Science.gov

Sample records for hit cells role

  1. The human glucokinase gene beta-cell-type promoter: an essential role of insulin promoter factor 1/PDX-1 in its activation in HIT-T15 cells.

    PubMed

    Watada, H; Kajimoto, Y; Umayahara, Y; Matsuoka, T; Kaneto, H; Fujitani, Y; Kamada, T; Kawamori, R; Yamasaki, Y

    1996-11-01

    The glycolytic enzyme glucokinase plays a primary role in the glucose-responsive secretion of insulin, and defects of this enzyme can cause NIDDM. As a step toward understanding the molecular basis of glucokinase (GK) gene regulation, we assessed the structure and regulation of the human GK gene beta-cell-type promoter. The results of reporter gene analyses using HIT-T15 cells revealed that the gene promoter was comprised of multiple cis-acting elements, including two primarily important cis-motifs: a palindrome structure, hPal-1, and the insulin gene cis-motif A element-like hUPE3. While both elements were bound specifically by nuclear proteins, it was the homeodomain-containing transcription factor insulin promoter factor 1 (IPF1)/STF-1/PDX-1 that bound to the hUPE3 site: IPF1, when expressed in CHO-K1 cells, became bound to the hUPE3 site and activated transcription. An anti-IPF1 antiserum used in gel-mobility shift analysis supershifted the DNA protein complex formed with the hUPE3 probe and nuclear extracts from HIT-T15 cells, thus supporting the involvement of IPF1 in GK gene activation in HIT-T15 cells. In contrast to the insulin gene, however, neither the synergistic effect of the Pan1 expression on the IPF1-induced promoter activation nor the glucose responsiveness of the activity was observed for the GK gene promoter. These results revealed some conservative but unique features for the transcriptional regulation of the beta-cell-specific genes in humans. Being implicated in insulin and GK gene regulations as a common transcription factor, IPF1/STF-1/PDX-1 is likely to play an essential role in maintaining normal beta-cell functions.

  2. Cell Phones and PDA's Hit K-6

    ERIC Educational Resources Information Center

    Dodds, Richard; Mason, Christine Y.

    2005-01-01

    Although cell phones keep kids in touch with families and personal digital assistants (PDA's) help organize assignments and give Internet access, when they are added to the school climate, educators must reassess policies so technology does not interfere with instruction time. This article discusses the several effects of cell phones to K-6…

  3. The "first hit" toward alcohol reinforcement: role of ethanol metabolites.

    PubMed

    Israel, Yedy; Quintanilla, María Elena; Karahanian, Eduardo; Rivera-Meza, Mario; Herrera-Marschitz, Mario

    2015-05-01

    This review analyzes literature that describes the behavioral effects of 2 metabolites of ethanol (EtOH): acetaldehyde and salsolinol (a condensation product of acetaldehyde and dopamine) generated in the brain. These metabolites are self-administered into specific brain areas by animals, showing strong reinforcing effects. A wealth of evidence shows that EtOH, a drug consumed to attain millimolar concentrations, generates brain metabolites that are reinforcing at micromolar and nanomolar concentrations. Salsolinol administration leads to marked increases in voluntary EtOH intake, an effect inhibited by mu-opioid receptor blockers. In animals that have ingested EtOH chronically, the maintenance of alcohol intake is no longer influenced by EtOH metabolites, as intake is taken over by other brain systems. However, after EtOH withdrawal brain acetaldehyde has a major role in promoting binge-like drinking in the condition known as the "alcohol deprivation effect"; a condition seen in animals that have ingested alcohol chronically, are deprived of EtOH for extended periods, and are allowed EtOH re-access. The review also analyzes the behavioral effects of acetate, a metabolite that enters the brain and is responsible for motor incoordination at low doses of EtOH. Also discussed are the paradoxical effects of systemic acetaldehyde. Overall, evidence strongly suggests that brain-generated EtOH metabolites play a major role in the early ("first-hit") development of alcohol reinforcement and in the generation of relapse-like drinking.

  4. Estimated Radiation on Mars, Hits per Cell Nucleus

    NASA Technical Reports Server (NTRS)

    2002-01-01

    This global map of Mars shows estimates for amounts of high-energy-particle cosmic radiation reaching the surface, a serious health concern for any future human exploration of the planet.

    The estimates are based on cosmic-radiation measurements made on the way to Mars by the Mars radiation environment experiment, an instrument on NASA's 2001 Mars Odyssey spacecraft, plus information about Mars' surface elevations from the laser altimeter instrument on NASA's Mars Global Surveyor. The areas of Mars expected to have least radiation are where elevation is lowest, because those areas have more atmosphere above them to block out some of the radiation. Earth's thick atmosphere shields us from most cosmic radiation, but Mars has a much thinner atmosphere than Earth does.

    Colors in the map refer to the estimated average number of times per year each cell nucleus in a human there would be hit by a high-energy cosmic ray particle. The range is generally from two hits (color-coded green), a moderate risk level, to eight hits (coded red), a high risk level.

    NASA's Jet Propulsion Laboratory, Pasadena, Calif. manages the 2001 Mars Odyssey and Mars Global Surveyor missions for NASA's Office of Space Science, Washington D.C. The Mars radiation environment experiment was developed by NASA's Johnson Space Center. Lockheed Martin Astronautics, Denver, is the prime contractor for Odyssey, and developed and built the orbiter. Mission operations are conducted jointly from Lockheed Martin and from JPL, a division of the California Institute of Technology in Pasadena.

  5. Double hit diffuse large B-cell lymphomas: diagnostic and therapeutic challenges.

    PubMed

    Friedberg, Jonathan W

    2015-03-01

    Although diffuse large B-cell lymphoma (DLBCL) is curable with standard chemoimmunotherapy, over 30% of patients with advanced stage disease experience refractory disease or progression. Recent studies suggest that rearrangement of the myc oncogene occurs in approximately 10% of patients with DLBCL, and confers a very poor prognosis, particularly when there is concomitant rearrangement of bcl-2, a condition referred to as "double hit DLBCL". Using immunohistochemistry, up to 30% of patients have evidence of increased expression of myc, which occurs in both activated B-cell and germinal center type DLBCL. When bcl-2 is also positive by immunohistochemistry, prognosis is also poor. There are no randomized studies guiding treatment for patients with double hit DLBCL, but new datasets are emerging suggesting a possible role for dose-adjusted EPOCH infusional chemotherapy with rituximab. This review will conclude with a survey of novel agents which may be rationally incorporated into chemotherapy platforms for this high risk subset of DLBCL.

  6. HITS-CLIP: panoramic views of protein-RNA regulation in living cells

    PubMed Central

    Darnell, Robert B.

    2011-01-01

    The study of gene regulation in cells has recently begun to shift from a period dominated by the study of transcription factor-DNA interactions to a new focus on RNA regulation. This was sparked by the still-emerging recognition of the central role for RNA in cellular complexity emanating from the RNA World hypothesis, and has been facilitated by technologic advances, in particular high throughput RNA sequencing and crosslinking methods (RNA-Seq, CLIP, and HITS-CLIP). This article will place these advances in context, and, focusing on CLIP, will explain the method, what it can be used for, and how to approach using it. Examples of the successes, limitations and future of the technique will be discussed. Crosslinking immunoprecipitation (CLIP), coupled with high throughput sequencing (HITS-CLIP), has caught the attention of the RNA community as a means of achieving a new depth of understanding about how protein-RNA complexes interactions regulate gene expression in living cells1–4. This review will describe the context in which CLIP was developed, and provide an up-to-date review of its uses in developing genome-wide maps of RNA-protein interactions and, more recently, microRNA (miRNA) binding sites. The uses, limitations, and future of CLIP will be discussed. PMID:21935890

  7. Fragment-Based Whole Cell Screen Delivers Hits against M. tuberculosis and Non-tuberculous Mycobacteria.

    PubMed

    Moreira, Wilfried; Lim, Jia Jie; Yeo, Si Ying; Ramanujulu, Pondy M; Dymock, Brian W; Dick, Thomas

    2016-01-01

    Reactive multi-target 'fragment drugs' represent critical components of current tuberculosis regimens. These compounds, such as pyrazinamide, are old synthetic antimycobacterials that are activated inside Mycobacterium tuberculosis bacilli and are smaller than the usual drug-like, single-target molecules. Based on the success of small 'dirty' drugs in the chemotherapy of tuberculosis, we suggested previously that fragment-based whole cell screens should be introduced in our current antimycobacterial drug discovery efforts. Here, we carried out such a screen and characterized bactericidal activity, selectivity and spectrum of hits we obtained. A library of 1725 fragments was tested at a single concentration for growth inhibitory activity against M. bovis BCG as screening strain and 38 of 116 primary hits were confirmed in dose response analyses to be active against virulent M. tuberculosis. Bacterial kill experiments showed that most hits displayed bactericidal activity at their minimal inhibitory concentration. Cytotoxicity assays established that a large proportion of hits displayed a favorable selectivity index for mammalian cells. Importantly, one third of M. tuberculosis active fragments were also active against M. abscessus and M. avium, two emerging non-tuberculous mycobacterial (NTM) pathogens, opening the opportunity to develop broad spectrum antimycobacterials. Activity determination against Gram positive (Staphylococcus aureus) and Gram negative (Escherichia coli, Klebsiella pneumoniae, Acinetobacter baumannii, Pseudomonas aeruginosa) bacteria, as well as fungi (Candida albicans, Cryptococcus neoformans) showed only a small overlap indicating a generally narrow spectrum of these novel antimicrobial hits for mycobacteria. In conclusion, we carried out the first fragment-based whole cell screen against bacteria and identified a substantial number of hits with excellent physicochemical properties and dual activity against M. tuberculosis and NTM pathogens

  8. Cytolysis of nucleated cells by complement: cell death displays multi-hit characteristics.

    PubMed Central

    Koski, C L; Ramm, L E; Hammer, C H; Mayer, M M; Shin, M L

    1983-01-01

    Lysis of nucleated cells by complement was studied to determine whether the lytic process by C5b-9 conforms to a one-hit mechanism as in the case of erythrocytes. Two nucleated cell lines, Molt 4 and U937, derived from human T lymphocytes and histiocytes, respectively, were employed as targets. The antibody-sensitized cells were used to develop the titration curves, measuring cell death as a function of limiting quantities of human C6 or C5,6 complex in the presence of an excess of other complement components. The cytolysis curves generated in both experiments were sigmoidal, in sharp contrast to the monotonic curves observed in lysis of erythrocytes treated similarly. The sigmoidal curves of cytolysis indicate a cooperative action of several molecules of C6 or acid-activated C5,6 complex, C(56)a. In contrast to the multi-hit characteristics of cytolysis, dose-response measurements of the release of 86Rb indicated that only one effective molecule of C6 per cell is required for assembly of a 86Rb-releasing channel. This divergence indicates that lysis requires formation of several channels or, alternatively, assembly of large channels that are formed by several molecules of C6. Because prior studies with erythrocyte ghosts have shown that only a single effective molecule of C6 is required for assembly of a transmembrane channel, regardless of size, we prefer to interpret the multi-hit characteristics of nucleated cell lysis as an indication of a multi-channel requirement, rather than channel enlargement. PMID:6602341

  9. Human Umbilical Cord Blood Mononuclear Cells in a Double-Hit Model of Bronchopulmonary Dysplasia in Neonatal Mice

    PubMed Central

    Mildau, Céline; Shen, Jie; Kasoha, Mariz; Laschke, Matthias W.; Roolfs, Torge; Schmiedl, Andreas; Tschernig, Thomas; Bieback, Karen; Gortner, Ludwig

    2013-01-01

    Background Bronchopulmonary dysplasia (BPD) presents a major threat of very preterm birth and treatment options are still limited. Stem cells from different sources have been used successfully in experimental BPD, induced by postnatal hyperoxia. Objectives We investigated the effect of umbilical cord blood mononuclear cells (MNCs) in a new double-hit mouse model of BPD. Methods For the double-hit, date mated mice were subjected to hypoxia and thereafter the offspring was exposed to hyperoxia. Human umbilical cord blood MNCs were given intraperitoneally by day P7. As outcome variables were defined: physical development (auxology), lung structure (histomorphometry), expression of markers for lung maturation and inflammation on mRNA and protein level. Pre- and postnatal normoxic pups and sham treated double-hit pups served as control groups. Results Compared to normoxic controls, sham treated double-hit animals showed impaired physical and lung development with reduced alveolarization and increased thickness of septa. Electron microscopy revealed reduced volume density of lamellar bodies. Pulmonary expression of mRNA for surfactant proteins B and C, Mtor and Crabp1 was reduced. Expression of Igf1 was increased. Treatment with umbilical cord blood MNCs normalized thickness of septa and mRNA expression of Mtor to levels of normoxic controls. Tgfb3 mRNA expression and pro-inflammatory IL-1β protein concentration were decreased. Conclusion The results of our study demonstrate the therapeutic potential of umbilical cord blood MNCs in a new double-hit model of BPD in newborn mice. We found improved lung structure and effects on molecular level. Further studies are needed to address the role of systemic administration of MNCs in experimental BPD. PMID:24069341

  10. Hitting the right spot with mesenchymal stromal cells (MSCs)

    PubMed Central

    Tolar, Jakub; Le Blanc, Katarina; Keating, Armand; Blazar, Bruce R.

    2013-01-01

    Mesenchymal stromal cells or mesenchymal stem cells (MSCs) have captured considerable scientific and public interest because of their potential to limit physical and immune injury, to produce bioactive molecules and to regenerate tissues. MSCs are phenotypically heterogeneous, and distinct subpopulations within MSC cultures are presumed to contribute to tissue repair and the modulation of allogeneic immune responses. As the first example of efficacy, clinical trials for prevention and treatment of graft-versus-host disease (GVHD) after hematopoietic cell transplantation show that MSCs can effectively treat human disease. The view of the mechanisms whereby MSCs function as immunomodulatory and reparative cells has evolved simultaneously. Initially, donor MSC were thought to replace damaged cells in injured tissues of the recipient. More recently, however, it has become increasingly clear that even transient MSC engraftment may exert favorable effects through the secretion of cytokines and other paracrine factors, which engage and recruit recipient cells in productive tissue repair. Thus, an important reason to investigate MSCs in mechanistic preclinical models and in clinical trials with well defined end-points and controls is to better understand the therapeutic potential of these multifunctional cells. Here, we review the controversies and recent insights into MSC biology, the regulation of alloresponses by MSCs in preclinical models, as well as clinical experience with MSC infusions and the challenges of manufacturing a ready supply of highly defined transplantable MSCs. PMID:20597105

  11. Selective elimination of leukemia stem cells: hitting a moving target.

    PubMed

    Crews, Leslie A; Jamieson, Catriona H M

    2013-09-10

    Despite the widespread use of chemotherapeutic cytotoxic agents that eradicate proliferating cell populations, patients suffering from a wide variety of malignancies continue to relapse as a consequence of resistance to standard therapies. In hematologic malignancies, leukemia stem cells (LSCs) represent a malignant reservoir of disease that is believed to drive relapse and resistance to chemotherapy and tyrosine kinase inhibitor (TKIs). Major research efforts in recent years have been aimed at identifying and characterizing the LSC population in leukemias, such as chronic myeloid leukemia (CML), which represents an important paradigm for understanding the molecular evolution of cancer. However, the precise molecular mechanisms that promote LSC-mediated therapeutic recalcitrance have remained elusive. It has become clear that the LSC population evolves during disease progression, thus presenting a serious challenge for development of effective therapeutic strategies. Multiple reports have demonstrated that LSC initiation and propagation occurs as a result of aberrant activation of pro-survival and self-renewal pathways regulated by stem-cell related signaling molecules including β-catenin and Sonic Hedgehog (Shh). Enhanced survival in LSC protective microenvironments, such as the bone marrow niche, as well as acquired dormancy of cells in these niches, also contributes to LSC persistence. Key components of these cell-intrinsic and cell-extrinsic pathways provide novel potential targets for therapies aimed at eradicating this dynamic and therapeutically recalcitrant LSC population. Furthermore, combination strategies that exploit LSC have the potential to dramatically improve the quality and quantity of life for patients that are resistant to current therapies.

  12. Stem cell therapy for cardiac regeneration: hits and misses.

    PubMed

    Padda, Jagjit; Sequiera, Glen Lester; Sareen, Niketa; Dhingra, Sanjiv

    2015-10-01

    Cardiac injury and loss of cardiomyocytes is a causative as well as a resultant condition of cardiovascular disorders, which are the leading cause of death throughout the world. This loss of cardiomyocytes cannot be completely addressed through the currently available drugs being administered, which mainly function only in relieving the symptoms. There is a huge potential being investigated for regenerative and cell replacement therapies through recruiting stem cells of various origins namely embryonic, reprogramming/induction, and adult tissue. These sources are being actively studied for translation to clinical scenarios. In this review, we attempt to discuss some of these promising scenarios, including the clinical trials and the obstacles that need to be overcome, and hope to address the direction in which stem cell therapy is heading.

  13. Hit rates and radiation doses to nuclei of bone lining cells from alpha-particle-emitting radionuclides

    NASA Technical Reports Server (NTRS)

    Polig, E.; Jee, W. S.; Kruglikov, I. L.

    1992-01-01

    Factors relating the local concentration of a bone-seeking alpha-particle emitter to the mean hit rate have been determined for nuclei of bone lining cells using a Monte Carlo procedure. Cell nuclei were approximated by oblate spheroids with dimensions and location taken from a previous histomorphometric study. The Monte Carlo simulation is applicable for planar and diffuse labels at plane or cylindrical bone surfaces. Additionally, the mean nuclear dose per hit, the dose mean per hit, the mean track segment length and its second moment, the percentage of stoppers, and the frequency distribution of the dose have been determined. Some basic features of the hit statistics for bone lining cells have been outlined, and the consequences of existing standards of radiation protection with regard to the hit frequency to cell nuclei are discussed.

  14. Highly textured conductive and transparent ZnO films for HIT solar cell applications

    NASA Astrophysics Data System (ADS)

    Xiao, Shaoqing; Zhou, Jingjing; Huang, Shiyong; Xiao, Peng; Gu, Xiaofeng; Yan, Dawei; Xu, Shuyan

    2015-08-01

    In this paper, aluminium-doped zinc oxide (AZO) thin-films were fabricated on both glass and silicon substrates by radio-frequency magnetron sputtering at various working pressures of 0.15-0.46 Pa. The effect of working pressure on the structural, electrical, and optical properties of the deposited AZO films was carefully studied. The lower working pressure is more favourable to large grain size, smooth surface, low electrical resistivity, and moderate optical transparency. For the AZO films deposited at lower working pressures, the larger grain size can be ascribed to the higher kinetic energy of the sputtered particles while the lower electrical resistivity is strongly related to both the presence of fewer grain boundaries due to the larger grain size and more activated amount of dopants in the films. We then applied AZO films deposited at 0.15 Pa to Al/AZO/n-a-Si : H/i-a-Si : H/p-c-Si/Al heterojunction Si solar cells with intrinsic thin layer (HIT) solar cells and achieved highly textured surfaces via acid etching. The HIT solar cells after acid texturing showed a higher external quantum efficiency (EQE) value than those with smooth AZO films mainly in the wavelength region from 300 to 500 nm, leading to an obvious increase in the conversion efficiency from 14.1% to 14.7%.

  15. Influence of patterning the TCO layer on the series resistance of thin film HIT solar cells

    NASA Astrophysics Data System (ADS)

    Champory, Romain; Mandorlo, Fabien; Seassal, Christian; Fave, Alain

    2017-01-01

    Thin HIT solar cells combine efficient surface passivation and high open circuit voltage leading to high conversion efficiencies. They require a TCO layer in order to ease carriers transfer to the top surface fingers. This Transparent Conductive Oxide layer induces parasitic absorption in the low wavelength range of the solar spectrum that limits the maximum short circuit current. In case of thin film HIT solar cells, the front surface is patterned in order to increase the effective life time of photons in the active material, and the TCO layer is often deposited with a conformal way leading to additional material on the sidewalls of the patterns. In this article, we propose an alternative scheme with a local etching of both the TCO and the front a-Si:H layers in order to reduce the parasitic absorption. We study how the local resistivity of the TCO evolves as a function of the patterns, and demonstrate how the increase of the series resistance can be compensated in order to increase the conversion efficiency.

  16. Hepatitis C and double-hit B cell lymphoma successfully treated by antiviral therapy

    PubMed Central

    Galati, Giovanni; Rampa, Lorenzo; Vespasiani-Gentilucci, Umberto; Marino, Mirella; Pisani, Francesco; Cota, Carlo; Guidi, Alessandro; Picardi, Antonio

    2016-01-01

    B cells lymphoma is one of the most challenging extra-hepatic manifestations of hepatitis C virus (HCV). Recently, a new kind of B-cell lymphoma, named double-hit B (DHL), was characterized with an aggressive clinical course whereas a potential association with HCV was not investigated. The new antiviral direct agents (DAAs) against HCV are effective and curative in the majority of HCV infections. We report the first case, to our knowledge, of DHL and HCV-infection successfully treated by new DAAs. According to our experience, a DHL must be suspected in case of HCV-related lymphoma, and an early diagnosis could direct towards a different hematological management because a worse prognosis might be expected. A possible effect of DAAs on DHL regression should be investigated, but eradicating HCV would avoid life-threatening reactivation of viral hepatitis during pharmacological immunosuppression in onco-haematological diseases. PMID:27803769

  17. Hepatitis C and double-hit B cell lymphoma successfully treated by antiviral therapy.

    PubMed

    Galati, Giovanni; Rampa, Lorenzo; Vespasiani-Gentilucci, Umberto; Marino, Mirella; Pisani, Francesco; Cota, Carlo; Guidi, Alessandro; Picardi, Antonio

    2016-10-18

    B cells lymphoma is one of the most challenging extra-hepatic manifestations of hepatitis C virus (HCV). Recently, a new kind of B-cell lymphoma, named double-hit B (DHL), was characterized with an aggressive clinical course whereas a potential association with HCV was not investigated. The new antiviral direct agents (DAAs) against HCV are effective and curative in the majority of HCV infections. We report the first case, to our knowledge, of DHL and HCV-infection successfully treated by new DAAs. According to our experience, a DHL must be suspected in case of HCV-related lymphoma, and an early diagnosis could direct towards a different hematological management because a worse prognosis might be expected. A possible effect of DAAs on DHL regression should be investigated, but eradicating HCV would avoid life-threatening reactivation of viral hepatitis during pharmacological immunosuppression in onco-haematological diseases.

  18. Galactic cosmic rays and cell-hit frequencies outside the magnetosphere.

    PubMed

    Curtis, S B; Letaw, J R

    1989-01-01

    An evaluation of the exposure of space travelers to galactic cosmic radiation outside the earth's magnetosphere is made by calculating fluences of high-energy primary and secondary particles with various charges traversing a sphere of area 100 microns2. Calculations relating to two shielding configurations are presented: the center of a spherical aluminum shell of thickness 1 g/cm2, and the center of a 4 g/cm2 thick aluminum spherical shell within which there is a 30 g/cm2 diameter spherical water phantom with the point of interest 5 g/cm2 from the surface. The area of 100 microns2 was chosen to simulate the nucleus of a cell in the body. The frequencies as a function of charge component in both shielding configurations reflects the odd-even disparity of the incident particle abundances. For a three-year mission, 33% of the cells in the more heavily shielded configuration would be hit by at least one particle with Z greater than 10. Six percent would be hit by at least two such particles. This emphasizes the importance of studying single high-Z particle effects both on cells which might be "at risk" for cancer induction and on critical neural cells or networks which might be vulnerable to inactivation by heavy charged particle tracks. Synergistic effects with the more numerous high-energy protons and helium ions cannot be ruled out. In terms of more conventional radiation risk assessment, the dose equivalent decreased by a factor of 2.85 from free space to that in the more heavily shielded configuration. Roughly half of this was due to the decrease in energy deposition (absorbed dose) and half to the decrease in biological effectiveness (quality factor).

  19. Organizations disseminating health messages: the roles of organizational identification and HITs.

    PubMed

    Stephens, Keri K; Goins, Elizabeth S; Dailey, Stephanie L

    2014-01-01

    Research into the dissemination of health information now includes more focus on how various organizations (e.g., beauty shops, schools, workplaces, and churches) and health information technologies (HITs) reach and affect audiences. One relational feature of organizations is identification--the feeling of belongingness. Our study explores how it influences audiences, especially in combination with HITs such as e-mail, websites, and social media. We use social identity theory to predict how organizational identification and social media might function in health communication. Using a 3 × 2 experimental design, we find that people's identification with a message source mediates the effect of social media on outcomes. These findings improve our understanding of when organizations might be most helpful for disseminating health information.

  20. Probability of cell hits in selected organs and tissues by high-LET particles at the ISS orbit

    NASA Technical Reports Server (NTRS)

    Yasuda, H.; Komiyama, T.; Fujitaka, K.; Badhwar, G. D. (Principal Investigator)

    2002-01-01

    The fluence of high-LET particles (HLP) with LET infinity H2O greater than 15 keV micrometers-1 in selected organs and tissues were measured with plastic nuclear track detectors using a life-size human phantom on the 9th Shuttle-Mir Mission (STS-91). The planar-track fluence of HLP during the 9.8-day mission ranged from 1.9 x 10(3) n cm-2 (bladder) to 5.1 x 10(3) n cm-2 (brain) by a factor of 2.7. Based on these data, a probability of HLP hits to a matured cell of each organ or tissue was roughly estimated for a 90-day ISS mission. In the calculation, all cells were assumed to be spheres with a geometric cross-sectional area of 500 micrometers2 and the cell-hit frequency from isotropic space radiation can be described by the Poisson-distribution function. As results, the probability of one or more than 1 hit to a single cell by HLP for 90 days ranged from 17% to 38%; that of two or more than 2 hits was estimated to be 1.3-8.2%. c2002 COSPAR. Published by Elsevier Science Ltd. All rights reserved.

  1. "Hit the ground running": perspectives of new nurses and nurse managers on role transition and integration of new graduates.

    PubMed

    Chernomas, Wanda M; Care, W Dean; McKenzie, Jo-Ann Lapointe; Guse, Lorna; Currie, Jan

    2010-01-01

    The workplace for new graduates must be a constructive learning environment to facilitate their development. Nurse managers need new graduates who can "hit the ground running." Conflict between the needs of new nurses and the realities of the workplace often creates role confusion and tension in new graduates and threatens employers' ability to retain them. As part of a larger study that examined the effectiveness of a new strategy on new nurse retention and workplace integration, we conducted focus groups with new nurses and nurse managers. This paper discusses the perspectives of new nurses on their role transition from graduates to practising professionals and the perspectives of nurse managers on the workplace integration of new nurses. The thematic findings integrate new nurses' perspectives on their needs during role transition with the perspectives of nurse managers in meeting those needs. The discussion includes strategies to facilitate successful transition and integration of new nurses into the workplace within the context of recruitment and retention.

  2. Mozambique Hit by a Flood Disaster, Again: What Role for the Scientific Community

    NASA Astrophysics Data System (ADS)

    Matonse, A. H.; Zucula, P.

    2007-05-01

    The Lower Zambezi basin in Mozambique covers an area of approximately 225,000 km2 from the Cahora Bassa Reservoir to the Zambezi Delta, and supports more than 3.8 million people (25% of the total population of Mozambique). The Zambezi Delta is a broad, flat alluvial plain along the coast of central Mozambique. Some 800 Mozambicans died in floods caused by two cyclones in 2000 and 2001 in the Zambezi River Valley in central Mozambique. Recently, seven years later, the same Zambezi River Valley was hit by heavy rain which was followed by Cyclone Favio. This event triggered flash floods along the Zambezi River and its tributaries, washing away homes, bridges, livestock and crops, and killing at least 45 people. The country's national relief agency INGC established an emergency operation centre to coordinate relief operations. By February 25, 2007, 53,000 people have been moved to accommodation centers and an estimated 36,000 people have lost virtually all their possessions. Due to the extent of the flooded area, rescue and supply operations are very difficult, and conditioned upon the availability of helicopters. Temporary accommodation centres have faced problems of food and fuel shortages, and delays in the distribution of food and fresh water are raising concerns with malnutrition and the outbreak of waterborne diseases. One of the major problems in the region is water management and regulation. The main structure to regulate water discharge in the Zambezi River is the Mozambique's largest Hydro-electric dam, Cahora Bassa. Water regulation from this structure during floods is particularly difficult due to transnational inflows passing through the neighbouring countries of Malawi, Zambia and Zimbabwe. Since the flood disaster of 2000/2001 occurred, the need to improve and strengthen disaster prevention has been a high priority of the Mozambique Government and its donors. Mozambique's Action Plan for the reduction of Absolute Poverty identified vulnerability to such

  3. Φ-score: A cell-to-cell phenotypic scoring method for sensitive and selective hit discovery in cell-based assays

    PubMed Central

    Guyon, Laurent; Lajaunie, Christian; fer, Frédéric; bhajun, Ricky; sulpice, Eric; pinna, Guillaume; campalans, Anna; radicella, J. Pablo; rouillier, Philippe; mary, Mélissa; combe, Stéphanie; obeid, Patricia; vert, Jean-Philippe; gidrol, Xavier

    2015-01-01

    Phenotypic screening monitors phenotypic changes induced by perturbations, including those generated by drugs or RNA interference. Currently-used methods for scoring screen hits have proven to be problematic, particularly when applied to physiologically relevant conditions such as low cell numbers or inefficient transfection. Here, we describe the Φ-score, which is a novel scoring method for the identification of phenotypic modifiers or hits in cell-based screens. Φ-score performance was assessed with simulations, a validation experiment and its application to gene identification in a large-scale RNAi screen. Using robust statistics and a variance model, we demonstrated that the Φ-score showed better sensitivity, selectivity and reproducibility compared to classical approaches. The improved performance of the Φ-score paves the way for cell-based screening of primary cells, which are often difficult to obtain from patients in sufficient numbers. We also describe a dedicated merging procedure to pool scores from small interfering RNAs targeting the same gene so as to provide improved visualization and hit selection. PMID:26382112

  4. Protective effects of arachidonic acid against palmitic acid-mediated lipotoxicity in HIT-T15 cells.

    PubMed

    Cho, Young Sik; Kim, Chi Hyun; Kim, Ki Young; Cheon, Hyae Gyeong

    2012-05-01

    Saturated fatty acids have been considered major contributing factors in type 2 diabetes, whereas unsaturated fatty acids have beneficial effects for preventing the development of diabetes. However, the effects of polyunsaturated fatty acids in pancreatic β cells have not been reported. Here, we examined the effects of arachidonic acid (AA) on palmitic acid (PA)-mediated lipotoxicity in clonal HIT-T15 pancreatic β cells. AA prevented the PA-induced lipotoxicity as indicated by cell viability, DNA fragmentation and mitochondrial membrane potential, whereas eicosatetraynoic acid (ETYA), a non-metabolizable AA, had little effect on PA-induced lipotoxicity. In parallel with its protective effects against PA-induced lipotoxicity, AA restored impaired insulin expression and secretion induced by PA. AA but not ETYA increased intracellular triglyceride (TG) in the presence of PA compared with PA alone, and xanthohumol, a diacylglycerol acyltransferase (DGAT) inhibitor, reversed AA-induced protection from PA. Taken together, our results suggest that AA protects against PA-induced lipotoxicity in clonal HIT-T15 pancreatic β cells, and the protective effects may be associated with TG accumulation, possibly through sequestration of lipotoxic PA into TG.

  5. Probability of hippocampus cell hits by high-LET space radiation in a low-Earth-orbit mission (STS-91).

    PubMed

    Yasuda, H; Komiyama, T; Fujitaka, K

    2001-01-01

    High-LET particles (HLP) of space radiation in the brain were measured with plastic nuclear track detectors (PNTD) using a life-size human phantom in the 9th Shuttle-Mir Mission (STS-91). Relationship between PNTD track-formation sensitivity (S) and LET infinity H2O was examined using heavy-ion beams at NIRS-HIMAC. Average fluence of the HLP (HLP10) with LET infinity H2O greater than 10 keV micrometers-1 was evaluated as 1.3 x 10(4) n cm-2 for the 9.8-day low-Earth-orbit mission (400 km x 51.65 degrees). Based on a simple extrapolation of these data, probability of HLP10 hits to hippocampus cells and cell-nuclei were estimated to be 45% and 7.0%, respectively, in a 90-day ISS mission. For 1 year, 91% of cells and 25% of cell-nuclei will be hit by HLP10.

  6. Nedley Depression Hit Hypothesis

    PubMed Central

    Nedley, Neil; Ramirez, Francisco E.

    2014-01-01

    Depression is often diagnosed using the Diagnostic and Statistical Manual of Mental Disorders Fifth Edition (DSM-5) criteria. We propose how certain lifestyle choices and non-modifiable factors can predict the development of depression. We identified 10 cause categories (hits or “blows” to the brain) and theorize that four or more active hits could trigger a depression episode. Methods. A sample of 4271 participants from our community-based program (70% female; ages 17-94 years) was assessed at baseline and at the eighth week of the program using a custom test. Ten cause categories were examined as predictors of depression are (1) Genetic, (2)Developmental, (3)Lifestyle, (4)Circadian Rhythm, (5)Addiction, (6)Nutrition, (7)Toxic, (8)Social/Complicated Grief, (9)Medical Condition, and (10)Frontal Lobe. Results. The relationship between the DSM-5 score and a person having four hits categories in the first program week showed a sensitivity of 89.98 % (95% CI: 89.20 % - 90.73%), specificity 48.84% (CI 45.94-51.75) and Matthew Correlation Coefficient (MCC) .41 . For the eight-week test, the results showed a sensitivity 83.6% (CI 81.9-85.5), specificity 53.7% (CI 51.7-55.6) and MCC .38. Overall, the hits that improved the most from baseline after the eighth week were: Nutrition (47%), Frontal lobe (36%), Addiction (24%), Circadian rhythm (24%), Lifestyle (20%), Social (12%) and Medical (10%). Conclusions. The Nedley four-hit hypothesis seems to predict a depressive episode and correlates well with the DSM-5 criteria with good sensitivity and MCC but less specificity. Identifying these factors and applying lifestyle therapies could play an important role in the treatment of depressed individuals. PMID:27885322

  7. Isolation and characterization of the Arabidopsis heat-intolerant 2 (hit2) mutant reveal the essential role of the nuclear export receptor EXPORTIN1A (XPO1A) in plant heat tolerance.

    PubMed

    Wu, Shin-Jye; Wang, Lian-Chin; Yeh, Ching-Hui; Lu, Chun-An; Wu, Shaw-Jye

    2010-06-01

    *The Arabidopsis heat-intolerant 2 (hit2) mutant was isolated on the basis of its impaired ability to withstand moderate heat stress (37 degrees C). Determination of the genetic mutation that underlies the hit2 thermosensitive phenotype allowed better understanding of the mechanisms by which plants cope with heat stress. *Genetic analysis revealed that hit2 is a single recessive mutation. Map-based cloning was used to identify the hit2 locus. The response of hit2 to other types of heat stress was also investigated to characterize the protective role of HIT2. *hit2 was defective in basal but not in acquired thermotolerance. hit2 was sensitive to methyl viologen-induced oxidative stress, and the survival of hit2 seedlings in response to heat stress was affected by light conditions. The mutated locus was located at the EXPORTIN1A (XPO1A) gene, which encodes a nuclear transport receptor. Two T-DNA insertion lines, xpo1a-1 and xpo1a-3, exhibited the same phenotypes as hit2. *The results provide evidence that Arabidopsis XPO1A is dispensable for normal plant growth and development but is essential for thermotolerance, in part by mediating the protection of plants against heat-induced oxidative stress.

  8. Novel Double-Hit Model of Radiation and Hyperoxia-Induced Oxidative Cell Damage Relevant to Space Travel

    PubMed Central

    Pietrofesa, Ralph A.; Velalopoulou, Anastasia; Lehman, Stacey L.; Arguiri, Evguenia; Solomides, Pantelis; Koch, Cameron J.; Mishra, Om P.; Koumenis, Constantinos; Goodwin, Thomas J.; Christofidou-Solomidou, Melpo

    2016-01-01

    Spaceflight occasionally requires multiple extravehicular activities (EVA) that potentially subject astronauts to repeated changes in ambient oxygen superimposed on those of space radiation exposure. We thus developed a novel in vitro model system to test lung cell damage following repeated exposure to radiation and hyperoxia. Non-tumorigenic murine alveolar type II epithelial cells (C10) were exposed to >95% O2 for 8 h only (O2), 0.25 Gy ionizing γ-radiation (IR) only, or a double-hit combination of both challenges (O2 + IR) followed by 16 h of normoxia (ambient air containing 21% O2 and 5% CO2) (1 cycle = 24 h, 2 cycles = 48 h). Cell survival, DNA damage, apoptosis, and indicators of oxidative stress were evaluated after 1 and 2 cycles of exposure. We observed a significant (p < 0.05) decrease in cell survival across all challenge conditions along with an increase in DNA damage, determined by Comet analysis and H2AX phosphorylation, and apoptosis, determined by Annexin-V staining, relative to cells unexposed to hyperoxia or radiation. DNA damage (GADD45α and cleaved-PARP), apoptotic (cleaved caspase-3 and BAX), and antioxidant (HO-1 and Nqo1) proteins were increased following radiation and hyperoxia exposure after 1 and 2 cycles of exposure. Importantly, exposure to combination challenge O2 + IR exacerbated cell death and DNA damage compared to individual exposures O2 or IR alone. Additionally levels of cell cycle proteins phospho-p53 and p21 were significantly increased, while levels of CDK1 and Cyclin B1 were decreased at both time points for all exposure groups. Similarly, proteins involved in cell cycle arrest was more profoundly changed with the combination challenges as compared to each stressor alone. These results correlate with a significant 4- to 6-fold increase in the ratio of cells in G2/G1 after 2 cycles of exposure to hyperoxic conditions. We have characterized a novel in vitro model of double-hit, low-level radiation and hyperoxia exposure that

  9. Reconstitution of glucotoxic HIT-T15 cells with somatostatin transcription factor-1 partially restores insulin promoter activity.

    PubMed

    Harmon, J S; Tanaka, Y; Olson, L K; Robertson, R P

    1998-06-01

    We have reported that chronic culture of HIT-T15 cells in medium containing supraphysiologic glucose concentrations (11.1 mmol/l) causes a decrease in insulin mRNA levels, insulin content, and insulin release. Furthermore, decreases in insulin gene transcription and binding activity of two essential beta-cell transcription factors, somatostatin transcription factor-1 (STF-1; also known as GSTF, IDX-1, IPF-1, PDX-1, and GSF) and RIPE-3b1 activator, are associated with this glucotoxic effect. In this study, we observed that the loss of RIPE-3b1 occurs much earlier (79% decrease at passage [p]81) than the loss of STF-1 (65% decrease at p104), with abolishment of both factors by p122. Since the STF-1, but not the RIPE-3b1 activator, gene has been cloned, we examined its restorative effects on insulin gene promoter activity after reconstitution with STF-1 cDNA. Basal insulin promoter activities normalized to early (p71-74) passage cells (1.000 +/- 0.069) were 0.4066 +/- 0.093 and 0.142 +/- 0.034 for intermediate (p102-106) and late (p118-122) passage cells, respectively. Early, intermediate, and late passage cells, all chronically cultured in medium containing 11.1 mmol/l glucose, were transfected with STF-1 alone or cotransfected with E2-5, an E-box factor known to be synergistically associated with STF-1. Compared with basal levels, we observed a trend toward an increase in insulin promoter activity in intermediate passage cells with STF-1 transfection (1.43-fold) that became a significant increase when E2-5 was cotransfected (1.78-fold). In late passage cells, transfection of STF-1 alone significantly stimulated a 2.2-fold increase in the insulin promoter activity. Cotransfection of STF-1 and E2-5 in late passage cells stimulated insulin promoter activity 2.8-fold, which was 40% of the activity observed in early passage cells. Control studies in glucotoxic betaTC-6 cells deficient in RIPE-3b1 activator but not STF-1 did not demonstrate an increase in insulin promoter

  10. Novel Double-Hit Model of Radiation and Hyperoxia-Induced Oxidative Cell Damage Relevant to Space Travel.

    PubMed

    Pietrofesa, Ralph A; Velalopoulou, Anastasia; Lehman, Stacey L; Arguiri, Evguenia; Solomides, Pantelis; Koch, Cameron J; Mishra, Om P; Koumenis, Constantinos; Goodwin, Thomas J; Christofidou-Solomidou, Melpo

    2016-06-16

    Spaceflight occasionally requires multiple extravehicular activities (EVA) that potentially subject astronauts to repeated changes in ambient oxygen superimposed on those of space radiation exposure. We thus developed a novel in vitro model system to test lung cell damage following repeated exposure to radiation and hyperoxia. Non-tumorigenic murine alveolar type II epithelial cells (C10) were exposed to >95% O₂ for 8 h only (O₂), 0.25 Gy ionizing γ-radiation (IR) only, or a double-hit combination of both challenges (O₂ + IR) followed by 16 h of normoxia (ambient air containing 21% O₂ and 5% CO₂) (1 cycle = 24 h, 2 cycles = 48 h). Cell survival, DNA damage, apoptosis, and indicators of oxidative stress were evaluated after 1 and 2 cycles of exposure. We observed a significant (p < 0.05) decrease in cell survival across all challenge conditions along with an increase in DNA damage, determined by Comet analysis and H2AX phosphorylation, and apoptosis, determined by Annexin-V staining, relative to cells unexposed to hyperoxia or radiation. DNA damage (GADD45α and cleaved-PARP), apoptotic (cleaved caspase-3 and BAX), and antioxidant (HO-1 and Nqo1) proteins were increased following radiation and hyperoxia exposure after 1 and 2 cycles of exposure. Importantly, exposure to combination challenge O₂ + IR exacerbated cell death and DNA damage compared to individual exposures O₂ or IR alone. Additionally levels of cell cycle proteins phospho-p53 and p21 were significantly increased, while levels of CDK1 and Cyclin B1 were decreased at both time points for all exposure groups. Similarly, proteins involved in cell cycle arrest was more profoundly changed with the combination challenges as compared to each stressor alone. These results correlate with a significant 4- to 6-fold increase in the ratio of cells in G2/G1 after 2 cycles of exposure to hyperoxic conditions. We have characterized a novel in vitro model of double-hit, low-level radiation and hyperoxia

  11. Determinants of glucose toxicity and its reversibility in the pancreatic islet beta-cell line, HIT-T15.

    PubMed

    Gleason, C E; Gonzalez, M; Harmon, J S; Robertson, R P

    2000-11-01

    HIT-T15 cells, a clonal beta-cell line, were cultured and passaged weekly for 6 mo in RPMI 1640 media containing various concentrations of glucose. Insulin content decreased in the intermediate- and late-passage cells as a continuous rather than a threshold glucose concentration effect. In a second series of experiments, cells were grown in media containing either 0.8 or 16.0 mM glucose from passages 76 through 105. Subcultures of passages 86, 92, and 99 that had been grown in media containing 16.0 mM glucose were switched to media containing 0.8 mM glucose and also carried forward to passage 105. Dramatic increases in insulin content and secretion and insulin gene expression were observed when the switches were made at passages 86 and 92 but not when the switch was made at passage 99. These findings suggest that glucose toxicity of insulin-secreting cells is a continuous rather than a threshold function of glucose concentration and that the shorter the period of antecedent glucose toxicity, the more likely that full recovery of cell function will occur.

  12. Anti-diabetic potential of the essential oil of Pinus koraiensis leaves toward streptozotocin-treated mice and HIT-T15 pancreatic β cells.

    PubMed

    Joo, Hye-Eun; Lee, Hyo-Jung; Sohn, Eun Jung; Lee, Min-Ho; Ko, Hyun-Suk; Jeong, Soo-Jin; Lee, Hyo-Jeong; Kim, Sung-Hoon

    2013-01-01

    The metabolic syndrome creates risk factors for coronary heart disease, diabetes, fatty liver, obesity and several cancers. Our group has already reported that the essential oil from leaves of Pinus koraiensis SIEB (EOPK) exerted antihyperlipidemic effects by upregulating the low-density lipoprotein receptor and inhibiting acyl-coenzyme A, cholesterol acyltransferases. We evaluated in the current study the anti-diabetic effects of EOPK on mice with streptozotocin (STZ)-induced type I diabetes and on HIT-T15 pancreatic β cells. EOPK significantly protected HIT-T15 cells from STZ-induced cytotoxicity and reduced the blood glucose level in STZ-induced diabetic mice when compared with the untreated control. EOPK consistently and significantly suppressed the α-amylase activity in a dose-dependent manner and enhanced the expression of insulin at the mRNA level in STZ-treated HIT-T15 cells, while the expression of insulin was attenuated. EOPK also significantly abrogated the population of reactive oxygen species when compared to the untreated control in STZ-treated HIT-T15 cells. Furthermore, EOPK significantly reduce nitric oxide production, suppressed the phosphorylation of endothelial nitric oxide (NO) synthase and suppressed the production of vascular endothelial growth factor (VEGF) in STZ-treated HIT-T15 cells, implying its potential application to diabetic retinopathy. Overall, our findings suggest that EOPK had hypoglycemic potential by inhibiting reactive oxygene species (ROS), endothelial NO synthase (eNOS) and VEGF in STZ-treated mice and HIT-T15 pancreatic β cells as a potent anti-diabetic agent.

  13. Enhanced HTS hit selection via a local hit rate analysis.

    PubMed

    Posner, Bruce A; Xi, Hualin; Mills, James E J

    2009-10-01

    The postprocessing of high-throughput screening (HTS) results is complicated by the occurrence of false positives (inactive compounds misidentified as active by the primary screen) and false negatives (active compounds misidentified as inactive by the primary screen). An activity cutoff is frequently used to select "active" compounds from HTS data; however, this approach is insensitive to both false positives and false negatives. An alternative method that can minimize the occurrence of these artifacts will increase the efficiency of hit selection and therefore lead discovery. In this work, rather than merely using the activity of a given compound, we look at the presence and absence of activity among all compounds in its "chemical space neighborhood" to give a degree of confidence in its activity. We demonstrate that this local hit rate (LHR) analysis method outperforms hit selection based on ranking by primary screen activity values across ten diverse high throughput screens, spanning both cell-based and biochemical assay formats of varying biology and robustness. On average, the local hit rate analysis method was approximately 2.3-fold and approximately 1.3-fold more effective in identifying active compounds and active chemical series, respectively, than selection based on primary activity alone. Moreover, when applied to finding false negatives, this method was 2.3-fold better than ranking by primary activity alone. In most cases, novel hit series were identified that would have otherwise been missed. Additional uses of and observations regarding this HTS analysis approach are also discussed.

  14. Temporal sequence of metabolic and ionic events in glucose-stimulated clonal pancreatic beta-cells (HIT).

    PubMed

    Civelek, V N; Deeney, J T; Kubik, K; Schultz, V; Tornheim, K; Corkey, B E

    1996-05-01

    Stimulation of insulin release by glucose requires increased metabolism of glucose and a rise in cytosolic free Ca2+ in the pancreatic beta-cell. It is accompanied by increases in respiratory rate, pyridine and flavin nucleotide reduction state, intracellular pH and the ATP/ADP ratio. To test alternative proposals of the regulatory relationships among free Ca2+, mitochondrial metabolism and cellular energy state, we determined the temporal sequence of these metabolic and ionic changes following addition of glucose to clonal pancreatic beta-cells (HIT). Combined measurements of the native fluorescence of reduced pyridine nucleotides and oxidized flavin, intracellular pH, and free Ca2+ were performed together with simultaneous measurement of O2 tension or removal of samples for assay of the ATP/ADP ratio. The initial changes were detected in three phases. First, decreases occurred in the ATP/ADP ratio (<3 s) and increases in pyridine (2 +/- 1 s) and flavin (2 +/- 1 s) nucleotide reduction. Next, increases in the O2 consumption rate (20 +/- 5 s), the ATP/ADP ratio (29 +/- 12 s) and internal pH (48 +/- 5 s) were observed. Finally, cytosolic free Ca2+ rose (114 +/- 10 s). Maximal changes in the ATP/ADP ratio, O2 consumption and pyridine and flavin nucleotide fluorescence preceded the beginning of the Ca2+ change. These relationships are consistent with a model in which phosphorylation of glucose is the initial event which generates the signals that lead to an increase in respiration, a rise in the ATP/ADP ratio and finally influx of Ca2+. Our results indicate that Ca2+ does not function as the initiator of increased mitochondrial respiration.

  15. Pituitary Adenylate Cyclase-Activating Polypeptide Induces the Voltage-Independent Activation of Inward Membrane Currents and Elevation of Intracellular Calcium in HIT-T15 Insulinoma Cells*

    PubMed Central

    LEECH, COLIN A.; HOLZ, GEORGE G.; HABENER, JOEL F.

    2010-01-01

    The secretion of insulin by pancreatic β-cells is controlled by synergistic interactions of glucose and hormones of the glucagon-related peptide family, of which pituitary adenylate cyclase-activating polypeptide (PACAP) is a member. Here we show by simultaneous recording of intracellular calcium ion ([Ca2+]i) and membrane potential that both PACAP-27 and PACAP-38 depolarize HIT-T15 cells and raise [Ca2+]i. PACAP stimulation can result in membrane depolarization by two distinct mechanisms: 1) PACAP reduces the membrane conductance and increases membrane excitability; and 2) PACAP activates a pronounced inward current that is predominantly a Na+ current, blockable by La3+, and which exhibits a reversal potential of about −28 mV. Activation of this current does not require membrane depolarization, because the response is observed when cells are held under voltage clamp at −70 mV. This current may result from the cAMP-dependent activation of nonspecific cation channels because the current is also observed in response to forskolin or membrane-permeant analogs of cAMP. We also suggest that PACAP raises [Ca2+]i and stimulates insulin secretion by three distinct mechanisms: 1) depolarization activates Ca2+ influx through L-type voltage-dependent calcium channels, 2) mobilization of intracellular Ca2+ stores, and 3) entry of Ca2+ via voltage-independent Ca2+ channels. These effects of PACAP may play an important role in a neuro-entero-endocrine loop regulating insulin secretion from pancreatic β-cells during the transition period from fasting to feeding. PMID:7895663

  16. Glucagon-like peptide-1 counteracts the detrimental effects of Advanced Glycation End-Products in the pancreatic beta cell line HIT-T 15

    SciTech Connect

    Puddu, A.; Storace, D.; Durante, A.; Odetti, P.; Viviani, G.L.

    2010-07-30

    Research highlights: {yields} GLP-1 prevents AGEs-induced cell death. {yields} GLP-1 prevents AGEs-induced oxidative stress. {yields} GLP-1 ameliorated AGEs-induced cell dysfunction. {yields} GLP-1 attenuates AGEs-induced RAGE increment. {yields} GLP-1 counteracts AGEs-induced pancreatic cell death and dysfunction. -- Abstract: Advanced Glycation End-Products (AGEs), a group of compounds resulting from the non-enzymatic reaction of reducing sugars with the free amino group of proteins, are implicated in diabetic complications. We previously demonstrated that exposure of the pancreatic islet cell line HIT-T 15 to high concentrations of AGEs significantly decreases cell proliferation and insulin secretion, and affects transcription factors regulating insulin gene transcription. The glucagon-like peptide-1 (GLP-1) is an incretin hormone that increases proinsulin biosynthesis, stimulates insulin secretion, and improves pancreatic beta-cell viability. The aim of this work was to investigate the effects of GLP-1 on the function and viability of HIT-T 15 cells cultured with AGEs. HIT-T 15 cells were cultured for 5 days in presence of AGEs alone, or supplemented with 10 nmol/l GLP-1. Cell viability, insulin secretion, redox balance, and expression of the AGEs receptor (RAGE) were then determined. The results showed that GLP-1 protected beta cell against AGEs-induced cell death preventing both apoptosis and necrosis. Moreover, addition of GLP-1 to the AGEs culture medium restored the redox balance, improved the responsiveness to glucose, and attenuated AGEs-induced RAGE expression. These findings provide evidence that GLP-1 protects beta cells from the dangerous effects of AGEs.

  17. Two hits revisited again

    PubMed Central

    Tomlinson, I; Roylance, R; Houlston, R

    2001-01-01

    INTRODUCTION AND METHODS—Since the concept of the "two hit hypothesis" was introduced over 20 years ago, a wealth of genetic data has accumulated on the mutations found at tumour suppressor loci. Perhaps surprisingly, these data conceal large gaps in our knowledge which genetic and functional studies are beginning to uncover. The "two hit hypothesis" must be updated to take account of this new information.
RESULTS AND DISCUSSION—Here, we discuss both the results of recent studies and some of the questions that they highlight. In particular, how valid are conclusions from inherited Mendelian syndromes when applied to sporadic cancers? Why is allelic loss so common and how does it occur? Are the "two hits" random or interdependent? Is abolition of protein function always optimal for tumorigenesis? Can "third hits" occur and, if so, why? How can mismatch repair deficiency and the methylator phenotype be incorporated into the "two hit" hypothesis? We suggest that the "two hit hypothesis" is not fixed but is evolving as our knowledge expands.


Keywords: two hit model; tumour suppressor; carcinogenesis PMID:11158170

  18. Reconfiguring the AR-TIF2 Protein-Protein Interaction HCS Assay in Prostate Cancer Cells and Characterizing the Hits from a LOPAC Screen.

    PubMed

    Fancher, Ashley T; Hua, Yun; Camarco, Daniel P; Close, David A; Strock, Christopher J; Johnston, Paul A

    2016-10-01

    The continued activation of androgen receptor (AR) transcription and elevated expression of AR and transcriptional intermediary factor 2 (TIF2) coactivator observed in prostate cancer (CaP) recurrence and the development of castration-resistant CaP (CRPC) support a screening strategy for small-molecule inhibitors of AR-TIF2 protein-protein interactions (PPIs) to find new drug candidates. Small molecules can elicit tissue selective effects, because the cells of distinct tissues express different levels and cohorts of coregulatory proteins. We reconfigured the AR-TIF2 PPI biosensor (PPIB) assay in the PC-3 CaP cell line to determine whether AR modulators and hits from an AR-TIF2 PPIB screen conducted in U-2 OS cells would behave differently in the CaP cell background. Although we did not observe any significant differences in the compound responses between the assay performed in osteosarcoma and CaP cells, the U-2 OS AR-TIF2 PPIB assay would be more amenable to screening, because both the virus and cell culture demands are lower. We implemented a testing paradigm of counter-screens and secondary hit characterization assays that allowed us to identify and deprioritize hits that inhibited/disrupted AR-TIF2 PPIs and AR transcriptional activation (AR-TA) through antagonism of AR ligand binding or by non-specifically blocking nuclear receptor trafficking. Since AR-TIF2 PPI inhibitor/disruptor molecules act distally to AR ligand binding, they have the potential to modulate AR-TA in a cell-specific manner that is distinct from existing anti-androgen drugs, and to overcome the development of resistance to AR antagonism. We anticipate that the application of this testing paradigm to characterize the hits from an AR-TIF2 PPI high-content screening campaign will enable us to prioritize the AR-TIF2 PPI inhibitor/disruptor leads that have potential to be developed into novel therapeutics for CaP and CRPC.

  19. "You Have to Get Hit a Couple of Times": The Role of Conflict in Learning How to "Be" a Skateboarder

    ERIC Educational Resources Information Center

    Petrone, Robert

    2010-01-01

    By examining the role of conflict in learning how to "be" a skateboarder at a skate park in the United States, this article illustrates how conflicts constitute key aspects of learning and teaching within communities of practice. Specifically, this article demonstrates how the practices of "snaking" and "heckling" are used by a group of…

  20. Cyclone Chris Hits Australia

    NASA Technical Reports Server (NTRS)

    2002-01-01

    This false-color image shows Cyclone Chris shortly after it hit Australia's northwestern coast on February 6, 2002. This scene was acquired by the Moderate-resolution Imaging Spectroradiometer (MODIS), flying aboard NASA's Terra satellite. (Please note that this scene has not been reprojected.) Cyclone Chris is one of the most powerful storms ever to hit Australia. Initially, the storm contained wind gusts of up to 200 km per hour (125 mph), but shortly after making landfall it weakened to a Category 4 storm. Meteorologists expect the cyclone to weaken quickly as it moves further inland.

  1. But Can You Hit?

    ERIC Educational Resources Information Center

    Johnson, R. E.

    2009-01-01

    The author shares a story told to him by a colleague more than thirty years ago. The dean of a midsized American university was explaining the path to tenure to a roomful of newly appointed assistant professors. "We know you boys can all "field"," he declared. "Now we want to see if you can hit." A lot has changed over the intervening decades. If…

  2. LncRNA-HIT Functions as an Epigenetic Regulator of Chondrogenesis through Its Recruitment of p100/CBP Complexes

    PubMed Central

    Carlson, Hanqian L.; Quinn, Jeffrey J.; Yang, Yul W.; Thornburg, Chelsea K.; Chang, Howard Y.; Stadler, H. Scott

    2015-01-01

    Gene expression profiling in E 11 mouse embryos identified high expression of the long noncoding RNA (lncRNA), LNCRNA-HIT in the undifferentiated limb mesenchyme, gut, and developing genital tubercle. In the limb mesenchyme, LncRNA-HIT was found to be retained in the nucleus, forming a complex with p100 and CBP. Analysis of the genome-wide distribution of LncRNA-HIT-p100/CBP complexes by ChIRP-seq revealed LncRNA-HIT associated peaks at multiple loci in the murine genome. Ontological analysis of the genes contacted by LncRNA-HIT-p100/CBP complexes indicate a primary role for these loci in chondrogenic differentiation. Functional analysis using siRNA-mediated reductions in LncRNA-HIT or p100 transcripts revealed a significant decrease in expression of many of the LncRNA-HIT-associated loci. LncRNA-HIT siRNA treatments also impacted the ability of the limb mesenchyme to form cartilage, reducing mesenchymal cell condensation and the formation of cartilage nodules. Mechanistically the LncRNA-HIT siRNA treatments impacted pro-chondrogenic gene expression by reducing H3K27ac or p100 activity, confirming that LncRNA-HIT is essential for chondrogenic differentiation in the limb mesenchyme. Taken together, these findings reveal a fundamental epigenetic mechanism functioning during early limb development, using LncRNA-HIT and its associated proteins to promote the expression of multiple genes whose products are necessary for the formation of cartilage. PMID:26633036

  3. Silymarin Activates c-AMP Phosphodiesterase and Stimulates Insulin Secretion in a Glucose-Dependent Manner in HIT-T15 Cells

    PubMed Central

    Meng, Ran; Mahadevan, Jana; Oseid, Elizabeth; Vallerie, Sara; Robertson, R. Paul

    2016-01-01

    Silymarin (SIL) is a flavonoid extracted from milk thistle seed that has been reported to decrease hyperglycemia in people with type 2 diabetes (T2D). However, it is not known whether SIL has direct secretory effects on β-cells. Using the β-cell line HIT-T15, SIL was shown to decrease intracellular peroxide levels and to augment glucose-stimulated insulin secretion (GSIS). However, the latter was observed using a concentration range of 25–100 µM, which was too low to affect endogenous peroxide levels. The stimulatory effect of SIL dissipated at higher concentrations (100–200 µM), and mild apoptosis was observed. The smaller concentrations of SIL also decreased cAMP phosphodiesterase activity in a Ca2+/calmodulin-dependent manner. The stimulatory effects of SIL on GSIS were inhibited by three different inhibitors of exocytosis, indicating that SIL’s mechanism of stimulating GSIS operated via closing β-cell K-ATP channels, and perhaps more distal sites of action involving calcium influx and G-proteins. We concluded that augmentation of GSIS by SIL can be observed at concentrations that also inhibit cAMP phosphodiesterase without concomitant lowering of intracellular peroxides. PMID:27973458

  4. Amantadine and sparteine inhibit ATP-regulated K-currents in the insulin-secreting beta-cell line, HIT-T15.

    PubMed Central

    Ashcroft, F. M.; Kerr, A. J.; Gibson, J. S.; Williams, B. A.

    1991-01-01

    1. The effects of pharmacological agents that potentiate insulin release were studied on ATP-regulated K-currents (K-ATP currents) in the insulin-secreting beta-cell line HIT-T15 by use of patch-clamp methods. 2. The tricyclic drug, 1-adamantanamine (amantadine), reversibly inhibited both whole-cell currents (with a Ki of 120 microM) and single channel currents in inside-out patches. This effect was principally due to an increase in a long closed state which reduced the channel open probability. The related compound, 1-adamantanol, in which the amino group is substituted by a hydroxyl one, did not inhibit K-ATP currents substantially. 3. The alkaloid, sparteine, reversibly inhibited both whole-cell K-ATP currents (Ki = 171 microM) and single channel currents in inside-out patches. 4. The results suggest that sparteine and amantadine can block the K-ATP channel from either side of the membrane and support the idea that at least part of the stimulatory effect of these agents on insulin secretion results from inhibition of this channel. PMID:1797321

  5. Computational Physics' Greatest Hits

    NASA Astrophysics Data System (ADS)

    Bug, Amy

    2011-03-01

    The digital computer, has worked its way so effectively into our profession that now, roughly 65 years after its invention, it is virtually impossible to find a field of experimental or theoretical physics unaided by computational innovation. It is tough to think of another device about which one can make that claim. In the session ``What is computational physics?'' speakers will distinguish computation within the field of computational physics from this ubiquitous importance across all subfields of physics. This talk will recap the invited session ``Great Advances...Past, Present and Future'' in which five dramatic areas of discovery (five of our ``greatest hits'') are chronicled: The physics of many-boson systems via Path Integral Monte Carlo, the thermodynamic behavior of a huge number of diverse systems via Monte Carlo Methods, the discovery of new pharmaceutical agents via molecular dynamics, predictive simulations of global climate change via detailed, cross-disciplinary earth system models, and an understanding of the formation of the first structures in our universe via galaxy formation simulations. The talk will also identify ``greatest hits'' in our field from the teaching and research perspectives of other members of DCOMP, including its Executive Committee.

  6. Hitting the Bull’s-Eye in Metastatic Cancers—NSAIDs Elevate ROS in Mitochondria, Inducing Malignant Cell Death

    PubMed Central

    Ralph, Stephen John; Pritchard, Rhys; Rodríguez-Enríquez, Sara; Moreno-Sánchez, Rafael; Ralph, Raymond Keith

    2015-01-01

    Tumor metastases that impede the function of vital organs are a major cause of cancer related mortality. Mitochondrial oxidative stress induced by hypoxia, low nutrient levels, or other stresses, such as genotoxic events, act as key drivers of the malignant changes in primary tumors to enhance their progression to metastasis. Emerging evidence now indicates that mitochondrial modifications and mutations resulting from oxidative stress, and leading to OxPhos stimulation and/or enhanced reactive oxygen species (ROS) production, are essential for promoting and sustaining the highly metastatic phenotype. Moreover, the modified mitochondria in emerging or existing metastatic cancer cells, by their irreversible differences, provide opportunities for selectively targeting their mitochondrial functions with a one-two punch. The first blow would block their anti-oxidative defense, followed by the knockout blow—promoting production of excess ROS, capitulating the terminal stage—activation of the mitochondrial permeability transition pore (mPTP), specifically killing metastatic cancer cells or their precursors. This review links a wide area of research relevant to cellular mechanisms that affect mitochondria activity as a major source of ROS production driving the pro-oxidative state in metastatic cancer cells. Each of the important aspects affecting mitochondrial function are discussed including: hypoxia, HIFs and PGC1 induced metabolic changes, increased ROS production to induce a more pro-oxidative state with reduced antioxidant defenses. It then focuses on how the mitochondria, as a major source of ROS in metastatic cancer cells driving the pro-oxidative state of malignancy enables targeting drugs affecting many of these altered processes and why the NSAIDs are an excellent example of mitochondria-targeted agents that provide a one-two knockout activating the mPTP and their efficacy as selective anticancer metastasis drugs. PMID:25688484

  7. Optoelectronic hit/miss transform for screening cervical smear slides

    NASA Astrophysics Data System (ADS)

    Narayanswamy, R.; Turner, R. M.; McKnight, D. J.; Johnson, K. M.; Sharpe, J. P.

    1995-06-01

    An optoelectronic morphological processor for detecting regions of interest (abnormal cells) on a cervical smear slide using the hit/miss transform is presented. Computer simulation of the algorithm tested on 184 Pap-smear images provided 95% detection and 5% false alarm. An optoelectronic implementation of the hit/miss transform is presented, along with preliminary experimental results.

  8. Cosmic ray hit frequencies in critical sites in the central nervous system

    NASA Astrophysics Data System (ADS)

    Curtis, S. B.; Vazquez, M. E.; Wilson, J. W.; Atwell, W.; Kim, M.; Capala, J.

    One outstanding question to be addressed in assessing the risk of exposure to space travelers from galactic cosmic rays (GCR) outside the geomagnetosphere is to ascertain the effects of single heavy-ion hits on cells in critical regions of the central nervous system (CNS). As a first step toward this end, it is important to determine how many ``hits'' might be received by a neural cell in several critical CNS areas during an extended mission outside the confines of the earth's magnetic field. Critical sites in the CNS: the macula, and an interior brain point (typical of the genu, thalamus, hippocampus and nucleus basalis of Meynert) were chosen for the calculation of hit frequencies from galactic cosmic rays for a mission to Mars during solar minimum (i.e., at maximum cosmic-ray intensity). The shielding at a given position inside the body was obtained using the Computerized Anatomical Man (CAM) model, and a radiation transport code which includes nuclear fragmentation was used to calculate yearly fluences at the point of interest. Since the final Mars spacecraft shielding configuration has not yet been determined, we considered the minimum amount of aluminum required for pressure vessel-wall requirements in the living quarters of a spacecraft, and a typical duty area as a pressure vessel plus necessary equipment. The conclusions are: (1) variation of the position of the ``target site'' within the head plays only a small role in varying hit frequencies; (2) the average number of hits depends linearly on the cross section of the critical portion of the cell assumed in the calculation; (3) for a three-year mission to Mars at solar minimum (i.e., assuming the 1977 spectrum of galactic cosmic rays), 2% or 13% of the ``critical sites'' of cells in the CNS would be directly hit at least once by iron ions, depending on whether 60 mum^2 or 471 mum^2 is assumed as the critical cross sectional area; and (4) roughly 6 million out of some 43 million hippocampal cells and 55

  9. Prognostic impact of history of follicular lymphoma, induction regimen and stem cell transplant in patients with MYC/BCL2 double hit lymphoma

    PubMed Central

    Li, Shaoying; Saksena, Annapurna; Desai, Parth; Xu, Jie; Zuo, Zhuang; Lin, Pei; Tang, Guilin; Yin, C. Cameron; Seegmiller, Adam; Jorgensen, Jeffrey L.; Miranda, Roberto N.; Reddy, Nishitha M; Bueso-Ramos, Carlos; Medeiros, L. Jeffrey

    2016-01-01

    MYC/BCL2 double hit lymphoma (DHL) has been the subject of many studies; however, no study has systemically compared the clinicopathologic features and prognostic factors between patients with de novo disease versus those with a history of follicular lymphoma (FL). In addition, the prognostic importance of several other issues remains controversial in these patients. In this retrospective study, we assess 157 patients with MYC/BCL2 DHL including 108 patients with de novo disease and 49 patients with a history of FL or rarely other types of low-grade B-cell lymphoma. Patients received induction chemotherapy regimens including 61 R-CHOP, 31 R-EPOCH, 29 R-Hyper-CVAD, and 23 other regimens. Thirty-nine patients received a stem cell transplant (SCT) including 31 autologous and 8 allogeneic. Sixty-two patients achieved complete remission (CR) after induction chemotherapy. Median overall survival (OS) was 19 months. Clinicopathologic features were similar between patients with de novo tumors versus those with a history of FL (P > 0.05). Using multivariate analysis, achieving CR, undergoing SCT, stage and the International Prognostic Index were independent prognostic factors for OS. Stem cell transplantion was associated with improved OS in patients who failed to achieve CR, but not in patients who achieved CR after induction chemotherapy. In conclusion, patients with MYC/BCL2 DHL who present with de novo disease and patients with a history of FL have a similarly poor prognosis. Achievement of CR, regardless of the induction chemotherapy regimen used, is the most important independent prognostic factor. Patients who do not achieve CR after induction chemotherapy may benefit from SCT. PMID:27203548

  10. Relapsed or Refractory Double-Expressor and Double-Hit Lymphomas Have Inferior Progression-Free Survival After Autologous Stem-Cell Transplantation.

    PubMed

    Herrera, Alex F; Mei, Matthew; Low, Lawrence; Kim, Haesook T; Griffin, Gabriel K; Song, Joo Y; Merryman, Reid W; Bedell, Victoria; Pak, Christine; Sun, Heather; Paris, Tanya; Stiller, Tracey; Brown, Jennifer R; Budde, Lihua E; Chan, Wing C; Chen, Robert; Davids, Matthew S; Freedman, Arnold S; Fisher, David C; Jacobsen, Eric D; Jacobson, Caron A; LaCasce, Ann S; Murata-Collins, Joyce; Nademanee, Auayporn P; Palmer, Joycelynne M; Pihan, German A; Pillai, Raju; Popplewell, Leslie; Siddiqi, Tanya; Sohani, Aliyah R; Zain, Jasmine; Rosen, Steven T; Kwak, Larry W; Weinstock, David M; Forman, Stephen J; Weisenburger, Dennis D; Kim, Young; Rodig, Scott J; Krishnan, Amrita; Armand, Philippe

    2017-01-01

    Purpose Double-hit lymphomas (DHLs) and double-expressor lymphomas (DELs) are subtypes of diffuse large B-cell lymphoma (DLBCL) associated with poor outcomes after standard chemoimmunotherapy. Data are limited regarding outcomes of patients with relapsed or refractory (rel/ref) DEL or DHL who undergo autologous stem-cell transplantation (ASCT). We retrospectively studied the prognostic impact of DEL and DHL status on ASCT outcomes in patients with rel/ref DLBCL. Methods Patients with chemotherapy-sensitive rel/ref DLBCL who underwent ASCT at two institutions and in whom archival tumor material was available were enrolled. Immunohistochemistry for MYC, BCL2, and BCL6 and fluorescence in situ hybridization (FISH) for MYC were performed. In cases with MYC rearrangement or copy gain, FISH for BCL2 and BCL6 was also performed. Results A total of 117 patients were included; 44% had DEL and 10% had DHL. DEL and DHL were associated with inferior progression-free survival (PFS), and DHL was associated with poorer overall survival (OS). The 4-year PFS in patients with DEL compared with those with non-DEL was 48% versus 59% ( P = .049), and the 4-year OS was 56% versus 67% ( P = .10); 4-year PFS in patients with DHL compared with those with non-DHL was 28% versus 57% ( P = .013), and 4-year OS was 25% versus 61% ( P = .002). The few patients with concurrent DEL and DHL had a poor outcome (4-year PFS, 0%). In multivariable models, DEL and DHL were independently associated with inferior PFS, whereas DHL and partial response ( v complete response) at transplant were associated with inferior OS. Conclusion DEL and DHL are both associated with inferior outcomes after ASCT in patients with rel/ref DLBCL. Although ASCT remains a potentially curative approach, these patients, particularly those with DHL, are a high-risk subset who should be targeted for investigational strategies other than standard ASCT.

