Science.gov

Sample records for hitac burners final

  1. Bale Burner. Final report

    SciTech Connect

    Sloan, R.T.

    1981-01-01

    Osage Plains, Inc. has manufactured and tested prototypes of a Biomass Burner specifically designed to burn large round bales of straw or stover. Osage Plains, Inc. has constructed a scaled down prototype to explore the expanded and more efficient use of the Bale Burner using thermal oils as the heat transfer medium. The main aim was to ascertain the possibility of reaching temperatures above double the boiling point of water while maintaining the safety of operation at atmospheric pressure. Mobil Therm and other proprietary heat transfer oils can be used successfully as heat sinks in the Bale Burner system to transfer temperatures well in excess of 500 degrees farenheit at atmospheric pressure. It was discovered, however, that filtered (used) crankcase oils could be used for the same practical function at much lower cost. The operation of the Bale Burner using Thermal Oils to replace water is practical. However, specific attention must be paid to bearings, seals and pumps included in the plumbing system. All joints must be shielded to prevent operator injury in the event of a leak under pressure and all pipework must be insulated with a non-combustible insulation. This last point is vital because many insulating materials break down or combust at temperatures lower than those at which the heating medium would be transported. Thermal Oils, while very practical, are very expensive costing currently more than two dollars per gallon. A single charge in the full scale Bale Burner would cost in excess of ten thousand dollars. Plumbing for high temperatures is also astronomical, costing more than five times the price of plumbing the same unit for water. One must therefore conclude that, except under very special circumstances, economy dictates that the Bale Burner be operated with water as the Heat Transfer Medium.

  2. Alzeta porous radiant burner. CRADA final report

    SciTech Connect

    1995-12-01

    An Alzeta Pyrocore porous radiant burner was tested for the first time at elevated pressures and mass flows. Mapping of the burner`s stability limits (flashback, blowoff, and lean extinction limits) in an outward fired configuration and hot wall environment was carried out at pressures up to 18 atm, firing rates up to 180 kW, and excess air rates up to 100%. A central composite experimental design for parametric testing within the stability limits produced statistically sound correlations of dimensionless burner temperature and NO{sub x} emissions as functions of equivalence ratio, dimensionless firing rate, and reciprocal Reynolds number. The NO{sub x} emissions were below 4 ppmvd at 15% O{sub 2} for all conditions tested, and the CO and unburned hydrocarbon levels were simultaneously low. As a direct result of this cooperative research effort between METC and Alzeta, Solar Turbines has already expressed a strong interest in this novel technology.

  3. Improved radiant burner material. Final report

    SciTech Connect

    Milewski, J.V.; Shoultz, R.A.; Bourque, M.M.; Milewski, E.B.

    1998-01-01

    Under DOE/ERIP funds were made available to Superkinetic, Inc. for the development of an improved radiant burner material. Three single crystal ceramic fibers were produced and two fiber materials were made into felt for testing as radiant burner screens. The materials were alpha alumina and alpha silicon nitride. These fibers were bonded with a high temperature ceramic and made into a structurally sound trusswork like screen composed of million psi fiber members. These screens were about 5% solid for 95 porosity as needed to permit the flow of combustable natural gas and air mixture. Combustion test proved that they performed very satisfactory and better than the current state of art screen and showed no visable degrade after testing. It is recommended that more time and money be put into expanding this technology and test these new materials for their maximum temperature and durability for production applications that require better burner material.

  4. Demonstration test of burner liner strain measuring system. Final Report

    SciTech Connect

    Stetson, K.A.

    1984-06-01

    A demonstration test was conducted for two systems of static strain measurement that had been shown to have potential for application jet engine combustors. A modified JT12D combustor was operated in a jet burner test stand while subjected simultaneously to both systems of instrumentation, i.e., Kanthal A-1 wire strain gages and laser speckle photography. A section of the burner was removed for installation and calibration of the wire gages, and welded back into the burner. The burner test rig was modified to provide a viewing port for the laser speckle photography such that the instrumented section could be observed during operation. Six out of ten wire gages survived testing and showed excellent repeatability. The extensive precalibration procedures were shown to be effective in compensating for the large apparent strains associated with these gages. Although all portions of the speckle photography system operated satisfactorily, a problem was encountered in the form of optical inhomogeneities in the hot, high-pressure gas flowing by the combustor case which generate large and random apparent strain distributions.

  5. CFCC radiant burner assessment. Final report, April 1, 1992--July 31, 1994

    SciTech Connect

    Schweizer, S.; Sullivan, J.

    1994-11-01

    The objective of this work was to identify methods of improving the performance of gas-fired radiant burners through the use of Continuous Fiber Ceramic Composites (CFCCs). Methods have been identified to improve the price and performance characteristics of the porous surface burner. Results are described.

  6. Development of the Radiation Stabilized Distributed Flux Burner - Phase III Final Report

    SciTech Connect

    J. D. Sullivan; A. Webb

    1999-12-01

    The development and demonstration of the Radiation Stabilized Burner (RSB) was completed as a project funded by the US Department of Energy Office of Industrial Technologies. The technical goals of the project were to demonstrate burner performance that would meet or exceed emissions targets of 9 ppm NOx, 50 ppm CO, and 9 ppm unburned hydrocarbons (UHC), with all values being corrected to 3 percent stack oxygen, and incorporate the burner design into a new industrial boiler configuration that would achieve ultra-low emissions while maintaining or improving thermal efficiency, operating costs, and maintenance costs relative to current generation 30 ppm low NOx burner installations. Both the ultra-low NOx RSB and the RSB boiler-burner package are now commercially available.

  7. Burner (Stinger)

    MedlinePlus

    ... and check your reflexes and the range of motion in your arm. Your doctor will probably order ... recurring burners neck pain or decreased range of motion in the neck symptoms in both arms weakness ...

  8. Development of an advanced high efficiency coal combustor for boiler retrofit. Task 1, Cold flow burner development: Final report

    SciTech Connect

    LaFlesh, R.C.; Rini, M.J.; McGowan, J.G.

    1989-10-01

    The overall objective of this program is to develop a high efficiency advanced coal combustor (HEACC) for coal-based fuels capable of being retrofitted to industrial boilers originally designed for firing natural gas, distillate, and/or residual oil. The HEACC system is to be capable of firing microfine coal water fuel (MCWF), MCWF with alkali sorbent (for SO{sub 2} reduction), and dry microfine coal. Design priorities for the system are that it be simple to operate and will offer significant reductions in NO{sub x}, SO{sub x}, and particulate emissions as compared with current coal fired combustor technology. The specific objective of this report is to document the work carried out under Task 1.0 of this contract, ``Cold Flow Burner Development``. As are detailed in the report, key elements of this work included primary air swirler development, burner register geometry design, cold flow burner model testing, and development of burner scale up criteria.

  9. Full-scale demonstration of low-NO{sub x} cell{trademark} burner retrofit. Final report

    SciTech Connect

    Eckhart, C.F.; Kitto, J.B.; Kleisley, R.J.

    1994-07-01

    The objective of the Low-NO{sub x} Cell{trademark}Burner (LNCB{trademark}) demonstration is to evaluate the applicability of this technology for reducing NO{sub x} emissions in full-scale, cell burner-equipped boilers. More precisely, the program objectives are to: (1) Achieve at least a 50% reduction in NO{sub x} emissions. (2) Reduce NO{sub x} with no degradation to boiler performance or life of the unit. (3) Demonstrate a technically and economically feasible retrofit technology. Cell burner equipped boilers comprise 13% of the Pre-New Source Performance Standards (NSPS) coal-fired generating capacity. This relates to 34 operating units generating 23,639 MWe, 29 of which are opposed wall fired with two rows of two-nozzle cell burners on each wall. The host site was one of these 29. Dayton Power & Light offered use of J.M. Stuart Station`s Unit No. 4 as the host site. It was equipped with 24, two-nozzle cell burners arranged in an opposed wall configuration. To reduce NO{sub x} emissions, the LNCB{trademark} has been designed to delay the mixing of the fuel and combustion air. The delayed mixing, or staged combustion, reduces the high temperatures normally generated in the flame of a standard cell burner. A key design criterion for the burner was accomplishing delayed fuel-air mixing with no pressure part modifications to facilitate a {open_quotes}plug-in{close_quotes} design. The plug-in design reduces material costs and outage time required to complete the retrofit, compared to installing conventional, internally staged low-NO{sub x} burners.

  10. Basic research and field experiment of the enhanced infra-red burner. Final report, November 1, 1988-November 31, 1993

    SciTech Connect

    Lu, D.W.; Singh, S.; Wray, D.; Collier, D.; Roberts, J.

    1994-01-16

    An enhanced infra-red natural gas combustion technique has been developed in both the laboratory study and in the field testing. Firing rates as high as 142 KBtu/hr/sq ft were tested with a radiant efficiency better than 45%. At the normal firing rate of 120 KBtu/hr/sq ft, radiant fluxes on the order of 60 KBtu/hr sq ft were obtained. In addition, the major emission pollutants, NOx is below 20 ppm. A desired turndown rate of 2.5:1 has been achieved. The performance of the surface combustion inside the porous ceramic has been modeled. The numerical code has been used in the burner optimization design. In the field evaluation, the component durability, emissions and fuel savings, along with the productivity rate and product quality improvements have been evaluated. Even though a number of technical difficulties were encountered, the new gas fired radiant burner shows great potential for a variety of infra-red heating applications.

  11. High-temperature burner-duct-recuperator (HTBDR) design modification study: Final report, September 1986-May 1987

    SciTech Connect

    Not Available

    1988-04-01

    This is a reproduction of a letter report for the design modifications study of a high-temperature burner-duct-recuperator (HTBDR) tested in the Cameron Iron Works, Houston, Texas. The prototype HTBDR was field tested at Cameron, but it was eventually shut down due to the failure of some structural components; not the ceramic heat exchanger tubes. No change was recommended to the original core of the system, i.e., the cruciform (internal fin) silicon carbide tubes. However, the air plenums were changed to a clam-shell configuration that provides higher-pressure sealed manifolds. The various seals between the refractory manifold sections, as well as between the tubes and tube sheets, consist of ceramic fiber sleeves and ropes. The HTBDR was developed by Garret AiResearch under funding from the US Department of Energy, Office of Industrial Programs under Cooperative Agreement No. FC07-81ID12170.

  12. Advanced heat-pipe heat exchanger and microprocessor-based modulating burner controls development. Final report, January 1985-December 1987

    SciTech Connect

    Lowenstein, A.; Cohen, B.; Feldman, S.; Marsala, J.; Spatz, M.

    1988-02-01

    The work presented in the report includes: (1) the development of a heat-pipe condensing heat exchanger; (2) the development of a nominal 100,000-Btu/hr modulating air/gas valve; (3) the experimental performance studies of water/copper thermosyphons; (4) the field operation of a six-zone warm-air heating system; (5) the adaptation of a conventional venturi-type burner to modulation; and (6) the results of a one-day workshop for manufacturers of HVAC equipment on heat-pipe heat exchangers. Several of the accomplishments of the project included: A unique air/gas valve was adapted to furnaces with heat-pipe and drum-type heat exchangers, providing these furnaces with over a 5-to-1 turndown capability. A six-zone warm-air heating system was tested for two winters with the modulating furnaces previously described. A data base for the application of copper/water thermosyphons was started. A ten-tube heat-pipe heat exchanger was incorporated into a conventional clam-shell furnace as its second-stage condensing heat exchanger with only a small increase in the furnace's dimensions.

  13. Micronized coal burner facility

    NASA Technical Reports Server (NTRS)

    Calfo, F. D.; Lupton, M. W. (Inventor)

    1984-01-01

    A combustor or burner system in which the ash resulting from burning a coal in oil mixture is of submicron particle size is described. The burner system comprises a burner section, a flame exit nozzle, a fuel nozzle section, and an air tube by which preheated air is directed into the burner section. Regulated air pressure is delivered to a fuel nozzle. Means are provided for directing a mixture of coal particles and oil from a drum to a nozzle at a desired rate and pressure while means returns excess fuel to the fuel drum. Means provide for stable fuel pressure supply from the fuel pump to the fuel nozzle.

  14. Combustor burner vanelets

    DOEpatents

    Lacy, Benjamin [Greer, SC; Varatharajan, Balachandar [Loveland, OH; Kraemer, Gilbert Otto [Greer, SC; Yilmaz, Ertan [Albany, NY; Zuo, Baifang [Simpsonville, SC

    2012-02-14

    The present application provides a burner for use with a combustor of a gas turbine engine. The burner may include a center hub, a shroud, a pair of fuel vanes extending from the center hub to the shroud, and a vanelet extending from the center hub and/or the shroud and positioned between the pair of fuel vanes.

  15. Pulverized coal burner

    DOEpatents

    Sivy, J.L.; Rodgers, L.W.; Koslosy, J.V.; LaRue, A.D.; Kaufman, K.C.; Sarv, H.

    1998-11-03

    A burner is described having lower emissions and lower unburned fuel losses by implementing a transition zone in a low NO{sub x} burner. The improved burner includes a pulverized fuel transport nozzle surrounded by the transition zone which shields the central oxygen-lean fuel devolatilization zone from the swirling secondary combustion air. The transition zone acts as a buffer between the primary and the secondary air streams to improve the control of near-burner mixing and flame stability by providing limited recirculation regions between primary and secondary air streams. These limited recirculation regions transport evolved NO{sub x} back towards the oxygen-lean fuel pyrolysis zone for reduction to molecular nitrogen. Alternate embodiments include natural gas and fuel oil firing. 8 figs.

  16. Pulverized coal burner

    DOEpatents

    Sivy, Jennifer L.; Rodgers, Larry W.; Koslosy, John V.; LaRue, Albert D.; Kaufman, Keith C.; Sarv, Hamid

    1998-01-01

    A burner having lower emissions and lower unburned fuel losses by implementing a transition zone in a low NO.sub.x burner. The improved burner includes a pulverized fuel transport nozzle surrounded by the transition zone which shields the central oxygen-lean fuel devolatilization zone from the swirling secondary combustion air. The transition zone acts as a buffer between the primary and the secondary air streams to improve the control of near-burner mixing and flame stability by providing limited recirculation regions between primary and secondary air streams. These limited recirculation regions transport evolved NO.sub.x back towards the oxygen-lean fuel pyrolysis zone for reduction to molecular nitrogen. Alternate embodiments include natural gas and fuel oil firing.

  17. Ultralean low swirl burner

    DOEpatents

    Cheng, Robert K.

    1998-01-01

    A novel burner and burner method has been invented which burns an ultra lean premixed fuel-air mixture with a stable flame. The inventive burning method results in efficient burning and much lower emissions of pollutants such as oxides of nitrogen than previous burners and burning methods. The inventive method imparts weak swirl (swirl numbers of between about 0.01 to 3.0) on a fuel-air flow stream. The swirl, too small to cause recirculation, causes an annulus region immediately inside the perimeter of the fuel-air flow to rotate in a plane normal to the axial flow. The rotation in turn causes the diameter of the fuel-air flow to increase with concomitant decrease in axial flow velocity. The flame stabilizes where the fuel-air mixture velocity equals the rate of burning resulting in a stable, turbulent flame.

  18. Ultralean low swirl burner

    DOEpatents

    Cheng, R.K.

    1998-04-07

    A novel burner and burner method has been invented which burns an ultra lean premixed fuel-air mixture with a stable flame. The inventive burning method results in efficient burning and much lower emissions of pollutants such as oxides of nitrogen than previous burners and burning methods. The inventive method imparts weak swirl (swirl numbers of between about 0.01 to 3.0) on a fuel-air flow stream. The swirl, too small to cause recirculation, causes an annulus region immediately inside the perimeter of the fuel-air flow to rotate in a plane normal to the axial flow. The rotation in turn causes the diameter of the fuel-air flow to increase with concomitant decrease in axial flow velocity. The flame stabilizes where the fuel-air mixture velocity equals the rate of burning resulting in a stable, turbulent flame. 11 figs.

  19. CHP Integrated with Burners for Packaged Boilers

    SciTech Connect

    Castaldini, Carlo; Darby, Eric

    2013-09-30

    division of Sempra Energy. These match funds were provided via concurrent contracts and investments available via CMCE, Altex, and Leva Energy The project attained all its objectives and is considered a success. CMCE secured the support of GI&E from Italy to supply 100 kW Turbec T-100 microturbines for the project. One was purchased by the project’s subcontractor, Altex, and a second spare was purchased by CMCE under this project. The microturbines were then modified to convert from their original recuperated design to a simple cycle configuration. Replacement low-NOx silo combustors were designed and bench tested in order to achieve compliance with the California Air Resources Board (CARB) 2007 emission limits for NOx and CO when in CHP operation. The converted microturbine was then mated with a low NOx burner provided by Altex via an integration section that allowed flow control and heat recovery to minimize combustion blower requirements; manage burner turndown; and recover waste heat. A new fully integrated control system was designed and developed that allowed one-touch system operation in all three available modes of operation: (1) CHP with both microturbine and burner firing for boiler heat input greater than 2 MMBtu/hr; (2) burner head only (BHO) when the microturbine is under service; and (3) microturbine only when boiler heat input requirements fall below 2 MMBtu/hr. This capability resulted in a burner turndown performance of nearly 10/1, a key advantage for this technology over conventional low NOx burners. Key components were then assembled into a cabinet with additional support systems for generator cooling and fuel supply. System checkout and performance tests were performed in the laboratory. The assembled system and its support equipment were then shipped and installed at a host facility where final performance tests were conducted following efforts to secure fabrication, air, and operating permits. The installed power burner is now in commercial

  20. High efficiency gas burner

    DOEpatents

    Schuetz, Mark A.

    1983-01-01

    A burner assembly provides for 100% premixing of fuel and air by drawing the air into at least one high velocity stream of fuel without power assist. Specifically, the nozzle assembly for injecting the fuel into a throat comprises a plurality of nozzles in a generally circular array. Preferably, swirl is imparted to the air/fuel mixture by angling the nozzles. The diffuser comprises a conical primary diffuser followed by a cusp diffuser.

  1. Low NOx burner project 1995

    SciTech Connect

    Cook, W.

    1996-11-01

    A 1995 low NO{sub x} burner project is outlined. The following topics are discussed; site logistics, project planning, pre-construction planning, construction phase, post construction, No. 9 economizer, Todd DynaSwirl Burner, and the No. 11 boiler front.

  2. Radial lean direct injection burner

    DOEpatents

    Khan, Abdul Rafey; Kraemer, Gilbert Otto; Stevenson, Christian Xavier

    2012-09-04

    A burner for use in a gas turbine engine includes a burner tube having an inlet end and an outlet end; a plurality of air passages extending axially in the burner tube configured to convey air flows from the inlet end to the outlet end; a plurality of fuel passages extending axially along the burner tube and spaced around the plurality of air passage configured to convey fuel from the inlet end to the outlet end; and a radial air swirler provided at the outlet end configured to direct the air flows radially toward the outlet end and impart swirl to the air flows. The radial air swirler includes a plurality of vanes to direct and swirl the air flows and an end plate. The end plate includes a plurality of fuel injection holes to inject the fuel radially into the swirling air flows. A method of mixing air and fuel in a burner of a gas turbine is also provided. The burner includes a burner tube including an inlet end, an outlet end, a plurality of axial air passages, and a plurality of axial fuel passages. The method includes introducing an air flow into the air passages at the inlet end; introducing a fuel into fuel passages; swirling the air flow at the outlet end; and radially injecting the fuel into the swirling air flow.

  3. Catalyzed Ceramic Burner Material

    SciTech Connect

    Barnes, Amy S., Dr.

    2012-06-29

    Catalyzed combustion offers the advantages of increased fuel efficiency, decreased emissions (both NOx and CO), and an expanded operating range. These performance improvements are related to the ability of the catalyst to stabilize a flame at or within the burner media and to combust fuel at much lower temperatures. This technology has a diverse set of applications in industrial and commercial heating, including boilers for the paper, food and chemical industries. However, wide spread adoption of catalyzed combustion has been limited by the high cost of precious metals needed for the catalyst materials. The primary objective of this project was the development of an innovative catalyzed burner media for commercial and small industrial boiler applications that drastically reduce the unit cost of the catalyzed media without sacrificing the benefits associated with catalyzed combustion. The scope of this program was to identify both the optimum substrate material as well as the best performing catalyst construction to meet or exceed industry standards for durability, cost, energy efficiency, and emissions. It was anticipated that commercial implementation of this technology would result in significant energy savings and reduced emissions. Based on demonstrated achievements, there is a potential to reduce NOx emissions by 40,000 TPY and natural gas consumption by 8.9 TBtu in industries that heavily utilize natural gas for process heating. These industries include food manufacturing, polymer processing, and pulp and paper manufacturing. Initial evaluation of commercial solutions and upcoming EPA regulations suggests that small to midsized boilers in industrial and commercial markets could possibly see the greatest benefit from this technology. While out of scope for the current program, an extension of this technology could also be applied to catalytic oxidation for volatile organic compounds (VOCs). Considerable progress has been made over the course of the grant

  4. Acid gas burner

    SciTech Connect

    Polak, B.

    1991-04-23

    This patent describes a burner for combusting a waste gas. It comprises a throat section; a fire tube downstream from the throat section in communication therewith; an air duct section upstream from the throat section in communication therewith; a centrally located nozzle means for introduction of a fuel in the throat section in a downstream direction toward the fire tube; means upstream from the throat section for forming a downstream directed swirling combustion air stream substantially in an annular ring along the sidewalls of the throat section; and means for introducing a waste gas stream into the throat section downstream of the nozzle means in a forwardly biased but swirling direction opposite to that of the swirling combustion air stream.

  5. Low loss duct burner

    SciTech Connect

    Mar, H. M.; Reider, S. B.

    1985-07-09

    A jet propulsion engine with a fan bypass duct includes a duct burner with a plurality of flame stabilizers therein each mounted to inner case and outer case members through spherical bearings. Each of the stabilizers consists of two blade members having integral arms thereon actuated by fore and aft motion of an external actuating ring to assume an expanded position to increase duct turbulence for mixing air flow therethrough with a fuel supply and into a retracted position against each other to reduce pressure drop under nonafterburning operation. Each of the flame stabilizer blades has a platform that controls communication between a hot air source and a duct for improving fuel vaporization during afterburner operation thereby to increase afterburning limits; the platforms close communication between the hot air source and the duct during nonafterburning operation when flame stabilization is not required.

  6. Micronized-Coal Burner Facility

    NASA Technical Reports Server (NTRS)

    Calfo, F. D.; Lupton, M. W.

    1986-01-01

    Micronized-coal (coal-in-oil mix) burner facility developed to fulfill need to generate erosion/corrosion data on series of superalloy specimens. In order to successfully operate gas turbine using COM, two primary conditions must be met. First, there must be adequate atomization of COM and second, minimization of coking of burner. Meeting these conditions will be achieved only by clean burning and flame stability.

  7. Burner ignition system

    DOEpatents

    Carignan, Forest J.

    1986-01-21

    An electronic ignition system for a gas burner is battery operated. The battery voltage is applied through a DC-DC chopper to a step-up transformer to charge a capacitor which provides the ignition spark. The step-up transformer has a significant leakage reactance in order to limit current flow from the battery during initial charging of the capacitor. A tank circuit at the input of the transformer returns magnetizing current resulting from the leakage reactance to the primary in succeeding cycles. An SCR in the output circuit is gated through a voltage divider which senses current flow through a flame. Once the flame is sensed, further sparks are precluded. The same flame sensor enables a thermopile driven main valve actuating circuit. A safety valve in series with the main gas valve responds to a control pressure thermostatically applied through a diaphragm. The valve closes after a predetermined delay determined by a time delay orifice if the pilot gas is not ignited.

  8. Uniform-burning matrix burner

    SciTech Connect

    Bohn, Mark S.; Anselmo, Mark

    2001-01-01

    Computer simulation was used in the development of an inward-burning, radial matrix gas burner and heat pipe heat exchanger. The burner and exchanger can be used to heat a Stirling engine on cloudy days when a solar dish, the normal source of heat, cannot be used. Geometrical requirements of the application forced the use of the inward burning approach, which presents difficulty in achieving a good flow distribution and air/fuel mixing. The present invention solved the problem by providing a plenum with just the right properties, which include good flow distribution and good air/fuel mixing with minimum residence time. CFD simulations were also used to help design the primary heat exchanger needed for this application which includes a plurality of pins emanating from the heat pipe. The system uses multiple inlet ports, an extended distance from the fuel inlet to the burner matrix, flow divider vanes, and a ring-shaped, porous grid to obtain a high-temperature uniform-heat radial burner. Ideal applications include dish/Stirling engines, steam reforming of hydrocarbons, glass working, and any process requiring high temperature heating of the outside surface of a cylindrical surface.

  9. Wood fuel in suspension burners

    SciTech Connect

    Wolle, P.C.

    1982-01-01

    Experience and criteria for solid fuel suspension burning is presented based on more than ten years of actual experience with commercially installed projects. Fuel types discussed range from dried wood with less than 15% moisture content, wet basis, to exotic biomass material such as brewed tea leaves and processed coffee grounds. Single burner inputs range from 1,465 kW (5,000 Mbh) to 13,771 kW (47,000 Mbh) as well as multiple burner applications with support burning using fuel oil and/or natural gas. General requirements for self-sustaining combustion will be reviewed as applied to suspension solid fuel burning, together with results of what can happen if these requirements are not met. Solid fuel preparation, sizing, transport, storage, and metering control is essential for proper feed. Combustion chamber volume, combustion air requirements, excess air, and products of combustion are reviewed, together with induced draft fan sizing. (Refs. 7).

  10. Porous radiant burners having increased radiant output

    DOEpatents

    Tong, Timothy W.; Sathe, Sanjeev B.; Peck, Robert E.

    1990-01-01

    Means and methods for enhancing the output of radiant energy from a porous radiant burner by minimizing the scattering and increasing the adsorption, and thus emission of such energy by the use of randomly dispersed ceramic fibers of sub-micron diameter in the fabrication of ceramic fiber matrix burners and for use therein.

  11. 14 CFR 31.47 - Burners.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... emergency operation. (d) The burner system (including the burner unit, controls, fuel lines, fuel cells...) Five hours at the maximum fuel pressure for which approval is sought, with a burn time for each one... intermediate fuel pressure, with a burn time for each one minute cycle of three to ten seconds. An...

  12. 14 CFR 31.47 - Burners.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... emergency operation. (d) The burner system (including the burner unit, controls, fuel lines, fuel cells...) Five hours at the maximum fuel pressure for which approval is sought, with a burn time for each one... intermediate fuel pressure, with a burn time for each one minute cycle of three to ten seconds. An...

  13. 14 CFR 31.47 - Burners.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... emergency operation. (d) The burner system (including the burner unit, controls, fuel lines, fuel cells...) Five hours at the maximum fuel pressure for which approval is sought, with a burn time for each one... intermediate fuel pressure, with a burn time for each one minute cycle of three to ten seconds. An...

  14. 14 CFR 31.47 - Burners.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... emergency operation. (d) The burner system (including the burner unit, controls, fuel lines, fuel cells...) Five hours at the maximum fuel pressure for which approval is sought, with a burn time for each one... intermediate fuel pressure, with a burn time for each one minute cycle of three to ten seconds. An...

  15. Computational fluid dynamics in oil burner design

    SciTech Connect

    Butcher, T.A.

    1997-09-01

    In Computational Fluid Dynamics, the differential equations which describe flow, heat transfer, and mass transfer are approximately solved using a very laborious numerical procedure. Flows of practical interest to burner designs are always turbulent, adding to the complexity of requiring a turbulence model. This paper presents a model for burner design.

  16. Burners

    MedlinePlus

    ... Pets and Animals myhealthfinder Food and Nutrition Healthy Food Choices Weight Loss and Diet Plans Nutrients and Nutritional ... Pets and Animals myhealthfinder Food and Nutrition Healthy Food Choices Weight Loss and Diet Plans Nutrients and Nutritional ...

  17. 40 CFR 49.127 - Rule for woodwaste burners.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... provided by paragraph (c)(3) of this section, the owner or operator of a woodwaste burner must shut down... woodwaste burners are currently operational. Until the woodwaste burner is shut down, visible emissions from...) Until the woodwaste burner is shut down, only wood waste generated on-site may be burned or disposed...

  18. 40 CFR 49.127 - Rule for woodwaste burners.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... woodwaste burner must shut down and dismantle the woodwaste burner by no later than two years after the... down, visible emissions from the woodwaste burner must not exceed 20% opacity, averaged over any consecutive six-minute period. (2) Until the woodwaste burner is shut down, only wood waste generated...

  19. Diesel fuel burner for diesel emissions control system

    DOEpatents

    Webb, Cynthia C.; Mathis, Jeffrey A.

    2006-04-25

    A burner for use in the emissions system of a lean burn internal combustion engine. The burner has a special burner head that enhances atomization of the burner fuel. Its combustion chamber is designed to be submersed in the engine exhaust line so that engine exhaust flows over the outer surface of the combustion chamber, thereby providing efficient heat transfer.

  20. Catalytic reactor with improved burner

    DOEpatents

    Faitani, Joseph J.; Austin, George W.; Chase, Terry J.; Suljak, George T.; Misage, Robert J.

    1981-01-01

    To more uniformly distribute heat to the plurality of catalyst tubes in a catalytic reaction furnace, the burner disposed in the furnace above the tops of the tubes includes concentric primary and secondary annular fuel and air outlets. The fuel-air mixture from the primary outlet is directed towards the tubes adjacent the furnace wall, and the burning secondary fuel-air mixture is directed horizontally from the secondary outlet and a portion thereof is deflected downwardly by a slotted baffle toward the tubes in the center of the furnace while the remaining portion passes through the slotted baffle to another baffle disposed radially outwardly therefrom which deflects it downwardly in the vicinity of the tubes between those in the center and those near the wall of the furnace.

  1. FIELD EVALUATION OF LOW-EMISSION COAL BURNER TECHNOLOGY ON UTILITY BOILERS VOLUME II. SECOND GENERATION LOW-NOX BURNERS

    EPA Science Inventory

    The report describes tests to evaluate the performance characteristics of three Second Generation Low-NOx burner designs: the Dual Register burner (DRB), the Babcock-Hitachi NOx Reducing (HNR) burner, and the XCL burner. The three represent a progression in development based on t...

  2. Reverberatory screen for a radiant burner

    DOEpatents

    Gray, Paul E.

    1999-01-01

    The present invention relates to porous mat gas fired radiant burner panels utilizing improved reverberatory screens. The purpose of these screens is to boost the overall radiant output of the burner relative to a burner using no screen and the same fuel-air flow rates. In one embodiment, the reverberatory screen is fabricated from ceramic composite material, which can withstand higher operating temperatures than its metallic equivalent. In another embodiment the reverberatory screen is corrugated. The corrugations add stiffness which helps to resist creep and thermally induced distortions due to temperature or thermal expansion coefficient differences. As an added benefit, it has been unexpectedly discovered that the corrugations further increase the radiant efficiency of the burner. In a preferred embodiment, the reverberatory screen is both corrugated and made from ceramic composite material.

  3. Silane-propane ignitor/burner

    DOEpatents

    Hill, Richard W.; Skinner, Dewey F.; Thorsness, Charles B.

    1985-01-01

    A silane propane burner for an underground coal gasification process which is used to ignite the coal and to controllably retract the injection point by cutting the injection pipe. A narrow tube with a burner tip is positioned in the injection pipe through which an oxidant (oxygen or air) is flowed. A charge of silane followed by a supply of fuel, such as propane, is flowed through the tube. The silane spontaneously ignites on contact with oxygen and burns the propane fuel.

  4. Silane-propane ignitor/burner

    DOEpatents

    Hill, R.W.; Skinner, D.F. Jr.; Thorsness, C.B.

    1983-05-26

    A silane propane burner for an underground coal gasification process which is used to ignite the coal and to controllably retract the injection point by cutting the injection pipe. A narrow tube with a burner tip is positioned in the injection pipe through which an oxidant (oxygen or air) is flowed. A charge of silane followed by a supply of fuel, such as propane, is flowed through the tube. The silane spontaneously ignites on contact with oxygen and burns the propane fuel.

  5. Regenerative Burner System for Thermoelectric Power Sources.

    DTIC Science & Technology

    1979-07-01

    of the air—to—air heat exchanger, the smoke level. An exceptionally cisan , smokeless Heat b ases, present in the configuration of this pro— fire is...zero (0) on this scale. A Bacharach number totype heat exchanger, are estimated to be approxi— of 10 is the highest smoke level measured and corre...regenera— and fouling. High reliability burners are normally tive burner system design . The lower fuel requirement adjusted to No. 2 or 3 smoke . Scale

  6. Burners and combustion apparatus for carbon nanomaterial production

    DOEpatents

    Alford, J. Michael; Diener, Michael D; Nabity, James; Karpuk, Michael

    2013-02-05

    The invention provides improved burners, combustion apparatus, and methods for carbon nanomaterial production. The burners of the invention provide sooting flames of fuel and oxidizing gases. The condensable products of combustion produced by the burners of this invention produce carbon nanomaterials including without limitation, soot, fullerenic soot, and fullerenes. The burners of the invention do not require premixing of the fuel and oxidizing gases and are suitable for use with low vapor pressure fuels such as those containing substantial amounts of polyaromatic hydrocarbons. The burners of the invention can operate with a hot (e.g., uncooled) burner surface and require little, if any, cooling or other forms of heat sinking. The burners of the invention comprise one or more refractory elements forming the outlet of the burner at which a flame can be established. The burners of the invention provide for improved flame stability, can be employed with a wider range of fuel/oxidizer (e.g., air) ratios and a wider range of gas velocities, and are generally more efficient than burners using water-cooled metal burner plates. The burners of the invention can also be operated to reduce the formation of undesirable soot deposits on the burner and on surfaces downstream of the burner.

  7. Burners and combustion apparatus for carbon nanomaterial production

    DOEpatents

    Alford, J. Michael; Diener, Michael D.; Nabity, James; Karpuk, Michael

    2007-10-09

    The invention provides improved burners, combustion apparatus, and methods for carbon nanomaterial production. The burners of the invention provide sooting flames of fuel and oxidizing gases. The condensable products of combustion produced by the burners of this invention produce carbon nanomaterials including without limitation, soot, fullerenic soot, and fullerenes. The burners of the invention do not require premixing of the fuel and oxidizing gases and are suitable for use with low vapor pressure fuels such as those containing substantial amounts of polyaromatic hydrocarbons. The burners of the invention can operate with a hot (e.g., uncooled) burner surface and require little, if any, cooling or other forms of heat sinking. The burners of the invention comprise one or more refractory elements forming the outlet of the burner at which a flame can be established. The burners of the invention provide for improved flame stability, can be employed with a wider range of fuel/oxidizer (e.g., air) ratios and a wider range of gas velocities, and are generally more efficient than burners using water-cooled metal burner plates. The burners of the invention can also be operated to reduce the formation of undesirable soot deposits on the burner and on surfaces downstream of the burner.

  8. Fuel-flexible burner apparatus and method for fired heaters

    DOEpatents

    Zink, Darton J.; Isaacs, Rex K.; Jamaluddin, A. S.; Benson, Charles E.; Pellizzari, Roberto O.; Little, Cody L.; Marty, Seth A.; Imel, K. Parker; Barnes, Jonathon E.; Parker, Chris S.

    2017-03-14

    A burner apparatus for a fired heating system and a method of burner operation. The burner provides stable operation when burning gas fuels having heating values ranging from low to high and accommodates sudden wide changes in the Wobbe value of the fuel delivered to the burner. The burner apparatus includes a plurality of exterior fuel ejectors and has an exterior notch which extends around the burner wall for receiving and combusting a portion of the gas fuel. At least a portion of the hot combustion product gas produced in the exterior notch is delivered through channels formed in the burner wall to the combustion area at the forward end of the burner. As the Wobbe value of the gas fuel decreases, one or more outer series of addition ejectors can be automatically activated as needed to maintain the amount of heat output desired.

  9. Industrial Energy Conservation, Forced Internal Recirculation Burner

    SciTech Connect

    Joseph Rabovitser

    2003-06-19

    The overall objective of this research project is to develop and evaluate an industrial low NOx burner for existing and new gas-fired combustion systems for intermediate temperature (1400 degree to 2000 degree F) industrial heating devices such as watertube boilers and process fluid heaters. A multi-phase effort is being pursued with decision points to determine advisability of continuance. The current contract over Phases II and III of this work. The objectives of each phase are as follows. Phase II - to design, fabricate, and evaluate prototype burners based on the Forced Internal Recirculation (FIR) concept. Phase III - to evaluate the performance of an FIR burner under actual operating conditions in a full-scale field test and establish the performance necessary for subsequent commercialization

  10. Low NO.sub.x burner system

    DOEpatents

    Kitto, Jr., John B.; Kleisley, Roger J.; LaRue, Albert D.; Latham, Chris E.; Laursen, Thomas A.

    1993-01-01

    A low NO.sub.x burner system for a furnace having spaced apart front and rear walls, comprises a double row of cell burners on each of the front and rear walls. Each cell burner is either of the inverted type with a secondary air nozzle spaced vertically below a coal nozzle, or the non-inverted type where the coal nozzle is below the secondary air port. The inverted and non-inverted cells alternate or are provided in other specified patterns at least in the lower row of cells. A small percentage of the total air can be also provided through the hopper or hopper throat forming the bottom of the furnace, or through the boiler hopper side walls. A shallow angle impeller design also advances the purpose of the invention which is to reduce CO and H.sub.2 S admissions while maintaining low NO.sub.x generation.

  11. Automatic gas burner block for thermal units

    SciTech Connect

    Kryzhanovskii, K.S.; Senatov, V.I.

    1987-01-01

    The authors describe a new computerized control system and gas burner configuration for natural gas furnaces used for the heat treatment of ceramics and porcelain which is designed to control and monitor combustion and temperature regimes in the furnace and optimize fuel efficiency. The system permits simultaneous operation and thermal load control of up to 12 burners, automatic maintenance of the desired fuel-air ratio over the entire temperature range, and protection of the furnace against overload by the use of a fuel cutoff switch. Specifications on productivity and efficiency and results of performance evaluations are listed.

  12. DESIGN REPORT: LOW-NOX BURNERS FOR PACKAGE BOILERS

    EPA Science Inventory

    The report describes a low-NOx burner design, presented for residual-oil-fired industrial boilers and boilers cofiring conventional fuels and nitrated hazardous wastes. The burner offers lower NOx emission levels for these applications than conventional commercial burners. The bu...

  13. 30 CFR 57.7803 - Lighting the burner.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 30 Mineral Resources 1 2012-07-01 2012-07-01 false Lighting the burner. 57.7803 Section 57.7803... Jet Piercing Rotary Jet Piercing-Surface Only § 57.7803 Lighting the burner. A suitable means of protection shall be provided for the employee when lighting the burner....

  14. 30 CFR 56.7803 - Lighting the burner.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 30 Mineral Resources 1 2011-07-01 2011-07-01 false Lighting the burner. 56.7803 Section 56.7803... Piercing Rotary Jet Piercing § 56.7803 Lighting the burner. A suitable means of protection shall be provided for the employee when lighting the burner....

  15. 30 CFR 57.7803 - Lighting the burner.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Lighting the burner. 57.7803 Section 57.7803... Jet Piercing Rotary Jet Piercing-Surface Only § 57.7803 Lighting the burner. A suitable means of protection shall be provided for the employee when lighting the burner....

  16. 30 CFR 56.7803 - Lighting the burner.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 30 Mineral Resources 1 2013-07-01 2013-07-01 false Lighting the burner. 56.7803 Section 56.7803... Piercing Rotary Jet Piercing § 56.7803 Lighting the burner. A suitable means of protection shall be provided for the employee when lighting the burner....

  17. 30 CFR 57.7803 - Lighting the burner.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 30 Mineral Resources 1 2013-07-01 2013-07-01 false Lighting the burner. 57.7803 Section 57.7803... Jet Piercing Rotary Jet Piercing-Surface Only § 57.7803 Lighting the burner. A suitable means of protection shall be provided for the employee when lighting the burner....

  18. 30 CFR 57.7803 - Lighting the burner.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 30 Mineral Resources 1 2014-07-01 2014-07-01 false Lighting the burner. 57.7803 Section 57.7803... Jet Piercing Rotary Jet Piercing-Surface Only § 57.7803 Lighting the burner. A suitable means of protection shall be provided for the employee when lighting the burner....

  19. 30 CFR 56.7803 - Lighting the burner.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 30 Mineral Resources 1 2012-07-01 2012-07-01 false Lighting the burner. 56.7803 Section 56.7803... Piercing Rotary Jet Piercing § 56.7803 Lighting the burner. A suitable means of protection shall be provided for the employee when lighting the burner....

  20. 30 CFR 56.7803 - Lighting the burner.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 30 Mineral Resources 1 2014-07-01 2014-07-01 false Lighting the burner. 56.7803 Section 56.7803... Piercing Rotary Jet Piercing § 56.7803 Lighting the burner. A suitable means of protection shall be provided for the employee when lighting the burner....

  1. 30 CFR 56.7803 - Lighting the burner.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Lighting the burner. 56.7803 Section 56.7803... Piercing Rotary Jet Piercing § 56.7803 Lighting the burner. A suitable means of protection shall be provided for the employee when lighting the burner....

  2. 30 CFR 57.7803 - Lighting the burner.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 30 Mineral Resources 1 2011-07-01 2011-07-01 false Lighting the burner. 57.7803 Section 57.7803... Jet Piercing Rotary Jet Piercing-Surface Only § 57.7803 Lighting the burner. A suitable means of protection shall be provided for the employee when lighting the burner....

  3. FIELD EVALUATION OF LOW-EMISSION COAL BURNER TECHNOLOGY ON UTILITY BURNERS VOLUME V. BURNER EVALUATION DATA APPENDICES

    EPA Science Inventory

    The report gives a detailed summary of data which were generated during the testing of experimental burners on EPA's Large Watertube Simulator (LWS) test facility. The test data are presented as a series of appendices. Appendix A describe the data quality assurance procedures whi...

  4. Burner modifications for cost effective NO{sub x} control

    SciTech Connect

    Melick, T.A.; Hensley, M.E.; Gustafson, D.A.

    1998-12-31

    The development of commercial Low NO{sub x} Burners has provided Energy and Environmental Research Corporation (EER) with the expertise to modify existing burner equipment to provide the controlled fuel/air mixing conditions required for low NO{sub x} contribution. This approach represents a viable alternative to a full burner retrofit for many applications. EER has modified burners to lower NO{sub x} emissions at Louisville Gas and Electric`s (LG and E) Cane Run Station and at Jamestown Board of Public Utilities (JBPU). This paper discusses the method and results of these burner modifications.

  5. Emissions from gas fired agricultural burners

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Because of the Federal Clean Air Act, the San Joaquin Valley Unified Air Pollution Control District (SJVUAPCD) began defining Best Available Control Technology (BACT) for NOx emissions from cotton gin drying system gas fired burners in its jurisdiction. The NOx emission levels of conventionally used...

  6. Characterizing Particle Combustion in a Rijke Burner.

    DTIC Science & Technology

    1987-05-29

    Rijke Burner. rp = NU In( I + BT) PgpCpgdp 3.2 Shrinking Core Model -, Levenspiel (1972) outlines the shrinking core model. In this model the particle...M. E., Numerical Methods and Modeling for Chemical Engineers. John Wiley and Sons (1984) Levenspiel , 0., Chemical Reaction Engineering Second

  7. Consider PLCs as platforms for burner management

    SciTech Connect

    Anzlovar, R.; Sterle, L.

    1994-07-01

    This article compares the performance of programmable logic controllers (PLC) to that of distributed control systems for retrofitting of burner-management systems (BMSs) with microprocessor based systems. The benefits and operation of each are reviewed. The author concludes that for their application to BMS the performance of the PLC provides more value.

  8. Market assessment for the fan atomized oil burner

    SciTech Connect

    Westphalen, D.

    1996-07-01

    The market potential for the fan atomized burner (FAB) in water and space heating applications was examined. The major findings of the study are as follows. (1). The FAB`s low-input capability allows development of oil-fired room heaters and wall furnaces, a new market area for oil heat. (2). Among conventional oil-fired products, furnaces will benefit most from the burner`s low input capability due to (1) their quick delivery of heat and (2) their more prevalent use in warmer climates and smaller homes. (3). The greatest potential for increased product sales or oil sales exists in the use of the burner with new products (i.e., room heaters). Sales of boilers and direct-fired water heaters are not likely to increase with the use of the burner. (4). Acceptance of the burner will be dependent on proof of reliability. Proof of better reliability than conventional burners would accelerate acceptance.

  9. Fuel burner and combustor assembly for a gas turbine engine

    DOEpatents

    Leto, Anthony

    1983-01-01

    A fuel burner and combustor assembly for a gas turbine engine has a housing within the casing of the gas turbine engine which housing defines a combustion chamber and at least one fuel burner secured to one end of the housing and extending into the combustion chamber. The other end of the fuel burner is arranged to slidably engage a fuel inlet connector extending radially inwardly from the engine casing so that fuel is supplied, from a source thereof, to the fuel burner. The fuel inlet connector and fuel burner coact to anchor the housing against axial movement relative to the engine casing while allowing relative radial movement between the engine casing and the fuel burner and, at the same time, providing fuel flow to the fuel burner. For dual fuel capability, a fuel injector is provided in said fuel burner with a flexible fuel supply pipe so that the fuel injector and fuel burner form a unitary structure which moves with the fuel burner.

  10. Refinery burner simulation design architecture summary.

    SciTech Connect

    Pollock, Guylaine M.; McDonald, Michael James; Halbgewachs, Ronald D.

    2011-10-01

    This report describes the architectural design for a high fidelity simulation of a refinery and refinery burner, including demonstrations of impacts to the refinery if errors occur during the refinery process. The refinery burner model and simulation are a part of the capabilities within the Sandia National Laboratories Virtual Control System Environment (VCSE). Three components comprise the simulation: HMIs developed with commercial SCADA software, a PLC controller, and visualization software. All of these components run on different machines. This design, documented after the simulation development, incorporates aspects not traditionally seen in an architectural design, but that were utilized in this particular demonstration development. Key to the success of this model development and presented in this report are the concepts of the multiple aspects of model design and development that must be considered to capture the necessary model representation fidelity of the physical systems.

  11. Low NO sub x /SO sub x Burner retrofit for utility cyclone boilers

    SciTech Connect

    Not Available

    1990-01-01

    Cyclone furnaces operate with high excess air and at high temperature. The heat release during combustion is very high and as a result the boiler volume is much smaller than would be found in a conventional pc-fired system. The Marion Unit 1 boiler, at the level of the cyclone entry, has a small cross-section; about 5-feet in depth and about 20-feet in width. A boiler schematic showing the LNS Burner and relative location of the superheater region and overfire air ports is shown in Figure 1. The LNS Burner's combustion process is fundamentally different from that of the cyclone, and the combustion products are also different. The LNS Burner products enter the boiler as hot, fuel-rich gases. Additional overfire air must be added to complete this combustion step with care taken to avoid the formation of thermal NO{sub x}. If done correctly, S0{sub 2} is controlled and significant NO{sub x} reductions are achieved. Because of the small boiler volume, flow modelling was found to be necessary to insure that adequate mixing of LNS Burner combustion products with air can be accomplished to achieve NO{sub x} emissions goals. Design requirements for the air injection system for the Marion boiler were developed using FLUENT, a commercially available computational fluid dynamics (CFD) code. A series of runs were made to obtain a design for final air injection that met the process design goals as closely as possible.

  12. PULSE DRYING EXPERIMENT AND BURNER CONSTRUCTION

    SciTech Connect

    Robert States

    2006-07-15

    Non steady impingement heat transfer is measured. Impingement heating consumes 130 T-BTU/Yr in paper drying, but is only 25% thermally efficient. Pulse impingement is experimentally shown to enhance heat transfer by 2.8, and may deliver thermal efficiencies near 85%. Experimental results uncovered heat transfer deviations from steady theory and from previous investigators, indicating the need for further study and a better theoretical framework. The pulse burner is described, and its roll in pulse impingement is analyzed.

  13. Coal-water mixture fuel burner

    DOEpatents

    Brown, T.D.; Reehl, D.P.; Walbert, G.F.

    1985-04-29

    The present invention represents an improvement over the prior art by providing a rotating cup burner arrangement for use with a coal-water mixture fuel which applies a thin, uniform sheet of fuel onto the inner surface of the rotating cup, inhibits the collection of unburned fuel on the inner surface of the cup, reduces the slurry to a collection of fine particles upon discharge from the rotating cup, and further atomizes the fuel as it enters the combustion chamber by subjecting it to the high shear force of a high velocity air flow. Accordingly, it is an object of the present invention to provide for improved combustion of a coal-water mixture fuel. It is another object of the present invention to provide an arrangement for introducing a coal-water mixture fuel into a combustion chamber in a manner which provides improved flame control and stability, more efficient combustion of the hydrocarbon fuel, and continuous, reliable burner operation. Yet another object of the present invention is to provide for the continuous, sustained combustion of a coal-water mixture fuel without the need for a secondary combustion source such as natural gas or a liquid hydrocarbon fuel. Still another object of the present invention is to provide a burner arrangement capable of accommodating a coal-water mixture fuel having a wide range of rheological and combustion characteristics in providing for its efficient combustion. 7 figs.

  14. Field testing the prototype BNL fan-atomized oil burner

    SciTech Connect

    McDonald, R.; Celebi, Y.

    1995-04-01

    BNL has developed a new oil burner design referred to as the Fan Atomized burner System. The primary objective of the field study was to evaluate and demonstrate the reliable operation of the Fan Atomized Burner. The secondary objective was to establish and validate the ability of a low firing rate burner (0.3-0.4 gph) to fully satisfy the heating and domestic hot water load demands of an average household in a climate zone with over 5,000 heating-degree-days. The field activity was also used to evaluate the practicality of side-wall venting with the Fan Atomized Burner with a low stack temperature (300F) and illustrate the potential for very high efficiency with an integrated heating system approach based on the Fan Atomized Burner.

  15. Demonstration of laser speckle system on burner liner cyclic rig

    NASA Technical Reports Server (NTRS)

    Stetson, K. A.

    1986-01-01

    A demonstration test was conducted to apply speckle photogrammetry to the measurement of strains on a sample of combustor liner material in a cyclic fatigue rig. A system for recording specklegrams was assembled and shipped to the NASA Lewis Research Center, where it was set up and operated during rig tests. Data in the form of recorded specklegrams were sent back to United Technologies Research Center for processing to extract strains. Difficulties were found in the form of warping and bowing of the sample during the tests which degraded the data. Steps were taken by NASA personnel to correct this problem and further tests were run. Final data processing indicated erratic patterns of strain on the burner liner sample.

  16. Numerical and experimental investigation of a mild combustion burner

    SciTech Connect

    Galletti, Chiara; Parente, Alessandro; Tognotti, Leonardo

    2007-12-15

    An industrial burner operating in the MILD combustion regime through internal recirculation of exhaust gases has been characterized numerically. To develop a self-sufficient numerical model of the burner, two subroutines are coupled to the CFD solver to model the air preheater section and heat losses from the burner through radiation. The resulting model is validated against experimental data on species concentration and temperature. A 3-dimensional CFD model of the burner is compared to an axisymmetric model, which allows considerable computational saving, but neglects some important burner features such as the presence of recirculation windows. Errors associated with the axisymmetric model are evaluated and discussed, as well as possible simplified procedures for engineering purposes. Modifications of the burner geometry are investigated numerically and suggested in order to enhance its performances. Such modifications are aimed at improving exhaust gases recirculation which is driven by the inlet air jet momentum. The burner is found to produce only 30 ppm{sub v} of NO when operating in MILD combustion mode. For the same air preheating the NO emissions would be of approximately 1000 ppm{sub v} in flame combustion mode. It is also shown that the burner ensures more homogeneous temperature distribution in the outer surfaces with respect to flame operation, and this is attractive for burners used in furnaces devoted to materials' thermal treatment processes. The effect of air excess on the combustion regime is also discussed. (author)

  17. Burner modifications for cost effective NO{sub x} control

    SciTech Connect

    Melick, T.A.; Hensley, M.E.; Gustafson, D.A.

    1998-07-01

    The development of commercial low NO{sub x} burners has provided Energy and Environmental Research Corporation (EER) with the expertise to modify existing burner equipment to provide the controlled fuel/air mixing conditions required for low NO{sub x} combustion. This approach represents a viable lower cost alternative to a full burner retrofit for many applications. EER has modified burners to lower NO{sub x} emissions at Louisville Gas and Electric's (LG and E) Cane Run Station and at Jamestown Board of Public Utilities (JBPU). This paper will discuss the method and results of these burner modifications on a 180 and 170 Mwe boiler for LG and E and four boilers at JBPU. NO{sub x} reductions of greater than 50% have been demonstrated with burner modifications only that have achieved NO{sub x} compliance on these six boilers. EER will also be modifying cell burners for Dayton Power and Light at their JM Stuart Station. Unit {number_sign}3 is a 605 Mwe B and W universal pressure opposed wall fired boiler. EER will retrofit the burners this October through November and results will be available by the first of December. With deregulation of the utility industry approaching, many utilities are looking for lower cost alternatives to satisfy NO{sub x} regulations. Justifying new low NO{sub x} burners on a boiler that is 30 to 40 years old and has limited remaining life is also difficult. Performing modifications to the existing burners provides the utility an option. Modifications are usually 2 to 4 times less expensive than new low NO{sub x} burners.

  18. Development of a Flaring Burner Disposal System.

    DTIC Science & Technology

    1983-05-01

    MATRIX NO. PLANNED TEST ACTUAL TEST COMMENTS 1 No. 2 Fuel Oil No. 2 Diesel A-nozzles, 10 min Oil 2 20 cs Blend 19.5 cs Blend A-nozzles, then change to...the existing engine speed. The test oils were preoared as in the preliminary burner test program, using blends of No. 2 diesel oil and No. 6 fuel oil...21 3.2.4 Air Compressors ................................... 24 3.2.5 Water Pump Module ................................. 25 3.2.6 Diesel Engines

  19. Low NOx gas burner apparatus and methods

    SciTech Connect

    Schwartz, R.E.; Napier, S.O.; Jones, A.P.

    1993-08-24

    An improved gas burner apparatus is described for discharging a mixture of fuel gas and air into a furnace space wherein said mixture is burned and flue gases having low NO[sub x] content are formed therefrom comprising: a housing having an open end attached to said furnace space; means for introducing a controlled flow rate of said air into said housing attached thereto; a refractory burner tile attached to the open end of said housing having a base portion, an opening formed in said base portion for allowing air to pass there through and having a wall portion surrounding said opening which extends into said furnace space, the exterior sides of said wall portion being slanted towards said opening and the interior sides thereof being spaced from the periphery of said opening whereby a ledge is provided within the interior of said wall portion; at least one passage formed in said burner tile for conducting primary fuel gas and flue gases from the exterior of said wall portion to the interior thereof; means for forming a fuel gas jet in said passage and drawing flue gases there through adapted to be connected to a source of fuel gas and positioned with respect to said passage whereby a mixture of primary fuel gas and flue gases from said furnace space is discharged from said passage to within the interior of said wall portion; and at least one nozzle adapted to be connected to a source of fuel gas positioned outside said wall portion of said burner tile adjacent the intersection of an exterior slanted side of said wall portion with the surface of said base portion for discharging secondary fuel gas adjacent said external slanted side of said wall portion whereby said secondary fuel gas mixes with flue gases and air in said furnace space. A method is also described for discharging a mixture of fuel gas and air into a furnace space wherein said mixture is burned and flue gases having low NO[sub x] content are formed therefrom.

  20. DEMONSTRATION BULLETIN: CELLO PULSE COMBUSTION BURNER SYSTEM/SONOTECH INC.

    EPA Science Inventory

    Sonotech, Inc. (Sonotech), of Atlanta, GA, the developer of the Cello® pulse combustion burner, claims that its burner system can be beneficial to a variety of combustion processes. The system incorporates a combustor that can be tuned to induce large amplitude sonic pulsation...

  1. Residential oil burners with low input and two stages firing

    SciTech Connect

    Butcher, T.; Krajewski, R.; Leigh, R.

    1997-12-31

    The residential oil burner market is currently dominated by the pressure-atomized, retention head burner. At low firing rates pressure atomizing nozzles suffer rapid fouling of the small internal passages, leading to bad spray patterns and poor combustion performance. To overcome the low input limitations of conventional burners, a low pressure air-atomized burner has been developed watch can operate at fining rates as low as 0.25 gallons of oil per hour (10 kW). In addition, the burner can be operated in a high/low fining rate mode. Field tests with this burner have been conducted at a fixed input rate of 0.35 gph (14 kW) with a side-wall vented boiler/water storage tank combination. At the test home, instrumentation was installed to measure fuel and energy flows and record trends in system temperatures. Laboratory efficiency testing with water heaters and boilers has been completed using standard single purpose and combined appliance test procedures. The tests quantify benefits due to low firing rates and other burner features. A two stage oil burner gains a strong advantage in rated efficiency while maintaining capacity for high domestic hot water and space heating loads.

  2. Combined Heat and Power Integrated with Burners for Packaged Boilers

    SciTech Connect

    2010-10-01

    This factsheet describes a project that will seamlessly integrate a gas-fired simple-cycle 100 kWe microturbine with a new ultra-low NOx gas-fired burner to develop a CHP assembly called the Boiler Burner Energy System Technology.

  3. Advanced oil burner for residential heating -- development report

    SciTech Connect

    Butcher, T.A.

    1995-07-01

    The development of advanced oil burner concepts has long been a part of Brookhaven National Laboratory`s (BNL) oil heat research program. Generally, goals of this work include: increased system efficiency, reduced emissions of soot and NO{sub x}, and the practical extension of the firing rate range of current burners to lower input rates. The report describes the results of a project at BNL aimed at the development of air atomized burners. Two concepts are discussed. The first is an air atomizer which uses air supplied at pressures ranging from 10 to 20 psi and requiring the integration of an air compressor in the system. The second, more novel, approach involves the use of a low-pressure air atomizing nozzle which requires only 8-14 inches of water air pressure for fuel atomization. This second approach requires the use of a fan in the burner instead of a compressor although the fan pressure is higher than with conventional, pressure atomized retention head burners. In testing the first concept, high pressure air atomization, a conventional retention head burner was modified to accept the new nozzle. In addition, the burner head was modified to reduce the flow area to maintain roughly 1 inch of water pressure drop across the head at a firing rate of 0.25 gallons of oil per hour. The burner ignited easily and could be operated at low excess air levels without smoke. The major disadvantage of this burner approach is the need for the air compressor as part of the system. In evaluating options, a vane-type compressor was selected although the use of a compressor of this type will lead to increased burner maintenance requirements.

  4. Fan Atomized Burner design advances & commercial development progress

    SciTech Connect

    Kamath, B.; Butcher, T.A.

    1996-07-01

    As a part of the Oil Heat Research and Development program, sponsored by the US Department of Energy, Brookhaven National Laboratory (BNL) has an on-going interest in advanced combustion technologies. This interest is aimed at: improving the initial efficiency of heating equipment, reducing long term fouling and efficiency degradation, reducing air pollutant emissions, and providing practical low-firing rate technologies which may lead to new, high efficiency oil-fired appliances. The Fan-Atomized Burner (FAB) technology is being developed at BNL as part of this general goal. The Fan-Atomized Burner uses a low pressure, air atomizing nozzle in place of the high pressure nozzle used in conventional burners. Because it is air-atomized the burner can operate at low firing rates without the small passages and reliability concerns of low input pressure nozzles. Because it uses a low pressure nozzle the burner can use a fan in place of the small compressor used in other air-atomized burner designs. High initial efficiency of heating equipment is achieved because the burner can operate at very low excess air levels. These low excess air levels also reduce the formation of sulfuric acid in flames. Sulfuric acid is responsible for scaling and fouling of heat exchanger surfaces.

  5. Advanced burner technology for low volatile coal and anthracite

    SciTech Connect

    Tigges, K.D.; Streffing, M.; Lisauskas, R.; Ake, T.

