Science.gov

Sample records for hiv peptidase inhibitors

  1. Decoding the Anti-Trypanosoma cruzi Action of HIV Peptidase Inhibitors Using Epimastigotes as a Model

    PubMed Central

    Sangenito, Leandro S.; Menna-Barreto, Rubem F. S.; d′Avila-Levy, Claudia M.; Branquinha, Marta H.

    2014-01-01

    Background Aspartic peptidase inhibitors have shown antimicrobial action against distinct microorganisms. Due to an increase in the occurrence of Chagas' disease/AIDS co-infection, we decided to explore the effects of HIV aspartic peptidase inhibitors (HIV-PIs) on Trypanosoma cruzi, the etiologic agent of Chagas' disease. Methodology and Principal Findings HIV-PIs presented an anti-proliferative action on epimastigotes of T. cruzi clone Dm28c, with IC50 values ranging from 0.6 to 14 µM. The most effective inhibitors, ritonavir, lopinavir and nelfinavir, also had an anti-proliferative effect against different phylogenetic T. cruzi strains. The HIV-PIs induced some morphological alterations in clone Dm28c epimastigotes, as reduced cell size and swollen of the cellular body. Transmission electron microscopy revealed that the flagellar membrane, mitochondrion and reservosomes are the main targets of HIV-PIs in T. cruzi epimastigotes. Curiously, an increase in the epimastigote-into-trypomastigote differentiation process of clone Dm28c was observed, with many of these parasites presenting morphological alterations including the detachment of flagellum from the cell body. The pre-treatment with the most effective HIV-PIs drastically reduced the interaction process between epimastigotes and the invertebrate vector Rhodnius prolixus. It was also noted that HIV-PIs induced an increase in the expression of gp63-like and calpain-related molecules, and decreased the cruzipain expression in epimastigotes as judged by flow cytometry and immunoblotting assays. The hydrolysis of a cathepsin D fluorogenic substrate was inhibited by all HIV-PIs in a dose-dependent manner, showing that the aspartic peptidase could be a possible target to these drugs. Additionally, we verified that ritonavir, lopinavir and nelfinavir reduced drastically the viability of clone Dm28c trypomastigotes, causing many morphological damages. Conclusions and Significance The results contribute to understand

  2. HIV aspartic peptidase inhibitors are effective drugs against the trypomastigote form of the human pathogen Trypanosoma cruzi.

    PubMed

    Sangenito, Leandro S; Gonçalves, Diego S; Seabra, Sergio H; d'Avila-Levy, Claudia M; Santos, André L S; Branquinha, Marta H

    2016-10-01

    There is a general lack of effective and non-toxic chemotherapeutic agents against Chagas' disease despite more than a century of research. In this regard, we have verified the impact of human immunodeficiency virus aspartic peptidase inhibitors (HIV-PIs) on the viability and morphology of infective trypomastigote forms of Trypanosoma cruzi as well as on the aspartic peptidase and proteasome activities produced by this parasite. The effects of HIV-PIs on viability were assessed by counting motile parasites in a Neubauer chamber. Morphological alterations were detected by light microscopy of Giemsa-stained smears and scanning electron microscopy. Modulation of aspartic peptidase and proteasome activities by the HIV-PIs was measured by cleavage of fluorogenic peptide substrates. The majority of the HIV-PIs (6/9) were able to drastically decrease the viability of trypomastigotes after 4 h of treatment, with nelfinavir and lopinavir being the most effective compounds presenting LD50 values of 8.6 µM and 10.6 µM, respectively. Additionally, both HIV-PIs were demonstrated to be effective in a time- and cell density-dependent manner. Treatment with nelfinavir and lopinavir caused many morphological/ultrastructural alterations in trypomastigotes; parasites became round in shape, with reduced cell size and flagellar shortening. Nelfinavir and lopinavir were also capable of significantly inhibiting the aspartic peptidase and proteasome activities measured in trypomastigote extracts. These results strengthen the data on the positive effects of HIV-PIs on parasitic infections, possibly by targeting the parasite aspartic peptidase(s) and proteasome(s), opening a new possibility for the use of these clinically approved drugs as an alternative chemotherapy to treat Chagas' disease. PMID:27499433

  3. HIV aspartic peptidase inhibitors are effective drugs against the trypomastigote form of the human pathogen Trypanosoma cruzi.

    PubMed

    Sangenito, Leandro S; Gonçalves, Diego S; Seabra, Sergio H; d'Avila-Levy, Claudia M; Santos, André L S; Branquinha, Marta H

    2016-10-01

    There is a general lack of effective and non-toxic chemotherapeutic agents against Chagas' disease despite more than a century of research. In this regard, we have verified the impact of human immunodeficiency virus aspartic peptidase inhibitors (HIV-PIs) on the viability and morphology of infective trypomastigote forms of Trypanosoma cruzi as well as on the aspartic peptidase and proteasome activities produced by this parasite. The effects of HIV-PIs on viability were assessed by counting motile parasites in a Neubauer chamber. Morphological alterations were detected by light microscopy of Giemsa-stained smears and scanning electron microscopy. Modulation of aspartic peptidase and proteasome activities by the HIV-PIs was measured by cleavage of fluorogenic peptide substrates. The majority of the HIV-PIs (6/9) were able to drastically decrease the viability of trypomastigotes after 4 h of treatment, with nelfinavir and lopinavir being the most effective compounds presenting LD50 values of 8.6 µM and 10.6 µM, respectively. Additionally, both HIV-PIs were demonstrated to be effective in a time- and cell density-dependent manner. Treatment with nelfinavir and lopinavir caused many morphological/ultrastructural alterations in trypomastigotes; parasites became round in shape, with reduced cell size and flagellar shortening. Nelfinavir and lopinavir were also capable of significantly inhibiting the aspartic peptidase and proteasome activities measured in trypomastigote extracts. These results strengthen the data on the positive effects of HIV-PIs on parasitic infections, possibly by targeting the parasite aspartic peptidase(s) and proteasome(s), opening a new possibility for the use of these clinically approved drugs as an alternative chemotherapy to treat Chagas' disease.

  4. Beneficial Effects of HIV Peptidase Inhibitors on Fonsecaea pedrosoi: Promising Compounds to Arrest Key Fungal Biological Processes and Virulence

    PubMed Central

    Palmeira, Vanila F.; Kneipp, Lucimar F.; Rozental, Sonia; Alviano, Celuta S.; Santos, André L. S.

    2008-01-01

    Background Fonsecaea pedrosoi is the principal etiologic agent of chromoblastomycosis, a fungal disease whose pathogenic events are poorly understood. Current therapy for chromoblastomycosis is suboptimal due to toxicity of the available therapeutic agents and the emergence of drug resistance. Compounding these problems is the fact that endemic countries and regions are economically poor. Purpose and Principal Findings In the present work, we have investigated the effect of human immunodeficiency virus (HIV) peptidase inhibitors (PIs) on the F. pedrosoi conidial secreted peptidase, growth, ultrastructure and interaction with different mammalian cells. All the PIs impaired the acidic conidial-derived peptidase activity in a dose-dependent fashion, in which nelfinavir produced the best inhibitory effect. F. pedrosoi growth was also significantly reduced upon exposure to PIs, especially nelfinavir and saquinavir. PIs treatment caused profound changes in the conidial ultrastructure as shown by transmission electron microscopy, including invaginations in the cytoplasmic membrane, disorder and detachment of the cell wall, enlargement of fungi cytoplasmic vacuoles, and abnormal cell division. The synergistic action on growth ability between nelfinavir and amphotericin B, when both were used at sub-inhibitory concentrations, was also observed. PIs reduced the adhesion and endocytic indexes during the interaction between conidia and epithelial cells (CHO), fibroblasts or macrophages, in a cell type-dependent manner. Moreover, PIs interfered with the conidia into mycelia transformation when in contact with CHO and with the susceptibility killing by macrophage cells. Conclusions/Significance Overall, by providing the first evidence that HIV PIs directly affects F. pedrosoi development and virulence, these data add new insights on the wide-spectrum efficacy of HIV PIs, further arguing for the potential chemotherapeutic targets for aspartyl-type peptidase produced by this human

  5. Evolutionary families of peptidase inhibitors.

    PubMed Central

    Rawlings, Neil D; Tolle, Dominic P; Barrett, Alan J

    2004-01-01

    The proteins that inhibit peptidases are of great importance in medicine and biotechnology, but there has never been a comprehensive system of classification for them. Some of the terminology currently in use is potentially confusing. In the hope of facilitating the exchange, storage and retrieval of information about this important group of proteins, we now describe a system wherein the inhibitor units of the peptidase inhibitors are assigned to 48 families on the basis of similarities detectable at the level of amino acid sequence. Then, on the basis of three-dimensional structures, 31 of the families are assigned to 26 clans. A simple system of nomenclature is introduced for reference to each clan, family and inhibitor. We briefly discuss the specificities and mechanisms of the interactions of the inhibitors in the various families with their target enzymes. The system of families and clans of inhibitors described has been implemented in the MEROPS peptidase database (http://merops.sanger.ac.uk/), and this will provide a mechanism for updating it as new information becomes available. PMID:14705960

  6. Peptidases and peptidase inhibitors in gut of caterpillars and in the latex of their host plants.

    PubMed

    Ramos, Márcio V; Pereira, Danielle A; Souza, Diego P; Silva, Maria-Lídia S; Alencar, Luciana M R; Sousa, Jeanlex S; Queiroz, Juliany-Fátima N; Freitas, Cleverson D T

    2015-01-01

    Studies investigating the resistance-susceptibility of crop insects to proteins found in latex fluids have been reported. However, latex-bearing plants also host insects. In this study, the gut proteolytic system of Pseudosphinx tetrio, which feeds on Plumeria rubra leaves, was characterized and further challenged against the latex proteolytic system of its own host plant and those of other latex-bearing plants. The gut proteolytic system of Danaus plexippus (monarch) and the latex proteolytic system of its host plant (Calotropis procera) were also studied. The latex proteins underwent extensive hydrolysis when mixed with the corresponding gut homogenates of the hosted insects. The gut homogenates partially digested the latex proteins of foreign plants. The fifth instar of D. plexippus that were fed diets containing foreign latex developed as well as those individuals who were fed diets containing latex proteins from their host plant. In vitro assays detected serine and cysteine peptidase inhibitors in both the gut homogenates and the latex fluids. Curiously, the peptidase inhibitors of caterpillars did not inhibit the latex peptidases of their host plants. However, the peptidase inhibitors of laticifer origin inhibited the proteolysis of gut homogenates. In vivo analyses of the peritrophic membrane proteins of D. plexippus demonstrate resistance against latex peptidases. Only discrete changes were observed when the peritrophic membrane was directly treated with purified latex peptidases in vitro. This study concludes that peptidase inhibitors are involved in the defensive systems of both caterpillars and their host plants. Although latex peptidase inhibitors inhibit gut peptidases (in vitro), the ability of gut peptidases to digest latex proteins (in vivo) regardless of their origin seems to be important in governing the resistance-susceptibility of caterpillars.

  7. Sugarcane Serine Peptidase Inhibitors, Serine Peptidases, and Clp Protease System Subunits Associated with Sugarcane Borer (Diatraea saccharalis) Herbivory and Wounding

    PubMed Central

    Medeiros, Ane H.; Mingossi, Fabiana B.; Dias, Renata O.; Franco, Flávia P.; Vicentini, Renato; Mello, Marcia O.; Moura, Daniel S.; Silva-Filho, Marcio C.