  11. Hurricane Iris Hits Belize

    NASA Technical Reports Server (NTRS)

    2002-01-01

    Hurricane Iris hit the small Central American country of Belize around midnight on October 8, 2001. At the time, Iris was the strongest Atlantic hurricane of the season, with sustained winds up to 225 kilometers per hour (140 mph). The hurricane caused severe damage-destroying homes, flooding streets, and leveling trees-in coastal towns south of Belize City. In addition, a boat of American recreational scuba divers docked along the coast was capsized by the storm, leaving 20 of the 28 passengers missing. Within hours the winds had subsided to only 56 kph (35 mph), a modest tropical depression, but Mexico, Guatemala, El Salvador, and Honduras were still expecting heavy rains. The above image is a combination of visible and thermal infrared data (for clouds) acquired by a NOAA Geostationary Operational Environmental Satellite (GOES-8) on October 8, 2001, at 2:45 p.m., and the Moderate-resolution Imaging Spectroradiometer (MODIS) (for the color of the ground). The three-dimensional view is from the south-southeast (north is towards the upper left). Belize is off the image to the left. Image courtesy Marit Jentoft-Nilsen, NASA GSFC Visualization Analysis Lab

  12. Primary Cutaneous Diffuse Large B-Cell Lymphoma With a MYC-IGH Rearrangement and Gain of BCL2: Expanding the Spectrum of MYC/BCL2 Double-Hit Lymphomas.

    PubMed

    Testo, Natalia; Olson, Luke C; Subramaniyam, Shivakumar; Hanson, Ty; Magro, Cynthia M

    2016-10-01

    Aggressive extracutaneous B-cell lymphomas span the various stages of B-cell ontogeny and include B-cell lymphoblastic lymphoma, Burkitt lymphoma, mantle cell lymphoma, and diffuse large B-cell lymphoma. Diffuse large B-cell lymphomas represent the most common histologic subtype of non-Hodgkin lymphomas, comprising 30% of adult non-Hodgkin lymphomas in the United States. A distinctive form of diffuse large B-cell lymphoma is the double-hit lymphoma, with most cases exhibiting a combined MYC and BCL2 rearrangement, leading some hematopathologists to propose the term MYC/BCL2 lymphoma. More recently, MYC rearrangement with multiple copies/gain of BCL2 or multiple copies/gain of MYC with a BCL2 rearrangement have been described and exhibit a very similar clinical course to conventional double-hit lymphomas. We report the seventh case of diffuse large B-cell lymphoma exhibiting this distinct cytogenetic abnormality and the first reported case in the skin. The patient's clinical course was aggressive, succumbing to disease 18 months after his initial presentation.

  13. Beyond "Hitting the Books"

    ERIC Educational Resources Information Center

    Entress, Cole; Wagner, Aimee

    2014-01-01

    Scientists, science teachers, and serious students recognize that success in science classes requires consistent practice--including study at home. Whether balancing chemical equations, calculating angular momentum, or memorizing the steps of cell division, students must review material repeatedly to fully understand new ideas--and must practice…

  14. Postponed Is Not Canceled: Role of Craniospinal Radiation Therapy in the Management of Recurrent Infant Medulloblastoma—An Experience From the HIT-REZ 1997 and 2005 Studies

    SciTech Connect

    Müller, Klaus; Mynarek, Martin; Zwiener, Isabella; Siegler, Nele; Zimmermann, Martina; Christiansen, Hans; Budach, Wilfried; Henke, Guido; Warmuth-Metz, Monika; Pietsch, Torsten; Hoff, Katja von; Bueren, Andre von; Bode, Udo; and others

    2014-04-01

    Purpose: To evaluate the efficacy of craniospinal irradiation (CSI) in the management of recurrent infant medulloblastoma after surgery and chemotherapy alone. Methods and Materials: Seventeen pediatric medulloblastoma patients registered in the HIT-REZ 1997 and 2005 studies underwent CSI as salvage treatment at first recurrence. All patients had achieved complete remission after first-line treatment consisting of surgery and chemotherapy. Eleven patients showed metastatic disease at relapse. Five patients underwent surgery prior to radiation therapy, which resulted in complete resection in 1 case. In 1 patient, complete resection of the residual tumor was performed after CSI. Eleven patients received chemotherapy prior, 6 patients during and 8 patients after CSI. All patients received CSI with a median total dose of 35.2 Gy, and all but 1 received a boost to the posterior fossa (median total dose, 55.0 Gy). Metastases were boosted with an individual radiation dose, depending on their location and extent. Results: During a median follow-up time of 6.2 years since recurrence, 11 patients showed progressive disease and died. Median progression-free (overall) survival was 2.9 ± 1.1 (3.8 ± 0.8) years. Progression-free survival (PFS) rates at 1, 3, and 5 years were 88% ± 8%, 46% ± 12%, and 40% ± 12%, respectively. Overall survival (OS) rates at 1, 3, and 5 years were 94% ± 6%, 58% ± 12%, and 39% ± 12%, respectively. For 11 patients with classic medulloblastoma, 3-year (and 5-year) PFS and OS were 62% ± 15% and 72% ± 14% (52% ± 16% and 51% ± 16%), respectively. On univariate analysis, metastatic disease was not associated with poorer progression-free and overall survival. Conclusions: Our results suggest that salvage treatment of relapsed medulloblastomas consisting of CSI and chemotherapy offers a second chance for cure, even for patients with classic histological findings. Metastatic disease at relapse did not have an impact

  15. 42 CFR 495.344 - Approval of the State Medicaid HIT plan, the HIT PAPD and update, the HIT IAPD and update, and...

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... PAPD and update, the HIT IAPD and update, and the annual HIT IAPD. 495.344 Section 495.344 Public... and update, the HIT IAPD and update, and the annual HIT IAPD. HHS will not approve the State Medicaid HIT plan, HIT PAPD and update, HIT-IAPD and update, or annual IAPD if any of these documents do...

  16. Car Hits Boy on Bicycle

    ERIC Educational Resources Information Center

    Ruiz, Michael J.

    2005-01-01

    In this article we present the fascinating reconstruction of an accident where a car hit a boy riding his bicycle. The boy dramatically flew several metres through the air after the collision and was injured, but made a swift and complete recovery from the accident with no long-term after-effects. Students are challenged to determine the speed of…

  17. Hitting Is Contagious in Baseball: Evidence from Long Hitting Streaks

    PubMed Central

    Bock, Joel R.; Maewal, Akhilesh; Gough, David A.

    2012-01-01

    Data analysis is used to test the hypothesis that “hitting is contagious”. A statistical model is described to study the effect of a hot hitter upon his teammates’ batting during a consecutive game hitting streak. Box score data for entire seasons comprising streaks of length games, including a total observations were compiled. Treatment and control sample groups () were constructed from core lineups of players on the streaking batter’s team. The percentile method bootstrap was used to calculate confidence intervals for statistics representing differences in the mean distributions of two batting statistics between groups. Batters in the treatment group (hot streak active) showed statistically significant improvements in hitting performance, as compared against the control. Mean for the treatment group was found to be to percentage points higher during hot streaks (mean difference increased points), while the batting heat index introduced here was observed to increase by points. For each performance statistic, the null hypothesis was rejected at the significance level. We conclude that the evidence suggests the potential existence of a “statistical contagion effect”. Psychological mechanisms essential to the empirical results are suggested, as several studies from the scientific literature lend credence to contagious phenomena in sports. Causal inference from these results is difficult, but we suggest and discuss several latent variables that may contribute to the observed results, and offer possible directions for future research. PMID:23251507

  18. Recurrent multilocular mandibular giant cell granuloma in neurofibromatosis type 1: Evidence for second hit mutation of NF1 gene in the jaw lesion and treatment with curettage and bone substitute materials.

    PubMed

    Friedrich, Reinhard E; Grob, Tobias J; Hollants, Silke; Zustin, Jozef; Spaepen, Marijke; Mautner, Victor F; Luebke, Andreas M; Hagel, Christian; Legius, Eric; Brems, Hilde

    2016-08-01

    Giant cell granuloma (GCG) of the jaw is a rare, well-known feature of neurofibromatosis type 1 (NF1), an inborn multisystem disorder. Recently, the development of GCG in NF1 was attributed to second hit mutations in the NF1 gene. The treatment of GCG is pragmatic with a preference for local curettage of lytic osseous areas. This report describes the surgical therapy of an NF1-affected female with multilocular mandibular GCG and hypodontia who additionally suffered from a brain tumour and Hashimoto's thyroiditis. Although local recurrence of GCG was noted, augmentation of the curetted cavities with a bone substitute in successive interventions successfully restored the extensive periradicular local defects and stabilised the teeth. A meticulous in vitro study of the GCG specimen revealed a second hit mutation in the NF1 gene in the GCG spindle-cells. This study contributes to the increasing knowledge of the molecular basis for GCG in the jaw of NF1 patients, indicating that it is a neoplasm.

  19. Robust Hitting with Dynamics Shaping

    NASA Astrophysics Data System (ADS)

    Yashima, Masahito; Yamawaki, Tasuku

    The present paper proposes the trajectory planning based on “the dynamics shaping” for a redundant robotic arm to hit a target robustly toward the desired direction, of which the concept is to shape the robot dynamics appropriately by changing its posture in order to achieve the robust motion. The positional error of the end-effector caused by unknown disturbances converges onto near the singular vector corresponding to its maximum singular value of the output controllability matrix of the robotic arm. Therefore, if we can control the direction of the singular vector by applying the dynamics shaping, we will be able to control the direction of the positional error of the end-effector caused by unknown disturbances. We propose a novel trajectory planning based on the dynamics shaping and verify numerically and experimentally that the robotic arm can robustly hit the target toward the desired direction with a simple open-loop control system even though the disturbance is applied.

  20. A Two-Hit Model of Autism: Adolescence as the Second Hit

    PubMed Central

    Picci, Giorgia; Scherf, K. Suzanne

    2015-01-01

    Adolescence brings dramatic changes in behavior and neural organization. Unfortunately, for some 30% of individuals with autism, there is marked decline in adaptive functioning during adolescence. We propose a two-hit model of autism. First, early perturbations in neural development function as a “first hit” that sets up a neural system that is “built to fail” in the face of a second hit. Second, the confluence of pubertal hormones, neural reorganization, and increasing social demands during adolescence provides the “second hit” that interferes with the ability to transition into adult social roles and levels of adaptive functioning. In support of this model, we review evidence about adolescent-specific neural and behavioral development in autism. We conclude with predictions and recommendations for empirical investigation about several domains in which developmental trajectories for individuals with autism may be uniquely deterred in adolescence. PMID:26609500

  1. Essential role of AKT in tumor cells addicted to FGFR.

    PubMed

    Hu, Yi; Lu, Huiru; Zhang, Jinchao; Chen, Jun; Chai, Zhifang; Zhang, Jingxin

    2014-02-01

    Tumor cells with genetic amplifications or mutations in the fibroblast growth factor receptor (FGFR) family are often addicted to FGFR and heavily dependent on its signaling to survive. Although it is critical to understand which signaling pathway downstream of FGFR plays an essential role to guide the research and development of FGFR inhibitors, it has remained unclear partly because the tool compounds used in the literature also hit many other kinases, making the results difficult to interpret. With the development of a potent FGFR-specific inhibitor, BGJ398, we are now able to dissect various pathways with low drug concentrations to minimize multiple-target effects. Importantly, here, we show that inhibition of FGFR signaling by BGJ398 leads to only transient inhibition of ERK1/2 phosphorylation, whereas the inhibitory effect on AKT phosphorylation is sustainable, indicating that AKT, not ERK as commonly believed, serves as an appropriate pharmacodynamic biomarker for BGJ398. Although AKT inhibition by a pan-PI3K inhibitor alone has almost no effect on cell growth, heterologous expression of myr-AKT, an active form of AKT, rescues BGJ398-mediated suppression of tumor cell proliferation. These results indicate that AKT is an essential component downstream of FGFR. Finally, combination of the FGFR inhibitor BGJ398 with rapamycin significantly inhibits AKT phosphorylation and enhances their antiproliferative effects in FGFR-addicted cells, suggesting an effective combination strategy for clinical development of FGFR inhibitors.

  2. The Role of c-MYC in B-Cell Lymphomas: Diagnostic and Molecular Aspects.

    PubMed

    Nguyen, Lynh; Papenhausen, Peter; Shao, Haipeng

    2017-04-05

    c-MYC is one of the most essential transcriptional factors, regulating a diverse array of cellular functions, including proliferation, growth, and apoptosis. Dysregulation of c-MYC is essential in the pathogenesis of a number of B-cell lymphomas, but is rarely reported in T-cell lymphomas. c-MYC dysregulation induces lymphomagenesis by loss of the tight control of c-MYC expression, leading to overexpression of intact c-MYC protein, in contrast to the somatic mutations or fusion proteins seen in many other oncogenes. Dysregulation of c-MYC in B-cell lymphomas occurs either as a primary event in Burkitt lymphoma, or secondarily in aggressive lymphomas such as diffuse large B-cell lymphoma, plasmablastic lymphoma, mantle cell lymphoma, or double-hit lymphoma. Secondary c-MYC changes include gene translocation and gene amplification, occurring against a background of complex karyotype, and most often confer aggressive clinical behavior, as evidenced in the double-hit lymphomas. In low-grade B-cell lymphomas, acquisition of c-MYC rearrangement usually results in transformation into highly aggressive lymphomas, with some exceptions. In this review, we discuss the role that c-MYC plays in the pathogenesis of B-cell lymphomas, the molecular alterations that lead to c-MYC dysregulation, and their effect on prognosis and diagnosis in specific types of B-cell lymphoma.

  3. Cutaneous presentation of Double Hit Lymphoma

    PubMed Central

    Khelfa, Yousef; Lebowicz, Yehuda

    2016-01-01

    Diffuse large B-cell lymphoma (DLBCL) is the most common type of non-Hodgkin lymphoma (NHL), representing approximately 25% of diagnosed NHL. DLBCL is heterogeneous disease both clinically and genetically. The 3 most common chromosomal translocations in DLBCL involve the oncogenes BCL2, BCL6, and MYC. Double hit (DH) DLBCL is an aggressive form in which MYC rearrangement is associated with either BCL2 or BCL6 rearrangement. Patients typically present with a rapidly growing mass, often with B symptoms. Extranodal disease is often present. Though there is a paucity of prospective trials in this subtype, double hit lymphoma (DHL) has been linked to very poor outcomes when patients are treated with standard R-CHOP. There is, therefore, a lack of consensus regarding the standard treatment for DHL. Several retrospective analyses have been conducted to help guide treatment of this disease. These suggest that DA EPOCH-R may be the most promising regimen and that achievement of complete resolution predicts better long-term outcomes. PMID:27115017

  4. [Diagnosis and treatment of heparin-induced thrombocytopenia (HIT) based on its atypical immunological features].

    PubMed

    Miyata, Shigeki; Maeda, Takuma

    2016-03-01

    Heparin-induced thrombocytopenia (HIT) is a prothrombotic side effect of heparin therapy caused by HIT antibodies, i.e., anti-platelet factor 4 (PF4)/heparin IgG with platelet-activating properties. For serological diagnosis, antigen immunoassays are commonly used worldwide. However, such assays do not indicate their platelet-activating properties, leading to low specificity for the HIT diagnosis. Therefore, over-diagnosis is currently the most serious problem associated with HIT. The detection of platelet-activating antibodies using a washed platelet activation assay is crucial for appropriate HIT diagnosis. Recent advances in our understanding of the pathogenesis of HIT include it having several clinical features atypical for an immune-mediated disease. Heparin-naïve patients can develop IgG antibodies as early as day 4, as in a secondary immune response. Evidence for an anamnestic response on heparin re-exposure is lacking. In addition, HIT antibodies are relatively short-lived, unlike those in a secondary immune response. These lines of evidence suggest that the mechanisms underlying HIT antibody formation may be compatible with a non-T cell-dependent immune reaction. These atypical clinical and serological features should be carefully considered while endeavoring to accurately diagnose HIT, which leads to appropriate therapies such as immediate administration of an alternative anticoagulant to prevent thromboembolic events and re-administration of heparin during surgery involving cardiopulmonary bypass when HIT antibodies are no longer detectable.

  5. Validation of the Impact of Health Information Technology (I-HIT) Scale: an international collaborative.

    PubMed

    Dykes, Patricia C; Hurley, Ann C; Brown, Suzanne; Carr, Robyn; Cashen, Margaret; Collins, Rita; Cook, Robyn; Currie, Leanne; Docherty, Charles; Ensio, Anneli; Foster, Joanne; Hardiker, Nicholas R; Honey, Michelle L L; Killalea, Rosaleen; Murphy, Judy; Saranto, Kaija; Sensmeier, Joyce; Weaver, Charlotte

    2009-01-01

    In 2005, the Healthcare Information Management Systems Society (HIMSS) Nursing Informatics Community developed a survey to measure the impact of health information technology (HIT), the I-HIT Scale, on the role of nurses and interdisciplinary communication in hospital settings. In 2007, nursing informatics colleagues from Australia, England, Finland, Ireland, New Zealand, Scotland and the United States formed a research collaborative to validate the I-HIT across countries. All teams have completed construct and face validation in their countries. Five out of six teams have initiated reliability testing by practicing nurses. This paper reports the international collaborative's validation of the I-HIT Scale completed to date.

  6. Tolosa-Hunt Syndrome in Double-Hit Lymphoma

    PubMed Central

    Peddi, Prakash; Gallagher, Kevin M.; Chandrasekharan, Chandrikha; Wang, Qi; Gonzalez-Toledo, Eduardo; Nair, Binu S.; Munker, Reinhold; Mills, Glenn M.; Koshy, Nebu V.

    2015-01-01

    Tolosa-Hunt syndrome (THS) is a painful condition characterized by hemicranial pain, retroorbital pain, loss of vision, oculomotor nerve paralysis, and sensory loss in distribution of ophthalmic and maxillary division of trigeminal nerve. Lymphomas rarely involve cavernous sinus and simulate Tolosa-Hunt syndrome. Here we present a first case of double-hit B cell lymphoma (DHL) relapsing and masquerading as Tolosa-Hunt syndrome. The neurological findings were explained by a lymphomatous infiltration of the right Gasserian ganglion which preceded systemic relapse. As part of this report, the diagnostic criteria for Tolosa-Hunt syndrome and double-hit lymphoma are reviewed and updated treatment recommendations are presented. PMID:25918657

  7. Toward the equivalence of the HIT and HIT 25 in community-residing older adults.

    PubMed

    Hayslip, B; Francis, J R

    1991-06-01

    In a study by the first author wherein 102 community-residing older adults were administered the Holtzman Inkblot Technique (HIT), data collected were analyzed regarding the equivalence of the HIT and the HIT 25. Although alpha coefficients and split-half correlations were low when single-response-per-card data were analyzed, corrected Spearman-Brown coefficients were more supportive of the use of the HIT 25 with older adults. These data suggest that although a shortened form of the HIT may be useful with aged persons, research exploring the substantive bases for creating a shortened version of the HIT is nevertheless necessary.

  8. Developing Health Information Technology (HIT) Programs and HIT Curriculum: The Southern Polytechnic State University Experience

    ERIC Educational Resources Information Center

    Zhang, Chi; Reichgelt, Han; Rutherfoord, Rebecca H.; Wang, Andy Ju An

    2014-01-01

    Health Information Technology (HIT) professionals are in increasing demand as healthcare providers need help in the adoption and meaningful use of Electronic Health Record (EHR) systems while the HIT industry needs workforce skilled in HIT and EHR development. To respond to this increasing demand, the School of Computing and Software Engineering…

  9. A two-hit mechanism causes cerebral cavernous malformations: complete inactivation of CCM1, CCM2 or CCM3 in affected endothelial cells

    PubMed Central

    Pagenstecher, Axel; Stahl, Sonja; Sure, Ulrich; Felbor, Ute

    2009-01-01

    Cavernous vascular malformations occur with a frequency of 1:200 and can cause recurrent headaches, seizures and hemorrhagic stroke if located in the brain. Familial cerebral cavernous malformations (CCMs) have been associated with germline mutations in CCM1/KRIT1, CCM2 or CCM3/PDCD10. For each of the three CCM genes, we here show complete localized loss of either CCM1, CCM2 or CCM3 protein expression depending on the inherited mutation. Cavernous but not adjacent normal or reactive endothelial cells of known germline mutation carriers displayed immunohistochemical negativity only for the corresponding CCM protein but not for the two others. In addition to proving loss of function at the protein level, our data are the first to demonstrate endothelial cell mosaicism within cavernous tissues and provide clear pathogenetic evidence that the endothelial cell is the cell of disease origin. PMID:19088124

  10. A two-hit mechanism causes cerebral cavernous malformations: complete inactivation of CCM1, CCM2 or CCM3 in affected endothelial cells.

    PubMed

    Pagenstecher, Axel; Stahl, Sonja; Sure, Ulrich; Felbor, Ute

    2009-03-01

    Cavernous vascular malformations occur with a frequency of 1:200 and can cause recurrent headaches, seizures and hemorrhagic stroke if located in the brain. Familial cerebral cavernous malformations (CCMs) have been associated with germline mutations in CCM1/KRIT1, CCM2 or CCM3/PDCD10. For each of the three CCM genes, we here show complete localized loss of either CCM1, CCM2 or CCM3 protein expression depending on the inherited mutation. Cavernous but not adjacent normal or reactive endothelial cells of known germline mutation carriers displayed immunohistochemical negativity only for the corresponding CCM protein but not for the two others. In addition to proving loss of function at the protein level, our data are the first to demonstrate endothelial cell mosaicism within cavernous tissues and provide clear pathogenetic evidence that the endothelial cell is the cell of disease origin.

  11. Recognition of Hits in a Target

    NASA Astrophysics Data System (ADS)

    Semerak, Vojtech; Drahansky, Martin

    This paper describes two possible ways of hit recognition in a target. First method is based on frame differencing with use of a stabilization algorithm to eliminate movements of a target. Second method uses flood fill with random seed point definition to find hits in the target scene.

  12. Hitting Is Contagious: Experience and Action Induction

    ERIC Educational Resources Information Center

    Gray, Rob; Beilock, Sian L.

    2011-01-01

    In baseball, it is believed that "hitting is contagious," that is, probability of success increases if the previous few batters get a hit. Could this effect be partially explained by action induction--that is, the tendency to perform an action related to one that has just been observed? A simulation was used to investigate the effect of inducing…

  13. Mitochondrial role in cell aging

    NASA Technical Reports Server (NTRS)

    Miquel, J.; Fleming, J.; Economos, A. C.; Johnson, J. E., Jr.

    1980-01-01

    The experimental studies on the mitochondria of insect and mammalian cells are examined with a view to an analysis of intrinsic mitochondrial senescence, and its relation to the age-related changes in other cell organelles. The fine structural and biochemical data support the concept that the mitochondria of fixed postmitotic cells may be the site of intrinsic aging because of the attack by free radicals and lipid peroxides originating in the organelles as a by-product of oxygen reduction during respiration. Although the cells have numerous mechanisms for counteracting lipid peroxidation injury, there is a slippage in the antioxidant protection. Intrinsic mitochondrial aging could thus be considered as a specific manifestation of oxygen toxicity. It is proposed that free radical injury renders an increasing number of the mitochondria unable to divide, probably because of damage to the lipids of the inner membrane and to mitochondrial DNA.

  14. Antibodies associated with heparin-induced thrombocytopenia (HIT) inhibit activated protein C generation: new insights into the prothrombotic nature of HIT

    PubMed Central

    Krishnaswamy, Sriram; Rauova, Lubica; Zhai, Li; Hayes, Vincent; Amirikian, Karine; Esko, Jeffrey D.; Bougie, Daniel W.; Aster, Richard H.; Cines, Douglas B.; Poncz, Mortimer

    2011-01-01

    Heparin-induced thrombocytopenia (HIT) is caused by antibodies that recognize complexes between platelet factor 4 (PF4) and heparin or glycosaminoglycan side chains. These antibodies can lead to a limb- and life-threatening prothrombotic state. We now show that HIT antibodies are able to inhibit generation of activated protein C (aPC) by thrombin/thrombomodulin (IIa/TM) in the presence of PF4. Tetrameric PF4 potentiates aPC generation by formation of complexes with chondroitin sulfate (CS) on TM. Formation of these complexes occurs at a specific molar ratio of PF4 to glycosaminoglycan. This observation and the finding that the effect of heparin on aPC generation depends on the concentration of PF4 suggest similarity between PF4/CS complexes and those that bind HIT antibodies. HIT antibodies reduced the ability of PF4 to augment aPC formation. Cationic protamine sulfate, which forms similar complexes with heparin, also enhanced aPC generation, but its activity was not blocked by HIT antibodies. Our studies provide evidence that complexes formed between PF4 and TM's CS may play a physiologic role in potentiating aPC generation. Recognition of these complexes by HIT antibodies reverses the PF4-dependent enhancement in aPC generation and may contribute to the prothrombotic nature of HIT. PMID:21772054

  15. 42 CFR 495.340 - As-needed HIT PAPD update and as-needed HIT IAPD update requirements.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 42 Public Health 5 2010-10-01 2010-10-01 false As-needed HIT PAPD update and as-needed HIT IAPD update requirements. 495.340 Section 495.340 Public Health CENTERS FOR MEDICARE & MEDICAID SERVICES...-needed HIT PAPD update and as-needed HIT IAPD update requirements. Each State must submit a HIT...

  16. Characterization of the G protein coupling of a somatostatin receptor to the K+ATP channel in insulin-secreting mammalian HIT and RIN cell lines.

    PubMed Central

    Ribalet, B; Eddlestone, G T

    1995-01-01

    1. The G protein-mediated coupling of a somatostatin (somatotropin-releasing inhibitory factor; SRIF) receptor to the ATP-dependent K+ channel (K+ATP channel) has been studied in insulin-secreting cells using the patch clamp technique. 2. In excised outside-out patches, the concentration-dependent stimulation of the K+ATP channel by SRIF was biphasic. Stimulation reached a maximum at 15 nM (EC50 = 5.5 nM), then decayed to a minimum at 50 nM and returned to maximum stimulation at 500 nM. 3. In cell-attached patches, bath-applied SRIF caused K+ATP channel stimulation in most experiments. In a few cases, however, SRIF suppressed channel activity, a response that was reversed by addition of dibutyryl cyclic AMP (DBcAMP). Channel stimulation by SRIF or by DBcAMP did not occur in the presence of glucose. 4. In excised inside-out patches, the alpha-subunits of Gi or G(o)-type G proteins stimulated the K+ATP channel (EC50 = 29 and 42 pM, respectively). The K+ATP channel stimulation by alpha i- or alpha o-subunits had no effect on the concentration-dependent inhibition by ATP. 5. In excised inside-out patches, K+ATP channel activity was reduced by inhibitors of protein kinase C (PKC) and stimulated by a PKC activator. The stimulatory effect of PKC was unaffected by the presence of pertussis toxin, but stimulation by exogenous alpha-subunits of the G protein Gi or G(o) was prevented by PKC inhibitors. 6. From these data we deduce that SRIF can affect K+ATP channel activity directly via a membrane-delimited pathway or indirectly via a pathway requiring diffusible messengers. In the former case, alpha i/alpha o may either enhance PLC activity, stimulating PKC and thus inducing K+ATP channel phosphorylation with consequent increase of activity, or channel phosphorylation by PKC may facilitate a direct stimulation of the channel by alpha i/alpha o. In the latter case, an alpha i/alpha o-induced fall in cAMP contributes to reduced PKA-mediated phosphorylation and suppression of

  17. Optical spectrosopy of HiTS supernovae

    NASA Astrophysics Data System (ADS)

    Anderson, J.; Forster, F.; Smith, C.; Vivas, K.; Pignata, G.; Olivares, F.; Hamuy, M.; Martin, J. San; Maureira, J. C.; Cabrera, G.; Gonzalez-Gaitan, S.; Galbany, L.; Bufano, F.; de Jaeger, T.; Hsiao, E.; Munoz, R.; Vera, E.

    2015-04-01

    We report optical wavelength spectroscopy obtained using the Goodman instrument mounted on the SOAR at CTIO on UT 2015-03-30, for two supernovae discovered by HiTS, the High Cadence Transient Survey (see ATELs #7289, #7290).

  18. Mining Preferred Traversal Paths with HITS

    NASA Astrophysics Data System (ADS)

    Yeh, Jieh-Shan; Lin, Ying-Lin; Chen, Yu-Cheng

    Web usage mining can discover useful information hidden in web logs data. However, many previous algorithms do not consider the structure of web pages, but regard all web pages with the same importance. This paper utilizes HITS values and PNT preferences as measures to mine users' preferred traversal paths. Wë structure mining uses HITS (hypertext induced topic selection) to rank web pages. PNT (preferred navigation tree) is an algorithm that finds users' preferred navigation paths. This paper introduces the Preferred Navigation Tree with HITS (PNTH) algorithm, which is an extension of PNT. This algorithm uses the concept of PNT and takes into account the relationships among web pages using HITS algorithm. This algorithm is suitable for E-commerce applications such as improving web site design and web server performance.

  19. More Older Women Hitting the Bottle Hard

    MedlinePlus

    ... medlineplus.gov/news/fullstory_164321.html More Older Women Hitting the Bottle Hard Study found dramatic jump ... March 28, 2017 (HealthDay News) -- More older American women than ever are drinking -- and drinking hard, a ...

  20. The role of mast cells in atherosclerosis.

    PubMed

    Wezel, A; Quax, P H A; Kuiper, J; Bot, I

    2015-01-01

    Rupture of an atherosclerotic plaque is the major underlying cause of adverse cardiovascular events such as myocardial infarction or stroke. Therapeutic interventions should therefore be directed towards inhibiting growth of atherosclerotic lesions as well as towards prevention of lesion destabilization. Interestingly, the presence of mast cells has been demonstrated in both murine and human plaques, and multiple interventional murine studies have pointed out a direct role for mast cells in early and late stages of atherosclerosis. Moreover, it has recently been described that activated lesional mast cells correlate with major cardiovascular events in patients suffering from cardiovascular disease. This review focuses on the effect of different mast cell derived mediators in atherogenesis and in late stage plaque destabilization. Also, possible ligands for mast cell activation in the context of atherosclerosis are discussed. Finally, we will elaborate on the predictive value of mast cells, together with therapeutic implications, in cardiovascular disease.

  1. HIT: time to end behavioral health discrimination.

    PubMed

    Rosenberg, Linda

    2012-10-01

    While the Health Information Technology for Economic and Clinical Health Act, enacted as part of the American Recovery and Reinvestment Act of 2009, provided $20.6 billion for incentive payments to support the adoption and meaningful use of health information technology (HIT), behavioral health organizations were not eligible to receive facility payments. The consequences of excluding behavioral health from HIT incentive payments are found in the results of the "HIT Adoption and Meaningful Use Readiness in Community Behavioral Health" survey. The survey found that only 2% of community behavioral health organizations are able to meet federal meaningful use (MU) requirements-compare this to the 27% of Federally Qualified Health Centers and 20% of hospitals that already meet some level of MU requirements. Behavioral health organizations, serving more than eight million adults, children, and families with mental illnesses and addiction disorders, are ready and eager to adopt HIT to meet the goals of better healthcare, better health, and lower costs. But reaching these goals may prove impossible unless behavioral health achieves "parity" within healthcare and receives resources for the adoption of HIT.

  2. Optical Diagnostics on HIT-SI3

    NASA Astrophysics Data System (ADS)

    Everson, Christopher; Jarboe, Thomas; Morgan, Kyle

    2016-10-01

    Interferometry and Thomson Scattering are implemented on the HIT-SI3 (Helicity Injected Torus - Steady Inductive 3) device to provide time resolved measurements of electron density and spatially resolved measurements of electron temperature, respectively. HIT-SI3 is a modification of the original HIT-SI apparatus that uses three injectors instead of two. The scientific aim of HIT-SI3 is to develop a deeper understanding of how injector behavior and interactions influence current drive and spheromak stability. The interferometer system makes use of an intermediate frequency between two parallel 184.3 μm Far-Infrared (FIR) laser cavities which are optically pumped by a CO2 laser. The phase shift in this beat frequency due to the plasma index of refraction is used to calculate the line-integrated electron density. To measure the electron temperature, Thomson Scattered light from a 20 J (1 GW pulse) Ruby laser off of free electrons in the HIT-SI3 plasma is measured simultaneously at four locations across the spheromak (nominally 23 cm minor radius). Polychromators bin the collected light into 3 spectral bands to detect the relative level of scattering. Work supported by the D.O.E.

  3. 'Hit by the wind' and temperature-shift panic among Vietnamese refugees.

    PubMed

    Hinton, Devon; Hinton, Susan; Pham, Thang; Chau, Ha; Tran, Minh

    2003-09-01

    Surveying 60 Vietnamese patients with either current or past post-traumatic stress disorder, this article aims to phenomenologically characterize the syndrome of 'hit by the wind' in a multidimensional manner. This includes determining the patient conceptualization of the disorder, profiling 'hit by the wind' episodes suffered by patients in the previous month, and presenting case vignettes. Eighteen of the 60 patients (30%) suffered at least one episode of 'hit by the wind' in the last month; all 18 patients had at least one episode of 'hit by the wind' in the last month that met panic attack criteria. For the 18 patients, 33 episodes of'hit by the wind' that met panic attack criteria were experienced in the previous month. For these 33 episodes, the most frequently reported DSM-IV panic attack symptoms were chills (100%; 33/33) and dizziness (88%; 29/33). Flashbacks played a role in the 'hit by the wind' episodes for 5 of the 18 patients (28%). In the discussion, a model of how the syndrome of 'hit by the wind' generates panic is adduced; also, possible Chinese origins of the disorder are discussed.

  4. Role of MYC in B Cell Lymphomagenesis.

    PubMed

    Korać, Petra; Dotlić, Snježana; Matulić, Maja; Zajc Petranović, Matea; Dominis, Mara

    2017-04-04

    B cell lymphomas mainly arise from different developmental stages of B cells in germinal centers of secondary lymphoid tissue. There are a number of signaling pathways that affect the initiation and development of B cell lymphomagenesis. The functions of several key proteins that represent branching points of signaling networks are changed because of their aberrant expression, degradation, and/or accumulation, and those events determine the fate of the affected B cells. One of the most influential transcription factors, commonly associated with unfavorable prognosis for patients with B cell lymphoma, is nuclear phosphoprotein MYC. During B cell lymphomagenesis, oncogenic MYC variant is deregulated through various mechanisms, such as gene translocation, gene amplification, and epigenetic deregulation of its expression. Owing to alterations of downstream signaling cascades, MYC-overexpressing neoplastic B cells proliferate rapidly, avoid apoptosis, and become unresponsive to most conventional treatments. This review will summarize the roles of MYC in B cell development and oncogenesis, as well as its significance for current B cell lymphoma classification. We compared communication networks within transformed B cells in different lymphomas affected by overexpressed MYC and conducted a meta-analysis concerning the association of MYC with tumor prognosis in different patient populations.

  5. Role of Regulatory Cells in Oral Tolerance

    PubMed Central

    Wawrzyniak, Marcin; O'Mahony, Liam

    2017-01-01

    The immune system is continuously exposed to great amounts of different antigens from both food and intestinal microbes. Immune tolerance to these antigens is very important for intestinal and systemic immune homeostasis. Oral tolerance is a specific type of peripheral tolerance induced by exposure to antigen via the oral route. Investigations on the role of intestinal immune system in preventing hypersensitivity reactions to innocuous dietary and microbial antigens have been intensively performed during the last 2 decades. In this review article, we discuss how food allergens are recognized by the intestinal immune system and draw attention to the role of regulatory T (Treg) and B (Breg) cells in the establishment of oral tolerance and tolerogenic features of intestinal dendritic cells. We also emphasize the potential role of tonsils in oral tolerance induction because of their anatomical location, cellular composition, and possible usage to develop novel ways of specific immunotherapy for the treatment of allergic diseases. PMID:28102055

  6. Hit-and-Run” Transformation by Adenovirus Oncogenes

    PubMed Central

    Nevels, Michael; Täuber, Birgitt; Spruss, Thilo; Wolf, Hans; Dobner, Thomas

    2001-01-01

    According to classical concepts of viral oncogenesis, the persistence of virus-specific oncogenes is required to maintain the transformed cellular phenotype. In contrast, the “hit-and-run” hypothesis claims that viruses can mediate cellular transformation through an initial “hit,” while maintenance of the transformed state is compatible with the loss (“run”) of viral molecules. It is well established that the adenovirus E1A and E1B gene products can cooperatively transform primary human and rodent cells to a tumorigenic phenotype and that these cells permanently express the viral oncogenes. Additionally, recent studies have shown that the adenovirus E4 region encodes two novel oncoproteins, the products of E4orf6 and E4orf3, which cooperate with the viral E1A proteins to transform primary rat cells in an E1B-like fashion. Unexpectedly, however, cells transformed by E1A and either E4orf6 or E4orf3 fail to express the viral E4 gene products, and only a subset contain E1A proteins. In fact, the majority of these cells lack E4- and E1A-specific DNA sequences, indicating that transformation occurred through a hit-and-run mechanism. We provide evidence that the unusual transforming activities of the adenoviral oncoproteins may be due to their mutagenic potential. Our results strongly support the possibility that even tumors that lack any detectable virus-specific molecules can be of viral origin, which could have a significant impact on the use of adenoviral vectors for gene therapy. PMID:11238835

  7. The impact of Health Information Technology (I-HIT) Scale: the Australian results.

    PubMed

    Cook, Robyn; Foster, Joanne

    2009-01-01

    One of role of the nurse in the clinical setting is that of co-ordinating communication across the healthcare team. On a daily basis nurses interact with the person receiving care, their family members, and multiple care providers thus placing the nurse in the central position with access to a vast array of information on the person. Through this nurses have historically functioned as "information repositories". With the advent of Health Information Technology (HIT) tools there is a potential that HIT could impact interdisciplinary communication, practice efficiency and effectiveness, relationships and workflow in acute care settings [1][3]. In 2005, the HIMSS Nursing Informatics Community developed the I-HIT Scale to measure the impact of HIT on the nursing role and interdisciplinary communication in USA hospitals. In 2007, nursing informatics colleagues from Australia, Finland, Ireland, New Zealand, Scotland and the USA formed a research collaborative to validate the I-HIT in six additional countries. This paper will discuss the background, methodology, results and implications from the Australian I-HIT survey of over 1,100 nurses. The results are currently being analyzed and will be presented at the conference.

  8. Statistical properties and pre-hit dynamics of price limit hits in the Chinese stock markets.

    PubMed

    Wan, Yu-Lei; Xie, Wen-Jie; Gu, Gao-Feng; Jiang, Zhi-Qiang; Chen, Wei; Xiong, Xiong; Zhang, Wei; Zhou, Wei-Xing

    2015-01-01

    Price limit trading rules are adopted in some stock markets (especially emerging markets) trying to cool off traders' short-term trading mania on individual stocks and increase market efficiency. Under such a microstructure, stocks may hit their up-limits and down-limits from time to time. However, the behaviors of price limit hits are not well studied partially due to the fact that main stock markets such as the US markets and most European markets do not set price limits. Here, we perform detailed analyses of the high-frequency data of all A-share common stocks traded on the Shanghai Stock Exchange and the Shenzhen Stock Exchange from 2000 to 2011 to investigate the statistical properties of price limit hits and the dynamical evolution of several important financial variables before stock price hits its limits. We compare the properties of up-limit hits and down-limit hits. We also divide the whole period into three bullish periods and three bearish periods to unveil possible differences during bullish and bearish market states. To uncover the impacts of stock capitalization on price limit hits, we partition all stocks into six portfolios according to their capitalizations on different trading days. We find that the price limit trading rule has a cooling-off effect (object to the magnet effect), indicating that the rule takes effect in the Chinese stock markets. We find that price continuation is much more likely to occur than price reversal on the next trading day after a limit-hitting day, especially for down-limit hits, which has potential practical values for market practitioners.

  9. Statistical Properties and Pre-Hit Dynamics of Price Limit Hits in the Chinese Stock Markets

    PubMed Central

    Wan, Yu-Lei; Xie, Wen-Jie; Gu, Gao-Feng; Jiang, Zhi-Qiang; Chen, Wei; Xiong, Xiong; Zhang, Wei; Zhou, Wei-Xing

    2015-01-01

    Price limit trading rules are adopted in some stock markets (especially emerging markets) trying to cool off traders’ short-term trading mania on individual stocks and increase market efficiency. Under such a microstructure, stocks may hit their up-limits and down-limits from time to time. However, the behaviors of price limit hits are not well studied partially due to the fact that main stock markets such as the US markets and most European markets do not set price limits. Here, we perform detailed analyses of the high-frequency data of all A-share common stocks traded on the Shanghai Stock Exchange and the Shenzhen Stock Exchange from 2000 to 2011 to investigate the statistical properties of price limit hits and the dynamical evolution of several important financial variables before stock price hits its limits. We compare the properties of up-limit hits and down-limit hits. We also divide the whole period into three bullish periods and three bearish periods to unveil possible differences during bullish and bearish market states. To uncover the impacts of stock capitalization on price limit hits, we partition all stocks into six portfolios according to their capitalizations on different trading days. We find that the price limit trading rule has a cooling-off effect (object to the magnet effect), indicating that the rule takes effect in the Chinese stock markets. We find that price continuation is much more likely to occur than price reversal on the next trading day after a limit-hitting day, especially for down-limit hits, which has potential practical values for market practitioners. PMID:25874716

  10. Storage Lesion. Role of Red Cell Breakdown

    PubMed Central

    Kim-Shapiro, Daniel B.; Lee, Janet; Gladwin, Mark T.

    2011-01-01

    As stored blood ages intraerythrocytic energy sources are depleted resulting in reduced structural integrity of the membrane. Thus, stored red cells become less deformable and more fragile as they age. This fragility leads to release of cell-free hemoglobin and formation of microparticles, sub-micron hemoglobin-containing vesicles. Upon transfusion, it is likely that additional hemolysis and microparticle formation occurs due to breakdown of fragile red blood cells. Release of cell-free hemoglobin and microparticles leads to increased consumption of nitric oxide (NO), an important signaling molecule that modulates blood flow, and may promote inflammation. Stored blood may also be deficient in recently discovered blood nitric oxide synthase activity. We hypothesize that these factors play a potential role in the blood storage lesion. PMID:21496045

  11. Precise timing when hitting falling balls

    PubMed Central

    Brenner, Eli; Driesen, Ben; Smeets, Jeroen B. J.

    2014-01-01

    People are extremely good at hitting falling balls with a baseball bat. Despite the ball's constant acceleration, they have been reported to time hits with a standard deviation of only about 7 ms. To examine how people achieve such precision, we compared performance when there were no added restrictions, with performance when looking with one eye, when vision was blurred, and when various parts of the ball's trajectory were hidden from view. We also examined how the size of the ball and varying the height from which it was dropped influenced temporal precision. Temporal precision did not become worse when vision was blurred, when the ball was smaller, or when balls falling from different heights were randomly interleaved. The disadvantage of closing one eye did not exceed expectations from removing one of two independent estimates. Precision was higher for slower balls, but only if the ball being slower meant that one saw it longer before the hit. It was particularly important to see the ball while swinging the bat. Together, these findings suggest that people time their hits so precisely by using the changing elevation throughout the swing to adjust the bat's movement to that of the ball. PMID:24904380

  12. Spirit Hits a Home Run

    NASA Technical Reports Server (NTRS)

    2006-01-01

    This week, NASA's Mars Exploration Rover Spirit arrived at 'Home Plate,' a feature that, when seen from orbit, looks like the home plate of a baseball diamond. Home Plate is a roughly circular feature about 80 meters (260 feet) in diameter that might be an old impact crater or volcanic feature. The Spirit team has been eager to get to Home Plate and has been enjoying distant views of the feature and a curious 'bathtub ring' of light-colored materials along its edges. The team has pushed the rover hard to get here before the deep Martian winter sets in.

    After scientists had identified Home Plate from orbit, they had many theories about what it could be and what they might see. But when Spirit's panoramic camera (Pancam) took this and other images, the science team was stunned. This Pancam image is of an outcrop nicknamed 'Barnhill' and surrounding rocks on the north side of Home Plate, showing the most spectacular layering that Spirit has seen.

    Pancam and microscopic imager views of the layers in the rocks reveal a range of grain sizes and textures that change from the lower to the upper part of the outcrop. This may help scientists figure out how the material was emplaced. Spirit is also conducting work with its arm instruments to figure out the chemistry and mineralogy of the rocks. Scientists have several hypotheses about what Home Plate could be, including features made by volcanoes and impact craters, and ways that water could have played a role. They are busy trying to figure out what the data from Spirit is really telling us.

    As Spirit works at Home Plate during February, the science team is choosing informal names for rocks from the great players and managers of the Negro Leagues of baseball. This outcrop, 'Barnhill,' is informally named for David Barnhill, the ace of the New York Cubans' pitching staff during the early 1940s. He compiled an 18-3 record in 1941 and defeated Satchel Paige in the 1942 East-West all-star game. Other rocks in

  13. 76 FR 25355 - HIT Standards Committee; Schedule for the Assessment of HIT Policy Committee Recommendations

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-05-04

    ... Recommendations AGENCY: Office of the National Coordinator for Health Information Technology, HHS. ACTION: Notice..., clinical operations, implementation, and privacy and security. HIT Standards Committee's Schedule for the... information technology standards, implementation specifications, and/or certification criteria. Once the...

  14. Post-hit dynamics of price limit hits in the Chinese stock markets

    NASA Astrophysics Data System (ADS)

    Wu, Ting; Wang, Yue; Li, Ming-Xia

    2017-01-01

    Price limit trading rules are useful to cool off traders short-term trading mania on individual stocks. The price dynamics approaching the limit boards are known as the magnet effect. However, the price dynamics after opening price limit hits are not well investigated. Here, we provide a detailed analysis on the price dynamics after the hits of up-limit or down-limit is open based on all A-share stocks traded in the Chinese stock markets. A "W" shape is found in the expected return, which reveals high probability of a continuous price limit hit on the following day. We also find that price dynamics after opening limit hits are dependent on the market trends. The time span of continuously hitting the price limit is found to an influence factor of the expected profit after the limit hit is open. Our analysis provides a better understanding of the price dynamics around the limit boards and contributes potential practical values for investors.

  15. Biallelic somatic and germline mutations in cerebral cavernous malformations (CCMs): evidence for a two-hit mechanism of CCM pathogenesis

    PubMed Central

    Akers, Amy L.; Johnson, Eric; Steinberg, Gary K.; Zabramski, Joseph M.; Marchuk, Douglas A.

    2009-01-01

    Cerebral cavernous malformations (CCMs) are vascular anomalies of the central nervous system, comprising dilated blood-filled capillaries lacking structural support. The lesions are prone to rupture, resulting in seizures or hemorrhagic stroke. CCM can occur sporadically, manifesting as solitary lesions, but also in families, where multiple lesions generally occur. Familial cases follow autosomal-dominant inheritance due to mutations in one of three genes, CCM1/KRIT1, CCM2/malcavernin or CCM3/PDCD10. The difference in lesion burden between familial and sporadic CCM, combined with limited molecular data, suggests that CCM pathogenesis may follow a two-hit molecular mechanism, similar to that seen for tumor suppressor genes. In this study, we investigate the two-hit hypothesis for CCM pathogenesis. Through repeated cycles of amplification, subcloning and sequencing of multiple clones per amplicon, we identify somatic mutations that are otherwise invisible by direct sequencing of the bulk amplicon. Biallelic germline and somatic mutations were identified in CCM lesions from all three forms of inherited CCMs. The somatic mutations are found only in a subset of the endothelial cells lining the cavernous vessels and not in interstitial lesion cells. These data suggest that CCM lesion genesis requires complete loss of function for one of the CCM genes. Although widely expressed in the different cell types of the brain, these data also suggest a unique role for the CCM proteins in endothelial cell biology. PMID:19088123

  16. Biallelic somatic and germline mutations in cerebral cavernous malformations (CCMs): evidence for a two-hit mechanism of CCM pathogenesis.

    PubMed

    Akers, Amy L; Johnson, Eric; Steinberg, Gary K; Zabramski, Joseph M; Marchuk, Douglas A

    2009-03-01

    Cerebral cavernous malformations (CCMs) are vascular anomalies of the central nervous system, comprising dilated blood-filled capillaries lacking structural support. The lesions are prone to rupture, resulting in seizures or hemorrhagic stroke. CCM can occur sporadically, manifesting as solitary lesions, but also in families, where multiple lesions generally occur. Familial cases follow autosomal-dominant inheritance due to mutations in one of three genes, CCM1/KRIT1, CCM2/malcavernin or CCM3/PDCD10. The difference in lesion burden between familial and sporadic CCM, combined with limited molecular data, suggests that CCM pathogenesis may follow a two-hit molecular mechanism, similar to that seen for tumor suppressor genes. In this study, we investigate the two-hit hypothesis for CCM pathogenesis. Through repeated cycles of amplification, subcloning and sequencing of multiple clones per amplicon, we identify somatic mutations that are otherwise invisible by direct sequencing of the bulk amplicon. Biallelic germline and somatic mutations were identified in CCM lesions from all three forms of inherited CCMs. The somatic mutations are found only in a subset of the endothelial cells lining the cavernous vessels and not in interstitial lesion cells. These data suggest that CCM lesion genesis requires complete loss of function for one of the CCM genes. Although widely expressed in the different cell types of the brain, these data also suggest a unique role for the CCM proteins in endothelial cell biology.

  17. The role of mast cells in neuroinflammation.

    PubMed

    Nelissen, Sofie; Lemmens, Evi; Geurts, Nathalie; Kramer, Peter; Maurer, Marcus; Hendriks, Jerome; Hendrix, Sven

    2013-05-01

    Mast cells (MCs) are densely granulated perivascular resident cells of hematopoietic origin and well known for their pathogenetic role in allergic and anaphylactic reactions. In addition, they are also involved in processes of innate and adaptive immunity. MCs can be activated in response to a wide range of stimuli, resulting in the release of not only pro-inflammatory, but also anti-inflammatory mediators. The patterns of secreted mediators depend upon the given stimuli and microenvironmental conditions, accordingly MCs have the ability to promote or attenuate inflammatory processes. Their presence in the central nervous system (CNS) has been recognized for more than a century. Since then a participation of MCs in various pathological processes in the CNS has been well documented. They can aggravate CNS damage in models of brain ischemia and hemorrhage, namely through increased blood-brain barrier damage, brain edema and hemorrhage formation and promotion of inflammatory responses to such events. In contrast, recent evidence suggests that MCs may have a protective role following traumatic brain injury by degrading pro-inflammatory cytokines via specific proteases. In neuroinflammatory diseases such as multiple sclerosis, the role of MCs seems to be ambiguous. MCs have been shown to be damaging, neuroprotective, or even dispensable, depending on the experimental protocols used. The role of MCs in the formation and progression of CNS tumors such as gliomas is complex and both positive and negative relationships between MC activity and tumor progression have been reported. In summary, MCs and their secreted mediators modulate inflammatory processes in multiple CNS pathologies and can thereby either contribute to neurological damage or confer neuroprotection. This review intends to give a concise overview of the regulatory roles of MCs in brain disease.

  18. Mumps Cases Hit 10-Year High in U.S.

    MedlinePlus

    ... page: https://medlineplus.gov/news/fullstory_162676.html Mumps Cases Hit 10-Year High in U.S. Contagious ... 21, 2016 WEDNESDAY, Dec. 21, 2016 (HealthDay News) -- Mumps cases have hit a 10-year high in ...

  19. Universal Hitting Time Statistics for Integrable Flows

    NASA Astrophysics Data System (ADS)

    Dettmann, Carl P.; Marklof, Jens; Strömbergsson, Andreas

    2017-02-01

    The perceived randomness in the time evolution of "chaotic" dynamical systems can be characterized by universal probabilistic limit laws, which do not depend on the fine features of the individual system. One important example is the Poisson law for the times at which a particle with random initial data hits a small set. This was proved in various settings for dynamical systems with strong mixing properties. The key result of the present study is that, despite the absence of mixing, the hitting times of integrable flows also satisfy universal limit laws which are, however, not Poisson. We describe the limit distributions for "generic" integrable flows and a natural class of target sets, and illustrate our findings with two examples: the dynamics in central force fields and ellipse billiards. The convergence of the hitting time process follows from a new equidistribution theorem in the space of lattices, which is of independent interest. Its proof exploits Ratner's measure classification theorem for unipotent flows, and extends earlier work of Elkies and McMullen.

  20. Role of dendritic cells in cardiovascular diseases

    PubMed Central

    Zhang, Yi; Zhang, Cuihua

    2010-01-01

    Dendritic cells (DCs) are potent antigen-presenting cells that bridge innate and adaptive immune responses. Recent work has elucidated the DC life cycle, including several important stages such as maturation, migration and homeostasis, as well as DC classification and subsets/locations, which provided etiological insights on the role of DCs in disease processes. DCs have a close relationship to endothelial cells and they interact with each other to maintain immunity. DCs are deposited in the atherosclerotic plaque and contribute to the pathogenesis of atherosclerosis. In addition, the necrotic cardiac cells induced by ischemia activate DCs by Toll-like receptors, which initiate innate and adaptive immune responses to renal, hepatic and cardiac ischemia reperfusion injury (IRI). Furthermore, DCs are involved in the acute/chronic rejection of solid organ transplantation and mediate transplant tolerance as well. Advancing our knowledge of the biology of DCs will aid development of new approaches to treat many cardiovascular diseases, including atherosclerosis, cardiac IRI and transplantation. PMID:21179302

  1. Role of polyphenols in cell death control.

    PubMed

    Giovannini, Claudio; Masella, Roberta

    2012-05-01

    Dietary consumption of fruit, vegetables, fish, and olive oil has been demonstrated to exert beneficial effects on human health. This finding may be due to the high content of antioxidant compounds including polyphenols. Current evidence strongly supports a contribution of polyphenols to the prevention of several chronic degenerative diseases such as cancer, atherosclerosis and cardiovascular diseases, central nervous system disorders, as well as aging. Apoptosis is a genetically controlled and evolutionarily conserved form of cell death of critical importance for the maintenance of tissue homeostasis in the adult organism. The malfunction of the death machinery may play a primary role in various pathologic processes, leading to proliferative or degenerative diseases. Polyphenols can interact with specific steps and/or proteins regulating the apoptotic process in different ways depending on their concentration, the cell system, the type or stage of the pathological process. Because of their ability to modulate cell death, polyphenols have been proposed as chemopreventive and therapeutic agents. This paper reviews and discusses the last 3-year findings related to the principal molecular mechanisms involved in the control of the balance between apoptosis and cell proliferation exerted by polyphenols.

  2. Stochastic, weighted hit size theory of cellular radiobiological action

    SciTech Connect

    Bond, V.P.; Varma, M.N.

    1982-01-01

    A stochastic theory that appears to account well for the observed responses of cell populations exposed in radiation fields of different qualities and for different durations of exposure is described. The theory appears to explain well most cellular radiobiological phenomena observed in at least autonomous cell systems, argues for the use of fluence rate (phi) instead of absorbed dose for quantification of the amount of radiation involved in low level radiation exposure. With or without invoking the cell sensitivity function, the conceptual improvement would be substantial. The approach suggested also shows that the absorbed dose-cell response functions currently employed do not reflect the spectrum of cell sensitivities to increasing cell doses of a single agent, nor can RBE represent the potency ratio for different agents that can produce similar quantal responses. Thus, for accurate comparison of cell sensitivities among different cells in the same individual, or between the cells in different kinds of individuals, it is necessary to quantify cell sensitivity in terms of the hit size weighting or cell sensitivity function introduced here. Similarly, this function should be employed to evaluate the relative potency of radiation and other radiomimetic chemical or physical agents.

  3. Neural cells play an inhibitory role in pancreatic differentiation of pluripotent stem cells.

    PubMed

    Nakashima, Ryutaro; Morooka, Mayu; Shiraki, Nobuaki; Sakano, Daisuke; Ogaki, Soichiro; Kume, Kazuhiko; Kume, Shoen

    2015-12-01

    Pancreatic endocrine β-cells derived from embryonic stem (ES) cells and induced pluripotent stem (iPS) cells have received attention as screening systems for therapeutic drugs and as the basis for cell-based therapies. Here, we used a 12-day β-cell differentiation protocol for mouse ES cells and obtained several hit compounds that promoted β-cell differentiation. One of these compounds, mycophenolic acid (MPA), effectively promoted ES cell differentiation with a concomitant reduction of neuronal cells. The existence of neural cell-derived inhibitory humoral factors for β-cell differentiation was suggested using a co-culture system. Based on gene array analysis, we focused on the Wnt/β-catenin pathway and showed that the Wnt pathway inhibitor reversed MPA-induced β-cell differentiation. Wnt pathway activation promoted β-cell differentiation also in human iPS cells. Our results showed that Wnt signaling activation positively regulates β-cell differentiation, and represent a downstream target of the neural inhibitory factor.

  4. Multiple-hit parameter estimation in monolithic detectors

    PubMed Central

    Hunter, William C. J.; Barrett, Harrison H.; Miyaoka, Robert S.; Lewellen, Tom K.

    2012-01-01

    We examine a maximum-a-priori (MAP) method for estimating the primary interaction position of gamma rays with multiple-interaction sites (hits) in a monolithic detector. In assessing the performance of a multiple-hit estimator over that of a conventional one-hit estimator, we consider a few different detector and readout configurations of a 50-mm-wide square LSO block. For this study, we use simulated data from SCOUT, a Monte-Carlo tool for photon tracking and modeling scintillation-camera output. With this tool, we determine estimate bias and variance for a multiple-hit estimator and compare these with similar metrics for a conventional ML estimator, which assumes full energy deposition in one hit. We also examine the effect of event filtering on these metrics; for this purpose, we use a likelihood threshold to reject signals that are not likely to have been produced under the assumed likelihood model. Depending on detector design, we observe a 1–12% improvement of intrinsic resolution for a 1-or-2-hit estimator as compared with a 1-hit estimator. We also observe improved differentiation of photopeak events using a 1-or-2-hit estimator as compared with the 1-hit estimator; more than 6% of photopeak events that were rejected by likelihood filtering for the 1-hit estimator were accurately identified as photo peak events and positioned without loss of resolution by a 1-or-2-hit estimator. PMID:23238325

  5. The Rock that Hit New York

    SciTech Connect

    Meade, Roger Allen; Keksis, August Lawrence

    2016-10-03

    On January 12, 1975, a rock seemed to fall from the sky over New York State’s Schoharie County hitting the tractor of a local farmer, who was “preparing his fields for spring planting.” As the farmer later described the event to a reporter from the UFO INVESTIGATOR, the object glanced off the tractor, fell to the ground, and melted its way through a patch of ice that was two and one half inches thick. The farmer, Leonard Tillapaugh, called the county sheriff, Harvey Stoddard, who recovered the rock, noting that it “was still warm.” Why and how a sample of the rock came to Los Alamos is not known. However, it captivated a wide Laboratory audience, was subjected to rigorous testing and evaluation. Los Alamos used the scientific method in the manner promoted by Hynek. Did Los Alamos solve the mystery of the rock’s origin? Not definitively. Although the exact origin could not be determined, it was shown conclusively that the rock was not from outer space. With that said, the saga of Rock that hit New York came to an end. Nothing more was said or written about it. The principals involved have long since passed from the scene. The NICAP ceased operations in 1980. And, the rock, itself, has disappeared.

  6. Liver natural killer cells: subsets and roles in liver immunity

    PubMed Central

    Peng, Hui; Wisse, Eddie; Tian, Zhigang

    2016-01-01

    The liver represents a frontline immune organ that is constantly exposed to a variety of gut-derived antigens as a result of its unique location and blood supply. With a predominant role in innate immunity, the liver is enriched with various innate immune cells, among which natural killer (NK) cells play important roles in host defense and in maintaining immune balance. Hepatic NK cells were first described as ‘pit cells' in the rat liver in the 1970s. Recent studies of NK cells in mouse and human livers have shown that two distinct NK cell subsets, liver-resident NK cells and conventional NK (cNK) cells, are present in this organ. Here, we review liver NK cell subsets in different species, revisiting rat hepatic pit cells and highlighting recent progress related to resident NK cells in mouse and human livers, and also discuss the dual roles of NK cells in liver immunity. PMID:26639736

  7. 77 FR 23250 - HIT Standards Committee; Schedule for the Assessment of HIT Policy Committee Recommendations

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-04-18

    ... Recommendations AGENCY: Office of the National Coordinator for Health Information Technology, HHS. ACTION: Notice..., and privacy and security. Other groups are convened to address specific issues as needed, such as the... recommendations received from the HIT Policy Committee regarding health information technology...

  8. Gorlin syndrome with an ovarian leiomyoma associated with a PTCH1 second hit.

    PubMed

    Akizawa, Yoshika; Miyashita, Toshiyuki; Sasaki, Ryo; Nagata, Reiko; Aoki, Ryoko; Ishitani, Ken; Nagashima, Yoji; Matsui, Hideo; Saito, Kayoko

    2016-04-01

    We describe a Gorlin syndrome (GS) case with two different second hit mutations of PTCH1, one in a keratocystic odontogenic tumor (KCOT) and the other in an ovarian leiomyoma. GS is a rare genetic condition manifesting as multiple basal cell nevi associated with other features such as medulloblastomas, skeletal abnormalities, and ovarian fibromas. A 21-year-old Japanese woman with a history of two KCOTs was diagnosed with GS according to clinical criteria. A PTCH1 mutation, c.1427del T, was detected in peripheral blood. A novel PTCH1 mutation, c.264_265insAATA, had been found in the maxillary KCOT as a second hit mutation. More recently, the ovarian tumor was detected during a gynecological examination. Laparoscopic adnexectomy was performed, and the pathological diagnosis of the ovarian tumor was leiomyoma. Interestingly, another novel mutation, loss of heterozygosity spanning from 9q22.32 to 9q31.2, including PTCH1 and 89 other genes, was detected in this ovarian tumor, providing evidence of a second hit mutation. This is the first report describing a GS-associated ovarian tumor carrying a second hit in the PTCH1 region. We anticipate that accumulation of more cases will clarify the importance of second hit mutations in ovarian tumor formation in GS.

  9. Atomic features of an autoantigen in heparin-induced thrombocytopenia (HIT).

    PubMed

    Cai, Zheng; Zhu, Zhiqiang; Greene, Mark I; Cines, Douglas B

    2016-07-01

    Autoantigen development is poorly understood at the atomic level. Heparin-induced thrombocytopenia (HIT) is an autoimmune thrombotic disorder caused by antibodies to an antigen composed of platelet factor 4 (PF4) and heparin or cellular glycosaminoglycans (GAGs). In solution, PF4 exists as an equilibrium among monomers, dimers and tetramers. Structural studies of these interacting components helped delineate a multi-step process involved in the pathogenesis of HIT. First, heparin binds to the 'closed' end of the PF4 tetramer and stabilizes its conformation; exposing the 'open' end. Second, PF4 arrays along heparin/GAG chains, which approximate tetramers, form large antigenic complexes that enhance antibody avidity. Third, pathogenic HIT antibodies bind to the 'open' end of stabilized PF4 tetramers to form an IgG/PF4/heparin ternary immune complex and also to propagate the formation of 'ultralarge immune complexes' (ULCs) that contain multiple IgG antibodies. Fourth, ULCs signal through FcγRIIA receptors, activating platelets and monocytes directly and generating thrombin, which transactivates hematopoietic and endothelial cells. A non-pathogenic anti-PF4 antibody prevents tetramer formation, binding of pathogenic antibody, platelet activation and thrombosis, providing a new approach to manage HIT. An improved understanding of the pathogenesis of HIT may lead to novel diagnostics and therapeutics for this autoimmune disease.

  10. Solution structure of the zinc finger HIT domain in protein FON

    PubMed Central

    He, Fahu; Umehara, Takashi; Tsuda, Kengo; Inoue, Makoto; Kigawa, Takanori; Matsuda, Takayoshi; Yabuki, Takashi; Aoki, Masaaki; Seki, Eiko; Terada, Takaho; Shirouzu, Mikako; Tanaka, Akiko; Sugano, Sumio; Muto, Yutaka; Yokoyama, Shigeyuki

    2007-01-01

    The zinc finger HIT domain is a sequence motif found in many proteins, including thyroid hormone receptor interacting protein 3 (TRIP-3), which is possibly involved in maturity-onset diabetes of the young (MODY). Novel zinc finger motifs are suggested to play important roles in gene regulation and chromatin remodeling. Here, we determined the high-resolution solution structure of the zinc finger HIT domain in ZNHIT2 (protein FON) from Homo sapiens, by an NMR method based on 567 upper distance limits derived from NOE intensities measured in three-dimensional NOESY spectra. The structure yielded a backbone RMSD to the mean coordinates of 0.19 Å for the structured residues 12–48. The fold consists of two consecutive antiparallel β-sheets and two short C-terminal helices packed against the second β-sheet, and binds two zinc ions. Both zinc ions are coordinated tetrahedrally via a CCCC-CCHC motif to the ligand residues of the zf-HIT domain in an interleaved manner. The tertiary structure of the zinc finger HIT domain closely resembles the folds of the B-box, RING finger, and PHD domains with a cross-brace zinc coordination mode, but is distinct from them. The unique three-dimensional structure of the zinc finger HIT domain revealed a novel zinc-binding fold, as a new member of the treble clef domain family. On the basis of the structural data, we discuss the possible functional roles of the zinc finger HIT domain. PMID:17656577

  11. Role of Calmodulin in Cell Proliferation

    NASA Technical Reports Server (NTRS)

    Chafouleas, J.

    1983-01-01

    Calmodulin levels were found to increase as cells enter plateau. The data suggest that the cells are exiting the cell cycle late in the G sub 1 phase, or that the calmodulin levels in plateau cells are uncoupled to progression into S phase in plateau cells. Upon release, calmodulin levels rapidly decrease. Following this decrease, there is a increase prior to S phase.

  12. Imidazolopiperazines: hit to lead optimization of new antimalarial agents.

    PubMed

    Wu, Tao; Nagle, Advait; Kuhen, Kelli; Gagaring, Kerstin; Borboa, Rachel; Francek, Caroline; Chen, Zhong; Plouffe, David; Goh, Anne; Lakshminarayana, Suresh B; Wu, Jeanette; Ang, Hui Qing; Zeng, Peiting; Kang, Min Low; Tan, William; Tan, Maria; Ye, Nicole; Lin, Xuena; Caldwell, Christopher; Ek, Jared; Skolnik, Suzanne; Liu, Fenghua; Wang, Jianling; Chang, Jonathan; Li, Chun; Hollenbeck, Thomas; Tuntland, Tove; Isbell, John; Fischli, Christoph; Brun, Reto; Rottmann, Matthias; Dartois, Veronique; Keller, Thomas; Diagana, Thierry; Winzeler, Elizabeth; Glynne, Richard; Tully, David C; Chatterjee, Arnab K

    2011-07-28

    Starting from a hit series from a GNF compound library collection and based on a cell-based proliferation assay of Plasmodium falciparum, a novel imidazolopiperazine scaffold was optimized. SAR for this series of compounds is discussed, focusing on optimization of cellular potency against wild-type and drug resistant parasites and improvement of physiochemical and pharmacokinetic properties. The lead compounds in this series showed good potencies in vitro and decent oral exposure levels in vivo. In a Plasmodium berghei mouse infection model, one lead compound lowered the parasitemia level by 99.4% after administration of 100 mg/kg single oral dose and prolonged mice survival by an average of 17.0 days. The lead compounds were also well-tolerated in the preliminary in vitro toxicity studies and represents an interesting lead for drug development.

  13. Multiple-Hit Parameter Estimation in Monolithic Detectors

    PubMed Central

    Barrett, Harrison H.; Lewellen, Tom K.; Miyaoka, Robert S.

    2014-01-01

    We examine a maximum-a-posteriori method for estimating the primary interaction position of gamma rays with multiple interaction sites (hits) in a monolithic detector. In assessing the performance of a multiple-hit estimator over that of a conventional one-hit estimator, we consider a few different detector and readout configurations of a 50-mm-wide square cerium-doped lutetium oxyorthosilicate block. For this study, we use simulated data from SCOUT, a Monte-Carlo tool for photon tracking and modeling scintillation- camera output. With this tool, we determine estimate bias and variance for a multiple-hit estimator and compare these with similar metrics for a one-hit maximum-likelihood estimator, which assumes full energy deposition in one hit. We also examine the effect of event filtering on these metrics; for this purpose, we use a likelihood threshold to reject signals that are not likely to have been produced under the assumed likelihood model. Depending on detector design, we observe a 1%–12% improvement of intrinsic resolution for a 1-or-2-hit estimator as compared with a 1-hit estimator. We also observe improved differentiation of photopeak events using a 1-or-2-hit estimator as compared with the 1-hit estimator; more than 6% of photopeak events that were rejected by likelihood filtering for the 1-hit estimator were accurately identified as photopeak events and positioned without loss of resolution by a 1-or-2-hit estimator; for PET, this equates to at least a 12% improvement in coincidence-detection efficiency with likelihood filtering applied. PMID:23193231

  14. Hit-and-run planetary collisions.

    PubMed

    Asphaug, Erik; Agnor, Craig B; Williams, Quentin

    2006-01-12

    Terrestrial planet formation is believed to have concluded in our Solar System with about 10 million to 100 million years of giant impacts, where hundreds of Moon- to Mars-sized planetary embryos acquired random velocities through gravitational encounters and resonances with one another and with Jupiter. This led to planet-crossing orbits and collisions that produced the four terrestrial planets, the Moon and asteroids. But here we show that colliding planets do not simply merge, as is commonly assumed. In many cases, the smaller planet escapes from the collision highly deformed, spun up, depressurized from equilibrium, stripped of its outer layers, and sometimes pulled apart into a chain of diverse objects. Remnants of these 'hit-and-run' collisions are predicted to be common among remnant planet-forming populations, and thus to be relevant to asteroid formation and meteorite petrogenesis.

  15. Prohibitin( PHB) roles in granulosa cell physiology.

    PubMed

    Chowdhury, Indrajit; Thomas, Kelwyn; Thompson, Winston E

    2016-01-01

    Ovarian granulosa cells (GC) play an important role in the growth and development of the follicle in the process known as folliculogenesis. In the present review, we focus on recent developments in prohibitin (PHB) research in relation to GC physiological functions. PHB is a member of a highly conserved eukaryotic protein family containing the repressor of estrogen activity (REA)/stomatin/PHB/flotillin/HflK/C (SPFH) domain (also known as the PHB domain) found in diverse species from prokaryotes to eukaryotes. PHB is ubiquitously expressed in a circulating free form or is present in multiple cellular compartments including mitochondria, nucleus and plasma membrane. In mitochondria, PHB is anchored to the mitochondrial inner membrane and forms complexes with the ATPases associated with proteases having diverse cellular activities. PHB continuously shuttles between the mitochondria, cytosol and nucleus. In the nucleus, PHB interacts with various transcription factors and modulates transcriptional activity directly or through interactions with chromatin remodeling proteins. Many functions have been attributed to the mitochondrial and nuclear PHB complexes such as cellular differentiation, anti-proliferation, morphogenesis and maintenance of the functional integrity of the mitochondria. However, to date, the regulation of PHB expression patterns and GC physiological functions are not completely understood.

  16. The role of mitochondria in stem cell biology.

    PubMed

    Nesti, Claudia; Pasquali, Livia; Vaglini, Francesca; Siciliano, Gabriele; Murri, Luigi

    2007-06-01

    This mini-review summarizes the current literature on the role of mitochondrial DNA mutations and mitochondrial metabolism in stem cell biology. The possible uses of stem cells as a therapeutic tool in mitochondrial disorders are also reported.

  17. Directed stem cell differentiation: the role of physical forces.

    PubMed

    Clause, Kelly C; Liu, Li J; Tobita, Kimimasa

    2010-04-01

    A number of factors contribute to the control of stem cell fate. In particular, the evidence for how physical forces control the stem cell differentiation program is now accruing. In this review, the authors discuss the types of physical forces: mechanical forces, cell shape, extracellular matrix geometry/properties, and cell-cell contacts and morphogenic factors, which evidence suggests play a role in influencing stem cell fate.