    1997-12-31

    Today China is one of the countries with the highest coal production. Approximately three quarters of the produced coal is high-volatile and medium-volatile hard coal and only about 20% is anthracite. However the actual portion of the anthracite used in power plants is even lower. The reason for this is not due to the low amount available, but to the difficulty of ensuring stable and reliable ignition and combustion of anthracite. Up to now, the so-called Downshot firing system has been used to fire difficult anthracite coals. The experience gained with this type of firing system is, however, far from satisfactory. The numerous difficulties in the plants of all manufactures have shown that attempts should be made to develop efficient burners to be able to use the simple, service-proved and reliable opposed-burner system. Deutsche Babcock started this work in the early 1980`s and developed a second generation low-NOx burner -- the DS burner -- which is also well suited for the combustion of anthracite. The development is based on state-of-the-art advanced computer simulation and full-scale combustion tests on a wide range of coals. Performance has been evaluated on coals with volatile matter content ranging from 50% down to as low as 5%. DS burners are characterized by extremely reliable and stable ignition which allows operation at low part loads even when firing difficult coal. The excellent flame stability of this burner is the reason why the complex Downshot firing system with its numerous disadvantages is no longer necessary and opposed burner system may be applied even for firing anthracite. The paper describes the development of the burner for difficult coals and explains the full scale combustion tests, the laboratory tests of the ignitability and compares these results with the computer simulation of the DS burner flame.

  6. Atmospheric low swirl burner flow characterization with stereo PIV

    NASA Astrophysics Data System (ADS)

    Legrand, Mathieu; Nogueira, José; Lecuona, Antonio; Nauri, Sara; Rodríguez, Pedro A.

    2010-05-01

    The lean premixed prevaporized (LPP) burner concept is now used in most of the new generation gas turbines to reduce flame temperature and pollutants by operating near the lean blow-off limit. The common strategy to assure stable combustion is to resort to swirl stabilized flames in the burner. Nevertheless, the vortex breakdown phenomenon in reactive swirling flows is a very complex 3D mechanism, and its dynamics are not yet completely understood. Among the available measurement techniques to analyze such flows, stereo PIV (S-PIV) is now a reliable tool to quantify the instantaneous three velocity components in a plane (2D-3C). It is used in this paper to explore the reactive flow of a small scale, open to atmosphere, LPP burner (50 kW). The burner is designed to produce two distinct topologies (1) that of a conventional high swirl burner and (2) that of a low swirl burner. In addition, the burner produces a lifted flame that allows a good optical access to the whole recirculation zone in both topologies. The flow is studied over a wide range of swirl and Reynolds numbers at different equivalence ratios. Flow statistics are presented for 1,000 S-PIV snapshots at each configuration. In both reactive and cold nonreactive flow, stability diagrams define the domains of the low and high swirl topologies. Due to the relatively simple conception of the physical burner, this information can be easily used for the validation of CFD computations of the burner flow global structure. Near field pressure measurements reveal the presence of peaks in the power spectra, which suggests the presence of periodical coherent features for almost all configurations. Algorithms have been developed to identify and track large periodic traveling coherent structures from the statistically independent S-PIV realizations. Flow temporal evolution is reconstructed with a POD-based method, providing an additional tool for the understanding of flow topologies and numerical codes validation.

  7. Burner rig evaluation of thermal barrier coating

    SciTech Connect

    Gedwill, M.A.

    1981-02-01

    Eight plasma sprayed bond coatings were evaluated for their potential use with ZrO/sub 2/-Y/sub 2/O/sub 3/ thermal barrier coatings (TBCs) which are being developed for coal derived fuel fired gas turbines. Longer TBC lives in cyclic burner rig oxidation to 1050 C were achieved with the more oxidation resistant bond coatings. These were Ni-14.1Cr-13.4A1-0.10Ar, Ni-14.1C4-14.4Al-0.16Y, and Ni-15.8Cr-12.8Al-0.36Y on Rene 41. The TBC systems performed best when 0.015-cm thick bond coatings were employed that were sprayed at 20 kW using argon 3.5v/o hydrogen. Cycling had a more life limiting influence on the TBC than accumulated time at 1050 C.

  8. 33. LOOKING EAST AT SPARE BUTTERFLY VALVE FOR BURNER CONNECTION ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    33. LOOKING EAST AT SPARE BUTTERFLY VALVE FOR BURNER CONNECTION ON HOT BLAST STOVES. (Jet Lowe) - U.S. Steel Duquesne Works, Blast Furnace Plant, Along Monongahela River, Duquesne, Allegheny County, PA

  9. Low NO[sub x] gas burner apparatus and methods

    SciTech Connect

    Schwartz, R.E.; Napier, S.O.; Jones, A.P.

    1994-01-04

    Improved gas burner apparatus and methods of burning fuel gas-air mixtures are provided whereby flue gases having low NO[sub x] contents are formed. The burner apparatus includes a refractory burner tile having an air discharge opening therein and a wall surrounding the opening which extends into the furnace space and provides a mixing zone therein. At least one passage is formed in the burner tile which opens into the mixing zone and fuel gas is jetted through the passage whereby flue gases are drawn there through and a fuel gas-flue gases mixture is discharged into the mixing zone. The fuel gas-flue gases mixture is swirled in the mixing zone and mixes with air therein, and the resulting mixture is discharged and burned in a primary reaction zone in the furnace space. 11 figs.

  10. Space Experiment Concepts: Cup-Burner Flame Extinguishment

    NASA Technical Reports Server (NTRS)

    Takahashi, Fumiaki

    2004-01-01

    Space Fire Suppression Processes & Technology. Space experiment concepts of cup-burner flame extinguishment have been conceived to address to the key issues (i.e., organizing questions) in space fire suppression. Cup-burner flame extinguishment experiment can reveal physical and chemical suppression processes and provide agent effectiveness data useful for technology development of space fire suppression systems in various reduced-gravity platforms.

  11. Computational Fluid Dynamics Based Investigation of Sensitivity of Furnace Operational Conditions to Burner Flow Controls

    SciTech Connect

    Marc Cremer; Dave Wang; Connie Senior; Andrew Chiodo; Steven Hardy; Paul Wolff

    2005-07-01

    This is the Final Technical Report for DOE Cooperative Agreement No: DE-FC26-02NT41580. The goal of this project was to systematically assess the sensitivity of furnace operational conditions to burner air and fuel flows in coal fired utility boilers. The focus of this project was to quantify the potential impacts of ''fine level'' controls rather than that of ''coarse level'' controls (i.e. combustion tuning). Although it is well accepted that combustion tuning will generally improve efficiency and emissions of an ''out of tune'' boiler, it is not as well understood what benefits can be derived through active multiburner measurement and control systems in boiler that has coarse level controls. The approach used here was to utilize existing baseline furnace models that have been constructed using Reaction Engineering International's (REI) computational fluid dynamics (CFD) software. Using CFD analyses provides the ability to carry out a carefully controlled virtual experiment to characterize the sensitivity of NOx emissions, unburned carbon (UBC), furnace exit CO (FECO), furnace exit temperature (FEGT), and waterwall deposition to burner air and fuel flow rates. The Electric Power Research Institute (EPRI) provided co-funding for this program, and instrument and controls experts from EPRI's Instrument and Controls (I&C) Center have been active participants in this project. CFD simulations were completed for five coal fired boilers as planned: (1) 150 MW wall fired, (2) 500 MW opposed wall fired, (3) 600 MW T-Fired, (4) 330 MW cyclone-fired, and (5) 200 MW T-Fired Twin Furnace. In all cases, the unit selections were made in order to represent units that were descriptive of the utility industry as a whole. For each unit, between 25 and 44 furnace simulations were completed in order to evaluate impacts of burner to burner variations in: (1) coal and primary air flow rate, and (2) secondary air flow rate. The parametric matrices of cases that were completed were

  12. Design and characterization of a linear Hencken-type burner.

    PubMed

    Campbell, M F; Bohlin, G A; Schrader, P E; Bambha, R P; Kliewer, C J; Johansson, K O; Michelsen, H A

    2016-11-01

    We have designed and constructed a Hencken-type burner that produces a 38-mm-long linear laminar partially premixed co-flow diffusion flame. This burner was designed to produce a linear flame for studies of soot chemistry, combining the benefit of the conventional Hencken burner's laminar flames with the advantage of the slot burner's geometry for optical measurements requiring a long interaction distance. It is suitable for measurements using optical imaging diagnostics, line-of-sight optical techniques, or off-axis optical-scattering methods requiring either a long or short path length through the flame. This paper presents details of the design and operation of this new burner. We also provide characterization information for flames produced by this burner, including relative flow-field velocities obtained using hot-wire anemometry, temperatures along the centerline extracted using direct one-dimensional coherent Raman imaging, soot volume fractions along the centerline obtained using laser-induced incandescence and laser extinction, and transmission electron microscopy images of soot thermophoretically sampled from the flame.

  13. Design and characterization of a linear Hencken-type burner

    NASA Astrophysics Data System (ADS)

    Campbell, M. F.; Bohlin, G. A.; Schrader, P. E.; Bambha, R. P.; Kliewer, C. J.; Johansson, K. O.; Michelsen, H. A.

    2016-11-01

    We have designed and constructed a Hencken-type burner that produces a 38-mm-long linear laminar partially premixed co-flow diffusion flame. This burner was designed to produce a linear flame for studies of soot chemistry, combining the benefit of the conventional Hencken burner's laminar flames with the advantage of the slot burner's geometry for optical measurements requiring a long interaction distance. It is suitable for measurements using optical imaging diagnostics, line-of-sight optical techniques, or off-axis optical-scattering methods requiring either a long or short path length through the flame. This paper presents details of the design and operation of this new burner. We also provide characterization information for flames produced by this burner, including relative flow-field velocities obtained using hot-wire anemometry, temperatures along the centerline extracted using direct one-dimensional coherent Raman imaging, soot volume fractions along the centerline obtained using laser-induced incandescence and laser extinction, and transmission electron microscopy images of soot thermophoretically sampled from the flame.

  14. Numerical predictions of burner performance during pulverized coal combustion

    SciTech Connect

    Zarnescu, V.; Pisupati, S.V.

    1999-07-01

    The performance of four burners in terms of temperature and velocity profiles, residence time and NO{sub x} emissions was predicted using numerical simulations and a two-dimensional model for pulverized coal combustion. Numerical predictions for two burners used in a pilot-scale 0.5 MM Btu/hr (146.5 kW) down-fired combustor (DFC) are presented. Two other burner configurations were evaluated and compared with the ones used with the DFC for attaining lower NO{sub x} levels. Simulations were conducted for both coal and coal-water slurry as primary fuels. A sensitivity analysis of predictions with respect to variations of the model parameters was performed. The results suggest that the higher NO{sub x} reduction with one of the burners used in the DFC is due to the improved near-burner aerodynamics and to better flame attachment. These improved conditions are influenced by a combination of geometric and flow parameters, such as burner dimensions, quart diameter, inlet velocity, inlet temperature and swirl number.

  15. Advanced burner test reactor preconceptual design report.

    SciTech Connect

    Chang, Y. I.; Finck, P. J.; Grandy, C.; Cahalan, J.; Deitrich, L.; Dunn, F.; Fallin, D.; Farmer, M.; Fanning, T.; Kim, T.; Krajtl, L.; Lomperski, S.; Moisseytsev, A.; Momozaki, Y.; Sienicki, J.; Park, Y.; Tang, Y.; Reed, C.; Tzanos, C; Wiedmeyer, S.; Yang, W.; Chikazawa, Y.; JAEA

    2008-12-16

    The goals of the Global Nuclear Energy Partnership (GNEP) are to expand the use of nuclear energy to meet increasing global energy demand, to address nuclear waste management concerns and to promote non-proliferation. Implementation of the GNEP requires development and demonstration of three major technologies: (1) Light water reactor (LWR) spent fuel separations technologies that will recover transuranics to be recycled for fuel but not separate plutonium from other transuranics, thereby providing proliferation-resistance; (2) Advanced Burner Reactors (ABRs) based on a fast spectrum that transmute the recycled transuranics to produce energy while also reducing the long term radiotoxicity and decay heat loading in the repository; and (3) Fast reactor fuel recycling technologies to recover and refabricate the transuranics for repeated recycling in the fast reactor system. The primary mission of the ABR Program is to demonstrate the transmutation of transuranics recovered from the LWR spent fuel, and hence the benefits of the fuel cycle closure to nuclear waste management. The transmutation, or burning of the transuranics is accomplished by fissioning and this is most effectively done in a fast spectrum. In the thermal spectrum of commercial LWRs, some transuranics capture neutrons and become even heavier transuranics rather than being fissioned. Even with repeated recycling, only about 30% can be transmuted, which is an intrinsic limitation of all thermal spectrum reactors. Only in a fast spectrum can all transuranics be effectively fissioned to eliminate their long-term radiotoxicity and decay heat. The Advanced Burner Test Reactor (ABTR) is the first step in demonstrating the transmutation technologies. It directly supports development of a prototype full-scale Advanced Burner Reactor, which would be followed by commercial deployment of ABRs. The primary objectives of the ABTR are: (1) To demonstrate reactor-based transmutation of transuranics as part of an

  16. Enhanced Combustion Low NOx Pulverized Coal Burner

    SciTech Connect

    David Towle; Richard Donais; Todd Hellewell; Robert Lewis; Robert Schrecengost

    2007-06-30

    For more than two decades, Alstom Power Inc. (Alstom) has developed a range of low cost, infurnace technologies for NOx emissions control for the domestic U.S. pulverized coal fired boiler market. This includes Alstom's internally developed TFS 2000{trademark} firing system, and various enhancements to it developed in concert with the U.S. Department of Energy. As of the date of this report, more than 270 units representing approximately 80,000 MWe of domestic coal fired capacity have been retrofit with Alstom low NOx technology. Best of class emissions range from 0.18 lb/MMBtu for bituminous coal to 0.10 lb/MMBtu for subbituminous coal, with typical levels at 0.24 lb/MMBtu and 0.13 lb/MMBtu, respectively. Despite these gains, NOx emissions limits in the U.S. continue to ratchet down for new and existing boiler equipment. On March 10, 2005, the Environmental Protection Agency (EPA) announced the Clean Air Interstate Rule (CAIR). CAIR requires 25 Eastern states to reduce NOx emissions from the power generation sector by 1.7 million tons in 2009 and 2.0 million tons by 2015. Low cost solutions to meet such regulations, and in particular those that can avoid the need for a costly selective catalytic reduction system (SCR), provide a strong incentive to continue to improve low NOx firing system technology to meet current and anticipated NOx control regulations. The overall objective of the work is to develop an enhanced combustion, low NOx pulverized coal burner, which, when integrated with Alstom's state-of-the-art, globally air staged low NOx firing systems will provide a means to achieve: Less than 0.15 lb/MMBtu NOx emissions when firing a high volatile Eastern or Western bituminous coal, Less than 0.10 lb/MMBtu NOx emissions when firing a subbituminous coal, NOx reduction costs at least 25% lower than the costs of an SCR, Validation of the NOx control technology developed through large (15 MWt) pilot scale demonstration, and Documentation required for economic

  17. Dual-water mixture fuel burner

    DOEpatents

    Brown, Thomas D.; Reehl, Douglas P.; Walbert, Gary F.

    1986-08-05

    A coal-water mixture (CWM) burner includes a conically shaped rotating cup into which fuel comprised of coal particles suspended in a slurry is introduced via a first, elongated inner tube coupled to a narrow first end portion of the cup. A second, elongated outer tube is coaxially positioned about the first tube and delivers steam to the narrow first end of the cup. The fuel delivery end of the inner first tube is provided with a helical slot on its lateral surface for directing the CWM onto the inner surface of the rotating cup in the form of a uniform, thin sheet which, under the influence of the cup's centrifugal force, flows toward a second, open, expanded end portion of the rotating cup positioned immediately adjacent to a combustion chamber. The steam delivered to the rotating cup wets its inner surface and inhibits the coal within the CWM from adhering to the rotating cup. A primary air source directs a high velocity air flow coaxially about the expanded discharge end of the rotating cup for applying a shear force to the CWM in atomizing the fuel mixture for improved combustion. A secondary air source directs secondary air into the combustion chamber adjacent to the outlet of the rotating cup at a desired pitch angle relative to the fuel mixture/steam flow to promote recirculation of hot combustion gases within the ignition zone for increased flame stability.

  18. OPTIMIZATION OF COAL PARTICLE FLOW PATTERNS IN LOW NOX BURNERS

    SciTech Connect

    Jost O.L. Wendt; Gregory E. Ogden; Jennifer Sinclair; Stephanus Budilarto

    2001-09-04

    It is well understood that the stability of axial diffusion flames is dependent on the mixing behavior of the fuel and combustion air streams. Combustion aerodynamic texts typically describe flame stability and transitions from laminar diffusion flames to fully developed turbulent flames as a function of increasing jet velocity. Turbulent diffusion flame stability is greatly influenced by recirculation eddies that transport hot combustion gases back to the burner nozzle. This recirculation enhances mixing and heats the incoming gas streams. Models describing these recirculation eddies utilize conservation of momentum and mass assumptions. Increasing the mass flow rate of either fuel or combustion air increases both the jet velocity and momentum for a fixed burner configuration. Thus, differentiating between gas velocity and momentum is important when evaluating flame stability under various operating conditions. The research efforts described herein are part of an ongoing project directed at evaluating the effect of flame aerodynamics on NO{sub x} emissions from coal fired burners in a systematic manner. This research includes both experimental and modeling efforts being performed at the University of Arizona in collaboration with Purdue University. The objective of this effort is to develop rational design tools for optimizing low NO{sub x} burners. Experimental studies include both cold-and hot-flow evaluations of the following parameters: primary and secondary inlet air velocity, coal concentration in the primary air, coal particle size distribution and flame holder geometry. Hot-flow experiments will also evaluate the effect of wall temperature on burner performance.

  19. Flame quality monitor system for fixed firing rate oil burners

    DOEpatents

    Butcher, Thomas A.; Cerniglia, Philip

    1992-01-01

    A method and apparatus for determining and indicating the flame quality, or efficiency of the air-fuel ratio, in a fixed firing rate heating unit, such as an oil burning furnace, is provided. When the flame brightness falls outside a preset range, the flame quality, or excess air, has changed to the point that the unit should be serviced. The flame quality indicator output is in the form of lights mounted on the front of the unit. A green light indicates that the flame is about in the same condition as when the burner was last serviced. A red light indicates a flame which is either too rich or too lean, and that servicing of the burner is required. At the end of each firing cycle, the flame quality indicator goes into a hold mode which is in effect during the period that the burner remains off. A yellow or amber light indicates that the burner is in the hold mode. In this mode, the flame quality lights indicate the flame condition immediately before the burner turned off. Thus the unit can be viewed when it is off, and the flame condition at the end of the previous firing cycle can be observed.

  20. Advanced Burner Reactor Preliminary NEPA Data Study.

    SciTech Connect

    Briggs, L. L.; Cahalan, J. E.; Deitrich, L. W.; Fanning, T. H.; Grandy, C.; Kellogg, R.; Kim, T. K.; Yang, W. S.; Nuclear Engineering Division

    2007-10-15

    The Global Nuclear Energy Partnership (GNEP) is a new nuclear fuel cycle paradigm with the goals of expanding the use of nuclear power both domestically and internationally, addressing nuclear waste management concerns, and promoting nonproliferation. A key aspect of this program is fast reactor transmutation, in which transuranics recovered from light water reactor spent fuel are to be recycled to create fast reactor transmutation fuels. The benefits of these fuels are to be demonstrated in an Advanced Burner Reactor (ABR), which will provide a representative environment for recycle fuel testing, safety testing, and modern fast reactor design and safeguard features. Because the GNEP programs will require facilities which may have an impact upon the environment within the meaning of the National Environmental Policy Act of 1969 (NEPA), preparation of a Programmatic Environmental Impact Statement (PEIS) for GNEP is being undertaken by Tetra Tech, Inc. The PEIS will include a section on the ABR. In support of the PEIS, the Nuclear Engineering Division of Argonne National Laboratory has been asked to provide a description of the ABR alternative, including graphics, plus estimates of construction and operations data for an ABR plant. The compilation of this information is presented in the remainder of this report. Currently, DOE has started the process of engaging industry on the design of an Advanced Burner Reactor. Therefore, there is no specific, current, vendor-produced ABR design that could be used for this PEIS datacall package. In addition, candidate sites for the ABR vary widely as to available water, geography, etc. Therefore, ANL has based its estimates for construction and operations data largely on generalization of available information from existing plants and from the environmental report assembled for the Clinch River Breeder Reactor Plant (CRBRP) design [CRBRP, 1977]. The CRBRP environmental report was chosen as a resource because it thoroughly

  1. Low NO{sub x}/SO{sub x} Burner retrofit for utility cyclone boilers. Quarterly technical progress report, October--December 1990

    SciTech Connect

    Not Available

    1990-12-31

    Cyclone furnaces operate with high excess air and at high temperature. The heat release during combustion is very high and as a result the boiler volume is much smaller than would be found in a conventional pc-fired system. The Marion Unit 1 boiler, at the level of the cyclone entry, has a small cross-section; about 5-feet in depth and about 20-feet in width. A boiler schematic showing the LNS Burner and relative location of the superheater region and overfire air ports is shown in Figure 1. The LNS Burner`s combustion process is fundamentally different from that of the cyclone, and the combustion products are also different. The LNS Burner products enter the boiler as hot, fuel-rich gases. Additional overfire air must be added to complete this combustion step with care taken to avoid the formation of thermal NO{sub x}. If done correctly, S0{sub 2} is controlled and significant NO{sub x} reductions are achieved. Because of the small boiler volume, flow modelling was found to be necessary to insure that adequate mixing of LNS Burner combustion products with air can be accomplished to achieve NO{sub x} emissions goals. Design requirements for the air injection system for the Marion boiler were developed using FLUENT, a commercially available computational fluid dynamics (CFD) code. A series of runs were made to obtain a design for final air injection that met the process design goals as closely as possible.

  2. Slurry burner for mixture of carbonaceous material and water

    DOEpatents

    Nodd, D.G.; Walker, R.J.

    1985-11-05

    The present invention is intended to overcome the limitations of the prior art by providing a fuel burner particularly adapted for the combustion of carbonaceous material-water slurries which includes a stationary high pressure tip-emulsion atomizer which directs a uniform fuel into a shearing air flow as the carbonaceous material-water slurry is directed into a combustion chamber, inhibits the collection of unburned fuel upon and within the atomizer, reduces the slurry to a collection of fine particles upon discharge into the combustion chamber, and regulates the operating temperature of the burner as well as primary air flow about the burner and into the combustion chamber for improved combustion efficiency, no atomizer plugging and enhanced flame stability.

  3. User guide to the Burner Engineering Research Laboratory

    SciTech Connect

    Fornaciari, N.; Schefer, R.; Paul, P.; Lubeck, C.; Sanford, R.; Claytor, L.

    1994-11-01

    The Burner Engineering Research Laboratory (BERL) was established with the purpose of providing a facility where manufacturers and researchers can study industrial natural gas burners using conventional and laser-based diagnostics. To achieve this goal, an octagonal furnace enclosure with variable boundary conditions and optical access that can accommodate burners with firing rates up to 2.5 MMBtu per hour was built. In addition to conventional diagnostic capabilities like input/output measurements, exhaust gas monitoring, suction pyrometry and in-furnace gas sampling, laser-based diagnostics available at BERL include planar Mie scattering, laser Doppler velocimetry and laser-induced fluorescence. This paper gives an overview of the operation of BERL and a description of the diagnostic capabilities and an estimate of the time required to complete each diagnostic for the potential user who is considering submitting a proposal.

  4. Identifying Dark Matter Burners in the Galactic Center

    SciTech Connect

    Moskalenko, Igor V.; Wai, Lawrence L.

    2007-04-16

    If the supermassive black hole (SMBH) at the center of our Galaxy grew adiabatically, then a dense ''spike'' of dark matter is expected to have formed around it. Assuming that dark matter is composed primarily of weakly interacting massive particles (WIMPs), a star orbiting close enough to the SMBH can capture WIMPs at an extremely high rate. The stellar luminosity due to annihilation of captured WIMPs in the stellar core may be comparable to or even exceed the luminosity of the star due to thermonuclear burning. The model thus predicts the existence of unusual stars, i.e. ''WIMP burners'', in the vicinity of an adiabatically grown SMBH. We find that the most efficient WIMP burners are stars with degenerate electron cores, e.g. white dwarfs (WD) or degenerate cores with envelopes. If found, such stars would provide evidence for the existence of particle dark matter and could possibly be used to establish its density profile. In our previous paper we computed the luminosity from WIMP burning for a range of dark matter spike density profiles, degenerate core masses, and distances from the SMBH. Here we compare our results with the observed stars closest to the Galactic center and find that they could be consistent with WIMP burners in the form of degenerate cores with envelopes. We also cross-check the WIMP burner hypothesis with the EGRET observed flux of gamma-rays from the Galactic center, which imposes a constraint on the dark matter spike density profile and annihilation cross-section. We find that the EGRET data is consistent with the WIMP burner hypothesis. New high precision measurements by GLAST will confirm or set stringent limits on a dark matter spike at the Galactic center, which will in turn support or set stringent limits on the existence of WIMP burners at the Galactic center.

  5. Development of an air-atomized oil burner

    SciTech Connect

    Butcher, T.A.; Celebi, Y.

    1996-06-01

    A new concept for the design of a residential oil burner is presented involving a low pressure, air atomizing nozzle. Advantages of this approach, relative to conventional, pressure atomized burners include: ability to operate at very low excess air levels without smoke, ability to operate at low (and possibly variable) rates, reduced boiler fouling, and low NO{sub x}. The nozzle used is a low pressure, airblast atomizer which can achieve fuel spray drop sizes similar to conventional nozzles and very good combustion performance with air pressure as low as 5 inches of water (1.24 kPa). A burner head has been developed for this nozzle and combustion test results are presented in a wide variety of equipment including cast iron and steel boilers, warm air furnaces, and water heaters over the firing rate range 0.25 gph to 1.0 gph (10 to 41 kW). Beyond the nozzle and combustion head the burner system must be developed and two approaches have been taken. The first involves a small, brushless DC motor/fan combination which uses high fan speed to achieve air pressures from 7 to 9 inches of water (1.74 to 2.24 kPa). Fuel is delivered to the atomizer at less than 1 psig (6.9 kPa) using a solenoid pump and flow metering orifice. At 0.35 gph (14 kW) the electric power draw of this burner is less than 100 watts. In a second configuration a conventional motor is used with a single stage fan which develops 5 to 6 inches of water pressure (1.24 to 1.50 kPa) at similar firing rates. This burner uses a conventional type fuel pump and metering orifice to deliver fuel. The fuel pump is driven by the fan motor, very much like a conventional burner. This second configuration is seen as more attractive to the heating industry and is now being commercialized. Field tests with this burner have been conducted at 0.35 gph (14 kW) with a side-wall vented boiler/water storage tank combination.

  6. FIELD EVALUATION OF LOW-EMISSION COAL BURNER TECHNOLOGY ON UTILITY BOILERS VOLUME III. FIELD EVALUATIONS

    EPA Science Inventory

    The report gives results of field tests conducted to determine the emission characteristics of a Babcock and Wilcox Circular burner and Dual Register burner (DRB). The field tests were performed at two utility boilers, generally comparable in design and size except for the burner...

  7. 46 CFR 56.50-65 - Burner fuel-oil service systems.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 46 Shipping 2 2014-10-01 2014-10-01 false Burner fuel-oil service systems. 56.50-65 Section 56.50... SYSTEMS AND APPURTENANCES Design Requirements Pertaining to Specific Systems § 56.50-65 Burner fuel-oil service systems. (a) All discharge piping from the fuel oil service pumps to burners must be...

  8. Burner modifications for very cost effective NO{sub x} control

    SciTech Connect

    Melick, T.A.; Hensley, M.E.; Gustafson, D.A.

    1996-12-31

    The development of commercial Low NO{sub x} Burners has provided Energy and Environmental Research Corporation (EER) with the expertise to modify existing burner equipment to provide the controlled fuel/air mixing conditions required for low NO{sub x} combustion. This approach represents a viable alternative to a full burner retrofit for many applications. EER has modified burners to lower NO{sub x} emissions at Louisville Gas & Electric`s (LG&E) Cane Run Station and at Jamestown Board of Public Utilities (JBPU). This paper will discuss the method and results of these burner modifications.

  9. Burner modifications for very cost effective NO{sub x} control

    SciTech Connect

    Melick, T.A.; Hensley, M.E.; Gustafson, D.A.

    1996-12-31

    The development of commercial Low NO{sub x} Burners has provided Energy and Environmental Research Corporation (EER) with the expertise to modify existing burner equipment to provide the controlled fuel/air mixing conditions required for low NO{sub x} combustion. This approach represents a viable alternative to a full burner retrofit for many applications. EER has modified burners to lower NO{sub x} emissions at Louisville Gas and Electric`s (LG and E) Cane Run Station and at Jamestown Board of Public Utilities (JBPU). This paper will discuss the method and results of these burner modifications.

  10. Oxyhydrogen burner for low-temperature flame fusion

    NASA Astrophysics Data System (ADS)

    Ueltzen, M.; Brüggenkamp, T.; Franke, M.; Altenburg, H.

    1993-04-01

    An oxyhydrogen burner as described in this article enables the growth of crystals by Verneuil's technique at temperatures of about 1000 °C. The powder fed to the crystal passes along a low-temperature pathway through the flame, so that evaporation of volatile components is prevented. Low-temperature flame fusion of superconducting Y-Ba-cuprate is reported.

  11. Demonstration test of burner liner strain measurement systems: Interim results

    NASA Technical Reports Server (NTRS)

    Stetson, K. A.; Grant, H. P.

    1983-01-01

    Work is in progress to demonstrate two techniques for static strain measurements on a jet engine burner liner. Measurements are being made with a set of resistance strain gages made from Kanthal A-1 wire and via heterodyne speckle photogrammetry. The background of the program is presented along with current results.

  12. Camping Burner-Based Flame Emission Spectrometer for Classroom Demonstrations

    ERIC Educational Resources Information Center

    Ne´el, Bastien; Crespo, Gasto´n A.; Perret, Didier; Cherubini, Thomas; Bakker, Eric

    2014-01-01

    A flame emission spectrometer was built in-house for the purpose of introducing this analytical technique to students at the high school level. The aqueous sample is sprayed through a homemade nebulizer into the air inlet of a consumer-grade propane camping burner. The resulting flame is analyzed by a commercial array spectrometer for the visible…

  13. 40 CFR 266.102 - Permit standards for burners.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... MANAGEMENT FACILITIES Hazardous Waste Burned in Boilers and Industrial Furnaces § 266.102 Permit standards for burners. (a) Applicability—(1) General. Owners and operators of boilers and industrial furnaces... furnaces that burn hazardous waste are subject to the following provisions of part 264 of this...

  14. 40 CFR 266.102 - Permit standards for burners.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... MANAGEMENT FACILITIES Hazardous Waste Burned in Boilers and Industrial Furnaces § 266.102 Permit standards for burners. (a) Applicability—(1) General. Owners and operators of boilers and industrial furnaces... furnaces that burn hazardous waste are subject to the following provisions of part 264 of this...

  15. 40 CFR 266.102 - Permit standards for burners.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... MANAGEMENT FACILITIES Hazardous Waste Burned in Boilers and Industrial Furnaces § 266.102 Permit standards for burners. (a) Applicability—(1) General. Owners and operators of boilers and industrial furnaces... furnaces that burn hazardous waste are subject to the following provisions of part 264 of this...

  16. 40 CFR 266.102 - Permit standards for burners.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... MANAGEMENT FACILITIES Hazardous Waste Burned in Boilers and Industrial Furnaces § 266.102 Permit standards for burners. (a) Applicability—(1) General. Owners and operators of boilers and industrial furnaces... furnaces that burn hazardous waste are subject to the following provisions of part 264 of this...

  17. Demonstration test of burner liner strain measuring system

    NASA Technical Reports Server (NTRS)

    Stetson, K. A.

    1984-01-01

    A demonstration test was conducted for two systems of static strain measurement that had been shown to have potential for application jet engine combustors. A modified JT12D combustor was operated in a jet burner test stand while subjected simultaneously to both systems of instrumentation, i.e., Kanthal A-1 wire strain gages and laser speckle photography. A section of the burner was removed for installation and calibration of the wire gages, and welded back into the burner. The burner test rig was modified to provide a viewing port for the laser speckle photography such that the instrumented section could be observed during operation. Six out of ten wire gages survived testing and showed excellent repeatability. The extensive precalibration procedures were shown to be effective in compensating for the large apparent strains associated with these gages. Although all portions of the speckle photography system operated satisfactorily, a problem was encountered in the form of optical inhomogeneities in the hot, high-pressure gas flowing by the combustor case which generate large and random apparent strain distributions.

  18. How Efficient is a Laboratory Burner in Heating Water?

    ERIC Educational Resources Information Center

    Jansen, Michael P.

    1997-01-01

    Describes an experiment in which chemistry students determine the efficiency of a laboratory burner used to heat water. The reaction is assumed to be the complete combustion of methane, CH4. The experiment is appropriate for secondary school chemistry students familiar with heats of reaction and simple calorimetry. Contains pre-laboratory and…

  19. 6. View, flare and oxygen burner pad near southwest side ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    6. View, flare and oxygen burner pad near southwest side of Components Test Laboratory (T-27), looking northeast. Uphill and to the left of the flare is the Oxidizer Conditioning Structure (T-28D) and the Long-Term Oxidizer Silo (T-28B). - Air Force Plant PJKS, Systems Integration Laboratory, Waterton Canyon Road & Colorado Highway 121, Lakewood, Jefferson County, CO

  20. A burner for plasma-coal starting of a boiler

    NASA Astrophysics Data System (ADS)

    Peregudov, V. S.

    2008-04-01

    Advanced schemes of a plasma-coal burner with single-and two-stage chambers for thermochemical preparation of fuel are described. The factors causing it becoming contaminated with slag during oil-free starting of a boiler are considered, and methods for preventing this phenomenon are pointed out.

  1. [Burner head with high sensitivity in atomic absorption spectroscopy].

    PubMed

    Feng, X; Yang, Y

    1998-12-01

    This paper presents a burner head with gas-sample separate entrance and double access, which is used for atomic absorption spectroscopy. According to comparison and detection, the device can improve sensitivity by a factor of 1 to 5. In the meantime it has properties of high stability and resistance to interference.

  2. NOx Emissions from a Lobed Fuel Injector/Burner

    NASA Technical Reports Server (NTRS)

    Mitchell, M. G.; Smith, L. L.; Karagozian, A. R.; Smith, O. I.

    1996-01-01

    The present experimental study examines the performance of a novel fuel injector/burner configuration with respect to reduction in nitrogen oxide NOx emissions. The lobed injector/burner is a device in which very rapid initial mixing of reactants can occur through strong streamwise vorticity generation, producing high fluid mechanical strain rates which can delay ignition and thus prevent the formation of stoichiometric diffusion flames. Further downstream of the rapid mixing region. this flowfield produces a reduced effective strain rate, thus allowing ignition to occur in a premixed mode, where it is possible for combustion to take place under locally lean conditions. potentially reducing NOx emissions from the burner. The present experiments compare NO/NO2/NOx emissions from a lobed fuel injector configuration with emissions from a straight fuel injector to determine the net effect of streamwise vorticity generation. Preliminary results show that the lobed injector geometry can produce lean premixed flame structures. while for comparable flow conditions, a straight fuel injector geometry produces much longer. sooting diffusion flames or slightly rich pre-mixed flames. NO measurements show that emissions from a lobed fuel injector/burner can be made significantly lower than from a straight fuel injector under comparable flow conditions.

  3. DEMONSTRATION BULLETIN: THE PYRETRON OXYGEN BURNER, AMERICAN COMBUSTION TECHNOLOGIES, INC.

    EPA Science Inventory

    The Pyretron is a burner which is designed to allow for the injection of oxygen into the combustion air stream for the purpose of increasing the efficiency of a hazardous waste incinerator. The SITE demonstration of the Pyretron took place at the U.S. EPA's Combustion Re...

  4. Study of the Effects of Ambient Conditions Upon the Performance of Fan Powered, Infrared Natural Gas Burners

    SciTech Connect

    Clark Atlanta University

    2002-12-02

    The objective of this investigation was to characterize the operation of a fan-powered, infrared burner (IR burner) at various gas compositions and ambient conditions, develop numerical model to simulate the burner performances, and provide design guidelines for appliances containing PIR burners for satisfactory performance.

  5. VARIABLE FIRING RATE OIL BURNER USING PULSE FUEL FLOW CONTROL.

    SciTech Connect

    KRISHNA,C.R.; BUTCHER,T.A.; KAMATH,B.R.

    2004-10-01

    The residential oil burner market is currently dominated by the pressure-atomized retention head burner, which has an excellent reputation for reliability and efficiency. In this burner, oil is delivered to a fuel nozzle at pressures from 100 to 150 psi. In addition, to atomizing the fuel, the small, carefully controlled size of the nozzle exit orifice serves to control the burner firing rate. Burners of this type are currently available at firing rates of more than 0.5 gallons-per-hour (70,000 Btu/hr). Nozzles have been made for lower firing rates, but experience has shown that such nozzles suffer rapid fouling of the necessarily small passages, leading to bad spray patterns and poor combustion performance. Also, traditionally burners and the nozzles are oversized to exceed the maximum demand. Typically, this is figured as follows. The heating load of the house on the coldest day for the location is considered to define the maximum heat load. The contractor or installer adds to this to provide a safety margin and for future expansion of the house. If the unit is a boiler that provides domestic hot water through the use of a tankless heating coil, the burner capacity is further increased. On the contrary, for a majority of the time, the heating system is satisfying a much smaller load, as only rarely do all these demands add up. Consequently, the average output of the heating system has to be much less than the design capacity and this is accomplished by start and stop cycling operation of the system so that the time-averaged output equals the demand. However, this has been demonstrated to lead to overall efficiencies lower than the steady-state efficiency. Therefore, the two main reasons for the current practice of using oil burners much larger than necessary for space heating are the unavailability of reliable low firing rate oil burners and the desire to assure adequate input rate for short duration, high draw domestic hot water loads. One approach to solve this

  6. A stochastic model of turbulent mixing with chemical reaction: Nitric oxide formulation in a plug-flow burner

    NASA Technical Reports Server (NTRS)

    Flagan, R. C.; Appleton, J. P.

    1973-01-01

    A stochastic model of turbulent mixing was developed for a reactor in which mixing is represented by n-body fluid particle interactions. The model was used to justify the assumption (made in previous investigations of the role of turbulent mixing on burner generated thermal nitric oxide and carbon monoxide emissions) that for a simple plug flow reactor, composition nonuniformities can be described by a Gaussian distribution function in the local fuel:air equivalence ratio. Recent extensions of this stochastic model to include the combined effects of turbulent mixing and secondary air entrainment on thermal generation of nitric oxide in gas turbine combustors are discussed. Finally, rate limited upper and lower bounds of the nitric oxide produced by thermal fixation of molecular nitrogen and oxidation of organically bound fuel nitrogen are estimated on the basis of the stochastic model for a plug flow burner; these are compared with experimental measurements obtained using a laboratory burner operated over a wide range of test conditions; good agreement is obtained.

  7. Innovative Clean Coal Technology (ICCT): 500-MW demonstration of advanced wall-fired cmbustion techniques for the reduction of nitrogen oxide (NO{sub x}) emissions from coal-fired boilers. Field chemical emissions monitoring, Overfire air and overfire air/low NO{sub x} burner operation: Final report

    SciTech Connect

    1993-12-31

    This report summarizes data gathered by Radian Corporation at a coal-fired power plant, designated Site 16, for a program sponsored by the United States Department of Energy (DOE), Southern Company Services (SCS), and the Electric Power Research Institute (EPRI). Concentrations of selected inorganic and organic substances were measured in the process and discharge streams of the plant operating under two different types of combustion modifications: overfire air (OFA) and a combination of overfire air with low-NO{sub x} burners (OFA/LNB). Information contained in this report will allow DOE and EPRI to determine the effects of low-NO{sub x} modifications on plant emissions and discharges. Sampling was performed on an opposed wall-fired boiler burning medium-sulfur bituminous coal. Emissions were controlled by electrostatic precipitators (ESPs). The testing was conducted in two distinct sampling periods, with the OFA test performed in March of 1991 and the OFA/LNB test performed in May of 1993. Specific objectives were: to quantify emissions of target substances from the stack; to determine the efficiency of the ESPs for removing the target substances; and to determine the fate of target substances in the various plant discharge streams.

  8. NUMERICAL SIMULATION OF NATURAL GAS-SWIRL BURNER

    SciTech Connect

    Ala Qubbaj

    2005-03-01

    A numerical simulation of a turbulent natural gas jet diffusion flame at a Reynolds number of 9000 in a swirling air stream is presented. The numerical computations were carried out using the commercially available software package CFDRC. The instantaneous chemistry model was used as the reaction model. The thermal, composition, flow (velocity), as well as stream function fields for both the baseline and air-swirling flames were numerically simulated in the near-burner region, where most of the mixing and reactions occur. The results were useful to interpret the effects of swirl in enhancing the mixing rates in the combustion zone as well as in stabilizing the flame. The results showed the generation of two recirculating regimes induced by the swirling air stream, which account for such effects. The present investigation will be used as a benchmark study of swirl flow combustion analysis as a step in developing an enhanced swirl-cascade burner technology.

  9. Numerical simulation of radiative heat loss in an experimental burner

    SciTech Connect

    Cloutman, L.D.; Brookshaw, L.

    1993-09-01

    We describe the numerical algorithm used in the COYOTE two-dimensional, transient, Eulerian hydrodynamics program to allow for radiative heat losses in simulations of reactive flows. The model is intended primarily for simulations of industrial burners, but it is not confined to that application. It assumes that the fluid is optically thin and that photons created by the fluid immediately escape to free space or to the surrounding walls, depending upon the application. The use of the model is illustrated by simulations of a laboratory-scale experimental burner. We find that the radiative heat losses reduce the local temperature of the combustion products by a modest amount, typically on the order of 50 K. However, they have a significant impact on NO{sub x} production.

  10. OPTIMIZATION OF COAL PARTICLE FLOW PATTERNS IN LOW NOX BURNERS

    SciTech Connect

    Jost O.L. Wendt; Gregory E. Ogden; Jennifer Sinclair; Caner Yurteri

    2001-08-20

    The proposed research is directed at evaluating the effect of flame aerodynamics on NO{sub x} emissions from coal fired burners in a systematic manner. This fundamental research includes both experimental and modeling efforts being performed at the University of Arizona in collaboration with Purdue University. The objective of this effort is to develop rational design tools for optimizing low NO{sub x} burners to the kinetic emissions limit (below 0.2 lb./MMBTU). Experimental studies include both cold and hot flow evaluations of the following parameters: flame holder geometry, secondary air swirl, primary and secondary inlet air velocity, coal concentration in the primary air and coal particle size distribution. Hot flow experiments will also evaluate the effect of wall temperature on burner performance. Cold flow studies will be conducted with surrogate particles as well as pulverized coal. The cold flow furnace will be similar in size and geometry to the hot-flow furnace but will be designed to use a laser Doppler velocimeter/phase Doppler particle size analyzer. The results of these studies will be used to predict particle trajectories in the hot-flow furnace as well as to estimate the effect of flame holder geometry on furnace flow field. The hot-flow experiments will be conducted in a novel near-flame down-flow pulverized coal furnace. The furnace will be equipped with externally heated walls. Both reactors will be sized to minimize wall effects on particle flow fields. The cold-flow results will be compared with Fluent computation fluid dynamics model predictions and correlated with the hot-flow results with the overall goal of providing insight for novel low NO{sub x} burner geometry's.

  11. Controversy of the year. Biomedical ethics on the front burner.

    PubMed

    2000-12-22

    CONTROVERSY OF THE YEAR: Biomedical Ethics on the Front Burner It was a hot year for debates over research ethics. Controversy erupted in late 1999 after the death of 18-year-old Jesse Gelsinger in a gene-therapy clinical trial at the University of Pennsylvania. Because Penn and one of its clinicians had a financial stake in a gene-therapy company, questions about potential conflicts of interest arose at once.

  12. Downhole burner systems and methods for heating subsurface formations

    DOEpatents

    Farmayan, Walter Farman; Giles, Steven Paul; Brignac, Jr., Joseph Phillip; Munshi, Abdul Wahid; Abbasi, Faraz; Clomburg, Lloyd Anthony; Anderson, Karl Gregory; Tsai, Kuochen; Siddoway, Mark Alan

    2011-05-31

    A gas burner assembly for heating a subsurface formation includes an oxidant conduit, a fuel conduit, and a plurality of oxidizers coupled to the oxidant conduit. At least one of the oxidizers includes a mix chamber for mixing fuel from the fuel conduit with oxidant from the oxidant conduit, an igniter, and a shield. The shield includes a plurality of openings in communication with the oxidant conduit. At least one flame stabilizer is coupled to the shield.

  13. T-Burner Testing of Metallized Solid Propellants

    DTIC Science & Technology

    1974-10-01

    are those associated with velocity coupling and large variations in the measured frequency. To illustrate possible techniques for accounting for these...Standardization of Combustion Insta- bility Measurements in the T-Burner, an ad hoc committee organized by the ICRPG Working Group on Solid Propellant... measurements of the response of a burning solid propellant to sinusoidal oscillations in the near flow field. Besides its place in re- search, it has

  14. The BNL fan-atomized burner system prototype

    SciTech Connect

    Butcher, T.A.; Celebi, Y.

    1995-04-01

    Brookhaven National Laboratory (BNL) has a continuing interest in the development of advanced oil burners which can provide new capabilities not currently available with pressure atomized, retention head burners. Specifically program goals include: the ability to operate at firing rates as low as 0.25 gph; the ability to operate with very low excess air levels for high steady state efficiency and to minimize formation of sulfuric acid and iron sulfate fouling; low emissions of smoke, CO, and NO{sub x} even at very low excess air levels; and the potential for modulation - either staged firing or continuous modulation. In addition any such advanced burner must have production costs which would be sufficiently attractive to allow commercialization. The primary motivation for all work sponsored by the US DOE is, of course, improved efficiency. With existing boiler and furnace models this can be achieved through down-firing and low excess air operation. Also, with low excess air operation fouling and efficiency degradation due to iron-sulfate scale formation are reduced.

  15. Design and analysis of the federal aviation administration next generation fire test burner

    NASA Astrophysics Data System (ADS)

    Ochs, Robert Ian

    The United States Federal Aviation Administration makes use of threat-based fire test methods for the certification of aircraft cabin materials to enhance the level of safety in the event of an in-flight or post-crash fire on a transport airplane. The global nature of the aviation industry results in these test methods being performed at hundreds of laboratories around the world; in some cases testing identical materials at multiple labs but yielding different results. Maintenance of this standard for an elevated level of safety requires that the test methods be as well defined as possible, necessitating a comprehensive understanding of critical test method parameters. The tests have evolved from simple Bunsen burner material tests to larger, more complicated apparatuses, requiring greater understanding of the device for proper application. The FAA specifies a modified home heating oil burner to simulate the effects of large, intense fires for testing of aircraft seat cushions, cargo compartment liners, power plant components, and thermal acoustic insulation. Recently, the FAA has developed a Next Generation (NexGen) Fire Test burner to replace the original oil burner that has become commercially unavailable. The NexGen burner design is based on the original oil burner but with more precise control of the air and fuel flow rates with the addition of a sonic nozzle and a pressurized fuel system. Knowledge of the fundamental flow properties created by various burner configurations is desired to develop an updated and standardized burner configuration for use around the world for aircraft materials fire testing and airplane certification. To that end, the NexGen fire test burner was analyzed with Particle Image Velocimetry (PIV) to resolve the non-reacting exit flow field and determine the influence of the configuration of burner components. The correlation between the measured flow fields and the standard burner performance metrics of flame temperature and

  16. Computational investigations of low-emission burner facilities for char gas burning in a power boiler

    NASA Astrophysics Data System (ADS)

    Roslyakov, P. V.; Morozov, I. V.; Zaychenko, M. N.; Sidorkin, V. T.

    2016-04-01

    Various variants for the structure of low-emission burner facilities, which are meant for char gas burning in an operating TP-101 boiler of the Estonia power plant, are considered. The planned increase in volumes of shale reprocessing and, correspondingly, a rise in char gas volumes cause the necessity in their cocombustion. In this connection, there was a need to develop a burner facility with a given capacity, which yields effective char gas burning with the fulfillment of reliability and environmental requirements. For this purpose, the burner structure base was based on the staging burning of fuel with the gas recirculation. As a result of the preliminary analysis of possible structure variants, three types of early well-operated burner facilities were chosen: vortex burner with the supply of recirculation gases into the secondary air, vortex burner with the baffle supply of recirculation gases between flows of the primary and secondary air, and burner facility with the vortex pilot burner. Optimum structural characteristics and operation parameters were determined using numerical experiments. These experiments using ANSYS CFX bundled software of computational hydrodynamics were carried out with simulation of mixing, ignition, and burning of char gas. Numerical experiments determined the structural and operation parameters, which gave effective char gas burning and corresponded to required environmental standard on nitrogen oxide emission, for every type of the burner facility. The burner facility for char gas burning with the pilot diffusion burner in the central part was developed and made subject to computation results. Preliminary verification nature tests on the TP-101 boiler showed that the actual content of nitrogen oxides in burner flames of char gas did not exceed a claimed concentration of 150 ppm (200 mg/m3).

  17. Premixed burner studies of NO{sub x} formation and control

    SciTech Connect

    Casleton, K.H.; Straub, D.L.; Moran, C.; Stephens, J.W.

    1993-11-01

    One of the primary reasons for using this type of premixed, flat flame burner is that it is essentially one-dimensional (1-D), i.e., that important parameters such as temperature are nearly constant in regions near the central vertical axis of the burner for a fixed height above the burner surface. As a result of this 1-D nature, computer codes such as Sandia National Laboratory`s PREMIX can be used to model the important chemical interactions involved in the combustion processes. These predictions can be compared with experimental measurements to gain valuable insight into the formation of nitrogen oxides. The bulk of the burner experiments performed to date have been focussed primarily toward characterization of burner and the sample extraction and analysis system. All experiments thus far have been for methane/air flames at one atmosphere pressure. Figure 2 shows the burner centerline temperature profile for an equivalence ratio of {Phi} = 0.87. The sharp peak in temperature near 0.3 cm corresponds to the luminous zone of the flame. The high temperature in the luminous zone shows an abrupt decay with increasing height above the burner. The temperature gradient in the non-luminous post-flame zone is much smaller, approximately 2.5{degree}C decrease in temperature for each millimeter increase in height over the range of 1.3 to 4 cm above the burner. Radial temperature profiles have also been measured to assess the onedimensional nature of this burner.

  18. NOx reduction in natural gas high-performance burners laboratory burner evaluation and design optimization. Topical report, December 1989-May 1992

    SciTech Connect

    Syska, A.J.; Benson, C.E.; Beer, J.M.; Toqan, M.; Moreland, D.

    1994-09-01

    The report summarizes the results of the first two phases of a program aimed at developing a low NO(x) burner suitable for high temperature industrial applications, where NO(x) emissions can become extremely high. The program was one of two addressing this important objective. The second, a collaboration between Eclipse Combustion and Altex Technologies also has achieved technical success. Each program aimed at slightly different combustion applications, with this burner being well suited for smaller furnace applications while the Eclipse/Altex burner is better suited for large-scale furnaces such as steel reheating.

  19. Removal of NOx and CO from a burner system.

    PubMed

    Jaafar, Mohammad Nazri Mohd; Ishak, Mohd Shaiful Ashrul; Saharin, Sanisah

    2010-04-15

    This paper presents the development of an emissions-controlling technique for oil burners aimed especially to reduce oxides of nitrogen (NOx). Another emission of interest is carbon monoxide (CO). In this research, a liquid fuel burner is used. In the first part, five different radial air swirler blade angles, 30 degrees , 40 degrees , 45 degrees , 50 degrees , and 60 degrees , respectively, have been investigated using a combustor with 163 mm inside diameter and 280 mm length. Tests were conducted using kerosene as fuel. Fuel was injected at the back plate of the swirler outlet. The swirler blade angles and equivalence ratios were varied. A NOx reduction of more than 28% and CO emissions reduction of more than 40% were achieved for blade angle of 60 degrees compared to the 30 degrees blade angle. The second part of this paper presents the insertion of an orifice plate at the exit plane of the air swirler outlet. Three different orifice plate diameters of 35, 40, and 45 mm were used with a 45 degrees radial air swirler vane angle. The fuel flow rates and orifice plate's sizes were varied. NOx reduction of more than 30% and CO emissions reduction of more than 25% were obtained using the 25 mm diameter orifice plate compared to the test configuration without the orifice plate. The last part of this paper presents tests conducted using the air-staging method. An industrial oil burner system was investigated using the air staging method in order to reduce emission, especially NOx. Emissions reduction of 30% and 16.7% were obtained for NOx and CO emissions, respectively, when using air staging compared to the non-air-staging tests.

  20. Slurry burner for mixture of carbonaceous material and water

    DOEpatents

    Nodd, Dennis G.; Walker, Richard J.

    1987-01-01

    A carbonaceous material-water slurry burner includes a high pressure tip-emulsion atomizer for directing a carbonaceous material-water slurry into a combustion chamber for burning therein without requiring a support fuel or oxygen enrichment of the combustion air. Introduction of the carbonaceous material-water slurry under pressure forces it through a fixed atomizer wherein the slurry is reduced to small droplets by mixing with an atomizing air flow and directed into the combustion chamber. The atomizer includes a swirler located immediately adjacent to where the fuel slurry is introduced into the combustion chamber and which has a single center channel through which the carbonaceous material-water slurry flows into a plurality of diverging channels continuous with the center channel from which the slurry exits the swirler immediately adjacent to an aperture in the combustion chamber. The swirler includes a plurality of slots around its periphery extending the length thereof through which the atomizing air flows and by means of which the atomizing air is deflected so as to exert a maximum shear force upon the carbonaceous material-water slurry as it exits the swirler and enters the combustion chamber. A circulating coolant system or boiler feed water is provided around the periphery of the burner along the length thereof to regulate burner operating temperature, eliminate atomizer plugging, and inhibit the generation of sparklers, thus increasing combustion efficiency. A secondary air source directs heated air into the combustion chamber to promote recirculation of the hot combustion gases within the combustion chamber.

  1. NOx formation in combustion of gaseous fuel in ejection burner

    NASA Astrophysics Data System (ADS)

    Rimár, Miroslav; Kulikov, Andrii

    2016-06-01

    The aim of this work is to prepare model for researching of the formation in combustion of gaseous fuels. NOx formation is one of the main ecological problems nowadays as nitrogen oxides is one of main reasons of acid rains. The ANSYS model was designed according to the calculation to provide full combustion and good mixing of the fuel and air. The current model is appropriate to research NOx formation and the influence of the different principles of NOx reduction method. Applying of designed model should spare both time of calculations and research and also money as you do not need to measure the burner characteristics.

  2. Development of mesoscale burner arrays for gas turbine reheat

    NASA Astrophysics Data System (ADS)

    Lee, Sunyoup

    Mesoscale burner arrays allow combustion to be conducted in a distributed fashion at a millimeter (meso) scale. At this scale, diffusive processes are fast, but not yet dominant, such that numerous advantages over conventional gas turbine combustion can be achieved without giving up the possibility to use fluid inertia to advantage. Since the scale of the reaction zone follows from the scale at which the reactants are mixed, very compact flames result. This compact, distributed form of combustion can provide the opportunity of inter-turbine reheat as well as the potential for lean premixed or highly vitiated combustion to suppress NOx emissions. As a proof-of-concept, a 4x4 array with burner elements on 5-mm centers was fabricated in silicon nitride via assembly mold SDM. Each burner element was designed in a single monolithic unit with its own combination of reactant inlets, fuel plenum and injection nozzles, and swirler to induce flame stabilization. Results using methane, including pressure drop, flame stability, temperature distribution in the burnt gas, and NO emissions are reported for both fully premixed (mixing prior to injection) and nonpremixed (mixing in the array) configurations. These results demonstrate the degree to which premixed performance can be achieved with this design and pointed to ways in which the array design could be improved over this first-generation unit. Given what was learned from the 4x4 array, a next-generation 6x6 array was developed. Major design changes include addition of a bluff-body stabilizer to each burner element to improve stability and use of a multilayer architecture to enhance the degree of reactant mixing. Tests using methane in both operating conditions were performed for two stabilization configurations---with and without the bluff bodies. The results for nonpremixed operation show that nearly complete air/fuel mixing was achieved using the 6x6 design, leading to NO emission levels obtainable under fully premixed

  3. REAL TIME FLAME MONITORING OF GASIFIER BURNER AND INJECTORS

    SciTech Connect

    James Servaites; Serguei Zelepouga; David Rue

    2003-10-01

    This report is submitted to the United States Department of Energy in partial fulfillment of the contractual requirements for Phase I of the project titled, ''Real Time Flame Monitoring of Gasifier Burner and Injectors'', under co-operative agreement number DE-FS26-02NT41585. The project is composed of three one-year budget periods. The work in each year is divided into separate Tasks to facilitate project management, orderly completion of all project objectives, budget control, and critical path application of personnel and equipment. This Topical Report presents results of the Task 1 and 2 work. The 2 D optical sensor was developed to monitor selected UV and visible wavelengths to collect accurate flame characterization information regarding mixing, flame shape, and flame rich/lean characteristic. Flame richness, for example, was determined using OH and CH intensity peaks in the 300 to 500 nanometer range of the UV and visible spectrum. The laboratory burner was operated over a wide range of air to fuel ratio conditions from fuel rich to fuel lean. The sooty oxygen enriched air flames were established to test the sensor ability to characterize flame structures with substantial presence of hot solid particles emitting strong ''black body radiation''. The knowledge gained in these experiments will be very important when the sensor is used for gasifier flame analyses. It is expected that the sensor when installed on the Global Energy gasifier will be exposed to complex radiation patterns. The measured energy will be a combination of spectra emitted by the combusting gases, hot solid particulates, and hot walls of the gasifier chamber. The ability to separate flame emissions from the ''black body emissions'' will allow the sensor to accurately determine flame location relative to the gasifier walls and the injectors, as well as to analyze the flame's structure and condition. Ultimately, this information should enable the gasification processes to be monitored and

  4. Plasma-assisted combustion technology for NOx reduction in industrial burners.

    PubMed

    Lee, Dae Hoon; Kim, Kwan-Tae; Kang, Hee Seok; Song, Young-Hoon; Park, Jae Eon

    2013-10-01

    Stronger regulations on nitrogen oxide (NOx) production have recently promoted the creation of a diverse array of technologies for NOx reduction, particularly within the combustion process, where reduction is least expensive. In this paper, we discuss a new combustion technology that can reduce NOx emissions within industrial burners to single-digit parts per million levels without employing exhaust gas recirculation or other NOx reduction mechanisms. This new technology uses a simple modification of commercial burners, such that they are able to perform plasma-assisted staged combustion without altering the outer configuration of the commercial reference burner. We embedded the first-stage combustor within the head of the commercial reference burner, where it operated as a reformer that could host a partial oxidation process, producing hydrogen-rich reformate or synthesis gas product. The resulting hydrogen-rich flow then ignited and stabilized the combustion flame apart from the burner rim. Ultimately, the enhanced mixing and removal of hot spots with a widened flame area acted as the main mechanisms of NOx reduction. Because this plasma burner acted as a low NOx burner and was able to reduce NOx by more than half compared to the commercial reference burner, this methodology offers important cost-effective possibilities for NOx reduction in industrial applications.

  5. 16 CFR Figure 4 to Part 1633 - Details of Vertical Burner Head

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 16 Commercial Practices 2 2011-01-01 2011-01-01 false Details of Vertical Burner Head 4 Figure 4 to Part 1633 Commercial Practices CONSUMER PRODUCT SAFETY COMMISSION FLAMMABLE FABRICS ACT...—Details of Vertical Burner Head ER15MR06.003...

  6. 16 CFR Figure 3 to Part 1633 - Details of Horizontal Burner Head

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 16 Commercial Practices 2 2013-01-01 2013-01-01 false Details of Horizontal Burner Head 3 Figure 3 to Part 1633 Commercial Practices CONSUMER PRODUCT SAFETY COMMISSION FLAMMABLE FABRICS ACT...—Details of Horizontal Burner Head ER15MR06.002...

  7. 16 CFR Figure 3 to Part 1633 - Details of Horizontal Burner Head

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 16 Commercial Practices 2 2012-01-01 2012-01-01 false Details of Horizontal Burner Head 3 Figure 3 to Part 1633 Commercial Practices CONSUMER PRODUCT SAFETY COMMISSION FLAMMABLE FABRICS ACT...—Details of Horizontal Burner Head ER15MR06.002...