    2016-01-01

    Sugarcane’s (Saccharum spp.) response to Diatraea saccharalis (F.) (Lepidoptera: (Crambidae) herbivory was investigated using a macroarray spotted with 248 sugarcane Expressed Sequence Tags (ESTs) encoding serine peptidase inhibitors, serine peptidases. and Clp protease system subunits. Our results showed that after nine hours of herbivory, 13 sugarcane genes were upregulated and nine were downregulated. Among the upregulated genes, nine were similar to serine peptidase inhibitors and four were similar to Bowman-Birk Inhibitors (BBIs). Phylogenetic analysis revealed that these sequences belong to a phylogenetic group of sugarcane BBIs that are potentially involved in plant defense against insect predation. The remaining four upregulated genes included serine peptidases and one homolog to the Arabidopsis AAA+ chaperone subunit ClpD, which is a member of the Clp protease system. Among the downregulated genes, five were homologous to serine peptidases and four were homologous to Arabidopsis Clp subunits (three homologous to Clp AAA+ chaperones and one to a ClpP-related ClpR subunit). Although the roles of serine peptidase inhibitors in plant defenses against herbivory have been extensively investigated, the roles of plant serine peptidases and the Clp protease system represent a new and underexplored field of study. The up- and downregulated D. saccharalis genes presented in this study may be candidate genes for the further investigation of the sugarcane response to herbivory. PMID:27598134

  8. Sugarcane Serine Peptidase Inhibitors, Serine Peptidases, and Clp Protease System Subunits Associated with Sugarcane Borer (Diatraea saccharalis) Herbivory and Wounding.

    PubMed

    Medeiros, Ane H; Mingossi, Fabiana B; Dias, Renata O; Franco, Flávia P; Vicentini, Renato; Mello, Marcia O; Moura, Daniel S; Silva-Filho, Marcio C

    2016-09-01

    Sugarcane's (Saccharum spp.) response to Diatraea saccharalis (F.) (Lepidoptera: (Crambidae) herbivory was investigated using a macroarray spotted with 248 sugarcane Expressed Sequence Tags (ESTs) encoding serine peptidase inhibitors, serine peptidases. and Clp protease system subunits. Our results showed that after nine hours of herbivory, 13 sugarcane genes were upregulated and nine were downregulated. Among the upregulated genes, nine were similar to serine peptidase inhibitors and four were similar to Bowman-Birk Inhibitors (BBIs). Phylogenetic analysis revealed that these sequences belong to a phylogenetic group of sugarcane BBIs that are potentially involved in plant defense against insect predation. The remaining four upregulated genes included serine peptidases and one homolog to the Arabidopsis AAA+ chaperone subunit ClpD, which is a member of the Clp protease system. Among the downregulated genes, five were homologous to serine peptidases and four were homologous to Arabidopsis Clp subunits (three homologous to Clp AAA+ chaperones and one to a ClpP-related ClpR subunit). Although the roles of serine peptidase inhibitors in plant defenses against herbivory have been extensively investigated, the roles of plant serine peptidases and the Clp protease system represent a new and underexplored field of study. The up- and downregulated D. saccharalis genes presented in this study may be candidate genes for the further investigation of the sugarcane response to herbivory.

  9. Sugarcane Serine Peptidase Inhibitors, Serine Peptidases, and Clp Protease System Subunits Associated with Sugarcane Borer (Diatraea saccharalis) Herbivory and Wounding.

    PubMed

    Medeiros, Ane H; Mingossi, Fabiana B; Dias, Renata O; Franco, Flávia P; Vicentini, Renato; Mello, Marcia O; Moura, Daniel S; Silva-Filho, Marcio C

    2016-01-01

    Sugarcane's (Saccharum spp.) response to Diatraea saccharalis (F.) (Lepidoptera: (Crambidae) herbivory was investigated using a macroarray spotted with 248 sugarcane Expressed Sequence Tags (ESTs) encoding serine peptidase inhibitors, serine peptidases. and Clp protease system subunits. Our results showed that after nine hours of herbivory, 13 sugarcane genes were upregulated and nine were downregulated. Among the upregulated genes, nine were similar to serine peptidase inhibitors and four were similar to Bowman-Birk Inhibitors (BBIs). Phylogenetic analysis revealed that these sequences belong to a phylogenetic group of sugarcane BBIs that are potentially involved in plant defense against insect predation. The remaining four upregulated genes included serine peptidases and one homolog to the Arabidopsis AAA+ chaperone subunit ClpD, which is a member of the Clp protease system. Among the downregulated genes, five were homologous to serine peptidases and four were homologous to Arabidopsis Clp subunits (three homologous to Clp AAA+ chaperones and one to a ClpP-related ClpR subunit). Although the roles of serine peptidase inhibitors in plant defenses against herbivory have been extensively investigated, the roles of plant serine peptidases and the Clp protease system represent a new and underexplored field of study. The up- and downregulated D. saccharalis genes presented in this study may be candidate genes for the further investigation of the sugarcane response to herbivory. PMID:27598134

  10. Comparative review of dipeptidyl peptidase-4 inhibitors and sulphonylureas.

    PubMed

    Deacon, C F; Lebovitz, H E

    2016-04-01

    Type 2 diabetes (T2DM) is a progressive disease, and pharmacotherapy with a single agent does not generally provide durable glycaemic control over the long term. Sulphonylurea (SU) drugs have a history stretching back over 60 years, and have traditionally been the mainstay choice as second-line agents to be added to metformin once glycaemic control with metformin monotherapy deteriorates; however, they are associated with undesirable side effects, including increased hypoglycaemia risk and weight gain. Dipeptidyl peptidase (DPP)-4 inhibitors are, by comparison, more recent, with the first compound being launched in 2006, but the class now globally encompasses at least 11 different compounds. DPP-4 inhibitors improve glycaemic control with similar efficacy to SUs, but do not usually provoke hypoglycaemia or weight gain, are relatively free from adverse side effects, and have recently been shown not to increase cardiovascular risk in large prospective safety trials. Because of these factors, DPP-4 inhibitors have become an established therapy for T2DM and are increasingly being positioned earlier in treatment algorithms. The present article reviews these two classes of oral antidiabetic drugs (DPP-4 inhibitors and SUs), highlighting differences and similarities between members of the same class, as well as discussing the potential advantages and disadvantages of the two drug classes. While both classes have their merits, the choice of which to use depends on the characteristics of each individual patient; however, for the majority of patients, DPP-4 inhibitors are now the preferred choice. PMID:26597596

  11. Navigating the chemical space of dipeptidyl peptidase-4 inhibitors

    PubMed Central

    Shoombuatong, Watshara; Prachayasittikul, Veda; Anuwongcharoen, Nuttapat; Songtawee, Napat; Monnor, Teerawat; Prachayasittikul, Supaluk; Prachayasittikul, Virapong; Nantasenamat, Chanin

    2015-01-01

    This study represents the first large-scale study on the chemical space of inhibitors of dipeptidyl peptidase-4 (DPP4), which is a potential therapeutic protein target for the treatment of diabetes mellitus. Herein, a large set of 2,937 compounds evaluated for their ability to inhibit DPP4 was compiled from the literature. Molecular descriptors were generated from the geometrically optimized low-energy conformers of these compounds at the semiempirical AM1 level. The origins of DPP4 inhibitory activity were elucidated from computed molecular descriptors that accounted for the unique physicochemical properties inherently present in the active and inactive sets of compounds as defined by their respective half maximal inhibitory concentration values of less than 1 μM and greater than 10 μM, respectively. Decision tree analysis revealed the importance of molecular weight, total energy of a molecule, topological polar surface area, lowest unoccupied molecular orbital, and number of hydrogen-bond donors, which correspond to molecular size, energy, surface polarity, electron acceptors, and hydrogen bond donors, respectively. The prediction model was subjected to rigorous independent testing via three external sets. Scaffold and chemical fragment analysis was also performed on these active and inactive sets of compounds to shed light on the distinguishing features of the functional moieties. Docking of representative active DPP4 inhibitors was also performed to unravel key interacting residues. The results of this study are anticipated to be useful in guiding the rational design of novel and robust DPP4 inhibitors for the treatment of diabetes. PMID:26309399

  12. Influence of parasite encoded inhibitors of serine peptidases in early infection of macrophages with Leishmania major

    PubMed Central

    Eschenlauer, Sylvain C P; Faria, Marilia S; Morrison, Lesley S; Bland, Nicolas; Ribeiro-Gomes, Flavia L; DosReis, George A; Coombs, Graham H; Lima, Ana Paula C A; Mottram, Jeremy C

    2009-01-01

    Ecotin is a potent inhibitor of family S1A serine peptidases, enzymes lacking in the protozoan parasite Leishmania major. Nevertheless, L. major has three ecotin-like genes, termed inhibitor of serine peptidase (ISP). ISP1 is expressed in vector-borne procyclic and metacyclic promastigotes, whereas ISP2 is also expressed in the mammalian amastigote stage. Recombinant ISP2 inhibited neutrophil elastase, trypsin and chymotrypsin with Kis between 7.7 and 83 nM. L. major ISP2–ISP3 double null mutants (Δisp2/3) were created. These grew normally as promastigotes, but were internalized by macrophages more efficiently than wild-type parasites due to the upregulation of phagocytosis by a mechanism dependent on serine peptidase activity. Δisp2/3 promastigotes transformed to amastigotes, but failed to divide for 48 h. Intracellular multiplication of Δisp2/3 was similar to wild-type parasites when serine peptidase inhibitors were present, suggesting that defective intracellular growth results from the lack of serine peptidase inhibition during promastigote uptake. Δisp2/3 mutants were more infective than wild-type parasites to BALB/c mice at the early stages of infection, but became equivalent as the infection progressed. These data support the hypothesis that ISPs of L. major target host serine peptidases and influence the early stages of infection of the mammalian host. PMID:19016791

  13. Authentic HIV-1 integrase inhibitors

    PubMed Central

    Liao, Chenzhong; Marchand, Christophe; Burke, Terrence R; Pommier, Yves; Nicklaus, Marc C

    2010-01-01

    HIV-1 integrase (IN) is indispensable for HIV-1 replication and has become a validated target for developing anti-AIDS agents. In two decades of development of IN inhibition-based anti-HIV therapeutics, a significant number of compounds were identified as IN inhibitors, but only some of them showed antiviral activity. This article reviews a number of patented HIV-1 IN inhibitors, especially those that possess high selectivity for the strand transfer reaction. These compounds generally have a polar coplanar moiety, which is assumed to chelate two magnesium ions in the binding site. Resistance to those compounds, when given to patients, can develop as a result of IN mutations. We refer to those compounds as authentic IN inhibitors. Continued drug development has so far delivered one authentic IN inhibitor to the market (raltegravir in 2007). Current and future attention will be focused on the development of novel authentic IN inhibitors with the goal of overcoming viral resistance. PMID:21426159

  14. Aminopiperidine-Fused Imidazoles as Dipeptidyl Peptidase-IV Inhibitors

    SciTech Connect

    Edmondson, S.; Mastracchio, A; Cox, J; Eiermann, G; He, H; Lyons, K; Patel, R; Patel, S; Petrov, A; et. al.

    2009-01-01

    A new series of DPP-4 inhibitors derived from piperidine-fused benzimidazoles and imidazopyridines is described. Optimization of this class of DPP-4 inhibitors led to the discovery of imidazopyridine 34. The potency, selectivity, cross-species DMPK profiles, and in vivo efficacy of 34 is reported.