  18. Role of Abcg2 During Mouse Embroyonic Stem Cell Diffferentiation

    EPA Science Inventory

    Role of Abcg2 During Mouse Embryonic Stem Cell Differentiation. Abcg2 is a multidrug resistance ATP-binding cassette (ABC) transporter whose activity may be considered a hallmark of stem cell plasticity. The role of Abcg2 during early embryogenesis, however, is unclear. Studies...

  19. The role of the bi-compartmental stem cell niche in delaying cancer

    NASA Astrophysics Data System (ADS)

    Shahriyari, Leili; Komarova, Natalia L.

    2015-10-01

    In recent years, by using modern imaging techniques, scientists have found evidence of collaboration between different types of stem cells (SCs), and proposed a bi-compartmental organization of the SC niche. Here we create a class of stochastic models to simulate the dynamics of such a heterogeneous SC niche. We consider two SC groups: the border compartment, S1, is in direct contact with transit-amplifying (TA) cells, and the central compartment, S2, is hierarchically upstream from S1. The S1 SCs differentiate or divide asymmetrically when the tissue needs TA cells. Both groups proliferate when the tissue requires SCs (thus maintaining homeostasis). There is an influx of S2 cells into the border compartment, either by migration, or by proliferation. We examine this model in the context of double-hit mutant generation, which is a rate-limiting step in the development of many cancers. We discover that this type of a cooperative pattern in the stem niche with two compartments leads to a significantly smaller rate of double-hit mutant production compared with a homogeneous, one-compartmental SC niche. Furthermore, the minimum probability of double-hit mutant generation corresponds to purely symmetric division of SCs, consistent with the literature. Finally, the optimal architecture (which minimizes the rate of double-hit mutant production) requires a large proliferation rate of S1 cells along with a small, but non-zero, proliferation rate of S2 cells. This result is remarkably similar to the niche structure described recently by several authors, where one of the two SC compartments was found more actively engaged in tissue homeostasis and turnover, while the other was characterized by higher levels of quiescence (but contributed strongly to injury recovery). Both numerical and analytical results are presented.

  20. Controversial role of mast cells in skin cancers.

    PubMed

    Varricchi, Gilda; Galdiero, Maria R; Marone, Giancarlo; Granata, Francescopaolo; Borriello, Francesco; Marone, Gianni

    2017-01-01

    Cancer development is a multistep process characterized by genetic and epigenetic alterations during tumor initiation and progression. The stromal microenvironment can promote tumor development. Mast cells, widely distributed throughout all tissues, are a stromal component of many solid and haematologic tumors. Mast cells can be found in human and mouse models of skin cancers such as melanoma, basal and squamous cell carcinomas, primary cutaneous lymphomas, haemangiomas and Merkel cell carcinoma. However, human and animal studies addressing potential functions of mast cells and their mediators in skin cancers have provided conflicting results. In several studies, mast cells play a pro-tumorigenic role, whereas in others, they play an anti-tumorigenic role. Other studies have failed to demonstrate a clear role for tumor-associated mast cells. Many unanswered questions need to be addressed before we understand whether tumor-associated mast cells are adversaries, allies or simply innocent bystanders in different types and subtypes of skin cancers.

  1. Role of programmed cell death in development.

    PubMed

    Ranganath, R M; Nagashree, N R

    2001-01-01

    Programmed cell death (PCD) is an integral part of both animal and plant development. In animals, model systems such as Caenorhabditis elegans, Drosophila melanogaster, and mice have shown a general cell death profile of induction, caspase mediation, cell death, and phagocytosis. Tremendous strides have been made in cell death research in animals in the past decade. The ordering of the C. elegans genes Ced-3, 4 and 9, identification of caspase-activated DNase that degrades nuclear DNA during PCD, identification of signal transduction modules involving caspases as well as the caspase-independent pathway, and the involvement of mitochondria are some of the findings of immense value in understanding animal PCDs. Similarly, the caspase inactivation mechanisms of infecting viruses to stall host cell death give a new dimension to the viral infection process. However, plant cell death profiles provide an entirely different scenario. The presence of a cell wall that cannot be phagocytosed, absence of the hallmarks of animal PCDs such as DNA laddering, formation of apoptotic bodies, a cell-death-specific nuclease, a biochemical machinery of killer enzymes such as caspases all point to novel ways of cell elimination. Large gaps in our understanding of plant cell death have prompted speculative inferences and comparisons with animal cell death mechanisms. This paper deals with both animals and plants for a holistic view on cell death in eukaryotes.

  2. New approaches for efficient solution of hitting set problem

    NASA Technical Reports Server (NTRS)

    Fijany, Amir; Vatan, Farrokh

    2004-01-01

    A new method for solving the hitting set problem is proposed. This method is based on the mapping of the problem onto an integer programming optimization problem. this new approach provides an algorithm with much better performance compare to the algorithms for the hitting set problem that currently are used for solving the diagnosis problem.

  3. First Plasma Results from the HIT-SI Spheromak

    NASA Astrophysics Data System (ADS)

    Sieck, P. E.; Hamp, W. T.; Izzo, V. A.; Jarboe, T. R.; Nelson, B. A.; O'Neill, R. G.; Redd, A. J.; Smith, R. J.

    2003-10-01

    HIT-SI is the newest device in the Helicity Injected Torus (HIT) program. HIT-SI is a ``bow tie'' spheromak formed and sustained by Steady Inductive Helicity Injection (SIHI) current drive. SIHI injects helicity at a nearly constant rate with no open field lines intersecting the boundary. (T. R. Jarboe, Fusion Technology 36) (1), p. 85, 1999 HIT-SI has been designed with a bow tie geometry to achieve stable high-β (>10%) spheromak equilibria. (U. Shumlak and T. R. Jarboe, Phys. Plasmas 7) (7), p. 2959, 2000 Diagnostics currently include surface magnetic probes and flux loops, visible light imaging, H-alpha line radiation monitors, voltage measurements across insulating breaks, injector current Rogowski coils, and injector flux loops. HIT-SI is currently operating in parallel with experiments on HIT-II. At the conclusion of HIT-II operations, HIT-SI will inherit a multi-point Thomson Scattering system, a scanning two-chord FIR interferometer, and other advanced diagnostics, as well as more power supplies to extend the discharge duration. Results are presented which characterize injector operation and possible evidence for spheromak formation.

  4. Improved Curveball Hitting through the Enhancement of Visual Cues.

    ERIC Educational Resources Information Center

    Osborne, Kurt; And Others

    1990-01-01

    The study investigated the effectiveness of using visual cues to highlight the seams of baseballs, to improve the hitting of curveballs by five undergraduate varsity baseball team candidates. Results indicated that subjects hit a greater percentage of marked than unmarked balls. (Author/DB)

  5. Object Rotation Effects on the Timing of a Hitting Action

    ERIC Educational Resources Information Center

    Scott, Mark A.; van der Kamp, John; Savelsbergh, Geert J. P.; Oudejans, Raoul R. D.; Davids, Keith

    2004-01-01

    In this article, the authors investigated how perturbing optical information affects the guidance of an unfolding hitting action. Using monocular and binocular vision, six participants were required to hit a rectangular foam object, released from two different heights, under four different approach conditions, two with object rotation (to perturb…

  6. Roles of membrane trafficking in plant cell wall dynamics

    PubMed Central

    Ebine, Kazuo; Ueda, Takashi

    2015-01-01

    The cell wall is one of the characteristic components of plant cells. The cell wall composition differs among cell types and is modified in response to various environmental conditions. To properly generate and modify the cell wall, many proteins are transported to the plasma membrane or extracellular space through membrane trafficking, which is one of the key protein transport mechanisms in eukaryotic cells. Given the diverse composition and functions of the cell wall in plants, the transport of the cell wall components and proteins that are involved in cell wall-related events could be specialized for each cell type, i.e., the machinery for cell wall biogenesis, modification, and maintenance could be transported via different trafficking pathways. In this review, we summarize the recent progress in the current understanding of the roles and mechanisms of membrane trafficking in plant cells and focus on the biogenesis and regulation of the cell wall. PMID:26539200

  7. Combining Computational Methods for Hit to Lead Optimization in Mycobacterium tuberculosis Drug Discovery

    PubMed Central

    Ekins, Sean; Freundlich, Joel S.; Hobrath, Judith V.; White, E. Lucile; Reynolds, Robert C

    2013-01-01

    Purpose Tuberculosis treatments need to be shorter and overcome drug resistance. Our previous large scale phenotypic high-throughput screening against Mycobacterium tuberculosis (Mtb) has identified 737 active compounds and thousands that are inactive. We have used this data for building computational models as an approach to minimize the number of compounds tested. Methods A cheminformatics clustering approach followed by Bayesian machine learning models (based on publicly available Mtb screening data) was used to illustrate that application of these models for screening set selections can enrich the hit rate. Results In order to explore chemical diversity around active cluster scaffolds of the dose-response hits obtained from our previous Mtb screens a set of 1924 commercially available molecules have been selected and evaluated for antitubercular activity and cytotoxicity using Vero, THP-1 and HepG2 cell lines with 4.3%, 4.2% and 2.7% hit rates, respectively. We demonstrate that models incorporating antitubercular and cytotoxicity data in Vero cells can significantly enrich the selection of non-toxic actives compared to random selection. Across all cell lines, the Molecular Libraries Small Molecule Repository (MLSMR) and cytotoxicity model identified ~10% of the hits in the top 1% screened (>10 fold enrichment). We also showed that seven out of nine Mtb active compounds from different academic published studies and eight out of eleven Mtb active compounds from a pharmaceutical screen (GSK) would have been identified by these Bayesian models. Conclusion Combining clustering and Bayesian models represents a useful strategy for compound prioritization and hit-to lead optimization of antitubercular agents. PMID:24132686

  8. Hit identification of IKKβ natural product inhibitor

    PubMed Central

    2013-01-01

    Background The nuclear factor-κB (NF-κB) proteins are a small group of heterodimeric transcription factors that play an important role in regulating the inflammatory, immune, and apoptotic responses. NF-κB activity is suppressed by association with the inhibitor IκB. Aberrant NF-κB signaling activity has been associated with the development of cancer, chronic inflammatory diseases and auto-immune diseases. The IKK protein complex is comprised of IKKα, IKKβ and NEMO subunits, with IKKβ thought to play the dominant role in modulating NF-κB activity. Therefore, the discovery of new IKKβ inhibitors may offer new therapeutic options for the treatment of cancer and inflammatory diseases. Results A structure-based molecular docking approach has been employed to discover novel IKKβ inhibitors from a natural product library of over 90,000 compounds. Preliminary screening of the 12 highest-scoring compounds using a luciferase reporter assay identified 4 promising candidates for further biological study. Among these, the benzoic acid derivative (1) showed the most promising activity at inhibiting IKKβ phosphorylation and TNF-α-induced NF-κB signaling in vitro. Conclusions In this study, we have successfully identified a benzoic acid derivative (1) as a novel IKKβ inhibitor via high-throughput molecular docking. Compound 1 was able to inhibit IKKβ phosphorylation activity in vitro, and block IκBα protein degradation and subsequent NF-κB activation in human cells. Further in silico optimization of the compound is currently being conducted in order to generate more potent analogues for biological tests. PMID:23294515

  9. The Role of Regulatory T Cells in Cancer

    PubMed Central

    2009-01-01

    There has been an explosion of literature focusing on the role of regulatory T (Treg) cells in cancer immunity. It is becoming increasingly clear that Treg cells play an active and significant role in the progression of cancer, and have an important role in suppressing tumor-specific immunity. Thus, there is a clear rationale for developing clinical strategies to diminish their regulatory influences, with the ultimate goal of augmenting antitimor immunity. Therefore, manipulation of Treg cells represent new strategies for cancer treatment. In this Review, I will summarize and review the explosive recent studies demonstrating that Treg cells are increased in patients with malignancies and restoration of antitumor immunity in mice and humans by depletion or reduction of Treg cells. In addition, I will discuss both the prognostic value of Treg cells in tumor progression in tumor-bearing hosts and the rationale for strategies for therapeutic vaccination and immunotherapeutic targeting of Treg cells with drugs and microRNA. PMID:20157609

  10. Role of microRNAs in maintaining cancer stem cells.

    PubMed

    Garofalo, Michela; Croce, Carlo M

    2015-01-01

    Increasing evidence sustains that the establishment and maintenance of many, if not all, human cancers are due to cancer stem cells (CSCs), tumor cells with stem cell properties, such as the capacity to self-renew or generate progenitor and differentiated cells. CSCs seem to play a major role in tumor metastasis and drug resistance, but albeit the potential clinical importance, their regulation at the molecular level is not clear. Recent studies have highlighted several miRNAs to be differentially expressed in normal and cancer stem cells and established their role in targeting genes and pathways supporting cancer stemness properties. This review focuses on the last advances on the role of microRNAs in the regulation of stem cell properties and cancer stem cells in different tumors.

  11. Chlamydia pneumoniae and atherosclerosis: the role of mast cells.

    PubMed

    Di Pietro, M; Schiavoni, G; Del Piano, M; Shaik, Y; Boscolo, P; Caraffa, A; Grano, M; Teté, S; Conti, F; Sessa, R

    2009-01-01

    Chlamydia pneumoniae (C. pneumoniae), a respiratory pathogen, has been implicated in the pathogenesis of atherosclerosis, an inflammatory progressive disease, characterized by the formation of atherosclerotic plaques. Among several types of inflammatory cells involved in the atherogenesis process, recently particular attention has been directed toward the mast cells. Experimental studies have provided several mechanisms by which C. pneumoniae and mast cells could play a role in all stages of atherosclerosis, from initial inflammatory lesions to plaque rupture. C. pneumoniae, as well as mast cells, may actively participate both through the production of cytokines and matrix-degrading metalloproteinases and by provoking apoptosis of atheroma-associated vascular cells, key events in plaque rupture. This mini-review provides a brief overview on adventitial inflammatory effects of C. pneumoniae and mast cells and their potential role in plaque instability. In addition, in this paper we review the role of mast cells in innate immunity.

  12. The role of fuel cells in NASA's space power systems

    NASA Technical Reports Server (NTRS)

    Been, J. F.

    1979-01-01

    A history of the fuel cell technology is presented and compared with NASA's increasing space power requirements. The role of fuel cells is discussed in perspective with other energy storage systems applicable for space using such criteria as type of mission, weight, reliability, costs, etc. Potential applications of space fuel cells with projected technology advances were examined.

  13. HITS-CLIP yields genome-wide insights into brain alternative RNA processing

    NASA Astrophysics Data System (ADS)

    Licatalosi, Donny D.; Mele, Aldo; Fak, John J.; Ule, Jernej; Kayikci, Melis; Chi, Sung Wook; Clark, Tyson A.; Schweitzer, Anthony C.; Blume, John E.; Wang, Xuning; Darnell, Jennifer C.; Darnell, Robert B.

    2008-11-01

    Protein-RNA interactions have critical roles in all aspects of gene expression. However, applying biochemical methods to understand such interactions in living tissues has been challenging. Here we develop a genome-wide means of mapping protein-RNA binding sites in vivo, by high-throughput sequencing of RNA isolated by crosslinking immunoprecipitation (HITS-CLIP). HITS-CLIP analysis of the neuron-specific splicing factor Nova revealed extremely reproducible RNA-binding maps in multiple mouse brains. These maps provide genome-wide in vivo biochemical footprints confirming the previous prediction that the position of Nova binding determines the outcome of alternative splicing; moreover, they are sufficiently powerful to predict Nova action de novo. HITS-CLIP revealed a large number of Nova-RNA interactions in 3' untranslated regions, leading to the discovery that Nova regulates alternative polyadenylation in the brain. HITS-CLIP, therefore, provides a robust, unbiased means to identify functional protein-RNA interactions in vivo.

  14. Pigeons, unlike humans, do not prefer near hits in a slot-machine-like task.

    PubMed

    Fortes, Inês; Case, Jacob P; Zentall, Thomas R

    2017-02-20

    Slot machines are among the most popular forms of commercial gambling, and the high frequency of losses that come close to winning - near hits - in this game appears to contribute to its popularity. In the present experiment we tested if pigeons, similarly to humans, prefer an alternative that provides near-hit outcomes in a slot-machine-like task. The pigeons received series of three stimuli, one every two seconds: if the three stimuli matched, food was delivered (a win); if they did not match, food was not delivered (a loss). We gave pigeons a choice between two options that provided food with the same probability but they differed in the sequence of stimuli on loss trials. For the near-hit alternative the non-matching stimulus was the third one (defined as a near hit). For the clear-loss alternative the non-matching stimulus was the second one. We found that the pigeons preferred the clear-loss alternative, that is, they preferred to be given information about the outcome sooner. This result is consistent with prior research on suboptimal choice with pigeons that emphasizes the role of information in choice but is inconsistent with the results of research with humans.

  15. The role of aging upon β cell turnover

    PubMed Central

    Kushner, Jake A.

    2013-01-01

    Preservation and regeneration of β cell endocrine function is a long-sought goal in diabetes research. Defective insulin secretion from β cells underlies both type 1 and type 2 diabetes, thus fueling considerable interest in molecules capable of rebuilding β cell secretion capacity. Though early work in rodents suggested that regeneration might be possible, recent studies have revealed that aging powerfully restricts cell cycle entry of β cells, which may limit regeneration capacity. Consequently, aging has emerged as an enigmatic challenge that might limit β cell regeneration therapies. This Review summarizes recent data regarding the role of aging in β cell regeneration and proposes models explaining these phenomena. PMID:23454762

  16. The emerging role of estrogen in B cell malignancies.

    PubMed

    Ladikou, Eleni-Eirini; Kassi, Eva

    2017-03-01

    Increasing evidence implicates a role of estrogens in hematological malignancies. We reviewed current knowledge on the emerging role of estrogens and estrogen receptors in normal B-cell function, chronic lymphocytic leukemia, and B-cell lymphoma. Data support that (1) normal human peripheral blood cells (mononuclear cells, total lymphocytes, T as well as B lymphocytes, and NK cells) express both estrogen receptor subtypes (ERα and ERβ), (2) B-cell malignancies express mainly ERβ while selective ERβ agonists inhibit cell growth and induce apoptosis, (3) estrogens regulate, via an ER-mediated pathway, gene expression of cyclins, kinases, bcl-2 proto-oncogene, activation-induced deaminase (AID), and transcription factors, associated with changes in BCR signaling and B cell tumorigenesis. In conclusion, estrogen receptors play an important role in normal B-cell function and B-cell tumorigenesis; however, further investigations are required to delineate the role of estrogens and estrogen receptors in the etiopathogenesis and therapy of B-cell malignancies.

  17. Heparin-induced thrombocytopenia (HIT II) in liver transplant recipients: a retrospective multivariate analysis of prognostic factors.

    PubMed

    Hüser, Norbert; Aßfalg, Volker; Reim, Daniel; Novotny, Alexander; Thorban, Stefan; Cheng, Zhangjun; Kornberg, Arno; Friess, Helmut; Büchler, Peter; Matevossian, Edouard

    2012-07-01

    We investigated the prevalence of HIT II in liver transplant recipients and analysed associated factors. In recipients with clinically suspected HIT II in the 4Ts pretest clinical scoring system HIPA-assay was performed. Next, 37 clinical variables were analysed retrospectively for their association with HIT II. Factors significantly correlated to our findings in univariate analysis were included in a multivariate model and binary logistic regression analysis. Among 46 recipients 21 patients were suspicious in the 4Ts pretest and 14 of them (30.4%) were diagnosed HIT-antibody positive. Patient's age (P = 0.001), postoperative dialysis (P = 0.028), and postoperative hospital stay (P = 0.035) were significantly associated with development of HIT-antibodies in univariate analysis. Postoperative dialysis and postoperative hospital stay turned out as epiphenomena of patient's age, the only independent predictor (P = 0.021). Using multiple χ(2) -testing, a cut-off could be calculated, assigning patients younger than 59 years to a low risk group and patients of 59 years and older to a high risk group. High incidence of peri-operative HIT II seroconversion in liver transplant recipients is not associated with factors known to induce thrombocyte activation, like blood products or cell-saver. Only patients' age was identified as independent predictor.

  18. The danger signal plus DNA damage two-hit hypothesis for chronic inflammation in COPD.

    PubMed

    Aoshiba, Kazutetsu; Tsuji, Takao; Yamaguchi, Kazuhiro; Itoh, Masayuki; Nakamura, Hiroyuki

    2013-12-01

    Inflammation in chronic obstructive pulmonary disease (COPD) is thought to originate from the activation of innate immunity by a danger signal (first hit), although this mechanism does not readily explain why the inflammation becomes chronic. Here, we propose a two-hit hypothesis explaining why inflammation becomes chronic in patients with COPD. A more severe degree of inflammation exists in the lungs of patients who develop COPD than in the lungs of healthy smokers, and the large amounts of reactive oxygen species and reactive nitrogen species released from inflammatory cells are likely to induce DNA double-strand breaks (second hit) in the airways and pulmonary alveolar cells, causing apoptosis and cell senescence. The DNA damage response and senescence-associated secretory phenotype (SASP) are also likely to be activated, resulting in the production of pro-inflammatory cytokines. These pro-inflammatory cytokines further stimulate inflammatory cell infiltration, intensifying cell senescence and SASP through a positive-feedback mechanism. This vicious cycle, characterised by mutually reinforcing inflammation and DNA damage, may cause the inflammation in COPD patients to become chronic. Our hypothesis helps explain why COPD tends to occur in the elderly, why the inflammation worsens progressively, why inflammation continues even after smoking cessation, and why COPD is associated with lung cancer.

  19. Protective role of Th17 cells in pulmonary infection.

    PubMed

    Rathore, Jitendra Singh; Wang, Yan

    2016-03-18

    Th17 cells are characterized as preferential producer of interleukins including IL-17A, IL-17F, IL-21 and IL-22. Corresponding receptors of these cytokines are expressed on number of cell types found in the mucosa, including epithelial cells and fibroblasts which constitute the prime targets of the Th17-associated cytokines. Binding of IL-17 family members to their corresponding receptors lead to modulation of antimicrobial functions of target cells including alveolar epithelial cells. Stimulated alveolar epithelial cells produce antimicrobial peptides and are involved in granulepoesis, neutrophil recruitment and tissue repair. Mucosal immunity mediated by Th17 cells is protective against numerous pulmonary pathogens including extracellular bacterial and fungal pathogens. This review focuses on the protective role of Th17 cells during pulmonary infection, highlighting subset differentiation, effector cytokines production, followed by study of the binding of these cytokines to their corresponding receptors, the subsequent signaling pathway they engender and their effector role in host defense.

  20. Implicit Hitting Set Problems and Multi-genome Alignment

    NASA Astrophysics Data System (ADS)

    Karp, Richard M.

    Let U be a finite set and S a family of subsets of U. Define a hitting set as a subset of U that intersects every element of S. The optimal hitting set problem is: given a positive weight for each element of U, find a hitting set of minimum total weight. This problem is equivalent to the classic weighted set cover problem.We consider the optimal hitting set problem in the case where the set system S is not explicitly given, but there is an oracle that will supply members of S satisfying certain conditions; for example, we might ask the oracle for a minimum-cardinality set in S that is disjoint from a given set Q. The problems of finding a minimum feedback arc set or minimum feedback vertex set in a digraph are examples of implicit hitting set problems. Our interest is in the number of oracle queries required to find an optimal hitting set. After presenting some generic algorithms for this problem we focus on our computational experience with an implicit hitting set problem related to multi-genome alignment in genomics. This is joint work with Erick Moreno Centeno.

  1. Role of bentonite clays on cell growth.

    PubMed

    Cervini-Silva, Javiera; Ramírez-Apan, María Teresa; Kaufhold, Stephan; Ufer, Kristian; Palacios, Eduardo; Montoya, Ascención

    2016-04-01

    Bentonites, naturally occurring clays, are produced industrially because of their adsorbent capacity but little is known about their effects on human health. This manuscript reports on the effect of bentonites on cell growth behaviour. Bentonites collected from India (Bent-India), Hungary (Bent-Hungary), Argentina (Bent-Argentina), and Indonesia (Bent-Indonesia) were studied. All four bentonites were screened in-vitro against two human cancer cell lines [U251 (central nervous system, glioblastoma) and SKLU-1 (lung adenocarcinoma)] supplied by the National Cancer Institute (USA). Bentonites induced growth inhibition in the presence of U251 cells, and growth increment in the presence of SKLU-1 cells, showing that interactions between bentonite and cell surfaces were highly specific. The proliferation response for U251 cells was explained because clay surfaces controlled the levels of metabolic growth components, thereby inhibiting the development of high-grade gliomas, particularly primary glioblastomas. On the other hand, the proliferation response for SKLU-1 was explained by an exacerbated growth favoured by swelling, and concomitant accumulation of solutes, and their hydration and transformation via clay-surface mediated reactions.

  2. Biofilms’ Role in Planktonic Cell Proliferation

    PubMed Central

    Bester, Elanna; Wolfaardt, Gideon M.; Aznaveh, Nahid B.; Greener, Jesse

    2013-01-01

    The detachment of single cells from biofilms is an intrinsic part of this surface-associated mode of bacterial existence. Pseudomonas sp. strain CT07gfp biofilms, cultivated in microfluidic channels under continuous flow conditions, were subjected to a range of liquid shear stresses (9.42 mPa to 320 mPa). The number of detached planktonic cells was quantified from the effluent at 24-h intervals, while average biofilm thickness and biofilm surface area were determined by confocal laser scanning microscopy and image analysis. Biofilm accumulation proceeded at the highest applied shear stress, while similar rates of planktonic cell detachment was maintained for biofilms of the same age subjected to the range of average shear rates. The conventional view of liquid-mediated shear leading to the passive erosion of single cells from the biofilm surface, disregards the active contribution of attached cell metabolism and growth to the observed detachment rates. As a complement to the conventional conceptual biofilm models, the existence of a biofilm surface-associated zone of planktonic cell proliferation is proposed to highlight the need to expand the traditional perception of biofilms as promoting microbial survival, to include the potential of biofilms to contribute to microbial proliferation. PMID:24201127

  3. DGCR8 HITS-CLIP reveals novel functions for the Microprocessor.

    PubMed

    Macias, Sara; Plass, Mireya; Stajuda, Agata; Michlewski, Gracjan; Eyras, Eduardo; Cáceres, Javier F

    2012-08-01

    The Drosha-DGCR8 complex (Microprocessor) is required for microRNA (miRNA) biogenesis. DGCR8 recognizes the RNA substrate, whereas Drosha functions as the endonuclease. Using high-throughput sequencing and cross-linking immunoprecipitation (HITS-CLIP) we identified RNA targets of DGCR8 in human cells. Unexpectedly, miRNAs were not the most abundant targets. DGCR8-bound RNAs also comprised several hundred mRNAs as well as small nucleolar RNAs (snoRNAs) and long noncoding RNAs. We found that the Microprocessor controlled the abundance of several mRNAs as well as of MALAT1. By contrast, DGCR8-mediated cleavage of snoRNAs was independent of Drosha, suggesting the involvement of DGCR8 in cellular complexes with other endonucleases. Binding of DGCR8 to cassette exons is a new mechanism for regulation of the relative abundance of alternatively spliced isoforms. These data provide insights in the complex role of DGCR8 in controlling the fate of several classes of RNAs.

  4. Geometric Hitting Set for Segments of Few Orientations

    SciTech Connect

    Fekete, Sandor P.; Huang, Kan; Mitchell, Joseph S. B.; Parekh, Ojas D.; Phillips, Cynthia A.

    2016-01-13

    Here we study several natural instances of the geometric hitting set problem for input consisting of sets of line segments (and rays, lines) having a small number of distinct slopes. These problems model path monitoring (e.g., on road networks) using the fewest sensors (the \\hitting points"). We give approximation algorithms for cases including (i) lines of 3 slopes in the plane, (ii) vertical lines and horizontal segments, (iii) pairs of horizontal/vertical segments. Lastly, we give hardness and hardness of approximation results for these problems. We prove that the hitting set problem for vertical lines and horizontal rays is polynomially solvable.

  5. The role of mast cells in allergic inflammation.

    PubMed

    Amin, Kawa

    2012-01-01

    The histochemical characteristics of human basophils and tissue mast cells were described over a century ago by Paul Ehrlich. When mast cells are activated by an allergen that binds to serum IgE attached to their FcɛRI receptors, they release cytokines, eicosanoids and their secretory granules. Mast cells are now thought to exert critical proinflammatory functions, as well as potential immunoregulatory roles, in various immune disorders through the release of mediators such as histamine, leukotrienes, cytokines chemokines, and neutral proteases (chymase and tryptase). The aim of this review is to describe the role of mast cells in allergic inflammation. Mast cells interact directly with bacteria and appear to play a vital role in host defense against pathogens. Drugs, such as glucocorticoids, cyclosporine and cromolyn have been shown to have inhibitory effects on mast cell degranulation and mediator release. This review shows that mast cells play an active role in such diverse diseases as asthma, rhinitis, middle ear infection, and pulmonary fibrosis. In conclusion, mast cells may not only contribute to the chronic airway inflammatory response, remodeling and symptomatology, but they may also have a central role in the initiation of the allergic immune response, that is providing signals inducing IgE synthesis by B-lymphocytes and inducing Th2 lymphocyte differentiation.

  6. Dachshund homologues play a conserved role in islet cell development

    PubMed Central

    Kalousova, Anna; Mavropoulos, Anastasia; Adams, Bruce A.; Nekrep, Nada; Li, Zhongmei; Krauss, Stephan; Stainier, Didier Y.; German, Michael S.

    2010-01-01

    All metazoans use insulin to control energy metabolism, but they secrete it from different cells: neurons in the central nervous system in invertebrates and endocrine cells in the gut or pancreas in vertebrates. Despite their origins in different germ layers, all of these insulin-producing cells share common functional features and gene expression patterns. In this study, we tested the role in insulin-producing cells of the vertebrate homologues of Dachshund, a transcriptional regulator that marks the earliest committed progenitors of the neural insulin-producing cells in Drosophila. Both zebrafish and mice expressed a single dominant Dachshund homologue in the pancreatic endocrine lineage, and in both species loss of this homologue reduced the numbers of all islet cell types including the insulin-producing β-cells. In mice, Dach1 gene deletion left pancreatic progenitor cells unaltered, but blocked the perinatal burst of proliferation of differentiated β-cells that normally generates most of the β-cell mass. In β-cells, Dach1 bound to the promoter of the cell cycle inhibitor p27Kip1, which constrains β-cell proliferation. Taken together, these data demonstrate a conserved role for Dachshund homologues in the production of insulin-producing cells. PMID:20869363

  7. Role of Calcium and Calmodulin in Plant Cell Regulation

    NASA Technical Reports Server (NTRS)

    Cormier, M. J.

    1983-01-01

    The role of calcium and calmodulin in plant cell regulation is discussed. Experiments are done to discover the level of calcium in plants and animals. The effect of intracellular calcium on photosynthesis is discussed.

  8. Imatinib attenuates inflammation and vascular leak in a clinically relevant two-hit model of acute lung injury.

    PubMed

    Rizzo, Alicia N; Sammani, Saad; Esquinca, Adilene E; Jacobson, Jeffrey R; Garcia, Joe G N; Letsiou, Eleftheria; Dudek, Steven M

    2015-12-01

    Acute lung injury/acute respiratory distress syndrome (ALI/ARDS), an illness characterized by life-threatening vascular leak, is a significant cause of morbidity and mortality in critically ill patients. Recent preclinical studies and clinical observations have suggested a potential role for the chemotherapeutic agent imatinib in restoring vascular integrity. Our prior work demonstrates differential effects of imatinib in mouse models of ALI, namely attenuation of LPS-induced lung injury but exacerbation of ventilator-induced lung injury (VILI). Because of the critical role of mechanical ventilation in the care of patients with ARDS, in the present study we pursued an assessment of the effectiveness of imatinib in a "two-hit" model of ALI caused by combined LPS and VILI. Imatinib significantly decreased bronchoalveolar lavage protein, total cells, neutrophils, and TNF-α levels in mice exposed to LPS plus VILI, indicating that it attenuates ALI in this clinically relevant model. In subsequent experiments focusing on its protective role in LPS-induced lung injury, imatinib attenuated ALI when given 4 h after LPS, suggesting potential therapeutic effectiveness when given after the onset of injury. Mechanistic studies in mouse lung tissue and human lung endothelial cells revealed that imatinib inhibits LPS-induced NF-κB expression and activation. Overall, these results further characterize the therapeutic potential of imatinib against inflammatory vascular leak.

  9. Hitting Time Asymptotics for Hard-Core Interactions on Grids

    NASA Astrophysics Data System (ADS)

    Nardi, F. R.; Zocca, A.; Borst, S. C.

    2016-01-01

    We consider the hard-core model with Metropolis transition probabilities on finite grid graphs and investigate the asymptotic behavior of the first hitting time between its two maximum-occupancy configurations in the low-temperature regime. In particular, we show how the order-of-magnitude of this first hitting time depends on the grid sizes and on the boundary conditions by means of a novel combinatorial method. Our analysis also proves the asymptotic exponentiality of the scaled hitting time and yields the mixing time of the process in the low-temperature limit as side-result. In order to derive these results, we extended the model-independent framework in Manzo et al. (J Stat Phys 115(1/2):591-642, 2004) for first hitting times to allow for a more general initial state and target subset.

  10. The Chelyabinsk Meteorite Hits an Anomalous Zone in the Urals

    NASA Astrophysics Data System (ADS)

    Kochemasov, G. G.

    2013-09-01

    The Chelyabinsk meteorite is "strange" because it hits an area in the Urals where anomalous events are observed: shining skies, light balls, UFOs, electrphonic bolids. The area tectonically occurs at the intersection of two fold belts: Urals and Timan.

  11. Pregnant Women Should Avoid Zika-Hit Texas Town: CDC

    MedlinePlus

    ... news/fullstory_162573.html Pregnant Women Should Avoid Zika-Hit Texas Town: CDC Advisory follows reports of ... border with Mexico, because five cases of local Zika infection have been reported there, U.S. health officials ...

  12. Superfast Cosmic Jet "Hits the Wall"

    NASA Astrophysics Data System (ADS)

    1999-01-01

    -288. The jet travelled quickly until its advance suddenly was stopped and the endpoint of the jet became brighter than the core. "This fast-moving material obviously hit something," Hjellming said. What did it it hit? "Probably a mixture of external material plus material from a previous jet ejection." Further studies of the collision could yield new information about the physics of cosmic jets. Such jets are believed to be powered by black holes into which material is being drawn. The exact mechanism by which the black hole's gravitational energy accelerates particles to nearly the speed of light is not well understood. There is even dispute about the types of particles ejected. Competing models call for either a mixture of electrons and protons or a mixture of electrons and positrons. Because protons are more than 1,800 times more massive than electrons or positrons (the positively-charged antiparticle of the electron), the electron-proton mixture would be much more massive than the electron-positron pair. Thus, an electron-proton jet is called a heavy jet and an electron-positron jet is called a light jet. A light jet would be much more easily slowed or stopped by tenuous interstellar material than a heavy jet, so the collision of XTE J1748-288's jet may indicate that it is a light jet. "There's still a lot more work to do before anyone can conclude that, but the collision offers the possibility of answering the light-heavy jet question," Hjellming said. A 1998 VLA study by John Wardle of Brandeis University and his colleagues indicated that the jet of a distant quasar is a light, electron-positron jet. Though the black holes in quasars are supermassive, usually millions of times more massive than the Sun, the physics of jet production in them is thought to be similar to the physics of jet production by smaller black holes, only a few times more massive than the sun, such as the one possibly in XTE J1748-288. The VLA is an instrument of the National Radio Astronomy

  13. Role of Dendritic Cells in Immune Dysfunction

    NASA Technical Reports Server (NTRS)

    Savary, Cherylyn A.

    1997-01-01

    Specific aims include: (1) Application of the bioreactor to enhance cytokine-regulated proliferation and maturation of dendritic cells (DC); (2) Based on clues from spaceflight: compare the frequency and function of DC in normal donors and immunocompromised cancer patients; and (3) Initiate studies on the efficiency of cytokine therapy and DC-assisted immunotherapy (using bioreactor-expanded DC) in animal models of experimental fungal infections.

  14. Role of cell-cell adhesion complexes in embryonic stem cell biology.

    PubMed

    Pieters, Tim; van Roy, Frans

    2014-06-15

    Pluripotent embryonic stem cells (ESCs) can self-renew or differentiate into any cell type within an organism. Here, we focus on the roles of cadherins and catenins - their cytoplasmic scaffold proteins - in the fate, maintenance and differentiation of mammalian ESCs. E-cadherin is a master stem cell regulator that is required for both mouse ESC (mESC) maintenance and differentiation. E-cadherin interacts with key components of the naive stemness pathway and ablating it prevents stem cells from forming well-differentiated teratomas or contributing to chimeric animals. In addition, depleting E-cadherin converts naive mouse ESCs into primed epiblast-like stem cells (EpiSCs). In line with this, a mesenchymal-to-epithelial transition (MET) occurs during reprogramming of somatic cells towards induced pluripotent stem cells (iPSCs), leading to downregulation of N-cadherin and acquisition of high E-cadherin levels. β-catenin exerts a dual function; it acts in cadherin-based adhesion and in WNT signaling and, although WNT signaling is important for stemness, the adhesive function of β-catenin might be crucial for maintaining the naive state of stem cells. In addition, evidence is rising that other junctional proteins are also important in ESC biology. Thus, precisely regulated levels and activities of several junctional proteins, in particular E-cadherin, safeguard naive pluripotency and are a prerequisite for complete somatic cell reprogramming.

  15. Gold's future role in fuel cell systems

    NASA Astrophysics Data System (ADS)

    Cameron, Don; Holliday, Richard; Thompson, David

    Innovative recent research has suggested that gold-based catalysts are potentially capable of being effectively employed in fuel cells and related hydrogen fuel processing. The justification for developing the gold catalyst technologies described, is not only based on their promising technical performance, but also the relatively low stable price and greater availability of gold compared with the platinum group metals. The employment of gold catalysts could therefore produce a welcome reduction in the capital cost of fuel cell installations. The most likely first use for gold catalysts is for the removal of carbon monoxide impurities from the hydrogen feedstock streams used for fuel cells. Such hydrogen is usually obtained from reforming reactions (from hydrocarbons or methanol) either from free-standing plant or from an on-board reformer in a vehicle in the case of transport applications. Absence of carbon monoxide would enable fuel cells to run at lower temperatures and with improved efficiency. Effectiveness of gold catalysts in this application has already been demonstrated. Preferential oxidation (PROX) of carbon monoxide in hydrogen-rich reformer gas is best effected by a gold catalyst (Au/α-Fe 2O 3) which is significantly more active at lower temperatures than the commercial PROX catalyst, i.e. Pt/γ-Al 2O 3 currently used for this purpose. Supported gold catalysts are also very active in the water gas shift reaction used for producing hydrogen from carbon monoxide and water. Research has shown that gold supported on iron oxide (Au/α-Fe 2O 3) catalyst is more active at lower temperatures than both the α-Fe 2O 3 support and the mixed copper/zinc oxide (CuO/ZnO) catalyst currently used commercially. Preparation of gold on iron oxide and gold on titania (Au/Fe 2O 3 and Au/TiO 2) by deposition-precipitation produces more active catalysts than by conventional co-precipitation. Other applications for gold in fuel cells are described and include its use as a

  16. Thomson Scattering Measurements on HIT-SI3

    NASA Astrophysics Data System (ADS)

    Everson, C. J.; Morgan, K. D.; Jarboe, T. R.

    2015-11-01

    A multi-point Thomson Scattering diagnostic has been implemented on HIT-SI3 (Helicity Injected Torus - Steady Inductive 3) to measure electron temperature. The HIT-SI3 experiment is a modification of the original HIT-SI apparatus that uses three injectors instead of two. This modification alters the configuration of magnetic fields and thus the plasma behavior in the device. The scientific aim of HIT-SI3 is to develop a deeper understanding of how injector behavior and interactions influence current drive and plasma performance in the spheromak. The Thomson Scattering system includes a 20 J (1 GW pulse) Ruby laser that provides the incident beam, and collection optics that are installed such that measurements can be taken at four spatial locations in HIT-SI3 plasmas. For each measurement point, a 3-channel polychromator is used to detect the relative level of scattering. These measurements allow for the presence of temperature gradients in the spheromak to be investigated. Preliminary HIT-SI3 temperature data are presented and can be compared to predictions from computational models. Work supported by the D.O.E.

  17. Role of Distinct Natural Killer Cell Subsets in Anticancer Response

    PubMed Central

    Stabile, Helena; Fionda, Cinzia; Gismondi, Angela; Santoni, Angela

    2017-01-01

    Natural killer (NK) cells, the prototypic member of innate lymphoid cells, are important effectors of anticancer immune response. These cells can survey and control tumor initiation due to their capability to recognize and kill malignant cells and to regulate the adaptive immune response via cytokines and chemokines release. However, several studies have shown that tumor-infiltrating NK cells associated with advanced disease can have profound functional defects and display protumor activity. This evidence indicates that NK cell behavior undergoes crucial alterations during cancer progression. Moreover, a further level of complexity is due to the extensive heterogeneity and plasticity of these lymphocytes, implying that different NK cell subsets, endowed with specific phenotypic and functional features, may be involved and play distinct roles in the tumor context. Accordingly, many studies reported the enrichment of selective NK cell subsets within tumor tissue, whereas the underlying mechanisms are not fully elucidated. A malignant microenvironment can significantly impact NK cell activity, by recruiting specific subpopulations and/or influencing their developmental programming or the acquisition of a mature phenotype; in particular, neoplastic, stroma and immune cells, or tumor-derived factors take part in these processes. In this review, we will summarize and discuss the recently acquired knowledge on the possible contribution of distinct NK cell subsets in the control and/or progression of solid and hematological malignancies. Moreover, we will address emerging evidence regarding the role of different components of tumor microenvironment on shaping NK cell response. PMID:28360915

  18. The role of Cbln1 on Purkinje cell synapse formation.

    PubMed

    Ito-Ishida, Aya; Okabe, Shigeo; Yuzaki, Michisuke

    2014-06-01

    Cbln1 is a glycoprotein which belongs to the C1q family. In the cerebellum, Cbln1 is produced and secreted from granule cells and works as a strong synapse organizer between Purkinje cells and parallel fibers, the axons of the granule cells. In this update article, we will describe the molecular mechanisms by which Cbln1 induces synapse formation and will review our findings on the axonal structural changes which occur specifically during this process. We will also describe our recent finding that Cbln1 has a suppressive role in inhibitory synapse formation between Purkinje cells and molecular layer interneurons. Our results have revealed that Cbln1 plays an essential role to establish parallel fiber-Purkinje cell synapses and to regulate balance between excitatory and inhibitory input on Purkinje cells.

  19. Essential role for B cells in transplantation tolerance

    PubMed Central

    Redfield, Robert R; Rodriguez, Eduardo; Parsons, Ronald; Vivek, Kumar; Mustafa, Moiz M; Noorchashm, Hooman; Naji, Ali

    2017-01-01

    T lymphocytes are the primary targets of immunotherapy in clinical transplantation. However, B lymphocytes are detrimental to graft survival by virtue of their capacity to present antigen to T cells via the indirect pathway of allorecognition and the generation of donor specific alloantibody. Furthermore, the long-term survival of organ allografts remains challenged by chronic rejection, a process in which activated B cells have been found to play a significant role. Therefore, the achievement of transplantation tolerance will likely require induction of both T and B cell tolerance to alloantigens. Moreover, human and animal investigations have shown that subsets of B cells, Transitional and Regulatory, are inherently tolerogenic. Developing therapeutic strategies that exploit these populations may be key to achieving transplantation tolerance. In this review we describe the current evidence for the essential role of B cells in transplant tolerance and discuss emerging B cell directed strategies to achieve allograft tolerance. PMID:21982511

  20. [The role of phagocytic cells in periodontal disease].

    PubMed

    Matarasso, S; Cafiero, C; Bizzarri, L; Nicolò, M

    1991-04-01

    Having described the morphological and functional characteristics of phagocytic cells, the paper underlines that, in addition to the etiological responsibility of bacterial plaque, the main role in the onset and evolution of periodontitis is played by the host's response. Phagocytic response plays a fundamental role in the host's defence reaction and represents the first barrier to the penetration of bacteria into periodontal tissue. In addition to their defensive role, phagocytic cells may also be responsible for damage to periodontal tissue as a collateral effect of their phagocytic function, thus worsening the periodontal lesion.

  1. Emerging role of Notch in stem cells and cancer.

    PubMed

    Wang, Zhiwei; Li, Yiwei; Banerjee, Sanjeev; Sarkar, Fazlul H

    2009-06-28

    The Notch signaling pathway is known to be responsible for maintaining a balance between cell proliferation and death and, as such, plays important roles in the formation of many types of human tumors. Recently, Notch signaling pathway has been shown to control stem cell self-renewal and multi-potency. As many cancers are thought to be developed from a number of cancer stem-like cells, which are also known to be linked with the acquisition of epithelial-mesenchymal transition (EMT); and thus suggesting an expanding role of Notch signaling in human tumor progression.

  2. The Role of MicroRNAs in Cardiac Stem Cells

    PubMed Central

    Purvis, Nima; Bahn, Andrew; Katare, Rajesh

    2015-01-01

    Stem cells are considered as the next generation drug treatment in patients with cardiovascular disease who are resistant to conventional treatment. Among several stem cells used in the clinical setting, cardiac stem cells (CSCs) which reside in the myocardium and epicardium of the heart have been shown to be an effective option for the source of stem cells. In normal circumstances, CSCs primarily function as a cell store to replace the physiologically depleted cardiovascular cells, while under the diseased condition they have been shown to experimentally regenerate the diseased myocardium. In spite of their major functional role, molecular mechanisms regulating the CSCs proliferation and differentiation are still unknown. MicroRNAs (miRs) are small, noncoding RNA molecules that regulate gene expression at the posttranscriptional level. Recent studies have demonstrated the important role of miRs in regulating stem cell proliferation and differentiation, as well as other physiological and pathological processes related to stem cell function. This review summarises the current understanding of the role of miRs in CSCs. A deeper understanding of the mechanisms by which miRs regulate CSCs may lead to advances in the mode of stem cell therapies for the treatment of cardiovascular diseases. PMID:25802528

  3. The Instructive Role of the Vasculature in Stem Cell Niches

    PubMed Central

    Putnam, Andrew J.

    2014-01-01

    An important hallmark of many adult stem cell niches is their proximity to the vasculature in vivo, a feature common to neural stem cells (NSCs), mesenchymal stem cells (MSCs) from bone marrow, adipose, and other tissues, hematopoietic stem cells (HSCs), and many tumor stem cells. This review summarizes key studies supporting the vasculature’s instructive role in adult stem cell niches, and the putative underlying molecular mechanisms by which blood vessels in these niches exert control over progenitor cell fates. The importance of the perivascular niche for pathology, notably tumor metastasis and dormancy, is also highlighted. Finally, the implications of the perivascular regulation of stem and progenitor cells on biomaterial design and the impact on future research directions are discussed. PMID:25530848

  4. On The Role of Natural Killer Cells in Neurodegenerative Diseases

    PubMed Central

    Maghazachi, Azzam A.

    2013-01-01

    Natural killer (NK) cells exert important immunoregulatory functions by releasing several inflammatory molecules, such as IFN-γ and members of chemokines, which include CCL3/MIP-1α and CCL4/MIP-1β. These cells also express heptahelical receptors, which are coupled to heterotrimeric G proteins that guide them into inflamed and injured tissues. NK cells have been shown to recognize and destroy transformed cells and virally-infected cells, but their roles in neurodegenerative diseases have not been examined in detail. In this review, I will summarize the effects of NK cells in two neurodegenerative diseases, namely multiple sclerosis and globoid cell leukodystrophy. It is hoped that the knowledge obtained from these diseases may facilitate building rational protocols for treating these and other neurodegenerative or autoimmune diseases using NK cells and drugs that activate them as therapeutic tools. PMID:23430541

  5. Role of adipose-derived stem cells in wound healing.

    PubMed

    Hassan, Waqar Ul; Greiser, Udo; Wang, Wenxin

    2014-01-01

    Impaired wound healing remains a challenge to date and causes debilitating effects with tremendous suffering. Recent advances in tissue engineering approaches in the area of cell therapy have provided promising treatment options to meet the challenges of impaired skin wound healing such as diabetic foot ulcers. Over the last few years, stem cell therapy has emerged as a novel therapeutic approach for various diseases including wound repair and tissue regeneration. Several different types of stem cells have been studied in both preclinical and clinical settings such as bone marrow-derived stem cells, adipose-derived stem cells (ASCs), circulating angiogenic cells (e.g., endothelial progenitor cells), human dermal fibroblasts, and keratinocytes for wound healing. Adipose tissue is an abundant source of mesenchymal stem cells, which have shown an improved outcome in wound healing studies. ASCs are pluripotent stem cells with the ability to differentiate into different lineages and to secrete paracrine factors initiating tissue regeneration process. The abundant supply of fat tissue, ease of isolation, extensive proliferative capacities ex vivo, and their ability to secrete pro-angiogenic growth factors make them an ideal cell type to use in therapies for the treatment of nonhealing wounds. In this review, we look at the pathogenesis of chronic wounds, role of stem cells in wound healing, and more specifically look at the role of ASCs, their mechanism of action and their safety profile in wound repair and tissue regeneration.

  6. Retrospective hit-deconvolution of mixed metal oxides: spotting structure-property-relationships in gas phase oxidation catalysis through high throughput experimentation.

    PubMed

    Schunk, Stephan Andreas; Sundermann, Andreas; Hibst, Hartmut

    2007-01-01

    Complex multi-element lead structures of mixed metal oxides that may be identified as hits during high throughput experimentation (HTE) campaigns, can be deconvoluted retrospectively on the basis of simple binary and ternary oxides as illustrated in the current example of a hit found in an ammoxidation reaction. On the basis of the performance of the simple binary and ternary mixed metal oxides structure property relationships can be established, that give insight into the roles of the different components of the complex mixed metal oxides and may also help in establishing a reaction mechanism and converting the hit into a development candidate.

  7. Clinical Computer Systems Survey (CLICS): learning about health information technology (HIT) in its context of use.

    PubMed

    Lichtner, Valentina; Cornford, Tony; Klecun, Ela

    2013-01-01

    Successful health information technology (HIT) implementations need to be informed on the context of use and on users' attitudes. To this end, we developed the CLinical Computer Systems Survey (CLICS) instrument. CLICS reflects a socio-technical view of HIT adoption, and is designed to encompass all members of the clinical team. We used the survey in a large English hospital as part of its internal evaluation of the implementation of an electronic patient record system (EPR). The survey revealed extent and type of use of the EPR; how it related to and integrated with other existing systems; and people's views on its use, usability and emergent safety issues. Significantly, participants really appreciated 'being asked'. They also reminded us of the wider range of administrative roles engaged with EPR. This observation reveals pertinent questions as to our understanding of the boundaries between administrative tasks and clinical medicine - what we propose as the field of 'administrative medicine'.

  8. Role of Dendritic Cells in Immune Dysfunction

    NASA Technical Reports Server (NTRS)

    Savary, Cherylyn A.

    1998-01-01

    The specific aims of the project were: (1) Application of the NASA bioreactor to enhance cytokine-regulated proliferation and maturation of dendritic cells (DC). (2) Compare the frequency and function of DC in normal donors and immunocompromised cancer patients. (3) Analyze the effectiveness of cytokine therapy and DC-assisted immunotherapy (using bioreactor-expanded DC) in a murine model of experimental fungal disease. Our investigations have provided new insight into DC immunobiology and have led to the development of methodology to evaluate DC in blood of normal donors and patients. Information gained from these studies has broadened our understanding of possible mechanisms involved in the immune dysfunction of space travelers and earth-bound cancer patients, and could contribute to the design of novel therapies to restore/preserve immunity in these individuals. Several new avenues of investigation were also revealed. The results of studies completed during Round 2 are summarized.

  9. The role of B cells in systemic sclerosis

    PubMed Central

    Kraaij, Marina D; van Laar, Jacob M

    2008-01-01

    Systemic sclerosis (SSc) is a connective disease characterized by features of autoimmunity, vasculopathy, inflammation, and fibrosis. The disease typically starts with Raynaud’s phenomenon, followed by skin thickening in the extremities due to inflammation and fibrosis. Fibrosis results from excessive collagen production by fibroblasts, which constitutes the final common pathway of complex cellular interactions including B cells. Several studies have indicated that B cells may play a role in SSc. Lesional skin infiltrates from SSc patients consist of a variety of cells, including eosinophils, neutrophils, lymphocytes, plasma cells, and macrophages. Autoantibodies of several specificities are present in the serum of SSc patients of which antitopoisomerase 1 is the most common, and evidence has been gathered for a potential pathogenic role of some autoantibodies, eg, anti-PDGF antibodies. The blood of SSc patients contains an increased proportion of naïve B cells but a decreased proportion of memory B cells. Furthermore, serum levels of interleukin-6, an important pro-inflammatory cytokine, have been shown to correlate with skin fibrosis. Animal models of SSc have provided more in-depth information on the role of B lymphocytes, eg, through disruption of B cell function. In this review we will discuss the evidence that B cells are involved in the pathogenesis of SSc. PMID:19707370

  10. Role of muscle stem cells during skeletal regeneration.

    PubMed

    Abou-Khalil, Rana; Yang, Frank; Lieu, Shirley; Julien, Anais; Perry, Jaselle; Pereira, Catia; Relaix, Frédéric; Miclau, Theodore; Marcucio, Ralph; Colnot, Céline

    2015-05-01

    Although the importance of muscle in skeletal regeneration is well recognized clinically, the mechanisms by which muscle supports bone repair have remained elusive. Muscle flaps are often used to cover the damaged bone after traumatic injury yet their contribution to bone healing is not known. Here, we show that direct bone-muscle interactions are required for periosteum activation and callus formation, and that muscle grafts provide a source of stem cells for skeletal regeneration. We investigated the role of satellite cells, the muscle stem cells. Satellite cells loss in Pax7(-/-) mice and satellite cell ablation in Pax7(Cre) (ERT) (2/) (+) ;DTA(f/f) mice impaired bone regeneration. Although satellite cells did not contribute as a large source of cells endogenously, they exhibited a potential to contribute to bone repair after transplantation. The fracture healing phenotype in Pax7(Cre) (ERT) (2/) (+) ;DTA(f/f) mice was associated with decreased bone morphogenetic proteins (BMPs), insulin-like growth factor 1, and fibroblast growth factor 2 expression that are normally upregulated in response to fracture in satellite cells. Exogenous rhBMP2 improved bone healing in Pax7(Cre) (ERT) (2/) (+) ;DTA(f/f) mice further supporting the role of satellite cells as a source of growth factors. These results provide the first functional evidence for a direct contribution of muscle to bone regeneration with important clinical implications as it may impact the use of muscle flaps, muscle stem cells, and growth factors in orthopedic applications.

  11. Emerging role of Natural killer cells in oncolytic virotherapy.

    PubMed

    Bhat, Rauf; Rommelaere, Jean

    2015-01-01

    Natural killer (NK) cells constitute a subtype of lymphocytes that initiate innate immune responses against tumors and virus-infected cells. The ability of NK cells to kill target cells or to produce cytokines depends on the balance between signals from activating and inhibitory cell-surface receptors. Therapies with NK cells involve activation of endogenous NK cells and/or exogenous transfer by hematopoietic stem cell transplantation/adoptive cell therapy. To exploit the diverse functional abilities of NK cells for cancer immunotherapy, it is important to understand NK cell biology and the underlying regulatory mechanisms. The state of immune suppression prevalent in malignancies creates the need for innovative therapies. Oncolytic viruses are novel anticancer agents showing selective tropism for tumor cells and lacking pathogenicity in humans, but the use of oncolytic virotherapy (OVT) presents multiple challenges. An increasing body of evidence suggests that the host immune response may critically influence the outcome of OVT. Classically, the immune system is thought to limit the efficacy of therapy through virus clearance mediated by innate immune effectors or through adaptive antiviral immune responses eliminating infected cells. Effective strategies do need to be designed in OVT to circumvent the early antiviral activity of NK cells and to augment late NK-cell-mediated antitumor responses. The intrinsic immunostimulating capacity of oncolytic viruses and the possibility of engineering them to express heterologous immunostimulatory molecules (eg, cytokines) support the use of these agents to enhance antitumor immune responses besides inducing direct oncolytic effects. OVT has indeed shown promising therapeutic outcomes in various clinical trials. Here, we review the biology of NK cells, strategies involving NK cells for achieving cancer therapy, and, more particularly, the emerging role of NK cells in OVT.

  12. Emerging role of Natural killer cells in oncolytic virotherapy

    PubMed Central

    Bhat, Rauf; Rommelaere, Jean

    2015-01-01

    Natural killer (NK) cells constitute a subtype of lymphocytes that initiate innate immune responses against tumors and virus-infected cells. The ability of NK cells to kill target cells or to produce cytokines depends on the balance between signals from activating and inhibitory cell-surface receptors. Therapies with NK cells involve activation of endogenous NK cells and/or exogenous transfer by hematopoietic stem cell transplantation/adoptive cell therapy. To exploit the diverse functional abilities of NK cells for cancer immunotherapy, it is important to understand NK cell biology and the underlying regulatory mechanisms. The state of immune suppression prevalent in malignancies creates the need for innovative therapies. Oncolytic viruses are novel anticancer agents showing selective tropism for tumor cells and lacking pathogenicity in humans, but the use of oncolytic virotherapy (OVT) presents multiple challenges. An increasing body of evidence suggests that the host immune response may critically influence the outcome of OVT. Classically, the immune system is thought to limit the efficacy of therapy through virus clearance mediated by innate immune effectors or through adaptive antiviral immune responses eliminating infected cells. Effective strategies do need to be designed in OVT to circumvent the early antiviral activity of NK cells and to augment late NK-cell-mediated antitumor responses. The intrinsic immunostimulating capacity of oncolytic viruses and the possibility of engineering them to express heterologous immunostimulatory molecules (eg, cytokines) support the use of these agents to enhance antitumor immune responses besides inducing direct oncolytic effects. OVT has indeed shown promising therapeutic outcomes in various clinical trials. Here, we review the biology of NK cells, strategies involving NK cells for achieving cancer therapy, and, more particularly, the emerging role of NK cells in OVT. PMID:27471713

  13. Calreticulin: Roles in Cell-Surface Protein Expression

    PubMed Central

    Jiang, Yue; Dey, Sandeepa; Matsunami, Hiroaki

    2014-01-01

    In order to perform their designated functions, proteins require precise subcellular localizations. For cell-surface proteins, such as receptors and channels, they are able to transduce signals only when properly targeted to the cell membrane. Calreticulin is a multi-functional chaperone protein involved in protein folding, maturation, and trafficking. However, evidence has been accumulating that calreticulin can also negatively regulate the surface expression of certain receptors and channels. In these instances, depletion of calreticulin enhances cell-surface expression and function. In this review, we discuss the role of calreticulin with a focus on its negative effects on the expression of cell-surface proteins. PMID:25230046

  14. Investigating the role of retinal Müller cells with approaches in genetics and cell biology.

    PubMed

    Fu, Suhua; Zhu, Meili; Ash, John D; Wang, Yunchang; Le, Yun-Zheng

    2014-01-01

    Müller cells are major macroglia and play many essential roles as a supporting cell in the retina. As Müller cells only constitute a small portion of retinal cells, investigating the role of Müller glia in retinal biology and diseases is particularly challenging. To overcome this problem, we first generated a Cre/lox-based conditional gene targeting system that permits the genetic manipulation and functional dissection of gene of interests in Müller cells. To investigate diabetes-induced alteration of Müller cells, we recently adopted methods to analyze Müller cells survival/death in vitro and in vivo. We also used normal and genetically altered primary cell cultures to reveal the mechanistic insights for Müller cells in biological and disease processes. In this article, we will discuss the applications and limitations of these methodologies, which may be useful for research in retinal Müller cell biology and pathophysiology.

  15. Methods to identify, study and understand End-user participation in HIT development

    PubMed Central

    2011-01-01

    Background Experience has shown that for new health-information-technology (HIT) to be suc-cessful clinicians must obtain positive clinical benefits as a result of its implementation and joint-ownership of the decisions made during the development process. A prerequisite for achieving both success criteria is real end-user-participation. Experience has also shown that further research into developing improved methods to collect more detailed information on social groups participating in HIT development is needed in order to support, facilitate and improve real end-user participation. Methods A case study of an EHR planning-process in a Danish county from October 2003 until April 2006 was conducted using process-analysis. Three social groups (physicians, IT-professionals and administrators) were identified and studied in the local, present perspective. In order to understand the interactions between the three groups, the national, historic perspective was included through a literature-study. Data were collected through observations, interviews, insight gathered from documents and relevant literature. Results In the local, present perspective, the administrator's strategy for the EHR planning process meant that there was no clinical workload-reduction. This was seen as one of the main barriers to the physicians to achieving real influence. In the national, historic perspective, physicians and administrators have had/have different perceptions of the purpose of the patient record and they have both struggled to influence this definition. To date, the administrators have won the battle. This explains the conditions made available for the physicians' participation in this case, which led to their role being reduced to that of clinical consultants - rather than real participants. Conclusion In HIT-development the interests of and the balance of power between the different social groups involved are decisive in determining whether or not the end-users become real

  16. Don't Hit that "Delete" Button!

    ERIC Educational Resources Information Center

    O'Hanlon, Charlene

    2009-01-01

    On Dec. 1, 2006, the once ambiguous role of e-mails in court cases became much more clear. On that day, the Federal Rules of Civil Procedure (FRCP), which govern federal civil litigation, were amended to establish standards for the discovery of electronically stored information, now known as e-discovery. Many corporations began moving quickly to…

  17. Hitting the Road: Safe Student Transportation

    ERIC Educational Resources Information Center

    Labriola, Patrick

    2013-01-01

    This article highlights the importance of school administrators' taking an active role in selecting motor coach carriers for their school trips. School administrators must be able to prove due diligence in selecting safe motor carriers. If not, they risk significant liability exposure for neglecting this critical responsibility. The article…

  18. The Role of Mast Cells in Irritable Bowel Syndrome

    PubMed Central

    Lee, Oh Young

    2016-01-01

    Irritable bowel syndrome (IBS) is one of the most common functional gastrointestinal disorders, but its treatment is unsatisfactory as its pathophysiology is multifactorial. The putative factors of IBS pathophysiology are visceral hypersensitivity and intestinal dysmotility, also including psychological factors, dysregulated gut-brain axis, intestinal microbiota alterations, impaired intestinal permeability, and mucosal immune alterations. Recently, mucosal immune alterations have received much attention with the role of mast cells in IBS. Mast cells are abundant in the intestines and function as intestinal gatekeepers at the interface between the luminal environment in the intestine and the internal milieu under the intestinal epithelium. As a gatekeeper at the interface, mast cells communicate with the adjacent cells such as epithelial, neuronal, and other immune cells throughout the mediators released when they themselves are activated. Many studies have suggested that mast cells play a role in the pathophysiology of IBS. This review will focus on studies of the role of mast cell in IBS and the limitations of studies and will also consider future directions. PMID:28115927

  19. Regulatory T Cells and Their Role in Animal Disease.

    PubMed

    Veiga-Parga, T

    2016-07-01

    In humans and mouse models, Foxp3(+) regulatory T cells are known to control all aspects of immune responses. However, only limited information exists on these cells' role in diseases of other animals. In this review, we cover the most important features and different types of regulatory T cells, which include those that are thymus-derived and peripherally induced, the mechanisms by which they control immune responses by targeting effector T cells and antigen-presenting cells, and most important, their role in animal health and diseases including cancer, infections, and other conditions such as hypersensitivities and autoimmunity. Although the literature regarding regulatory T cells in domestic animal species is still limited, multiple articles have recently emerged and are discussed. Moreover, we also discuss the evidence suggesting that regulatory T cells might limit the magnitude of effector responses, which can have either a positive or negative result, depending on the context of animal and human disease. In addition, the issue of plasticity is discussed because plasticity in regulatory T cells can result in the loss of their protective function in some microenvironments during disease. Lastly, the manipulation of regulatory T cells is discussed in assessing the possibility of their use as a treatment in the future.

  20. Role of micropillar arrays in cell rolling dynamics.

    PubMed

    Kim, Kisoo; Koo, Junemo; Moon, SangJun; Lee, Won Gu

    2016-12-19

    In this study, we present a role of arrayed micropillar structures in cell rolling dynamics. Cell rolling on a ligand coated surface as a means of cell separation was demonstrated using a micropillar-integrated microfluidic channel. This approach allows the separation of cells according to characteristic surface properties, regardless of cell size. In these experiments, different moving trajectories of the cells between a ligand-coated micropost structure and a 1% BSA coated micropost structure were observed using sequential images. Based on the analysis of the angle of travel of cells in the trajectory, the average angles of travel on the ligand-coated microposts were 1.5° and -3.1° on a 1% BSA-coated micropost structure. The overall force equivalent applied to a cell can be analyzed to predict the cell rolling dynamics when a cell is detached. These results show that it will be possible to design chip geometry for delicate operations and to separate target cells. Furthermore, we believe that these control techniques based on a ligand coated micropillar surface can be used for enhancing cell rolling-based separation in a faster and more continuous manner.

  1. The role of natural killer cells in chronic myeloid leukemia

    PubMed Central

    Danier, Anna Carolyna Araújo; de Melo, Ricardo Pereira; Napimoga, Marcelo Henrique; Laguna-Abreu, Maria Theresa Cerávolo

    2011-01-01

    Chronic myeloid leukemia is a neoplasia resulting from a translocation between chromosomes 9 and 22 producing the BCR-ABL hybrid known as the Philadelphia chromosome (Ph). In chronic myeloid leukemia a proliferation of malignant myeloid cells occurs in the bone marrow due to excessive tyrosine kinase activity. In order to maintain homeostasis, natural killer cells, by means of receptors, identify the major histocompatibility complex on the surface of tumor cells and subsequently induce apoptosis. The NKG2D receptor in the natural killer cells recognizes the transmembrane proteins related to major histocompatibility complex class I chain-related genes A and B (MICA and MICB), and it is by the interaction between NKG2D and MICA that natural killer cells exert cytotoxic activity against chronic myeloid leukemia tumor cells. However, in the case of chronic exposure of the NKG2D receptor, the MICA ligand releases soluble proteins called sMICA from the tumor cell surface, which negatively modulate NKG2D and enable the tumor cells to avoid lysis mediated by the natural killer cells. Blocking the formation of sMICA may be an important antitumor strategy. Treatment using tyrosine kinase inhibitors induces modulation of NKG2DL expression, which could favor the activity of the natural killer cells. However this mechanism has not been fully described in chronic myeloid leukemia. In the present study, we analyze the role of natural killer cells to reduce proliferation and in the cellular death of tumor cells in chronic myeloid leukemia. PMID:23049299

  2. Role of human natural killer cells in health and disease.

    PubMed Central

    Whiteside, T L; Herberman, R B

    1994-01-01

    Natural killer (NK) cells, the CD3- CD56+ CD16+ subset of peripheral blood lymphocytes, have long been known to be involved in non-major histocompatibility complex-restricted natural immunity to virally infected and malignant target cells. The association of abnormalities in NK cell numbers or functions with a broad spectrum of human diseases has been more clearly defined in recent years as a result of the improved knowledge of NK cell physiology and advances in monitoring of NK cell functions in health and disease. The ability to reliably measure changes in NK activity and/or numbers during the course of disease or response to treatment has focused attention on the role of the NK cell in disease pathogenesis. The improved understanding of NK cell deficiency in disease has opened a way for therapies specifically designed to improve NK cell function. The therapeutic use of biologic response modifiers capable of augmenting NK cell activity in vivo and of adoptive transfer of highly enriched, activated autologous NK cells in diseases such as cancer and AIDS is being evaluated. The importance of NK cells in health and the consequences of NK cell deficiency or excess are likely to be more extensively monitored in the future. PMID:7496932

  3. The role of mitochondria in metabolism and cell death.

    PubMed

    Vakifahmetoglu-Norberg, Helin; Ouchida, Amanda Tomie; Norberg, Erik

    2017-01-15

    Mitochondria are complex organelles that play a central role in energy metabolism, control of stress responses and are a hub for biosynthetic processes. Beyond its well-established role in cellular energetics, mitochondria are critical mediators of signals to propagate various cellular outcomes. In addition mitochondria are the primary source of intracellular reactive oxygen species (ROS) generation and are involved in cellular Ca(2+) homeostasis, they contain a self-destructive arsenal of apoptogenic factors that can be unleashed to promote cell death, thus displaying a shared platform for metabolism and apoptosis. In the present review, we will give a brief account on the integration of mitochondrial metabolism and apoptotic cell death.

  4. Novel roles for GlcNAc in cell signaling.

    PubMed

    Naseem, Shamoon; Parrino, Salvatore M; Buenten, Dane M; Konopka, James B

    2012-03-01

    N-acetylglucosamine (GlcNAc) has long been known to play important roles in cell surface structure. Recent studies are now revealing new functions for GlcNAc in cell signaling. Exposure to GlcNAc regulates virulence functions in the human fungal pathogen Candida albicans and in pathogenic bacteria. These signaling pathways sense exogenous GlcNAc and are distinct from the O-GlcNAc signaling pathways in mammalian cells in which increased levels of intracellular GlcNAc synthesis leads to post-translational modification of proteins by attachment of O-GlcNAc. The novel roles of GlcNAc in cell signaling will be the subject of this mini-review.

  5. Novel roles for GlcNAc in cell signaling

    PubMed Central

    Naseem, Shamoon; Parrino, Salvatore M.; Buenten, Dane M.; Konopka, James B.

    2012-01-01

    N-acetylglucosamine (GlcNAc) has long been known to play important roles in cell surface structure. Recent studies are now revealing new functions for GlcNAc in cell signaling. Exposure to GlcNAc regulates virulence functions in the human fungal pathogen Candida albicans and in pathogenic bacteria. These signaling pathways sense exogenous GlcNAc and are distinct from the O-GlcNAc signaling pathways in mammalian cells in which increased levels of intracellular GlcNAc synthesis leads to post-translational modification of proteins by attachment of O-GlcNAc. The novel roles of GlcNAc in cell signaling will be the subject of this mini-review. PMID:22808320

  6. The role of natural killer cells in periodontitis.

    PubMed

    Wilensky, Asaf; Chaushu, Stella; Shapira, Lior

    2015-10-01

    Periodontitis is the most common chronic inflammatory disease of humans. The microbial etiology of the disease is well documented, as is the major role of the host response in disease pathogenesis. As natural killer cells are one of the most important components of innate immunity against bacteria and viruses, they can be expected to act as major players in the development of the disease. Through direct interaction with periodontal pathogens, natural killer cells produce pro-inflammatory cytokines that subsequently may lead to tissue destruction. Indeed, using a murine periodontitis model, such mechanisms have been shown to be involved in bacterial-induced alveolar bone loss. In the present review we document the available literature and evidence base regarding the origin, biology and characteristics of natural killer cells, and their interactions with periodontal pathogens. The potential role of natural killer cells in periodontal pathogenesis and the mechanisms involved are discussed.