  8. 16 CFR Figure 3 to Part 1633 - Details of Horizontal Burner Head

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 16 Commercial Practices 2 2010-01-01 2010-01-01 false Details of Horizontal Burner Head 3 Figure 3 to Part 1633 Commercial Practices CONSUMER PRODUCT SAFETY COMMISSION FLAMMABLE FABRICS ACT...—Details of Horizontal Burner Head ER15MR06.002...

  9. 16 CFR Figure 4 to Part 1633 - Details of Vertical Burner Head

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 16 Commercial Practices 2 2012-01-01 2012-01-01 false Details of Vertical Burner Head 4 Figure 4 to Part 1633 Commercial Practices CONSUMER PRODUCT SAFETY COMMISSION FLAMMABLE FABRICS ACT...—Details of Vertical Burner Head ER15MR06.003...

  10. 16 CFR Figure 4 to Part 1633 - Details of Vertical Burner Head

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 16 Commercial Practices 2 2010-01-01 2010-01-01 false Details of Vertical Burner Head 4 Figure 4 to Part 1633 Commercial Practices CONSUMER PRODUCT SAFETY COMMISSION FLAMMABLE FABRICS ACT...—Details of Vertical Burner Head ER15MR06.003...

  11. 16 CFR Figure 4 to Part 1633 - Details of Vertical Burner Head

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 16 Commercial Practices 2 2014-01-01 2014-01-01 false Details of Vertical Burner Head 4 Figure 4 to Part 1633 Commercial Practices CONSUMER PRODUCT SAFETY COMMISSION FLAMMABLE FABRICS ACT...—Details of Vertical Burner Head ER15MR06.003...

  12. 16 CFR Figure 4 to Part 1633 - Details of Vertical Burner Head

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 16 Commercial Practices 2 2013-01-01 2013-01-01 false Details of Vertical Burner Head 4 Figure 4 to Part 1633 Commercial Practices CONSUMER PRODUCT SAFETY COMMISSION FLAMMABLE FABRICS ACT...—Details of Vertical Burner Head ER15MR06.003...

  13. 16 CFR Figure 3 to Part 1633 - Details of Horizontal Burner Head

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 16 Commercial Practices 2 2014-01-01 2014-01-01 false Details of Horizontal Burner Head 3 Figure 3 to Part 1633 Commercial Practices CONSUMER PRODUCT SAFETY COMMISSION FLAMMABLE FABRICS ACT...—Details of Horizontal Burner Head ER15MR06.002...

  14. 16 CFR Figure 3 to Part 1633 - Details of Horizontal Burner Head

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 16 Commercial Practices 2 2011-01-01 2011-01-01 false Details of Horizontal Burner Head 3 Figure 3 to Part 1633 Commercial Practices CONSUMER PRODUCT SAFETY COMMISSION FLAMMABLE FABRICS ACT...—Details of Horizontal Burner Head ER15MR06.002...

  15. Analytical screening of low emissions, high performance duct burners for supersonic cruise aircraft engines

    NASA Technical Reports Server (NTRS)

    Lohmann, R. A.; Riecke, G. T.

    1977-01-01

    An analytical screening study was conducted to identify duct burner concepts capable of providing low emissions and high performance in advanced supersonic engines. Duct burner configurations ranging from current augmenter technology to advanced concepts such as premix-prevaporized burners were defined. Aerothermal and mechanical design studies provided the basis for screening these configurations using the criteria of emissions, performance, engine compatibility, cost, weight and relative risk. Technology levels derived from recently defined experimental low emissions main burners are required to achieve both low emissions and high performance goals. A configuration based on the Vorbix (Vortex burning and mixing) combustor concept was analytically determined to meet the performance goals and is consistent with the fan duct envelope of a variable cycle engine. The duct burner configuration has a moderate risk level compatible with the schedule of anticipated experimental programs.

  16. 16 CFR Figure 6 to Part 1633 - Burner Assembly Showing Arms and Pivots (Shoulder Screws), in Relation to, Portable Frame...

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 16 Commercial Practices 2 2014-01-01 2014-01-01 false Burner Assembly Showing Arms and Pivots (Shoulder Screws), in Relation to, Portable Frame Allowing Burner Height Adjustment 6 Figure 6 to Part 1633... FLAMMABILITY (OPEN FLAME) OF MATTRESS SETS Pt. 1633, Fig. 6 Figure 6 to Part 1633—Burner Assembly Showing...

  17. 16 CFR Figure 6 to Part 1633 - Burner Assembly Showing Arms and Pivots (Shoulder Screws), in Relation to, Portable Frame...

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 16 Commercial Practices 2 2013-01-01 2013-01-01 false Burner Assembly Showing Arms and Pivots (Shoulder Screws), in Relation to, Portable Frame Allowing Burner Height Adjustment 6 Figure 6 to Part 1633... FLAMMABILITY (OPEN FLAME) OF MATTRESS SETS Pt. 1633, Fig. 6 Figure 6 to Part 1633—Burner Assembly Showing...

  18. 40 CFR 63.6092 - Are duct burners and waste heat recovery units covered by subpart YYYY?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... Combustion Turbines What This Subpart Covers § 63.6092 Are duct burners and waste heat recovery units covered by subpart YYYY? No, duct burners and waste heat recovery units are considered steam generating units... 40 Protection of Environment 12 2010-07-01 2010-07-01 true Are duct burners and waste...

  19. 40 CFR 63.6092 - Are duct burners and waste heat recovery units covered by subpart YYYY?

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... Combustion Turbines What This Subpart Covers § 63.6092 Are duct burners and waste heat recovery units covered by subpart YYYY? No, duct burners and waste heat recovery units are considered steam generating units... 40 Protection of Environment 12 2011-07-01 2009-07-01 true Are duct burners and waste...

  20. 40 CFR 63.6092 - Are duct burners and waste heat recovery units covered by subpart YYYY?

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... Stationary Combustion Turbines What This Subpart Covers § 63.6092 Are duct burners and waste heat recovery units covered by subpart YYYY? No, duct burners and waste heat recovery units are considered steam... 40 Protection of Environment 13 2013-07-01 2012-07-01 true Are duct burners and waste...

  1. 40 CFR 63.6092 - Are duct burners and waste heat recovery units covered by subpart YYYY?

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... Stationary Combustion Turbines What This Subpart Covers § 63.6092 Are duct burners and waste heat recovery units covered by subpart YYYY? No, duct burners and waste heat recovery units are considered steam... 40 Protection of Environment 13 2012-07-01 2012-07-01 false Are duct burners and waste...

  2. 40 CFR 63.6092 - Are duct burners and waste heat recovery units covered by subpart YYYY?

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... Stationary Combustion Turbines What This Subpart Covers § 63.6092 Are duct burners and waste heat recovery units covered by subpart YYYY? No, duct burners and waste heat recovery units are considered steam... 40 Protection of Environment 13 2014-07-01 2014-07-01 false Are duct burners and waste...

  3. 16 CFR Figure 6 to Part 1633 - Burner Assembly Showing Arms and Pivots (Shoulder Screws), in Relation to, Portable Frame...

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 16 Commercial Practices 2 2010-01-01 2010-01-01 false Burner Assembly Showing Arms and Pivots (Shoulder Screws), in Relation to, Portable Frame Allowing Burner Height Adjustment 6 Figure 6 to Part 1633... and Pivots (Shoulder Screws), in Relation to, Portable Frame Allowing Burner Height...

  4. Visualisation of isothermal large coherent structures in a swirl burner

    SciTech Connect

    Valera-Medina, A.; Syred, N.; Griffiths, A.

    2009-09-15

    Lean premixed combustion using swirl flame stabilisation is widespread amongst gas turbine manufacturers. The use of swirl mixing and flame stabilisation is also prevalent in many other non-premixed systems. Problems that emerge include loss of stabilisation as a function of combustor geometry and thermo-acoustic instabilities. Coherent structures and their relationship with combustion processes have been a concern for decades due to their complex nature. This paper thus adopts an experimental approach to characterise large coherent structures in swirl burners under isothermal conditions so as to reveal the effects of swirl in a number of geometries and cold flow patterns that are relevant in combustion. Aided by techniques such as Hot Wire Anemometry, High Speed Photography and Particle Image Velocimetry, the recognition of several structures was achieved in a 100 kW swirl burner model. Several varied, interacting, structures developed in the field as a consequence of the configurations used. New structures never observed before were identified, the results not only showing the existence of very well defined large structures, but also their dependency on geometrical and flow parameters. The PVC is confirmed to be a semi-helical structure, contrary to previous simulations performed on the system. The appearance of secondary recirculation zones and suppression of the vortical core as a consequence of geometrical constrictions are presented as a mechanism of flow control. The asymmetry of the Central Recirculation Zone in cold flows is observed in all the experiments, with its elongation dependent on Re and swirl number used. (author)

  5. Operational characteristics of a parallel jet MILD combustion burner system

    SciTech Connect

    Szegoe, G.G.; Dally, B.B.; Nathan, G.J.

    2009-02-15

    This study describes the performance and stability characteristics of a parallel jet MILD (Moderate or Intense Low-oxygen Dilution) combustion burner system in a laboratory-scale furnace, in which the reactants and exhaust ports are all mounted on the same wall. Thermal field measurements are presented for cases with and without combustion air preheat, in addition to global temperature and emission measurements for a range of equivalence ratio, heat extraction, air preheat and fuel dilution levels. The present furnace/burner configuration proved to operate without the need for external air preheating, and achieved a high degree of temperature uniformity. Based on an analysis of the temperature distribution and emissions, PSR model predictions, and equilibrium calculations, the CO formation was found to be related to the mixing patterns and furnace temperature rather than reaction quenching by the heat exchanger. The critical equivalence ratio, or excess air level, which maintains low CO emissions is reported for different heat exchanger positions, and an optimum operating condition is identified. Results of CO and NO{sub x} emissions, together with visual observations and a simplified two-dimensional analysis of the furnace aerodynamics, demonstrate that fuel jet momentum controls the stability of this multiple jet system. A stability diagram showing the threshold for stable operation is reported, which is not explained by previous stability criteria. (author)

  6. Fully Premixed Low Emission, High Pressure Multi-Fuel Burner

    NASA Technical Reports Server (NTRS)

    Nguyen, Quang-Viet (Inventor)

    2012-01-01

    A low-emissions high-pressure multi-fuel burner includes a fuel inlet, for receiving a fuel, an oxidizer inlet, for receiving an oxidizer gas, an injector plate, having a plurality of nozzles that are aligned with premix face of the injector plate, the plurality of nozzles in communication with the fuel and oxidizer inlets and each nozzle providing flow for one of the fuel and the oxidizer gas and an impingement-cooled face, parallel to the premix face of the injector plate and forming a micro-premix chamber between the impingement-cooled face and the in injector face. The fuel and the oxidizer gas are mixed in the micro-premix chamber through impingement-enhanced mixing of flows of the fuel and the oxidizer gas. The burner can be used for low-emissions fuel-lean fully-premixed, or fuel-rich fully-premixed hydrogen-air combustion, or for combustion with other gases such as methane or other hydrocarbons, or even liquid fuels.

  7. Process and apparatus for igniting a burner in an inert atmosphere

    SciTech Connect

    Coolidge, Dennis W.; Rinker, Franklin G.

    1994-01-01

    According to this invention there is provided a process and apparatus for the ignition of a pilot burner in an inert atmosphere without substantially contaminating the inert atmosphere. The process includes the steps of providing a controlled amount of combustion air for a predetermined interval of time to the combustor then substantially simultaneously providing a controlled mixture of fuel and air to the pilot burner and to a flame generator. The controlled mixture of fuel and air to the flame generator is then periodically energized to produce a secondary flame. With the secondary flame the controlled mixture of fuel and air to the pilot burner and the combustion air is ignited to produce a pilot burner flame. The pilot burner flame is then used to ignited a mixture of main fuel and combustion air to produce a main burner flame. The main burner flame then is used to ignite a mixture of process derived fuel and combustion air to produce products of combustion for use as an inert gas in a heat treatment process.

  8. Simulation Modeling of an Enhanced Low-Emission Swirl-Cascade Burner

    SciTech Connect

    Ala Qubbaj

    2004-09-01

    ''Cascade-burners'' is a passive technique to control the stoichiometry of the flame through changing the flow dynamics and rates of mixing in the combustion zone with a set of venturis surrounding the flame. Cascade-burners have shown advantages over other techniques; its reliability, flexibility, safety, and cost makes it more attractive and desirable. On the other hand, the application of ''Swirl-burners'' has shown superiority in producing a stable flame under a variety of operating conditions and fuel types. The basic idea is to impart swirl to the air or fuel stream, or both. This not only helps to stabilize the flame but also enhances mixing in the combustion zone. As a result, nonpremixed (diffusion) swirl burners have been increasingly used in industrial combustion systems such as gas turbines, boilers, and furnaces, due to their advantages of safety and stability. Despite the advantages of cascade and swirl burners, both are passive control techniques, which resulted in a moderate pollutant emissions reduction compared to SCR, SNCR and FGR (active) methods. The present investigation will study the prospects of combining both techniques in what to be named as ''an enhanced swirl-cascade burner''. Natural gas jet diffusion flames in baseline, cascade, swirl, and swirl-cascade burners were numerically modeled using CFDRC package. The thermal, composition, and flow (velocity) fields were simulated. The numerical results showed that swirl and cascade burners have a more efficient fuel/air mixing, a shorter flame, and a lower NOx emission levels, compared to the baseline case. The results also revealed that the optimal configurations of the cascaded and swirling flames have not produced an improved performance when combined together in a ''swirl-cascade burner''. The non-linearity and complexity of the system accounts for such a result, and therefore, all possible combinations, i.e. swirl numbers (SN) versus venturi diameter ratios (D/d), need to be considered.

  9. Process burner and combustion system hazards: 10 key issues that save lives.

    PubMed

    John R Puskar, P E

    2007-04-11

    Burner and combustion safety is crucial for the safe operation of fuel-fired heaters and boilers at process industry facilities. This paper discusses 10 of the most common burner and combustion system hazards that impact the safe operation of combustion equipment. The paper includes a discussion of three burner related explosion incidents that occurred at plants and how to avoid them. Strategies are also presented for training of maintenance and operations personnel on hazard recognition and avoidance. A protocol for walking down equipment prior to light offs is also presented as an extra safety step.

  10. Burner rig alkali salt corrosion of several high temperature alloys

    NASA Technical Reports Server (NTRS)

    Deadmore, D. L.; Lowell, C. E.

    1977-01-01

    The hot corrosion of five alloys was studied in cyclic tests in a Mach 0.3 burner rig into whose combustion chamber various aqueous salt solutions were injected. Three nickel-based alloys, a cobalt-base alloy, and an iron-base alloy were studied at temperatures of 700, 800, 900, and 1000 C with various salt concentrations and compositions. The relative resistance of the alloys to hot corrosion attack was found to vary with temperature and both concentration and composition of the injected salt solution. Results indicate that the corrosion of these alloys is a function of both the presence of salt condensed as a liquid on the surface and of the composition of the gas phases present.

  11. Deposition stress effects on thermal barrier coating burner rig life

    NASA Technical Reports Server (NTRS)

    Watson, J. W.; Levine, S. R.

    1984-01-01

    A study of the effect of plasma spray processing parameters on the life of a two layer thermal barrier coating was conducted. The ceramic layer was plasma sprayed at plasma arc currents of 900 and 600 amps onto uncooled tubes, cooled tubes, and solid bars of Waspalloy in a lathe with 1 or 8 passes of the plasma gun. These processing changes affected the residual stress state of the coating. When the specimens were tested in a Mach 0.3 cyclic burner rig at 1130 deg C, a wide range of coating lives resulted. Processing factors which reduced the residual stress state in the coating, such as reduced plasma temperature and increased heat dissipation, significantly increased coating life.

  12. High-Pressure Gaseous Burner (HPGB) Facility Became Operational

    NASA Technical Reports Server (NTRS)

    Nguyen, Quang-Viet

    2003-01-01

    A gas-fueled high-pressure combustion facility with optical access, developed over the last 3 years, is now collecting research data in a production mode. The High-Pressure Gaseous Burner (HPGB) rig at the NASA Glenn Research Center can operate at sustained pressures up to 60 atm with a variety of gaseous fuels and liquid jet fuel. The facility is unique because it is the only continuous-flow, hydrogen-capable 60-atm rig in the world with optical access. It will provide researchers with new insights into flame conditions that simulate the environment inside the ultra-high-pressure-ratio combustion chambers of tomorrow s advanced aircraft engines. The facility provides optical access to the flame zone through four fused-silica optical windows, enabling the calibration of nonintrusive optical diagnostics to measure chemical species and temperature. The data from the HPGB rig enable the validation of numerical codes that simulate gas turbine combustors.

  13. Burner rig alkali salt corrosion of several high temperature alloys

    NASA Technical Reports Server (NTRS)

    Deadmore, D.; Lowell, C.

    1977-01-01

    The hot corrosion of five alloys was studied in cyclic tests in a Mach 0.3 burner rig into whose combustion chamber various aqueous salt solutions were injected. Three nickel-base alloys (IN-792, IN-738, and IN-100), a cobalt-base alloy (MM-509), and an iron-base alloy (304 stainless steel) were studied at temperatures of 700, 800, 900, and 1000 C with various salt concentrations and compositions. The relative resistance of the alloys to hot corrosion attack was found to vary with temperature and with both the concentration and composition of the injected salt solution. Results indicate that the corrosion of these alloys is a function of both the presence of salt condensed as a liquid on the surface and of the composition of the gas phases present.

  14. Premixed burner experiments: Geometry, mixing, and flame structure issues

    SciTech Connect

    Gupta, A.K.; Lewis, M.J.; Gupta, M.

    1995-10-01

    This research program is exploring techniques for improved fuel-air mixing, with the aim of achieving combustor operations up to stoichiometric conditions with minimal NO x and maximum efficiency. The experimental studies involve the use of a double-concentric natural gas burner that is operable in either premixed or non-premixed modes, and the system allows systematic variation of equivalence ratio, swirl strength shear length region and flow momentum in each annulus. Flame structures formed with various combinations of swirl strengths, flow throughput and equivalence ratios in premixed mode show the significant impact of swirl flow distribution on flame structure emanating from the mixedness. This impact on flame structure is expected to have a pronounced effect on the heat release rate and the emission of NO{sub x}. Thus, swirler design and configuration remains a key factor in the quest for completely optimized combustion. Parallel numerical studies of the flow and combustion phenomena were carried out, using the RSM and thek-{epsilon} turbulence models. These results have not only indicated the strengths and limitations of CFD in performance and pollutants emission predictions, but have provided guidelines on the size and strength of the recirculation produced and the spatio-temporal structure of the combustion flowfield. The first stage of parametric studies on geometry and operational parameters at Morgan State University have culminated in the completion of a one-dimensional flow code that is integrated with a solid, virtual model of the existing premixed burner. This coupling will provide the unique opportunity to study the impact of geometry on the flowfield and vice-versa, with particular emphasis on concurrent design optimization.

  15. Continuous Liquid-Sample Introduction for Bunsen Burner Atomic Emission Spectrometry.

    ERIC Educational Resources Information Center

    Smith, Gregory D.; And Others

    1995-01-01

    Describes a laboratory-constructed atomic emission spectrometer with modular instrumentation components and a simple Bunsen burner atomizer with continuous sample introduction. A schematic diagram and sample data are provided. (DDR)

  16. FMC Chemicals: Burner Management System Upgrade Improves Performance and Saves Energy at a Chemical Plant

    SciTech Connect

    Not Available

    2004-07-01

    FMC Chemicals Corporation increased the efficiency of two large coal-fired boilers at its soda ash mine in Green River, Wyoming, by upgrading the burner management system. The project yields annual energy savings of 250,000 MMBtu.

  17. SITE PROGRAM EVALUATION OF THE SONOTECH PULSE COMBUSTION BURNER TECHNOLOGY - TECHNICAL RESULTS

    EPA Science Inventory

    A series of demonstration tests was performed at the Environmental Protection Agency's (EPA's) Incineration Research Facility (IRF) under the Superfund Innovative Technology Evaluation (SITE) program. These tests, twelve in all, evaluated a pulse combustion burner technology dev...

  18. Full scale demonstration of low-NO sub x cell burner retrofit

    SciTech Connect

    Not Available

    1991-08-09

    The overall objective of the Full-Scale Demonstration of Low-NO{sub x} Cell Burner Retrofit project is to demonstrate the cost-effective reduction of NO{sub x} generated by a large based-loaded (70% capacity factor or greater), coal-fired utility boiler. Specific objectives include: (1) At least 50% NO{sub x} reduction over standard two-nozzle cell burners, without degradation of boiler performance or life; (2) Acquire and evaluate emission and boiler performance data before and after the retrofit to determine NO{sub x} reduction and impact on overall boiler performance; (3) Demonstrate that the retrofit of Low-NO{sub x} Cell Burners in boilers currently equipped with cell burners, is a cost-effective alternative to any other emerging, or commercially-available, NO{sub x} control technology.

  19. Full scale demonstration of low-NO{sub x} cell burner retrofit. Public design report

    SciTech Connect

    Not Available

    1991-08-09

    The overall objective of the Full-Scale Demonstration of Low-NO{sub x} Cell Burner Retrofit project is to demonstrate the cost-effective reduction of NO{sub x} generated by a large based-loaded (70% capacity factor or greater), coal-fired utility boiler. Specific objectives include: (1) At least 50% NO{sub x} reduction over standard two-nozzle cell burners, without degradation of boiler performance or life; (2) Acquire and evaluate emission and boiler performance data before and after the retrofit to determine NO{sub x} reduction and impact on overall boiler performance; (3) Demonstrate that the retrofit of Low-NO{sub x} Cell Burners in boilers currently equipped with cell burners, is a cost-effective alternative to any other emerging, or commercially-available, NO{sub x} control technology.

  20. Demonstration test of burner liner strain measurements using resistance strain gages

    NASA Technical Reports Server (NTRS)

    Grant, H. P.; Anderson, W. L.

    1984-01-01

    A demonstration test of burner liner strain measurements using resistance strain gages as well as a feasibility test of an optical speckle technique for strain measurement are presented. The strain gage results are reported. Ten Kanthal A-1 wire strain gages were used for low cycle fatigue strain measurements to 950 K and .002 apparent strain on a JT12D burner can in a high pressure (10 atmospheres) burner test. The procedure for use of the strain gages involved extensive precalibration and postcalibration to correct for cooling rate dependence, drift, and temperature effects. Results were repeatable within + or - .0002 to .0006 strain, with best results during fast decels from 950 K. The results agreed with analytical prediction based on an axisymmetric burner model, and results indicated a non-uniform circumferential distribution of axial strain, suggesting temperature streaking.

  1. Initial experience in operation of furnace burners with adjustable flame parameters

    SciTech Connect

    Garzanov, A.L.; Dolmatov, V.L.; Saifullin, N.R.

    1995-07-01

    The designs of burners currently used in tube furnaces (CP, FGM, GMG, GIK, GNF, etc.) do not have any provision for adjusting the heat-transfer characteristics of the flame, since the gas and air feed systems in these burners do not allow any variation of the parameters of mixture formation, even though this process is critical in determining the length, shape, and luminosity of the flame and also the furnace operating conditions: efficiency, excess air coefficient, flue gas temperature at the bridgewall, and other indexes. In order to provide the controlling the heat-transfer characteristics of the flame, the Elektrogorsk Scientific-Research Center (ENITs), on the assignment of the Novo-Ufa Petroleum Refinery, developed a burner with diffusion regulation of the flame. The gas nozzle of the burner is made up of two coaxial gas chambers 1 and 2, with independent feed of gas from a common line through two supply lines.

  2. Design and calibration of a flat-flame burner using line-reversal techniques. Technical note

    SciTech Connect

    Snelling, D.R.; Fischer, M.

    1985-04-01

    A premixed methane/air flat-flame burner is described. The burner was designed to have a central flame that can be seeded with sodium, and an annular guard flame that ensured a flat-temperature profile in the seeded region. The burner produced a well-behaved flat flame for linear gas velocities of 20 to 30 cm/s and air-to-fuel ratios within 15% of stoichiometric. The temperature distribution in the flame was measured for a range of operating conditions using the sodium line-reversal technique. The temperatures measured were within the range 2000-2100 K, slightly lower than the adiabatic methane/air flame temperature. This burner will be used as a calibration tool in the development of CARS (Coherent anti-Stokes Raman spectroscopy).

  3. Low-Emissions Burner Technology using Biomass-Derived Liquid Fuels

    SciTech Connect

    2010-07-01

    The University of Alabama will develop fuel-flexible, low-emissions burner technology for the metal processing industry that is capable of using biomass-derived liquid fuels, such as glycerin or fatty acids, as a substitute for natural gas. By replacing a fossil fuel with biomass fuels, this new burner will enable a reduction in energy consumption and greenhouse gas emissions and an increase in fuel flexibility.

  4. Rotrix `vortex breakdown` burner turbulence-stabilized combustion of heating oil

    SciTech Connect

    Hofbauer, P.

    1995-04-01

    For the past two years, the Viessmann MatriX radiant burner has been setting the standard for low emission combustion of gas. Now, with the RotriX burner, Viessmann has succeeded in drastically reducing nitrogenoxide emissions in the combustoin of oil. After a successful test period, the RotriX burner is now being introduced to the market. The RotriX oil burner consequently takes into account the mechanisms in the creation of harmful emissions in the combustion of heating oil No. 2, and guarantees stable combustion under any operating conditions. The burner has the following features: heating oil is combusted only after complete vaporization and mixing with combustion air and recirculated flue gases; the flame is not stabilized with a turbulator disk, but a strong turbulating current is created by means of the Vortex Breakdown phenomenon, which develops a very stable flame under any operating conditions; and high internal flue gas recirculation rates lower the flame temperature to the point where thermal NO formation is reduced to the same low level as in the combustion of gas. The new burner has extremely low emissions of NOx < 60 mg/kWh, and CO < 5 mg/kWh at a CO{sub 2} concentraiton of 14%.

  5. Burner Rig with an Unattached Duct for Evaluating the Erosion Resistance of Thermal Barrier Coatings

    NASA Technical Reports Server (NTRS)

    Miller, Robert A.; Kuczmarski, Maria A.; Zhu, Dongming

    2011-01-01

    Extensive computational fluid dynamics (CFD) modeling backed by experimental observation has demonstrated the feasibility of using an unattached duct to increase the velocity and spatial spread of erodent particles exiting from a burner rig. It was shown that gas velocity and temperature are mostly retained if the inner diameter of the unattached duct equaled the exit diameter of the burner rig nozzle. For particles having a mean diameter of 550 millimeters, the modeled velocity attained at a distance 2.0 in. (50.8 millimeters) beyond the exit of a 12 in. (305 millimeters) long duct was approximately twice as large as the velocity the same distance from the nozzle when the duct was not present. For finer particles, the relative enhancement was somewhat less approximately 1.5 times greater. CFD modeling was also used to guide the construction of a device for slowing down the velocity of the particles being injected into the burner rig. This device used a simple 45 degree fitting to slow the particle velocity in the feed line from 20 meters per second, which is in the range needed to convey the particles, to about 3 meters per second just as they are injected into the burner. This lower injection velocity would lessen the severity of the collision of large particles with the wall of the burner liner opposite the injection port, thereby reducing potential damage to the burner liner by high-velocity particles.

  6. The Radian Rapid Mix Burner{trademark} for ultra-low NO{sub x} emissions

    SciTech Connect

    Christman, R.C.; Bortz, S.J.; Shore, D.E.; Brecker, M.

    1996-01-01

    Radian Corporation together with its licensee, Todd Combustion, has developed, demonstrated, and commercially implemented the Radian-Rapid Mix Burner{trademark} (R-RMB{trademark}) that is capable of producing ultra-low NO{sub x} levels for natural gas firing. NO{sub x} levels under 10 ppm, simultaneously with CO levels of a similar magnitude, have been achieved over the load ranges of several forced-draft industrial boilers. These emission levels have been achieved while maintaining excellent flame quality and boiler performance. The paper gives an overview of the RMB{trademark}`s design features. A review is provided of its performance characteristics established during its development phase in a 4 MBtu/hr firetube test boiler. Data illustrating the burner`s sub-10 ppm NO{sub x} performance with and without air preheat, and for circular and rectangular (for tangential firing) burner configurations are presented. Sub-10 ppm NO{sub x} data for commercial installations in two 5 MBtu/hr firetube boilers, a 26 MBtu/hr watertube boiler, and a 130 MBtu/hr watertube boiler are presented. Data reviewing the burner`s performance for oil firing, and plans for its demonstration in a utility boiler are summarized.

  7. Low NOx Burner Design and Analysis for Conceptual Design of Oxygen-Based PC Boiler

    SciTech Connect

    Andrew Seltzer

    2005-05-01

    The objective of the low NOx burner design and analysis task of the Conceptual Design of Oxygen-Based PC Boiler study is to optimize the burner design to ensure stable ignition, to provide safe operation, and to minimize pollutant formation. The burners were designed and analyzed using the Fluent computer program. Four burner designs were developed: (1) with no over-fire gas (OFG) and 65% flue gas recycle, (2) with 20% OFG and 65% flue gas recycle, (3) with no OFG and 56% flue gas recycle and (4) with 20% OFG and 56% flue gas recycle. A 3-D Fluent simulation was made of a single wall-fired burner and horizontal portion of the furnace from the wall to the center. Without primary gas swirl, coal burnout was relatively small, due to the low oxygen content of the primary gas stream. Consequently, the burners were modified to include primary gas swirl to bring the coal particles in contact with the secondary gas. An optimal primary gas swirl was chosen to achieve sufficient burnout.

  8. Low No sub x /SO sub x burner retrofit for utility cyclone boilers

    SciTech Connect

    Moore, K.; Martin, L.; Smith, J.

    1991-05-01

    The Low NO{sub x}/SO{sub x} (LNS) Burner Retrofit for Utility Cyclone Boilers program consists of the retrofit and subsequent demonstration of the technology at Southern Illinois Power Cooperative's (SIPC's) 33-MW unit 1 cyclone boiler located near Marion, Illinois. The LNS Burner employs a simple innovative combustion process burning high-sulfur Illinois coal to provide substantial SO{sub 2} and NO{sub x} control within the burner. A complete series of boiler performance and characterization tests, called the baseline tests, was conducted in October 1990 on unit 1 of SIPC's Marion Station. The primary objective of the baseline test was to collect data from the existing plant that could provide a comparison of performance after the LNS Burner retrofit. These data could confirm the LNS Burner's SO{sub x} and NO{sub x} emissions control and any effect on boiler operation. Further, these tests would provide to the project experience with the operating characteristics of the host unit as well as engineering design information to minimize technical uncertainties in the application of the LNS Burner technology.

  9. Fully-Enclosed Ceramic Micro-burners Using Fugitive Phase and Powder-based Processing

    NASA Astrophysics Data System (ADS)

    Do, Truong; Shin, Changseop; Kwon, Patrick; Yeom, Junghoon

    2016-08-01

    Ceramic-based microchemical systems (μCSs) are more suitable for operation under harsh environments such as high temperature and corrosive reactants compared to the more conventional μCS materials such as silicon and polymers. With the recent renewed interests in chemical manufacturing and process intensification, simple, inexpensive, and reliable ceramic manufacturing technologies are needed. The main objective of this paper is to introduce a new powder-based fabrication framework, which is a one-pot, cost-effective, and versatile process for ceramic μCS components. The proposed approach employs the compaction of metal-oxide sub-micron powders with a graphite fugitive phase that is burned out to create internal cavities and microchannels before full sintering. Pure alumina powder has been used without any binder phase, enabling more precise dimensional control and less structure shrinkage upon sintering. The key process steps such as powder compaction, graphite burnout during partial sintering, machining in a conventional machine tool, and final densification have been studied to characterize the process. This near-full density ceramic structure with the combustion chamber and various internal channels was fabricated to be used as a micro-burner for gas sensing applications.

  10. MINIMIZATION OF NO EMISSIONS FROM MULTI-BURNER COAL-FIRED BOILERS

    SciTech Connect

    E.G. Eddings; A. Molina; D.W. Pershing; A.F. Sarofim; K.A. Davis; M.P. Heap; T.H. Fletcher; H. Zhang

    2000-04-01

    Reduction of NO{sub x} emission is an important environmental issue in pulverized coal combustion. Final emissions of NO{sub x} are strongly affected by the nitrogen release during devolatilization, which is the first stage of coal combustion. The most cost-effective approach to NO{sub x} reduction is air-staging which can also operate with additional down-stream techniques such as reburning [1]. Air staging promotes the conversion of NO{sub x} precursors (HCN, NH{sub 3}, etc.) to N{sub 2} by delaying the oxygen supply to the greatest extent when those nitrogen species are released during devolatilization. Such a delay gives the primary volatiles a chance to undergo secondary reactions, including tar cracking and soot formation. Secondary reactions of volatiles largely determine the fate of the ultimate NO{sub x} production from pyrolysis, therefore a detailed investigation into the transformation of nitrogen species during secondary reactions and effects of soot on nitrogen release is critical for design and implementation of new pollution control strategies. Current nitrogen models (including the CPD model at BYU) only simulate the nitrogen release during primary pyrolysis, which happens at low temperatures. This project helps to build a nitrogen release model that accounts for secondary reactions and the effects of soot at temperatures relevant to industrial burners.

  11. Fully-Enclosed Ceramic Micro-burners Using Fugitive Phase and Powder-based Processing

    PubMed Central

    Do, Truong; Shin, Changseop; Kwon, Patrick; Yeom, Junghoon

    2016-01-01

    Ceramic-based microchemical systems (μCSs) are more suitable for operation under harsh environments such as high temperature and corrosive reactants compared to the more conventional μCS materials such as silicon and polymers. With the recent renewed interests in chemical manufacturing and process intensification, simple, inexpensive, and reliable ceramic manufacturing technologies are needed. The main objective of this paper is to introduce a new powder-based fabrication framework, which is a one-pot, cost-effective, and versatile process for ceramic μCS components. The proposed approach employs the compaction of metal-oxide sub-micron powders with a graphite fugitive phase that is burned out to create internal cavities and microchannels before full sintering. Pure alumina powder has been used without any binder phase, enabling more precise dimensional control and less structure shrinkage upon sintering. The key process steps such as powder compaction, graphite burnout during partial sintering, machining in a conventional machine tool, and final densification have been studied to characterize the process. This near-full density ceramic structure with the combustion chamber and various internal channels was fabricated to be used as a micro-burner for gas sensing applications. PMID:27546059

  12. Experimental Investigation of Performance and Operating Characterisitics of a Tail-Pipe Burner for a Turbojet Engine

    DTIC Science & Technology

    1947-10-30

    NACA RM No. E7G03 - -- .1 0 - Burner- inlet gas temperature, TB (°F) o 1100 x , ~looo 950 ~ ’750 550 n x A...with inlet -velocity pressure at several burner- inlet gas temperatures for tail-pipe burner Q. . . gFlmTl_Gy- . . . . . NACA RM NO. E7G03 Flg. 9 . a al...WAStiINGTUN --: October 30, 1947 .: .,1 tlFllFWEHTIAlm . .- . . NACA RM No. E7G03 &==Q! -. . . .. .: .. ,,,---.. r. ..,.,. NATIONKL ADVISORY

  13. High temperature burner-duct-recuperator system evaluation

    SciTech Connect

    Parks, W.P. Jr.; DeBellis, C.L.

    1989-08-01

    The Babcock Wilcox Company (B W) has completed a program to design, construct, install, and field test a ceramic-based high-temperature burner-duct-recuperator (HTBDR) in an industrial setting. The unit was capable of operating in corrosive, high temperature (2250{degree}F) flue gas streams. The HTBDR was successfully tested in a steel soaking pit at B W's Tubular Products Division in Koppel, PA. During the 1400 hour operation prior to plant closing, the ceramic stage performed well with no material related problems or air-to-flue leakage. The maximum preheat air produced was 1425{degree}F with a flue gas temperature of 2170{degree}F. Measured fuel savings of 17--24% were obtained over the previous recuperated (metallic heat exchanger) system. This projects to savings of 41% for an unrecuperated furnace. A simple payback analysis indicated acceptable payback for installation in unrecuperated furnaces but unacceptable payback for recuperated furnaces at today's low gas prices. In both cases return on investment is high over a ten year projected life expectancy. 14 refs., 67 figs., 16 tabs.

  14. Thermal barrier coatings: Burner rig hot corrosion test results

    NASA Technical Reports Server (NTRS)

    Hodge, P. E.; Stecura, S.; Gedwill, M. A.; Zaplatynsky, I.; Levine, S. R.

    1978-01-01

    A Mach 0.3 burner rig test program was conducted to examine the sensitivity of thermal barrier coatings to Na and V contaminated combustion gases simulating potential utility gas turbine environments. Coating life of the standard ZrO2-12Y2O3/Ni-16.2Cr-5.6Al-0.6Y NASA thermal barrier coating system which was developed for aircraft gas turbines was significantly reduced in such environments. Two thermal barrier coating systems, Ca2SiO4/Ni-16.2Cr-5.6Al-0.6Y and ZrO2-8Y2O3/Ni-16.4Cr-5.1Al-0.15Y and a less insulative cermet coating system, 50 volume percent MgO-50 volume percent Ni-19.6Cr-17.1Al-0.97Y/Ni-16.2Cr-5.6Al-0.6Y, were identified as having much improved corrosion resistance compared to the standard coating.

  15. Preliminary safety evaluation of the advanced burner test reactor.

    SciTech Connect

    Dunn, F. E.; Fanning, T. H.; Cahalan, J. E.; Nuclear Engineering Division

    2006-09-15

    Results of a preliminary safety evaluation of the Advanced Burner Test Reactor (ABTR) pre-conceptual design are reported. The ABTR safety design approach is described. Traditional defense-in-depth design features are supplemented with passive safety performance characteristics that include natural circulation emergency decay heat removal and reactor power reduction by inherent reactivity feedbacks in accidents. ABTR safety performance in design-basis and beyond-design-basis accident sequences is estimated based on analyses. Modeling assumptions and input data for safety analyses are presented. Analysis results for simulation of simultaneous loss of coolant pumping power and normal heat rejection are presented and discussed, both for the case with reactor scram and the case without reactor scram. The analysis results indicate that the ABTR pre-conceptual design is capable of undergoing bounding design-basis and beyond-design-basis accidents without fuel cladding failures. The first line of defense for protection of the public against release of radioactivity in accidents remains intact with significant margin. A comparison and evaluation of general safety design criteria for the ABTR conceptual design phase are presented in an appendix. A second appendix presents SASSYS-1 computer code capabilities and modeling enhancements implemented for ABTR analyses.

  16. Combustion Characteristics of Biofuels in Porous-Media Burners

    NASA Astrophysics Data System (ADS)

    Barajas, Pablo E.; Parthasarathy, R. N.; Gollahalli, S. R.

    2010-05-01

    Biofuels, such as canola methyl ester (CME) and soy methyl ester (SME) derived from vegetable oil are alternative sources of energy that have been developed to reduce the dependence on petroleum-based fuels. In the present study, CME, SME, commercial Jet-A fuel were tested in a porous-media burner. The measured combustion characteristics at an initial equivalence ratio of 0.8 included NOx and CO emission indices, radiative fractions of heat release, and axial temperatures. The effects of fuel on the injector and porous media durability were also documented. The NOx emission index was higher for the SME and CME flames than that of the Jet-A flame. Furthermore, the axial temperature profiles were similar for all the flames. The prolonged use of CME and SME resulted in the solid-particle deposition on the metal walls of the injector and within the structure of the porous medium, thereby increasing the restriction to the fuel/air flow.

  17. Development of a lean premixed burner for hydrogen utilization

    SciTech Connect

    Keller, J.O.

    1996-10-01

    The long-term mandate of the hydrogen program is to develop the technologies needed to establish a hydrogen economy. Although a hydrogen fueled automobile has been established as a demonstration project, there are at least three other end use sectors that are recognized by the H{sub 2} program and that are addressed by this project. These end uses are: (1) power generation from stationary turbines, (2) generation of process heat or steam, and (3) commercial and residential direct use applications. Eliminating carbon from the fuel will remove carbon containing species from the emissions, however, NO{sub x} resulting from thermal NO production cannot be ignored. Thermal NO production is minimized by reducing the peak combustion temperature and the residence time at the peak temperature. NO can be reduced to extremely low levels (a few ppm) by operating sufficiently lean to reduce the peak combustion temperatures below 1700 to 1800 K. The objectives for this project are to: (1) develop an environmentally benign and safe burner operating on hydrogen in a lean premixed mode, (2) provide a facility in which fundamental investigations can be performed to support other programs.

  18. Thermal barrier coatings - Burner rig hot corrosion test results

    NASA Technical Reports Server (NTRS)

    Hodge, P. E.; Stecura, S.; Gedwill, M. A.; Zaplatynsky, I.; Levine, S. R.

    1980-01-01

    A Mach 0.3 burner rig test program was conducted to examine the sensitivity of thermal barrier coatings to Na- and V-contaminated combustion gases simulating potential utility gas turbine environments. Coating life of the standard ZrO2-12Y2O3/Ni-16.2Cr-5.6Al-0.6Y (composition in wt %) NASA thermal barrier coating system which was developed for aircraft gas turbines was significantly reduced in such environments. Two thermal barrier coating systems, Ca2SiO4/Ni-16.2Cr-5.6Al-0.6Y and ZrO2-8Y2O3/Ni-16.4Cr-5.1Al-0.15Y and a less insulative cermet coating system, 50 vol % MgO-50 vol % Ni-19.6Cr-17.1Al-0.97Y/Ni-16.2Cr-5.6Al-0.6Y, were identified as having much improved corrosion resistance compared to the standard coating.

  19. Fat burners: nutrition supplements that increase fat metabolism.

    PubMed

    Jeukendrup, A E; Randell, R

    2011-10-01

    The term 'fat burner' is used to describe nutrition supplements that are claimed to acutely increase fat metabolism or energy expenditure, impair fat absorption, increase weight loss, increase fat oxidation during exercise, or somehow cause long-term adaptations that promote fat metabolism. Often, these supplements contain a number of ingredients, each with its own proposed mechanism of action and it is often claimed that the combination of these substances will have additive effects. The list of supplements that are claimed to increase or improve fat metabolism is long; the most popular supplements include caffeine, carnitine, green tea, conjugated linoleic acid, forskolin, chromium, kelp and fucoxanthin. In this review the evidence for some of these supplements is briefly summarized. Based on the available literature, caffeine and green tea have data to back up its fat metabolism-enhancing properties. For many other supplements, although some show some promise, evidence is lacking. The list of supplements is industry-driven and is likely to grow at a rate that is not matched by a similar increase in scientific underpinning.

  20. MINIMIZATION OF NO EMISSIONS FROM MULTI-BURNER COAL-FIRED BOILERS

    SciTech Connect

    E.G. Eddings; A. Molina; D.W. Pershing; A.F. Sarofim; T.H. Fletcher; H. Zhang; K.A. Davis; M. Denison; H. Shim

    2002-01-01

    The focus of this program is to provide insight into the formation and minimization of NO{sub x} in multi-burner arrays, such as those that would be found in a typical utility boiler. Most detailed studies are performed in single-burner test facilities, and may not capture significant burner-to-burner interactions that could influence NO{sub x} emissions. Thus, investigations of such interactions were made by performing a combination of single and multiple burner experiments in a pilot-scale coal-fired test facility at the University of Utah, and by the use of computational combustion simulations to evaluate full-scale utility boilers. In addition, fundamental studies on nitrogen release from coal were performed to develop greater understanding of the physical processes that control NO formation in pulverized coal flames--particularly under low NO{sub x} conditions. A CO/H{sub 2}/O{sub 2}/N{sub 2} flame was operated under fuel-rich conditions in a flat flame reactor to provide a high temperature, oxygen-free post-flame environment to study secondary reactions of coal volatiles. Effects of temperature, residence time and coal rank on nitrogen evolution and soot formation were examined. Elemental compositions of the char, tar and soot were determined by elemental analysis, gas species distributions were determined using FTIR, and the chemical structure of the tar and soot was analyzed by solid-state {sup 13}C NMR spectroscopy. A laminar flow drop tube furnace was used to study char nitrogen conversion to NO. The experimental evidence and simulation results indicated that some of the nitrogen present in the char is converted to nitric oxide after direct attack of oxygen on the particle, while another portion of the nitrogen, present in more labile functionalities, is released as HCN and further reacts in the bulk gas. The reaction of HCN with NO in the bulk gas has a strong influence on the overall conversion of char-nitrogen to nitric oxide; therefore, any model that

  1. Design of "model-friendly" turbulent non-premixed jet burners for C2+ hydrocarbon fuels.

    PubMed

    Zhang, Jiayao; Shaddix, Christopher R; Schefer, Robert W

    2011-07-01

    Experimental measurements in laboratory-scale turbulent burners with well-controlled boundary and flow configurations can provide valuable data for validating models of turbulence-chemistry interactions applicable to the design and analysis of practical combustors. This paper reports on the design of two canonical nonpremixed turbulent jet burners for use with undiluted gaseous and liquid hydrocarbon fuels, respectively. Previous burners of this type have only been developed for fuels composed of H(2), CO, and/or methane, often with substantial dilution. While both new burners are composed of concentric tubes with annular pilot flames, the liquid-fuel burner has an additional fuel vaporization step and an electrically heated fuel vapor delivery system. The performance of these burners is demonstrated by interrogating four ethylene flames and one flame fueled by a simple JP-8 surrogate. Through visual observation, it is found that the visible flame lengths show good agreement with standard empirical correlations. Rayleigh line imaging demonstrates that the pilot flame provides a spatially homogeneous flow of hot products along the edge of the fuel jet. Planar imaging of OH laser-induced fluorescence reveals a lack of local flame extinction in the high-strain near-burner region for fuel jet Reynolds numbers (Re) less than 20,000, and increasingly common extinction events for higher jet velocities. Planar imaging of soot laser-induced incandescence shows that the soot layers in these flames are relatively thin and are entrained into vortical flow structures in fuel-rich regions inside of the flame sheet.

  2. A critical review of noise production models for turbulent, gas-fueled burners

    NASA Astrophysics Data System (ADS)

    Mahan, J. R.

    1984-06-01

    The combustion noise literature for the period between 1952 and early 1984 is critically reviewed. Primary emphasis is placed on past theoretical and semi-empirical attempts to predict or explain observed direct combustion noise characteristics of turbulent, gas-fueled burners; works involving liquid-fueled burners are reviewed only when ideas equally applicable to gas-fueled burners are pesented. The historical development of the most important contemporary direct combustion noise theories is traced, and the theories themselves are compared and criticized. While most theories explain combustion noise production by turbulent flames in terms of randomly distributed acoustic monopoles produced by turbulent mixing of products and reactants, none is able to predict the sound pressure in the acoustic farfield of a practical burner because of the lack of a proven model which relates the combustion noise source strenght at a given frequency to the design and operating parameters of the burner. Recommendations are given for establishing a benchmark-quality data base needed to support the development of such a model.

  3. Monitoring near burner slag deposition with a hybrid neural network system

    NASA Astrophysics Data System (ADS)

    Tan, C. K.; Wilcox, S. J.; Ward, J.; Lewitt, M.

    2003-07-01

    This paper is concerned with the development of a system to detect and monitor slag growth in the near burner region in a pulverized-fuel (pf) fired combustion rig. These slag deposits are commonly known as 'eyebrows' and can markedly affect the stability of the burner. The study thus involved a series of experiments with two different coals over a range of burner conditions using a 150 kW pf burner fitted with simulated eyebrows. These simulated eyebrows consisted of annular refractory inserts mounted immediately in front of the original burner quarl. Data obtained by monitoring the infra-red radiation and sound emitted by the flame were processed to yield time and frequency-domain features, which were then used to train and test a hybrid neural network. This hybrid 'intelligent' system was based on self organizing map and radial-basis-function neural networks. This system was able to classify different sized eyebrows with a success rate of at least 99.5%. Consequently, it is possible not only to detect the presence of an eyebrow by monitoring the flame, but also the network can provide an estimate of the size of the deposit, over a reasonably large range of conditions.

  4. Recovery of burner acoustic source structure from far-field sound spectra

    NASA Technical Reports Server (NTRS)

    Mahan, J. R.; Jones, J. D.

    1984-01-01

    A method is presented that permits the thermal-acoustic efficiency spectrum in a long turbulent burner to be recovered from the corresponding far-field sound spectrum. An acoustic source/propagation model is used based on the perturbation solution of the equations describing the unsteady one-dimensional flow of an inviscid ideal gas with a distributed heat source. The technique is applied to a long cylindrical hydrogen-flame burner operating over power levels of 4.5-22.3 kW. The results show that the thermal-acoustic efficiency at a given frequency, defined as the fraction of the total burner power converted to acoustic energy at that frequency, is rather insensitive to burner power, having a maximum value on the order of 10 to the -4th at 150 Hz and rolling off steeply with increasing frequency. Evidence is presented that acoustic agitation of the flame at low frequencies enhances the mixing of the unburned fuel and air with the hot products of combustion. The paper establishes the potential of the technique as a useful tool for characterizing the acoustic source structure in any burner, such as a gas turbine combustor, for which a reasonable acoustic propagation model can be postulated.

  5. A critical review of noise production models for turbulent, gas-fueled burners

    NASA Technical Reports Server (NTRS)

    Mahan, J. R.

    1984-01-01

    The combustion noise literature for the period between 1952 and early 1984 is critically reviewed. Primary emphasis is placed on past theoretical and semi-empirical attempts to predict or explain observed direct combustion noise characteristics of turbulent, gas-fueled burners; works involving liquid-fueled burners are reviewed only when ideas equally applicable to gas-fueled burners are pesented. The historical development of the most important contemporary direct combustion noise theories is traced, and the theories themselves are compared and criticized. While most theories explain combustion noise production by turbulent flames in terms of randomly distributed acoustic monopoles produced by turbulent mixing of products and reactants, none is able to predict the sound pressure in the acoustic farfield of a practical burner because of the lack of a proven model which relates the combustion noise source strenght at a given frequency to the design and operating parameters of the burner. Recommendations are given for establishing a benchmark-quality data base needed to support the development of such a model.

  6. How ''flat'' is the rich premixed flame produced by your McKenna burner?

    SciTech Connect

    Migliorini, F.; De Iuliis, S.; Cignoli, F.; Zizak, G.

    2008-05-15

    McKenna burners are widely used in the combustion community for producing ''flat'' premixed flames. These flames are considered as standards for the development and calibration of optical techniques. Rich premixed flames produced by McKenna burners are frequently investigated in order to understand soot formation processes both by optical and by sampling techniques. Measurements are normally performed along the axis of the flames, with a uniform distribution of temperature and species concentration assumed in the radial direction. In this work it is shown that the soot radial profiles of rich premixed ethylene-air flames produced by a McKenna burner with a stainless steel porous plug may be far from being ''flat.'' Soot is mainly distributed in an annular region and nonsoot fluorescing species are present in the core of the flames. This surprising result was verified under several working conditions. Furthermore, flames cannot be considered axial-symmetric but present a skewed soot distribution. Another McKenna burner with a bronze porous disk was used to produce flames of the same equivalence ratio and flows. These flames show a completely different soot radial profile, closer to the claimed flat distribution. These results cast doubts about the conclusions drawn in several studies on soot formation performed with a stainless steel McKenna burner. (author)

  7. Study of the effects of ambient conditions upon the performance of fan powered, infrared, natural gas burners. Quarterly technical progress report, October 1, 1995--December 31, 1995

    SciTech Connect

    Bai, Tiejun; Yeboah, Y.D.; Sampath, R.

    1996-01-01

    Infrared burner is a surface combustor that elevates the temperature of the burner head to a radiant condition. Applications of radiant burners includes boilers, air heaters, deep fat fryers, process heaters, and immersion heaters. On reason for the present interest in this type of burner is its low NO{sub x} emissions, which is attributed to the fact that a large proportion of the combustion heat is given out as radiation from the burner surface, which results in relatively low gas temperature in the combustion zone compared to that of a conventional free-flame burner. As a consequence, such burners produce less NO{sub x}, mainly by the so-called prompt-NO mechanism. A porous radiant burner testing facility was built, consisting of spectral radiance as well as flue gas composition measurements. Measurement capabilities were tested using methane; results were consistent with literature.

  8. Experimental study of the thermal-acoustic efficiency in a long turbulent diffusion-flame burner

    NASA Technical Reports Server (NTRS)

    Mahan, J. R.

    1983-01-01

    A two-year study of noise production in a long tubular burner is described. The research was motivated by an interest in understanding and eventually reducing core noise in gas turbine engines. The general approach is to employ an acoustic source/propagation model to interpret the sound pressure spectrum in the acoustic far field of the burner in terms of the source spectrum that must have produced it. In the model the sources are assumed to be due uniquely to the unsteady component of combustion heat release; thus only direct combustion-noise is considered. The source spectrum is then the variation with frequency of the thermal-acoustic efficiency, defined as the fraction of combustion heat release which is converted into acoustic energy at a given frequency. The thrust of the research was to study the variation of the source spectrum with the design and operating parameters of the burner.

  9. Development and certification of the innovative pioneer oil burner for residential heating appliances

    SciTech Connect

    Kamath, B.

    1997-09-01

    The Pioneer burner represents another important milestone for the oil heat industry. It is the first practical burner design that is designated for use in small capacity heating appliances matching the needs of modern energy efficient home designs. Firing in the range of 0.3 GPH to 0.65 GPH (40,000-90,000 Btu/hr) it allows for new oil heating appliance designs to compete with the other major fuel choices in the small design load residential market. This market includes energy efficient single family houses, town-houses, condominiums, modular units, and mobile homes. The firing range also is wide enough to cover a large percentage of more conventional heating equipment and home designs as well. Having recently passed Underwriters Laboratory certification tests the burner in now being field tested in several homes and samples are being made available to interested boiler and furnace manufacturers for product development and application testing.

  10. Investigation of lean combustion stability and pressure drop in porous media burners

    NASA Astrophysics Data System (ADS)

    Sobhani, Sadaf; Haley, Bret; Bartz, David; Dunnmon, Jared; Sullivan, John; Ihme, Matthias

    2016-11-01

    The stability and thermal durability of combustion in porous media burners (PMBs) is examined experimentally and computationally. For this, two burner concepts are considered, which consist of different pore topologies, porous materials, and matrix arrangements. Long-term material durability tests at constant and cycled on-off conditions are performed, along with a characterization of combustion stability, pressure drop and pollutant emissions for a range of equivalence ratios and mass flow rates. Experimental thermocouple temperature measurements and pressure drop data are presented and compared to results obtained from one-dimensional volume-averaged simulations. Experimental and model results show reasonable agreement for temperature profiles and pressure drop evaluated using Ergun's equations. Enhanced flame stability is illustrated for burners with Yttria-stabilized Zirconia Alumina upstream and Silicon Carbide in the downstream combustion zone. Results reinforce concepts in PMB design and optimization, and demonstrate the potential of PMBs to overcome technological barriers associated with conventional free-flame combustion technologies.

  11. 41 CFR 101-26.602-3 - Procurement of gasoline, fuel oil (diesel and burner), kerosene, and solvents.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 41 Public Contracts and Property Management 2 2013-07-01 2012-07-01 true Procurement of gasoline... § 101-26.602-3 Procurement of gasoline, fuel oil (diesel and burner), kerosene, and solvents. (a... capability to procure locally. Item Minimum annual requirement (gallons) Gasoline 10,000 Burner fuel oil...

  12. 41 CFR 101-26.602-3 - Procurement of gasoline, fuel oil (diesel and burner), kerosene, and solvents.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 41 Public Contracts and Property Management 2 2014-07-01 2012-07-01 true Procurement of gasoline... § 101-26.602-3 Procurement of gasoline, fuel oil (diesel and burner), kerosene, and solvents. (a... capability to procure locally. Item Minimum annual requirement (gallons) Gasoline 10,000 Burner fuel oil...

  13. 41 CFR 101-26.602-3 - Procurement of gasoline, fuel oil (diesel and burner), kerosene, and solvents.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 41 Public Contracts and Property Management 2 2012-07-01 2012-07-01 false Procurement of gasoline... § 101-26.602-3 Procurement of gasoline, fuel oil (diesel and burner), kerosene, and solvents. (a... capability to procure locally. Item Minimum annual requirement (gallons) Gasoline 10,000 Burner fuel oil...

  14. COST-EFFECTIVE CONTROL OF NOx WITH INTEGRATED ULTRA LOW-NOx BURNERS AND SNCR

    SciTech Connect

    Hamid Farzan; Jennifer Sivy; Alan Sayre; John Boyle

    2003-07-01

    Under sponsorship of the Department of Energy's National Energy Technology Laboratory (NETL), McDermott Technology, Inc. (MTI), the Babcock & Wilcox Company (B&W), and Fuel Tech teamed together to investigate an integrated solution for NOx control. The system was comprised of B&W's DRB-4Z{trademark} low-NO{sub x} pulverized coal (PC) burner technology and Fuel Tech's NO{sub x}OUT{reg_sign}, a urea-based selective non-catalytic reduction (SNCR) technology. The technology's emission target is achieving 0.15 lb NO{sub x}/10{sup 6} Btu for full-scale boilers. Development of the low-NOx burner technology has been a focus in B&W's combustion program. The DRB-4Z{trademark} burner (see Figure 1.1) is B&W's newest low-NO{sub x} burner capable of achieving very low NO{sub x}. The burner is designed to reduce NO{sub x} by diverting air away from the core of the flame, which reduces local stoichiometry during coal devolatilization and, thereby, reduces initial NO{sub x} formation. Figure 1.2 shows the historical NO{sub x} emission levels from different B&W burners. Figure 1.2 shows that based on three large-scale commercial installations of the DRB-4Z{trademark} burners in combination with OFA ports, using Western subbituminous coal, the NO{sub x} emissions ranged from 0.16 to 0.18 lb/10{sup 6} Btu. It appears that with continuing research and development the Ozone Transport Rule (OTR) emission level of 0.15 lb NO{sub x}/10{sup 6} Btu is within the reach of combustion modification techniques for boilers using western U.S. subbituminous coals. Although NO{sub x} emissions from the DRB-4Z{trademark} burner are nearing OTR emission level with subbituminous coals, the utility boiler owners that use bituminous coals can still benefit from the addition of an SNCR and/or SCR system in order to comply with the stringent NO{sub x} emission levels facing them.

  15. Polonium release from an ATW burner system with liquid lead-bismuth coolant

    SciTech Connect

    Li, N.; Yefimov, E.; Pankratov, D.

    1998-04-01

    The authors analyzed polonium release hazards in a conceptual pool-type ATW burner with liquid lead-bismuth eutectic (LBE) coolant. Simplified quantitative models are used based on experiments and real NPP experience. They found little Po contamination outside the burner under normal operating conditions with nominal leakage from the gas system. In sudden gas leak and/or coolant spill accidents, the P contamination level can reach above the regulation limit but short exposure would not lead to severe health consequences. They are evaluating and developing mitigation methods.

  16. Experimental verification of vapor deposition model in Mach 0.3 burner rigs

    NASA Technical Reports Server (NTRS)

    Gokoglu, S. A.

    1984-01-01

    A comprehensive theoretical framework of deposition from combustion gases was developed covering the spectrum of various mass delivery mechanisms including vapor, thermophoretically enhanced small particle, and inertially impacting large particle deposition. Rational yet simple correlations were provided to facilitate engineering surface arrival rate predictions. Experimental verification of the deposition theory was validated using burner rigs. Toward this end, a Mach 0.3 burner rig apparatus was designed to measure deposition rates from salt-seeded combustion gases on an internally cooled cylindrical collector.

  17. 16 CFR Figure 6 to Part 1633 - Burner Assembly Showing Arms and Pivots (Shoulder Screws) in Relation to, Portable Frame Allowing...

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 16 Commercial Practices 2 2012-01-01 2012-01-01 false Burner Assembly Showing Arms and Pivots (Shoulder Screws) in Relation to, Portable Frame Allowing Burner Height Adjustment 6 Figure 6 to Part 1633... FLAMMABILITY (OPEN FLAME) OF MATTRESS SETS Pt.1633, Fig. 6 Figure 6 to Part 1633—Burner Assembly Showing...

  18. 16 CFR Figure 6 to Part 1633 - Burner Assembly Showing Arms and Pivots (Shoulder Screws) in Relation to Portable Frame Allowing...

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 16 Commercial Practices 2 2011-01-01 2011-01-01 false Burner Assembly Showing Arms and Pivots (Shoulder Screws) in Relation to Portable Frame Allowing Burner Height Adjustment 6 Figure 6 to Part 1633... FLAMMABILITY (OPEN FLAME) OF MATTRESS SETS Pt.1633, Fig. 6 Figure 6 to Part 1633—Burner Assembly Showing...