  15. The first structure in a family of peptidase inhibitors reveals an unusual Ig-like fold

    PubMed Central

    Rigden, Daniel J; Xu, Qingping; Chang, Yuanyuan; Eberhardt, Ruth Y; Finn, Robert D; Rawlings, Neil D

    2013-01-01

    We report the crystal structure solution of the Intracellular Protease Inhibitor (IPI) protein from Bacillus subtilis, which has been reported to be an inhibitor of the intracellular subtilisin Isp1 from the same organism. The structure of IPI is a variant of the all-beta, immunoglobulin (Ig) fold. It is possible that IPI is important for protein-protein interactions, of which inhibition of Isp1 is one. The intracellular nature of ISP is questioned, because an alternative ATG codon in the ipi gene would produce a protein with an N-terminal extension containing a signal peptide. It is possible that alternative initiation exists, producing either an intracellular inhibitor or a secreted form that may be associated with the cell surface.  Homologues of the IPI protein from other species are multi-domain proteins, containing signal peptides and domains also associated with the bacterial cell-surface. The cysteine peptidase inhibitors chagasin and amoebiasin also have Ig-like folds, but their topology differs significantly from that of IPI, and they share no recent common ancestor. A model of IPI docked to Isp1 shows similarities to other subtilisin:inhibitor complexes, particularly where the inhibitor interacts with the peptidase active site. PMID:24555072

  16. Synthesis and structure-activity relationships of potent 4-fluoro-2-cyanopyrrolidine dipeptidyl peptidase IV inhibitors.

    PubMed

    Fukushima, Hiroshi; Hiratate, Akira; Takahashi, Masato; Mikami, Ayako; Saito-Hori, Masako; Munetomo, Eiji; Kitano, Kiyokazu; Chonan, Sumi; Saito, Hidetaka; Suzuki, Akio; Takaoka, Yuji; Yamamoto, Koji

    2008-04-01

    Dipeptidyl peptidase IV (DPP-IV) inhibitors are promising antidiabetic drugs, and several drugs are in the developmental stage. We previously reported that the introduction of fluorine to the 4-position of 2-cyanopyrrolidine enhanced the DPP-IV inhibitory effect. In the present report, we examined the structure-activity relationship (SAR) of 2-cyano-4-fluoropyrrolidine with N-substituted glycine at the 1-position. We report the identification of a potent and stable DPP-IV inhibitor (TS-021) with a long-term persistent plasma drug concentration and a potent antihyperglycemic activity.

  17. Whey proteins as source of dipeptidyl dipeptidase IV (dipeptidyl peptidase-4) inhibitors.

    PubMed

    Tulipano, Giovanni; Sibilia, Valeria; Caroli, Anna Maria; Cocchi, Daniela

    2011-04-01

    Preclinical and clinical studies suggest that whey proteins can reduce postprandial glucose levels and stimulate insulin release in healthy subjects and in subjects with type 2 diabetes by reducing dipeptidyl peptidase-4 (DPP-4) activity in the proximal bowel and hence increasing intact incretin levels. Our aim was to identify DPP-4 inhibitors among short peptides occurring in hydrolysates of β-lactoglobulin, the major whey protein found in the milk of ruminants. We proved that the bioactive peptide Ile-Pro-Ala can be regarded as a moderate DPP-4 inhibitor.

  18. Methionine AminoPeptidase Type-2 Inhibitors Targeting Angiogenesis.

    PubMed

    Ehlers, Tedman; Furness, Scott; Robinson, Thomas Philip; Zhong, Haizhen A; Goldsmith, David; Aribser, Jack; Bowen, J Phillip

    2016-01-01

    Angiogenesis has been identified as a crucial process in the development and spread of cancers. There are many regulators of angiogenesis which are not yet fully understood. Methionine aminiopeptidase is a metalloenzyme with two structurally distinct forms in humans, Type-1 (MetAP-1) and Type-2 (MetAP-2). It has been shown that small molecule inhibitors of MetAP-2 suppress endothelial cell proliferation. The initial discovery by Donald Ingber of MetAP-2 inhibition as a potential target in angiogenesis began with a fortuitous observation similar to the discovery of penicillin activity by Sir Alexander Fleming. From a drug design perspective, MetAP-2 is an attractive target. Fumagillin and ovalicin, known natural products, bind with IC50 values in low nanomolar concentrations. Crystal structures of the bound complexes provide 3-dimensional coordinates for advanced computational studies. More recent discoveries have shown other biological activities for MetAP-2 inhibition, which has generated new interests in the design of novel inhibitors. Semisynthetic fumagillin derivatives such as AGM-1470 (TNP-470) have been shown to have better drug properties, but have not been very successful in clinical trials. The rationale and development of novel multicyclic analogs of fumagillin are reviewed.

  19. Methionine AminoPeptidase Type-2 Inhibitors Targeting Angiogenesis.

    PubMed

    Ehlers, Tedman; Furness, Scott; Robinson, Thomas Philip; Zhong, Haizhen A; Goldsmith, David; Aribser, Jack; Bowen, J Phillip

    2016-01-01

    Angiogenesis has been identified as a crucial process in the development and spread of cancers. There are many regulators of angiogenesis which are not yet fully understood. Methionine aminiopeptidase is a metalloenzyme with two structurally distinct forms in humans, Type-1 (MetAP-1) and Type-2 (MetAP-2). It has been shown that small molecule inhibitors of MetAP-2 suppress endothelial cell proliferation. The initial discovery by Donald Ingber of MetAP-2 inhibition as a potential target in angiogenesis began with a fortuitous observation similar to the discovery of penicillin activity by Sir Alexander Fleming. From a drug design perspective, MetAP-2 is an attractive target. Fumagillin and ovalicin, known natural products, bind with IC50 values in low nanomolar concentrations. Crystal structures of the bound complexes provide 3-dimensional coordinates for advanced computational studies. More recent discoveries have shown other biological activities for MetAP-2 inhibition, which has generated new interests in the design of novel inhibitors. Semisynthetic fumagillin derivatives such as AGM-1470 (TNP-470) have been shown to have better drug properties, but have not been very successful in clinical trials. The rationale and development of novel multicyclic analogs of fumagillin are reviewed. PMID:26369821

  20. Peptidomimetic inhibitors of HIV protease.

    PubMed

    Randolph, John T; DeGoey, David A

    2004-01-01

    There are currently (July, 2002) six protease inhibitors approved for the treatment of HIV infection, each of which can be classified as peptidomimetic in structure. These agents, when used in combination with other antiretroviral agents, produce a sustained decrease in viral load, often to levels below the limits of quantifiable detection, and a significant reconstitution of the immune system. Therapeutic regimens containing one or more HIV protease inhibitors thus provide a highly effective method for disease management. The important role of protease inhibitors in HIV therapy, combined with numerous challenges remaining in HIV treatment, have resulted in a continued effort both to optimize regimens using the existing agents and to identify new protease inhibitors that may provide unique properties. This review will provide an overview of the discovery and clinical trials of the currently approved HIV protease inhibitors, followed by an examination of important aspects of therapy, such as pharmacokinetic enhancement, resistance and side effects. A description of new peptidomimetic compounds currently being investigated in the clinic and in preclinical discovery will follow. PMID:15193140

  1. Mechanisms of neurodegeration in type 2 diabetes and the neuroprotective potential of dipeptidyl peptidase 4 inhibitors.

    PubMed

    Matteucci, E; Giampietro, O

    2015-01-01

    Prospective epidemiological studies suggest that type 2 diabetes is a risk factor for neurodegenerative pathologies such as Alzheimer disease, vascular dementia, and Parkinson disease. Drugs that act as incretin receptor agonists or inhibit the proteolytic degradation of incretins (dipeptidyl peptidase 4 inhibitors) have been approved since 2005 for use in diabetes treatment. Dipeptidyl peptidase 4 (DPP4) cleaves N-terminal dipeptides from polypeptides when the second residue is proline, hydroxyproline, dehydroproline or alanine. The inhibition of DPP4 hydrolytic activities extends the halflife of these peptides by preventing their degradation. Several peptides have been identified as DPP4 substrates, including neuropeptides, chemokines, and the incretin hormones; hence the pleomorphic effects of DPP4 inhibition. Recently, the neuroprotective properties of these drugs have been evaluated in cell cultures and animal models, not yet in human trials. Although mechanisms distinct from glycaemic control alone have been claimed to account for protection against neuronal degeneration, the precise cellular mechanism by which DPP4 inhibitors exert their neuroprotective effects remain unknown. The present review is focused on the candidate pathways that could be involved in mediating DPP4 inhibitors-mediated protection against neuronal degeneration. PMID:25723507

  2. Dipeptidyl peptidase-4 inhibitors and fracture risk: an updated meta-analysis of randomized clinical trials.

    PubMed

    Fu, Jianying; Zhu, Jianhong; Hao, Yehua; Guo, Chongchong; Zhou, Zhikun

    2016-01-01

    Data on the effects of dipeptidyl peptidase-4 (DPP-4) inhibitors on fracture risk are conflicting. Here, we performed a systematic review and meta-analysis of randomized controlled trials (RCTs) assessing the effects of DPP-4 inhibitors. Electronic databases were searched for relevant published articles, and unpublished studies presented at ClinicalTrials.gov were searched for relevant clinical data. Eligible studies included prospective randomized trials evaluating DPP-4 inhibitors versus placebo or other anti-diabetic medications in patients with type 2 diabetes. Study quality was determined using Jadad scores. Statistical analyses were performed to calculate the risk ratios (RRs) and 95% confidence intervals (CIs) using fixed-effects models. There were 62 eligible RCTs with 62,206 participants, including 33,452 patients treated with DPP-4 inhibitors. The number of fractures was 364 in the exposed group and 358 in the control group. The overall risk of fracture did not differ between patients exposed to DPP-4 inhibitors and controls (RR, 0.95; 95% CI, 0.83-1.10; P = 0.50). The results were consistent across subgroups defined by type of DPP-4 inhibitor, type of control, and length of follow-up. The study showed that DPP-4 inhibitor use does not modify the risk of bone fracture compared with placebo or other anti-diabetic medications in patients with type 2 diabetes. PMID:27384445

  3. Dipeptidyl peptidase-4 inhibitors and fracture risk: an updated meta-analysis of randomized clinical trials

    PubMed Central

    Fu, Jianying; Zhu, Jianhong; Hao, Yehua; Guo, Chongchong; Zhou, Zhikun

    2016-01-01

    Data on the effects of dipeptidyl peptidase-4 (DPP-4) inhibitors on fracture risk are conflicting. Here, we performed a systematic review and meta-analysis of randomized controlled trials (RCTs) assessing the effects of DPP-4 inhibitors. Electronic databases were searched for relevant published articles, and unpublished studies presented at ClinicalTrials.gov were searched for relevant clinical data. Eligible studies included prospective randomized trials evaluating DPP-4 inhibitors versus placebo or other anti-diabetic medications in patients with type 2 diabetes. Study quality was determined using Jadad scores. Statistical analyses were performed to calculate the risk ratios (RRs) and 95% confidence intervals (CIs) using fixed-effects models. There were 62 eligible RCTs with 62,206 participants, including 33,452 patients treated with DPP-4 inhibitors. The number of fractures was 364 in the exposed group and 358 in the control group. The overall risk of fracture did not differ between patients exposed to DPP-4 inhibitors and controls (RR, 0.95; 95% CI, 0.83–1.10; P = 0.50). The results were consistent across subgroups defined by type of DPP-4 inhibitor, type of control, and length of follow-up. The study showed that DPP-4 inhibitor use does not modify the risk of bone fracture compared with placebo or other anti-diabetic medications in patients with type 2 diabetes. PMID:27384445