  7. Role of Fetuin-A in Breast Tumor Cell Growth

    DTIC Science & Technology

    2009-03-01

    Growth PRINCIPAL INVESTIGATOR: Josiah Ochieng, Ph.D. CONTRACTING ORGANIZATION: Meharry Medical College Nashville, TN 37208...COVERED (From - To) 4. TITLE AND SUBTITLE Role of fetuin-A in Breast Tumor Cell Growth 5a. CONTRACT NUMBER W81XWH-07-1-0254 5b. GRANT NUMBER...hypothesis of this grant is that fetuin-A is a major serum derived growth factor for breast carcinoma cells and creates a favorable environment for the

  8. The role of purinergic receptors in stem cell differentiation

    PubMed Central

    Kaebisch, Constanze; Schipper, Dorothee; Babczyk, Patrick; Tobiasch, Edda

    2014-01-01

    A major challenge modern society has to face is the increasing need for tissue regeneration due to degenerative diseases or tumors, but also accidents or warlike conflicts. There is great hope that stem cell-based therapies might improve current treatments of cardiovascular diseases, osteochondral defects or nerve injury due to the unique properties of stem cells such as their self-renewal and differentiation potential. Since embryonic stem cells raise severe ethical concerns and are prone to teratoma formation, adult stem cells are still in the focus of research. Emphasis is placed on cellular signaling within these cells and in between them for a better understanding of the complex processes regulating stem cell fate. One of the oldest signaling systems is based on nucleotides as ligands for purinergic receptors playing an important role in a huge variety of cellular processes such as proliferation, migration and differentiation. Besides their natural ligands, several artificial agonists and antagonists have been identified for P1 and P2 receptors and are already used as drugs. This review outlines purinergic receptor expression and signaling in stem cells metabolism. We will briefly describe current findings in embryonic and induced pluripotent stem cells as well as in cancer-, hematopoietic-, and neural crest-derived stem cells. The major focus will be placed on recent findings of purinergic signaling in mesenchymal stem cells addressed in in vitro and in vivo studies, since stem cell fate might be manipulated by this system guiding differentiation towards the desired lineage in the future. PMID:26900431

  9. Role of EZH2 in oral squamous cell carcinoma carcinogenesis.

    PubMed

    Zhao, Lingbo; Yu, Yang; Wu, Jie; Bai, Jing; Zhao, Yuzhen; Li, Chunming; Sun, Wenjing; Wang, Xiumei

    2014-03-10

    Oral squamous cell carcinoma (OSCC) is a common human malignancy with high incidence rate and poor prognosis. Although the polycomb group protein enhancer of zeste homolog 2 (EZH2) plays a crucial role in cell proliferation and differentiation during the occurrence and development progress of several kinds of malignant tumors, the impact of EZH2 on the development and progression of OSCC is unclear. In this study, we demonstrate that EZH2 is overexpressed in OSCC cells and clinical tissue. With in vitro RNAi analysis, we generated stable EZH2 knocking down cell lines from two OSCC cell lines, with two sh-RNAs targeting to EZH2, respectively. We found that knocking down of EZH2 could decrease the proliferation ability and induce apoptosis of OSCC cells. Moreover, we demonstrated that of EZH2 inhibition decreased the migration and metastasis of OSCC cells. In conclusion, the results of the current study demonstrated an association between EZH2 expression and OSCC cell development. We recommend that EZH2 acts as an oncogene and plays an important role in OSCC carcinogenesis.

  10. MSHAM: a multi-hit sample and hold multiplexer

    SciTech Connect

    Bernstein, D.

    1980-10-01

    The MSHAM is a single-width CAMAC module intended to be used for dE/dx or Z-position measurements, with a density of 16 analog channels. It is designed to record up to four hits/event per channel but the design can be easily adapted to eight hits. The charge collection time interval allowed per hit is externally controlled in the range of 50 to 500 ns, according to the requirements of the experiment. Besides the electrical performance of the MSHAM, i.e., linearity, noise, cross-talk, etc., the goal was to design mutli-function circuits and high density packaging in order to achieve low cost per channel.

  11. Improved curveball hitting through the enhancement of visual cues.

    PubMed

    Osborne, K; Rudrud, E; Zezoney, F

    1990-01-01

    This study investigated the effectiveness of using visual cues to highlight the seams of baseballs to improve the hitting of curveballs. Five undergraduate varsity baseball team candidates served as subjects. Behavior change was assessed through an alternating treatments design involving unmarked balls and two treatment conditions that included baseballs with 1/4-in. and 1/8-in. orange stripes marking the seams of the baseballs. Results indicated that subjects hit a greater percentage of marked than unmarked balls. These results suggest that the addition of visual cues may be a significant and beneficial technique to enhance hitting performance. Further research is suggested regarding the training procedures, effect of feedback, rate of fading cues, generalization to live pitching, and generalization to other types of pitches.

  12. The dual role of TLR3 in metastatic cell line.

    PubMed

    Matijevic, Tanja; Pavelic, Jasminka

    2011-10-01

    Toll-like receptors (TLRs) are members of transmembrane proteins that recognize conserved molecular motifs of viral and bacterial origin and initiate innate immune response. As the role of TLRs in tumors cells is still not clear, our aim was to investigate the role of TLR3 in primary tumor and metastatic cells (SW480, SW620, FaDu and Detroit 562). We have reported here on the dual role of TLR3 in pharynx metastatic cell line (Detroit 562); on one hand TLR3 activation drove cells to apoptosis while on the other its stimulation contributed to tumor progression by altering the expression of tumor promoting genes (PLAUR, RORB) and enhancing the cell migration potential. In addition, we have shown TLR3 signaling pathway is functional in another metastatic cancer cell line (SW620) suggesting TLR3 might be important in the process of tumor metastasis. Since TLR3 agonists have been used in tumor therapy with the aim to activate immune system, scientific contribution of this work is drawing attention to the importance of further work on this topic, especially pro-tumor effect of TLR3, in order to avoid possible side-effects.

  13. Applications of Biophysics in High-Throughput Screening Hit Validation.

    PubMed

    Genick, Christine Clougherty; Barlier, Danielle; Monna, Dominique; Brunner, Reto; Bé, Céline; Scheufler, Clemens; Ottl, Johannes

    2014-06-01

    For approximately a decade, biophysical methods have been used to validate positive hits selected from high-throughput screening (HTS) campaigns with the goal to verify binding interactions using label-free assays. By applying label-free readouts, screen artifacts created by compound interference and fluorescence are discovered, enabling further characterization of the hits for their target specificity and selectivity. The use of several biophysical methods to extract this type of high-content information is required to prevent the promotion of false positives to the next level of hit validation and to select the best candidates for further chemical optimization. The typical technologies applied in this arena include dynamic light scattering, turbidometry, resonance waveguide, surface plasmon resonance, differential scanning fluorimetry, mass spectrometry, and others. Each technology can provide different types of information to enable the characterization of the binding interaction. Thus, these technologies can be incorporated in a hit-validation strategy not only according to the profile of chemical matter that is desired by the medicinal chemists, but also in a manner that is in agreement with the target protein's amenability to the screening format. Here, we present the results of screening strategies using biophysics with the objective to evaluate the approaches, discuss the advantages and challenges, and summarize the benefits in reference to lead discovery. In summary, the biophysics screens presented here demonstrated various hit rates from a list of ~2000 preselected, IC50-validated hits from HTS (an IC50 is the inhibitor concentration at which 50% inhibition of activity is observed). There are several lessons learned from these biophysical screens, which will be discussed in this article.

  14. Interval Throwing and Hitting Programs in Baseball: Biomechanics and Rehabilitation.

    PubMed

    Chang, Edward S; Bishop, Meghan E; Baker, Dylan; West, Robin V

    2016-01-01

    Baseball injuries from throwing and hitting generally occur as a consequence of the repetitive and high-energy motions inherent to the sport. Biomechanical studies have contributed to understanding the pathomechanics leading to injury and to the development of rehabilitation programs. Interval-based throwing and hitting programs are designed to return an athlete to competition through a gradual progression of sport-specific exercises. Proper warm-up and strict adherence to the program allows the athlete to return as quickly and safely as possible.

  15. Cosmic Ray Hits in the Central Nervous System at Solar Maximum

    NASA Technical Reports Server (NTRS)

    Curtis, S. B.; Vazquez, M. E.; Wilson, J. W.; Kim, M.-H. Y.

    1997-01-01

    It has been suggested that a manned mission to Mars be launched at solar maximum rather than at solar minimum to minimize the radiation exposure to galactic cosmic rays. It is true that the number of hits from highly ionizing particles to critical regions in the brain will be less at solar maximum, and it is of some interest to estimate how much less. We present here calculations for several sites within the brain from iron ions (z = 26) and from particles with charge, z, greater than or equal to 15. The same shielding configurations and sites in the brain used in an earlier paper for solar minimum are employed so that direct comparison of results between the two solar activity conditions can be made. A simple pressure-vessel wall and an equipment room onboard a spacecraft are chosen as shielding examples. In the equipment room, typical results for the thalamus (100 mm2 area) are that the probability of any given cell nucleus being hit decreases from 10 percent at solar minimum to 6 percent at solar maximum for particles with z greater than or equal to 15 and from 2.3 percent to 1.3 percent for iron ions. We conclude that this modest decrease in hit frequency (less than a factor of two) is not a compelling reason to avoid solar minimum for a manned mission to Mars.

  16. [The role of IRA B cells in selected inflammatory processes].

    PubMed

    Zasada, Magdalena; Rutkowska-Zapała, Magdalena; Lenart, Marzena; Kwinta, Przemko

    2016-03-16

    The first report about the discovery of new, previously unknown immune cells named IRA B cells (innate response activator B cells) appeared in 2012. So far, their presence has been verified in both mice and humans. However, IRA B cells belong to the family of B lymphocytes and have a number of characteristics unique to this group of cells. IRA B cells are formed from activated B1a lymphocytes after their contact with a pathogen. B1a lymphocytes mainly reside within body cavities. Activated by the pathogen, they move on into secondary lymphoid organs (spleen, lymph nodes) where they differentiate into IRA B cells. IRA B cells are a rich source of granulocyte-macrophage colony stimulating factor (GM-CSF). GM-CSF can stimulate IRA B cells in an autocrine manner for the secretion of intracellular stocks of immunoglobulin M (IgM), which can facilitate pathogens' phagocytosis by neutrophils. GM-CSF also stimulates neutrophils into active phagocytosis. Rapid eradication of the pathogen can prevent the development of an excessive inflammatory response, which can be dangerous for the organism. Until now the involvement of IRA B lymphocytes in the pathogenesis of sepsis and pneumonia has been proven, as well as their role in the progression of atherosclerotic lesions in mice. There is research in progress on the possibility of increasing the number of IRA B cells, for example by intravenous supply of modified immunoglobulins. It is necessary to characterize human IRA B cells and to determine their role in the functioning of the immune system.

  17. A role for CD9 molecules in T cell activation

    PubMed Central

    1996-01-01

    Costimulation mediated by the CD28 molecule plays an important role in optimal activation of T cells. However, CD28-deficient mice can mount effective T cell-dependent immune responses, suggesting the existence of other costimulatory systems. In a search for other costimulatory molecules on T cells, we have developed a monoclonal antibody (mAb) that can costimulate T cells in the absence of antigen-presenting cells (APC). The molecule recognized by this mAb, 9D3, was found to be expressed on almost all mature T cells and to be a protein of approximately 24 kD molecular mass. By expression cloning, this molecule was identified as CD9, 9D3 (anti-CD9) synergized with suboptimal doses of anti-CD3 mAb in inducing proliferation by virgin T cells. Costimulation was induced by independent ligation of CD3 and CD9, suggesting that colocalization of these two molecules is not required for T cell activation. The costimulation by anti-CD9 was as potent as that by anti-CD28. Moreover, anti-CD9 costimulated in a CD28- independent way because anti-CD9 equally costimulated T cells from the CD28-deficient as well as wild-type mice. Thus, these results indicate that CD9 serves as a molecule on T cells that can deliver a potent CD28- independent costimulatory signal. PMID:8760830

  18. Immunoregulatory Role of NK Cells in Tissue Inflammation and Regeneration

    PubMed Central

    Tosello-Trampont, Annie; Surette, Fionna A.; Ewald, Sarah E.; Hahn, Young S.

    2017-01-01

    NK cells represent an important first line of defense against viral infection and cancer and are also involved in tissue homeostasis. Studies of NK cell activation in the last decade have revealed that they are able to respond to the inflammatory stimuli evoked by tissue damage and contribute to both progression and resolution of diseases. Exacerbation of the inflammatory response through interactions between immune effector cells facilitates the progression of non-alcoholic fatty liver disease (NAFLD) into steatosis, cirrhosis, and hepatocellular carcinoma (HCC). When hepatic damage is incurred, macrophage activation is crucial for initiating cross talk with neighboring cells present in the liver, including hepatocytes and NK cells, and the importance of this interaction in shaping the immune response in liver disease is increasingly recognized. Inflicted structural damage can be in part regenerated via the process of self-limiting fibrosis, though persistent hepatic damage will lead to chronic fibrosis and loss of tissue organization and function. The cytotoxic activity of NK cells plays an important role in inducing hepatic stellate cell apoptosis and thus curtailing the progression of fibrosis. Alternatively, in some diseases, such as HCC, NK cells may become dysregulated, promoting an immunosuppressive state where tumors are able to escape immune surveillance. This review describes the current understanding of the contributions of NK cells to tissue inflammation and metabolic liver diseases and the ongoing effort to develop therapeutics that target the immunoregulatory function of NK cells. PMID:28373874

  19. The role of satellite cells in muscle hypertrophy.

    PubMed

    Blaauw, Bert; Reggiani, Carlo

    2014-02-01

    The role of satellite cells in muscle hypertrophy has long been a debated issue. In the late 1980s it was shown that proteins remain close to the myonucleus responsible for its synthesis, giving rise to the idea of a nuclear domain. This, together with the observation that during various models of muscle hypertrophy there is an activation of the muscle stem cells, i.e. satellite cells, lead to the idea that satellite cell activation is required for muscle hypertrophy. Thus, satellite cells are not only responsible for muscle repair and regeneration, but also for hypertrophic growth. Further support for this line of thinking was obtained after studies showing that irradiation of skeletal muscle, and therefore elimination of all satellite cells, completely prevented overload-induced hypertrophy. Recently however, using different transgenic approaches, it has become clear that muscle hypertrophy can occur without a contribution of satellite cells, even though in most situations of muscle hypertrophy satellite cells are activated. In this review we will discuss the contribution of satellite cells, and other muscle-resident stem cells, to muscle hypertrophy both in mice as well as in humans.

  20. Multiple NSAID-Induced Hits Injure the Small Intestine: Underlying Mechanisms and Novel Strategies

    PubMed Central

    Boelsterli, Urs A.

    2013-01-01

    Nonsteroidal anti-inflammatory drugs (NSAIDs) can cause serious gastrointestinal (GI) injury including jejunal/ileal mucosal ulceration, bleeding, and even perforation in susceptible patients. The underlying mechanisms are largely unknown, but they are distinct from those related to gastric injury. Based on recent insights from experimental models, including genetics and pharmacology in rodents typically exposed to diclofenac, indomethacin, or naproxen, we propose a multiple-hit pathogenesis of NSAID enteropathy. The multiple hits start with an initial pharmacokinetic determinant caused by vectorial hepatobiliary excretion and delivery of glucuronidated NSAID or oxidative metabolite conjugates to the distal small intestinal lumen, where bacterial β-glucuronidase produces critical aglycones. The released aglycones are then taken up by enterocytes and further metabolized by intestinal cytochrome P450s to potentially reactive intermediates. The “first hit” is caused by the NSAID and/or oxidative metabolites that induce severe endoplasmic reticulum stress or mitochondrial stress and lead to cell death. The “second hit” is created by the significant subsequent inflammatory response that would follow such a first-hit injury. Based on these putative mechanisms, strategies have been developed to protect the enterocytes from being exposed to the parent NSAID and/or oxidative metabolites. Among these, a novel strategy already demonstrated in a murine model is the selective disruption of bacteria-specific β-glucuronidases with a novel small molecule inhibitor that does not harm the bacteria and that alleviates NSAID-induced enteropathy. Such mechanism-based strategies require further investigation but provide potential avenues for the alleviation of the GI toxicity caused by multiple NSAID hits. PMID:23091168

  1. The role of cytoskeletal elements in shaping bacterial cells.

    PubMed

    Cho, Hongbaek

    2015-03-01

    Beginning from the recognition of FtsZ as a bacterial tubulin homolog in the early 1990s, many bacterial cytoskeletal elements have been identified, including homologs to the major eukaryotic cytoskeletal elements (tubulin, actin, and intermediate filament) and the elements unique in prokaryotes (ParA/MinD family and bactofilins). The discovery and functional characterization of the bacterial cytoskeleton have revolutionized our understanding of bacterial cells, revealing their elaborate and dynamic subcellular organization. As in eukaryotic systems, the bacterial cytoskeleton participates in cell division, cell morphogenesis, DNA segregation, and other important cellular processes. However, in accordance with the vast difference between bacterial and eukaryotic cells, many bacterial cytoskeletal proteins play distinct roles from their eukaryotic counterparts; for example, control of cell wall synthesis for cell division and morphogenesis. This review is aimed at providing an overview of the bacterial cytoskeleton, and discussing the roles and assembly dynamics of bacterial cytoskeletal proteins in more detail in relation to their most widely conserved functions, DNA segregation and coordination of cell wall synthesis.

  2. [Role of Langerhans cells in the physiopathology of atopic dermatitis].

    PubMed

    Bieber, T

    1995-12-01

    The demonstration of IgE receptors on the surface of epidermal dendritic cells and on other antigen presenting cells is a crucial element in the understanding of the pathophysiological role of these cells in the genesis of atopic disease, and especially the atopic dermatitis (AD). The sensibilisation phase to an aeroallergen at the level of nasal or bronchial mucosa and even at the skin may be mediated by dendritic cells expressing Fc epsilon RI. Distinct forms of AD may then represent the equivalent of the ellicitation phase of the classical allergic contact dermatitis. Fc epsilon RI would lead, via specific IgE, to an efficient antigen capture, to the activation of the dendritic cells and finally to an antigen presentation. Thus, AD may represent the paradigma of an IgE-mediated type IV reaction.

  3. Role of topology in complex functional networks of beta cells

    NASA Astrophysics Data System (ADS)

    Cherubini, Christian; Filippi, Simonetta; Gizzi, Alessio; Loppini, Alessandro

    2015-10-01

    The activity of pancreatic β cells can be described by biological networks of coupled nonlinear oscillators that, via electrochemical synchronization, release insulin in response to augmented glucose levels. In this work, we analyze the emergent behavior of regular and percolated β -cells clusters through a stochastic mathematical model where "functional" networks arise. We show that the emergence and robustness of the synchronized dynamics depend both on intrinsic and extrinsic parameters. In particular, cellular noise level, glucose concentration, network spatial architecture, and cell-to-cell coupling strength are the key factors for the generation of a rhythmic and robust activity. Their role in the functional network topology associated with β -cells clusters is analyzed and discussed.

  4. Role of stem cells in spondyloarthritis: Pathogenesis, treatment and complications.

    PubMed

    Wong, Rebecca S Y

    2015-10-01

    Spondyloarthritis (SpA) is a family of interrelated inflammatory arthritis that includes ankylosing spondylitis (AS), psoriatic arthritis, reactive arthritis, arthritis related to inflammatory bowel disease and undifferentiated SpA. The classification, epidemiology, pathogenesis and treatment of SpA have been extensively reviewed in the published literature. Reviews on the use of stem cells in various autoimmune diseases in general are also common. However, a review on the role of stem cells in SpA is currently lacking. This review focuses on the involvement of stem cells in the pathogenesis of SpA and the application of different types of stem cells in the treatment of SpA. It also addresses some of the complications which may arise as a result of the use of stem cells in the treatment of SpA.

  5. Roles and relevance of mast cells in infection and vaccination

    PubMed Central

    Fang, Yu; Xiang, Zou

    2016-01-01

    Abstract In addition to their well-established role in allergy mast cells have been described as contributing to functional regulation of both innate and adaptive immune responses in host defense. Mast cells are of hematopoietic origin but typically complete their differentiation in tissues where they express immune regulatory functions by releasing diverse mediators and cytokines. Mast cells are abundant at mucosal tissues which are portals of entry for common infectious agents in addition to allergens. Here, we review the current understanding of the participation of mast cells in defense against infection. We also discuss possibilities of exploiting mast cell activation to provide adequate adjuvant activity that is needed in high-quality vaccination against infectious diseases. PMID:26565602

  6. Emerging role for nuclear rotation and orientation in cell migration

    PubMed Central

    Maninová, Miloslava; Iwanicki, Marcin P; Vomastek, Tomáš

    2014-01-01

    Nucleus movement, positioning, and orientation is precisely specified and actively regulated within cells, and it plays a critical role in many cellular and developmental processes. Mutation of proteins that regulate the nucleus anchoring and movement lead to diverse pathologies, laminopathies in particular, suggesting that the nucleus correct positioning and movement is essential for proper cellular function. In motile cells that polarize toward the direction of migration, the nucleus undergoes controlled rotation promoting the alignment of the nucleus with the axis of migration. Such spatial organization of the cell appears to be optimal for the cell migration. Nuclear reorientation requires the cytoskeleton to be anchored to the nuclear envelope, which exerts pulling or pushing torque on the nucleus. Here we discuss the possible molecular mechanisms regulating the nuclear rotation and reorientation and the significance of this type of nuclear movement for cell migration. PMID:24589621

  7. Mammary development and breast cancer: the role of stem cells.

    PubMed

    Ercan, C; van Diest, P J; Vooijs, M

    2011-06-01

    The mammary gland is a highly regenerative organ that can undergo multiple cycles of proliferation, lactation and involution, a process controlled by stem cells. The last decade much progress has been made in the identification of signaling pathways that function in these stem cells to control self-renewal, lineage commitment and epithelial differentiation in the normal mammary gland. The same signaling pathways that control physiological mammary development and homeostasis are also often found deregulated in breast cancer. Here we provide an overview on the functional and molecular identification of mammary stem cells in the context of both normal breast development and breast cancer. We discuss the contribution of some key signaling pathways with an emphasis on Notch receptor signaling, a cell fate determination pathway often deregulated in breast cancer. A further understanding of the biological roles of the Notch pathway in mammary stem cell behavior and carcinogenesis might be relevant for the development of future therapies.

  8. Hodgkin lymphoma and Epstein-Barr virus (EBV): no evidence to support hit-and-run mechanism in cases classified as non-EBV-associated.

    PubMed

    Gallagher, Alice; Perry, Jacqueline; Freeland, June; Alexander, Freda E; Carman, William F; Shield, Lesley; Cartwright, Ray; Jarrett, Ruth F

    2003-05-01

    The Epstein-Barr virus (EBV) is associated with a proportion of Hodgkin lymphoma (HL) cases, and this association is believed to be causal. The aetiology of cases lacking EBV in the tumour cells (EBV HRS-ve), which make up the majority of cases in western countries, is obscure. It has been suggested that EBV may also cause these tumours by using a hit-and-run mechanism. Support for this idea comes from the finding that most young adult patients, who are likely to have a good immune response to EBV, have EBV HRS-ve HL. We investigated this possibility using a combined serologic and molecular approach. Analysis of EBV seroprevalence rates in an epidemiologic study of young adult HL revealed that cases with EBV HRS-ve HL were more likely to be EBV-seronegative than controls. Furthermore, additional studies clearly showed that some HL patients have never been infected by EBV. Quantitative PCR was used to look for the presence of deleted EBV genomes in a series of adult cases with both EBV HRS+ve and HRS-ve HL. Subgenomic fragments were detected in equimolar proportions. This study, therefore, found no evidence to support the idea that a hit-and-run mechanism involving EBV plays a role in the pathogenesis of HL.

  9. Mesenchymal Stem Cells: Roles and Relationships in Vascularization

    PubMed Central

    Melchiorri, Anthony J.; Nguyen, Bao-Ngoc B.

    2014-01-01

    One of the primary challenges in translating tissue engineering to clinical applicability is adequate, functional vascularization of tissue constructs. Vascularization is necessary for the long-term viability of implanted tissue expanded and differentiated in vitro. Such tissues may be derived from various cell sources, including mesenchymal stem cells (MSCs). MSCs, able to differentiate down several lineages, have been extensively researched for their therapeutic capabilities. In addition, MSCs have a variety of roles in the vascularization of tissue, both through direct contact and indirect signaling. The studied relationships between MSCs and vascularization have been utilized to further the necessary advancement of vascularization in tissue engineering concepts. This review aims to provide a summary of relevant relationships between MSCs, vascularization, and other relevant cell types, along with an overview discussing applications and challenges related to the roles and relationships of MSCs and vascular tissues. PMID:24410463

  10. The role of stem cells in vein graft remodelling.

    PubMed

    Xu, Q

    2007-11-01

    The vessel wall is a dynamic tissue that undergoes positive remodelling in response to altered mechanical stress. A typical example is vein graft remodelling, because veins do not develop arteriosclerosis until a vein segment is grafted on to arteries. In this process, it was observed that vascular endothelial and smooth muscle cells of vein grafts die due to suddenly elevated blood pressure. This cell death is followed by endothelial regeneration. Central to this theme is the essential role played by EPCs (endothelial progenitor cells) in regenerating the lost endothelium. The mechanisms by which EPCs attach to the vessel wall and differentiate into mature endothelial cells involve increased chemokine production and laminar shear flow stimulation on the vessel wall. It seems that neo-endothelial cells derived from EPCs lack mature cell functions and express high levels of adhesion molecules resulting in LDL (low-density lipoprotein) penetration and mononuclear cell infiltration into the sub-endothelial space. Among infiltrated mononuclear cells, there are smooth muscle progenitors that proliferate and differentiate into smooth muscle cells. Meanwhile, stem cells present in the media and adventitia may also migrate into arteriosclerotic lesions via the vasa vasorum that are abundant in the diseased vessels. However, the molecular events leading to the homing, differentiation and maturation of stem/progenitor cells still needs elucidation. The present review attempts to update the progress in stem cell research related to the pathogenesis of vein graft arteriosclerosis or remodelling, focusing on the mechanisms by which stem/progenitor cells participate in the development of lesions, and to discuss the controversial issues and the future perspectives surrounding this research area.

  11. The role of muscle cells in regulating cartilage matrix production

    PubMed Central

    Cairns, Dana M.; Lee, Philip G.; Uchimura, Tomoya; Seufert, Christopher R.; Kwon, Heenam; Zeng, Li

    2009-01-01

    Muscle is one of the tissues located in close proximity to cartilage tissue. Although it has been suggested that muscle could influence skeletal development through generating mechanical forces by means of contraction, very little is known regarding whether muscle cells release biochemical signals to regulate cartilage gene expression. We tested the hypothesis that muscle cells directly regulate cartilage matrix production by analyzing chondrocytes co-cultured with muscle cells in 2D or 3D conditions. We found that chondrocytes cultured with C2C12 muscle cells exhibited enhanced alcian blue staining and elevated expression of collagen II and collagen IX proteins. While non-muscle cells do not promote cartilage matrix production, converting them into muscle cells enhanced their pro-chondrogenic activity. Furthermore, muscle cell-conditioned medium led to increased cartilage matrix production, suggesting that muscle cells secrete pro-chondrogenic factors. Taken together, our study suggests that muscle cells may play an important role in regulating cartilage gene expression. This result may ultimately lead to the discovery of novel factors that regulate cartilage formation and homeostasis, and provide insights into improving the strategies for regenerating cartilage. PMID:19813241

  12. New roles for autophagy and spermidine in T cells

    PubMed Central

    Puleston, D. J.; Simon, A. K.

    2015-01-01

    The conserved lysosomal degradation pathway autophagy is now recognised as an essential cog in immune function. While functionally widespread in the innate immune system, knowledge of its roles in adaptive immunity is more limited. Although autophagy has been implicated in naïve T cell homeostasis, its requirement in antigen-specific T cells during infection was unknown. Using a murine model where the essential autophagy gene Atg7 is deleted in the T cell lineage, we have shown that autophagy is dispensable for effector CD8+ T cell responses, but crucial for the formation of memory CD8+ T cells. Here, we suggest reasons why autophagy might be important for the formation of long-lasting immunity. Like in the absence of autophagy, T cell memory formation during ageing is also defective. We observed diminished autophagy levels in T cells from aged mice, linking autophagy to immunosenescence. Importantly, T cell responses to influenza vaccination could be significantly improved using the autophagy-inducing compound spermidine. These results suggest the autophagy pathway as a desirable target to improve aged immunity and modulate T cell function. PMID:28357282

  13. The diverging roles of dendritic cells in kidney allotransplantation.

    PubMed

    Podestà, Manuel Alfredo; Cucchiari, David; Ponticelli, Claudio

    2015-07-01

    Dendritic cells (DCs) are a family of antigen presenting cells that play a paramount role in bridging innate and adaptive immunity. In murine models several subtypes of DCs have been identified, including classical DCs, monocyte-derived DCs, and plasmacytoid DCs. Quiescent, immature DCs and some subtypes of plasmacytoid cells favor the expression of regulatory T cells, but in an inflammatory milieu DCs become mature and after intercepting the antigen migrate to lymphatic system where they present the antigen to naïve T cells. Transplant rejection largely depends on the phenotype and maturation of DCs. The ischemia-reperfusion injury causes the release of endogenous molecules that are recognized as danger signals by the pattern recognition receptor of the innate immunity with subsequent activation of inflammatory cells and mediators. In this environment DCs become mature and migrate to lymphonodes where they present the alloantigen to T cells and direct their differentiation towards Th1 and Th17 effector cells. On the other hand, manipulation of DCs may favor T cell differentiation towards tolerant Th2 and T regulators (Treg). Experimental studies in murine models showed the possibility of inducing an operational tolerance by injecting immature tolerogenic DCs. Recently, such a possibility has been also confirmed in primates. Although manipulation of DCs may represent an important step ahead in kidney transplantation, a number of technical and ethical issues should be solved before its clinical application.

  14. Exploring the role of stem cells in cutaneous wound healing.

    PubMed

    Lau, Katherine; Paus, Ralf; Tiede, Stephan; Day, Philip; Bayat, Ardeshir

    2009-11-01

    The skin offers a perfect model system for studying the wound healing cascade, which involves a finely tuned interplay between several cell types, pathways and processes. The dysregulation of these factors may lead to wound healing disorders resulting in chronic wounds, as well as abnormal scars such as hypertrophic and keloid scars. As the contribution of stem cells towards tissue regeneration and wound healing is increasingly appreciated, a rising number of stem cell therapies for cutaneous wounds are currently under development, encouraged by emerging preliminary findings in both animal models and human studies. However, we still lack an in-depth understanding of the underlying mechanisms through which stem cells contribute to cutaneous wound healing. The aim of this review is, therefore, to present a critical synthesis of our current understanding of the role of stem cells in normal cutaneous wound healing. In addition to summarizing wound healing principles and related key molecular and cellular players, we discuss the potential participation of different cutaneous stem cell populations in wound healing, and list corresponding stem cells markers. In summary, this review delineates current strategies, future applications, and limitations of stem cell-based or stem cell-targeted therapy in the management of acute and chronic skin wounds.

  15. The roles and regulation of Sertoli cells in fate determinations of spermatogonial stem cells and spermatogenesis.

    PubMed

    Hai, Yanan; Hou, Jingmei; Liu, Yun; Liu, Yang; Yang, Hao; Li, Zheng; He, Zuping

    2014-05-01

    Spermatogenesis is a complex process by which spermatogonial stem cells (SSCs) self-renew and differentiate into spermatozoa under the elaborate coordination of testicular microenvironment, namely, niche. Sertoli cells, which locate around male germ cells, are the most critical component of the niche. Significant progress has recently been made by peers and us on uncovering the effects of Sertoli cells on regulating fate determinations of SSCs. Here we addressed the roles and regulation of Sertoli cells in normal and abnormal spermatogenesis. Specifically, we summarized the biological characteristics of Sertoli cells, and we emphasized the roles of Sertoli cells in mediating the self-renewal, differentiation, apoptosis, de-differentiation, and trans-differentiation of SSCs. The association between abnormal function of Sertoli cells and impaired spermatogenesis was discussed. Finally, we highlighted several issues to be addressed for further investigation on the effects and mechanisms of Sertoli cells in spermatogenesis. Since Sertoli cells are the key supportive cells for SSCs and they are very receptive to modification, a better understanding of the roles and regulation of Sertoli cells in SSC biology and spermatogenesis would make it feasible to identify novel targets for gene therapy of male infertility as well as seek more efficient and safer strategies for male contraception.

  16. Blood cells of Drosophila: cell lineages and role in host defence.

    PubMed

    Meister, Marie

    2004-02-01

    Drosophila haemopoiesis gives rise to three independent cell lineages: plasmatocytes, crystal cells and lamellocytes. The regulation of Drosophila stem cell proliferation and lineage specification involves transactivators and signalling pathways, many of which have mammalian counterparts that control haemopoietic processes. Drosophila plasmatocytes are professional phagocytes that resemble the monocyte/macrophage lineage, crystal cells play a critical role in defence-related melanisation, and lamellocytes encapsulate large invaders. Crystal cells and lamellocytes have no clear mammalian homologues. Research into the molecular mechanisms that underlie the various immune functions of Drosophila blood cells, such as non-self recognition, is now taking wing.

  17. Role of myeloid cells in HIV-1-host interplay.

    PubMed

    Stevenson, Mario

    2015-06-01

    The AIDS research field has embarked on a bold mission to cure HIV-1-infected individuals of the virus. To do so, scientists are attempting to identify the reservoirs that support viral persistence in patients on therapy, to understand how viral persistence is regulated and to come up with strategies that interrupt viral persistence and that eliminate the viral reservoirs. Most of the attention regarding the cure of HIV-1 infection has focused on the CD4+ T cell reservoir. Investigators are developing tools to probe the CD4+ T cell reservoirs as well as in vitro systems that provide clues on how to perturb them. By comparison, the myeloid cell, and in particular, the macrophage has received far less attention. As a consequence, there is very little understanding as to the role played by myeloid cells in viral persistence in HIV-1-infected individuals on suppressive therapy. As such, should myeloid cells constitute a viral reservoir, unique strategies may be required for their elimination. This article will overview research that is examining the role of macrophage in virus-host interplay and will discuss features of this interplay that could impact efforts to eliminate myeloid cell reservoirs.

  18. 42 CFR 495.342 - Annual HIT IAPD requirements.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 42 Public Health 5 2010-10-01 2010-10-01 false Annual HIT IAPD requirements. 495.342 Section 495.342 Public Health CENTERS FOR MEDICARE & MEDICAID SERVICES, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) STANDARDS AND CERTIFICATION STANDARDS FOR THE ELECTRONIC HEALTH RECORD TECHNOLOGY...

  19. Dealing with Hitting and Aggression in the Classroom.

    ERIC Educational Resources Information Center

    Saifer, Steffen

    1996-01-01

    Notes that while hitting-aggressive behavior is probably the greatest single behavior concern of teachers, children can be taught appropriate behavior for the classroom. Offers tips for dealing with: roughhousing; existing problems; grabbing toys; and war games, guns, or violent play. Suggests allowing children the choice of an alternative…

  20. Appreciating an Old Favorite: Sousa's All-Time Hit

    ERIC Educational Resources Information Center

    Van Outryve, Karen

    2006-01-01

    In this article, the author presents John Philip Sousa's all time hit, "The Stars and Stripes Forever". It is one of the most recognizable pieces of American music. Wherever John Philip Sousa and his band appeared, this march was likely to be played. According to American poet and educator Eli Siegel (1902-78), who first articulated the…

  1. Madoff Debacle Hits Colleges and Raises Questions about Trustee Conflicts

    ERIC Educational Resources Information Center

    Fain, Paul

    2009-01-01

    Several colleges and universities lost millions in the alleged $50-billion Ponzi scheme run by the Wall Street trader Bernard L. Madoff. The losses include institutions' endowment holdings in hedge funds that were invested with Madoff as well as hits taken by supporting foundations and donors. Several foundations that have been active in higher…

  2. The Role of Foxo3 in Leydig Cells

    PubMed Central

    Choi, Young Suk; Song, Joo Eun; Kong, Byung Soo; Hong, Jae Won; Novelli, Silvia

    2015-01-01

    Purpose Foxo3 in female reproduction has been reported to regulate proliferation of granulose cells that form follicles. There are no reports so far that discuss on the role of Foxo3 in males. This study was designed to outline the role of Foxo3 in the testes. Materials and Methods Testes from mice at birth to postpartum week (PPW) 5 were isolated and examined for the expression of Foxo3 using immunostaining. To elucidate role of Foxo3 in Leydig cells, R2C cells were treated with luteinizing hormone (LH) and the phosphorylation of Foxo3. Testosterone and steroidogenic acute regulatory (StAR) protein levels were measured after constitutive active [triple mutant (TM)] human FOXO3 adenovirus was transduced and StAR promoter assay was performed. Results Foxo3 expression in the testicles started from birth and lasted until PPW 3. After PPW 3, most Foxo3 expression occurred in the nuclei of Leydig cells; however, at PPW 5, Foxo3 was expressed in both the nucleus and cytoplasm. When R2C cells were treated with luteinizing hormone, Foxo3 phosphorylation levels by AKT increased. After blocking the PI3K pathway, LH-induced phosphorylated Foxo3 levels decreased, indicating that LH signaling regulates Foxo3 localization. When active FOXO3-TM adenovirus was introduced into a Leydig tumor cell line, the concentrations of testosterone and StAR protein decreased. When FOXO3 and a StAR promoter vector were co-transfected into HEK293 cells for a reporter assay, FOXO3 inhibited the StAR promoter. Conclusion FOXO3 affects testosterone synthesis by inhibiting the formation of StAR protein. LH hormone, meanwhile, influences Foxo3 localization, mediating its function. PMID:26446641

  3. Third World PVs hit the roof.

    PubMed

    Lenssen, N

    1992-01-01

    Rural areas in developing countries have no hope of benefiting from electricity generation programs because of a lack of resources. Currently the common practice is to use kerosene lamps for light, disposable batteries for radios, and auto batteries for television. The auto battery must be hauled by pack animal to a charging station. An alternative that is growing in popularity is the installation of photovoltaic (PV) systems in each house. The advantages include very low operating costs (sunshine is free), long life (PV cells last 20 years), they can be installed in any home without regard for power grids. The biggest disadvantage is very high initial cost. To solve this problem many programs have been developed to finance systems. Enersol Associates started with $10,000 seed money and developed a loan program that has helped bring electricity to 1500 homes in the Dominican Republic. The Solar Electric Light and Fund started with $150,000 and has brought electricity to 3500 homes in Sri Lanka. The United Nations Development Program gave $7 million to Zimbabwe to fund a project that is expected to bring electricity to 20,000 homes over the next 5 years.

  4. Single Hit Energy-resolved Laue Diffraction

    SciTech Connect

    Patel, Shamim; Suggit, Matthew J.; Stubley, Paul G.; Ciricosta, Orlando; Wark, Justin S.; Higginbotham, Andrew; Hawreliak, James A.; Collins, Gilbert W.; Eggert, Jon H.; Comley, Andrew J.; Foster, John M.

    2015-05-15

    In situ white light Laue diffraction has been successfully used to interrogate the structure of single crystal materials undergoing rapid (nanosecond) dynamic compression up to megabar pressures. However, information on strain state accessible via this technique is limited, reducing its applicability for a range of applications. We present an extension to the existing Laue diffraction platform in which we record the photon energy of a subset of diffraction peaks. This allows for a measurement of the longitudinal and transverse strains in situ during compression. Consequently, we demonstrate measurement of volumetric compression of the unit cell, in addition to the limited aspect ratio information accessible in conventional white light Laue. We present preliminary results for silicon, where only an elastic strain is observed. VISAR measurements show the presence of a two wave structure and measurements show that material downstream of the second wave does not contribute to the observed diffraction peaks, supporting the idea that this material may be highly disordered, or has undergone large scale rotation.

  5. Role and organization of the actin cytoskeleton during cell-cell fusion.

    PubMed

    Martin, Sophie G

    2016-12-01

    Cell-cell fusion is a ubiquitous process that underlies fertilization and development of eukaryotes. This process requires fusogenic machineries to promote plasma membrane merging, and also relies on the organization of dedicated sub-cortical cytoskeletal assemblies. This review describes the role of actin structures, so called actin fusion foci, essential for the fusion of two distinct cell types: Drosophila myoblast cells, which fuse to form myotubes, and sexually differentiated cells of the fission yeast Schizosaccharomyces pombe, which fuse to form a zygote. I describe the respective composition and organization of the two structures, discuss their proposed role in promoting plasma membrane apposition, and consider the universality of similar structures for cell-cell fusion.

  6. Role of the microtubule-targeting drug vinflunine on cell-cell adhesions in bladder epithelial tumour cells

    PubMed Central

    2014-01-01

    Background Vinflunine (VFL) is a microtubule-targeting drug that suppresses microtubule dynamics, showing anti-metastatic properties both in vitro and in living cancer cells. An increasing body of evidence underlines the influence of the microtubules dynamics on the cadherin-dependent cell-cell adhesions. E-cadherin is a marker of epithelial-to-mesenchymal transition (EMT) and a tumour suppressor; its reduced levels in carcinoma are associated with poor prognosis. In this report, we investigate the role of VFL on cell-cell adhesions in bladder epithelial tumour cells. Methods Human bladder epithelial tumour cell lines HT1376, 5637, SW780, T24 and UMUC3 were used to analyse cadherin-dependent cell-cell adhesions under VFL treatment. VFL effect on growth inhibition was measured by using a MTT colorimetric cell viability assay. Western blot, immunofluorescence and transmission electron microscopy analyses were performed to assess the roles of VFL effect on cell-cell adhesions, epithelial-to-mesenchymal markers and apoptosis. The role of the proteasome in controlling cell-cell adhesion was studied using the proteasome inhibitor MG132. Results We show that VFL induces cell death in bladder cancer cells and activates epithelial differentiation of the remaining living cells, leading to an increase of E-cadherin-dependent cell-cell adhesion and a reduction of mesenchymal markers, such as N-cadherin or vimentin. Moreover, while E-cadherin is increased, the levels of Hakai, an E3 ubiquitin-ligase for E-cadherin, were significantly reduced in presence of VFL. In 5637, this reduction on Hakai expression was blocked by MG132 proteasome inhibitor, indicating that the proteasome pathway could be one of the molecular mechanisms involved in its degradation. Conclusions Our findings underscore a critical function for VFL in cell-cell adhesions of epithelial bladder tumour cells, suggesting a novel molecular mechanism by which VFL may impact upon EMT and metastasis. PMID:25012153

  7. Hit identification and optimization in virtual screening: practical recommendations based on a critical literature analysis.

    PubMed

    Zhu, Tian; Cao, Shuyi; Su, Pin-Chih; Patel, Ram; Shah, Darshan; Chokshi, Heta B; Szukala, Richard; Johnson, Michael E; Hevener, Kirk E

    2013-09-12

    A critical analysis of virtual screening results published between 2007 and 2011 was performed. The activity of reported hit compounds from over 400 studies was compared to their hit identification criteria. Hit rates and ligand efficiencies were calculated to assist in these analyses, and the results were compared with factors such as the size of the virtual library and the number of compounds tested. A series of promiscuity, druglike, and ADMET filters were applied to the reported hits to assess the quality of compounds reported, and a careful analysis of a subset of the studies that presented hit optimization was performed. These data allowed us to make several practical recommendations with respect to selection of compounds for experimental testing, definition of hit identification criteria, and general virtual screening hit criteria to allow for realistic hit optimization. A key recommendation is the use of size-targeted ligand efficiency values as hit identification criteria.

  8. Hit Identification and Optimization in Virtual Screening: Practical Recommendations Based Upon a Critical Literature Analysis

    PubMed Central

    Zhu, Tian; Cao, Shuyi; Su, Pin-Chih; Patel, Ram; Shah, Darshan; Chokshi, Heta B.; Szukala, Richard; Johnson, Michael E.; Hevener, Kirk E.

    2013-01-01

    A critical analysis of virtual screening results published between 2007 and 2011 was performed. The activity of reported hit compounds from over 400 studies was compared to their hit identification criteria. Hit rates and ligand efficiencies were calculated to assist in these analyses and the results were compared with factors such as the size of the virtual library and the number of compounds tested. A series of promiscuity, drug-like, and ADMET filters were applied to the reported hits to assess the quality of compounds reported and a careful analysis of a subset of the studies which presented hit optimization was performed. This data allowed us to make several practical recommendations with respect to selection of compounds for experimental testing, defining hit identification criteria, and general virtual screening hit criteria to allow for realistic hit optimization. A key recommendation is the use of size-targeted ligand efficiency values as hit identification criteria. PMID:23688234

  9. Role for coronin 1 in mouse NK cell function.

    PubMed

    Tchang, Vincent Sam Yong; Stiess, Michael; Siegmund, Kerstin; Karrer, Urs; Pieters, Jean

    2017-02-01

    Coronin 1, a member of the evolutionary conserved WD repeat protein family of coronin proteins is expressed in all leukocytes, but a role for coronin 1 in natural killer (NK) cell homeostasis and function remains unclear. Here, we have analyzed the number and functionality of NK cells in the presence and absence of coronin 1. In coronin 1-deficient mice, absolute NK cell numbers and phenotype were comparable to wild type mice in blood, spleen and liver. Following in vitro stimulation of the activating NK cell receptors NK1.1, NKp46, Ly49D and NKG2D, coronin 1-deficient NK cells were functional with respect to interferon-γ production, degranulation and intracellular Ca(2+) mobilization. Also, both wild type as well as coronin 1-deficient NK cells showed comparable cytotoxic activity. Furthermore, activation and functionality of NK cells following Vesicular Stomatitis Virus (VSV) infection was similar between wild type and coronin 1-deficient mice. Taken together these data suggest that coronin 1 is dispensable for mouse NK cell homeostasis and function.

  10. Mast Cells: A Pivotal Role in Pulmonary Fibrosis

    PubMed Central

    Veerappan, Arul; O'Connor, Nathan J.; Brazin, Jacqueline; Reid, Alicia C.; Jung, Albert; McGee, David; Summers, Barbara; Branch-Elliman, Dascher; Stiles, Brendon; Worgall, Stefan; Kaner, Robert J.

    2013-01-01

    Pulmonary fibrosis is characterized by an inflammatory response that includes macrophages, neutrophils, lymphocytes, and mast cells. The purpose of this study was to evaluate whether mast cells play a role in initiating pulmonary fibrosis. Pulmonary fibrosis was induced with bleomycin in mast-cell-deficient WBB6F1-W/Wv (MCD) mice and their congenic controls (WBB6F1-+/+). Mast cell deficiency protected against bleomycin-induced pulmonary fibrosis, but protection was reversed with the re-introduction of mast cells to the lungs of MCD mice. Two mast cell mediators were identified as fibrogenic: histamine and renin, via angiotensin (ANG II). Both human and rat lung fibroblasts express the histamine H1 and ANG II AT1 receptor subtypes and when activated, they promote proliferation, transforming growth factor β1 secretion, and collagen synthesis. Mast cells appear to be critical to pulmonary fibrosis. Therapeutic blockade of mast cell degranulation and/or histamine and ANG II receptors should attenuate pulmonary fibrosis. PMID:23570576

  11. Alcoholic hepatitis: The pivotal role of Kupffer cells

    PubMed Central

    Suraweera, Duminda B; Weeratunga, Ashley N; Hu, Robert W; Pandol, Stephen J; Hu, Richard

    2015-01-01

    Kupffer cells play a central role in the pathogenesis of alcoholic hepatitis (AH). It is believed that alcohol increases the gut permeability that results in raised levels of serum endotoxins containing lipopolysaccharides (LPS). LPS binds to LPS-binding proteins and presents it to a membrane glycoprotein called CD14, which then activates Kupffer cells via a receptor called toll-like receptor 4. This endotoxin mediated activation of Kupffer cells plays an important role in the inflammatory process resulting in alcoholic hepatitis. There is no effective treatment for AH, although notable progress has been made over the last decade in understanding the underlying mechanism of alcoholic hepatitis. We specifically review the current research on the role of Kupffer cells in the pathogenesis of AH and the treatment strategies. We suggest that the imbalance between the pro-inflammatory and the anti-inflammatory process as well as the increased production of reactive oxygen species eventually lead to hepatocyte injury, the final event of alcoholic hepatitis. PMID:26600966

  12. Cell Intrinsic Role of Cox-2 in Pancreatic Cancer Development

    PubMed Central

    Hill, Reginald; Li, Yunfeng; Tran, Linh M.; Dry, Sarah; Calvopina, Joseph Hargan; Garcia, Alejandro; Kim, Christine; Wang, Ying; Donahue, Timothy R.; Herschman, Harvey R.; Wu, Hong

    2012-01-01

    Cyclooxygenase-2 (COX-2) is upregulated in pancreatic ductal adenocarcinomas (PDAC). However, how COX-2 promotes PDAC development is unclear. While previous studies have evaluated the efficacy of COX-2 inhibition via the use of non steroidal anti-inflammatory drugs (NSAIDs) or the COX-2 inhibitor celecoxib in PDAC models, none have addressed the cell intrinsic vs. microenvironment roles of COX-2 in modulating PDAC initiation and progression. We tested the cell intrinsic role of COX-2 in PDAC progression, using both loss-of-function and gain-of-function approaches. Cox-2 deletion in Pdx1+ pancreatic progenitor cells significantly delays the development of PDAC in mice with K-ras activation and Pten haploinsufficiency. Conversely, COX-2 over-expression promotes early onset and progression of PDAC in the K-ras mouse model. Loss of PTEN function is a critical factor in determining lethal PDAC onset and overall survival. Mechanistically, COX-2 over-expression increases P-AKT levels in the precursor lesions of Pdx1+;K-rasG12D/+;Ptenlox/+ mice in the absence of Pten LOH. In contrast, Cox-2 deletion in the same setting diminishes P-AKT levels and delays cancer progression. These data suggest an important cell intrinsic role for COX-2 in tumor initiation and progression through activation of the PI3K/AKT pathway. PDAC that is independent of intrinsic COX-2 expression eventually develops with decreased FKBP5 and increased GRP78 expression, two alternate pathways leading to AKT activation. Together, these results support a cell intrinsic role for COX-2 in PDAC development and suggest that, while anti-COX-2 therapy may delay the development and progression of PDAC, mechanisms known to increase chemoresistance through AKT activation must also be overcome. PMID:22784710

  13. Developmental programming of pediatric nonalcoholic fatty liver disease: redefining the"first hit".

    PubMed

    Stewart, Michael S; Heerwagen, Margaret J R; Friedman, Jacob E

    2013-09-01

    The incidence of pediatric nonalcoholic fatty liver disease has increased dramatically, and growing evidence indicates that the pathophysiology may be unique from the adult form, suggesting a role for early-life events. Recent radiologic techniques have now demonstrated that maternal obesity contributes to hepatic fat storage in newborn infants. In this review, we will explore how maternal obesity and a hyperlipidemic environment can initiate liver histopathogenesis in utero, including steatosis, mitochondrial dysfunction, oxidative stress, and inflammatory priming. Thus, early exposure to excess lipids may represent the "first hit" for the fetal liver, placing it on a trajectory toward future metabolic disease.

  14. The role of miR-145 in stem cell characteristics of human laryngeal squamous cell carcinoma Hep-2 cells.

    PubMed

    Karatas, Omer Faruk; Suer, Ilknur; Yuceturk, Betul; Yilmaz, Mehmet; Hajiyev, Yusif; Creighton, Chad J; Ittmann, Michael; Ozen, Mustafa

    2016-03-01

    The cancer stem-like cells (CSLCs) are tumorigenic cells promoting initiation, progression, and spread of the tumor. Accumulating evidences suggested the presence of CSLCs in distinct tumors including laryngeal squamous cell carcinoma (LSCC). MicroRNAs have been proposed as significant regulators of carcinogenesis, and several of them have been demonstrated to have direct roles in survival of CSLCs. In this study, we aimed to explore the role of miR-145, which is downregulated in LSCC, on cancer stem cell potency of laryngeal cancer cells. We initially showed the downregulation of miR-145 expression in tumor tissue samples and in CD133-enriched CSLCs. Quantitative reverse-transcription PCR (qRT-PCR) analysis of miR-145-transfected Hep-2 cells demonstrated the inhibitory role of miR-145 on stem cell markers like SOX2, OCT4, KLF4, and ABCG2. We, then, investigated the stem cell features of miR-145-overexpressing Hep-2 cells by sphere formation assay, single-cell cloning assay, and aldehyde dehydrogenase (ALDH) assay, which all demonstrated the inhibition of stem cell potency upon miR-145 overexpression. Further qRT-PCR analysis demonstrated altered expression of epithelial to mesenchymal transition markers in miR-145-overexpressing Hep-2 cells. In conclusion, we demonstrated the regulatory role of miR-145 in stem cell characteristics of Hep-2 cells. Based on these results, we propose that miR-145 might carry crucial roles in LSCC tumorigenesis, prognosis, metastasis, chemoresistance, and recurrence through regulating stem cell properties of tumor cells.

  15. Role of ion transport in control of apoptotic cell death.

    PubMed

    Lang, Florian; Hoffmann, Else K

    2012-07-01

    Cell shrinkage is a hallmark and contributes to signaling of apoptosis. Apoptotic cell shrinkage requires ion transport across the cell membrane involving K(+) channels, Cl(-) or anion channels, Na(+)/H(+) exchange, Na(+),K(+),Cl(-) cotransport, and Na(+)/K(+)ATPase. Activation of K(+) channels fosters K(+) exit with decrease of cytosolic K(+) concentration, activation of anion channels triggers exit of Cl(-), organic osmolytes, and HCO3(-). Cellular loss of K(+) and organic osmolytes as well as cytosolic acidification favor apoptosis. Ca(2+) entry through Ca(2+)-permeable cation channels may result in apoptosis by affecting mitochondrial integrity, stimulating proteinases, inducing cell shrinkage due to activation of Ca(2+)-sensitive K(+) channels, and triggering cell-membrane scrambling. Signaling involved in the modification of cell-volume regulatory ion transport during apoptosis include mitogen-activated kinases p38, JNK, ERK1/2, MEKK1, MKK4, the small G proteins Cdc42, and/or Rac and the transcription factor p53. Osmosensing involves integrin receptors, focal adhesion kinases, and tyrosine kinase receptors. Hyperosmotic shock leads to vesicular acidification followed by activation of acid sphingomyelinase, ceramide formation, release of reactive oxygen species, activation of the tyrosine kinase Yes with subsequent stimulation of CD95 trafficking to the cell membrane. Apoptosis is counteracted by mechanisms involved in regulatory volume increase (RVI), by organic osmolytes, by focal adhesion kinase, and by heat-shock proteins. Clearly, our knowledge on the interplay between cell-volume regulatory mechanisms and suicidal cell death is still far from complete and substantial additional experimental effort is needed to elucidate the role of cell-volume regulatory mechanisms in suicidal cell death.

  16. Microdosimetry of astatine-211 single-cell irradiation: role of daughter polonium-211 diffusion.

    PubMed

    Palm, Stig; Humm, John L; Rundqvist, Robert; Jacobsson, Lars

    2004-02-01

    A microdosimetric analysis of previously published data on 211At-albumin, free 211At, and 211At-C215 irradiation of Colo-205 cells in a slowly rotating single-cell suspension is presented. A custom-built computer program based on the Monte Carlo method was used to simulate the irradiation and the energy deposition in individual cell nuclei. Separate simulations were made for the assumption that the 211Po atom stays in the position where it is created, and that it diffuses away. The mean event number at which 37% of all cells survived, n37, and the frequency mean specific energy per event, zF, were estimated. The Poisson distribution of events and simulated single and multievent distributions of specific energy were used to find the single-cell specific energy at which the probability of survival is reduced to 37%, z37. The calculated single-cell radiosensitivity values show that 211Po atoms, created on a cell surface by the decay of 211At atoms, will diffuse from the cell during its life-span. The increasing distance to the cell nucleus will drastically decrease the probability of the emitted alpha particle to hit the nucleus. This will result in fewer alpha-particle events in the cell nucleus. For dispersed cells, the diffusion of 211Po atoms will reduce the total dose from cell-bound 211At by a factor of 2.

  17. Redefining the role of dendritic cells in periodontics.

    PubMed

    Venkatesan, Gomathinayagam; Uppoor, Ashita; Naik, Dilip G

    2013-11-01

    A properly functioning adaptive immune system signifies the best features of life. It is diverse beyond compare, tolerant without fail, and capable of behaving appropriately with a myriad of infections and other challenges. Dendritic cells (DCs) are required to explain how this remarkable system is energized and directed. DCs consist of a family of antigen presenting cells, which are bone-marrow-derived cells that patrol all tissues of the body with the possible exceptions of the brain and testes. DCs function to capture bacteria and other pathogens for processing and presentation to T cells in the secondary lymphoid organs. They serve as an essential link between innate and adaptive immune systems and induce both primary and secondary immune responses. As a result of progress worldwide, there is now evidence of a central role for dendritic cells in initiating antigen-specific immunity and tolerance. This review addresses the origins and migration of DCs to target sites, their basic biology and plasticity in playing a key role in periodontal diseases, and finally, selected strategies being pursued to harness its ability to prevent periodontal diseases.

  18. Role of hematopoietic stem cell transplantation in multiple myeloma.

    PubMed

    Garcia, Ima N

    2015-02-01

    High-dose therapy followed by autologous stem cell transplantation (ASCT) has been the standard frontline consolidative therapy for patients with newly diagnosed multiple myeloma (MM) for > 2 decades. This approach has resulted in higher complete response (CR) rates and increased event-free survival and overall survival (OS) compared with conventional chemotherapy. The emergence of novel agent-based therapy combined with ASCT has revolutionized MM therapy by improving the CR rates and OS, raising questions concerning the role of hematopoietic stem cell transplantation in this setting.

  19. Mesangial cell immune injury. Synthesis, origin, and role of eicosanoids.

    PubMed Central

    Lianos, E A; Bresnahan, B A; Pan, C

    1991-01-01

    The synthesis, cell origin, and physiologic role of eicosanoids were investigated in a model of mesangial cell immune injury induced by a monoclonal antibody against the rat thymocyte antigen Thy 1.1 also expressed in rat mesangial cells. A single intravenous injection of the antibody resulted in enhanced glomerular synthesis of thromboxane (Tx)B2, leukotriene (LT)B4, and 12-hydroxyeicosatetraenoic acid (HETE), whereas that of PGE2 and PGF2 alpha was either unaltered or impaired. The enhanced eicosanoid synthesis was associated with decrements in glomerular filtration rate (GFR) and renal blood flow (RBF). Complement activation mediated both the increments in TxB2, LTB4, and 12-HETE and the decrements in GFR and RBF. The decrements in GFR were abolished by the TxA2 receptor antagonist SQ-29,548. Although both neutrophiles and Ia (+) leukocytes infiltrated glomeruli, glomerular LTB4 originated mainly from the latter. Platelets entirely accounted for the enhanced 12-HETE synthesis in isolated glomeruli and to a lesser extent for that of LTB4 and TxB2. Glomerular PGE2 and PGF2 alpha originated from mesangial cells as their impaired synthesis coincided with extensive mesangial cell lysis. The observations indicate that in mesangial cell immune injury vasoactive and proinflammatory eicosanoids originate from recruited or activated Ia (+) leukocytes and platelets and may exert paracrine effects on mesangial cells. Images PMID:1677947

  20. Intestinal epithelial cells and their role in innate mucosal immunity.

    PubMed

    Maldonado-Contreras, A L; McCormick, Beth A

    2011-01-01

    The mucosal surfaces of the respiratory, gastrointestinal and urogenital tracts are covered by a layer of epithelial cells that are responsible for sensing and promoting a host immune response in order to establish the limits not only for commensal microorganisms but also for foreign organisms or particles. This is a remarkable task as the human body represents a composite of about 10 trillion human-self cells plus non-self cells from autochthonous or indigenous microbes that outnumber human cells 10:1. Hence, the homeostasis of epithelial cells that line mucosal surfaces relies on a fine-tuned immune system that patrols the boundaries between human and microbial cells. In the case of the intestine, the epithelial layer is composed of at least six epithelial cell lineages that act as a physiological barrier in addition to aiding digestion and the absorption of nutrients, water and electrolytes. In this review, we highlight the immense role of the intestinal epithelium in coordinating the mucosal innate immune response.

  1. Role of Natural Radiosensitizers and Cancer Cell Radioresistance: An Update

    PubMed Central

    Sultana, Misbah; Qazi, Aamer; Qazi, Mahmood Husain; Parveen, Gulshan; Waquar, Sulayman; Ashraf, Abdul Basit; Rasool, Mahmood

    2016-01-01

    Cancer originates from genetic mutations accumulation. Cancer stem cells have been depicted as tumorigenic cells that can differentiate and self-renew. Cancer stem cells are thought to be resistant to conventional therapy like chemotherapy and radiation therapy. Radiation therapy and chemotherapy damage carcinomic DNA cells. Because of the ability of cancer stem cells to self-renew and reproduce malignant tumors, they are the subject of intensive research. In this review, CSCs radioresistant mechanisms which include DNA damage response and natural radiosensitizers have been summed up. Reactive oxygen species play an important role in different physiological processes. ROS scavenging is responsible for regulation of reactive oxygen species generation. A researcher has proved that microRNAs regulate tumor radiation resistance. Ionizing radiation does not kill the cancer cells; rather, IR just slows down the signs and symptoms. Ionizing radiation damages DNA directly/indirectly. IR is given mostly in combination with other chemo/radiotherapies. We briefly described here the behavior of cancer stem cells and radioresistance therapies in cancer treatment. To overcome radioresistance in treatment of cancer, strategies like fractionation modification, treatment in combination, inflammation modification, and overcoming hypoxic tumor have been practiced. Natural radiosensitizers, for example, curcumin, genistein, and quercetin, are more beneficial than synthetic compounds. PMID:26998418

  2. The Role of B-1 Cells in Inflammation

    PubMed Central

    Aziz, Monowar; Holodick, Nichol E.; Rothstein, Thomas L.; Wang, Ping

    2015-01-01

    B-1 lymphocytes exhibit unique phenotypic, ontogenic, and functional characteristics that differ from the conventional B-2 cells. B-1 cells spontaneously secrete germline-like, repertoire skewed polyreactive natural antibody, which acts as a first line of defense by neutralizing a wide range of pathogens before launching of the adaptive immune response. Immunomodulatory molecules, such as interleukin-10 (IL-10), adenosine, granulocyte-macrophage colony-stimulating factor (GM-CSF), IL-3, and IL-35 are also produced by B-1 cells in the presence or absence of stimulation, which regulate acute and chronic inflammatory diseases. Considerable progress has been made during the past three decades since the discovery of B-1 cells, which has not only improved our understanding of their phenotypic and ontogenic uniqueness but also their role in various inflammatory diseases including influenza, pneumonia, sepsis, atherosclerosis, inflammatory bowel disease (IBD), autoimmunity, obesity and diabetes mellitus. Recent identification of human B-1 cells widens the scope of this field, leading to novel innovations that can be implemented from bench to bedside. Among the vast number of studies on B-1 cells, we have carried out a literature review highlighting current trends in the study of B-1 cell involvement during inflammation, which may result in a paradigm shift towards sustainable therapeutics in various inflammatory diseases. PMID:26427372

  3. The role of the vascular dendritic cell network in atherosclerosis

    PubMed Central

    Alberts-Grill, Noah; Denning, Timothy L.; Rezvan, Amir

    2013-01-01

    A complex role has been described for dendritic cells (DCs) in the potentiation and control of vascular inflammation and atherosclerosis. Resident vascular DCs are found in the intima of atherosclerosis-prone vascular regions exposed to disturbed blood flow patterns. Several phenotypically and functionally distinct vascular DC subsets have been described. The functional heterogeneity of these cells and their contributions to vascular homeostasis, inflammation, and atherosclerosis are only recently beginning to emerge. Here, we review the available literature, characterizing the origin and function of known vascular DC subsets and their important role contributing to the balance of immune activation and immune tolerance governing vascular homeostasis under healthy conditions. We then discuss how homeostatic DC functions are disrupted during atherogenesis, leading to atherosclerosis. The effectiveness of DC-based “atherosclerosis vaccine” therapies in the treatment of atherosclerosis is also reviewed. We further provide suggestions for distinguishing DCs from macrophages and discuss important future directions for the field. PMID:23552284

  4. Role of NK, NKT cells and macrophages in liver transplantation

    PubMed Central

    Fahrner, René; Dondorf, Felix; Ardelt, Michael; Settmacher, Utz; Rauchfuss, Falk

    2016-01-01

    Liver transplantation has become the treatment of choice for acute or chronic liver disease. Because the liver acts as an innate immunity-dominant organ, there are immunological differences between the liver and other organs. The specific features of hepatic natural killer (NK), NKT and Kupffer cells and their role in the mechanism of liver transplant rejection, tolerance and hepatic ischemia-reperfusion injury are discussed in this review. PMID:27468206

  5. Role of Receptor Sialylation in the Ovarian Tumor Cell Phenotype

    DTIC Science & Technology

    2012-06-01

    blocks apoptosis induced by the mammalian lectin, galectin - 3 , which our studies show is expressed in human ovarian tumor tissues and in ascitic fluid...omental cultures. • Optimized immunoblotting protocol for galectin - 3 in ascites • Determination that sialylation of Fas and TNFR1 blocks apoptotic...REPORT DATE 2. REPORT TYPE Annual report 3 . DATES COVERED 4. TITLE AND SUBTITLE Role of receptor sialylation in the ovarian tumor cell

  6. Migration of breast cancer cells: Understanding the roles of volume exclusion and cell-to-cell adhesion

    NASA Astrophysics Data System (ADS)

    Simpson, Matthew J.; Towne, Chris; McElwain, D. L. Sean; Upton, Zee

    2010-10-01

    We study MCF-7 breast cancer cell movement in a transwell apparatus. Various experimental conditions lead to a variety of monotone and nonmonotone responses which are difficult to interpret. We anticipate that the experimental results could be caused by cell-to-cell adhesion or volume exclusion. Without any modeling, it is impossible to understand the relative roles played by these two mechanisms. A lattice-based exclusion process random-walk model incorporating agent-to-agent adhesion is applied to the experimental system. Our combined experimental and modeling approach shows that a low value of cell-to-cell adhesion strength provides the best explanation of the experimental data suggesting that volume exclusion plays a more important role than cell-to-cell adhesion. This combined experimental and modeling study gives insight into the cell-level details and design of transwell assays.

  7. Role of Natural Killer Cells in HIV-Associated Malignancies

    PubMed Central

    Leal, Fabio E.; Premeaux, Thomas A.; Abdel-Mohsen, Mohamed; Ndhlovu, Lishomwa C.

    2017-01-01

    Now in its fourth decade, the burden of HIV disease still persists, despite significant milestone achievements in HIV prevention, diagnosis, treatment, care, and support. Even with long-term use of currently available antiretroviral therapies (ARTs), eradication of HIV remains elusive and now poses a unique set of challenges for the HIV-infected individual. The occurrence of HIV-associated non-AIDS-related comorbidities outside the scope of AIDS-defining illnesses, in particular non-AIDS-defining cancers, is much greater than the age-matched uninfected population. The underlying mechanism is now recognized in part to be related to the immune dysregulated and inflammatory status characteristic of HIV infection that persists despite ART. Natural killer (NK) cells are multifunctional effector immune cells that play a critical role in shaping the innate immune responses to viral infections and cancer. NK cells can modulate the adaptive immune response via their role in dendritic cell (DC) maturation, removal of immature tolerogenic DCs, and their ability to produce immunoregulatory cytokines. NK cells are therefore poised as attractive therapeutic targets that can be harnessed to control or clear both HIV and HIV-associated malignancies. To date, features of the tumor microenvironment and the evolution of NK-cell function among individuals with HIV-related malignancies remain unclear and may be distinct from malignancies observed in uninfected persons. This review intends to uncouple anti-HIV and antitumor NK-cell features that can be manipulated to halt the evolution of HIV disease and HIV-associated malignancies and serve as potential preventative and curative immunotherapeutic options. PMID:28377768

  8. Role of Geminin in cell fate determination of hematopoietic stem cells (HSCs).

    PubMed

    Yasunaga, Shin'ichiro; Ohno, Yoshinori; Shirasu, Naoto; Zhang, Bo; Suzuki-Takedachi, Kyoko; Ohtsubo, Motoaki; Takihara, Yoshihiro

    2016-09-01

    Geminin exerts two distinct molecular roles. Geminin negatively regulates DNA replication licensing through the direct interaction with Cdt1 to prevent re-replication in proliferating cells. Geminin also regulates chromatin remodeling through the direct interaction with Brahma/Brg1 to maintain undifferentiated states of stem cells. We previously uncovered that Polycomb-group complex 1 and Hoxb4/Hoxa9, well-known intrinsic factors that are essential for maintaining the hematopoietic stem cell (HSC) activity, alternatively act as ubiquitin-proteasome systems for Geminin protein to reduce the protein expression level, and sustain the HSC activity. Thus, Geminin is presumed to play an important role in determining cell fate, i.e., turning on and off cellular quiescence and proliferation/differentiation, in HSCs. We recently generated recombinant cell-penetrating Geminin (CP-Geminin), enabling rapid incorporation and withdraw of Geminin protein in cells. CP-Geminin may be useful in regulating the cell cycle and chromatin configuration. In this article, we summarize current information on the molecular functions of Geminin and the regulatory system for Geminin protein expression, and argue for the molecular role of Geminin in cell fate determination of HSCs, and future perspective of a new technology for manipulating the activities of HSCs and cancer stem cells (CSCs).

  9. Role of cell death in the propagation of PrP(Sc) in immune cells.

    PubMed

    Takahashi, Kenichi; Inoshima, Yasuo; Ishiguro, Naotaka

    2015-03-01

    A number of studies have suggested that macrophages, dendritic cells, and follicular dendritic cells play an important role in the propagation of PrP(Sc). Both accumulation and proteolysis of PrP(Sc) have been demonstrated in peripheral macrophages. Macrophages may act as reservoirs for PrP(Sc) particles if the cells die during transient PrP(Sc) propagation. However, whether cell death plays a role in PrP(Sc) propagation in macrophages remains unclear. In this study, we investigated the possibility of propagation and transmission of PrP(Sc) between dead immune cells and living neural cells. We found that under specific conditions, transient PrP(Sc) propagation occurs in dead cells, indicating that interaction between PrP(C) and PrP(Sc) on plasma membrane lipid rafts might be important for PrP(Sc) propagation. Co-culturing of killed donor PrP(Sc)-infected macrophages with recipient N2a-3 neuroblastoma cells accelerated PrP(Sc) transmission. Our results suggest that cell death may play an important role in PrP(Sc) propagation, whereas transient PrP(Sc) propagation in macrophages has little effect on PrP(Sc) transmission.

  10. Role of inflammation in the neurobiology of stem cells.

    PubMed

    Simard, Alain R; Rivest, Serge

    2004-10-25

    Unlike most organs, tissue regeneration and repair are not very efficient in the CNS, which explains the severity of neurodegenerative diseases. Many have hoped that stem cells would provide an effective mean to solve this problem. Unfortunately, evidence supporting this approach remains controversial. In this review, we discuss the capacity of stem cells to generate the cells that reside in the brain. Neural stem cells are able to generate new neurons, astrocytes and oligodendrocytes, but not microglia. The latter are instead replenished by self-replication and monocyte recruitment across the blood-brain barrier. The fact that blood-derived monocytes can enter the brain and differentiate into microglial cells has many implications for neurodegenerative diseases. They are more efficient antigen-presenting cells and produce proinflammatory molecules that can be both detrimental to the brain and beneficial to recovery and repair after insults. It is therefore very important to better understand the role of these newly differentiated microglia before devising therapeutic strategies to either inhibit or improve their recruitment at diseased and injured sites.

