations of the investigated organomercury species were above a limit of detection (LOD) only in the most contaminated samples, where their levels were about two to three orders of magnitude lower compared to those of T-Hg. Copyright © 2017 Elsevier B.V. All rights reserved.

  11. Toxicity assessment of contaminated soils from an antitank firing range.

    PubMed

    Robidoux, Pierre Yves; Gong, Ping; Sarrazin, Manon; Bardai, Ghalib; Paquet, Louise; Hawari, Jalal; Dubois, Charles; Sunahara, Geoffrey I

    2004-07-01

    Explosives are released into the environment at production and processing facilities, as well as through field use. These compounds may be toxic at relatively low concentrations to a number of ecological receptors. A toxicity assessment was carried out on soils from an explosive-contaminated site at a Canadian Forces Area Training Center. Toxicity studies on soil organisms using endpoints such as microbial processes (potential nitrification activity, dehydrogenase activity, substrate-induced respiration, basal respiration), plant seedling and growth (Lactuca sativa and Hordeum vulgare), and earthworm (Eisenia andrei) growth and reproduction were carried out. Results showed that 1,3,5,7-tetranitro-1,3,5,7-tetrazacyclooctane (HMX) was the principal polynitro-organic compound measured in soils. Soils from the contaminated site decreased microbial processes and earthworm reproduction; whereas plant growth was not significantly reduced. Toxicity to aquatic organisms and genotoxicity were also assessed on soil elutriates using Microtox (Vibrio fischeri), growth inhibition of algae (Selenastrum capricornutum), and SOS Chromotest (Escherichia coli). Results indicated that soil elutriates were generally not toxic to bacteria (Microtox) and algae. However, genotoxicity was found in a number of soil elutriate samples. Thus, the explosive-contaminated soils from the antitank firing range may represent a hazard for the soil organisms. Nevertheless, the global toxicity might have partially resulted from HMX as well as from other (not identified) contaminants such as heavy metals.

  12. Ecological effects of soil contamination at Aberdeen Proving Ground, Maryland

    SciTech Connect

    Kuperman, R.G.; Dunn, C.P. )

    1994-06-01

    Assessment of the ecological condition of contaminated soil was conducted in portions of the U.S. Army's Aberdeen Proving Ground, Maryland as part of an ecological risk assessment. This area is covered by open fields, woods and nontidal marshes. Chemicals disposed of in open burning pits included methylphosphonothioic acid, dichlorodiethyl sulfide, and titanium tetrachloride and sulfur trioxide/chlorosulfonic acid. Previous soil analysis showed extensive surface soil contamination with metals, nitrate, PCBs and pesticides. This assessment included characterizing soil biota, biologically-mediated processes in soil and aboveground biomass. Field surveys of the soil invertebrate communities showed significant reductions in the total abundance of animals, reductions in the abundance of several taxonomic and functional groups of soil invertebrates, and changes in the activity of epigeic arthropods in contaminated areas when compared with the local [open quotes]background[close quotes] area. Laboratory toxicity tests also demonstrated that microbial activity and success of egg hatching of ground beetle Harpalus pensylvanicus were reduced in contaminated soils. These results suggest that impacts to soil ecosystems should be explicitly considered in ecological risk assessment.

  13. Remediation of diesel-oil-contaminated soil using peat

    SciTech Connect

    Ghaly, R.A.; Pyke, J.B.; Ghaly, A.E.; Ugursal, V.I.

    1999-11-01

    The authors investigated a remediation process for diesel-contaminated soil, in which water was used to remove the diesel from the soil and peat was used to absorb the diesel layer formed on the surface of the water. The percolation of water through the soil was uniform. The time required for water to percolate the soil and for the layers (soil, water, and diesel) to separate depended on the soil depth. Both the depth of soil and mixing affected the thickness of the diesel layer and thus diesel recovery from the contaminated soil. Higher diesel recovery was achieved with smaller soil depth and mixing. The initial moisture content and the lower heating value of the peat were 7.1% and 17.65 MJ/kg, respectively. The final moisture content and lower heating value of the diesel-contaminated peat obtained from the experiment with mixing were 8.65--10.80% and 32.57--35.81 MJ/kg, respectively. The energy content of the diesel-contaminated peat is much higher than that of coal, and the moisture content is within the range recommended for biomass gasification.

  14. Remediation of sandy soils contaminated with hydrocarbons and halogenated hydrocarbons by soil vapour extraction.

    PubMed

    Albergaria, José Tomás; Alvim-Ferraz, Maria da Conceição M; Delerue-Matos, Cristina

    2012-08-15

    This paper presents the study of the remediation of sandy soils containing six of the most common contaminants (benzene, toluene, ethylbenzene, xylene, trichloroethylene and perchloroethylene) using soil vapour extraction (SVE). The influence of soil water content on the process efficiency was evaluated considering the soil type and the contaminant. For artificially contaminated soils with negligible clay contents and natural organic matter it was concluded that: (i) all the remediation processes presented efficiencies above 92%; (ii) an increase of the soil water content led to a more time-consuming remediation; (iii) longer remediation periods were observed for contaminants with lower vapour pressures and lower water solubilities due to mass transfer limitations. Based on these results an easy and relatively fast procedure was developed for the prediction of the remediation times of real soils; 83% of the remediation times were predicted with relative deviations below 14%.

  15. Assessing the uptake of arsenic and antimony from contaminated soil by radish (Raphanus sativus) using DGT and selective extractions.

    PubMed

    Ngo, Lien K; Pinch, Benjamin M; Bennett, William W; Teasdale, Peter R; Jolley, Dianne F

    2016-09-01

    The enrichment of soil arsenic (As) and antimony (Sb) is putting increasing pressure on the environment and human health. The biogeochemical behaviour of Sb and its uptake mechanisms by plants are poorly understood and generally assumed to be similar to that of As. In this study, the lability of As and Sb under agricultural conditions in historically contaminated soils was assessed. Soils were prepared by mixing historically As and Sb-contaminated soil with an uncontaminated soil at different ratios. The lability of As and Sb in the soils was assessed using various approaches: the diffusive gradients in thin films technique (DGT) (as CDGT), soil solution analysis, and sequential extraction procedure (SEP). Lability was compared to the bioaccumulation of As and Sb by various compartments of radish (Raphanus sativus) grown in these soils in a pot experiment. Irrespective of the method, all of the labile fractions showed that both As and Sb were firmly bound to the solid phases, and that Sb was less mobile than As, although total soil Sb concentrations were higher than total soil As. The bioassay demonstrated low bioaccumulation of As and Sb into R. sativus due to their low lability of As and Sb in soils and that there are likely to be differences in their mechanisms of uptake. As accumulated in R. sativus roots was much higher (2.5-21 times) than that of Sb, while the Sb translocated from roots to shoots was approximately 2.5 times higher than that of As. As and Sb in R. sativus tissues were strongly correlated with their labile concentrations measured by DGT, soil solution, and SEP. These techniques are useful measures for predicting bioavailable As and Sb in the historically contaminated soil to R. sativus. This is the first study to demonstrate the suitability of DGT to measure labile Sb in soils.

  16. Long-term assessment of natural attenuation: statistical approach on soils with aged PAH contamination.

    PubMed

    Ouvrard, Stéphanie; Chenot, Elodie-Denise; Masfaraud, Jean-François; Schwartz, Christophe

    2013-07-01

    Natural attenuation processes valorization for PAH-contaminated soil remediation has gained increasing interest from site owners. A misunderstanding of this method and a small amount of data available does not encourage its development. However, monitored natural attenuation (MNA) offers a valuable, cheaper and environmentally friendly alternative to more classical options such as physico-chemical treatments (e.g., chemical oxidation, thermal desorption). The present work proposes the results obtained during a long-term natural attenuation assessment of historically contaminated industrial soils under real climatic conditions. This study was performed after a 10 year natural attenuation period on 60 off-ground lysimeters filled with contaminated soils from different former industrial sites (coking industry, manufactured gas plants) whose initial concentration of PAH varied between 380 and 2,077 mg kg(-1). The analysed parameters included leached water characterization, soil PAH concentrations, evaluation of vegetation cover quality and quantity. Results showed a good efficiency of the PAH dissipation and limited transfer of contaminants to the environment. It also highlighted the importance of the fine soil fractions in controlling PAH reactivity. PAH dissipation through water leaching was limited and did not present a significant risk for the environment. This PAH water concentration appeared however as a good indicator of overall dissipation rate, thereby illustrating the importance of pollutant availability in predicting its degradation potential.

  17. Remediation of a radioactively contaminated soil using a mobile soil-washing system

    SciTech Connect

    Grant, D.C.; Lahoda, E.J. ); Dietrich, A.J.; Weigle, D.H.; Keegan, C.P.; Sachse, J.D. )

    1993-01-01

    In order to obtain free-release of a former uranium mining site in Texas, it was required that the surface soil meet specific radiological guidelines. The soil has been contaminated with uranium and radium as a result of the spillage of well-drilling material, process solutions, and ion exchange resins during mining. To meet the required guidelines, the contaminated soil had to be either removed and disposed of off-site or remediated. For economic and long-term liability reasons, remediation of the soil by soil washing was performed. The remediation of this site utilizing the Scientific Ecology Group's soil washing system is discussed in this paper.

  18. Phytoremediation Potential of Lead-Contaminated Soil Using Tropical Grasses

    USDA-ARS?s Scientific Manuscript database

    The global problem concerning contamination of the environment because of human activities is increasing. Most of the environmental contaminants are chemical by-products and heavy metals such as lead (Pb). Lead released into the environment makes its way into the air, soil and water. Lead contribute...

  19. Remediation of arsenic-contaminated soils and groundwaters

    DOEpatents

    Peters, Robert W.; Frank, James R.; Feng, Xiandong

    1998-01-01

    An in situ method for extraction of arsenic contaminants from a soil medium and remediation of the medium including contacting the medium with an extractant solution, directing the solution within and through the medium, and collecting the solution and contaminants. The method can also be used for arsenate and/or arsenite removal.

  20. Remediation of arsenic-contaminated soils and groundwaters

    DOEpatents

    Peters, R.W.; Frank, J.R.; Feng, X.

    1998-06-23

    An in situ method is described for extraction of arsenic contaminants from a soil medium and remediation of the medium including contacting the medium with an extractant solution, directing the solution within and through the medium, and collecting the solution and contaminants. The method can also be used for arsenate and/or arsenite removal. 8 figs.

  1. Investigating Unstable Water Infiltration into Alcohol Contaminated Soils

    NASA Astrophysics Data System (ADS)

    McLeod, H. C.; Smith, J. E.; Henry, E. J.; Brodsky, Y.

    2009-05-01

    A new mechanism causing highly focused, unstable flow exists in soils contaminated with alcohols due to their surface-activity. For example, surface-active compounds can significantly decrease the interfacial tension of the air-water interface and change the pressure-head of the soil water; directly affecting water flow and solute transport in the vadose zone. This study evaluated the fundamental effects of surface-active alcohols on water infiltration into contaminated soils under controlled laboratory conditions. A small scale 3-D glass flow cell and a mini disk tension infiltrometer were used to monitor the rates and physical characteristics of water infiltration from a constant head point source into sands of various textures contaminated with a butanol solution. The results confirmed that water infiltration into these soils is fundamentally and substantially different than the current understanding of infiltration patterns, including previously described mechanisms of wetting front instability. In butanol-contaminated soils, the wetting fronts exhibited highly focused flow with smaller wetted soil volumes, deeper penetration and substantially higher infiltration rates. In addition, the extent of fingered focused flow was confirmed to be texturally dependent, decreasing with grain size and dependent on the constant head boundary. This study characterized a new mechanism of focused, unstable flow with significant implications for groundwater management and solute transport in alcohol contaminated soils.

  2. Soils on historic charcoal hearths - chemical properties and terminology

    NASA Astrophysics Data System (ADS)

    Hirsch, Florian; Raab, Thomas; Ouimet, William; Dethier, David; Schneider, Anna; Raab, Alexandra

    2017-04-01

    Charcoal hearths are a unique archive for the long term interaction between biochar, soil development and plant growth. Charcoal as raw material was crucial for the production of iron in iron works and hence numerous charcoal hearths can be found in the forests near historic iron works in Europe as well as the Eastern United States. Charcoal hearths are round to elliptical forms often around 10 m in diameter, and consisting of a several decimeter thick layer containing charcoal fragments, ash, and burnt soil. We studied the soil chemistry of 24 charcoal hearths and compared them to the surrounding 'natural' soils in Litchfield County, Connecticut. The thickness of the organic rich horizons on the charcoal hearths and their carbon content is remarkably higher than in the surrounding topsoils. The wide distribution of charcoal hearths, their usually high quantity, and their occurrence in different ecosystems underlines their importance for further pedological research.

  3. SEDIMENTS: A RESERVOIR OF HISTORIC CONTAMINATION OF THE DETROIT RIVER

    EPA Science Inventory

    Presentation to a citizen's environment alliance regarding contamination of the Detroit River. Types and amounts of contaminants were outlined and major pollution sources were identified. Outline for remediation plan was presented. However, before remediation can be done, upstre...

  4. SEDIMENTS: A RESERVOIR OF HISTORIC CONTAMINATION OF THE DETROIT RIVER

    EPA Science Inventory

    Presentation to a citizen's environment alliance regarding contamination of the Detroit River. Types and amounts of contaminants were outlined and major pollution sources were identified. Outline for remediation plan was presented. However, before remediation can be done, upstre...

  5. The influence of soil contamination on the concentrations of PCBs in milk in Siberia.

    PubMed

    Mamontova, E A; Tarasova, E N; Mamontov, A A; Kuzmin, M I; McLachlan, M S; Khomutova, M Iu

    2007-04-01

    Although atmospheric deposition is generally the dominant pathway of PCBs into agricultural food chains, soil ingestion by livestock can be important in some cases. The relationship between PCB levels in cow's milk and in pasture soil was studied in the Irkutsk region in Siberia where an historical atmospheric source(s) of PCBs has led to widespread contamination of soil. Milk samples were collected in spring and again in autumn from 18 different farms and analyzed for PCBs. Pasture soil samples were also collected and analyzed. The PCB concentrations in both milk and soil ranged over more than an order of magnitude between the farms. A good correlation was obtained between PCB levels in autumn milk and in soil. This together with a range of other evidence suggested that ingestion of pasture soil was the dominant source of the PCB contamination in the milk. The average soil ingestion rate was estimated to be 1700 g/d, which is at the upper end of values reported in the literature. This may be due to the arid summer climate or the animal husbandry practices in Siberia.

  6. Feasibility Process for Remediation of the Crude Oil Contaminated Soil

    NASA Astrophysics Data System (ADS)

    Keum, H.; Choi, H.; Heo, H.; Lee, S.; Kang, G.

    2015-12-01

    More than 600 oil wells were destroyed in Kuwait by Iraqi in 1991. During the war, over 300 oil lakes with depth of up to 2m at more than 500 different locations which has been over 49km2. Therefore, approximately 22 million m3was crude oil contaminated. As exposure of more than 20 years under atmospheric conditions of Kuwait, the crude oil has volatile hydrocarbons and covered heavy oily sludge under the crude oil lake. One of crude oil contaminated soil which located Burgan Oilfield area was collected by Kuwait Oil Company and got by H-plus Company. This contaminated soil has about 42% crude oil and could not biodegraded itself due to the extremely high toxicity. This contaminated soil was separated by 2mm sieve for removal oil sludge ball. Total petroleum hydrocarbons (TPH) was analysis by GC FID and initial TPH concentration was average 48,783 mg/kg. Ten grams of the contaminated soil replaced in two micro reactors with 20mL of bio surfactant produce microorganism. Reactor 1 was added 0.1g powder hemoglobin and other reactor was not added hemoglobin at time 0 day. Those reactors shake 120 rpm on the shaker for 7 days and CO2 produced about 150mg/L per day. After 7 days under the slurry systems, the rest days operated by hemoglobin as primary carbon source for enhanced biodegradation. The crude oil contaminated soil was degraded from 48,783mg/kg to 20,234mg/kg by slurry process and final TPH concentration degraded 11,324mg/kg for 21days. Therefore, highly contaminated soil by crude oil will be combined bio slurry process and biodegradation process with hemoglobin as bio catalytic source. Keywords: crude-oil contaminated soil, bio slurry, biodegradation, hemoglobin ACKOWLEDGEMENTS This project was supported by the Korea Ministry of Environment (MOE) GAIA Program

  7. Toxicity testing of trinitrotoluene-contaminated soil composts

    SciTech Connect

    Honeycutt, M.E.; McFarland, V.A.; Jarvis, A.S.

    1997-10-01

    The Mutatox{trademark} assay and earthworm acute toxicity test were employed to evaluate the efficacy of composting in reducing the toxicity of TNT-contaminated soils. The Mutatox assay is a proprietary bacterial bioluminescence test that determines the mutagenic potential of sample extracts. The earthworm acute toxicity test was chosen because it exposes the organisms to the unaltered contaminant/solid matrix. Rockeye soil, a TNT-contaminated soil collected from a military installation, was composted using two methods. This yielded five samples, Rockeye, Compost A composting. Soil extracts were prepared for Mutatox using the sonification method. Ten serial dilution samples were tested soils/artificial soil were tested in the earthworm toxicity test. In the Rockeye soil samples, a toxic response was shown in both test methods. Mutatox indicated no toxicity in Composts A and B after composting but did not show a positive mutagenic response in the lower serial dilutions. The LC50s for Compost A and B after composting in the earthworm toxicity test were 35.3% and 100%, respectively. Using Mutatox and the earthworm toxicity test together provides a sensitive means of monitoring the effectiveness of various composting techniques for remediating TNT-contaminated soils.

  8. Treatment of NORM contaminated soil from the oilfields.

    PubMed

    Abdellah, W M; Al-Masri, M S

    2014-03-01

    Uncontrolled disposal of oilfield produced water in the surrounding environment could lead to soil contamination by naturally occurring radioactive materials (NORM). Large volumes of soil become highly contaminated with radium isotopes ((226)Ra and (228)Ra). In the present work, laboratory experiments have been conducted to reduce the activity concentration of (226)Ra in soil. Two techniques were used, namely mechanical separation and chemical treatment. Screening of contaminated soil using vibratory sieve shaker was performed to evaluate the feasibility of particle size separation. The fractions obtained were ranged from less than 38 μm to higher than 300 μm. The results show that (226)Ra activity concentrations vary widely from fraction to fraction. On the other hand, leaching of (226)Ra from soil by aqueous solutions (distilled water, mineral acids, alkaline medias and selective solvents) has been performed. In most cases, relatively low concentrations of radium were transferred to solutions, which indicates that only small portions of radium are present on the surface of soil particles (around 4.6%), while most radium located within soil particles; only concentrated nitric acid was most effective where 50% of (226)Ra was removed to aqueous phase. However, mechanical method was found to be easy and effective, taking into account safety procedures to be followed during the implementation of the blending and homogenization. Chemical extraction methods were found to be less effective. The results obtained in this study can be utilized to approach the final option for disposal of NORM contaminated soil in the oilfields.

  9. RELEASE OF CHEMICALS FROM CONTAMINATED SOILS. (R822721C529)

    EPA Science Inventory

    At sites that contain contaminated soils, there can be questions about the magnitude of risk posed by the chemicals in the soils and about the cleanup levels that should be achieved. Knowledge about the rate of release of chemicals is important to answers to such questions. Th...

  10. Chelate-assisted phytoextraction of lead from contaminated soils

    SciTech Connect

    Cooper, E.M.; Sims, J.T.; Cunningham, S.D.; Huang, J.W.; Berti, W.R.

    1999-12-01

    Phytoextraction, a remediation strategy for lead (Pb)-contaminated soils that removes soil Pb through plant uptake and harvest, may be enhanced by use of synthetic chelates. The authors evaluated Pb desorption from four contaminated soils by seven chelates (CDTA, DTPA, EDDHA, EFTA, HEDTA, HEIDA, and NTA) at three rates. The three most effective chelates (CDTA, DTPA, and HEDTA) were used in greenhouse studies with an uncontaminated soil and a Pb-contaminated soil to determine the effect of chelate type and rate on growth, Pb uptake, and plant elemental composition. Lead desorption varied with chelate and soil and increased with chelate rate, averaging 948 mg Pb kg{sup {minus}1} at the 20 mmol kg{sup {minus}1} rate vs. 28 mg Pb kg{sup {minus}1} by the control. The general ranking of chelate effectiveness, based on total Pb desorbed, was HEDTA > CDTA > DTPA > EGTA > HEIDA > EDDHA {approximately} NTA. Plant uptake of Pb from the contaminated soil was enhanced by CDTA, DTPA, and HEDTA, but with even the most effective treatment (corn, high CDTA rate), the amount of Pb extracted by plants was rather low. Lead extractable by the Toxicity Characteristic Leaching Procedure (TCLP) was increased from 9 mg L{sup {minus}1} in the control to from 47 to 174 mg L{sup {minus}1} in soils treated with 20 mmol kg{sup {minus}1} CDTA or DTPA and chelates generally caused a shift in Pb from resistant to more soluble chemical fractions.

  11. ENGINEERING ISSUE: IN SITU BIOREMEDIATION OF CONTAMINATED UNSATURATED SUBSURFACE SOILS

    EPA Science Inventory

    An emerging technology for the remediation of unsaturated subsurface soils involves the use of microorganisms to degrade contaminants which are present in such soils. Understanding the processes which drive in situ bioremediation, as well as the effectiveness and efficiency of th...

  12. Solvent extraction for heavy crude oil removal from contaminated soils.

    PubMed

    Li, Xingang; Du, Yongliang; Wu, Guozhong; Li, Zhongyuan; Li, Hong; Sui, Hong

    2012-06-01

    A new strategy of heavy crude oil removal from contaminated soils was studied. The hexane-acetone solvent mixture was used to investigate the ability of solvent extraction technique for cleaning up soils under various extraction conditions. The mixtures of hexane and acetone (25 vol%) were demonstrated to be the most effective in removing petroleum hydrocarbons from contaminated soils and approx 90% of saturates, naphthene aromatics, polar aromatics, and 60% of nC(7)-asphaltenes were removed. Kinetic experiments demonstrated that the equilibrium was reached in 5 min and the majority of the oil pollutants were removed within 0.5 min. The effect of the ratio between solvent and soil on the extraction efficiency was also studied and results showed that the efficiency would increase following the higher solvent soil ratio. Then the multistage continuous extraction was considered to enhance the removal efficiency of oil pollutants. Three stages crosscurrent and countercurrent solvent extraction with the solvent soil ratio 6:1 removed 97% oil contaminants from soil. Clearly the results showed that the mixed-solvent of hexane and acetone (25 vol%) with character of low-toxic, acceptable cost and high efficiency was promising in solvent extraction to remove heavy oil fractions as well as petroleum hydrocarbons from contaminated soils. Copyright © 2012 Elsevier Ltd. All rights reserved.

  13. ENGINEERING BULLETIN: SEPARATION/CONCENTRATION TECHNOLOGY ALTERNATIVES FOR THE REMEDIATION OF PESTICIDE-CONTAMINATED SOIL

    EPA Science Inventory

    Pesticide contamination includes a wide variety of compounds and may result from manufacturing improper storage, handling, disposal; or agricultural processes. It can occur in soil and can lead to secondary contamination of groundwater. Remediation of pesticide-contaminated soils...

  14. Ethanol-enhanced bioremediation of PAH-contaminated soils

    SciTech Connect

    Lee, P.H.; Ong, S.K.; Golchin, J.

    1999-07-01

    Bioremediation of soils contaminated with polycyclic aromatic hydrocarbons (PAHs) is highly challenging because of the low solubility and strong sorption properties of PAHs to soil organic matter. Two PAH-contaminated soils from former manufactured gas plant (MGP) sites were pretreated with ethanol to enhance the bioavailability of PAH compounds. The biodegradation of various PAHs in the pretreated soils was assessed using soil slurry reactor studies. The time needed to degrade 90% of the total PAH in the pretreated soils was at least 5 days faster than soils that were not pretreated with ethanol. A distinctive advantage with the pretreatment of soils with ethanol was the enhanced removal of 4-ring compounds such as chrysene. Approximately 90% of chrysene in the ethanol-treated soils were removed within 15 days while soils without pretreatment needed more than 30 days to obtain similar removal levels. After 35 days of biotreatment in the slurry reactors, approximately 40% of benzo(a)pyrene were removed in the ethanol-treated soils while only 20% were removed in soils not pretreated with ethanol.

  15. Toxicity tests of soil contaminated by recycling of scrap plastics

    SciTech Connect

    Wong, M.H.; Chui, V.W. )

    1990-03-01

    The present investigation studied the toxicity of soil contaminated by untreated discharge from a factory that recycles used plastics. The nearby agricultural areas and freshwater fish ponds were polluted with high concentrations of Cu, Ni, and Mn. Water extracts from the contaminated soil retarded root growth of Brassica chinensis (Chinese white cabbage) and Cynodon dactylon (Bermuda grass) where their seeds were obtained commercially. The contaminated populations of C. dactylon, Panicum repen (panic grass), and Imperata cylindrica (wooly grass) were able to withstand higher concentrations of Cu, Ni, and Mn, especially C. dactylon, when compared with their uncontaminated counterparts.

  16. Evaluation of the Parameters of Radioactive Contamination of Soils

    SciTech Connect

    Panasyuk M.I.; Skorbun A.D.; Klyuchnikov O.O.

    2002-02-26

    After Chornobyl NPP (ChNPP) accident the territory near destroyed Unit 4 (that now with the special confinement has the name the ''Shelter'' object) is contaminated of fuel fallouts. During liquidation of the accident consequences this territory was covered with pure earth, concrete, etc. As a result a contaminated anthropogenic layer of the soil on the depth up to 10 m was formed. Now the problem of contamination estimation and the soils management arose. For this tasks a gamma logging method was modified conformably to ChNPP conditions. The methods for necessary coefficients receiving and log treatment have been suggested.

  17. Toxicity tests of soil contaminated by recycling of scrap plastics.

    PubMed

    Wong, M H; Chui, V W

    1990-03-01

    The present investigation studied the toxicity of soil contaminated by untreated discharge from a factory that recycles used plastics. The nearby agricultural areas and freshwater fish ponds were polluted with high concentrations of Cu, Ni, and Mn. Water extracts from the contaminated soil retarded root growth of Brassica chinensis (Chinese white cabbage) and Cynodon dactylon (Bermuda grass) where their seeds were obtained commercially. The contaminated populations of C. dactylon, Panicum repen (panic grass), and Imperata cylindrica (wooly grass) were able to withstand higher concentrations of Cu, Ni, and Mn, especially C. dactylon, when compared with their uncontaminated counterparts.

  18. Bioremediation Techniques of Oil Contaminated Soils in Ohio

    SciTech Connect

    Hodges, David

    1996-10-03

    The objective of this project is to develop environmentally sound and cost-effective remediation techniques for crude oil contaminated soils. By providing a guidance manual to oil and gas operators, the Ohio Division of Oil and Gas regulatory authority hopes to reduce remediation costs while improving voluntary compliance with soil clean-up requirements. This shall be accomplished by conducting a series of field tests to define the optimum range for nutrient and organic enhancement to biologically remediate soils contaminated with brines and crude oil having a wide rage of viscosity.

  19. Selection of plants for phytoremediation of soils contaminated with radionuclides

    SciTech Connect

    Entry J.A.; Vance, N.C.; Watrud, L.S.

    1996-12-31

    Remediation of soil contaminated with radionuclides typically requires that soil be removed from the site and treated with various dispersing and chelating chemicals. Numerous studies have shown that radionuclides are generally not leached from the top 0.4 meters of soil, where plant roots actively accumulate elements. Restoration of large areas of land contaminated with low levels of radionuclides may be feasible using phytoremediation. Criteria for the selection of plants for phytoremediation, molecular approaches to increase radio nuclide uptake, effects of cultural practices on uptake and assessment of environmental effects of phytoremediation will be discussed.

  20. Development of chemical countermeasures for hazardous waste contaminated soil

    SciTech Connect

    Ellis, W.D.; Payne, J.R.; Tafuri, A.N.; Freestone, F.J.

    1984-01-01

    The objective of this project is to evaluate the efficacy of in-situ treatment of large volumes of subsurface soils, and large, relatively quiescent waterbodies. To date, efforts have concentrated on soils-related activities to determine whether significant enhancements to the in-situ cleanup of chemically contaminated soils with standard water washing techniques could be obtained by using aqueous surfactants. The addition of the surfactant mixtures was designed to improve the solvent properties of the water and enhance the removal of adsorbed chemical contaminants.

  1. Development of Canavalia ensiformis in soil contaminated with diesel oil.

    PubMed

    Balliana, A G; Moura, B B; Inckot, R C; Bona, C

    2017-01-01

    Hydrocarbons are the main components of diesel oil and are toxic for the majority of plants. A few plant species, known as phytoremediators, are tolerant of hydrocarbons and can survive the stressful conditions of soils contaminated with diesel oil. Canavalia ensiformis, a plant species that is well distributed throughout the tropics, possesses advantageous features for a potential resistance to soil contamination, such as fast growth and a deep root system. Thus, the aim of the present study was to evaluate the tolerance of C. ensiformis when it was exposed to soil contaminated with diesel oil. Seedlings were subjected to two treatments: contaminated soil (CS) (95 ml/kg of diesel oil) and non-contaminated soil (NCS) for a period of 30 days; its growth, morphology, anatomy, and physiology were analyzed. Despite the high level of toxicity, some individuals were able to survive in CS. These plants had root apical meristems with high levels of mitosis and were able to issue new roots with more developed aerenchyma tissue. Because the surviving plants presented no marks of cellular damage on the organs formed (root and leaves) during the experiment, the species capacity of growth on CS was confirmed. Although, long-term field experiments, applying different contaminant concentrations, should be considered to infer about the species resistance and use as phytoremediator.

  2. Bioremediation potential of diesel-contaminated Libyan soil.

    PubMed

    Koshlaf, Eman; Shahsavari, Esmaeil; Aburto-Medina, Arturo; Taha, Mohamed; Haleyur, Nagalakshmi; Makadia, Tanvi H; Morrison, Paul D; Ball, Andrew S

    2016-11-01

    Bioremediation is a broadly applied environmentally friendly and economical treatment for the clean-up of sites contaminated by petroleum hydrocarbons. However, the application of this technology to contaminated soil in Libya has not been fully exploited. In this study, the efficacy of different bioremediation processes (necrophytoremediation using pea straw, bioaugmentation and a combination of both treatments) together with natural attenuation were assessed in diesel contaminated Libyan soils. The addition of pea straw was found to be the best bioremediation treatment for cleaning up diesel contaminated Libyan soil after 12 weeks. The greatest TPH degradation, 96.1% (18,239.6mgkg(-1)) and 95% (17,991.14mgkg(-1)) were obtained when the soil was amended with pea straw alone and in combination with a hydrocarbonoclastic consortium respectively. In contrast, natural attenuation resulted in a significantly lower TPH reduction of 76% (14,444.5mgkg(-1)). The presence of pea straw also led to a significant increased recovery of hydrocarbon degraders; 5.7log CFU g(-1) dry soil, compared to 4.4log CFUg(-1) dry soil for the untreated (natural attenuation) soil. DGGE and Illumina 16S metagenomic analyses confirm shifts in bacterial communities compared with original soil after 12 weeks incubation. In addition, metagenomic analysis showed that original soil contained hydrocarbon degraders (e.g. Pseudoxanthomonas spp. and Alcanivorax spp.). However, they require a biostimulant (in this case pea straw) to become active. This study is the first to report successful oil bioremediation with pea straw in Libya. It demonstrates the effectiveness of pea straw in enhancing bioremediation of the diesel-contaminated Libyan soil.

  3. Temperature effects on propylene glycol-contaminated soil cores

    SciTech Connect

    Davis-Hoover, W.J.; Vesper, S.J.

    1995-12-31

    The authors are examining the effect of temperature on the biodegradation of propylene glycol (PPG) in subsurface soil cores. Subsurface soils were contaminated in situ with PPG and allowed to diffuse into the soil for 30 days. The treated soil was reexposed, and intact were incubated for 30 days at temperatures ranging from 9 to 39 C in a temperature gradient incubator. At 30 days, soil moisture, soil pH, microbial activity [fluorescein diacetate (FDA) test], R2A plate counts, and plate counts of PPG degraders were studied. Although the soil moisture and pH remained relatively unchanged, the parameters of microbial activity varied rather consistently with temperature. Multiple populations or subpopulations of bacteria appear to exist between temperatures of 9 and 39 C in these soils.

  4. Ecological risk assessment of contaminated soils through direct toxicity assessment.

    PubMed

    Fernández, María Dolores; Cagigal, Ekain; Vega, María Milagrosa; Urzelai, Arantzazu; Babín, Mar; Pro, Javier; Tarazona, José Vicente

    2005-10-01

    A microcosm (MS-3) with a multispecies soil system is introduced as an experimental tool for direct toxicity assessment of contaminated soils. The capacity of MS-3 to determine soil ecotoxicity potential was evaluated using samples from three sites contaminated with organic and/or inorganic compounds. Soils were toxic to soil-dwelling organisms (earthworm, plants, and microorganisms) and to aquatic organisms (algae and RTG-2 cell fish). As expected, responses varied substantially among different soils and organisms. The application of this evaluation system provided complementary information to the chemical characterization. For soils containing metals the toxic response was lower than predicted from total metal concentrations. For hydrocarbons, the toxicity response agreed with estimated values. The induction of EROD activity suggested the presence of dioxin-like compounds, which had not been addressed in the chemical characterization. The proposed multispecies system affords the measurement of 11 endpoints covering three soil and three aquatic taxonomic groups, reproduces soil conditions and gradients, and appears as an excellent complementary tool to chemical analysis for characterization of contaminated sites.

  5. Microemulsion-enhanced remediation of soils contaminated with organochlorine pesticides.

    PubMed

    Zhang, Yanlin; Wong, Jonathan W C; Zhao, Zhenyong; Selvam, Ammaiyappan

    2011-12-01

    Soil contaminated by organic pollutants, especially chlorinated aromatic compounds such as DDT (1,1,1-trichloro-2,2-bis(4-chlorophenyl)ethane), is an environmental concern because of the strong sorption of organochlorine pesticide onto the soil matrix and persistence in the environment. The remediation of organochlorine pesticide contaminated soils through microemulsion is an innovative technology to expedite this process. The remediation efficiency was evaluated by batch experiments through studying the desorption of DDT and hexachlorocyclohexane (y-HCH) and sorption of microemulsion composed of Triton X-100, 1-pentanol and linseed oil in the soil-surfactant-water suspension system. The reduction of desorption efficiency caused by the sorption loss of microemulsion components onto the soil could be corrected by the appropriate adjustment of C/S (Cosurfactant/Surfactant) and O/S (Oil/Surfactant) ratio. The C/S and O/S ratios of 1:2 and 3:20 were suitable to desorb DDT and gamma-HCH from the studied soils because of the lower sorption of Triton X-100 onto the soil. Inorganic salts added in microemulsion increased the pesticides desorption efficiency of pesticides and calcium chloride has a stronger ability to enhance the desorption of DDT than sodium chloride. From the remediation perspective, the balance of surfactant or cosurfactant sorbed to soil and desorption efficiency should be taken into consideration to enhance the remediation of soils contaminated by organochlorine pesticides.

  6. Chemical and microbiological characterization of an aged PCB-contaminated soil.

    PubMed

    Stella, T; Covino, S; Burianová, E; Filipová, A; Křesinová, Z; Voříšková, J; Větrovský, T; Baldrian, P; Cajthaml, T

    2015-11-15

    This study was aimed at complex characterization of three soil samples (bulk soil, topsoil and rhizosphere soil) from a site historically contaminated with polychlorinated biphenyls (PCB). The bulk soil was the most highly contaminated, with a PCB concentration of 705.95 mg kg(-1), while the rhizosphere soil was the least contaminated (169.36 mg kg(-1)). PCB degradation intermediates, namely chlorobenzoic acids (CBAs), were detected in all the soil samples, suggesting the occurrence of microbial transformation processes over time. The higher content of organic carbon in the topsoil and rhizosphere soil than in the bulk soil could be linked to the reduced bioaccessibility (bioavailability) of these chlorinated pollutants. However, different proportions of the PCB congener contents and different bioaccessibility of the PCB homologues indicate microbial biotransformation of the compounds. The higher content of organic carbon probably also promoted the growth of microorganisms, as revealed by phospholipid fatty acid (PFLA) quantification. Tag-encoded pyrosequencing analysis showed that the bacterial community structure was significantly similar among the three soils and was predominated by Proteobacteria (44-48%) in all cases. Moreover, analysis at lower taxonomic levels pointed to the presence of genera (Sphingomonas, Bulkholderia, Arthrobacter, Bacillus) including members with reported PCB removal abilities. The fungal community was mostly represented by Basidiomycota and Ascomycota, which accounted for >80% of all the sequences detected in the three soils. Fungal taxa with biodegradation potential (Paxillus, Cryptococcus, Phoma, Mortierella) were also found. These results highlight the potential of the indigenous consortia present at the site as a starting point for PCB bioremediation processes. Copyright © 2015 Elsevier B.V. All rights reserved.