  19. 40 CFR Appendix A to Part 76 - Phase I Affected Coal-Fired Utility Units With Group 1 or Cell Burner Boilers

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... Units With Group 1 or Cell Burner Boilers A Appendix A to Part 76 Protection of Environment... 1 or Cell Burner Boilers Table 1—Phase I Tangentially Fired Units State Plant Unit Operator ALABAMA... Vertically fired boiler. 2 Arch-fired boiler. Table 3—Phase I Cell Burner Technology Units State Plant...

  20. 40 CFR Appendix A to Part 76 - Phase I Affected Coal-Fired Utility Units With Group 1 or Cell Burner Boilers

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... Units With Group 1 or Cell Burner Boilers A Appendix A to Part 76 Protection of Environment... 1 or Cell Burner Boilers Table 1—Phase I Tangentially Fired Units State Plant Unit Operator ALABAMA... Vertically fired boiler. 2 Arch-fired boiler. Table 3—Phase I Cell Burner Technology Units State Plant...

  1. 40 CFR Appendix A to Part 76 - Phase I Affected Coal-Fired Utility Units With Group 1 or Cell Burner Boilers

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... Units With Group 1 or Cell Burner Boilers A Appendix A to Part 76 Protection of Environment... 1 or Cell Burner Boilers Table 1—Phase I Tangentially Fired Units State Plant Unit Operator ALABAMA... Vertically fired boiler. 2 Arch-fired boiler. Table 3—Phase I Cell Burner Technology Units State Plant...

  2. 40 CFR Appendix A to Part 76 - Phase I Affected Coal-Fired Utility Units With Group 1 or Cell Burner Boilers

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... Units With Group 1 or Cell Burner Boilers A Appendix A to Part 76 Protection of Environment... 1 or Cell Burner Boilers Table 1—Phase I Tangentially Fired Units State Plant Unit Operator ALABAMA... Vertically fired boiler. 2 Arch-fired boiler. Table 3—Phase I Cell Burner Technology Units State Plant...

  3. DEVELOPMENT AND DEMONSTRATION OF NOVEL LOW-NOx BURNERS IN THE STEEL INDUSTRY

    SciTech Connect

    Cygan, David

    2006-12-28

    Gas Technology Institute (GTI), together with Hamworthy Peabody Combustion Incorporated (formerly Peabody Engineering Corporation), the University of Utah, and Far West Electrochemical have developed and demonstrated an innovative combustion system suitable for natural gas and coke-oven gas firing within the steel industry. The combustion system is a simple, low-cost, energy-efficient burner that can reduce NOx by more than 75%. The U.S. steel industry needs to address NOx control at its steelmaking facilities. A significant part of NOx emissions comes from gas-fired boilers. In steel plants, byproduct gases – blast furnace gas (BFG) and coke-oven gas (COG) – are widely used together with natural gas to fire furnaces and boilers. In steel plants, natural gas can be fired together with BFG and COG, but, typically, the addition of natural gas raises NOx emissions, which can already be high because of residual fuel-bound nitrogen in COG. The Project Team has applied its expertise in low-NOx burners to lower NOx levels for these applications by combining advanced burner geometry and combustion staging with control strategies tailored to mixtures of natural gas and byproduct fuel gases. These methods reduce all varieties of NOx – thermal NOx produced by high flame temperatures, prompt NOx produced by complex chain reactions involving radical hydrocarbon species and NOx from fuel-bound nitrogen compounds such as ammonia found in COG. The Project Team has expanded GTI’s highly successful low-NOx forced internal recirculation (FIR) burner, previously developed for natural gas-fired boilers, into facilities that utilize BFG and COG. For natural gas firing, these burners have been shown to reduce NOx emissions from typical uncontrolled levels of 80-100 vppm to single-digit levels (9 vppm). This is done without the energy efficiency penalties incurred by alternative NOx control methods, such as external flue gas recirculation (FGR), water injection, and selective non

  4. Final Technical Report

    SciTech Connect

    Philip Malte

    2004-11-30

    The objective of the research is the reduction of emissions of NOx and carbon from wood waste combustion and dryer systems. Focus in on suspension (dust) burners, especially the cyclone burners that are widely used in the industry. Computational fluid dynamics (CFD) is used to help understand the details of combustion and pollutant formation in wood waste combustion systems, and to help determine the potential of combustion modification for reducing emissions. Field burners are examined with the modeling.

  5. Social Studies (Still) on the Back Burner: Perceptions and Practices of K-5 Social Studies Instruction

    ERIC Educational Resources Information Center

    Lintner, Timothy

    2006-01-01

    In 1995, Neil Houser concluded that social studies in Delaware was "on the back burner." Some ten years later, the same can be said concerning social studies in South Carolina. With a continued emphasis being placed on the more "pressing" fields such as math and language arts, coupled with the inclusion of social studies on…

  6. Alternative solutions for reducing NO{sub x} emissions from cell burner boilers

    SciTech Connect

    Mali, E.; Laursen, T.; Piepho, J.

    1996-01-01

    Standard, tightly-spaced cell burners were developed by Babcock & Wilcox during the 1960s in response to economic demands for highly efficient burner designs. However, the downside of this 1960s design is the production of elevated levels of nitrogen oxides (NO{sub x}) emissions which negatively impact the environment. Cell-fired units have been designated as Phase II, Group II boilers under Title IV, Acid Rain Control, of the Clean Air Act Amendments of 1990 for NO{sub x} control. This paper will discuss one technology developed under the auspices of the U.S. Department of Energy`s Clean Coal Technology program for pulverized coal, cell-fired units - namely, the Low NO{sub x} Cell burner (LNCB{reg_sign}) technology. The body of this paper will describe the development of Low NO{sub x} Cell burner technology and examine six follow-on commercial contracts. The purpose of the paper is to identify similarities and differences in design, fuels, costs and performance results when compared against the Clean Coal Technology prototype.

  7. Experimental verification of vapor deposition rate theory in high velocity burner rigs

    NASA Technical Reports Server (NTRS)

    Gokoglu, Suleyman A.; Santoro, Gilbert J.

    1985-01-01

    The main objective has been the experimental verification of the corrosive vapor deposition theory in high-temperature, high-velocity environments. Towards this end a Mach 0.3 burner-rig appartus was built to measure deposition rates from salt-seeded (mostly Na salts) combustion gases on the internally cooled cylindrical collector. Deposition experiments are underway.

  8. Integration of an Inter Turbine Burner to a Jet Turbine Engine

    DTIC Science & Technology

    2013-03-01

    whether for electrical systems or increased thrust, improved engine efficiency must be found. An Ultra-Compact Combustor (UCC) is a proposed...apparatus for accomplishing this task by burning in the circumferential direction as a main combustor or an Inter-Turbine Burner (ITB). In order for the...1 1.1 Ultra-Compact Combustor

  9. THE SITE DEMONSTRATION OF THE AMERICAN COMBUSTION PYRETRON OXYGEN-ENHANCED BURNER

    EPA Science Inventory

    A demonstration of the American Combustion PyretronTM oxygen-enhanced burner ws conducted under the Superfund Innovative Technology Evaluation (SITE) program. The Demonstration was conducted at the U.S. EPA's Combustion Research Facility (CRF) in Jefferson, Arkansas....

  10. SONOTECH, INC. FREQUENCY-TUNABLE PULSE COMBUSTION SYSTEM (CELLO PULSE BURNER) - INNOVATIVE TECHNOLOGY EVALUATION REPORT

    EPA Science Inventory

    Sonotech, Inc. (Sonotech) of Atlanta, Georgia, has developed a pulse combustion burner technology that claims to offer benefits when applied in a variety of combustion processes. The technology incorporates a combustor that can be tuned to induce large-amplitude acoustic or soni...

  11. Validation of structural analysis methods using burner liner cyclic rig test data

    NASA Technical Reports Server (NTRS)

    Thompson, R.

    1983-01-01

    The objectives of the hot section technology (HOST) burner liner cyclic rig test program are basically threefold: (1) to assist in developing predictive tools needed to improve design analyses and procedures for the efficient and accurate prediction of burner liner structural response; (2) to calibrate, evaluate and validate these predictive tools by comparing the predicted results with the experimental data generated in the tests; and (3) to evaluate existing as well as advanced temperature and strain measurement instrumentation, both contact and noncontact, in a simulated engine cycle environment. The data generated will include measurements of the thermal environment (metal surface temperatures) as well as structural (strain) and life (fatigue) responses of simulated burner liners and specimens under controlled boundary and operating conditions. These data will be used to calibrate, compare and validate analytical theories, methodologies and design procedures, as well as improvements in them, for predicting liner temperatures, stress-strain responses and cycles to failure. Comparison of predicted results with experimental data will be used to show where the predictive theories, etc. need improvements. In addition, as the predictive tools, as well as the tests, test methods, and data acquisition and reduction techniques, are developed and validated, a proven, integrated analysis/experiment method will be developed to determine the cyclic life of a simulated burner liner.

  12. Confronting the "Bra-Burners": Teaching Radical Feminism with a Case Study

    ERIC Educational Resources Information Center

    Kreydatus, Beth

    2008-01-01

    In many of the U.S. History courses the author has taught, she has encountered students who refer to the second-wave feminists of the 1960s and 1970s as "bra-burners." Unsurprisingly, these students know very little about the origin of this epithet, and frequently, they know even less about the women's movement generally. Second-wave feminism, and…

  13. 16 CFR Figure 5 to Part 1633 - Details of Burner Stand-off

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 16 Commercial Practices 2 2012-01-01 2012-01-01 false Details of Burner Stand-off 5 Figure 5 to Part 1633 Commercial Practices CONSUMER PRODUCT SAFETY COMMISSION FLAMMABLE FABRICS ACT REGULATIONS STANDARD FOR THE FLAMMABILITY (OPEN FLAME) OF MATTRESS SETS Pt.1633, Fig. 5 Figure 5 to Part...

  14. 16 CFR Figure 7 to Part 1633 - Elements of Propane Flow Control for Each Burner

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 16 Commercial Practices 2 2013-01-01 2013-01-01 false Elements of Propane Flow Control for Each Burner 7 Figure 7 to Part 1633 Commercial Practices CONSUMER PRODUCT SAFETY COMMISSION FLAMMABLE FABRICS ACT REGULATIONS STANDARD FOR THE FLAMMABILITY (OPEN FLAME) OF MATTRESS SETS Pt. 1633, Fig. 7 Figure...

  15. 16 CFR Figure 9 to Part 1633 - Burner Placements on Mattress/Foundation

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 16 Commercial Practices 2 2014-01-01 2014-01-01 false Burner Placements on Mattress/Foundation 9 Figure 9 to Part 1633 Commercial Practices CONSUMER PRODUCT SAFETY COMMISSION FLAMMABLE FABRICS ACT REGULATIONS STANDARD FOR THE FLAMMABILITY (OPEN FLAME) OF MATTRESS SETS Pt. 1633, Fig. 9 Figure 9 to Part...

  16. 16 CFR Figure 9 to Part 1633 - Burner Placements on Mattress/Foundation

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 16 Commercial Practices 2 2012-01-01 2012-01-01 false Burner Placements on Mattress/Foundation 9 Figure 9 to Part 1633 Commercial Practices CONSUMER PRODUCT SAFETY COMMISSION FLAMMABLE FABRICS ACT REGULATIONS STANDARD FOR THE FLAMMABILITY (OPEN FLAME) OF MATTRESS SETS Pt.1633, Fig. 9 Figure 9 to Part...

  17. 16 CFR Figure 7 to Part 1633 - Elements of Propane Flow Control for Each Burner

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 16 Commercial Practices 2 2011-01-01 2011-01-01 false Elements of Propane Flow Control for Each Burner 7 Figure 7 to Part 1633 Commercial Practices CONSUMER PRODUCT SAFETY COMMISSION FLAMMABLE FABRICS ACT REGULATIONS STANDARD FOR THE FLAMMABILITY (OPEN FLAME) OF MATTRESS SETS Pt.1633, Fig. 7 Figure...

  18. 16 CFR Figure 7 to Part 1633 - Elements of Propane Flow Control for Each Burner

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 16 Commercial Practices 2 2010-01-01 2010-01-01 false Elements of Propane Flow Control for Each Burner 7 Figure 7 to Part 1633 Commercial Practices CONSUMER PRODUCT SAFETY COMMISSION FLAMMABLE FABRICS ACT REGULATIONS STANDARD FOR THE FLAMMABILITY (OPEN FLAME) OF MATTRESS SETS Pt.1633, Fig. 7 Figure...

  19. 16 CFR Figure 7 to Part 1633 - Elements of Propane Flow Control for Each Burner

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 16 Commercial Practices 2 2014-01-01 2014-01-01 false Elements of Propane Flow Control for Each Burner 7 Figure 7 to Part 1633 Commercial Practices CONSUMER PRODUCT SAFETY COMMISSION FLAMMABLE FABRICS ACT REGULATIONS STANDARD FOR THE FLAMMABILITY (OPEN FLAME) OF MATTRESS SETS Pt. 1633, Fig. 7 Figure...

  20. 16 CFR Figure 9 to Part 1633 - Burner Placements on Mattress/Foundation

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 16 Commercial Practices 2 2011-01-01 2011-01-01 false Burner Placements on Mattress/Foundation 9 Figure 9 to Part 1633 Commercial Practices CONSUMER PRODUCT SAFETY COMMISSION FLAMMABLE FABRICS ACT REGULATIONS STANDARD FOR THE FLAMMABILITY (OPEN FLAME) OF MATTRESS SETS Pt.1633, Fig. 9 Figure 9 to Part...

  1. 16 CFR Figure 5 to Part 1633 - Details of Burner Stand-off

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 16 Commercial Practices 2 2014-01-01 2014-01-01 false Details of Burner Stand-off 5 Figure 5 to Part 1633 Commercial Practices CONSUMER PRODUCT SAFETY COMMISSION FLAMMABLE FABRICS ACT REGULATIONS STANDARD FOR THE FLAMMABILITY (OPEN FLAME) OF MATTRESS SETS Pt. 1633, Fig. 5 Figure 5 to Part...

  2. 16 CFR Figure 9 to Part 1633 - Burner Placements on Mattress/Foundation

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 16 Commercial Practices 2 2010-01-01 2010-01-01 false Burner Placements on Mattress/Foundation 9 Figure 9 to Part 1633 Commercial Practices CONSUMER PRODUCT SAFETY COMMISSION FLAMMABLE FABRICS ACT REGULATIONS STANDARD FOR THE FLAMMABILITY (OPEN FLAME) OF MATTRESS SETS Pt.1633, Fig. 9 Figure 9 to Part...

  3. 16 CFR Figure 9 to Part 1633 - Burner Placements on Mattress/Foundation

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 16 Commercial Practices 2 2013-01-01 2013-01-01 false Burner Placements on Mattress/Foundation 9 Figure 9 to Part 1633 Commercial Practices CONSUMER PRODUCT SAFETY COMMISSION FLAMMABLE FABRICS ACT REGULATIONS STANDARD FOR THE FLAMMABILITY (OPEN FLAME) OF MATTRESS SETS Pt. 1633, Fig. 9 Figure 9 to Part...

  4. 16 CFR Figure 5 to Part 1633 - Details of Burner Stand-off

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 16 Commercial Practices 2 2013-01-01 2013-01-01 false Details of Burner Stand-off 5 Figure 5 to Part 1633 Commercial Practices CONSUMER PRODUCT SAFETY COMMISSION FLAMMABLE FABRICS ACT REGULATIONS STANDARD FOR THE FLAMMABILITY (OPEN FLAME) OF MATTRESS SETS Pt. 1633, Fig. 5 Figure 5 to Part...

  5. 16 CFR Figure 7 to Part 1633 - Elements of Propane Flow Control for Each Burner

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 16 Commercial Practices 2 2012-01-01 2012-01-01 false Elements of Propane Flow Control for Each Burner 7 Figure 7 to Part 1633 Commercial Practices CONSUMER PRODUCT SAFETY COMMISSION FLAMMABLE FABRICS ACT REGULATIONS STANDARD FOR THE FLAMMABILITY (OPEN FLAME) OF MATTRESS SETS Pt.1633, Fig. 7 Figure...

  6. 16 CFR Figure 5 to Part 1633 - Details of Burner Stand-off

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 16 Commercial Practices 2 2011-01-01 2011-01-01 false Details of Burner Stand-off 5 Figure 5 to Part 1633 Commercial Practices CONSUMER PRODUCT SAFETY COMMISSION FLAMMABLE FABRICS ACT REGULATIONS STANDARD FOR THE FLAMMABILITY (OPEN FLAME) OF MATTRESS SETS Pt.1633, Fig. 5 Figure 5 to Part...

  7. 16 CFR Figure 5 to Part 1633 - Details of Burner Stand-off

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 16 Commercial Practices 2 2010-01-01 2010-01-01 false Details of Burner Stand-off 5 Figure 5 to Part 1633 Commercial Practices CONSUMER PRODUCT SAFETY COMMISSION FLAMMABLE FABRICS ACT REGULATIONS STANDARD FOR THE FLAMMABILITY (OPEN FLAME) OF MATTRESS SETS Pt.1633, Fig. 5 Figure 5 to Part...

  8. 46 CFR 56.50-65 - Burner fuel-oil service systems.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... service systems. (a) All discharge piping from the fuel oil service pumps to burners must be seamless... application may be used when approved by the Marine Safety Center. Tubing fittings must be of the flared type... copper nickel. (b)(1) All vessels having oil fired boilers must have at least two fuel service...

  9. 46 CFR 56.50-65 - Burner fuel-oil service systems.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... service systems. (a) All discharge piping from the fuel oil service pumps to burners must be seamless... application may be used when approved by the Marine Safety Center. Tubing fittings must be of the flared type... copper nickel. (b)(1) All vessels having oil fired boilers must have at least two fuel service...

  10. 46 CFR 56.50-65 - Burner fuel-oil service systems.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... service systems. (a) All discharge piping from the fuel oil service pumps to burners must be seamless... application may be used when approved by the Marine Safety Center. Tubing fittings must be of the flared type... copper nickel. (b)(1) All vessels having oil fired boilers must have at least two fuel service...

  11. 46 CFR 56.50-65 - Burner fuel-oil service systems.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... service systems. (a) All discharge piping from the fuel oil service pumps to burners must be seamless... application may be used when approved by the Marine Safety Center. Tubing fittings must be of the flared type... copper nickel. (b)(1) All vessels having oil fired boilers must have at least two fuel service...

  12. ASU nitrogen sweep gas in hydrogen separation membrane for production of HRSG duct burner fuel

    SciTech Connect

    Panuccio, Gregory J.; Raybold, Troy M.; Jamal, Agil; Drnevich, Raymond Francis

    2013-04-02

    The present invention relates to the use of low pressure N2 from an air separation unit (ASU) for use as a sweep gas in a hydrogen transport membrane (HTM) to increase syngas H2 recovery and make a near-atmospheric pressure (less than or equal to about 25 psia) fuel for supplemental firing in the heat recovery steam generator (HRSG) duct burner.

  13. Comparison of multi-microphone transfer matrix measurements with acoustic network models of swirl burners

    NASA Astrophysics Data System (ADS)

    Fischer, A.; Hirsch, C.; Sattelmayer, T.

    2006-11-01

    Utilizing the close analogy between electronic circuits and ducted acoustic systems, mathematical methods originally developed for the characterization of electronic networks are applied to the experimental acoustic plane wave characterization of swirl burners with complex geometries. The experiments presented in the paper show that the acoustic behavior of swirl generators can be quantitatively evaluated treating them as acoustic two-ports. Such acoustic two-ports are presented in forms of transfer-, scattering- and mobility matrices of the element. In the acoustic burner study dynamic pressure measurements were made at several locations of a tubular combustor test rig for two acoustically independent states, which were generated by forcing with sirens at the opposite ends of the setup. The technique for the experimental evaluation of acoustic transfer matrices of complex geometries on the basis of these dynamic pressure measurements is illustrated. As an alternative to the experiment, the evaluation of the acoustic behavior of acoustic systems is assessed using acoustic networks consisting of simple acoustic elements like ducts, bends, junctions and sudden area changes with transfer matrices, which are derived from first principles. In the paper, a network model representing the transfer characteristics of swirl burners is presented and compared with the previously measured transfer matrices. Although the burner geometry is rather complex, its acoustic behavior can be successfully mapped to a network consisting of a serial connection of nine elements with only minor adjustment of one parameter.

  14. Low No{sub x}/SO{sub x} burner retrofit for utility cyclone boilers. Baseline test report: Issue A

    SciTech Connect

    Moore, K.; Martin, L.; Smith, J.

    1991-05-01

    The Low NO{sub x}/SO{sub x} (LNS) Burner Retrofit for Utility Cyclone Boilers program consists of the retrofit and subsequent demonstration of the technology at Southern Illinois Power Cooperative`s (SIPC`s) 33-MW unit 1 cyclone boiler located near Marion, Illinois. The LNS Burner employs a simple innovative combustion process burning high-sulfur Illinois coal to provide substantial SO{sub 2} and NO{sub x} control within the burner. A complete series of boiler performance and characterization tests, called the baseline tests, was conducted in October 1990 on unit 1 of SIPC`s Marion Station. The primary objective of the baseline test was to collect data from the existing plant that could provide a comparison of performance after the LNS Burner retrofit. These data could confirm the LNS Burner`s SO{sub x} and NO{sub x} emissions control and any effect on boiler operation. Further, these tests would provide to the project experience with the operating characteristics of the host unit as well as engineering design information to minimize technical uncertainties in the application of the LNS Burner technology.

  15. Low NO sub x /SO sub x Burner retrofit for utility cyclone boilers

    SciTech Connect

    Not Available

    1990-01-01

    The objective of this project is to demonstrate the LNS Burner as retrofitted to the host cyclone boiler for effective low-cost control of NO{sub x} and SO{sub x} emissions while firing a bituminous coal. The LNS Burner employs a simple, innovative combustion process to burn pulverized coal at high temperatures and provides effective, low-cost control of sulfur dioxide (SO{sub 2}) and nitrogen oxides (NO{sub x}) emissions. The coal ash contains sulfur and is removed in the form of molten slag and flyash. Cyclone-fired boiler units are typically older units firing high-sulfur bituminous coals at very high temperatures which results in very high NO{sub x} and SO{sub x} emissions. The addition of conventional emission control equipment, such as wet scrubbers, to these older cyclone units in order to meet current and future environmental regulations is generally not economic. Further, the units are generally not compatible with low sulfur coal switching for S0{sub 2} control or selective catalytic reduction technologies for NO{sub x} control. Because the LNS Burner operates at the same very high temperatures as a typical cyclone boiler and produces a similar slag product, it may offer a viable retrofit option for cyclone boiler emission control. This was confirmed by the Cyclone Boiler Retrofit Feasibility Study carried out by TransAlta and an Operating Committee formed of cyclone boiler owners in 1989. An existing utility cyclone boiler, was then selected for the evaluation of the cost and performance study. It was concluded that the LNS Burner retrofit would be a cost-effective option for control of cyclone boiler emissions. A full-scale demonstration of the LNS Burner retrofit was selected in October 1988 as part of the DOE's Clean Coal Technology Program Round II.

  16. [Industrial pulverized coal low NO{sub x} burner, Phase I] technical progress report, April 1, 1992--June 30, 1992

    SciTech Connect

    Not Available

    1992-09-01

    Market evaluation of industrial pulverized coal usage, and of typical industries and applications where the low-NO{sub x}, burner may be sold, was partially completed at the end of this reporting period. The study identified three coals that may adequately meet the requirements of the low-NO{sub x} burner modeling study, and of the intended industrial applications. These were: (a) Pittsburgh Seam Bituminous, (b) Pittsburgh No. 8, and (c) Utah Bituminous. The first burner design, for modeling studies, was developed for a nominal output of 5.0 million Btu/hr. All input and process parameters, and all major dimensions of the burner have been determined. Burner design sketch was developed. Standard jet pump geometry of the fuel-rich burner flow path (US Patents No. 4,445,842 and No. 3,990,831), has been modified for use with pulverized coal. Staged air was added. Staged air, in conjunction with recirculated flue gas, has been found by ADL, MIT and other researchers to be effective in NO{sub x}, reduction. No attempt has been made to achieve compactness of design. The primary and seconder, air inlets and flow passages are separate, although in the industrial burner they will be combined. Flue gas may be drawn into the burner either from the hot furnace chamber, or from the flue stack after recuperation. However, to satisfy the energy requirements for volatilizing the coal, flue gas temperature above 2000{degrees}F may be needed. With the preliminary burner design completed, and suitable coals for the modeling study selected, type project is ready to proceed to the kinetic modeling tasks at MIT.

  17. [Industrial pulverized coal low NO[sub x] burner, Phase I] technical progress report, April 1, 1992--June 30, 1992

    SciTech Connect

    Not Available

    1992-09-01

    Market evaluation of industrial pulverized coal usage, and of typical industries and applications where the low-NO[sub x], burner may be sold, was partially completed at the end of this reporting period. The study identified three coals that may adequately meet the requirements of the low-NO[sub x] burner modeling study, and of the intended industrial applications. These were: (a) Pittsburgh Seam Bituminous, (b) Pittsburgh No. 8, and (c) Utah Bituminous. The first burner design, for modeling studies, was developed for a nominal output of 5.0 million Btu/hr. All input and process parameters, and all major dimensions of the burner have been determined. Burner design sketch was developed. Standard jet pump geometry of the fuel-rich burner flow path (US Patents No. 4,445,842 and No. 3,990,831), has been modified for use with pulverized coal. Staged air was added. Staged air, in conjunction with recirculated flue gas, has been found by ADL, MIT and other researchers to be effective in NO[sub x], reduction. No attempt has been made to achieve compactness of design. The primary and seconder, air inlets and flow passages are separate, although in the industrial burner they will be combined. Flue gas may be drawn into the burner either from the hot furnace chamber, or from the flue stack after recuperation. However, to satisfy the energy requirements for volatilizing the coal, flue gas temperature above 2000[degrees]F may be needed. With the preliminary burner design completed, and suitable coals for the modeling study selected, type project is ready to proceed to the kinetic modeling tasks at MIT.

  18. Results of initial operation of the Jupiter Oxygen Corporation oxy-fuel 15 MWth burner test facility

    SciTech Connect

    Thomas Ochs, Danylo Oryshchyn, Rigel Woodside, Cathy Summers, Brian Patrick, Dietrich Gross, Mark Schoenfield, Thomas Weber and Dan O'Brien

    2009-04-01

    Jupiter Oxygen Corporation (JOC), in cooperation with the National Energy Technology Laboratory (NETL), constructed a 15 MWth oxy-fuel burner test facility with Integrated Pollutant Removal (IPRTM) to test high flame temperature oxy-fuel combustion and advanced carbon capture. Combustion protocols include baseline air firing with natural gas, oxygen and natural gas firing with and without flue gas recirculation, and oxygen and pulverized coal firing with flue gas recirculation. Testing focuses on characterizing burner performance, determining heat transfer characteristics, optimizing CO2 capture, and maximizing heat recovery, with an emphasis on data traceability to address retrofit of existing boilers by directly transforming burner systems to oxy-fuel firing.

  19. A high-pressure premixed flat-flame burner for chemical process studies. [of pollutant formation in hydrocarbon flames

    NASA Technical Reports Server (NTRS)

    Miller, I. M.

    1978-01-01

    A premixed flat-flame burner was designed and tested with methane-air mixtures at pressures from 1.1 to 20 atm and equivalence ratios from 0.7 to 1.1. Reactant velocity in the burner mixing chamber was used to characterize the range of stable flames at each pressure-equivalence-ratio condition. Color photographs of the flames were used to determine flame zone thickness and flame height. The results show that this burner can be used for chemical process studies in premixed high pressure methane-air flames up to 20 atm.

  20. Ensemble Diffraction Measurements of Spray Combustion in a Novel Vitiated Coflow Turbulent Jet Flame Burner

    NASA Technical Reports Server (NTRS)

    Cabra, R.; Hamano, Y.; Chen, J. Y.; Dibble, R. W.; Acosta, F.; Holve, D.

    2000-01-01

    An experimental investigation is presented of a novel vitiated coflow spray flame burner. The vitiated coflow emulates the recirculation region of most combustors, such as gas turbines or furnaces; additionally, since the vitiated gases are coflowing, the burner allows exploration of the chemistry of recirculation without the corresponding fluid mechanics of recirculation. As such, this burner allows for chemical kinetic model development without obscurations caused by fluid mechanics. The burner consists of a central fuel jet (droplet or gaseous) surrounded by the oxygen rich combustion products of a lean premixed flame that is stabilized on a perforated, brass plate. The design presented allows for the reacting coflow to span a large range of temperatures and oxygen concentrations. Several experiments measuring the relationships between mixture stoichiometry and flame temperature are used to map out the operating ranges of the coflow burner. These include temperatures as low 300 C to stoichiometric and oxygen concentrations from 18 percent to zero. This is achieved by stabilizing hydrogen-air premixed flames on a perforated plate. Furthermore, all of the CO2 generated is from the jet combustion. Thus, a probe sample of NO(sub X) and CO2 yields uniquely an emission index, as is commonly done in gas turbine engine exhaust research. The ability to adjust the oxygen content of the coflow allows us to steadily increase the coflow temperature surrounding the jet. At some temperature, the jet ignites far downstream from the injector tube. Further increases in the coflow temperature results in autoignition occurring closer to the nozzle. Examples are given of methane jetting into a coflow that is lean, stoichiometric, and even rich. Furthermore, an air jet with a rich coflow produced a normal looking flame that is actually 'inverted' (air on the inside, surrounded by fuel). In the special case of spray injection, we demonstrate the efficacy of this novel burner with a

  1. Opposed Jet Burner Extinction Limits: Simple Mixed Hydrocarbon Scramjet Fuels vs Air

    NASA Technical Reports Server (NTRS)

    Pellett, Gerald L.; Vaden, Sarah N.; Wilson, Lloyd G.

    2007-01-01

    Opposed Jet Burner tools have been used extensively by the authors to measure Flame Strength (FS) of laminar non-premixed H2 air and simple hydrocarbon (HC) air counterflow diffusion flames at 1-atm. FS represents a strain-induced extinction limit based on air jet velocity. This paper follows AIAA-2006-5223, and provides new HC air FSs for global testing of chemical kinetics, and for characterizing idealized flameholding potentials during early scramjet-like combustion. Previous FS data included six HCs, pure and N2-diluted; and three HC-diluted H2 fuels, where FS decayed very nonlinearly as HC was added to H2, due to H-atom scavenging. This study presents FSs on mixtures of (candidate surrogate) HCs, some with very high FS ethylene. Included are four binary gaseous systems at 300 K, and a hot ternary system at approx. 600 K. The binaries are methane + ethylene, ethane + ethylene, methane + ethane, and methane + propylene. The first three also form two ternary systems. The hot ternary includes both 10.8 and 21.3 mole % vaporized n-heptane and full ranges of methane + ethylene. Normalized FS data provide accurate means of (1) validating, globally, chemical kinetics for extinction of non-premixed flames, and (2) estimating (scaling by HC) the loss of incipient flameholding in scramjet combustors. The n-heptane is part of a proposed baseline simulant (10 mole % with 30% methane + 60% ethylene) that mimics the ignition of endothermically cracked JP-7 like kerosene fuel, as suggested by Colket and Spadaccini in 2001 in their shock tube Scramjet Fuels Autoignition Study. Presently, we use FS to gauge idealized flameholding, and define HC surrogates. First, FS was characterized for hot nheptane + methane + ethylene; then a hot 36 mole % methane + 64% ethylene surrogate was defined that mimics FS of the baseline simulant system. A similar hot ethane + ethylene surrogate can also be defined, but it has lower vapor pressure at 300 K, and thus exhibits reduced gaseous

  2. Low-NO sub x modification of a 200 MMBTU/HR natural gas-fired ring burner

    SciTech Connect

    Jensen, C.; Rib, D. ); Czerniak, D.; Blakeslee, C. )

    1990-01-01

    This paper presents a program to reduce emissions of oxides of nitrogen (NO{sub x}) from the boilers on solar electric generating stations (SEGS) located in Boron, California. The primary goal of the program was to reduce emissions by 20 ppm, from 80 to 60 ppm, at a low cost relative to total burner replacement with new commercial low-NO{sub x} burners. Each SEGS unit includes a 33 MW Westinghouse/Mitsubishi Heavy Industries (MHI) natural gas-fired boiler originally equipped with two MHI type SE-100 low-NO{sub x} burners rate at 200 MMBtu/hr. The type and size of these burners are typical of large utility boilers. The boiler is also equipped with steam injection to the combustion air to control NO{sub x} emission from approximately 100 ppm (uncontrolled) to 80 ppm for the original design.

  3. 41 CFR 101-26.602-3 - Procurement of gasoline, fuel oil (diesel and burner), kerosene, and solvents.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... oil (diesel and burner), and kerosene. Motor Gasoline, Fuel Oils (Diesel and Heating), and Kerosene... Program 3.23: Delaware August 1-July 31 February 1. District of Columbia ......do Do. Indiana ......do...

  4. 41 CFR 101-26.602-3 - Procurement of gasoline, fuel oil (diesel and burner), kerosene, and solvents.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... oil (diesel and burner), and kerosene. Motor Gasoline, Fuel Oils (Diesel and Heating), and Kerosene... Program 3.23: Delaware August 1-July 31 February 1. District of Columbia ......do Do. Indiana ......do...

  5. Demonstration of Low-NOx Burner Retrofit for Dual-Fuel Package Boilers: Equipment Selection Criteria and Initial Findings

    DTIC Science & Technology

    1992-09-01

    modifications; (2) at least 3 ft on each side of the boiler and at least 8 ft from the burner mounting plate . "* Stack should be accessible for instrumentation...This problem was corrected by installing replacement parts recommended by the burner manufacturer. The second problem was a warped diffuser plate . This...problem was caused by an incorrect specification that overlooked the boiler’s negative furnace pressure. The diffuser plate was replaced with the

  6. NUCLEAR DATA TARGET ACCURACY REQUIREMENTS FOR MA BURNERS

    SciTech Connect

    G. Palmiotti; M. Salvatores

    2011-06-01

    A nuclear data target accuracy assessment has been carried out for two types of transmuters: a critical sodium fast reactor(SFR) and an accelerator driven system (ADMAB). Results are provided for a 7 group energy structure. Considerations about fuel cycle parameters uncertainties illustrate their dependence from the isotope final densities at end of cycle.

  7. Sensor for Individual Burner Control of Coal Firing Rate, Fuel-Air Ratio and Coal Fineness Correlation

    SciTech Connect

    Wayne Hill; Roger Demler

    2004-06-01

    The project's overall objective is to develop a commercially viable dynamic signature based sensing system that is used to infer the flow rate and fineness of pulverized coal. This eighteen month effort will focus on developments required to transfer the measurement system from the laboratory to a field ready prototype system. This objective will be achieved through the completion of the laboratory development of the sensor and data algorithm followed by full scale field tests of a portable measurement system. The sensing system utilizes accelerometers attached externally to coal feeder pipes. Raw data is collected from the impingement of the coal particles as well as the acoustic noise generated from the flow and is transformed into characteristic signatures through proper calibration that are meaningful to the operator. The laboratory testing will use a portable version of the sensing system to collect signature data from a variety of flow conditions including coal flow rates, flow orientations, and coal particle characteristics. This work will be conducted at the Coal Flow Measurement Laboratory that is sponsored by EPRI and operated by Airflow Sciences. The data will be used to enhance the algorithm and neural network required to perform real time analysis of the nonspecific signature data. The system will be installed at two full scale power plants to collect data in a real time operating scenario. These short term duration tests will evaluate the ability of the algorithm to accurately infer coal flow rates and determine if the measurement system can be used effectively in an active control loop for combustion diagnostics and burner balancing. At the completion of this project, prototype versions of both a portable system and a permanent installation will be available for final packaging and commercialization by one of the team members. Both types of systems will be marketed for conducting combustion diagnostics and balancing of individual flows to pulverized

  8. SENSOR FOR INDIVIDUAL BURNER CONTROL OF COAL FIRING RATE, FUEL-AIR RATIO AND COAL FINENESS CORRELATION

    SciTech Connect

    Wayne Hill

    2004-02-01

    The project's overall objective is to development a commercially viable dynamic signature based sensing system that is used to infer the flow rate and fineness of pulverized coal. This eighteen month effort will focus on developments required to transfer the measurement system from the laboratory to a field ready prototype system. This objective will be achieved through the completion of the laboratory development of the sensor and data algorithm followed by full scale field tests of a portable measurement system. The sensing system utilizes accelerometers attached externally to coal feeder pipes. Raw data is collected from the impingement of the coal particles as well as the acoustic noise generated from the flow and is transformed into characteristic signatures through proper calibration that are meaningful to the operator. The laboratory testing will use a portable version of the sensing system to collect signature data from a variety of flow conditions including coal flow rates, flow orientations, and coal particle characteristics. This work will be conducted at the Coal Flow Measurement Laboratory that is sponsored by EPRI and operated by Airflow Sciences. The data will be used to enhance the algorithm and neural network required to perform real time analysis of the non-specific signature data. The system will be installed at two full scale power plants to collect data in a real time operating scenario. These short term duration tests will evaluate the ability of the algorithm to accurately infer coal flow rates and determine if the measurement system can be used effectively in an active control loop for combustion diagnostics and burner balancing. At the completion of this project, prototype versions of both a portable system and a permanent installation will be available for final packaging and commercialization by one of the team members. Both types of systems will be marketed for conducting combustion diagnostics and balancing of individual flows to

  9. Low NO sub x /SO sub x Burner retrofit for utility cyclone boilers

    SciTech Connect

    Not Available

    1991-01-01

    Work on process design was deferred pending a restart of the mainstream project activities. LNS Burner design effort was focussed mainly on the continued development of the slag screen model. Documentation of the LNS Burner thermal model also continued. Balance of plant engineering continued on the P ID's for the fuel preparation building HVAC system, lighter oil, limestone/fuel additive handling system, instrument and service air and fire protection systems. Work began on the preparation of system and sub-system descriptions. Schematic connection and wiring drawings and diagrams for the fuel handling system, flame scanner/igniter system and DCS control modification for the lighter oil pumps and Unit 1 circulating water pumps were completed.

  10. Performance of laser glazed Zr02 TBCs in cyclic oxidation and corrosion burner test rigs

    NASA Technical Reports Server (NTRS)

    Zaplatynsky, I.

    1982-01-01

    The performance of laser glazed zirconia thermal barrier coatings (TBCs) was evaluated in cyclic oxidation and cyclic corrosion tests. Plasma sprayed zirconia coatings of two thicknesses were partially melted with a CO2 laser. The power density of the focused laser beam was varied from 35 to 75 W/sq mm, while the scanning speed was about 80 cm per minute. In cyclic oxidation tests, the specimens were heated in a burner rig for 6 minutes and cooled for 3 minutes. It is indicated that the laser treated samples have the same life as the untreated ones. However, in corrosion tests, in which the burner rig flame contained 100 PPM sodium fuel equivalent, the laser treated samples exhibit nearly a fourfold life improvement over that of the reference samples vary. In both tests, the lives of the samples inversely with the thickness of the laser melted layer of zirconia.

  11. Evaluation of Fluid Conduction and Mixing within a Subassembly of the Actinide Burner Test Reactor

    SciTech Connect

    Cliff B. Davis

    2007-09-01

    The RELAP5-3D code is being considered as a thermal-hydraulic system code to support the development of the sodium-cooled Actinide Burner Test Reactor as part of the Global Nuclear Energy Partnership. An evaluation was performed to determine whether the control system could be used to simulate the effects of non-convective mechanisms of heat transport in the fluid, including axial and radial heat conduction and subchannel mixing, that are not currently represented with internal code models. The evaluation also determined the relative importance of axial and radial heat conduction and fluid mixing on peak cladding temperature for a wide range of steady conditions and during a representative loss-of-flow transient. The evaluation was performed using a RELAP5-3D model of a subassembly in the Experimental Breeder Reactor-II, which was used as a surrogate for the Actinide Burner Test Reactor.

  12. Effect of Reynolds Number in Turbulent-Flow Range on Flame Speeds of Bunsen Burner Flames

    NASA Technical Reports Server (NTRS)

    Bollinger, Lowell M; Williams, David T

    1949-01-01

    The effect of flow conditions on the geometry of the turbulent Bunsen flame was investigated. Turbulent flame speed is defined in terms of flame geometry and data are presented showing the effect of Reynolds number of flow in the range of 3000 to 35,000 on flame speed for burner diameters from 1/4 to 1 1/8 inches and three fuels -- acetylene, ethylene, and propane. The normal flame speed of an explosive mixture was shown to be an important factor in determining its turbulent flame speed, and it was deduced from the data that turbulent flame speed is a function of both the Reynolds number of the turbulent flow in the burner tube and of the tube diameter.

  13. Low NO sub x /SO sub x Burner retrofit for utility cyclone boilers

    SciTech Connect

    Not Available

    1991-09-01

    This Public Design Report provides available nonproprietary design information on the Low NO{sub x}SO{sub x} Burner Retrofit of Utility Cyclone Boilers project. In addition to the design aspects, the history of the project, the organization of the project, and the role of the funding parties are discussed. An overview of the Low NO{sub x}SO{sub x} (LNS) Burner, the cyclone boiler and the Southern Illinois Power Cooperative host site is presented. A detailed nonproprietary description of the individual process steps, plant systems, and resulting performance then follows. Narrative process descriptions, simplified process flow diagrams, input/output stream data, operating conditions and requirements are given for each unit. The plant demonstration program and start up provisions, the environmental considerations and control, monitoring and safety factors that are considered are also addressed.

  14. Method for reducing NOx during combustion of coal in a burner

    DOEpatents

    Zhou, Bing; Parasher, Sukesh; Hare, Jeffrey J.; Harding, N. Stanley; Black, Stephanie E.; Johnson, Kenneth R.

    2008-04-15

    An organically complexed nanocatalyst composition is applied to or mixed with coal prior to or upon introducing the coal into a coal burner in order to catalyze the removal of coal nitrogen from the coal and its conversion into nitrogen gas prior to combustion of the coal. This process leads to reduced NOx production during coal combustion. The nanocatalyst compositions include a nanoparticle catalyst that is made using a dispersing agent that can bond with the catalyst atoms. The dispersing agent forms stable, dispersed, nano-sized catalyst particles. The catalyst composition can be formed as a stable suspension to facilitate storage, transportation and application of the catalyst nanoparticles to a coal material. The catalyst composition can be applied before or after pulverizing the coal material or it may be injected directly into the coal burner together with pulverized coal.

  15. Pollutant Exposures from Natural Gas Cooking Burners: A Simulation-Based Assessment for Southern California

    SciTech Connect

    Logue, Jennifer M.; Klepeis, Neil E.; Lobscheid, Agnes B.; Singer, Brett C.

    2014-06-01

    Residential natural gas cooking burners (NGCBs) can emit substantial quantities of pollutants and they are typically used without venting. The objective of this study is to quantify pollutant concentrations and occupant exposures resulting from NGCB use in California homes. A mass balance model was applied to estimate time-dependent pollutant concentrations throughout homes and the "exposure concentrations" experienced by individual occupants. The model was applied to estimate nitrogen dioxide (NO{sub 2}), carbon monoxide (CO), and formaldehyde (HCHO) concentrations for one week each in summer and winter for a representative sample of Southern California homes. The model simulated pollutant emissions from NGCBs, NO{sub 2} and CO entry from outdoors, dilution throughout the home, and removal by ventilation and deposition. Residence characteristics and outdoor concentrations of CO and NO{sub 2} were obtained from available databases. Ventilation rates, occupancy patterns, and burner use were inferred from household characteristics. Proximity to the burner(s) and the benefits of using venting range hoods were also explored. Replicate model executions using independently generated sets of stochastic variable values yielded estimated pollutant concentration distributions with geometric means varying less than 10%. The simulation model estimates that in homes using NGCBs without coincident use of venting range hoods, 62%, 9%, and 53% of occupants are routinely exposed to NO{sub 2}, CO, and HCHO levels that exceed acute health-based standards and guidelines. NGCB use increased the sample median of the highest simulated 1-hr indoor concentrations by 100, 3000, and 20 ppb for NO{sub 2}, CO, and HCHO, respectively. Reducing pollutant exposures from NGCBs should be a public health priority. Simulation results suggest that regular use of even moderately effective venting range hoods would dramatically reduce the percentage of homes in which concentrations exceed health

  16. Burning anthracite at B and W downshot unit and burner upgrading

    SciTech Connect

    Zhou, J.

    1998-12-31

    Low volatile matter (VM) coals have difficulty on ignition, flame stability and burnout. A conventional utility boiler can`t successfully utilize such coals. The applications of enhancing ignition steps, proper burner type and its arrangement plus staging combustion as well as a suitable furnace configuration, along or in combination, may burn such low VM coals with high efficiency. B&W downshot units in Shang An Power Plant (S-Plant) in China applies a downshot firing with a W-shape flame plus primary air exchange burner (PAX) and staging combustion in a combination which achieved a great success in burning the design coal. The design coal is a blended coal (25% Yangquan (YQ) anthracite and 75% Shuyang lean) resulting a 13.95% VMdmf ranking as a semi-anthracite per ASTM-D338. In 1995, all 20 burner registers of Unit 1 had been upgraded. S-Plant and B and W decided to conduct a high anthracite blending coal (75% anthracite) combustion tests. The unit had demonstrated a great fuel flexibility. Based on the achievements, the all burner and staging ports of Unit 2 has been upgraded in 1997. In order to further demonstrate the great enhancing ignition feature, B and W had entrusted Chinese TPRI to conduct 100% YQ anthracite burn tests in May 1998. These tests reveal that with 100% anthracite firing, the ignition was fast and on time; the flame and combustion were very stable. Three days (58 continuous hours) 100% anthracite firing was carried out with the load range from the full (350 MW) to half (170--175 MW). The minimum load of 170--175 MW (48--50% MCR) without oil support was easy to maintain. Due to the plant policy, they don`t allow further reduction of the minimum load lower than 50% MCR. These tests have greatly demonstrated the capability of these units burning 100% anthracite.

  17. Strand Burner Results of AFP-001 Propellant with Inert Coating for Temperature Compensation

    DTIC Science & Technology

    2015-10-01

    the model will include burning rate information on the coated propellants , ballistic simulator data, as well as chemical and morphological results...MD): Army Research Laboratory (US); Sept 2013. Report No.: ARL-TR-6578. 7. Miller M, Vanderhoff J. Burning phenomena of solid propellants . Aberdeen...ARL-MR-0907 ● OCT 2015 US Army Research Laboratory Strand Burner Results of AFP-001 Propellant with Inert Coating for Temperature

  18. A numerical study of highly-diluted, burner-stabilised dimethyl ether flames

    NASA Astrophysics Data System (ADS)

    Mayer, Daniel; Moshammer, Kai; Cai, Liming; Pitsch, Heinz; Kohse-Höinghaus, Katharina

    2015-03-01

    Recently, a new burner was designed by Zhang et al. (Proc. Combust. Inst. 34 [2013], 763-770) to enable the investigation of 1D, premixed flames at atmospheric pressure with a temperature in the burnt gases near 1500 K. It consists of a matrix burner plate with alternating fuel and oxidiser feeds that, because of small-scale nozzles, mix quite rapidly. Flames at high dilution and reduced temperatures such as realised here are of relevance for the understanding of low-temperature combustion strategies. In this work, we examine the burner with regard to the validity of the 1D assumption for the investigated flames. Experimental measurements are conducted and 1D and 3D simulations are performed in which the chemistry is described by a detailed chemistry approach based on a reduced reaction scheme derived from the mechanism of Fischer et al. (Int. J. Chem. Kinetics 32 [2000], 713-740). The experimental results are compared to 1D simulations with two different temperature treatments. First, the unburnt temperature is set to the measured temperature closest to the burner surface; second, the experimental temperature profile is prescribed in the whole simulation domain without solving the energy equation. The comparison shows that the 1D simulation predicts the experimental results reasonably well, if the experimentally obtained temperature profile is prescribed in the simulation domain. Differences are found in the mole fractions of methyl and formaldehyde. Further comparisons of the experimental data with 3D simulation results and comparisons of 3D and 1D simulation results indicate that the differences between measured and computed mole fractions of these species are not a result of the 3D nature of the experimental flame and might be attributed to the chemical mechanism. The conclusion is that the measurement data can be used for validation purposes with the 1D simulation setup shown here if the measured temperature profiles are prescribed in the 1D simulation domain.

  19. High-temperature burner-duct-recuperator system evaluation. Annual report, October 1981-September 1982

    SciTech Connect

    Not Available

    1984-01-01

    A project to design, construct, install, and evaluate a high-temperature burner-duct-recuperator (HTBDR) system is described. The high-temperature recuperator is to be capable of delivering 2000/sup 0/F (1800/sup 0/F minimum) preheated combustion air to a high-temperature burner designed for the combustion system of a steel mill soaking pit. The evaluation site is located at the Koppel, Pennsylvania, steel-making facility of the B and W Tubular Products Group. The purpose of the project is to advance the state-of-the-art in industrial waste heat utilization by developing an HTBDR system that is both technically and economically acceptable to industry. The system designed by B and W intended to operate in flue gas streams of 2500/sup 0/F (maximum) that contain contaminants from hot topping compounds and scale (iron oxide). This report describes the efforts in the first year of the project, which includes the design of the HTBDR system, flue exposure testing, and an energy audit of the host site. An interactive, interdisciplinary team was utilized to design the HTBDR system. The design effort of each technical discipline is presented in detail in sections 1 to 7 of this report including: ceramic materials characterization; system mechanical design; process control and instrumentation; thermal and fluid flow; applied mechanics (stress analysis); flow-induced vibration analysis; HTBDR burner development, and HTBDR and energy audit.

  20. TPV Power Generation System Using a High Temperature Metal Radiant Burner

    NASA Astrophysics Data System (ADS)

    Qiu, K.; Hayden, A. C. S.; Entchev, E.

    2007-02-01

    Interest has grown in micro-combined heat and power (micro-CHP). Thermophotovoltaic (TPV) generation of electricity in fuel-fired furnaces is one of the micro-CHP technologies that are attracting technical attention. Previous investigations have shown that a radiant burner that can efficiently convert fuel chemical energy into radiation energy is crucial to realize a practical TPV power system. In this work, we developed a TPV power generation system using a gas-fired metal radiant burner. The burner consists of a high temperature alloy emitter, which could have an increased emissivity at short wavelengths and low emissivity at long wavelengths. The metal emitter is capable of bearing high temperatures of interest to fuel-fired TPV power conversion. GaSb TPV cells were tested in the combustion-driven radiant source. Electric output characteristics of the TPV cells were investigated at various operating conditions. The electric power output of the TPV cells was demonstrated to be promising. At an emitter temperature of 1185°C, an electric power density of 0.476 W/cm2 was generated by the GaSb cells. It is shown that the metal emitter is attractive and could be applied to practical fuel-fired TPV power systems.

  1. MINIMIZATION OF NO EMISSIONS FROM MULTI-BURNER COAL-FIRED BOILERS

    SciTech Connect

    E.G. Eddings; A. Molina; D.W. Pershing; A.F. Sarofim; K.A. Davis; M.P. Heap; T.H. Fletcher; H. Zhang

    2000-04-01

    Coal continues to be one of the principal energy sources for electric power generation in the United States. One of the biggest environmental challenges involved with coal utilization is the reduction of nitrogen oxides (NO{sub x}) formed during coal combustion. The most economical method of NO{sub x} abatement in coal combustion is through burner modification. Air-staging techniques have been widely used in the development of low-NO{sub x} pulverized coal burners, promoting the conversion of NO{sub x} to N{sub 2} by delaying the mixing in the fuel-rich zone near the burner inlet. Previous studies have looked at the mechanisms of NO{sub x} evolution at relatively low temperatures where primary pyrolysis is dominant, but data published for secondary pyrolysis in the pulverized coal furnace are scarce. In this project, the nitrogen evolution behavior during secondary coal pyrolysis will be explored. The end result will be a complete model of nitrogen evolution and NO{sub x} precursor formation due to primary and secondary pyrolysis.

  2. Prediction of Excess Air Factor in Automatic Feed Coal Burners by Processing of Flame Images

    NASA Astrophysics Data System (ADS)

    Talu, Muhammed Fatih; Onat, Cem; Daskin, Mahmut

    2017-03-01

    In this study, the relationship between the visual information gathered from the flame images and the excess air factor λ in coal burners is investigated. In conventional coal burners the excess air factor λ. can be obtained using very expensive air measurement instruments. The proposed method to predict λ for a specific time in the coal burners consists of three distinct and consecutive stages; a) online flame images acquisition using a CCD camera, b) extraction meaningful information (flame intensity and brightness)from flame images, and c) learning these information (image features) with ANNs and estimate λ. Six different feature extraction methods have been used: CDF of Blue Channel, Co-Occurrence Matrix, L ∞-Frobenius Norms, Radiant Energy Signal (RES), PCA and Wavelet. When compared prediction results, it has seen that the use of co-occurrence matrix with ANNs has the best performance (RMSE = 0.07) in terms of accuracy. The results show that the proposed predicting system using flame images can be preferred instead of using expensive devices to measure excess air factor in during combustion.

  3. Design and evaluation of a low nitrogen oxides natural gas-fired conical wire-mesh duct burner for a micro-cogeneration unit

    NASA Astrophysics Data System (ADS)

    Ramadan, Omar Barka Ab

    A novel low NOx conical wire-mesh duct burner was designed, built and tested in the present research. This thesis documents the design process and the in-depth evaluation of this novel duct burner for the development of a more efficient micro-cogeneration unit. This duct burner provides the thermal energy necessary to raise the microturbine exhaust gases temperature to increase the heat recovery capability. The duct burner implements both lean-premixed and surface combustion techniques to achieve low NOx and CO emissions. The design of the duct burner was supported by a qualitative flow visualization study for the duct burner premixer to provide insight into the premixer flow field (mixing process). Different premixer geometries were used to control the homogeneity of the fuel-oxidant mixture at the exit of the duct burner premixer. Laser sheet illumination (LSI) technique was used to capture images of the mixing process, for each configuration studied. A quasi-quantitative analysis technique was developed to rank the different premixer geometries in terms of mixing effectiveness. The premixer geometries that provided better mixing were selected and used for the combustion tests. The full-scale gas-fired duct burner was installed in the exhaust duct of a micro-cogeneration unit for the evaluation. Three wire-mesh burners with different pressure drops were used. Each burner has a conical shape made from FeCrAL alloy mat and was designed based on a heat release per unit area of 2500 kW/m2 and a total heat release of 240kW at 100 percent excess air. The local momentum of the gaseous mixture introduced through the wire-mesh was adjusted so that the flame stabilized outside the burner mesh (surface combustion). Cold flow tests (i.e., the duct burner was off, but the microturbine was running) were conducted to measure the effect of different duct burner geometrical parameters on flow split between the combustion zone and the bypass channel, and on pressure drop across

  4. Evaluation of Gas Reburning and Low N0x Burners on a Wall Fired Boiler

    SciTech Connect

    1998-07-01

    Under the U.S. Department of Energy's Clean Coal Technology Program (Round 3), a project was completed to demonstrate control of boiler NOX emissions and to a lesser degree, due to coal replacement, SO2 emissions. The project involved combining Gas Reburning with Low NOX Burners (GR-LNB) on a coal-fired electric utility boiler to determine if high levels of NO, reduction (70VO) could be achieved. Sponsors of the project included the U.S. Depatiment of Energy, the Gas Research Institute, Public Service Company of Colorado, Colorado Interstate Gas, Electric Power Research Institute, and the Energy and Environmental Research Corporation. The GR-LNB demonstration was petformed on Public Service Company of Colorado's (PSCO) Cherokee Unit #3, located in Denver, Colorado. This unit is a 172 MW~ wall-fired boiler that uses Colorado bituminous, low-sulfur coal. It had a baseline NO, emission level of 0.73 lb/1 OG Btu using conventional burners. Low NOX burners are designed to yield lower NOX emissions than conventional burners. However, the NOX control achieved with this technique is limited to 30-50Y0. Also, with LNBs, CO emissions can increase to above acceptable standards. Gas Reburning (GR) is designed to reduce NO, in the flue gas by staged fuel combustion. This technology involves the introduction of' natural gas into the hot furnace flue gas stream. When combined, GR and LNBs minimize NOX emissions and maintain acceptable levels of CO emissions. A comprehensive test program was completed, operating over a wide range of boiler conditions. Over 4,000 hours of operation were achieved, providing substantial data. Measurements were taken to quantify reductions in NOX emissions, the impact on boiler equipment and operability and factors influencing costs. The GR-LNB technology achieved good NO, emission reductions and the goals of the project were achieved. Although the performance of the low NOX burners (supplied by others) was less than expected, a NOX reduction of 65

  5. Pollutant Exposures from Natural Gas Cooking Burners: A Simulation-Based Assessment for Southern California

    PubMed Central

    Klepeis, Neil E.; Lobscheid, Agnes B.; Singer, Brett C.

    2013-01-01

    Background: Residential natural gas cooking burners (NGCBs) can emit substantial quantities of pollutants, and they are typically used without venting range hoods. Objective: We quantified pollutant concentrations and occupant exposures resulting from NGCB use in California homes. Methods: A mass-balance model was applied to estimate time-dependent pollutant concentrations throughout homes in Southern California and the exposure concentrations experienced by individual occupants. We estimated nitrogen dioxide (NO2), carbon monoxide (CO), and formaldehyde (HCHO) concentrations for 1 week each in summer and winter for a representative sample of Southern California homes. The model simulated pollutant emissions from NGCBs as well as NO2 and CO entry from outdoors, dilution throughout the home, and removal by ventilation and deposition. Residence characteristics and outdoor concentrations of NO2 and CO were obtained from available databases. We inferred ventilation rates, occupancy patterns, and burner use from household characteristics. We also explored proximity to the burner(s) and the benefits of using venting range hoods. Replicate model executions using independently generated sets of stochastic variable values yielded estimated pollutant concentration distributions with geometric means varying by < 10%. Results: The simulation model estimated that—in homes using NGCBs without coincident use of venting range hoods—62%, 9%, and 53% of occupants are routinely exposed to NO2, CO, and HCHO levels that exceed acute health-based standards and guidelines. NGCB use increased the sample median of the highest simulated 1-hr indoor concentrations by 100, 3,000, and 20 ppb for NO2, CO, and HCHO, respectively. Conclusions: Reducing pollutant exposures from NGCBs should be a public health priority. Simulation results suggest that regular use of even moderately effective venting range hoods would dramatically reduce the percentage of homes in which concentrations exceed

  6. Effect of the fuel bias distribution in the primary air nozzle on the slagging near a swirl coal burner throat

    SciTech Connect

    Lingyan Zeng; Zhengqi Li; Hong Cui; Fucheng Zhang; Zhichao Chen; Guangbo Zhao

    2009-09-15

    Three-dimensional numerical simulations of slagging characteristics near the burner throat region were carried out for swirl coal combustion burners used in a 1025 tons/h boiler. The gas/particle two-phase numerical simulation results and the data measured by a particle-dynamics anemometer (PDA) show that the numeration model was reasonable. For the centrally fuel-rich swirl coal combustion burner, the coal particles move in the following way. The particles first flow into furnace with the primary air from the burner throat. After traversing a certain distance, they move back to the burner throat and then toward the furnace again. Thus, particle trajectories are extended. For the case with equal air mass fluxes in the inner and outer primary air/coal mixtures, as the ratio of the coal mass flux in the inner primary air/coal mixture to the total coal mass flux increased from 40 (the reference condition) to 50%, 50 to 70%, and 70 to 100%, the maximum number density declined by 22, 11, and 4%, respectively, relative to the reference condition. In addition, the sticking particle ratio declined by 13, 14, and 8%, respectively, compared to the reference condition. 22 refs., 12 figs., 3 tabs.