  4. Identification and characterization of a dipeptidyl peptidase IV inhibitor from aronia juice

    SciTech Connect

    Kozuka, Miyuki; Yamane, Takuya; Nakano, Yoshihisa; Nakagaki, Takenori; Ohkubo, Iwao; Ariga, Hiroyoshi

    2015-09-25

    Aronia berries have many potential effects on health, including an antioxidant effect, effect for antimutagenesis, hepatoprotection and cardioprotection, an antidiabetic effect and inhibition of cancer cell proliferation. Previous human studies have shown that aronia juice may be useful for treatment of obesity disorders. In this study, we found that aronia juice has an inhibitory effect against dipeptidyl peptidase IV (DPP IV) (EC 3.4.14.5). DPP IV is a peptidase that cleaves the N-terminal region of incretins such as glucagon-dependent insulinotropic polypeptide (GIP) and glucagon-like peptide-1 (GLP-1). Inactivation of incretins by DPP IV induces reduction of insulin secretion. Furthermore, we identified that cyanidin 3, 5-diglucoside as the DPP IV inhibitor in aronia juice. DPP IV was inhibited more strongly by cyanidin 3, 5-diglucoside than by cyanidin and cyanidin 3-glucoside. The results suggest that DPP IV is inhibited by cyanidin 3, 5-diglucoside present in aronia juice. The antidiabetic effect of aronia juice may be mediated through DPP IV inhibition by cyanidin 3, 5-diglucoside. - Highlights: • DPP IV activity is inhibited by aronia juice. • DPP IV inhibitor is cyanidin 3, 5-diglucoside in aronia juice. • DPP IV is inhibited by cyanidin 3, 5-diglucoside more than cyanidin and cyanidin 3-glucoside.

  5. The dipeptidyl peptidase IV inhibitor NVP-DPP728 reduces plasma glucagon concentration in cats.

    PubMed

    Furrer, Daniela; Kaufmann, Karin; Tschuor, Flurin; Reusch, Claudia E; Lutz, Thomas A

    2010-03-01

    Glucagon-like peptide-1 (GLP-1) analogues and inhibitors of its degrading enzyme, dipeptidyl peptidase IV (DPPIV), are interesting therapy options in human diabetics because they increase insulin secretion and reduce postprandial glucagon secretion. Given the similar pathophysiology of human type 2 and feline diabetes mellitus, this study investigated whether the DPPIV inhibitor NVP-DPP728 reduces plasma glucagon levels in cats. Intravenous glucose tolerance tests (ivGTT; 0.5 g/kg glucose after 12 h fasting) and a meal response test (test meal of 50% of average daily food intake, offered after 24 h fasting) were performed in healthy experimental cats. NVP-DPP728 (0.5-2.5 mg/kg i.v. or s.c.) significantly reduced glucagon output in all tests and increased insulin output in the ivGTT. Follow-up studies will investigate the potential usefulness as therapy in diabetic cats.

  6. Dipeptidyl Peptidase-4 Inhibitor Increases Vascular Leakage in Retina through VE-cadherin Phosphorylation

    PubMed Central

    Lee, Choon-Soo; Kim, Yun Gi; Cho, Hyun-Jai; Park, Jonghanne; Jeong, Heewon; Lee, Sang-Eun; Lee, Seung-Pyo; Kang, Hyun-Jae; Kim, Hyo-Soo

    2016-01-01

    The inhibitors of CD26 (dipeptidyl peptidase-4; DPP4) have been widely prescribed to control glucose level in diabetic patients. DPP4-inhibitors, however, accumulate stromal cell-derived factor-1α (SDF-1α), a well-known inducer of vascular leakage and angiogenesis both of which are fundamental pathophysiology of diabetic retinopathy. The aim of this study was to investigate the effects of DPP4-inhibitors on vascular permeability and diabetic retinopathy. DPP4-inhibitor (diprotin A or sitagliptin) increased the phosphorylation of Src and vascular endothelial-cadherin (VE-cadherin) in human endothelial cells and disrupted endothelial cell-to-cell junctions, which were attenuated by CXCR4 (receptor of SDF-1α)-blocker or Src-inhibitor. Disruption of endothelial cell-to-cell junctions in the immuno-fluorescence images correlated with the actual leakage of the endothelial monolayer in the transwell endothelial permeability assay. In the Miles assay, vascular leakage was observed in the ears into which SDF-1α was injected, and this effect was aggravated by DPP4-inhibitor. In the model of retinopathy of prematurity, DPP4-inhibitor increased not only retinal vascularity but also leakage. Additionally, in the murine diabetic retinopathy model, DPP4-inhibitor increased the phosphorylation of Src and VE-cadherin and aggravated vascular leakage in the retinas. Collectively, DPP4-inhibitor induced vascular leakage by augmenting the SDF-1α/CXCR4/Src/VE-cadherin signaling pathway. These data highlight safety issues associated with the use of DPP4-inhibitors. PMID:27381080

  7. Dipeptidyl Peptidase-4 Inhibitor Increases Vascular Leakage in Retina through VE-cadherin Phosphorylation.

    PubMed

    Lee, Choon-Soo; Kim, Yun Gi; Cho, Hyun-Jai; Park, Jonghanne; Jeong, Heewon; Lee, Sang-Eun; Lee, Seung-Pyo; Kang, Hyun-Jae; Kim, Hyo-Soo

    2016-01-01

    The inhibitors of CD26 (dipeptidyl peptidase-4; DPP4) have been widely prescribed to control glucose level in diabetic patients. DPP4-inhibitors, however, accumulate stromal cell-derived factor-1α (SDF-1α), a well-known inducer of vascular leakage and angiogenesis both of which are fundamental pathophysiology of diabetic retinopathy. The aim of this study was to investigate the effects of DPP4-inhibitors on vascular permeability and diabetic retinopathy. DPP4-inhibitor (diprotin A or sitagliptin) increased the phosphorylation of Src and vascular endothelial-cadherin (VE-cadherin) in human endothelial cells and disrupted endothelial cell-to-cell junctions, which were attenuated by CXCR4 (receptor of SDF-1α)-blocker or Src-inhibitor. Disruption of endothelial cell-to-cell junctions in the immuno-fluorescence images correlated with the actual leakage of the endothelial monolayer in the transwell endothelial permeability assay. In the Miles assay, vascular leakage was observed in the ears into which SDF-1α was injected, and this effect was aggravated by DPP4-inhibitor. In the model of retinopathy of prematurity, DPP4-inhibitor increased not only retinal vascularity but also leakage. Additionally, in the murine diabetic retinopathy model, DPP4-inhibitor increased the phosphorylation of Src and VE-cadherin and aggravated vascular leakage in the retinas. Collectively, DPP4-inhibitor induced vascular leakage by augmenting the SDF-1α/CXCR4/Src/VE-cadherin signaling pathway. These data highlight safety issues associated with the use of DPP4-inhibitors. PMID:27381080

  8. The dipeptidyl peptidase-4 inhibitor sitagliptin suppresses mouse colon tumorigenesis in type 2 diabetic mice.

    PubMed

    Yorifuji, Naoki; Inoue, Takuya; Iguchi, Munetaka; Fujiwara, Kaori; Kakimoto, Kazuki; Nouda, Sadaharu; Okada, Toshihiko; Kawakami, Ken; Abe, Yosuke; Takeuchi, Toshihisa; Higuchi, Kazuhide

    2016-02-01

    Patients with type 2 diabetes mellitus are known to have an increased risk of colorectal neoplasia. Dipeptidyl peptidase-4 (DPP-4) inhibitors have been used as a new therapeutic tool for type 2 diabetes. Since the substrates for DPP-4 include intestinotrophic hormones and chemokines such as GLP-2 and stromal cell-derived factor-1 (SDF-1), which are associated with tumor progression, DPP-4 inhibitors may increase the risk of colorectal tumors. However, the influence of DPP-4 inhibitors on colorectal neoplasia in patients with type 2 diabetes remains unknown. In the present study, we show that long-term administration of a DPP-4 inhibitor, sitagliptin (STG), suppressed colon carcinogenesis in leptin-deficient (ob/ob) C57BL/6J mice. Colonic mucosal concentrations of glucagon‑like peptide-1 (GLP-1) and GLP-2 were significantly elevated in the ob/ob mice. However, mucosal GLP concentrations and the plasma level of SDF-1 were not affected by the administration of STG. Real‑time PCR analysis revealed that colonic mucosal IL-6 mRNA expression, which was significantly upregulated in the ob/ob mice, was significantly suppressed by the long-term administration of STG. These results suggest that a DPP-4 inhibitor may suppress colon carcinogenesis in mice with type 2 diabetes in a GLP-independent manner. Since DPP-4 has multiple biological functions, further studies analyzing other factors related to colon carcinogenesis are needed.

  9. Identification and characterization of a dipeptidyl peptidase IV inhibitor from aronia juice.

    PubMed

    Kozuka, Miyuki; Yamane, Takuya; Nakano, Yoshihisa; Nakagaki, Takenori; Ohkubo, Iwao; Ariga, Hiroyoshi

    2015-09-25

    Aronia berries have many potential effects on health, including an antioxidant effect, effect for antimutagenesis, hepatoprotection and cardioprotection, an antidiabetic effect and inhibition of cancer cell proliferation. Previous human studies have shown that aronia juice may be useful for treatment of obesity disorders. In this study, we found that aronia juice has an inhibitory effect against dipeptidyl peptidase IV (DPP IV) (EC 3.4.14.5). DPP IV is a peptidase that cleaves the N-terminal region of incretins such as glucagon-dependent insulinotropic polypeptide (GIP) and glucagon-like peptide-1 (GLP-1). Inactivation of incretins by DPP IV induces reduction of insulin secretion. Furthermore, we identified that cyanidin 3, 5-diglucoside as the DPP IV inhibitor in aronia juice. DPP IV was inhibited more strongly by cyanidin 3, 5-diglucoside than by cyanidin and cyanidin 3-glucoside. The results suggest that DPP IV is inhibited by cyanidin 3, 5-diglucoside present in aronia juice. The antidiabetic effect of aronia juice may be mediated through DPP IV inhibition by cyanidin 3, 5-diglucoside.