  7. Surfactant-enhanced remediation of organic contaminated soil and water.

    PubMed

    Paria, Santanu

    2008-04-21

    Surfactant based remediation technologies for organic contaminated soil and water (groundwater or surface water) is of increasing importance recently. Surfactants are used to dramatically expedite the process, which in turn, may reduce the treatment time of a site compared to use of water alone. In fact, among the various available remediation technologies for organic contaminated sites, surfactant based process is one of the most innovative technologies. To enhance the application of surfactant based technologies for remediation of organic contaminated sites, it is very important to have a better understanding of the mechanisms involved in this process. This paper will provide an overview of the recent developments in the area of surfactant enhanced soil and groundwater remediation processes, focusing on (i) surfactant adsorption on soil, (ii) micellar solubilization of organic hydrocarbons, (iii) supersolubilization, (iv) density modified displacement, (v) degradation of organic hydrocarbon in presence surfactants, (vi) partitioning of surfactants onto soil and liquid organic phase, (vii) partitioning of contaminants onto soil, and (viii) removal of organics from soil in presence of surfactants. Surfactant adsorption on soil and/or sediment is an important step in this process as it results in surfactant loss reduced the availability of the surfactants for solubilization. At the same time, adsorbed surfactants will retained in the soil matrix, and may create other environmental problem. The biosurfactants are become promising in this application due to their environmentally friendly nature, nontoxic, low adsorption on to soil, and good solubilization efficiency. Effects of different parameters like the effect of electrolyte, pH, soil mineral and organic content, soil composition etc. on surfactant adsorption are discussed here. Micellar solubilization is also an important step for removal of organic contaminants from the soil matrix, especially for low aqueous

  8. Flood-related contamination in catchments affected by historical metal mining: an unexpected and emerging hazard of climate change.

    PubMed

    Foulds, S A; Brewer, P A; Macklin, M G; Haresign, W; Betson, R E; Rassner, S M E

    2014-04-01

    Floods in catchments affected by historical metal mining result in the remobilisation of large quantities of contaminated sediment from floodplain soils and old mine workings. This poses a significant threat to agricultural production and is preventing many European river catchments achieving a 'good chemical and ecological status', as demanded by the Water Framework Directive. Analysis of overbank sediment following widespread flooding in west Wales in June 2012 showed that flood sediments were contaminated above guideline pollution thresholds, in some samples by a factor of 82. Most significantly, silage produced from flood affected fields was found to contain up to 1900 mg kg(-1) of sediment associated Pb, which caused cattle poisoning and mortality. As a consequence of climate related increases in flooding this problem is likely to continue and intensify. Management of contaminated catchments requires a geomorphological approach to understand the spatial and temporal cycling of metals through the fluvial system. Copyright © 2013 Elsevier B.V. All rights reserved.

  9. Clean-up criteria for remediation of contaminated soils

    SciTech Connect

    Nguyen, H.D.; Wilson, J.R.; Sato, Chikashi

    1997-08-01

    {open_quotes}How clean is clean?{close_quotes} is a question commonly raised in the remediation of contaminated soils. To help with the answer, criteria are proposed to serve as guidelines for remedial actions and to define a clean-up level such that the remaining contaminant residuals in the soil will not violate the Drinking Water Standards (DWS). The equations for computing those criteria are developed from the principle of conservation of mass and are functions of the maximum concentration level in the water (MCL) and the sorption coefficient. A multiplier, ranging from 10 to 1000, is also factored into the soil standard equation to reflect the effectiveness of various remediation techniques. Maximum allowable concentration in the soil (MSCL) is presented for several contaminants which are being regulated at the present time. Future modifications are recommended for better estimates of the MSCLs as additional transport mechanisms are incorporated to account for other potentially dominant effects.

  10. Environmental impact of historical harbour city Zadar (Croatia) on the composition of marine sediments and soils.

    PubMed

    Sager, Manfred; Kralik, Martin

    2012-01-01

    Sediment samples and soils along the coast line of the Adriatic Sea were sampled along a transect near the coast line at Zadar/Croatia, ranging from north-western suburbs via the historical centre and the industrial area to south-east suburbs. The sediments were dominated by carbonates and clay minerals, and contaminations with Cd-Cu-Pb-Zn-TOC (total organic carbon) at the historical centre and the industrial site were detected, as well as P and Mo input at the mouth of a small creek, probably from agriculture. No trends between the composition of surface and subsurface sea sediments were seen. At the historic harbour site, total element concentrations versus grain size showed a minimum in the fine silt fraction for most of the elements analysed. The soil samples behind the shoreline were not carbonaceous, but dominated by Fe-Al- oxides, some contained high levels of Be-Cd-Cu-Sn-Zn. Surprisingly, high TOC values within the soils might be assigned to human impacts, not to humus. Contrary to data from street dust samples from Seoul city/Korea, which were measured within our laboratory at the same time, Pt-Ir-Au were at ambient levels due to the limited use of catalysts in cars in the Zadar area at the time of sampling.

  11. Chemical contamination and transformation of soils in hydrocarbon production regions

    NASA Astrophysics Data System (ADS)

    Zamotaev, I. V.; Ivanov, I. V.; Mikheev, P. V.; Nikonova, A. N.

    2015-12-01

    The current concepts of soil pollution and transformation in the regions of hydrocarbon production have been reviewed. The development of an oil field creates extreme conditions for pedogenesis. Tendencies in the radial migration, spatial distribution, metabolism, and accumulation of pollutants (oil, oil products, and attendant heavy metals) in soils of different bioclimatic zones have been analyzed. The radial and lateral mobility of pollution halos is a universal tendency in the technogenic transformation of soils and soil cover in the regions of hydrocarbon production. The biodegradation time of different hydrocarbon compounds strongly varies under different landscape conditions, from several months to several tens of years. The transformation of original (mineral and organic) soils to their technogenic modifications (mechanically disturbed, chemically contaminated, and chemo soils and chemozems) occurs in the impact zone of technogenic hydrocarbon fluxes under any physiographical conditions. The integrated use of the existing methods for the determination of the total content and qualitative composition of bituminous substances and polyaromatic hydrocarbons in combination with the chromatographic determination of normal alkanes and hydrocarbon gases, as well as innovative methods of studies, allows revealing new processes and genetic relationships in soils and studying the functioning of soils and soil cover. The study of the hydrocarbon contamination of soils is important for development of restoration measures and lays the groundwork for the ecological and hygienic regulation based on the zonation of soil and landscape resistance to different pollutants.

  12. The activation energy of stabilised/solidified contaminated soils.

    PubMed

    Chitambira, B; Al-Tabbaa, A; Perera, A S R; Yu, X D

    2007-03-15

    Developing an understanding of the time-related performance of cement-treated materials is essential in understanding their durability and long-term effectiveness. A number of models have been developed to predict this time-related performance. One such model is the maturity concept which involves use of the 'global' activation energy which derives from the Arrhenius equation. The accurate assessment of the activation energy is essential in the realistic modelling of the accelerated ageing of cement-treated soils. Experimentally, this model is applied to a series of tests performed at different elevated temperatures. Experimental work, related to the results of a time-related performance on a contaminated site in the UK treated with in situ stabilisation/solidification was carried out. Three different cement-based grouts were used on two model site soils which were both contaminated with a number of heavy metals and a hydrocarbon. Uncontaminated soils were also tested. Elevated temperatures up to 60 degrees C and curing periods up to 90 days were used. The resulting global activation energies for the uncontaminated and contaminated soils were compared. Lower values were obtained for the contaminated soils reflecting the effect of the contaminants. The resulting equivalent ages for the uncontaminated and contaminated mixes tested were 5.1-7.4 and 0.8-4.1 years, respectively. This work shows how a specific set of contaminants affect the E(a) values for particular cementitious systems and how the maturity concept can be applied to cement-treated contaminated soils.

  13. REMEDIATION OF CONTAMINATED SOILS BY SOLVENT FLUSHING

    EPA Science Inventory

    Solvent flushing is a potential technique for remediating a waste disposal/spill site contaminated with organic chemicals. This technique involves the injection of a solvent mixture (e.g., water plus alcohols) that enhances contaminant solubility, reduces the retardation factor, ...

  14. REMEDIATION OF CONTAMINATED SOILS BY SOLVENT FLUSHING

    EPA Science Inventory

    Solvent flushing is a potential technique for remediating a waste disposal/spill site contaminated with organic chemicals. This technique involves the injection of a solvent mixture (e.g., water plus alcohols) that enhances contaminant solubility, reduces the retardation factor, ...

  15. Characterization of soils from an industrial complex contaminated with elemental mercury

    SciTech Connect

    Miller, Carrie L. Watson, David B.; Lester, Brian P.; Lowe, Kenneth A.; Pierce, Eric M.; Liang, Liyuan

    2013-08-15

    Historical use of liquid elemental mercury (Hg(0){sub l}) at the Y-12 National Security Complex in Oak Ridge, TN, USA, resulted in large deposits of Hg(0){sub l} in the soils. The fate and distribution of the spilled Hg(0) are not well characterized. In this study we evaluated analytical tools for characterizing the speciation of Hg in the contaminated soils and then used the analytical techniques to examine the speciation of Hg in two soil cores collected at the site. These include x-ray fluorescence (XRF), soil Hg(0) headspace analysis, and total Hg determination by acid digestion coupled with cold vapor atomic absorption (HgT). XRF was not found to be suitable for evaluating Hg concentrations in heterogeneous soils containing low concentration of Hg or Hg(0) because Hg concentrations determined using this method were lower than those determined by HgT analysis and the XRF detection limit is 20 mg/kg. Hg(0){sub g} headspace analysis coupled with HgT measurements yielded good results for examining the presence of Hg(0){sub l} in soils and the speciation of Hg. The two soil cores are highly heterogeneous in both the depth and extent of Hg contamination, with Hg concentrations ranging from 0.05 to 8400 mg/kg. In the first core, Hg(0){sub l} was distributed throughout the 3.2 m depth, whereas the second core, from a location 12 m away, contained Hg(0){sub l} in a 0.3 m zone only. Sequential extractions showed organically associated Hg dominant at depths with low Hg concentration. Soil from the zone of groundwater saturation showed reducing conditions and the Hg is likely present as Hg-sulfide species. At this depth, lateral Hg transport in the groundwater may be a source of Hg detected in the soil at the deeper soil depths. Overall, characterization of soils containing Hg(0){sub l} is difficult because of the heterogeneous distribution of Hg within the soils. This is exacerbated in industrial facilities where fill materials make up much of the soils and historical

  16. Arsenic bio-accessibility and bioaccumulation in aged pesticide contaminated soils: A multiline investigation to understand environmental risk.

    PubMed

    Rahman, M S; Reichelt-Brushet, A J; Clark, M W; Farzana, T; Yee, L H

    2017-03-01

    Bio-accessibility and bioavailability of arsenic (As) in historically As-contaminated soils (cattle tick pesticide), and pristine soils were assessed using 3 different approaches. These approaches included human bio-accessibility using an extraction test replicating gastric conditions (in vitro physiologically-based extraction test); an operationally defined bioaccessibility extraction test - 1.0M HCl extraction; and a live organism bioaccumulation test using earthworms. A sequential extraction procedure revealed the soil As-pool that controls bio-accessibility and bioaccumulation of As. Findings show that As is strongly bound to historically contaminated soil with a lower degree of As bio-accessibility (<15%) and bioaccumulation (<9%) compared with freshly contaminated soil. Key to these lower degrees of bio-accessibility and bioaccumulation is the greater fraction of As associated with crystalline Fe/Al oxy-hydroxide and residual phases. The high bio-accessibility and bioaccumulation of freshly sorbed As in pristine soils were from the exchangeable and specifically sorbed As fractions. Arsenic bioaccumulation in earthworms correlates strongly with both the human bio-accessible, and the operationally defined bioavailable fractions. Hence, results suggest that indirect As bioavailability measures, such as accumulation by earthworm, can be used as complementary lines of evidence to reinforce site-wide trends in the bio-accessibility using in vitro physiologically-based extractions and/or operationally defined extraction test. Such detailed knowledge is useful for successful reclamation and management of the As contaminated soils.

  17. Metagenomic analysis of microbial community in uranium-contaminated soil.

    PubMed

    Yan, Xun; Luo, Xuegang; Zhao, Min

    2016-01-01

    Uranium tailing is a serious pollution challenge for the environment. Based on metagenomic sequencing analysis, we explored the functional and structural diversity of the microbial community in six soil samples taken at different soil depths from uranium-contaminated and uncontaminated areas. Kyoto Encyclopedia of Genes and Genomes Orthology (KO) groups were obtained using a Basic Local Alignment Search Tool search based on the universal protein resource database. The KO-pathway network was then constructed using the selected KOs. Finally, alpha and beta diversity analyses were performed to explore the differences in soil bacterial diversity between the radioactive soil and uncontaminated soil. In total, 30-68 million high-quality reads were obtained. Sequence assembly yielded 286,615 contigs; and these contigs mostly annotated to 1699 KOs. The KO distributions were similar among the six soil samples. Moreover, the proportion of the metabolism of other amino acids (e.g., beta-alanine, taurine, and hypotaurine) and signal transduction was significantly lower in radioactive soil than in uncontaminated soil, whereas the proportion of membrane transport and carbohydrate metabolism was higher. Additionally, KOs were mostly enriched in ATP-binding cassette transporters and two-component systems. According to diversity analyses, Actinobacteria and Proteobacteria were the dominant phyla in radioactive and uncontaminated soil, and Robiginitalea, Microlunatus, and Alicyclobacillus were the dominant genera in radioactive soil. Taken together, these results demonstrate that soil microbial community, structure, and functions show significant changes in uranium-contaminated soil. The dominant categories such as Actinobacteria and Proteobacteria may be applied in environmental governance for uranium-contaminated soil in southern China.

  18. Solubility measurement of uranium in uranium-contaminated soils

    SciTech Connect

    Lee, S.Y.; Elless, M.; Hoffman, F.

    1993-08-01

    A short-term equilibration study involving two uranium-contaminated soils at the Fernald site was conducted as part of the In Situ Remediation Integrated Program. The goal of this study is to predict the behavior of uranium during on-site remediation of these soils. Geochemical modeling was performed on the aqueous species dissolved from these soils following the equilibration study to predict the on-site uranium leaching and transport processes. The soluble levels of total uranium, calcium, magnesium, and carbonate increased continually for the first four weeks. After the first four weeks, these components either reached a steady-state equilibrium or continued linearity throughout the study. Aluminum, potassium, and iron, reached a steady-state concentration within three days. Silica levels approximated the predicted solubility of quartz throughout the study. A much higher level of dissolved uranium was observed in the soil contaminated from spillage of uranium-laden solvents and process effluents than in the soil contaminated from settling of airborne uranium particles ejected from the nearby incinerator. The high levels observed for soluble calcium, magnesium, and bicarbonate are probably the result of magnesium and/or calcium carbonate minerals dissolving in these soils. Geochemical modeling confirms that the uranyl-carbonate complexes are the most stable and dominant in these solutions. The use of carbonate minerals on these soils for erosion control and road construction activities contributes to the leaching of uranium from contaminated soil particles. Dissolved carbonates promote uranium solubility, forming highly mobile anionic species. Mobile uranium species are contaminating the groundwater underlying these soils. The development of a site-specific remediation technology is urgently needed for the FEMP site.

  19. Formation of chloropyromorphite in a lead-contaminated soil amended with hydroxyapatite.

    PubMed

    Ryan, J A; Zhang, P; Hesterberg, D; Chou, J; Sayers, D E

    2001-09-15

    Conversion of soil Pb to pyromorphite [Pb5(PO4)3Cl] was evaluated by reacting a Pb contaminated soil collected adjacent to a historical smelter with hydroxyapatite [Ca5(PO4)3OH]. In a dialysis experiment where the soil and hydroxyapatite solids were placed in separate dialysis bags suspended in 0.01 M NaNO3 solution a crystalline precipitate, identified as chloropyromorphite, formed on the dialysis membrane containing the soil. The aqueous composition of the solution indicated that dissolution of solid-phase soil Pb was the rate-limiting step for pyromorphite formation. Addition of hydroxyapatite to the soil caused a decrease in each of the first four fractions of sequential extractable Pb and a 35% increase in the recalcitrant extraction residue. After a 240-d incubation at field-moisture content there was a further increase in the recalcitrant extraction residue fraction of the hydroxyapatite-amended soil to 45% of the total soil Pb. The increase in the extraction residue fraction in the hydroxyapatite amended 0-d incubated soil as compared to the control soil illustrates that the chemical extraction procedure itself caused changes in extractability. Thus, the chemical extraction procedure cannot easily be utilized to confirm changes occurring in amended soils. The further increase after the 240-d incubation implies that the reaction also occurs in the soil during incubation. Extended X-ray absorption fine structure (EXAFS) spectroscopy indicated that after the 240-d incubation the hydroxyapatite treatment caused a change in the average, local molecular bonding environment of soil Pb. Low-temperature EXAFS spectra (chi data and radial structure functions--RSFs) showed a high degree of similarity between the chemical extraction residue and synthetic pyromorphite, providing additional evidence that the change of soil Pb to pyromorphite is possible by simple amendments of hydroxyapatite to soil.

  20. Electrokinetic remediation of oil-contaminated soils.

    PubMed

    Korolev, Vladimir A; Romanyukha, Olga V; Abyzova, Anna M

    2008-07-01

    This investigation was undertaken to determine the factors influencing electrokinetic remediation of soils from petroleum pollutants. The remediation method was applied in two versions: (i) static and (ii) flowing, when a sample was washed with leaching solution. It was found that all the soils studied can be purified using this technique. It was also observed that the mineral and grain-size composition of soils, their properties, and other parameters affect the remediation efficiency. The static and flowing versions of the remediation method removed 25-75% and 90-95% of the petroleum pollutants, respectively from the soils under study.

  1. Evaluation of soil amendments as a remediation alternative for cadmium contaminated soils under cacao plantations

    USDA-ARS?s Scientific Manuscript database

    Elevated plant-available cadmium (Cd) in soils results in contamination to cacao (Theobroma cacao L) beans. Effectiveness of vermicompost and zeolite in reducing available Cd in three cacao-growing soils was studied under laboratory conditions. Sorption-desorption experiments were conducted in soils...

  2. SOLVENT EXTRACTION AND SOIL WASHING TREATMENT OF CONTAMINATED SOILS FROM WOOD PRESERVING SITES: BENCH SCALE STUDIES

    EPA Science Inventory

    Bench-scale solvent extraction and soil washing studies were performed on soil samples obtained from three abandoned wood preserving sites that included in the NPL. The soil samples from these sites were contaminated with high levels of polyaromatic hydrocarbons (PAHs), pentachlo...

  3. The effects of PAH contamination on soil invertebrate communities

    SciTech Connect

    Snow-Ashbrook, J.L.; Erstfeld, K.M.

    1995-12-31

    Soils were collected from an abandoned industrial site to study the effects of historic polycyclic aromatic hydrocarbons (PAHs) on soil invertebrate communities. Nematode abundance and diversity, microarthropod abundance (orders Collembola and Acarina) and earthworm growth were evaluated. Physical and chemical characteristics of soils may affect both invertebrate community structure and the mobility/bioavailability of pollutants in soils. Soil characteristics were measured and included with PAH data in multiple regression analyses to identify factors which influences the responses observed in the soil invertebrate community. Positive associations were observed between eight invertebrate community endpoints and soil PAH content. For all of these endpoints but one, a higher degree of variability was explained when both PAH content and soil characteristics were considered. It is theorized that the positive response to soil PAH content may be the result of an increased abundance of PAH-degrading soil microbes. Increased microbial abundance could stimulate invertebrate communities by providing a direct food source or increasing the abundance of microbially-produced nutrients. These results suggest that both PAH content and soil characteristics significantly influenced the soil invertebrate community. It is not clear whether these factors influenced the invertebrate community independently, or whether differences in soil characteristics affected the community response by influencing the mobility or bioavailability of PAHs.

  4. Soil biogeochemistry, plant physiology and phytoremediation of cadmium contaminated soils

    USDA-ARS?s Scientific Manuscript database

    Cadmium (Cd) loading in soil and the environment has been accelerated worldwide due to enhanced industrialization and intensified agricultural production, particularly in the developing countries. Soil Cd pollution, resulting from both anthropogenic and geogenic sources, has posed an increasing chal...

  5. Electrokinetic remediation of fluorine-contaminated soil: conditioning of anolyte.

    PubMed

    Kim, Do-Hyung; Jeon, Chil-Sung; Baek, Kitae; Ko, Sung-Hwan; Yang, Jung-Seok

    2009-01-15

    The feasibility of anolyte conditioning on electrokinetic remediation of fluorine-contaminated soil was investigated with a field soil. The initial concentration of fluorine, pH and water content in the soil were 414mg/kg, 8.91 and 15%, respectively. Because the extraction of fluorine generally increased with the soil pH, the pH of the anode compartment was controlled by circulating strong alkaline solution to enhance the extraction of fluorine during electrokinetic remediation. The removal of fluorine increased with the concentration of the alkaline solution and applied current density and fluorine removed up to 75.6% within 14 days. Additionally, anolyte conditioning sharply increased the electro-osmotic flow, which enhanced the removal of fluorine in this study. In many respects, anolyte conditioning in electrokinetic remediation of fluorine-contaminated soil will be a promising technology.

  6. Polycyclic aromatic hydrocarbons in fuel-oil contaminated soils, Antarctica.

    PubMed

    Aislabie, J; Balks, M; Astori, N; Stevenson, G; Symons, R

    1999-12-01

    Where fuel oil spills have occurred on Antarctic soils polycyclic aromatic hydrocarbons (PAH) may accumulate. Surface and subsurface soil samples were collected from fuel spill sites up to 30 years old, and from nearby control sites, and analysed for the 16 PAHs on the USEPA priority pollutants list, as well as for two methyl substituted naphthalenes, 1-methylnaphthalene and 2-methylnaphthalene. PAH levels ranged from 41-8105 ng g-1 of dried soil in the samples from contaminated sites and were below detection limits in control site samples. PAH were detected in surface soils and had migrated to lower depths in the contaminated soil. The predominant PAH detected were naphthalene and its methyl derivatives.

  7. Optimization of surfactant-aided remediation of industrially contaminated soils

    SciTech Connect

    Joshi, M.M.; Lee, S.

    1996-04-01

    Soil matrices contaminated with polycyclic aromatic hydrocarbons (PAHs) abound at the sites of coke-oven gas plants, refineries, and many other major chemical industries. The removal of PAHs from soil using pure water, via soil washing (ex situ) or soil flushing (in situ), is quite ineffective due to their low solubility and hydrophobicity. However, addition of suitable surfactant(s) has been shown to increase the removal efficiency several fold. For the present work, the removal of PAHs occurring in industrially contaminated soil was studied. The objective was to use a nonionic surfactant solution for in situ soil flushing and to evaluate the optimal range of process parameters that can significantly increase the removal efficiency. The process parameters chosen were surfactant concentration, ratio of washing solution volume to soil weight, and temperature of washing solution. These parameters were found to have a significant effect on PAH removal from the contaminated soil and an optimal range was determined for each parameter under given washing conditions.

  8. Remediation of Cd-contaminated soil around metal sulfide mines

    NASA Astrophysics Data System (ADS)

    Lu, Xinzhe; Hu, Xuefeng; Kang, Zhanjun; Luo, Fan

    2017-04-01

    The mines of metal sulfides are widely distributed in the southwestern part of Zhejiang Province, Southeast China. The activities of mining, however, often lead to the severe pollution of heavy metals in soils, especially Cd contamination. According to our field investigations, the spatial distribution of Cd-contaminated soils is highly consistent with the presence of metal sulfide mines in the areas, further proving that the mining activities are responsible for Cd accumulation in the soils. To study the remediation of Cd-contaminated soils, a paddy field nearby large sulfide mines, with soil pH 6 and Cd more than 1.56 mg kg-1, five times higher than the national recommended threshold, was selected. Plastic boards were deeply inserted into soil to separate the field and make experimental plots, with each plot being 4 m×4 m. Six treatments, TK01˜TK06, were designed to study the effects of different experimental materials on remediating Cd-contaminated soils. The treatment of TK01 was the addition of 100 kg zeolites to the plot; TK02, 100 kg apatites; TK03, 100 kg humid manure; TK04, 50 kg zeolites + 50 kg apatites; TK05, 50 kg zeolites + 50 kg humid manure; TK06 was blank control (CK). One month after the treatments, soil samples at the plots were collected to study the possible change of chemical forms of Cd in the soils. The results indicated that these treatments reduced the content of available Cd in the soils effectively, by a decreasing sequence of TK04 (33%) > TK02 (25%) > TK01 (23%) > TK05 (22%) > TK03 (15%), on the basis of CK. Correspondingly, the treatments also reduced the content of Cd in rice grains significantly, by a similar decreasing sequence of TK04 (83%) > TK02 (77%) > TK05 (63%) > TK01 (47%) > TK03 (27%). The content of Cd in the rice grains was 0.071 mg kg-1, 0.094 mg kg-1, 0.159 mg kg-1, 0.22 mg kg-1 and 0.306 mg kg-1, respectively, compared with CK, 0.418 mg kg-1. This experiment suggested that the reduction of available Cd in the soils is

  9. Identifying the role of historical anthropogenic activities on urban soils: geochemical impact and city scale mapping

    NASA Astrophysics Data System (ADS)

    Le Guern, Cecile; Baudouin, Vivien; Conil, Pierre

    2017-04-01

    Recently, European cities have faced several changes including deindustrialization and population increase. To limit urban sprawl, urban densification is preferred. It conducts to (re)develop available areas such as brownfields. Although these areas can be attractive for housing due to their location (in proximity to the city centre or to a riverside), their soils and subsoils are often contaminated. They are therefore potentially harmful for human health and the environment, and potentially costly to remediate. Currently, in case of contamination suspicion, depth geochemical characterization of urban soil and subsoil are carried out at site scale. Nevertheless, large redevelopment project occur at quarter to city scale. It appears therefore useful to acquire the preliminary knowledge on the structure and quality of soil and subsoils, as well as on the potential sources of contamination at quarter to city scale. In the frame of the Ile de Nantes (France) redevelopment project, we considered more particularly anthropogenic deposits and former industrial activities as main sources of contamination linked to human activities. To face the low traceability of the use of anthropogenic deposits and the lack of synthesis of former industrial activities, we carried out a historical study, synthetizing the information spread in numerous archive documents to spatialize the extent of the deposits and of the former activities. In addition we developed a typology of made grounds according to their contamination potential to build a 3D geological model with a geochemical coherence. In this frame, we valorized existing borehole descriptions coming mainly from pollution diagnosis and geotechnical studies. We also developed a methodology to define urban baseline compatibility levels using the existing analytical data at depth from pollution diagnosis. These data were previously gathered in a local geodatabase towards with borehole descriptions (more than 2000 borehole descriptions

  10. Environmental projects. Volume 14: Removal of contaminated soil and debris

    NASA Technical Reports Server (NTRS)

    Kushner, Len

    1992-01-01

    Numerous diverse activities at the Goldstone Deep Space Communications Complex (GDSCC) are carried out in support of six parabolic dish antennas. Some of these activities can result in possible spills or leakages of hazardous materials and wastes stored both above ground in steel drums and below ground in underground storage tanks (UST's). These possible leaks or spills, along with the past practice of burial of solid debris and waste in trenches and pits, could cause local subsurface contamination of the soil. In 1987, the Jet Propulsion Laboratory (JPL), retained Engineering-Science, Inc. (E-S), Pasadena, California, to identify the specific local areas within the GDSCC with subsurface soil contamination. The E-S study determined that some of the soils at the Apollo Site and the Mars Site were contaminated with hydrocarbons, while soil at a nonhazardous waste dumpsite at the Mojave Base site was contaminated with copper. This volume is a JPL-expanded version of the PE209 E-S report, and it also reports that all subsurface contaminated soils at the GDSCC were excavated, removed, and disposed of in an environmentally acceptable way, and the excavations were backfilled and covered in accordance with accepted Federal, State, and local environmental rules and regulations.

  11. Use of passive sampling devices to determine soil contaminant concentrations

    SciTech Connect

    Johnson, K.A. |; Hooper, M.J.; Weisskopf, C.P.

    1996-12-31

    The effective remediation of contaminated sites requires accurate identification of chemical distributions. A rapid sampling method using passive sampling devices (PSDs) can provide a thorough site assessment. We have been pursuing their application in terrestrial systems and have found that they increase the ease and speed of analysis, decrease solvent usage and overall cost, and minimize the transport of contaminated soils. Time and cost savings allow a higher sampling frequency than is generally the case using traditional methods. PSDs have been used in the field in soils of varying physical properties and have been successful in estimating soil concentrations ranging from 1 {mu}g/kg (parts per billion) to greater than 200 mg/kg (parts per million). They were also helpful in identifying hot spots within the sites. Passive sampling devices show extreme promise as an analytical tool to rapidly characterize contaminant distributions in soil. There are substantial time and cost savings in laboratory personnel and supplies. By selectively excluding common interferences that require sample cleanup, PSDs can be retrieved from the field and processed rapidly (one technician can process approximately 90 PSDs in an 8-h work day). The results of our studies indicate that PSDs can be used to accurately estimate soil contaminant concentrations and provide lower detection limits. Further, time and cost savings will allow a more thorough and detailed characterization of contaminant distributions. 13 refs., 4 figs., 2 tabs.

  12. Combined chemical and biological treatment of oil contaminated soil.

    PubMed

    Goi, Anna; Kulik, Niina; Trapido, Marina

    2006-06-01

    Combined chemical (Fenton-like and ozonation) and biological treatment for the remediation of shale oil and transformer oil contaminated soil has been under study. Chemical treatment of shale oil and transformer oil adsorbed in peat resulted in lower contaminants' removal and required higher addition of chemicals than chemical treatment of contaminants in sand matrix. The acidic pH (3.0) conditions favoured Fenton-like oxidation of oil in soil. Nevertheless, it was concluded that remediation of contaminated soil using in situ Fenton-like treatment will be more feasible at natural soil pH. Both investigated chemical processes (Fenton-like and ozonation) allowed improving the subsequent biodegradability of oil. Moderate doses of chemical oxidants (hydrogen peroxide, ozone) should be applied in combination of chemical treatment (both, Fenton-like or ozonation) and biotreatment. For remediation of transformer oil and shale oil contaminated soil Fenton-like pre-treatment followed by biodegradation was found to be the most efficient.

  13. An ecotoxicity assessment of contaminated forest soils from the Kola Peninsula.

    PubMed

    Paton, Graeme I; Viventsova, Ekaterina; Kumpene, Jurate; Wilson, Michael J; Weitz, Hedda J; Dawson, Julian J C

    2006-02-15

    Point source copper and nickel contamination emanating from smelters of the Kola Peninsula, NW Russia, has been observed since the mid-1960s. Previous studies have concentrated on the spatial distribution of heavy metals and their effects on forest ecology and indigenous mammals and birds. Soil is perceived as the major repository for the metal pollutants but there is a need to link the soil concentration of pollutants on the Kola Peninsula with biological parameters. Many standard methods currently used in soil ecotoxicology are developed and refined with artificial amendments and rarely modified for use in historically contaminated environments. In this study, forest soils were sampled along a 34 km transect from the smelter and analysed both chemically and with a range of ecologically relevant biological tests. Soil respiration, total nematode count, microbial heterotrophic numbers and minimal inhibitory concentrations to copper and nickel were carried out on bulk soil. The soil pore water was tested with bacterial and fungal bioluminescence-based biosensors. The heterotrophic numbers and their inhibitory concentration showed strong correlation with heavy metal concentrations while decreasing biosensor luminescence was related to increasing copper concentrations present in the pore waters. Overall, there were considerable impacts on some microbial parameters but other measures including respiration and nematode populations were insensitive to pollutant levels. While chemical analysis of heavy metals proved essential in defining the extent of contamination, environmentally relevant ecotoxicological tests complemented these data by demonstrating pollutant impact. Ecotoxicological approaches that study both the bulk soil and pore water may represent the key to understanding the fate of heavy metal in soils.

  14. Soil heavy metal contamination and health risks associated with artisanal gold mining in Tongguan, Shaanxi, China.

    PubMed

    Xiao, Ran; Wang, Shuang; Li, Ronghua; Wang, Jim J; Zhang, Zengqiang

    2017-07-01

    Soil contamination with heavy metals due to mining activities poses risks to ecological safety and human well-being. Limited studies have investigated heavy metal pollution due to artisanal mining. The present study focused on soil contamination and the health risk in villages in China with historical artisanal mining activities. Heavy metal levels in soils, tailings, cereal and vegetable crops were analyzed and health risk assessed. Additionally, a botany investigation was conducted to identify potential plants for further phytoremediation. The results showed that soils were highly contaminated by residual tailings and previous mining activities. Hg and Cd were the main pollutants in soils. The Hg and Pb concentrations in grains and some vegetables exceeded tolerance limits. Moreover, heavy metal contents in wheat grains were higher than those in maize grains, and leafy vegetables had high concentrations of metals. Ingestion of local grain-based food was the main sources of Hg, Cd, and Pb intake. Local residents had high chronic risks due to the intake of Hg and Pb, while their carcinogenic risk associated with Cd through inhalation was low. Three plants (Erigeron canadensis L., Digitaria ciliaris (Retz.) Koel., and Solanum nigrum L.) were identified as suitable species for phytoremediation. Copyright © 2017. Published by Elsevier Inc.

  15. Behaviour of polychlorinated biphenyls contaminating soil near Zadar.

    PubMed

    Kobasić, Vedranka Hodak; Picer, Mladen; Picer, Nena; Sraka, Mario; Kovac, Tatjana

    2006-09-01

    This study analysed PCB-contaminated natural soil excavated from an area adjacent to an electrical transformer station in Zadar, Croatia. For one year, PCB concentrations were measured in the soil and leachate water under natural climatic conditions. After 12 months, a negligible quantity of Aroclor 1248 (0.024% in average) and a total of seven key PCB congeners (IUPAC No: PCB-28, PCB-52, PCB-101, PCB-118, PCB-138, PCB-153, and PCB-180) were leached through the soils into water collected under lysimeters (0.032% in average). Although the amounts of leached PCBs were relatively small, their range 2 microg L(-1) to 15 microg L(-1) substantially exceeds the maximal allowed concentration of total PCBs in fishponds which is 1 ng L(-1). Soil samples were taken on two occasions from three depths from each lysimeter. The distribution of total PCBs as Aroclor 1248 equivalents and seven individual PCB congeners was determined within soil layers before and after planting seeds. In all soil plots the content of total seven PCBs and some individual PCB congeners in the surface soil layers significantly decreased. The total content of the seven PCB congeners in the surface soil layer of all soil plots decreased between 19.0% (soil plot 2) and 47.6% (soil plot 1) and in the middle soil layer between 8.1% (soil plot 4) and 37.4% (soil plot 1). PCB-28 and PCB-52 showed the highest percent of removal in all soil plots after 12 months of the experiment. The most important mechanism of removal of "lighter" congeners may be evaporation from the soil surface. Generally, our results showed that the PCBs accumulated in the deepest level of the soil, probably due to vertical transport and decreased evaporation. Some of the PCB content was lost to their degradation in the rhizosphere of the plants growing on the analysed soil plots.