  7. Low Emissions Burner Technology for Metal Processing Industry using Byproducts and Biomass Derived Liquid Fuels

    SciTech Connect

    Agrawal, Ajay; Taylor, Robert

    2013-09-30

    This research and development efforts produced low-emission burner technology capable of operating on natural gas as well as crude glycerin and/or fatty acids generated in biodiesel plants. The research was conducted in three stages (1) Concept definition leading to the design and development of a small laboratory scale burner, (2) Scale-up to prototype burner design and development, and (3) Technology demonstration with field vefiication. The burner design relies upon the Flow Blurring (FB) fuel injection based on aerodynamically creating two-phase flow near the injector exit. The fuel tube and discharge orifice both of inside diameter D are separated by gap H. For H < 0.25D, the atomizing air bubbles into liquid fuel to create a two-phase flow near the tip of the fuel tube. Pressurized two-phase fuel-air mixture exits through the discharge orifice, which results in expansion and breakup of air bubbles yielding a spray with fine droplets. First, low-emission combustion of diesel, biodiesel and straight VO (soybean oil) was achieved by utilizing FB injector to yield fine sprays for these fuels with significantly different physical properties. Visual images for these baseline experiments conducted with heat release rate (HRR) of about 8 kW illustrate clean blue flames indicating premixed combustion for all three fuels. Radial profiles of the product gas temperature at the combustor exit overlap each other signifying that the combustion efficiency is independent of the fuel. At the combustor exit, the NOx emissions are within the measurement uncertainties, while CO emissions are slightly higher for straight VO as compared to diesel and biodiesel. Considering the large variations in physical and chemical properties of fuels considered, the small differences observed in CO and NOx emissions show promise for fuel-flexible, clean combustion systems. FB injector has proven to be very effective in atomizing fuels with very different physical properties, and it offers a

  8. Evaluation of Gas Reburning and Low N0x Burners on a Wall Fired Boiler

    SciTech Connect

    1998-09-01

    Under the U.S. Department of Energy's Clean Coal Technology Program (Round 3), a project was completed to demonstrate control of boiler emissions that comprise acid rain precursors, especially NOX. The project involved operating gas reburning technology combined with low NO, burner technology (GR-LNB) on a coal-fired utility boiler. Low NOX burners are designed to create less NOX than conventional burners. However, the NO, control achieved is in the range of 30-60-40, and typically 50%. At the higher NO, reduction levels, CO emissions tend to be higher than acceptable standards. Gas Reburning (GR) is designed to reduce the level of NO. in the flue gas by staged fuel combustion. When combined, GR and LNBs work in harmony to both minimize NOX emissions and maintain an acceptable level of CO emissions. The demonstration was performed at Public Service Company of Colorado's (PSCO) Cherokee Unit 3, located in Denver, Colorado. This unit is a 172 MW. wall-fired boiler that uses Colorado bituminous, low-sulfur coal and had a pre GR-LNB baseline NOX emission of 0.73 lb/1 Oe Btu. The target for the project was a reduction of 70 percent in NOX emissions. Project sponsors included the U.S. Department of Energy, the Gas Research Institute, Public Service Company of Colorado, Colorado Interstate Gas, Electric Power Research Institute, and the Energy and Environmental Research Corporation (EER). EER conducted a comprehensive test demonstration program over a wide range of boiler conditions. Over 4,000 hours of operation were achieved. Intensive measurements were taken to quantify the reductions in NOX emissions, the impact on boiler equipment and operability, and all factors influencing costs. The results showed that GR-LNB technology achieved excellent emission reductions. Although the performance of the low NOX burners (supplied by others) was somewhat less than expected, a NOX reduction of 65% was achieved at an average gas heat input of 180A. The performance goal of 70

  9. Combustion dynamics linked to flame behaviour in a partially premixed swirled industrial burner

    SciTech Connect

    Biagioli, Fernando; Guethe, Felix; Schuermans, Bruno

    2008-07-15

    Previous work [Biagioli, F., Stabilization mechanism of turbulent premixed flames in strongly swirled flows, Combustion, Theory and Modelling 10 (3) (2006) 389-412; Guethe, F., Lachner, R., Schuermans, B., Biagioli, F., Geng, W., Inauen, A., Schenker, S., Bombach, R., Hubschmid, W., Flame imaging on the ALSTOM EV-burner: thermo acoustic pulsations and CFD-validation, in: AIAA Paper 2006-437 presented at the 44th AIAA Aerospace Sciences Meeting and Exhibit, Reno, Nevada, January 9-12, 2006] has shown that turbulent dry low NO{sub x} (partially premixed) flames in high swirl conical burners may be subject to a large change of their anchoring location at the symmetry axis when a critical value of the bulk equivalence ratio is reached, i.e. they are bi-stable. This flame behavior is linked here to combustion pressure dynamics measured in an atmospheric test rig for a prototype version of the Alstom EnVironmental (EV) conical burner. The link is made via the solution of the problem of the 'travelling flameholder', which shows that the unsteady displacement of the flame anchoring location implies an unsteady variation of the flame surface area and therefore unsteady heat release. The relevance of this source of unsteady heat release - which is different from more usual ones due to variations in turbulent burning rate and in the sensible enthalpy jump across the flame - to the generation of combustion dynamics in strongly swirled flows is confirmed here by the strong positive correlation between the tendency of the flame to be displaced and the measured amplitude of pressure pulsations. (author)

  10. Evaluation of a high-temperature burner-duct-recuperator system

    NASA Astrophysics Data System (ADS)

    1990-07-01

    The U.S. Department of Energy's (DOE) Office of Industrial Technologies (OIT) sponsors research and development (R and D) to improve the energy efficiency of American industry and to provide for fuel flexibility. OIT has funded a multiyear R and D project by the Babcock and Wilcox Company (B and W) to design, fabricate, field test, and evaluate a high-temperature burner-duct-recuperator (HTBDR) system. This ceramic-based recuperator system recovers waste heat from the corrosive, high-temperature (2170 F) flue gas stream of a steel soaking pit to preheat combustion air to as high as 1700 F. The preheated air is supplied to a high-temperature burner. The B and W R and D program, which is now complete, involved several activities, including selecting and evaluating ceramic materials, designing the system, and developing and evaluating the prototype. In addition, a full-scale unit was tested at a B and W steel soaking pit. The full-scale system consisted of a modular single-stage ceramic recuperator, a conventional two-pass metallic recuperator, a high-temperature burner, fans, insulated ducting, and associated controls and instrumentation. The metallic recuperator preheated combustion air to about 750 F before it passed to the ceramic module. This technical case study describes the DOE/B and W recuperator project and highlights the field tests of the full-scale recuperator system. The document makes results of field tests and data analysis available to other researchers and private industry. It discusses project status, summarizes field tests, and reviews the potential effects the technology will have on energy use and system economics.

  11. Thermal calculation for a furnace with three-tiered near-wall burners

    NASA Astrophysics Data System (ADS)

    Vafin, D. B.; Sadykov, A. V.

    2016-03-01

    The paper considers using a differential method for thermal calculation of a furnace with finding the thermal and aerodynamic parameters within the radiation chamber of a tube furnace. The furnace is equipped with acoustictype burners allocated in three tiers on the lateral walls. The method implies joint numerical solution of 2D radiation transfer equations using the S 2-approximation of the discrete ordinate method, of energy equations, flow equations, k-ɛ turbulence model, and single-stage modeling of gas fuel combustion. Typical results of simulation are presented.

  12. Computational Fluid Dynamics Based Investigation of Sensitivity of Furnace Operational Conditions to Burner Flow Controls

    SciTech Connect

    Marc Cremer; Kirsi St. Marie; Dave Wang

    2003-04-30

    This is the first Semiannual Technical Report for DOE Cooperative Agreement No: DE-FC26-02NT41580. The goal of this project is to systematically assess the sensitivity of furnace operational conditions to burner air and fuel flows in coal fired utility boilers. Our approach is to utilize existing baseline furnace models that have been constructed using Reaction Engineering International's (REI) computational fluid dynamics (CFD) software. Using CFD analyses provides the ability to carry out a carefully controlled virtual experiment to characterize the sensitivity of NOx emissions, unburned carbon (UBC), furnace exit CO (FECO), furnace exit temperature (FEGT), and waterwall deposition to burner flow controls. The Electric Power Research Institute (EPRI) is providing co-funding for this program, and instrument and controls experts from EPRI's Instrument and Controls (I&C) Center are active participants in this project. This program contains multiple tasks and good progress is being made on all fronts. A project kickoff meeting was held in conjunction with NETL's 2002 Sensors and Control Program Portfolio Review and Roadmapping Workshop, in Pittsburgh, PA during October 15-16, 2002. Dr. Marc Cremer, REI, and Dr. Paul Wolff, EPRI I&C, both attended and met with the project COR, Susan Maley. Following the review of REI's database of wall-fired coal units, the project team selected a front wall fired 150 MW unit with a Riley Low NOx firing system including overfire air for evaluation. In addition, a test matrix outlining approximately 25 simulations involving variations in burner secondary air flows, and coal and primary air flows was constructed. During the reporting period, twenty-two simulations have been completed, summarized, and tabulated for sensitivity analysis. Based on these results, the team is developing a suitable approach for quantifying the sensitivity coefficients associated with the parametric tests. Some of the results of the CFD simulations of the

  13. Experimental verification of corrosive vapor deposition rate theory in high velocity burner rigs

    NASA Technical Reports Server (NTRS)

    Gokoglu, S. A.; Santoro, G. J.

    1986-01-01

    The ability to predict deposition rates is required to facilitate modelling of high temperature corrosion by fused salt condensates in turbine engines. A corrosive salt vapor deposition theory based on multicomponent chemically frozen boundary layers (CFBL) has been successfully verified by high velocity burner rig experiments. The experiments involved internally air-impingement cooled, both rotating full and stationary segmented cylindrical collectors located in the crossflow of sodium-seeded combustion gases. Excellent agreement is found between the CFBL theory an the experimental measurements for both the absolute amounts of Na2SO4 deposition rates and the behavior of deposition rate with respect to collector temperature, mass flowrate (velocity) and Na concentration.

  14. The effect of fuel-to-air ratio on burner-rig hot corrosion

    NASA Technical Reports Server (NTRS)

    Deadmore, D. L.; Lowell, C. E.; Kohl, F. J.

    1978-01-01

    Samples of a cobalt-base alloy, Mar M-509, were subjected to hot corrosion in a Mach-0.3 burner rig. The corrodent was NaCl added as an aqueous solution to the combustion products of a sulfur-containing Jet-A fuel. The metal temperature was fixed at 900 C. The extent of hot corrosion increased by a factor of three as the fuel-to-air mass ratio was increased from 0.033 to 0.050. Because the depositing salt was always Na2SO4, the increased attack appeared to be related to the gas composition.

  15. Oxidation of a Silica-Containing Material in a Mach 0.3 Burner Rig

    NASA Technical Reports Server (NTRS)

    Nguyen, QuynhGiao N.; Cuy, Michael D.; Gray, Hugh R. (Technical Monitor)

    2002-01-01

    A primarily silica-containing material with traces of organic compounds, as well as aluminum and calcium additions, was exposed to a Mach 0.3 burner rig at atmospheric pressure using jet fuel. The sample was exposed for 5 continuous hours at 1370 C. Post exposure x-ray diffraction analyses indicate formation of cristobalite, quartz, NiO and Spinel (Al(Ni)CR2O4). The rig hardware is composed of a nickel-based superalloy with traces of Fe. These elements are indicated in the energy dispersive spectroscopy (EDS) results. This material was studied as a candidate for high temperature applications under an engine technology program.

  16. Composition surveys of test gas produced by a hydrogen-oxygen-air burner. [for supersonic ramjet engine

    NASA Technical Reports Server (NTRS)

    Eggers, J. M.

    1974-01-01

    As a result of the need for a uniform hot gas test stream for fuel injector development for hydrogen fueled supersonic combustion ramjet engines, an experimental study of injector configuration effect on exit flow uniformity of a hydrogen fueled oxygen replenished, combustion burner was made. Measurements used to investigate the burner nozzle exit profiles were pitot and gas sample measurements. Gas composition and associated temperature profiles were reduced to an acceptable level by burner injector modifications. The effect of the injector modifications was to redistribute the hydrogen fuel, increase the air pressure drop, promote premixing of the oxygen and air, and establish a uniform flow pattern where the oxygen-air mixture comes into contact with the hydrogen fuel. The most sensitive phenomenon which affected the composition profiles was the uniformity of the air distribution supplied to the combustion chamber.

  17. Combustion characteristics and NOx emissions of two kinds of swirl burners in a 300-MWe wall-fired pulverized-coal utility boiler

    SciTech Connect

    Li, Z.Q.; Jing, J.P.; Chen, Z.C.; Ren, F.; Xu, B.; Wei, H.D.; Ge, Z.H.

    2008-07-01

    Measurements were performed in a 300-MWe wall-fired pulverized-coal utility boiler. Enhanced ignition-dual register (EI-DR) burners and centrally fuel rich (CFR) swirl coal combustion burners were installed in the bottom row of the furnace during experiments. Local mean concentrations of O{sub 2}, CO, CO{sub 2} and NOx gas species, gas temperatures, and char burnout were determined in the region of the two types of burners. For centrally fuel rich swirl coal combustion burners, local mean CO concentrations, gas temperatures and the temperature gradient are higher and mean concentrations of O{sub 2} and NOx along the jet flow direction in the burner region are lower than for the enhanced ignition-dual register burners. Moreover, the mean O{sub 2} concentration is higher and the gas temperature and mean CO concentration are lower in the side wall region. For centrally fuel rich swirl coal combustion burners in the bottom row, the combustion efficiency of the boiler increases from 96.73% to 97.09%, and NOx emission decreases from 411.5 to 355 ppm at 6% O{sub 2} compared to enhanced ignition-dual register burners and the boiler operates stably at 110 MWe without auxiliary fuel oil.

  18. Multi-ported, internally recuperated burners for direct flame impingement heating applications

    DOEpatents

    Abbasi, Hamid A.; Kurek, Harry; Chudnovsky, Yaroslav; Lisienko, Vladimir G.; Malikov, German K.

    2010-08-03

    A direct flame impingement method and apparatus employing at least one multi-ported, internally recuperated burner. The burner includes an innermost coaxial conduit having a first fluid inlet end and a first fluid outlet end, an outermost coaxial conduit disposed around the innermost coaxial conduit and having a combustion products outlet end proximate the first fluid inlet end of the innermost coaxial conduit and a combustion products inlet end proximate the first fluid outlet end of the innermost coaxial conduit, and a coaxial intermediate conduit disposed between the innermost coaxial conduit and the outermost coaxial conduit, whereby a second fluid annular region is formed between the innermost coaxial conduit and the intermediate coaxial conduit and a combustion products annular region is formed between the intermediate coaxial conduit and the outermost coaxial conduit. The intermediate coaxial conduit has a second fluid inlet end proximate the first fluid inlet end of the innermost coaxial conduit and a second fluid outlet end proximate the combustion products inlet end of the outermost coaxial conduit.

  19. Characterization of Liquid Fuel Evaporation of a Lifted Methanol Spray Flame in a Vitiated Coflow Burner

    NASA Technical Reports Server (NTRS)

    Cabra, Ricardo; Dibble, Robert W.; Chen, Jyh-Yuan

    2002-01-01

    An experimental investigation of lifted spray flames in a coflow of hot, vitiated gases is presented. The vitiated coflow burner is a spray flame that issues into a coaxial flow of hot combustion products from a lean, premixed H2/Air flame. The spray flame in a vitiated coflow emulates the combustion that occurs in many advanced combustors without the detailed fluid mechanics. Two commercially available laser diagnostic systems are used to characterize the spray flame and to demonstrate the vitiated coflow burner's amenability to optical investigation. The Ensemble Particle Concentration and Size (EPCS) system is used to measure the path-average droplet size distribution and liquid volume fraction at several axial locations while an extractive probe instrument named the Real-time Fuel-air Analyzer (RFA) is used to measure the air to fuel ratio downstream of the spray nozzle with high temporal and spatial resolution. The effect of coflow conditions (stoichiometry) and dilution of the fuel with water was studied with the EPCS optical system. As expected, results show that water retards the evaporation and combustion of fuels. Measurements obtained by the RFA extractive probe show that while the Delavan manufactured nozzle does distribute the fuel over the manufacturer specified spray angle, it unfortunately does not distribute the fuel uniformly, providing conditions that may result in the production of unwanted NOx. Despite some limitations due to the inherent nature of the experimental techniques, the two diagnostics can be readily applied to spray flames in the vitiated coflow environment.

  20. Swozzle based burner tube premixer including inlet air conditioner for low emissions combustion

    DOEpatents

    Tuthill, Richard Sterling; Bechtel, II, William Theodore; Benoit, Jeffrey Arthur; Black, Stephen Hugh; Bland, Robert James; DeLeonardo, Guy Wayne; Meyer, Stefan Martin; Taura, Joseph Charles; Battaglioli, John Luigi

    2002-01-01

    A burner for use in a combustion system of a heavy-duty industrial gas turbine includes a fuel/air premixer having an air inlet, a fuel inlet, and an annular mixing passage. The fuel/air premixer mixes fuel and air into a uniform mixture for injection into a combustor reaction zone. The burner also includes an inlet flow conditioner disposed at the air inlet of the fuel/air premixer for controlling a radial and circumferential distribution of incoming air. The pattern of perforations in the inlet flow conditioner is designed such that a uniform air flow distribution is produced at the swirler inlet annulus in both the radial and circumference directions. The premixer includes a swozzle assembly having a series of preferably air foil shaped turning vanes that impart swirl to the airflow entering via the inlet flow conditioner. Each air foil contains internal fuel flow passages that introduce natural gas fuel into the air stream via fuel metering holes that pass through the walls of the air foil shaped turning vanes. By injecting fuel in this manner, an aerodynamically clean flow field is maintained throughout the premixer. By injecting fuel via two separate passages, the fuel/air mixture strength distribution can be controlled in the radial direction to obtain optimum radial concentration profiles for control of emissions, lean blow outs, and combustion driven dynamic pressure activity as machine and combustor load are varied.

  1. Advancement of Cellular Ceramics Made of Silicon Carbide for Burner Applications

    NASA Astrophysics Data System (ADS)

    Fuessel, Alexander; Klemm, Hagen; Boettge, Daniela; Marschallek, Felix; Adler, Joerg; Michaelis, Alexander

    2011-04-01

    Lower emissions of CO and NOx as well as a higher power density were observed in combustion processes performed in porous media like ceramic foams. Only a few materials are applicable for porous burners. Open-celled ceramic foams made of silicon carbide are of particular interest because of their outstanding properties. Two different SiC materials have been investigated, silicon-infiltrated silicon carbide (SiSiC) and pressureless sintered silicon carbide (SSiC). The oxidation behaviour of both has been characterized by furnace oxidation and burner tests up to 500 h operating time. Up to a temperature of 1200 °C SiSiC exhibited a good oxidation resistance in combustion gases by forming a protective layer of silica. High inner porosity up to 30% in the ceramic struts was found in the SSiC material. Caused by inner oxidation processes the pure material SSiC allows only short time applications with a temperature limit of 1550 °C in combustion gases. An increase of the lifetime of the SSiC foams was obtained by development of a new SSiC with an inner porosity of less than 12%. The result was a considerable reduction of the inner oxidation processes in the SSiC struts.

  2. Chemical and toxicological characterization of residential oil burner emissions: II. Mutagenic, tumorigenic, and potential teratogenic activity.

    PubMed Central

    Braun, A G; Busby, W F; Liber, H L; Thilly, W G

    1987-01-01

    Extracts of effluents from a modern residential oil burner have been evaluated in several toxicological assay systems. Bacterial mutagens were detected in extracts from both the particulate and vapor phase emissions. Effluents from continuous operation were an order of magnitude less mutagenic than those from cyclic (5 min on, 10 min off) operations. No difference in the yield of bacterial mutagens per gram of fuel burned was found between cyclic operation under low and moderate sooting conditions. On the basis of elution behavior from alumina it appeared that the bacterial mutagens collected from high sooting effluents were more polar than those from low sooting effluent. An extract that was mutagenic in bacteria did not induce a significant increase in mutation frequency to human lymphoblasts. No evidence of tumorigenicity was observed in a limited number of newborn mice after IP injection of effluent extract when compared to historical control data. Putative nonmutagenic teratogens were detected in effluent using an attachment inhibition assay. The level of these agents was reduced in effluents from continuous oil burner operation. PMID:3665866

  3. Modeling Population Exposures to Pollutants Emitted from Natural Gas Cooking Burners

    SciTech Connect

    Lobscheid, Agnes; Singer, Brett C.; Klepeis, Neil E.

    2011-06-01

    We developed a physics-based data-supported model to investigate indoor pollutant exposure distributions resulting from use of natural gas cooking appliances across households in California. The model was applied to calculate time-resolved indoor concentrations of CO, NO2 and formaldehyde resulting from cooking burners and entry with outdoor air. Exposure metrics include 1-week average concentrations and frequency of exceeding ambient air quality standards. We present model results for Southern California (SoCal) using two air-exchange scenarios in winter: (1) infiltration-only, and (2) air exchange rate (AER) sampled from lognormal distributions derived from measurements. In roughly 40percent of homes in the SoCal cohort (N=6634) the 1-hour USEPA NO2 standard (190 ?g/m3) was exceeded at least once. The frequency of exceeding this standard was largely independent of AER assumption, and related primarily to building volume, emission rate and amount of burner use. As expected, AER had a more substantial impact on one-week average concentrations.

  4. Burner (Stinger)

    MedlinePlus

    ... mobile while you heal. Your doctor might prescribe medicine to help with any pain. And as with any injury, make sure you're completely healed before you start playing sports again. If you don't, you'll increase ...

  5. High Pressure Burner Rig Testing of Advanced Environmental Barrier Coatings for Si3N4 Turbine Components

    NASA Technical Reports Server (NTRS)

    Zhu, Dongming; Fox, Dennis S.; Pastel, Robert T.

    2007-01-01

    Advanced thermal and environmental barrier coatings are being developed for Si3N4 components for turbine engine propulsion applications. High pressure burner rig testing was used to evaluate the coating system performance and durability. Test results demonstrated the feasibility and durability of the coating component systems under the simulated engine environments.

  6. Making a Low-Cost Soda Can Ethanol Burner for Out-of-Laboratory Flame Test Demonstrations and Experiments

    ERIC Educational Resources Information Center

    Yu, Henson L. Lee; Domingo, Perfecto N., Jr.; Yanza, Elliard Roswell S.; Guidote, Armando M., Jr.

    2015-01-01

    This article demonstrates how to make a low-cost ethanol burner utilizing soda cans. It burns with a light blue flame suitable for out-of-laboratory flame test demonstrations where interference from a yellow flame needs to be avoided.

  7. 16 CFR Figure 10 to Part 1633 - Jig for Setting Burners at Proper Distances From Mattress/Foundation

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 16 Commercial Practices 2 2010-01-01 2010-01-01 false Jig for Setting Burners at Proper Distances From Mattress/Foundation 10 Figure 10 to Part 1633 Commercial Practices CONSUMER PRODUCT SAFETY COMMISSION FLAMMABLE FABRICS ACT REGULATIONS STANDARD FOR THE FLAMMABILITY (OPEN FLAME) OF MATTRESS SETS Pt.1633, Fig. 10 Figure 10 to Part 1633—Jig...

  8. SITE PROGRAM APPLICATIONS ANALYSIS ASSESSMENT OF SUPERFUND APPLICATIONS FOR THE AMERICAN COMBUSTION INC. PYRETRON OXYGEN ENHANCED BURNER

    EPA Science Inventory

    Incineration is widely used to clean up Superfund sites. Modifications which improve the efficiency with which waste can be incinerated are therefore of interest to EPA. Oxygen/air burners are of interest because their installation on conventional incinerators can allow for signi...

  9. 16 CFR Figure 10 to Part 1633 - Jig for Setting Burners at Proper Distances From Mattress/Foundation

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 16 Commercial Practices 2 2012-01-01 2012-01-01 false Jig for Setting Burners at Proper Distances From Mattress/Foundation 10 Figure 10 to Part 1633 Commercial Practices CONSUMER PRODUCT SAFETY COMMISSION FLAMMABLE FABRICS ACT REGULATIONS STANDARD FOR THE FLAMMABILITY (OPEN FLAME) OF MATTRESS SETS Pt.1633, Fig. 10 Figure 10 to Part 1633—Jig...

  10. 16 CFR Figure 10 to Part 1633 - Jig for Setting Burners at Proper Distances From Mattress/Foundation

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 16 Commercial Practices 2 2013-01-01 2013-01-01 false Jig for Setting Burners at Proper Distances From Mattress/Foundation 10 Figure 10 to Part 1633 Commercial Practices CONSUMER PRODUCT SAFETY COMMISSION FLAMMABLE FABRICS ACT REGULATIONS STANDARD FOR THE FLAMMABILITY (OPEN FLAME) OF MATTRESS SETS Pt. 1633, Fig. 10 Figure 10 to Part 1633—Jig...

  11. 16 CFR Figure 10 to Part 1633 - Jig for Setting Burners at Proper Distances From Mattress/Foundation

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 16 Commercial Practices 2 2011-01-01 2011-01-01 false Jig for Setting Burners at Proper Distances From Mattress/Foundation 10 Figure 10 to Part 1633 Commercial Practices CONSUMER PRODUCT SAFETY COMMISSION FLAMMABLE FABRICS ACT REGULATIONS STANDARD FOR THE FLAMMABILITY (OPEN FLAME) OF MATTRESS SETS Pt.1633, Fig. 10 Figure 10 to Part 1633—Jig...

  12. 16 CFR Figure 10 to Part 1633 - Jig for Setting Burners at Proper Distances From Mattress/Foundation

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 16 Commercial Practices 2 2014-01-01 2014-01-01 false Jig for Setting Burners at Proper Distances From Mattress/Foundation 10 Figure 10 to Part 1633 Commercial Practices CONSUMER PRODUCT SAFETY COMMISSION FLAMMABLE FABRICS ACT REGULATIONS STANDARD FOR THE FLAMMABILITY (OPEN FLAME) OF MATTRESS SETS Pt. 1633, Fig. 10 Figure 10 to Part 1633—Jig...

  13. The effect of laser glazing on life of ZrO2 TBCs in cyclic burner rig tests

    NASA Technical Reports Server (NTRS)

    Zaplatynsky, I.

    1986-01-01

    The performance of laser glazed zirconia (containing 8 wt% Y2O3) TBC's was evaluated in burner rig cyclic oxidation tests at 1000 and 1050 C. It was found that the cycle duration has no effect on life of TBC's and that the increase in thickness of the glazed layer caused a slight reduction in life.

  14. Investigation on Flame Characteristics and Burner Operability Issues of Oxy-Fuel Combustion

    SciTech Connect

    Choudhuri, Ahsan

    2013-09-30

    Oxy-fuel combustion has been used previously in a wide range of industrial applications. Oxy- combustion is carried out by burning a hydrocarbon fuel with oxygen instead of air. Flames burning in this configuration achieve higher flame temperatures which present opportunities for significant efficiency improvements and direct capture of CO2 from the exhaust stream. In an effort to better understand and characterize the fundamental flame characteristics of oxy-fuel combustion this research presents the experimental measurements of flame stability of various oxyfuel flames. Effects of H2 concentration, fuel composition, exhaust gas recirculation ratio, firing inputs, and burner diameters on the flame stability of these fuels are discussed. Effects of exhaust gas recirculation i.e. CO2 and H2O (steam) acting as diluents on burner operability are also presented. The roles of firing input on flame stability are then analyzed. For this study it was observed that many oxy-flames did not stabilize without exhaust gas recirculation due to their higher burning velocities. In addition, the stability regime of all compositions was observed to decrease as the burner diameter increased. A flashback model is also presented, using the critical velocity gradient gF) values for CH4-O2-CO2 flames. The second part of the study focuses on the experimental measurements of the flow field characteristics of premixed CH4/21%O2/79%N2 and CH4/38%O2/72%CO2 mixtures at constant firing input of 7.5 kW, constant, equivalence ratio of 0.8, constant swirl number of 0.92 and constant Reynolds Numbers. These measurements were taken in a swirl stabilized combustor at atmospheric pressure. The flow field visualization using Particle Imaging Velocimetry (PIV) technique is implemented to make a better understanding of the turbulence characteristics of

  15. Mechanical swirler for a low-NO{sub x}, weak-swirl burner

    DOEpatents

    Cheng, R.K.; Yegian, D.T.

    1999-03-09

    Disclosed is a mechanical swirler for generating diverging flow in lean premixed fuel burners. The swirler of the present invention includes a central passage with an entrance for accepting a feed gas, a flow balancing insert that introduces additional pressure drop beyond that occurring in the central passage in the absence of the flow balancing insert, and an exit aligned to direct the feed gas into a combustor. The swirler also has an annular passage about the central passage and including one or more vanes oriented to impart angular momentum to feed gas exiting the annular passage. The diverging flow generated by the swirler stabilizes lean combustion thus allowing for lower production of pollutants, particularly oxides of nitrogen. 16 figs.

  16. Mechanical swirler for a low-NO.sub.x, weak-swirl burner

    DOEpatents

    Cheng, Robert K.; Yegian, Derek T.

    1999-01-01

    Disclosed is a mechanical swirler for generating diverging flow in lean premixed fuel burners. The swirler of the present invention includes a central passage with an entrance for accepting a feed gas, a flow balancing insert that introduces additional pressure drop beyond that occurring in the central passage in the absence of the flow balancing insert, and an exit aligned to direct the feed gas into a combustor. The swirler also has an annular passage about the central passage and including one or more vanes oriented to impart angular momentum to feed gas exiting the annular passage. The diverging flow generated by the swirler stabilizes lean combustion thus allowing for lower production of pollutants, particularly oxides of nitrogen.

  17. Premix fuels study applicable to duct burner conditions for a variable cycle engine

    NASA Technical Reports Server (NTRS)

    Venkataramani, K. S.

    1978-01-01

    Emission levels and performance of a premixing Jet-A/air duct burner were measured at reference conditions representative of take-off and cruise for a variable cycle engine. In a parametric variation sequence of tests, data were obtained at inlet temperatures of 400, 500 and 600K at equivalence ratios varying from 0.9 to the lean stability limit. Ignition was achieved at all the reference conditions although the CO levels were very high. Significant nonuniformity across the combustor was observed for the emissions at the take-off condition. At a reference Mach number of 0.117 and an inlet temperature of 600K, corresponding to a simulated cruise condition, the NOx emission level was approximately 1 gm/kg-fuel.

  18. Material response from Mach 0.3 burner rig combustion of a coal-oil mixture

    NASA Technical Reports Server (NTRS)

    Santoro, G. J.; Calfo, F. D.; Kohl, F. J.

    1981-01-01

    Wedge shaped specimens were exposed to the combustion gases of a Mach 0.3 burner rig fueled with a mixture of 40 weight percent micron size coal particles dispersed in No. 2 fuel oil. Exposure temperature was about 900 C and the test duration was about 44 one hour cycles. The alloys tested were the nickel base superalloys, IN-100, U-700 and IN-792, and the cobalt base superalloy, Mar-M509. The deposits on the specimens were analyzed and the extent of corrosion/erosion was measured. The chemical compositions of the deposits were compared with the predictions from an equilibrium thermodynamic analysis. The experimental results were in very good agreement with the predictions.

  19. Burner-rig evaluation of thermal barrier coating systems for nickel-base alloys

    SciTech Connect

    Gedwill, M.A.

    1981-02-01

    Eight plasma-sprayed bond coatings were evaluated for their potential use with ZrO/sub 2/-Y/sub 2/O/sub 3/ thermal barrier coatings (TBCs) which are being developed for coal-derived-fuel-fired gas turbines. Longer TBC liver in cyclic burner rig oxidation to 1050/sup 0/C were achieved with the more oxidation resistant bond coatings. These were Ni-14.1Cr-13.4A1-0.10Zr, Ni-14.1Cr-14.4A1-0.16Y, and Ni-15.8Cr-12.8A1-0.36Y on Rene 41. The TBC systems performed best when 0.015-cm thick bond coatings were employed that were sprayed at 20 kW using argon - 3.5 v/o hydrogen. Cycling had a more life limiting influence on the TBC than accumulated time at 1050/sup 0/C.

  20. Pollutant exposures from unvented gas cooking burners: A Simulation-based Assessment for Southern California

    SciTech Connect

    Logue, Jennifer M.; Klepeis, Neil E.; Lobscheid, Agnes B.; Singer, Brett C.

    2014-01-01

    Residential natural gas cooking burners (NGCBs) can emit substantial quantities of pollutants, and they are typically used without venting range hoods. In this study, LBNL researchers quantified pollutant concentrations and occupant exposures resulting from NGCB use in California homes.The simulation model estimated that—in homes using NGCBs without coincident use of venting range hoods -- 62%, 9%, and 53% of occupants are routinely exposed to NO2, CO, and HCHO levels that exceed acute health-based standards and guidelines. NGCB use increased the sample median of the highest simulated 1-hr indoor concentrations by 100, 3,000, and 20 ppb for NO2, CO, and HCHO, respectively. The study recommends that reducing pollutant exposures from NGCBs should be a public health priority. Simulation results suggest that regular use of even moderately effective venting range hoods would dramatically reduce the percentage of homes in which concentrations exceed health-based standards.

  1. Deposition stress effects on the life of thermal barrier coatings on burner rigs

    NASA Technical Reports Server (NTRS)

    Watson, J. W.; Levine, S. R.

    1984-01-01

    A study of the effect of plasma spray processing parameters on the life of a two layer thermal barrier coating was conducted. The ceramic layer was plasma sprayed at plasma arc currents of 900 and 600 amps onto uncooled tubes, cooled tubes, and solid bars of Waspalloy in a lathe with 1 or 8 passes of the plasma gun. These processing changes affected the residual stress state of the coating. When the specimens were tested in a Mach 0.3 cyclic burner rig at 1130 deg C, a wide range of coating lives resulted. Processing factors which reduced the residual stress state in the coating, such as reduced plasma temperature and increased heat dissipation, significantly increased coating life.

  2. Burner Rig Hot Corrosion of a Single Crystal Ni-48Al-Ti-Hf-Ga Alloy

    NASA Technical Reports Server (NTRS)

    Nesbitt, James A.; Darolia, Ram; Cuy, Michael D.

    1998-01-01

    The hot corrosion resistance of a single crystal Ni-48Al-1Ti-0.5Hf-0.2Ga alloy was examined in a Mach 0.3 burner rig at 900 C for 300 hours. The combustion chamber was doped with 2 ppmw synthetic sea salt. The hot corrosion attack produced a random mound morphology on the surface. Microstructurally, the hot corrosion attack appeared to initiate with oxide-filled pits which were often broad and shallow. At an intermediate stage, the pits increased in size to incorporate unoxidized Ni islands in the corrosion product. The rampant attack stage, which was observed only at sharp sample corners, was characterized by rapid inward growth of alumina in finger-like protrusions incorporating significant amounts of Al-depleted Ni islands. Aluminum consumption in the oxide fingers resulted in the growth of a gamma' layer ahead of the advancing oxide fingers.

  3. High gas velocity burner tests on silicon carbide and silicon nitride at 1200 C

    NASA Technical Reports Server (NTRS)

    Sanders, W. A.; Probst, H. B.

    1973-01-01

    Specimens of silicon carbide and silicon nitride were exposed to a Mach one gas velocity burner simulating a turbine engine environment. Cyclic tests up to 100 hour duration were conducted at specimen temperatures of 1200 C. A specimen geometry was used that develops thermal stresses during thermal cycling in a manner similar to blades and vanes of a gas turbine engine. Materials were compared on a basis of weight change, dimensional reductions, metallography, fluorescent penetrant inspection, X-ray diffraction analyses, failure mode, and general appearance. One hot pressed SiC, one reaction sintered SiC, and three hot pressed Si3N4 specimens survived the program goal of 100 one-hour cycle exposures. Of the materials that failed to meet the program goal, thermal fatigue was identified as the exclusive failure mode.

  4. Performance (Off-Design) Cycle Analysis for a Turbofan Engine With Interstage Turbine Burner

    NASA Technical Reports Server (NTRS)

    Liew, K. H.; Urip, E.; Yang, S. L.; Mattingly, J. D.; Marek, C. J.

    2005-01-01

    This report presents the performance of a steady-state, dual-spool, separate-exhaust turbofan engine, with an interstage turbine burner (ITB) serving as a secondary combustor. The ITB, which is located in the transition duct between the high- and the low-pressure turbines, is a relatively new concept for increasing specific thrust and lowering pollutant emissions in modern jet-engine propulsion. A detailed off-design performance analysis of ITB engines is written in Microsoft(Registered Trademark) Excel (Redmond, Washington) macrocode with Visual Basic Application to calculate engine performances over the entire operating envelope. Several design-point engine cases are pre-selected using a parametric cycle-analysis code developed previously in Microsoft(Registered Trademark) Excel, for off-design analysis. The off-design code calculates engine performances (i.e. thrust and thrust-specific-fuel-consumption) at various flight conditions and throttle settings.

  5. An Experimental and Numerical Study of a Supersonic Burner for CFD Model Development

    NASA Technical Reports Server (NTRS)

    Magnotti, G.; Cutler, A. D.

    2008-01-01

    A laboratory scale supersonic burner has been developed for validation of computational fluid dynamics models. Detailed numerical simulations were performed for the flow inside the combustor, and coupled with finite element thermal analysis to obtain more accurate outflow conditions. A database of nozzle exit profiles for a wide range of conditions of interest was generated to be used as boundary conditions for simulation of the external jet, or for validation of non-intrusive measurement techniques. A set of experiments was performed to validate the numerical results. In particular, temperature measurements obtained by using an infrared camera show that the computed heat transfer was larger than the measured value. Relaminarization in the convergent part of the nozzle was found to be responsible for this discrepancy, and further numerical simulations sustained this conclusion.

  6. Mach 0.3 Burner Rig Facility at the NASA Glenn Materials Research Laboratory

    NASA Technical Reports Server (NTRS)

    Fox, Dennis S.; Miller, Robert A.; Zhu, Dongming; Perez, Michael; Cuy, Michael D.; Robinson, R. Craig

    2011-01-01

    This Technical Memorandum presents the current capabilities of the state-of-the-art Mach 0.3 Burner Rig Facility. It is used for materials research including oxidation, corrosion, erosion and impact. Consisting of seven computer controlled jet-fueled combustors in individual test cells, these relatively small rigs burn just 2 to 3 gal of jet fuel per hour. The rigs are used as an efficient means of subjecting potential aircraft engine/airframe advanced materials to the high temperatures, high velocities and thermal cycling closely approximating actual operating environments. Materials of various geometries and compositions can be evaluated at temperatures from 700 to 2400 F. Tests are conducted not only on bare superalloys and ceramics, but also to study the behavior and durability of protective coatings applied to those materials.

  7. Burner rig hot corrosion of a single crystal Ni-48Al-Ti-Hf-Ga alloy

    SciTech Connect

    Nesbitt, J.A.; Darolia, R.; Cuy, M.D.

    1999-07-01

    The hot corrosion resistance of a single crystal Ni-48Al-1Ti-0.5Hf-0.2Ga alloy was examined in a Mach 0.3 burner rig at 900 C for 300 hours. The combustion chamber was doped with 2 ppmw synthetic sea salt. The hot corrosion attack produced a random mound morphology on the surface. Microstructurally, the hot corrosion attack appeared to initiate with oxide-filled pits which were often broad and shallow. At an intermediate stage, the pits increased in size to incorporate unoxidized Ni islands in the corrosion product. The rampant attack stage, which was observed only at sharp sample corners, was characterized by rapid inward growth of alumina in finger-like protrusions incorporating significant amounts of Al-depleted Ni islands. Aluminum consumption in the oxide fingers resulted in the growth of a {gamma}{prime} layer ahead of the advancing oxide fingers.

  8. Experimental Evaluation of a Low Emissions High Performance Duct Burner for Variable Cycle Engines (VCE)

    NASA Technical Reports Server (NTRS)

    Lohmann, R. P.; Mador, R. J.

    1979-01-01

    An evaluation was conducted with a three stage Vorbix duct burner to determine the performance and emissions characteristics of the concept and to refine the configuration to provide acceptable durability and operational characteristics for its use in the variable cycle engine (VCE) testbed program. The tests were conducted at representative takeoff, transonic climb, and supersonic cruise inlet conditions for the VSCE-502B study engine. The test stand, the emissions sampling and analysis equipment, and the supporting flow visualization rigs are described. The performance parameters including the fuel-air ratio, the combustion efficiency/exit temperature, thrust efficiency, and gaseous emissions calculations are defined. The test procedures are reviewed and the results are discussed.

  9. Burner Rig Evaluation of Thermal Barrier Coating Systems for Nickel-Base Alloys

    NASA Technical Reports Server (NTRS)

    Gedwill, M. A.

    1981-01-01

    Eight plasma sprayed bond coatings were evaluated for their potential use with ZrO2-Y2O3 thermal barrier coatings (TECs) which are being developed for coal derived fuel fired gas turbines. Longer TBC lives in cyclic burner rig oxidation to 1050 C were achieved with the more oxidation resistant bond coatings. These were Ni-14.1Cr-13.4A1-0.10Ar, Ni-14.1C4-14.4Al-0.16Y, and Ni-15.8Cr-12.8Al-0.36Y on Rene 41. The TBC systems performed best when 0.015-cm thick bond coatings were employed that were sprayed at 20 kW using argon 3.5v/o hydrogen. Cycling had a more life limiting influence on the TBC than accumulated time at 1050 C.

  10. NASA Lewis Research Center lean-, rich-burn materials test burner rig

    NASA Technical Reports Server (NTRS)

    Stearns, C. A.; Robinson, R. C.

    1994-01-01

    The lean-, rich-burn materials test burner rig at NASA LeRC is used to evaluate the high temperature environmental durability of aerospace materials. The rig burns jet fuel and pressurized air, and sample materials can be subjected to both lean-burn and rich-burn environments. As part of NASA's Enabling Propulsion Materials (EPM) program, an existing rig was adapted to simulate the rich-burn quick-quench lean-burn (RQL) combustor concept which is being considered for the HSCT (high speed civil transport) aircraft. RQL materials requirements exceed that of current superalloys, thus ceramic matrix composites (CMC's) emerged as the leading candidate materials. The performance of these materials in the quasi reducing environment of the rich-burn section of the RQL is of fundamental importance to materials development. This rig was developed to conduct such studies, and its operation and capabilities are described.

  11. Assessment of Startup Fuel Options for the GNEP Advanced Burner Reactor (ABR)

    SciTech Connect

    Jon Carmack; Kemal O. Pasamehmetoglu; David Alberstein

    2008-02-01

    The Global Nuclear Energy Program (GNEP) includes a program element for the development and construction of an advanced sodium cooled fast reactor to demonstrate the burning (transmutation) of significant quantities of minor actinides obtained from a separations process and fabricated into a transuranic bearing fuel assembly. To demonstrate and qualify transuranic (TRU) fuel in a fast reactor, an Advanced Burner Reactor (ABR) prototype is needed. The ABR would necessarily be started up using conventional metal alloy or oxide (U or U, Pu) fuel. Startup fuel is needed for the ABR for the first 2 to 4 core loads of fuel in the ABR. Following start up, a series of advanced TRU bearing fuel assemblies will be irradiated in qualification lead test assemblies in the ABR. There are multiple options for this startup fuel. This report provides a description of the possible startup fuel options as well as possible fabrication alternatives available to the program in the current domestic and international facilities and infrastructure.

  12. Performance Cycle Analysis of a Two-Spool, Separate-Exhaust Turbofan With Interstage Turbine Burner

    NASA Technical Reports Server (NTRS)

    Liew, K. H.; Urip, E.; Yang, S. L.; Mattingly, J. D.; Marek, C. J.

    2005-01-01

    This paper presents the performance cycle analysis of a dual-spool, separate-exhaust turbofan engine, with an Interstage Turbine Burner serving as a secondary combustor. The ITB, which is located at the transition duct between the high- and the low-pressure turbines, is a relatively new concept for increasing specific thrust and lowering pollutant emissions in modern jet engine propulsion. A detailed performance analysis of this engine has been conducted for steady-state engine performance prediction. A code is written and is capable of predicting engine performances (i.e., thrust and thrust specific fuel consumption) at varying flight conditions and throttle settings. Two design-point engines were studied to reveal trends in performance at both full and partial throttle operations. A mission analysis is also presented to assure the advantage of saving fuel by adding ITB.

  13. Development of a High-Pressure Gaseous Burner for Calibrating Optical Diagnostic Techniques

    NASA Technical Reports Server (NTRS)

    Kojima, Jun; Nguyen, Quang-Viet

    2003-01-01

    In this work-in-progress report, we show the development of a unique high-pressure burner facility (up to 60 atm) that provides steady, reproducible premixed flames with high precision, while having the capability to use multiple fuel/oxidizer combinations. The highpressure facility has four optical access ports for applying different laser diagnostic techniques and will provide a standard reference flame for the development of a spectroscopic database in high-pressure/temperature conditions. Spontaneous Raman scattering (SRS) was the first diagnostic applied, and was used to successfully probe premixed hydrogen-air flames generated in the facility using a novel multi-jet micro-premixed array burner element. The SRS spectral data include contributions from H2, N2, O2, and H2O and were collected over a wide range of equivalence ratios ranging from 0.16 to 4.9 at an initial pressure of 10-atm via a spatially resolved point SRS measurement with a high-performance optical system. Temperatures in fuel-lean to stoichiometric conditions were determined from the ratio of the Stokes to anti-Stokes scattering of the Q-branch of N2, and those in fuel-rich conditions via the rotational temperature of H2. The SRS derived temperatures using both techniques were consistent and indicated that the flame temperature was approximately 500 K below that predicted by adiabatic equilibrium, indicating a large amount of heat-loss at the measurement zone. The integrated vibrational SRS signals show that SRS provides quantitative number density data in high-pressure H2-air flames.

  14. Investigation of the effect of pilot burner on lean blow out performance of a staged injector

    NASA Astrophysics Data System (ADS)

    Yang, Jinhu; Zhang, Kaiyu; Liu, Cunxi; Ruan, Changlong; Liu, Fuqiang; Xu, Gang

    2014-12-01

    The staged injector has exhibited great potential to achieve low emissions and is becoming the preferable choice of many civil airplanes. Moreover, it is promising to employ this injector design in military engine, which requires most of the combustion air enters the combustor through injector to reduce smoke emission. However, lean staged injector is prone to combustion instability and extinction in low load operation, so techniques for broadening its stable operation ranges are crucial for its application in real engine. In this work, the LBO performance of a staged injector is assessed and analyzed on a single sector test section. The experiment was done in atmospheric environment with optical access. Kerosene-PLIF technique was used to visualize the spray distribution and common camera was used to record the flame patterns. Emphasis is put on the influence of pilot burner on LBO performance. The fuel to air ratios at LBO of six injectors with different pilot swirler vane angle were evaluated and the obtained LBO data was converted into data at idle condition. Results show that the increase of pilot swirler vane angle could promote the air assisted atomization, which in turn improves the LBO performance slightly. Flame patterns typical in the process of LBO are analyzed and attempts are made to find out the main factors which govern the extinction process with the assistance of spray distribution and numerical flow field results. It can be learned that the flame patterns are mainly influenced by structure of the flow field just behind the pilot burner when the fuel mass flow rate is high; with the reduction of fuel, atomization quality become more and more important and is the main contributing factor of LBO. In the end of the paper, conclusions are drawn and suggestions are made for the optimization of the present staged injector.

  15. Pollutant Emissions and Lean Blowoff Limits of Fuel Flexible Burners Operating on Gaseous Renewable and Fossil Fuels

    NASA Astrophysics Data System (ADS)

    Colorado, Andres

    This study provides an experimental and numerical examination of pollutant emissions and stability of gaseous fueled reactions stabilized with two premixed-fuel-flexible and ultra-low NOx burner technologies. Both burners feature lean combustion technology to control the formation of nitrogen oxides (NOx). The first fuel--flexible burner is the low-swirl burner (LSB), which features aerodynamic stabilization of the reactions with a divergent flow-field; the second burner is the surface stabilized combustion burner (SSCB), which features the stabilization of the reactions on surface patterns. For combustion applications the most commonly studied species are: NOx, carbon monoxide (CO), and unburned hydrocarbons (UHC). However these are not the only pollutants emitted when burning fossil fuels; other species such as nitrous oxide (N2O), ammonia (NH3) and formaldehyde (CH2O) can be directly emitted from the oxidation reactions. Yet the conditions that favor the emission of these pollutants are not completely understood and require further insight. The results of this dissertation close the gap existing regarding the relations between emission of pollutants species and stability when burning variable gaseous fuels. The results of this study are applicable to current issues such as: 1. Current combustion systems operating at low temperatures to control formation of NOx. 2. Increased use of alternative fuels such as hydrogen, synthetic gas and biogas. 3. Increasing recognition of the need/desire to operate combustion systems in a transient manner to follow load and to offset the intermittency of renewable power. 4. The recent advances in measurement methods allow us to quantify other pollutants, such as N 2O, NH3 and CH2O. Hence in this study, these pollutant species are assessed when burning natural gas (NG) and its binary mixtures with other gaseous fuels such as hydrogen (H2), carbon dioxide (CO2), ethane (C 2H6) and propane (C3H8) at variable operation modes including

  16. CO-FIRING COAL: FEEDLOT AND LITTER BIOMASS (CFB AND CLB) FUELS IN PULVERIZED FUEL AND FIXED BED BURNERS

    SciTech Connect

    Kalyan Annamalai; John Sweeten; Saqib Mukhtar; Ben Thein; Gengsheng Wei; Soyuz Priyadarsan; Senthil Arumugam; Kevin Heflin

    2003-08-28

    Intensive animal feeding operations create large amounts of animal waste that must be safely disposed of in order to avoid environmental degradation. Cattle feedlots and chicken houses are two examples. In feedlots, cattle are confined to small pens and fed a high calorie grain-diet diet in preparation for slaughter. In chicken houses, thousands of chickens are kept in close proximity. In both of these operations, millions of tons of manure are produced every year. The manure could be used as a fuel by mixing it with coal in a 90:10 blend and firing it in an existing coal suspension fired combustion systems. This technique is known as co-firing, and the high temperatures produced by the coal will allow the biomass to be completely combusted. Reburn is a process where a small percentage of fuel called reburn fuel is injected above the NO{sub x} producing, conventional coal fired burners in order to reduce NO{sub x}. The manure could also be used as reburn fuel for reducing NO{sub x} in coal fired plants. An alternate approach of using animal waste is to adopt the gasification process using a fixed bed gasifier and then use the gases for firing in gas turbine combustors. In this report, the cattle manure is referred to as feedlot biomass (FB) and chicken manure as litter biomass (LB). The report generates data on FB and LB fuel characteristics. Co-firing, reburn, and gasification tests of coal, FB, LB, coal: FB blends, and coal: LB blends and modeling on cofiring, reburn systems and economics of use of FB and LB have also been conducted. The biomass fuels are higher in ash, lower in heat content, higher in moisture, and higher in nitrogen and sulfur (which can cause air pollution) compared to coal. Small-scale cofiring experiments revealed that the biomass blends can be successfully fired, and NO{sub x} emissions will be similar to or lower than pollutant emissions when firing coal. Further experiments showed that biomass is twice or more effective than coal when

  17. A CFD-Based Study of the Feasibility of Adapting an Erosion Burner Rig for Examining the Effect of CMAS Deposition Corrosion on Environmental Barrier Coatings

    NASA Technical Reports Server (NTRS)

    Miller, Robert A.; Kuczmarski, Maria A.

    2015-01-01

    Thermodynamic and computational fluid dynamics modeling has been conducted to examine the feasibility of adapting the NASA-Glenn erosion burner rigs for use in studies of corrosion of environmental barrier coatings by the deposition of molten CMAS. The effect of burner temperature, Mach number, particle preheat, duct heating, particle size, and particle phase (crystalline vs. glass) were analyzed. Detailed strategies for achieving complete melting of CMAS particles were developed, thereby greatly improving the probability of future successful experimental outcomes.

  18. Reduction of exposure to ultrafine particles by kitchen exhaust hoods: the effects of exhaust flow rates, particle size, and burner position.

    PubMed

    Rim, Donghyun; Wallace, Lance; Nabinger, Steven; Persily, Andrew

    2012-08-15

    Cooking stoves, both gas and electric, are one of the strongest and most common sources of ultrafine particles (UFP) in homes. UFP have been shown to be associated with adverse health effects such as DNA damage and respiratory and cardiovascular diseases. This study investigates the effectiveness of kitchen exhaust hoods in reducing indoor levels of UFP emitted from a gas stove and oven. Measurements in an unoccupied manufactured house monitored size-resolved UFP (2 nm to 100 nm) concentrations from the gas stove and oven while varying range hood flow rate and burner position. The air change rate in the building was measured continuously based on the decay of a tracer gas (sulfur hexafluoride, SF(6)). The results show that range hood flow rate and burner position (front vs. rear) can have strong effects on the reduction of indoor levels of UFP released from the stove and oven, subsequently reducing occupant exposure to UFP. Higher range hood flow rates are generally more effective for UFP reduction, though the reduction varies with particle diameter. The influence of the range hood exhaust is larger for the back burner than for the front burner. The number-weighted particle reductions for range hood flow rates varying between 100 m(3)/h and 680 m(3)/h range from 31% to 94% for the front burner, from 54% to 98% for the back burner, and from 39% to 96% for the oven.

  19. Deposition of Na2SO4 from salt-seeded combustion gases of a high velocity burner rig

    NASA Technical Reports Server (NTRS)

    Santoro, G. J.; Kohl, F. J.; Stearns, C. A.; Gokoglu, S. A.; Rosner, D. A.

    1985-01-01

    With a view to developing simulation criteria for the laboratory testing of high-temperature materials for gas turbine engines, the deposition rates of sodium sulfate from sodium salt-seeded combustion gases were determined experimentally using a well instrumented high-velocity burner. In the experiments, Na2SO4, NaCl, NaNO3, and simulated sea salt solutions were injected into the combustor of the Mach 0.3 burner rig operating at constant fuel/air ratios. The deposits formed on an inert rotating collector were then weighed and analyzed. The experimental results are compared to Rosner's vapor diffusion theory. Some additional test results, including droplet size distribution of an atomized salt spray, are used in interpreting the deposition rate data.

  20. Experimental data regarding the characterization of the flame behavior near lean blowout in a non-premixed liquid fuel burner

    PubMed Central

    De Giorgi, Maria Grazia; Sciolti, Aldebara; Campilongo, Stefano; Ficarella, Antonio

    2015-01-01

    The article presents the data related to the flame acquisitions in a liquid-fuel gas turbine derived burner operating in non-premixed mode under three different equivalence fuel/air ratio, which corresponds to a richer, an intermediate, and an ultra-lean condition, near lean blowout (LBO). The data were collected with two high speed visualization systems which acquired in the visible (VIS) and in the infrared (NIR) spectral region. Furthermore chemiluminescence measurements, which have been performed with a photomultiplier (PMT), equipped with an OH* filter, and gas exhaust measurements were also given. For each acquisition the data were related to operating parameters as pressure, temperature and equivalent fuel/air ratio. The data are related to the research article “Image processing for the characterization of flame stability in a non-premixed liquid fuel burner near lean blowout” in Aerospace Science and Technology [1]. PMID:26862557

  1. Origin of activated combustion in steady-state premixed burner flame with superposition of dielectric barrier discharge

    NASA Astrophysics Data System (ADS)

    Zaima, Kazunori; Akashi, Haruaki; Sasaki, Koichi

    2016-01-01

    The objective of this work is to understand the mechanism of plasma-assisted combustion in a steady-state premixed burner flame. We examined the spatiotemporal variation of the density of atomic oxygen in a premixed burner flame with the superposition of dielectric barrier discharge (DBD). We also measured the spatiotemporal variations of the optical emission intensities of Ar and OH. The experimental results reveal that atomic oxygen produced in the preheating zone by electron impact plays a key role in the activation of combustion reactions. This understanding is consistent with that described in our previous paper indicating that the production of “cold OH(A2Σ+)” via CHO + O → OH(A2Σ+) + CO has the sensitive response to the pulsed current of DBD [K. Zaima and K. Sasaki, Jpn. J. Appl. Phys. 53, 110309 (2014)].

  2. Low NO{sub x}/SO{sub x} Burner retrofit for utility cyclone boilers. Public design report

    SciTech Connect

    Not Available

    1991-09-01

    This Public Design Report provides available nonproprietary design information on the Low NO{sub x}SO{sub x} Burner Retrofit of Utility Cyclone Boilers project. In addition to the design aspects, the history of the project, the organization of the project, and the role of the funding parties are discussed. An overview of the Low NO{sub x}SO{sub x} (LNS) Burner, the cyclone boiler and the Southern Illinois Power Cooperative host site is presented. A detailed nonproprietary description of the individual process steps, plant systems, and resulting performance then follows. Narrative process descriptions, simplified process flow diagrams, input/output stream data, operating conditions and requirements are given for each unit. The plant demonstration program and start up provisions, the environmental considerations and control, monitoring and safety factors that are considered are also addressed.

  3. The Use of an Ultra-Compact Combustor as an Inter-Turbine Burner for Improved Engine Performance

    DTIC Science & Technology

    2014-03-27

    flame speed at the reference condition. For the 500g case, the flame structure changes significantly, creating a mushroom vortex and propagating at a...fluid against the outer circumference of the cavity, while the lighter combustion products migrate toward the inner circumference. This contributes...the ITB engines is a product of limiting the main burner exit temperature. 21 Figure 17: T-s Diagram of a Gas Turbine Engine with an ITB [15] Figures

  4. Simplified configuration for the combustor of an oil burner using a low pressure, high flow air-atomizing nozzle

    DOEpatents

    Butcher, Thomas A.; Celebi, Yusuf; Fisher, Leonard

    2000-09-15

    The invention relates to clean burning of fuel oil with air. More specifically, to a fuel burning combustion head using a low-pressure, high air flow atomizing nozzle so that there will be a complete combustion of oil resulting in a minimum emission of pollutants. The improved fuel burner uses a low pressure air atomizing nozzle that does not result in the use of additional compressors or the introduction of pressurized gases downstream, nor does it require a complex design. Inventors:

  5. Characterization of primary and secondary wood combustion products generated under different burner loads

    NASA Astrophysics Data System (ADS)

    Bruns, E. A.; Krapf, M.; Orasche, J.; Huang, Y.; Zimmermann, R.; Drinovec, L.; Močnik, G.; El-Haddad, I.; Slowik, J. G.; Dommen, J.; Baltensperger, U.; Prévôt, A. S. H.

    2015-03-01

    Residential wood burning contributes to the total atmospheric aerosol burden; however, large uncertainties remain in the magnitude and characteristics of wood burning products. Primary emissions are influenced by a variety of parameters, including appliance type, burner wood load and wood type. In addition to directly emitted particles, previous laboratory studies have shown that oxidation of gas-phase emissions produces compounds with sufficiently low volatility to readily partition to the particles, forming considerable quantities of secondary organic aerosol (SOA). However, relatively little is known about wood burning SOA, and the effects of burn parameters on SOA formation and composition are yet to be determined. There is clearly a need for further study of primary and secondary wood combustion aerosols to advance our knowledge of atmospheric aerosols and their impacts on health, air quality and climate. For the first time, smog chamber experiments were conducted to investigate the effects of wood loading on both primary and secondary wood combustion products. Products were characterized using a range of particle- and gas-phase instrumentation, including an aerosol mass spectrometer (AMS). A novel approach for polycyclic aromatic hydrocarbon (PAH) quantification from AMS data was developed and results were compared to those from GC-MS analysis of filter samples. Similar total particle mass emission factors were observed under high and average wood loadings; however, high fuel loadings were found to generate significantly higher contributions of PAHs to the total organic aerosol (OA) mass compared to average loadings. PAHs contributed 15 ± 4% (mean ±2 sample standard deviations) to the total OA mass in high-load experiments, compared to 4 ± 1% in average-load experiments. With aging, total OA concentrations increased by a factor of 3 ± 1 for high load experiments compared to 1.6 ± 0.4 for average-load experiments. In the AMS, an increase in PAH and

  6. Characterization of primary and secondary wood combustion products generated under different burner loads

    NASA Astrophysics Data System (ADS)

    Bruns, E. A.; Krapf, M.; Orasche, J.; Huang, Y.; Zimmermann, R.; Drinovec, L.; Močnik, G.; El-Haddad, I.; Slowik, J. G.; Dommen, J.; Baltensperger, U.; Prévôt, A. S. H.