  10. Structure–activity studies with high-affinity inhibitors of pyroglutamyl-peptidase II

    PubMed Central

    2005-01-01

    Inhibitors of PPII (pyroglutamyl-peptidase II) (EC 3.4.19.6) have potential applications as investigative and therapeutic agents. The rational design of inhibitors is hindered, however, by the lack of an experimental structure for PPII. Previous studies have demonstrated that replacement of histidine in TRH (thyrotropin-releasing hormone) with asparagine produces a competitive PPII inhibitor (Ki 17.5 μM). To gain further insight into which functional groups are significant for inhibitory activity, we investigated the effects on inhibition of structural modifications to Glp-Asn-ProNH2 (pyroglutamyl-asparaginyl-prolineamide). Synthesis and kinetic analysis of a diverse series of carboxamide and C-terminally extended Glp-Asn-ProNH2 analogues were undertaken. Extensive quantitative structure–activity relationships were generated, which indicated that key functionalities in the basic molecular structure of the inhibitors combine in a unique way to cause PPII inhibition. Data from kinetic and molecular modelling studies suggest that hydrogen bonding between the asparagine side chain and PPII may provide a basis for the inhibitory properties of the asparagine-containing peptides. Prolineamide appeared to be important for interaction with the S2′ subsite, but some modifications were tolerated. Extension of Glp-Asn-ProNH2 with hydrophobic amino acids at the C-terminus led to a novel set of PPII inhibitors active in vitro at nanomolar concentrations. Such inhibitors were shown to enhance recovery of TRH released from rat brain slices. Glp-Asn-Pro-Tyr-Trp-Trp-7-amido-4-methylcoumarin displayed a Ki of 1 nM, making it the most potent competitive PPII inhibitor described to date. PPII inhibitors with this level of potency should find application in exploring the biological functions of TRH and PPII, and potentially provide a basis for development of novel therapeutics. PMID:15799721

  11. Dipeptidyl peptidase-4 inhibitors and their effects on the cardiovascular system.

    PubMed

    Solun, B; Marcoviciu, D; Dicker, D

    2013-08-01

    It is well known that patients with type 2 diabetes mellitus (T2DM) are at increased risk of cardiovascular (CV) disease. Elevated plasma glucose levels that independently lead to increased cardiovascular risk, combined with associated co-morbidities such as obesity, hypertension, and dyslipidemia, further contribute to the development of CV complications. Dipeptidyl peptidase 4 inhibitors (DPP-4 inhibitors) are a relatively new class of drugs used for the treatment of diabetes and recently have been widely used in clinical practice. They exert their actions through degradation inhibition of endogenous glucagon-like peptides (GLP-1) and glucose-dependent insulinotropic peptides (GIP), with a resulting increase in glucose mediated insulin secretion and a suppression of glucagon secretion. Since GLP-1 is known to have an impact not only on plasma glucose levels but also to have cardiovascular protective effects there is increased speculation of whether DPP-4 inhibitors will have similar effects. Though many short-term studies have been encouraging, ongoing long-term clinical trials on humans are needed to provide further clarity to the complete safety profiles of these agents in terms of cardiovascular risk, and whether they may exert potential cardiovascular benefit. This review includes available data on the cardiovascular effects of DPP-4 inhibitors as well as their overall safety profile.

  12. Dipeptidyl peptidase-4 inhibitors and the ischemic heart: Additional benefits beyond glycemic control.

    PubMed

    Chattipakorn, Nipon; Apaijai, Nattayaporn; Chattipakorn, Siriporn C

    2016-01-01

    Obese-insulin resistance and type 2 diabetes mellitus (T2DM) have become global health problems, and they are both associated with a higher risk of ischemic heart disease. Although reperfusion therapy is the treatment to increase blood supply to the ischemic myocardium, this intervention potentially causes cardiac tissue damage and instigates arrhythmias, processes known as reperfusion injury. Dipeptidyl peptidase 4 (DPP-4) inhibitors are glycemic control drugs commonly used in T2DM patients. Growing evidence from basic and clinical studies demonstrates that a DPP-4 inhibitor could exert cardioprotection and improve left ventricular function by reducing oxidative stress, apoptosis, and increasing reperfusion injury salvage kinase (RISK) activity. However, recent reports also showed potentially adverse cardiac events due to the use of a DPP-4 inhibitor. To investigate this disparity, future large clinical trials are essential in verifying whether DPP-4 inhibitors are beneficial beyond their glycemic control particularly for the ischemic heart in obese-insulin resistant subjects and T2DM patients.

  13. Dipeptidyl peptidase-4 inhibitors: pharmacokinetics, efficacy, tolerability and safety in renal impairment.

    PubMed

    Davis, T M E

    2014-10-01

    The dipeptidyl peptidase-4 (DPP-4) inhibitors are a new class of blood glucose-lowering therapy with proven efficacy, tolerability and safety. Four of the five commercially available DPP-4 inhibitors are subject to significant renal clearance, and pharmacokinetic studies in people with renal impairment have led to lower recommended doses based on creatinine clearance in order to prevent drug accumulation. Data from these pharmacokinetic studies and from supratherapeutic doses in healthy individuals and people with uncomplicated diabetes during development suggest, however, that there is a wide therapeutic margin. This should protect against toxicity if people with renal impairment are inadvertently prescribed higher doses than recommended. Doses appropriate to renal function are associated with reductions in HbA1c that are equivalent to those observed in people with type 2 diabetes who do not have renal impairment. Recent large-scale cardiovascular safety trials of saxagliptin and alogliptin have identified heart failure as a potential concern and renal impairment may increase the risk of this complication. Although the incidence of pancreatitis does not appear to be significantly increased by DPP-4 inhibitor therapy, renal impairment is also an independent risk factor. Additional data from other ongoing DPP-4 inhibitor cardiovascular safety trials should provide a more precise assessment of the risks of these uncommon complications, including in people with renal impairment. PMID:24684351

  14. A Nonhost Peptidase Inhibitor of ~14 kDa from Butea monosperma (Lam.) Taub. Seeds Affects Negatively the Growth and Developmental Physiology of Helicoverpa armigera

    PubMed Central

    Pandey, Prabhash K.; Singh, Dushyant; Singh, Sangram; Khan, M. Y.; Jamal, Farrukh

    2014-01-01

    Helicoverpa armigera is one of the major devastating pests of crop plants. In this context a serine peptidase inhibitor purified from the seeds of Butea monosperma was evaluated for its effect on developmental physiology of H. armigera larvae. B. monosperma peptidase inhibitor on 12% denaturing polyacrylamide gel electrophoresis exhibited a single protein band of ~14 kDa with or without reduction. In vitro studies towards total gut proteolytic enzymes of H. armigera and bovine trypsin indicated measurable inhibitory activity. B. monosperma peptidase inhibitor dose for 50% mortality and weight reduction by 50% were 0.5% w/w and 0.10% w/w, respectively. The IC50 of B. monosperma peptidase inhibitor against total H. armigera gut proteinases activity was 2.0 µg/mL. The larval feeding assays suggested B. monosperma peptidase inhibitor to be toxic as reflected by its retarded growth and development, consequently affecting fertility and fecundity of pest and prolonging the larval-pupal duration of the insect life cycle of H. armigera. Supplementing B. monosperma peptidase inhibitor in artificial diet at 0.1% w/w, both the efficiencies of conversion of ingested as well as digested food were downregulated, whereas approximate digestibility and metabolic cost were enhanced. The efficacy of Butea monosperma peptidase inhibitor against progressive growth and development of H. armigera suggest its usefulness in insect pest management of food crops. PMID:24860667

  15. Non-competitive and selective dipeptidyl peptidase IV inhibitors with phenethylphenylphthalimide skeleton derived from thalidomide-related α-glucosidase inhibitors and liver X receptor antagonists.

    PubMed

    Motoshima, Kazunori; Sugita, Kazuyuki; Hashimoto, Yuichi; Ishikawa, Minoru

    2011-05-15

    Novel dipeptidyl peptidase IV (DPP-IV) inhibitors with a phenethylphenylphthalimide skeleton were prepared based on α-glucosidase inhibitors and liver X receptor (LXR) antagonists derived from thalidomide. Representative compounds showed non-competitive inhibition of DPP-IV and 28a exhibited 10-fold selectivity for DPP-IV over DPP-8. Compound 28a is the first non-competitive, selective DPP-IV inhibitor.

  16. Cardiovascular effects of dipeptidyl peptidase-4 inhibitors in patients with type 2 diabetes.

    PubMed

    Koska, Juraj; Sands, Michelle; Burciu, Camelia; Reaven, Peter

    2015-05-01

    Cardiovascular (CV) disease is the leading cause of mortality and morbidity in patients with type 2 diabetes mellitus (T2DM). However, improving glycaemic control alone has not decreased CV events. Therapies that improve glycaemic control, CV disease risk factors and CV function are more likely to be successful. Dipeptidyl peptidase-4 (DPP-4) inhibitors prevent breakdown of incretin hormones glucagon-like peptide-1(GLP-1) and glucose-dependent insulinotropic peptide and improve glycaemic control in patients with T2DM. DPP-4 acts on other substrates, many associated with cardioprotection. Thus, inhibition of DPP-4 may lead to elevations in these potentially beneficial substrates. Data from animal studies and small observational studies in humans suggest that DPP-4 inhibitors may potentially reduce CV risk. However, recently completed CV outcome trials in patients with T2DM and CV disease or at high risk of adverse CV events have shown that the DPP-4 inhibitors saxagliptin and alogliptin neither increased nor decreased major adverse CV events. PMID:25852133

  17. HIV Protease Inhibitors and Obesity

    PubMed Central

    Anuurad, Erdembileg; Bremer, Andrew; Berglund, Lars

    2011-01-01

    Purpose of review To review the current scientific literature and recent clinical trials on HIV protease inhibitors (PIs) and their potential role in the pathogenesis of lipodystrophy and metabolic disorders. Recent findings HIV PI treatment may affect the normal stimulatory effect of insulin on glucose and fat storage. Further, chronic inflammation from HIV infection and PI treatment trigger cellular homeostatic stress responses with adverse effects on intermediary metabolism. The physiologic outcome is such that total adipocyte storage capacity is decreased, and the remaining adipocytes resist further fat storage. This process leads to a pathologic cycle of lipodystrophy and lipotoxicity, a pro-atherogenic lipid profile, and a clinical phenotype of increased central body fat distribution similar to the metabolic syndrome. Summary PIs are a key component of antiretroviral therapy and have dramatically improved the life expectancy of HIV-infected individuals. However, they are also associated with abnormalities in glucose/lipid metabolism and body fat distribution. Further studies are needed to better define the pathogenesis of PI-associated metabolic and body fat changes and their potential treatment. PMID:20717021

  18. Curcumin derivatives as HIV-1 protease inhibitors

    SciTech Connect

    Sui, Z.; Li, J.; Craik, C.S.; Ortiz de Montellano, P.R.

    1993-12-31

    Curcumin, a non-toxic natural compound from Curcuma longa, has been found to be an HIV-1 protease inhibitor. Some of its derivatives were synthesized and their inhibitory activity against the HIV-1 protease was tested. Curcumin analogues containing boron enhanced the inhibitory activity. At least of the the synthesized compounds irreversibly inhibits the HIV-1 protease.

  19. Raltegravir, an HIV-1 integrase inhibitor for HIV infection.

    PubMed

    Cabrera, Cecilia

    2008-08-01

    Merck & Co has developed and launched raltegravir, an HIV-1 integrase inhibitor for the treatment of HIV-1 infection in treatment-experienced adult patients who have evidence of viral replication and HIV-1 strains resistant to multiple antiretroviral agents. This drug is the lead from a series of integrase strand transfer inhibitors and, by April 2008, it had been launched in Canada, the US, the UK, France, Germany and Spain, and had been filed for approval in Japan.