  16. Bioremediation of industrially contaminated soil using compost and plant technology.

    PubMed

    Taiwo, A M; Gbadebo, A M; Oyedepo, J A; Ojekunle, Z O; Alo, O M; Oyeniran, A A; Onalaja, O J; Ogunjimi, D; Taiwo, O T

    2016-03-05

    Compost technology can be utilized for bioremediation of contaminated soil using the active microorganisms present in the matrix of contaminants. This study examined bioremediation of industrially polluted soil using the compost and plant technology. Soil samples were collected at the vicinity of three industrial locations in Ogun State and a goldmine site in Iperindo, Osun State in March, 2014. The compost used was made from cow dung, water hyacinth and sawdust for a period of twelve weeks. The matured compost was mixed with contaminated soil samples in a five-ratio pot experimental design. The compost and contaminated soil samples were analyzed using the standard procedures for pH, electrical conductivity (EC), organic carbon (OC), total nitrogen (TN), phosphorus, exchangeable cations (Na, K, Ca and Mg) and heavy metals (Fe, Mn, Cu, Zn and Cr). Kenaf (Hibiscus cannabinus) seeds were also planted for co-remediation of metals. The growth parameters of Kenaf plants were observed weekly for a period of one month. Results showed that during the one-month remediation experiment, treatments with 'compost-only' removed 49 ± 8% Mn, 32 ± 7% Fe, 29 ± 11% Zn, 27 ± 6% Cu and 11 ± 5% Cr from the contaminated soil. On the other hand, treatments with 'compost+plant' remediated 71 ± 8% Mn, 63 ± 3% Fe, 59 ± 11% Zn, 40 ± 6% Cu and 5 ± 4% Cr. Enrichment factor (EF) of metals in the compost was low while that of Cu (EF=7.3) and Zn (EF=8.6) were high in the contaminated soils. Bioaccumulation factor (BF) revealed low metal uptake by Kenaf plant. The growth parameters of Kenaf plant showed steady increments from week 1 to week 4 of planting. Copyright © 2015 Elsevier B.V. All rights reserved.

  17. Arsenic and mercury contamination related to historical goldmining in the Sierra Nevada, California

    USGS Publications Warehouse

    Alpers, Charles N.

    2017-01-01

    Arsenic (As) is a naturally occurring constituent in low-sulphide gold-quartz vein deposits, the dominant deposit type for lode mines in the Sierra Nevada Foothills (SNFH) gold (Au) province of California. Concentrations of naturally occurring mercury (Hg) in the SNFH Au province are low, but extensive use and loss of elemental Hg during amalgamation processing of ore from lode and placer Au deposits led to widespread contamination of Hg in the Sierra Nevada foothills and downstream areas, such as the Sacramento–San Joaquin Delta and San Francisco Bay. This review paper provides an overview of As and Hg contamination related to historical Au mining in the Sierra Nevada of California. It summarizes the geology, mineralogy, and geochemistry of the Au deposits, and provides information on specific areas where detailed studies have been done in association with past, ongoing, and planned remediation activities related to the environmental As and Hg contamination.Arsenic is a naturally occurring constituent in low-sulphide Au-quartz vein deposits, the dominant deposit type for lode mines in the Sierra Nevada Foothills (SNFH) Au province (Ashley 2002). Because of elevated concentrations of As in accessory iron-sulphide minerals including arsenopyrite (FeAsS) and arsenian pyrite (Fe(S,As)2), As is commonly a contaminant of concern in lode Au mine waste, including waste rock and mill tailings. The principal pathways of human As exposure from mine waste include ingestion of soil or drinking water, and inhalation of dust in contaminated areas (Mitchell 2014).Concentrations of naturally occurring Hg in the SNFH Au province are low, but extensive use and loss of elemental Hg during amalgamation processing of ore from lode and placer Au deposits (Churchill 2000) led to widespread contamination of Hg in the Sierra Nevada foothills and downstream areas, such as the Sacramento–San Joaquin Delta and San Francisco Bay (Alpers et al. 2005a). Conversion of Hg to monomethylmercury

  18. Soil washing of various forms of lead and organically contaminated soils

    SciTech Connect

    Cline, S.R.; Reed, B.E.; Moore, R.E.; Matsumoto, M.R.

    1993-12-31

    The retention and release of lead from an eastern US soil were investigated. The soil was characterized using well established test procedures and was artificially contaminated with lead. Three forms of lead contamination were studied. The soil was contaminated with the soluble salt, NaNO{sub 3}, and with two less soluble forms of lead: PbSO{sub 4} and PbCO{sub 3}. The soil was also contaminated with both PbNO{sub 3} and naphthalene to explore the possible effects of an organic substance on both the retention and release of lead from the study soil. The efficiencies of six washing solutions to remove lead from the contaminated soils were then investigated via lab-scale batch washing experiments. Unlike current soil washing practices, all particle size fractions were washed and recovered in these experiments. Hydrochloric acid and EDTA yielded lead removal efficiencies from 60--98%. The broad range in removal efficiencies obtained is largely due to the various forms of lead contamination which were examined. The experiments involving the lead nitrate in the presence of naphthalene yielded lead removals which were greater than those obtained from washes without an organic contaminant.

  19. SEDIMENTS: A RESERVOIR OF HISTORIC CONTAMINATION OF THE ENVIRONMENT

    EPA Science Inventory

    Sediments contain contaminants derived from past activities that seriously degraded the environment.

    During low water, sediments are subject to natural erosion or removal for navigation.

    Erosion or dredging of sediment will release contaminants into the environment ...

  20. SEDIMENTS: A RESERVOIR OF HISTORIC CONTAMINATION OF THE ENVIRONMENT

    EPA Science Inventory

    Sediments contain contaminants derived from past activities that seriously degraded the environment.

    During low water, sediments are subject to natural erosion or removal for navigation.

    Erosion or dredging of sediment will release contaminants into the environment ...

  1. Electromigration of Contaminated Soil by Electro-Bioremediation Technique

    NASA Astrophysics Data System (ADS)

    Azhar, A. T. S.; Nabila, A. T. A.; Nurshuhaila, M. S.; Shaylinda, M. Z. N.; Azim, M. A. M.

    2016-07-01

    Soil contamination with heavy metals poses major environmental and human health problems. This problem needs an efficient method and affordable technological solution such as electro-bioremediation technique. The electro-bioremediation technique used in this study is the combination of bacteria and electrokinetic process. The aim of this study is to investigate the effectiveness of Pseudomonas putida bacteria as a biodegradation agent to remediate contaminated soil. 5 kg of kaolin soil was spiked with 5 g of zinc oxide. During this process, the anode reservoir was filled with Pseudomonas putida while the cathode was filled with distilled water for 5 days at 50 V of electrical gradient. The X-Ray Fluorescent (XRF) test indicated that there was a significant reduction of zinc concentration for the soil near the anode with 89% percentage removal. The bacteria count is high near the anode which is 1.3x107 cfu/gww whereas the bacteria count at the middle and near the cathode was 5.0x106 cfu/gww and 8.0x106 cfu/gww respectively. The migration of ions to the opposite charge of electrodes during the electrokinetic process resulted from the reduction of zinc. The results obtained proved that the electro-bioremediation reduced the level of contaminants in the soil sample. Thus, the electro-bioremediation technique has the potential to be used in the treatment of contaminated soil.

  2. Soil contamination by petroleum products. Southern Algerian case

    NASA Astrophysics Data System (ADS)

    Belabbas, Amina; Boutoutaou, Djamel; Segaï, Sofiane; Segni, Ladjel

    2016-07-01

    Contamination of soil by petroleum products is a current problem in several countries in the world. In Algeria, this negative phenomenon is highly remarked in Saharan region. Numerous studies at the University of Ouargla that we will review in this paper, have tried to find an effective solution to eliminate the hydrocarbons from the soil by the technique of "biodegradation" which is a natural process based on microorganisms such as Bacillus megaterium and Pseudomonas aeruginosa. Presence of aboriginal strain Bacillus megaterium in the soil samples with different ages of contamination has shown a strong degradation of pollutants. This strain chosen for its short time of generation which is performing as seen the best yields of elimination of hydrocarbons assessed at 98 % biostimule by biosurfactant, also 98% on a sample wich bioaugmente by urea, and 86 % of the sample which biostimule by nutrient solution. The rate of biodegradation of the contaminated soil by crude oil using the strain Pseudomonas aeruginosa is higher in the presence of biosurfactant 53 % that in his absence 35 %. Another elimination technique wich is washing the contaminated soil's sample by centrifugation in the presence of biosurfactant where The rate of hydrocarbons mobilized after washing soil by centrifugation is of 50 % and 76 % but without centrifugation it was of 46% to 79%. Those processes have great capacity in the remobilization of hydrocarbons and acceleration of their biodegradation; thus, they deserve to be further developed in order to prevent environmental degradation in the region of Ouargla.

  3. Study on contaminant mass removal by soil vapor extraction

    NASA Astrophysics Data System (ADS)

    Fen, Chiu-Shia

    2015-04-01

    Soil vapor extraction (SVE) is an effective remediation technology for removal of volatile organic compounds (VOCs) in unsaturated zones, particularly for high permeability soils. However, due to the nature of soil heterogeneities in most of the subsurface systems, the performance of SVE systems may be affected. Radius of influence (ROI) is usually evaluated at sites by measuring vacumm pressures of subsurface systems or through judging from the magnitudes of soil permeabilities. Within the area of a ROI, it is usually believed that the vaporized VOCs can be effectively removed from soil pores. Besides, it has been discussed whether continuous or pulsed venting operations is efficient for contaminant mass removal. The purpose of this study is to assess the relationships of subsurface vacuum pressure, pore gas velocity and contaminant mass removal rate from a venting well. A multiphase flow and multicompositional contaminant transport model will be applied to various scenarios of soil heterogeneities with different strategies of venting operation. We are, in an attempt, to find out controlling factors affecting the efficiency of contaminant mass removal from a venting well.

  4. Interaction of soil, water and TNT during degradation of TNT on contaminated soil using subcritical water.

    PubMed

    Kalderis, Dimitrios; Hawthorne, Steven B; Clifford, Anthony A; Gidarakos, Evangelos

    2008-11-30

    Subcritical water was used at laboratory scale to reveal information with respect to the degradation mechanism of TNT on contaminated soil. Highly contaminated soil (12% TNT) was heated with water at four different temperatures, 150, 175, 200 and 225 degrees C and samples were obtained at appropriate time intervals. At the same time, similar experiments were performed with TNT spiked on to clean soil, sand and pure water in order to compare and eliminate various factors that may be present in the more complex contaminated soil system. Subcritical water was successful at remediating TNT-contaminated soil. TNT destruction percentages ranged between 98 and 100%. The aim of this work was to study the soil-water-contaminant interaction and determine the main physical parameters that affect TNT degradation. It was shown that the rate-limiting step of the process is the extraction/diffusion of TNT molecules from the soil core to the soil surface, where they degrade. Additionally, it was determined that the soil matrix also catalyses degradation to a lesser extent. Autocatalytic effects were not clearly observed.

  5. Sustainable remediation of mercury contaminated soils by thermal desorption.

    PubMed

    Sierra, María J; Millán, Rocio; López, Félix A; Alguacil, Francisco J; Cañadas, Inmaculada

    2016-03-01

    Mercury soil contamination is an important environmental problem that needs the development of sustainable and efficient decontamination strategies. This work is focused on the application of a remediation technique that maintains soil ecological and environmental services to the extent possible as well as search for alternative sustainable land uses. Controlled thermal desorption using a solar furnace at pilot scale was applied to different types of soils, stablishing the temperature necessary to assure the functionality of these soils and avoid the Hg exchange to the other environmental compartments. Soil mercury content evolution (total, soluble, and exchangeable) as temperature increases and induced changes in selected soil quality indicators are studied and assessed. On total Hg, the temperature at which it is reduced until acceptable levels depends on the intended soil use and on how restrictive are the regulations. For commercial, residential, or industrial uses, soil samples should be heated to temperatures higher than 280 °C, at which more than 80 % of the total Hg is released, reaching the established legal total Hg level and avoiding eventual risks derived from high available Hg concentrations. For agricultural use or soil natural preservation, conversely, maintenance of acceptable levels of soil quality limit heating temperatures, and additional treatments must be considered to reduce available Hg. Besides total Hg concentration in soils, available Hg should be considered to make final decisions on remediation treatments and potential future uses. Graphical Abstract Solar energy use for remediation of soils affected by mercury.

  6. Plant enhanced degradation of phenanthrene in the contaminated soil.

    PubMed

    Liao, Min; Xie, Xiao-Mei

    2006-01-01

    The degradative characteristics of phenanthrene, microbial biomass carbon, plate counts of heterotrophic bacteria and most probable number (MPN) of phenanthrene degraders in non-rhizosphere or rhizosphere soils with uninoculating or inoculating phenanthrene degraders were measured. At the initial concentration of 20 mg phenanthrene/kg soil, the half-lives of phenanthrene in uninoculated non-rhizosphere soil, uninoculated rhizosphere soil, inoculated non-rhizosphere soil, and inoculated rhizosphere soil were measured to be 81.5, 47.8, 15.1 and 6.4 d, respectively, and corresponding kinetic data fitted first-order kinetics. The highest degradation rate of phenanthrene was observed in inoculated rhizosphere soil. The degradative characteristics of phenanthrene were closely related to the effects of vegetation on soil microbial process. Vegetation could enhance the magnitude of rhizosphere microbial communities, microbial biomass content, and heterotrophic bacterial community, but barely influence those community components responsible for phenanthrene degradation. Results suggested that combination of vegetation and inoculation with degrading microorganisms of target organic contaminants was a better pathway to enhance degradation of the organic contaminants in soil.

  7. Remediation of contaminated soil by a solvent/surfactant system.

    PubMed

    Chu, W; Kwan, C Y

    2003-10-01

    This study investigates a new approach using a solvent/surfactant-aided soil-washing process to improve the performance of conventional surfactant-aided soil remediation. Three surfactants (Brij 35, Tween 80, and SDS) and three organic solvents (acetone, triethylamine, and squalane) were used to evaluate the desorption performances of 4,4'-dichlorobiphenyl (DCB) out of three soils with different sorption characteristics. The performance improvement is likely due to better dissolution of the hydrophobic contaminants from the soil assisted by the solvent, and the formation of solvent-incorporated surfactant micelles, which increases both the size (i.e. capacity) and affinity of micelles for more effective contaminant extraction. The foc of soils were found to be important in determining the performance of a solvent/surfactant-aided soil-washing process. Judging from the experimental data and as verified by the two constants in the proposed soil-washing model, as the organic solvent is coexisting with the surfactant micelles, both the marginal soil-washing performance (right after the use of a very small amount of solvent compared to that of none) and the final soil-washing capacity are increased compared to those of a pure surfactant-aided washing process.

  8. Electrokinetic remediation of soils contaminated with electroplating wastes

    SciTech Connect

    Reddy, K.R.; Parupudi, U.S.; Devulapalli, S.

    1996-10-01

    Electrokinetic remediation of soils simulated with electroplating waste contamination was investigated in two soils, kaolin and glacial till. Soil samples were contaminated with nickel, cadmium and hexavalent chromium and subjected to an external electric field for four days. Results of these experiments revealed that the soil composition plays an important role in electrokinetic remediation. Due to induced electric potential, a distinct pH gradient was developed in kaolin; however, in glacial till alkaline conditions existed throughout the soil because of its high carbonate buffering capacity. The movement of cationic metallic contaminants, Ni(II) and Cd(II), from the anode to the cathode was significant in kaolin as compared to glacial till. Because of high pH conditions near the cathode, Ni(II) and Cd(II) were precipitated in kaolin. In glacial till, however, because of alkaline conditions throughout the soil, most of Ni(II) and Cd(II) precipitated without migration. Overall, this study demonstrates that anion exchange, cation exchange and precipitation were the significant fixation mechanisms of nickel, cadmium and chromium in soils.

  9. Wood preserving waste-contaminated soil: Treatment and toxicity response

    SciTech Connect

    Huling, S.G.; Pope, D.F.; Matthews, J.E.; Sims, J.L.; Sims, R.C.; Sorensen, D.L.

    1995-12-31

    Soils contaminated with pentachlorophenol (PCP) and creosote were treated without bioaugmentation at field scale in tow 1-acre land treatment units (LTUs) at Libby, Montana. The concentration of indicator compounds of treatment performance, i.e., PCP, pyrene, total carcinogenic polycyclic aromatic hydrocarbons (TCPAHs) were monitored in the soil by taking both composited and discrete soil samples. A statistically significant decrease in PCP, pyrene, and TCPAH concentration occurred at field scale, and first-order degradation rate kinetics, from discrete and composited soil samples, satisfactorily represented the chemical loss for these compounds. Detoxification, as measured by the Microtox{trademark} assay, occurred in the soil; and toxicity reduction corresponded with PCP, pyrene, and TCPAH disappearance. No increase in toxicity in the lower treated soil layers (lifts) of the LTUs was observed with time, while the upper, more recently applied lifts were highly contaminated and toxic. This indicated that vertical migration of soluble contaminants had little effect on microbial activity in lower lifts of treated soil.

  10. Preliminary Experimental Analysis of Soil Stabilizers for Contamination Control

    SciTech Connect

    Lagos, L.; Varona, J.; Zidan, A.; Gudavalli, R.; Wu, Kuang-His

    2006-07-01

    A major focus of Department of Energy's (DOE's) environmental management mission at the Hanford site involves characterizing and remediating contaminated soil and groundwater; stabilizing contaminated soil; remediating disposal sites; decontaminating and decommissioning structures, and demolishing former plutonium production process buildings, nuclear reactors, and separation plants; maintaining inactive waste sites; transitioning facilities into the surveillance and maintenance program; and mitigating effects to biological and cultural resources from site development and environmental cleanup and restoration activities. For example, a total of 470,914 metric tons of contaminated soil from 100 Areas remediation activities were disposed at the Environmental Restoration Disposal Facility (ERDF) during 2004. The Applied Research Center (ARC) at Florida International University (FIU) is supporting the Hanford's site remediation program by analyzing the effectiveness of several soil stabilizers (fixatives) for contamination control during excavation activities. The study is focusing on determining the effects of varying soil conditions, temperature, humidity and wind velocity on the effectiveness of the candidate stabilizers. The test matrix consists of a soil penetration-depth study, wind tunnel experiments for determination of threshold velocity, and temperature and moisture-controlled drying/curing experiments. These three set of experiments are designed to verify performance metrics, as well as provide insight into what fundamental forces are altered by the use of the stabilizer. This paper only presents the preliminary results obtained during wind tunnel experiments using dry Hanford soil samples (with 2.7% moisture by weight). These dry soil samples were exposed to varying wind speeds from 2.22 m/sec to 8.88 m/sec. Furthermore, airborne particulate data was collected for the dry Hanford soil experiments using an aerosol analyzer instrument. (authors)

  11. Effects of poultry manure on soil biochemical properties in phthalic acid esters contaminated soil.

    PubMed

    Gao, Jun; Qin, Xiaojian; Ren, Xuqin; Zhou, Haifeng

    2015-12-01

    This study aimed to evaluate the effects of poultry manure (PM) on soil biological properties in DBP- and DEHP-contaminated soils. An indoor incubation experiment was conducted. Soil microbial biomass C (Cmic), soil enzymatic activities, and microbial phospholipid fatty acid (PLFA) concentrations were measured during incubation period. The results indicated that except alkaline phosphatase activity, DBP and DEHP had negative effects on Cmic, dehydrogenase, urease, protease activities, and contents of total PLFA. However, 5 % PM treatment alleviated the negative effects of PAEs on the above biochemical parameters. In DBP-contaminated soil, 5 % PM amendment even resulted in dehydroenase activity and Cmic content increasing by 17.8 and 11.8 % on the day 15 of incubation, respectively. During the incubation periods, the total PLFA contents decreased maximumly by 17.2 and 11.6 % in DBP- and DEHP-contaminated soils without PM amendments, respectively. Compared with those in uncontaminated soil, the total PLFA contents increased slightly and the value of bacPLFA/fugalPLFA increased significantly in PAE-contaminated soils with 5 % PM amendment. Nevertheless, in both contaminated soils, the effects of 5 % PM amendment on the biochemical parameters were not observed with 10 % PM amendment. In 10 % PM-amended soils, DBP and DEHP had little effect on Cmic, soil enzymatic activities, and microbial community composition. At the end of incubation, the effects of PAEs on these parameters disappeared, irrespective of PM amendment. The application of PM ameliorated the negative effect of PAEs on soil biological environment. However, further work is needed to study the effect of PM on soil microbial gene expression in order to explain the change mechanisms of soil biological properties.

  12. In-Situ Electrokinetic Remediation for Metal Contaminated Soils

    DTIC Science & Technology

    2001-03-01

    Press. Riddle, M. J. 1988. Patterns in the distribution of macrofauna! communities in coral reef sediments on the central Great Barrier Reef . Mar...acidified. This acidification results in solubilization of contaminants due to desorption and dissolution of species from soil. Once contaminants are...the north and east, the Pacific Ocean on the south and west, and a Ventura County Game Reserve on the west and northwest (Figure 6). The Navy has

  13. Processing plutonium-contaminated soil on Johnston Atoll

    SciTech Connect

    Moroney, K.; Moroney, J. III; Turney, J.

    1994-07-01

    This article describes a cleanup project to process plutonium- and americium-contaminated soil on Johnston Atoll for volume reduction. Thermo Analytical`s (TMA`s) segmented gate system (SGS) for this remedial operation has been in successful on-site operation since 1992. Topics covered include the basis for development, a description of the Johnston Atoll; the significance of results; the benefits of the technology; applicability to other radiologically contaminated sites. 7 figs., 1 tab.

  14. Human exposure to soil contaminants in subarctic Ontario, Canada.

    PubMed

    Reyes, Ellen Stephanie; Liberda, Eric Nicholas; Tsuji, Leonard James S

    2015-01-01

    Chemical contaminants in the Canadian subarctic present a health risk with exposures primarily occurring via the food consumption. Characterization of soil contaminants is needed in northern Canada due to increased gardening and agricultural food security initiatives and the presence of known point sources of pollution. A field study was conducted in the western James Bay Region of Ontario, Canada, to examine the concentrations of polychlorinated biphenyls, dichlorodiphenyltrichloroethane and its metabolites (ΣDDT), other organochlorines, and metals/metalloids in potentially contaminated agriculture sites. Exposure pathways were assessed by comparing the estimated daily intake to acceptable daily intake values. Ninety soil samples were collected at random (grid sampling) from 3 plots (A, B, and C) in Fort Albany (on the mainland), subarctic Ontario, Canada. The contaminated-soil samples were analysed by gas chromatography with an electron capture detector or inductively coupled plasma mass spectrometer. The range of ΣDDT in 90 soil samples was below the limit of detection to 4.19 mg/kg. From the 3 soil plots analysed, Plot A had the highest ΣDDT mean concentration of 1.12 mg/kg, followed by Plot B and Plot C which had 0.09 and 0.01 mg/kg, respectively. Concentrations of other organic contaminants and metals in the soil samples were below the limit of detection or found in low concentrations in all plots and did not present a human health risk. Exposure analyses showed that the human risk was below regulatory thresholds. However, the ΣDDT concentration in Plot A exceeded soil guidelines set out by the Canadian Council of Ministers of the Environment of 0.7 mg/kg, and thus the land should not be used for agricultural or recreational purposes. Both Plots B and C were below threshold limits, and this land can be used for agricultural purposes.

  15. Human exposure to soil contaminants in subarctic Ontario, Canada

    PubMed Central

    Reyes, Ellen Stephanie; Liberda, Eric Nicholas; Tsuji, Leonard James S.

    2015-01-01

    Background Chemical contaminants in the Canadian subarctic present a health risk with exposures primarily occurring via the food consumption. Objective Characterization of soil contaminants is needed in northern Canada due to increased gardening and agricultural food security initiatives and the presence of known point sources of pollution. Design A field study was conducted in the western James Bay Region of Ontario, Canada, to examine the concentrations of polychlorinated biphenyls, dichlorodiphenyltrichloroethane and its metabolites (ΣDDT), other organochlorines, and metals/metalloids in potentially contaminated agriculture sites. Methods Exposure pathways were assessed by comparing the estimated daily intake to acceptable daily intake values. Ninety soil samples were collected at random (grid sampling) from 3 plots (A, B, and C) in Fort Albany (on the mainland), subarctic Ontario, Canada. The contaminated-soil samples were analysed by gas chromatography with an electron capture detector or inductively coupled plasma mass spectrometer. Results The range of ΣDDT in 90 soil samples was below the limit of detection to 4.19 mg/kg. From the 3 soil plots analysed, Plot A had the highest ΣDDT mean concentration of 1.12 mg/kg, followed by Plot B and Plot C which had 0.09 and 0.01 mg/kg, respectively. Concentrations of other organic contaminants and metals in the soil samples were below the limit of detection or found in low concentrations in all plots and did not present a human health risk. Conclusion Exposure analyses showed that the human risk was below regulatory thresholds. However, the ΣDDT concentration in Plot A exceeded soil guidelines set out by the Canadian Council of Ministers of the Environment of 0.7 mg/kg, and thus the land should not be used for agricultural or recreational purposes. Both Plots B and C were below threshold limits, and this land can be used for agricultural purposes. PMID:26025557

  16. Extraction of pesticides from contaminated soil using supercritical carbon dioxide

    SciTech Connect

    Hunter, G.B.

    1991-01-01

    The demand for processes to clean up contaminated soils without generating additional contaminants, such as hazardous solvents, is increasing. One approach to minimizing this problem is to use supercritical fluids like light hydrocarbons and CO[sub 2] to extract contaminants from soils. Gases exhibit unique properties under supercritical conditions. They retain the ability to diffuse through the interstitial spaces of solid materials, plus they have the solvating power of liquids. Some examples of extractions using SCFs are caffeine from coffee, cholesterol from eggs, drugs from plants, and nicotine from tobacco. Supercritical CO[sub 2] is an attractive, alternative extraction medium for removal of pesticides from soils. Carbon dioxide is readily available, relatively inexpensive, and if recycled, nonpolluting. Contaminants may be easily recovered by evaporating the CO[sub 2] into an expansion vessel. Supercritical fluid extraction technology is discussed and results are given for the extraction of atrazine, bentazon, alachlor, and permethrin from contaminated soil prepared in the laboratory. Initial studies show >95% removal for these pesticides.

  17. Extraction of pesticides from contaminated soil using supercritical carbon dioxide

    SciTech Connect

    Hunter, G.B.

    1991-12-31

    The demand for processes to clean up contaminated soils without generating additional contaminants, such as hazardous solvents, is increasing. One approach to minimizing this problem is to use supercritical fluids like light hydrocarbons and CO{sub 2} to extract contaminants from soils. Gases exhibit unique properties under supercritical conditions. They retain the ability to diffuse through the interstitial spaces of solid materials, plus they have the solvating power of liquids. Some examples of extractions using SCFs are caffeine from coffee, cholesterol from eggs, drugs from plants, and nicotine from tobacco. Supercritical CO{sub 2} is an attractive, alternative extraction medium for removal of pesticides from soils. Carbon dioxide is readily available, relatively inexpensive, and if recycled, nonpolluting. Contaminants may be easily recovered by evaporating the CO{sub 2} into an expansion vessel. Supercritical fluid extraction technology is discussed and results are given for the extraction of atrazine, bentazon, alachlor, and permethrin from contaminated soil prepared in the laboratory. Initial studies show >95% removal for these pesticides.

  18. Historical contamination recorded in a coastal sediment core

    SciTech Connect

    Wade, T.; Garcia-Romero, B.; Presley, B.; Boothe, P.N.; Baskaran, M.

    1995-12-31

    Organic and inorganic contaminant concentrations were determined in 1 cm sections from a 84 cm long sediment core collected from the submarine Mississippi River Delta (N 28{degree} 55.4827, W 89{degree} 40.6362). A sedimentation rate of 0.8 cm/yr was estimated from {sup 210}Pb and {sup 239,240}PU. Aluminum concentrations had only small fluctuation with depth, indicating approximately constant mineralogy for the entire core. Selected contaminant (Ag, Cd, Cr, Pb, chlordane, DDTs, PCBs, and PAHs) had higher concentration in recent surface sediments compared to older bottom sediments. Total DDT (sum of DDT, DDE, and DDD), PAHs, PCBs, and Pb increased above background concentrations in the mid-1940`s. While, chlordane, Ag, Cd and Cr show increased concentrations above background in the early 1950`s. Most of the contaminants reached maximum concentrations in the late 1970`s or early 1980`s. Interestingly after a decline Pb had an increasing trend over the last several years and total DDTs do not show a decreasing concentration trend. Several organic contaminants show a sharp increase in concentration between 1980 and 1988. Temporal contaminant distribution trends, inferred from depth, are complex. Contaminants in this core do not appear to have decreased in a predictable manner in response to environmental regulations. This may be the results of the complexity of sedimentary processes at this site.

  19. Phytoremediation of contaminated soils: Progress and promise

    SciTech Connect

    Cunningham, S.D.; Berti, D.R.; Dupont, E.I.

    1993-12-31

    {open_quotes}Phytoremediation{close_quotes} refers to the use of green plants, including plant-associated microflora, to remediated contaminated sites. The talk addresses the remediation of solids only, although green-plant based systems are well established in waste-water treatment and air pollution control. Phytoremediation has potential significant economic, regulatory and aesthetic advantages over many engineering-based solutions. The technology can be targeted to both inorganic and organic contaminants. The focus of this talk will be on lead (Pb). A brief overview of activities in organic remediation will be included at the end of the talk.

  20. Assessment of concentration in contaminated soil by potentially toxic elements using electrical properties.

    PubMed

    Son, Younghwan

    2011-05-01

    Soils contaminated by potentially toxic elements (PTEs) which affect human health, such as zinc, lead, mercury, cadmium, and arsenic, were applied. The aims of this study are to judge contamination of soil and also to evaluate concentration of contaminated soil using electrical properties such as electrical resistivity and permittivity. The frequency was applied in the experiment ranged from 100 Hz to 10 MHz. As a result, the values of electrical resistivity and permittivity of each soil contaminated by PTEs could be presented as a function related to frequency and could determine whether the soil was contaminated. Also, results indicated that electrical properties give a reliable estimation of concentrations of PTEs contamination in soil.

  1. Phytoremediation of subarctic soil contaminated with diesel fuel.

    PubMed

    Palmroth, Marja R T; Pichtel, John; Puhakka, Jaakko A

    2002-09-01

    The effects of several plant species, native to northern latitudes, and different soil amendments, on diesel fuel removal from soil were studied. Plant treatments included Scots Pine (Pinus sylvestris), Poplar (Populus deltoides x Wettsteinii), a grass mixture (Red fescue, Fesuca rubra; Smooth meadowgrass, Poa pratensis and Perennial ryegrass, Lolium perenne) and a legume mixture (White clover, Trifolium repens and Pea, Pisum sativum). Soil amendments included NPK fertiliser, a compost extract and a microbial enrichment culture. Diesel fuel disappeared more rapidly in the legume treatment than in other plant treatments. The presence of poplar and pine enhanced removal of diesel fuel, but removal under grass was similar to that with no vegetation. Soil amendments did not enhance diesel fuel removal significantly. Grass roots accumulated diesel-range compounds. This study showed that utilisation of selected plants accelerates removal of diesel fuel in soil and may serve as a viable, low-cost remedial technology for diesel-contaminated soils in subarctic regions.

  2. Magnetic susceptibility properties of pesticide contaminated volcanic soil

    NASA Astrophysics Data System (ADS)

    Agustine, Eleonora; Fitriani, Dini; Safiuddin, La Ode; Tamuntuan, Gerald; Bijaksana, Satria

    2013-09-01

    Pesticides, unfortunately, are still widely used in many countries as way to eradicate agricultural pests. As they are being used continuously over a long period of time, they accumulate as residues in soils posing serious threats to the environment. In this study, we study the changes in magnetite-rich volcanic soils that were deliberately contaminated by pesticide. Such changes, in any, would be useful in the detection of pesticide residue in contaminated soils. Two different types of magnetically strong volcanic soil from the area near Lembang, West Java, Indonesia were used in this study where they were contaminated with varying concentrations of pesticide. The samples were then measured for magnetic susceptibility at two different frequencies. The measurements were then repeated after a period of three months. We found a reduction of magnetic susceptibility as well as a reduction in SP (superparamagnetic) grains proportion in contaminated soil. These might be caused by pesticide-induced magnetic dissolution as supported by SEM analyses. However the impact of pesticide concentration as well as exposure time on magnetic dissolution is still inconclusive.

  3. Extraction of copper in a contaminated soil onto chabazite

    NASA Astrophysics Data System (ADS)

    Liao, P.-H.; Wang, H. Paul; Hsiao, M.-C.; Eyring, Edward M.; Huang, C.-H.; Jou, C.-J. G.

    2009-04-01

    Copper in a contaminated soil nearby a printed-circuit board waste recycling plant has been extracted onto a microporous molecular sieve (chabazite). The chabazite supported CuO can be used as a chemical looping combustion (CLC) oxygen carrier for CO2 capture. Speciation of copper in the contaminated soil and on the chabazite during CLC has been studied by X-ray absorption near edge structure (XANES) and X-ray absorption fine structure (EXAFS) spectroscopy. By XANES, it is found that about 90% of copper (mainly Cu2+) in the contaminated soil can be extracted and adsorbed on the chabazite, in which CuO can be formed on the chabazite after calcination at 773 K for two hours. The EXAFS data show that copper in the soil and chabazite possesses Cu-O bond distances of 1.96 and 1.95 Å, respectively and coordination numbers (CNs) of 1-3. After CLC, CuO on chabazite has been reduced to Cu with a C-C bond distance of 2.4 Å and a CN of 8. This work also exemplifies the utilization of EXAFS and XANES to reveal the migration path of copper between a contaminated soil and a molecular sieve and interconversion of Cu-CuO in the CLC process.

  4. Formation of Chloropyromorphite in a Lead-Contaminated Soil Amended with Hydroxyapatite

    SciTech Connect

    RYAN,JAMES A.; ZHANG,PENGCHU; HESTERBERG,DEAN; ZHOU,WEIQING; SAYERS,DALE E.

    2000-07-14

    To confirm conversion of soil Pb to pyromorphite [Pb{sub 5}(PO{sub 4}){sub 3}Cl], a Pb contaminated soil collected adjacent to a historical smelter was reacted with hydroxyapatite in slurries of soil and hydroxyapatite separated by a dialysis membrane and incubated. A crystalline precipitate formed on the dialysis membrane in the slurry systems was identified as chloropyromorphite. Soluble species measured in the soil slurry indicated that dissolution of solid-phase soil Pb was the rate-limiting step for pyromorphite formation. Additionally samples reacted with hydroxyapatite were incubated at field-capacity moisture content. The sequential chemical extraction used to identify species in the field-moist soil incubation experiment showed that hydroxyapatite treatment reduced the first four fractions of extractable Pb and correspondingly increased the recalcitrant extraction residue fraction by 35% of total Pb at 0 d incubation and by 45% after 240 d incubation. the increase in the extraction residue fraction in the 240 d incubation as compared to the 0 d incubation implies that the reaction occurs in the soil but the increase in the hydroxyapatite amended 0 d incubated soil as compared to the control soil illustrates the chemical extraction procedure caused changes in the extractability. Thus, the chemical extraction procedure cannot easily be utilized to confirm changes occurring in the soil as a result of incubation. Extended x-ray absorption fine structure (EXAFS) spectroscopy indicated that the 240 d incubated hydroxyapatite treatment caused a change in the average, local molecular bonding environment of soil Pb. Low-temperature EXAFS spectra (chi data and radial structure functions - RSFs) showed a high degree of similarity between the chemical extraction residue and synthetic pyromorphite. Thus, confirming that the change of soil Pb to pyromorphite is possible by simple amendments of hydroxyapatite to soil.

  5. Phytoremediation potential of Brassica juncea in Cu-pyrene co-contaminated soil: comparing freshly spiked soil with aged soil.

    PubMed

    Chigbo, Chibuike; Batty, Lesley

    2013-11-15

    A comparison was made between the dissipation of pyrene as well as the uptake of copper (Cu) in soil freshly spiked with Cu, pyrene or Cu + pyrene and in aged soil. The potential of B juncea for phytoremediation was also investigated. The biomass of Brassica juncea significantly decreased (>50% reduction) in freshly spiked soil when compared to aged soil in all treatments. However, the accumulation of Cu in shoot was significantly reduced (60-88%) in aged soil after 60 days of planting. The total removal of Cu from co-contaminated soil was always higher (>2-3 fold) in aged soil than in freshly spiked soil when lower Cu concentration (50 mg kg(-1)) was co-contaminated with 250 or 500 mg kg(-1) of pyrene while in other co-contaminated treatments, the total removal of Cu from aged soil were significantly lower. The level of pyrene in both planted and un-planted freshly spiked soil decreased significantly (>67%) over the 60 days of plant trial. In aged soils, there were no significant differences in residual pyrene concentration between planted and unplanted soil. This suggests that the presence of B. juncea in aged soil did not enhance the dissipation of pyrene and that the prediction of pyrene dissipation in laboratory prepared soil may not have reflected the true situation in the fields.

  6. Vitrification testing of soil fines from contaminated Hanford 100 Area and 300 Area soils

    SciTech Connect

    Ludowise, J.D.