    2014-10-01

    Residential wood burning contributes significantly to the total atmospheric aerosol burden; however, large uncertainties remain in the magnitude and characteristics of wood burning products. Primary emissions are influenced by a variety of parameters, including appliance type, burner wood load and wood type. In addition to directly emitted particles, previous laboratory studies have shown that oxidation of gas phase emissions produces compounds with sufficiently low volatility to readily partition to the particles, forming significant quantities of secondary organic aerosol (SOA). However, relatively little is known about wood burning SOA and the effects of burn parameters on SOA formation and composition are yet to be determined. There is clearly a need for further study of primary and secondary wood combustion aerosols to advance our knowledge of atmospheric aerosols and their impacts on health, air quality and climate. For the first time, smog chamber experiments were conducted to investigate the effects of wood loading on both primary and secondary wood combustion products. Products were characterized using a range of particle and gas phase instrumentation, including an aerosol mass spectrometer (AMS). A novel approach for polycyclic aromatic hydrocarbon (PAH) quantification from AMS data was developed and results were compared to those from GC-MS analysis of filter samples. Similar total particle mass emission factors were observed under high and average wood loadings, however, high fuel loadings were found to generate significantly higher contributions of PAHs to the total organic aerosol (OA) mass compared to average loadings. PAHs contributed 15 ± 4% (mean ± 2 sample standard deviations) to the total OA mass in high load experiments, compared to 4 ± 1% in average load experiments. With aging, total OA concentrations increased by a factor of 3 ± 1 for high load experiments compared to 1.6 ± 0.4 for average load experiments. In the AMS, an increase in

  7. Numerical study of a jet-in-hot-coflow burner with hydrogen-addition using the Flamelet Generated Manifolds technique

    NASA Astrophysics Data System (ADS)

    Abtahizadeh, Seyed Ebrahim; van Oijen, Jeroen; de Goey, Philip

    2012-11-01

    Recently Mild combustion is subjected to intensive research because of its unique ability to provide high efficiency and low pollutant combustion simultaneously in industrial heating processes. In most practical Mild combustion applications, a fuel jet is ignited due to recirculation of hot burned gases. The impact of burned gases on autoignition and flame stabilization has been studied in a laboratory jet-in-hot-coflow (JHC) burner. Results of this study help us to understand recent experimental observations of the Delft group (DJHC burner) in which Dutch Natural Gas (DNG) is mixed with various amounts of H2. The main focus is on the modeling of autoignition in the DJHC burner by using the Flamelet Generated Manifolds (FGM) technique. In this technique, kinetic information is tabulated with a few controlling variables which results in a significant decrease in simulation time. The FGM tabulation has been performed using igniting laminar counterflow diffusion flames. Since H2 is present in the fuel composition, it is essential to include preferential diffusion effects in the table due to the high diffusivity of H2. Based on results, the FGM table is capable to reproduce the autoignition of hydrogen containing fuel predicted by detailed chemistry in 1D counterflow flames. The Authors gratefully acknowledge financial support of the Dutch Technology Foundation STW.

  8. Laser Metal Deposition as Repair Technology for a Gas Turbine Burner Made of Inconel 718

    NASA Astrophysics Data System (ADS)

    Petrat, Torsten; Graf, Benjamin; Gumenyuk, Andrey; Rethmeier, Michael

    Maintenance, repair and overhaul of components are of increasing interest for parts of high complexity and expensive manufacturing costs. In this paper a production process for laser metal deposition is presented, and used to repair a gas turbine burner of Inconel 718. Different parameters for defined track geometries were determined to attain a near net shape deposition with consistent build-up rate for changing wall thicknesses over the manufacturing process. Spot diameter, powder feed rate, welding velocity and laser power were changed as main parameters for a different track size. An optimal overlap rate for a constant layer height was used to calculate the best track size for a fitting layer width similar to the part dimension. Deviations in width and height over the whole build-up process were detected and customized build-up strategies for the 3D sequences were designed. The results show the possibility of a near net shape repair by using different track geometries with laser metal deposition.

  9. The porous-plug burner: Flame stabilization, onset of oscillation, and restabilization

    SciTech Connect

    Kurdyumov, Vadim N.; Matalon, Moshe

    2008-04-15

    In recent studies of edge-flames it was found that when the characteristic gas velocity exceeds a critical value the flame often undergoes spontaneous oscillations. The oscillations are amplified as the flow rate increases, reaching a maximum amplitude, and then decrease with further increasing flow rate until the flame restabilizes. In this paper we examine the concept of flame restabilization in a simpler but related problem - the planar premixed flame on a porous-plug burner - which is amenable to a full stability analysis. We show the dependence of all possible steady states on the relevant parameters, including the mass flow rate, the effective Lewis number of the mixture, the overall activation energy of the chemical reaction, and the extent of heat release. A linear stability analysis is then carried out to examine whether these steady states are stable to small disturbances. The analysis determines the critical conditions for the onset of instability, as well as the nature of the instability. In particular, we show that by decreasing the mass flow rate, the flame, which is at first stable, starts to oscillate back and forth for a limited range of gas velocities but is then restabilized by further decreasing the mass flow rate. We also show that the properties of the plug, such as the thickness of the plate and its porosity, play a significant role in flame stabilization. (author)

  10. A Study of Oxidation of Hydrogen Based on Flashback of Hydrogen-Oxygen-Nitrogen Burner Flames

    NASA Technical Reports Server (NTRS)

    Fine, Burton D.

    1959-01-01

    The flashback of hydrogen-oxygen-nitrogen flames was studied as a function of pressure, burner diameter, equivalence ratio, and oxidant strength. The results were treated on the assumption that the product of the critical boundary velocity gradient for flashback and the initial concentration of that reactant which is not in excess is proportional to a mean reaction rate associated with the flame zone. It was further assumed that this reaction rate can be expressed in terms of initial concentrations and flame temperature. Measurements at constant flame temperature yield orders of reaction with respect to hydrogen and oxygen. These do not vary with flame temperature. Measurements in which pressure is varied for several values of oxidant strength at constant equivalence ratio yield a total order of reaction and a function describing the dependence of the mean reaction rate on flame temperature. The total reaction order is independent of flame temperature and equal to the sum of the orders for hydrogen and oxygen. The dependence of the reaction rate on flame temperature cannot be described by a constant activation energy. The activation energy obtained apparently increases with flame temperature. Flashback results can be described by a single rate constant which is independent of equivalence ratio. Values were estimated for this rate constant as a function of flame temperature.

  11. Deposition and material response from Mach 0.3 burner rig combustion of SRC 2 fuels

    NASA Technical Reports Server (NTRS)

    Santoro, G. J.; Kohl, F. J.; Stearns, C. A.; Fryburg, G. C.; Johnson, J. R.

    1980-01-01

    Collectors at 1173K (900 C) were exposed to the combustion products of a Mach 0.3 burner rig fueled with various industrial turbine liquid fuels from solvent refined coals. Four fuels were employed: a naphtha, a light oil, a wash solvent and a mid-heavy distillate blend. The response of four superalloys (IN-100, U 700, IN 792 and M-509) to exposure to the combustion gases from the SRC-2 naphtha and resultant deposits was also determined. The SRC-2 fuel analysis and insights obtained during the combustion experience are discussed. Particular problems encountered were fuel instability and reactions of the fuel with hardware components. The major metallic elements which contributed to the deposits were copper, iron, chromium, calcium, aluminum, nickel, silicon, titanium, zinc, and sodium. The deposits were found to be mainly metal oxides. An equilibrium thermodynamic analysis was employed to predict the chemical composition of the deposits. The agreement between the predicted and observed compounds was excellent. No hot corrosion was observed. This was expected because the deposits contained very little sodium or potassium and consisted mainly of the unreactive oxides. However, the amounts of deposits formed indicated that fouling is a potential problem with the use of these fuels.

  12. Burner Rig Hot Corrosion of Five Ni-Base Alloys Including Mar-M247

    NASA Technical Reports Server (NTRS)

    Nesbitt, James A.; Helmink, R.; Harris, K.; Erickson, G.

    2000-01-01

    The hot corrosion resistance of four new Ni-base superalloys was compared to that of Mar-M247 by testing in a Mach 0.3 burner rig at 900 C for 300 1-hr cycles. While the Al content was held the same as in the Mar-M247, the Cr and Co levels in the four new alloys were decreased while other strengthening elements (Re, Ta) were increased. Surprisingly, despite their lower Cr and Co contents, the hot corrosion behavior of all four new alloys was superior to that of the Mar-M247 alloy. The Mar-M247 alloy began to lose weight almost immediately whereas the other four alloys appeared to undergo an incubation period of 50-150 1-hr cycles. Examination of the cross-sectional microstructures showed regions of rampant corrosion attack (propagation stage) in all five alloys after 300 1-hr cycles . This rampant corrosion morphology was similar for each of the alloys with Ni and Cr sulfides located in an inner subscale region. The morphology of the attack suggests a classic "Type I", or high temperature, hot corrosion attack.

  13. MINIMIZATION OF NO EMISSIONS FROM MULTI-BURNER COAL-FIRED BOILERS

    SciTech Connect

    E.G. Eddings; A. Molina; D.W. Pershing; A.F. Sarofim; K.A. Davis; M.P. Heap; T.H. Fletcher; H. Zhang

    2000-04-01

    Reduction of NO{sub x} emission is an important environmental issue in pulverized coal combustion. The most cost-effective approach to NO{sub x} reduction is air-staging which can also operate with additional down-stream techniques such as reburning [1]. Air staging promotes the conversion of NO{sub x} precursors (HCN, NH{sub 3}, etc.) to N{sub 2} by delaying the oxygen supply to the greatest extent when those nitrogen species are released during devolatilization. Such a delay gives the primary volatiles a chance to undergo secondary reactions, including tar cracking and soot formation. Secondary reactions of volatiles largely determine the fate of the ultimate NO{sub x} production from pyrolysis, therefore a detailed investigation into the transformation of nitrogen species during secondary reactions and effects of soot on nitrogen release is critical for design and implementation of new pollution control strategies. Current nitrogen models (including the CPD model at BYU) only simulate the nitrogen release during primary pyrolysis, which happens at low temperatures. This project helps to build a nitrogen release model that accounts for secondary reactions and the effects of soot at temperatures relevant to industrial burners.

  14. Oxy-Combustion Burner and Integrated Pollutant Removal Research and Development Test Facility

    SciTech Connect

    Mark Schoenfield; Manny Menendez; Thomas Ochs; Rigel Woodside; Danylo Oryshchyn

    2012-09-30

    A high flame temperature oxy-combustion test facility consisting of a 5 MWe equivalent test boiler facility and 20 KWe equivalent IPR® was constructed at the Hammond, Indiana manufacturing site. The test facility was operated natural gas and coal fuels and parametric studies were performed to determine the optimal performance conditions and generated the necessary technical data required to demonstrate the technologies are viable for technical and economic scale-up. Flame temperatures between 4930-6120F were achieved with high flame temperature oxy-natural gas combustion depending on whether additional recirculated flue gases are added to balance the heat transfer. For high flame temperature oxy-coal combustion, flame temperatures in excess of 4500F were achieved and demonstrated to be consistent with computational fluid dynamic modeling of the burner system. The project demonstrated feasibility and effectiveness of the Jupiter Oxygen high flame temperature oxy-combustion process with Integrated Pollutant Removal process for CCS and CCUS. With these technologies total parasitic power requirements for both oxygen production and carbon capture currently are in the range of 20% of the gross power output. The Jupiter Oxygen high flame temperature oxy-combustion process has been demonstrated at a Technology Readiness Level of 6 and is ready for commencement of a demonstration project.

  15. Development of a combustion technology for ultra-low emission (< 5 ppm nox) industrial burner

    SciTech Connect

    Littlejohn, D.; Majeski, A.J.; Cheng, R.K.; Castaldini, C.

    2002-11-01

    A combustion concept to achieve ultra-low emissions (NO{sub x} {le} 2 ppm and CO {le} 20 ppm) was tested on an 18 kW low swirl burner (LSB). It is based on lean premixed combustion combined with flue gas recirculation (FGR) and partially reformed natural gas (PRNG). Flame stability and emissions were assessed as a function of {phi}, FGR, and PRNG. The results show that PRNG improves flame stability and reduces CO, with no impact on NO{sub x} at {phi} = 0.8. A 1D flame simulation satisfactorily predicted prompt NO{sub x} at lean conditions with high FGR. Two catalysts were tested in a prototype steam reformer, and the results were used to estimate reactor volume and steam requirements in a practical system. An advanced Sud Chemie catalyst displayed good conversion efficiency at relatively low temperatures and high space velocities, which indicates that the reformer can be small and will track load changes. Tests conducted on the LSB with FGR and 0.05 PRNG shows that boilers using a LSB with PRNG and high FGR and {phi} close to stoichiometry can operate with low emissions and high efficiency.

  16. FLUENT simulations of the Westinghouse Multi-Annular Swirl Burner for design optimization

    SciTech Connect

    Norton, T.S.; Mollot, D.J.

    1996-12-31

    The FLUENT computational fluid dynamics code is being used to aid the design of the Westinghouse Multi-Annular Swirl Burner (MASB). The MASB is being designed by Westinghouse for use as a topping combustor in a Pressurized Fluidized-Bed Combustion System as part of the U.S. Department of Energy`s Clean Coal Technology Program. The MASB will primarily burn low-energy, coal-derived gaseous fuel (syngas) with vitiated air, at elevated pressure, to supply a gas turbine for power generation. MASB operation will require dual fuel capability, i.e., the ability to burn a high heating value fuel as well as the lower energy syngas. Firing a high heating value gas, such as methane or propane, is required during plant start-up and other off-design conditions. The goal of the current study was to devise a method for introducing dilution air into the MASB to produce an optimum pattern factor without significantly changing the existing design. This design modification must not adversely affect MASB performance when firing syngas.

  17. Opposed jet burner studies of hydrogen combustion with pure and N2, NO-contaminated air

    NASA Technical Reports Server (NTRS)

    Guerra, Rosemary; Pellett, Gerald L.; Northam, G. Burton; Wilson, Lloyd G.

    1987-01-01

    A counterflow diffusion flame formed by an argon-bathed tubular-opposed jet burner (OJB) was used to determine the 'blowoff' and 'restore' combustion characteristics for jets of various H2/N2 mixtures and for jets of air contaminated by NO (which normally occurs in high-enthalpy airflows supplied to hypersonic test facilities for scramjet combustors). Substantial divergence of 'blowoff' and 'restore' limits occurred as H2 mass flux, M(H)2, increased, the H2 jet became richer, and the M(air)/M(H2 + N2) ratio increased from 1 to 3 (molar H2/O2 from 1 to 16). Both OJB limits were sensitive to reactant composition. One to six percent NO in air led to significant N2-corrected decreases in the M(H2) values for 'blowoff' (2-8 percent) and 'restore' (6-12 percent) for mole fractions of H2 ranging from 0.5 to 0.95. However, when H2/O2 was held constant, all N2-corrected changes in M(H2) were negligible.

  18. Laminar burn rates of gun propellants measured in the high-pressure strand burner

    SciTech Connect

    Reaugh, J. E., LLNL

    1997-10-01

    The pressure dependence of the laminar burn rate of gun propellants plays a role in the design and behavior of high-performance guns. We have begun a program to investigate the effects of processing variables on the laminar burn rates, using our high-pressure strand burner to measure these rates at pressures exceeding 700 MPa. We have burned JA2 and M43 propellant samples, provided by Dr. Arpad Juhasz, ARL, from propellant lots previously used in round-robin tests. Our results at room temperature are in accord with other measurements. In addition, we present results measured for propellant that has been preheated to 50 C before burning. We used our thermochemical equilibrium code, CHEETAH, to help interpret the simultaneous pressure and temperature measurements taken during the testing, and show examples of its use. It has been modified to provide performance measures and equations of state for the products that are familiar to the gun-propellant community users of BLAKE.

  19. Holy smoke in medieval funerary rites: chemical fingerprints of frankincense in southern Belgian incense burners.

    PubMed

    Baeten, Jan; Deforce, Koen; Challe, Sophie; De Vos, Dirk; Degryse, Patrick

    2014-01-01

    Frankincense, the oleogum resin from Boswellia sp., has been an early luxury good in both Western and Eastern societies and is particularly used in Christian funerary and liturgical rites. The scant grave goods in late medieval burials comprise laterally perforated pottery vessels which are usually filled with charcoal. They occur in most regions of western Europe and are interpreted as incense burners but have never been investigated with advanced analytical techniques. We herein present chemical and anthracological results on perforated funerary pots from 4 Wallonian sites dating to the 12-14th century AD. Chromatographic and mass spectrometric analysis of lipid extracts of the ancient residues and comparison with extracts from four Boswellia species clearly evidence the presence of degraded frankincense in the former, based on characteristic triterpenoids, viz. boswellic and tirucallic acids, and their myriad dehydrated and oxygenated derivatives. Cembrane-type diterpenoids indicate B. sacra (southern Arabia) and B. serrata (India) as possible botanical origins. Furthermore, traces of juniper and possibly pine tar demonstrate that small amounts of locally available fragrances were mixed with frankincense, most likely to reduce its cost. Additionally, markers of ruminant fats in one sample from a domestic context indicate that this vessel was used for food preparation. Anthracological analysis demonstrates that the charcoal was used as fuel only and that no fragrant wood species were burned. The chars derived from local woody plants and were most likely recovered from domestic fires. Furthermore, vessel recycling is indicated by both contextual and biomarker evidence. The results shed a new light on funerary practices in the Middle Ages and at the same time reveal useful insights into the chemistry of burned frankincense. The discovery of novel biomarkers, namely Δ2-boswellic acids and a series of polyunsaturated and aromatic hydrocarbons, demonstrates the high

  20. PRELIMINARY DATA CALL REPORT ADVANCED BURNER REACTOR START UP FUEL FABRICATION FACILITY

    SciTech Connect

    S. T. Khericha

    2007-04-01

    The purpose of this report is to provide data for preparation of a NEPA Environmental Impact Statement in support the U. S. Department of Energy (DOE) Global Nuclear Energy Partnership (GNEP). One of the GNEP objectives is to reduce the inventory of long lived actinide from the light water reactor (LWR) spent fuel. The LWR spent fuel contains Plutonium (Pu) -239 and other transuranics (TRU) such as Americium-241. One of the options is to transmute or burn these actinides in fast neutron spectra as well as generate the electricity. A sodium-cooled Advanced Recycling Reactor (ARR) concept has been proposed to achieve this goal. However, fuel with relatively high TRU content has not been used in the fast reactor. To demonstrate the utilization of TRU fuel in a fast reactor, an Advanced Burner Reactor (ABR) prototype of ARR is proposed, which would necessarily be started up using weapons grade (WG) Pu fuel. The WG Pu is distinguished by relatively highest proportions of Pu-239 and lesser amount of other actinides. The WG Pu will be used as the startup fuel along with TRU fuel in lead test assemblies. Because such fuel is not currently being produced in the US, a new facility (or new capability in an existing facility) is being considered for fabrication of WG Pu fuel for the ABR. This report is provided in response to ‘Data Call’ for the construction of startup fuel fabrication facility. It is anticipated that the facility will provide the startup fuel for 10-15 years and will take to 3 to 5 years to construct.

  1. Holy Smoke in Medieval Funerary Rites: Chemical Fingerprints of Frankincense in Southern Belgian Incense Burners

    PubMed Central

    Baeten, Jan; Deforce, Koen; Challe, Sophie; De Vos, Dirk; Degryse, Patrick

    2014-01-01

    Frankincense, the oleogum resin from Boswellia sp., has been an early luxury good in both Western and Eastern societies and is particularly used in Christian funerary and liturgical rites. The scant grave goods in late medieval burials comprise laterally perforated pottery vessels which are usually filled with charcoal. They occur in most regions of western Europe and are interpreted as incense burners but have never been investigated with advanced analytical techniques. We herein present chemical and anthracological results on perforated funerary pots from 4 Wallonian sites dating to the 12–14th century AD. Chromatographic and mass spectrometric analysis of lipid extracts of the ancient residues and comparison with extracts from four Boswellia species clearly evidence the presence of degraded frankincense in the former, based on characteristic triterpenoids, viz. boswellic and tirucallic acids, and their myriad dehydrated and oxygenated derivatives. Cembrane-type diterpenoids indicate B. sacra (southern Arabia) and B. serrata (India) as possible botanical origins. Furthermore, traces of juniper and possibly pine tar demonstrate that small amounts of locally available fragrances were mixed with frankincense, most likely to reduce its cost. Additionally, markers of ruminant fats in one sample from a domestic context indicate that this vessel was used for food preparation. Anthracological analysis demonstrates that the charcoal was used as fuel only and that no fragrant wood species were burned. The chars derived from local woody plants and were most likely recovered from domestic fires. Furthermore, vessel recycling is indicated by both contextual and biomarker evidence. The results shed a new light on funerary practices in the Middle Ages and at the same time reveal useful insights into the chemistry of burned frankincense. The discovery of novel biomarkers, namely Δ2-boswellic acids and a series of polyunsaturated and aromatic hydrocarbons, demonstrates the

  2. NASA GRC's High Pressure Burner Rig Facility and Materials Test Capabilities

    NASA Technical Reports Server (NTRS)

    Robinson, R. Craig

    1999-01-01

    The High Pressure Burner Rig (HPBR) at NASA Glenn Research Center is a high-velocity. pressurized combustion test rig used for high-temperature environmental durability studies of advanced materials and components. The facility burns jet fuel and air in controlled ratios, simulating combustion gas chemistries and temperatures that are realistic to those in gas turbine engines. In addition, the test section is capable of simulating the pressures and gas velocities representative of today's aircraft. The HPBR provides a relatively inexpensive. yet sophisticated means for researchers to study the high-temperature oxidation of advanced materials. The facility has the unique capability of operating under both fuel-lean and fuel-rich gas mixtures. using a fume incinerator to eliminate any harmful byproduct emissions (CO, H2S) of rich-burn operation. Test samples are easily accessible for ongoing inspection and documentation of weight change, thickness, cracking, and other metrics. Temperature measurement is available in the form of both thermocouples and optical pyrometery. and the facility is equipped with quartz windows for observation and video taping. Operating conditions include: (1) 1.0 kg/sec (2.0 lbm/sec) combustion and secondary cooling airflow capability: (2) Equivalence ratios of 0.5- 1.0 (lean) to 1.5-2.0 (rich), with typically 10% H2O vapor pressure: (3) Gas temperatures ranging 700-1650 C (1300-3000 F): (4) Test pressures ranging 4-12 atmospheres: (5) Gas flow velocities ranging 10-30 m/s (50-100) ft/sec.: and (6) Cyclic and steady-state exposure capabilities. The facility has historically been used to test coupon-size materials. including metals and ceramics. However complex-shaped components have also been tested including cylinders, airfoils, and film-cooled end walls. The facility has also been used to develop thin-film temperature measurement sensors.

  3. Imaging of diluted turbulent ethylene flames stabilized on a Jet in Hot Coflow (JHC) burner

    SciTech Connect

    Medwell, Paul R.; Kalt, Peter A.M.; Dally, Bassam B.

    2008-01-15

    The spatial distributions of the hydroxyl radical (OH), formaldehyde (H{sub 2}CO), and temperature imaged by laser diagnostic techniques are presented using a Jet in Hot Coflow (JHC) burner. The measurements are of turbulent nonpremixed ethylene jet flames, either undiluted or diluted with hydrogen (H{sub 2}), air or nitrogen (N{sub 2}). The fuel jet issues into a hot and highly diluted coflow at two O{sub 2} levels and a fixed temperature of 1100 K. These conditions emulate those of moderate or intense low oxygen dilution (MILD) combustion. Ethylene is an important species in the oxidation of higher-order hydrocarbon fuels and in the formation of soot. Under the influence of the hot and diluted coflow, soot is seen to be suppressed. At downstream locations, surrounding air is entrained which results in increases in reaction rates and a spatial mismatch between the OH and H{sub 2}CO surfaces. In a very low O{sub 2} coflow, a faint outline of the reaction zone is seen to extend to the jet exit plane, whereas at a higher coflow O{sub 2} level, the flames visually appear lifted. In the flames that appear lifted, a continuous OH surface is identified that extends to the jet exit. At the ''lift-off'' height a transition from weak to strong OH is observed, analogous to a lifted flame. H{sub 2}CO is also seen upstream of the transition point, providing further evidence of the occurrence of preignition reactions in the apparent lifted region of these flames. The unique characteristics of these particular cases has led to the term transitional flame. (author)

  4. Advanced Fuel Cycle Economic Analysis of Symbiotic Light-Water Reactor and Fast Burner Reactor Systems

    SciTech Connect

    D. E. Shropshire

    2009-01-01

    The Advanced Fuel Cycle Economic Analysis of Symbiotic Light-Water Reactor and Fast Burner Reactor Systems, prepared to support the U.S. Advanced Fuel Cycle Initiative (AFCI) systems analysis, provides a technology-oriented baseline system cost comparison between the open fuel cycle and closed fuel cycle systems. The intent is to understand their overall cost trends, cost sensitivities, and trade-offs. This analysis also improves the AFCI Program’s understanding of the cost drivers that will determine nuclear power’s cost competitiveness vis-a-vis other baseload generation systems. The common reactor-related costs consist of capital, operating, and decontamination and decommissioning costs. Fuel cycle costs include front-end (pre-irradiation) and back-end (post-iradiation) costs, as well as costs specifically associated with fuel recycling. This analysis reveals that there are large cost uncertainties associated with all the fuel cycle strategies, and that overall systems (reactor plus fuel cycle) using a closed fuel cycle are about 10% more expensive in terms of electricity generation cost than open cycle systems. The study concludes that further U.S. and joint international-based design studies are needed to reduce the cost uncertainties with respect to fast reactor, fuel separation and fabrication, and waste disposition. The results of this work can help provide insight to the cost-related factors and conditions needed to keep nuclear energy (including closed fuel cycles) economically competitive in the U.S. and worldwide. These results may be updated over time based on new cost information, revised assumptions, and feedback received from additional reviews.

  5. High-Pressure Gaseous Burner (HPGB) Facility Completed for Quantitative Laser Diagnostics Calibration

    NASA Technical Reports Server (NTRS)

    Nguyen, Quang-Viet

    2002-01-01

    A gas-fueled high-pressure combustion facility with optical access, which was developed over the last 2 years, has just been completed. The High Pressure Gaseous Burner (HPGB) rig at the NASA Glenn Research Center can operate at sustained pressures up to 60 atm with a variety of gaseous fuels and liquid jet fuel. The facility is unique as it is the only continuous-flow, hydrogen-capable, 60-atm rig in the world with optical access. It will provide researchers with new insights into flame conditions that simulate the environment inside the ultra-high-pressure-ratio combustion chambers of tomorrow's advanced aircraft engines. The facility provides optical access to the flame zone, enabling the calibration of nonintrusive optical diagnostics to measure chemical species and temperature. The data from the HPGB rig enables the validation of numerical codes that simulate gas turbine combustors, such as the National Combustor Code (NCC). The validation of such numerical codes is often best achieved with nonintrusive optical diagnostic techniques that meet these goals: information-rich (multispecies) and quantitative while providing good spatial and time resolution. Achieving these goals is a challenge for most nonintrusive optical diagnostic techniques. Raman scattering is a technique that meets these challenges. Raman scattering occurs when intense laser light interacts with molecules to radiate light at a shifted wavelength (known as the Raman shift). This shift in wavelength is unique to each chemical species and provides a "fingerprint" of the different species present. The facility will first be used to gather a comprehensive data base of laser Raman spectra at high pressures. These calibration data will then be used to quantify future laser Raman measurements of chemical species concentration and temperature in this facility and other facilities that use Raman scattering.

  6. CO-FIRING COAL, FEEDLOT, AND LITTER BIOMASS (CFB AND LFB) FUELS IN PULVERIZED FUEL AND FIXED BED BURNERS

    SciTech Connect

    Kalyan Annamalai; John Sweeten; Saqib Mukhtar; Ben Thien; Gengsheng Wei; Soyuz Priyadarsan

    2002-01-15

    Intensive animal feeding operations create large amounts of animal waste that must be safely disposed of in order to avoid environmental degradation. Cattle feedlots and chicken houses are two examples. In feedlots, cattle are confined to small pens and fed a high calorie grain diet in preparation for slaughter. In chicken houses, thousands of chickens are kept in close proximity. In both of these operations, millions of tons of manure are produced every year. In this project a co-firing technology is proposed which would use manure that cannot be used for fertilizer, for power generation. Since the animal manure has economic uses as both a fertilizer and as a fuel, it is properly referred to as feedlot biomass (FB) for cow manure, or litter biomass (LB) for chicken manure. The biomass will be used a as a fuel by mixing it with coal in a 90:10 blend and firing it in existing coal fired combustion devices. This technique is known as co-firing, and the high temperatures produced by the coal will allow the biomass to be completely combusted. Therefore, it is the goal of the current research to develop an animal biomass cofiring technology. A cofiring technology is being developed by performing: (1) studies on fundamental fuel characteristics, (2) small scale boiler burner experiments, (3) gasifier experiments, (4) computer simulations, and (5) an economic analysis. The fundamental fuel studies reveal that biomass is not as high a quality fuel as coal. The biomass fuels are higher in ash, higher in moisture, higher in nitrogen and sulfur (which can cause air pollution), and lower in heat content than coal. Additionally, experiments indicate that the biomass fuels have higher gas content, release gases more readily than coal, and less homogeneous. Small-scale boiler experiments revealed that the biomass blends can be successfully fired, and NO{sub x} pollutant emissions produced will be similar to or lower than pollutant emissions when firing coal. This is a surprising

  7. Research, development, and testing of a prototype two-stage low-input rate oil burner for variable output heating system applications

    SciTech Connect

    Krajewski, R.F.; Butcher, T.A.

    1997-09-01

    The use of a Two-Stage Fan Atomized Oil Burner (TSFAB) in space and water heating applications will have dramatic advantages in terms of it`s potential for a high Annual Fuel Utilization Efficiency (AFUE) and/or Energy Factor (EF) rating for the equipment. While demonstrations of a single rate burner in an actual application have already yielded sufficient confidence that space and domestic heating loads can be met at a single low firing rate, this represents only a narrow solution to the diverse nature of building space heating and domestic water loads that the industry must address. The mechanical development, proposed control, and testing of the Two-Stage burner is discussed in terms of near term and long term goals.

  8. Multipurpose water heater. Final technical report, October 1995--August 1997

    SciTech Connect

    Guyer, E.C.; Coumou, K.G.

    1999-03-01

    This final report describes SBIR Phase 2 project for the development of a multi-purpose water heater for use in Army Food sanitation centers. The objective of the project was to develop a water heater--powered only by an M2 burner and requiring no external supply of electricity--capable of supplying a continuous flow of pressurized hot water to a faucet at the sanitation sink. In the course of the research, two developments took place that have had an impact on the final design. First, the Multifuel Burner Unit (MBU) became available as a potential replacement for the M2. The MBU runs on JP-8 or diesel fuel and requires an external 24-volt VDC power supply. Thus, in anticipation of eventual conversion from M2 to MBU, a DC-Powered Water Heater was also delivered. Second, a new method for heating water in the sanitation sinks was developed allowing three sinks to be heated by a single M2 or MBU.

  9. Evaluation of Gas Reburning & Low NOx Burners on a Wall Fired Boiler Performance and Economics Report Gas Reburning-Low NOx Burner System Cherokee Station Unit 3 Public Service Company of Colorado

    SciTech Connect

    None, None

    1998-07-01

    Under the U.S. Department of Energy's Clean Coal Technology Program (Round 3), a project was completed to demonstrate control of boiler NOX emissions and to a lesser degree, due to coal replacement, SO2 emissions. The project involved combining Gas Reburning with Low NOX Burners (GR-LNB) on a coal-fired electric utility boiler to determine if high levels of NOX reduction (70%) could be achieved. Sponsors of the project included the U.S. Department of Energy, the Gas Research Institute, Public Service Company of Colorado, Colorado Interstate Gas, Electric Power Research Institute, and the Energy and Environmental Research Corporation. The GR-LNB demonstration was performed on Public Service Company of Colorado's (PSCO) Cherokee Unit #3, located in Denver, Colorado. This unit is a 172 MW~ wall-fired boiler that uses Colorado Bituminous, low-sulfur coal. It had a baseline NOX emission level of 0.73 lb/106 Btu using conventional burners. Low NOX burners are designed to yield lower NOX emissions than conventional burners. However, the NOX control achieved with this technique is limited to 30-50%. Also, with LNBs, CO emissions can increase to above acceptable standards. Gas Reburning (GR) is designed to reduce NOX in the flue gas by staged fuel combustion. This technology involves the introduction of natural gas into the hot furnace flue gas stream. When combined, GR and LNBs minimize NOX emissions and maintain acceptable levels of CO emissions. A comprehensive test program was completed, operating over a wide range of boiler conditions. Over 4,000 hours of operation were achieved, providing substantial data. Measurements were taken to quantify reductions in NOX emissions, the impact on boiler equipment and operability and factors influencing costs. The GR-LNB technology achieved good NOX emission reductions and the goals of the project were achieved. Although the performance of the low NOX burners (supplied by others) was less than expected, a NOX reduction of 65% was

  10. Opposed Jet Burner Approach for Characterizing Flameholding Potentials of Hydrocarbon Scramjet Fuels

    NASA Technical Reports Server (NTRS)

    Pellett, Gerald L.; Convery, Janet L.; Wilson, Lloyd G.

    2006-01-01

    Opposed Jet Burner (OJB) tools have been used extensively by the authors to measure Flame Strength (FS) extinction limits of laminar H2/N2 air and (recently) hydrocarbon (HC) air Counterflow Diffusion Flames (CFDFs) at one atm. This paper details normalization of FSs of N2- diluted H2 and HC systems to account for effects of fuel composition, temperature, pressure, jet diameter, inflow Reynolds number, and inflow velocity profile (plug, contoured nozzle; and parabolic, straight tube). Normalized results exemplify a sensitive accurate means of validating, globally, reduced chemical kinetic models at approx. 1 atm and the relatively low temperatures approximating the loss of non-premixed idealized flameholding, e.g., in scramjet combustors. Laminar FS is defined locally as maximum air input velocity, U(sub air), that sustains combustion of a counter-jet of g-fuel at extinction. It uniquely characterizes a fuel. And global axial strain rate at extinction (U(sub air) normalized by nozzle or tube diameter, D(sub n or (sub t)) can be compared directly with computed extinction limits, determined using either a 1-D Navier Stokes stream-function solution, using detailed transport and finite rate chemistry, or (better yet) a detailed 2-D Navier Stokes numerical simulation. The experimental results define an idealized flameholding reactivity scale that shows wide ranging (50 x) normalized FS s for various vaporized-liquid and gaseous HCs, including, in ascending order: JP-10, methane, JP-7, n-heptane, n-butane, propane, ethane, and ethylene. Results from H2 air produce a unique and exceptionally strong flame that agree within approx. 1% of a recent 2-D numerically simulated FS for a 3 mm tube-OJB. Thus we suggest that experimental FS s and/or FS ratios, for various neat and blended HCs w/ and w/o additives, offer accurate global tests of chemical kinetic models at the Ts and Ps of extinction. In conclusion, we argue the FS approach is more direct and fundamental, for

  11. Technology gap analysis on sodium-cooled reactor fuel handling system supporting advanced burner reactor development.

    SciTech Connect

    Chikazawa, Y.; Farmer, M.; Grandy, C.; Nuclear Engineering Division

    2009-03-01

    The goals of the Global Nuclear Energy Partnership (GNEP) are to expand the use of nuclear energy to meet increasing global energy demand in an environmentally sustainable manner, to address nuclear waste management issues without making separated plutonium, and to address nonproliferation concerns. The advanced burner reactor (ABR) is a fast reactor concept which supports the GNEP fuel cycle system. Since the integral fast reactor (IFR) and advanced liquid-metal reactor (ALMR) projects were terminated in 1994, there has been no major development on sodium-cooled fast reactors in the United States. Therefore, in support of the GNEP fast reactor program, the history of sodium-cooled reactor development was reviewed to support the initiation of this technology within the United States and to gain an understanding of the technology gaps that may still remain for sodium fast reactor technology. The fuel-handling system is a key element of any fast reactor design. The major functions of this system are to receive, test, store, and then load fresh fuel into the core; unload from the core; then clean, test, store, and ship spent fuel. Major requirements are that the system must be reliable and relatively easy to maintain. In addition, the system should be designed so that it does not adversely impact plant economics from the viewpoints of capital investment or plant operations. In this gap analysis, information on fuel-handling operating experiences in the following reactor plants was carefully reviewed: EBR-I, SRE, HNPF, Fermi, SEFOR, FFTF, CRBR, EBR-II, DFR, PFR, Rapsodie, Phenix, Superphenix, KNK, SNR-300, Joyo, and Monju. The results of this evaluation indicate that a standardized fuel-handling system for a commercial fast reactor is yet to be established. However, in the past sodium-cooled reactor plants, most major fuel-handling components-such as the rotatable plug, in-vessel fuel-handling machine, ex-vessel fuel transportation cask, ex-vessel sodium-cooled storage

  12. Emissions and properties of Bio-oil and Natural Gas Co-combustion in a Pilot Stabilised Swirl Burner

    NASA Astrophysics Data System (ADS)

    Kowalewski, Dylan

    Fast pyrolysis oil, or bio-oil, has been investigated to replace traditional fossil fuels in industrial burners. However, flame stability is a challenge due to its high water content. In order to address its instability, bio-oil was co-fired with natural gas in a lab scale 10kW swirl burner at energy ratios from 0% bio-oil to 80% bio-oil. To evaluate the combustion, flame shape, exhaust and particulate emissions, temperatures, as well as infrared emission were monitored. As the bio-oil energy fraction increased, NO emissions increased due to the nitrogen content of bio-oil. CO and particulate emissions increased likely due to carbonaceous residue exiting the combustion zone. Unburnt Hydrocarbon (UHC) emissions increased rapidly as combustion became poor at 60-80% bio-oil energy. The temperature and infrared output decreased with more bio-oil energy. The natural gas proved to be effective at anchoring the bio-oil flame to the nozzle, decreasing instances of extinction or blowout.

  13. Evaluation of the Use of Existing RELAP5-3D Models to Represent the Actinide Burner Test Reactor

    SciTech Connect

    C. B. Davis

    2007-02-01

    The RELAP5-3D code is being considered as a thermal-hydraulic system code to support the development of the sodium-cooled Actinide Burner Test Reactor as part of Global Nuclear Energy Partnership. An evaluation was performed to determine whether the control system could be used to simulate the effects of non-convective mechanisms of heat transport in the fluid that are not currently represented with internal code models, including axial and radial heat conduction in the fluid and subchannel mixing. The evaluation also determined the relative importance of axial and radial heat conduction and fluid mixing on peak cladding temperature for a wide range of steady conditions and during a representative loss-of-flow transient. The evaluation was performed using a RELAP5-3D model of a subassembly in the Experimental Breeder Reactor-II, which was used as a surrogate for the Actinide Burner Test Reactor. An evaluation was also performed to determine if the existing centrifugal pump model could be used to simulate the performance of electromagnetic pumps.

  14. Cooling Effectiveness Measurements for Air Film Cooling of Thermal Barrier Coated Surfaces in a Burner Rig Environment Using Phosphor Thermometry

    NASA Technical Reports Server (NTRS)

    Eldridge, Jeffrey I.; Shyam, Vikram; Wroblewski, Adam C.; Zhu, Dongming; Cuy, Michael D.; Wolfe, Douglas E.

    2016-01-01

    While the effects of thermal barrier coating (TBC) thermal protection and air film cooling effectiveness are usually studied separately, their contributions to combined cooling effectiveness are interdependent and are not simply additive. Therefore, combined cooling effectiveness must be measured to achieve an optimum balance between TBC thermal protection and air film cooling. In this investigation, surface temperature mapping was performed using recently developed Cr-doped GdAlO3 phosphor thermometry. Measurements were performed in the NASA GRC Mach 0.3 burner rig on a TBC-coated plate using a scaled up cooling hole geometry where both the mainstream hot gas temperature and the blowing ratio were varied. Procedures for surface temperature and cooling effectiveness mapping of the air film-cooled TBC-coated surface are described. Applications are also shown for an engine component in both the burner rig test environment as well as an engine afterburner environment. The effects of thermal background radiation and flame chemiluminescence on the measurements are investigated, and advantages of this method over infrared thermography as well as the limitations of this method for studying air film cooling are discussed.

  15. Teratogen metabolism. Final report

    SciTech Connect

    Braun, A.G.

    1983-01-31

    This study indicates Thalidomide is metabolized by a classic cytochrome P450 monoxygenase system to a product which inhibits attachment of cells to concanavalin A coated dishes. Hydrolysis products of Thalidomide and its active metabolite do not inhibit attachement. We have initiated additional studies with methylene chloride extracts of particulate and of volatile hydrocarbon emissions of a domestic oil burner. These studies show low levels of inhibitory activity are uniformly present in these extracts.

  16. DURABILITY OF VERY LOW CAPACITY PRESSURE ATOMIZED FUEL NOZZLES USED WITH LOW FIRING RATE RESIDENTIAL OIL BURNERS.

    SciTech Connect

    MCDONALD,R.J.

    2007-05-01

    Brookhaven National Laboratory (BNL), working for the United States Department of Energy (DOE), has conducted a preliminary evaluation of the potential of very low fuel input capacity Simplex type pressure atomizing nozzles for use with oil burners designed for residential boilers, furnaces and water heaters. These nozzles under suitable conditions can be sufficiently reliable to enable new heating system designs. This would allow for the design of heating appliances that match the smaller load demands of energy efficient homes built with modern components and architectural systems designed to minimize energy use. When heating systems are installed with excessive capacity, oversized by three to four times the load, the result is a loss of up to ten percent as compared to the rated appliance efficiency. The use of low capacity nozzles in systems designed to closely match the load can thereby result in significant energy savings. BNL investigated the limitations of low flow rate nozzles and designed long-term experiments to see if ways could be determined that would be beneficial to long-term operation at low input capacities without failures. In order to maximize the potential for success the best possible industry practices available were employed. Low flow rate nozzles primarily fail by blockage or partial blockage of internal fuel flow passages inside the nozzle. To prevent any contaminants from entering the nozzle BNL investigated the geometry and critical dimensions and the current sate of the art of fuel filter design. Based on this investigation it was concluded that the best available filters should be more than capable of filtering contaminants from the fuel prior to entering the oil burner itself. This position was indeed validated based on the long-term trials conducted under this study no evidence resulted to change our position. It is highly recommended that these filters rated at 10 microns and with large filter capacity (surface area), should be used

  17. Preliminary core design studies for the advanced burner reactor over a wide range of conversion ratios.

    SciTech Connect

    Hoffman, E. A.; Yang, W. S.; Hill, R. N.; Nuclear Engineering Division

    2008-05-05

    A consistent set of designs for 1000 MWt commercial-scale sodium-cooled Advance Burner Reactors (ABR) have been developed for both metal and oxide-fueled cores with conversion ratios from breakeven (CR=1.0) to fertile-free (CR=0.0). These designs are expected to satisfy thermal and irradiation damage limits based on the currently available data. The very low conversion ratio designs require fuel that is beyond the current fuel database, which is anticipated to be qualified by and for the Advanced Burned Test Reactor. Safety and kinetic parameters were calculated, but a safety analysis was not performed. Development of these designs was required to achieve the primary goal of this study, which was to generate representative fuel cycle mass flows for system studies of ABRs as part of the Global Nuclear Energy Partnership (GNEP). There are slight variations with conversion ratio but the basic ABR configuration consists of 144 fuel assemblies and between 9 and 22 primary control assemblies for both the metal and oxide-fueled cores. Preliminary design studies indicated that it is feasible to design the ABR to accommodate a wide range of conversion ratio by employing different assembly designs and including sufficient control assemblies to accommodate the large reactivity swing at low conversion ratios. The assemblies are designed to fit within the same geometry, but the size and number of fuel pins within each assembly are significantly different in order to achieve the target conversion ratio while still satisfying thermal limits. Current irradiation experience would allow for a conversion ratio of somewhat below 0.75. The fuel qualification for the first ABR should expand this experience to allow for much lower conversion ratios and higher bunrups. The current designs were based on assumptions about the performance of high and very high enrichment fuel, which results in significant uncertainty about the details of the designs. However, the basic fuel cycle performance

  18. From Bunsen Burners to Fuel Cells: Invoking Energy Transducers to Exemplify "Paths" and Unify the Energy-Related Concepts of Thermochemistry and Thermodynamics

    ERIC Educational Resources Information Center

    Hladky, Paul W.

    2009-01-01

    The conversion of chemical energy entirely into thermal energy by Bunsen burners and into thermal energy and electrical energy by fuel cells of varying efficiencies illustrates different paths by which a chemical reaction can occur. Using the efficiency of producing electrical energy as a path label allows all of the energy-related quantities to…

  19. Experimental investigation of 1 kW solid oxide fuel cell system with a natural gas reformer and an exhaust gas burner

    NASA Astrophysics Data System (ADS)

    Yen, Tzu-Hsiang; Hong, Wen-Tang; Huang, Wei-Ping; Tsai, Yu-Ching; Wang, Hung-Yu; Huang, Cheng-Nan; Lee, Chien-Hsiung

    An experimental investigation is performed to establish the optimal operating conditions of a porous media after-burner integrated with a 1 kW solid oxide fuel cell (SOFC) system fed by a natural gas reformer. The compositions of the anode off-gas and cathode off-gas emitted by the SOFC when operating with fuel utilizations in the range 0-0.6 are predicted using commercial GCTool software. The numerical results are then used to set the compositions of the anode off-gas and cathode off-gas in a series of experiments designed to clarify the effects of the fuel utilization, cathode off-gas temperature and excess air ratio on the temperature distribution within the after-burner. The experimental results show that the optimal after-burner operation is obtained when using an anode off-gas temperature of 650 °C, a cathode off-gas temperature of 390 °C, a flame barrier temperature of 700 °C, an excess air ratio of 2 and a fuel utilization of U f = 0.6. It is shown that under these conditions, the after-burner can operate in a long-term, continuous fashion without the need for either cooling air or any additional fuel other than that provided by the anode off-gas.

  20. Partial conversion of hydrocarbons to syngas and hydrogen in volumetric radiation burners as a prospective way to enhance the performance characteristics of power engines

    NASA Astrophysics Data System (ADS)

    Arutyunov, V. S.; Shmelev, V. M.; Shapovalova, O. V.; Rakhmetov, A. N.; Strekova, L. N.

    2013-03-01

    New type of syngas generator based on the partial conversion of natural gas (methane) or heavier hydrocarbons in volumetric permeable matrix burners in the conditions of locked infrared (IR) radiation is suggested as a high-productive, adaptable, and rather simple way of syngas and hydrogen production for various low-scale applications including enhancing the performance characteristics of power engines.

  1. A computer simulation of the transient response of a 4 cylinder Stirling engine with burner and air preheater in a vehicle

    NASA Technical Reports Server (NTRS)

    Martini, W. R.

    1981-01-01

    A series of computer programs are presented with full documentation which simulate the transient behavior of a modern 4 cylinder Siemens arrangement Stirling engine with burner and air preheater. Cold start, cranking, idling, acceleration through 3 gear changes and steady speed operation are simulated. Sample results and complete operating instructions are given. A full source code listing of all programs are included.

  2. Aerothermodynamic cycle analysis of a dual-spool, separate-exhaust turbofan engine with an interstage turbine burner

    NASA Astrophysics Data System (ADS)

    Liew, Ka Heng

    This study focuses on a specific engine, i.e., a dual-spool, separate-flow turbofan engine with an Interstage Turbine Burner (ITB). This conventional turbofan engine has been modified to include a secondary isobaric burner, i.e., ITB, in a transition duct between the high-pressure turbine and the low-pressure turbine. The preliminary design phase for this modified engine starts with the aerothermodynamics cycle analysis is consisting of parametric (i.e., on-design) and performance ( i.e., off-design) cycle analyses. In parametric analysis, the modified engine performance parameters are evaluated and compared with baseline engine in terms of design limitation (maximum turbine inlet temperature), flight conditions (such as flight Mach condition, ambient temperature and pressure), and design choices (such as compressor pressure ratio, fan pressure ratio, fan bypass ratio etc.). A turbine cooling model is also included to account for the effect of cooling air on engine performance. The results from the on-design analysis confirmed the advantage of using ITB, i.e., higher specific thrust with small increases in thrust specific fuel consumption, less cooling air, and less NOx production, provided that the main burner exit temperature and ITB exit temperature are properly specified. It is also important to identify the critical ITB temperature, beyond which the ITB is turned off and has no advantage at all. With the encouraging results from parametric cycle analysis, a detailed performance cycle analysis of the identical engine is also conducted for steady-state engine performance prediction. The results from off-design cycle analysis show that the ITB engine at full throttle setting has enhanced performance over baseline engine. Furthermore, ITB engine operating at partial throttle settings will exhibit higher thrust at lower specific fuel consumption and improved thermal efficiency over the baseline engine. A mission analysis is also presented to predict the fuel

  3. First archeointensity determinations on Maya incense burners from Palenque temples, Mexico: New data to constrain the Mesoamerica secular variation curve

    NASA Astrophysics Data System (ADS)

    Fanjat, G.; Camps, P.; Alva Valdivia, L. M.; Sougrati, M. T.; Cuevas-Garcia, M.; Perrin, M.

    2013-02-01

    We present archeointensity data carried out on pieces of incense burners from the ancient Maya city of Palenque, Chiapas, Mexico, covering much of the Mesoamerican Classic period, from A.D. 400 to A.D. 850. We worked on pieces from 24 incense burners encompassing the five Classic ceramic phases of Palenque: Motiepa (A.D. 400-500), Cascadas (A.D. 500-600), Otulum (A.D. 600-700), Murcielagos (A.D. 700-770), and Balunté (A.D. 770-850). All the samples come from highly elaborate, flanged pedestal of incense burners that are undoubtedly assigned to a ceramic phase by means of their iconographic, morphological and stylistic analyses. Archeointensity measurements were performed with the Thellier-Thellier's method on pre-selected samples by means of their magnetic properties. We obtained archeointensities of very good technical quality from 19 of 24 pieces, allowing the determination of a precise mean value for each ceramic phase, between 29.1±0.9 μT and 32.5±1.2 μT. The firing temperatures of ceramics were estimated with Mössbauer spectroscopy between 700 °C and 1000 °C. These values ensure that a full thermo-remanent magnetization was acquired during the original heating. Our results suggest a relative stability of the field intensity during more than 400 years in this area. The abundance of archeological material in Mesoamerica contrasts with the small amount of archeomagnetic data available that are, in addition, of uneven quality. Thus, it is not possible to establish a trend of intensity variations in Mesoamerica, even using the global databases and secular variation predictions from global models. In this context, our high technical quality data represent a strong constraint for the Mesoamerican secular variation curve during the first millennium AD. The corresponding Virtual Axial Dipole Moments (VADM) are substantially smaller than the ones predicted by the last global geomagnetic models CALS3k.4, suggesting the need for additional data to develop a

  4. Final Report

    SciTech Connect

    Gurney, Kevin R.

    2015-01-12

    This document constitutes the final report under DOE grant DE-FG-08ER64649. The organization of this document is as follows: first, I will review the original scope of the proposed research. Second, I will present the current draft of a paper nearing submission to Nature Climate Change on the initial results of this funded effort. Finally, I will present the last phase of the research under this grant which has supported a Ph.D. student. To that end, I will present the graduate student’s proposed research, a portion of which is completed and reflected in the paper nearing submission. This final work phase will be completed in the next 12 months. This final workphase will likely result in 1-2 additional publications and we consider the results (as exemplified by the current paper) high quality. The continuing results will acknowledge the funding provided by DOE grant DE-FG-08ER64649.

  5. Final Report

    SciTech Connect

    DeTar, Carleton

    2012-12-10

    This document constitutes the Final Report for award DE-FC02-06ER41446 as required by the Office of Science. It summarizes accomplishments and provides copies of scientific publications with significant contribution from this award.

  6. Low NO{sub x}/SO{sub x} Burner retrofit for utility cyclone boilers. Quarterly technical progress report, June--September 1990

    SciTech Connect

    Not Available

    1990-12-31

    The objective of this project is to demonstrate the LNS Burner as retrofitted to the host cyclone boiler for effective low-cost control of NO{sub x} and SO{sub x} emissions while firing a bituminous coal. The LNS Burner employs a simple, innovative combustion process to burn pulverized coal at high temperatures and provides effective, low-cost control of sulfur dioxide (SO{sub 2}) and nitrogen oxides (NO{sub x}) emissions. The coal ash contains sulfur and is removed in the form of molten slag and flyash. Cyclone-fired boiler units are typically older units firing high-sulfur bituminous coals at very high temperatures which results in very high NO{sub x} and SO{sub x} emissions. The addition of conventional emission control equipment, such as wet scrubbers, to these older cyclone units in order to meet current and future environmental regulations is generally not economic. Further, the units are generally not compatible with low sulfur coal switching for S0{sub 2} control or selective catalytic reduction technologies for NO{sub x} control. Because the LNS Burner operates at the same very high temperatures as a typical cyclone boiler and produces a similar slag product, it may offer a viable retrofit option for cyclone boiler emission control. This was confirmed by the Cyclone Boiler Retrofit Feasibility Study carried out by TransAlta and an Operating Committee formed of cyclone boiler owners in 1989. An existing utility cyclone boiler, was then selected for the evaluation of the cost and performance study. It was concluded that the LNS Burner retrofit would be a cost-effective option for control of cyclone boiler emissions. A full-scale demonstration of the LNS Burner retrofit was selected in October 1988 as part of the DOE`s Clean Coal Technology Program Round II.

  7. Nonlinear behavior of acoustic waves in combustion chambers. I, II. [stability in solid propellant rocket engine and T burner

    NASA Technical Reports Server (NTRS)

    Culick, F. E. C.

    1976-01-01

    The general problem of the nonlinear growth and limiting amplitude of acoustic waves in a combustion chamber is treated in three parts: (1) the general conservation equations are expanded in two small parameters, and then combined to yield a nonlinear inhomogeneous wave equation, (2) the unsteady pressure and velocity fields are expressed as a synthesis of the normal modes of the chamber, but with unknown time-varying amplitudes, and (3) the system of nonlinear equations is treated by the method of averaging to produce a set of coupled nonlinear first order differential equations for the amplitudes and phases of the modes. This approximate analysis is applied to the investigation of the unstable motions in a solid propellant rocket engine and in a T burner.

  8. Deposition of Na2SO4 from salt-seeded combustion gases of a high velocity burner rig

    NASA Technical Reports Server (NTRS)

    Santoro, G. J.; Gokoglu, S. A.; Kohl, F. J.; Stearns, C. A.; Rosner, D. E.

    1984-01-01

    The mechanism of deposition of Na2SO4 was studied under controlled laboratory conditions and the results have been compared to a recently developed comprehensive theory of vapor deposition. Thus Na2SO4, NaCl, NaNO3 and simulated sea salt solutions were injected into the combustor of a nominal Mach 0.3 burner rig burning jet fuel at constant fuel/air ratios. The deposits formed on inert collectors, rotation in the cross flow of the combustion gases, were weighed and analyzed. Collector temperature was uniform and could be varied over a large range by internal air cooling. Deposition rates and dew point temperatures were determined. Supplemental testing included droplet size measurements of the atomized salt solutions. These tests along with thermodynamic and transport calculations were utilized in the interpretation of the deposition results.

  9. Opposed jet burner studies of silane-methane, silane-hydrogen and hydrogen diffusion flames with air

    NASA Technical Reports Server (NTRS)

    Pellett, G. L.; Guerra, Rosemary; Wilson, L. G.; Northam, G. B.

    1986-01-01

    An atmospheric pressure tubular opposed jet burner technique was used to characterize certain diffusion-flame transitions and associated burning rates for N2-diluted mixtures of highly-reactive fuels. Presented are: (1) details of the technique, with emphasis on features permitting the study of flames involving pyrophoric gases and particle-forming combustion reactions: (2) discoveries on the properties of these flames which correspond to physically and chemically distinct stages of silane and hydrogen combustion; and (3) unburnt gas velocity data obtained from flames based on SiH4-CH4-N2, SiH4-H2-N2, and H2-N2 fuel mixtures, and plotted as functions of combustible-fuel mole fraction and fuel/oxygen molar input flow ratios. In addition, these burning velocity results are analyzed and interpreted.

  10. Opposed jet burner studies of silane-methane, silane-hydrogen, and hydrogen diffusion flames with air

    NASA Technical Reports Server (NTRS)

    Pellett, G. L.; Guerra, Rosemary; Wilson, L. G.; Northam, G. B.

    1986-01-01

    An atmospheric pressure tubular opposed jet burner technique was used to characterize certain diffusion-flame transitions and associated burning rates for N2-diluted mixtures of highly-reactive fuels. The paper presents: (1) details of the technique, with emphasis on features permitting the study of flames involving pyrophoric gases and particle-forming combustion reactions; (2) discoveries on the properties of these flames which correspond to physically and chemically distinct stages of silane and hydrogen combustion; and (3) unburnt gas velocity data obtained from flames based on SiH4-CH4-N2, SiH4-H2-N2, and H2-N2 fuel mixtures, and plotted as functions of combustible-fuel mole fraction and fuel/oxygen molar input flow ratios. In addition, these burning velocity results are analyzed and interpreted.

  11. Advanced Burner Reactor with Breed-and-Burn Thorium Blankets for Improved Economics and Resource Utilization

    SciTech Connect

    Greenspan, Ehud

    2015-11-04

    This study assesses the feasibility of designing Seed and Blanket (S&B) Sodium-cooled Fast Reactor (SFR) to generate a significant fraction of the core power from radial thorium fueled blankets that operate on the Breed-and-Burn (B&B) mode without exceeding the radiation damage constraint of presently verified cladding materials. The S&B core is designed to maximize the fraction of neutrons that radially leak from the seed (or “driver”) into the subcritical blanket and reduce neutron loss via axial leakage. The blanket in the S&B core makes beneficial use of the leaking neutrons for improved economics and resource utilization. A specific objective of this study is to maximize the fraction of core power that can be generated by the blanket without violating the thermal hydraulic and material constraints. Since the blanket fuel requires no reprocessing along with remote fuel fabrication, a larger fraction of power from the blanket will result in a smaller fuel recycling capacity and lower fuel cycle cost per unit of electricity generated. A unique synergism is found between a low conversion ratio (CR) seed and a B&B blanket fueled by thorium. Among several benefits, this synergism enables the very low leakage S&B cores to have small positive coolant voiding reactivity coefficient and large enough negative Doppler coefficient even when using inert matrix fuel for the seed. The benefits of this synergism are maximized when using an annular seed surrounded by an inner and outer thorium blankets. Among the high-performance S&B cores designed to benefit from this unique synergism are: (1) the ultra-long cycle core that features a cycle length of ~7 years; (2) the high-transmutation rate core where the seed fuel features a TRU CR of 0.0. Its TRU transmutation rate is comparable to that of the reference Advanced Burner Reactor (ABR) with CR of 0.5 and the thorium blanket can generate close to 60% of the core power; but requires only one sixth of the reprocessing and

  12. Final Report

    SciTech Connect

    Marchant, Gary E.

    2013-04-23

    This is the final report of a two year project entitled "Governing Nanotechnology Risks and Benefits in the Transition to Regulation: Innovative Public and Private Approaches." This project examined the role of new governance or "soft law" mechanisms such as codes of conduct, voluntary programs and partnership agreements to manage the risks of emerging technologies such as nanotechnology. A series of published or in publication papers and book chapters are attached.

  13. Final Report

    SciTech Connect

    R. Paul Drake

    2001-11-30

    This final report describes work involving 22 investigators from 11 institutions to explore the dynamics present in supernova explosions by means of experiments on the Omega laser. The specific experiments emphasized involved the unstable expansion of a spherical capsule and the coupling of perturbations at a first interface to a second interface by means of a strong shock. Both effects are present in supernovae. The experiments were performed at Omega and the computer simulations were undertaken at several institutions. B139

  14. Final Report

    SciTech Connect

    Stinis, Panos

    2016-08-07

    This is the final report for the work conducted at the University of Minnesota (during the period 12/01/12-09/18/14) by PI Panos Stinis as part of the "Collaboratory on Mathematics for Mesoscopic Modeling of Materials" (CM4). CM4 is a multi-institution DOE-funded project whose aim is to conduct basic and applied research in the emerging field of mesoscopic modeling of materials.

  15. Low NO{sub x}/SO{sub x} Burner retrofit for utility cyclone boilers. Quarterly technical progress report, April--June 1991

    SciTech Connect

    Not Available

    1991-12-31

    Work on process design was deferred pending a restart of the mainstream project activities. LNS Burner design effort was focussed mainly on the continued development of the slag screen model. Documentation of the LNS Burner thermal model also continued. Balance of plant engineering continued on the P&ID`s for the fuel preparation building HVAC system, lighter oil, limestone/fuel additive handling system, instrument and service air and fire protection systems. Work began on the preparation of system and sub-system descriptions. Schematic connection and wiring drawings and diagrams for the fuel handling system, flame scanner/igniter system and DCS control modification for the lighter oil pumps and Unit 1 circulating water pumps were completed.