  20. Cardiovascular effects of dipeptidyl peptidase-4 inhibitors: from risk factors to clinical outcomes.

    PubMed

    Scheen, André J

    2013-05-01

    Dipeptidyl peptidase-4 (DPP-4) inhibitors (gliptins) are oral incretin-based glucose-lowering agents with proven efficacy and safety in the management of type 2 diabetes mellitus (T2DM). In addition, preclinical data and mechanistic studies suggest a possible additional non-glycemic beneficial action on blood vessels and the heart, via both glucagon-like peptide-1-dependent and glucagon-like peptide-1-independent effects. As a matter of fact, DPP-4 inhibitors improve several cardiovascular risk factors: they improve glucose control (mainly by reducing the risk of postprandial hyperglycemia) and are weight neutral; may lower blood pressure somewhat; improve postprandial (and even fasting) lipemia; reduce inflammatory markers; diminish oxidative stress; improve endothelial function; and reduce platelet aggregation in patients with T2DM. In addition, positive effects on the myocardium have been described in patients with ischemic heart disease. Results of post hoc analyses of phase 2/3 controlled trials suggest a possible cardioprotective effect with a trend (sometimes significant) toward lower incidence of major cardiovascular events with sitagliptin, vildagliptin, saxagliptin, linagliptin, or alogliptin compared with placebo or other active glucose-lowering agents. However, the definite relationship between DPP-4 inhibition and better cardiovascular outcomes remains to be proven. Major prospective clinical trials involving various DPP-4 inhibitors with predefined cardiovascular outcomes are under way in patients with T2DM and a high-risk cardiovascular profile: the Sitagliptin Cardiovascular Outcome Study (TECOS) on sitagliptin, the Saxagliptin Assessment of Vascular Outcomes Recorded in Patients With Diabetes Mellitus-Thrombolysis in Myocardial Infarction (SAVOR-TIMI) 53 trial on saxagliptin, the Cardiovascular Outcomes Study of Alogliptin in Subjects With Type 2 Diabetes and Acute Coronary Syndrome (EXAMINE) trial on alogliptin, and the Cardiovascular Outcome

  1. Dipeptidyl peptidase-4 inhibitors in type 2 diabetes therapy--focus on alogliptin.

    PubMed

    Capuano, Annalisa; Sportiello, Liberata; Maiorino, Maria Ida; Rossi, Francesco; Giugliano, Dario; Esposito, Katherine

    2013-01-01

    Type 2 diabetes mellitus is a complex and progressive disease that is showing an apparently unstoppable increase worldwide. Although there is general agreement on the first-line use of metformin in most patients with type 2 diabetes, the ideal drug sequence after metformin failure is an area of increasing uncertainty. New treatment strategies target pancreatic islet dysfunction, in particular gut-derived incretin hormones. Inhibition of the enzyme dipeptidyl peptidase-4 (DPP-4) slows degradation of endogenous glucagon-like peptide-1 (GLP-1) and thereby enhances and prolongs the action of the endogenous incretin hormones. The five available DPP-4 inhibitors, also known as 'gliptins' (sitagliptin, vildagliptin, saxagliptin, linagliptin, alogliptin), are small molecules used orally with similar overall clinical efficacy and safety profiles in patients with type 2 diabetes. The main differences between the five gliptins on the market include: potency, target selectivity, oral bioavailability, long or short half-life, high or low binding to plasma proteins, metabolism, presence of active or inactive metabolites, excretion routes, dosage adjustment for renal and liver insufficiency, and potential drug-drug interactions. On average, treatment with gliptins is expected to produce a mean glycated hemoglobin (HbA1c) decrease of 0.5%-0.8%, with about 40% of diabetic subjects at target for the HbA1c goal <7%. There are very few studies comparing DPP-4 inhibitors. Alogliptin as monotherapy or added to metformin, pioglitazone, glibenclamide, voglibose, or insulin therapy significantly improves glycemic control compared with placebo in adult or elderly patients with inadequately controlled type 2 diabetes. In the EXAMINE trial, alogliptin is being compared with placebo on cardiovascular outcomes in approximately 5,400 patients with type 2 diabetes. In clinical studies, DPP-4 inhibitors were generally safe and well tolerated. However, there are limited data on their tolerability

  2. Effect of dipeptidyl peptidase-4 inhibitor, vildagliptin on plasminogen activator inhibitor-1 in patients with diabetes mellitus.

    PubMed

    Tani, Shigemasa; Takahashi, Atsuhiko; Nagao, Ken; Hirayama, Atsushi

    2015-02-15

    Dipeptidyl peptidase-4 (DPP-4) inhibitors may affect the serum levels of plasminogen activator inhibitor-1 (PAI-1) associated with triglyceride (TG) metabolism, which is a prognostic factor for cardiovascular disease, in diabetic patients. We conducted an 8-week, prospective, randomized study in which we assigned type 2 diabetic patients who were inadequately controlled with antidiabetic therapy to the vildagliptin group (50 mg bid, n = 49) or the control group (n = 49). The primary efficacy parameter was the change in the serum level of PAI-1, and the secondary end point was the change in the serum levels of TG-rich lipoproteins. In the vildagliptin group, significant decrease of the serum PAI-1 level by 16.3% (p <0.0001) and significant decreases of the serum TG, remnant-like particle cholesterol, and apolipoprotein B levels by 12.1% (p = 0.002), 13.9% (p = 0.003), and 9.5% (p <0.0001), respectively, were observed. No such changes were observed in the control group. Multivariate regression analyses identified the absolute change from the baseline (Δ) of the PAI-1, but not that of the fasting blood glucose or hemoglobin A1c, as independent predictors of the ΔTG, Δ remnant-like particle cholesterol, and Δ apolipoprotein B. In conclusion, treatment of type 2 diabetes with vildagliptin might prevent the progression of atherosclerotic cardiovascular disease in diabetic patients by decreasing the serum PAI-1 levels and improving TG metabolism.

  3. Serpin peptidase inhibitor (SERPINB5) haplotypes are associated with susceptibility to hepatocellular carcinoma

    NASA Astrophysics Data System (ADS)

    Yang, Shun-Fa; Yeh, Chao-Bin; Chou, Ying-Erh; Lee, Hsiang-Lin; Liu, Yu-Fan

    2016-05-01

    Hepatocellular carcinoma (HCC) represents the second leading cause of cancer-related death worldwide. The serpin peptidase inhibitor SERPINB5 is a tumour-suppressor gene that promotes the development of various cancers in humans. However, whether SERPINB5 gene variants play a role in HCC susceptibility remains unknown. In this study, we genotyped 6 SNPs of the SERPINB5 gene in an independent cohort from a replicate population comprising 302 cases and 590 controls. Additionally, patients who had at least one rs2289520 C allele in SERPINB5 tended to exhibit better liver function than patients with genotype GG (Child-Pugh grade A vs. B or C; P = 0.047). Next, haplotype blocks were reconstructed according to the linkage disequilibrium structure of the SERPINB5 gene. A haplotype “C-C-C” (rs17071138 + rs3744941 + rs8089204) in SERPINB5-correlated promoter showed a significant association with an increased HCC risk (AOR = 1.450 P = 0.031). Haplotypes “T-C-A” and “C-C-C” (rs2289519 + rs2289520 + rs1455555) located in the SERPINB5 coding region had a decreased (AOR = 0.744 P = 0.031) and increased (AOR = 1.981 P = 0.001) HCC risk, respectively. Finally, an additional integrated in silico analysis confirmed that these SNPs affected SERPINB5 expression and protein stability, which significantly correlated with tumour expression and subsequently with tumour development and aggressiveness. Taken together, our findings regarding these biomarkers provide a prediction model for risk assessment.

  4. Serpin peptidase inhibitor (SERPINB5) haplotypes are associated with susceptibility to hepatocellular carcinoma

    PubMed Central

    Yang, Shun-Fa; Yeh, Chao-Bin; Chou, Ying-Erh; Lee, Hsiang-Lin; Liu, Yu-Fan

    2016-01-01

    Hepatocellular carcinoma (HCC) represents the second leading cause of cancer-related death worldwide. The serpin peptidase inhibitor SERPINB5 is a tumour-suppressor gene that promotes the development of various cancers in humans. However, whether SERPINB5 gene variants play a role in HCC susceptibility remains unknown. In this study, we genotyped 6 SNPs of the SERPINB5 gene in an independent cohort from a replicate population comprising 302 cases and 590 controls. Additionally, patients who had at least one rs2289520 C allele in SERPINB5 tended to exhibit better liver function than patients with genotype GG (Child-Pugh grade A vs. B or C; P = 0.047). Next, haplotype blocks were reconstructed according to the linkage disequilibrium structure of the SERPINB5 gene. A haplotype “C-C-C” (rs17071138 + rs3744941 + rs8089204) in SERPINB5-correlated promoter showed a significant association with an increased HCC risk (AOR = 1.450; P = 0.031). Haplotypes “T-C-A” and “C-C-C” (rs2289519 + rs2289520 + rs1455555) located in the SERPINB5 coding region had a decreased (AOR = 0.744; P = 0.031) and increased (AOR = 1.981; P = 0.001) HCC risk, respectively. Finally, an additional integrated in silico analysis confirmed that these SNPs affected SERPINB5 expression and protein stability, which significantly correlated with tumour expression and subsequently with tumour development and aggressiveness. Taken together, our findings regarding these biomarkers provide a prediction model for risk assessment. PMID:27221742

  5. NAAG peptidase inhibitor improves motor function and reduces cognitive dysfunction in a model of TBI with secondary hypoxia.

    PubMed

    Gurkoff, Gene G; Feng, Jun-Feng; Van, Ken C; Izadi, Ali; Ghiasvand, Rahil; Shahlaie, Kiarash; Song, Minsoo; Lowe, David A; Zhou, Jia; Lyeth, Bruce G

    2013-06-17

    Immediately following traumatic brain injury (TBI) and TBI with hypoxia, there is a rapid and pathophysiological increase in extracellular glutamate, subsequent neuronal damage and ultimately diminished motor and cognitive function. N-acetyl-aspartyl glutamate (NAAG), a prevalent neuropeptide in the CNS, is co-released with glutamate, binds to the presynaptic group II metabotropic glutamate receptor subtype 3 (mGluR3) and suppresses glutamate release. However, the catalytic enzyme glutamate carboxypeptidase II (GCP II) rapidly hydrolyzes NAAG into NAA and glutamate. Inhibition of the GCP II enzyme with NAAG peptidase inhibitors reduces the concentration of glutamate both by increasing the duration of NAAG activity on mGluR3 and by reducing degradation into NAA and glutamate resulting in reduced cell death in models of TBI and TBI with hypoxia. In the following study, rats were administered the NAAG peptidase inhibitor PGI-02776 (10mg/kg) 30 min following TBI combined with a hypoxic second insult. Over the two weeks following injury, PGI-02776-treated rats had significantly improved motor function as measured by increased duration on the rota-rod and a trend toward improved performance on the beam walk. Furthermore, two weeks post-injury, PGI-02776-treated animals had a significant decrease in latency to find the target platform in the Morris water maze as compared to vehicle-treated animals. These findings demonstrate that the application of NAAG peptidase inhibitors can reduce the deleterious motor and cognitive effects of TBI combined with a second hypoxic insult in the weeks following injury. PMID:23562458

  6. The dipeptidyl peptidase IV inhibitors vildagliptin and K-579 inhibit a phospholipase C: a case of promiscuous scaffolds in proteins.