    1994-05-01

    The suitability of Hanford soil for vitrification is well known and has been demonstrated extensively in other work. The tests reported here were carried out to confirm the applicability of vitrification to the soil fines (a subset of the Hanford soil potentially different in composition from the bulk soil) and to provide data on the performance of actual, vitrified soil fines. It was determined that the soil fines were generally similar in composition to the bulk Hanford soil, although the fraction <0.25 mm in the 100 Area soil sample appears to differ somewhat from the bulk soil composition. The soil fines are readily melted into a homogeneous glass with the simple additions of CaO and/or Na{sub 2}O. The vitrified waste (plus additives) occupies only 60% of the volume of the initial untreated waste. Leach testing has shown the glasses made from the soil fines to be very durable relative to natural and man-made glasses and has demonstrated the ability of the vitrified waste to greatly reduce the release of radionuclides to the environment. Viscosity and electrical conductivity measurements indicate that the soil fines will be readily processable, although with levels of additives slightly greater than used in the radioactive melts. These tests demonstrate the applicability of vitrification to the contaminated soil fines and the exceptional performance of the waste form resulting from the vitrification of contaminated Hanford soils.

  7. Soil-Gas and Geophysical Techniques for Detection of Subsurface Organic Contamination

    DTIC Science & Technology

    1989-01-01

    methods were successful for detecting hydrogeological features, buried metal objects, and conductive plumes, but were unsuccessful for detecting organic contaminants. Keywords: Soil Contamination, Groundwater pollution .

  8. Environmental effects of soil contamination by shale fuel oils.

    PubMed

    Kanarbik, Liina; Blinova, Irina; Sihtmäe, Mariliis; Künnis-Beres, Kai; Kahru, Anne

    2014-10-01

    Estonia is currently one of the leading producers of shale oils in the world. Increased production, transportation and use of shale oils entail risks of environmental contamination. This paper studies the behaviour of two shale fuel oils (SFOs)--'VKG D' and 'VKG sweet'--in different soil matrices under natural climatic conditions. Dynamics of SFOs' hydrocarbons (C10-C40), 16 PAHs, and a number of soil heterotrophic bacteria in oil-spiked soils was investigated during the long-term (1 year) outdoor experiment. In parallel, toxicity of aqueous leachates of oil-spiked soils to aquatic organisms (crustaceans Daphnia magna and Thamnocephalus platyurus and marine bacteria Vibrio fischeri) and terrestrial plants (Sinapis alba and Hordeum vulgare) was evaluated. Our data showed that in temperate climate conditions, the degradation of SFOs in the oil-contaminated soils was very slow: after 1 year of treatment, the decrease of total hydrocarbons' content in the soil did not exceed 25 %. In spite of the comparable chemical composition of the two studied SFOs, the VKG sweet posed higher hazard to the environment than the heavier fraction (VKG D) due to its higher mobility in the soil as well as higher toxicity to aquatic and terrestrial species. Our study demonstrated that the correlation between chemical parameters (such as total hydrocarbons or total PAHs) widely used for the evaluation of the soil pollution levels and corresponding toxicity to aquatic and terrestrial organisms was weak.

  9. Distribution of chromium contamination and microbial activity in soil aggregates.

    PubMed

    Tokunaga, Tetsu K; Wan, Jiamin; Hazen, Terry C; Schwartz, Egbert; Firestone, Mary K; Sutton, Stephen R; Newville, Matthew; Olson, Keith R; Lanzirotti, Antonio; Rao, William

    2003-01-01

    Biogeochemical transformations of redox-sensitive chemicals in soils can be strongly transport-controlled and localized. This was tested through experiments on chromium diffusion and reduction in soil aggregates that were exposed to chromate solutions. Reduction of soluble Cr(VI) to insoluble Cr(II) occurred only within the surface layer of aggregates with higher available organic carbon and higher microbial respiration. Sharply terminated Cr diffusion fronts develop when the reduction rate increases rapidly with depth. The final state of such aggregates consists of a Cr-contaminated exterior, and an uncontaminated core, each having different microbial community compositions and activity. Microbial activity was significantly higher in the more reducing soils, while total microbial biomass was similar in all of the soils. The small fraction of Cr(VI) remaining unreduced resides along external surfaces of aggregates, leaving it potentially available to future transport down the soil profile. Using the Thiele modulus, Cr(VI) reduction in soil aggregates is shown to be diffusion rate- and reaction rate-limited in anaerobic and aerobic aggregates, respectively. Thus, spatially resolved chemical and microbiological measurements are necessary within anaerobic soil aggregates to characterize and predict the fate of Cr contamination. Typical methods of soil sampling and analyses that average over redox gradients within aggregates can erase important biogeochemical spatial relations necessary for understanding these environments.

  10. Assessment of combined electro-nanoremediation of molinate contaminated soil.

    PubMed

    Gomes, Helena I; Fan, Guangping; Mateus, Eduardo P; Dias-Ferreira, Celia; Ribeiro, Alexandra B

    2014-09-15

    Molinate is a pesticide widely used, both in space and time, for weed control in rice paddies. Due to its water solubility and affinity to organic matter, it is a contaminant of concern in ground and surface waters, soils and sediments. Previous works have showed that molinate can be removed from soils through electrokinetic (EK) remediation. In this work, molinate degradation by zero valent iron nanoparticles (nZVI) was tested in soils for the first time. Soil is a highly complex matrix, and pollutant partitioning between soil and water and its degradation rates in different matrices is quite challenging. A system combining nZVI and EK was also set up in order to study the nanoparticles and molinate transport, as well as molinate degradation. Results showed that molinate could be degraded by nZVI in soils, even though the process is more time demanding and degradation percentages are lower than in an aqueous solution. This shows the importance of testing contaminant degradation, not only in aqueous solutions, but also in the soil-sorbed fraction. It was also found that soil type was the most significant factor influencing iron and molinate transport. The main advantage of the simultaneous use of both methods is the molinate degradation instead of its accumulation in the catholyte.

  11. Characterization of soils from an industrial complex contaminated with elemental mercury.

    PubMed

    Miller, Carrie L; Watson, David B; Lester, Brian P; Lowe, Kenneth A; Pierce, Eric M; Liang, Liyuan

    2013-08-01

    Historical use of liquid elemental mercury (Hg(0)l) at the Y-12 National Security Complex in Oak Ridge, TN, USA, resulted in large deposits of Hg(0)l in the soils. The fate and distribution of the spilled Hg(0) are not well characterized. In this study we evaluated analytical tools for characterizing the speciation of Hg in the contaminated soils and then used the analytical techniques to examine the speciation of Hg in two soil cores collected at the site. These include x-ray fluorescence (XRF), soil Hg(0) headspace analysis, and total Hg determination by acid digestion coupled with cold vapor atomic absorption (HgT). XRF was not found to be suitable for evaluating Hg concentrations in heterogeneous soils containing low concentration of Hg or Hg(0) because Hg concentrations determined using this method were lower than those determined by HgT analysis and the XRF detection limit is 20 mg/kg. Hg(0)g headspace analysis coupled with HgT measurements yielded good results for examining the presence of Hg(0)l in soils and the speciation of Hg. The two soil cores are highly heterogeneous in both the depth and extent of Hg contamination, with Hg concentrations ranging from 0.05 to 8400mg/kg. In the first core, Hg(0)l was distributed throughout the 3.2m depth, whereas the second core, from a location 12m away, contained Hg(0)l in a 0.3m zone only. Sequential extractions showed organically associated Hg dominant at depths with low Hg concentration. Soil from the zone of groundwater saturation showed reducing conditions and the Hg is likely present as Hg-sulfide species. At this depth, lateral Hg transport in the groundwater may be a source of Hg detected in the soil at the deeper soil depths. Overall, characterization of soils containing Hg(0)l is difficult because of the heterogeneous distribution of Hg within the soils. This is exacerbated in industrial facilities where fill materials make up much of the soils and historical and continued reworking of the subsurface has

  12. In situ biodegradation of creosote contaminated soils

    SciTech Connect

    Nelson, M.D.; Maier, W.J.

    1996-11-01

    The Reilly Tar and Chemical operated a coal tar and wood processing plant on a 80 acre site from 1917 until plant closure in 1972. Reilly disposed of wastewater from the operation in a network of ditches which discharged into a swampy area south of the Reilly site. The contamination from these sources has migrated downward into the groundwater, contaminating the shallow aquifer underlying the site. Through multi-aquifer wells the contamination has entered deeper aquifers including the Prairie Duchien-Jordan aquifer. Ongoing pump and treat operations are not viewed as ecologically or economically sound long-term solutions. All parties agreed that programs to eliminate polluting materials at the source to speed the cleanup process and minimize the potential leakage of the pollutants into interconnected aquifers is desirable. In this connection, a study was completed to examine whether source materials can be eliminated by on site and/or in situ bioremediation. In order to engineer a bioremediation strategy which optimizes degradation rates it is extremely important to determine the rate limiting steps in the treatment process. The results of this study show that if sufficient oxygen can be provided, in situ bioremediation could be effective at reducing or eliminating offsite pollutant migration and effectively remove the sources of the groundwater contamination.

  13. Soil immobilization: New concept for biotreatment of soil contaminants

    SciTech Connect

    Karamanev, D.G.; Chavarie, C.; Samson, R.

    1998-02-20

    A new concept for the development of microbial consortia for the degradation of persistent soil pollutants and for pollutant treatment is proposed. The concept defined as soil immobilization is based on the entrapment of soil particles, showing microbial activity in degrading the target pollutant, into a solid membrane with a large pore size distribution. The particular hydrodynamic and mass transfer properties of this system result in a very efficient process. A new type of bioreactor is proposed for carrying out the immobilized soil process. The performance of the system was tested by developing a microbial system for the mineralization of pentachlorophenol (PCP). The results show that the volumetric efficiency of the process for PCP mineralization in the immobilized soil bioreactor is 1--3 orders of magnitude higher than reported literature values. Chlorine and carbon atoms of PCP are both nearly completely (99%) mineralized.

  14. Application of Ultrasonic for Decontamination of Contaminated Soil - 13142

    SciTech Connect

    Vasilyev, A.P.; Lebedev, N.M.; Savkin, A.E.

    2013-07-01

    The trials of soil decontamination were carried out with the help of a pilot ultrasonic installation in different modes. The installation included a decontamination bath equipped with ultrasonic sources, a precipitator for solution purification from small particles (less than 80 micrometer), sorption filter for solution purification from radionuclides washing out from soil, a tank for decontamination solution, a pump for decontamination solution supply. The trials were carried out on artificially contaminated sand with specific activity of 4.5 10{sup 5} Bk/kg and really contaminated soil from Russian Scientific Center 'Kurchatovsky Institute' (RSC'KI') with specific activity of 2.9 10{sup 4} Bk/kg. It was established that application of ultrasonic intensify the process of soil reagent decontamination and increase its efficiency. The decontamination factor for the artificially contaminated soil was ∼200 and for soil from RSC'KI' ∼30. The flow-sheet diagram has been developed for the new installation as well as determined the main technological characteristics of the equipment. (authors)

  15. Effect of compost in phytoremediation of diesel-contaminated soils.

    PubMed

    Vouillamoz, J; Milke, M W

    2001-01-01

    The effect of compost on phytoremediation of diesel-contaminated soils was investigated using 130 small (200 g) containers in two screening tests. The experiments were conducted in a controlled environment using ryegrass from seed. Containers were destructively sampled at various times and analyzed for plant mass and total petroleum hydrocarbons. The results indicate that the presence of diesel reduces grass growth, and that compost helps reduced the impact of diesel on grass growth. The addition of compost helps increase diesel loss from the soils both with and without grass, though the addition of grass leads to lower diesel levels compared with controls. A second set of experiments indicates that the compost helps in phytoremediation of diesel-contaminated soil independent of the dilution effect that compost addition has. The results indicate that the compost addition allowed diesel loss down to 200 mg TPH/kg even though the compost would be expected to hold the diesel more tightly in the soil/compost mixture. The simplicity of the screening tests led to difficulties in controlling moisture content and germination rates. The conclusion of the research is that the tilling of compost into soils combined with grass seeding appears to be a valuable option for treating petroleum-contaminated soils.

  16. Degradation of toxaphene in aged and freshly contaminated soil.

    PubMed

    Lacayo-Romero, Martha; van Bavel, Bert; Mattiasson, Bo

    2006-04-01

    Degradation of toxaphene in soil from both newly contaminated (from Sweden) and aged spills (from Nicaragua) were studied. The newly contaminated soil contained approximately 11 mg kg(-1) toxaphene while the aged Nicaraguan soil contained approximately 100 mg kg(-1). Degradation was studied in anaerobic bioreactors, some of which were supplied with lactic acid and others with Triton X-114. In this study we found that the lower isomers Parlar 11, 12 were degraded while the concentration of isomer Parlar 15 increased. This supported an earlier evaluation which indicated that less chlorinated isomers are formed from more heavily isomers. Lactic acid when added to the soil, interfere with the degradation of toxaphene. Lactic acid was added; several isomers appeared to degrade rather slowly in newly contaminated Swedish soil. The Swedish soil, without any external carbon source, showed the slowest degradation rate of all the compounds studied. When Triton X-114 at 0.4 mM was added, the degradation rate of the compounds increased. This study illustrates that biodegradation of toxaphene is a complex process and several parameters have to be taken into consideration. Degradation of persistent pollutants in the environment using biotechnology is dependent on bioavailability, carbon sources and formation of metabolites.

  17. Remediation of Contaminated Soils By Supercritical Carbon Dioxide Extraction

    NASA Astrophysics Data System (ADS)

    Ferri, A.; Zanetti, M. C.; Banchero, M.; Fiore, S.; Manna, L.

    The contaminants that can be found in soils are many, inorganic, like heavy metals, as well as organic. Among the organic contaminants, oil and coal refineries are responsi- ble for several cases of soil contamination with PAHs (Polycyclic Aromatic Hydrocar- bons). Polynuclear aromatic hydrocarbons (PAHs) have toxic, carcinogenic and mu- tagenic effects. Limits have been set on the concentration of most contaminants, and growing concern is focusing on soil contamination issues. USA regulations set the maximum acceptable level of contamination by PAHs equal to 40 ppm at residential sites and 270 ppm at industrial sites. Stricter values are usually adopted in European Countries. Supercritical carbon dioxide extraction is a possible alternative technology to remove volatile organic compounds from contaminated soils. Supercritical fluid extraction (SFE) offers many advantages over conventional solvent extraction. Super- critical fluids combine gaseous properties as a high diffusion coefficient, and liquid properties as a high solvent power. The solvent power is strongly pressure-dependent near supercritical conditions: selective extractions are possible without changing the solvent. Solute can be separate from the solvent depressurising the system; therefore, it is possible to recycle the solvent and recover the contaminant. Carbon dioxide is frequently used as supercritical fluid, because it has moderate critical conditions, it is inert and available in pure form. In this work, supercritical fluid extraction technology has been used to remove a polynuclear aromatic hydrocarbon from contaminated soils. The contaminant choice for the experiment has been naphthalene since several data are available in literature. G. A. Montero et al. [1] studied soil remediation with supercrit- ical carbon dioxide extraction technology; these Authors have found that there was a mass-transfer limitation. In the extraction vessel, the mass transfer coefficient in- creases with the

  18. Electrokinetic remediation of fluorine-contaminated soil and its impact on soil fertility.

    PubMed

    Zhou, Ming; Wang, Hui; Zhu, Shufa; Liu, Yana; Xu, Jingming

    2015-11-01

    Compared to soil pollution by heavy metals and organic pollutants, soil pollution by fluorides is usually ignored in China. Actually, fluorine-contaminated soil has an unfavorable influence on human, animals, plants, and surrounding environment. This study reports on electrokinetic remediation of fluorine-contaminated soil and the effects of this remediation technology on soil fertility. Experimental results showed that electrokinetic remediation using NaOH as the anolyte was a considerable choice to eliminate fluorine in contaminated soils. Under the experimental conditions, the removal efficiency of fluorine by the electrokinetic remediation method was 70.35%. However, the electrokinetic remediation had a significant impact on the distribution and concentrations of soil native compounds. After the electrokinetic experiment, in the treated soil, the average value of available nitrogen was raised from 69.53 to 74.23 mg/kg, the average value of available phosphorus and potassium were reduced from 20.05 to 10.39 mg/kg and from 61.31 to 51.58 mg/kg, respectively. Meanwhile, the contents of soil available nitrogen and phosphorus in the anode regions were higher than those in the cathode regions, but the distribution of soil available potassium was just the opposite. In soil organic matter, there was no significant change. These experiment results suggested that some steps should be taken to offset the impacts, after electrokinetic treatment.

  19. Remediation of soil contaminated with organic and inorganic wood impregnation chemicals by soil washing.

    PubMed

    Kumpiene, Jurate; Nordmark, Désirée; Carabante, Ivan; Sužiedelytė-Visockienė, Jūratė; Aksamitauskas, Vladislovas Česlovas

    2017-10-01

    The aim of this study was to evaluate the efficiency of a large scale washing/wet sieving technique for a soil contaminated with wood impregnation chemicals by 1) defining the final distribution of trace elements (As, Cu, Cr, Zn) and polycyclic aromatic hydrocarbons (PAH) in separated soil particle size fractions; and 2) defining the leaching behavior of the contaminants in these soil fractions. A soil washing experiment was implemented at waste management facility in Sweden using a full scale soil sorting and washing equipment. Five tons of soil was loaded to the equipment and wet-sieved into the following fractions: >16 mm, 8-16 mm, 2-8 mm, 0.2-2 mm, <0.2 mm and a fraction that floated on top of the slurry before the final separation phase, composed of organic matter (OM). Analysis of total concentrations of contaminants in all soil fractions indicated that wet sieving/soil washing was not efficient to reduce the total volume of soil that needs further treatment. Even the coarsest soil fractions (>8 mm) contained elevated concentrations of total As and PAH. Leaching of As from all washed soil fractions was so high, that none of the particle size fractions could be disposed of without additional treatment. Copyright © 2017 Elsevier Ltd. All rights reserved.

  20. Bioremediation of mercury: not properly exploited in contaminated soils!

    PubMed

    Mahbub, Khandaker Rayhan; Bahar, Md Mezbaul; Labbate, Maurizio; Krishnan, Kannan; Andrews, Stuart; Naidu, Ravi; Megharaj, Mallavarapu

    2017-02-01

    Contamination of land and water caused by heavy metal mercury (Hg) poses a serious threat to biota worldwide. The seriousness of toxicity of this neurotoxin is characterized by its ability to augment in food chains and bind to thiol groups in living tissue. Therefore, different remediation approaches have been implemented to rehabilitate Hg-contaminated sites. Bioremediation is considered as cheaper and greener technology than the conventional physico-chemical means. Large-scale use of Hg-volatilizing bacteria are used to clean up Hg-contaminated waters, but there is no such approach to remediate Hg-contaminated soils. This review focuses on recent uses of Hg-resistant bacteria in bioremediation of mercury-contaminated sites, limitation and advantages of this approach, and identifies the gaps in existing research.

  1. Depleted uranium mobility and fractionation in contaminated soil (Southern Serbia).

    PubMed

    Radenković, Mirjana B; Cupać, Svjetlana A; Joksić, Jasminka D; Todorović, Dragana J

    2008-01-01

    During the Balkan conflict in 1999, soil in contaminated areas was enriched in depleted uranium (DU) isotopic signature, relative to the in-situ natural uranium present. After the military activities, most of kinetic DU penetrators or their fragments remained buried in the ground in certain geomorphological and geochemical environments exposed to local weathering conditions. The contamination distribution, mobility and/or fixation of DU in the contaminated soil profile at one hot spot were the subject of our study. The results should disclose what happened with released DU corrosion products in three years elapsed, given the scope of their geochemical fractionation, and mark out the most probable host substrates in investigated soil type. Gamma-spectrometric analysis of soil samples taken in the DU penetrator impact-zone was done to obtain present contamination levels. Set of samples is subjected to five-step and three-step sequential extraction procedures, specifically selective to different physical/chemical associations in soil. The stable elements are determined in extracts by the atomic absorption spectroscopy. After the ion-exchange based uranium separation procedure, alpha-spectrometric analysis of obtained fractions was done and DU distribution in five extraction phases found from 235U/238U and 234U/238U isotopic ratios. Depleted uranium concentration falls down to the 1% of the initial value, at approximately 150 mm distance to the source. Carbonates and iron/manganese hydrous oxides are indicated as the most probable substrates for depleted uranium in the characterized soil type. Therefore, in the highly contaminated soil samples, depleted uranium is still weakly bonded and easy exchangeable. The significant levels of organic-bonded depleted uranium are found in surface soil only. Dependence of the fractionation on the contamination levels is evident. Samples with higher DU contents have shown a longer maintenance in the exchangeable phases, probably

  2. Radionuclide contaminated soil: Laboratory study and economic analysis of soil washing. Final report

    SciTech Connect

    Fuhrmann, M.; Zhou, H.; Patel, B.; Bowerman, B.; Brower, J.

    1996-05-20

    The objective of the work discussed in this report is to determine if soil washing is a feasible method to remediate contaminated soils from the Hazardous Waste Management Facility (HWMF) at Brookhaven National Laboratory (BNL). The contaminants are predominantly Cs-137 and Sr-90. The authors have assumed that the target activity for Cs-137 is 50 pCi/g and that remediation is required for soils having greater activities. Cs-137 is the limiting contaminant because it is present in much greater quantities than Sr-90. This work was done in three parts, in which they: estimated the volume of contaminated soil as a function of Cs-137 content, determined if simple removal of the fine grained fraction of the soil (the material that is less than 0.063 mm) would effectively reduce the activity of the remaining soil to levels below the 50 pCi/g target, assessed the effectiveness of chemical and mechanical (as well as combinations of the two) methods of soil decontamination. From this analysis the authors were then able to develop a cost estimate for soil washing and for a baseline against which soil washing was compared.

  3. Role of soil rhizobacteria in phytoremediation of heavy metal contaminated soils.

    PubMed

    Jing, Yan-de; He, Zhen-li; Yang, Xiao-e

    2007-03-01

    Heavy metal pollution of soil is a significant environmental problem and has its negative impact on human health and agriculture. Rhizosphere, as an important interface of soil and plant, plays a significant role in phytoremediation of contaminated soil by heavy metals, in which, microbial populations are known to affect heavy metal mobility and availability to the plant through release of chelating agents, acidification, phosphate solubilization and redox changes, and therefore, have potential to enhance phytoremediation processes. Phytoremediation strategies with appropriate heavy metal-adapted rhizobacteria have received more and more attention. This article paper reviews some recent advances in effect and significance of rhizobacteria in phytoremediation of heavy metal contaminated soils. There is also a need to improve our understanding of the mechanisms involved in the transfer and mobilization of heavy metals by rhizobacteria and to conduct research on the selection of microbial isolates from rhizosphere of plants growing on heavy metal contaminated soils for specific restoration programmes.

  4. Role of soil rhizobacteria in phytoremediation of heavy metal contaminated soils*

    PubMed Central

    Jing, Yan-de; He, Zhen-li; Yang, Xiao-e

    2007-01-01

    Heavy metal pollution of soil is a significant environmental problem and has its negative impact on human health and agriculture. Rhizosphere, as an important interface of soil and plant, plays a significant role in phytoremediation of contaminated soil by heavy metals, in which, microbial populations are known to affect heavy metal mobility and availability to the plant through release of chelating agents, acidification, phosphate solubilization and redox changes, and therefore, have potential to enhance phytoremediation processes. Phytoremediation strategies with appropriate heavy metal-adapted rhizobacteria have received more and more attention. This article paper reviews some recent advances in effect and significance of rhizobacteria in phytoremediation of heavy metal contaminated soils. There is also a need to improve our understanding of the mechanisms involved in the transfer and mobilization of heavy metals by rhizobacteria and to conduct research on the selection of microbial isolates from rhizosphere of plants growing on heavy metal contaminated soils for specific restoration programmes. PMID:17323432

  5. DEMONSTRATION BULLETIN: HYDRAULIC FRACTURING OF CONTAMINATED SOIL

    EPA Science Inventory

    Hydraulic fracturing is a physical process that creates fractures in silty clay soil to enhance its permeability. The technology, developed by the Risk Reduction Engineering Laboratory (RREL) and the University of Cincinnati, creates sand-filled horizontal fractures up to 1 in. i...

  6. DEMONSTRATION BULLETIN: HYDRAULIC FRACTURING OF CONTAMINATED SOIL

    EPA Science Inventory

    Hydraulic fracturing is a physical process that creates fractures in silty clay soil to enhance its permeability. The technology, developed by the Risk Reduction Engineering Laboratory (RREL) and the University of Cincinnati, creates sand-filled horizontal fractures up to 1 in. i...

  7. Transport of agricultural contaminants through karst soil

    USDA-ARS?s Scientific Manuscript database

    Karst landscapes are common in many agricultural regions in the US. Well-developed karst landscapes are characterized by shallow soils, sinkholes, sinking streams, underground conduits, and springs. In these landscapes surface runoff is minimal and most recharge enters the subsurface relatively quic...

  8. Historical contamination of PAHs, PCBs, DDTs, and heavy metals in Mississippi River Delta, Galveston Bay and Tampa Bay sediment cores.

    PubMed

    Santschi, P H; Presley, B J; Wade, T L; Garcia-Romero, B; Baskaran, M

    2001-07-01

    Profiles of trace contaminant concentrations in sediment columns can be a natural archive from which pollutant inputs into coastal areas can be reconstructed. Reconstruction of historical inputs of anthropogenic chemicals is important for improving management strategies and evaluating the success of recent pollution controls measures. Here we report a reconstruction of historical contamination into three coastal sites along the US Gulf Coast: Mississippi River Delta, Galveston Bay and Tampa Bay. Within the watersheds of these areas are extensive agricultural lands as well as more than 50% of the chemical and refinery capacity of the USA. Despite this pollution potential, relatively low concentrations of trace metals and trace organic contaminants were found in one core from each of the three sites. Concentrations and fluxes of most trace metals found in surface sediments at these three sites, when normalized to Al, are typical for uncontaminated Gulf Coast sediments. Hydrophobic trace organic contaminants that are anthropogenic (polycyclic aromatic hydrocarbons, DDTs, and polychlorinated biphenyls) are found in sediments from all locations. The presence in surface sediments from the Mississippi River Delta of low level trace contaminants such as DDTs, which were banned in the early 1970's, indicate that they are still washed out from cultivated soils. It appears that the DDTs profile in that sediment core was produced by a combination of erosion processes of riverine and other sedimentary deposits during floods. Most of the pollutant profiles indicate that present-day conditions have improved from the more contaminated conditions in the 1950-1970's, before the advent of the Clean Water Act.

  9. Uncertainties of soil moisture in historical simulations and future projections

    NASA Astrophysics Data System (ADS)

    Cheng, Shanjun; Huang, Jianping; Ji, Fei; Lin, Lei

    2017-02-01

    Uncertainties of soil moisture in historical simulations (1920-2005) and future projections (2006-2080) were investigated by using the outputs from the Coupled Model Intercomparison Project Phase 5 and Community Earth System Model. The results showed that soil moisture climatology varies greatly among models despite the good agreement between the ensemble mean of simulated soil moisture and the Global Land Data Assimilation System data. The uncertainties of initial conditions and model structure showed similar spatial patterns and magnitudes, with high uncertainties in dry regions and low uncertainties in wet regions. In addition, the long-term variability of model structure uncertainty rapidly decreased before 1980 and increased thereafter, but the uncertainty in initial conditions showed an upward trend over the entire time span. The model structure and initial conditions can cause uncertainties at all time scales. Despite these large uncertainties, almost all of the simulations showed significant decreasing linear trends in soil moisture for the 21st century, especially in the Mediterranean region, northeast and southwest South America, southern Africa, and southwestern USA.

  10. Influence of soil structure on contaminant leaching from injected slurry.

    PubMed

    Amin, M G Mostofa; Pedersen, Christina Østerballe; Forslund, Anita; Veith, Tamie L; Laegdsmand, Mette

    2016-12-15

    Animal manure application to agricultural land provides beneficial organic matter and nutrients but can spread harmful contaminants to the environment. Contamination of fresh produce, surface water and shallow groundwater with the manure-borne pollutants can be a critical concern. Leaching and persistence of nitrogen, microorganisms (bacteriophage, E. coli, and Enterococcus) and a group of steroid hormone (estrogens) were investigated after injection of swine slurry into either intact (structured) or disturbed (homogeneous repacked) soil. The slurry was injected into hexaplicate soil columns at a rate of 50 t ha(-1) and followed with four irrigation events: 3.5-h period at 10 mm h(-1) after 1, 2, 3, and 4 weeks. The disturbed columns delayed the leaching of a conservative tracer and microorganisms in the first irrigation event compared to the intact columns due to the effect of disturbed macropore flow paths. The slurry constituents that ended up in or near the macropore flow paths of the intact soil were presumably washed out relatively quickly in the first event. For the last three events the intact soil leached fewer microorganisms than the disturbed soil due to the bypassing effect of water through the macropore flow path in the intact soil. Estrogen leached from the intact soil in the first event only, but for the disturbed soil it was detected in the leachates of last two events also. Leaching from the later events was attributed to higher colloid transport from the disturbed soils. In contrast, NO3-N leaching from the intact soil was higher for all events except the first event, probably due to a lower nitrification rate in the disturbed soil. A week after the last irrigation event, the redistribution of all slurry constituents except NO3-N in most of the sections of the soil column was higher for the disturbed soil. Total recovery of E. coli was significantly higher from the disturbed soil and total leaching of mineral nitrogen was significantly lower

  11. Sequential extraction evaluation of soil washing for radioactive contamination

    SciTech Connect

    Gombert, D.

    1992-10-01

    This paper describes an experimental plan for evaluating soil washing technology for potential application to radioactively contaminated soils at the Idaho National Engineering Laboratory (INEL). The sequential extraction methodology is based on micronutrient bioavailability studies wherein the soil matrix is chemically dissected to selectively remove particular fixation mechanisms independently. A mechanism-specific extractant has the potential for greater removal efficiency than a broad-spectrum extractant, such as acid, while using a less aggressive chemistry and reducing resultant water treatment and dissolved solids handling problems.

  12. Sequential extraction evaluation of soil washing for radioactive contamination

    SciTech Connect

    Gombert, D.

    1992-01-01

    This paper describes an experimental plan for evaluating soil washing technology for potential application to radioactively contaminated soils at the Idaho National Engineering Laboratory (INEL). The sequential extraction methodology is based on micronutrient bioavailability studies wherein the soil matrix is chemically dissected to selectively remove particular fixation mechanisms independently. A mechanism-specific extractant has the potential for greater removal efficiency than a broad-spectrum extractant, such as acid, while using a less aggressive chemistry and reducing resultant water treatment and dissolved solids handling problems.

  13. Contaminant and other elements in soil (CCQM-K127)

    NASA Astrophysics Data System (ADS)

    Rocio Arvizu Torres, M.; Manzano, J. Velina Lara; Valle Moya, Edith; Horvat, Milena; Jaćimović, Radojko; Zuliani, Tea; Vreča, Polona; Acosta, Osvaldo; Bennet, John; Snell, James; Almeida, Marcelo D.; de Sena, Rodrigo C.; Dutra, Emily S.; Yang, Lu; Li, Haifeng

    2017-01-01

    Non-contaminated soils contain trace and major elements at levels representing geochemical background of the region. The main sources of elements as contaminants/pollutants in soils are mining and smelting activities, fossil fuel combustion, agricultural practices, industrial activities and waste disposal. Contaminated/polluted sites are of great concern and represent serious environmental, health and economic problems. Characterization and identification of contaminated land is the first step in risk assessment and remediation activities. It is well known that soil is a complex matrix with huge variation locally and worldwide. According to the IAWG's five year plan, it is recommended to have a key comparison under the measurement service category of soils and sediments for the year 2015. Currently 13 NMI has claimed calibration and measurement capabilities (CMCs) in category 13 (sediments, soils, ores, and particulates): 29 CMCs in soil and 96 CMCs in sediments. In this regard this is a follow-up comparison in the category 13; wherein three key comparisons have been carried out during the years 2000 (CCQM-K13), 2003 (CCQM-K28) and 2004 (CCQM-K44). Since it is important to update the capabilities of NMIs in this category. CENAM and JSI proposed a key comparison in this category and a pilot study in parallel. The proposed study was agreed by IAWG members, where two soils samples were used in both CCQM-K127 representing a non-contaminated soil with low contents of elements (arsenic, cadmium, iron, lead and manganese), and a contaminated soil with much higher content of selected elements (arsenic, cadmium, iron and lead). This broadens the scope and a degree of complexity of earlier measurements in this field. National metrology institutes (NMIs)/designate institutes (DIs) should, therefore, demonstrate their measurement capabilities of trace and major elements in a wide concentration ranges, representing background/reference sites as well as highly contaminated soils

  14. Phytoremediation of contaminated soils and groundwater: lessons from the field.

    PubMed

    Vangronsveld, Jaco; Herzig, Rolf; Weyens, Nele; Boulet, Jana; Adriaensen, Kristin; Ruttens, Ann; Thewys, Theo; Vassilev, Andon; Meers, Erik; Nehnevajova, Erika; van der Lelie, Daniel; Mench, Michel

    2009-11-01

    The use of plants and associated microorganisms to remove, contain, inactivate, or degrade harmful environmental contaminants (generally termed phytoremediation) and to revitalize contaminated sites is gaining more and more attention. In this review, prerequisites for a successful remediation will be discussed. The performance of phytoremediation as an environmental remediation technology indeed depends on several factors including the extent of soil contamination, the availability and accessibility of contaminants for rhizosphere microorganisms and uptake into roots (bioavailability), and the ability of the plant and its associated microorganisms to intercept, absorb, accumulate, and/or degrade the contaminants. The main aim is to provide an overview of existing field experience in Europe concerning the use of plants and their associated microorganisms whether or not combined with amendments for the revitalization or remediation of contaminated soils and undeep groundwater. Contaminations with trace elements (except radionuclides) and organics will be considered. Because remediation with transgenic organisms is largely untested in the field, this topic is not covered in this review. Brief attention will be paid to the economical aspects, use, and processing of the biomass. It is clear that in spite of a growing public and commercial interest and the success of several pilot studies and field scale applications more fundamental research still is needed to better exploit the metabolic diversity of the plants themselves, but also to better understand the complex interactions between contaminants, soil, plant roots, and microorganisms (bacteria and mycorrhiza) in the rhizosphere. Further, more data are still needed to quantify the underlying economics, as a support for public acceptance and last but not least to convince policy makers and stakeholders (who are not very familiar with such techniques).

  15. Phytoremediation of contaminated soils and groundwater: lessons from the field

    SciTech Connect

    Vangronsveld, J.; van der Lelie, D.; Herzig, R.; Weyens, N.; Boulet, J.; Adriaensen, K.; Ruttens, A.; Thewys, T.; Vassilev, A.; Meers, E.; Nehnevajova, E.; Mench, M.

    2009-11-01

    The use of plants and associated microorganisms to remove, contain, inactivate, or degrade harmful environmental contaminants (generally termed phytoremediation) and to revitalize contaminated sites is gaining more and more attention. In this review, prerequisites for a successful remediation will be discussed. The performance of phytoremediation as an environmental remediation technology indeed depends on several factors including the extent of soil contamination, the availability and accessibility of contaminants for rhizosphere microorganisms and uptake into roots (bioavailability), and the ability of the plant and its associated microorganisms to intercept, absorb, accumulate, and/or degrade the contaminants. The main aim is to provide an overview of existing field experience in Europe concerning the use of plants and their associated microorganisms whether or not combined with amendments for the revitalization or remediation of contaminated soils and undeep groundwater. Contaminations with trace elements (except radionuclides) and organics will be considered. Because remediation with transgenic organisms is largely untested in the field, this topic is not covered in this review. Brief attention will be paid to the economical aspects, use, and processing of the biomass. It is clear that in spite of a growing public and commercial interest and the success of several pilot studies and field scale applications more fundamental research still is needed to better exploit the metabolic diversity of the plants themselves, but also to better understand the complex interactions between contaminants, soil, plant roots, and microorganisms (bacteria and mycorrhiza) in the rhizosphere. Further, more data are still needed to quantify the underlying economics, as a support for public acceptance and last but not least to convince policy makers and stakeholders (who are not very familiar with such techniques).