  11. The role of Cajal cells in chronic prostatitis.

    PubMed

    Haki Yuksel, Ozgur; Urkmez, Ahmet; Verit, Ayhan

    2016-07-04

    Types of prostatitis can be defined as groups of syndromes in adult men associated with infectious and noninfectious causes characterized frequently by lower abdominal and perineal signs and diverse clinical symptoms and complications. Etiopathogenesis of chronic prostatitis is not well defined. Moreover, its treatment outcomes are not satisfactory. Presence of c-kit positive interstitial cells in human prostate is already known. It has been demonstrated that these cells can be pacemaker cells which trigger spontaneous slow-wave electrical activity in the prostate and can be responsible for the transport of glandular secretion from acinar cells into major and minor prostatic ducts and finally into urethra. In the light of all these data, when presence of a possible inflammatory pathology is thought to involve prostate that secretes and has a reservoir which drains its secretion (for prostate, prostatic urethra), two points are worth mentioning. Impairment of secretion mechanism and collection of secretion within the organ with reflux of the microbial material from its reservoir back into prostate gland. Both of these potential conditions can be explained by ductal neuromuscular mechanism, which induces secretion. We think that in this neuromuscular mechanism interstitial Cajal cells have an important role in chronic prostatitis. Our hypothesis is that curability of prostatitis is correlated with the number of Cajal cells not subjected to apoptosis.

  12. The role of nitric oxide in ocular surface cells.

    PubMed Central

    Kim, Jae Chan; Park, Gun Sic; Kim, Jin Kook; Kim, Young Myeong

    2002-01-01

    The role of nitric oxide (NO) in the ocular surface remains unknown. We investigated the conditions leading to an increase of NO generation in tear and the main sources of NO in ocular surface tissue. We evaluated the dual action (cell survival or cell death) of NO depending on its amount. We measured the concentration of nitrite plus nitrate in the tears of ocular surface diseases and examined the main source of nitric oxide synthase (NOS). When cultured human corneal fibroblast were treated with NO producing donor with or without serum, the viabilities of cells was studied. We found that the main sources of NO in ocular surface tissue were corneal epithelium, fibroblast, endothelium, and inflammatory cells. Three forms of NOS (eNOS, bNOS, and iNOS) were expressed in experimentally induced inflammation. In the fibroblast culture system, the NO donor (SNAP, S-nitroso-N-acetyl-D, L-penicillamine) prevented the death of corneal fibroblast cells caused by serum deprivation in a dose dependent manner up to 500 micrometer SNAP, but a higher dose decreased cell viability. This study suggested that NO might act as a double-edged sword in ocular surface diseases depending on the degree of inflammation related with NO concentration. PMID:12068145

  13. Role of the plant cell wall in gravity resistance.

    PubMed

    Hoson, Takayuki; Wakabayashi, Kazuyuki

    2015-04-01

    Gravity resistance, mechanical resistance to the gravitational force, is a principal graviresponse in plants, comparable to gravitropism. The cell wall is responsible for the final step of gravity resistance. The gravity signal increases the rigidity of the cell wall via the accumulation of its constituents, polymerization of certain matrix polysaccharides due to the suppression of breakdown, stimulation of cross-link formation, and modifications to the wall environment, in a wide range of situations from microgravity in space to hypergravity. Plants thus develop a tough body to resist the gravitational force via an increase in cell wall rigidity and the modification of growth anisotropy. The development of gravity resistance mechanisms has played an important role in the acquisition of responses to various mechanical stresses and the evolution of land plants.

  14. The role of blood rheology in sickle cell disease.

    PubMed

    Connes, Philippe; Alexy, Tamas; Detterich, Jon; Romana, Marc; Hardy-Dessources, Marie-Dominique; Ballas, Samir K

    2016-03-01

    Studies performed in the last decades have highlighted the need to better understand the contribution of the endothelium, vascular function, oxidative stress, inflammation, coagulation, hemolysis and vascular adhesion mechanisms to the pathophysiology of acute vaso-occlusive like events and chronic organ damages in sickle cell disease (SCD). Although SCD is a hemorheological disease, a few works focused on the contribution of blood viscosity, plasma viscosity, red blood cell deformability and aggregation in the pathophysiology of SCD. After a brief description of basic hemorheology, the present review focuses on the role of the hemorheological abnormalities in the causation of several SCD complications, mainly in sickle cell anemia and hemoglobin (Hb) SC disease. Several genetic and cellular modulators of blood rheology in SCD are discussed, as well as unresolved questions and perspectives.

  15. Haploidentical Haematopoietic Stem Cell Transplantation: Role of NK Cells and Effect of Cytomegalovirus Infections.

    PubMed

    Della Chiesa, Mariella; Moretta, Lorenzo; Muccio, Letizia; Bertaina, Alice; Moretta, Francesca; Locatelli, Franco; Moretta, Alessandro

    2016-01-01

    Natural killer cells play an important role in the immune responses against cancer and viral infections. In addition, NK cells have been shown to exert a key role in haploidentical hematopoietic stem cell (HSC) transplantation for the therapy of high-risk leukemias. The anti-leukemia effect is mostly related to the presence of "alloreactive" NK cells, i.e., mature KIR(+) NK cells that express inhibitory KIR mismatched with HLA class I (KIR-L) of the patient. In addition, an important role is played by certain activating KIR (primarily, but not only, KIR2DS1) upon interaction with their HLA class I ligand (C2 alleles). In general, the presence of activating KIR correlates with a better prognosis. Beside the infusion of "pure" CD34(+) cells, a novel protocol has been recently developed in which depletion of αβ T cells and CD19(+) B cells makes it possible to infuse into the patient, together with donor CD34(+) HSCs, important effector cells including mature PB NK cells and γδ T cells. Recent studies revealed that cytomegalovirus (CMV) infection/reactivation may induce rapid NK cell maturation and greatly influence the NK receptor repertoire. The remarkable expansion of a subset expressing the activating receptor NKG2C, together with a more efficient virus-specific effector response after rechallenge with CMV (i.e., antigen specificity), and the longevity of the expanded population are all features consistent with an adaptive type of response and support the notion of a memory-like activity of NK cells.

  16. Novel insights of ethylene role in strawberry cell wall metabolism.

    PubMed

    Villarreal, Natalia M; Marina, María; Nardi, Cristina F; Civello, Pedro M; Martínez, Gustavo A

    2016-11-01

    Due to its organoleptic and nutraceutical qualities, strawberry fruit (Fragaria x ananassa, Duch) is a worldwide important commodity. The role of ethylene in the regulation of strawberry cell wall metabolism was studied in fruit from Toyonoka cultivar harvested at white stage, when most changes associated with fruit ripening have begun. Fruit were treated with ethephon, an ethylene-releasing reagent, or with 1-methylcyclopropene (1-MCP), a competitive inhibitor of ethylene action, maintaining a set of non-treated fruit as controls for each condition. Ethephon treated-fruit showed higher contents of hemicelluloses, cellulose and neutral sugars regarding controls, while 1-MCP-treated fruit showed a lower amount of those fractions. On the other hand, ethephon-treated fruit presented a lower quantity of galacturonic acid from ionically and covalently bound pectins regarding controls, while 1-MCP-treated fruit showed higher contents of those components. We also explored the ethylene effect over the mRNA accumulation of genes related to pectins and hemicelluloses metabolism, and a relationship between gene expression patterns and cell wall polysaccharides contents was shown. Moreover, we detected that strawberry necrotrophic pathogens growth more easily on plates containing cell walls from ethephon-treated fruit regarding controls, while a lower growth rate was observed when cell walls from 1-MCP treated fruit were used as the only carbon source, suggesting an effect of ethylene on cell wall structure. Around 60% of strawberry cell wall is made up of pectins, which in turns is 70% made by homogalacturonans. Our findings support the idea of a central role for pectins on strawberry fruit softening and a participation of ethylene in the regulation of this process.

  17. UN study reports Asian economic crisis has hit women's health.

    PubMed

    Ciment, J

    1999-02-13

    A UN Population Fund report, "Southeast Asian Populations in Crisis," revealed that the economic crisis in Southeastern Asia has had a disproportionately adverse effect on the health of women and girls. This has occurred because the industries employing women have been hardest hit and because governments have reduced spending on health care and female education. Thailand, for example, has reduced its AIDS budget by 25% even as increasing numbers of women are pushed into the sex trade by economic necessity. Reproductive health services for adolescents have been hit just as shrinking family budgets are forcing adolescents to drop out of school. The report's authors are calling for a more detailed look at the situation.

  18. Combined use of pharmacophoric models together with drug metabolism and genotoxicity "in silico" studies in the hit finding process

    NASA Astrophysics Data System (ADS)

    Jerez, Ma José; Jerez, Miguel; González-García, Coral; Ballester, Sara; Castro, Ana

    2013-01-01

    In this study we propose a virtual screening strategy based on the generation of a pharmacophore hypothesis, followed by an in silico evaluation of some ADME-TOX properties with the aim to apply it to the hit finding process and, specifically, to characterize new chemical entities with potential to control inflammatory processes mediated by T lymphocytes such as multiple sclerosis, systemic lupus erithematosus or rheumatoid arthritis. As a result, three compounds with completely novel scaffolds were selected as final hits for future hit-to-lead optimization due to their anti-inflammatory profile. The biological results showed that the selected compounds increased the intracellular cAMP levels and inhibited cell proliferation in T lymphocytes. Moreover, two of these compounds were able to increase the production of IL-4, an immunoregulatory cytokine involved in the selective deviation of T helper (Th) immune response Th type 2 (Th2), which has been proved to have anti-inflammatory properties in several animal models for autoimmune pathologies as multiple sclerosis or rheumatoid arthritis. Thus our pharmacological strategy has shown to be useful to find molecules with biological activity to control immune responses involved in many inflammatory disorders. Such promising data suggested that this in silico strategy might be useful as hit finding process for future drug development.

  19. 75 FR 32472 - Office of the National Coordinator for Health Information Technology; HIT Standards Committee...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-06-08

    ... HUMAN SERVICES Office of the National Coordinator for Health Information Technology; HIT Standards... Information Technology AGENCY: Office of the National Coordinator for Health Information Technology, HHS... Information Technology (ONC). Name of Committee: HIT Standards Committee. General Function of the...

  20. Repeat Head Hits May Not Put NFL Players at Risk of Motor Problems

    MedlinePlus

    ... https://medlineplus.gov/news/fullstory_163670.html Repeat Head Hits May Not Put NFL Players at Risk ... 19, 2017 (HealthDay News) -- Repeated hits to the head may not doom NFL players to suffer movement ...

  1. A novel inflammatory role for platelets in sickle cell disease.

    PubMed

    Davila, Jennifer; Manwani, Deepa; Vasovic, Ljiljana; Avanzi, Mauro; Uehlinger, Joan; Ireland, Karen; Mitchell, W Beau

    2015-01-01

    The severe pain, ischemia and organ damage that characterizes sickle cell disease (SCD) is caused by vaso-occlusion, which is the blockage of blood vessels by heterotypic aggregates of sickled erythrocytes and other cells. Vaso-occlusion is also a vasculopathy involving endothelial cell dysfunction, leukocyte activation, platelet activation and chronic inflammation resulting in the multiple adhesive interactions between cellular elements. Since platelets mediate inflammation as well as thrombosis via release of pro- and anti-inflammatory molecules, we hypothesized that platelets may play an active inflammatory role in SCD by secreting increased amounts of cytokines. Since platelets have been shown to contain mRNA and actively produce proteins, we also hypothesized that SCD platelets may contain increased cytokine mRNA. In this cross-sectional study, we sought to compare both the quantity of cytokines secreted and the cytokine mRNA content, between SCD and control platelets. We measured the secretion of Th1, Th2, and Th17-related cytokines from platelets in a cohort of SCD patients. We simultaneously measured platelet mRNA levels of those cytokines. Platelets from SCD patients secreted increased quantities of IL-1β, sCD40L, and IL-6 compared to controls. Secretion was increased in patients with alloantibodies. Additionally, mRNA of those cytokines was increased in SCD platelets. Platelets from sickle cell patients secrete increased amounts of inflammatory cytokines, and contain increased cytokine mRNA. These findings suggest a novel immunological role for platelets in SCD vasculopathy, in addition to their thrombotic role, and strengthen the rationale for the use of anti-platelet therapy in SCD.

  2. Role of mesenchymal stem cells in osteosarcoma and metabolic reprogramming of tumor cells

    PubMed Central

    Bonuccelli, Gloria; Avnet, Sofia; Grisendi, Giulia; Salerno, Manuela; Granchi, Donatella; Dominici, Massimo; Kusuzaki, Katsuyuki; Baldini, Nicola

    2014-01-01

    The tumor microenvironment plays an important role in cancer progression. Here, we focused on the role of reactive mesenchymal stem cells (MSC) in osteosarcoma (OS), and used human adipose MSC and a panel of OS cell lines (Saos-2, HOS, and 143B) to investigate the mutual effect of normal-cancer cell metabolic programming. Our results showed that MSC are driven by oxidative stress induced by OS cells to undergo Warburg metabolism, with increased lactate production. Therefore, we analyzed the expression of lactate monocarboxylate transporters. By real time PCR and immunofluorescence, in MSC we detected the expression of MCT-4, the transporter for lactate efflux, whereas MCT-1, responsible for lactate uptake, was expressed in OS cells. In agreement, silencing of MCT-1 by siRNA significantly affected the ATP production in OS cancer cells. Thus, cancer cells directly increase their mitochondrial biogenesis using this energy-rich metabolite that is abundantly provided by MSC as an effect of the altered microenvironmental conditions induced by OS cells. We also showed that lactate produced by MSC promotes the migratory ability of OS cells. These data provide novel information to be exploited for cancer therapies targeting the mutual metabolic reprogramming of cancer cells and their stroma. PMID:25277190

  3. Structure to function prediction of hypothetical protein KPN_00953 (Ycbk) from Klebsiella pneumoniae MGH 78578 highlights possible role in cell wall metabolism

    PubMed Central

    2014-01-01

    Background Klebsiella pneumoniae plays a major role in causing nosocomial infection in immunocompromised patients. Medical inflictions by the pathogen can range from respiratory and urinary tract infections, septicemia and primarily, pneumonia. As more K. pneumoniae strains are becoming highly resistant to various antibiotics, treatment of this bacterium has been rendered more difficult. This situation, as a consequence, poses a threat to public health. Hence, identification of possible novel drug targets against this opportunistic pathogen need to be undertaken. In the complete genome sequence of K. pneumoniae MGH 78578, approximately one-fourth of the genome encodes for hypothetical proteins (HPs). Due to their low homology and relatedness to other known proteins, HPs may serve as potential, new drug targets. Results Sequence analysis on the HPs of K. pneumoniae MGH 78578 revealed that a particular HP termed KPN_00953 (YcbK) contains a M15_3 peptidases superfamily conserved domain. Some members of this superfamily are metalloproteases which are involved in cell wall metabolism. BLASTP similarity search on KPN_00953 (YcbK) revealed that majority of the hits were hypothetical proteins although two of the hits suggested that it may be a lipoprotein or related to twin-arginine translocation (Tat) pathway important for transport of proteins to the cell membrane and periplasmic space. As lipoproteins and other components of the cell wall are important pathogenic factors, homology modeling of KPN_00953 was attempted to predict the structure and function of this protein. Three-dimensional model of the protein showed that its secondary structure topology and active site are similar with those found among metalloproteases where two His residues, namely His169 and His209 and an Asp residue, Asp176 in KPN_00953 were found to be Zn-chelating residues. Interestingly, induced expression of the cloned KPN_00953 gene in lipoprotein-deficient E. coli JE5505 resulted in smoother

  4. Gemcitabine induced cardiomyopathy: a case of multiple hit cardiotoxicity.

    PubMed

    Mohebali, Donya; Matos, Jason; Chang, James Ducksoon

    2017-02-01

    Gemcitabine is a commonly used antineoplastic agent used to treat a variety of cancers with rarely reported cardiac side effects. We describe a case of a 67-year-old woman with follicular lymphoma who experienced a rarely reported side effect of gemcitabine: cardiomyopathy. This case highlights a multiple hit mechanism of myocyte damage that may occur following the use of multiple cardio-toxic agents despite their administration in doses not associated with cardiotoxicity.

  5. Improved Low-Cost Multi-Hit Transparent Armor

    DTIC Science & Technology

    2006-11-01

    MD Aberdeen Proving Ground , MD 21005-5069 ABSTRACT Operation Iraqi Freedom has clearly demonstrated the criticality of transparent armor in...Motyka at ARL) A polymer backing acts as a spall shield and holds fractured armor in place. Interlayer between polycarbonate and ceramics is...Hsieh, Gary A. Gilde U.S. Army Research Laboratory Aberdeen Proving Ground , MD IMPROVED LOW-COST MULTI-HIT TRANSPARENT ARMOR Distribution A

  6. The role and importance of club cells (Clara cells) in the pathogenesis of some respiratory diseases

    PubMed Central

    Rokicki, Marek; Wojtacha, Jacek; Dżeljijli, Agata

    2016-01-01

    The report presents the cellular structure of the respiratory system as well as the history of club cells (Clara cells), their ultrastructure, and location in the airways and human organs. The authors discuss the biochemical structure of proteins secreted by these cells and their importance for the integrity and regeneration of the airway epithelium. Their role as progenitor cells for the airway epithelium and their involvement in the biotransformation of toxic xenobiotics introduced into the lungs during breathing is emphasized. This is followed by a discussion of the clinical aspects associated with club cells, demonstrating that tracking the serum concentration of club cell-secreted proteins is helpful in the diagnosis of a number of lung tissue diseases. Finally, suggestions are provided regarding the possible use of proteins secreted by club cells in the treatment of serious respiratory conditions. PMID:27212975

  7. COPD: A stepwise or a hit hard approach?

    PubMed

    Ferreira, A J; Reis, A; Marçal, N; Pinto, P; Bárbara, C

    2016-01-01

    Current guidelines differ slightly on the recommendations for treatment of Chronic Obstructive Pulmonary Disease (COPD) patients, and although there are some undisputed recommendations, there is still debate regarding the management of COPD. One of the hindrances to deciding which therapeutic approach to choose is late diagnosis or misdiagnosis of COPD. After a proper diagnosis is achieved and severity assessed, the choice between a stepwise or "hit hard" approach has to be made. For GOLD A patients the stepwise approach is recommended, whilst for B, C and D patients this remains debatable. Moreover, in patients for whom inhaled corticosteroids (ICS) are recommended, a step-up or "hit hard" approach with triple therapy will depend on the patient's characteristics and, for patients who are being over-treated with ICS, ICS withdrawal should be performed, in order to optimize therapy and reduce excessive medications. This paper discusses and proposes stepwise, "hit hard", step-up and ICS withdrawal therapeutic approaches for COPD patients based on their GOLD group. We conclude that all approaches have benefits, and only a careful patient selection will determine which approach is better, and which patients will benefit the most from each approach.

  8. Cognitive orientations in marathon running and "hitting the wall"

    PubMed Central

    Stevinson, C. D.; Biddle, S. J.

    1998-01-01

    OBJECTIVES: To investigate whether runners' cognitions during a marathon are related to "hitting the wall". To test a new and more comprehensive system for classifying cognition of marathon runners. METHODS: Non-elite runners (n = 66) completed a questionnaire after finishing the 1996 London marathon. The runners were recruited through the charity SPARKS for whom they were raising money by running in the race. RESULTS: Most runners reported that during the race their thoughts were internally associative, with internally dissociative thoughts being the least prevalent. Runners who "hit the wall" used more internal dissociation than other runners, indicating that it is a hazardous strategy, probably because sensory feedback is blocked. However, internal association was related to an earlier onset of "the wall", suggesting that too much attention on physical symptoms may magnify them, thereby exaggerating any discomfort. External dissociation was related to a later onset, probably because it may provide a degree of distraction but keeps attention on the race. CONCLUSIONS: "Hitting the wall" for recreational non-elite marathon runners is associated with their thought patterns during the race. In particular, "the wall" is associated with internal dissociation. 




 PMID:9773172

  9. Effective progression of nuclear magnetic resonance-detected fragment hits.

    PubMed

    Eaton, Hugh L; Wyss, Daniel F

    2011-01-01

    Fragment-based drug discovery (FBDD) has become increasingly popular over the last decade as an alternate lead generation tool to HTS approaches. Several compounds have now progressed into the clinic which originated from a fragment-based approach, demonstrating the utility of this emerging field. While fragment hit identification has become much more routine and may involve different screening approaches, the efficient progression of fragment hits into quality lead series may still present a major bottleneck for the broadly successful application of FBDD. In our laboratory, we have extensive experience in fragment-based NMR screening (SbN) and the subsequent iterative progression of fragment hits using structure-assisted chemistry. To maximize impact, we have applied this approach strategically to early- and high-priority targets, and those struggling for leads. Its application has yielded a clinical candidate for BACE1 and lead series in about one third of the SbN/FBDD projects. In this chapter, we will give an overview of our strategy and focus our discussion on NMR-based FBDD approaches.

  10. The Role of Antigen Presenting Cells in Multiple Sclerosis

    PubMed Central

    Chastain, Emily M. L.; Duncan, D'Anne S.; Rodgers, Jane M.; Miller, Stephen D.

    2010-01-01

    Multiple Sclerosis (MS) is a debilitating T cell-mediated autoimmune disease of the central nervous system (CNS). Animal models of MS, such as experimental autoimmune encephalomyelitis (EAE) and Theiler's murine encephalomyelitis virus-Induced demyelinating disease (TMEV-IDD) have given light to cellular mechanisms involved in the initiation and progression of this organ-specific autoimmune disease. Within the CNS, antigen presenting cells (APC) such as microglia and astrocytes participate as first line defenders against infections or inflammation. However, during chronic inflammation they can participate in perpetuating the self-destructive environment by secretion of inflammatory factors and/or presentation of myelin epitopes to autoreactive T cells. Dendritic cells (DC) are also participants in the presentation of antigen to T cells, even within the CNS. While the APCs alone are not solely responsible for mediating the destruction to the myelin sheath, they are critical players in perpetuating the inflammatory milieu. This review will highlight relevant studies which have provided insight to the roles played by microglia, DCs and astrocytes in the context of CNS autoimmunity. PMID:20637861

  11. Opposing roles of glutaminase isoforms in determining glioblastoma cell phenotype.

    PubMed

    Szeliga, Monika; Albrecht, Jan

    2015-09-01

    Glutamine (Gln) and glutamate (Glu) play pivotal roles in the malignant phenotype of brain tumors via multiple mechanisms. Glutaminase (GA, EC 3.5.1.2) metabolizes Gln to Glu and ammonia. Human GA isoforms are encoded by two genes: GLS gene codes for kidney-type isoforms, KGA and GAC, whereas GLS2 codes for liver-type isoforms, GAB and LGA. The expression pattern of both genes in different neoplastic cell lines and tissues implicated that the kidney-type isoforms are associated with cell proliferation, while the liver-type isoforms dominate in, and contribute to the phenotype of quiescent cells. GLS gene has been demonstrated to be regulated by oncogene c-Myc, whereas GLS2 gene was identified as a target gene of p53 tumor suppressor. In glioblastomas (GBM, WHO grade IV), the most aggressive brain tumors, high levels of GLS and only traces or lack of GLS2 transcripts were found. Ectopic overexpression of GLS2 in human glioblastoma T98G cells decreased their proliferation and migration and sensitized them to the alkylating agents often used in the chemotherapy of gliomas. GLS silencing reduced proliferation of glioblastoma T98G cells and strengthen the antiproliferative effect evoked by previous GLS2 overexpression.

  12. The Role of Latently Infected B Cells in CNS Autoimmunity

    PubMed Central

    Márquez, Ana Citlali; Horwitz, Marc Steven

    2015-01-01

    The onset of multiple sclerosis (MS) is caused by both genetic and environmental factors. Among the environmental factors, it is believed that previous infection with Epstein–Barr virus (EBV) may contribute in the development of MS. EBV has been associated with other autoimmune diseases, such as systemic lupus erythematous, and cancers like Burkitt’s lymphoma. EBV establishes a life-long latency in B cells with occasional reactivation of the virus throughout the individual’s life. The role played by B cells in MS pathology has been largely studied, yet is not clearly understood. In MS patients, Rituximab, a novel treatment that targets CD20+ B cells, has proven to have successful results in diminishing the number of relapses in remitting relapsing MS; however, the mechanism of how this drug acts has not been clearly established. In this review, we analyze the evidence of how B cells latently infected with EBV might be altering the immune system response and helping in the development of MS. We will also discuss how animal models, such as experimental autoimmune encephalomyelitis (EAE) and murine gammaherpesvirus-68 (γHV-68), can be used as powerful tools in the study of the relationship between EBV, MS, and B cells. PMID:26579121

  13. The role of the cell wall in plant immunity

    PubMed Central

    Malinovsky, Frederikke G.; Fangel, Jonatan U.; Willats, William G. T.

    2014-01-01

    The battle between plants and microbes is evolutionarily ancient, highly complex, and often co-dependent. A primary challenge for microbes is to breach the physical barrier of host cell walls whilst avoiding detection by the plant’s immune receptors. While some receptors sense conserved microbial features, others monitor physical changes caused by an infection attempt. Detection of microbes leads to activation of appropriate defense responses that then challenge the attack. Plant cell walls are formidable and dynamic barriers. They are constructed primarily of complex carbohydrates joined by numerous distinct connection types, and are subject to extensive post-synthetic modification to suit prevailing local requirements. Multiple changes can be triggered in cell walls in response to microbial attack. Some of these are well described, but many remain obscure. The study of the myriad of subtle processes underlying cell wall modification poses special challenges for plant glycobiology. In this review we describe the major molecular and cellular mechanisms that underlie the roles of cell walls in plant defense against pathogen attack. In so doing, we also highlight some of the challenges inherent in studying these interactions, and briefly describe the analytical potential of molecular probes used in conjunction with carbohydrate microarray technology. PMID:24834069

  14. Role of stem cells during diabetic liver injury.

    PubMed

    Wan, Ying; Garner, Jessica; Wu, Nan; Phillip, Levine; Han, Yuyan; McDaniel, Kelly; Annable, Tami; Zhou, Tianhao; Francis, Heather; Glaser, Shannon; Huang, Qiaobing; Alpini, Gianfranco; Meng, Fanyin

    2016-02-01

    Diabetes mellitus is one of the most severe endocrine metabolic disorders in the world that has serious medical consequences with substantial impacts on the quality of life. Type 2 diabetes is one of the main causes of diabetic liver diseases with the most common being non-alcoholic fatty liver disease. Several factors that may explain the mechanisms related to pathological and functional changes of diabetic liver injury include: insulin resistance, oxidative stress and endoplasmic reticulum stress. The realization that these factors are important in hepatocyte damage and lack of donor livers has led to studies concentrating on the role of stem cells (SCs) in the prevention and treatment of liver injury. Possible avenues that the application of SCs may improve liver injury include but are not limited to: the ability to differentiate into pancreatic β-cells (insulin producing cells), the contribution for hepatocyte regeneration, regulation of lipogenesis, glucogenesis and anti-inflammatory actions. Once further studies are performed to explore the underlying protective mechanisms of SCs and the advantages and disadvantages of its application, there will be a greater understand of the mechanism and therapeutic potential. In this review, we summarize the findings regarding the role of SCs in diabetic liver diseases.

  15. Role of Cks1 Overexpression in Oral Squamous Cell Carcinomas

    PubMed Central

    Kitajima, Shojiro; Kudo, Yasusei; Ogawa, Ikuko; Bashir, Tarig; Kitagawa, Masae; Miyauchi, Mutsumi; Pagano, Michele; Takata, Takashi

    2004-01-01

    Down-regulation of p27 is frequently observed in various cancers due to an enhancement of its degradation. Skp2 is required for the ubiquitination and consequent degradation of p27 protein. Another protein called Cks1 is also required for p27 ubiquitination in the SCFSkp2 ubiquitinating machinery. In the present study, we examined Cks1 expression and its correlation with p27 in oral squamous cell carcinoma (OSCC) derived from tongue and gingiva. By immunohistochemical analysis, high expression of Cks1 was present in 62% of OSCCs in comparison with 0% of normal mucosae. In addition, 65% of samples with low p27 expression displayed high Cks1 levels. Finally, Cks1 expression was well correlated with Skp2 expression and poor prognosis. To study the role of Cks1 overexpression in p27 down-regulation, we transfected Cks1 with or without Skp2 into OSCC cells. Cks1 transfection could not induce a p27 down-regulation by itself, but both Cks1 and Skp2 transfection strongly induced. Moreover, we inhibited Cks1 expression by small interference RNA (siRNA) in OSCC. Cks1 siRNA transfection induced p27 accumulation and inhibited the growth of OSCC cells. These findings suggest that Cks1 overexpression may play an important role for OSCC development through Skp2-mediated p27 degradation, and that Cks1 siRNA can be a novel modality of gene therapy. PMID:15579456

  16. Emerging roles of immune cells in luteal angiogenesis.

    PubMed

    Shirasuna, Koumei; Shimizu, Takashi; Matsui, Motozumi; Miyamoto, Akio

    2013-01-01

    In the mammalian ovary, the corpus luteum (CL) is a unique transient endocrine organ displaying rapid angiogenesis and time-dependent accumulation of immune cells. The CL closely resembles 'transitory tumours', and the rate of luteal growth equals that of the fastest growing tumours. Recently, attention has focused on multiple roles of immune cells in luteal function, not only in luteolysis (CL disruption by immune responses involving T lymphocytes and macrophages), but also in CL development (CL remodelling by different immune responses involving neutrophils and macrophages). Neutrophils and macrophages regulate angiogenesis, lymphangiogenesis, and steroidogenesis by releasing cytokines in the CL. In addition, functional polarisation of neutrophils (proinflammatory N1 vs anti-inflammatory N2) and macrophages (proinflammatory M1 vs anti-inflammatory M2) has been demonstrated. This new concept concurs with the phenomenon of immune function within the luteal microenvironment: active development of the CL infiltrating anti-inflammatory N2 and M2 versus luteal regression together with proinflammatory N1 and M1. Conversely, excessive angiogenic factors and leucocyte infiltration result in indefinite disordered tumour development. However, the negative feedback regulator vasohibin-1 in the CL prevents excessive tumour-like vasculogenesis, suggesting that CL development has well coordinated time-dependent mechanisms. In this review, we discuss the physiological roles of immune cells involved in innate immunity (e.g. neutrophils and macrophages) in the local regulation of CL development with a primary focus on the cow.

  17. The Role of Mast Cells in Alzheimer's Disease.

    PubMed

    Shaik-Dasthagirisaheb, Yasdani B; Conti, Pio

    2016-01-01

    Immunity and inflammation are deeply involved in Alzheimer's disease. The most important properties of pathological Alzheimer's disease are the extracellular deposits of amyloid â-protein plaque aggregates along with other unknown mutated proteins, which are implicated in immunity and inflammation. Mast cells are found in the brain of all mammalian species and in the periphery, and their biological mediators, including cytokines/chemokines, arachidonic acid products and stored enzymes, play an import role in Alzheimer's disease. Cytokines/chemokines, which are generated mostly by microglia and astrocytes in Alzheimer's disease, contribute to nearly every aspect of neuroinflammation and amyloid â-protein plaque aggregates may induce in mast cells the release of a plethora of mediators, including pro-inflammatory cytokines/chemokines such as interleukin-1, interleukin-6, interleukin-8, interleukin-10, tumor necrosis factor-alpha, vascular endothelial growth factor, transforming growth factor beta, CXCL8 and CCL2-3-4. These proinflammatory cytokines/chemokines are prominent mediators of neuroinflammation in brain disorders such as Alzheimer's disease, and their inhibition may be associated with improved recovery. In this review, we summarize the current knowledge regarding the roles of mast cell mediators (stored and de novo synthesis) in the pathogenesis of Alzheimer's disease.

  18. Teachers' Perspectives on Hitting Back in School: Between Inexcusable Violence and Self-Defense

    ERIC Educational Resources Information Center

    Fleischmann, Amos

    2015-01-01

    Israeli schools expressly forbid a student to hit back after being attacked. In semistructured interviews, 71 Israeli educators were asked for their views on the hitting-back tactic. The interviews compared their attitude toward hitting back as teachers with their take on the matter as parents. The results, analyzed using grounded theory, show…

  19. 42 CFR 495.332 - State Medicaid health information technology (HIT) plan requirements.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 42 Public Health 5 2012-10-01 2012-10-01 false State Medicaid health information technology (HIT... Medicaid health information technology (HIT) plan requirements. Each State Medicaid HIT plan must include... Medicaid Information Technology Architecture (MITA) principles as described in the Medicaid...

  20. 42 CFR 495.332 - State Medicaid health information technology (HIT) plan requirements.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 42 Public Health 5 2011-10-01 2011-10-01 false State Medicaid health information technology (HIT... Medicaid health information technology (HIT) plan requirements. Each State Medicaid HIT plan must include... Medicaid Information Technology Architecture (MITA) principles as described in the Medicaid...

  1. 42 CFR 495.332 - State Medicaid health information technology (HIT) plan requirements.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 42 Public Health 5 2013-10-01 2013-10-01 false State Medicaid health information technology (HIT... Medicaid health information technology (HIT) plan requirements. Each State Medicaid HIT plan must include... Medicaid Information Technology Architecture (MITA) principles as described in the Medicaid...

  2. 42 CFR 495.332 - State Medicaid health information technology (HIT) plan requirements.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 42 Public Health 5 2014-10-01 2014-10-01 false State Medicaid health information technology (HIT... Medicaid health information technology (HIT) plan requirements. Each State Medicaid HIT plan must include... Medicaid Information Technology Architecture (MITA) principles as described in the Medicaid...

  3. 42 CFR 495.332 - State Medicaid health information technology (HIT) plan requirements.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 42 Public Health 5 2010-10-01 2010-10-01 false State Medicaid health information technology (HIT... Medicaid health information technology (HIT) plan requirements. Each State Medicaid HIT plan must include... Medicaid Information Technology Architecture (MITA) principles as described in the Medicaid...

  4. Emerging role of regulatory T cells in gene transfer.

    PubMed

    Cao, Ou; Furlan-Freguia, Christian; Arruda, Valder R; Herzog, Roland W

    2007-10-01

    Induction and maintenance of immune tolerance to therapeutic transgene products are key requirements for successful gene replacement therapies. Gene transfer may also be used to specifically induce immune tolerance and thereby augment other types of therapies. Similarly, gene therapies for treatment of autoimmune diseases are being developed in order to restore tolerance to self-antigens. Regulatory T cells have emerged as key players in many aspects of immune tolerance, and a rapidly increasing body of work documents induction and/or activation of regulatory T cells by gene transfer. Regulatory T cells may suppress antibody formation and cytotoxic T cell responses and may be critical for immune tolerance to therapeutic proteins. In this regard, CD4(+)CD25(+) regulatory T cells have been identified as important components of tolerance in several gene transfer protocols, including hepatic in vivo gene transfer. Augmentation of regulatory T cell responses should be a promising new tool to achieve tolerance and avoid immune-mediated rejection of gene therapy. During the past decade, it has become obvious that immune regulation is an important and integral component of tolerance to self-antigens and of many forms of induced tolerance. Gene therapy can only be successful if the immune system does not reject the therapeutic transgene product. Recent studies provide a rapidly growing body of evidence that regulatory T cells (T(reg)) are involved and often play a crucial role in tolerance to proteins expressed by means of gene transfer. This review seeks to provide an overview of these data and their implications for gene therapy.

  5. The role of dendritic cells and regulatory T cells in the pathogenesis of morphea

    PubMed Central

    Teresiak-Mikołajczak, Ewa; Dańczak-Pazdrowska, Aleksandra; Kowalczyk, Michał; Żaba, Ryszard; Adamski, Zygmunt

    2015-01-01

    Morphea is one of diseases characterised by fibrosis of the skin and subcutaneous tissue. It is a chronic disease that does not shorten the life of the patient, yet significantly affects its quality. The group of factors responsible for its pathogenesis is thought to include disturbed functioning of endothelial cells as well as immune disturbances leading to chronic inflammatory conditions, accompanied by increased production of collagen and of other extracellular matrix components. Dendritic cells (DC) are a type of professional antigen-presenting cells and can be found in almost all body tissues. Individual investigations have demonstrated high numbers of plasmacytoid DC (pDC) in morphoeic skin lesions, within deeper dermal layers, around blood vessels, and around collagen fibres in subcutaneous tissue. It appears that DC has a more pronounced role in the development of inflammation and T cell activation in morphea, as compared to systemic sclerosis (SSc). Regulatory T (Treg) cells represent a subpopulation of T cells with immunosuppressive properties. Recent studies have drawn attention to the important role played by Treg in the process of autoimmunisation. Just a few studies have demonstrated a decrease in the number and activity of Treg in patients with SSc, and only such studies involve morphea. This article reviews recent studies on the role of DC and regulatory T cells in the pathogenesis of morphea. Moreover, mechanisms of phototherapy and potential therapeutic targets in the treatment of morphea are discussed in this context. PMID:26155191

  6. Stem cell populations in the heart and the role of Isl1 positive cells.

    PubMed

    Di Felice, V; Zummo, G

    2013-05-09

    Cardiac progenitor cells are multipotent stem cells isolated from both embryonic and adult hearts in several species and are able to differentiate at least into smooth muscle cells, endothelial cells and cardiomyocytes. The embryonic origin of these cells has not yet been demonstrated, but it has been suggested that these cells may derive from the first and secondary heart fields and from the neural crest. In the last decade, two diffe-rent populations of cardiac progenitor or stem cells have been identified and isolated, i.e., the Islet1 positive (Isl1+) and c-Kit positive (c-Kit+)/Stem Cell Antigen-1 positive (Sca-1+) cells. Until 2012, these two populations have been considered two separate entities with different roles and a different origin, but new evidence now suggests a con-nection between the two populations and that the two populations may represent two subpopulations of a unique pool of cardiac stem cells, derived from a common immature primitive cell. To find a common consensus on this concept is very important in furthe-ring the application of stem cells to cardiac tissue engineering.

  7. The role of regulatory T cells in cancer immunology.

    PubMed

    Whiteside, Theresa L

    2015-01-01

    Regulatory T cells (Treg) are generally considered to be significant contributors to tumor escape from the host immune system. Emerging evidence suggests, however, that in some human cancers, Treg are necessary to control chronic inflammation, prevent tissue damage, and limit inflammation-associated cancer development. The dual role of Treg in cancer and underpinnings of Treg diversity are not well understood. This review attempts to provide insights into the importance of Treg subsets in cancer development and its progression. It also considers the role of Treg as potential biomarkers of clinical outcome in cancer. The strategies for monitoring Treg in cancer patients are discussed as is the need for caution in the use of therapies which indiscriminately ablate Treg. A greater understanding of molecular pathways operating in various tumor microenvironments is necessary for defining the Treg impact on cancer and for selecting immunotherapies targeting Treg.

  8. The promising role of nivolumab in renal cell cancers.

    PubMed

    Gupta, Kanika; Tiu, Dorenett Yu; Tiu, John; Aragon-Ching, Jeanny B

    2016-01-01

    The therapeutic efficacy of checkpoint inhibitors across numerous tumor types has resulted in approval for neoplasms such as melanoma and lung cancer. Nivolumab is a fully humanized IgG4 antibody that inhibits immune checkpoint between programmed death 1 (PD-1) on T cells and PD-1 ligand 1 (PD-L1) and ligand 2 (PD-L2) on immune and cancer cells. Motzer and Colleagues published the findings of Nivolumab versus everolimus in advanced kidney cancer in the November issue of the New England Journal of Medicine. This trial showed that nivolumab resulted in better median overall survival of 25 months compared to everolimus at 19.6 months, with a hazard ratio for death at 0.73, meeting pre-specified criterion for superiority in favor of nivolumab. These findings mark the defining beneficial role of immune checkpoint inhibitor therapy in metastatic kidney cancer.

  9. The role of stem cells in limb regeneration

    PubMed Central

    Zielins, Elizabeth R.; Ransom, Ryan C.; Leavitt, Tripp E.; Longaker, Michael T.; Wan, Derrick C.

    2016-01-01

    ABSTRACT Limb regeneration is a complex yet fascinating process observed to some extent in many animal species, though seen in its entirety in urodele amphibians. Accomplished by formation of a morphologically uniform intermediate, the blastema, scientists have long attempted to define the cellular constituents that enable regrowth of a functional appendage. Today, we know that the blastema consists of a variety of multipotent progenitor cells originating from a variety of tissues, and which contribute to limb tissue regeneration in a lineage-restricted manner. By continuing to dissect the role of stem cells in limb regeneration, we can hope to one day modulate the human response to limb amputation and facilitate regrowth of a working replacement. PMID:27008101

  10. Role of PD-1 in regulating T-cell immunity.

    PubMed

    Jin, Hyun-Tak; Ahmed, Rafi; Okazaki, Taku

    2011-01-01

    Programmed cell death-1 (PD-1) is a member of the CD28 superfamily that delivers negative signals upon interaction with its two ligands, PD-L1 or PD-L2. PD-1 and its ligands are broadly expressed and exert a wider range of immunoregulatory roles in T cells activation and tolerance compared with other CD28 members. Subsequent studies show that PD-1-PD-L interaction regulates the induction and maintenance of peripheral tolerance and protect tissues from autoimmune attack. PD-1 and its ligands are also involved in attenuating infectious immunity and tumor immunity, and facilitating chronic infection and tumor progression. The biological significance of PD-1 and its ligand suggests the therapeutic potential of manipulation of PD-1 pathway against various human diseases. In this review, we summarize our current understanding of PD-1 and its ligands ranging from discovery to clinical significance.

  11. The role of adapter proteins in T cell activation.

    PubMed

    Koretzky, G A; Boerth, N J

    1999-12-01

    Engagement of antigen receptors on lymphocytes leads to a myriad of complex signal transduction cascades. Recently, work from several laboratories has led to the identification and characterization of novel adapter molecules, proteins with no intrinsic enzymatic activity but which integrate signal transduction pathways by mediating protein-protein interactions. Interestingly, it appears that many of these adapter proteins play as critical a role as the effector enzymes themselves in both lymphocyte development and activation. This review describes some of the biochemical and molecular features of several of these newly identified hematopoietic cell-specific adapter molecules highlighting their importance in regulating (both positively and negatively) signal transduction mediated by the T cell antigen receptor.

  12. Role of cell wall deconstructing enzymes in the proanthocyanidin-cell wall adsorption-desorption phenomena.

    PubMed

    Castro-López, Liliana del Rocío; Gómez-Plaza, Encarna; Ortega-Regules, Ana; Lozada, Daniel; Bautista-Ortín, Ana Belén

    2016-04-01

    The transference of proanthocyanidins from grapes to wine is quite low. This could be due, among other causes, to proanthocyanidins being bound to grape cell wall polysaccharides, which are present in high concentrations in the must. Therefore, the effective extraction of proanthocyanidins from grapes will depend on the ability to disrupt these associations, and, in this respect, enzymes that degrade these polysaccharides could play an important role. The main objective of this work was to test the behavior of proanthocyanidin-cell wall interactions when commercial maceration enzymes are present in the solution. The results showed that cell wall polysaccharides adsorbed a high amount of proanthocyanidins and only a limited quantity of proanthocyanidins could be desorbed from the cell walls after washing with a model solution. The presence of enzymes in the solution reduced the proanthocyanidin-cell wall interaction, probably through the elimination of pectins from the cell wall network.

  13. Role of NADPH Oxidase-4 in Human Endothelial Progenitor Cells

    PubMed Central

    Hakami, Nora Y.; Ranjan, Amaresh K.; Hardikar, Anandwardhan A.; Dusting, Greg J.; Peshavariya, Hitesh M.

    2017-01-01

    Introduction: Endothelial progenitor cells (EPCs) display a unique ability to promote angiogenesis and restore endothelial function in injured blood vessels. NADPH oxidase 4 (NOX4)-derived hydrogen peroxide (H2O2) serves as a signaling molecule and promotes endothelial cell proliferation and migration as well as protecting against cell death. However, the role of NOX4 in EPC function is not completely understood. Methods: EPCs were isolated from human saphenous vein and mammary artery discarded during bypass surgery. NOX4 gene and protein expression in EPCs were measured by real time-PCR and Western blot analysis respectively. NOX4 gene expression was inhibited using an adenoviral vector expressing human NOX4 shRNA (Ad-NOX4i). H2O2 production was measured by Amplex red assay. EPC migration was evaluated using a transwell migration assay. EPC proliferation and viability were measured using trypan blue counts. Results: Inhibition of NOX4 using Ad-NOX4i reduced Nox4 gene and protein expression as well as H2O2 formation in EPCs. Inhibition of NOX4-derived H2O2 decreased both proliferation and migration of EPCs. Interestingly, pro-inflammatory cytokine tumor necrosis factor alpha (TNFα) decreased NOX4 expression and reduced survival of EPCs. However, the survival of EPCs was further diminished by TNF-α in NOX4-knockdown cells, suggesting that NOX4 has a protective role in EPCs. Conclusion: These findings suggest that NOX4-type NADPH oxidase is important for proliferation and migration functions of EPCs and protects against pro-inflammatory cytokine induced EPC death. These properties of NOX4 may facilitate the efficient function of EPCs which is vital for successful neovascularization. PMID:28386230

  14. Role of specific endocytic pathways in electrotransfection of cells

    PubMed Central

    Chang, Chun-Chi; Wu, Mina; Yuan, Fan

    2014-01-01

    Electrotransfection is a technique utilized for gene delivery in both preclinical and clinical studies. However, its mechanisms are not fully understood. The goal of this study was to investigate specific pathways of endocytosis involved in electrotransfection. In the study, three different human cell lines (HEK293, HCT116, and HT29) were either treated with ice cold medium postelectrotransfection or endocytic inhibitors prior to electrotransfection. The inhibitors were pharmacological agents (chlorpromazine, genistein, and amiloride) or different small interfering RNA (siRNA) molecules that could knockdown expression of clathrin heavy chain (CLTC), caveolin-1, and Rab34, respectively. The reduction in gene expressions was confirmed with western blot analysis at 48-72h post-siRNA treatment. It was observed that treatments with either ice cold medium, chlorpromazine, or genistein resulted in significant reductions in electrotransfection efficiency (eTE) in all three cell lines, compared to the matched controls, but amiloride treatment had insignificant effects on eTE. For cells treated with siRNA, only CLTC knockdown resulted in eTE reduction for all three cell lines. Together, these data demonstrated that the clathrin-mediated endocytosis played an important role in electrotransfection. PMID:26052524

  15. Multifaceted role of prohibitin in cell survival and apoptosis.

    PubMed

    Peng, Ya-Ting; Chen, Ping; Ouyang, Ruo-Yun; Song, Lei

    2015-09-01

    Human eukaryotic prohibitin (prohibitin-1 and prohibitin-2) is a membrane protein with different cellular localizations. It is involved in multiple cellular functions, including energy metabolism, proliferation, apoptosis, and senescence. The subcellular localization of prohibitin may determine its functions. Membrane prohibitin regulate the cellular signaling of membrane transport, nuclear prohibitin control transcription activation and the cell cycle, and mitochondrial prohibitin complex stabilize the mitochondrial genome and modulate mitochondrial dynamics, mitochondrial morphology, mitochondrial biogenesis, and the mitochondrial intrinsic apoptotic pathway. Moreover, prohibitin can translocates into the nucleus or the mitochondria under apoptotic signals and the subcellular shuttling of prohibitin is necessary for apoptosis process. Apoptosis is the process of programmed cell death that is important for the maintenance of normal physiological functions. Consequently, any alteration in the content, post-transcriptional modification (i.e. phosphorylation) or the nuclear or mitochondrial translocation of prohibitin may influence cell fate. Understanding the mechanisms of the expression and regulation of prohibitin may be useful for future research. This review provides an overview of the multifaceted and essential roles played by prohibitin in the regulation of cell survival and apoptosis.

  16. Neurorestorative Role of Stem Cells in Alzheimer's Disease: Astrocyte Involvement.

    PubMed

    Choi, Sung S; Lee, Sang-Rae; Lee, Hong J

    2016-01-01

    Neurogenesis is maintained in both neonatal and adult brain, although it is dramatically reduced in aged neurogenic brain region such as the subgranular layer and subventricular zone of the dentate gyrus (DG). Astrocytes play important roles for survival and maintenance of neurons as well as maintenance of neurogenic niche in quiescent state. Aβ can induce astrocyte activation which give rise to produce reactive oxygen species (ROS) and cytotoxic cytokines and chemokines, and subsequently induce neuronal death. Unfortunately, the current therapeutic medicines have been limited to reduce the symptoms and delay the pathogenesis of Alzheimer's disease (AD), but not to cure it. Stem cells enhance neurogenesis and Aβ clearing as well as improved cognitive impairment. Neurotrophins and growth factors which are produced from both stem cells and astrocytes also have neuroprotective effects via neurogenesis. Secreted factors from both astrocytes and neural stem cells also are influenced in neurogenesis and neuron survival in neurodegenerative diseases. Transplanted stem cells overexpressing neurogenic factors may be an effective and therapeutic tool to enhance neurogenesis for AD.

  17. Role for protein geranylgeranylation in adult T-cell leukemia cell survival

    SciTech Connect

    Nonaka, Mizuho; Uota, Shin; Saitoh, Yasunori; Takahashi, Mayumi; Sugimoto, Haruyo; Amet, Tohti; Arai, Ayako; Miura, Osamu; Yamamoto, Naoki; Yamaoka, Shoji

    2009-01-15

    Adult T-cell leukemia (ATL) is a fatal lymphoproliferative disease that develops in human T-cell leukemia virus type I (HTLV-I)-infected individuals. Despite the accumulating knowledge of the molecular biology of HTLV-I-infected cells, effective therapeutic strategies remain to be established. Recent reports showed that the hydroxyl-3-methylglutaryl (HMG)-CoA reductase inhibitor statins have anti-proliferative and apoptotic effects on certain tumor cells through inhibition of protein prenylation. Here, we report that statins hinder the survival of ATL cells and induce apoptotic cell death. Inhibition of protein geranylgeranylation is responsible for these effects, since simultaneous treatment with isoprenoid precursors, geranylgeranyl pyrophosphate or farnesyl pyrophosphate, but not a cholesterol precursor squalene, restored the viability of ATL cells. Simvastatin inhibited geranylgeranylation of small GTPases Rab5B and Rac1 in ATL cells, and a geranylgeranyl transferase inhibitor GGTI-298 reduced ATL cell viability more efficiently than a farnesyl transferase inhibitor FTI-277. These results not only unveil an important role for protein geranylgeranylation in ATL cell survival, but also implicate therapeutic potentials of statins in the treatment of ATL.

  18. Mechanical roles of apical constriction, cell elongation, and cell migration during neural tube formation in Xenopus.

    PubMed

    Inoue, Yasuhiro; Suzuki, Makoto; Watanabe, Tadashi; Yasue, Naoko; Tateo, Itsuki; Adachi, Taiji; Ueno, Naoto

    2016-12-01

    Neural tube closure is an important and necessary process during the development of the central nervous system. The formation of the neural tube structure from a flat sheet of neural epithelium requires several cell morphogenetic events and tissue dynamics to account for the mechanics of tissue deformation. Cell elongation changes cuboidal cells into columnar cells, and apical constriction then causes them to adopt apically narrow, wedge-like shapes. In addition, the neural plate in Xenopus is stratified, and the non-neural cells in the deep layer (deep cells) pull the overlying superficial cells, eventually bringing the two layers of cells to the midline. Thus, neural tube closure appears to be a complex event in which these three physical events are considered to play key mechanical roles. To test whether these three physical events are mechanically sufficient to drive neural tube formation, we employed a three-dimensional vertex model and used it to simulate the process of neural tube closure. The results suggest that apical constriction cued the bending of the neural plate by pursing the circumference of the apical surface of the neural cells. Neural cell elongation in concert with apical constriction further narrowed the apical surface of the cells and drove the rapid folding of the neural plate, but was insufficient for complete neural tube closure. Migration of the deep cells provided the additional tissue deformation necessary for closure. To validate the model, apical constriction and cell elongation were inhibited in Xenopus laevis embryos. The resulting cell and tissue shapes resembled the corresponding simulation results.

  19. The Head Tracks and Gaze Predicts: How the World’s Best Batters Hit a Ball

    PubMed Central

    Mann, David L.; Spratford, Wayne; Abernethy, Bruce

    2013-01-01

    Hitters in fast ball-sports do not align their gaze with the ball throughout ball-flight; rather, they use predictive eye movement strategies that contribute towards their level of interceptive skill. Existing studies claim that (i) baseball and cricket batters cannot track the ball because it moves too quickly to be tracked by the eyes, and that consequently (ii) batters do not – and possibly cannot – watch the ball at the moment they hit it. However, to date no studies have examined the gaze of truly elite batters. We examined the eye and head movements of two of the world’s best cricket batters and found both claims do not apply to these batters. Remarkably, the batters coupled the rotation of their head to the movement of the ball, ensuring the ball remained in a consistent direction relative to their head. To this end, the ball could be followed if the batters simply moved their head and kept their eyes still. Instead of doing so, we show the elite batters used distinctive eye movement strategies, usually relying on two predictive saccades to anticipate (i) the location of ball-bounce, and (ii) the location of bat-ball contact, ensuring they could direct their gaze towards the ball as they hit it. These specific head and eye movement strategies play important functional roles in contributing towards interceptive expertise. PMID:23516460

  20. An Analytic Model for the Success Rate of a Robotic Actuator System in Hitting Random Targets

    PubMed Central

    Bradley, Stuart

    2015-01-01

    Autonomous robotic systems are increasingly being used in a wide range of applications such as precision agriculture, medicine, and the military. These systems have common features which often includes an action by an “actuator” interacting with a target. While simulations and measurements exist for the success rate of hitting targets by some systems, there is a dearth of analytic models which can give insight into, and guidance on optimization, of new robotic systems. The present paper develops a simple model for estimation of the success rate for hitting random targets from a moving platform. The model has two main dimensionless parameters: the ratio of actuator spacing to target diameter; and the ratio of platform distance moved (between actuator “firings”) to the target diameter. It is found that regions of parameter space having specified high success are described by simple equations, providing guidance on design. The role of a “cost function” is introduced which, when minimized, provides optimization of design, operating, and risk mitigation costs. PMID:26610500

  1. An Analytic Model for the Success Rate of a Robotic Actuator System in Hitting Random Targets.

    PubMed

    Bradley, Stuart

    2015-11-20

    Autonomous robotic systems are increasingly being used in a wide range of applications such as precision agriculture, medicine, and the military. These systems have common features which often includes an action by an "actuator" interacting with a target. While simulations and measurements exist for the success rate of hitting targets by some systems, there is a dearth of analytic models which can give insight into, and guidance on optimization, of new robotic systems. The present paper develops a simple model for estimation of the success rate for hitting random targets from a moving platform. The model has two main dimensionless parameters: the ratio of actuator spacing to target diameter; and the ratio of platform distance moved (between actuator "firings") to the target diameter. It is found that regions of parameter space having specified high success are described by simple equations, providing guidance on design. The role of a "cost function" is introduced which, when minimized, provides optimization of design, operating, and risk mitigation costs.

  2. Prominent role for plasmacytoid dendritic cells in mucosal T cell-independent IgA induction.

    PubMed

    Tezuka, Hiroyuki; Abe, Yukiko; Asano, Jumpei; Sato, Taku; Liu, Jiajia; Iwata, Makoto; Ohteki, Toshiaki

    2011-02-25

    Although both conventional dendritic cells (cDCs) and plasmacytoid dendritic cells (pDCs) are present in the gut-associated lymphoid tissues (GALT), the roles of pDCs in the gut remain largely unknown. Here we show a critical role for pDCs in T cell-independent (TI) IgA production by B cells in the GALT. When pDCs of the mesenteric lymph nodes (MLNs) and Peyer's patches (PPs) (which are representative GALT) were cultured with naive B cells to induce TI IgA class switch recombination (CSR), IgA production was substantially higher than in cocultures of these cells with cDCs. IgA production was dependent on APRIL and BAFF production by pDCs. Importantly, pDC expression of APRIL and BAFF was dependent on stromal cell-derived type I IFN signaling under steady-state conditions. Our findings provide insight into the molecular basis of pDC conditioning to induce mucosal TI IgA production, which may lead to improvements in vaccination strategies and treatment for mucosal-related disorders.

  3. Novel roles of plant RETINOBLASTOMA-RELATED (RBR) protein in cell proliferation and asymmetric cell division.

    PubMed

    Desvoyes, Bénédicte; de Mendoza, Alex; Ruiz-Trillo, Iñaki; Gutierrez, Crisanto

    2014-06-01

    The retinoblastoma (Rb) protein was identified as a human tumour suppressor protein that controls various stages of cell proliferation through the interaction with members of the E2F family of transcription factors. It was originally thought to be specific to animals but plants contain homologues of Rb, called RETINOBLASTOMA-RELATED (RBR). In fact, the Rb-E2F module seems to be a very early acquisition of eukaryotes. The activity of RBR depends on phosphorylation of certain amino acid residues, which in most cases are well conserved between plant and animal proteins. In addition to its role in cell-cycle progression, RBR has been shown to participate in various cellular processes such as endoreplication, transcriptional regulation, chromatin remodelling, cell growth, stem cell biology, and differentiation. Here, we discuss the most recent advances to define the role of RBR in cell proliferation and asymmetric cell division. These and other reports clearly support the idea that RBR is used as a landing platform of a plethora of cellular proteins and complexes to control various aspects of cell physiology and plant development.

  4. A Role for Programmed Cell Death in the Microbial Loop

    PubMed Central

    Durand, Pierre M.; Whitehead, Kenia; Baliga, Nitin S.

    2013-01-01

    The microbial loop is the conventional model by which nutrients and minerals are recycled in aquatic eco-systems. Biochemical pathways in different organisms become metabolically inter-connected such that nutrients are utilized, processed, released and re-utilized by others. The result is that unrelated individuals end up impacting each others' fitness directly through their metabolic activities. This study focused on the impact of programmed cell death (PCD) on a population's growth as well as its role in the exchange of carbon between two naturally co-occurring halophilic organisms. Flow cytometric, biochemical, 14C radioisotope tracing assays, and global transcriptomic analyses show that organic algal photosynthate released by Dunalliela salina cells undergoing PCD complements the nutritional needs of other non-PCD D. salina cells. This occurs in vitro in a carbon limited environment and enhances the growth of the population. In addition, a co-occurring heterotroph Halobacterium salinarum re-mineralizes the carbon providing elemental nutrients for the mixoheterotrophic chlorophyte. The significance of this is uncertain and the archaeon can also subsist entirely on the lysate of apoptotic algae. PCD is now well established in unicellular organisms; however its ecological relevance has been difficult to decipher. In this study we found that PCD in D. salina causes the release of organic nutrients such as glycerol, which can be used by others in the population as well as a co-occurring halophilic archaeon. H. salinarum also re-mineralizes the dissolved material promoting algal growth. PCD in D. salina was the mechanism for the flow of dissolved photosynthate between unrelated organisms. Ironically, programmed death plays a central role in an organism's own population growth and in the exchange of nutrients in the microbial loop. PMID:23667496

  5. Hit efficiency study of CMS prototype forward pixel detectors

    SciTech Connect

    Kim, Dongwook; /Johns Hopkins U.

    2006-01-01

    In this paper the author describes the measurement of the hit efficiency of a prototype pixel device for the CMS forward pixel detector. These pixel detectors were FM type sensors with PSI46V1 chip readout. The data were taken with the 120 GeV proton beam at Fermilab during the period of December 2004 to February 2005. The detectors proved to be highly efficient (99.27 {+-} 0.02%). The inefficiency was primarily located near the corners of the individual pixels.

  6. The role of p53 in cell metabolism

    PubMed Central

    Zhang, Xing-ding; Qin, Zheng-hong; Wang, Jin

    2010-01-01

    The p53 tumor suppressor gene has recently been shown to mediate metabolic changes in cells under physiological and pathological conditions. It has been revealed that p53 regulates energy metabolism, oxidative stress, and amino acid metabolism through balancing glycolysis and oxidative phosphorylation (OXPHOS) as well as the autophagy pathway. p53 is activated by metabolic stress through AMP-activated protein kinase (AMPK) and the mammalian target of rapamycin (mTOR) signaling pathways. p53 regulates OXPHOS through the transcriptional regulation of fructose-2,6-bisphosophatase, TP53-induced glycolysis regulator (TIGAR) and synthesis of cytochrome c oxidase (SCO2) subunit of complex IV of the electron transport chain. p53 also indirectly influences the energy metabolism through regulating glucose transporter (GLUT) expression, glutaminase 2 (GLS2) and fatty acid synthase (FAS). In addition, p53 regulates autophagy to provide cell metabolites for surviving through damage regulated autophagy modulator (DRAM1). Here we review the recent findings to elucidate the important role of p53 in cell metabolism. PMID:20729871

  7. Unifying roles for regulatory T cells and inflammation in cancer

    PubMed Central

    Erdman, Susan E.; Rao, Varada P.; Olipitz, Werner; Taylor, Christie L.; Jackson, Erin A.; Levkovich, Tatiana; Lee, Chung-Wei; Horwitz, Bruce H.; Fox, James G.; Ge, Zhongming; Poutahidis, Theofilos

    2014-01-01

    Activities of CD4+ regulatory (TREG) cells restore immune homeostasis during chronic inflammatory disorders. Roles for TREG cells in inflammation-associated cancers, however, are paradoxical. It is widely believed that TREG function in cancer mainly to suppress protective anticancer responses. However, we demonstrate here that TREG cells also function to reduce cancer risk throughout the body by efficiently downregulating inflammation arising from the gastrointestinal (GI) tract. Building on a “hygiene hypothesis” model in which GI infections lead to changes in TREG that reduce immune-mediated diseases, here we show that gut bacteria-triggered TREG may function to inhibit cancer even in extraintestinal sites. Ability of bacteria-stimulated TREG to suppress cancer depends on interleukin (IL)-10, which serves to maintain immune homeostasis within bowel and support a protective antiinflammatory TREG phenotype. However, under proinflammatory conditions, TREG may fail to provide antiinflammatory protection and instead contribute to a T helper (Th)-17-driven procarcinogenic process; a cancer state that is reversible by downregulation of inflammation. Consequently, hygienic individuals with a weakened IL-10 and TREG-mediated inhibitory loop are highly susceptible to the carcinogenic consequences of elevated IL-6 and IL-17 and show more frequent inflammation-associated cancers. Taken together, these data unify seemingly divergent disease processes such as autoimmunity and cancer and help explain the paradox of TREG and inflammation in cancer. Enhancing protective TREG functions may promote healthful longevity and significantly reduce risk of cancer. PMID:19795459

  8. Role of nuclear receptors in breast cancer stem cells

    PubMed Central

    Papi, Alessio; Orlandi, Marina

    2016-01-01

    The recapitulation of primary tumour heterogenity and the existence of a minor sub-population of cancer cells, capable of initiating tumour growth in xenografts on serial passages, led to the hypothesis that cancer stem cells (CSCs) exist. CSCs are present in many tumours, among which is breast cancer. Breast CSCs (BCSCs) are likely to sustain the growth of the primary tumour mass, as well as to be responsible for disease relapse and metastatic spreading. Consequently, BCSCs represent the most significant target for new drugs in breast cancer therapy. Both the hypoxic condition in BCSCs biology and pro-inflammatory cytokine network has gained increasing importance in the recent past. Breast stromal cells are crucial components of the tumours milieu and are a major source of inflammatory mediators. Recently, the anti-inflammatory role of some nuclear receptors ligands has emerged in several diseases, including breast cancer. Therefore, the use of nuclear receptors ligands may be a valid strategy to inhibit BCSCs viability and consequently breast cancer growth and disease relapse. PMID:27022437

  9. The critical role of quercetin in autophagy and apoptosis in HeLa cells.

    PubMed

    Wang, Yijun; Zhang, Wei; Lv, Qiongying; Zhang, Juan; Zhu, Dingjun

    2016-01-01

    In recent years, the effects of quercetin on autophagy and apoptosis of cancer cells have been widely reported, while effects on HeLa cells are still unclear. Here, HeLa cells were subjected to quercetin treatment, and then proliferation, apoptosis, and autophagy were evaluated using MTT, flow cytometry, and MDC staining, respectively. The LC3-I/II, Beclin 1, active caspase-3, and S6K1 phosphorylation were detected using Western blot assay. The ultrastructure of HeLa was observed via transmission electron microscope (TEM). Our findings showed that quercetin can dose-dependently inhibit the growth of HeLa cells. The MDC fluorescence was enhanced with increased concentration of quercetin and hit a plateau at 50 μmol/l. Western blot assay revealed that LC3-I/II ratio, Beclin 1, and active caspase-3 protein were enforced in a dose-dependent method. However, the phosphorylation of S6K1 gradually decreased, concomitant with an increase of autophagy. In addition, TEM revealed that the number of autophagic vacuoles was peaked at 50 μmol/l of quercetin. Besides, interference of autophagy with 3-MA led to proliferation inhibition and increased apoptosis in HeLa cells, accompanied by the decreased LC3-I/II conversion and the increased active caspase-3. In conclusion, quercetin can inhibit HeLa cell proliferation and induce protective autophagy at low concentrations; thus, 3-MA plus quercetin would suppress autophagy and effectively increased apoptosis.

  10. Sensitizing mucoepidermoid carcinomas to chemotherapy by targeted disruption of cancer stem cells

    PubMed Central

    Martins, Manoela D.; Warner, Kristy A.; Silva, Alan R. S.; Vargas, Pablo A.; Nunes, Fabio D.; Squarize, Cristiane H.; Nör, Jacques E.; Castilho, Rogerio M.

    2016-01-01

    Mucoepidermoid carcinoma (MEC) is the most common malignancy of salivary glands. The response of MEC to chemotherapy is unpredictable, and recent advances in cancer biology suggest the involvement of cancer stem cells (CSCs) in tumor progression and chemoresistance and radioresistance phenotype. We found that histone acetyltransferase inhibitors (HDACi) were capable of disrupting CSCs in MEC. Furthermore, administration of HDACi prior to Cisplatin (two-hit approach) disrupts CSCs and sensitizes tumor cells to Cisplatin. Our findings corroborate to emerging evidence that CSCs play a key role in tumor resistance to chemotherapy, and highlights a pharmacological two-hit approach that disrupts tumor resistance to conventional therapy. PMID:27285758

  11. Improving the hit-to-lead process: data-driven assessment of drug-like and lead-like screening hits.

    PubMed

    Wunberg, Tobias; Hendrix, Martin; Hillisch, Alexander; Lobell, Mario; Meier, Heinrich; Schmeck, Carsten; Wild, Hanno; Hinzen, Berthold

    2006-02-01

    Drug-like and lead-like hits derived from HTS campaigns provide good starting points for lead optimization. However, too strong emphasis on potency as hit-selection parameter might hamper the success of such projects. A detailed absorption, distribution, metabolism, excretion and toxicology (ADME-Tox) profiling is needed to help identify hits with a minimum number of (known) liabilities. This is particularly true for drug-like hits. Herein, we describe how to break down large numbers of screening hits and we provide a comprehensive overview of the strengths and weaknesses for each structural class. The overall profile (e.g. ligand efficiency, selectivity and ADME-Tox) is the distinctive feature that will define the priority for follow-up.

  12. Applying the new HIT results to tokamak and solar plasmas

    NASA Astrophysics Data System (ADS)

    Jarboe, Thomas; Sutherland, Derek; Hossack, Aaron; Nelson, Brian; Morgan, Kyle; Chris, Hansen; Benedett, Thomas; Everson, Chris; Penna, James

    2016-10-01

    Understanding sustainment of stable equilibria with helicity injection in HIT-SI has led to a simple picture of several tokamak features. Perturbations cause a viscous-like force on the current that flattens the λ profile, which sustains and stabilizes the equilibrium. An explanation of the mechanism is based on two properties of stable, ideal, two-fluid, magnetized plasma. First, the electron fluid is frozen to magnetic fields and, therefore, current flow is also magnetic field flow. Second, for a stable equilibrium the structure perpendicular to the flux surface resists deformation. Thus toroidal current is from electrons frozen in nested, rotating resilient flux surfaces. Only symmetric flux surfaces allow free differential current flow. Perturbations cause interference of the flux surfaces. Thus, perturbations cause forces that oppose differential electron rotation and forced differential flow produces a symmetrizing force against perturbations and instability. This mechanism can explain the level of field error that spoils tokamak performance and the rate of poloidal flux loss in argon-induced disruptions in DIII-D. This new understanding has led to an explanation of the source of the solar magnetic fields and the power source for the chromosphere, solar wind and corona. Please place in spheromak and FRC section with other HIT posters.

  13. Quantitative cell biology: the essential role of theory.

    PubMed

    Howard, Jonathon

    2014-11-05

    Quantitative biology is a hot area, as evidenced by the recent establishment of institutes, graduate programs, and conferences with that name. But what is quantitative biology? What should it be? And how can it contribute to solving the big questions in biology? The past decade has seen very rapid development of quantitative experimental techniques, especially at the single-molecule and single-cell levels. In this essay, I argue that quantitative biology is much more than just the quantitation of these experimental results. Instead, it should be the application of the scientific method by which measurement is directed toward testing theories. In this view, quantitative biology is the recognition that theory and models play critical roles in biology, as they do in physics and engineering. By tying together experiment and theory, quantitative biology promises a deeper understanding of underlying mechanisms, when the theory works, or to new discoveries, when it does not.

  14. Quantitative cell biology: the essential role of theory

    PubMed Central

    Howard, Jonathon

    2014-01-01

    Quantitative biology is a hot area, as evidenced by the recent establishment of institutes, graduate programs, and conferences with that name. But what is quantitative biology? What should it be? And how can it contribute to solving the big questions in biology? The past decade has seen very rapid development of quantitative experimental techniques, especially at the single-molecule and single-cell levels. In this essay, I argue that quantitative biology is much more than just the quantitation of these experimental results. Instead, it should be the application of the scientific method by which measurement is directed toward testing theories. In this view, quantitative biology is the recognition that theory and models play critical roles in biology, as they do in physics and engineering. By tying together experiment and theory, quantitative biology promises a deeper understanding of underlying mechanisms, when the theory works, or to new discoveries, when it does not. PMID:25368416

  15. Liver natural killer and natural killer T cells: immunobiology and emerging roles in liver diseases

    PubMed Central

    Gao, Bin; Radaeva, Svetlana; Park, Ogyi

    2009-01-01

    Hepatic lymphocytes are enriched in NK and NKT cells that play important roles in antiviral and antitumor defenses and in the pathogenesis of chronic liver disease. In this review, we discuss the differential distribution of NK and NKT cells in mouse, rat, and human livers, the ultrastructural similarities and differences between liver NK and NKT cells, and the regulation of liver NK and NKT cells in a variety of murine liver injury models. We also summarize recent findings about the role of NK and NKT cells in liver injury, fibrosis, and repair. In general, NK and NKT cells accelerate liver injury by producing proinflammatory cytokines and killing hepatocytes. NK cells inhibit liver fibrosis via killing early-activated and senescent-activated stellate cells and producing IFN-γ. In regulating liver fibrosis, NKT cells appear to be less important than NK cells as a result of hepatic NKT cell tolerance. NK cells inhibit liver regeneration by producing IFN-γ and killing hepatocytes; however, the role of NK cells on the proliferation of liver progenitor cells and the role of NKT cells in liver regeneration have been controversial. The emerging roles of NK/NKT cells in chronic human liver disease will also be discussed. Understanding the role of NK and NKT cells in the pathogenesis of chronic liver disease may help us design better therapies to treat patients with this disease. PMID:19542050

  16. ROS Generation in Peroxisomes and its Role in Cell Signaling.

    PubMed

    Del Río, Luis A; López-Huertas, Eduardo

    2016-07-01

    In plant cells, as in most eukaryotic organisms, peroxisomes are probably the major sites of intracellular H2O2 production, as a result of their essentially oxidative type of metabolism. In recent years, it has become increasingly clear that peroxisomes carry out essential functions in eukaryotic cells. The generation of the important messenger molecule hydrogen peroxide (H2O2) by animal and plant peroxisomes and the presence of catalase in these organelles has been known for many years, but the generation of superoxide radicals (O2(·(-)) ) and the occurrence of the metalloenzyme superoxide dismutase was reported for the first time in peroxisomes from plant origin. Further research showed the presence in plant peroxisomes of a complex battery of antioxidant systems apart from catalase. The evidence available of reactive oxygen species (ROS) production in peroxisomes is presented, and the different antioxidant systems characterized in these organelles and their possible functions are described. Peroxisomes appear to have a ROS-mediated role in abiotic stress situations induced by the heavy metal cadmium (Cd) and the xenobiotic 2,4-D, and also in the oxidative reactions of leaf senescence. The toxicity of Cd and 2,4-D has an effect on the ROS metabolism and speed of movement (dynamics) of peroxisomes. The regulation of ROS production in peroxisomes can take place by post-translational modifications of those proteins involved in their production and/or scavenging. In recent years, different studies have been carried out on the proteome of ROS metabolism in peroxisomes. Diverse evidence obtained indicates that peroxisomes are an important cellular source of different signaling molecules, including ROS, involved in distinct processes of high physiological importance, and might play an important role in the maintenance of cellular redox homeostasis.