  16. Final Report

    SciTech Connect

    R Paul Drake

    2004-01-12

    OAK-B135 This is the final report from the project Hydrodynamics by High-Energy-Density Plasma Flow and Hydrodynamics and Radiation Hydrodynamics with Astrophysical Applications. This project supported a group at the University of Michigan in the invention, design, performance, and analysis of experiments using high-energy-density research facilities. The experiments explored compressible nonlinear hydrodynamics, in particular at decelerating interfaces, and the radiation hydrodynamics of strong shock waves. It has application to supernovae, astrophysical jets, shock-cloud interactions, and radiative shock waves.

  17. Efficiency of using direct-flow burners and nozzles in implementation of dry-bottom ash removal at the TPP-210A boiler furnace

    NASA Astrophysics Data System (ADS)

    Arkhipov, A. M.; Kanunnikov, A. A.; Kirichkov, V. S.; Prokhorov, V. B.; Fomenko, M. V.; Chernov, S. L.

    2017-02-01

    In reconstruction of operating pulverized coal-fired boilers, one of the main factors is the choice of a method for slag removal: dry bottom ash removal (DBAR) or slag-tap removal (STR). In this case, ecological and economic aspects should be taken into account, and also the early ignition of pulverized coal fuel, the reliability of operation of the furnace walls in the mode without slagging, and the stability of slag removal should be provided. In this work, issues of changeover of the pulverized coal-fired boilers of the TPP-210A type from the STR mode to the DBAR mode are considered. As of today, the main problems during the operation of these boilers are the high emissions of nitrogen oxides together with flue gases into the atmosphere and the appropriated payoffs, a small range of loads available, the necessity of stabilization of the pulverizedcoal flame sustainability by using the highly reactive fuel, large mechanical fuel underburning, etc. Results of studying aerodynamics of a furnace with DBAR obtained in the process of physical simulation are given; technical solutions and preliminary design (configuration of burners and nozzles in the boiler furnace, conceptual design of the pulverized coal burner, configuration of TPP-210A boiler with the low heat liberation of furnace cross-section and volumetric heat release) are set forth, which are associated with the optimization of aerodynamics of furnace volume, when the direct-flow burners and nozzles are used, and with organization of the efficient staged combustion of solid fuel. Two versions of possible modernization of a boiler unit are considered. Under conditions of the planned increase in the steam production capacity, the most promising measures are as follows: the DBAR implementation with reducing heat releases of the cross-section and volume of the furnace approximately by half, the installation of the direct-flow burners and nozzles with injection of recirculation gases into the active combustion

  18. Tensile Behavior of As-Fabricated and Burner-Rig Exposed SiC/SiC Composites with Hi-Nicalon Type-S Fibers

    NASA Technical Reports Server (NTRS)

    Yun, H. M.; Dicarlo, J. A.; Ogbuji, L. T.; Chen, Y. L.

    2002-01-01

    Tensile stress-strain curves were measured at room temperature and 1315 C for 2D-woven SiC/BN/SiC ceramic matrix composites (CMC) reinforced by two variations of Hi-Nicalon Type-S SiC fibers. These fibers, which contained a thin continuous carbon-rich layer on their as-produced surface, provided the as-fabricated CMC with good composite behavior and an ultimate strength and strain of -350 MPa and -0.5%, respectively. However, after un-stressed burner-rig exposure at 815 C for -100 hrs, CMC tensile specimens with cut edges and exposed interphases showed a significant decrease in ultimate properties with effectively no composite behavior. Microstructural observations show that the degradation was caused by internal fiber-fiber oxide bonding after removal of the carbon-rich fiber surface layer by the high-velocity combustion gases. On the other hand, SiC/BN/SiC CMC with Sylramic-iBN fibers without carbon-rich surfaces showed higher as-fabricated strength and no loss in strength after the same burner rig exposure. Based on the strong role of the carbon layer in these observations, a process method was developed and demonstrated for achieving better strength retention of Hi-Nicalon Type-S CMC during burner rig exposure. Other general approaches for minimizing this current deficiency with as-produced Type-S fibers are discussed.

  19. Real-Time Thermographic-Phosphor-Based Temperature Measurements of Thermal Barrier Coating Surfaces Subjected to a High-Velocity Combustor Burner Environment

    NASA Technical Reports Server (NTRS)

    Eldridge, Jeffrey I.; Jenkins, Thomas P.; Allison, Stephen W.; Cruzen, Scott; Condevaux, J. J.; Senk, J. R.; Paul, A. D.

    2011-01-01

    Surface temperature measurements were conducted on metallic specimens coated with an yttria-stabilized zirconia (YSZ) thermal barrier coating (TBC) with a YAG:Dy phosphor layer that were subjected to an aggressive high-velocity combustor burner environment. Luminescence-based surface temperature measurements of the same TBC system have previously been demonstrated for specimens subjected to static furnace or laser heating. Surface temperatures were determined from the decay time of the luminescence signal of the YAG:Dy phosphor layer that was excited by a pulsed laser source. However, the furnace and laser heating provides a much more benign environment than that which exists in a turbine engine, where there are additional challenges of a highly radiant background and high velocity gases. As the next step in validating the suitability of luminescence-based temperature measurements for turbine engine environments, new testing was performed where heating was provided by a high-velocity combustor burner rig at Williams International. Real-time surface temperature measurements during burner rig heating were obtained from the decay of the luminescence from the YAG:Dy surface layer. The robustness of several temperature probe designs in the sonic velocity, high radiance flame environment was evaluated. In addition, analysis was performed to show whether the luminescence decay could be satisfactorily extracted from the high radiance background.

  20. Performance of a hydrogen burner to simulate air entering scramjet combustors. [simulation of total temperature, total pressure, and volume fraction of oxygen of air at flight conditions

    NASA Technical Reports Server (NTRS)

    Russin, W. R.

    1974-01-01

    Tests were conducted to determine the performance of a hydrogen burner used to produce a test gas that simulates air entering a scramjet combustor at various flight conditions. The test gas simulates air in that it duplicates the total temperature, total pressure, and the volume fraction of oxygen of air at flight conditions. The main objective of the tests was to determine the performance of the burner as a function of the effective exhaust port area. The conclusions were: (1) pressure oscillations of the chugging type were reduced in amplitude to plus or minus 2 percent of the mean pressure level by proper sizing of hydrogen, oxygen, and air injector flow areas; (2) combustion efficiency remained essentially constant as the exhaust port area was increased by a factor of 3.4; (3) the mean total temperature determined from integrating the exit radial gas property profiles was within plus or minus 5 percent of the theoretical bulk total temperature; (4) the measured exit total temperature profile had a local peak temperature more than 30 percent greater than the theoretical bulk total temperature; and (5) measured heat transfer to the burner liner was 75 percent of that predicted by theory based on a flat radial temperature profile.

  1. Flame quenching by a variable-width rectangular-slot burner as a function of pressure for various propane-oxygen-nitrogen mixtures

    NASA Technical Reports Server (NTRS)

    Berlad, Abraham L

    1954-01-01

    Flame quenching by a variable-width rectangular-slot burner as a function of pressure for various propane-oxygen-nitrogen mixtures was investigated. It was found that for cold gas temperatures of 27 degrees C, pressures of 0.1 ro 1.0 atmosphere, and volumetric oxygen reactions of the oxidant of 0.17, 0.21, 0.30, 0.50, and 0.70, the relation between pressure p and quenching distance d is approximately given by d (unity) p (superscript -r) with r = 1, for equivalence ratios approximately equal to one. The quenching equation of Simon and Belles was tested. For equivalence ratios less than or equal to unity, this equation may by used, together with one empirical constant, to predict the observed quenching distance within 4.2 percent. The equation in it's present form does not appear to be suitable for values of the equivalence ratio greater than unity. A quantitative theoretical investigation has also been made of the error implicit in the assumption that flame quenching by plane parallel plates of infinite extent is equivalent to that of a rectangular burner. A curve is presented which relates the magnitude of this error to the length-to-width ratio of the rectangular burner.

  2. Advanced radiant combustion system. Final report, September 1989--September 1996

    SciTech Connect

    Sullivan, J.D.; Carswell, M.G.; Long, F.S.

    1996-09-01

    Results of the Advanced Radiant Combustion System (ARCS) project are presented in this report. This work was performed by Alzeta Corporation as prime contractor under a contract to the U.S. Department of Energy Office of Industrial Technologies as part of a larger DOE program entitled Research Program for Advanced Combustion Systems. The goals of the Alzeta ARCS project were to (a) Improve the high temperature performance characteristics of porous surface ceramic fiber burners, (b) Develop an Advanced Radiant Combustion System (ARCS) that combines combustion controls with an advanced radiant burner, and (c) Demonstrate the advanced burner and controls in an industrial application. Prior to the start of this project, Alzeta had developed and commercialized a porous surface radiant burner, the Pyrocore{trademark} burner. The product had been commercially available for approximately 5 years and had achieved commercial success in a number of applications ranging from small burners for commercial cooking equipment to large burners for low temperature industrial fluid heating applications. The burner was not recommended for use in applications with process temperatures above 1000{degrees}F, which prevented the burner from being used in intermediate to high temperature processes in the chemical and petroleum refining industries. The interest in increasing the maximum use temperature of the burner was motivated in part by a desire to expand the number of applications that could use the Pyrocore product, but also because many of the fluid sensitive heating applications of interest would benefit from the distributed flux characteristic of porous surface burners. Background information on porous surface radiant burners, and a discussion of advantages that would be provided by an improved product, are presented in Section 2.

  3. Experimental and theoretical deposition rates from salt-seeded combustion gases of a Mach 0.3 burner rig

    NASA Technical Reports Server (NTRS)

    Santoro, G. J.; Kohl, F. J.; Stearns, C. A.; Gokoglu, S. A.; Rosner, D. E.

    1984-01-01

    Deposition rates on platinum-rhodium cylindrical collectors rotating in the cross streams of the combustion gases of a salt-seeded Mach 0.3 burner rig were determined. The collectors were internally air cooled so that their surface temperatures could be widely varied while they were exposed to constant combustion gas temperatures. The deposition rates were compared with those predicted by the chemically frozen boundary layer (CFBL) computer program, which is based on multicomponent vapor transport through the boundary layer. Excellent agreement was obtained between theory and experiment for the NaCl-seeded case, but the agreement lessened as the seed was changed to synthetic sea salt, NaNO3, and K2SO4, respectively, and was particularly poor in the case of Na2SO4. However, when inertial impaction was assumed to be the deposition mechanism for the Na2SO4 case, the predicted rates agreed well with the experimental rates. The former were calculated from a mean particle diameter that was derived from the measured intial droplet size distribution of the solution spray. Critical experiments showed that liquid phase deposits were blown off the smooth surface of the platinum-rhodium collectors by the aerodynamic shear forces of the high-velocity combustion gases but that rough or porous surfaces retained their liquid deposits.

  4. Numerical simulation of ash vaporization during pulverized coal combustion in the laboratory-scale single-burner furnace

    SciTech Connect

    Jiancai Sui; Minghou Xu; Jihua Qiu; Yu Qiao; Yun Yu; Xiaowei Liu; Xiangpeng Gao

    2005-08-01

    CFD tools have been developed to effectively simulate complex, reacting, multiphase flows that exist in utility boilers. In this paper, a model of ash vaporization was established and integrated into a self-developed CFD code to predict ash vaporization in the coal combustion process. Experimental data from a single-particle combustion was used to validate the above model. The calibrated model was then applied to simulate the ash vaporization in a 92.9 kW laboratory-scale single-burner furnace. The effects of different combustion conditions, including air staging, on the ash vaporization were investigated. The results showed that the fraction of ash vaporization is mostly sensitive to coal particle temperature. Ash vaporization primarily occurred after a short interval along the coal particle trajectories when the particle temperatures increased to 1800 K. Air staging influenced the ash vaporization by changing the gas temperature distribution in the furnace. The simulation results showed that the more extreme the staging condition, the lower the overall peak temperature, and hence the lower the amount of ash vaporization. 26 refs., 9 figs.

  5. Combustion rate limits of hydrogen plus hydrocarbon fuel: Air diffusion flames from an opposed jet burner technique

    NASA Technical Reports Server (NTRS)

    Pellett, Gerald L.; Guerra, Rosemary; Wilson, Lloyd G.; Reeves, Ronald N.; Northam, G. Burton

    1987-01-01

    Combustion of H2/hydrocarbon (HC) fuel mixtures may be considered in certain volume-limited supersonic airbreathing propulsion applications. Effects of HC addition to H2 were evaluated, using a recent argon-bathed, coaxial, tubular opposed jet burner (OJB) technique to measure the extinction limits of counterflow diffusion flames. The OJB flames were formed by a laminar jet of (N2 and/or HC)-diluted H2 mixture opposed by a similar jet of air at ambient conditions. The OJB data, derived from respective binary mixtures of H2 and methane, ethylene, or propane HCs, were used to characterize BLOWOFF and RESTORE. BLOWOFF is a sudden breaking of the dish-shaped OJB flame to a stable torus or ring shape, and RESTORE marks sudden restoration of the central flame by radial inward flame propagation. BLOWOFF is a measure of kinetically-limited flame reactivity/speed under highly stretched, but relatively ideal impingement flow conditions. RESTORE measures inward radial flame propagation rate, which is sensitive to ignition processes in the cool central core. It is concluded that relatively small molar amounts of added HC greatly reduce the reactivity characteristics of counterflow hydrogen-air diffusion flames, for ambient initial conditions.

  6. Removal of volatile organic compounds from air streams by making use of a microwave plasma burner with reverse vortex flows

    NASA Astrophysics Data System (ADS)

    Kim, Ji H.; Ma, Suk H.; Cho, Chang H.; Hong, Yong C.; Ahn, Jae Y.

    2014-01-01

    We developed an atmospheric-pressure microwave plasma burner for removing volatile organic compounds (VOCs) from polluted air streams. This study focused on the destruction of the VOCs in the high flow rate polluted streams required for industrial use. Plasma flames were sustained by injecting liquefied natural gas (LNG), which is composed of CH4, into the microwave plasma torch. With its high temperature and high density of atomic oxygen, the microwave torch attained nearly complete combustion of LNG, thereby providing a large-volume, high-temperature plasma flame. The plasma flame was applied to reactors in which the polluted streams were in one of two vortex flows: a conventional vortex reactor (CVR) or a reverse vortex reactor (RVR). The RVR, using a plasma power of 2 kW and an LNG flow of 20 liters per minute achieved a destruction removal efficiency (DRE) of 98% for an air flow rate of 5 Nm3/min polluted with 550 pm of VOCs.. For the same experimental parameters, the CVR provided a DRE of 90.2%. We expect that this decontamination system will prove effective in purifying contaminated air at high flow rates.

  7. Final Report

    SciTech Connect

    Webb, Robert C.; Kamon, Teruki; Toback, David; Safonov, Alexei; Dutta, Bhaskar; Dimitri, Nanopoulos; Pope, Christopher; White, James

    2013-11-18

    Overview The High Energy Physics Group at Texas A&M University is submitting this final report for our grant number DE-FG02-95ER40917. This grant has supported our wide range of research activities for over a decade. The reports contained here summarize the latest work done by our research team. Task A (Collider Physics Program): CMS & CDF Profs. T. Kamon, A. Safonov, and D. Toback co-lead the Texas A&M (TAMU) collider program focusing on CDF and CMS experiments. Task D: Particle Physics Theory Our particle physics theory task is the combined effort of Profs. B. Dutta, D. Nanopoulos, and C. Pope. Task E (Underground Physics): LUX & NEXT Profs. R. Webb and J. White(deceased) lead the Xenon-based underground research program consisting of two main thrusts: the first, participation in the LUX two-phase xenon dark matter search experiment and the second, detector R&D primarily aimed at developing future detectors for underground physics (e.g. NEXT and LZ).

  8. A Novel High-Heat Transfer Low-NO{sub x} Natural Gas Combustion System. Final Technical Report

    SciTech Connect

    Abbasi, H.

    2004-01-01

    A novel high-heat transfer low NO(sub x) natural gas combustion system. The objectives of this program are to research, develop, test, and commercialize a novel high-heat transfer low-NO{sub x} natural gas combustion system for oxygen-, oxygen-enriched air, and air-fired furnaces. This technology will improve the process efficiency (productivity and product quality) and the energy efficiency of high-temperature industrial furnaces by at least 20%. GTI's high-heat transfer burner has applications in high-temperature air, oxygen-enriched air, and oxygen furnaces used in the glass, metals, cement, and other industries. Development work in this program is focused on using this burner to improve the energy efficiency and productivity of glass melting furnaces that are major industrial energy consumers. The following specific project objectives are defined to provide a means of achieving the overall project objectives. (1) Identify topics to be covered, problems requiring attention, equipment to be used in the program, and test plans to be followed in Phase II and Phase III. (2) Use existing codes to develop models of gas combustion and soot nucleation and growth as well as a thermodynamic and parametric description of furnace heat transfer issues. (3) Conduct a parametric study to confirm the increase in process and energy efficiency. (4) Design and fabricate a high-heat transfer low-NOx natural gas burners for laboratory, pilot- and demonstration-scale tests. (5) Test the high-heat transfer burner in one of GTI's laboratory-scale high-temperature furnaces. (6) Design and demonstrate the high-heat transfer burner on GTI's unique pilot-scale glass tank simulator. (7) Complete one long term demonstration test of this burner technology on an Owens Corning full-scale industrial glass melting furnace. (8) Prepare an Industrial Adoption Plan. This Plan will be updated in each program Phase as additional information becomes available. The Plan will include technical and

  9. SENSOR FOR INDIVIDUAL BURNER CONTROL OF FIRING RATE, FUEL-AIR RATIO, AND COAL FINENESS CORRELATION

    SciTech Connect

    Wayne Hill; Roger Demler; Robert G. Mudry

    2005-01-01

    Additional calibration data were collected in the Coal Flow Test Facility early in this reporting period. These data comprised a total of 181 tests for stud and magnetic accelerometer mounts, with two mounting locations relative to two different pipe elbows, and including some tests with out-of-plane elbows upstream of the test section to produce coal ''roping''. The results found in analyzing these new data were somewhat disappointing: correlations for coal flow rate for a given mount type and mounting location were less accurate than desired, and degraded badly when data from other locations were included in the same analysis. Reviewing all of the data files (from both the earlier testing and recent calibration testing) disclosed a significant fraction of cases with several forms of noise. Eliminating these cases improved the correlations somewhat, but the number of cases that remained did not permit general conclusions to be drawn. It was finally learned that yet another type of noise is present in some data files, producing a strong effect on the correlation accuracy. The cases not subject to this noise correlated very well. It would be desirable to collect additional data in the Coal Flow Test Facility prior to moving on to field data collection, a change in program direction that would require a no-cost time extension.

  10. Final report

    SciTech Connect

    Dobbs, Fred C.

    2003-01-15

    species of flagellates, Spumella sp. and Bodo sp. (identifications are tentative) were isolated from South Oyster sediments by repetitive serial dilution/extinction method. Protistan cells were cultured with Cereal leaf Prescott medium and pelleted by centrifugation. Protistan DNAs were extracted with a DNA extraction kit (Sigma Co.) and the sequencing of their SSrDNA is underway. Finally, to follow up on our collaboration of Dr. Bill Johnson (Univ. of Utah), one of the co-PIs under the same NABIR umbrella, we are pleased to report we have successfully tested antibody-ferrographic capture of protists (See previous year's report for more background). Polyclonal FITC-conjugated antibody specific for a flagellate, Spumella sp., was produced by Rockland Inc., and we now are able to enumerate that species using ferrographic capture. There are, however, some issues of non-specific staining that remain to be resolved.

  11. Investigations of ash fouling with cattle wastes as reburn fuel in a small-scale boiler burner under transient conditions

    SciTech Connect

    Hyukjin Oh; Kalyan Annamalai; John M. Sweeten

    2008-04-15

    Fouling behavior under reburn conditions was investigated with cattle wastes (termed as feedlot biomass, FB) and coal as reburn fuels under a transient condition and short-time operation. A small-scale (30 kW or 100,000 Btu/hr) boiler burner research facility was used for the reburn experiments. The fuels considered for these experiments were natural gas (NG) for the ashless case, pure coal, pure FB, and blends of coal and FB. Two parameters that were used to characterize the ash 'fouling' were (1) the overall heat-transfer coefficient (OHTC) when burning NG and solid fuels as reburn fuels, and (2) the combustible loss through ash deposited on the surfaces of heat exchanger tubes and the bottom ash in the ash port. A new methodology is presented for determining ash fouling behavior under transient conditions. Results on the OHTCs for solid reburn fuels are compared with the OHTCs for NG. It was found that the growth of the layer of ash depositions over longer periods typically lowers OHTC, and the increased concentration of ash in gas phase promotes radiation in high-temperature zones during initial periods while decreasing the heat transfer in low-temperature zones. The ash analyses indicated that the bottom ash in the ash port contained a smaller percentage of combustibles with a higher FB percentage in the fuels, indicating better performance compared with coal because small particles in FB burn faster and the FB has higher volatile matter on a dry ash-free basis promoting more burn out. 16 refs., 12 figs., 6 tabs.

  12. Investigations of ash fouling with cattle wastes as reburn fuel in a small-scale boiler burner under transient conditions.

    PubMed

    Oh, Hyukjin; Annamalai, Kalyan; Sweeten, John M

    2008-04-01

    Fouling behavior under reburn conditions was investigated with cattle wastes (termed as feedlot biomass [FB]) and coal as reburn fuels under a transient condition and short-time operation. A small-scale (30 kW or 100,000 Btu/hr) boiler burner research facility was used for the reburn experiments. The fuels considered for these experiments were natural gas (NG) for the ashless case, pure coal, pure FB, and blends of coal and FB. Two parameters that were used to characterize the ash "fouling" were (1) the overall heat-transfer coefficient (OHTC) when burning NG and solid fuels as reburn fuels, and (2) the combustible loss through ash deposited on the surfaces of heat exchanger tubes and the bottom ash in the ash port. A new methodology is presented for determining ash-fouling behavior under transient conditions. Results on the OHTCs for solid reburn fuels are compared with the OHTCs for NG. It was found that the growth of the layer of ash depositions over longer periods typically lowers OHTC, and the increased concentration of ash in gas phase promotes radiation in high-temperature zones during initial periods while decreasing the heat transfer in low-temperature zones. The ash analyses indicated that the bottom ash in the ash port contained a smaller percentage of combustibles with a higher FB percentage in the fuels, indicating better performance compared with coal because small particles in FB burn faster and the FB has higher volatile matter on a dry ash-free basis promoting more burn out.

  13. Benchmark of Advanced Burner Test Reactor Model Using MCNPX 2.6.0 and ERANOS 2.1

    SciTech Connect

    Kenneth Allen; Travis Knight; Samuel Bays

    2011-08-01

    Significant research is currently being performed whereby fast reactor cores have been designed to burn transuranic materials reducing the volume and long-term radiotoxicity of spent nuclear fuel. These core and depletion models depend on various computer codes. This research used MCNPX 2.6.0 and ERANOS 2.1 to model a standard 250MWt Advanced Burner Test Reactor (ABTR) core. The intent was to benchmark criticality and burnup results from a stochastic Monte Carlo code and a deterministic depletion code using a standard ABTR model created by Argonne National Laboratory. Because each of these codes solve the transport and burnup problem differently, there is a need to benchmark the core models in order to verify results and identify root causes for significant differences in results between codes. Flux calculations in ERANOS were performed using diffusion theory, Legendre polynomial approximations (using the VARIANT module) and discrete ordinates methods. The k-effective for the higher-order transport models remained within 1000 pcm of the MCNPX model. The difference between the total heavy nuclide mass balance in ERANOS using the various flux calculations and the MCNPX depletion model was less than 0.4% out to a burnup of 1095 days (67.45 GWd/MTHM). For individual heavy nuclides, the depletion models closely matched (< 5.0 % difference) throughout the depletion for isotopes of Uranium, Neptunium and Plutonium and most of the higher transuranics. Notable exceptions were 242Am, 242Cm, 243Cm and 246Cm where differences ranged from 0.1 – 0.2% after 26 days and increased to 11 - 136% at 1095 days.

  14. An Experimental Study of n-Heptane and JP-7 Extinction Limits in an Opposed Jet Burner

    NASA Technical Reports Server (NTRS)

    Convery, Janet L.; Pellett, Gerald L.; O'Brien, Walter F., Jr.; Wilson, Lloyd G.; Williams, John

    2005-01-01

    Propulsion engine combustor design and analysis requires experimentally verified data on the chemical kinetics of fuel. Among the important data is the combustion extinction limit as measured by observed maximum flame strain rate. The extinction limit relates to the ability to maintain a flame in a combustor during operation. Extinction limit data can be obtained for a given fuel by means of a laminar flame experiment using an opposed jet burner (OJB). Laminar extinction limit data can be applied to the turbulent application of a combustor via laminar flamelet modeling. The OJB consists of two axi-symmetric tubes (one for fuel and one for oxidizer), which produce a flat, disk-like counter-flow diffusion flame. This paper presents results of experiments to measure extinction limits for n-heptane and the military specification fuel JP-7, obtained from an OJB. JP-7 is an Air Force-developed fuel that continues to be important in the area of hypersonics. Because of its distinct properties it is currently the hydrocarbon fuel of choice for use in Scramjet engines. This study provides much-desired data for JP-7, for which very little information previously existed. The interest in n-heptane is twofold. First, there has been a significant amount of previous extinction limit study and resulting data with this fuel. Second, n-heptane (C7H16) is a pure substance, and therefore does not vary in composition as does JP-7, which is a mixture of several different hydrocarbons. These two facts allow for a baseline to be established by comparing the new OJB results to those previously taken. Additionally, the data set for n-heptane, which previously existed for mixtures up to 26 mole percent in nitrogen, is completed up to 100% n-heptane. The extinction limit data for the two fuels are compared, and complete experimental results are included.

  15. MINIMIZATION OF NO EMISSIONS FROM MULTI-BURNER COAL-FIRED BOILERS

    SciTech Connect

    E.G. Eddings; A. Molina; D.W. Pershing; A.F. Sarofim; K.A. Davis; T.H. Fletcher; H. Zhang

    2001-06-01

    During the last reporting period the experimental setup in the University of Utah Laminar-Flow Drop Tube was modified to allow for batch experiments. This modification was made in order to guarantee complete conversion of the char in the reactor. Once the setup was optimized, the effect of particle size, oxygen concentration, type of char and NO bulk concentration on the conversion of char-N to NO was evaluated. In this report, we present the results obtained for different chars and for different NO background concentrations. The effect of oxygen and particle size is currently being analyzed and will be presented in the final report. Experiments were performed with three different carbonaceous materials and were conducted at temperatures close to that of pulverized combustion conditions (1700 K) in a laminar drop tube reactor under inert and oxidizing atmospheres. The results obtained show that the process of NO reduction on the char surface plays an important role on the total amount of char-N converted to NOx. This effect tends to reduce as the NO background concentration is reduced and doesn't seem to strongly depend on the nature of the char. Some of these results were presented at the 2nd Joint Meeting of the US Sections of the Combustion Institute, held in March of 2001. In addition to the experimental observations on char-N conversion to NO, a single particle model was developed and the predictions of the model were compared with the experimental results. Although the model predicts the linear reduction on the conversion of char-N to NO, it overpredicts the general value. A higher value for the rate of NO destruction on char surface doesn't seem to explain this phenomenon, which may be more related to the availability of char surface for the destruction of NO.

  16. ACHIEVING NEW SOURCE PERFORMANCE STANDARDS (NSPS) EMISSION STANDARDS THROUGH INTEGRATION OF LOW-NOx BURNERS WITH AN OPTIMIZATION PLAN FOR BOILER COMBUSTION

    SciTech Connect

    Wayne Penrod; David Moyeda

    2003-07-01

    The objective of this project is to demonstrate the use of an Integrated Combustion Optimization System to achieve NO{sub x} emissions levels in the range of 0.15 to 0.22 lb/MMBtu while simultaneously enabling increased power output. The project consists of the integration of low-NO{sub x} burners and advanced overfire air technology with various process measurement and control devices on the Holcomb Station Unit 1 boiler. The project includes the use of sophisticated neural networks or other artificial intelligence technologies and complex software that can optimize several operating parameters, including NO{sub x} emissions, boiler efficiency, and CO emissions. The program is being performed in three phases. In Phase I, the boiler is being equipped with sensors that can be used to monitor furnace conditions and coal flow to permit improvements in boiler operation. In Phase II, the boiler will be equipped with burner modifications designed to reduce NO{sub x} emissions and automated coal flow dampers to permit on-line fuel balancing. In Phase III, the boiler will be equipped with an overfire air system to permit deep reductions in NO{sub x} emissions to be achieved. Integration of the overfire air system with the improvements made in Phases I and II will permit optimization of the boiler performance, output, and emissions. During this reporting period, efforts were focused on completion of Phase I and Phase II activities. The low-NO{sub x} burner modifications, the coal flow dampers, and the coal flow monitoring system were procured and installed during a boiler outage in March 2003. During this reporting period, optimization tests were performed to evaluate system performance and identify optimum operating conditions for the installed equipment. The overfire air system process design activities and preliminary engineering design were completed.

  17. ACHIEVING NEW SOURCE PERFORMANCE STANDARDS (NSPS) EMISSION STANDARDS THROUGH INTEGRATION OF LOW-NOx BURNERS WITH AN OPTIMIZATION PLAN FOR BOILER COMBUSTION

    SciTech Connect

    Wayne Penrod; David Moyeda

    2003-04-01

    The objective of this project is to demonstrate the use of an Integrated Combustion Optimization System to achieve NO{sub x} emissions levels in the range of 0.15 to 0.22 lb/MMBtu while simultaneously enabling increased power output. The project consists of the integration of low-NO{sub x} burners and advanced overfire air technology with various process measurement and control devices on the Holcomb Station Unit 1 boiler. The project includes the use of sophisticated neural networks or other artificial intelligence technologies and complex software that can optimize several operating parameters, including NO{sub x} emissions, boiler efficiency, and CO emissions. The program is being performed in three phases. In Phase I, the boiler is being equipped with sensors that can be used to monitor furnace conditions and coal flow to permit improvements in boiler operation. In Phase II, the boiler will be equipped with burner modifications designed to reduce NO{sub x} emissions and automated coal flow dampers to permit on-line fuel balancing. In Phase III, the boiler will be equipped with an overfire air system to permit deep reductions in NO{sub x} emissions to be achieved. Integration of the overfire air system with the improvements made in Phases I and II will permit optimization of the boiler performance, output, and emissions. During this reporting period, efforts were focused on Phase I and Phase II activities. The furnace sensors were procured and installed in February 2003. Baseline testing was performed following the sensor installation. The low-NO{sub x} burner modifications, the coal flow dampers, and the coal flow monitoring system were procured and installed during a boiler outage in March 2003. Process design activities were performed to support design of the equipment installed and to develop specifications for the overfire air system. The overfire air system preliminary engineering design was initiated.

  18. The Correlation of the TBC Lifetimes in Burner Cycling Test with Thermal Gradient and Furnace Isothermal Cycling Test by TGO Effects

    NASA Astrophysics Data System (ADS)

    Li, Chang-Jiu; Dong, Hui; Ding, Hang; Yang, Guan-Jun; Li, Cheng-Xin

    2017-02-01

    Two types of typical thermal cycling tests are used for the evaluation of thermal cycling lifetime of thermal barrier coatings. Those are the burner cycling test with a thermal gradient and the isothermal furnace cycling test. There are diverse explanations to test results up to now. Although certain correlations should exist between the results obtained by two types of the tests, no evident parameters in two tests were directly related, possibly due to large range of difference test conditions. In this investigation, a series of TBC samples with carefully prepared Al2O3-based TGO of different thicknesses were used for both the burner cycling and the furnace cycling tests. The relationships between thermal cycling lifetime and TGO thickness were obtained for two types of the tests. It was found that TGO thickness presents the same influence tendency despite of different types of thermal cycling test. The results reveal the existence of the critical TGO thickness by which the transition of failure mode takes place. Moreover, the values of the critical TGO thickness for two tests are comparable. The results evidently suggest that the lifetimes during different thermal cycling tests can be correlated by TGO effects on failure behavior. However, it is clear that the apparent dominant driving factors to TBC failure are different in two types of tests. Accordingly, the burner cycling test could be used for optimizing the durability of ceramic top coat by separating the effect of individual factors through test condition design, while the furnace cycling test results represent the integrated TBC durable performance of the bond coat and top ceramic coating.

  19. Achieving New Source Performance Standards (NSPS) Emission Standards Through Integration of Low-NOx Burners with an Optimization Plan for Boiler Combustion

    SciTech Connect

    Wayne Penrod

    2006-12-31

    The objective of this project was to demonstrate the use of an Integrated Combustion Optimization System to achieve NO{sub X} emission levels in the range of 0.15 to 0.22 lb/MMBtu while simultaneously enabling increased power output. The project plan consisted of the integration of low-NO{sub X} burners and advanced overfire air technology with various process measurement and control devices on the Holcomb Station Unit 1 boiler. The plan included the use of sophisticated neural networks or other artificial intelligence technologies and complex software to optimize several operating parameters, including NO{sub X} emissions, boiler efficiency, and CO emissions. The program was set up in three phases. In Phase I, the boiler was equipped with sensors that can be used to monitor furnace conditions and coal flow to permit improvements in boiler operation. In Phase II, the boiler was equipped with burner modifications designed to reduce NO{sub X} emissions and automated coal flow dampers to permit on-line fuel balancing. In Phase III, the boiler was to be equipped with an overfire air system to permit deep reductions in NO{sub X} emissions. Integration of the overfire air system with the improvements made in Phases I and II would permit optimization of boiler performance, output, and emissions. This report summarizes the overall results from Phases I and II of the project. A significant amount of data was collected from the combustion sensors, coal flow monitoring equipment, and other existing boiler instrumentation to monitor performance of the burner modifications and the coal flow balancing equipment.

  20. Effects of arc current on the life in burner rig thermal cycling of plasma sprayed ZrOsub2-Ysub2Osub3

    NASA Astrophysics Data System (ADS)

    Hendricks, R. C.; McDonald, G.

    1982-02-01

    An analysis of thermal cycle life data for four sets of eight thermal barrier coated specimens representing arc currents (plasma gun power) of 525, 600, 800, or 950 amps is presented. The ZrO2-8Y2O3/NiCrAlY plasma spray coated Rene 41 rods were thermal cycled to 1040 C in a Mach 0.3-Jet A/air burner flame. The experimental results indicate the existance of a minimum or threshold power level which coating life expectancy is less than 500 cycles. Above the threshold power level, coating life expectancy more than doubles and increases with arc current.

  1. DEVELOPMENT OF A NOVEL RADIATIVELY/CONDUCTIVELY STABILIZED BURNER FOR SIGNIFICANT REDUCTION OF NOx EMISSIONS AND FOR ADVANCING THE MODELING AND UNDERSTANDING OF PULVERIZED COAL COMBUSTION AND EMISSIONS

    SciTech Connect

    Noam Lior; Stuart W. Churchill

    2003-10-01

    The primary objective of the proposed study was the study and analysis of, and design recommendations for, a novel radiatively-conductively stabilized combustion (RCSC) process for pulverized coal, which, based on our prior studies with both fluid fuels and pulverized coal, holds a high promise to reduce NO{sub x} production significantly. We have primarily engaged in continuing and improving our process modeling and analysis, obtained a large amount of quantitative information about the effects of the major parameters on NO{sub x} production, conducted an extensive exergy analysis of the process, evaluated the practicalities of employing the Radiatively-Conductively Stabilized Combustor (RCSC) to large power and heat plants, and improved the experimental facility. Prior experimental work has proven the feasibility of the combustor, but slagging during coal combustion was observed and should be dealt with. The primary outcomes and conclusions from the study are: (1) we developed a model and computer program that represents the pulverized coal combustion in the RCSC, (2) the model predicts that NO{sub x} emissions can be reduced by a number of methods, detailed in the report. (3) the exergy analysis points out at least a couple of possible ways to improve the exergetic efficiency in this combustor: increasing the effectiveness of thermal feedback, and adjusting the combustor mixture exit location, (4) because of the low coal flow rates necessitated in this study to obtain complete combustion in the burner, the size of a burner operating under the considered conditions would have to be up to an order of magnitude, larger than comparable commercial burners, but different flow configurations of the RCSC can yield higher feed rates and smaller dimensions, and should be investigated. Related to this contract, eleven papers were published in journals and conference proceedings, and ten invited presentations were given at university and research institutions, as well as at

  2. Effect of thermal cycling in a Mach 0.3 burner rig on properties and structure of directionally solidified gamma/gamma prime - delta eutectic

    NASA Technical Reports Server (NTRS)

    Gray, H. R.; Sanders, W. A.

    1975-01-01

    Tensile and stress rupture properties at 1040 C of a thermally cycled gamma/gamma prime - delta eutectic were essentially equivalent to the as-grown properties. Tensile strength and rupture life at 760 C appeared to decrease slightly by thermal cycling. Thermal cycling resulted in gamma prime coarsening and Widmanstatten delta precipitation in the gamma phase. An unidentified precipitate, presumably gamma prime, was observed within the delta phase. The eutectic alloy exhibited a high rate of oxidation-erosion weight loss during thermal cycling in the Mach 0.3 burner rig.

  3. Nonthermal p/π ratio at LHC as a consequence of hadronic final state interactions.

    PubMed

    Steinheimer, Jan; Aichelin, Jörg; Bleicher, Marcus

    2013-01-25

    Recent LHC data on Pb+Pb reactions at sqrt[s](NN) = 2.7 TeV suggests that the p/π is incompatible with thermal models. We explore several hadron ratios (K/π, p/π, Λ/π, Ξ/π) within a hydrodynamic model with a hadronic after burner, namely the ultrarelativistic quantum molecular dynamics model 3.3, and show that the deviations can be understood as a final state effect. We propose the p/π as an observable sensitive on whether final state interactions take place or not. The measured values of the hadron ratios do then allow us to gauge the transition energy density from hydrodynamics to the Boltzmann description. We find that the data can be explained with transition energy densities of 840 ± 150 MeV/fm(3).

  4. Parametric (On-Design) Cycle Analysis for a Separate-Exhaust Turbofan Engine With Interstage Turbine Burner

    NASA Technical Reports Server (NTRS)

    Liew, K. H.; Urip, E.; Yang, S. L.; Siow, Y. K.; Marek, C. J.

    2005-01-01

    Today s modern aircraft is based on air-breathing jet propulsion systems, which use moving fluids as substances to transform energy carried by the fluids into power. Throughout aero-vehicle evolution, improvements have been made to the engine efficiency and pollutants reduction. The major advantages associated with the addition of ITB are an increase in thermal efficiency and reduction in NOx emission. Lower temperature peak in the main combustor results in lower thermal NOx emission and lower amount of cooling air required. This study focuses on a parametric (on-design) cycle analysis of a dual-spool, separate-flow turbofan engine with an Interstage Turbine Burner (ITB). The ITB considered in this paper is a relatively new concept in modern jet engine propulsion. The ITB serves as a secondary combustor and is located between the high- and the low-pressure turbine, i.e., the transition duct. The objective of this study is to use design parameters, such as flight Mach number, compressor pressure ratio, fan pressure ratio, fan bypass ratio, and high-pressure turbine inlet temperature to obtain engine performance parameters, such as specific thrust and thrust specific fuel consumption. Results of this study can provide guidance in identifying the performance characteristics of various engine components, which can then be used to develop, analyze, integrate, and optimize the system performance of turbofan engines with an ITB. Visual Basic program, Microsoft Excel macrocode, and Microsoft Excel neuron code are used to facilitate Microsoft Excel software to plot engine performance versus engine design parameters. This program computes and plots the data sequentially without forcing users to open other types of plotting programs. A user s manual on how to use the program is also included in this report. Furthermore, this stand-alone program is written in conjunction with an off-design program which is an extension of this study. The computed result of a selected design

  5. Determination of convective diffusion heat/mass transfer rates to burner rig test targets comparable in size to cross-stream jet diameter

    NASA Technical Reports Server (NTRS)

    Gokoglu, S. A.; Santoro, G. J.

    1985-01-01

    Two sets of experiments have been performed to be able to predict the convective diffusion heat/mass transfer rates to a cylindrical target whose height and diameter are comparable to, but less than, the diameter of the circular cross-stream jet, thereby simulating the same geometric configuration as a typical burner rig test specimen located in the cross-stream of the combustor exit nozzle. The first set exploits the naphthalene sublimation technique to determine the heat/mass transfer coefficient under isothermal conditions for various flow rates (Reynolds numbers). The second set, conducted at various combustion temperatures and Reynolds numbers, utilized the temperature variation along the surface of the above-mentioned target under steady-state conditions to estimate the effect of cooling (dilution) due to the entrainment of stagnant room temperature air. The experimental information obtained is used to predict high temperature, high velocity corrosive salt vapor deposition rates in burner rigs on collectors that are geometrically the same. The agreement with preliminary data obtained from Na2SO4 vapor deposition experiments is found to be excellent.

  6. Digital temperature and velocity control of mach 0.3 atmospheric pressure durability testing burner rigs in long time, unattended cyclic testing

    NASA Technical Reports Server (NTRS)

    Deadmore, D. L.

    1985-01-01

    Hardware and software were developed to implement the hybrid digital control of two Jet A-1 fueled Mach 0.3 burners from startup to completion of a preset number of hot corrosion flame durability cycle tests of materials at 1652 F. This was accomplished by use of a basic language programmable microcomputer and data aquisition and control unit connected together by the IEEE-488 Bus. The absolute specimen temperature was controlled to + or - 3 F by use of digital adjustment of the fuel flow using a P-I-D (Proportional-Integral-Derivative) control algorithm. The specimen temperature was within + or - 2 F of the set point more than 90 percent of the time. Pressure control was achieved by digital adjustment of the combustion air flow using a proportional control algorithm. The burner pressure was controlled at 1.0 + or - 0.02 psig. Logic schemes were incorporated into the system to protect the test specimen from abnormal test conditions in the event of a hardware of software malfunction.

  7. PARTICULATE CHARACTERIZATION AND ULTRA LOW-NOx BURNER FOR THE CONTROL OF NO{sub x} AND PM{sub 2.5} FOR COAL FIRED BOILERS

    SciTech Connect

    Ralph Bailey; Hamid Sarv; Jim Warchol; Debi Yurchison

    2001-09-30

    In response to the serious challenge facing coal-fired electric utilities with regards to curbing their NO{sub x} and fine particulate emissions, Babcock and Wilcox and McDermott Technology, Inc. conducted a project entitled, ''Particulate Characterization and Ultra Low-NO{sub x} Burner for the Control of NO{sub x} and PM{sub 2.5} for Coal Fired Boilers.'' The project included pilot-scale demonstration and characterization of technologies for removal of NO{sub x} and primary PM{sub 2.5} emissions. Burner development and PM{sub 2.5} characterization efforts were based on utilizing innovative concepts in combination with sound scientific and fundamental engineering principles and a state-of-the-art test facility. Approximately 1540 metric tonnes (1700 tons) of high-volatile Ohio bituminous coal were fired. Particulate sampling for PM{sub 2.5} emissions characterization was conducted in conjunction with burner testing. Based on modeling recommendations, a prototype ultra low-NO{sub x} burner was fabricated and tested at 100 million Btu/hr in the Babcock and Wilcox Clean Environment Development Facility. Firing the unstaged burner with a high-volatile bituminous Pittsburgh 8 coal at 100 million Btu/hr and 17% excess air achieved a NO{sub x} goal of 0.20 lb NO{sub 2}/million Btu with a fly ash loss on ignition (LOI) of 3.19% and burner pressure drop of 4.7 in H{sub 2}O for staged combustion. With the burner stoichiometry set at 0.88 and the overall combustion stoichiometry at 1.17, average NO{sub x} and LOI values were 0.14 lb NO{sub 2}/million Btu and 4.64% respectively. The burner was also tested with a high-volatile Mahoning 7 coal. Based on the results of this work, commercial demonstration is being pursued. Size classified fly ash samples representative of commercial low-NO{sub x} and ultra low-NO{sub x} combustion of Pittsburgh 8 coal were collected at the inlet and outlet of an ESP. The mass of size classified fly ash at the ESP outlet was sufficient to evaluate

  8. Determination of convective diffusion heat/mass transfer rates to burner rig test targets comparable in size to cross-stream jet diameter

    NASA Technical Reports Server (NTRS)

    Gokoglu, S. A.; Santoro, G. J.

    1986-01-01

    Two sets of experiments have been performed to be able to predict the convective diffusion heat/mass transfer rates to a cylindrical target whose height and diameter are comparable to, but less than, the diameter of the circular cross-stream jet, thereby simulating the same geometric configuration as a typical burner rig test specimen located in the cross-stream of the combustor exit nozzlle. The first set exploits the naphthalene sublimation technique to detetermine the heat/mass transfer coefficient under isothermal conditions for various flow rates (Reynolds numbers). The second set, conducted at various combustion temperatures and Reynolds numbers, utilized the temperature variation along the surface of the above-mentioned target under steady-state conditions to estimate the effect of cooling (dilution) due to the entrainment of stagnant room temperature air. The experimental information obtained is used to predict high temperature, high velocity corrosive salt vapor deposition rates in burner rigs on collectors that are geometrically the same. The agreement with preliminary data obtained from Na2S04 vapor deposition experiments is found to be excellent.

  9. Measurements of axisymmetric temperature and H2O concentration distributions on a circular flat flame burner based on tunable diode laser absorption tomography

    NASA Astrophysics Data System (ADS)

    Xia, Huihui; Kan, Ruifeng; Xu, Zhenyu; Liu, Jianguo; He, Yabai; Yang, Chenguang; Chen, Bing; Wei, Min; Yao, Lu; Zhang, Guangle

    2016-10-01

    In this paper, the reconstruction of axisymmetric temperature and H2O concentration distributions in a flat flame burner is realized by tunable diode laser absorption spectroscopy (TDLAS) and filtered back-projection (FBP) algorithm. Two H2O absorption transitions (7154.354/7154.353 cm-1 and 7467.769 cm-1) are selected as line pair for temperature measurement, and time division multiplexing technology is adopted to scan this two H2O absorption transitions simultaneously at 1 kHz repetition rate. In the experiment, FBP algorithm can be used for reconstructing axisymmetric distributions of flow field parameters with only single view parallel-beam TDLAS measurements, and the same data sets from the given parallel beam are used for other virtual projection angles and beams scattered between 0° and 180°. The real-time online measurements of projection data, i.e., integrated absorbance both for pre-selected transitions on CH4/air flat flame burner are realized by Voigt on-line fitting, and the fitting residuals are less than 0.2%. By analyzing the projection data from different views based on FBP algorithm, the distributions of temperature and concentration along radial direction can be known instantly. The results demonstrate that the system and the proposed innovative FBP algorithm are capable for accurate reconstruction of axisymmetric temperature and H2O concentration distribution in combustion systems and facilities.

  10. Pyrolysis with cyclone burner

    DOEpatents

    Green, Norman W.; Duraiswamy, Kandaswamy; Lumpkin, Robert E.

    1978-07-25

    In a continuous process for recovery of values contained in a solid carbonaceous material, the carbonaceous material is comminuted and then subjected to flash pyrolysis in the presence of a particulate heat source over an overflow weir to form a pyrolysis product stream containing a carbon containing solid residue and volatilized hydrocarbons. After the carbon containing solid residue is separated from the pyrolysis product stream, values are obtained by condensing volatilized hydrocarbons. The particulate source of heat is formed by oxidizing carbon in the solid residue and separating out the fines.

  11. Small Scale Burner Review

    DTIC Science & Technology

    2009-07-01

    study integrates concepts of chemical kinetics, transport phenomena, and reaction engineering. However, there are no universal definitions of microscale...termination reactions with free radicals as intermediates. Once the combustion is 1 initiated, chain reactions produce free radicals in the...propagation or chain-branching reaction . The free radicals recombine in the termination reactions . For example, H2-O2 combustion consists of as many

  12. EVALUATION OF INTERNALLY STAGED COAL BURNERS AND SORBENT JET AERODYNAMICS FOR COMBINED SO2/NOX CONTROL IN UTILITY BOILERS, VOLUME 1, TESTING IN A 10 MILLION BTU/HR EXPERIMENTAL FURNACE

    EPA Science Inventory

    The document gives results of tests conducted in a 2 MWt experimental furnace to: (1) investigate ways to reduce NOx emissions from utility coal burners without external air ports (i.e., with internal fuel/air staging); and (2) improve the performance of calcium-based sorbents fo...

  13. Environmental Assessment for the Commercial Demonstration of the Low NOx Burner/Separated Over-Fire Air (LNB/SOFA) Integration System Emission Reduction Technology, Finney County, Kansas

    SciTech Connect

    n /a

    2003-03-11

    The U.S. Department of Energy (DOE) proposes to provide partial funding to the Sunflower Electric Power Corporation (Sunflower), to demonstrate the commercial application of Low-NO{sub x} Burner/Separated Over-Fire Air (LNB/SOFA) integration system to achieve NO{sub x} emission reduction to the level of 0.15 to 0.22 pounds per million British thermal units (lb/MM Btu). The proposed project station is Sunflower's 360 MW coal-fired generation station, Holcomb Unit No. 1 (Holcomb Station). The station, fueled by coal from Wyoming's Powder River Basin, is located near Garden City, in Finney County, Kansas. The period of performance is expected to last approximately 2 years. The Holcomb Station, Sunflower LNB/SOFA integrated system would be modified in three distinct phases to demonstrate the synergistic effect of layering NO{sub x} control technologies. Once modified, the station would demonstrate that a unit equipped with an existing low-NO{sub x} burner system can be retrofitted with a new separated over-fire air (SOFA) system, coal flow measurement and control, and enhanced combustion monitoring to achieve about 45 percent reduction in nitrogen oxides (NO{sub x}) emissions. The proposed project would demonstrate a technology alternative to Selective Catalytic Reduction (SCR) systems. While SCR does generally achieve high reductions in NO{sub x} emissions (from about 0.8 lb/MM to 0.12 lb/MM Btu), it does so at higher capital and operating cost, requires the extensive use of critical construction labor, requires longer periods of unit outage for deployment, and generally requires longer periods of time to complete shakedown and full-scale operation. Cost of the proposed project technology would be on the order of 15-25 percent of that for SCR, with consequential benefits derived from reductions in construction manpower requirements and periods of power outages. This proposed technology demonstration would generally be applicable to boilers using opposed-wall burners

  14. Experiments for the determination of convective diffusion heat/mass transfer to burner rig test targets comparable in size to jet stream diameter

    NASA Technical Reports Server (NTRS)

    Santoro, G. J.; Gokoglu, S. A.

    1986-01-01

    The application of a recently formulated vapor transport theory to predict deposition rates of corrosive salts from alkali-seeded combustion gases of a small-capacity, high-velocity, atmospheric-pressure burner rig was hampered by the relatively large dimensions of the cylindrical deposit collector compared to the diameter of the combustion gas stream. The relative dimensions lead to a highly nonadiabatic combustion gas flow around the collector and necessitate two series of experiments. In the first series, mass transfer coefficients are determined by utilizing the naphthalene sublimation technique. The second series of experiments determines the dilution effect on the sodium species concentrations due to the entrainment of ambient air. This second series involves the measurement of the temperature variation along the surface of the collector under steady state conditions. Vapor deposition rates are determined exploiting this information and the results are found to compare favorably with experimentally obtained rates.

  15. Titanium subhydride potassium perchlorate (TiH1.65/KClO4) burn rates from hybrid closed bomb-strand burner experiments.

    SciTech Connect

    Cooper, Marcia A.; Oliver, Michael S.

    2012-08-01

    A hybrid closed bomb-strand burner is used to measure the burning behavior of the titanium subhydride potassium perchlorate pyrotechnic with an equivalent hydrogen concentration of 1.65. This experimental facility allows for simultaneous measurement of the closed bomb pressure rise and pyrotechnic burn rate as detected by electrical break wires over a range of pressures. Strands were formed by pressing the pyrotechnic powders to bulk densities between 60% and 90% theoretical maximum density. The burn rate dependance on initial density and vessel pressure are measured. At all initial strand densities, the burn is observed to transition from conductive to convective burning within the strand. The measured vessel pressure history is further analyzed following the closed bomb analysis methods developed for solid propellants.

  16. Experiments for the determination of convective diffusion heat/mass transfer to burner rig test targets comparable in size to jet stream diameter

    NASA Technical Reports Server (NTRS)

    Santoro, G. J.; Gokoglu, S. A.

    1988-01-01

    The application of a recently formulated vapor transport theory to predict deposition rates of corrosive salts from alkali-seeded combustion gases of a small-capacity, high-velocity, atmospheric-pressure burner rig was hampered by the relatively large dimensions of the cylindrical deposit collector compared to the diameter of the combustion gas stream. The relative dimensions lead to a highly nonadiabatic combustion gas flow around the collector and necessitate two series of experiments. In the first series, mass transfer coefficients are determined by utilizing the naphthalene sublimation technique. The second series of experiments determines the dilution effect on the sodium species concentrations due to the entrainment of ambient air. This second series involves the measurement of the temperature variation along the surface of the collector under steady state conditions. Vapor deposition rates are determined exploiting this information and the results are found to compare favorably with experimentally obtained rates.

  17. Opposed jet burner studies of effects of CO, CO2, and N2 air-contaminants on hydrogen-air diffusion flames

    NASA Technical Reports Server (NTRS)

    Guerra, Rosemary; Pellett, Gerald L.; Northam, G. Burton; Wilson, Lloyd G.

    1987-01-01

    The blowoff/restore characteristics for jets of various H2/N2 mixtures opposed to jets of air contaminated by N2, CO, and CO2 have been determined using a counterflow diffusion flame formed by a tubular opposed jet burner. Both blowoff and restore limits are found to be sensitive to fuel and air composition. Empirically derived variations in the limits of the average mass flux of incoming H2 with percent contaminant, at fixed incoming fuel and H2/O2 inputs, are used to quantify the effects of oxygen dilution, flame augmentation, and flame retardation by N2, CO, and CO2 contaminants. The implications of the results are discussed.

  18. Applicability of RELAP5-3D for Thermal-Hydraulic Analyses of a Sodium-Cooled Actinide Burner Test Reactor

    SciTech Connect

    C. B. Davis

    2006-07-01

    The Actinide Burner Test Reactor (ABTR) is envisioned as a sodium-cooled, fast reactor that will burn the actinides generated in light water reactors to reduce nuclear waste and ease proliferation concerns. The RELAP5-3D computer code is being considered as the thermal-hydraulic system code to support the development of the ABTR. An evaluation was performed to determine the applicability of RELAP5-3D for the analysis of a sodium-cooled fast reactor. The applicability evaluation consisted of several steps, including identifying the important transients and phenomena expected in the ABTR, identifying the models and correlations that affect the code’s calculation of the important phenomena, and evaluating the applicability of the important models and correlations for calculating the important phenomena expected in the ABTR. The applicability evaluation identified code improvements and additional models needed to simulate the ABTR. The accuracy of the calculated thermodynamic and transport properties for sodium was also evaluated.

  19. Sensor for Individual Burner Control of Coal Firing Rate, Fuel-Air Ratio and Coal Fineness Correlation

    SciTech Connect

    R. Demler

    2006-04-01

    Accurate, cost-efficient monitoring instrumentation has long been considered essential to the operation of power plants. Nonetheless, for the monitoring of coal flow, such instrumentation has been sorely lacking and technically difficult to achieve. With more than half of the electrical power in the United States currently supplied by coal, energy generated by this resource is critical to the US economy. The demand for improvement in this area has only increased as a result of the following two situations: First, deregulation has produced a heightened demand for both reduced electrical cost and improved grid connectivity. Second, environmental concerns have simultaneously resulted in a need for both increased efficiency and reduced carbon and NOx emissions. A potential approach to addressing both these needs would be improvement in the area of combustion control. This would result in a better heat rate, reduced unburned carbon in ash, and reduced NOx emissions. However, before feedback control can be implemented, the ability to monitor coal flow to the burners in real-time must be established. While there are several ''commercially available'' products for real-time coal flow measurement, power plant personnel are highly skeptical about the accuracy and longevity of these systems in their current state of development. In fact, following several demonstration projects of in-situ coal flow measurement systems in full scale utility boilers, it became obvious that there were still many unknown influences on these instruments during field applications. Due to the operational environment of the power plant, it has been difficult if not impossible to sort out what parameters could be influencing the various probe technologies. Additionally, it has been recognized for some time that little is known regarding the performance of coal flow splitters, even where rifflers are employed. Often the coal flow distribution from these splitters remains mal-distributed. There have

  20. Chemical and toxicological characterization of residential oil burner emissions: I. Yields and chemical characterization of extractables from combustion of No. 2 fuel oil at different Bacharach Smoke Numbers and firing cycles.

    PubMed Central

    Leary, J A; Biemann, K; Lafleur, A L; Kruzel, E L; Prado, G P; Longwell, J P; Peters, W A

    1987-01-01

    Particulates and complex organic mixtures were sampled from the exhaust of a flame retention head residential oil burner combusting No. 2 fuel oil at three firing conditions: continuous at Bacharach Smoke No. 1, and cyclic (5 min on, 10 min off) at Smoke Nos. 1 and 5. The complex mixtures were recovered by successive Soxhlet extraction of filtered particulates and XAD-2 sorbent resin with methylene chloride (DCM) and then methanol (MeOH). Bacterial mutagenicity [see Paper II (8)] was found in the DCM extractables. Samples of DCM extracts from the two cyclic firing conditions and of the raw fuel were separated by gravity column chromatography on alumina. The resulting fractions were further characterized by a range of instrumental methods. Average yields of both unextracted particulates and of DCM extractables, normalized to a basis of per unit weight of fuel fired, were lower for continuous firing than for cyclic firing. For cyclic firing, decreasing the smoke number lowered the particulates emissions but only slightly reduced the average yield of DCM extractables. These and similar observations, here reported for two other oil burners, show that adjusting the burner to a lower smoke number has little effect on, or may actually increase, emissions of organic extractables of potential public health interest. Modifications of the burner firing cycle aimed at approaching continuous operation offer promise for reducing the amount of complex organic emissions. Unburned fuel accounted for roughly half of the DCM extractables from cyclic firing of the flame retention head burner at high and low smoke number. Large (i.e., greater than 3 ring) polycyclic aromatic hydrocarbons (PAH) were not observed in the DCM extractables from cyclic firing. However, nitroaromatics, typified by alkylated nitronaphthalenes, alkyl-nitrobiphenyls, and alkyl-nitrophenanthrenes were found in a minor subfraction containing a significant portion of the total mutagenic activity of the cyclic low

  1. Low pressure high speed Stirling air engine. Final technical report

    SciTech Connect

    Ross, M.A.

    1980-06-16

    The purpose of this project was to design, construct and test a simple, appropriate technology low pressure, high speed, wood-fired Stirling air engine of 100 W output. The final design was a concentric piston/displacer engine of 454 in. bore and 1 in. stroke with a rhombic drive mechanism. The project engine was ultimately completed and tested, using a propane burner for all tests as a matter of convenience. The 100 W aim was exceeded, at atmospheric pressure, over a wide range of engine speed with the maximum power being 112 W at 1150 rpm. A pressure can was constructed to permit pressurization; however the grant funds were running out, and the only pressurized power test attempted was unsuccessful due to seal difficulties. This was a disappointment because numerous tests on the 4 cubic inch engine suggested power would be more than doubled with pressurization at 25 psig. A manifold was designed and constructed to permit operation of the engine over a standard No. 40 pot bellied stove. The engine was run successfully, but at reduced speed and power, over this stove. The project engine started out being rather noisy in operation, but modifications ultimately resulted in a very quiet engine. Various other difficulties and their solutions also are discussed. (LCL)

  2. PASSIVE CONTROL OF PARTICLE DISPERSION IN A PARTICLE-LADEN CIRCULAR JET USING ELLIPTIC CO-ANNULAR FLOW: A MEANS FOR IMPROVING UTILIZATION AND EMISSION REDUCTIONS IN PULVERIZED COAL BURNER

    SciTech Connect

    Ahsan R. Choudhuri

    2003-06-01

    A passive control technology utilizing elliptic co-flow to control the particle flinging and particle dispersion in a particle (coal)-laden flow was investigated using experimental and numerical techniques. Preferential concentration of particles occurs in particle-laden jets used in pulverized coal burner and causes uncontrollable NO{sub x} formation due to inhomogeneous local stoichiometry. This particular project was aimed at characterizing the near-field flow behavior of elliptic coaxial jets. The knowledge gained from the project will serve as the basis of further investigation on fluid-particle interactions in an asymmetric coaxial jet flow-field and thus is important to improve the design of pulverized coal burners where non-homogeneity of particle concentration causes increased NO{sub x} formation.