  16. Comparison of Statistically Modeled Contaminated Soil Volume Estimates and Actual Excavation Volumes at the Maywood FUSRAP Site - 13555

    SciTech Connect

    Moore, James; Hays, David; Quinn, John; Johnson, Robert; Durham, Lisa

    2013-07-01

    As part of the ongoing remediation process at the Maywood Formerly Utilized Sites Remedial Action Program (FUSRAP) properties, Argonne National Laboratory (Argonne) assisted the U.S. Army Corps of Engineers (USACE) New York District by providing contaminated soil volume estimates for the main site area, much of which is fully or partially remediated. As part of the volume estimation process, an initial conceptual site model (ICSM) was prepared for the entire site that captured existing information (with the exception of soil sampling results) pertinent to the possible location of surface and subsurface contamination above cleanup requirements. This ICSM was based on historical anecdotal information, aerial photographs, and the logs from several hundred soil cores that identified the depth of fill material and the depth to bedrock under the site. Specialized geostatistical software developed by Argonne was used to update the ICSM with historical sampling results and down-hole gamma survey information for hundreds of soil core locations. The updating process yielded both a best guess estimate of contamination volumes and a conservative upper bound on the volume estimate that reflected the estimate's uncertainty. Comparison of model results to actual removed soil volumes was conducted on a parcel-by-parcel basis. Where sampling data density was adequate, the actual volume matched the model's average or best guess results. Where contamination was un-characterized and unknown to the model, the actual volume exceeded the model's conservative estimate. Factors affecting volume estimation were identified to assist in planning further excavations. (authors)

  17. Antimony release from contaminated mine soils and its migration in four typical soils using lysimeter experiments.

    PubMed

    Shangguan, Yu-Xian; Zhao, Long; Qin, Yusheng; Hou, Hong; Zhang, Naiming

    2016-11-01

    Antimony (Sb) can pose great risks to the environment in mining and smelting areas. The migration of Sb in contaminated mine soil was studied using lysimeter experiments. The exchangeable concentration of soil Sb decreased with artificial leaching. The concentrations of Sb retained in the subsoil layers (5-25cm deep) were the highest for Isohumosol and Ferrosol and the lowest for Sandy soil. The Sb concentrations in soil solutions decreased with soil depth, and were adequately simulated using a logarithmic function. The Sb migration pattern in Sandy soil was markedly different from the patterns in the other soils which suggested that Sb may be transported in soil colloids. Environmental factors such as water content, soil temperature, and oxidation-reduction potential of the soil had different effects on Sb migration in Sandy soil and Primosol. The high Fe and Mn contents in Ferrosol and Isohumosol significantly decreased the mobility of Sb in these soils. The Na and Sb concentrations in soils used in the experiments positively correlated with each other (P<0.01). The Sb concentrations in soil solutions, the Sb chemical fraction patterns, and the Sb/Na ratios decreased in the order Sandy soil>Primosol>Isohumosol>Ferrosol, and we concluded that the Sb mobility in the soils also decreased in that order.

  18. Soil Washing Experiment for Decontamination of Contaminated NPP Soil

    SciTech Connect

    Son, J.K.; Kang, K.D.; Kim, K.D.; Ha, J.H.; Song, M.J.

    2006-07-01

    The preliminary experiment was performed to obtain the operating conditions of soil washing decontamination process such as decontamination agent, decontamination temperature, decontamination time and ratio of soil and decontamination agent. To estimate decontamination efficiency, particle size of soil was classified into three categories; {>=} 2.0 mm, 2.0 {approx} 0.21 mm and {<=} 0.21 mm. Major target of this experiment was decontamination of Cs-137. The difference of decontamination efficiency using water and neutral salts as decontamination agent is not high. It is concluded that the best temperature of decontamination agent is normal temperature and the best decontamination time was about 60 minutes. And the best ratio of soil and decontamination agent is 1:10. In case of Cs decontamination for fine soils, the decontamination results using neutral salts such as Na{sub 2}CO{sub 3} and Na{sub 3}PO{sub 4} shows some limits while using strong acid such as sulfuric acid or hydrochloric acid shows high decontamination efficiency ({>=}90%). But we conclude that decontamination using strong acid is also inappropriate because of the insufficiency of decontamination efficiency for highly radioactive fine soils and the difficulty for treatment of secondary liquid waste. It is estimated that the best decontamination process is to use water as decontamination agent for particles which can be decontaminated to clearance level, after particle size separation. (authors)

  19. Electrokinetic treatment of an agricultural soil contaminated with heavy metals.

    PubMed

    Figueroa, Arylein; Cameselle, Claudio; Gouveia, Susana; Hansen, Henrik K

    2016-07-28

    The high organic matter content in agricultural soils tends to complex and retain contaminants such as heavy metals. Electrokinetic remediation was tested in an agricultural soil contaminated with Co(+2), Zn(+2), Cd(+2), Cu(+2), Cr(VI), Pb(+2) and Hg(+2). The unenhanced electrokinetic treatment was not able to remove heavy metals from the soil due to the formation of precipitates in the alkaline environment in the soil section close to the cathode. Moreover, the interaction between metals and organic matter probably limited metal transportation under the effect of the electric field. Citric acid and ethylenediaminetetraacetic acid (EDTA) were used in the catholyte as complexing agents in order to enhance the extractability and removal of heavy metals from soil. These complexing agents formed negatively charged complexes that migrated towards the anode. The acid front electrogenerated at the anode favored the dissolution of heavy metals that were transported towards the cathode. The combined effect of the soil pH and the complexing agents resulted in the accumulation of heavy metals in the center of the soil specimen.

  20. Deep soil mixing for reagent delivery and contaminant treatment

    SciTech Connect

    Korte, N.; Gardner, F.G.; Cline, S.R.; West, O.R.

    1997-12-31

    Deep soil mixing was evaluated for treating clay soils contaminated with TCE and its byproducts at the Department of Energy`s Kansas City Plant. The objective of the project was to evaluate the extent of limitations posed by the stiff, silty-clay soil. Three treatment approaches were tested. The first was vapor stripping. In contrast to previous work, however, laboratory treatability studies indicated that mixing saturated, clay soil was not efficient unless powdered lime was added. Thus, powder injection of lime was attempted in conjunction with the mixing/stripping operation. In separate treatment cells, potassium permanganate solution was mixed with the soil as a means of destroying contaminants in situ. Finally, microbial treatment was studied in a third treatment zone. The clay soil caused operational problems such as breakage of the shroud seal and frequent reagent blowouts. Nevertheless, treatment efficiencies of more than 70% were achieved in the saturated zone with chemical oxidation. Although expensive ($1128/yd{sup 3}), there are few alternatives for soils of this type.

  1. LINKING WATERFOWL WITH CONTAMINANT SPECIATION IN RIPARIAN SOILS

    EPA Science Inventory

    This report summarizes the results of Mine Waste Technology Program (MWTP) Activity III, Project 38, Linking Waterfowl with Contaminant Speciation in Riparian Soils, implemented and funded by the U.S. Environmental Protection Agency (EPA) and jointly administered by EPA and the U...

  2. SUMMARY PAPER: IN SITU BIOREMEDIATION OF CONTAMINATED VADOSE ZONE SOIL

    EPA Science Inventory

    The Robert S. Kerr Environmental Research Laboratory (RSKERL) has developed a number of Issue Papers and Briefing Documents which are designed to exchange up-to-date information related to the remediation of contaminated soil and ground water at hazardous waste sites. In an attem...

  3. LINKING WATERFOWL WITH CONTAMINANT SPECIATION IN RIPARIAN SOILS

    EPA Science Inventory

    This report summarizes the results of Mine Waste Technology Program (MWTP) Activity III, Project 38, Linking Waterfowl with Contaminant Speciation in Riparian Soils, implemented and funded by the U.S. Environmental Protection Agency (EPA) and jointly administered by EPA and the U...

  4. APPLICATION, PERFORMANCE, AND COSTS OF BIOTREATMENT TECHNOLOGIES FOR CONTAMINATED SOILS

    EPA Science Inventory

    A critical review of biological treatment processes for remediation of contaminated soils is presented. The focus of the review is on documented cost and performance of biological treatment technologies demonstrated at full- or
    field-scale. Some of the data were generated b...

  5. HANDBOOK ON IN SITU TREATMENT OF HAZARDOUS WASTE- CONTAMINATED SOILS

    EPA Science Inventory

    This handbook comprises an update of Volume1 of the 1984 USEPA document entitled "Review of In-Place Treatment Techniques for Contaminated Surface Soils." The purpose of this handbook is the same as that of the original document - to provide state-of-the-art information on in sit...

  6. MUTAGENICITY OF PAH-CONTAMINATED SOILS DURING BIOREMEDIATION

    EPA Science Inventory

    Bioremediation of contaminated soils is considered an effective method for reducing potential health hazards. Although it is assumed that (bio)remediation is a detoxifying process, degradation products of compounds such as polycyclic aromatic compounds (PACs) can be more toxic th...

  7. Chemical methods and phytoremediation of soil contaminated with heavy metals.

    PubMed

    Chen, H M; Zheng, C R; Tu, C; Shen, Z G

    2000-07-01

    The effects of chemical amendments (calcium carbonate (CC), steel sludge (SS) and furnace slag (FS)) on the growth and uptake of cadmium (Cd) by wetland rice, Chinese cabbage and wheat grown in a red soil contaminated with Cd were investigated using a pot experiment. The phytoremediation of heavy metal contaminated soil with vetiver grass was also studied in a field plot experiment. Results showed that treatments with CC, SS and FS decreased Cd uptake by wetland rice, Chinese cabbage and wheat by 23-95% compared with the unamended control. Among the three amendments, FS was the most efficient at suppressing Cd uptake by the plants, probably due to its higher content of available silicon (Si). The concentrations of zinc (Zn), lead (Pb) and Cd in the shoots of vetiver grass were 42-67%, 500-1200% and 120-260% higher in contaminated plots than in control, respectively. Cadmium accumulation by vetiver shoots was 218 g Cd/ha at a soil Cd concentration of 0.33 mg Cd/kg. It is suggested that heavy metal-contaminated soil could be remediated with a combination of chemical treatments and plants.

  8. APPLICATION, PERFORMANCE, AND COSTS OF BIOTREATMENT TECHNOLOGIES FOR CONTAMINATED SOILS

    EPA Science Inventory

    A critical review of biological treatment processes for remediation of contaminated soils is presented. The focus of the review is on documented cost and performance of biological treatment technologies demonstrated at full- or
    field-scale. Some of the data were generated b...

  9. HANDBOOK ON IN SITU TREATMENT OF HAZARDOUS WASTE- CONTAMINATED SOILS

    EPA Science Inventory

    This handbook comprises an update of Volume1 of the 1984 USEPA document entitled "Review of In-Place Treatment Techniques for Contaminated Surface Soils." The purpose of this handbook is the same as that of the original document - to provide state-of-the-art information on in sit...

  10. MUTAGENICITY OF PAH-CONTAMINATED SOILS DURING BIOREMEDIATION

    EPA Science Inventory

    Bioremediation of contaminated soils is considered an effective method for reducing potential health hazards. Although it is assumed that (bio)remediation is a detoxifying process, degradation products of compounds such as polycyclic aromatic compounds (PACs) can be more toxic th...

  11. SUMMARY PAPER: IN SITU BIOREMEDIATION OF CONTAMINATED VADOSE ZONE SOIL

    EPA Science Inventory

    The Robert S. Kerr Environmental Research Laboratory (RSKERL) has developed a number of Issue Papers and Briefing Documents which are designed to exchange up-to-date information related to the remediation of contaminated soil and ground water at hazardous waste sites. In an attem...

  12. SELPhOx process for remediation of contaminated soil

    SciTech Connect

    Ekhtera, M.R.; Mensinger, M.C.; Rehmat, A.; Deville, B.

    1996-10-01

    The SELPhOx process is being developed as a highly flexible means of remediating and destroying both high and low concentrations of light aliphatic to heavy aromatic contaminants from solid and soil matrices. The process employs two distinct technologies: extraction of organic contaminants with supercritical carbon dioxide and wet air oxidation (WAO) destruction of the extracted contaminants. A separation step links the two process stages. IGT has conducted supercritical extraction tests over wide ranges of temperature, pressure, and CO{sub 2}/contaminant ratios with soils from a wood treatment plant and two manufacturing gas plant sites. The addition of methanol as an extraction modifier was also explored. At comparable CO{sub 2}-to-contaminant ratios and extraction conditions of 48{degrees}C and 137 atm, the total PAHs removed from the three soils ranged from 76.9 to 97.9 percent with CO{sub 2} alone and from 88.4 to 98.6 percent with methanol added. Results of these tests are presented.

  13. Recycling of EDTA solution after soil washing of Pb, Zn, Cd and As contaminated soil.

    PubMed

    Pociecha, Maja; Lestan, Domen

    2012-02-01

    Soil washing with EDTA is known to be an effective means of removing toxic metals from contaminated soil. A practical way of recycling of used soil washing solution remains, however, an unsolved technical problem. We demonstrate here, in a laboratory scale experiment, the feasibility of using acid precipitation to recover up to 50% of EDTA from used soil washing solution obtained after extraction of Pb (5330 mg kg(-1)), Zn (3400 mg kg(-1)), Cd (35 mg kg(-1)) and As (279 mg kg(-1)) contaminated soil. Up to 100% of EDTA residual in the washing solution and 100%, 97%, 98% and 100% of initial Pb, Zn, Cd and As concentration in the solution, respectively, were removed in an electrolytic cell using a graphite anode. We employed the recovered EDTA and treated washing solution to prepare recycled soil washing solution with the same potential for extracting toxic metals from soil as the original. The efficiency of soil washing depends on the EDTA concentration. Using twice recycled 30 mmol EDTA kg(-1) soil, we removed 44%, 20%, 53% and 61% of Pb, Zn, Cd and As, respectively, from contaminated soil. Copyright © 2011 Elsevier Ltd. All rights reserved.

  14. Electrokinetic In Situ Treatment of Metal-Contaminated Soil

    NASA Technical Reports Server (NTRS)

    Quinn, Jacqueline; Clausen, Christian A., III; Geiger, Cherie; Reinhart, Debra

    2004-01-01

    An electrokinetic technique has been developed as a means of in situ remediation of soils, sludges, and sediments that are contaminated with heavy metals. Examples of common metal contaminants that can be removed by this technique include cadmium, chromium, zinc, lead, mercury, and radionuclides. Some organic contaminants can also be removed by this technique. In the electrokinetic technique, a low-intensity direct current is applied between electrodes that have been implanted in the ground on each side of a contaminated soil mass. The electric current causes electro-osmosis and migration of ions, thereby moving aqueous-phase subsurface contaminants from one electrode to the other. The half reaction at the anode yields H+, thereby generating an acid front that travels from the anode toward the cathode. As this acid front passes through a given location, the local increase in acidity increases the solubility of cations that were previously adsorbed on soil particles. Ions are transported towards one electrode or the other which one depending on their respective electric charges. Upon arrival at the electrodes, the ionic contaminants can be allowed to become deposited on the electrodes or can be extracted to a recovery system. Surfactants and other reagents can be introduced at the electrodes to enhance rates of removal of contaminants. Placements of electrodes and concentrations and rates of pumping of reagents can be adjusted to maximize efficiency. The basic concept of electrokinetic treatment of soil is not new. What is new here are some of the details of application and the utilization of this technique as an alternative to other techniques (e.g., flushing or bioremediation) that are not suitable for treating soils of low hydraulic conductivity. Another novel aspect is the use of this technique as a less expensive alternative to excavation: The cost advantage over excavation is especially large in settings in which contaminated soil lies near and/or under

  15. Sources and remediation techniques for mercury contaminated soil.

    PubMed

    Xu, Jingying; Bravo, Andrea Garcia; Lagerkvist, Anders; Bertilsson, Stefan; Sjöblom, Rolf; Kumpiene, Jurate

    2015-01-01

    Mercury (Hg) in soils has increased by a factor of 3 to 10 in recent times mainly due to combustion of fossil fuels combined with long-range atmospheric transport processes. Other sources as chlor-alkali plants, gold mining and cement production can also be significant, at least locally. This paper summarizes the natural and anthropogenic sources that have contributed to the increase of Hg concentration in soil and reviews major remediation techniques and their applications to control soil Hg contamination. The focus is on soil washing, stabilisation/solidification, thermal treatment and biological techniques; but also the factors that influence Hg mobilisation in soil and therefore are crucial for evaluating and optimizing remediation techniques are discussed. Further research on bioremediation is encouraged and future study should focus on the implementation of different remediation techniques under field conditions. Copyright © 2014 Elsevier Ltd. All rights reserved.

  16. Characterization of soils from an industrial complex contaminated with elemental mercury

    SciTech Connect

    Miller, Carrie L; Watson, David B; Liang, Liyuan; Lester, Brian P; Lowe, Kenneth Alan; Pierce, Eric M

    2013-01-01

    Historic use of liquid elemental mercury (Hg(0)l) at the Y-12 National Security Complex in Oak Ridge, TN, USA resulted in large deposits of Hg(0)l in the soils. An evaluation of analytical tools for characterizing the speciation of Hg in the soils at the Y-12 facility was conducted and these tequniques were used to examine the speciation of Hg in two soil cores collect at the site. These include X-ray fluorescence (XRF), soil Hg(0) headspace analysis, and total Hg determination by acid digestion coupled with cold vapor atomic absorption. Hg concentrations determined using XRF, a tool that has been suggestions for quick onsite characterization of soils, were lower than concentrations determined by HgT analysis and as a result this technique is not suitable for the evaluation of Hg concentrations in heterogeneous soils containing Hg(0)l. Hg(0)g headspace analysis can be used to examine the presence of Hg(0)l in soils and when coupled with HgT analysis an understanding of the speciation of Hg in soils can be obtained. Two soil cores collected within the Y-12 complex highlight the heterogeneity in the depth and extent of Hg contamination, with Hg concentrations ranging from 0.05 to 8400 mg/kg. At one location Hg(0)l was distributed throughout 3.2 meters of core whereas the core from a location only 12 meters away only contained Hg(0)l in 0.3 m zone of the core. Sequential extractions, used to examine the forms of Hg in the soils, indicated that at depths within the core that have low Hg concentrations organically associated Hg is dominant. Soil from the zone of groundwater inundation showed reduced characteristics and the Hg is likely present as Hg-sulfide species. At this location it appears that Hg transported within the groundwater is a source of Hg to the soil. Overall the characterization of Hg in soils containing Hg(0) l is difficult due to the heterogeneous distribution within the soils and this challenge is enhanced in industrial facilities in which fill

  17. An evaluation of different soil washing solutions for remediating arsenic-contaminated soils.

    PubMed

    Wang, Yiwen; Ma, Fujun; Zhang, Qian; Peng, Changsheng; Wu, Bin; Li, Fasheng; Gu, Qingbao

    2017-04-01

    Soil washing is a promising way to remediate arsenic-contaminated soils. Most research has mostly focused on seeking efficient extractants for removing arsenic, but not concerned with any changes in soil properties when using this technique. In this study, the removal of arsenic from a heavily contaminated soil employing different washing solutions including H3PO4, NaOH and dithionite in EDTA was conducted. Subsequently, the changes in soil physicochemical properties and phytotoxicity of each washing technique were evaluated. After washing with 2 M H3PO4, 2 M NaOH or 0.1 M dithionite in 0.1 M EDTA, the soil samples' arsenic content met the clean-up levels stipulated in China's environmental regulations. H3PO4 washing decreased soil pH, Ca, Mg, Al, Fe, and Mn concentrations but increased TN and TP contents. NaOH washing increased soil pH but decreased soil TOC, TN and TP contents. Dithionite in EDTA washing reduced soil TOC, Ca, Mg, Al, Fe, Mn and TP contents. A drastic color change was observed when the soil sample was washed with H3PO4 or 0.1 M dithionite in 0.1 M EDTA. After adjusting the soil pH to neutral, wheat planted in the soil sample washed by NaOH evidenced the best growth of all three treated soil samples. These results will help with selecting the best washing solution when remediating arsenic-contaminated soils in future engineering applications. Copyright © 2017 Elsevier Ltd. All rights reserved.

  18. Interactive effects of Cd and PAHs on contaminants removal from co-contaminated soil planted with hyperaccumulator plant Sedum alfredii

    USDA-ARS?s Scientific Manuscript database

    Soil contamination by multiple organic and inorganic contaminants is common but its remediation by hyperaccumulator plants is rarely reported. The growth of a cadmium (Cd) hyperaccumulator Sedum alfredii and removal of contaminants from Cd and polycyclic aromatic hydrocarbons(PAHs) co-contaminated s...

  19. Joint chemical flushing of soils contaminated with petroleum hydrocarbons.

    PubMed

    Zhou, Qixing; Sun, Fuhong; Liu, Rui

    2005-08-01

    How to increase the efficiency of chemical flushing and decrease the remediation expenses of contaminated soils are two key scientific and technological issues to be solved. Joint chemical flushing was tested and compared with the water-flushing. The joint acid-flushing could effectively remove petroleum hydrocarbons in contaminated aquorizem and the dosage of washing powder as a flushing agent was greatly reduced, thereby, saving approximately 1200 US dollars of expenses relative to the water-flushing. The joint salt-flushing could be an optimal method for the cleanup of meadow burozem contaminated with petroleum hydrocarbons under the experimental conditions. Moreover, the amount of surfactant remained in the two washed soils after the joint acid-flushing and the joint-salt-flushing was minimal.

  20. Dieldrin uptake by vegetable crops grown in contaminated soils.

    PubMed

    Donnarumma, Lucia; Pompi, Valter; Faraci, Alessandro; Conte, Elisa

    2009-06-01

    The aim of these trials was to study the distribution of dieldrin in soil and its translocation to roots and the aerial parts of vegetable crops grown in greenhouses and fields. The main objectives were to characterize dieldrin accumulation in plant tissues in relation to the levels of soil contamination; uptake capability among plants belonging to different species, varieties and cultivars. The presence of the contaminant was quantified by gas chromatography-electron capture detector (GC-ECD) and confirmed by gas chromatography-mass spectrometer (GC-MS). The results showed a translocation of residues in cucurbitaceous fruits and flowers confirming that zucchini, cucumber and melon are crops with high uptake capability. The maximum level of dieldrin residue at 0.01 mg/kg was found to be a threshold value to safeguard the quality production of cucurbits. Tomato, lettuce and celery were identified as substitute crops to grow in contaminated fields.

  1. Washing of zinc(II) from contaminated soil column

    SciTech Connect

    Davis, A.P. . Civil Engineering Dept.); Singh, I. )

    1995-02-01

    Several chemical washing procedures were applied to a zinc(II) contaminated (artificially) soil column to determine metal-extraction efficiency. Specific extractants examined include acid solution, ethylenediaminetetraacetic acid (EDTA) and diethylenetriamine pentaacetic acid (DTPA) organic complexing agents, and chlorine, all at various concentrations. Effects of ionic strength, flow rate, and type of zinc contamination were also determined. These parameters affect metal removal via various physicochemical mechanisms. The most efficient washing occurred using the organic chelating agents at the lowest flow rate (essentially complete zinc removal), although nearly as much zinc could be removed at higher flow rates, requiring less washing time. The washing efficiency is strongly dependent on the form of the zinc contamination in the soil.

  2. Phytoremediation of Metal-Contaminated Soil for Improving Food Safety

    NASA Astrophysics Data System (ADS)

    Shilev, Stefan; Benlloch, Manuel; Dios-Palomares, R.; Sancho, Enrique D.

    The contamination of the environment is a serious problem which provokes great interest in our society and in the whole scientific community. The input of metals into soils has increased during the last few decades as a consequence of different human activities (storage of industrial and municipal wastes, burning of fuels, mining and wastewater treatments, functioning of non-ferrous-metal-producing smelters, etc.). Nowadays, this type of contamination is one of the most serious concerning the chronic toxic effect which it renders on human health and the environment. As a consequence of all these activities, a huge number of toxic metals and metalloids, such as Cu, Zn, Pb, Cd, Hg and As, among many others, have been accumulated in soils, reaching toxic values. Unfortunately, much contaminated land is still in use for crop production, despite the danger that the metal content poses.

  3. Assessing the bioavailability and risk from metal-contaminated soils and dusts

    EPA Science Inventory

    Exposure to contaminated soil and dust is an important pathway in human health risk assessment. Physical and chemical characteristics, as well as biological factors, determine the bioaccessibility/bioavailability of soil and dust contaminants. Within a single sample, contaminat...

  4. Assessing the bioavailability and risk from metal-contaminated soils and dusts

    EPA Science Inventory

    Exposure to contaminated soil and dust is an important pathway in human health risk assessment. Physical and chemical characteristics, as well as biological factors, determine the bioaccessibility/bioavailability of soil and dust contaminants. Within a single sample, contaminat...

  5. EVALUATION OF SOLIDIFICATION/STABILIZATION AS A BEST DEMONSTRATED AVAILABLE TECHNOLOGY FOR CONTAMINATED SOILS

    EPA Science Inventory

    This project involved the evaluation of solidification/stabilization technology as a BDAT for contaminated soil. Three binding agents were used on four different synthetically contaminated soils. Performance evaluation data included unconfined compressive strength (UCS) and the T...

  6. Guidelines for Posting Soil Contamination Areas

    SciTech Connect

    Mcnaughton, Michael; Eisele, William

    2016-02-01

    All soil guidelines were determined using RESRAD, version 6.1. All offsite guidelines are based on 15 mrem/year. This dose rate is sufficiently low to protect human health and is in accordance with DOE guidance and the proposed EPA 40-CFR-196 regulations for members of the public (never promulgated). For those onsite areas where general employees (non-radiological workers) could have routine access, soil concentrations should be based on a dose rate of 30 mrem/year (approximately one-third of the onsite LANL non-radiological worker dose of 100 mrem/year). In this case, soil concentration guidelines may be obtained by doubling the 15 mrem/year guidelines. Several scenarios were developed to provide maximum flexibility for application of the guidelines. The offsite guidelines were developed using: residential scenarios for both adults and children; a construction worker scenario; a resource user (e.g., a hunter) scenario; a child playing within canyon reaches scenario, a trail using jogger within canyon reaches scenario, and a trail using hiker within canyon reaches scenario. The residential guidelines represent the lowest values from both the adult residential scenario and the child residential scenario.

  7. Chemical fingerprinting of hydrocarbon-contamination in soil.

    PubMed

    Boll, Esther S; Nejrup, Jens; Jensen, Julie K; Christensen, Jan H

    2015-03-01

    Chemical fingerprinting analyses of 29 hydrocarbon-contaminated soils were performed to assess the soil quality and determine the main contaminant sources. The results were compared to an assessment based on concentrations of the 16 priority polycyclic aromatic hydrocarbons pointed out by the U.S. Environmental Protection Agency (EPAPAH16) and total petroleum hydrocarbon (TPH). The chemical fingerprinting strategy proposed in this study included four tiers: (i) qualitative analysis of GC-FID chromatograms, (ii) comparison of the chemical composition of both un-substituted and alkyl-substituted polycyclic aromatic compounds (PACs), (iii) diagnostic ratios of selected PACs, and (iv) multivariate data analysis of sum-normalized PAC concentrations. The assessment criteria included quantitative analysis of 19 PACs and C1-C4 alkyl-substituted homologues of naphthalene, fluorene, dibenzothiophene, phenanthrene, pyrene, and chrysene; and 13 oxygenated polycyclic aromatic compounds (O-PACs). The chemical composition of un-substituted and alkyl-substituted PACs and visual interpretation of GC-FID chromatograms were in combination successful in differentiating pyrogenic and petrogenic hydrocarbon sources and in assessing weathering trends of hydrocarbon contamination in the soils. Multivariate data analysis of sum-normalized concentrations could as a stand-alone tool distinguish between hydrocarbon sources of petrogenic and pyrogenic origin, differentiate within petrogenic sources, and detect weathering trends. Diagnostic ratios of PACs were not successful for source identification of the heavily weathered hydrocarbon sources in the soils. The fingerprinting of contaminated soils revealed an underestimation of PACs in petrogenic contaminated soils when the assessment was based solely on EPAPAH16. As alkyl-substituted PACs are dominant in petrogenic sources, the evaluation of the total load of PACs based on EPAPAH16 was not representative. Likewise, the O-PACs are not

  8. Pilot-scale bioremediation of PAH-contaminated soils

    SciTech Connect

    Pradhan, S.P.; Paterek, J.R.; Liu, B.Y.; Conrad, J.R.; Srivastava, V.J.

    1997-12-31

    The Institute of Gas Technology (IGT) conducted a pilot-scale study at a former manufactured gas plant (MGP) site in New Jersey. The objective of the study was to determine the effectiveness of an innovative chemical/biological treatment process (MGP-REM process) to remediate soils contaminated with polynuclear aromatic hydrocarbons (PAHs). In order to identify the benefits of the MGP-REM process, the system was also operated in the conventional bioremediation mode. Results showed that the MGP-REM process can effectively treat PAH-contaminated MGP site soils, and it reduced the toxicity of the soil by a factor of 50, as indicated by the Microtox Toxicity Test. The MGP-REM process was 70% more efficient than conventional bioremediation in the removal of the PAHs from the soils. Air emissions data suggest that minimal air pollution control and monitoring are required for the slurry-phase application of both the MGP-REM process and the conventional biological treatment. Process economics indicate that the MGP-REM process in a slurry-phase mode has an estimated treatment cost of $100/cubic yard for remediation of PAH-contaminated soils. 7 refs., 7 figs., 9 tabs.

  9. EFFECT OF SOIL MODIFYING FACTORS ON THE BIOAVAILABILITY AND TOXICITY OF METAL CONTAMINATED SOILS

    EPA Science Inventory

    Heavy metal and organic chemical contamination of soils is a worldwide problem posing a risk to humans and more directly, soil organisms. Metal toxicity is often not directly related to the total concentration of metals present due to a number of modifying factors that depend,...

  10. EFFECT OF SOIL MODIFYING FACTORS ON THE BIOAVAILABILITY AND TOXICITY OF METAL CONTAMINATED SOILS

    EPA Science Inventory

    Heavy metal and organic chemical contamination of soils is a worldwide problem posing a risk to humans and more directly, soil organisms. Metal toxicity is often not directly related to the total concentration of metals present due to a number of modifying factors that depend,...

  11. Changes in the structure and function of soil ecosystems in soils contaminated with heavy metals

    SciTech Connect

    Kuperman, R.; Parmelee, R.; Carreiro, M. ||

    1995-06-01

    The structure and function of soil communities in an area with a wide range of concentrations of heavy metals was studied in portions of the U.S. Army`s Aberdeen Proving Ground, Maryland. The study included survey of soil macro- and microinvertebrate communities, soil microorganisms, enzyme activities and the rates of nutrient dynamics in soil. Soil macroinvertebrate communities showed significant reductions in the abundance of several taxonomic and functional groups in contaminated areas. The total numbers of nematodes and numbers of fungivore, bacterivore and omnivore-predator nematodes were lower in the more contaminated areas. The numbers of active bacteria and fungi were lower in areas of soil contamination. Significant reduction in the activities of all enzymes closely paralleled the increase in heavy metal concentrations. Ten-to-fifty fold reductions in enzyme activities were observed as heavy metal concentrations increased. These results suggest that soil contamination with heavy metals may have detrimental effects on soil biota and the rates of organic matter degradation and subsequent release of nutrients to aboveground communities in the area.

  12. Changes in the structure and function of soil ecosystems in soils contaminated with heavy metals

    SciTech Connect

    Kuperman, R.; Parmelee, R.; Carreiro, M. ||

    1995-09-01

    The structure and function of soil communities in an area with a wide range of concentrations of heavy metals was studied in portions of the U.S. Army`s Aberdeen Proving Ground, Maryland. The study included survey of soil macro- and microinvertebrate communities, soil microorganisms, enzyme activities and the rates of nutrient dynamics in soil. Soil macroinvertebrate communities showed significant reductions in the adundance of several taxonomic and functional groups in contaminated areas. The total numbers of nematodes and numbers of fungivore, bacterivore and omnivore-predator nematodes were lower in the more contaminated areas. The numbers of active bacteria and fungi were lower in areas of soil contamination. Significant reduction in the activities of all enzymes closely paralleled the increase in heavy metal concentrations. Ten-to-fifty fold reductions in enzyme activities were observed as heavy metal concentrations increased. These results suggest that soil contamination with heavy metals may have detrimental effects on soil biota and the rates of organic matter degradation and subsequent release of nutrients to aboveground communities in the area.

  13. Transport of PCBs with leachate water from contaminated soil.

    PubMed

    Kobasić, Vedranka Hodak; Picer, Mladen; Picer, Nena; Calić, Violeta

    2008-08-01

    Natural soil contaminated with PCBs was used in this study. The soil was excavated from the area around the damaged capacitor of an electrical transformer station in Zadar (ETS 110/35 kV). A lysimeter experiment was conducted for 17 months under natural climatic conditions and designed to measure the concentration of PCB in the soil and leachates. Our research field was composed of four plots and there were three lysimeters on each plot. After 12 months, a negligible quantity of Aroclor 1248 (an average of 0.24%) and the Sigma 7 key PCB congeners (SigmaPCB(7); IUPAC No.: PCB 28, PCB 52, PCB 101, PCB 118, PCB 138, PCB 153 and PCB 180) were leached from the soils into the water collected under the lysimeters (an average of 0.32%). During two soil samplings, the soil was taken at three depths from each lysimeter. The distribution of Aroclor 1248 and 7 individual PCB congeners in the soil layers was determined before and after planting. Plot No. 1 had the highest percentage of contaminant removal after 12 months. The data indicate that the Sigma 7 key PCBs in the surface soil layers of all the plots decreased and the removal percentages ranged between 19.0% (Plot No. 2) and 47.6% (Plot No. 1). Volatilization from the soil surface may be the most important mechanism for the loss of these "more volatile" PCB congeners. The results showed an accumulation of PCBs in the deepest level of the soil plots, probably due to the vertical transfer of the PCBs and the lack of volatilization.

  14. Phytoremediation of heavy metal contaminated soil by Jatropha curcas.

    PubMed

    Chang, Fang-Chih; Ko, Chun-Han; Tsai, Ming-Jer; Wang, Ya-Nang; Chung, Chin-Yi

    2014-12-01

    This study employed Jatropha curcas (bioenergy crop plant) to assist in the removal of heavy metals from contaminated field soils. Analyses were conducted on the concentrations of the individual metals in the soil and in the plants, and their differences over the growth periods of the plants were determined. The calculation of plant biomass after 2 years yielded the total amount of each metal that was removed from the soil. In terms of the absorption of heavy metal contaminants by the roots and their transfer to aerial plant parts, Cd, Ni, and Zn exhibited the greatest ease of absorption, whereas Cu, Cr, and Pb interacted strongly with the root cells and remained in the roots of the plants. J. curcas showed the best absorption capability for Cd, Cr, Ni, and Zn. This study pioneered the concept of combining both bioremediation and afforestation by J. curcas, demonstrated at a field scale.

  15. Heavy metals contamination of soils surrounding waste deposits in Romania

    NASA Astrophysics Data System (ADS)

    Matache, M.; Rozylowicz, L.; Ropota, M.; Patroescu, C.

    2003-05-01

    Soils contamination with heavy metals is one of the most severe aspects of environmental pollution in Romania, independently of the origin sources (domestic or industrial activities) or type of disposal (organised landfill or hazardous deposits)[l-2]. This fact is the consequence of the poor state of the existing waste deposits in Romania and of the significant costs involved by the establishing of a new landfill according with the international regulations. The present study is trying to emphasise the contamination of soils surrounding different categories of waste deposits (sewage sludge ponds, domestic and industrial waste landfills, hillocks, sterile deposits) from various regions of Romania. Some case studies show a special interest being localise in a protected area (Iron Gates Natural Park). In order to quantify the concentration of metals like Cd, Cr, Cu, Pb, Zn, Ni, Mo in soil samples, analysis were performed using Inductively Coupled Plasma - Optical Emission Spectrometry (ICP-OES). Romanian standards were used as reference values[3].

  16. Electrokinetic treatment of firing ranges containing tungsten-contaminated soils.

    PubMed

    Braida, Washington; Christodoulatos, Christos; Ogundipe, Adebayo; Dermatas, Dimitris; O'Connor, Gregory

    2007-11-19

    Tungsten-based alloys and composites are being used and new formulations are being considered for use in the manufacturing of different types of ammunition. The use of tungsten heavy alloys (WHA) in new munitions systems and tungsten composites in small caliber ammunition could potentially release substantial amounts of this element into the environment. Although tungsten is widely used in industrial and military applications, tungsten's potential environmental and health impacts have not been thoroughly addressed. This necessitates the research and development of remedial technologies to contain and/or remove tungsten from soils that may serve as a source for water contamination. The current work investigates the feasibility of using electrokinetics for the remediation of tungsten-contaminated soils in the presence of other heavy metals of concern such as Cu and Pb with aim to removing W from the soil while stabilizing in situ, Pb and Cu.

  17. Soil slurry reactors for the assessment of contaminant biodegradation

    NASA Astrophysics Data System (ADS)

    Toscano, G.; Colarieti, M. L.; Greco, G.