    PubMed

    Chakraborty, Sandeep; Rendón-Ramírez, Adela; Ásgeirsson, Bjarni; Dutta, Mouparna; Ghosh, Anindya S; Oda, Masataka; Venkatramani, Ravindra; Rao, Basuthkar J; Dandekar, Abhaya M; Goñi, Félix M

    2013-01-01

    The long term side effects of any newly introduced drug is a subject of intense research, and often raging controversies. One such example is the dipeptidyl peptidase-IV (DPP4) inhibitor used for treating type 2 diabetes, which is inconclusively implicated in increased susceptibility to acute pancreatitis. Previously, based on a computational analysis of the spatial and electrostatic properties of active site residues, we have demonstrated that phosphoinositide-specific phospholipase C (PI-PLC) from Bacillus cereus is a prolyl peptidase using in vivo experiments. In the current work, we first report the inhibition of the native activity of PI-PLC by two DPP4 inhibitors - vildagliptin (LAF-237) and K-579. While vildagliptin inhibited PI-PLC at micromolar concentrations, K-579 was a potent inhibitor even at nanomolar concentrations. Subsequently, we queried a comprehensive, non-redundant set of 5000 human proteins (50% similarity cutoff) with known structures using serine protease (SPASE) motifs derived from trypsin and DPP4. A pancreatic lipase and a gastric lipase are among the proteins that are identified as proteins having promiscuous SPASE scaffolds that could interact with DPP4 inhibitors. The presence of such scaffolds in human lipases is expected since they share the same catalytic mechanism with PI-PLC. However our methodology also detects other proteins, often with a completely different enzymatic mechanism, that have significantly congruent domains with the SPASE motifs. The reported elevated levels of serum lipase, although contested, could be rationalized by inhibition of lipases reported here. In an effort to further our understanding of the spatial and electrostatic basis of DPP4 inhibitors, we have also done a comprehensive analysis of all 76 known DPP4 structures liganded to inhibitors till date. Also, the methodology presented here can be easily adopted for other drugs, and provide the first line of filtering in the identification of pathways that

  7. Angiotensin-Converting Enzyme Inhibitor Use and Major Cardiovascular Outcomes in Type 2 Diabetes Mellitus Treated With the Dipeptidyl Peptidase 4 Inhibitor Alogliptin.

    PubMed

    White, William B; Wilson, Craig A; Bakris, George L; Bergenstal, Richard M; Cannon, Christopher P; Cushman, William C; Heller, Simon K; Mehta, Cyrus R; Nissen, Steven E; Zannad, Faiez; Kupfer, Stuart

    2016-09-01

    Activation of the sympathetic nervous system when there is dipeptidyl peptidase 4 inhibition in the presence of high-dose angiotensin-converting enzyme (ACE) inhibition has led to concerns of potential increases in cardiovascular events when the 2 classes of drugs are coadministered. We evaluated cardiovascular outcomes from the EXAMINE (Examination of Cardiovascular Outcomes With Alogliptin versus Standard of Care) trial according to ACE inhibitor use. Patients with type 2 diabetes mellitus and a recent acute coronary syndrome were randomly assigned to receive the dipeptidyl peptidase 4 inhibitor alogliptin or placebo added to existing antihyperglycemic and cardiovascular prophylactic therapies. Risks of adjudicated cardiovascular death, nonfatal myocardial infarction and stroke, and hospitalized heart failure were analyzed using a Cox proportional hazards model in patients according to ACE inhibitor use and dose. There were 3323 (62%) EXAMINE patients treated with an ACE inhibitor (1681 on alogliptin and 1642 on placebo). The composite rates of cardiovascular death, nonfatal myocardial infarction, and nonfatal stroke were comparable for alogliptin and placebo with ACE inhibitor (11.4% versus 11.8%; hazard ratio, 0.97; 95% confidence interval, 0.79-1.19; P=0.76) and without ACE inhibitor use (11.2% versus 11.9%; hazard ratio, 0.94; 95% confidence interval, 0.73-1.21; P=0.62). Composite rates for cardiovascular death and heart failure in patients on ACE inhibitor occurred in 6.8% of patients on alogliptin versus 7.2% on placebo (hazard ratio, 0.93; 95% confidence interval, 0.72-1.2; P=0.57). There were no differences for these end points nor for blood pressure or heart rate in patients on higher doses of ACE inhibitor. Cardiovascular outcomes were similar for alogliptin and placebo in patients with type 2 diabetes mellitus and coronary disease treated with ACE inhibitors. PMID:27480840

  8. The crystal structure of human dipeptidyl peptidase I (cathepsin C) in complex with the inhibitor Gly-Phe-CHN2

    PubMed Central

    Mølgaard, Anne; Arnau, Jose; Lauritzen, Conni; Larsen, Sine; Petersen, Gitte; Pedersen, John

    2006-01-01

    hDDPI (human dipeptidyl peptidase I) is a lysosomal cysteine protease involved in zymogen activation of granule-associated proteases, including granzymes A and B from cytotoxic T-lymphocytes and natural killer cells, cathepsin G and neutrophil elastase, and mast cell tryptase and chymase. In the present paper, we provide the first crystal structure of an hDPPI–inhibitor complex. The inhibitor Gly-Phe-CHN2 (Gly-Phe-diazomethane) was co-crystallized with hDPPI and the structure was determined at 2.0 Å (1 Å=0.1 nm) resolution. The structure of the native enzyme was also determined to 2.05 Å resolution to resolve apparent discrepancies between the complex structure and the previously published structure of the native enzyme. The new structure of the native enzyme is, within the experimental error, identical with the structure of the enzyme–inhibitor complex presented here. The inhibitor interacts with three subunits of hDPPI, and is covalently bound to Cys234 at the active site. The interaction between the totally conserved Asp1 of hDPPI and the ammonium group of the inhibitor forms an essential interaction that mimics enzyme–substrate interactions. The structure of the inhibitor complex provides an explanation of the substrate specificity of hDPPI, and gives a background for the design of new inhibitors. PMID:17020538

  9. A novel proteasome inhibitor suppresses tumor growth via targeting both 19S proteasome deubiquitinases and 20S proteolytic peptidases.

    PubMed

    Liu, Ningning; Liu, Chunjiao; Li, Xiaofen; Liao, Siyan; Song, Wenbin; Yang, Changshan; Zhao, Chong; Huang, Hongbiao; Guan, Lixia; Zhang, Peiquan; Liu, Shouting; Hua, Xianliang; Chen, Xin; Zhou, Ping; Lan, Xiaoying; Yi, Songgang; Wang, Shunqing; Wang, Xuejun; Dou, Q Ping; Liu, Jinbao

    2014-01-01

    The successful development of bortezomib-based therapy for treatment of multiple myeloma has established proteasome inhibition as an effective therapeutic strategy, and both 20S proteasome peptidases and 19S deubiquitinases (DUBs) are becoming attractive targets of cancer therapy. It has been reported that metal complexes, such as copper complexes, inhibit tumor proteasome. However, the involved mechanism of action has not been fully characterized. Here we report that (i) copper pyrithione (CuPT), an alternative to tributyltin for antifouling paint biocides, inhibits the ubiquitin-proteasome system (UPS) via targeting both 19S proteasome-specific DUBs and 20S proteolytic peptidases with a mechanism distinct from that of the FDA-approved proteasome inhibitor bortezomib; (ii) CuPT potently inhibits proteasome-specific UCHL5 and USP14 activities; (iii) CuPT inhibits tumor growth in vivo and induces cytotoxicity in vitro and ex vivo. This study uncovers a novel class of dual inhibitors of DUBs and proteasome and suggests a potential clinical strategy for cancer therapy. PMID:24912524

  10. A novel proteasome inhibitor suppresses tumor growth via targeting both 19S proteasome deubiquitinases and 20S proteolytic peptidases

    PubMed Central

    Liu, Ningning; Liu, Chunjiao; Li, Xiaofen; Liao, Siyan; Song, Wenbin; Yang, Changshan; Zhao, Chong; Huang, Hongbiao; Guan, Lixia; Zhang, Peiquan; Liu, Shouting; Hua, Xianliang; Chen, Xin; Zhou, Ping; Lan, Xiaoying; Yi, Songgang; Wang, Shunqing; Wang, Xuejun; Dou, Q. Ping; Liu, Jinbao

    2014-01-01

    The successful development of bortezomib-based therapy for treatment of multiple myeloma has established proteasome inhibition as an effective therapeutic strategy, and both 20S proteasome peptidases and 19S deubiquitinases (DUBs) are becoming attractive targets of cancer therapy. It has been reported that metal complexes, such as copper complexes, inhibit tumor proteasome. However, the involved mechanism of action has not been fully characterized. Here we report that (i) copper pyrithione (CuPT), an alternative to tributyltin for antifouling paint biocides, inhibits the ubiquitin-proteasome system (UPS) via targeting both 19S proteasome-specific DUBs and 20S proteolytic peptidases with a mechanism distinct from that of the FDA-approved proteasome inhibitor bortezomib; (ii) CuPT potently inhibits proteasome-specific UCHL5 and USP14 activities; (iii) CuPT inhibits tumor growth in vivo and induces cytotoxicity in vitro and ex vivo. This study uncovers a novel class of dual inhibitors of DUBs and proteasome and suggests a potential clinical strategy for cancer therapy. PMID:24912524

  11. Sifuvirtide, a potent HIV fusion inhibitor peptide

    SciTech Connect

    Wang, Rui-Rui; Yang, Liu-Meng; Wang, Yun-Hua; Pang, Wei; Tam, Siu-Cheung; Tien, Po; Zheng, Yong-Tang

    2009-05-08

    Enfuvirtide (ENF) is currently the only FDA approved HIV fusion inhibitor in clinical use. Searching for more drugs in this category with higher efficacy and lower toxicity seems to be a logical next step. In line with this objective, a synthetic peptide with 36 amino acid residues, called Sifuvirtide (SFT), was designed based on the crystal structure of gp41. In this study, we show that SFT is a potent anti-HIV agent with relatively low cytotoxicity. SFT was found to inhibit replication of all tested HIV strains. The effective concentrations that inhibited 50% viral replication (EC{sub 50}), as determined in all tested strains, were either comparable or lower than benchmark values derived from well-known anti-HIV drugs like ENF or AZT, while the cytotoxic concentrations causing 50% cell death (CC{sub 50}) were relatively high, rendering it an ideal anti-HIV agent. A GST-pull down assay was performed to confirm that SFT is a fusion inhibitor. Furthermore, the activity of SFT on other targets in the HIV life cycle was also investigated, and all assays showed negative results. To further understand the mechanism of action of HIV peptide inhibitors, resistant variants of HIV-1{sub IIIB} were derived by serial virus passage in the presence of increasing doses of SFT or ENF. The results showed that there was cross-resistance between SFT and ENF. In conclusion, SFT is an ideal anti-HIV agent with high potency and low cytotoxicity, but may exhibit a certain extent of cross-resistance with ENF.

  12. Sifuvirtide, a potent HIV fusion inhibitor peptide.

    PubMed

    Wang, Rui-Rui; Yang, Liu-Meng; Wang, Yun-Hua; Pang, Wei; Tam, Siu-Cheung; Tien, Po; Zheng, Yong-Tang

    2009-05-01

    Enfuvirtide (ENF) is currently the only FDA approved HIV fusion inhibitor in clinical use. Searching for more drugs in this category with higher efficacy and lower toxicity seems to be a logical next step. In line with this objective, a synthetic peptide with 36 amino acid residues, called Sifuvirtide (SFT), was designed based on the crystal structure of gp41. In this study, we show that SFT is a potent anti-HIV agent with relatively low cytotoxicity. SFT was found to inhibit replication of all tested HIV strains. The effective concentrations that inhibited 50% viral replication (EC(50)), as determined in all tested strains, were either comparable or lower than benchmark values derived from well-known anti-HIV drugs like ENF or AZT, while the cytotoxic concentrations causing 50% cell death (CC(50)) were relatively high, rendering it an ideal anti-HIV agent. A GST-pull down assay was performed to confirm that SFT is a fusion inhibitor. Furthermore, the activity of SFT on other targets in the HIV life cycle was also investigated, and all assays showed negative results. To further understand the mechanism of action of HIV peptide inhibitors, resistant variants of HIV-1(IIIB) were derived by serial virus passage in the presence of increasing doses of SFT or ENF. The results showed that there was cross-resistance between SFT and ENF. In conclusion, SFT is an ideal anti-HIV agent with high potency and low cytotoxicity, but may exhibit a certain extent of cross-resistance with ENF.