  3. Final Technical Report

    SciTech Connect

    Schuur, Edward; Luo, Yiqi

    2016-12-01

    This final grant report is a continuation of the final grant report submitted for DE-SC0006982 as the Principle Investigator (Schuur) relocated from the University of Florida to Northern Arizona University. This report summarizes the original project goals, as well as includes new project activities that were completed in the final period of the project.

  4. Economic Analyiss of "Symbiotic" Light Water Reactor/Fast Burner Reactor Fuel Cycles Proposed as Part of the U.S. Advanced Fuel Cycle Initiative (AFCI)

    SciTech Connect

    Williams, Kent Alan; Shropshire, David E.

    2009-01-01

    A spreadsheet-based 'static equilibrium' economic analysis was performed for three nuclear fuel cycle scenarios, each designed for 100 GWe-years of electrical generation annually: (1) a 'once-through' fuel cycle based on 100% LWRs fueled by standard UO2 fuel assemblies with all used fuel destined for geologic repository emplacement, (2) a 'single-tier recycle' scenario involving multiple fast burner reactors (37% of generation) accepting actinides (Pu,Np,Am,Cm) from the reprocessing of used fuel from the uranium-fueled LWR fleet (63% of generation), and (3) a 'two-tier' 'thermal+fast' recycle scenario where co-extracted U,Pu from the reprocessing of used fuel from the uranium-fueled part of the LWR fleet (66% of generation) is recycled once as full-core LWR MOX fuel (8% of generation), with the LWR MOX used fuel being reprocessed and all actinide products from both UO2 and MOX used fuel reprocessing being introduced into the closed fast burner reactor (26% of generation) fuel cycle. The latter two 'closed' fuel cycles, which involve symbiotic use of both thermal and fast reactors, have the advantages of lower natural uranium requirements per kilowatt-hour generated and less geologic repository space per kilowatt-hour as compared to the 'once-through' cycle. The overall fuel cycle cost in terms of $ per megawatt-hr of generation, however, for the closed cycles is 15% (single tier) to 29% (two-tier) higher than for the once-through cycle, based on 'expected values' from an uncertainty analysis using triangular distributions for the unit costs for each required step of the fuel cycle. (The fuel cycle cost does not include the levelized reactor life cycle costs.) Since fuel cycle costs are a relatively small percentage (10 to 20%) of the overall busbar cost (LUEC or 'levelized unit electricity cost') of nuclear power generation, this fuel cycle cost increase should not have a highly deleterious effect on the competitiveness of nuclear power. If the reactor life cycle

  5. Dilute Oxygen Combustion Phase 2 Final Report

    SciTech Connect

    Ryan, H.M.; Riley, M.F.; Kobayashi, H.

    2005-09-30

    A novel burner, in which fuel (natural gas) and oxidant (oxygen or air) are separately injected into a furnace, shows promise for achieving very low nitrogen oxide(s) (NOx) emissions for commercial furnace applications. The dilute oxygen combustion (DOC) burner achieves very low NOx through in-furnace dilution of the oxidant stream prior to combustion, resulting in low flame temperatures, thus inhibiting thermal NOx production. The results of a fundamental and applied research effort on the development of the DOC burner are presented. In addition, the results of a market survey detailing the potential commercial impact of the DOC system are disclosed. The fundamental aspects of the burner development project involved examining the flame characteristics of a natural gas turbulent jet in a high-temperature (~1366 K) oxidant (7-27% O2 vol. wet). Specifically, the mass entrainment rate, the flame lift-off height, the velocity field and major species field of the jet were evaluated as a function of surrounding-gas temperature and composition. The measured entrainment rate of the fuel jet decreased with increasing oxygen content in the surrounding high-temperature oxidant, and was well represented by the d+ scaling correlation found in the literature. The measured flame lift-off height decreased with increasing oxygen content and increasing temperature of the surrounding gas. An increase in surrounding-gas oxygen content and/or temperature inhibited the velocity decay within the jet periphery as a function of axial distance as compared to isothermal turbulent jets. However, the velocity measurements were only broadly represented by the d+ scaling correlation. Several DOC burner configurations were tested in a laboratory-scale furnace at a nominal firing rate of 185 kW (~0.63 MMBtu/h). The flue gas composition was recorded as a function of furnace nitrogen content, furnace temperature, burner geometric arrangement, firing rate, and fuel injection velocity. NOx emissions

  6. Dilute Oxygen Combustion Phase I Final Report

    SciTech Connect

    Ryan, H.M.; Riley, M.F.; Kobayashi, H.

    1997-10-31

    A novel burner, in which fuel (natural gas) and oxidant (oxygen or air) are separately injected into a furnace, shows promise for achieving very low nitrogen oxide(s) (NOx) emissions for commercial furnace applications. The dilute oxygen combustion (DOC) burner achieves very low NOx through in-furnace dilution of the oxidant stream prior to combustion, resulting in low flame temperatures, thus inhibiting thermal NOx production. The results of a fundamental and applied research effort on the development of the DOC burner are presented. In addition, the results of a market survey detailing the potential commercial impact of the DOC system are disclosed. The fundamental aspects of the burner development project involved examining the flame characteristics of a natural gas turbulent jet in a high-temperature (~1366 K) oxidant (7-27% O2 vol. wet). Specifically, the mass entrainment rate, the flame lift-off height, the velocity field and major species field of the jet were evaluated as a function of surrounding-gas temperature and composition. The measured entrainment rate of the fuel jet decreased with increasing oxygen content in the surrounding high-temperature oxidant, and was well represented by the d+ scaling correlation found in the literature. The measured flame lift-off height decreased with increasing oxygen content and increasing temperature of the surrounding gas. An increase in surrounding-gas oxygen content and/or temperature inhibited the velocity decay within the jet periphery as a function of axial distance as compared to isothermal turbulent jets. However, the velocity measurements were only broadly represented by the d+ scaling correlation. Several DOC burner configurations were tested in a laboratory-scale furnace at a nominal firing rate of 185 kW (~0.63 MMBtu/h). The flue gas composition was recorded as a function of furnace nitrogen content, furnace temperature, burner geometric arrangement, firing rate, and fuel injection velocity. NOx emissions

  7. Effect of thermal cycling in a Mach 0.3 burner rig on properties and structure of directionally solidified gamma/gamma prime-delta eutectic

    NASA Technical Reports Server (NTRS)

    Gray, H. R.; Sanders, W. A.

    1976-01-01

    An experimental study was carried out to evaluate the effect of cyclic thermal exposures on the mechanical properties of a gamma/gamma prime-delta eutectic alloy parallel to the growth direction. The alloy had a nominal composition by weight of Ni-20 Nb-6 Cr-2.5 Al and was directionally solidified at 3 cm/hr in a furnace with a thermal gradient of at least 200 C/cm. Bars of the alloy were exposed in a Mach 0.3 burner rig and cycled 300 times between 1100 and 425 C. Oxidation-erosion characteristics of the alloy were determined by weight loss measurements at 300-cycle intervals. After cyclic exposure, stress rupture and tensile tests were performed at both 760 and 1040 C. Microstructural changes from cyclic exposure were determined. Thermal cycling resulted in gamma prime coarsening and Widmanstaetten delta precipitation in the gamma phase. An unidentified precipitate, presumably gamma prime, was observed within the delta phase. These microstructural changes did not affect the mechanical properties of the eutectic. High oxidation-erosion weight loss rate was observed.

  8. Phosphor bonding studies---burner-rig endurance test. [Bonding of Y/sub 2/O/sub 3/:Eu to turbine blades and vanes

    SciTech Connect

    Beshears, D.L.; Henson, H.M.; Henson, T.J.; Bridges, M.J.; Sadler, R.M.; Cyr, M.A.

    1988-07-01

    This report evaluates two different coating techniques for bonding the thermographic phosphor, europium-doped yttrium oxide (Y/sub 2/O/sub 3/:Eu), to nickel- and cobalt-based high-temperature alloys used in jet engine turbine blades and vanes. The refractory Y/sub 2/O/sub 3/:Eu is suitable for high-temperature surface thermometry when excited by an ultraviolet laser. The fluorescence lifetime of the 611-nm emission has a logarithmic temperature dependence from /approximately/700/degree/C to beyond 1000/degree/C, making it suitable for use as a noncontact temperature-monitoring technique for high-speed, high-temperature turbine engine components. Electron-beam deposition and the plasma-spray coating techniques were used to bond the Y/sub 2/O/sub 3/:Eu to standard Pratt and Whitney turbine blades and vanes. The coated blade and vane samples were then subjected to a standard-burner rig-endurance test for 8 h with a gas temperature of 1525/degree/C. It was concluded that both coating techniques can provide suitable coatings for use in an operating jet turbine engine for the measurement of turbine component temperatures. 41 figs.

  9. Effect of fuel to air ratio on Mach 0.3 burner rig hot corrosion of ZrO2-Y2O3 thermal barrier coatings

    NASA Technical Reports Server (NTRS)

    Hodge, P. E.

    1982-01-01

    A Mach 0.3 burner rig test program was conducted to determine how the fuel to air mass ratio affects the durability of ZrO2-Y2O3/Ni-16Cr-6Al-0.31Y thermal barrier coating systems in combustion products containing 5 ppm Na and 2 ppm V. As the fuel to air mass ratio was increased from 0.039 to 0.049, the durability of ZrO2-6Y2O3, ZrO2-8Y2O3 and ZrO2-12Y2O3 coatings decreased. ZrO2-8Y2O3 coatings were approximately 2X and 1.3X more durable than ZrO2-12Y2O3 and ZrO2-6Y2O3 coatings respectively at the fuel to air mass ratio of 0.039. The number of one hour cycles endured by ZrO2-8Y2O3 coatings varied from averages of 53 to 200 for the fuel to air mass ratios of 0.049 and 0.039, respectively. At the fuel to air mass ratio of 0.049, all ZrO2-Y2O3 coated specimens failed in 40 to 60 one hour cycles

  10. Sodium sulfate-induced corrosion of pure nickel and superalloy Udimet 700 in a high velocity burner rig at 900 C

    NASA Technical Reports Server (NTRS)

    Misra, A. K.

    1987-01-01

    Sodium sulfate-induced corrosion of pure nickel and a commercial nickel-base superalloy, Udimet 700 (U-700), were studied at 900 C in a Mach 0.3 burner rig with different Na levels in the combustor. The corrosion rate of Ni was independent of the Na level in the combustor and considerably lower than that measured in laboratory salt spray tests. The lower rates are associated with the deposition of only a small amount of Na2SO4 on the surface of the NiO scale. Corrosion of U-700 was observed to occur in two stages. During the first stage, the corrosion proceeds by reaction of Cr2O3 scale with the Na2SO4 and evaporation of the Na2CrO4 reaction product from the surface of the corroding sample. Cr depletion in the alloy occurs and small sulfide particles are formed in the Cr depletion zone. Extensive sulfidation occurs during the second state of corrosion, and a thick scale forms. The relationship between the corrosion rate of U-700 and the Na level in the combustor gives a good correlation in the range of 0.3 to 1.5 ppm by weight Na. Very low levels of Na in the combustor cause accelerated oxidation of U-700 without producing the typical hot corrosion morphology.

  11. Vet Centers. Final rule.

    PubMed

    2016-03-02

    The Department of Veterans Affairs (VA) adopts as final an interim final rule that amends its medical regulation that governs Vet Center services. The National Defense Authorization Act for Fiscal Year 2013 (the 2013 Act) requires Vet Centers to provide readjustment counseling services to broader groups of veterans, members of the Armed Forces, including a member of a reserve component of the Armed Forces, and family members of such veterans and members. This final rule adopts as final the regulatory criteria to conform to the 2013 Act, to include new and revised definitions.

  12. Cassini's Grand Finale: The Final Orbits

    NASA Astrophysics Data System (ADS)

    Spilker, Linda; Edgington, Scott

    2016-04-01

    The Cassini-Huygens mission, a joint collaboration between NASA, ESA and the Italian Space Agency, is approaching its last year of operations after nearly 12 years in orbit around Saturn. Cassini will send back its final bits of unique data on September 15th, 2017 as it plunges into Saturn's atmosphere, vaporizing and satisfying planetary protection requirements. Before that time Cassini will continue its legacy of exploration and discovery with 12 close flybys of Titan in 2016 and 2017 that will return new science data as well as sculpt the inclinations and periods of the final orbits. Even though all of our close icy satellite flybys, including those of Enceladus, are now completed, numerous Voyager-class flybys (<100,000 km) of Mimas and Enceladus remain as well as some of our best flybys of the tiny ring moons. Cassini will also continue to study seasonal and temporal changes in the system as northern summer solstice approaches. In November 2016 Cassini will transition to a series of orbits with peripases just outside Saturn's F ring. These 20 orbits will include close flybys of some tiny ring moons and excellent views of the F ring and outer A ring. The 126th and final close flyby of Titan will propel Cassini across Saturn's main rings and into its final orbits. Cassini's Grand Finale, starting in April 2017, is comprised of 22 orbits at an inclination of 63 degrees. Cassini will repeatedly dive between the innermost rings and the upper atmosphere of the planet providing insights into fundamental questions unattainable during the rest of the mission. Cassini will be the first spacecraft to explore this region. These close orbits provide the highest resolution observations of both the rings and Saturn, and direct in situ sampling of the ring particles, composition, plasma, Saturn's exosphere and the innermost radiation belts. Saturn's gravitational field will be measured to unprecedented accuracy, providing information on the interior structure of the planet

  13. Endeavour's Final Voyage

    NASA Video Gallery

    After nearly two decades of achievements in space, Endeavour makes one last reach for the stars on its 25th and final mission, STS-134. This webcast examines the mission to come and explores the st...

  14. Final focus nomenclature

    SciTech Connect

    Erickson, R.

    1986-08-08

    The formal names and common names for all devices in the final focus system of the SLC are listed. The formal names consist of a device type designator, microprocessor designator, and a four-digit unit number. (LEW)

  15. Final focus test beam

    SciTech Connect

    Not Available

    1991-03-01

    This report discusses the following: the Final Focus Test Beam Project; optical design; magnets; instrumentation; magnetic measurement and BPM calibration; mechanical alignment and stabilization; vacuum system; power supplies; control system; radiation shielding and personnel protection; infrastructure; and administration.

  16. Expedition 34 Final Training

    NASA Video Gallery

    The Expedition 34 crew members conduct final training at the Gagarin Cosmonaut Training Center before their Dec. 19 launch to the International Space Station. Flight Engineers Chris Hadfield, Roman...

  17. Experimental study of the E( m, λ)/ E( m, 1064) ratio as a function of wavelength, fuel type, height above the burner and temperature

    NASA Astrophysics Data System (ADS)

    Bejaoui, S.; Lemaire, R.; Desgroux, P.; Therssen, E.

    2014-08-01

    The optical properties of soot have been studied for many years with a particular attention focused on refractive index. In the present study, the two-excitation wavelength laser-induced incandescence technique has been applied to determine the ratio of the soot absorption function as a function of the wavelength. The advantage of this technique is to provide the determination of the E( m) ratio using a non-intrusive laser-based method without being disturbed by scattering. Measurements have been carried out in a methane premixed flat flame and in a diesel turbulent spray one. Four pairs of wavelength have been used to evaluate the spectral behavior of E( m) ratios from ultraviolet (UV) to near infrared (NIR). The two-excitation wavelength LII method implies heating soot the same way using two different laser excitations. Particular operating conditions must be selected to insure the equality of the LII signals, such an equality being necessary to derive the E( m) ratio. A laser excitation at 1064 nm has been chosen as a reference, and the obtained results have been compared with those issued from the use of UV and visible wavelengths of 266, 355, 532 and 660 nm. Results show a significant decrease of the E( m) ratio from UV to visible while it tends to become constant from 532 nm to NIR. The use of different experimental conditions allows to analyze the dependence of the E( m) ratios with the height above the burner, the fuel type and the soot temperature. No significant influence of these parameters has been pointed out on the relative E( m) values determined in the flame conditions investigated here.

  18. New NLC Final Focus

    SciTech Connect

    Raimondi, P.

    2004-10-11

    A novel design of the Final Focus has recently been proposed [1] and has been adopted now for the Next Linear Collider [2]. This new design has fewer optical elements and is much shorter, nonetheless achieving better chromatic properties. In this paper, the new final focus system is briefly discussed stressing one particular characteristic of the new design--its multi TeV energy reach.

  19. Data breaches. Final rule.

    PubMed

    2008-04-11

    This document adopts, without change, the interim final rule that was published in the Federal Register on June 22, 2007, addressing data breaches of sensitive personal information that is processed or maintained by the Department of Veterans Affairs (VA). This final rule implements certain provisions of the Veterans Benefits, Health Care, and Information Technology Act of 2006. The regulations prescribe the mechanisms for taking action in response to a data breach of sensitive personal information.

  20. Final Prep on SSME

    NASA Technical Reports Server (NTRS)

    2005-01-01

    Alvin Pittman Sr., lead electronics technician with Pratt & Whitney Rocketdyne, and Janine Cuevas, a mechanical technician with PWR, perform final preparations on the space shuttle main engine tested Oct. 25, 2005, at NASA's Stennis Space Center. It was the first main engine test since Hurricane Katrina hit the Gulf Coast on Aug. 29.

  1. Final Technical Report

    SciTech Connect

    Gilbert, Chris

    2014-11-13

    The project, Capital Investment to Fund Equipment Purchases and Facility Modifications to Create a Sustainable Future for EnergyXchange served to replace landfill gas energy with alternative energy resources, primarily solar and wood waste. This is the final project closeout report.

  2. GENIE final state interactions

    SciTech Connect

    Dytman, Steven

    2015-10-15

    Final state interactions are an important component of any neutrino-nucleus Monte Carlo program. GENIE has 2 FSI programs which serve different purposes. Each has fair-good agreement with a wide range of hadron-nucleus data. Recent improvements and planned advancements are described.

  3. Rosetta: The Final Furlong

    NASA Astrophysics Data System (ADS)

    Wright, I. P.; Andrews, D. J.; Barber, S. J.; Sheridan, S.; Morgan, G. H.; Morse, A. D.

    2014-09-01

    By the time of the meeting, the Rosetta spacecraft will have formally arrived at its target comet, and final landing site selection will be in progress. One of the instruments that will be sent down to the surface of the comet is Ptolemy (a GC-MS).

  4. Influence of staged-air on airflow, combustion characteristics and NO(x) emissions of a down-fired pulverized-coal 300 MW(e) utility boiler with direct flow split burners.

    PubMed

    Li, Zhengqi; Kuang, Min; Zhang, Jia; Han, Yunfeng; Zhu, Qunyi; Yang, Lianjie; Kong, Weiguang

    2010-02-01

    Cold airflow experiments were conducted to investigate the aerodynamic field in a small-scale furnace of a down-fired pulverized-coal 300 MW(e) utility boiler arranged with direct flow split burners enriched by cyclones. By increasing the staged-air ratio, a deflected flow field appeared in the lower furnace; larger staged-air ratios produced larger deflections. Industrial-sized experiments on a full-scale boiler were also performed at different staged-air damper openings with measurements taken of gas temperatures in the burner region and near the right-side wall, wall heat fluxes, and gas components (O(2), CO, and NO(x)) in the near-wall region. Combustion was unstable at staged-air damper openings below 30%. For openings of 30% and 40%, late ignition of the pulverized coal developed and large differences arose in gas temperatures and heat fluxes between the regions near the front and rear walls. In conjunction, carbon content in the fly ash was high and boiler efficiency was low with high NO(x) emission above 1200 mg/m(3) (at 6% O(2) dry). For fully open dampers, differences in gas temperatures and heat fluxes, carbon in fly ash and NO(x) emission decreased yielding an increase in boiler efficiency. The optimal setting is fully open staged-air dampers.

  5. Final Technical Report

    SciTech Connect

    Maxwell, Mike, J., P.E.

    2012-08-30

    The STI product is the Final Technical Report from ReliOn, Inc. for contract award DE-EE0000487: Recovery Act PEM Fuel Cell Systems Providing Emergency Reserve and Backup Power. The program covered the turnkey deployment of 431 ReliOn fuel cell systems at 189 individual sites for AT&T and PG&E with ReliOn functioning as the primary equipment supplier and the project manager. The Final Technical Report provides an executive level summary, a comparison of the actual accomplishments vs. the goals and objectives of the project, as well as a summary of the project activity from the contract award date of August 1, 2009 through the contract expiration date of December 31, 2011. Two photos are included in the body of the report which show hydrogen storage and bulk hydrogen refueling technologies developed as a result of this program.

  6. Geolocation Technologies Final Report

    SciTech Connect

    Magnoli, D E

    2003-06-02

    This paper is the final report for LL998 In Situ Sensing Subtask 7 (Geo-location) undertaken for NNSA NA-22 enabling technologies R&D for Counterproliferation Detection. A few state-of-the-art resolution parameters are presented for accelerometers, indoor and outdoor GPS (Global Positioning Satellite) systems, and INSs (Inertial Navigation Systems). New technologies are described, including one which has demonstrated the ability to track within a building to a resolution of under a foot.

  7. Argonne Liquid-Metal Advanced Burner Reactor : components and in-vessel system thermal-hydraulic research and testing experience - pathway forward.

    SciTech Connect

    Kasza, K.; Grandy, C.; Chang, Y.; Khalil, H.; Nuclear Engineering Division

    2007-06-30

    This white paper provides an overview and status report of the thermal-hydraulic nuclear research and development, both experimental and computational, conducted predominantly at Argonne National Laboratory. Argonne from the early 1970s through the early 1990s was the Department of Energy's (DOE's) lead lab for thermal-hydraulic development of Liquid Metal Reactors (LMRs). During the 1970s and into the mid-1980s, Argonne conducted thermal-hydraulic studies and experiments on individual reactor components supporting the Experimental Breeder Reactor-II (EBR-II), Fast Flux Test Facility (FFTF), and the Clinch River Breeder Reactor (CRBR). From the mid-1980s and into the early 1990s, Argonne conducted studies on phenomena related to forced- and natural-convection thermal buoyancy in complete in-vessel models of the General Electric (GE) Prototype Reactor Inherently Safe Module (PRISM) and Rockwell International (RI) Sodium Advanced Fast Reactor (SAFR). These two reactor initiatives involved Argonne working closely with U.S. industry and DOE. This paper describes the very important impact of thermal hydraulics dominated by thermal buoyancy forces on reactor global operation and on the behavior/performance of individual components during postulated off-normal accident events with low flow. Utilizing Argonne's LMR expertise and design knowledge is vital to the further development of safe, reliable, and high-performance LMRs. Argonne believes there remains an important need for continued research and development on thermal-hydraulic design in support of DOE's and the international community's renewed thrust for developing and demonstrating the Global Nuclear Energy Partnership (GNEP) reactor(s) and the associated Argonne Liquid Metal-Advanced Burner Reactor (LM-ABR). This white paper highlights that further understanding is needed regarding reactor design under coolant low-flow events. These safety-related events are associated with the transition from normal high

  8. Confessions of a Book Burner

    ERIC Educational Resources Information Center

    McGough, Kris

    1977-01-01

    Discusses the influence of textbooks on student attitudes and the right of parents to participate in textbook selection. Controversy over parental participation in one school system is described. (Author/DB)

  9. Final Technical Report

    SciTech Connect

    Sobecky, Patricia A; Taillefert, Martial

    2013-03-29

    This final technical report describes results and findings from a research project to examine the role of microbial phosphohydrolase enzymes in naturally occurring subsurface microorganisms for the purpose of promoting the immobilization of the radionuclide uranium through the production of insoluble uranium phosphate minerals. The research project investigated the microbial mechanisms and the physical and chemical processes promoting uranium biomineralization and sequestration in oxygenated subsurface soils. Uranium biomineralization under aerobic conditions can provide a secondary biobarrier strategy to immobilize radionuclides should the metal precipitates formed by microbial dissimilatory mechanisms remobilize due to a change in redox state.

  10. Prometheus Project final report

    NASA Technical Reports Server (NTRS)

    Taylor, Randall

    2005-01-01

    This Final Report serves as an executive summary of the Prometheus Project's activities and deliverables from November 2002 through September 2005. It focuses on the challenges from a technical and management perspective, what was different and innovative about this project, and identifies the major options, decisions, and accomplishments of the Project team as a whole. However, the details of the activities performed by DOE NR and its contractors will be documented separately in accordance with closeout requirements of the DOE NR and consistent with agreements between NASA and NR.

  11. Service dogs. Final rule.

    PubMed

    2012-09-05

    The Department of Veterans Affairs (VA) amends its regulations concerning veterans in need of service dogs. Under this final rule, VA will provide to veterans with visual, hearing, or mobility impairments benefits to support the use of a service dog as part of the management of such impairments. The benefits include assistance with veterinary care, travel benefits associated with obtaining and training a dog, and the provision, maintenance, and replacement of hardware required for the dog to perform the tasks necessary to assist such veterans.

  12. STS 65 Final Report

    NASA Technical Reports Server (NTRS)

    Rice, James E.

    1996-01-01

    The report is organized into sections representing the phases of work performed in analyzing the STS 65 results and preparing the instrument for STS 73. Section 1 briefly outlines the Orbital Acceleration Research Experiment (OARE) system features, coordinates, and measurement parameters. Section 2 describes the results from STS 65. The mission description, data calibration, and representative data obtained on STS 65 are presented. Also, the anomalous performance of OARE on STS 65 is discussed. Finally, Section 3 presents a discussion of accuracy achieved and achievable with OARE.

  13. Cosmology Without Finality

    NASA Astrophysics Data System (ADS)

    Mahootian, F.

    2009-12-01

    The rapid convergence of advancing sensor technology, computational power, and knowledge discovery techniques over the past decade has brought unprecedented volumes of astronomical data together with unprecedented capabilities of data assimilation and analysis. A key result is that a new, data-driven "observational-inductive'' framework for scientific inquiry is taking shape and proving viable. The anticipated rise in data flow and processing power will have profound effects, e.g., confirmations and disconfirmations of existing theoretical claims both for and against the big bang model. But beyond enabling new discoveries can new data-driven frameworks of scientific inquiry reshape the epistemic ideals of science? The history of physics offers a comparison. The Bohr-Einstein debate over the "completeness'' of quantum mechanics centered on a question of ideals: what counts as science? We briefly examine lessons from that episode and pose questions about their applicability to cosmology. If the history of 20th century physics is any indication, the abandonment of absolutes (e.g., space, time, simultaneity, continuity, determinacy) can produce fundamental changes in understanding. The classical ideal of science, operative in both physics and cosmology, descends from the European Enlightenment. This ideal has for over 200 years guided science to seek the ultimate order of nature, to pursue the absolute theory, the "theory of everything.'' But now that we have new models of scientific inquiry powered by new technologies and driven more by data than by theory, it is time, finally, to relinquish dreams of a "final'' theory.

  14. Final Technical Report

    SciTech Connect

    John Tanis

    2005-11-25

    This document comprises the final technical report for atomic collisions research supported by DOE grant No. DE-FG02-87ER13778 from September 1, 2001 through August 31, 2004. The research involved the experimental investigation of excitation and charge-changing processes occurring in ion-atom and ion-molecule collisions. Major emphases of the study were: (1) interference effects resulting from coherent electron emission in H2, (2) production of doubly vacant K-shell (hollow ion) states due to electron correlation, and (3) formation of long-lived metastable states in electron transfer processes. During the period of the grant, this research resulted in 23 publications, 12 invited presentations, and 39 contributed presentations at national and international meetings and other institutions. Brief summaries of the completed research are presented below.

  15. Final reduction gear apparatus

    SciTech Connect

    Yasui, Y.; Hori, H.

    1987-04-21

    A final reduction gear apparatus is described comprising: a differential carrier which houses a gear assembly; an oil seal attached to a side gear shaft opening in the differential carrier, the oil seal having a main lip which may contact a periphery of a side gear shaft; and a guide member located outside of the oil seal at the side gear shaft opening, the guide member being formed as a member separate from the oil seal, the guide member having a slightly larger inner diameter than that of the main lip of the oil seal, and having guide surface concentric to the main lip, wherein 1/2 of the difference between the inner diameter of the guide member and the inner diameter of the main lip of the oil seal is within the limit of the elastic deformability of the main lip.

  16. FINAL/ SCIENTIFIC TECHNICAL REPORT

    SciTech Connect

    McDonald, Henry; Singh, Suminderpal

    2006-08-28

    The overall objective of the Chattanooga fuel cell demonstrations project was to develop and demonstrate a prototype 5-kW grid-parallel, solid oxide fuel cell (SOFC) system that co-produces hydrogen, based on Ion America’s technology. The commercial viability of the 5kW SOFC system was tested by transporting, installing and commissioning the SOFC system at the Alternative Energy Laboratory at the University of Tennessee – Chattanooga. The system also demonstrated the efficiency and the reliability of the system running on natural gas. This project successfully contributed to the achievement of DOE technology validation milestones from the Technology Validation section of the Hydrogen, Fuel Cells and Infrastructure Technologies Program Multi-Year Research, Development and Demonstration Plan. Results of the project can be found in the final technical report.

  17. Final Technical Report

    SciTech Connect

    Klein, Stephen A.

    2003-06-23

    In this final technical report, a summary of work is provided. Concepts were developed for a new statistical cloud parameterization suitable for inclusion into global climate models. These concepts were evaluated by comparison to ARM data and data from cloud resolving models driven by ARM data. The purpose of this grant was to develop a new cloud parameterization for the global climate model of the Geophysical Fluid Dynamics Laboratory (GFDL) of the National Oceanic and Atmospheric Administration (NOAA). Note that uncertainties in cloud parameterizations are a key reason why prediction of climate change from climate models remain unacceptably uncertain. To develop the parameterizations, the observations and models provided by the Department of Energy's Atmospheric Radiation Measurement (ARM) program were analyzed and used.

  18. Final Scientific EFNUDAT Workshop

    ScienceCinema

    None

    2016-07-12

    The Final Scientific EFNUDAT Workshop - organized by the CERN/EN-STI group on behalf of n_TOF Collaboration - will be held at CERN, Geneva (Switzerland) from 30 August to 2 September 2010 inclusive.EFNUDAT website: http://www.efnudat.euTopics of interest include: Data evaluationCross section measurementsExperimental techniquesUncertainties and covariancesFission propertiesCurrent and future facilities  International Advisory Committee: C. Barreau (CENBG, France)T. Belgya (IKI KFKI, Hungary)E. Gonzalez (CIEMAT, Spain)F. Gunsing (CEA, France)F.-J. Hambsch (IRMM, Belgium)A. Junghans (FZD, Germany)R. Nolte (PTB, Germany)S. Pomp (TSL UU, Sweden) Workshop Organizing Committee: Enrico Chiaveri (Chairman)Marco CalvianiSamuel AndriamonjeEric BerthoumieuxCarlos GuerreroRoberto LositoVasilis Vlachoudis Workshop Assistant: Géraldine Jean

  19. Final Progress Report

    SciTech Connect

    Josef Michl

    2011-10-31

    In this project we have established guidelines for the design on organic chromophores suitable for producing high triplet yields via singlet fission. We have proven their utility by identifying a chromophore of a structural class that had never been examined for singlet fission before, 1,3-diphenylisobenzofuran, and demonstrating in two independent ways that a thin layer of this material produces a triplet yield of 200% within experimental error. We have also designed a second chromophore of a very different type, again of a structural class that had not been examined for singlet fission before, and found that in a thin layer it produces a 70% triplet yield. Finally, we have enhanced the theoretical understanding of the quantum mechanical nature of the singlet fission process.

  20. Final cook temperature monitoring

    NASA Astrophysics Data System (ADS)

    Stewart, John; Matthews, Michael; Glasco, Marc

    2006-04-01

    Fully cooked, ready-to-eat products represent one of the fastest growing markets in the meat and poultry industries. Modern meat cooking facilities typically cook chicken strips and nuggets at rates of 6000 lbs per hour, and it is a critical food safety issue to ensure the products on these lines are indeed fully cooked. Common practice now employs oven technicians to constantly measure final cook temperature with insertion-type thermocouple probes. Prior research has demonstrated that thermal imagery of chicken breasts and other products can be used to predict core temperature of products leaving an oven. In practice, implementation of a system to monitor core temperature can be difficult for several reasons. First, a wide variety of products are typically produced on the same production line and the system must adapt to all products. Second, the products can be often hard to find because they often leave the process in random order and may be touching or even overlapping. Another issue is finite measurement time which is typically only a few seconds. Finally, the system is subjected to a rigorous sanitation cycle and must hold up under wash down conditions. To address these problems, a calibrated 320x240 micro-bolometer camera was used to monitor the temperature of formed, breaded poultry products on a fully cooked production line for a period of one year. The study addressed the installation and operation of the system as well as the development of algorithms used to identify the product on a cluttered conveyor belt. It also compared the oven tech insertion probe measurements to the non-contact monitoring system performance.

  1. Final Technical Report

    SciTech Connect

    Aristos Aristidou Natureworks); Robert Kean; Tom Schechinger; Stuart Birrell; Jill Euken

    2007-10-01

    The two main objectives of this project were: 1) to develop and test technologies to harvest, transport, store, and separate corn stover to supply a clean raw material to the bioproducts industry, and 2) engineer fermentation systems to meet performance targets for lactic acid and ethanol manufacturers. Significant progress was made in testing methods to harvest corn stover in a “single pass” harvest mode (collect corn grain and stover at the same time). This is technically feasible on small scale, but additional equipment refinements will be needed to facilitate cost effective harvest on a larger scale. Transportation models were developed, which indicate that at a corn stover yield of 2.8 tons/acre and purchase price of $35/ton stover, it would be unprofitable to transport stover more than about 25 miles; thus suggesting the development of many regional collection centers. Therefore, collection centers should be located within about 30 miles of the farm, to keep transportation costs to an acceptable level. These collection centers could then potentially do some preprocessing (to fractionate or increase bulk density) and/or ship the biomass by rail or barge to the final customers. Wet storage of stover via ensilage was tested, but no clear economic advantages were evident. Wet storage eliminates fire risk, but increases the complexity of component separation and may result in a small loss of carbohydrate content (fermentation potential). A study of possible supplier-producer relationships, concluded that a “quasi-vertical” integration model would be best suited for new bioproducts industries based on stover. In this model, the relationship would involve a multiyear supply contract (processor with purchase guarantees, producer group with supply guarantees). Price will likely be fixed or calculated based on some formula (possibly a cost plus). Initial quality requirements will be specified (but subject to refinement).Producers would invest in harvest

  2. Final Technical Report

    SciTech Connect

    Alexander Fridman

    2005-06-01

    This DOE project DE-FC36-04GO14052 ''Plasma Pilot Plant Test for Treating VOC Emissions from Wood Products Plants'' was conducted by Drexel University in cooperation with Georgia-Pacific (G-P) and Kurchatov Institute (KI). The objective of this project was to test the Plasma Pilot Plant capabilities in wood industry. The final goal of the project was to replace the current state-of-the-art, regenerative thermal oxidation (RTO) technology by Low-Temperature Plasma Technology (LTPT) in paper and wood industry for Volatile Organic Components (VOC) destruction in High Volume Low Concentration (HVLC) vent emissions. MetPro Corporation joined the team as an industrial partner from the environmental control business and a potential leader for commercialization. Concurrent Technology Corporation (CTC) has a separate contract with DOE for this technology evaluation. They prepared questionnaires for comparison of this technology and RTO, and made this comparison. These data are presented in this report along with the description of the technology itself. Experiments with the pilot plant were performed with average plasma power up to 3.6 kW. Different design of the laboratory and pilot plant pulsed coronas, as well as different analytical methods revealed many new peculiarities of the VOC abatement process. The work reported herein describes the experimental results for the VOCs removal efficiency with respect to energy consumption, residence time, water effect and initial concentration.

  3. Final Technical Report

    SciTech Connect

    Dmitriy Y. Anistratov; Marvin L. Adams; Todd S. Palmer; Kord S. Smith; Kevin Clarno; Hikaru Hiruta; Razvan Nes

    2003-08-04

    OAK B202 Final Technical Report. The present generation of reactor analysis methods uses few-group nodal diffusion approximations to calculate full-core eigenvalues and power distributions. The cross sections, diffusion coefficients, and discontinuity factors (collectively called ''group constants'') in the nodal diffusion equations are parameterized as functions of many variables, ranging from the obvious (temperature, boron concentration, etc.) to the more obscure (spectral index, moderator temperature history, etc.). These group constants, and their variations as functions of the many variables, are calculated by assembly-level transport codes. The current methodology has two main weaknesses that this project addressed. The first weakness is the diffusion approximation in the full-core calculation; this can be significantly inaccurate at interfaces between different assemblies. This project used the nodal diffusion framework to implement nodal quasidiffusion equations, which can capture transport effects to an arbitrary degree of accuracy. The second weakness is in the parameterization of the group constants; current models do not always perform well, especially at interfaces between unlike assemblies. The project developed a theoretical foundation for parameterization and homogenization models and used that theory to devise improved models. The new models were extended to tabulate information that the nodal quasidiffusion equations can use to capture transport effects in full-core calculations.

  4. Final Technical Report

    SciTech Connect

    Held, Isaac; V. Balaji; Fueglistaler, Stephan

    2016-09-19

    We have constructed and analyzed a series of idealized models of tropical convection interacting with large-scale circulations, with 25-50km resolution and with 1-2km cloud resolving resolution to set the stage for rigorous tests of convection closure schemes in high resolution global climate models. Much of the focus has been on the climatology of tropical cyclogenesis in rotating systems and the related problem of the spontaneous aggregation of convection in non-rotating systems. The PI (Held) will be delivering the honorary Bjerknes lecture at the Fall 2016 AGU meeting in December on this work. We have also provided new analyses of long-standing issues related to the interaction between convection and the large-scale circulation: Kelvin waves in the upper troposphere and lower stratosphere, water vapor transport into the stratosphere, and upper tropospheric temperature trends. The results of these analyses help to improve our understanding of processes, and provide tests for future high resolution global modeling. Our final goal of testing new convections schemes in next-generation global atmospheric models at GFDL has been left for future work due to the complexity of the idealized model results meant as tests for these models uncovered in this work and to computational resource limitations. 11 papers have been published with support from this grant, 2 are in review, and another major summary paper is in preparation.

  5. Omega, the final multiplier

    NASA Astrophysics Data System (ADS)

    Buckley, T. N.

    2008-12-01

    The application of optimisation theory to vegetation processes has rarely extended beyond the context of diurnal to intra-annual gas exchange of individual leaves and crowns. One reason is that the Lagrange multipliers in the leaf-scale solutions, which are marginal products for allocatable photosynthetic resource inputs (water and nitrogen), are mysterious in origin, and their numerical values are difficult to measure -- let alone to predict or interpret in concrete physiological or ecological terms. These difficulties disappear, however, when the optimisation paradigm itself is extended to encompass carbon allocation and growth at the lifespan scale. The trajectories of leaf (and canopy) level marginal products are then implicit in the trajectory of plant and stand structure predicted by optimal carbon allocation. Furthermore, because the input and product are the same resource -- carbon -- in the whole plant optimisation, the product in one time step defines the input constraint, and hence implicitly the marginal product for carbon, in the next time step. This effectively converts the problem from a constrained optimisation of a definite integral, in which the multipliers are undetermined, to an unconstrained maximisation of a state, in which the multipliers are all implicit. This talk will explore how the marginal products for photosynthetic inputs as well as the marginal product for carbon -- i.e., the 'final multiplier,' omega -- are predicted to vary over time and in relation to environmental change during tree growth.

  6. Final Report to DOE

    SciTech Connect

    Ismail Gultepe

    2012-05-15

    This final report summarizes the accomplished goals and provide a list of the publications and presentations made during the project. The goals of the project were accomplished through the various publications submitted to Journals and presentations done at the DOE and international meetings and conferences. The 8 journal articles related to the goals of this project were accepted or submitted. The 23 presentations related to goals of the project were presented at the meetings. There were some minor changes regarding to project goals because of issues encountered during the analysis of the data. For example, a total water probe sensor mounted on the Convair-580 that can be used for defining mixed phase conditions and parameterization, had some problems to estimate magnitude of total water mass, and this resulted in issues providing an accurate parameterization for cloud fraction. Variability related aerosol number concentrations and their composition for direct and indirect effects were studied and published. Results were given to explain aerosol and ice microphysical effects on climate change studies. It is suggested that developed parameterizations should consider the variability in aerosol and ice parameters over the Arctic regions.

  7. Final Technical Report

    SciTech Connect

    Alexander Pigarov

    2012-06-05

    This is the final report for the Research Grant DE-FG02-08ER54989 'Edge Plasma Simulations in NSTX and CTF: Synergy of Lithium Coating, Non-Diffusive Anomalous Transport and Drifts'. The UCSD group including: A.Yu. Pigarov (PI), S.I. Krasheninnikov and R.D. Smirnov, was working on modeling of the impact of lithium coatings on edge plasma parameters in NSTX with the multi-species multi-fluid code UEDGE. The work was conducted in the following main areas: (i) improvements of UEDGE model for plasma-lithium interactions, (ii) understanding the physics of low-recycling divertor regime in NSTX caused by lithium pumping, (iii) study of synergistic effects with lithium coatings and non-diffusive ballooning-like cross-field transport, (iv) simulation of experimental multi-diagnostic data on edge plasma with lithium pumping in NSTX via self-consistent modeling of D-Li-C plasma with UEDGE, and (v) working-gas balance analysis. The accomplishments in these areas are given in the corresponding subsections in Section 2. Publications and presentations made under the Grant are listed in Section 3.

  8. Final Technical Report

    SciTech Connect

    Velasco, Mayda

    2013-11-01

    This work is focused on the design and construction of novel beam diagnostic and instrumentation for charged particle accelerators required for the next generation of linear colliders. Our main interest is in non-invasive techniques. The Northwestern group of Velasco has been a member of the CLIC Test Facility 3 (CTF3) collaboration since 2003, and the beam instrumentation work is developed mostly at this facility1. This 4 kW electron beam facility has a 25-170 MeV electron LINAC. CTF3 performed a set of dedicated measurements to finalize the development of our RF-Pickup bunch length detectors. The RF-pickup based on mixers was fully commissioned in 2009 and the RF-pickup based on diodes was finished in time for the 2010-11 data taking. The analysis of all the data taken in by the summer of 2010 was finish in time and presented at the main conference of the year, LINAC 2010 in Japan.

  9. Tiger LDRD final report

    SciTech Connect

    Steich, D J; Brugger, S T; Kallman, J S; White, D A

    2000-02-01

    This final report describes our efforts on the Three-Dimensional Massively Parallel CEM Technologies LDRD project (97-ERD-009). Significant need exists for more advanced time domain computational electromagnetics modeling. Bookkeeping details and modifying inflexible software constitute a vast majority of the effort required to address such needs. The required effort escalates rapidly as problem complexity increases. For example, hybrid meshes requiring hybrid numerics on massively parallel platforms (MPPs). This project attempts to alleviate the above limitations by investigating flexible abstractions for these numerical algorithms on MPPs using object-oriented methods, providing a programming environment insulating physics from bookkeeping. The three major design iterations during the project, known as TIGER-I to TIGER-III, are discussed. Each version of TIGER is briefly discussed along with lessons learned during the development and implementation. An Application Programming Interface (API) of the object-oriented interface for Tiger-III is included in three appendices. The three appendices contain the Utilities, Entity-Attribute, and Mesh libraries developed during the project. The API libraries represent a snapshot of our latest attempt at insulated the physics from the bookkeeping.

  10. Electrocatalytic hydrocracking. Final report

    SciTech Connect

    Vaart, D.R. van der

    1992-06-01

    This report describes an electrocatalytic method for the chemical addition of hydrogen to a model hydrocarbon compound. In the method, hydrogen formed by water electrolysis at the counter electrode of an electrochemical cell is delivered via conduction through a proton-conducting solid electrolyte. The working electrode of the cell is, at the same time, a hydrocracking catalyst and therefore promotes the reaction of the hydrogen with the hydrocarbon. This process would have clear and distinct advantages over conventional hydroprocessing technologies in that the hydrogen concentration at the catalyst surface could be controlled and maintained by the applied electromotive force. This control would allow operation of the electrocatalytic reactor at ambient pressures instead of the extremely high hydrogen partial pressures required of conventional reactors. In addition, the direct delivery of hydrogen to the catalyst surface should inhibit coke formation and thus prolong the life of the catalyst. Finally, hydrogen utilization efficiencies should be greatly improved since the hydrogen is delivered directly to the reaction site thereby eliminating hydrogen solubility loss in the effluent stream. This report details the demonstration of (a) the ability of a solid electrolyte to perform as a catalyst, (b) the conduction of hydrogen through a solid electrolyte and (c) the simultaneous exploitation of these two properties. Hence, the essential concept of electrocatalytic hydrocracking has been demonstrated. An objective of future work in this area should be to determine whether the hydrocracking or hydrogenation reactions are actually enhanced during the electrocatalytic process when compared to the conventional catalytic process.

  11. Dilute Oxygen Combustion Phase IV Final Report

    SciTech Connect

    Riley, M.F.

    2003-04-30

    Novel furnace designs based on Dilute Oxygen Combustion (DOC) technology were developed under subcontract by Techint Technologies, Coraopolis, PA, to fully exploit the energy and environmental capabilities of DOC technology and to provide a competitive offering for new furnace construction opportunities. Capital cost, fuel, oxygen and utility costs, NOx emissions, oxide scaling performance, and maintenance requirements were compared for five DOC-based designs and three conventional air5-fired designs using a 10-year net present value calculation. A furnace direct completely with DOC burners offers low capital cost, low fuel rate, and minimal NOx emissions. However, these benefits do not offset the cost of oxygen and a full DOC-fired furnace is projected to cost $1.30 per ton more to operate than a conventional air-fired furnace. The incremental cost of the improved NOx performance is roughly $6/lb NOx, compared with an estimated $3/lb. NOx for equ8pping a conventional furnace with selective catalytic reduction (SCCR) technology. A furnace fired with DOC burners in the heating zone and ambient temperature (cold) air-fired burners in the soak zone offers low capital cost with less oxygen consumption. However, the improvement in fuel rate is not as great as the full DOC-fired design, and the DOC-cold soak design is also projected to cost $1.30 per ton more to operate than a conventional air-fired furnace. The NOx improvement with the DOC-cold soak design is also not as great as the full DOC fired design, and the incremental cost of the improved NOx performance is nearly $9/lb NOx. These results indicate that a DOC-based furnace design will not be generally competitive with conventional technology for new furnace construction under current market conditions. Fuel prices of $7/MMBtu or oxygen prices of $23/ton are needed to make the DOC furnace economics favorable. Niche applications may exist, particularly where access to capital is limited or floor space limitations

  12. MTX final report

    SciTech Connect

    Hooper, E.B.; Allen, S.L.; Brown, M.D.; Byers, J.A.; Casper, T.A.; Cohen, B.I.; Cohen, R.H.; Fenstermacher, M.E.; Foote, J.H.; Hoshino, K.

    1994-01-01

    The MTX experiment was proposed in 1986 to apply high frequency microwaves generated by a free-electron laser (FEL) to electron cyclotron resonance heating (ECRH) in a high field, high density tokamak. As the absorption of microwaves at the electron cyclotron resonance requires high frequencies, the opportunity of applying a free-electron laser has appeal as the device is not limited to frequencies in the microwave or long millimeter wavelength regions, in contrast to many other sources. In addition, the FEL is inherently a high power source of microwaves, which would permit single units of 10 MW or more, optimum for reactors. Finally, it was recognized early in the study of the application of the FEL based on the induction linear accelerator, that the nonlinear effects associated with the intense pulses of microwaves naturally generated would offer several unique opportunities to apply ECRH to current drive, MHD control, and other plasma effects. It was consequently decided to adapt the induction accelerator based FEL to heating and controlling the tokamak, and to conduct experiments on the associated physics. To this end, the Alcator C tokamak was moved from the Massachusetts Institute of Technology (MIT) to the Lawrence Livermore National Laboratory where it was installed in Building 431 and operated from March, 1989, until the conclusion of the experiment in October, 1992. The FEL, based on the ETA-11 accelerator and IMP wiggler was brought into operation by the LLNL Electron Beam Group and power injected into the tokamak during an experimental run in the Fall, 1989. Following an upgrade by the MTX group, a second experimental run was made lasting from the Winter, 1992 through the end of the experiment. Significant contributions to the ECRH experiments were made by the Japan Atomic Energy Research Institute (JAERI).

  13. World Cup Final

    NASA Technical Reports Server (NTRS)

    2006-01-01

    On July 9, hundreds of millions of fans worldwide will be glued to their television sets watching the final match of the 2006 FIFA World Cup, played in Berlin's Olympic stadium (Olympiastadion). The stadium was originally built for the 1936 Summer Olympics. The Olympic Stadium seats 76,000,; its roof rises 68 meters over the seats and is made up of transparent panels that allow sunlight to stream in during the day.

    With its 14 spectral bands from the visible to the thermal infrared wavelength region, and its high spatial resolution of 15 to 90 meters (about 50 to 300 feet), ASTER images Earth to map and monitor the changing surface of our planet.

    ASTER is one of five Earth-observing instruments launched December 18, 1999, on NASA's Terra satellite. The instrument was built by Japan's Ministry of Economy, Trade and Industry. A joint U.S./Japan science team is responsible for validation and calibration of the instrument and the data products.

    The broad spectral coverage and high spectral resolution of ASTER provides scientists in numerous disciplines with critical information for surface mapping, and monitoring of dynamic conditions and temporal change. Example applications are: monitoring glacial advances and retreats; monitoring potentially active volcanoes; identifying crop stress; determining cloud morphology and physical properties; wetlands evaluation; thermal pollution monitoring; coral reef degradation; surface temperature mapping of soils and geology; and measuring surface heat balance.

    The U.S. science team is located at NASA's Jet Propulsion Laboratory, Pasadena, Calif. The Terra mission is part of NASA's Science Mission Directorate.

    Size: 12.1 by 15.9 kilometers (7.5 by 9.5 miles) Location: 52.5 degrees North latitude, 13.3 degrees East longitude Orientation: North at top Image Data: ASTER bands 3, 2, and 1 Original Data Resolution: 15 meters (49.2 feet) Dates Acquired: October 15, 2005

  14. 78 FR 44592 - Final General Management Plan, Final Wilderness Study, and Final Environmental Impact Statement...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-07-24

    ... National Park Service Final General Management Plan, Final Wilderness Study, and Final Environmental Impact Statement, Fort Pulaski National Monument, Georgia AGENCY: National Park Service, Interior. ACTION: Notice... 1969, 42 U.S.C. 4332(2)(C), the National Park Service (NPS) announces the availability of a...

  15. ASEDRA Evaluation Final Report.

    SciTech Connect

    Mitchell, Dean J; Detwiler, Dr. Rebecca; Sjoden, Dr, Glenn E.

    2008-09-01

    The performance of the Advanced Synthetically Enhanced Detector Resolution Algorithm (ASEDRA) was evaluated by performing a blind test of 29 sets of gamma-ray spectra that were provided by DNDO. ASEDRA is a post-processing algorithm developed at the Florida Institute of Nuclear Detection and Security at the University of Florida (UF/FINDS) that extracts char-acteristic peaks in gamma-ray spectra. The QuickID algorithm, also developed at UF/FINDS, was then used to identify nuclides based on the characteristic peaks generated by ASEDRA that are inferred from the spectra. The ASEDRA/QuickID analysis results were evaluated with respect to the performance of the DHSIsotopeID algorithm, which is a mature analysis tool that is part of the Gamma Detector Response and Analysis Software (GADRAS). Data that were used for the blind test were intended to be challenging, and the radiation sources included thick shields around the radioactive materials as well as cargo containing naturally occurring radio-active materials, which masked emission from special nuclear materials and industrial isotopes. Evaluation of the analysis results with respect to the ground truth information (which was provided after the analyses were finalized) showed that neither ASEDRA/QuickID nor GADRAS could identify all of the radiation sources correctly. Overall, the purpose of this effort was primarily to evaluate ASEDRA, and GADRAS was used as a standard against which ASEDRA was compared. Although GADRAS was somewhat more accurate on average, the performance of ASEDRA exceeded that of GADRAS for some of the unknowns. The fact that GADRAS also failed to identify many of the radiation sources attests to the difficulty of analyzing the blind-test data that were used as a basis for the evaluation. This evaluation identified strengths and weaknesses of the two analysis approaches. The importance of good calibration data was also clear because the performance of both analysis methods was impeded by the

  16. Final Technical Report

    SciTech Connect

    Bohdan W. Oppenheim; Rudolf Marloth

    2007-10-26

    Executive Summary The document contains Final Technical Report on the Industrial Assessment Center Program at Loyola Marymount University in Los Angeles, covering the contract period of 9/1/2002 to 11/30/2006, under the contract DE-FC36-02GO 12073. The Report describes six required program tasks, as follows: TASK 1 is a summary of the assessments performed over the life of the award: 77 assessments were performed, 595 AR were recommended, covering a very broad range of manufacturing plants. TASK 2 is a description of the efforts to promote and increase the adoption of assessment recommendations and employ innovative methods to assist in accomplishing these goals. The LMU IAC has been very successful in accomplishing the program goals, including implemented savings of $5,141,895 in energy, $10,045,411 in productivity and $30,719 in waste, for a total of $15,218,025. This represents 44% of the recommended savings of $34,896,392. TASK 3 is a description of the efforts promoting the IAC Program and enhancing recruitment efforts for new clients and expanded geographic coverage. LMU IAC has been very successful recruiting new clients covering Southern California. Every year, the intended number of clients was recruited. TASK 4 describes the educational opportunities, training, and other related activities for IAC students. A total of 38 students graduated from the program, including 2-3 graduate students every semester, and the remainder undergraduate students, mostly from the Mechanical Engineering Department. The students received formal weekly training in energy (75%) and productivity (25). All students underwent extensive safety training. All students praised the IAC experience very highly. TASK 5 describes the coordination and integration of the Center activities with other Center and IAC Program activities, and DOE programs. LMU IAC worked closely with MIT, and SDSU IAC and SFSU IAC, and enthusiastically supported the SEN activities. TASK 6 describes other tasks

  17. [Nonlinear magnetohydrodynamics]. Final report

    SciTech Connect

    Montgomery, D.C.

    1998-11-01

    This is a final report on the research activities carried out under the above grant at Dartmouth. During the period considered, the grant was identified as being for nonlinear magnetohydrodynamics, considered as the most tractable theoretical framework in which the plasma problems associated with magnetic confinement of fusion plasmas could be studied. During the first part of the grant`s lifetime, the author was associated with Los Alamos National Laboratory as a consultant and the work was motivated by the reversed-field pinch. Later, when that program was killed at Los Alamos, the problems became ones that could be motivated by their relation to tokamaks. Throughout the work, the interest was always on questions that were as fundamental as possible, compatible with those motivations. The intent was always to contribute to plasma physics as a science, as well as to the understanding of mission-oriented confined fusion plasmas. Twelve Ph.D. theses were supervised during this period and a comparable number of postdoctoral research associates were temporarily supported. Many of these have gone on to distinguished careers, though few have done so in the context of the controlled fusion program. Their work was a combination of theory and numerical computation, in gradually less and less idealized settings, moving from rectangular periodic boundary conditions in two dimensions, through periodic straight cylinders and eventually, before the grant was withdrawn, to toroids, with a gradually more prominent role for electrical and mechanical boundary conditions. The author never had access to a situation where he could initiate experiments and relate directly to the laboratory data he wanted. Computers were the laboratory. Most of the work was reported in referred publications in the open literature, copies of which were transmitted one by one to DOE at the time they appeared. The Appendix to this report is a bibliography of published work which was carried out under the

  18. Final Technical Report

    SciTech Connect

    Brizard, Alain J

    2009-12-31

    Final Technical Report for U.S. Department of Energy Grant No. DE-FG02-09ER55005 Nonlinear FLR Effects in Reduced Fluid Models Alain J. Brizard, Saint Michael's College The above-mentioned DoE grant was used to support research activities by the PI during a sabbatical leave from Saint Michael's College in 2009. The major focus of the work was the role played by guiding-center and gyrocenter (linear and nonlinear) polarization and magnetization effects in understanding transport processes in turbulent magnetized plasmas. The theoretical tools used for this work include Lie-transform perturbation methods and Lagrangian (variational) methods developed by the PI in previous work. The present final technical report lists (I) the peer-reviewed publications that were written based on work funded by the Grant; (II) invited and contributed conference presentations during the period funded by the Grant; and (III) seminars presented during the period funded by the Grant. I. Peer-reviewed Publications A.J. Brizard and N. Tronko, 2011, Exact momentum conservation for the gyrokinetic Vlasov- Poisson equations, Physics of Plasmas 18 , 082307:1-14 [http://dx.doi.org/10.1063/1.3625554 ]. J. Decker, Y. Peysson, A.J. Brizard, and F.-X. Duthoit, 2010, Orbit-averaged guiding-center Fokker-Planck operator for numerical applications, Physics of Plasmas 17, 112513:1-12 [http://dx.doi.org/10.1063/1.3519514]. A.J. Brizard, 2010, Noether derivation of exact conservation laws for dissipationless reduced fluid models, Physics of Plasmas 17, 112503:1-8 [http://dx.doi.org/10.1063/1.3515303]. F.-X. Duthoit, A.J. Brizard, Y. Peysson, and J. Decker, 2010, Perturbation analysis of trapped particle dynamics in axisymmetric dipole geometry, Physics of Plasmas 17, 102903:1-9 [http://dx.doi.org/10.1063/1.3486554]. A.J. Brizard, 2010, Exact energy conservation laws for full and truncated nonlinear gyrokinetic equations, Physics of Plasmas 17, 042303:1-11 [http://dx.doi.org/10.1063/1.3374428]. A

  19. Final Performance Progress Report

    SciTech Connect

    Houldin, Joseph; Saboor, Veronica

    2016-03-30

    about assessing a company’s technical assets, broadening our view of the business to go beyond what they make or what NAICS code they have…to better understand their capacity, capability, and expertise, and to learn more about THEIR customers. Knowing more about the markets they serve can often provide insight into their level of technical knowledge and sophistication. Finally, in the spirit of realizing the intent of the Accelerator we strove to align and integrate the work and activities supported by the five funding agencies to leverage each effort. To that end, we include in the Integrated Work Plan a graphic that illustrates that integration. What follows is our summary report of the project, aggregated from prior reports.

  20. Final Technical Report

    SciTech Connect

    Stenzel, Reiner; Urrutia, J. Manuel

    2009-09-08

    emissions are only observed in whistler spheromaks and FRCs but not in mirrors or asymmetric configurations lacking magnetic null lines. The collisionless electron energization in a toroidal null line usually produces non-Maxwellian distributions. Off the null axis electrons gain more perpendicular than parallel energy. Distributions with T{sub {perpendicular}} > T{sub {parallel}} lead to whistler instabilities which have been observed. A whistler spheromak is a source of high-frequency whistler emissions. These are usually small amplitude whistlers propagating in a complicated background magnetic field. The waves are emitted from a moving source. High frequency whistlers propagate faster than the spheromak, thus partly move ahead of it and partly in the reverse direction. In test wave experiments wave growth opposite to the direction of the hot electron flow has been observed, confirming that Doppler-shifted cyclotron resonance instabilities account for the emission process. Propagating whistler mirrors produce no significant instabilities except when they interact with other fields which exhibit null lines. For example, a whistler mirror has been launched against a stationary FRC, resulting in strong FRC heating and whistler instabilities. In the whistler mirror configuration the antenna near-zone field produces a toroidal null line outside the coil which can also become a source for whistler emissions. Finally, nonlinear EMHD research has been extended to initially unmagnetized plasmas where a new nonlinear skin depth has been discovered. When a small-amplitude oscillating magnetic field is applied to a plasma the field penetration is governed by the skin depth, collisional or collisionless depending on frequency, collision frequency and plasma frequency. However, when the magnetic field increases the electrons become magnetized and the field penetration occurs in the whistler mode if the cyclotron frequency exceeds the oscillating frequency. This phenomenon has been