    2012-04-01

    Slurry reactors are frequently used in the assessment of feasibility of biodegradation in natural soil systems. The rate of contaminant removal is usually quantified by zero- or first-order kinetics decay constants. The significance of such constants for the evaluation of removal rate in the field could be questioned because the slurry reactor is a water-saturated, well-stirred system without resemblance with an unsaturated fixed bed of soil. Nevertheless, a kinetic study with soil slurry reactors can still be useful by means of only slightly more sophisticated kinetic models than zero-/first-order decay. The use of kinetic models taking into account the role of degrading biomass, even in the absence of reliable experimental methods for its quantification, provides further insight into the effect of nutrient additions. A real acceleration of biodegradation processes is obtained only when the degrading biomass is in the growth condition. The apparent change in contaminant removal course can be useful to diagnose biomass growth without direct biomass measurement. Even though molecular biology techniques are effective to assess the presence of potentially degrading microorganism in a "viable-but-nonculturable" state, the attainment of conditions for growth is still important to the development of enhanced remediation techniques. The methodology is illustrated with reference to data gathered for two test sites, Oslo airport Gardermoen in Norway (continuous contamination by aircraft deicing fluids) and the Trecate site in Italy (aged contamination by crude oil spill). This research is part of SoilCAM project (Soil Contamination, Advanced integrated characterisation and time-lapse Monitoring 2008-2012, EU-FP7).

  18. Electrokinetic remediation of six emerging organic contaminants from soil.

    PubMed

    Guedes, Paula; Mateus, Eduardo P; Couto, Nazaré; Rodríguez, Yadira; Ribeiro, Alexandra B

    2014-12-01

    Some organic contaminants can accumulate in organisms and cause irreversible damages in biological systems through direct or indirect toxic effects. In this study the feasibility of the electrokinetic (EK) process for the remediation of 17β-oestradiol (E2), 17α-ethinyloestradiol (EE2), bisphenol A (BPA), nonylphenol (NP), octylphenol (OP) and triclosan (TCS) in soils was studied in a stationary laboratory cell. The experiments were conducted using a silty loam soil (S2) at 0, 10 and 20mA and a sandy soil (S3) at 0 and 10 mA. A pH control in the anolyte reservoir (pH>13) at 10 mA was carried out using S2, too. Photo and electrodegradation experiments were also fulfilled. Results showed that EK is a viable method for the remediation of these contaminants, both through mobilization by electroosmotic flow (EOF) and electrodegradation. As EOF is very sensible to soil pH, the control in the anolyte increased EOF rate, consequently enhancing contaminants mobilization towards the cathode end. The extent of the mobilization towards the electrode end was mainly dependent on compounds solubility and octanol-water partition coefficient. In the last 24h of experiments, BPA presented the highest mobilization rate (ca. 4 μg min(-1)) with NP not being detected in the catholyte. At the end of all experiments the percentage of contaminants that remained in the soil ranged between 17 and 50 for S2, and between 27 and 48 for S3, with no statistical differences between treatments. The mass balance performed showed that the amount of contaminant not detected in the cell is similar to the quantity that potentially may suffer photo and electrodegradation. Copyright © 2014 Elsevier Ltd. All rights reserved.

  19. Identifying root exudates in field contaminated soil systems

    NASA Astrophysics Data System (ADS)

    Rosenfeld, C.; Martinez, C. E.

    2012-12-01

    Carbon (C) compounds exuded from plant roots comprise a significant and reactive fraction of belowground C pools. These exudates substantially alter the soil directly surrounding plant roots and play a vital role in the global C cycle, soil ecology, and ecosystem mobility of both nutrients and contaminants. In soils, the solubility and bioavailability of metals such as iron, zinc, and cadmium are intricately linked to the quantity and chemical characteristics of the C compounds allocated to the soil by plants. Cadmium (Cd), a toxic heavy metal, forms stronger bonds with reduced S- and N-containing compounds than with carboxylic acids, which may influence exudate composition in hyperaccumulator and tolerant plants grown in Cd contaminated soils. We hypothesize that hyperaccumulator plants will exude a larger quantity of aromatic N and chelating di- and tri-carboxylic acid molecules, while plants that exclude heavy metals from uptake will exude a larger proportion of reduced S containing molecules. This study examines how a variety of techniques can measure the low concentrations of complex organic mixtures exuded by hyperaccumulator and non-hyperaccumulator plants grown in Cd-contaminated soils. Two congeneric plants, Thlaspi caerulescens (Ganges ecotype), and T. caerulescens (Prayon ecotype) were grown in 0.5 kg pots filled with Cd-contaminated field soils from Chicago, IL. Field soils were contaminated as a result of the application of contaminated biosolids in the 1960's and 1970's. Pots were fitted for rhizon soil moisture samplers, micro-lysimeters developed for in situ collection of small volumes in unsaturated soils, prior to planting. Plants were grown for 8 weeks before exudate collection. After the 8 weeks of growth, a pulse-chase isotope tracer method using the C stable isotope, 13C, was employed to differentiate plant-derived compounds from background soil and microbial-derived compounds. Plants were placed in a CO2 impermeable chamber, and the soil

  20. Arsenic removal from contaminated soil using phosphoric acid and phosphate.

    PubMed

    Zeng, Min; Liao, Bohan; Lei, Ming; Zhang, Yong; Zeng, Qingru; Ouyang, Bin

    2008-01-01

    Laboratory batch experiments were conducted to study arsenic (As) removal from a naturally contaminated soil using phosphoric acid (H3PO4) and potassium dihydrogen phosphate (KH2PO4). Both H3PO4 and KH2PO4 proved to reduce toxicity of the soil in terms of soil As content, attaining more than 20% As removal at a concentration of 200 mmol/L. At the same time, acidification of soil and dissolution of soil components (Ca, Mg, and Si) resulted from using these two extractants, especially H3PO4. The effectiveness of these two extractants could be attributed to the replacement of As by phosphate ions (PO4(3-)). The function of H3PO4 as an acid to dissolve soil components had little effects on As removal. KH2PO4 almost removed as much As as H3PO4, but it did not result in serious damage to soils, indicating that it was a more promising extractant. The results of a kinetic study showed that As removal reached equilibrium after incubation for 360 min, but dissolution of soil components, especially Mg and Ca, was very rapid. Therefore dissolution of soil components would be inevitable if As was further removed. Elovich model best described the kinetic data of As removal among the four models used in the kinetic study.

  1. Overcoming phytoremediation limitations. A case study of Hg contaminated soil

    NASA Astrophysics Data System (ADS)

    Barbafieri, Meri

    2013-04-01

    Phytoremediation is a broad term that comprises several technologies to clean up water and soil. Despite the numerous articles appearing in scientific journals, very few field applications of phytoextraction have been successfully realized. The research here reported on Phytoextraction, the use the plant to "extract" metals from contaminated soil, is focused on implementations to overcome two main drawbacks: the survival of plants in unfavorable environmental conditions (contaminant toxicity, low fertility, etc.) and the often lengthy time it takes to reduce contaminants to the requested level. Moreover, to overcome the imbalance between the technology's potential and its drawbacks, there is growing interest in the use of plants to reduce only the fraction that is the most hazardous to the environment and human health, that is to target the bioavailable fractions of metals in soil. Bioavailable Contaminant Stripping (BCS) would be a remediation approach focused to remove the bioavailable metal fractions. BCS have been used in a mercury contaminated soil from Italian industrial site. Bioavailable fractions were determined by sequential extraction with H2O and NH4Cl.Combined treatments of plant hormone and thioligand to strength Hg uptake by crop plants (Brassica juncea and Helianthus annuus) were tested. Plant biomass, evapotranspiration, Hg uptake and distribution following treatments were compared. Results indicate the plant hormone, cytokinine (CK) foliar treatment, increased evapotranspiration rate in both tested plants. The Hg uptake and translocation in both tested plants increased with simultaneous addition of CK and TS treatments. B. juncea was the most effective in Hg uptake. Application of CK to plants grown in TS-treated soil lead to an increase in Hg concentration of 232% in shoots and 39% in roots with respect to control. While H. annuus gave a better response in plant biomass production, the application of CK to plants grown in TS-treated soil lead to

  2. Removal of PCBs in contaminated soils by means of chemical reduction and advanced oxidation processes.

    PubMed

    Rybnikova, V; Usman, M; Hanna, K

    2016-09-01

    Although the chemical reduction and advanced oxidation processes have been widely used individually, very few studies have assessed the combined reduction/oxidation approach for soil remediation. In the present study, experiments were performed in spiked sand and historically contaminated soil by using four synthetic nanoparticles (Fe(0), Fe/Ni, Fe3O4, Fe3 - x Ni x O4). These nanoparticles were tested firstly for reductive transformation of polychlorinated biphenyls (PCBs) and then employed as catalysts to promote chemical oxidation reactions (H2O2 or persulfate). Obtained results indicated that bimetallic nanoparticles Fe/Ni showed the highest efficiency in reduction of PCB28 and PCB118 in spiked sand (97 and 79 %, respectively), whereas magnetite (Fe3O4) exhibited a high catalytic stability during the combined reduction/oxidation approach. In chemical oxidation, persulfate showed higher PCB degradation extent than hydrogen peroxide. As expected, the degradation efficiency was found to be limited in historically contaminated soil, where only Fe(0) and Fe/Ni particles exhibited reductive capability towards PCBs (13 and 18 %). In oxidation step, the highest degradation extents were obtained in presence of Fe(0) and Fe/Ni (18-19 %). The increase in particle and oxidant doses improved the efficiency of treatment, but overall degradation extents did not exceed 30 %, suggesting that only a small part of PCBs in soil was available for reaction with catalyst and/or oxidant. The use of organic solvent or cyclodextrin to improve the PCB availability in soil did not enhance degradation efficiency, underscoring the strong impact of soil matrix. Moreover, a better PCB degradation was observed in sand spiked with extractable organic matter separated from contaminated soil. In contrast to fractions with higher particle size (250-500 and <500 μm), no PCB degradation was observed in the finest fraction (≤250 μm) having higher organic matter content. These findings

  3. Resistance of aerobic microorganisms and soil enzyme response to soil contamination with Ekodiesel Ultra fuel.

    PubMed

    Borowik, Agata; Wyszkowska, Jadwiga; Wyszkowski, Mirosław

    2017-09-10

    This study determined the susceptibility of cultured soil microorganisms to the effects of Ekodiesel Ultra fuel (DO), to the enzymatic activity of soil and to soil contamination with PAHs. Studies into the effects of any type of oil products on reactions taking place in soil are necessary as particular fuels not only differ in the chemical composition of oil products but also in the composition of various fuel improvers and antimicrobial fuel additives. The subjects of the study included loamy sand and sandy loam which, in their natural state, have been classified into the soil subtype 3.1.1 Endocalcaric Cambisols. The soil was contaminated with the DO in amounts of 0, 5 and 10 cm(3) kg(-1). Differences were noted in the resistance of particular groups or genera of microorganisms to DO contamination in loamy sand (LS) and sandy loam (SL). In loamy sand and sandy loam, the most resistant microorganisms were oligotrophic spore-forming bacteria. The resistance of microorganisms to DO contamination was greater in LS than in SL. It decreased with the duration of exposure of microorganisms to the effects of DO. The factor of impact (IFDO) on the activity of particular enzymes varied. For dehydrogenases, urease, arylsulphatase and β-glucosidase, it had negative values, while for catalase, it had positive values and was close to 0 for acid phosphatase and alkaline phosphatase. However, in both soils, the noted index of biochemical activity of soil (BA) decreased with the increase in DO contamination. In addition, a positive correlation occurred between the degree of soil contamination and its PAH content.

  4. Enhancing agents for phytoremediation of soil contaminated by cyanophos.

    PubMed

    Ali Romeh, Ahmed

    2015-07-01

    Cyanophos is commonly used in Egypt to control various agricultural and horticultural pests. It is a strong contaminant in the crop culturing environments because it is highly persistent and accumulates in the soil. This contaminant can be removed by phytoremediation, which is the use of plants to clean-up pollutants. Here we tested several several strategies to improve the effectiveness of this technology, which involved various techniques to solubilize contaminants. The phytoremediation efficiency of Plantago major L. was improved more by liquid silicon dioxide (SiO₂) than by other solubility-enhancing agents, resulting in the removal of significant amounts of cyanophos from contaminated soil. Liquid SiO₂ increased the capacity of P. major L. to remove cyanophos from soil by 45.9% to 74.05%. In P. major L. with liquid SiO₂, leaves extracted more cyanophos (32.99 µg/g) than roots (13.33 µg/g) over 3 days. The use of solubilization agents such as surfactants, hydroxypropyl-ß-cyclodextrin (HPßCD), natural humic acid acid (HA), and Tween 80 resulted in the removal of 60 convergents of cyanophos from polluted soil. Although a batch equilibrium technique showed that use of HPßCD resulted in the efficient removal of cyanophos from soil, a greater amount of cyanophos was removed by P. major L. with SiO₂. Moreover, a large amount of cyanophos was removed from soil by rice bran. This study indicates that SiO₂ can improve the efficiency of phytoremediation of cyanophos. Copyright © 2015 Elsevier Inc. All rights reserved.

  5. Using biochar for remediation of soils contaminated with heavy metals and organic pollutants.

    PubMed

    Zhang, Xiaokai; Wang, Hailong; He, Lizhi; Lu, Kouping; Sarmah, Ajit; Li, Jianwu; Bolan, Nanthi S; Pei, Jianchuan; Huang, Huagang

    2013-12-01

    Soil contamination with heavy metals and organic pollutants has increasingly become a serious global environmental issue in recent years. Considerable efforts have been made to remediate contaminated soils. Biochar has a large surface area, and high capacity to adsorb heavy metals and organic pollutants. Biochar can potentially be used to reduce the bioavailability and leachability of heavy metals and organic pollutants in soils through adsorption and other physicochemical reactions. Biochar is typically an alkaline material which can increase soil pH and contribute to stabilization of heavy metals. Application of biochar for remediation of contaminated soils may provide a new solution to the soil pollution problem. This paper provides an overview on the impact of biochar on the environmental fate and mobility of heavy metals and organic pollutants in contaminated soils and its implication for remediation of contaminated soils. Further research directions are identified to ensure a safe and sustainable use of biochar as a soil amendment for remediation of contaminated soils.

  6. Evaluation of soil flushing of complex contaminated soil: an experimental and modeling simulation study.

    PubMed

    Yun, Sung Mi; Kang, Christina S; Kim, Jonghwa; Kim, Han S

    2015-04-28

    The removal of heavy metals (Zn and Pb) and heavy petroleum oils (HPOs) from a soil with complex contamination was examined by soil flushing. Desorption and transport behaviors of the complex contaminants were assessed by batch and continuous flow reactor experiments and through modeling simulations. Flushing a one-dimensional flow column packed with complex contaminated soil sequentially with citric acid then a surfactant resulted in the removal of 85.6% of Zn, 62% of Pb, and 31.6% of HPO. The desorption distribution coefficients, KUbatch and KLbatch, converged to constant values as Ce increased. An equilibrium model (ADR) and nonequilibrium models (TSNE and TRNE) were used to predict the desorption and transport of complex contaminants. The nonequilibrium models demonstrated better fits with the experimental values obtained from the column test than the equilibrium model. The ranges of KUbatch and KLbatch were very close to those of KUfit and KLfit determined from model simulations. The parameters (R, β, ω, α, and f) determined from model simulations were useful for characterizing the transport of contaminants within the soil matrix. The results of this study provide useful information for the operational parameters of the flushing process for soils with complex contamination. Copyright © 2015 Elsevier B.V. All rights reserved.

  7. Ecotoxicity of a polycyclic aromatic hydrocarbon (PAH)-contaminated soil.

    PubMed

    Eom, I C; Rast, C; Veber, A M; Vasseur, P

    2007-06-01

    Soil samples from a former cokery site polluted with polycyclic aromatic hydrocarbons (PAHs) were assessed for their toxicity to terrestrial and aquatic organisms and for their mutagenicity. The total concentration of the 16 PAHs listed as priority pollutants by the US Environmental Protection Agency (US-EPA) was 2634+/-241 mg/kgdw in soil samples. The toxicity of water-extractable pollutants from the contaminated soil samples was evaluated using acute (Vibrio fischeri; Microtox test, Daphnia magna) and chronic (Pseudokirchneriella subcapitata, Ceriodaphnia dubia) bioassays and the EC values were expressed as percentage water extract in the test media (v/v). Algal growth (EC50-3d=2.4+/-0.2% of the water extracts) and reproduction of C. dubia (EC50-7d=4.3+/-0.6%) were the most severely affected, compared to bacterial luminescence (EC50-30 min=12+/-3%) and daphnid viability (EC50-48 h=30+/-3%). The Ames and Mutatox tests indicated mutagenicity of water extracts, while no response was found with the umu test. The toxicity of the soil samples was assessed on the survival and reproduction of earthworms (Eisenia fetida) and collembolae (Folsomia candida), and on the germination and growth of higher plants (Lactuca sativa L.: lettuce and Brassica chinensis J.: Chinese cabbage). The EC50 values were expressed as percentage contaminated soil in ISO soil test medium (weight per weight-w/w) and indicated severe effects on reproduction of the collembola F. candida (EC50-28 d=5.7%) and the earthworm E. fetida (EC50-28 d=18% and EC50-56 d=8%, based on cocoon and juvenile production, respectively). Survival of collembolae was already affected at a low concentration of the contaminated soil (EC50-28 d=11%). The viability of juvenile earthworms was inhibited at much lower concentrations of the cokery soil (EC50-14 d=28%) than the viability of adults (EC50-14 d=74%). Only plant growth was inhibited (EC50-17d=26%) while germination was not. Chemical analyses of water extracts allowed

  8. Copper extraction effectiveness and soil dissolution issues of EDTA-flushing of artificially contaminated soils.

    PubMed

    Tsang, Daniel C W; Zhang, Weihua; Lo, Irene M C

    2007-06-01

    Ethylenediaminetetraacetic acid (EDTA) was used as a reference chelating agent in column experiments to investigate the effectiveness of chelant-enhanced flushing of soils artificially contaminated under various conditions (low/high Cu loading, and aging). The associated soil dissolution issues were of particular concern. Dissolution of indigenous Fe/Al oxides, Ca carbonates and organic matter was monitored over the course of flushing. Regardless of contamination condition, above 85% extraction efficiency could be accomplished by 10(-2) and 10(-3)M EDTA-flushing, but not 10(-4)M. The Cu extraction kinetics positively correlated to EDTA concentration but inversely to Cu loading in soils. In addition to extraction from weakly sorbed fractions, a large portion of Cu was extracted from oxide, organic matter and residual fractions, which appears to derive from soil dissolution. Cumulative dissolved amounts of Fe, Al, and Ca were found to reach as high as hundreds of mgkg(-1), which were comparable to Cu contamination. Soil organic matter, which is known to strongly interact with Fe and Al oxides, was also mobilized. The rate and extent of these soil dissolutions were also positively correlated to EDTA concentration. Therefore, the co-extraction of soil minerals and organic matter during chelant-enhanced flushing, which would alter both physical structure and chemical properties of the soils, is detrimental to future land use and deserves greater attention. The concentration of chelating agent is the most crucial factor for an effective soil flushing with minimal damage.

  9. Lead contamination of soils in Belize City, Belize, Central America.

    PubMed

    Reeder, Philip; Shapiro, Lauren

    2003-01-01

    In order to assess the amount and distribution of lead pollution in soils in Belize City, Belize, seventy-five samples were collected from three distinct areas around the city (roadsides, houses, and playgrounds and schools). This study has provided data to establish the first soil lead database for Belize City, Belize. The soil samples generally exhibited pH values above 7, less than 18% organic matter, and more than 50% sand was found in 92% of the samples. These physical and chemical characteristics prevent the lead from accumulating in the upper layers of soil. However, high or hazardous levels were found in all sample categories. In the schoolyards and playgrounds category. the levels range from 3 ppm to 780 ppm, and average 131 ppm. The roadside samples had a range of 3 ppm to 5450 ppm, and average 445 ppm. The housing samples had the highest concentrations, with the range from 9 ppm to 104, 500 ppm and an average of 638 ppm. The geographic distribution of lead within the city appears to be somewhat random, although the most contaminated areas are generally in the south part of the city. The distance to potential source of contamination, for example peeling paint or a road, affects lead concentration, as does percent of organic matter in the soil. The physical characteristics that normally aid in the retention of lead in soil are not generally present in Belize City; however, the lead levels are dangerously high.

  10. Process for reduction of volume of contaminated soil by compaction

    SciTech Connect

    Johanan, W.L.

    1994-12-31

    Burial costs for low-level radioactive waste are assessed by the volume of the waste. These costs are presently at $10 per cubic foot and will continue to increase with time. A reduction in waste volume can be directly converted to a reduction in burial costs. A large amount of low-level contaminated soil exists throughout the DOE complex. The Nuclear Complex Modernization Task Force has identified over 5 million cubic feet of contaminated soil for eventual clean-up at the Mound site ($50,000,000 to bury at FY 1991 costs). By using a combination of a rock separator (trommel), crusher, clay soil compactor, automatic loading system, specially designed dust enclosures, and specifically designed containers for both on-site haulage and shipment to the Nevada Test Site (NTS), the total waste volume, and burial cost, can be reduced by up to 30% by compacting the soil into high-density bricks (depending upon the compaction quality of the soil). Several tests have been performed on Mound`s cold on-site soils, with resulting densities of 131 pounds per cubic foot. When this is compared to normal LSA metal box filling of 80--90 pounds per cubic foot, one can readily see the savings.

  11. Sand amendment enhances bioelectrochemical remediation of petroleum hydrocarbon contaminated soil.

    PubMed

    Li, Xiaojing; Wang, Xin; Ren, Zhiyong Jason; Zhang, Yueyong; Li, Nan; Zhou, Qixing

    2015-12-01

    Bioelectrochemical system is an emerging technology for the remediation of soils contaminated by petroleum hydrocarbons. However, performance of such systems can be limited by the inefficient mass transport in soil. Here we report a new method of sand amendment, which significantly increases both oxygen and proton transports, resulting to increased soil porosity (from 44.5% to 51.3%), decreased Ohmic resistance (by 46%), and increased charge output (from 2.5 to 3.5Cg(-1)soil). The degradation rates of petroleum hydrocarbons increased by up to 268% in 135d. The degradation of n-alkanes and polycyclic aromatic hydrocarbons with high molecular weight was accelerated, and denaturing gradient gel electrophoresis showed that the microbial community close to the air-cathode was substantially stimulated by the induced current, especially the hydrocarbon degrading bacteria Alcanivorax. The bioelectrochemical stimulation imposed a selective pressure on the microbial community of anodes, including that far from the cathode. These results suggested that sand amendment can be an effective approach for soil conditioning that will enhances the bioelectrochemical removal of hydrocarbons in contaminated soils. Copyright © 2015 Elsevier Ltd. All rights reserved.

  12. [Anolyte enhanced electrokinetic remediation of fluorine-contaminated soils].

    PubMed

    Zhu, Shu-Fa; Yan, Chun-Li; Dong, Tie-You; Tang, Hong-Yan

    2009-07-15

    An experimental study was carried out in order to determine the characteristics of migration and its influencing factor of soil fluorine in the electrokinetic process under different applied voltage and concentration of anolyte. The feasibility of anolyte enhanced on electrokinetic remediation of fluorine-contaminated soil was analyzed. The results show that when deionized water is used as anolyte with the 1.0 V/cm voltage gradient, the cumulative mass of fluorine in catholyte and anolyte are 8.2 mg and 47.7 mg respectively and the removal rate of fluorine is only 8.8%. Anolyte enhanced electrokinetic process can promote effectively the migration of fluoride in soil. When 0.02 mol/L NaOH solutionis employed as the anolyte, the removal rates are 25.9%, 31.2% and 47.3% with 1.0, 1.5 and 2.0 V/cm voltage gradient respectively. As the concentration of anolyte increased to 0.1 mol/L, the removal rates are 55.4%, 61.1% and 73.0%. The electromigration is the main transport mechanism and the electroosmotic flow has an effect on the migration of fluorine in soil. The voltage gradient and the concentration of anolyte are the main factors influencing the removal rate of fluorine in soil. Appropriate anolyte enhanced electrokinetic method can be applied to remediate fluorine from contaminated soil.

  13. Evaluation of treatment options for mercury/PCB contaminated soil

    SciTech Connect

    Camacho, J.M.

    1996-12-31

    The purpose of this project was to evaluate treatment alternatives for soil contaminated with mercury and polychlorinated biphenyl (PCB) aroclor 1268 at the LCP site, a former chlor-alkali plant, in Brunswick, GA. The site was operated as a petroleum refinery from 1919 to 1930. Based on past experience and a literature search, soil washing and thermal desorption were deemed to be the most promising technologies. A bulk soil sample was collected from the south process area and analyzed to have 190 mg/kg mercury and 405 mg/kg of PCB aroclor 1268. The soil was screened to {1/4} treatability tests. Testing was performed in three parts consisting of a round of geophysical and chemical analyses to determine matrix characteristics; thermal desorption tests at temperatures ranging from 100 C to 700 C to determine the volatility of mercury and PCB aroclor 1268; and a soil-washing study matrix to evaluate the effect of chemical additives such as acids, oxidizers, and surfactants to physically and chemically remove contaminants from the soil matrix.

  14. Cytotoxic and genotoxic potential of tannery waste contaminated soils.

    PubMed

    Masood, Farhana; Malik, Abdul

    2013-02-01

    Soil samples from agricultural fields in the vicinity of industrial area of Jajmau, Kanpur (India) were collected and found to be heavily contaminated with various toxic heavy metals. GC-MS analysis revealed the presence of organic compounds mainly phthalates in contaminated soils. Samples were extracted using dichloromethane (DCM) and hexane solvents, and the extracts were assayed for genotoxic potential using three different bioassays namely Ames Salmonella/mammalian microsome test, DNA repair defective Escherichia coli K-12 mutants and Allium cepa chromosomal aberration assay. TA98 was found to be the most sensitive strain to all the soil extracts tested. The highest mutagenic potential was observed in DCM extracts of soil as compared with hexane extracts for each strain of Salmonella typhimurium. DCM extracts of the soil exhibited maximum damage to the cells at a dose of 40 μl of soil extracts/ml of culture after a 6-h treatment. The survival was 23% in polA, 40% in lexA and 53% in recA mutants when treated with DCM extract of site I. In A. cepa assay, all the test concentrations of soil extracts (5-100%) affected mitotic index in a dose-dependent manner and several types of abnormalities were observed at different mitotic stages with the treatments: C-mitosis, anaphase bridges, laggards, binucleated cells, stickiness, broken and unequal distributions of chromosomes at anaphase stage of cell division. The soil is accumulating a large number of pollutants as a result of wastewater irrigation and this practice of accumulation has an adverse impact on soil health. Copyright © 2012 Elsevier B.V. All rights reserved.

  15. Effects of electrokinetic treatment of a heavy metal contaminated soil on soil enzyme activities.

    PubMed

    Cang, Long; Zhou, Dong-Mei; Wang, Quan-Ying; Wu, Dan-Ya

    2009-12-30

    There is a growing concern on the potential application of a direct current (DC) electric field to soil for removing contaminants, but little is known about its impact on soil enzyme activities. This study investigated the change of enzyme activities of a heavy metal contaminated soil before and after electrokinetic (EK) treatments at lab-scale and the mechanisms of EK treatment to affect soil enzyme activities were explored. After treatments with 1-3 V cm(-1) of voltage gradient for 420 h, soil pH, electrical conductivity (EC), soil organic carbon, dissolved organic carbon (DOC), soil heavy metal concentration and enzyme activities were analyzed. The results showed that the average removal efficiencies of soil copper were about 65% and 83% without and with pH control of catholyte, respectively, and all the removal efficiencies of cadmium were above 90%. The soil invertase and catalase activities increased and the highest invertase activity was as 170 times as the initial one. The activities of soil urease and acidic phosphatase were lower than the initial ones. Bivariate correlation analyses indicated that the soil invertase and acidic phosphatase activities were significantly correlated with soil pH, EC, and DOC at P<0.05, but the soil urease activities had no correlation with the soil properties. On the other hand, the effects of DC electric current on solution invertase and catalase enzyme protein activities indicated that it had negative effect on solution catalase activity and little effect on solution invertase activity. From the change of invertase and catalase activities in soil and solution, the conclusion can be drawn that the dominant effect mechanism is the change of soil properties by EK treatments.

  16. The effect of soil type on the bioremediation of petroleum contaminated soils.

    PubMed

    Haghollahi, Ali; Fazaelipoor, Mohammad Hassan; Schaffie, Mahin

    2016-09-15

    In this research the bioremediation of four different types of contaminated soils was monitored as a function of time and moisture content. The soils were categorized as sandy soil containing 100% sand (type I), clay soil containing more than 95% clay (type II), coarse grained soil containing 68% gravel and 32% sand (type III), and coarse grained with high clay content containing 40% gravel, 20% sand, and 40% clay (type IV). The initially clean soils were contaminated with gasoil to the concentration of 100 g/kg, and left on the floor for the evaporation of light hydrocarbons. A full factorial experimental design with soil type (four levels), and moisture content (10 and 20%) as the factors was employed. The soils were inoculated with petroleum degrading microorganisms. Soil samples were taken on days 90, 180, and 270, and the residual total petroleum hydrocarbon (TPH) was extracted using soxhlet apparatus. The moisture content of the soils was kept almost constant during the process by intermittent addition of water. The results showed that the efficiency of bioremediation was affected significantly by the soil type (Pvalue < 0.05). The removal percentage was the highest (70%) for the sandy soil with the initial TPH content of 69.62 g/kg, and the lowest for the clay soil (23.5%) with the initial TPH content of 69.70 g/kg. The effect of moisture content on bioremediation was not statistically significant for the investigated levels. The removal percentage in the clay soil was improved to 57% (within a month) in a separate experiment by more frequent mixing of the soil, indicating low availability of oxygen as a reason for low degradation of hydrocarbons in the clay soil.

  17. Petroleum hydrocarbon biodegradation under seasonal freeze-thaw soil temperature regimes in contaminated soils from a sub-Arctic site.

    PubMed

    Chang, Wonjae; Klemm, Sara; Beaulieu, Chantale; Hawari, Jalal; Whyte, Lyle; Ghoshal, Subhasis

    2011-02-01

    Several studies have shown that biostimulation in ex situ systems such as landfarms and biopiles can facilitate remediation of petroleum hydrocarbon contaminated soils at sub-Arctic sites during summers when temperatures are above freezing. In this study, we examine the biodegradation of semivolatile (F2: C10-C16) and nonvolatile (F3: C16-C34) petroleum hydrocarbons and microbial respiration and population dynamics at post- and presummer temperatures ranging from -5 to 14 °C. The studies were conducted in pilot-scale tanks with soils obtained from a historically contaminated sub-Arctic site in Resolution Island (RI), Canada. In aerobic, nutrient-amended, unsaturated soils, the F2 hydrocarbons decreased by 32% during the seasonal freeze-thaw phase where soils were cooled from 2 to -5 °C at a freezing rate of -0.12 °C d(-1) and then thawed from -5 to 4 °C at a thawing rate of +0.16 °C d(-1). In the unamended (control) tank, the F2 fraction only decreased by 14% during the same period. Biodegradation of individual hydrocarbon compounds in the nutrient-amended soils was also confirmed by comparing their abundance over time to that of the conserved diesel biomarker, bicyclic sesquiterpanes (BS). During this period, microbial respiration was observed, even at subzero temperatures when unfrozen liquid water was detected during the freeze-thaw period. An increase in culturable heterotrophs and 16S rDNA copy numbers was noted during the freezing phase, and the (14)C-hexadecane mineralization in soil samples obtained from the nutrient-amended tank steadily increased. Hydrocarbon degrading bacterial populations identified as Corynebacterineae- and Alkanindiges-related strains emerged during the freezing and thawing phases, respectively, indicating there were temperature-based microbial community shifts.

  18. Chelant extraction of heavy metals from contaminated soils.

    PubMed

    Peters, R W

    1999-04-23

    The current state of the art regarding the use of chelating agents to extract heavy metal contaminants has been addressed. Results are presented for treatability studies conducted as worst-case and representative soils from Aberdeen Proving Ground's J-Field for extraction of copper (Cu), lead (Pb), and zinc (Zn). The particle size distribution characteristics of the soils determined from hydrometer tests are approximately 60% sand, 30% silt, and 10% clay. Sequential extractions were performed on the 'as-received' soils (worst case and representative) to determine the speciation of the metal forms. The technique speciates the heavy metal distribution into an easily extractable (exchangeable) form, carbonates, reducible oxides, organically-bound, and residual forms. The results indicated that most of the metals are in forms that are amenable to soil washing (i.e. exchangeable+carbonate+reducible oxides). The metals Cu, Pb, Zn, and Cr have greater than 70% of their distribution in forms amenable to soil washing techniques, while Cd, Mn, and Fe are somewhat less amenable to soil washing using chelant extraction. However, the concentrations of Cd and Mn are low in the contaminated soil. From the batch chelant extraction studies, ethylenediaminetetraacetic acid (EDTA), citric acid, and nitrilotriacetic acid (NTA) were all effective in removing copper, lead, and zinc from the J-Field soils. Due to NTA being a Class II carcinogen, it is not recommended for use in remediating contaminated soils. EDTA and citric acid appear to offer the greatest potential as chelating agents to use in soil washing the Aberdeen Proving Ground soils. The other chelating agents studied (gluconate, oxalate, Citranox, ammonium acetate, and phosphoric acid, along with pH-adjusted water) were generally ineffective in mobilizing the heavy metals from the soils. The chelant solution removes the heavy metals (Cd, Cu, Pb, Zn, Fe, Cr, As, and Hg) simultaneously. Using a multiple-stage batch extraction

  19. Plant-assisted bioremediation of a historically PCB and heavy metal-contaminated area in Southern Italy.

    PubMed

    Ancona, Valeria; Barra Caracciolo, Anna; Grenni, Paola; Di Lenola, Martina; Campanale, Claudia; Calabrese, Angelantonio; Uricchio, Vito Felice; Mascolo, Giuseppe; Massacci, Angelo

    2017-09-25

    A plant-assisted bioremediation strategy was applied in an area located in Southern Italy, close to the city of Taranto, historically contaminated by polychlorinated biphenyls (PCBs) and heavy metals. A specific poplar clone (Monviso) was selected for its ability to promote organic pollutant degradation in the rhizosphere, as demonstrated elsewhere. Chemical and microbiological analyses were performed at the time of poplar planting in selected plots at different distances from the trunk (0.25-1m) and at different soil depths (0-20 and 20-40cm), at day 420. A significant decrease in PCB congeners and a reduction in all heavy metals was observed where the poplar trees were present. No evidence of PCB and heavy metal reduction was observed in the non poplar-vegetated soil. Microbial analyses (dehydrogenase activity, cell viability, microbial abundance) of the autochthonous microbial community showed an improvement in soil quality. In particular, microbial activity generally increased in the poplar-rhizosphere and a positive effect was observed in some cases at up to 1m distance from the trunk and up to 40cm depth. The Monviso clone was effective in promoting both a general decrease in contaminant occurrence and an increase in microbial activity in the chronically polluted area a little more than one year after planting. Copyright © 2016 Elsevier B.V. All rights reserved.

  20. Effects of soil organic matter and ageing on remediation of diesel-contaminated soil.

    PubMed

    Liu, Pao-Wen Grace; Wang, Sih-Yu; Huang, Shen-Gzhi; Wang, Ming-Zhi

    2012-12-01

    Bioremediation of diesel-contaminated soil was investigated for the effects of soil organic matter (SOM) and ageing time in two sets of experiments (Batch I and II, respectively). This study examined degradation efficiency in soil artificially contaminated with diesel oil (maximum total petroleum hydrocarbons (TPH) concentration of 9000 mg/kg soil). Batch I data showed that the values of the first-order degradation rate, k, were relatively high in the low-SOM soil batches. The quantity of SOM negatively correlated with the TPH degradation rates and with the total TPH degradation efficiency (%). Introduction of rhamnolipid to the soil proved to be a useful solution to resolve the problem of the residual TPH in the soil with high SOM. In Batch II, the k values decreased with the length of ageing time: 0.0245, 0.0128 and 0.0090 l/d in samples ST0 (freshly contaminated), ST38 (aged for 38 days) and ST101 (aged for 101 days), respectively. The TPH degradation efficiency (%) also decreased along with the ageing time. The research also applied molecular technology to analyse the bacterial community dynamics during the bioremediation course. Multivariate statistics based on terminal-restriction fragment length data indicated: 1) the soils with different SOM resulted in separate bacterial community structures, 2) ageing time created a variety of bacterial communities, 3) the bacterial community dynamics was associated with the hydrocarbon consumption. The SOM content in soils affected the TPH degradation rate and efficiency and the bacterial community structures. Aged soil is more difficult to remediate than freshly contaminated soil, and the resulting bacterial community was less dynamic and showed a lack of succession.