  17. Roles of Pneumococcal DivIB in Cell Division▿

    PubMed Central

    Le Gouëllec, Audrey; Roux, Laure; Fadda, Daniela; Massidda, Orietta; Vernet, Thierry; Zapun, André

    2008-01-01

    DivIB, also known as FtsQ in gram-negative organisms, is a division protein that is conserved in most eubacteria. DivIB is localized at the division site and forms a complex with two other division proteins, FtsL and DivIC/FtsB. The precise function of these three bitopic membrane proteins, which are central to the division process, remains unknown. We report here the characterization of a divIB deletion mutant of Streptococcus pneumoniae, which is a coccus that divides with parallel planes. Unlike its homologue FtsQ in Escherichia coli, pneumococcal DivIB is not required for growth in rich medium, but the ΔdivIB mutant forms chains of diplococci and a small fraction of enlarged cells with defective septa. However, the deletion mutant does not grow in a chemically defined medium. In the absence of DivIB and protein synthesis, the partner FtsL is rapidly degraded, whereas other division proteins are not affected, pointing to a role of DivIB in stabilizing FtsL. This is further supported by the finding that an additional copy of ftsL restores growth of the ΔdivIB mutant in defined medium. Functional mapping of the three distinct α, β, and γ domains of the extracellular region of DivIB revealed that a complete β domain is required to fully rescue the deletion mutant. DivIB with a truncated β domain reverts only the chaining phenotype, indicating that DivIB has distinct roles early and late in the division process. Most importantly, the deletion of divIB increases the susceptibility to β-lactams, more evidently in a resistant strain, suggesting a function in cell wall synthesis. PMID:18441058

  18. Role of nitric oxide signaling components in differentiation of embryonic stem cells into myocardial cells

    PubMed Central

    Mujoo, Kalpana; Sharin, Vladislav G.; Bryan, Nathan S.; Krumenacker, Joshua S.; Sloan, Courtney; Parveen, Shanaz; Nikonoff, Lubov E.; Kots, Alexander Y.; Murad, Ferid

    2008-01-01

    Nitric oxide (NO) is involved in number of physiological and pathological events. Our previous studies demonstrated a differential expression of NO signaling components in mouse and human ES cells. Here, we demonstrate the effect of NO donors and soluble guanylyl cyclase (sGC) activators in differentiation of ES cells into myocardial cells. Our results with mouse and human ES cells demonstrate an increase in Nkx2.5 and myosin light chain (MLC2) mRNA expression on exposure of cells to NO donors and a decrease in mRNA expression of both cardiac-specific genes with nonspecific NOS inhibitor and a concomitant increase and decrease in the mRNA levels of sGC α1 subunit. Although sGC activators alone exhibited an increase in mRNA expression of cardiac genes (MLC2 and Nkx2.5), robust inductions of mRNA and protein expression of marker genes were observed when NO donors and sGC activators were combined. Measurement of NO metabolites revealed an increase in the nitrite levels in the conditioned media and cell lysates on exposure of cells to the different concentrations of NO donors. cGMP analysis in undifferentiated stem cells revealed a lack of stimulation with NO donors. Differentiated cells however, acquired the ability to be stimulated by NO donors. Although, 3-(4-amino-5-cyclopropylpyrimidin-2-yl)-1-(2-fluorobenzyl)-1H-pyrazolo [3,4-b]pyridine (BAY 41-2272) alone was able to stimulate cGMP accumulation, the combination of NO donors and BAY 41-2272 stimulated cGMP levels more than either of the agents separately. These studies demonstrate that cGMP-mediated NO signaling plays an important role in the differentiation of ES cells into myocardial cells. PMID:19020077

  19. Heparin-induced thrombocytopenia (HIT II) - a drug-associated autoimmune disease.

    PubMed

    Nowak, Götz

    2009-11-01

    Autoimmune thrombocytopenia (ITP) is an acquired autoimmune disease characterised by isolated persistent thrombocytopenia and normal megakaryopoiesis. This definition also applies to heparin-induced thrombocytopenia (HIT II), a frequent side effect of heparin treatment. In HIT II, the immunogen is a coagulation active complex of heparin and platelet factor 4 (PF4). By now, diagnostics of HIT II is often material and time consuming. Three groups of patients were investigated for HIT II antibodies (HIT II-AB): 54 hospitalised stroke patients, 87 hospitalised cardiac patients, and 71 patients on chronic haemodialysis, all treated with heparin. Furthermore, 100 healthy volunteers were investigated. For detection of HIT II-AB the innovative whole blood test PADA-HIT (PADA: platelet adhesion assay) was used. PADA-HIT quantifies the interaction of IgG antibodies with FcgammaIIA receptors by comparing the activation state of platelets in citrated and heparinised whole blood. The occurrence of HIT II-AB in blood was very high with 44 % of stroke patients, 69% of cardiac patients and 38% of haemodialysis patients compared to only 15% of healthy volunteers. This demonstrates a high incidence and a rapid onset of HIT II-AB in patients being acutely treated with heparin. HIT II is one of the most frequent and severe autoimmune diseases bearing a great thrombosis risk. PADA-HIT represents an innovative diagnostic method for detection of autoimmune antibodies of IgG type that are directed against platelet factor 4 (PF4)-heparin-complex. By early and fast diagnostics and appropriate treatment severe complications of HIT II can be prevented.

  20. Cell-cell junction remodeling in the heart: possible role in cardiac conduction system function and arrhythmias?

    PubMed

    Mezzano, Valeria; Sheikh, Farah

    2012-02-27

    Anchoring cell-cell junctions (desmosomes, fascia adherens) play crucial roles in maintaining mechanical integrity of cardiac muscle cells and tissue. Genetic mutations and/or loss of critical components in these macromolecular structures are increasingly being associated with arrhythmogenic cardiomyopathies; however, their specific roles have been primarily attributed to effects within the working (ventricular) cardiac muscle. Growing evidence also points to a key role for anchoring cell-cell junction components in cardiac muscle cells of the cardiac conduction system. This is not only evidenced by the molecular and ultra-structural presence of anchoring cell junctions in specific compartments/structures of the cardiac conduction system (sinoatrial node, atrioventricular node, His-Purkinje system), but also because conduction system-related arrhythmias can be found in humans and mouse models of cardiomyopathies harboring defects and/or mutations in key anchoring cell-cell junction proteins. These studies emphasize the clinical need to understand the molecular and cellular role(s) for anchoring cell-cell junctions in cardiac conduction system function and arrhythmias. This review will focus on (i) experimental findings that underline an important role for anchoring cell-cell junctions in the cardiac conduction system, (ii) insights regarding involvement of these structures in age-related cardiac remodeling of the conduction system, (iii) summarizing available genetic mouse models that can target cardiac conduction system structures and (iv) implications of these findings on future therapies for arrhythmogenic heart diseases.

  1. Transfusion as an Inflammation Hit: Knowns and Unknowns

    PubMed Central

    Garraud, Olivier; Tariket, S.; Sut, C.; Haddad, A.; Aloui, C.; Chakroun, T.; Laradi, S.; Cognasse, F.

    2016-01-01

    Transfusion of blood cell components is frequent in the therapeutic arsenal; it is globally safe or even very safe. At present, residual clinical manifestations are principally inflammatory in nature. If some rare clinical hazards manifest as acute inflammation symptoms of various origin, most of them linked with conflicting and undesirable biological material accompanying the therapeutic component (infectious pathogen, pathogenic antibody, unwanted antigen, or allergen), the general feature is subtler and less visible, and essentially consists of alloimmunization or febrile non-hemolytic transfusion reaction. The present essay aims to present updates in hematology and immunology that help understand how, when, and why subclinical inflammation underlies alloimmunization and circumstances characteristic of red blood cells and – even more frequently – platelets that contribute inflammatory mediators. Modern transfusion medicine makes sustained efforts to limit such inflammatory hazards; efforts can be successful only if one has a clear view of each element’s role. PMID:27965664

  2. Redox cycling compounds generate H2O2 in HTS buffers containing strong reducing reagents--real hits or promiscuous artifacts?

    PubMed

    Johnston, Paul A

    2011-02-01

    Redox cycling compounds (RCCs) generate μM concentrations of hydrogen peroxide (H(2)O(2)) in the presence of strong reducing agents, common buffer components used to maintain the catalytic activity and/or folding of target proteins for high throughput screening (HTS) assays. H(2)O(2) generated by RCCs can indirectly inhibit the catalytic activity of proteins by oxidizing accessible cysteine, tryptophan, methionine, histidine, or selenocysteine residues, and indeed several important classes of protein targets are susceptible to H(2)O(2)-mediated inactivation; protein tyrosine phosphatases, cysteine proteases, and metalloenzymes. The main sources of H(2)O(2) in cells are the Nox enzyme/SOD systems, peroxisome metabolism, and the autoxidation of reactive chemicals by enzyme mediated redox cycling at both the microsomal and mitochondrial sites of electron transport. Given the role of H(2)O(2) as a second messenger involved in the regulation of many signaling pathways it is hardly surprising that compounds that can generate intracellular H(2)O(2) by enzyme mediated redox cycling would have pleiotropic effects. RCCs can therefore have serious negative consequences for the probe and/or lead generation process: primary HTS assay hit rates may be inflated by RCC false positives; crucial resources will be diverted to develop and implement follow up assays to distinguish RCCs from real hits; and screening databases will become annotated with the promiscuous activity of RCCs. In an attempt to mitigate the serious impact of RCCs on probe and lead generation, two groups have independently developed assays to indentify RCCs.

  3. Redox cycling compounds generate H2O2 in HTS buffers containing strong reducing reagents – real hits or promiscuous artifacts?

    PubMed Central

    Johnston, Paul A.

    2010-01-01

    Redox cycling compounds (RCCs) generate µM concentrations of hydrogen peroxide (H2O2) in the presence of strong reducing agents, common buffer components used to maintain the catalytic activity and/or folding of target proteins for high throughput screening (HTS) assays. H2O2 generated by RCCs can indirectly inhibit the catalytic activity of proteins by oxidizing accessible cysteine, tryptophan, methionine, histidine or selenocysteine residues, and indeed several important classes of protein targets are susceptible to H2O2-mediated inactivation; protein tyrosine phosphatases, cysteine proteases, and metalloenzymes. The main sources of H2O2 in cells are the Nox enzyme/SOD systems, peroxisome metabolism, and the autoxidation of reactive chemicals by enzyme mediated redox cycling at both the microsomal and mitochondrial sites of electron transport. Given the role of H2O2 as a second messenger involved in the regulation of many signaling pathways it is hardly surprising that compounds which can generate intracellular H2O2 by enzyme mediated redox cycling would have pleiotropic effects. RCCs can therefore have serious negative consequences for the probe and/or lead generation process: primary HTS assay hit rates may be inflated by RCC false positives; critical resources will be diverted to develop and implement follow up assays to distinguish RCCs from real hits; and screening databases will become annotated with the promiscuous activity of RCCs. In an attempt to mitigate the serious impact of RCCs on probe and lead generation, two groups have independently developed assays to indentify RCCs. PMID:21075044

  4. Transformation of primary hamster embryo fibroblasts by type 2 simplex virus: evidence for a "hit and run" mechanism.

    PubMed Central

    Skinner, G. R.

    1976-01-01

    The phenomenon of cell transformation by type 2 herpes simplex virus has been investigated. Primary hamster embryo fibroblasts were exposed to type 2 herpes virus under conditions which would restrict or inhibit the lytic events of virus-cell interaction. Cell lines were established by single-cell cloning. There was evidence of altered cell morphology with altered biological activity in terms of longevity and oncogenicity; there was, however, no evidence of virus specific antigen or incorporation of viral nucleic acid into the host cell genome. Virus specific antigen was only detected in the early passages of an uncloned transformed cell line. We are thus unable to confirm previous studies (vide supra) and are obliged to propose a "hit and run" model for in vitro cell transformation by type 2 herpes simplex virus. Images Fig. 1 Fig. 2 Fig. 3 PMID:183803

  5. Transformation of primary hamster embryo fibroblasts by type 2 simplex virus: evidence for a "hit and run" mechanism.

    PubMed

    Skinner, G R

    1976-08-01

    The phenomenon of cell transformation by type 2 herpes simplex virus has been investigated. Primary hamster embryo fibroblasts were exposed to type 2 herpes virus under conditions which would restrict or inhibit the lytic events of virus-cell interaction. Cell lines were established by single-cell cloning. There was evidence of altered cell morphology with altered biological activity in terms of longevity and oncogenicity; there was, however, no evidence of virus specific antigen or incorporation of viral nucleic acid into the host cell genome. Virus specific antigen was only detected in the early passages of an uncloned transformed cell line. We are thus unable to confirm previous studies (vide supra) and are obliged to propose a "hit and run" model for in vitro cell transformation by type 2 herpes simplex virus.

  6. The Role of Nutrition in Sickle Cell Disease.

    PubMed

    Hyacinth, H I; Gee, B E; Hibbert, J M

    2010-01-01

    Finding a widely available cure for sickle cell anemia (HbSS) still remains a challenge one hundred years after its discovery as a genetically inherited disease. However, growing interest in the nutritional problems of the disease has created a body of literature from researchers seeking nutritional alternatives as a means of decreasing morbidity and improving quality of life among HbSS patients. This review demonstrates that over the past 30 years the role of protein/energy deficiency in HbSS has been more clearly defined via direct measurements, leading to the concept of a relative shortage of nutrients for growth and development, despite apparently adequate dietary intakes. Although there is still a paucity of data supporting the efficacy of macronutrient supplementation, it is becoming clearer that recommended dietary allowances (RDAs) for the general population are insufficient for the sickle cell patient. A similar shortage is likely to be true for micronutrient deficiencies, including recent findings of vitamin D deficiency that may be associated with incomplete ossification and bone disease, which are well known complications of HbSS disease. We conclude that there is need for more effort and resources to be dedicated to research (including supplementation studies of larger sample size) aimed at establishing specific RDAs for HbSS patients, much like the specific RDAs developed for pregnancy and growth within the general population.

  7. The role of taurine on skeletal muscle cell differentiation.

    PubMed

    Miyazaki, Teruo; Honda, Akira; Ikegami, Tadashi; Matsuzaki, Yasushi

    2013-01-01

    Taurine abundantly contained in the skeletal muscle has been considered as one of essential factors for the differentiation and growth of skeletal muscles. The previous studies in the taurine transporter knockout mice showed that deficiency of taurine content in the skeletal muscle caused incomplete muscular developments, morphological abnormalities, and exercise abilities. In fetal and neonatal periods, taurine must be an essential amino acid due to no biosynthesis capacity, and therefore, taurine should be endogenously supplied through placenta and maternal milk. In general cell culture condition, taurine contained in the culture medium is absent or few, and therefore, most of cultured cells are in taurine-deficient condition. In the present study, we confirmed, in cultured mouse differentiable myoblast, taurine treatment significantly enhanced the differentiation to myotube in a dose-dependent manner, while these effects were abrogated by inhibitions of taurine transport and Ca(2+) signaling pathway.The present study suggested that exogenous taurine might play a key role on the mature differentiation/growth of the skeletal muscle during development period through Ca(2+) signaling pathway, and therefore, taurine would contribute the muscle recovery after damages.

  8. The role of cell calcium in current approaches to toxicology.

    PubMed Central

    Pounds, J G

    1990-01-01

    All cells contain elaborate systems for the spatial and temporal regulation of the calcium ion, [Ca2+]i, and diverse Ca2+ receptor and biochemical response systems that are regulated by these changes in [Ca2+]i. Toxicants that perturb the mobilization or homeostasis of [Ca2+]i will place the regulation of these processes outside the normal range of physiological control. Many classes of chemical toxicants, including metals, solvents, and pesticides, may have particular aspects of cell calcium as key cellular and molecular targets of toxicant action. However, experimental proof of these targets as a specific site of toxicant action is challenging and technically difficult as a result of the complexity and diversity of these processes. To fully establish and understand the target role of the calcium messenger system in toxicant action, it is necessary to distinguish between the effects of a toxicant on (a) the calcium mobilization and homeostatic processes, (b) the calcium-mediated processes, and (c) from those processes which co-regulate or counter-regulate these calcium-mediated processes. As our understanding of the calcium messenger system expands, these insights will be increasingly applied to understanding the mechanisms of action of toxic chemicals. PMID:2190820

  9. The Hedgehog pathway: role in cell differentiation, polarity and proliferation.

    PubMed

    Jia, Yanfei; Wang, Yunshan; Xie, Jingwu

    2015-02-01

    Hedgehog (Hh) is first described as a genetic mutation that has "spiked" phenotype in the cuticles of Drosophila in later 1970s. Since then, Hh signaling has been implicated in regulation of differentiation, proliferation, tissue polarity, stem cell population and carcinogenesis. The first link of Hh signaling to cancer was established through discovery of genetic mutations of Hh receptor gene PTCH1 being responsible for Gorlin syndrome in 1996. It was later shown that Hh signaling is associated with many types of cancer, including skin, leukemia, lung, brain and gastrointestinal cancers. Another important milestone for the Hh research field is the FDA approval for the clinical use of Hh inhibitor Erivedge/Vismodegib for treatment of locally advanced and metastatic basal cell carcinomas. However, recent clinical trials of Hh signaling inhibitors in pancreatic, colon and ovarian cancer all failed, indicating a real need for further understanding of Hh signaling in cancer. In this review, we will summarize recent progress in the Hh signaling mechanism and its role in human cancer.

  10. A Novel Role of Cab45-G in Mediating Cell Migration in Cancer Cells.

    PubMed

    Luo, Judong; Li, Zengpeng; Zhu, Hong; Wang, Chenying; Zheng, Weibin; He, Yan; Song, Jianyuan; Wang, Wenjie; Zhou, Xifa; Lu, Xujing; Zhang, Shuyu; Chen, Jianming

    2016-01-01

    Ca(2+)-binding protein of 45 kDa (Cab45), a CREC family member, is reported to be associated with Ca(2+)-dependent secretory pathways and involved in multiple diseases including cancers. Cab45-G, a Cab45 isoform protein, plays an important role in protein sorting and secretion at Golgi complex. However, its role in cancer cell migration remains elusive. In this study, we demonstrate that Cab45-G exhibited an increased expression in cell lines with higher metastatic potential and promoted cell migration in multiple types of cancer cells. Overexpression of Cab45-G resulted in an altered expression of the molecular mediators of epithelial-mesenchymal transition (EMT), which is a critical step in the tumor metastasis. Quantitative real-time PCR showed that overexpression of Cab45-G increased the expression of matrix metalloproteinase-2 and -7 (MMP-2 and MMP-7). Conversely, knock-down of Cab45-G reduced the expression of the above MMPs. Moreover, forced expression of Cab45-G upregulated the level of phosphorylated ERK and modulated the secretion of extracellular proteins fibronectin and fibulin. Furthermore, in human cervical and esophageal cancer tissues, the expression of Cab45-G was found to be significantly correlated with that of MMP-2, further supporting the importance of Cab45-G on regulating cancer metastasis. Taken together, these results suggest that Cab45-G could regulate cancer cell migration through various molecular mechanisms, which may serve as a therapeutic target for the treatment of cancers.

  11. Roles for Inflammation and Regulatory T Cells in Colon Cancer

    PubMed Central

    Erdman, Susan E.; Poutahidis, Theofilos

    2014-01-01

    Risk for developing cancer rises substantially as a result of poorly regulated inflammatory responses to pathogenic bacterial infections. Anti-inflammatory CD4+ regulatory cells (TREG) function to restore immune homeostasis during chronic inflammatory disorders. It seems logical that TREG cells would function to reduce risk of inflammation-associated cancer in the bowel by down-regulating inflammation. It is widely believed, however, that TREG function in cancer mainly to suppress protective anticancer inflammatory responses. Thus roles for inflammation, TREG cells, and gut bacteria in cancer are paradoxical and are the subject of controversy. Our accumulated data build upon the “hygiene hypothesis” model in which gastrointestinal (GI) infections lead to changes in TREG that reduce inflammation-associated diseases. Ability of TREG to inhibit or suppress cancer depends upon gut bacteria and IL-10, which serve to maintain immune balance and a protective anti-inflammatory TREG phenotype. However, under poorly regulated pro-inflammatory conditions, TREG fail to inhibit and may instead contribute to a T helper (Th)-17-driven procarcinogenic process, a cancer state that is reversible by down-regulation of inflammation and interleukin (IL)-6. Consequently, hygienic individuals with a weakened IL-10– and TREG–mediated inhibitory loop are highly susceptible to the carcinogenic consequences of elevated inflammation and show more frequent inflammation-associated cancers. Taken together, these data help explain the paradox of inflammation and TREG in cancer and indicate that targeted stimulation of TREG may promote health and significantly reduce risk of cancer. PMID:20019355

  12. Distinct role of Tim-3 in systemic lupus erythematosus and clear cell renal cell carcinoma.

    PubMed

    Zheng, Hongying; Guo, Xingqing; Tian, Qingwu; Li, Hui; Zhu, Yuanqi

    2015-01-01

    Tim-3 is considered as one of the T-cell immunoglobulin mucin (TIM) gene family members, which contributes to the activating or silencing genes, but the mechanism of Tim-3 function in mediating SLE or tumor metastasis has not been well explored. Here, we reported Tim-3 was high expressed in the peripheral blood mononuclear cells (PBMCs) of patients with SLE, detected by RT-PCR, significantly, GATA-3 mRNA expression also increased in patients with SLE, compared with the healthy control groups. The bioinformatics used to detect the TCGA database indicated the abnormal expression of Tim-3 was involved in several different cancer types. Further, the higher expression of Tim-3 in kidney renal clear cell carcinoma TCGA database indicated it was a marker for worse 5-year survival. The high expression of Tim-3 in different ccRCC cell lines was detected in both RNA level and protein level. Further, two kinds of relative Tim-3 siRNAs in ccRCC cell lines inhibit cell migration and invasion in vitro, However, the inhibition could be partially rescued by the additional GATA3 knockdown. Further, the down regulation in the RNA and protein levels of GATA3, and the negative correlation between Tim-3 and GATA3 implied that suppression of downstream GATA3 was an important mechanism by which Tim-3 triggered metastasis in ccRCC cell lines. Together, our experiments reveal the role for Tim-3 in facilitating SLE or invasive potential of ccRCC cells by either activating GATA3 or inhibiting GATA3, suggesting that Tim-3 might be a potential therapeutic target for treating SLE or clear cell renal cell carcinoma.

  13. Reconciling the IPC and Two-Hit Models: Dissecting the Underlying Cellular and Molecular Mechanisms of Two Seemingly Opposing Frameworks.

    PubMed

    Morris, Carlos F M; Tahir, Muhammad; Arshid, Samina; Castro, Mariana S; Fontes, Wagner

    2015-01-01

    Inflammatory cascades and mechanisms are ubiquitous during host responses to various types of insult. Biological models and interventional strategies have been devised as an effort to better understand and modulate inflammation-driven injuries. Amongst those the two-hit model stands as a plausible and intuitive framework that explains some of the most frequent clinical outcomes seen in injuries like trauma and sepsis. This model states that a first hit serves as a priming event upon which sequential insults can build on, culminating on maladaptive inflammatory responses. On a different front, ischemic preconditioning (IPC) has risen to light as a readily applicable tool for modulating the inflammatory response to ischemia and reperfusion. The idea is that mild ischemic insults, either remote or local, can cause organs and tissues to be more resilient to further ischemic insults. This seemingly contradictory role that the two models attribute to a first inflammatory hit, as priming in the former and protective in the latter, has set these two theories on opposing corners of the literature. The present review tries to reconcile both models by showing that, rather than debunking each other, each framework offers unique insights in understanding and modulating inflammation-related injuries.

  14. Role of B Cells in Mucosal Vaccine-Induced Protective CD8+ T Cell Immunity against Pulmonary Tuberculosis.

    PubMed

    Khera, Amandeep K; Afkhami, Sam; Lai, Rocky; Jeyanathan, Mangalakumari; Zganiacz, Anna; Mandur, Talveer; Hammill, Joni; Damjanovic, Daniela; Xing, Zhou

    2015-09-15

    Emerging evidence suggests a role of B cells in host defense against primary pulmonary tuberculosis (TB). However, the role of B cells in TB vaccine-induced protective T cell immunity still remains unknown. Using a viral-vectored model TB vaccine and a number of experimental approaches, we have investigated the role of B cells in respiratory mucosal vaccine-induced T cell responses and protection against pulmonary TB. We found that respiratory mucosal vaccination activated Ag-specific B cell responses. Whereas respiratory mucosal vaccination elicited Ag-specific T cell responses in the airway and lung interstitium of genetic B cell-deficient (Jh(-/-) knockout [KO]) mice, the levels of airway T cell responses were lower than in wild-type hosts, which were associated with suboptimal protection against pulmonary Mycobacterium tuberculosis challenge. However, mucosal vaccination induced T cell responses in the airway and lung interstitium and protection in B cell-depleted wild-type mice to a similar extent as in B cell-competent hosts. Furthermore, by using an adoptive cell transfer approach, reconstitution of B cells in vaccinated Jh(-/-) KO mice did not enhance anti-TB protection. Moreover, respiratory mucosal vaccine-activated T cells alone were able to enhance anti-TB protection in SCID mice, and the transfer of vaccine-primed B cells alongside T cells did not further enhance such protection. Alternatively, adoptively transferring vaccine-primed T cells from Jh(-/-) KO mice into SCID mice only provided suboptimal protection. These data together suggest that B cells play a minimal role, and highlight a central role by T cells, in respiratory mucosal vaccine-induced protective immunity against M. tuberculosis.

  15. Ozone hits low levels over Antarctica, U. S

    SciTech Connect

    Zurer, P.

    1993-10-04

    This year's Antarctic ozone hole is as deep as any ever observed and is approaching the record geographical extent of 1992, according to preliminary satellite data. In addition, both groundbased and satellite observations indicate that ozone concentrations over the U.S. hit record lows earlier this year. For more than a decade, almost all the ozone at certain altitudes over Antarctica has been destroyed as the Sun returns to the polar region in September. This dramatic photochemical depletion, catalyzed by chlorine and bromine from man-made compounds, reaches its nadir in early October. Ozone levels return to near normal later in the season, when the circular pattern of winds that isolates air over Antarctica breaks down, and ozone-rich air pours in from the north.

  16. Building markets: Most recycling markets hit bottom in 1993

    SciTech Connect

    Not Available

    1994-04-01

    For most recycling markets, 1993 was the year prices hit bottom. However, in the final weeks of 1993, recyclers saw slight, but much appreciated, price increases for most commodities. Overall in 1993, glass, plastics, and steel markets remained relatively stable, with some price fluctuations, while markets for paper and aluminum weakened. The paper recycling industry suffered from weak but volatile markets for all grades of secondary fiber, despite and explosion of new deinking facilities, and a host of voluntary recycled-content purchasing agreements. In a move that some recyclers say may be a needed shot in the arm for paper markets, Clinton signed an Executive Order in October 1993 requiring federal agencies to purchase printing and writing paper containing 20% post-consumer material by the end of 1994 and 30% post-consumer content by the end of 1998. Many recyclers are hoping that this will serve as a model for state and local governments.

  17. Inflammation and the Two-Hit Hypothesis of Schizophrenia

    PubMed Central

    Feigenson, Keith A.; Kusnecov, Alex W.; Silverstein, Steven M.

    2014-01-01

    The high societal and individual cost of schizophrenia necessitates finding better, more effective treatment, diagnosis, and prevention strategies. One of the obstacles in this endeavor is the diverse set of etiologies that comprises schizophrenia. A substantial body of evidence has grown over the last few decades to suggest that schizophrenia is a heterogeneous syndrome with overlapping symptoms and etiologies. At the same time, an increasing number of clinical, epidemiological, and experimental studies have shown links between schizophrenia and inflammatory conditions. In this review, we analyze the literature on inflammation and schizophrenia, with a particular focus on comorbidity, biomarkers, and environmental insults. We then identify several mechanisms by which inflammation could influence the development of schizophrenia via the two-hit hypothesis. Lastly, we note the relevance of these findings to clinical applications in the diagnosis, prevention, and treatment of schizophrenia. PMID:24247023

  18. Role of the Bp35 cell surface polypeptide in human B-cell activation.

    PubMed Central

    Clark, E A; Shu, G; Ledbetter, J A

    1985-01-01

    A 35-kDa polypeptide, Bp35, expressed on the surface of all B cells, plays a role in B-cell activation. Monoclonal antibodies to Bp35 stimulate human tonsillar B cells to proliferate. The activation induced by anti-Bp35 is similar to anti-Ig-mediated in several ways: the activation does not require T cells but is augmented by T-cell-derived allogeneic factors; monovalent Fab fragments to Bp35 do not trigger proliferation but instead block activation by whole antibody, indicating that cross-linking is required; and induction by anti-Bp35, like the induction by anti-Ig, is inhibited by monoclonal anti-IgM via an Fc domain-dependent mechanism. However, several features of anti-Bp35-mediated proliferation are clearly different from activation by anti-Ig: anti-Bp35 monoclonal antibodies do not require attachment to beads to function, the proliferation induced by anti-Bp35 and anti-Ig is additive, and Fab fragments of anti-Bp35 augment proliferation induced by anti-Ig. Models for the possible function of the Bp35 polypeptide as either a "bridge" or a "second signal" with surface Ig in B-cell activation are discussed. PMID:3872456

  19. Cyclooxygenase-2: A Role in Cancer Stem Cell Survival and Repopulation of Cancer Cells during Therapy

    PubMed Central

    Hurst, Emma A.; Argyle, David J.

    2016-01-01

    Cyclooxygenase-2 (COX-2) is an inducible form of the enzyme that catalyses the synthesis of prostanoids, including prostaglandin E2 (PGE2), a major mediator of inflammation and angiogenesis. COX-2 is overexpressed in cancer cells and is associated with progressive tumour growth, as well as resistance of cancer cells to conventional chemotherapy and radiotherapy. These therapies are often delivered in multiple doses, which are spaced out to allow the recovery of normal tissues between treatments. However, surviving cancer cells also proliferate during treatment intervals, leading to repopulation of the tumour and limiting the effectiveness of the treatment. Tumour cell repopulation is a major cause of treatment failure. The central dogma is that conventional chemotherapy and radiotherapy selects resistant cancer cells that are able to reinitiate tumour growth. However, there is compelling evidence of an active proliferative response, driven by increased COX-2 expression and downstream PGE2 release, which contribute to the repopulation of tumours and poor patient outcome. In this review, we will examine the evidence for a role of COX-2 in cancer stem cell biology and as a mediator of tumour repopulation that can be molecularly targeted to overcome resistance to therapy. PMID:27882058

  20. One cell, multiple roles: contribution of mesenchymal stem cells to tumor development in tumor microenvironment.

    PubMed

    Yang, Xue; Hou, Jing; Han, Zhipeng; Wang, Ying; Hao, Chong; Wei, Lixin; Shi, Yufang

    2013-01-21

    The discovery of tissue reparative and immunosuppressive abilities of mesenchymal stem cells (MSCs) has drawn more attention to tumor microenvironment and its role in providing the soil for the tumor cell growth. MSCs are recruited to tumor which is referred as the never healing wound and altered by the inflammation environment, thereby helping to construct the tumor microenvironment. The environment orchestrated by MSCs and other factors can be associated with angiogenesis, immunosuppression, inhibition of apoptosis, epithelial-mesenchymal transition (EMT), survival of cancer stem cells, which all contribute to tumor growth and progression. In this review, we will discuss how MSCs are recruited to the tumor microenvironment and what effects they have on tumor progression.

  1. A functional role for the 'fibroblast-like cells' in gastrointestinal smooth muscles.

    PubMed

    Kurahashi, Masaaki; Zheng, Haifeng; Dwyer, Laura; Ward, Sean M; Koh, Sang Don; Sanders, Kenton M

    2011-02-01

    Smooth muscles, as in the gastrointestinal tract, are composed of several types of cells. Gastrointestinal muscles contain smooth muscle cells, enteric neurons, glial cells, immune cells, and various classes of interstitial cells. One type of interstitial cell, referred to as 'fibroblast-like cells' by morphologists, are common, but their function is unknown. These cells are found near the terminals of enteric motor neurons, suggesting they could have a role in generating neural responses that help control gastrointestinal movements. We used a novel mouse with bright green fluorescent protein expressed specifically in the fibroblast-like cells to help us identify these cells in the mixture of cells obtained when whole muscles are dispersed with enzymes. We isolated these cells and found they respond to a major class of inhibitory neurotransmitters - purines. We characterized these responses, and our results provide a new hypothesis about the role of fibroblast-like cells in smooth muscle tissues.

  2. Anxiety vulnerability in women: a two-hit hypothesis.

    PubMed

    Catuzzi, Jennifer E; Beck, Kevin D

    2014-09-01

    Females are twice as likely to develop an anxiety disorder compared to males, and thus, are believed to possess an innate vulnerability that increases their susceptibility to develop an anxiety disorder. However, studies using aversive learning paradigms to model anxiety disorders in humans and animals have revealed contradictory results. While females exhibit the ability to rapidly acquire stimulus-response associations, which may result from a greater attentional bias towards threat, females are also capable to readily extinguish these associations. Thus, there is little evidence to suggest that the female sex represents a vulnerability factor of anxiety, per se. However, if females are to possess a second vulnerability factor that increases the inflexibility of stimulus-response associations, then an anxiety disorder may be more likely to develop. Behavioral inhibition (BI) is a vulnerability factor associated with the formation of inflexible stimulus-response associations. In this "two hit" model of anxiety vulnerability, females possessing a BI temperament will rapidly acquire stimulus-response associations that are resistant to extinction, resulting in the development of an anxiety disorder. In this review we explore evidence for a "two-hit" hypothesis underlying anxiety vulnerability in females. We explore the literature for evidence of a sex difference in attentional bias towards threat that may lead to the facilitated acquisition of stimulus-response associations in females. We also provide evidence that BI is associated with inflexible stimulus-response association formation. We conclude with data generated from our laboratory that highlights the additive effect of the female sex and behavioral inhibition vulnerabilities using a model behavior for anxiety disorder-susceptibility, active avoidance.

  3. 76 FR 14975 - HIT Standards Committee's Workgroup Meetings; Notice of Meetings

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-03-18

    ... access only. Name of Committees: HIT Standards Committee's Workgroups: Clinical Operations, Vocabulary... specific subject matter, e.g., clinical operations vocabulary standards, clinical quality,...

  4. 76 FR 46297 - HIT Standards Committee's Workgroup Meetings; Notice of Meetings

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-08-02

    ... access only. Name of Committees: HIT Standards Committee's Workgroups: Clinical Operations, Vocabulary... issues related to their specific subject matter, e.g., clinical operations vocabulary standards,...

  5. EASY-HIT: HIV Full-Replication Technology for Broad Discovery of Multiple Classes of HIV Inhibitors▿ †

    PubMed Central

    Kremb, Stephan; Helfer, Markus; Heller, Werner; Hoffmann, Dieter; Wolff, Horst; Kleinschmidt, Andrea; Cepok, Sabine; Hemmer, Bernhard; Durner, Jörg; Brack-Werner, Ruth

    2010-01-01

    HIV replication assays are important tools for HIV drug discovery efforts. Here, we present a full HIV replication system (EASY-HIT) for the identification and analysis of HIV inhibitors. This technology is based on adherently growing HIV-susceptible cells, with a stable fluorescent reporter gene activated by HIV Tat and Rev. A fluorescence-based assay was designed that measures HIV infection by two parameters relating to the early and the late phases of HIV replication, respectively. Validation of the assay with a panel of nine reference inhibitors yielded effective inhibitory concentrations consistent with published data and allowed discrimination between inhibitors of early and late phases of HIV replication. Finer resolution of the effects of reference drugs on different steps of HIV replication was achieved in secondary time-of-addition assays. The EASY-HIT assay yielded high Z′ scores (>0.9) and signal stabilities, confirming its robustness. Screening of the LOPAC1280 library identified 10 compounds (0.8%), of which eight were known to inhibit HIV, validating the suitability of this assay for screening applications. Studies evaluating anti-HIV activities of natural products with the EASY-HIT technology led to the identification of three novel inhibitory compounds that apparently act at different steps of HIV-1 replication. Furthermore, we demonstrate successful evaluation of plant extracts for HIV-inhibitory activities, suggesting application of this technology for the surveillance of biological extracts with anti-HIV activities. We conclude that the EASY-HIT technology is a versatile tool for the discovery and characterization of HIV inhibitors. PMID:20876377

  6. EASY-HIT: HIV full-replication technology for broad discovery of multiple classes of HIV inhibitors.

    PubMed

    Kremb, Stephan; Helfer, Markus; Heller, Werner; Hoffmann, Dieter; Wolff, Horst; Kleinschmidt, Andrea; Cepok, Sabine; Hemmer, Bernhard; Durner, Jörg; Brack-Werner, Ruth

    2010-12-01

    HIV replication assays are important tools for HIV drug discovery efforts. Here, we present a full HIV replication system (EASY-HIT) for the identification and analysis of HIV inhibitors. This technology is based on adherently growing HIV-susceptible cells, with a stable fluorescent reporter gene activated by HIV Tat and Rev. A fluorescence-based assay was designed that measures HIV infection by two parameters relating to the early and the late phases of HIV replication, respectively. Validation of the assay with a panel of nine reference inhibitors yielded effective inhibitory concentrations consistent with published data and allowed discrimination between inhibitors of early and late phases of HIV replication. Finer resolution of the effects of reference drugs on different steps of HIV replication was achieved in secondary time-of-addition assays. The EASY-HIT assay yielded high Z' scores (>0.9) and signal stabilities, confirming its robustness. Screening of the LOPAC(1280) library identified 10 compounds (0.8%), of which eight were known to inhibit HIV, validating the suitability of this assay for screening applications. Studies evaluating anti-HIV activities of natural products with the EASY-HIT technology led to the identification of three novel inhibitory compounds that apparently act at different steps of HIV-1 replication. Furthermore, we demonstrate successful evaluation of plant extracts for HIV-inhibitory activities, suggesting application of this technology for the surveillance of biological extracts with anti-HIV activities. We conclude that the EASY-HIT technology is a versatile tool for the discovery and characterization of HIV inhibitors.

  7. A novel mouse model of cerebral cavernous malformations based on the two-hit mutation hypothesis recapitulates the human disease.

    PubMed

    McDonald, David A; Shenkar, Robert; Shi, Changbin; Stockton, Rebecca A; Akers, Amy L; Kucherlapati, Melanie H; Kucherlapati, Raju; Brainer, James; Ginsberg, Mark H; Awad, Issam A; Marchuk, Douglas A

    2011-01-15

    Cerebral cavernous malformations (CCMs) are vascular lesions of the central nervous system appearing as multicavernous, blood-filled capillaries, leading to headache, seizure and hemorrhagic stroke. CCM occurs either sporadically or as an autosomal dominant disorder caused by germline mutation of one of the three genes: CCM1/KRIT1, CCM2/MGC4607 and CCM3/PDCD10. Surgically resected human CCM lesions have provided molecular and immunohistochemical evidence for a two-hit (germline plus somatic) mutation mechanism. In contrast to the equivalent human genotype, mice heterozygous for a Ccm1- or Ccm2-null allele do not develop CCM lesions. Based on the two-hit hypothesis, we attempted to improve the penetrance of the model by crossing Ccm1 and Ccm2 heterozygotes into a mismatch repair-deficient Msh2(-/-) background. Ccm1(+/-)Msh2(-/-) mice exhibit CCM lesions with high penetrance as shown by magnetic resonance imaging and histology. Significantly, the CCM lesions range in size from early-stage, isolated caverns to large, multicavernous lesions. A subset of endothelial cells within the CCM lesions revealed somatic loss of CCM protein staining, supporting the two-hit mutation mechanism. The late-stage CCM lesions displayed many of the characteristics of human CCM lesions, including hemosiderin deposits, immune cell infiltration, increased endothelial cell proliferation and increased Rho-kinase activity. Some of these characteristics were also seen, but to a lesser extent, in early-stage lesions. Tight junctions were maintained between CCM lesion endothelial cells, but gaps were evident between endothelial cells and basement membrane was defective. In contrast, the Ccm2(+/-)Msh2(-/-) mice lacked cerebrovascular lesions. The CCM1 mouse model provides an in vivo tool to investigate CCM pathogenesis and new therapies.

  8. A novel mouse model of cerebral cavernous malformations based on the two-hit mutation hypothesis recapitulates the human disease

    PubMed Central

    McDonald, David A.; Shenkar, Robert; Shi, Changbin; Stockton, Rebecca A.; Akers, Amy L.; Kucherlapati, Melanie H.; Kucherlapati, Raju; Brainer, James; Ginsberg, Mark H.; Awad, Issam A.; Marchuk, Douglas A.

    2011-01-01

    Cerebral cavernous malformations (CCMs) are vascular lesions of the central nervous system appearing as multicavernous, blood-filled capillaries, leading to headache, seizure and hemorrhagic stroke. CCM occurs either sporadically or as an autosomal dominant disorder caused by germline mutation of one of the three genes: CCM1/KRIT1, CCM2/MGC4607 and CCM3/PDCD10. Surgically resected human CCM lesions have provided molecular and immunohistochemical evidence for a two-hit (germline plus somatic) mutation mechanism. In contrast to the equivalent human genotype, mice heterozygous for a Ccm1- or Ccm2-null allele do not develop CCM lesions. Based on the two-hit hypothesis, we attempted to improve the penetrance of the model by crossing Ccm1 and Ccm2 heterozygotes into a mismatch repair-deficient Msh2−/− background. Ccm1+/−Msh2−/− mice exhibit CCM lesions with high penetrance as shown by magnetic resonance imaging and histology. Significantly, the CCM lesions range in size from early-stage, isolated caverns to large, multicavernous lesions. A subset of endothelial cells within the CCM lesions revealed somatic loss of CCM protein staining, supporting the two-hit mutation mechanism. The late-stage CCM lesions displayed many of the characteristics of human CCM lesions, including hemosiderin deposits, immune cell infiltration, increased endothelial cell proliferation and increased Rho-kinase activity. Some of these characteristics were also seen, but to a lesser extent, in early-stage lesions. Tight junctions were maintained between CCM lesion endothelial cells, but gaps were evident between endothelial cells and basement membrane was defective. In contrast, the Ccm2+/−Msh2−/− mice lacked cerebrovascular lesions. The CCM1 mouse model provides an in vivo tool to investigate CCM pathogenesis and new therapies. PMID:20940147

  9. Cell biology of diabetic nephropathy: Roles of endothelial cells, tubulointerstitial cells and podocytes.

    PubMed

    Maezawa, Yoshiro; Takemoto, Minoru; Yokote, Koutaro

    2015-01-01

    Diabetic nephropathy is the major cause of end-stage renal failure throughout the world in both developed and developing countries. Diabetes affects all cell types of the kidney, including endothelial cells, tubulointerstitial cells, podocytes and mesangial cells. During the past decade, the importance of podocyte injury in the formation and progression of diabetic nephropathy has been established and emphasized. However, recent findings provide additional perspectives on pathogenesis of diabetic nephropathy. Glomerular endothelial damage is already present in the normoalbuminuric stage of the disease when podocyte injury starts. Genetic targeting of mice that cause endothelial injury leads to accelerated diabetic nephropathy. Tubulointerstitial damage, previously considered to be a secondary effect of glomerular protein leakage, was shown to have a primary significance in the progression of diabetic nephropathy. Emerging evidence suggests that the glomerular filtration barrier and tubulointerstitial compartment is a composite, dynamic entity where any injury of one cell type spreads to other cell types, and leads to the dysfunction of the whole apparatus. Accumulation of novel knowledge would provide a better understanding of the pathogenesis of diabetic nephropathy, and might lead to a development of a new therapeutic strategy for the disease.

  10. Cell biology of diabetic nephropathy: Roles of endothelial cells, tubulointerstitial cells and podocytes

    PubMed Central

    Maezawa, Yoshiro; Takemoto, Minoru; Yokote, Koutaro

    2015-01-01

    Diabetic nephropathy is the major cause of end-stage renal failure throughout the world in both developed and developing countries. Diabetes affects all cell types of the kidney, including endothelial cells, tubulointerstitial cells, podocytes and mesangial cells. During the past decade, the importance of podocyte injury in the formation and progression of diabetic nephropathy has been established and emphasized. However, recent findings provide additional perspectives on pathogenesis of diabetic nephropathy. Glomerular endothelial damage is already present in the normoalbuminuric stage of the disease when podocyte injury starts. Genetic targeting of mice that cause endothelial injury leads to accelerated diabetic nephropathy. Tubulointerstitial damage, previously considered to be a secondary effect of glomerular protein leakage, was shown to have a primary significance in the progression of diabetic nephropathy. Emerging evidence suggests that the glomerular filtration barrier and tubulointerstitial compartment is a composite, dynamic entity where any injury of one cell type spreads to other cell types, and leads to the dysfunction of the whole apparatus. Accumulation of novel knowledge would provide a better understanding of the pathogenesis of diabetic nephropathy, and might lead to a development of a new therapeutic strategy for the disease. PMID:25621126

  11. The Evolving Roles of Memory Immune Cells in Transplantation.

    PubMed

    Chen, Wenhao; Ghobrial, Rafik M; Li, Xian C

    2015-10-01

    Memory cells are the products of immune responses but also exert significant impact on subsequent immunity and immune tolerance, thus placing them in a unique position in transplant research. Memory cells are heterogeneous, including not only memory T cells but also memory B cells and innate memory cells. Memory cells are a critical component of protective immunity against invading pathogens, especially in immunosuppressed patients, but they also mediate graft loss and tolerance resistance. Recent studies suggest that some memory cells unexpectedly act as regulatory cells, promoting rather than hindering transplant survival. This functional diversity makes therapeutic targeting of memory cells a challenging task in transplantation. In this article, we highlight recent advances in our understanding of memory cells, focusing on diversity of memory cells and mechanisms involved in their induction and functions. We also provide a broad overview on the challenges and opportunities in targeting memory cells in the induction of transplant tolerance.

  12. Conserved roles of the prion protein domains on subcellular localization and cell-cell adhesion.

    PubMed

    Solis, Gonzalo P; Radon, Yvonne; Sempou, Emily; Jechow, Katharina; Stuermer, Claudia A O; Málaga-Trillo, Edward

    2013-01-01

    Analyses of cultured cells and transgenic mice expressing prion protein (PrP) deletion mutants have revealed that some properties of PrP -such as its ability to misfold, aggregate and trigger neurotoxicity- are controlled by discrete molecular determinants within its protein domains. Although the contributions of these determinants to PrP biosynthesis and turnover are relatively well characterized, it is still unclear how they modulate cellular functions of PrP. To address this question, we used two defined activities of PrP as functional readouts: 1) the recruitment of PrP to cell-cell contacts in Drosophila S2 and human MCF-7 epithelial cells, and 2) the induction of PrP embryonic loss- and gain-of-function phenotypes in zebrafish. Our results show that homologous mutations in mouse and zebrafish PrPs similarly affect their subcellular localization patterns as well as their in vitro and in vivo activities. Among PrP's essential features, the N-terminal leader peptide was sufficient to drive targeting of our constructs to cell contact sites, whereas lack of GPI-anchoring and N-glycosylation rendered them inactive by blocking their cell surface expression. Importantly, our data suggest that the ability of PrP to homophilically trans-interact and elicit intracellular signaling is primarily encoded in its globular domain, and modulated by its repetitive domain. Thus, while the latter induces the local accumulation of PrPs at discrete punctae along cell contacts, the former counteracts this effect by promoting the continuous distribution of PrP. In early zebrafish embryos, deletion of either domain significantly impaired PrP's ability to modulate E-cadherin cell adhesion. Altogether, these experiments relate structural features of PrP to its subcellular distribution and in vivo activity. Furthermore, they show that despite their large evolutionary history, the roles of PrP domains and posttranslational modifications are conserved between mouse and zebrafish.

  13. An indirect role for NK cells in a CD4(+) T-cell-dependent mouse model of type I diabetes.

    PubMed

    Angstetra, Eveline; Graham, Kate L; Zhao, Yuxing; Irvin, Allison E; Elkerbout, Lorraine; Santamaria, Pere; Slattery, Robyn M; Kay, Thomas W; Thomas, Helen E

    2012-02-01

    CD8(+) T cells kill pancreatic β-cells in a cell-cell contact-dependent mechanism in the non-obese diabetic mouse. CD4(+) T lymphocytes are also able to kill pancreatic β-cells, but they do not directly contact β-cells and may use another cell type as the actual cytotoxic cell. Natural killer (NK) cells could have this role but it is uncertain whether they are cytotoxic towards β-cells. Therefore, the requirement for NK cells in β-cell destruction in the CD4-dependent T-cell antigen receptor transgenic NOD4.1 mice was examined. NK cells failed to kill β-cells in vitro, even in the absence of major histocompatibility complex class I. We observed only 9.7±1.1% of islet infiltrating NK cells from NOD4.1 mice expressing the degranulation marker CD107a. Diabetogenic CD4(+) T cells transferred disease to NODscid.IL2Rγ(-/-) mice lacking NK cells, indicating that NK cells do not contribute to β-cell death in vitro or in vivo. However, depletion of NK cells reduced diabetes incidence in NOD4.1 mice, suggesting that NK cells may help to maintain the right environment for cytotoxicity of effector cells.

  14. Roles of bone marrow cells in skeletal metastases: no longer bystanders.

    PubMed

    Park, Serk In; Soki, Fabiana N; McCauley, Laurie K

    2011-12-01

    Bone serves one of the most congenial metastatic microenvironments for multiple types of solid tumors, but its role in this process remains under-explored. Among many cell populations constituting the bone and bone marrow microenvironment, osteoblasts (originated from mesenchymal stem cells) and osteoclasts (originated from hematopoietic stem cells) have been the main research focus for pro-tumorigenic roles. Recently, increasing evidence further elucidates that hematopoietic lineage cells as well as stromal cells in the bone marrow mediate distinct but critical functions in tumor growth, metastasis, angiogenesis and apoptosis in the bone microenvironment. This review article summarizes the key evidence describing differential roles of bone marrow cells, including hematopoietic stem cells (HSCs), megakaryocytes, macrophages and myeloid-derived suppressor cells in the development of metastatic bone lesions. HSCs promote tumor growth by switching on angiogenesis, but at the same time compete with metastatic tumor cells for occupancy of osteoblastic niche. Megakaryocytes negatively regulate the extravasating tumor cells by inducing apoptosis and suppressing proliferation. Macrophages and myeloid cells have pro-tumorigenic roles in general, suggesting a similar effect in the bone marrow. Hematopoietic and stromal cell populations in the bone marrow, previously considered as simple by-standers in the context of tumor metastasis, have distinct and active roles in promoting or suppressing tumor growth and metastasis in bone. Further investigation on the extended roles of bone marrow cells will help formulate better approaches to treatment through improved understanding of the metastatic bone microenvironment.

  15. B cells and their role in the teleost gut

    PubMed Central

    Korytář, Tomáš; Takizawa, Fumio

    2016-01-01

    Mucosal surfaces are the main route of entry for pathogens in all living organisms. In the case of teleost fish, mucosal surfaces cover the vast majority of the animal. As these surfaces are in constant contact with the environment, fish are perpetually exposed to a vast number of pathogens. Despite the potential prevalence and variety of pathogens, mucosal surfaces are primarily populated by commensal non-pathogenic bacteria. Indeed, a fine balance between these two populations of microorganisms is crucial for animal survival. This equilibrium, controlled by the mucosal immune system, maintains homeostasis at mucosal tissues. Teleost fish possess a diffuse mucosa-associated immune system in the intestine, with B cells being one of the main responders. Immunoglobulins produced by these lymphocytes are a critical line of defense against pathogens and also prevent the entrance of commensal bacteria into the epithelium. In this review we will summarize recent literature regarding the role of B-lymphocytes and immunoglobulins in gut immunity in teleost fish, with specific focus on immunoglobulin isotypes and the microorganisms, pathogenic and non-pathogenic that interact with the immune system. PMID:26995768

  16. Genetic and Functional Analyses of SHANK2 Mutations Suggest a Multiple Hit Model of Autism Spectrum Disorders

    PubMed Central

    Leblond, Claire S.; Heinrich, Jutta; Delorme, Richard; Proepper, Christian; Betancur, Catalina; Huguet, Guillaume; Konyukh, Marina; Chaste, Pauline; Ey, Elodie; Rastam, Maria; Anckarsäter, Henrik; Nygren, Gudrun; Gillberg, I. Carina; Melke, Jonas; Toro, Roberto; Regnault, Beatrice; Fauchereau, Fabien; Mercati, Oriane; Lemière, Nathalie; Skuse, David; Poot, Martin; Holt, Richard; Monaco, Anthony P.; Järvelä, Irma; Kantojärvi, Katri; Vanhala, Raija; Curran, Sarah; Collier, David A.; Bolton, Patrick; Chiocchetti, Andreas; Klauck, Sabine M.; Poustka, Fritz; Freitag, Christine M.; Waltes, Regina; Kopp, Marnie; Duketis, Eftichia; Bacchelli, Elena; Minopoli, Fiorella; Ruta, Liliana; Battaglia, Agatino; Mazzone, Luigi; Maestrini, Elena; Sequeira, Ana F.; Oliveira, Barbara; Vicente, Astrid; Oliveira, Guiomar; Pinto, Dalila; Scherer, Stephen W.; Zelenika, Diana; Delepine, Marc; Lathrop, Mark; Bonneau, Dominique; Guinchat, Vincent; Devillard, Françoise; Assouline, Brigitte; Mouren, Marie-Christine; Leboyer, Marion; Gillberg, Christopher; Boeckers, Tobias M.; Bourgeron, Thomas

    2012-01-01

    Autism spectrum disorders (ASD) are a heterogeneous group of neurodevelopmental disorders with a complex inheritance pattern. While many rare variants in synaptic proteins have been identified in patients with ASD, little is known about their effects at the synapse and their interactions with other genetic variations. Here, following the discovery of two de novo SHANK2 deletions by the Autism Genome Project, we identified a novel 421 kb de novo SHANK2 deletion in a patient with autism. We then sequenced SHANK2 in 455 patients with ASD and 431 controls and integrated these results with those reported by Berkel et al. 2010 (n = 396 patients and n = 659 controls). We observed a significant enrichment of variants affecting conserved amino acids in 29 of 851 (3.4%) patients and in 16 of 1,090 (1.5%) controls (P = 0.004, OR = 2.37, 95% CI = 1.23–4.70). In neuronal cell cultures, the variants identified in patients were associated with a reduced synaptic density at dendrites compared to the variants only detected in controls (P = 0.0013). Interestingly, the three patients with de novo SHANK2 deletions also carried inherited CNVs at 15q11–q13 previously associated with neuropsychiatric disorders. In two cases, the nicotinic receptor CHRNA7 was duplicated and in one case the synaptic translation repressor CYFIP1 was deleted. These results strengthen the role of synaptic gene dysfunction in ASD but also highlight the presence of putative modifier genes, which is in keeping with the “multiple hit model” for ASD. A better knowledge of these genetic interactions will be necessary to understand the complex inheritance pattern of ASD. PMID:22346768

  17. Use of health information technology (HIT) to improve statin adherence and low-density lipoprotein cholesterol goal attainment in high-risk patients: proceedings from a workshop.

    PubMed

    Cohen, Jerome D; Aspry, Karen E; Brown, Alan S; Foody, Joanne M; Furman, Roy; Jacobson, Terry A; Karalis, Dean G; Kris-Etherton, Penny M; Laforge, Ralph; O'Toole, Michael F; Scott, Ronald D; Underberg, James A; Valuck, Thomas B; Willard, Kaye-Eileen; Ziajka, Paul E; Ito, Matthew K

    2013-01-01

    The workshop discussions focused on how low-density lipoprotein cholesterol (LDL-C) goal attainment can be enhanced with the use of health information technology (HIT) in different clinical settings. A gap is acknowledged in LDL-C goal attainment, but because of the passage of the American Recovery & Reinvestment Act and the Health Information Technology for Economic and Clinical Health Acts there is now reason for optimism that this gap can be narrowed. For HIT to be effectively used to achieve treatment goals, it must be implemented in a setting in which the health care team is fully committed to achieving these goals. Implementation of HIT alone has not resulted in reducing the gap. It is critical to build an effective management strategy into the HIT platform without increasing the overall work/time burden on staff. By enhancing communication between the health care team and the patient, more timely adjustments to treatment plans can be made with greater opportunity for LDL-C goal attainment and improved efficiency in the long run. Patients would be encouraged to take a more active role. Support tools are available. The National Lipid Association has developed a toolkit designed to improve patient compliance and could be modified for use in an HIT system. The importance of a collaborative approach between nongovernmental organizations such as the National Lipid Association, National Quality Forum, HIT partners, and other members of the health care industry offers the best opportunity for long-term success and the real possibility that such efforts could be applied to other chronic conditions, for example, diabetes and hypertension.

  18. Sex-specific disruptions in spatial memory and anhedonia in a "two hit" rat model correspond with alterations in hippocampal brain-derived neurotrophic factor expression and signaling.

    PubMed

    Hill, Rachel A; Klug, Maren; Kiss Von Soly, Szerenke; Binder, Michele D; Hannan, Anthony J; van den Buuse, Maarten

    2014-10-01

    Post-mortem studies have demonstrated reduced expression of brain-derived neurotrophic factor (BDNF) in the hippocampus of schizophrenia and major depression patients. The "two hit" hypothesis proposes that two or more major disruptions at specific time points during development are involved in the pathophysiology of these mental illnesses. However, the role of BDNF in these "two hit" effects is unclear. Our aim was to behaviorally characterize a "two hit" rat model of developmental stress accompanied by an in-depth assessment of BDNF expression and signalling. Wistar rats were exposed to neonatal maternal separation (MS) stress and/or adolescent/young-adult corticosterone (CORT) treatment. In adulthood, models of cognitive and negative symptoms of mental illness were analyzed. The hippocampus was then dissected into dorsal (DHP) and ventral (VHP) regions and analyzed by qPCR for exon-specific BDNF gene expression or by Western blot for BDNF protein expression and downstream signaling. Male "two hit" rats showed marked disruptions in short-term spatial memory (Y-maze) which were absent in females. However, female "two hit" rats showed signs of anhedonia (sucrose preference test), which were absent in males. Novel object recognition and anxiety (elevated plus maze) were unchanged by either of the two "hits". In the DHP, MS caused a male-specific increase in BDNF Exons I, II, IV, VII, and IX mRNA but a decrease in mature BDNF and phosphorylated TrkB (pTrkB) protein expression in adulthood. In the VHP, BDNF transcript expression was unchanged; however, in female rats only, MS significantly decreased mature BDNF and pTrkB protein expression in adulthood. These data demonstrate that MS causes region-specific and sex-specific long-term effects on BDNF expression and signaling and, importantly, mRNA expression does not always infer protein expression. Alterations to BDNF signaling may mediate the sex-specific effects of developmental stress on anhedonic behaviors.

  19. Gastrin stimulates MMP-1 expression in gastric epithelial cells: putative role in gastric epithelial cell migration.

    PubMed

    Kumar, J Dinesh; Steele, Islay; Moore, Andrew R; Murugesan, Senthil V; Rakonczay, Zoltan; Venglovecz, Viktoria; Pritchard, D Mark; Dimaline, Rodney; Tiszlavicz, Laszlo; Varro, Andrea; Dockray, Graham J

    2015-07-15

    The pyloric antral hormone gastrin plays a role in remodeling of the gastric epithelium, but the specific targets of gastrin that mediate these effects are poorly understood. Glandular epithelial cells of the gastric corpus express matrix metalloproteinase (MMP)-1, which is a potential determinant of tissue remodeling; some of these cells express the CCK-2 receptor at which gastrin acts. We have now examined the hypothesis that gastrin stimulates expression of MMP-1 in the stomach. We determined MMP-1 transcript abundance in gastric mucosal biopsies from Helicobacter pylori negative human subjects with normal gastric mucosal histology, who had a range of serum gastrin concentrations due in part to treatment with proton pump inhibitors (PPI). The effects of gastrin were studied on gastric epithelial AGS-GR cells using Western blot and migration assays. In human subjects with increased serum gastrin due to PPI usage, MMP-1 transcript abundance was increased 2-fold; there was also increased MMP-7 transcript abundance but not MMP-3. In Western blots, gastrin increased proMMP-1 abundance, as well that of a minor band corresponding to active MMP-1, in the media of AGS-GR cells, and the response was mediated by protein kinase C and p42/44 MAP kinase. There was also increased MMP-1 enzyme activity. Gastrin-stimulated AGS-GR cell migration in both scratch wound and Boyden chamber assays was inhibited by MMP-1 immunoneutralization. We conclude that MMP-1 expression is a target of gastrin implicated in mucosal remodeling.

  20. A Role for Neuropilins in the Interaction between Schwann Cells and Meningeal Cells

    PubMed Central

    Roet, Kasper C. D.; Wirz, Kerstin T. S.; Franssen, Elske H. P.; Verhaagen, Joost

    2014-01-01

    In their natural habitat, the peripheral nerve, Schwann cells (SCs) form nicely aligned pathways (also known as the bands of Büngner) that guide regenerating axons to their targets. Schwann cells that are implanted in the lesioned spinal cord fail to align in pathways that could support axon growth but form cellular clusters that exhibit only limited intermingling with the astrocytes and meningeal cells (MCs) that are present in the neural scar. The formation of cell clusters can be studied in co-cultures of SCs and MCs. In these co-cultures SCs form cluster-like non-overlapping cell aggregates with well-defined boundaries. There are several indications that neuropilins (NRPs) play an important role in MC-induced SC aggregation. Both SCs and MCs express NRP1 and NRP2 and SCs express the NRP ligands Sema3B, C and E while MCs express Sema3A, C, E and F. We now demonstrate that in SC-MC co-cultures, siRNA mediated knockdown of NRP2 in SCs decreased the formation of SC clusters while these SCs maintained their capacity to align in bands of Büngner-like columnar arrays. Unexpectedly, knockdown of NRP1 expression resulted in a significant increase in SC aggregation. These results suggest that a reduction in NRP2 expression may enhance the capacity of implanted SCs to interact with MCs that invade a neural scar formed after a lesion of the spinal cord. PMID:25314276

  1. Immunosuppressive Environment in Basal Cell Carcinoma: The Role of Regulatory T Cells.

    PubMed

    Omland, Silje H; Nielsen, Patricia S; Gjerdrum, Lise M R; Gniadecki, Robert

    2016-11-02

    Interaction between tumour survival tactics and anti-tumour immune response is a major determinant for cancer growth. Regulatory T cells (T-regs) contribute to tumour immune escape, but their role in basal cell carcinoma (BCC) is not understood. The fraction of T-regs among T cells was analysed by immunohistochemistry followed by automated image analysis in facial BCC, peritumoural skin and normal, buttock skin. Quantitative real-time PCR (qRT-PCR) was performed for FOXP3 and cytokines involved in T-reg attraction and T-cell activation. T-regs comprised 45% of CD4-cells surrounding BCC. FOXP3 was highly expressed in BCC, but absent in buttock skin. Unexpectedly, expression of FOXP3 was increased in peritumoural skin, with the FOXP3/CD3 fractions exceeding those of BCC (p?=?0.0065). Transforming growth factor (TGF)-? and T-reg chemokine expression was increased in BCC and peritumoural skin, but not in buttock skin, with expression levels correlating with FOXP3. T-regs are abundantly present both in BCC and in peritumoural skin, mediating an immunosuppressed microenvironment permissive for skin cancer.

  2. Role of the Stem Cell Niche in Hormone-Induced Tumorigenesis in Fetal Mouse Mammary Epithelium

    DTIC Science & Technology

    2005-08-01

    AD Award Number: W81XWH-04-1-0719 TITLE: Role of the Stem Cell Niche in Hormone-Induced Tumorigenesis in Fetal Mouse Mammary Epithelium PRINCIPAL...TITLE AND SUBTITLE 5a. CONTRACT NUMBER Role of the Stem Cell Niche in Hormone-induced Tumorigenesis in Fetal Mouse 5b. GRANT NUMBER Mammary Epithelium...SUPPLEMENTARY NOTES 14. ABSTRACT SEE PAGE 4 15. SUBJECT TERMS Stem Cells , Stem Cell niche, Immunohistochemistry, mammary gland, breast cancer 16

  3. Hitting cancers' weak spots: vulnerabilities imposed by p53 mutation.

    PubMed

    Gurpinar, Evrim; Vousden, Karen H

    2015-08-01

    The tumor suppressor protein p53 plays a critical role in limiting malignant development and progression. Almost all cancers show loss of p53 function, through either mutation in the p53 gene itself or defects in the mechanisms that activate p53. While reactivation of p53 can effectively limit tumor growth, this is a difficult therapeutic goal to achieve in the many cancers that do not retain wild type p53. An alternative approach focuses on identifying vulnerabilities imposed on cancers by virtue of the loss of or alterations in p53, to identify additional pathways that can be targeted to specifically kill or inhibit the growth of p53 mutated cells. These indirect ways of exploiting mutations in p53 - which occur in more than half of all human cancers - provide numerous exciting therapeutic possibilities.

  4. The double-edge role of B cells in mediating antitumor T-cell immunity: Pharmacological strategies for cancer immunotherapy.

    PubMed

    Wang, Jing-Zhang; Zhang, Yu-Hua; Guo, Xin-Hua; Zhang, Hong-Yan; Zhang, Yuan

    2016-07-01

    Emerging evidence reveals the controversial role of B cells in antitumor immunity, but the underlying mechanisms have to be explored. Three latest articles published in the issue 521 of Nature in 2015 reconfirmed the puzzling topic and put forward some explanations of how B cells regulate antitumor T-cell responses both positively and negatively. This paper attempts to demonstrate that different B-cell subpopulations have distinct immunological properties and that they are involved in either antitumor responses or immunosuppression. Recent studies supporting the positive and negative roles of B cells in tumor development were summarized comprehensively. Several specific B-cell subpopulations, such as IgG(+), IgA(+), IL-10(+), and regulatory B cells, were described in detail. The mechanisms underlying the controversial B-cell effects were mainly attributed to different B-cell subpopulations, different B-cell-derived cytokines, direct B cell-T cell interaction, different cancer categories, and different malignant stages, and the immunological interaction between B cells and T cells is mediated by dendritic cells. Promising B-cell-based antitumor strategies were proposed and novel B-cell regulators were summarized to present interesting therapeutic targets. Future investigations are needed to make sure that B-cell-based pharmacological strategies benefit cancer immunotherapy substantially.

  5. Role of Pin1 in UVA-induced cell proliferation and malignant transformation in epidermal cells

    SciTech Connect

    Han, Chang Yeob; Hien, Tran Thi; Lim, Sung Chul; Kang, Keon Wook

    2011-06-24

    Highlights: {yields} Pin1 expression is enhanced by low energy UVA irradiation in both skin tissues of hairless mice and JB6 C141 epidermal cells. {yields} UVA irradiation increases activator protein-1 activity and cyclin D1 in a Pin1-dependent manner. {yields} UVA potentiates EGF-inducible, anchorage-independent growth of epidermal cells, and this is suppressed by Pin1 inhibition or by anti-oxidant. -- Abstract: Ultraviolet A (UVA) radiation ({lambda} = 320-400 nm) is considered a major cause of human skin cancer. Pin1, a peptidyl prolyl isomerase, is overexpressed in most types of cancer tissues and plays an important role in cell proliferation and transformation. Here, we demonstrated that Pin1 expression was enhanced by low energy UVA (300-900 mJ/cm{sup 2}) irradiation in both skin tissues of hairless mice and JB6 C141 epidermal cells. Exposure of epidermal cells to UVA radiation increased cell proliferation and cyclin D1 expression, and these changes were blocked by Pin1 inhibition. UVA irradiation also increased activator protein-1 (AP-1) minimal reporter activity and nuclear levels of c-Jun, but not c-Fos, in a Pin1-dependent manner. The increases in Pin1 expression and in AP-1 reporter activity in response to UVA were abolished by N-acetylcysteine (NAC) treatment. Finally, we found that pre-exposure of JB6 C141 cells to UVA potentiated EGF-inducible, anchorage-independent growth, and this effect was significantly suppressed by Pin1inhibition or by NAC.

  6. Lead roles for supporting actors: critical functions of inner ear supporting cells.

    PubMed

    Monzack, Elyssa L; Cunningham, Lisa L

    2013-09-01

    Many studies that aim to investigate the underlying mechanisms of hearing loss or balance disorders focus on the hair cells and spiral ganglion neurons of the inner ear. Fewer studies have examined the supporting cells that contact both of these cell types in the cochlea and vestibular end organs. While the roles of supporting cells are still being elucidated, emerging evidence indicates that they serve many functions vital to maintaining healthy populations of hair cells and spiral ganglion neurons. Here we review recent studies that highlight the critical roles supporting cells play in the development, function, survival, death, phagocytosis, and regeneration of other cell types within the inner ear. Many of these roles have also been described for glial cells in other parts of the nervous system, and lessons from these other systems continue to inform our understanding of supporting cell functions. This article is part of a Special Issue entitled "Annual Reviews 2013".

  7. Mast cells play an important role in Chlamydia pneumoniae lung infection by facilitating immune cell recruitment into the airway

    PubMed Central

    Chiba, Norika; Shimada, Kenichi; Chen, Shuang; Jones, Heather D.; Alsabeh, Randa; Slepenkin, Anatoly V.; Peterson, Ellena; Crother, Timothy R.; Arditi, Moshe

    2015-01-01

    Mast cells are known as central players in allergy and anaphylaxis, and play a pivotal role in host defense against certain pathogens. Chlamydia pneumoniae (Cpn) is an important human pathogen, but it is unclear what role mast cells play during Cpn infection. We infected C57BL/6 (WT) and mast cell-deficient mice, Kitw-sh/w-sh (Wsh), with Cpn. Wsh mice showed improved survival than WT, with fewer cells in Wsh BALF despite similar levels of cytokines and chemokines. We also found a more rapid clearance of bacteria from the lungs of Wsh mice compared with WT. Cromolyn, a mast cell stabilizer, reduced BAL cells and bacterial burden similar to Wsh mice; conversely, Compound 48/80, a mast cell degranulator, increased the number of BAL cells and bacterial burden. Histology showed that WT lungs had diffuse inflammation while Wsh mice had patchy accumulations of neutrophils and perivascular accumulations of lymphocytes. Infected Wsh mice had reduced amounts of MMP-9 in BALF and were resistant to epithelial integral membrane protein degradation, suggesting that barrier integrity remains intact in Wsh mice. Mast cell reconstitution in Wsh mice led to enhanced bacterial growth and normal epithelial integral membrane protein degradation, highlighting the specific role of mast cells in this model. These data suggest that mast cells play a detrimental role during Cpn infection by facilitating immune cell infiltration into the airspace and providing a more favorable replicative environment for Cpn. PMID:25754739

  8. Mast cells: an expanding pathophysiological role from allergy to other disorders.

    PubMed

    Anand, Preet; Singh, Baldev; Jaggi, Amteshwar Singh; Singh, Nirmal

    2012-07-01

    The mast cells are multi-effector cells with wide distribution in the different body parts and traditionally their role has been well-defined in the development of IgE-mediated hypersensitivity reactions including bronchial asthma. Due to the availability of genetically modified mast cell-deficient mice, the broadened pathophysiological role of mast cells in diverse diseases has been revealed. Mast cells exert different physiological and pathophysiological roles by secreting their granular contents, including vasoactive amines, cytokines and chemokines, and various proteases, including tryptase and chymase. Furthermore, mast cells also synthesize plasma membrane-derived lipid mediators, including prostaglandins and leukotrienes, to produce diverse biological actions. The present review discusses the pathophysiological role of mast cells in different diseases, including atherosclerosis, pulmonary hypertension, ischemia-reperfusion injury, male infertility, autoimmune disorders such as rheumatoid arthritis and multiple sclerosis, bladder pain syndrome (interstitial cystitis), anxiety, Alzheimer's disease, nociception, obesity and diabetes mellitus.