  1. Biomimetic Hydrogel Composites for Soil Stabilization and Contaminant Mitigation.

    PubMed

    Zhao, Zhi; Hamdan, Nasser; Shen, Li; Nan, Hanqing; Almajed, Abdullah; Kavazanjian, Edward; He, Ximin

    2016-11-15

    We have developed a novel method to synthesize a hyper-branched biomimetic hydrogel network across a soil matrix to improve the mechanical strength of the loose soil and simultaneously mitigate potential contamination due to excessive ammonium. This method successfully yielded a hierarchical structure that possesses the water retention, ion absorption, and soil aggregation capabilities of plant root systems in a chemically controllable manner. Inspired by the robust organic-inorganic composites found in many living organisms, we have combined this hydrogel network with a calcite biomineralization process to stabilize soil. Our experiments demonstrate that poly(acrylic acid) (PAA) can work synergistically with enzyme-induced carbonate precipitation (EICP) to render a versatile, high-performance soil stabilization method. PAA-enhanced EICP provides multiple benefits including lengthening of water supply time, localization of cementation reactions, reduction of harmful byproduct ammonium, and achievement of ultrahigh soil strength. Soil crusts we have obtained can sustain up to 4.8 × 10(3) kPa pressure, a level comparable to cementitious materials. An ammonium removal rate of 96% has also been achieved. These results demonstrate the potential for hydrogel-assisted EICP to provide effective soil improvement and ammonium mitigation for wind erosion control and other applications.

  2. Subchronic exposure of mice to Love Canal soil contaminants.

    PubMed

    Silkworth, J B; McMartin, D N; Rej, R; Narang, R S; Stein, V B; Briggs, R G; Kaminsky, L S

    1984-04-01

    The health hazard potential of soil collected from the surface of the Love Canal chemical dump site in Niagara Falls, New York, was assessed in 90-day exposure studies. Female CD-1 mice were exposed to two concentrations of the volatile components of 1 kg of soil with and without direct soil contact. Control mice were identically housed but without soil. The soil was replaced weekly and 87 compounds were detected in the air in the cages above fresh and 7-day-old soil as analyzed by gas chromatography/mass spectrometry. The concentration of many of these compounds decreased during the 7-day exposure cycle. Histopathologic, hematologic, and serum enzyme studies followed necropsy of all mice. There was no mortality of mice exposed for up to 90 days under any condition. Thymus and spleen weights relative to body weight were increased after 4 weeks of exposure by inhalation but not after 8 or 12 weeks of exposure. alpha-, beta-, and delta- Benzenehexachlorides , pentachlorobenzene, and hexachlorobenzene were detected in liver tissue from these animals. Mice exposed to 5- to 10-fold elevated concentration of volatiles had increased body and relative kidney weights. There was no chemically induced lesion in any animal exposed only to the volatile soil contaminants. Mice exposed by direct contact with the soil without elevated volatile exposure had increased body (10%) and relative liver weights (169%). Centrolobular hepatocyte hypertrophy, which involved 40 to 70% of the lobules, was observed in all mice in this group.(ABSTRACT TRUNCATED AT 250 WORDS)

  3. Subchronic exposure of mice to Love Canal soil contaminants

    SciTech Connect

    Silkworth, J.B.; McMartin, D.N.; Rej, R.; Narang, R.S.; Stein, V.B.; Briggs, R.G.; Kaminsky, L.S.

    1984-04-01

    The health hazard potential of soil collected from the surface of the Love Canal chemical dump site in Niagara Falls, New York, was assessed in 90-day exposure studies. Female CD-1 mice were exposed to two concentrations of the volatile components of 1 kg of soil with and without direct soil contact. Control mice were identically housed but without soil. The soil was replaced weekly and 87 compounds were detected in the air in the cages above fresh and 7-day-old soil as analyzed by gas chromatography/mass spectrometry. The concentration of many of these compounds decreased during the 7-day exposure cycle. Histopathologic, hematologic, and serum enzyme studies followed necropsy of all mice. There was no mortality of mice exposed for up to 90 days under any condition. Thymus and spleen weights relative to body weight were increased after 4 weeks of exposure by inhalation but not after 8 or 12 weeks of exposure. alpha-, beta-, and delta- Benzenehexachlorides , pentachlorobenzene, and hexachlorobenzene were detected in liver tissue from these animals. Mice exposed to 5- to 10-fold elevated concentration of volatiles had increased body and relative kidney weights. There was no chemically induced lesion in any animal exposed only to the volatile soil contaminants. Mice exposed by direct contact with the soil without elevated volatile exposure had increased body (10%) and relative liver weights (169%). Centrolobular hepatocyte hypertrophy, which involved 40 to 70% of the lobules, was observed in all mice in this group.

  4. Electrokinetic treatment of contaminated soils, sludges, and lagoons. Final report

    SciTech Connect

    Wittle, J.K.; Pamukcu, S.

    1993-04-01

    The electrokinetic process is an emerging technology for in-situ soil decontamination, in which chemical species, both ionic and nonionic are transported to an electrode site in soil. These products are subsequently removed from the ground via collection systems engineered for each specific application. Electrokinetics refer to movement of water, ions and charged particles relative to one another under the action of an applied direct current electric field. In a porous compact matrix of surface charged particles such as soil, the ion containing pore fluid may be made to flow to collection sites under the applied field. This report describes the effort undertaken to investigate electrokinetically enhanced transport of soil contaminants in synthetic systems. These systems consisted of clay or clay-sand mixtures containing known concentration of a selected heavy metal salt solution or an organic compound. Metals, surrogate radio nuclides and organic compounds evaluated in the program were representatives of those found at a majority of DOE sites. Degree of removal of these metals from soil by the electrokinetic treatment process was assessed through the metal concentration profiles generated across the soil between the electrodes. The best removals, from about 85 to 95% were achieved at the anode side of the soil specimens. Transient pH change had an effect on the metal movement via transient creation of different metal species with different ionic mobilities, as well as changing of the surface characteristics of the soil medium.

  5. Treatment of a suspension of PCB contaminated soil using iron nanoparticles and electric current.

    PubMed

    Gomes, Helena I; Ottosen, Lisbeth M; Ribeiro, Alexandra B; Dias-Ferreira, Celia

    2015-03-15

    Contaminated soils and sediments with polychlorinated biphenyls (PCB) are an important environmental problem due to the persistence of these synthetic aromatic compounds and to the lack of a cost-effective and sustainable remediation technology. Recently, a new experimental setup has been proposed using electrodialytic remediation and iron nanoparticles. The current work compares the performance of this new setup (A) with conventional electrokinetics (setup B). An historically contaminated soil with an initial PCB concentration of 258 μg kg(-1) was treated during 5, 10, 20 and 45 d using different amounts of iron nanoparticles in both setups A and B. A PCB removal of 83% was obtained in setup A compared with 58% of setup B. Setup A also showed additional advantages, such as a higher PCB dechlorination, in a shorter time, with lower nZVI consumption, and with the use of half of the voltage gradient when compared with the traditional setup (B). Energy and nZVI costs for a full-scale reactor are estimated at 72 € for each cubic meter of PCB contaminated soil treated on-site, making this technology competitive when compared with average off-site incineration (885 € m(-3)) or landfilling (231 € m(-3)) cost in Europe and in the USA (327 USD m(-3)). Copyright © 2015 Elsevier Ltd. All rights reserved.

  6. Historical contamination of mercury in the Florida panther (Felix concolor cori) and its prey

    SciTech Connect

    Zillioux, E.J.; Newman, J.R.; Rich, E.R.; Robertson, W.B. Jr.; Atkeson, T.D.; Whitten, M.L.

    1994-12-31

    High levels of mercury have been found in the Florida panther, a top carnivore of the Everglades. Similarly high levels have been found in other mammals, birds and fish from the Everglades and other parts of south Florida. The principal route of mercury contamination in the panther is through the aquatic food web. The time period and the source or sources of this contamination are not known. The purpose of this study is to investigate the historical contamination of mercury in the Florida panther and other wildlife species by (1) determining whether mercury contamination has changed over the past century and (2), if change has occurred, to investigate possible correlations between this historical record (i.e., mercury content in hair and feathers) and anthropogenic activities involving mercury in Florida. In addition to the Florida panther, twenty bioindicator species have been identified for tissue sampling and analysis from both aquatic and terrestrial food webs. Specimens from the 1900s to the present day have been collected and analyzed and reflect periods of generally different anthropogenic activities potentially contributing to mercury contamination in south Florida. The mercury content in some museum samples (e.g., late 1940s) is similar to present day high values. The implications of this historical contamination is discussed in light of man`s activities over the past 100 years and current spacial patterns of mercury concentrations in fish tissue.

  7. Biological remediation of oil contaminated soil with earthworms Eisenia andrei

    NASA Astrophysics Data System (ADS)

    Chachina, S. B.; Voronkova, N. A.; Baklanova, O. N.

    2017-08-01

    The study was performed on the bioremediation efficiency of the soil contaminated with oil (20 to 100 g/kg), petroleum (20 to 60 g/kg) and diesel fuel (20 to 40 g/kg) with the help of earthworms E. andrei in the presence of bacteria Pseudomonas, nitrogen fixing bacteria Azotobacter and Clostridium, yeasts Saccharomyces, fungi Aspergillus and Penicillium, as well as Actinomycetales, all being components of biopreparation Baykal-EM. It was demonstrated that in oil-contaminated soil, the content of hydrocarbons decreased by 95-97% after 22 weeks in the presence of worms and bacteria. In petroleum-contaminated soil the content of hydrocarbons decreased by 99% after 22 weeks. The presence of the diesel fuel in the amount of 40 g per 1 kg soil had an acute toxic effect and caused the death of 50 % earthworm species in 14 days. Bacteria introduction enhanced the toxic effect of the diesel fuel and resulted in the death of 60 % earthworms after 7 days.

  8. Assessing impediments to hydrocarbon biodegradation in weathered contaminated soils.

    PubMed

    Adetutu, Eric; Weber, John; Aleer, Sam; Dandie, Catherine E; Aburto-Medina, Arturo; Ball, Andrew S; Juhasz, Albert L

    2013-10-15

    In this study, impediments to hydrocarbon biodegradation in contaminated soils were assessed using chemical and molecular methodologies. Two long-term hydrocarbon contaminated soils were utilised which were similar in physico-chemical properties but differed in the extent of hydrocarbon (C10-C40) contamination (S1: 16.5 g kg(-1); S2: 68.9 g kg(-1)). Under enhanced natural attenuation (ENA) conditions, hydrocarbon biodegradation was observed in S1 microcosms (26.4% reduction in C10-C40 hydrocarbons), however, ENA was unable to stimulate degradation in S2. Although eubacterial communities (PCR-DGGE analysis) were similar for both soils, the alkB bacterial community was less diverse in S2 presumably due to impacts associated with elevated hydrocarbons. When hydrocarbon bioaccessibility was assessed using HP-β-CD extraction, large residual concentrations remained in the soil following the extraction procedure. However, when linear regression models were used to predict the endpoints of hydrocarbon degradation, there was no significant difference (P>0.05) between HP-β-CD predicted and microcosm measured biodegradation endpoints. This data suggested that the lack of hydrocarbon degradation in S2 resulted primarily from limited hydrocarbon bioavailability.

  9. Evaluation of historical beryllium abundance in soils, airborne particulates and facilities at Lawrence Livermore National Laboratory.

    PubMed

    Sutton, Mark; Bibby, Richard K; Eppich, Gary R; Lee, Steven; Lindvall, Rachel E; Wilson, Kent; Esser, Bradley K

    2012-10-15

    Beryllium has been historically machined, handled and stored in facilities at Lawrence Livermore National Laboratory (LLNL) since the 1950s. Additionally, outdoor testing of beryllium-containing components has been performed at LLNL's Site 300 facility. Beryllium levels in local soils and atmospheric particulates have been measured over three decades and are comparable to those found elsewhere in the natural environment. While localized areas of beryllium contamination have been identified, laboratory operations do not appear to have increased the concentration of beryllium in local air or water. Variation in airborne beryllium correlates to local weather patterns, PM10 levels, normal sources (such as resuspension of soil and emissions from coal power stations) but not to LLNL activities. Regional and national atmospheric beryllium levels have decreased since the implementation of the EPA's 1990 Clean-Air-Act. Multi-element analysis of local soil and air samples allowed for the determination of comparative ratios for beryllium with over 50 other metals to distinguish between natural beryllium and process-induced contamination. Ten comparative elemental markers (Al, Cs, Eu, Gd, La, Nd, Pr, Sm, Th and Tl) that were selected to ensure background variations in other metals did not collectively interfere with the determination of beryllium sources in work-place samples at LLNL. Multi-element analysis and comparative evaluation are recommended for all workplace and environmental samples suspected of beryllium contamination. The multi-element analyses of soils and surface dusts were helpful in differentiating between beryllium of environmental origin and beryllium from laboratory operations. Some surfaces can act as "sinks" for particulate matter, including carpet, which retains entrained insoluble material even after liquid based cleaning. At LLNL, most facility carpets had beryllium concentrations at or below the upper tolerance limit determined by sampling facilities

  10. Geochemistry Of Lead In Contaminated Soils: Effects Of Soil Physico-Chemical Properties

    NASA Astrophysics Data System (ADS)

    Saminathan, S.; Sarkar, D.; Datta, R.; Andra, S. P.

    2006-05-01

    Lead (Pb) is an environmental contaminant with proven human health effects. When assessing human health risks associated with Pb, one of the most common exposure pathways typically evaluated is soil ingestion by children. However, bioaccessibility of Pb primarily depends on the solubility and hence, the geochemical form of Pb, which in turn is a function of site specific soil chemistry. Certain fractions of ingested soil-Pb may not dissociate during digestion in the gastro-intestinal tract, and hence, may not be available for transport across the intestinal membrane. Therefore, this study is being currently performed to assess the geochemical forms and bioaccessibility of Pb in soils with varying physico-chemical properties. In order to elucidate the level of Pb that can be ingested and assimilated by humans, an in-vitro model that simulates the physiological conditions of the human digestive system has been developed and is being used in this study. Four different types of soils from the Immokalee (an acid sandy soil with minimal Pb retention potential), Millhopper (a sandy loam with high Fe/Al content), Pahokee (a muck soil with more than 80% soil organic matter), and Tobosa series (an alkaline soil with high clay content) were artificially contaminated with Pb as lead nitrate at the rate equivalent to 0, 400, 800, and 1200 mg/kg dry soil. Analysis of soils by a sequential extraction method at time zero (immediately after spiking) showed that Immokalee and Millhopper soils had the highest amount of Pb in exchangeable form, whereas Pahokee and Tobosa soils had higher percentages of carbonate-bound and Fe/Al-bound Pb. The results of in-vitro experiment at time zero showed that majority of Pb was dissolved in the acidic stomach environment in Immokalee, Millhopper, and Tobosa, whereas it was in the intestinal phase in Pahokee soils. Because the soil system is not in equilibrium at time zero, the effect of soil properties on Pb geochemistry is not clear as yet. The

  11. Uranium-contaminated soils: Ultramicrotomy and electron beam analysis

    SciTech Connect

    Buck, E.C.; Dietz, N.L.; Bates, J.K.; Cunnane, J.C.

    1994-02-01

    Uranium-contaminated soils from the U.S. Department of Energy (DOE) Fernald Site, Ohio, have been examined by a combination of scanning electron microscopy with backscattered electron imaging (SEM/BSE) and analytical electron microscopy (AEM). The inhomogeneous distribution of particulate uranium phases in the soil required the development of a method for using ultramicrotomy to prepare transmission electron microscopy (TEM) thin sections of the SEM mounts. A water-miscible resin was selected that allowed comparison between SEM and TEM images, permitting representative sampling of the soil. Uranium was found in iron oxides, silicates (soddyite), phosphates (autunites), and fluorite (UO{sub 2}). No uranium was detected in association with phyllosilicates in the soil.

  12. Metal contamination of vineyard soils in wet subtropics (southern Brazil).

    PubMed

    Mirlean, Nicolai; Roisenberg, Ari; Chies, Jaqueline O

    2007-09-01

    The vine-growing areas in Brazil are the dampest in the world. Copper maximum value registered in this study was as much as 3200 mg kg(-1), which is several times higher than reported for vineyard soils in temperate climates. Other pesticide-derived metals accumulate in the topsoil layer, surpassing in the old vineyards the background value several times for Zn, Pb, Cr and Cd. Copper is transported to deeper soils' horizons and can potentially contaminate groundwater. The soils from basaltic volcanic rocks reveal the highest values of Cu extracted with CaCl(2), demonstrating a high capacity of copper transference into plants. When evaluating the risks of copper's toxic effects in subtropics, the soils from rhyolitic volcanic rocks are more worrisome, as the Cu extracted with ammonium acetate 1M surpasses the toxic threshold as much as 4-6 times.

  13. A humic acid extract from lignite for reclaiming contaminated soils

    SciTech Connect

    Barnhisel, R.I.

    1999-07-01

    A unique form of a humic compound was developed by A.I. Shulgin, A.A. Shapovalov and U.G. Putsykin of Moscow, Russia using a patented process from lignite coal. This material appears to have properties that complexes certain heavy metals such as Pb, Cu, Cd, etc. as well as PCB's. This study was restricted to its interaction with Pb. Both greenhouse and laboratory studies were conducted from a quantity of humic acid (Stabilite) from the SET company in Louisville, KY. Although Stabilite contains some Pb, in the laboratory study, significant reductions in Pb concentration occurred. Stabilite also reduced Pb levels of an artificially contaminated soil having 1,000 ppm Pb for both the residual soil as well as water leached through this soil. Corn grown in this did not extract Pb from the Stabilite treated soil.

  14. Results of treatment evaluations of a contaminated synthetic soil

    SciTech Connect

    Esposito, P.; Hessling, J.; Locke, B.B.; Taylor, M.; Szabo, M.; Thurnau, R.; Rogers, C.; Traver, R.; Barth, E.

    1989-03-01

    Under Phase I of EPA's Superfund soil treatability research program, which was conducted from April to November 1987, a surrogate soil containing a wide range of chemical contaminants typically occurring as Superfund sites was prepared and subjected to bench- or pilot-scale performance evaluations using the following treatment technologies; (1) physical separation/volume reduction (soil washing); (2) chemical treatment (KPEG); (3) thermal desorption; (4) incineration; and (5) stabilization/fixation. This report covers the formulation and development of the surrogate soil; it also highlights the results of the five treatment evaluations. Virtually all of the analytical data underlying this research were developed using EPA-SW846 methods. Detailed project reports covering the findings of each study are available through EPA's Risk Reduction Engineering Laboratory in Cincinnati, Ohio.

  15. Sources of arsenic and fluoride in highly contaminated soils causing groundwater contamination in Punjab, Pakistan

    SciTech Connect

    Farooqi, A.; Masuda, H.; Siddiqui, R.; Naseem, M.

    2009-05-15

    Highly contaminated groundwater, with arsenic (As) and fluoride (F{sup -}) concentrations of up to 2.4 and 22.8 mg/L, respectively, has been traced to anthropogenic inputs to the soil. In the present study, samples collected from the soil surface and sediments from the most heavily polluted area of Punjab were analyzed to determine the F{sup -} and As distribution in the soil. The surface soils mainly comprise permeable aeolian sediment on a Pleistocene terrace and layers of sand and silt on an alluvial flood plain. Although the alluvial sediments contain low levels of F, the terrace soils contain high concentrations of soluble F{sup -} (maximum, 16 mg/kg; mean, 4 mg/kg; pH > 8.0). Three anthropogenic sources were identified as fertilizers, combusted coal, and industrial waste, with phosphate fertilizer being the most significance source of F{sup -} accumulated in the soil. The mean concentration of As in the surface soil samples was 10.2 mg/kg, with the highest concentration being 35 mg/kg. The presence of high levels of As in the surface soil implies the contribution of air pollutants derived from coal combustion and the use of fertilizers. Intensive mineral weathering under oxidizing conditions produces highly alkaline water that dissolves the F{sup -} and As adsorbed on the soil, thus releasing it into the local groundwater.

  16. Diuron mobility through vineyard soils contaminated with copper.

    PubMed

    Jacobson, Astrid R; Dousset, Sylvie; Guichard, Nathalie; Baveye, Philippe; Andreux, Francis

    2005-11-01

    The herbicide diuron is frequently applied to vineyard soils in Burgundy, along with repeated treatments with Bordeaux mixture (a blend of copper sulfate and calcium hydroxide) that result in elevated copper concentrations. Cu could in principle affect the fate and transport of diuron or its metabolites in the soil either directly by complexation or indirectly by altering the populations or activity of microbes involved in their degradation. To assess the effect of high Cu concentrations on diuron transport, an experiment was designed with ten undisturbed columns of calcareous and acidic soils contaminated with 17--509 mg kg(-1) total Cu (field-applied). Grass was planted on three columns. Diuron was applied to the soils in early May and in-ground lysimeters were exposed to outdoor conditions until November. Less than 1.2% of the diuron applied was found in the leachates as diuron or its metabolites. Higher concentrations were found in the effluents from the grass-covered columns (0.1--0.45%) than from the bare-soil columns (0.02--0.14%), and they were correlated with increases in dissolved organic carbon. The highest amounts of herbicide were measured in acidic-soil column leachates (0.98--1.14%) due to the low clay and organic matter contents of these soils. Cu also leached more readily through the acidic soils (32.8--1042 microg) than in the calcareous soils (9.5--63.4 microg). Unlike in the leachates, the amount of diuron remaining in the soils at the end of the experiment was weakly related to the Cu concentrations in the soils.

  17. Effect Of Soil Properties On The Geochemical Speciation Of Arsenic In Contaminated Soils: A Greenhouse Study

    NASA Astrophysics Data System (ADS)

    Sharma, S.; Sarkar, D.; Datta, R.

    2005-05-01

    Land-applied arsenical pesticides have contributed elevated soil arsenic (As) levels. Many baseline risk assessments As-contaminated sites assume that all As present in the soil is bioavailable, thereby potentially overestimating the actual health risk. However, risk from As exposure is associated only with those forms of As that are potentially extractable by the human gastrointestinal juices. It has been demonstrated that As may exist in several geochemical forms depending on soil chemical properties, which may or may not be bioavailable. The current study aims at addressing the issue of soil variability on As bioavailability as a function of soil physico-chemical properties in a greenhouse setting involving dynamic interactions between soil, water and plants. Four different soils were chosen based on their potential differences with respect to As reactivity: Immokalee, an acid sand with low extractable Fe/Al, having minimal arsenic retention capacity; Millhopper, an acid sandy loam with high extractable Fe/Al oxides; Pahokee Muck soil with 85% soil organic matter (SOM) as well as high Fe/Al content; and Orelia soil with high clay and Fe/Al content. Soils were amended with sodium arsenate (675 and 1500 mg/Kg). Rice (Oryza sativa) was used as the test crop. A sequential extraction scheme was employed to identify the geochemical forms of As in soils (soluble, exchangeable, organic, Fe/Al-bound, Ca/Mg-bound, residual) immediately after spiking; after 3 mo; and after 6 mo of equilibration time. Concentrations of these As forms were correlated with the in-vitro bioavailable As fractions to identify those As fractions that are most likely to be bioavailable. Results from this study showed that there was little to no plant growth in the contaminated soils. Sequential extractions of the soil indicated that arsenic is strongly adsorbed onto soil amorphous iron/aluminum oxides, and the degree of arsenic retention is a direct function of equilibration time.

  18. Electrokinetic electrode system for extraction of soil contaminants from unsaturated soils

    DOEpatents

    Lindgren, E.R.; Mattson, E.D.

    1995-07-25

    An electrokinetic electrode assembly is described for use in extraction of soil contaminants from unsaturated soil in situ. The assembly includes a housing for retaining a liquid comprising an electrolyte solution, pure water, and soil water, the housing being in part of porous material capable of holding a vacuum. An electrode is mounted in the housing. The housing is provided with a vacuum orifice for effecting a vacuum within the housing selectively to control flow of soil water through the housing into the chamber and to control outflow of the liquid from the chamber. The assembly further includes conduit means for removing the liquid from the housing and returning the electrolyte solution to the housing, and a conduit for admitting pure water to the housing. An electrode system and method are also revealed for extraction of soil contaminants. The system and method utilize at least two electrode assemblies as described above. 5 figs.

  19. Electrokinetic electrode system for extraction of soil contaminants from unsaturated soils

    DOEpatents

    Lindgren, Eric R.; Mattson, Earl D.

    1995-01-01

    There is presented an electrokinetic electrode assembly for use in extraction of soil contaminants from unsaturated soil in situ. The assembly includes a housing for retaining a liquid comprising an electrolyte solution, pure water, and soil water, the housing being in part of porous material capable of holding a vacuum. An electrode is mounted in the housing. The housing is provided with a vacuum orifice for effecting a vacuum within the housing selectively to control flow of soil water through the housing into the chamber and to control outflow of the liquid from the chamber. The assembly further includes conduit means for removing the liquid from the housing and returning the electrolyte solution to the housing, and a conduit for admitting pure water to the housing. There is further presented an electrode system and method for extraction of soil contaminants, the system and method utilizing at least two electrode assemblies as described above.

  20. Remediation of lead and cadmium-contaminated soils.

    PubMed

    Salama, Ahmed K; Osman, Khaled A; Gouda, Neama Abdel-Razeek

    2016-01-01

    The research was designated to study the ability of plants to bio-accumulate, translocate and remove the heavy metals, lead and cadmium from contaminated soil. The herbal plant ryegrass, Lolium multiflorum was investigated as a bio-accumulator plant for these metals. The translocation of these heavy metals in the herbal plant was compared considering root to shoot transport and redistribution of metals in the root and shoot system. The trace metal contents from root and shoot parts were determined using atomic absorption spectrometer. The results showed that the percent of lead and cadmium transferred to ryegrass plant were averaged as 51.39, and 74.57%, respectively, while those remained in the soil were averaged as 48.61 and 25.43% following 60 days of treatment. The soil-plant transfer index in root and shoot system of ryegrass was found to be 0.32 and 0.20 for lead, and 0.50 and 0.25 for cadmium. These findings indicated that the herbal plant ryegrass, Lolium multiflorum is a good accumulator for cadmium than lead. The soil-plant transfer factor (the conc. of heavy metal in plant to the conc. in soil) indicated that the mechanism of soil remedy using the investigated plant is phytoextraction where the amounts of heavy metals transferred by plant roots into the above ground portions were higher than that remained in the soil. The method offers green technology solution for the contamination problem since it is effective technology with minimal impact on the environment and can be easily used for soil remedy.

  1. LAND TREATMENT OF PAH-CONTAMINATED SOIL: PERFORMANCE MEASURED BY CHEMICAL AND TOXICITY ASSAYS

    EPA Science Inventory

    The performance of a soil remediation process can be determined by measuring the reduction in target soil contaminant concentrations and by assessing the treatment's ability to lower soil toxicity. Land treatment of polycyclic armomatic hydrocarbon (PAH)-contaminated soil from a ...

  2. Assessing the Educational Needs of Urban Gardeners and Farmers on the Subject of Soil Contamination

    ERIC Educational Resources Information Center

    Harms, Ashley Marie Raes; Presley, DeAnn Ricks; Hettiarachchi, Ganga M.; Thien, Stephen J.

    2013-01-01

    Participation in urban agriculture is growing throughout the United States; however, potential soil contaminants in urban environments present challenges. Individuals in direct contact with urban soil should be aware of urban soil quality and soil contamination issues to minimize environmental and human health risks. The study reported here…

  3. Assessing the Educational Needs of Urban Gardeners and Farmers on the Subject of Soil Contamination

    ERIC Educational Resources Information Center

    Harms, Ashley Marie Raes; Presley, DeAnn Ricks; Hettiarachchi, Ganga M.; Thien, Stephen J.

    2013-01-01

    Participation in urban agriculture is growing throughout the United States; however, potential soil contaminants in urban environments present challenges. Individuals in direct contact with urban soil should be aware of urban soil quality and soil contamination issues to minimize environmental and human health risks. The study reported here…

  4. LAND TREATMENT OF PAH-CONTAMINATED SOIL: PERFORMANCE MEASURED BY CHEMICAL AND TOXICITY ASSAYS

    EPA Science Inventory

    The performance of a soil remediation process can be determined by measuring the reduction in target soil contaminant concentrations and by assessing the treatment's ability to lower soil toxicity. Land treatment of polycyclic aromatic hydrocarbon (PAH)-contaminated soil from a ...

  5. LAND TREATMENT OF PAH-CONTAMINATED SOIL: PERFORMANCE MEASURED BY CHEMICAL AND TOXICITY ASSAYS

    EPA Science Inventory

    The performance of a soil remediation process can be determined by measuring the reduction in target soil contaminant concentrations and by assessing the treatment's ability to lower soil toxicity. Land treatment of polycyclic armomatic hydrocarbon (PAH)-contaminated soil from a ...

  6. LAND TREATMENT OF PAH-CONTAMINATED SOIL: PERFORMANCE MEASURED BY CHEMICAL AND TOXICITY ASSAYS

    EPA Science Inventory

    The performance of a soil remediation process can be determined by measuring the reduction in target soil contaminant concentrations and by assessing the treatment's ability to lower soil toxicity. Land treatment of polycyclic aromatic hydrocarbon (PAH)-contaminated soil from a ...

  7. CHALLENGES OF PRESERVING HISTORIC RESOURCES DURING THE D & D OF HIGHLY CONTAMINATED HISTORICALLY SIGNIFICANT PLUTONIUM PROCESS FACILITIES

    SciTech Connect

    HOPKINS, A.M.

    2006-03-17

    The Manhattan Project was initiated to develop nuclear weapons for use in World War II. The Hanford Engineer Works (HEW) was established in eastern Washington State as a production complex for the Manhattan Project. A major product of the HEW was plutonium. The buildings and process equipment used in the early phases of nuclear weapons development are historically significant because of the new and unique work that was performed. When environmental cleanup became Hanford's central mission in 1991, the Department of Energy (DOE) prepared for the deactivation and decommissioning of many of the old process facilities. In many cases, the process facilities were so contaminated, they faced demolition. The National Historic Preservation Act (NHPA) requires federal agencies to evaluate the historic significance of properties under their jurisdiction for eligibility for inclusion in the National Register of Historic Places before altering or demolishing them so that mitigation through documentation of the properties can occur. Specifically, federal agencies are required to evaluate their proposed actions against the effect the actions may have on districts, sites, buildings or structures that ere included or eligible for inclusion in the National Register. In an agreement between the DOE'S Richland Operations Office (RL), the Washington State Historic Preservation Office (SHPO) and the Advisory Council on Historic Preservation (ACHP), the agencies concurred that the Hanford Site Historic District is eligible for listing on the National Register of Historic Places and that a Sitewide Treatment Plan would streamline compliance with the NHPA while allowing RL to manage the cleanup of the Hanford Site. Currently, many of the old processing buildings at the Plutonium Finishing Plant (PFP) are undergoing deactivation and decommissioning. RL and Fluor Hanford project managers at the PFP are committed to preserving historical artifacts of the plutonium production process. They

  8. The Challenges of Preserving Historic Resources During the Deactivation and Decommissioning of Highly Contaminated Historically Significant Plutonium Process Facilities

    SciTech Connect

    Hopkins, A.; Minette, M.; Sorenson, D.; Heineman, R.; Gerber, M.; Charboneau, S.; Bond, F.

    2006-07-01

    The Manhattan Project was initiated to develop nuclear weapons for use in World War II. The Hanford Engineer Works (HEW) was established in eastern Washington State as a production complex for the Manhattan Project. A major product of the HEW was plutonium. The buildings and process equipment used in the early phases of nuclear weapons development are historically significant because of the new and unique work that was performed. When environmental cleanup became Hanford's central mission in 1991, the Department of Energy (DOE) prepared for the deactivation and decommissioning of many of the old process facilities. In many cases, the process facilities were so contaminated, they faced demolition. The National Historic Preservation Act (NHPA) requires federal agencies to evaluate the historic significance of properties under their jurisdiction for eligibility for inclusion in the National Register of Historic Places before altering or demolishing them so that mitigation through documentation of the properties can occur. Specifically, federal agencies are required to evaluate their proposed actions against the effect the actions may have on districts, sites, buildings or structures that are included or eligible for inclusion in the National Register. In an agreement between the DOE's Richland Operations Office (RL), the Washington State Historic Preservation Office (SHPO) and the Advisory Council on Historic Preservation (ACHP), the agencies concurred that the Hanford Site Historic District is eligible for listing on the National Register of Historic Places and that a Site-wide Treatment Plan would streamline compliance with the NHPA while allowing RL to manage the cleanup of the Hanford Site. Currently, many of the old processing buildings at the Plutonium Finishing Plant (PFP) are undergoing deactivation and decommissioning. RL and Fluor Hanford project managers at the PFP are committed to preserving historical artifacts of the plutonium production process. They

  9. Combining phytoextraction and biochar addition improves soil biochemical properties in a soil contaminated with Cd.

    PubMed

    Lu, Huanping; Li, Zhian; Fu, Shenglei; Méndez, Ana; Gascó, Gabriel; Paz-Ferreiro, Jorge

    2015-01-01

    The main goal of phytoremediation is to improve ecosystem functioning. Soil biochemical properties are considered as effective indicators of soil quality and are sensitive to various environmental stresses, including heavy metal contamination. The biochemical response in a soil contaminated with cadmium was tested after several treatments aimed to reduce heavy metal availability including liming, biochar addition and phytoextraction using Amaranthus tricolor L. Two biochars were added to the soil: eucalyptus pyrolysed at 600 °C (EB) and poultry litter at 400 °C (PLB). Two liming treatments were chosen with the aim of bringing soil pH to the same values as in the treatments EB and PLB. The properties studied included soil microbial biomass C, soil respiration and the activities of invertase, β-glucosidase, β-glucosaminidase, urease and phosphomonoesterase. Both phytoremediation and biochar addition improved soil biochemical properties, although results were enzyme specific. For biochar addition these changes were partly, but not exclusively, mediated by alterations in soil pH. A careful choice of biochar must be undertaken to optimize the remediation process from the point of view of metal phytoextraction and soil biological activity.

  10. Soil Contamination as a Legacy of the U.S. Auto Industry, Southwest Detroit, Michigan USA

    NASA Astrophysics Data System (ADS)

    Murray, K.; Peterman, C.

    2012-04-01

    The Delray community of southwest Detroit is one of the most depressed areas in southeast Michigan. Historically, Delray was a working class, racially diverse community that depended heavily on industrial jobs provided by nearby factories. However, decades of industrial waste discharges have left Delray with extensive air and soil pollution. Although high unemployment and poverty are major challenges confronting residents in Delray today, the threat to public health from Pb, Hg, As and Cr [VI] in the soil may become an even bigger issue and a significant source of concern. Newspaper headlines cite crime, substance abuse, high school and labor force dropout, as being prevalent in Delray, but recent research suggest that soil contamination, which has resulted in elevated blood Pb levels may be an underlying factor. Recent interest in this area as a potential site for a new bridge to Canada, has offered new hope to the residents by potentially opening the door for redevelopment. The initial step in this process is an environmental assessment of the Delray community. This investigation is being conducted by the University of Michigan-Dearborn in consortium with local community groups and the Detroit Public School. Although preliminary, an analysis of soil samples from over 400 residences has indicated that significant levels of As, and Pb are present in the upper 0.1 meter of soil throughout the Delray area. The high levels of metals present in the soil suggest that further investigation and possible remedial action will be necessary prior to redevelopment.

  11. Characterization and remediation of soils contaminated with uranium.

    PubMed

    Gavrilescu, Maria; Pavel, Lucian Vasile; Cretescu, Igor

    2009-04-30

    Environmental contamination caused by radionuclides, in particular by uranium and its decay products is a serious problem worldwide. The development of nuclear science and technology has led to increasing nuclear waste containing uranium being released and disposed in the environment. The objective of this paper is to develop a better understanding of the techniques for the remediation of soils polluted with radionuclides (uranium in particular), considering: the chemical forms of uranium, including depleted uranium (DU) in soil and other environmental media, their characteristics and concentrations, and some of the effects on environmental and human health; research issues concerning the remediation process, the benefits and results; a better understanding of the range of uses and situations for which each is most appropriate. The paper addresses the main features of the following techniques for uranium remediation: natural attenuation, physical methods, chemical processes (chemical extraction methods from contaminated soils assisted by various suitable chelators (sodium bicarbonate, citric acid, two-stage acid leaching procedure), extraction using supercritical fluids such as solvents, permeable reactive barriers), biological processes (biomineralization and microbial reduction, phytoremediation, biosorption), and electrokinetic methods. In addition, factors affecting uranium removal from soils are furthermore reviewed including soil characteristics, pH and reagent concentration, retention time.