  9. Novel Cancer Chemotherapy Hits by Molecular Topology: Dual Akt and Beta-Catenin Inhibitors

    PubMed Central

    Morell, Cecilia; Rodríguez-Henche, Nieves; Recio-Iglesias, Maria Carmen; Garcia-Domenech, Ramon

    2015-01-01

    Background and Purpose Colorectal and prostate cancers are two of the most common types and cause of a high rate of deaths worldwide. Therefore, any strategy to stop or at least slacken the development and progression of malignant cells is an important therapeutic choice. The aim of the present work is the identification of novel cancer chemotherapy agents. Nowadays, many different drug discovery approaches are available, but this paper focuses on Molecular Topology, which has already demonstrated its extraordinary efficacy in this field, particularly in the identification of new hit and lead compounds against cancer. This methodology uses the graph theoretical formalism to numerically characterize molecular structures through the so called topological indices. Once obtained a specific framework, it allows the construction of complex mathematical models that can be used to predict physical, chemical or biological properties of compounds. In addition, Molecular Topology is highly efficient in selecting and designing new hit and lead drugs. According to the aforementioned, Molecular Topology has been applied here for the construction of specific Akt/mTOR and β-catenin inhibition mathematical models in order to identify and select novel antitumor agents. Experimental Approach Based on the results obtained by the selected mathematical models, six novel potential inhibitors of the Akt/mTOR and β-catenin pathways were identified. These compounds were then tested in vitro to confirm their biological activity. Conclusion and Implications Five of the selected compounds, CAS n° 256378-54-8 (Inhibitor n°1), 663203-38-1 (Inhibitor n°2), 247079-73-8 (Inhibitor n°3), 689769-86-6 (Inhibitor n°4) and 431925-096 (Inhibitor n°6) gave positive responses and resulted to be active for Akt/mTOR and/or β-catenin inhibition. This study confirms once again the Molecular Topology’s reliability and efficacy to find out novel drugs in the field of cancer. PMID:25910265

  10. Role of memory T cell subsets for adoptive immunotherapy.

    PubMed

    Busch, Dirk H; Fräßle, Simon P; Sommermeyer, Daniel; Buchholz, Veit R; Riddell, Stanley R

    2016-02-01

    Adoptive transfer of primary (unmodified) or genetically engineered antigen-specific T cells has demonstrated astonishing clinical results in the treatment of infections and some malignancies. Besides the definition of optimal targets and antigen receptors, the differentiation status of transferred T cells is emerging as a crucial parameter for generating cell products with optimal efficacy and safety profiles. Long-living memory T cells subdivide into phenotypically as well as functionally different subsets (e.g. central memory, effector memory, tissue-resident memory T cells). This diversification process is crucial for effective immune protection, with probably distinct dependencies on the presence of individual subsets dependent on the disease to which the immune response is directed as well as its organ location. Adoptive T cell therapy intends to therapeutically transfer defined T cell immunity into patients. Efficacy of this approach often requires long-term maintenance of transferred cells, which depends on the presence and persistence of memory T cells. However, engraftment and survival of highly differentiated memory T cell subsets upon adoptive transfer is still difficult to achieve. Therefore, the recent observation that a distinct subset of weakly differentiated memory T cells shows all characteristics of adult tissue stem cells and can reconstitute all types of effector and memory T cell subsets, became highly relevant. We here review our current understanding of memory subset formation and T cell subset purification, and its implications for adoptive immunotherapy.

  11. Essential role for autophagy during invariant NKT cell development

    PubMed Central

    Salio, Mariolina; Puleston, Daniel J.; Mathan, Till S. M.; Shepherd, Dawn; Stranks, Amanda J.; Adamopoulou, Eleni; Veerapen, Natacha; Besra, Gurdyal S.; Hollander, Georg A.; Simon, Anna Katharina; Cerundolo, Vincenzo

    2014-01-01

    Autophagy is an evolutionarily conserved cellular homeostatic pathway essential for development, immunity, and cell death. Although autophagy modulates MHC antigen presentation, it remains unclear whether autophagy defects impact on CD1d lipid loading and presentation to invariant natural killer T (iNKT) cells and on iNKT cell differentiation in the thymus. Furthermore, it remains unclear whether iNKT and conventional T cells have similar autophagy requirements for differentiation, survival, and/or activation. We report that, in mice with a conditional deletion of the essential autophagy gene Atg7 in the T-cell compartment (CD4 Cre-Atg7−/−), thymic iNKT cell development—unlike conventional T-cell development—is blocked at an early stage and mature iNKT cells are absent in peripheral lymphoid organs. The defect is not due to altered loading of intracellular iNKT cell agonists; rather, it is T-cell–intrinsic, resulting in enhanced susceptibility of iNKT cells to apoptosis. We show that autophagy increases during iNKT cell thymic differentiation and that it developmentally regulates mitochondrial content through mitophagy in the thymus of mice and humans. Autophagy defects result in the intracellular accumulation of mitochondrial superoxide species and subsequent apoptotic cell death. Although autophagy-deficient conventional T cells develop normally, they show impaired peripheral survival, particularly memory CD8+ T cells. Because iNKT cells, unlike conventional T cells, differentiate into memory cells while in the thymus, our results highlight a unique autophagy-dependent metabolic regulation of adaptive and innate T cells, which is required for transition to a quiescent state after population expansion. PMID:25512546

  12. Class 3 semaphorins induce F-actin reorganization in human dendritic cells: Role in cell migration.

    PubMed

    Curreli, Sabrina; Wong, Bin Sheng; Latinovic, Olga; Konstantopoulos, Konstantinos; Stamatos, Nicholas M

    2016-12-01

    Class 3 semaphorins (Semas) are soluble proteins that are well recognized for their role in guiding axonal migration during neuronal development. In the immune system, Sema3A has been shown to influence murine dendritic cell (DC) migration by signaling through a neuropilin (NRP)-1/plexin-A1 coreceptor axis. Potential roles for class 3 Semas in human DCs have yet to be described. We tested the hypothesis that Sema3A, -3C, and -3F, each with a unique NRP-1 and/or NRP-2 binding specificity, influence human DC migration. In this report, we find that although NRP-1 and NRP-2 are expressed in human immature DCs (imDCs), NRP-2 expression increases as cells mature further, whereas expression of NRP-1 declines dramatically. Elevated levels of RNA encoding plexin-A1 and -A3 are present in both imDCs and mature DC (mDCs), supporting the relevance of Sema/NRP/plexin signaling pathways in these cells. Sema3A, -3C, and -3F bind to human DCs, with Sema3F binding predominantly through NRP-2. The binding of these Semas leads to reorganization of actin filaments at the plasma membrane and increased transwell migration in the absence or presence of chemokine CCL19. Microfluidic chamber assays failed to demonstrate consistent changes in speed of Sema3C-treated DCs, suggesting increased cell deformability as a possible explanation for enhanced transwell migration. Although monocytes express RNA encoding Sema3A, -3C, and -3F, only RNA encoding Sema3C increases robustly during DC differentiation. These data suggest that Sema3A, -3C, and -3F, likely with coreceptors NRP-1, NRP-2, and plexin-A1 and/or -A3, promote migration and possibly other activities of human DCs during innate and adaptive immune responses.

  13. Potential role of mast cells in hamster cheek pouch carcinogenesis.

    PubMed

    Aromando, Romina F; Pérez, Miguel A; Heber, Elisa M; Trivillin, Verónica A; Tomasi, Víctor H; Schwint, Amanda E; Itoiz, María E

    2008-11-01

    During the process of activation, mast cells release products stored in their granules. Tryptase, a protease released from mast cell granules after activation, induces tumor cell proliferation through the activation of PAR-2 (protease activated receptor 2) on the plasma membrane of carcinoma cells. Chemical cancerization (DMBA) of the hamster cheek pouch is the most accepted model of oral cancer. However, there are no reports on the activation of mast cells during experimental carcinogenesis or on the correlation between mast cell activation and cell proliferation. The aim of the present study was to evaluate the potential effect of mast cells on the proliferation of epithelial cells at different times during the cancerization process. Paraffin serial sections of cancerized, tumor-bearing pouches were stained with Alcian Blue-Safranin to identify the different degrees of mast cell activation. Immunohistochemistry was performed to identify BrdU-positive cells to study tumor cell proliferation. Mast cells were counted and grouped into two categories: inactive mast cells AB-S+++ (red) and active mast cells AB+++S- (blue). Mast cell counts were performed in tumor stroma, base of the tumor (connective tissue immediately below the exophytic tumor), connective and muscle tissue underlying the cancerized epithelium (pouch wall) and adventitious tissue underlying the pouch wall. There was a significant increase in the number of mast cells at the base of tumors (p<0.001) compared to the number of mast cells in the wall of the pouch and in tumor stroma. In normal non-cancerized pouches, inactive mast cells were prevalent both in the wall (AB:S=1:2.15; p<0.001) and in the adventitious tissue (AB:S=1:1.6; p<0.004) of the hamster cheek pouch. At most of the experimental times examined, the ratio of active/inactive mast cells (AB/S) in the wall approximated unity and even reverted. The ratio of mast cells was AB:S 1:1.05 at the base of the tumor and 1:0.24 in tumor stroma (p<0

  14. Visual Illusions and the Control of Ball Placement in Goal-Directed Hitting

    ERIC Educational Resources Information Center

    Caljouw, Simone R.; Van der Kamp, John; Savelsbergh, Geert J. P.

    2010-01-01

    When hitting, kicking, or throwing balls at targets, online control in the target area is impossible. We assumed this lack of late corrections in the target area would induce an effect of a single-winged Muller-Lyer illusion on ball placement. After extensive practice in hitting balls to different landing locations, participants (N = 9) had to hit…

  15. Optimal morphological hit-or-miss filtering of gray-level images

    NASA Astrophysics Data System (ADS)

    Dougherty, Edward R.

    1993-05-01

    The binary hit-or-miss transform is applied to filter digital gray-scale signals. This is accomplished by applying a union of hit-or-miss transforms to an observed signal's umbra and then taking the surface of the filtered umbra as the estimate of the ideal signal. The hit-or-miss union is constructed to provide the optimal mean-absolute-error filter for both the ideal signal and its umbra. The method is developed in detail for thinning hit-or-miss filters and applies at once to the dual thickening filters. It requires the output of the umbra filter to be an umbra, which in general is not true. A key aspect of the paper is the complete characterization of umbra-preserving union-of-hit-or-miss thinning and thickening filters. Taken together, the mean-absolute-error theory and the umbra-preservation characterization provide a full characterization of binary hit-or-miss filtering as applied to digital gray-scale signals. The theory is at once applicable to hit-or-miss filtering of digital gray-scale signals via the three- dimensional binary hit-or-miss transform.

  16. 77 FR 15760 - HIT Standards Committee Advisory Meeting; Notice of Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-03-16

    ... National Coordinator for Health Information Technology, HHS. ACTION: Notice of meeting. This notice... Health Information Technology (ONC). The meeting will be open to the public. Name of Committee: HIT... Federal Health IT Strategic Plan, and in accordance with policies developed by the HIT Policy...

  17. 76 FR 22396 - HIT Standards Committee Advisory Meeting; Notice of Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-04-21

    ... National Coordinator for Health Information Technology, HHS. ACTION: Notice of meeting. This notice... Health Information Technology (ONC). The meeting will be open to the public. Name of Committee: HIT... Federal Health IT Strategic Plan, and in accordance with policies developed by the HIT Policy...

  18. 76 FR 70455 - HIT Standards Committee Advisory Meeting; Notice of Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-11-14

    ... National Coordinator for Health Information Technology, HHS ACTION: Notice of meeting. This notice... Health Information Technology (ONC). The meeting will be open to the public. Name of Committee: HIT... Federal Health IT Strategic Plan, and in accordance with policies developed by the HIT Policy...

  19. 76 FR 50734 - HIT Standards Committee Advisory Meeting; Notice of Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-08-16

    ... National Coordinator for Health Information Technology, HHS. ACTION: Notice of meeting. This notice... Health Information Technology (ONC). The meeting will be open to the public. Name of Committee: HIT... Federal Health IT Strategic Plan, and in accordance with policies developed by the HIT Policy...

  20. 78 FR 66267 - Safety Zone; HITS Triathlon Series; Colorado River; Lake Havasu, AZ

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-11-05

    ... SECURITY Coast Guard 33 CFR Part 165 RIN 1625-AA00 Safety Zone; HITS Triathlon Series; Colorado River; Lake... establishing a safety zone upon the navigable waters of the Colorado River in support of the HITS Triathlon... Series; Colorado River, Lake Havasu City, AZ. (a) Location. The safety zone includes the waters in...

  1. 75 FR 21630 - Office of the National Coordinator for Health Information Technology; HIT Policy Committee's...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-04-26

    ... Technology (ONC). The meetings will be open to the public via dial-in access only. Name of Committees: HIT Policy Committee's Workgroups: Meaningful Use, Privacy & Security Policy, Strategic Plan, Adoption... HUMAN SERVICES Office of the National Coordinator for Health Information Technology; HIT...

  2. 76 FR 79684 - HIT Policy Committee Advisory Meeting; Notice of Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-12-22

    ... Information Technology (ONC). The meeting will be open to the public. Name of Committee: HIT Policy Committee. General Function of the Committee: To provide recommendations to the National Coordinator on a policy... HUMAN SERVICES HIT Policy Committee Advisory Meeting; Notice of Meeting AGENCY: Office of the...

  3. The Janus-faced roles of Krüppel-like factor 4 in oral squamous cell carcinoma cells.

    PubMed

    Li, Wenwen; Liu, Man; Su, Ying; Zhou, Xinying; Liu, Yao; Zhang, Xinyan

    2015-12-29

    Krüppel-like factor 4 (KLF4) is a zinc-finger transcription factor that regulates many essential processes, including development and cell differentiation, proliferation, and apoptosis. Along with these roles in normal cells and tissues, KLF4 has important tumor suppressive and oncogenic functions in some malignancies. However, the roles of KLF4 in oral squamous cell carcinoma remain unclear. This study investigated the epigenetic alterations and possible roles of KLF4 in oral cancer carcinogenesis. Notably, KLF4 expression was significantly decreased in human oral cancer tissues compared with healthy controls, and KLF4 promoter hypermethylation contributed to the suppression of KLF4 expression. KLF4 expression was associated with tumor grade. Its expression was much lower in poorly differentiated oral cancers than in well-differentiated cancer cells. KLF4 exerted its antitumor activity in vitro and/or in vivo by inhibiting cell proliferation, cell cycle progression, cell colony formation and by inducing apoptosis. In addition, KLF4 over-expression promoted oral cancer cell migration and invasion in vitro. Knockdown of KLF4 promoted oral cancer cells growth and colony formation, and simultaneously inhibited cell migration and invasion. Mechanistic studies revealed that MMP-9 might contribute to KLF4-mediated cell migration and invasion. These results provide evidence that KLF4 might play Janus-faced roles in oral cancer carcinogenesis, acting both as a tumor suppressor and as an oncogene.

  4. A new role for an old friend: NFAT and stem cell quiescence.

    PubMed

    Oro, Anthony E

    2008-02-07

    NFAT proteins are calcium-regulated transcription factors that play a critical role during the timing and activation of many vertebrate tissues. A recent paper in Cell (Horsley et al., 2008) demonstrates a role of the calcineurin-NFAT-CDK4 pathway in maintaining hair follicle stem cell quiescence.

  5. One-hit effects in cancer: Altered proteome of morphologically normal colon crypts in Familial Adenomatous Polyposis

    PubMed Central

    Yeung, Anthony T.; Patel, Bhavinkumar B.; Li, Xin-Ming; Seeholzer, Steven H.; Coudry, Renata A.; Cooper, Harry S.; Bellacosa, Alfonso; Boman, Bruce M.; Zhang, Tao; Litwin, Samuel; Ross, Eric A.; Conrad, Peggy; Crowell, James A.; Kopelovich, Levy; Knudson, Alfred

    2008-01-01

    We studied patients with Familial Adenomatous Polyposis (FAP), because they are virtually certain to develop colon cancer, and because much is known about the causative APC gene. We hypothesized that the inherited heterozygous mutation itself leads to changes in the proteome of morphologically normal crypts and the proteins that changed may represent targets for preventive and therapeutic agents. We determined the differential protein expression of morphologically normal colon crypts of FAP patients versus those of individuals without the mutation, using two-dimensional gel electrophoresis, mass spectrometry and validation by 2D gel Western blotting. Approximately 13% of 1,695 identified proteins were abnormally expressed in the morphologically normal crypts of APC mutation carriers, indicating that a colon crypt cell under the one-hit state is already abnormal. Many of the expression changes affect pathways consistent with the function of the APC protein, including apoptosis, cell adhesion, cell motility, cytoskeletal organization and biogenesis, mitosis, transcription and oxidative stress response. Thus, heterozygosity for a mutant APC tumor suppressor gene alters the proteome of normal-appearing crypt cells in a gene-specific manner, consistent with a detectable one-hit event. These changes may represent the earliest biomarkers of colorectal cancer development, potentially leading to the identification of molecular targets for cancer prevention. PMID:18794146

  6. Roles and regulation of plant cell walls surrounding plasmodesmata.

    PubMed

    Knox, J Paul; Benitez-Alfonso, Yoselin

    2014-12-01

    In plants, the intercellular transport of simple and complex molecules can occur symplastically through plasmodesmata. These are membranous channels embedded in cell walls that connect neighbouring cells. The properties of the cell walls surrounding plasmodesmata determine their transport capacity and permeability. These cell wall micro-domains are enriched in callose and have a characteristic pectin distribution. Cell wall modifications, leading to changes in plasmodesmata structure, have been reported to occur during development and in response to environmental signals. Cell wall remodelling enzymes target plasmodesmata to rapidly control intercellular communication in situ. Here we describe current knowledge on the composition of cell walls at plasmodesmata sites and on the proteins and signals that modify cell walls to regulate plasmodesmata aperture.

  7. PageRank, HITS and a unified framework for link analysis

    SciTech Connect

    Ding, Chris; He, Xiaofeng; Husbands, Parry; Zha, Hongyuan; Simon, Horst

    2001-10-01

    Two popular webpage ranking algorithms are HITS and PageRank. HITS emphasizes mutual reinforcement between authority and hub webpages, while PageRank emphasizes hyperlink weight normalization and web surfing based on random walk models. We systematically generalize/combine these concepts into a unified framework. The ranking framework contains a large algorithm space; HITS and PageRank are two extreme ends in this space. We study several normalized ranking algorithms which are intermediate between HITS and PageRank, and obtain closed-form solutions. We show that, to first order approximation, all ranking algorithms in this framework, including PageRank and HITS, lead to same ranking which is highly correlated with ranking by indegree. These results support the notion that in web resource ranking indegree and outdegree are of fundamental importance. Rankings of webgraphs of different sizes and queries are presented to illustrate our analysis.

  8. The Missing Mantle Paradox, and the Statistical Argument for Repeated Hit and Run Collisions

    NASA Astrophysics Data System (ADS)

    Asphaug, E.; Reufer, A.

    2015-10-01

    Mercury's formation can be explained by a giant impact. However, a direct hit blasting off the mantle [1] leaves debris stranded in orbitabout the Sun,to be re-accumulated back onto Mercury. A hit and run collision [2] provides a cleaner solution, and in most cases,much lower levels of shock and potentially greater retention of volatiles. However, hit and run is usually followed by subsequent re-collision, and ultimate accretion; an embryo's survival after being a hit and run projectile is unlikely in any single instance. Most of the original planetary embryoshave been accreted by Earth and Venus; unaccreted planets are lucky. Here we show that the surviving terrestrial planet population is likely to have about as many hit and run survivors, as it is to have untouched survivors. That is, the differences between Mercury and Mars can be explained in a statistical manner as a consequence of accretionary attrition. We consider applications to asteroids, meteorites and exoplanets.

  9. Role of molecular cell biology in understanding disease.

    PubMed Central

    Savill, J.

    1997-01-01

    Molecular techniques have revolutionised our knowledge of cell and tissue function in both health and disease. We already have new and powerful treatments based on an understanding of communication between cells by messenger molecules called cytokines. Furthermore, there is great therapeutic promise in defining molecules which regulate cell adhesion, motility, proliferation, survival, and death. Rational manipulation of cell and tissue function for therapeutic ends may be much closer than you think. PMID:9022440

  10. Role of Receptor Sialylation in the Ovarian Tumor Cell Phenotype

    DTIC Science & Technology

    2014-08-01

    transit through the peritoneal cavity. Additionally, ST6Gal-I appears to contribute to metastatic targeting of omentum and resistance to cisplatin ...protection of tumor cells against cisplatin - mediated cell death (Task 3). Progress: We have by far made the most progress on Aim 3 and research...ovarian cancer resistance to cisplatin -mediated cell death, as well as death receptor signaling by ovarian cancer cells within the peritoneal cavity

  11. The Multifaceted Roles of B Cells in Solid Tumors: Emerging Treatment Opportunities.

    PubMed

    Flynn, Nicole J; Somasundaram, Rajasekharan; Arnold, Kimberly M; Sims-Mourtada, Jennifer

    2017-04-01

    The influence of tumor infiltrating lymphocytes on tumor growth and response to therapy is becoming increasingly apparent. While much work has focused on the role of T cell responses in anti-tumor immunity, the role of B cells in solid tumors is much less understood. Tumor infiltrating B cells have been found in a variety of solid tumors, including breast, ovarian, prostate, melanoma, and colorectal cancer. The function of B cells in solid tumors is controversial, with many studies reporting a pro-tumor effect, while other studies demonstrate a role for B cells in the anti-tumor immune response. In this review, we discuss the prognostic ability of B cells in solid tumors as well as the mechanisms by which B cells can either promote or suppress anti-tumor immunity. Additionally, we review current therapeutic strategies that may target both pro- and anti-tumor B cells.

  12. An essential role for IL-2 receptor in regulatory T cell function

    PubMed Central

    Levine, Andrew G; Fan, Xiying; Klein, Ulf; Zheng, Ye; Gasteiger, Georg; Feng, Yongqiang; Fontenot, Jason D.; Rudensky, Alexander Y.

    2016-01-01

    Regulatory T (Treg) cells, expressing abundant amounts of the IL-2 receptor (IL-2R), are reliant on IL-2 produced by activated T cells. This feature implied a key role for a simple network based on IL-2 consumption by Treg cells in their suppressor function. However, congenital deficiency in IL-2R results in reduced expression of the Treg cell lineage specification factor Foxp3, confounding experimental efforts to understand the role of IL-2R expression and signaling in Treg suppressor function. Using genetic gain and loss of function approaches, we demonstrate that IL-2 capture is dispensable for control of CD4+ T cells, but is important for limiting CD8+ T cell activation, and that IL-2R dependent STAT5 transcription factor activation plays an essential role in Treg cell suppressor function separable from T cell receptor signaling. PMID:27595233

  13. Surface Magnetics on the HIT-SI Experiment

    NASA Astrophysics Data System (ADS)

    Wrobel, J. S.; Jarboe, T. R.; Nelson, B. A.; Smith, R. J.; Stewart, B. T.

    2008-11-01

    An array of 96 surface magnetic probes sensitive to the poloidal and toroidal B field are embedded in the HIT-SI spheromak equilibrium flux conserver, a 12.7mm thick chromium copper alloy shell with an L/R time of 100ms. An extensive calibration campaign has been completed to correct for the frequency dependent attenuation of the magnetic field by the shell and provide plasma edge field measurements over a 10Hz-200kHz bandwidth. The system is expected to provide several important results: 1) A measurement of the non-Taylor part of the equilibrium which may reveal details of the small scale, high frequency magnetic relaxation process. 2) A measurement of the MHD mode amplitudes and evolution in the equilibrium region. 3) Provide insight into injector effects which are important for future injector designs. Comparison of experimental vector field results to computational simulations will explore the dominant physics involved in steady inductive helicity injection current drive. Analysis, progress and methods will be presented.

  14. Role of ovarian theca and granulosa cell interaction in hormone productionand cell growth during the bovine follicular maturation process.

    PubMed

    Yada, H; Hosokawa, K; Tajima, K; Hasegawa, Y; Kotsuji, F

    1999-12-01

    We have investigated the possible role of theca and granulosa cell interaction in the control of the hormone-producing activity and growth of granulosa and theca cells during bovine ovarian follicular development, using a coculture system in which granulosa and theca cells were grown on opposite sides of a collagen membrane. When follicular cells were isolated from small follicles (3-5 mm), theca cells reduced estradiol, progesterone, and inhibin production by granulosa cells to 14 +/- 5%, 64 +/- 6%, and 27 +/- 4%, respectively, of the production by granulosa cells cultured alone. On the other hand, when the cells were isolated from large follicles (15-18 mm), theca cells increased these levels to 253 +/- 34%, 156 +/- 24%, and 287 +/- 45%, respectively. Theca cells did not affect the growth of granulosa cells. Androstenedione production by theca cells was augmented by granulosa cells to 861 +/- 190% (in small follicles) and 1298 +/- 414% (in large follicles), respectively. The growth of theca cells was also augmented by granulosa cells (small follicle, 210 +/- 43%, and large follicle, 194 +/- 24%, respectively). These results indicate that theca cells secrete factor(s) inhibiting the differentiation of immature while promoting that of matured granulosa cells; they also suggest that granulosa cells secrete factor(s) promoting both the differentiation and growth of theca cells throughout the follicular maturation process.

  15. Regulatory Roles of Anoctamin-6 in Human Trabecular Meshwork Cells

    PubMed Central

    Banerjee, Juni; Leung, Chi-Ting; Li, Ang; Peterson-Yantorno, Kim; Ouyang, Huan; Stamer, W. Daniel; Civan, Mortimer M.

    2017-01-01

    Purpose Trabecular meshwork (TM) cell volume is a determinant of aqueous humor outflow resistance, and thereby IOP. Regulation of TM cell volume depends on chloride ion (Cl−) release through swelling-activated channels (ICl,Swell), whose pore is formed by LRRC8 proteins. Chloride ion release through swelling-activated channels has been reported to be regulated by calcium-activated anoctamins, but this finding is controversial. Particularly uncertain has been the effect of anoctamin Ano6, reported as a Ca2+-activated Cl− (CaCC) or cation channel in other cells. The current study tested whether anoctamin activity modifies volume regulation of primary TM cell cultures and cell lines. Methods Gene expression was studied with quantitative PCR, supplemented by reverse-transcriptase PCR and Western immunoblots. Currents were measured by ruptured whole-cell patch clamping and volume by electronic cell sizing. Results Primary TM cell cultures and the TM5 and GTM3 cell lines expressed Ano6 3 to 4 orders of magnitude higher than the other anoctamin CaCCs (Ano1 and Ano2). Ionomycin increased cell Ca2+ and activated macroscopic currents conforming to CaCCs in other cells, but displayed significantly more positive mean reversal potentials (+5 to +12 mV) than those displayed by ICl,Swell (−14 to −21 mV) in the same cells. Nonselective CaCC inhibitors (tannic acid>CaCCinh−A01) and transient Ano6 knockdown strongly inhibited ionomycin-activated currents, ICl,Swell and the regulatory volume response to hyposmotic swelling. Conclusions Ionomycin activates CaCCs associated with net cation movement in TM cells. These currents, ICl,Swell, and cell volume are regulated by Ano6. The findings suggest a novel clinically-relevant approach for altering cell volume, and thereby outflow resistance, by targeting Ano6. PMID:28125837

  16. Potential role of Notch1 signaling pathway in laryngeal squamous cell carcinoma cell line Hep-2 involving proliferation inhibition, cell cycle arrest, cell apoptosis, and cell migration.

    PubMed

    Jiao, Jing; Qin, Zhaobing; Li, Sha; Liu, Hongtao; Lu, Zhaoming

    2009-10-01

    Head and neck cancer is the sixth most common cancer worldwide and laryngeal cancer represents the largest subgroup. However, the molecular mechanism underlying its malignant behavior and progression is not clarified. Accumulating evidence has shown that Notch1 signaling pathway plays a central role in carcinogenesis, but its potential role in regulating the development of laryngeal carcinoma, has not been characterized. Here, we identified that Notch1 signaling pathway was activated in laryngeal carcinoma accompanied with up-regulation of Notch1 and Hes1 expression. Overexpression of Notch1 in laryngeal carcinoma cell line Hep-2 led to suppression of tumor cellular proliferation and arrested cell cycle in the G0/G1 phase and induced cell apoptosis, which were coupled with the down-regulation of cyclin D1, cyclin E, cdk2 and bcl-2 and up-regulation of caspase-3, caspase-9 and p53. Most importantly, up-regulation of Notch1 expression also reduced the migration of Hep-2 cells, which was closely associated with down-regulation of MMP-2 and MMP-9. The finding may lay a foundation for further investigations into the Notch1 signaling pathway as a potential target for laryngeal carcinoma.

  17. SHIELD-HIT12A - a Monte Carlo particle transport program for ion therapy research

    NASA Astrophysics Data System (ADS)

    Bassler, N.; Hansen, D. C.; Lühr, A.; Thomsen, B.; Petersen, J. B.; Sobolevsky, N.

    2014-03-01

    Purpose: The Monte Carlo (MC) code SHIELD-HIT simulates the transport of ions through matter. Since SHIELD-HIT08 we added numerous features that improves speed, usability and underlying physics and thereby the user experience. The "-A" fork of SHIELD-HIT also aims to attach SHIELD-HIT to a heavy ion dose optimization algorithm to provide MC-optimized treatment plans that include radiobiology. Methods: SHIELD-HIT12A is written in FORTRAN and carefully retains platform independence. A powerful scoring engine is implemented scoring relevant quantities such as dose and track-average LET. It supports native formats compatible with the heavy ion treatment planning system TRiP. Stopping power files follow ICRU standard and are generated using the libdEdx library, which allows the user to choose from a multitude of stopping power tables. Results: SHIELD-HIT12A runs on Linux and Windows platforms. We experienced that new users quickly learn to use SHIELD-HIT12A and setup new geometries. Contrary to previous versions of SHIELD-HIT, the 12A distribution comes along with easy-to-use example files and an English manual. A new implementation of Vavilov straggling resulted in a massive reduction of computation time. Scheduled for later release are CT import and photon-electron transport. Conclusions: SHIELD-HIT12A is an interesting alternative ion transport engine. Apart from being a flexible particle therapy research tool, it can also serve as a back end for a MC ion treatment planning system. More information about SHIELD-HIT12A and a demo version can be found on http://www.shieldhit.org.

  18. The Role of Lymphatic Niches in T Cell Differentiation

    PubMed Central

    Capece, Tara; Kim, Minsoo

    2016-01-01

    Long-term immunity to many viral and bacterial pathogens requires CD8+ memory T cell development, and the induction of long-lasting CD8+ memory T cells from a naïve, undifferentiated state is a major goal of vaccine design. Formation of the memory CD8+ T cell compartment is highly dependent on the early activation cues received by naïve CD8+ T cells during primary infection. This review aims to highlight the cellularity of various niches within the lymph node and emphasize recent evidence suggesting that distinct types of T cell activation and differentiation occur within different immune contexts in lymphoid organs. PMID:27306645

  19. The Role of Cardiac Side Population Cells in Cardiac Regeneration

    PubMed Central

    Yellamilli, Amritha; van Berlo, Jop H.

    2016-01-01

    The heart has a limited ability to regenerate. It is important to identify therapeutic strategies that enhance cardiac regeneration in order to replace cardiomyocytes lost during the progression of heart failure. Cardiac progenitor cells are interesting targets for new regenerative therapies because they are self-renewing, multipotent cells located in the heart. Cardiac side population cells (cSPCs), the first cardiac progenitor cells identified in the adult heart, have the ability to differentiate into cardiomyocytes, endothelial cells, smooth muscle cells, and fibroblasts. They become activated in response to cardiac injury and transplantation of cSPCs into the injured heart improves cardiac function. In this review, we will discuss the current literature on the progenitor cell properties and therapeutic potential of cSPCs. This body of work demonstrates the great promise cSPCs hold as targets for new regenerative strategies. PMID:27679798

  20. Role of endogenous cat retrovirus in cell differentiation.

    PubMed Central

    Rasheed, S

    1982-01-01

    Several long-term cultures were established from a spontaneous melanoma of a cat. Cells were rounded or spindle shaped and exhibited black/brown pigmentation in the cytoplasm. No virus was released from these cells spontaneously or after treatment with chemicals. However, exogenous infection of the cat melanoma cells with the endogenous cat virus RD114 resulted in remarkable morphological and functional changes. Most of the RD114 virus-infected cells exhibited multiple neuritic extensions and about 1-2% of the population showed characteristics of neuronal cells. Because human, mouse, and hamster melanoma cultures infected with various mammalian retroviruses, including the RD114 virus, did not display any morphological alteration, it is concluded that the neuronal cell differentiation in the cat melanoma cells is a consequence of its specific interaction with the endogenous cat retrovirus. Images PMID:6961415

  1. Gastrin stimulates MMP-1 expression in gastric epithelial cells: putative role in gastric epithelial cell migration

    PubMed Central

    Kumar, J. Dinesh; Steele, Islay; Moore, Andrew R.; Murugesan, Senthil V.; Rakonczay, Zoltan; Venglovecz, Viktoria; Pritchard, D. Mark; Dimaline, Rodney; Tiszlavicz, Laszlo; Varro, Andrea

    2015-01-01

    The pyloric antral hormone gastrin plays a role in remodeling of the gastric epithelium, but the specific targets of gastrin that mediate these effects are poorly understood. Glandular epithelial cells of the gastric corpus express matrix metalloproteinase (MMP)-1, which is a potential determinant of tissue remodeling; some of these cells express the CCK-2 receptor at which gastrin acts. We have now examined the hypothesis that gastrin stimulates expression of MMP-1 in the stomach. We determined MMP-1 transcript abundance in gastric mucosal biopsies from Helicobacter pylori negative human subjects with normal gastric mucosal histology, who had a range of serum gastrin concentrations due in part to treatment with proton pump inhibitors (PPI). The effects of gastrin were studied on gastric epithelial AGS-GR cells using Western blot and migration assays. In human subjects with increased serum gastrin due to PPI usage, MMP-1 transcript abundance was increased 2-fold; there was also increased MMP-7 transcript abundance but not MMP-3. In Western blots, gastrin increased proMMP-1 abundance, as well that of a minor band corresponding to active MMP-1, in the media of AGS-GR cells, and the response was mediated by protein kinase C and p42/44 MAP kinase. There was also increased MMP-1 enzyme activity. Gastrin-stimulated AGS-GR cell migration in both scratch wound and Boyden chamber assays was inhibited by MMP-1 immunoneutralization. We conclude that MMP-1 expression is a target of gastrin implicated in mucosal remodeling. PMID:25977510

  2. Cross-Talk between CLL Cells and Bone Marrow Endothelial Cells: Role of Signal Transducer and Activator of Transcription-3

    PubMed Central

    Badoux, Xavier; Bueso-Ramos, Carlos; Harris, David; Li, Ping; Liu, Zhiming; Burger, Jan; O’Brien, Susan; Ferrajoli, Alessandra; Keating, Michael J.; Estrov, Zeev

    2014-01-01

    Summary Chronic lymphocytic leukemia (CLL) bone marrow is characterized by increased angiogenesis. However, the molecular mediators of neovascularization and the biological significance of increased endothelial cell proliferation in CLL require further investigation. Because signal transducer and activator of transcription (STAT)-3 is constitutively activated in CLL we studied the role of STAT3 in modulating vascular endothelial growth factor (VEGF) expression and the effect of vascular endothelial cells on CLL cells. Using chromatin immunoprecipitation (ChIP) we found that anti-STAT3 antibodies immunoprecipitated DNA of STAT3, VEGF and other STAT3-regulated genes. In addition, STAT3-short interfering RNA significantly reduced mRNA levels of VEGF in CLL cells suggesting that STAT3 induces VEGF expression in CLL. Remarkably, bone marrow CLL cells expressed high levels of VEGF and high VEGF levels were detected in the plasma of patients with untreated CLL and correlated with white blood cell count. CLL bone marrow biopsies revealed increased microvascular density and attachment of CLL cells to endothelial cells. Co-culture of CLL and human umbilical vein endothelial cells (HUVEC) cells showed a similar attachment. Furthermore, co-culture studies with HUVEC showed that HUVEC protected CLL cells from spontaneous apoptosis by direct cell-to-cell contact as assessed by flow cytometry using Annexin V. Our data suggest that constitutively activated STAT3 induces VEGF production by CLL cells and CLL cells derive a survival advantage from endothelial cells via cell-to cell contact. PMID:21733558

  3. The role of constitutive and inducible processes in the response of human squamous cell carcinoma cell lines to ionizing radiation

    SciTech Connect

    Schwartz, J.L.

    1993-01-01

    The inherent radiation sensitivity of the cells within a tumor is thought to contribute to the success or failure of radiation therapy. In vitro studies have shown that radiation sensitivity differences in squamous cell carcinoma cell lines reflect alterations in DNA repair. These alterations result from constitutive changes in chromosome organization, not radiation-inducible processes. While inducible responses may play some role in the radiation response of tumor cells, there is no evidence for their involvement in inherent tumor cell radiosensitivity differences or in the success or failure of radiotherapy for squamous cell carcinomas.

  4. The role of constitutive and inducible processes in the response of human squamous cell carcinoma cell lines to ionizing radiation

    SciTech Connect

    Schwartz, J.L.

    1993-06-01

    The inherent radiation sensitivity of the cells within a tumor is thought to contribute to the success or failure of radiation therapy. In vitro studies have shown that radiation sensitivity differences in squamous cell carcinoma cell lines reflect alterations in DNA repair. These alterations result from constitutive changes in chromosome organization, not radiation-inducible processes. While inducible responses may play some role in the radiation response of tumor cells, there is no evidence for their involvement in inherent tumor cell radiosensitivity differences or in the success or failure of radiotherapy for squamous cell carcinomas.

  5. Myocardial regeneration: Roles of stem cells and hydrogels.

    PubMed

    Ye, Zhaoyang; Zhou, Yan; Cai, Haibo; Tan, Wensong

    2011-07-18

    Heart failure remains the leading cause of morbidity and mortality. Recently, it was reported that the adult heart has intrinsic regenerative capabilities, prompting a great wave of research into applying cell-based therapies, especially with skeletal myoblasts and bone marrow-derived cells, to regenerate heart tissues. While the mechanism of action for the observed beneficial effects of bone marrow-derived cells remains unclear, new cell candidates are emerging, including embryonic stem (ES) and introduced pluripotent stem (iPS) cells, as well as cardiac stem cells (CSCs) from adult hearts. However, the very low engraftment efficiency and survival of implanted cells prevent cell therapy from turning into a clinical reality. Injectable hydrogel biomaterials based on hydrophilic, biocompatible polymers and peptides have great potential for addressing many of these issues by serving as cell/drug delivery vehicles and as a platform for cardiac tissue engineering. In this review, we will discuss the application of stem cells and hydrogels in myocardial regeneration.

  6. The role of stem cells in muscular dystrophies.

    PubMed

    Meregalli, Mirella; Farini, Andrea; Colleoni, Federica; Cassinelli, Letizia; Torrente, Yvan

    2012-06-01

    Muscular dystrophies are heterogeneous neuromuscular disorders of inherited origin, including Duchenne muscular dystrophy (DMD). Cell-based therapies were used to promote muscle regeneration with the hope that the host cells repopulated the muscle and improved muscle function and pathology. Stem cells were preferable for therapeutic applications, due to their capacity of self-renewal and differentiative potential. In the last years, encouraging results were obtained with adult stem cells to treat muscular dystrophies. Adult stem cells were found into various tissues of the body and they were able to maintain, generate, and replace terminally differentiated cells within their own specific tissue because of cell turnover or tissue injury. Moreover, it became clear that these cells could participate into regeneration of more than just their resident organ. Here, we described multiple types of muscle and non muscle-derived myogenic stem cells, their characterization and their possible use to treat muscular dystrophies. We also underlined that most promising possibility for the management and therapy of DMD is a combination of different approaches, such as gene and stem cell therapy.

  7. Role of Cytokine-Induced Glycosylation Changes in Regulating Cell Interactions and Cell Signaling in Inflammatory Diseases and Cancer

    PubMed Central

    Dewald, Justine H.; Colomb, Florent; Bobowski-Gerard, Marie; Groux-Degroote, Sophie; Delannoy, Philippe

    2016-01-01

    Glycosylation is one of the most important modifications of proteins and lipids, and cell surface glycoconjugates are thought to play important roles in a variety of biological functions including cell-cell and cell-substrate interactions, bacterial adhesion, cell immunogenicity and cell signaling. Alterations of glycosylation are observed in number of diseases such as cancer and chronic inflammation. In that context, pro-inflammatory cytokines have been shown to modulate cell surface glycosylation by regulating the expression of glycosyltransferases involved in the biosynthesis of carbohydrate chains. These changes in cell surface glycosylation are also known to regulate cell signaling and could contribute to disease pathogenesis. This review summarizes our current knowledge of the glycosylation changes induced by pro-inflammatory cytokines, with a particular focus on cancer and cystic fibrosis, and their consequences on cell interactions and signaling. PMID:27916834

  8. Role of mast cells in fibrosis of classical Hodgkin lymphoma.

    PubMed

    Nakayama, Shoko; Yokote, Taiji; Hiraoka, Nobuya; Nishiwaki, Uta; Hanafusa, Toshiaki; Nishimura, Yasuichiro; Tsuji, Motomu

    2016-12-01

    The underlying mechanism of fibrosis in classical Hodgkin lymphoma (CHL) remains uncertain. This study aimed to investigate the association of fibrosis in the lymph nodes of patients with CHL through histological examination of the expression of cytokines associated with fibrosis and mast cell proliferation. Additionally, we sought to determine the degree of mast cell infiltration in a nodular sclerosis subtype of CHL (NSCHL) compared with that in non-NSCHL. We analyzed lymph nodes from 22 patients with CHL, of which eight were of the NSCHL and 14 of the non-NSCHL subtype, using immunohistochemical staining of forkhead box P3 (FOXP3), transforming growth factor (TGF)-β, interleukin (IL)-3, IL-13, and stem cell factor (SCF). Mast cells were positive for TGF-β and IL-13, and FOXP3-positive cells were negative for TGF-β. Only the expression of IL-13 in Hodgkin and Reed-Sternberg (HRS) cells was significantly more frequently observed in NSCHL than that in non-NSCHL (P = 0.0028) and was associated with a higher rate of fibrosis (P = 0.0097). The number of mast cells was significantly higher in NSCHL than that in non-NSCHL (P = 0.0001). A significantly positive correlation was observed between the rate of fibrosis and the number of mast cells (correlation coefficient, 0.8524; 95% CI, 0.6725-0.9372) (P <0.0001). The number of mast cells was significantly higher in the group with IL-13-positive HRS cells than that in the group with IL-13-negative HRS cells (P = 0.0157). Based on these findings, we hypothesize that IL-13 production by HRS cells may lead to fibrosis, and furthermore, promote mast cell proliferation and infiltration. This in turn might further produce the fibrotic cytokines IL-13 and TGF-β, resulting in fibrosis typical of NSCHL.

  9. Protective role of curcumin in oxidative stress of breast cells.

    PubMed

    Calaf, Gloria M; Echiburú-Chau, Carlos; Roy, Debasish; Chai, Yunfei; Wen, Gengyun; Balajee, Adayabalam S

    2011-10-01

    Curcumin (diferuloylmethane) is a well known antioxidant that exerts anti-proliferative and apoptotic effects. The effects of curcumin were evaluated in a breast cancer model that was developed with the immortalized breast epithelial cell line, MCF-10F after exposure to low doses of high LET (linear energy transfer) α particles (150 keV/µm) of radiation, and subsequently cultured in the presence of 17β-estradiol (estrogen). This model consisted of human breast epithelial cells in different stages of transformation: i) a control cell line, MCF-10F, ii) an estrogen-treated cell line, named Estrogen, iii) a malignant cell line, named Alpha3 and iv) a malignant and tumorigenic, cell line named Alpha5. Curcumin decreased the formation of hydrogen peroxide in the control MCF-10F, Estrogen and Alpha5 cell lines in comparison to their counterparts. Curcumin had little effect on NFκB (50 kDa) but decreased the protein expression in the Estrogen cell line in comparison to their counterparts. Curcumin enhanced manganese superoxide dismutase (MnSOD) protein expression in the MCF-10F and Alpha3 cell lines. Results indicated that catalase protein expression increased in curcumin treated-Alpha3 and Alpha5 cell lines. Curcumin slightly decreased lipid peroxidation in the MCF-10F cell lines, but significantly (P<0.05) decreased it in the Alpha5 cell line treated with curcumin in comparison to their counterparts as demonstrated by the 8-iso-prostaglandin F2α (8-iso-PGF2α) levels. It can be concluded that curcumin acted upon oxidative stress in human breast epithelial cells transformed by the effect of radiation in the presence of estrogen.

  10. Cytoplasmic connection of sperm cells to the pollen vegetative cell nucleus: potential roles of the male germ unit revisited.

    PubMed

    McCue, Andrea D; Cresti, Mauro; Feijó, José A; Slotkin, R Keith

    2011-03-01

    The male germ cells of angiosperm plants are neither free-living nor flagellated and therefore are dependent on the unique structure of the pollen grain for fertilization. During angiosperm male gametogenesis, an asymmetric mitotic division produces the generative cell, which is completely enclosed within the cytoplasm of the larger pollen grain vegetative cell. Mitotic division of the generative cell generates two sperm cells that remain connected by a common extracellular matrix with potential intercellular connections. In addition, one sperm cell has a cytoplasmic projection in contact with the vegetative cell nucleus. The shared extracellular matrix of the two sperm cells and the physical association of one sperm cell to the vegetative cell nucleus forms a linkage of all the genetic material in the pollen grain, termed the male germ unit. Found in species representing both the monocot and eudicot lineages, the cytoplasmic projection is formed by vesicle formation and microtubule elongation shortly after the formation of the generative cell and tethers the male germ unit until just prior to fertilization. The cytoplasmic projection plays a structural role in linking the male germ unit, but potentially plays other important roles. Recently, it has been speculated that the cytoplasmic projection and the male germ unit may facilitate communication between the somatic vegetative cell nucleus and the germinal sperm cells, via RNA and/or protein transport. This review focuses on the nature of the sperm cell cytoplasmic projection and the potential communicative function of the male germ unit.

  11. Nuclear reprogramming and its role in vascular smooth muscle cells.

    PubMed

    Zaina, Silvio; del Pilar Valencia-Morales, Maria; Tristán-Flores, Fabiola E; Lund, Gertrud

    2013-09-01

    In general terms, "nuclear reprogramming" refers to a change in gene expression profile that results in a significant switch in cellular phenotype. Nuclear reprogramming was first addressed by pioneering studies of cell differentiation during embryonic development. In recent years, nuclear reprogramming has been studied in great detail in the context of experimentally controlled dedifferentiation and transdifferentiation of mammalian cells for therapeutic purposes. In this review, we present a perspective on nuclear reprogramming in the context of spontaneous, pathophysiological phenotypic switch of vascular cells occurring in the atherosclerotic lesion. In particular, we focus on the current knowledge of epigenetic mechanisms participating in the extraordinary flexibility of the gene expression profile of vascular smooth muscle cells and other cell types participating in atherogenesis. Understanding how epigenetic changes participate in vascular cell plasticity may lead to effective therapies based on the remodelling of the vascular architecture.

  12. Role of NKT cells in the digestive system. IV. The role of canonical natural killer T cells in mucosal immunity and inflammation.

    PubMed

    Wingender, Gerhard; Kronenberg, Mitchell

    2008-01-01

    Lymphocytes that combine features of T cells and natural killer (NK) cells are named natural killer T (NKT) cells. The majority of NKT cells in mice bear highly conserved invariant Valpha chains, and to date two populations of such canonical NKT cells are known in mice: those that express Valpha14 and those that express Valpha7.2. Both populations are selected by nonpolymorphic major histocompatibility complex class I-like antigen-presenting molecules expressed by hematopoietic cells in the thymus: CD1d for Valpha14-expressing NKT cells and MR1 for those cells expressing Valpha7.2. The more intensely studied Valpha14 NKT cells have been implicated in diverse immune reactions, including immune regulation and inflammation in the intestine; the Valpha7.2 expressing cells are most frequently found in the lamina propria. In humans, populations of canonical NKT cells are found to be highly similar in terms of the expression of homologous, invariant T cell antigen-receptor alpha-chains, specificity, and function, although their frequency differs from those in the mouse. In this review, we will focus on the role of both of these canonical NKT cell populations in the mucosal tissues of the intestine.

  13. Roles of Notch1 Signaling in Regulating Satellite Cell Fates Choices and Postnatal Skeletal Myogenesis.

    PubMed

    Shan, Tizhong; Xu, Ziye; Wu, Weiche; Liu, Jiaqi; Wang, Yizhen

    2016-12-12

    Adult skeletal muscle stem cells, also called satellite cells, are indispensable for the growth, maintenance, and regeneration of the postnatal skeletal muscle. Satellite cells, predominantly quiescent in mature resting muscles, are activated after skeletal muscle injury or degeneration. Notch1 signaling is an evolutionarily conserved pathway that plays crucial roles in satellite cells homeostasis and postnatal skeletal myogenesis and regeneration. Activation of Notch1 signaling promotes the muscle satellite cells quiescence and proliferation, but inhibits differentiation of muscle satellite cells. Notably, the new roles of Notch1 signaling during late-stage of skeletal myogenesis including in post-differentiation myocytes and post-fusion myotubes have been recently reported. Here, we mainly review and discuss the regulatory roles of Notch1 in regulating satellite cell fates choices and skeletal myogenesis. This article is protected by copyright. All rights reserved.

  14. Regulatory Roles of Fluctuation-Driven Mechanotransduction in Cell Function.

    PubMed

    Suki, Béla; Parameswaran, Harikrishnan; Imsirovic, Jasmin; Bartolák-Suki, Erzsébet

    2016-09-01

    Cells in the body are exposed to irregular mechanical stimuli. Here, we review the so-called fluctuation-driven mechanotransduction in which stresses stretching cells vary on a cycle-by-cycle basis. We argue that such mechanotransduction is an emergent network phenomenon and offer several potential mechanisms of how it regulates cell function. Several examples from the vasculature, the lung, and tissue engineering are discussed. We conclude with a list of important open questions.

  15. Role of regulatory T cell in the pathogenesis of inflammatory bowel disease

    PubMed Central

    Yamada, Akiko; Arakaki, Rieko; Saito, Masako; Tsunematsu, Takaaki; Kudo, Yasusei; Ishimaru, Naozumi

    2016-01-01

    Regulatory T (Treg) cells play key roles in various immune responses. For example, Treg cells contribute to the complex pathogenesis of inflammatory bowel disease (IBD), which includes Crohn’s disease and ulcerative colitis during onset or development of that disease. Many animal models of IBD have been used to investigate factors such as pathogenic cytokines, pathogenic bacteria, and T-cell functions, including those of Treg cells. In addition, analyses of patients with IBD facilitate our understanding of the precise mechanism of IBD. This review article focuses on the role of Treg cells and outlines the pathogenesis and therapeutic strategies of IBD based on previous reports. PMID:26900284

  16. The role of exosomes contents on genetic and epigenetic alterations of recipient cancer cells

    PubMed Central

    Behbahani, Golnoush Dehbashi; Khani, Soghra; Hosseini, Hamideh Mahmoodzadeh; Abbaszadeh-Goudarzi, Kazem; Nazeri, Saeed

    2016-01-01

    Exosomes, as a mediator of cell-to-cell transfer of genetic information, act an important role in intercommunication between tumor cells and their niche including fibroblasts, endothelial cells, adipocytes and monocytes. Several studies have shown that tumor cells can influence their neighboring cells by releasing exosomes. These exosomes provide signaling cues for stimulation, activation, proliferation and differentiation of cells. Exosomes contain mRNAs, microRNAs (miRNA), and proteins that could be transferred to target cells inducing genetic and epigenetic changes. By facilitating the horizontal transfer of bioactive molecules such as proteins, RNAs and microRNAs, they are now thought to have vital roles in tumor invasion and metastases, inflammation, coagulation, and stem cell renewal and expansion. The aim of this review article is to discuss the significance of exosome-mediated intercellular communication within the tumor biology. PMID:27872698

  17. [HINT1--a novel tumor suppressor protein of the HIT superfamily].

    PubMed

    Ozga, Magdalena

    2010-01-01

    The histidine triad nucleotide binding protein1 (Hint1) belongs to the first branch of the HIT superfamily. Hint1 catalyses the process of hydrolysis of the P-N bond in AMP-lysine, AMP-alanine, AMP-NH2. The physiological role of this enzyme is still unclear. There is accumulating evidence that HINT1 is a novel tumor suppressor protein, albeit the mechanism of action of HINT1 in respect to tumor suppression is not fully understood. Recent findings have shown that Hint1 inhibits the activity of the transcription factors AP1, MITF and USF2, as well as influences the transcription process of some genes of Wnt/beta-catenin pathway. Thereby, it seems that Hint1 exerts its major cellular function as gene transcription regulator, and thus, this function provides its potential role as a tumor suppressor protein. The clinical relevance of impairments in the Hint1 expression with the respect to specific human cancers is still a matter of extensive studies.

  18. The role of T cells in the microenvironment of Hodgkin lymphoma

    PubMed Central

    Wein, Frederik; Küppers, Ralf

    2016-01-01

    The cellular microenvironment in HL is dominated by a mixed infiltrate of inflammatory cells with typically only 1 or a few percent of HRS tumor cells. HRS cells orchestrate this infiltrate by the secretion of a multitude of chemokines. T cells are usually the largest population of cells in the HL tissue, encompassing Th cells, Tregs, and CTLs. Th cells and Tregs presumably provide essential survival signals for the HRS cells, and the Tregs also play an important role in rescuing HRS cells from an attack by CTLs and NK cells. The interference with this complex interplay of HRS cells with other immune cells in the microenvironment may provide novel strategies for targeted immunotherapies. PMID:26320264

  19. The Role of NG2 Glial Cells in ALS Pathogenesis

    DTIC Science & Technology

    2014-12-01

    morphology to multiple process-bearing cells. These cells started to show O4 expression (Figure 3C and 3D). Slowly, the O4+ cells started to express...the mature oligodendrocyte marker, MBP (Figure 3D). After at least about one month, there were some MBP+ oligodendrocytes with multiple processes and...of gray matter oligodendrocytes in amyotrophic lateral sclerosis . Nat Neurosci. 2013;16(5):571-9. 3. Morrison BM, Lee Y, Rothstein JD. Oligodendroglia: metabolic supporters of axons. Trends Cell Biol. 2013.

  20. Role of neural precursor cells in promoting repair following stroke

    PubMed Central

    Dibajnia, Pooya; Morshead, Cindi M

    2013-01-01

    Stem cell-based therapies for the treatment of stroke have received considerable attention. Two broad approaches to stem cell-based therapies have been taken: the transplantation of exogenous stem cells, and the activation of endogenous neural stem and progenitor cells (together termed neural precursors). Studies examining the transplantation of exogenous cells have demonstrated that neural stem and progenitor cells lead to the most clinically promising results. Endogenous activation of neural precursors has also been explored based on the fact that resident precursor cells have the inherent capacity to proliferate, migrate and differentiate into mature neurons in the uninjured adult brain. Studies have revealed that these neural precursor cell behaviours can be activated following stroke, whereby neural precursors will expand in number, migrate to the infarct site and differentiate into neurons. However, this innate response is insufficient to lead to functional recovery, making it necessary to enhance the activation of endogenous precursors to promote tissue repair and functional recovery. Herein we will discuss the current state of the stem cell-based approaches with a focus on endogenous repair to treat the stroke injured brain. PMID:23064725

  1. Non-redundant roles for Th17 and Th22 cells in multiple myeloma clinical correlates

    PubMed Central

    Di Lullo, Giulia; Marcatti, Magda; Protti, Maria Pia

    2016-01-01

    ABSTRACT We recently reported that in multiple myeloma increased Th22 cell frequencies correlate with poor prognosis. Here we show that within the same patients' cohort Th17 cells associate with bone disease and not with prognosis. Thus, we propose that Th22 and Th17 cells play non-redundant roles in multiple myeloma and constitute independent therapeutic targets. PMID:27141378

  2. EGFR kinase-dependent and kinase-independent roles in clear cell renal cell carcinoma.

    PubMed

    Cossu-Rocca, Paolo; Muroni, Maria R; Sanges, Francesca; Sotgiu, Giovanni; Asunis, Anna; Tanca, Luciana; Onnis, Daniela; Pira, Giovanna; Manca, Alessandra; Dore, Simone; Uras, Maria G; Ena, Sara; De Miglio, Maria R

    2016-01-01

    Epidermal growth factor receptor (EGFR) is associated with progression of many epithelial malignancies and represents a significant therapeutic target. Although clear cell renal cell carcinoma (CCRCC) has been widely investigated for EGFR molecular alterations, genetic evidences of EGFR gene activating mutations and/or gene amplification have been rarely confirmed in the literature. Therefore, until now EGFR-targeted therapies in clinical trials have been demonstrated unsuccessful. New evidence has been given about the interactions between EGFR and the sodium glucose co-transporter-1 (SGLT1) in maintaining the glucose basal intracellular level to favour cancer cell growth and survival; thus a new functional role may be attributed to EGFR, regardless of its kinase activity. To define the role of EGFR in CCRCC an extensive investigation of genetic changes and functional kinase activities was performed in a series of tumors by analyzing the EGFR mutational status and expression profile, together with the protein expression of downstream signaling pathways members. Furthermore, we investigated the co-expression of EGFR and SGLT1 proteins and their relationships with clinic-pathological features in CCRCC. EGFR protein expression was identified in 98.4% of CCRCC. Furthermore, it was described for the first time that SGLT1 is overexpressed in CCRCC (80.9%), and that co-expression with EGFR is appreciable in 79.4% of the tumours. Moreover, the activation of downstream EGFR pathways was found in about 79.4% of SGLT1-positive CCRCCs. The mutational status analysis of EGFR failed to demonstrate mutations on exons 18 to 24 and the presence of EGFR-variantIII (EGFRvIII) in all CCRCCs analyzed. FISH analysis revealed absence of EGFR amplification, and high polysomy of chromosome 7. Finally, the EGFR gene expression profile showed gene overexpression in 38.2% of CCRCCs. Our study contributes to define the complexity of EGFR role in CCRCC, identifying its bivalent kinase

  3. EGFR kinase-dependent and kinase-independent roles in clear cell renal cell carcinoma

    PubMed Central

    Cossu-Rocca, Paolo; Muroni, Maria R; Sanges, Francesca; Sotgiu, Giovanni; Asunis, Anna; Tanca, Luciana; Onnis, Daniela; Pira, Giovanna; Manca, Alessandra; Dore, Simone; Uras, Maria G; Ena, Sara; De Miglio, Maria R

    2016-01-01

    Epidermal growth factor receptor (EGFR) is associated with progression of many epithelial malignancies and represents a significant therapeutic target. Although clear cell renal cell carcinoma (CCRCC) has been widely investigated for EGFR molecular alterations, genetic evidences of EGFR gene activating mutations and/or gene amplification have been rarely confirmed in the literature. Therefore, until now EGFR-targeted therapies in clinical trials have been demonstrated unsuccessful. New evidence has been given about the interactions between EGFR and the sodium glucose co-transporter-1 (SGLT1) in maintaining the glucose basal intracellular level to favour cancer cell growth and survival; thus a new functional role may be attributed to EGFR, regardless of its kinase activity. To define the role of EGFR in CCRCC an extensive investigation of genetic changes and functional kinase activities was performed in a series of tumors by analyzing the EGFR mutational status and expression profile, together with the protein expression of downstream signaling pathways members. Furthermore, we investigated the co-expression of EGFR and SGLT1 proteins and their relationships with clinic-pathological features in CCRCC. EGFR protein expression was identified in 98.4% of CCRCC. Furthermore, it was described for the first time that SGLT1 is overexpressed in CCRCC (80.9%), and that co-expression with EGFR is appreciable in 79.4% of the tumours. Moreover, the activation of downstream EGFR pathways was found in about 79.4% of SGLT1-positive CCRCCs. The mutational status analysis of EGFR failed to demonstrate mutations on exons 18 to 24 and the presence of EGFR-variantIII (EGFRvIII) in all CCRCCs analyzed. FISH analysis revealed absence of EGFR amplification, and high polysomy of chromosome 7. Finally, the EGFR gene expression profile showed gene overexpression in 38.2% of CCRCCs. Our study contributes to define the complexity of EGFR role in CCRCC, identifying its bivalent kinase

  4. Role of Hox genes in stem cell differentiation.

    PubMed

    Seifert, Anne; Werheid, David F; Knapp, Silvana M; Tobiasch, Edda

    2015-04-26

    Hox genes are an evolutionary highly conserved gene family. They determine the anterior-posterior body axis in bilateral organisms and influence the developmental fate of cells. Embryonic stem cells are usually devoid of any Hox gene expression, but these transcription factors are activated in varying spatial and temporal patterns defining the development of various body regions. In the adult body, Hox genes are among others responsible for driving the differentiation of tissue stem cells towards their respective lineages in order to repair and maintain the correct function of tissues and organs. Due to their involvement in the embryonic and adult body, they have been suggested to be useable for improving stem cell differentiations in vitro and in vivo. In many studies Hox genes have been found as driving factors in stem cell differentiation towards adipogenesis, in lineages involved in bone and joint formation, mainly chondrogenesis and osteogenesis, in cardiovascular lineages including endothelial and smooth muscle cell differentiations, and in neurogenesis. As life expectancy is rising, the demand for tissue reconstruction continues to increase. Stem cells have become an increasingly popular choice for creating therapies in regenerative medicine due to their self-renewal and differentiation potential. Especially mesenchymal stem cells are used more and more frequently due to their easy handling and accessibility, combined with a low tumorgenicity and little ethical concerns. This review therefore intends to summarize to date known correlations between natural Hox gene expression patterns in body tissues and during the differentiation of various stem cells towards their respective lineages with a major focus on mesenchymal stem cell differentiations. This overview shall help to understand the complex interactions of Hox genes and differentiation processes all over the body as well as in vitro for further improvement of stem cell treatments in future regenerative

  5. Role for endogenous estrogen in prepubertal Sertoli cell maturation.

    PubMed

    Kao, Eddy; Villalon, Rosalina; Ribeiro, Salustiano; Berger, Trish

    2012-11-01

    Reducing prepubertal endogenous estrogens led to increased numbers of Sertoli cells and the associated increased testicular size and testicular sperm production capacity in boars. The increased number of Sertoli cells might be due to a longer time for proliferation; delayed differentiation of Sertoli cells during suppressed endogenous estrogens would be consistent with this hypothesized, prolonged proliferation interval. This study used immunohistochemical detection of anti-Müllerian hormone (AMH), a marker of immature Sertoli cells, and of CDKN1B, a cell cycle inhibitor associated with more mature Sertoli cells, to determine if suppressing endogenous estrogens detectably delayed "differentiation" of porcine Sertoli cells. Testes were from littermate pairs of boars previously treated with Letrozole, an aromatase inhibitor, or vehicle, from the first week of age until tissue collection at 2, 3, 4, 5 or 6 months of age. Four animals were examined at each age following Letrozole treatment and their corresponding littermates evaluated following treatment with vehicle. Amount of AMH protein in Sertoli cells decreased with age of boar and could not be detected at 6 months of age. The AMH labeling was greater in the Letrozole-treated boars compared with littermate vehicle controls at 4 months of age (P=0.03). The percentage of CDKN1B-labeled Sertoli cells apparently increased with age through 5 months of age. At 4 and 5 months of age, the mean percentage of CDKN1B-labeled Sertoli cells was less in the Letrozole-treated animals than in the vehicle control animals (P = 0.03 and 0.04, respectively). These results are consistent with the hypothesis that continual inhibition of aromatase (and concomitatant reduced estrogen synthesis) causes a delay in Sertoli cell maturation in boars.

  6. Role of Hox genes in stem cell differentiation

    PubMed Central

    Seifert, Anne; Werheid, David F; Knapp, Silvana M; Tobiasch, Edda

    2015-01-01

    Hox genes are an evolutionary highly conserved gene family. They determine the anterior-posterior body axis in bilateral organisms and influence the developmental fate of cells. Embryonic stem cells are usually devoid of any Hox gene expression, but these transcription factors are activated in varying spatial and temporal patterns defining the development of various body regions. In the adult body, Hox genes are among others responsible for driving the differentiation of tissue stem cells towards their respective lineages in order to repair and maintain the correct function of tissues and organs. Due to their involvement in the embryonic and adult body, they have been suggested to be useable for improving stem cell differentiations in vitro and in vivo. In many studies Hox genes have been found as driving factors in stem cell differentiation towards adipogenesis, in lineages involved in bone and joint formation, mainly chondrogenesis and osteogenesis, in cardiovascular lineages including endothelial and smooth muscle cell differentiations, and in neurogenesis. As life expectancy is rising, the demand for tissue reconstruction continues to increase. Stem cells have become an increasingly popular choice for creating therapies in regenerative medicine due to their self-renewal and differentiation potential. Especially mesenchymal stem cells are used more and more frequently due to their easy handling and accessibility, combined with a low tumorgenicity and little ethical concerns. This review therefore intends to summarize to date known correlations between natural Hox gene expression patterns in body tissues and during the differentiation of various stem cells towards their respective lineages with a major focus on mesenchymal stem cell differentiations. This overview shall help to understand the complex interactions of Hox genes and differentiation processes all over the body as well as in vitro for further improvement of stem cell treatments in future regenerative

  7. The Role of Cell Compartmentalization and Cell Differentiation in Cyanobacterial Excavation of Miineral Carbonates

    NASA Astrophysics Data System (ADS)

    Garcia-Pichel, F.; Guida, B. S.; Couradeau, E.

    2015-12-01

    The bioerosion of coastal limestones and biogenic carbonates by boring filamentous or pseudo-filamentous cyanobacteria is not only a geomicrobial phenomenon of global proportions, but also plays an important role in the demise of coral reefs, and affects significantly human enterprises like bivalve fisheries. In spite of its importance, the mechanism by which cyanobacteria excavate carbonates constitutes an apparent paradox, in that their metabolism will tend to precipitate carbonates, not dissolved them. We have previously advanced, and obtained evidence for, a mechanism of excavation that relies on the uptake of Ca2+ by cells at the boring front, its trans-cellular transport along the filaments, and its eventual active excretion at the solid/liquid interface. It was postulated that the mechanism involved the strategically organized deployment of Ca2+ transport enzymes like P-type Ca2+ ATPases and Ca2+ channels. Here we present evidence that confirms this basic mechanism, but also reveals that it is based on an unexpected level of cellular complexity. The model organism Mastigocoleus testarum BC008, transports Ca2+ from the mineral to the external medium using a repetitive, polar arrangement of Ca2+ ATPases, localized preferentially on one cellular pole, in a ring conformation on the cell membrane adjacent to the trans-cellular septum, pumping Ca2+ locally towards the periplasmic space, from which it passively enters the next cell. This strain also develops specialized groups of cells, which we named calcicytes, often but not exclusively located at the ends of filaments, that accumulate large concentrations of Ca2+, some 40-fold higher than typical in microbes, and seem to act as sinks or capacitors in the trans-cellular Ca2+ transport. Calcicytes are also characterized by a lack of photosynthetic pigments, and a very high intracellular pH. These cellular adaptations can also be found in evolutionary distant euendoliths such as the pseudofilamentous Hyella sp.

  8. A novel zinc-finger HIT protein with an additional PAPA-1-like region from Suaeda liaotungensis K. enhanced transgenic Arabidopsis drought and salt stresses tolerance.

    PubMed

    Li, Xiao-Lan; Hu, Yu-Xin; Yang, Xing; Yu, Xiao-Dong; Li, Qiu-Li

    2014-12-01

    Zinc-finger HIT belongs to the cross-brace zinc finger protein family and is involved in the regulation of plant defense and stress responses. In this study, we cloned a full-length zinc-finger HIT gene (1,377 bp) named SlPAPA1 using polymerase chain reaction from Suaeda liaotungensis K. and investigated its function by overexpression in transgenic Arabidopsis. SlPAPA1 contains a zinc-finger HIT domain and a Pim-1-associated protein-1 (PAP-1)-associated protein-1-like (PAPA-1-like) conserved region. Its expression in S. liaotungensis was induced by drought, high-salt, and cold (4 °C) stresses and by abscisic acid (ABA). Subcellular localization experiments in onion epidermal cells indicated that SlPAPA1 is localized in the nucleus. Yeast-one hybrid assays showed that SlPAPA1 functions as a transcriptional activator. SlPAPA1 transgenic Arabidopsis displayed a higher survival ratio and lower rate of water loss under drought stress; a higher germination ratio, higher survival ratio, and lower root inhibition rate under salt stress; and a lower germination ratio and root inhibition rate under ABA treatment, compared with wild-type Arabidopsis. These results suggested that SlPAPA1 functions as a stress-responsive zinc-finger HIT protein involved in the ABA-dependent signaling pathway and may have potential applications in transgenic breeding to enhance crops abiotic stress tolerances.