  12. Phytoremediation of mercury-contaminated soils by Jatropha curcas.

    PubMed

    Marrugo-Negrete, José; Durango-Hernández, José; Pinedo-Hernández, José; Olivero-Verbel, Jesús; Díez, Sergi

    2015-05-01

    Jatropha curcas plants species were tested to evaluate their phytoremediation capacity in soils contaminated by different levels of mercury. The experimental treatments consisted of four levels of mercury concentrations in the soil - T0, T1, T5, and T10 (0, 1, 5, and 10 μg Hg per g soil, respectively). The total mercury content absorbed by the different plant tissues (roots, stems and leaves) was determined during four months of exposure. The growth behavior, mercury accumulation, translocation (TF) and bioconcentration (BCF) factors were determined. The different tissues in J. curcas can be classified in order of decreasing accumulation Hg as follows: roots>leaves>stems. The highest cumulative absorption of the metal occurred between the second and third month of exposure. Maximum TF was detected during the second month and ranged from 0.79 to 1.04 for the different mercury concentrations. Values of BCF ranged from 0.21 to 1.43. Soils with T1 showed significantly higher BCF (1.43) followed by T10 (1.32) and T5 (0.91), all of them at the fourth month. On the other hand TFs were low (range 0.10-0.26) at the en of the experiment. The maximum reduction of biomass (16.3%) occurred for T10 (10 μg Hg g(-1)). In sum, J. curcas species showed high BCFs and low TFs, and their use could be a promising approach to remediating mercury-contaminated soils.

  13. Phytoremediation of soils contaminated with toxic elements and radionuclides

    SciTech Connect

    Cornish, J.E.; Goldberg, W.C.; Levine, R.S.; Benemann, J.R.

    1995-12-31

    At many US Department of Energy (US DOE) facilities and other sites, surface soils over relatively large areas are contaminated with heavy metals, radionuclides, and other toxic elements, often at only a relatively small factor above regulatory action levels. Cleanup of such sites presents major challenges, because currently available soil remediation technologies can be very expensive. In response, the US DOE`s Office of Technology Development, through the Western Environmental Technology Office, is sponsoring research in the area of phytoremediation. Phytoremediation is an emerging technology that uses higher plants to transfer toxic elements and radionuclides from surface soils into aboveground biomass. Some plants, termed hyperaccumulators, take up toxic elements in substantial amounts, resulting in concentrations in aboveground biomass over 100 times those observed with conventional plants. After growth, the plant biomass is harvested, and the toxic elements are concentrated and reclaimed or disposed of. As growing, harvesting, and processing plant biomass is relatively inexpensive, phytoremediation can be a low-cost technology for remediation of extensive areas having lightly to moderately contaminated soils. This paper reviews the potential of hyper- and moderate accumulator plants in soil remediation, provides some comparative cost estimates, and outlines ongoing work initiated by the US DOE.

  14. Washing of various lead compounds from a contaminated soil column

    SciTech Connect

    Davis, A.P.; Hotha, B.V.

    1998-11-01

    Soil samples artificially contaminated with 10 different lead compounds to produce 5,000 mg/kg Pb were washed with acid and ethylenediaminetetraacetic acid (EDTA) solutions. For variable pH, the highest washing efficiencies were achieved at pH 2, the lowest value examined. Washing with EDTA enhanced the removal of lead, the removal increasing with an increase in the EDTA:lead molar ratio. High removals (70--106%) of adsorbed lead (as lead nitrate), lead carbonate, basic lead carbonate, lead sulfate, and lead oxide were achieved with both types of washing. Although not washed effectively with acid, significant lead dioxide removal occurred with EDTA wash. The removals of lead sulfide, lead paint, lead dimethyldithiocarbamate, and elemental lead were low (near 0--16%) under all washing conditions. The removal efficiency of the lead is affected by the compound solubility, lead solid dissolution kinetics, and lead sorption into the soil. Results clearly indicate the importance of the form of lead contamination in determining the success of a soil washing operation. Comparison of these results with other suggests that soil washing success and soil lead bioaccessibility are related phenomena.

  15. The basis for ecotoxicological concern in aquatic ecosystems contaminated by historical mercury mining.

    PubMed

    Wiener, James G; Suchanek, Thomas H

    2008-12-01

    The Coast Range of California is one of five global regions that dominated historical production of mercury (Hg) until declining demand led to the economic collapse of the Hg-mining industry in the United States. Calcines, waste rock, and contaminated alluvium from inactive mine sites can release Hg (including methylmercury, MeHg) to the environment for decades to centuries after mining has ceased. Soils, water, and sediment near mines often contain high concentrations of total Hg (TotHg), and an understanding of the biogeochemical transformations, transport, and bioaccumulation of this toxic metal is needed to assess effects of these contaminated environments on humans and wildlife. We briefly review the environmental behavior and effects of Hg, providing a prelude to the subsequent papers in this Special Issue. Clear Lake is a northern California lake contaminated by wastes from the abandoned Sulphur Bank Mercury Mine, a U.S. Environmental Protection Agency Superfund Site. The primary toxicological problem with Hg in aquatic ecosystems is biotic exposure to MeHg, a highly toxic compound that readily bioaccumulates. Processes that affect the abundance of MeHg (including methylation and demethylation) strongly affect its concentration in all trophic levels of aquatic food webs. MeHg can biomagnify to high concentrations in aquatic food webs, and consumption of fish is the primary pathway for human exposure. Fish consumption advisories have been issued for many North American waters, including Clear Lake and other mine-impacted waters in California, as a means of decreasing MeHg exposure. Concerns about MeHg exposure in humans focus largely on developmental neurotoxicity to the fetus and children. Aquatic food webs are also an important pathway for MeHg exposure of wildlife, which can accumulate high, sometimes harmful, concentrations. In birds, wild mammals, and humans, MeHg readily passes to the developing egg, embryo, or fetus, life stages that are much more

  16. Transport of PCBs with leachate water from the contaminated soil.

    PubMed

    Kobasić, Vedranka Hodak; Picer, Mladen; Picer, Nena; Calić, Violeta

    2008-08-01

    Contaminated soil was taken from the area around the damaged capacitor of an electrical transformer station in Zadar (Croatia) and a phytoremediation experimental field was constructed with lysimeters. The levels of PCBs in the leachate water samples were measured nearly 3 years. The experiment was conducted under natural climatic conditions, through hot summers and mild winters. Although the amounts of leachated PCBs from the polluted soil were relatively small, their concentrations in leachate water samples from 1,500 to 29,000 ng L(-1) substantially exceeded the maximum allowed concentration of the total PCBs in the fishponds of Croatia (1 ng L(-1)).

  17. Chemical oxidation of contaminants in clay or sandy soil

    SciTech Connect

    Gates, D.D.; Cline, S.R.; Siegrist, R.L.

    1995-11-01

    This paper describes laboratory studies conducted at Oak Ridge National Laboratory (ORNL), investigating the feasibility of the application of low-strength hydrogen peroxide (H{sub 2}O{sub 2}) or potassium permanganate (KMnO{sub 4}) solutions to remediate soil contaminated with volatile organic compounds (VOCs). A statistically designed screening study was completed that evaluated the effect of several factors on chemical oxidation treatment efficiency. This study revealed that the most important factors include oxidant type, oxidant concentration, reaction time and soil type. Using the optimum treatment conditions, greater than 90% reduction of trichloroethylene (TCE) and perchloroethylene (PCE) was achieved using in situ chemical oxidation.

  18. Historical precipitation predictably alters the shape and magnitude of microbial functional response to soil moisture.

    PubMed

    Averill, Colin; Waring, Bonnie G; Hawkes, Christine V

    2016-05-01

    Soil moisture constrains the activity of decomposer soil microorganisms, and in turn the rate at which soil carbon returns to the atmosphere. While increases in soil moisture are generally associated with increased microbial activity, historical climate may constrain current microbial responses to moisture. However, it is not known if variation in the shape and magnitude of microbial functional responses to soil moisture can be predicted from historical climate at regional scales. To address this problem, we measured soil enzyme activity at 12 sites across a broad climate gradient spanning 442-887 mm mean annual precipitation. Measurements were made eight times over 21 months to maximize sampling during different moisture conditions. We then fit saturating functions of enzyme activity to soil moisture and extracted half saturation and maximum activity parameter values from model fits. We found that 50% of the variation in maximum activity parameters across sites could be predicted by 30-year mean annual precipitation, an indicator of historical climate, and that the effect is independent of variation in temperature, soil texture, or soil carbon concentration. Based on this finding, we suggest that variation in the shape and magnitude of soil microbial response to soil moisture due to historical climate may be remarkably predictable at regional scales, and this approach may extend to other systems. If historical contingencies on microbial activities prove to be persistent in the face of environmental change, this approach also provides a framework for incorporating historical climate effects into biogeochemical models simulating future global change scenarios.

  19. Native rhizobia from Zn mining soil promote the growth of Leucaena leucocephala on contaminated soil.

    PubMed

    Rangel, Wesley M; Thijs, Sofie; Janssen, Jolien; Oliveira Longatti, Silvia M; Bonaldi, Daiane S; Ribeiro, Paula R A; Jambon, Inge; Eevers, Nele; Weyens, Nele; Vangronsveld, Jaco; Moreira, Fatima M S

    2017-02-01

    Plants on contaminated mining soils often show a reduced growth due to nutrient depletion as well as trace elements (TEs) toxicity. Since those conditions threat plant's survival, plant growth-promoting rhizobacteria (PGPRs), such as rhizobia, might be of crucial importance for plant colonization on TE-contaminated soils. Native rhizobia from mining soils are promising candidates for bioaugmented phytoremediation of those soils as they are adapted to the specific conditions. In this work, rhizobia from Zn- and Cd-contaminated mining soils were in vitro screened for their PGP features [organic acids, indole-3-acetic acid (IAA), and siderophore (SID) production; 1-aminocyclopropane-1-carboxylate (ACC) deaminase activity; and Ca3(PO4)2 solubilization] and Zn and Cd tolerance. In addition, some type and reference rhizobia strains were included in the study as well. The in vitro screening indicated that rhizobia and other native genera have great potential for phytoremediation purposes, by exerting, besides biological N2 fixation, other plant growth-promoting traits. Leucaena leucocephala-Mesorhizobium sp. (UFLA 01-765) showed multielement tolerance and an efficient symbiosis on contaminated soil, decreasing the activities of antioxidative enzymes in shoots. This symbiosis is a promising combination for phytostabilization.

  20. Remediation of Nitrobenzene Contaminated Soil by Combining Surfactant Enhanced Soil Washing and Effluent Oxidation with Persulfate

    PubMed Central

    Yan, Jingchun; Gao, Weiguo; Qian, Linbo; Han, Lu; Chen, Yun; Chen, Mengfang

    2015-01-01

    The combination of surfactant enhanced soil washing and degradation of nitrobenzene (NB) in effluent with persulfate was investigated to remediate NB contaminated soil. Aqueous solution of sodium dodecylbenzenesulfonate (SDBS, 24.0 mmol L-1) was used at a given mass ratio of solution to soil (20:1) to extract NB contaminated soil (47.3 mg kg-1), resulting in NB desorption removal efficient of 76.8%. The washing effluent was treated in Fe2+/persulfate and Fe2+/H2O2 systems successively. The degradation removal of NB was 97.9%, being much higher than that of SDBS (51.6%) with addition of 40.0 mmol L-1 Fe2+ and 40.0 mmol L-1 persulfate after 15 min reaction. The preferential degradation was related to the lone pair electron of generated SO4•−, which preferably removes electrons from aromatic parts of NB over long alkyl chains of SDBS through hydrogen abstraction reactions. No preferential degradation was observed in •OH based oxidation because of its hydrogen abstraction or addition mechanism. The sustained SDBS could be reused for washing the contaminated soil. The combination of the effective surfactant-enhanced washing and the preferential degradation of NB with Fe2+/persulfate provide a useful option to remediate NB contaminated soil. PMID:26266532

  1. Remediation of nitrobenzene contaminated soil by combining surfactant enhanced soil washing and effluent oxidation with persulfate.

    PubMed

    Yan, Jingchun; Gao, Weiguo; Qian, Linbo; Han, Lu; Chen, Yun; Chen, Mengfang

    2015-01-01

    The combination of surfactant enhanced soil washing and degradation of nitrobenzene (NB) in effluent with persulfate was investigated to remediate NB contaminated soil. Aqueous solution of sodium dodecylbenzenesulfonate (SDBS, 24.0 mmol L-1) was used at a given mass ratio of solution to soil (20:1) to extract NB contaminated soil (47.3 mg kg-1), resulting in NB desorption removal efficient of 76.8%. The washing effluent was treated in Fe2+/persulfate and Fe2+/H2O2 systems successively. The degradation removal of NB was 97.9%, being much higher than that of SDBS (51.6%) with addition of 40.0 mmol L-1 Fe2+ and 40.0 mmol L-1 persulfate after 15 min reaction. The preferential degradation was related to the lone pair electron of generated SO4•-, which preferably removes electrons from aromatic parts of NB over long alkyl chains of SDBS through hydrogen abstraction reactions. No preferential degradation was observed in •OH based oxidation because of its hydrogen abstraction or addition mechanism. The sustained SDBS could be reused for washing the contaminated soil. The combination of the effective surfactant-enhanced washing and the preferential degradation of NB with Fe2+/persulfate provide a useful option to remediate NB contaminated soil.

  2. Johnston Atoll Plutonium Contaminated Soil Cleanup Project. Quarterly report No. 3, 7 February-30 April 1994

    SciTech Connect

    Doane, R.W.; Grant, R.H.

    1996-11-01

    During this production period, the Scope of Work included movement of soil to and from the plant, processing contaminated soil through the Segmented Gate System (SGS) and Soil Washing System, packaging of waste soil for shipment, identification and implementation of process improvements, data collection and validation, and compliance with all applicable regulations governing environmental safety and health. The SGS utilizes arrays of sensitive radiation detectors coupled with sophisticated computer software to segregate contaminated soil from a moving feed supply on conveyor belts. Contaminated soil is diverted to a `hot` path for plutonium particles greater than 5000 Becquerels or to a supplemental soil washing process designed to remove dispersed low level contamination from a soil faction consisting of very small particles. Low to intermediate levels of contamination are removed from the soil to meet DNA`s criteria for unrestricted use of less than 500 Becquerels per kilogram of soil, with no `hot` particles.

  3. Notification: Preliminary Research to Evaluate EPA's Response to Contamination From Historical Lead Smelters

    EPA Pesticide Factsheets

    Project #OPE-FY13-0023, June 6, 2013. The U.S. Environmental Protection Agency’s Office of Inspector General plans to begin preliminary research to evaluate the EPA’s response to contamination from historical lead smelters.

  4. Vitrification of radioactive contaminated soil by means of microwave energy

    NASA Astrophysics Data System (ADS)

    Yuan, Xun; Qing, Qi; Zhang, Shuai; Lu, Xirui

    2017-03-01

    Simulated radioactive contaminated soil was successfully vitrified by microwave sintering technology and the solidified body were systematically studied by Raman, XRD and SEM-EDX. The Raman results show that the solidified body transformed to amorphous structure better at higher temperature (1200 °C). The XRD results show that the metamictization has been significantly enhanced by the prolonged holding time at 1200 °C by microwave sintering, while by conventional sintering technology other crystal diffraction peaks, besides of silica at 2θ = 27.830°, still exist after being treated at 1200 °C for much longer time. The SEM-EDX discloses the micro-morphology of the sample and the uniform distribution of Nd element. All the results show that microwave technology performs vitrification better than the conventional sintering method in solidifying radioactive contaminated soil.

  5. Hanford Site surface soil radioactive contamination control plan, March 1993

    SciTech Connect

    Mix, P.D.; Winship, R.A.

    1993-04-01

    The Decommissioning and Resource Conservation and Recovery Act Closure Program is responsible to the US Department of Energy Richland Field Office, for the safe and cost-effective surveillance, maintenance, and decommissioning of surplus facilities and Resource Conservation and Recovery Act of 1976 closures at the Hanford Site. This program also manages the Radiation Area Remedial Action that includes the surveillance, maintenance, decontamination, and/or interim stabilization of inactive burial grounds, cribs, ponds, trenches, and unplanned release sites. This plan addresses only the Radiation Area Remedial Action activity requirements for managing and controlling the contaminated surface soil areas associated with these inactive sites until they are remediated as part of the Hanford Site environmental restoration process. All officially numbered Radiation Area Remedial Action and non-Radiation Area Remedial Action contaminated surface soil areas are listed in this document so that a complete list of the sites requiring remediation is contained in one document.

  6. COPING WITH CONTAMINATED SEDIMENTS AND SOILS IN THE URBAN ENVIRONMENT.

    SciTech Connect

    JONES,K.W.; VAN DER LELIE,D.; MCGUIGAN,M.; ET AL.

    2004-05-25

    Soils and sediments contaminated with toxic organic and inorganic compounds harmful to the environment and to human health are common in the urban environment. We report here on aspects of a program being carried out in the New York/New Jersey Port region to develop methods for processing dredged material from the Port to make products that are safe for introduction to commercial markets. We discuss some of the results of the program in Computational Environmental Science, Laboratory Environmental Science, and Applied Environmental Science and indicate some possible directions for future work. Overall, the program elements integrate the scientific and engineering aspects with regulatory, commercial, urban planning, local governments, and community group interests. Well-developed connections between these components are critical to the ultimate success of efforts to cope with the problems caused by contaminated urban soils and sediments.

  7. Advanced Assay Systems for Radionuclide Contamination in Soils

    SciTech Connect

    J. R. Giles; L. G. Roybal; M. V. Carpenter; C. P. Oertel; J. A. Roach

    2008-02-01

    Through the support of the Department of Energy (DOE) Office of Environmental Management (EM) Technical Assistance Program, the Idaho National Laboratory (INL) has developed and deployed a suite of systems that rapidly scan, characterize, and analyze surface soil contamination. The INL systems integrate detector systems with data acquisition and synthesis software and with global positioning technology to provide a real-time, user-friendly field deployable turn-key system. INL real-time systems are designed to characterize surface soil contamination using methodologies set forth in the Multi-Agency Radiation Surveys and Site Investigation Manual (MARSSIM). MARSSIM provides guidance for planning, implementing, and evaluating environmental and facility radiological surveys conducted to demonstrate compliance with a dose or risk-based regulation and provides real-time information that is immediately available to field technicians and project management personnel. This paper discusses the history of the development of these systems and describes some of the more recent examples and their applications.

  8. EFFECTIVE DOSIMETRIC HALF LIFE OF CESIUM 137 SOIL CONTAMINATION

    SciTech Connect

    Jannik, T; P Fledderman, P; Michael Paller, M

    2008-01-09

    In the early 1960s, an area of privately-owned swamp adjacent to the US Department of Energy's Savannah River Site (SRS), known as Creek Plantation, was contaminated by site operations. Studies conducted in 1974 estimated that approximately 925 GBq of {sup 137}Cs was deposited in the swamp. Subsequently, a series of surveys--composed of 52 monitoring locations--was initiated to characterize and trend the contaminated environment. The annual, potential, maximum doses to a hypothetical hunter were estimated by conservatively using the maximum {sup 137}Cs concentrations measured in the soil. The purpose of this report is to calculate an 'effective dosimetric' half-life for {sup 137}Cs in soil (based on the maximum concentrations) and compare it to the effective environmental half-life (based on the geometric mean concentrations).

  9. Bioventing vs. prepared beds for remediation of petroleum contaminated soil

    SciTech Connect

    Hazen, T.C.; Lombard, K.H.; Kastner, J.R.

    1996-10-01

    Bioventing is an in situ biostimulation technique that has become extremely popular recently for remediation of near-surface sediment (soil) contaminated with petroleum products. Prepared Bed bioremediation of petroleum contaminated soil involves the use of a centralized controlled above ground facility that uses contained land-farming techniques. Several sites at the U.S. DOE Savannah River Site have been evaluated and remediated using these two technologies. The characterization cost, capital costs, safety, implementation time, remediation rate, monitoring requirements, final disposition requirements, regulatory requirements, and public acceptance make these techniques better then any other conventional technology, e.g. incineration, and make it difficult to decide which of the two is the best alternative. New rapid site characterization and treatability techniques e.g. laser induced fluorescence and microrespirometry, have allowed better decisions as to which of these two technologies is the most appropriate for a given site.

  10. Large-scale experience with biological treatment of contaminated soil

    SciTech Connect

    Schulz-Berendt, V.; Poetzsch, E.

    1995-12-31

    The efficiency of biological methods for the cleanup of soil contaminated with total petroleum hydrocarbons (TPH) and polycyclic aromatic hydrocarbons (PAH) was demonstrated by a large-scale example in which 38,000 tons of TPH- and PAH-polluted soil was treated onsite with the TERRAFERM{reg_sign} degradation system to reach the target values of 300 mg/kg TPH and 5 mg/kg PAH. Detection of the ecotoxicological potential (Microtox{reg_sign} assay) showed a significant decrease during the remediation. Low concentrations of PAH in the ground were treated by an in situ technology. The in situ treatment was combined with mechanical measures (slurry wall) to prevent the contamination from dispersing from the site.

  11. Lead and cadmium speciation in smelter-contaminated soil

    SciTech Connect

    Bergers, M.; Harris, T.

    1995-12-01

    The design of a {open_quotes}washing{close_quotes} process for the removal and recovery of heavy metals from contaminated soil requires in-depth knowledge of the speciation of the metals. In addition to being present in their original forms (e.g. oxides particulates emitted by a smelter), the contaminating metals may come to be associated with a variety of solid phases commonly present in soil. The {open_quotes}standard{close_quotes} speciation analysis, a series of sequential chemical extractions, has been examined critically, and several improvements to the procedure have been examined. Also, the procedure has been used to characterize samples collected in the vicinity of a zinc smelter that has been in operation for nearly 80 years.

  12. Review of historical monitoring data on Techa River contamination

    NASA Technical Reports Server (NTRS)

    Vorobiova, M. I.; Degteva, M. O.; Burmistrov, D. S.; Safronova, N. G.; Kozheurov, V. P.; Anspaugh, L. R.; Napier, B. A.; Neta, P. I. (Principal Investigator)

    1999-01-01

    The Mayak Production Association was the first Russian site for the production and separation of plutonium. The extensive increase in plutonium production during 1948-1955, as well as the absence of reliable waste-management technology, resulted in significant releases of liquid radioactive effluent into the rather small Techa River. This resulted in chronic external and internal exposure of about 30,000 residents of riverside communities; these residents form the cohort of an epidemiologic investigation. Analysis of the available historical monitoring data indicates that the following reliable data sets can be used for reconstruction of doses received during the early periods of operation of the Mayak Production Association: Temporal pattern of specific beta activity of river water for several sites in the upper Techa region since July 1951; average annual values of specific beta activity of river water and bottom sediments as a function of downstream distance for the whole river since 1951; external gamma-exposure rates near the shoreline as a function of downstream distance for the whole Techa River since 1952; and external gamma-exposure rate as a function of distance from the shoreline for several sites in the upper and middle Techa since 1951.

  13. Plant uptake of radiocaesium from artificially contaminated soil monoliths covering major European soil types.

    PubMed

    Waegeneers, Nadia; Sauras-Yera, Teresa; Thiry, Yves; Vallejo, V Ramón; Smolders, Erik; Madoz-Escande, Chantal; Bréchignac, François

    2009-06-01

    Uptake of (137)Cs was measured in different agricultural plant species (beans, lettuce, barley and ryegrass) grown in 5 undisturbed soil monoliths covering major European soil types. The first cultivation was made three years after soil contamination and plants were grown during 3 successive years. The plant-soil (137)Cs transfer factors varied maximally 12-fold among soils and 35-fold among species when grown on the same soil. Single correlations between transfer factors and soil properties were found, but they varied widely with plant type and can hardly be used as a predictive tool because of the few soils used. The variation of (137)Cs concentrations in plants among soils was related to differences in soil solution (137)Cs and K concentrations, consistent with previous observations in hydroponics and pot trials. Absolute values of transfer factors could not be predicted based on a model validated for pot trials. The (137)Cs activity concentration in soil solution decreased significantly (11- to 250-fold) for most soils in the 1997-1999 period and is partly explained by decreasing K in soil solution. Transfer factors of lettuce showed both increasing and decreasing trends between 2 consecutive years depending on soil type. The trends could be explained by the variation in (137)Cs and K concentrations in soil solution. It is concluded that differences in (137)Cs transfer factors among soils and trends in transfer factors as a function of time can be explained from soil solution composition, as shown previously for pot trials, although absolute values of transfer factors could not be predicted.

  14. Evaluation and analysis of soil washing for seven lead-contaminated soils

    SciTech Connect

    Benschoten, J.E. Van; Matsumoto, M.R.; Young, W.H.

    1997-03-01

    A bench-scale study of seven Pb-contaminated soils from actual sites was undertaken to determine the feasibility of soil washing to meet cleanup goals. In addition, soil characteristics and operational factors affecting washing performance were identified. Soils were characterized by a sequential extraction method and scanning electron microscopy (SEM). Following a treatment process that consisted of particle size and density separation, and batch soil washing, soil Pb treatment goals were met for five of the seven sandy soils. Toxicity characteristic leaching procedure (TCLP) limits were met for all soils. In soil washing, the most important factor affecting removal of Pb was pH, with greater removals observed at a lower pH. Ethylenediaminetetraacetic acid (EDTA) addition significantly improved soil-washing performance at pH 3, and the temperature and liquid-to-solid (L/S) ratio had a minimal effect for the range of conditions studied. Washing results were in qualitative agreement with expectations extrapolated from the soil-characterization data. However, definitive identification and distribution of the Pb-binding mechanisms in these real waste-site soils could not be ascertained from the sequential extraction or SEM data.

  15. Comparison of Kriging and coKriging for soil contamination mapping in abandoned mine sites

    NASA Astrophysics Data System (ADS)

    Lee, Hyeongyu; Choi, Yosoon

    2015-04-01

    Soil contamination mapping around abandoned mines is an important task for the planning and design of mine reclamation. This study compared the ordinary Kriging and the co-Kriging methods for the soil contamination mapping in abandoned mine sites. Four approaches were conducted as follows: (1) soil contamination mapping using the ordinary Kriging and Inductively Coupled Plasma (ICP) data only; (2) soil contamination mapping using the ordinary Kriging and Portable X-Ray Fluorescence (PXRF) data only; (3) soil contamination mapping using the ordinary Kriging and integrated data from ICP and PXRF; and (4) soil contamination mapping using the co-Kriging and integrated data from ICP and PXRF. Results indicate that the approach 3 provides substantial improvements over other three approaches including a more reasonable spatial pattern of soil contamination and reduction in the error of its estimates.

  16. Simplified method for detecting tritium contamination in plants and soil

    USGS Publications Warehouse

    Andraski, B.J.; Sandstrom, M.W.; Michel, R.L.; Radyk, J.C.; Stonestrom, D.A.; Johnson, M.J.; Mayers, C.J.

    2003-01-01

    Cost-effective methods are needed to identify the presence and distribution of tritium near radioactive waste disposal and other contaminated sites. The objectives of this study were to (i) develop a simplified sample preparation method for determining tritium contamination in plants and (ii) determine if plant data could be used as an indicator of soil contamination. The method entailed collection and solar distillation of plant water from foliage, followed by filtration and adsorption of scintillation-interfering constituents on a graphitebased solid phase extraction (SPE) column. The method was evaluated using samples of creosote bush [Larrea tridentata (Sesse?? & Moc. ex DC.) Coville], an evergreen shrub, near a radioactive disposal area in the Mojave Desert. Laboratory tests showed that a 2-g SPE column was necessary and sufficient for accurate determination of known tritium concentrations in plant water. Comparisons of tritium concentrations in plant water determined with the solar distillation-SPE method and the standard (and more laborious) toluene-extraction method showed no significant difference between methods. Tritium concentrations in plant water and in water vapor of root-zone soil also showed no significant difference between methods. Thus, the solar distillation-SPE method provides a simple and cost-effective way to identify plant and soil contamination. The method is of sufficient accuracy to facilitate collection of plume-scale data and optimize placement of more sophisticated (and costly) monitoring equipment at contaminated sites. Although work to date has focused on one desert plant, the approach may be transferable to other species and environments after site-specific experiments.

  17. Bacterial Adhesion to Soil Contaminants in the Presence of Surfactants

    PubMed Central

    Stelmack, Patricia L.; Gray, Murray R.; Pickard, Michael A.

    1999-01-01

    It has been proposed that addition of surfactants to contaminated soil enhances the solubility of target compounds; however, surfactants may simultaneously reduce the adhesion of bacteria to hydrophobic surfaces. If the latter mechanism is important for the biodegradation of virtually insoluble contaminants, then the use of surfactants may not be beneficial. The adhesion of a Mycobacterium strain and a Pseudomonas strain, isolated from a creosote-contaminated soil, to the surfaces of highly viscous non-aqueous-phase liquids (NAPLs) was measured. The NAPLs were organic material extracted from soils from two creosote-contaminated sites and two petroleum-contaminated sites. Cells suspended in media with and without surfactant were placed in test tubes coated with an NAPL, and the percentages of cells that adhered to the surface of the NAPL in the presence and absence of surfactant were compared by measuring optical density. Test tubes without NAPLs were used as controls. The presence of either Triton X-100 or Dowfax 8390 at a concentration that was one-half the critical micelle concentration (CMC) inhibited adhesion of both species of bacteria to the NAPLs. Both surfactants, when added at concentrations that were one-half the CMCs to test tubes containing previously adhered bacteria, also promoted the removal of the cells from the surfaces of the NAPL-coated test tubes. Neither surfactant was toxic to the bacteria. Further investigation showed that a low concentration of surfactant also inhibited the growth of both species on anthracene, indicating that the presence of a surfactant resulted in a reduction in the uptake of the solid carbon source. PMID:9872775

  18. Bacterial adhesion to soil contaminants in the presence of surfactants

    SciTech Connect

    Stelmack, P.L.; Gray, M.R.; Pickard, M.A.

    1999-01-01

    It has been proposed that addition of surfactants to contaminated soil enhances the solubility of target compounds; however, surfactants may simultaneously reduce the adhesion of bacteria to hydrophobic surfaces. If the latter mechanism is important for the biodegradation of virtually insoluble contaminants, then the use of surfactants may not be beneficial. The adhesion of a Mycobacterium strain and a Pseudomonas strain, isolated from a creosote-contaminated soil, to the surfaces of highly viscous non-aqueous-phase liquids (NAPLs) was measured. The NAPLs were organic material extracted from soils from two creosote-contaminated sites and two petroleum-contaminated sites. Cells suspended in media with and without surfactant were placed in test tubes coated with an NAPL, and the percentages of cells that adhered to the surface of the NAPL in the presence and absence of surfactant were compared by measuring optical density. Test tubes without NAPLs were used as controls. The presence of either Triton X-100 or Dowfax 8390 at a concentration that was one-half the critical micelle concentration (CMC) inhibited adhesion of both species of bacteria to the NAPLs. Both surfactants, when added at concentrations that were one-half the CMCs to test tubes containing previously adhered bacteria, also promoted the removal of the cells from the surfaces of the NAPL-coated test tubes. Neither surfactant was toxic to the bacteria. Further investigation showed that a low concentration of surfactant also inhibited the growth of both species on anthracene, indicating that the presence of a surfactant resulted in a reduction in the uptake of the solid carbon source.

  19. Spectral induced polarization (SIP) measurement of NAPL contaminated soils

    NASA Astrophysics Data System (ADS)

    Schwartz, N.; Huisman, J. A.; Furman, A.

    2010-12-01

    The potential applicability of spectral induce polarization (SIP) as a tool to map NAPLs (non aqueous phase liquids) contaminants at the subsurface lead researchers to investigate the electric signature of those contaminant on the spectral response. However, and despite the cumulative efforts, the effect of NAPL on the electrical properties of soil, and the mechanisms that control this effect are largely unknown. In this work a novel experiment is designed to further examine the effect of NAPL on the electrical properties of partially saturated soil. The measurement system that used is the ZEL-SIP04 impedance meter developed at the Forschungszentrum Julich, Germany. The system accurately (nominal phase precision of 0.1 mrad below 1 kHz) measures the phase and the amplitude of a material possessing a very low polarization (such as soil). The sample holder has a dimension of 60 cm long and 4.6 cm in diameter. Current and potential electrodes were made of brass, and while the current electrodes were inserted in full into the soil, the contact between the potential electrode and the soil was made through an Agarose bridge. Two types of soils were used: clean quartz sand, and a mixture of sand with clean Bentonite. Each soil (sandy or clayey) was mixed with water to get saturation degree of 30%. Following the mixture with water, NAPL was added and the composite were mixed again. Packing was done by adding and compressing small portions of the soil to the column. A triplicate of each mixture was made with a good reproducible bulk density. Both for the sandy and clayey soils, the results indicate that additions of NAPL decrease the real part of the complex resistivity. Additionally, for the sandy soil this process is time depended, and that a further decrease in resistivity develops over time. The results are analyzed considering geometrical factors: while the NAPL is electrically insulator, addition of NAPL to the soil is expected to increase the connectivity of the

  20. Mercury contamination from historical mining territory at Malachov Hg-deposit (Central Slovakia).

    PubMed

    Dadová, Jana; Andráš, Peter; Kupka, Jiří; Krnáč, Jozef; Andráš, Peter; Hroncová, Emília; Midula, Pavol

    2016-02-01

    Environmental contamination caused by mercury is a serious problem worldwide. The study was conducted in order to identify Hg contamination in soil, technosoil from dumps, groundwater, and surface water in the surroundings of the abandoned Hg deposit of Malachov in Central Slovakia. Soil from the Malachovský brook valley was classified as cambi-soil (rendzina). The highest Hg concentrations (44.24 mg kg(-1)) were described in the soil from the mining area at the Vel'ká Studňa locality. In the groundwater, the maximal Hg content is 0.84 μg L(-1), and in the surface water it is 394 μg L(-1). The speciation study proved that in most samples, Hg occurs in the form of cinnabarite. The release of Hg into the environment as a consequence of weathering is limited.

  1. Firm contracts for treatability tests on contaminated soils

    SciTech Connect

    Not Available

    1989-08-01

    Geosafe Corporation, a Pacific Northwest-headquartered hazardous waste remediation company, announced that is has successfully completed treatability testing of contaminated soils under contract with Woodward Clyde Consultants of Denver, Colorado, the prime contractor for a major hazardous waste site in the Western United States. The tests are being conducted at the University of Washington with Geosafe's specially-designed test equipment. The recently concluded testing confirms the ability of Geosafe's patented in situ vitrification (ISV) technology to treat soils containing a variety of organic and inorganic contaminants. ISV, for which Geosafe has worldwide rights, is the only technology available today that will fully comply with the Superfund Amendments and Reauthorization Act. The ability of ISV to treat mixtures of organic, inorganic and radioactive wastes in situ, in a single process, offers distinct advantages over excavation, transportation and incineration. During the ISV process, organic contaminants are pyrolized and the inorganics present are chemically incorporated into the molten soil which, when cooled, resembles naturally-occurring obsidian.

  2. Uptake of cesium-137 by crops from contaminated soils

    SciTech Connect

    Demirel, H.; Oezer, I.; Celenk, I.; Halitligil, M.B.; Oezmen, A.

    1994-11-01

    The Turkish tea crop was contaminated following the Chernobyl nuclear accident. Finding ways to dispose of the contaminated tea (Camellia sinensis L.) without damaging the environment was the goal of this research conducted at the Turkish Atomic Energy Authority (TAEA). In this study, an investigation was made of {sup 137}Cs activities of the plants and the ratios of transfer of {sup 137}Cs activity to plants when the contaminated tea was applied to the soil. Experiments were conducted in the field and in pots under greenhouse conditions. The activities of the tea applied in the field ranged from 12 500 to 72 800 Bq/m{sup 2}, whereas this activity was constant at 8000 Bq/pot in the greenhouse experiment. The transfer of {sup 137}Cs from soil to the plants was between 0.037 and 1.057% for wheat (Triticum aestivum L.), barley (Hordeum vulgare L.), corn (Zea mays indentata Sturt), bean (Phaseolus vulgaris L.), lettuce (Lactuca sativa L.), and grass (Lolium perenne L.). The ratio of the transfer of {sup 137}Cs activity to plants increased as the activity {sup 137}Cs in tea applied to soil was increased. The activity in the plants increased due to increased uptake of {sup 137}Cs by plants. 12 refs., 2 figs., 2 tabs.