  9. Hit-and-run trophallaxis of small hive beetles.

    PubMed

    Neumann, Peter; Naef, Jan; Crailsheim, Karl; Crewe, Robin M; Pirk, Christian W W

    2015-12-01

    Some parasites of social insects are able to exploit the exchange of food between nestmates via trophallaxis, because they are chemically disguised as nestmates. However, a few parasites succeed in trophallactic solicitation although they are attacked by workers. The underlying mechanisms are not well understood. The small hive beetle (=SHB), Aethina tumida, is such a parasite of honey bee, Apis mellifera, colonies and is able to induce trophallaxis. Here, we investigate whether SHB trophallactic solicitation is innate and affected by sex and experience. We quantified characteristics of the trophallactic solicitation in SHBs from laboratory-reared individuals that were either bee-naïve or had 5 days experience. The data clearly show that SHB trophallactic solicitation is innate and further suggest that it can be influenced by both experience and sex. Inexperienced SHB males begged more often than any of the other groups had longer breaks than their experienced counterparts and a longer soliciting duration than both experienced SHB males and females, suggesting that they start rather slowly and gain more from experience. Successful experienced females and males were not significantly different from each other in relation to successful trophallactic interactions, but had a significantly shorter soliciting duration compared to all other groups, except successful inexperienced females. Trophallactic solicitation success, feeding duration and begging duration were not significantly affected by either SHB sex or experience, supporting the notion that these behaviors are important for survival in host colonies. Overall, success seems to be governed by quality rather than quantity of interactions, thereby probably limiting both SHB energy investment and chance of injury (<1%). Trophallactic solicitation by SHBs is a singular example for an alternative strategy to exploit insect societies without requiring chemical disguise. Hit-and-run trophallaxis is an attractive test

  10. Proapoptotic Role of Potassium Ions in Liver Cells

    PubMed Central

    Xia, Zhenglin; Huang, Xusen; Chen, Kaiyun; Wang, Hanning; Xiao, Jinfeng; He, Ke; Huang, Rui; Duan, Xiaopeng; Liu, Hao; Zhang, Jinqian; Xiang, Guoan

    2016-01-01

    Potassium channels are transmembrane proteins that selectively promote the infiltration of potassium ions. The significance of these channels for tumor biology has become obvious. However, the effects of potassium ions on the tumor or normal cells have seldom been studied. To address this problem, we studied the biological effects of L02 and HepG2 cells with ectogenous potassium ions. Cell proliferation, cell cycle, and apoptosis rate were analyzed. Our results indicated that potassium ions inhibited proliferation of L02 and HepG2 cells and promoted their apoptosis. Potassium ions induced apoptosis through regulating Bcl-2 family members and depolarized the mitochondrial membrane, especially for HepG2 cell. These biological effects were associated with channel protein HERG. By facilitating expression of channel protein HERG, potassium ions may prevent it from being shunted to procancerous pathways by inducing apoptosis. These results demonstrated that potassium ions may be a key regulator of liver cell function. Thus, our findings suggest that potassium ions could inhibit tumorigenesis through inducing apoptosis of hepatoma cells by upregulating potassium ions transport channel proteins HERG and VDAC1. PMID:27069917

  11. The stem cell secretome and its role in brain repair.

    PubMed

    Drago, Denise; Cossetti, Chiara; Iraci, Nunzio; Gaude, Edoardo; Musco, Giovanna; Bachi, Angela; Pluchino, Stefano

    2013-12-01

    Compelling evidence exists that non-haematopoietic stem cells, including mesenchymal (MSCs) and neural/progenitor stem cells (NPCs), exert a substantial beneficial and therapeutic effect after transplantation in experimental central nervous system (CNS) disease models through the secretion of immune modulatory or neurotrophic paracrine factors. This paracrine hypothesis has inspired an alternative outlook on the use of stem cells in regenerative neurology. In this paradigm, significant repair of the injured brain may be achieved by injecting the biologics secreted by stem cells (secretome), rather than implanting stem cells themselves for direct cell replacement. The stem cell secretome (SCS) includes cytokines, chemokines and growth factors, and has gained increasing attention in recent years because of its multiple implications for the repair, restoration or regeneration of injured tissues. Thanks to recent improvements in SCS profiling and manipulation, investigators are now inspired to harness the SCS as a novel alternative therapeutic option that might ensure more efficient outcomes than current stem cell-based therapies for CNS repair. This review discusses the most recent identification of MSC- and NPC-secreted factors, including those that are trafficked within extracellular membrane vesicles (EVs), and reflects on their potential effects on brain repair. It also examines some of the most convincing advances in molecular profiling that have enabled mapping of the SCS.

  12. The stem cell secretome and its role in brain repair

    PubMed Central

    Drago, Denise; Cossetti, Chiara; Iraci, Nunzio; Gaude, Edoardo; Musco, Giovanna; Bachi, Angela; Pluchino, Stefano

    2014-01-01

    Compelling evidence exists that non-haematopoietic stem cells, including mesenchymal (MSCs) and neural/progenitor stem cells (NPCs), exert a substantial beneficial and therapeutic effect after transplantation in experimental central nervous system (CNS) disease models through the secretion of immune modulatory or neurotrophic paracrine factors. This paracrine hypothesis has inspired an alternative outlook on the use of stem cells in regenerative neurology. In this paradigm, significant repair of the injured brain may be achieved by injecting the biologics secreted by stem cells (secretome), rather than implanting stem cells themselves for direct cell replacement. The stem cell secretome (SCS) includes cytokines, chemokines and growth factors, and has gained increasing attention in recent years because of its multiple implications for the repair, restoration or regeneration of injured tissues. Thanks to recent improvements in SCS profiling and manipulation, investigators are now inspired to harness the SCS as a novel alternative therapeutic option that might ensure more efficient outcomes than current stem cell-based therapies for CNS repair. This review discusses the most recent identification of MSC- and NPC-secreted factors, including those that are trafficked within extracellular membrane vesicles (EVs), and reflects on their potential effects on brain repair. It also examines some of the most convincing advances in molecular profiling that have enabled mapping of the SCS. PMID:23827856

  13. Role of Memory T Cells in Allograft Rejection and Tolerance

    PubMed Central

    Benichou, Gilles; Gonzalez, Bruno; Marino, Jose; Ayasoufi, Katayoun; Valujskikh, Anna

    2017-01-01

    Memory T cells are characterized by their low activation threshold, robust effector functions, and resistance to conventional immunosuppression and costimulation blockade. Unlike their naïve counterparts, memory T cells reside in and recirculate through peripheral non-lymphoid tissues. Alloreactive memory T cells are subdivided into different categories based on their origins, phenotypes, and functions. Recipients whose immune systems have been directly exposed to allogeneic major histocompatibility complex (MHC) molecules display high affinity alloreactive memory T cells. In the absence of any prior exposure to allogeneic MHC molecules, endogenous alloreactive memory T cells are regularly generated through microbial infections (heterologous immunity). Regardless of their origin, alloreactive memory T cells represent an essential element of the allograft rejection process and a major barrier to tolerance induction in clinical transplantation. This article describes the different subsets of alloreactive memory T cells involved in transplant rejection and examine their generation, functional properties, and mechanisms of action. In addition, we discuss strategies developed to target deleterious allospecific memory T cells in experimental animal models and clinical settings. PMID:28293238

  14. Bluetongue virus mammalian cell surface receptors: Role of glycosaminologycans

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Binding and infection rates of bluetongue virus (BTV) on glycosaminoglycan (GAG) and glucosaminoglycan deficient and wild type CHO cell lines and bovine pulmonary artery endothelial cells were determined in the presence or absence of GAG and sialic acid antagonists. Data showed that virus binding ...

  15. The role of dendritic cells in CNS autoimmunity

    PubMed Central

    Zozulya, Alla L.; Clarkson, Benjamin D.; Ortler, Sonja; Fabry, Zsuzsanna

    2010-01-01

    Multiple sclerosis (MS) is a chronic immune-mediated, central nervous system (CNS) demyelinating disease. Clinical and histopathological features suggest an inflammatory etiology involving resident CNS innate cells as well as invading adaptive immune cells. Encephalitogenic myelin-reactive T cells have been implicated in the initiation of an inflammatory cascade, eventually resulting in demyelination and axonal damage (the histological hallmarks of MS). Dendritic cells (DC) have recently emerged as key modulators of this immunopathological cascade, as supported by studies in humans and experimental disease models. In one such model, experimental autoimmune encephalomyelitis (EAE), CNS microvessel-associated DC have been shown to be essential for local antigen recognition by myelin-reactive T cells. Moreover, the functional state and compartmental distribution of DC derived from CNS and associated lymphatics seem to be limiting factors in both the induction and effector phases of EAE. Moreover, DC modulate and balance the recruitment of encephalitogenic and regulatory T cells into CNS tissue. This capacity is critically influenced by DC surface expression of co-stimulatory or co-inhibitory molecules. The fact that DC accumulate in the CNS before T cells and can direct T-cell responses suggests that they are key determinants of CNS autoimmune outcomes. Here we provide a comprehensive review of recent advances in our understanding of CNS-derived DC and their relevance to neuroinflammation. PMID:20217033

  16. Roles of small molecules in somatic cell reprogramming.

    PubMed

    Su, Jian-bin; Pei, Duan-qing; Qin, Bao-ming

    2013-06-01

    The Nobel Prize in Physiology and Medicine 2012 was awarded to Sir John B GURDON and Shinya YAMANAKA for their discovery that mature cells can be reprogrammed to become pluripotent. This event reaffirms the importance of research on cell fate plasticity and the technology progress in the stem cell field and regenerative medicine. Indeed, reprogramming technology has developed at a dazzling speed within the past 6 years, yet we are still at the early stages of understanding the mechanisms of cell fate identity. This is particularly true in the case of human induced pluripotent stem cells (iPSCs), which lack reliable standards in the evaluation of their fidelity and safety prior to their application. Along with the genetic approaches, small molecules nowadays become convenient tools for modulating endogenous protein functions and regulating key cellular processes, including the mesenchymal-to-epithelial transition, metabolism, signal transduction and epigenetics. Moreover, small molecules may affect not only the efficiency of clone formation but also the quality of the resulting cells. With increasing availability of such chemicals, we can better understand the biology of stems cells and further improve the technology of generation of stem cells.

  17. Helicopter In-Flight Tracking System (HITS) for the Gulf of Mexico

    NASA Technical Reports Server (NTRS)

    Martone, Patrick; Tucker, George; Aiken, Edwin W. (Technical Monitor)

    2001-01-01

    The National Aeronautics and Space Administration (NASA) Ames Research Center (ARC) is sponsoring deployment and testing of the Helicopter In-flight Tracking System (HITS) in a portion of the Gulf of Mexico offshore area. Using multilateration principles, HITS determines the location and altitude of all transponder-equipped aircraft without requiring changes to current Mode A, C or S avionics. HITS tracks both rotary and fixed-wing aircraft operating in the 8,500 sq. mi. coverage region. The minimum coverage altitude of 100 ft. is beneficial for petroleum industry, allowing helicopters to be tracked onto the pad of most derricks. In addition to multilateration, HITS provides surveillance reports for aircraft equipped for Automatic Dependent Surveillance - Broadcast (ADS-B), a new surveillance system under development by the Federal Aviation Administration (FAA). The U.S. Department of Transportation (DOT) Volpe National Transportation Systems Center (Volpe Center) is supporting NASA in managing HITS installation and operation, and in evaluating the system's effectiveness. Senses Corporation is supplying, installing and maintaining the HITS ground system. Project activities are being coordinated with the FAA and local helicopter operators. Flight-testing in the Gulf will begin in early 2002. This paper describes the HITS project - specifically, the system equipment (architecture, remote sensors, central processing system at Intracoastal City, LA, and communications) and its performance (accuracy, coverage, and reliability). The paper also presents preliminary results of flight tests.

  18. B cells and Autoantibodies: Complex Roles in CNS Injury

    PubMed Central

    Ankeny, Daniel P.; Popovich, Phillip G.

    2010-01-01

    Emerging data indicate that traumatic injury to the brain or spinal cord activates B lymphocytes, culminating in the production of antibodies specific for antigens found within and outside the central nervous system (CNS). In this article, we summarize what is known about the effects of CNS injury on B cells. We outline the potential mechanisms for CNS trauma-induced B cell activation and discuss the potential consequences of these injury-induced B cell responses. Based on recent data, we hypothesize that a subset of autoimmune B cell responses initiated by CNS injury are pathogenic and that targeted inhibition of B cells could improve recovery in brain and spinal cord injured patients. PMID:20691635

  19. T cell intrinsic roles of autophagy in promoting adaptive immunity

    PubMed Central

    Walsh, Craig M.; Bell, Bryan D.

    2010-01-01

    Autophagy, an ancient cellular response where autophagic vacuoles are formed within the cytosol, is induced in response to a variety of cellular insults, including growth factor or nutrient withdrawal, organelle damage and misfolded proteins. Autophagy is rapidly induced in T lymphocytes following antigenic stimulation and blockade of autophagic signaling greatly reduces T cell clonal expansion, suggesting that autophagy is primarily involved in promoting T cell survival. In contrast, a recently identified negative feedback loop involving FADD and caspase-8, limits the level of autophagy in T cells. Failure to activate caspase-8 during T cell mitogenesis leads to hyperactive autophagy and cellular death through a programmed necrotic mechanism. These findings suggest that crosstalk between these cellular processes is essential for T cell activation and homeostasis. PMID:20392618

  20. Role of proline in cell wall synthesis and plant development and its implications in plant ontogeny

    PubMed Central

    Kavi Kishor, Polavarapu B.; Hima Kumari, P.; Sunita, M. S. L.; Sreenivasulu, Nese

    2015-01-01

    Proline is a proteogenic amino acid and accumulates both under stress and non-stress conditions as a beneficial solute in plants. Recent discoveries point out that proline plays an important role in plant growth and differentiation across life cycle. It is a key determinant of many cell wall proteins that plays important roles in plant development. The role of extensins, arabinogalactan proteins and hydroxyproline- and proline-rich proteins as important components of cell wall proteins that play pivotal roles in cell wall signal transduction cascades, plant development and stress tolerance is discussed in this review. Molecular insights are also provided here into the plausible roles of proline transporters modulating key events in plant development. In addition, the roles of proline during seed developmental transitions including storage protein synthesis are discussed. PMID:26257754

  1. Loss of HITS (FAM107B) expression in cancers of multiple organs: tissue microarray analysis.

    PubMed

    Nakajima, Hideo; Koizumi, Keita; Tanaka, Takuji; Ishigaki, Yasuhito; Yoshitake, Yoshino; Yonekura, Hideto; Sakuma, Tsutomu; Fukushima, Toshihiro; Umehara, Hisanori; Ueno, Soichiro; Minamoto, Toshinari; Motoo, Yoshiharu

    2012-10-01

    Family with sequence similarity 107 (FAM107) proteins consist of two subtypes, FAM107A and FAM107B in mammals, possessing a conserved N-terminal domain of unknown function. Recently we found that FAM107B, an 18 kDa nuclear protein, is expressed in a broad range of tissues and is downregulated in gastrointestinal cancer. Because FAM107B expression is amplified by heat-shock stimulation, we designated it heat shock-inducible tumor small protein (HITS). Although data related to FAM107A as a candidate tumor suppressor have been accumulated, little biological information is available for HITS. In the present study, we examined HITS expression using immunohistochemistry with tissue microarrays and performed detailed statistical analyses. By screening a high-density multiple organ tumor and normal tissue microarray, HITS expression was decreased in tumor tissues of the breast, thyroid, testis and uterine cervix as well as the stomach and colon. Further analysis of tissue microarrays of individual organs showed that loss of HITS expression in cancer tissues was statistically significant and commonly observed in distinct organs in a histological type-specific manner. The HITS expression intensity was inversely correlated with the primary tumor size in breast and thyroid cancers. In addition, effects of tetracycline-inducible HITS expression on tumor growth were investigated in vivo. Forced expression of HITS inhibited tumor xenograft proliferation, compared with the mock-treated tumor xenograft model. These results show that loss of HITS expression is a common phenomenon observed in cancers of distinct organs and involved in tumor development and proliferation.

  2. A role for Peroxisome Proliferator-Activated Receptor Beta in T cell development

    PubMed Central

    Mothe-Satney, Isabelle; Murdaca, Joseph; Sibille, Brigitte; Rousseau, Anne-Sophie; Squillace, Raphaëlle; Le Menn, Gwenaëlle; Rekima, Akila; Larbret, Frederic; Pelé, Juline; Verhasselt, Valérie; Grimaldi, Paul A.; Neels, Jaap G.

    2016-01-01

    Metabolism plays an important role in T cell biology and changes in metabolism drive T cell differentiation and fate. Most research on the role of metabolism in T lymphocytes focuses on mature T cells while only few studies have investigated the role of metabolism in T cell development. In this study, we report that activation or overexpression of the transcription factor Peroxisome Proliferator-Activated Receptor β (PPARβ) increases fatty acid oxidation in T cells. Furthermore, using both in vivo and in vitro models, we demonstrate that PPARβ activation/overexpression inhibits thymic T cell development by decreasing proliferation of CD4−CD8− double-negative stage 4 (DN4) thymocytes. These results support a model where PPARβ activation/overexpression favours fatty acid- instead of glucose-oxidation in developing T cells, thereby hampering the proliferative burst normally occurring at the DN4 stage of T cell development. As a consequence, the αβ T cells that are derived from DN4 thymocytes are dramatically decreased in peripheral lymphoid tissues, while the γδ T cell population remains untouched. This is the first report of a direct role for a member of the PPAR family of nuclear receptors in the development of T cells. PMID:27680392

  3. Double-hit lymphoma at second relapse of Burkitt-like lymphoma: a case report.

    PubMed

    Tanaka, Hiroaki; Hashimoto, Shinichiro; Abe, Daijiro; Sakai, Shio; Takagi, Toshiyuki

    2011-01-01

    Double-hit lymphoma (DHL) is a rare and extremely unfavorable type of lymphoma with concurrent chromosomal translocations of BCL2 and MYC. It is considered that BCL2 translocation precedes MYC events in lymphomagenesis of DHL. In fact, most cases of DHL arise de novo or following FL. We describe a very rare case of DHL arising from Burkitt-like lymphoma according to the revised European-American classification of lymphoid neoplasms. A 67-year-old Japanese male presented with persistent fever. [(18)F]-fluorodeoxyglucose positron emission tomography revealed multiple abnormal accumulations in the bone marrow, pancreas, and periphery of the left kidney. The patient was diagnosed with Burkitt-like lymphoma according to a bone marrow biopsy. At the disease onset and the first relapse, chemotherapy was effective and the patient experienced sustained and complete remission. At the second relapse, however, the clinical presentation and morphology of lymphoma cells were nearly identical, but a high level of chemoresistance was acquired, and the patient succumbed almost 1 month after hospitalization. Chromosomal analyses revealed a complex karyotype with concurrent t(14;18) and t(8;22) translocations, which have not been previously detected. It is therefore important to note that DHL cannot be diagnosed without chromosomal analysis. Cytogenetic analyses should thus be performed for patients with high-grade B-cell lymphoma and who experience a recurrence of this lymphoma.

  4. Recurrent EZH1 mutations are a second hit in autonomous thyroid adenomas

    PubMed Central

    Grassi, Elisa S.; Eszlinger, Markus; Ronchi, Cristina L.; Godbole, Amod; Bathon, Kerstin; Guizzardi, Fabiana; de Filippis, Tiziana; Krohn, Knut; Jaeschke, Holger; Schwarzmayr, Thomas; Gozu, Hulya Iliksu; Sancak, Seda; Niedziela, Marek; Strom, Tim M.; Fassnacht, Martin; Paschke, Ralf

    2016-01-01

    Autonomous thyroid adenomas (ATAs) are a frequent cause of hyperthyroidism. Mutations in the genes encoding the TSH receptor (TSHR) or the Gs protein α subunit (GNAS) are found in approximately 70% of ATAs. The involvement of other genes and the pathogenesis of the remaining cases are presently unknown. Here, we performed whole-exome sequencing in 19 ATAs that were paired with normal DNA samples and identified a recurrent hot-spot mutation (c.1712A>G; p.Gln571Arg) in the enhancer of zeste homolog 1 (EZH1) gene, which codes for a catalytic subunit of the polycomb complex. Targeted screening in an independent cohort confirmed that this mutation occurs with high frequency (27%) in ATAs. EZH1 mutations were strongly associated with known (TSHR, GNAS) or presumed (adenylate cyclase 9 [ADCY9]) alterations in cAMP pathway genes. Furthermore, functional studies revealed that the p.Gln571Arg EZH1 mutation caused increased histone H3 trimethylation and increased proliferation of thyroid cells. In summary, this study revealed that a hot-spot mutation in EZH1 is the second most frequent genetic alteration in ATAs. The association between EZH1 and TSHR mutations suggests a 2-hit model for the pathogenesis of these tumors, whereby constitutive activation of the cAMP pathway and EZH1 mutations cooperate to induce the hyperproliferation of thyroid cells. PMID:27500488

  5. Roles for E-cadherin cell surface regulation in cancer

    PubMed Central

    Petrova, Yuliya I.; Schecterson, Leslayann; Gumbiner, Barry M.

    2016-01-01

    The loss of E-cadherin expression in association with the epithelial–mesenchymal transition (EMT) occurs frequently during tumor metastasis. However, metastases often retain E-cadherin expression, an EMT is not required for metastasis, and metastases can arise from clusters of tumor cells. We demonstrate that the regulation of the adhesive activity of E-cadherin present at the cell surface by an inside-out signaling mechanism is important in cancer. First, we find that the metastasis of an E-cadherin–expressing mammary cell line from the mammary gland to the lung depends on reduced E-cadherin adhesive function. An activating monoclonal antibody to E-cadherin that induces a high adhesive state significantly reduced the number of cells metastasized to the lung without affecting the growth in size of the primary tumor in the mammary gland. Second, we find that many cancer-associated germline missense mutations in the E-cadherin gene in patients with hereditary diffuse gastric cancer selectively affect the mechanism of inside-out cell surface regulation without inhibiting basic E-cadherin adhesion function. This suggests that genetic deficits in E-cadherin cell surface regulation contribute to cancer progression. Analysis of these mutations also provides insights into the molecular mechanisms underlying cadherin regulation at the cell surface. PMID:27582386

  6. Homing of immune cells: role in homeostasis and intestinal inflammation.

    PubMed

    Hart, Ailsa L; Ng, Siew C; Mann, Elizabeth; Al-Hassi, Hafid Omar; Bernardo, David; Knight, Stella C

    2010-11-01

    Rather like a satellite navigation system directing a vehicle to a particular destination defined by post-code, immune cells have homing molecules or "immune post-codes" enabling them to be recruited to specific organs, such as the intestine or skin. An efficient system would be designed such that the site of entry of an antigen influences the homing of effector T cells back to the appropriate organ. For example, to mount an immune response against an intestinal pathogen, T cells with a propensity to home to the gut to clear the infection would be induced. In health, there is such a sophisticated and finely tuned system in operation, enabling an appropriate balance of immune activity in different anatomical compartments. In disease states such as inflammatory bowel disease (IBD), which is characterized by intestinal inflammation and often an inflammatory process involving other organs such as skin, joints, liver, and eye, there is accumulating evidence that there is malfunction of this immune cell trafficking system. The clinical importance of dysregulated immune cell trafficking in IBD is reflected in recently proven efficacious therapies that target trafficking pathways such as natalizumab, an α4 integrin antibody, and Traficet-EN, a chemokine receptor-9 (CCR9) antagonist. Here we review the mechanisms involved in the homing of immune cells to different tissues, in particular the intestine, and focus on alterations in immune cell homing pathways in IBD. Unraveling the mechanisms underlying the immune post-code system would assist in achieving the goal of tissue-specific immunotherapy.

  7. Role of mesenchymal cell death in lung remodeling after injury.

    PubMed Central

    Polunovsky, V A; Chen, B; Henke, C; Snover, D; Wendt, C; Ingbar, D H; Bitterman, P B

    1993-01-01

    Repair after acute lung injury requires elimination of granulation tissue from the alveolar airspace. We hypothesized that during lung repair, signals capable of inducing the death of the two principal cellular elements of granulation tissue, fibroblasts and endothelial cells, would be present at the air-lung interface. Bronchoalveolar lavage fluid obtained from patients during lung repair induced both fibroblast and endothelial cell death, while fluid obtained at the time of injury or from patient controls did not. The mode of cell death for endothelial cells was apoptosis. Fibroblast death, while morphologically distinct from necrosis, also differed from typical apoptosis. Only proliferating cells were susceptible to the bioactivities in lavage fluid, which were trypsin sensitive and lipid insoluble. Histological examination of lung tissue from patients after lung injury revealed evidence of apoptotic cells within airspace granulation tissue. Our results suggest that cell death induced by peptide(s) present at the air-lung interface may participate in the remodeling process that accompanies tissue repair after injury. Images PMID:8326006

  8. [Molecular mechanism maintaining muscle satellite cells and the roles in sarcopenia.

    PubMed

    Takemoto, Yusei; Fukada, So-Ichiro

    2017-01-01

    Skeletal muscle has its stem cell named satellite cell. The absence of satellite cells does not allow muscle regeneration, it is unquestionable that satellite cell is indispensable for muscle regeneration processes. A certain number of satellite cells appear to be necessary for the successful muscle regeneration, meaning the maintenance of the satellite cells is essential for the functional homeostasis of skeletal muscle. Recent studies have revealed the molecular mechanism underlying satellite cell maintenance in a steady state. A loss of those molecules responsible for the maintenance often results in decreased satellite cell pool and reduced regeneration ability. On the other hand, the contribution of satellite cells to muscle hypertrophy or aged-related atrophy(sarcopenia)is controversial. In this review, we will introduce the molecules that regulate satellite cells homeostasis in the dormant state and then further discuss the recent results on the roles of satellite cell in sarcopenia.

  9. The essential role of evasion from cell death in cancer

    PubMed Central

    Kelly, Gemma; Strasser, Andreas

    2011-01-01

    The link between evasion of apoptosis and the development of cellular hyperplasia and ultimately cancer is implicitly clear if one considers how many cells are produced each day and, hence, how many cells must die to make room for the new ones (reviewed in (Raff, 1996)). Furthermore, cells are frequently experiencing noxious stimuli that can cause lesions in their DNA and faults in DNA replication can occur during cellular proliferation. Such DNA damage needs to be repaired efficiently or cells with irreparable damage must be killed to prevent subsequent division of aberrant cells that may fuel tumorigenesis (reviewed in (Weinberg, 2007)). The detection of genetic lesions in human cancers that activate pro-survival genes or disable pro-apoptotic genes have provided the first evidence that defects in programmed cell death can cause cancer (Tagawa et al., 2005; Tsujimoto et al., 1984; Vaux et al., 1988) and this concept was proven by studies with genetically modified mice (Egle et al., 2004b; Strasser et al., 1990a). It is therefore now widely accepted that evasion of apoptosis is a requirement for both neoplastic transformation and sustained growth of cancer cells (reviewed in (Cory and Adams, 2002; Hanahan and Weinberg, 2000; Weinberg, 2007)). Importantly, apoptosis is also a major contributor to anti-cancer therapy induced killing of tumor cells (reviewed in (Cory and Adams, 2002; Cragg et al., 2009)). Consequently, a detailed understanding of apoptotic cell death will help to better comprehend the complexities of tumorigenesis and should assist with the development of improved targeted therapies for cancer based on the direct activation of the apoptotic machinery (reviewed in (Lessene et al., 2008)). PMID:21704830

  10. Role of fascin in the proliferation and invasiveness of esophageal carcinoma cells

    SciTech Connect

    Xie, J.J.; Xu, L.Y.; Zhang, H.H.; Cai, W.J.; Mai, R.Q.; Xie, Y.M.; Yang, Z.M.; Niu, Y.D.; Shen, Z.Y.; Li, E.M. . E-mail: nmli@stu.edu.cn

    2005-11-11

    Fascin, an actin-bundling protein, induces membrane protrusions and increases cell motility in various transformed cells. The overexpression of fascin in esophageal squamous cell carcinoma (ESCC) has been described only recently, but the roles and mechanism still remained unclear. Here, by using RNA interference (RNAi), we have stably silenced the expression of the fascin in EC109 cells, an ESCC cell line. Down-regulation of fascin resulted in a suppression of cell proliferation and as well as a decrease in cell invasiveness. Furthermore, we revealed that fascin might have functions in regulating tumor growth in vivo. The effect of fascin on cell invasiveness correlated with the activation of matrix metalloproteases such as MMP-2 and MMP-9. We examined that fascin down-expression also led to a decrease of c-erbB-2 and {beta}-catenin at the protein level. These results suggested that fascin might play crucial roles in regulating neoplasm progression of ESCC.

  11. Approaches for Analyzing the Roles of Mast Cells and Their Proteases In Vivo

    PubMed Central

    Galli, Stephen J.; Tsai, Mindy; Marichal, Thomas; Tchougounova, Elena; Reber, Laurent L.; Pejler, Gunnar

    2016-01-01

    The roles of mast cells in health and disease remain incompletely understood. While the evidence that mast cells are critical effector cells in IgE-dependent anaphylaxis and other acute IgE-mediated allergic reactions seems unassailable, studies employing various mice deficient in mast cells or mast cell-associated proteases have yielded divergent conclusions about the roles of mast cells or their proteases in certain other immunological responses. Such “controversial” results call into question the relative utility of various older versus newer approaches to ascertain the roles of mast cells and mast cell proteases in vivo. This review discusses how both older and more recent mouse models have been used to investigate the functions of mast cells and their proteases in health and disease. We particularly focus on settings in which divergent conclusions about the importance of mast cells and their proteases have been supported by studies that employed different models of mast cell or mast cell protease deficiency. We think that two major conclusions can be drawn from such findings: (1) no matter which models of mast cell or mast cell protease deficiency one employs, the conclusions drawn from the experiments always should take into account the potential limitations of the models (particularly abnormalities affecting cell types other than mast cells) and (2) even when analyzing a biological response using a single model of mast cell or mast cell protease deficiency, details of experimental design are critical in efforts to define those conditions under which important contributions of mast cells or their proteases can be identified. PMID:25727288

  12. A role for SIRT1 in cell growth and chemoresistance in prostate cancer PC3 and DU145 cells

    SciTech Connect

    Kojima, Keitaro; Ohhashi, Riyako; Fujita, Yasunori; Hamada, Nanako; Akao, Yukihiro; Nozawa, Yoshinori; Deguchi, Takashi; Ito, Masafumi

    2008-08-29

    SIRT1, which belongs to the family of type III histone deacetylase, is implicated in diverse cellular processes. We have determined the expression levels of SIRT1 in human prostate cancer cell lines and have examined the roles of SIRT1 in cell growth and chemoresistance. SIRT1 expression was markedly up-regulated in androgen-refractory PC3 and DU145 cells compared with androgen-sensitive LNCaP cells and its expression level was correlated with cell growth in PC3 cells. Treatment with a SIRT1 inhibitor, sirtinol, inhibited cell growth and increased sensitivity to camptothecin and cisplatin. Silencing of SIRT1 expression by siRNA also suppressed cell proliferation and reduced camptothecin resistance in PC3 cells, mimicking the chemosensitizing effect caused by sirtinol. Also in DU145 cells, sirtinol treatment enhanced sensitivity to camptothecin and cisplatin. These results suggest that up-regulation of SIRT1 expression may play an important role in promoting cell growth and chemoresistance in androgen-refractory PC3 and DU145 cells.

  13. The Role of γδ T Cells in Systemic Lupus Erythematosus

    PubMed Central

    Wu, Meng; Yang, Jinhua; Li, Xiaofeng; Chen, Junwei

    2016-01-01

    Systemic lupus erythematosus (SLE) is an autoimmune disease that is characterized by the overproduction of autoantibodies against an array of nuclear and cytoplasmic antigens and affects multiple organs, such as the skin, joints, kidneys, and neuronal tissues. T cells have been recognized as important players in the development of SLE due to their functions in cytokine secretion, antigen presentation, and supporting B cells for antibody production. γδ T cells are a minor population of T cells that play important roles in infection and tumor-associated disease. In recent years, the role of γδ T cells in autoimmune diseases has been investigated. In this review, we discussed the role of γδ T cells in the pathogenesis of SLE. PMID:26981547

  14. Non-neuronal Cells in ALS: Role of Glial, Immune cells and Blood-CNS Barriers.

    PubMed

    Puentes, Fabiola; Malaspina, Andrea; van Noort, Johannes M; Amor, Sandra

    2016-03-01

    Neurological dysfunction and motor neuron degeneration in amyotrophic lateral sclerosis (ALS) is strongly associated with neuroinflammation reflected by activated microglia and astrocytes in the CNS. In ALS endogenous triggers in the CNS such as aggregated protein and misfolded proteins activate a pathogenic response by innate immune cells. However, there is also strong evidence for a neuroprotective immune response in ALS. Emerging evidence also reveals changes in the peripheral adaptive immune responses as well as alterations in the blood brain barrier that may aid traffic of lymphocytes and antibodies into the CNS. Understanding the triggers of neuroinflammation is key to controlling neuronal loss. Here, we review the current knowledge regarding the roles of non-neuronal cells as well as the innate and adaptive immune responses in ALS. Existing ALS animal models, in particular genetic rodent models, are very useful to study the underlying pathogenic mechanisms of motor neuron degeneration. We also discuss the approaches used to target the pathogenic immune responses and boost the neuroprotective immune pathways as novel immunotherapies for ALS.

  15. An emerging role of pectic rhamnogalacturonanII for cell wall integrity.

    PubMed

    Reboul, Rebecca; Tenhaken, Raimund

    2012-02-01

    The plant cell wall is a complex network of different polysaccharides and glycoproteins, showing high diversity in nature. The essential components, tethering cell wall are under debate, as novel mutants challenge established models. The mutant ugd2,3 with a reduced supply of the important wall precursor UDP-glucuronic acid reveals the critical role of the pectic compound rhamnogalacturonanII for cell wall stability. This polymer seems to be more important for cell wall integrity than the previously favored xyloglucan.

  16. Roles of ion transport in control of cell motility.

    PubMed

    Stock, Christian; Ludwig, Florian T; Hanley, Peter J; Schwab, Albrecht

    2013-01-01

    Cell motility is an essential feature of life. It is essential for reproduction, propagation, embryonic development, and healing processes such as wound closure and a successful immune defense. If out of control, cell motility can become life-threatening as, for example, in metastasis or autoimmune diseases. Regardless of whether ciliary/flagellar or amoeboid movement, controlled motility always requires a concerted action of ion channels and transporters, cytoskeletal elements, and signaling cascades. Ion transport across the plasma membrane contributes to cell motility by affecting the membrane potential and voltage-sensitive ion channels, by inducing local volume changes with the help of aquaporins and by modulating cytosolic Ca(2+) and H(+) concentrations. Voltage-sensitive ion channels serve as voltage detectors in electric fields thus enabling galvanotaxis; local swelling facilitates the outgrowth of protrusions at the leading edge while local shrinkage accompanies the retraction of the cell rear; the cytosolic Ca(2+) concentration exerts its main effect on cytoskeletal dynamics via motor proteins such as myosin or dynein; and both, the intracellular and the extracellular H(+) concentration modulate cell migration and adhesion by tuning the activity of enzymes and signaling molecules in the cytosol as well as the activation state of adhesion molecules at the cell surface. In addition to the actual process of ion transport, both, channels and transporters contribute to cell migration by being part of focal adhesion complexes and/or physically interacting with components of the cytoskeleton. The present article provides an overview of how the numerous ion-transport mechanisms contribute to the various modes of cell motility.

  17. The Role of SIRT1 in Breast Cancer Stem Cells

    DTIC Science & Technology

    2014-07-01

    molecular mechanism of SIRT1 inhibitors in blocking EMT and reducing cancer stem cells is likely associated with blocking the Wnt pathway. Several down...sensitivity to chemotherapy in xenograft mouse model. Task 4. Wnt pathway is highly activated in breast CSCs and EMT of human breast cancer...reducing EMT . Task 6. Using cell line in vitro study to demonstrate that SIRT1 regulates CSCs and EMT through activation of Wnt pathway via interaction

  18. Biotechnology and aquaculture: the role of cell cultures.

    PubMed

    Bols, N C

    1991-01-01

    Cell culturing complements recombinant DNA technology in the application of biotechnology to aquaculture. Cell cultures can be prepared from the three main groups of multicellular organisms in aquaculture: fish, shellfish, and seaweeds. These cultures can contribute indirectly to the successful farming of these organisms by providing basic insights into how their growth, reproduction, and health can be understood and manipulated. Finally, they can be a direct source of diverse biochemical products for use in aquaculture, medicine and the food industry.

  19. Role of p53 in Mammary Epithelial Cell Senescence

    DTIC Science & Technology

    2007-05-01

    Epigenetic regulation of cellular memory by the Polycomb and Trithorax group proteins . Annu Rev Genet 2004;38:413–43. 2... memory by the Polycomb and Trithorax group proteins . Annu. Rev. Genet. 38, 413–443. Rosenthal, N. (2005). Youthful prospects for human stem-cell...Javits Convention Center, New York City, NY 11 2007: “ Regulation of cell proliferation and senescence by Polycomb group

  20. The adaptor molecule SAP plays essential roles during invariant NKT cell cytotoxicity and lytic synapse formation.

    PubMed

    Das, Rupali; Bassiri, Hamid; Guan, Peng; Wiener, Susan; Banerjee, Pinaki P; Zhong, Ming-Chao; Veillette, André; Orange, Jordan S; Nichols, Kim E

    2013-04-25

    The adaptor molecule signaling lymphocytic activation molecule-associated protein (SAP) plays critical roles during invariant natural killer T (iNKT) cell ontogeny. As a result, SAP-deficient humans and mice lack iNKT cells. The strict developmental requirement for SAP has made it difficult to discern its possible involvement in mature iNKT cell functions. By using temporal Cre recombinase-mediated gene deletion to ablate SAP expression after completion of iNKT cell development, we demonstrate that SAP is essential for T-cell receptor (TCR)-induced iNKT cell cytotoxicity against T-cell and B-cell leukemia targets in vitro and iNKT-cell-mediated control of T-cell leukemia growth in vivo. These findings are not restricted to the murine system: silencing RNA-mediated suppression of SAP expression in human iNKT cells also significantly impairs TCR-induced cytolysis. Mechanistic studies reveal that iNKT cell killing requires the tyrosine kinase Fyn, a known SAP-binding protein. Furthermore, SAP expression is required within iNKT cells to facilitate their interaction with T-cell targets and induce reorientation of the microtubule-organizing center to the immunologic synapse (IS). Collectively, these studies highlight a novel and essential role for SAP during iNKT cell cytotoxicity and formation of a functional IS.

  1. The role of BLyS/BLyS receptors in anti-chromatin B cell regulation.

    PubMed

    Hondowicz, Brian D; Alexander, Shawn T; Quinn, William J; Pagán, Antonio J; Metzgar, Michele H; Cancro, Michael P; Erikson, Jan

    2007-04-01

    B lymphocyte stimulator (BLyS), also known as B cell-activating factor, is a key positive regulator of B cell homeostasis, and elevated levels of BLyS have been observed in systemic lupus erythematosus (SLE) patients. Given that anti-chromatin auto-antibodies are one of the hallmarks of SLE, we examined the role of BLyS and its receptors in the regulation of anti-chromatin B cells. We demonstrate that exogenous BLyS treatment leads to an increase in B cell numbers, particularly anti-chromatin B cells; yet, their localization in the spleen and auto-antibody production remain unaffected. We also examined transmembrane activator and CAML interactor (TACI), BLyS receptor 3 (BR3) and B cell maturation antigen expression on anti-chromatin B cells before and after receiving T cell help. Interestingly, in the absence of T cell help, TACI expression is greater on immature anti-chromatin B cells compared with immature Tg(-) B cells, whereas BR3 levels are comparable. After receiving T cell help, the anti-chromatin B cells that have differentiated into short-lived plasma cells no longer express BR3 but retain TACI. These data suggest a novel role for TACI in anti-chromatin B cell homeostasis and differentiation.

  2. Mast cells play an important role in chlamydia pneumoniae lung infection by facilitating immune cell recruitment into the airway.

    PubMed

    Chiba, Norika; Shimada, Kenichi; Chen, Shuang; Jones, Heather D; Alsabeh, Randa; Slepenkin, Anatoly V; Peterson, Ellena; Crother, Timothy R; Arditi, Moshe

    2015-04-15

    Mast cells are known as central players in allergy and anaphylaxis, and they play a pivotal role in host defense against certain pathogens. Chlamydia pneumoniae is an important human pathogen, but it is unclear what role mast cells play during C. pneumoniae infection. We infected C57BL/6 (wild-type [WT]) and mast cell-deficient mice (Kit(W-sh/W-sh) [Wsh]) with C. pneumoniae. Wsh mice showed improved survival compared with WT mice, with fewer cells in Wsh bronchoalveolar lavage fluid (BALF), despite similar levels of cytokines and chemokines. We also found a more rapid clearance of bacteria from the lungs of Wsh mice compared with WT mice. Cromolyn, a mast cell stabilizer, reduced BALF cells and bacterial burden similar to the levels seen in Wsh mice; conversely, Compound 48/80, a mast cell degranulator, increased the number of BALF cells and bacterial burden. Histology showed that WT lungs had diffuse inflammation, whereas Wsh mice had patchy accumulations of neutrophils and perivascular accumulations of lymphocytes. Infected Wsh mice had reduced amounts of matrix metalloprotease-9 in BALF and were resistant to epithelial integral membrane protein degradation, suggesting that barrier integrity remains intact in Wsh mice. Mast cell reconstitution in Wsh mice led to enhanced bacterial growth and normal epithelial integral membrane protein degradation, highlighting the specific role of mast cells in this model. These data suggest that mast cells play a detrimental role during C. pneumoniae infection by facilitating immune cell infiltration into the airspace and providing a more favorable replicative environment for C. pneumoniae.

  3. Human CD8+ T Cells in Asthma: Possible Pathways and Roles for NK-Like Subtypes

    PubMed Central

    Lourenço, Olga; Fonseca, Ana Mafalda; Taborda-Barata, Luis

    2016-01-01

    Asthma affects approximately 300 million people worldwide and is the most common chronic lung disease, which usually is associated with bronchial inflammation. Most research has focused upon the role of CD4+ T cells, and relatively few studies have addressed the phenotypic and functional roles of CD8+ T cell types and subtypes. Human NK-like CD8+ T cells may involve cells that have been described as CD8+CD28−, CD8+CD28−CD57+, CD8+CD27−, or CD8+ effector memory (TEM) cells, among other. However, most of the data that are available regarding these various cell types were obtained in murine models did not thoroughly characterize these cells with phenotypically or functionally or did not involve asthma-related settings. Nevertheless, one may conceptualize three principal roles for human NK-like CD8+ T cells in asthma: disease-promoting, regulatory, and/or tissue repair. Although evidence for some of these roles is scarce, it is possible to extrapolate some data from overlapping or related CD8+ T cell phenotypes, with caution. Clearly, further research is warranted, namely in terms of thorough functional and phenotypic characterization of human NK-like CD8+ T cells in human asthma of varying severity. PMID:28066445

  4. For Some Skin Cancers, Targeted Drug Hits the Mark

    Cancer.gov

    Two studies reported June 7, 2012, in NEJM indicate that the drug vismodegib can elicit responses in people with advanced or metastatic basal cell carcinoma and help shrink or prevent tumors in those with basal cell nevus syndrome.

  5. Role of the Retinal Vascular Endothelial Cell in Ocular Disease

    PubMed Central

    Bharadwaj, Arpita S.; Appukuttan, Binoy; Wilmarth, Phillip A.; Pan, Yuzhen; Stempel, Andrew J.; Chipps, Timothy J.; Benedetti, Eric E.; Zamora, David O.; Choi, Dongseok; David, Larry L.; Smith, Justine R.

    2012-01-01

    Retinal endothelial cells line the arborizing microvasculature that supplies and drains the neural retina. The anatomical and physiological characteristics of these endothelial cells are consistent with nutritional requirements and protection of a tissue critical to vision. On the one hand, the endothelium must ensure the supply of oxygen and other nutrients to the metabolically active retina, and allow access to circulating cells that maintain the vasculature or survey the retina for the presence of potential pathogens. On the other hand, the endothelium contributes to the blood-retinal barrier that protects the retina by excluding circulating molecular toxins, microorganisms, and pro-inflammatory leukocytes. Features required to fulfill these functions may also predispose to disease processes, such as retinal vascular leakage and neovascularization, and trafficking of microbes and inflammatory cells. Thus, the retinal endothelial cell is a key participant in retinal ischemic vasculopathies that include diabetic retinopathy and retinopathy of prematurity, and retinal inflammation or infection, as occurs in posterior uveitis. Using gene expression and proteomic profiling, it has been possible to explore the molecular phenotype of the human retinal endothelial cell and contribute to understanding of the pathogenesis of these diseases. In addition to providing support for the involvement of well-characterized endothelial molecules, profiling has the power to identify new players in retinal pathologies. Findings may have implications for the design of new biological therapies. Additional progress in this field is anticipated as other technologies, including epigenetic profiling methods, whole transcriptome shotgun sequencing, and metabolomics, are used to study the human retinal endothelial cell. PMID:22982179

  6. The role of circulating mesenchymal progenitor cells, fibrocytes, in promoting pulmonary fibrosis.

    PubMed

    Strieter, Robert M; Keeley, Ellen C; Burdick, Marie D; Mehrad, Borna

    2009-01-01

    The resident fibroblast has been traditionally viewed as the primary cell involved in promoting pulmonary fibrosis. However, contemporary findings now support the concept of a circulating cell (fibrocyte) that also contributes to pulmonary fibrosis. Fibrocytes are bone marrow-derived mesenchymal progenitor cells that express a variety of cell surface markers related to leukocytes, hematopoietic progenitor cells and fibroblasts. Fibrocytes are unique in that they are capable of differentiating into fibroblasts and myofibroblasts, as well as adipocytes. In this review, we present data supporting the critical role these cells play in the pathogenesis of pulmonary fibrosis.

  7. Treating arthritis by immunomodulation: is there a role for regulatory T cells?

    PubMed Central

    van Wijk, Femke; Roord, Sarah T.; Albani, Salvatore; Prakken, Berent J.

    2010-01-01

    The discovery of regulatory T cells almost 15 years ago initiated a new and exciting research area. The growing evidence for a critical role of these cells in controlling autoimmune responses has raised expectations for therapeutic application of regulatory T cells in patients with autoimmune arthritis. Here, we review recent studies investigating the presence, phenotype and function of these cells in patients with RA and juvenile idiopathic arthritis (JIA) and consider their therapeutic potential. Both direct and indirect methods to target these cells will be discussed. Arguably, a therapeutic approach that combines multiple regulatory T-cell-enhancing strategies could be most successful for clinical application. PMID:20463189

  8. Cell life and death in the anterior pituitary gland: role of oestrogens.

    PubMed

    Seilicovich, A

    2010-07-01

    Apoptotic processes play an important role in the maintenance of cell numbers in the anterior pituitary gland during physiological endocrine events. In this review, we summarise the regulation of apoptosis of anterior pituitary cells, particularly lactotrophs, somatotrophs and gonadotrophs, and analyse the possible mechanisms involved in oestrogen-induced apoptosis in anterior pituitary cells. Oestrogens exert apoptotic actions in several cell types and act as modulators of pituitary cell renewal, sensitising cells to both mitogenic and apoptotic signals. Local synthesis of growth factors and cytokines induced by oestradiol as well as changes in phenotypic features that enhance the responsiveness of anterior pituitary cells to pro-apoptotic factors may account for cyclical apoptotic activity in anterior pituitary cells during the oestrous cycle. Considering that tissue homeostasis results from a balance between cell proliferation and death and that mechanisms involved in apoptosis are tightly regulated, defects in cell death processes could have a considerable physiopathological impact.

  9. Role of Dendritic Cells in the Pathogenesis of Whipple's Disease

    PubMed Central

    Schinnerling, Katina; Geelhaar-Karsch, Anika; Allers, Kristina; Friebel, Julian; Conrad, Kristina; Loddenkemper, Christoph; Kühl, Anja A.; Erben, Ulrike; Ignatius, Ralf; Schneider, Thomas

    2014-01-01

    Accumulation of Tropheryma whipplei-stuffed macrophages in the duodenum, impaired T. whipplei-specific Th1 responses, and weak secretion of interleukin-12 (IL-12) are hallmarks of classical Whipple's disease (CWD). This study addresses dendritic cell (DC) functionality during CWD. We documented composition, distribution, and functionality of DC ex vivo or after in vitro maturation by fluorescence-activated cell sorting (FACS) and by immunohistochemistry in situ. A decrease in peripheral DC of untreated CWD patients compared to healthy donors was due to reduced CD11chigh myeloid DC (M-DC). Decreased maturation markers CD83, CD86, and CCR7, as well as low IL-12 production in response to stimulation, disclosed an immature M-DC phenotype. In vitro-generated monocyte-derived DC from CWD patients showed normal maturation and T cell-stimulatory capacity under proinflammatory conditions but produced less IL-12 and failed to activate T. whipplei-specific Th1 cells. In duodenal and lymphoid tissues, T. whipplei was found within immature DC-SIGN+ DC. DC and proliferating lymphocytes were reduced in lymph nodes of CWD patients compared to levels in controls. Our results indicate that dysfunctional IL-12 production by DC provides suboptimal conditions for priming of T. whipplei-specific T cells during CWD and that immature DC carrying T. whipplei contribute to the dissemination of the bacterium. PMID:25385798

  10. The regulatory role of invariant NKT cells in tumor immunity

    PubMed Central

    McEwen-Smith, Rosanna M; Salio, Mariolina; Cerundolo, Vincenzo

    2015-01-01

    Invariant natural killer T (iNKT) cells are a unique population of T lymphocytes, which lie at the interface between the innate and adaptive immune systems, and are important mediators of immune responses and tumor-surveillance. iNKT cells recognize lipid antigens in a CD1d-dependent manner; their subsequent activation results in a rapid and specific downstream response, which enhances both innate and adaptive immunity. The capacity of iNKT cells to modify the immune-microenvironment influences the ability of the host to control tumor growth, making them an important population to be harnessed in the clinic for the development of anti-cancer therapeutics. Indeed, the identification of strong iNKT cell agonists, such as α-galactosylceramide (α-GalCer) and its analogues, has led to the development of synthetic lipids which have shown potential in vaccination and treatment against cancers. In this Masters of Immunology article we discuss these latest findings, and summarise the major discoveries in iNKT cell biology, which have enabled the design of potent strategies for immune-mediated tumor destruction. PMID:25941354

  11. The role of colloidal plasmonic nanostructures in organic solar cells.

    PubMed

    Singh, C R; Honold, T; Gujar, T P; Retsch, M; Fery, A; Karg, M; Thelakkat, M

    2016-08-17

    Plasmonic particles can contribute via multiple processes to the light absorption process in solar cells. These particles are commonly introduced into organic solar cells via deposition techniques such as spin-coating or dip-coating. However, such techniques are inherently challenging to achieve homogenous surface coatings as they lack control of inter-particle spacing and particle density on larger areas. Here we introduce interface assisted colloidal self-assembly as a concept for the fabrication of well-defined macroscopic 2-dimensional monolayers of hydrogel encapsulated plasmonic gold nanoparticles. The monolayers showed a pronounced extinction in the visible wavelength range due to localized surface plasmon resonance with excellent optical homogeneity. Moreover this strategy allowed for the investigation of the potential of plasmonic monolayers at different interfaces of P3HT:PCBM based inverted organic solar cells. In general, for monolayers located anywhere underneath the active layer, the solar cell performance decreased due to parasitic absorption. However with thick active layers, where low hole mobility limited the charge transport to the top electrode, the plasmonic monolayer near that electrode spatially redistributed the light and charge generation close to the electrode led to an improved performance. This work systematically highlights the trade-offs that need to be critically considered for designing an efficient plasmonically enhanced organic solar cell.

  12. The role of vacuole in plant cell death.

    PubMed

    Hara-Nishimura, I; Hatsugai, N

    2011-08-01

    Almost all plant cells have large vacuoles that contain both hydrolytic enzymes and a variety of defense proteins. Plants use vacuoles and vacuolar contents for programmed cell death (PCD) in two different ways: for a destructive way and for a non-destructive way. Destruction is caused by vacuolar membrane collapse, followed by the release of vacuolar hydrolytic enzymes into the cytosol, resulting in rapid and direct cell death. The destructive way is effective in the digestion of viruses proliferating in the cytosol, in susceptible cell death induced by fungal toxins, and in developmental cell death to generate integuments (seed coats) and tracheary elements. On the other hand, the non-destructive way involves fusion of the vacuolar and the plasma membrane, which allows vacuolar defense proteins to be discharged into the extracellular space where the bacteria proliferate. Membrane fusion, which is normally suppressed, was triggered in a proteasome-dependent manner. Intriguingly, both ways use enzymes with caspase-like activity; the membrane-fusion system uses proteasome subunit PBA1 with caspase-3-like activity, and the vacuolar-collapse system uses vacuolar processing enzyme (VPE) with caspase-1-like activity. This review summarizes two different ways of vacuole-mediated PCD and discusses how plants use them to attack pathogens that invade unexpectedly.

  13. Licensed and Unlicensed NK Cells: Differential Roles in Cancer and Viral Control.

    PubMed

    Tu, Megan M; Mahmoud, Ahmad Bakur; Makrigiannis, Andrew P

    2016-01-01

    Natural killer (NK) cells are known for their well characterized ability to control viral infections and eliminate tumor cells. Through their repertoire of activating and inhibitory receptors, NK cells are able to survey different potential target cells for various surface markers, such as MHC-I - which signals to the NK cell that the target is healthy - as well as stress ligands or viral proteins, which alert the NK cell to the aberrant state of the target and initiate a response. According to the "licensing" hypothesis, interactions between self-specific MHC-I receptors - Ly49 in mice and KIR in humans - and self-MHC-I molecules during NK cell development is crucial for NK cell functionality. However, there also exists a large proportion of NK cells in mice and humans, which lack self-specific MHC-I receptors and are consequentially "unlicensed." While the licensed NK cell subset plays a major role in the control of MHC-I-deficient tumors, this review will go on to highlight the important role of the unlicensed NK cell subset in the control of MHC-I-expressing tumors, as well as in viral control. Unlike the licensed NK cells, unlicensed NK cells seem to benefit from the lack of self-specific inhibitory receptors, which could otherwise be exploited by some aberrant cells for immunoevasion by upregulating the expression of ligands or mimic ligands for these receptors.

  14. Role of plasmacytoid dendritic cells in lung-associated inflammation.

    PubMed

    Sorrentino, Rosalinda; Morello, Silvana; Pinto, Aldo

    2010-06-01

    Plasmacytoid Dendritic Cells (pDCs) are important immune orchestrators. One of the most important features of pDCs is the high production of IFN type I that can promote the polarization of T cells towards a Th1 phenotype. Recent evidence has highlighted the relevance of pDCs in therapy for asthma, lung infections and cancer. However, it is to note that pDCs can also participate in suppressive networks via the recruitment of T regulatory cells. Further studies are needed to understand pDCs activity in the lung, not only to elucidate pathological mechanisms, but also to lead towards new therapeutic approaches for lung inflammatory-based diseases. The article also outlines recent patents on plasmacytoid DCs.

  15. The Role of Everolimus in Renal Cell Carcinoma

    PubMed Central

    Valdivieso, Roger; Dell’Oglio, Paolo; Trudeau, Vincent; Larcher, Alessandro; Karakiewicz, Pierre I.

    2015-01-01

    Everolimus (RAD001) is an orally administered agent that inhibits the mammalian target of rapamycin serine-threonine kinase. A phase III pivotal trial on everolimus, published in 2008, provided the first evidence for the efficacy of sequential therapy for patients with metastatic clear cell renal cell carcinoma (RCC). In this study, everolimus was used after failure of one or several previous lines of therapy, and it demonstrated a 3-month survival benefit relative to placebo. Currently, based on the level 1 evidence, everolimus represents the molecule of choice for third-line therapy after failure of previous two tyrosine kinase inhibitors (TKIs). However, second-line use after failure of one TKI is challenged by two new molecules (nivolumab and cabozantinib), which proved to have better efficacy with similar toxicity profile. In non-clear cell metastatic RCC, the current evidence recommends everolimus as a second-line therapy after failure of previous first-line sunitinib.

  16. Potential role of stem cells in management of COPD.

    PubMed

    Hackett, Tillie L; Knight, Darryl A; Sin, Don D

    2010-04-07

    Chronic obstructive pulmonary disease (COPD) is a worldwide epidemic affecting over 200 million people and accounting for more than three million deaths annually. The disease is characterized by chronic inflammation of the airways and progressive destruction of lung parenchyma, a process that in most cases is initiated by cigarette smoking. Unfortunately, there are no interventions that have been unequivocally shown to prolong survival in patients with COPD. Regeneration of lung tissue by stem cells from endogenous and exogenous sources is a promising therapeutic strategy. Herein we review the current literature on the characterization of resident stem and progenitor cell niches within the lung, the contribution of mesenchymal stem cells to lung regeneration, and advances in bioengineering of lung tissue.

  17. Proinflammatory and Immunoregulatory Roles of Eicosanoids in T Cells

    PubMed Central

    Lone, Anna Mari; Taskén, Kjetil

    2013-01-01

    Eicosanoids are inflammatory mediators primarily generated by hydrolysis of membrane phospholipids by phospholipase A2 to ω-3 and ω-6 C20 fatty acids that next are converted to leukotrienes (LTs), prostaglandins (PGs), prostacyclins (PCs), and thromboxanes (TXAs). The rate-limiting and tightly regulated lipoxygenases control synthesis of LTs while the equally well-controlled cyclooxygenases 1 and 2 generate prostanoids, including PGs, PCs, and TXAs. While many of the classical signs of inflammation such as redness, swelling, pain, and heat are caused by eicosanoid species with vasoactive, pyretic, and pain-inducing effects locally, some eicosanoids also regulate T cell functions. Here, we will review eicosanoid production in T cell subsets and the inflammatory and immunoregulatory functions of LTs, PGs, PCs, and TXAs in T cells. PMID:23760108

  18. The Bcl-2 family: roles in cell survival and oncogenesis.

    PubMed

    Cory, Suzanne; Huang, David C S; Adams, Jerry M

    2003-11-24

    Apoptosis, the cell-suicide programme executed by caspases, is critical for maintaining tissue homeostasis, and impaired apoptosis is now recognized to be a key step in tumorigenesis. Whether a cell should live or die is largely determined by the Bcl-2 family of anti- and proapoptotic regulators. These proteins respond to cues from various forms of intracellular stress, such as DNA damage or cytokine deprivation, and interact with opposing family members to determine whether or not the caspase proteolytic cascade should be unleashed. This review summarizes current views of how these proteins sense stress, interact with their relatives, perturb organelles such as the mitochondrion and endoplasmic reticulum and govern pathways to caspase activation. It briefly explores how family members influence cell-cycle entry and outlines the evidence for their involvement in tumour development, both as oncoproteins and tumour suppressors. Finally, it discusses the promise of novel anticancer therapeutics that target these vital regulators.

  19. Role of Actin Polymerization in Cell Locomotion: Molecules and Models

    PubMed Central

    Bearer, E. L.

    2015-01-01

    Actin filaments forming at the anterior margin of a migrating cell are essential for the formation of filopodia, lamellipodia, and pseudopodia, the “feet” that the cell extends before it. These structures in turn are required for cell locomotion. Yet the molecular nature of the “nucleator” that seeds the polymerization of actin at the leading edge is unknown. Recent advances, including video microscopy of actin dynamics, discovery of proteins unique to the leading edge such as ponticulin, the Mab 2E4 antigen, and ABP 120, and novel experimental models of actin polymerization such as the actin-based movements of intracellular parasites, promise to shed light on this problem in the near future. PMID:8323743

  20. Potential role of stem cells in management of COPD

    PubMed Central

    Hackett, Tillie L; Knight, Darryl A; Sin, Don D

    2010-01-01

    Chronic obstructive pulmonary disease (COPD) is a worldwide epidemic affecting over 200 million people and accounting for more than three million deaths annually. The disease is characterized by chronic inflammation of the airways and progressive destruction of lung parenchyma, a process that in most cases is initiated by cigarette smoking. Unfortunately, there are no interventions that have been unequivocally shown to prolong survival in patients with COPD. Regeneration of lung tissue by stem cells from endogenous and exogenous sources is a promising therapeutic strategy. Herein we review the current literature on the characterization of resident stem and progenitor cell niches within the lung, the contribution of mesenchymal stem cells to lung regeneration, and advances in bioengineering of lung tissue. PMID:20463889

  1. 75 FR 33811 - Office of the National Coordinator for Health Information Technology; HIT Policy Committee's...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-06-15

    ... HUMAN SERVICES Office of the National Coordinator for Health Information Technology; HIT Policy Committee's Privacy & Security Tiger Team Meeting; Notice of Meeting AGENCY: Office of the National Coordinator for Health Information Technology, HHS. ACTION: Notice of meeting. This notice announces...

  2. 75 FR 21629 - HIT Standards Committee's Workgroup Meetings; Notice of Meetings

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-04-26

    ... HUMAN SERVICES Office of the National Coordinator for Health Information Technology; HIT Standards... Information Technology, HHS. ACTION: Notice of meetings. This notice announces forthcoming subcommittee... National Coordinator for Health Information Technology. BILLING CODE 4150-45-P...

  3. 75 FR 3905 - Office of the National Coordinator for Health Information Technology; HIT Standards Committee's...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-01-25

    ... HUMAN SERVICES Office of the National Coordinator for Health Information Technology; HIT Standards... Information Technology, HHS. ACTION: Notice of meetings. This notice announces forthcoming subcommittee... Information Technology. BILLING CODE 4150-45-P...

  4. 75 FR 65486 - Office of the National Coordinator for Health Information Technology; HIT Standards Committee's...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-10-25

    ... HUMAN SERVICES Office of the National Coordinator for Health Information Technology; HIT Standards... Information Technology, HHS. ACTION: Notice of meetings. This notice announces forthcoming subcommittee... National Coordinator for Health Information Technology. BILLING CODE 4150-45-P...

  5. 75 FR 57025 - Office of the National Coordinator for Health Information Technology; HIT Standards Committee's...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-09-17

    ... HUMAN SERVICES Office of the National Coordinator for Health Information Technology; HIT Standards... Information Technology, HHS. ACTION: Notice of meetings. This notice announces forthcoming subcommittee... National Coordinator for Health Information Technology. BILLING CODE 4150-45-P...

  6. 75 FR 29762 - HIT Policy Committee's Workgroup Meetings; Notice of Meetings

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-05-27

    ... HUMAN SERVICES Office of the National Coordinator for Health Information Technology HIT Policy Committee... Information Technology, HHS. ACTION: Notice of meetings. This notice announces forthcoming subcommittee... health information technology infrastructure that permits the electronic exchange and use of...

  7. 75 FR 3906 - Office of the National Coordinator for Health Information Technology; HIT Policy Committee's...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-01-25

    ... HUMAN SERVICES Office of the National Coordinator for Health Information Technology; HIT Policy... Information Technology, HHS. ACTION: Notice of meetings. This notice announces forthcoming subcommittee... and adoption of a nationwide health information technology infrastructure that permits the...

  8. 76 FR 9782 - Office of the National Coordinator for Health Information Technology; HIT Standards Committee's...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-02-22

    ... HUMAN SERVICES Office of the National Coordinator for Health Information Technology; HIT Standards... Information Technology, HHS ] ACTION: Notice of meetings. This notice announces forthcoming subcommittee... and Coordination, Office of the National Coordinator for Health Information Technology. BILLING...

  9. Indoor Tanning: a Big Financial Hit to U.S. Health Care

    MedlinePlus

    ... Indoor Tanning: A Big Financial Hit to U.S. Health Care Skin cancers from UV light in devices totalled $ ... tanning are estimated to have cost the U.S. health care system hundreds of millions of dollars in 2015, ...

  10. 7 in 10 U.S. Workplaces Hit by Opioid Abuse: Survey

    MedlinePlus

    ... medlineplus.gov/news/fullstory_164032.html 7 in 10 U.S. Workplaces Hit by Opioid Abuse: Survey Poll ... 06/08/2017) By Robert Preidt Friday, March 10, 2017 FRIDAY, March 10, 2017 (HealthDay News) -- Prescription ...

  11. 76 FR 28784 - HIT Standards Committee's Workgroup Meetings; Notice of Meetings

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-05-18

    ... access only. Name of Committees: HIT Standards Committee's Workgroups: Clinical Operations, Vocabulary... Standards Committee Workgroups will hold the following public meetings during June 2011: June 1st Vocabulary... specific subject matter, e.g., clinical operations vocabulary standards, clinical quality,...

  12. 76 FR 39107 - HIT Standards Committee's Workgroup Meetings; Notice of Meetings

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-07-05

    ... access only. Name of Committees: HIT Standards Committee's Workgroups: Clinical Operations, Vocabulary... Standards Committee Workgroups will hold the following public meetings during July 2011: July 8th Vocabulary... specific subject matter, e.g., clinical operations vocabulary standards, clinical quality,...

  13. 76 FR 22398 - HIT Standards Committee's Workgroup Meetings; Notice of Meetings

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-04-21

    ... access only. Name of Committees: HIT Standards Committee's Workgroups: Clinical Operations, Vocabulary... Standards Committee Workgroups will hold the following public meetings during May 2011: May 5th Vocabulary... specific subject matter, e.g., clinical operations vocabulary standards, clinical quality,...

  14. Caerulomycin A inhibits Th2 cell activity: a possible role in the management of asthma

    PubMed Central

    Kujur, Weshely; Gurram, Rama Krishna; Haleem, Nazia; Maurya, Sudeep K.; Agrewala, Javed N.

    2015-01-01

    We have recently demonstrated that Caerulomycin A induces regulatory T cells differentiation by suppressing Th1 cells activity. The role of regulatory T cells is well established in suppressing the function of Th2 cells. Th2 cells are known to inflict the induction of the activation of asthma. Consequently, in the present study, we monitored the influence of Caerulomycin A in inhibiting the activity of Th2 cells and its impact in recuperating asthma symptoms. Interestingly, we observed that Caerulomycin A significantly suppressed the differentiation of Th2 cells, as evidenced by downregulation in the GATA-3 expression. Further, decline in the levels of IL-4, IL-5 and IL-13 cytokines and IgE was noted in the animals suffering from asthma. Furthermore, we noticed substantial suppression in the inflammatory response and number of eosinophils in the lungs. In essence, this study signifies an important therapeutic role of Caerulomycin A in asthma. PMID:26481184

  15. [Role of glyoxalases and methylglyoxal in cell proliferation and differentiation].

    PubMed

    Piskorska, D; Grabowska-Bochenek, R

    1995-01-01

    The glyoxalase system catalyses the conversion of methylglyoxal (and other 2-ketoaldehydes) to D-lactic acid via the intermediate S-D-lactoylglutathione. It comprises two enzymes, glyoxalases I and glyoxalases II, and catalytic amount to reduced glutathione. Methylglyoxal inhibits cell growth, while the glyoxalase system by breaking down methylglyoxal may act as a promoter of cell growth. Inhibitors of glyoxalases may serve as possible therapeutic agents against cancer by virtue of their ability to elevate the level of methylglyoxal in the body.

  16. Treatment of systemic sclerosis: potential role for stem cell transplantation

    PubMed Central

    Xiong, Wen; Derk, Chris T

    2009-01-01

    Hematopoietic stem cell transplantation may “reset” the immune reconstitution and induce self tolerance of autoreactive lymphocytes, and has been explored in the treatments for systemic sclerosis. Phase I/II trials have shown a satisfactory risk benefit ratio. The true benefit will be identified by two ongoing prospective, randomized phase III trials. Multipotent mesenchymal stromal cells (MSCs) possess antiproliferative, anti-inflammatory, and immunosuppressive properties. The use of MSCs has showed successful responses in patients with severe steroid-resistant acute graft versus host disease in phase II trials, and may be a potentially promising option for patients with systemic sclerosis. PMID:24198505

  17. The effects of characteristics of substituents on toxicity of the nitroaromatics: HiT QSAR study

    NASA Astrophysics Data System (ADS)

    Kuz'min, Victor E.; Muratov, Eugene N.; Artemenko, Anatoly G.; Gorb, Leonid; Qasim, Mohammad; Leszczynski, Jerzy

    2008-10-01

    The present study applies the Hierarchical Technology for Quantitative Structure-Activity Relationships (HiT QSAR) for (i) evaluation of the influence of the characteristics of 28 nitroaromatic compounds (some of which belong to a widely known class of explosives) as to their toxicity; (ii) prediction of toxicity for new nitroaromatic derivatives; (iii) analysis of the effects of substituents in nitroaromatic compounds on their toxicity in vivo. The 50% lethal dose concentration for rats (LD50) was used to develop the QSAR models based on simplex representation of molecular structure. The preliminary 1D QSAR results show that even the information on the composition of molecules reveals the main tendencies of changes in toxicity. The statistic characteristics for partial least squares 2D QSAR models are quite satisfactory ( R 2 = 0.96-0.98; Q 2 = 0.91-0.93; R 2 test = 0.89-0.92), which allows us to carry out the prediction of activity for 41 novel compounds designed by the application of new combinations of substituents represented in the training set. The comprehensive analysis of toxicity changes as a function of substituent position and nature was carried out. Molecular fragments that promote and interfere with toxicity were defined on the basis of the obtained models. It was shown that the mutual influence of substituents in the benzene ring plays a crucial role regarding toxicity. The influence of different substituents on toxicity can be mediated via different C-H fragments of the aromatic ring.

  18. Role of Progesterone Receptor Isoforms in Regulation of Cell Adhesion and Apoptosis

    DTIC Science & Technology

    2002-06-01

    AD Award Number: DAMD17-01-1-0507 TITLE: Role of Progesterone Receptor Isoforms in Regulation of Cell Adhesion and Apoptosis PRINCIPAL...1 Jun 01 - 31 May 02) 4. TITLE AND SUBTITLE Role of Progesterone Receptor Isoforms in Regulation of Cell Adhesion and Apoptosis 6. AUTHOR(S...information) Progesterone receptors (PR) and estrogen receptors (ER) are important prognostic indicators in breast cancer. We believe that PR, in addition to

  19. Biophysics Representation of the Two-Hit Model of Alzheimer's Disease for the Exploration of Late CNS Risks from Space Radiation

    NASA Technical Reports Server (NTRS)

    Cucinotta, Francis A.; Ponomarev, Artem

    2009-01-01

    A concern for long-term space travel outside the Earth s magnetic field is the late effects to the central nervous system (CNS) from galactic cosmic ray (GCR) or solar particle events (SPE). Human epidemiology data is severely limited for making CNS risk estimates and it is not clear such effects occur following low LET exposures. We are developing systems biology models based on biological information on specific diseases, and experimental data for proton and heavy ion radiation. A two-hit model of Alzheimer s disease (AD) has been proposed by Zhu et al.(1), which is the framework of our model. Of importance is that over 50% of the US population over the age of 75-y have mild to severe forms of AD. Therefore we recommend that risk assessment for a potential AD risk from space radiation should focus on the projection of an earlier age of onset of AD and the prevention of this possible acceleration through countermeasures. In the two-hit model, oxidative stress and aberrant cell cycle-related abnormalities leading to amyloid-beta plaques and neurofibrillary tangles are necessary and invariant steps in AD. We have formulated a stochastic cell kinetics model of the two-hit AD model. In our model a population of neuronal cells is allowed to undergo renewal through neurogenesis and is susceptible to oxidative stress or cell cycle abnormalities with age-specific accumulation of damage. Baseline rates are fitted to AD population data for specific ages, gender, and for persons with an apolipoprotein 4 allele. We then explore how low LET or heavy ions may increase either of the two-hits or neurogenesis either through persistent oxidative stress, direct mutation, or through changes to the micro-environment, and suggest possible ways to develop accurate quantitative estimates of these processes for predicting AD risks following long-term space travel.

  20. The Role of γδ T Cells in Fibrotic Diseases

    PubMed Central

    Bank, Ilan

    2016-01-01

    Inflammation induced by toxins, micro-organisms, or autoimmunity may result in pathogenic fibrosis, leading to long-term tissue dysfunction, morbidity, and mortality. Immune cells play a role in both induction and resolution of fibrosis. γδ T cells are an important group of unconventional T cells characterized by their expression of non-major histocompatibility complex restricted clonotypic T cell receptors for non-peptide antigens. Accumulating evidence suggests that subsets of γδ T cells in experimentally induced fibrosis following bleomycin treatment, or infection with Bacillus subtilis, play pro-inflammatory roles that instigate fibrosis, whereas the same cells may also play a role in resolving fibrosis. These processes appear to be linked at least in part to the cytokines produced by the cells at various stages, with interleukin (IL)-17 playing a central role in the inflammatory phase driving fibrosis, but later secretion of IL-22, interferon γ, and CXCL10 preventing pathologic fibrosis. Moreover, γδ T cells appear to be involved, in an antigen-driven manner, in the prototypic human fibrotic disease, systemic sclerosis (SSc). In this paper we review in brief the scientific publications that have implicated γδ T cells in fibrotic diseases and their pro- and anti-fibrotic effects. PMID:27824548