  13. The hunt for HIV-1 integrase inhibitors.

    PubMed

    Lataillade, Max; Kozal, Michael J

    2006-07-01

    Currently, there are three distinct mechanistic classes of antiretrovirals: inhibitors of the HIV- 1 reverse transcriptase and protease enzymes and inhibitors of HIV entry, including receptor and coreceptor binding and cell fusion. A new drug class that inhibits the HIV-1 integrase enzyme (IN) is in development and may soon be available in the clinic. IN is an attractive drug target because it is essential for a stable and productive HIV-1 infection and there is no mammalian homologue of IN. Inhibitors of integrase enzyme (INI) block the integration of viral double-stranded DNA into the host cell's chromosomal DNA. HIV-1 integration has many potential steps that can be inhibited and several new compounds that target specific integration steps have been identified by drug developers. Recently, two INIs, GS-9137 and MK-0518, demonstrated promising early clinical trial results and have been advanced into later stage trials. In this review, we describe how IN facilitates HIV-1 integration, the needed enzyme cofactors, and the resultant byproducts created during integration. Furthermore, we review the different INIs under development, their mechanism of actions, site of IN inhibition, potency, resistance patterns, and discuss the early clinical trial results.

  14. Current and Novel Inhibitors of HIV Protease

    PubMed Central

    Pokorná, Jana; Machala, Ladislav; Řezáčová, Pavlína; Konvalinka, Jan

    2009-01-01

    The design, development and clinical success of HIV protease inhibitors represent one of the most remarkable achievements of molecular medicine. This review describes all nine currently available FDA-approved protease inhibitors, discusses their pharmacokinetic properties, off-target activities, side-effects, and resistance profiles. The compounds in the various stages of clinical development are also introduced, as well as alternative approaches, aiming at other functional domains of HIV PR. The potential of these novel compounds to open new way to the rational drug design of human viruses is critically assessed. PMID:21994591

  15. Pharmacological profiles of gemigliptin (LC15-0444), a novel dipeptidyl peptidase-4 inhibitor, in vitro and in vivo.

    PubMed

    Kim, Sung-Ho; Jung, Eunsoo; Yoon, Min Kyung; Kwon, O Hwan; Hwang, Dal-Mi; Kim, Dong-Wook; Kim, Junghyun; Lee, Sun-Mee; Yim, Hyeon Joo

    2016-10-01

    Gemigliptin, a novel dipeptidyl peptidase (DPP)-4 inhibitor, is approved for use as a monotherapy or in combination therapy to treat hyperglycemia in patients with type 2 diabetes mellitus. In this study, we investigated the pharmacological profiles of gemigliptin in vitro and in vivo and compared them to those of the other DPP-4 inhibitors. Gemigliptin was a reversible and competitive inhibitor with a Ki value of 7.25±0.67nM. Similar potency was shown in plasma from humans, rats, dogs, and monkeys. The kinetics of DPP-4 inhibition by gemigliptin was characterized by a fast association and a slow dissociation rate compared to sitagliptin (fast on and fast off rate) or vildagliptin (slow on and slow off rate). In addition, gemigliptin showed at least >23,000-fold selectivity for DPP-4 over various proteases and peptidases, including DPP-8, DPP-9, and fibroblast activation protein (FAP)-α. In the rat, dog, and monkey, gemigliptin showed more potent DPP-4 inhibitory activity in vivo compared with sitagliptin. In mice and dogs, gemigliptin prevented the degradation of active glucagon-like peptide-1 by DPP-4 inhibition, which improved glucose tolerance by increasing insulin secretion and reducing glucagon secretion during an oral glucose tolerance test. The long-term anti-hyperglycemic effect of gemigliptin was evaluated in diet-induced obese mice and high-fat diet/streptozotocin-induced diabetic mice. Gemigliptin dose-dependently decreased hemoglobin A1c (HbA1c) levels and ameliorated β-cell damage. In conclusion, gemigliptin is a potent, long-acting, and highly selective DPP-4 inhibitor and can be a safe and effective drug for the long-term treatment of type 2 diabetes. PMID:27298192

  16. Dipeptidyl peptidase-4 inhibitor MK-626 restores insulin secretion through enhancing autophagy in high fat diet-induced mice.

    PubMed

    Liu, Limei; Liu, Jian; Yu, Xiaoxing

    2016-02-12

    Autophagy is cellular machinery for maintenance of β-cell function and mass. The current study aimed to investigate the regulatory effects of MK-626, a dipeptidyl peptidase-4 inhibitor, on insulin secretion through the activation of autophagy in high fat diet-induced obese mice. C57BL/6 mice were fed with a rodent diet containing 45 kcal% fat for 16 weeks to induce obesity and then were received either vehicle or MK-626 (3 mg/kg/day) orally during the final 4 weeks. Mouse islets were isolated. Phosphorylation of serine/threonine-protein kinase mTOR and levels of light chain 3B I (LC3B I), LC3B II, sequestosome-1 (SQSTM1/p62) and autophagy-related protein-7 (Atg7) were examined by Western blotting. Glucagon like-peptide-1 (GLP-1) level and insulin secretion were measured by ELISA. GLP-1 level in plasma was decreased in obese mice, which was elevated by dipeptidyl peptidase-4 inhibitor MK-626. In the islets of obese mice, phosphorylation of mTOR, ratio of LC3B I and LC3B II, and level of p62 were elevated and the expression of Atg7 and insulin secretion were reduced compared to those of C57BL/6 mice. However, such effects were reversed by MK-626. Autophagy activator rapamycin stimulated insulin secretion in obese mice but autophagy inhibitor chloroquine treatment inhibited insulin secretion in obese mice administrated by MK-626. Furthermore, the beneficial effects of MK-626 were inhibited by GLP-1 receptor antagonist exendin 9-39. The present study reveals the activation of autophagy to mediate the anti-diabetic effect of GLP-1.

  17. A low-grade increase of serum pancreatic exocrine enzyme levels by dipeptidyl peptidase-4 inhibitor in patients with type 2 diabetes.

    PubMed

    Tokuyama, Hirotake; Kawamura, Harukiyo; Fujimoto, Masaki; Kobayashi, Kazuki; Nieda, Mie; Okazawa, Tetsuya; Takemoto, Minoru; Shimada, Fumio

    2013-06-01

    A potential adverse effect of dipeptidyl peptidase-4 inhibitors (DPP-4i) on the pancreas remains controversial. We evaluated the DPP-4i effects on pancreatic amylase and lipase activity in patients with type 2 diabetes. These enzymes were slightly but significantly increased, suggesting DPP-4i cause a low-grade inflammatory change in the exocrine pancreas. PMID:23618553

  18. Effects of dipeptidyl peptidase IV inhibitor sitagliptin on immunological parameters of lymphocytes in intact animals and animals with experimental autoimmune process.

    PubMed

    Robinson, M V; Mel'nikova, E V; Trufakin, V A

    2014-11-01

    The effects of dipeptidyl peptidase IV inhibitor sitagliptin on immunological parameters were studied in animals with experimental autoimmune process. The effects of the drug administered in preventive (before manifestation of autoimmune processes) and therapeutic (after manifestation of autoimmune process) modes were studied. PMID:25408522

  19. Identification of Novel Human Dipeptidyl Peptidase-IV Inhibitors of Natural Origin (Part II): In Silico Prediction in Antidiabetic Extracts

    PubMed Central

    Guasch, Laura; Sala, Esther; Ojeda, María José; Valls, Cristina; Bladé, Cinta; Mulero, Miquel; Blay, Mayte; Ardévol, Anna; Garcia-Vallvé, Santiago; Pujadas, Gerard

    2012-01-01

    Background Natural extracts play an important role in traditional medicines for the treatment of diabetes mellitus and are also an essential resource for new drug discovery. Dipeptidyl peptidase IV (DPP-IV) inhibitors are potential candidates for the treatment of type 2 diabetes mellitus, and the effectiveness of certain antidiabetic extracts of natural origin could be, at least partially, explained by the inhibition of DPP-IV. Methodology/Principal Findings Using an initial set of 29,779 natural products that are annotated with their natural source and an experimentally validated virtual screening procedure previously developed in our lab (Guasch et al.; 2012) [1], we have predicted 12 potential DPP-IV inhibitors from 12 different plant extracts that are known to have antidiabetic activity. Seven of these molecules are identical or similar to molecules with described antidiabetic activity (although their role as DPP-IV inhibitors has not been suggested as an explanation for their bioactivity). Therefore, it is plausible that these 12 molecules could be responsible, at least in part, for the antidiabetic activity of these extracts through their inhibitory effect on DPP-IV. In addition, we also identified as potential DPP-IV inhibitors 6 molecules from 6 different plants with no described antidiabetic activity but that share the same genus as plants with known antidiabetic properties. Moreover, none of the 18 molecules that we predicted as DPP-IV inhibitors exhibits chemical similarity with a group of 2,342 known DPP-IV inhibitors. Conclusions/Significance Our study identified 18 potential DPP-IV inhibitors in 18 different plant extracts (12 of these plants have known antidiabetic properties, whereas, for the remaining 6, antidiabetic activity has been reported for other plant species from the same genus). Moreover, none of the 18 molecules exhibits chemical similarity with a large group of known DPP-IV inhibitors. PMID:23028712

  20. Synthesis and biological evaluation of novel benzyl-substituted (S)-phenylalanine derivatives as potent dipeptidyl peptidase 4 inhibitors.

    PubMed

    Liu, Yang; Si, Meimei; Tang, Li; Shangguan, Shihao; Wu, Haoshu; Li, Jia; Wu, Peng; Ma, Xiaodong; Liu, Tao; Hu, Yongzhou

    2013-09-15

    A series of novel benzyl-substituted (S)-phenylalanine derivatives were synthesized and evaluated for their dipeptidyl peptidase 4 (DPP-4) inhibitory activity and selectivity. It was found that most synthesized target compounds were potent DPP-4 inhibitors with IC50 values in 3.79-25.52 nM, which were significantly superior to that of the marketed drug sitagliptin. Furthermore, the 4-fluorobenzyl substituted phenylalanine derivative 6g not only displayed the potent DPP-4 inhibition with an IC50 value of 3.79 nM, but also showed better selectivity against DPP-4 over other related enzymes including DPP-7, DPP-8, and DPP-9. In an oral glucose tolerance test (OGTT) in normal Sprague Dawley rats, compound 6g reduced blood glucose excursion in a dose-dependent manner.

  1. Aspartic Peptidases of Human Pathogenic Trypanosomatids: Perspectives and Trends for Chemotherapy

    PubMed Central

    Santos, L.O.; Garcia-Gomes, A.S.; Catanho, M.; Sodré, C.L.; Santos, A.L.S.; Branquinha, M.H.; d’Avila-Levy, C.M.

    2013-01-01

    Aspartic peptidases are proteolytic enzymes present in many organisms like vertebrates, plants, fungi, protozoa and in some retroviruses such as human immunodeficiency virus (HIV). These enzymes are involved in important metabolic processes in microorganisms/virus and play major roles in infectious diseases. Although few studies have been performed in order to identify and characterize aspartic peptidase in trypanosomatids, which include the etiologic agents of leishmaniasis, Chagas’ disease and sleeping sickness, some beneficial properties of aspartic peptidase inhibitors have been described on fundamental biological events of these pathogenic agents. In this context, aspartic peptidase inhibitors (PIs) used in the current chemotherapy against HIV (e.g., amprenavir, indinavir, lopinavir, nelfinavir, ritonavir and saquinavir) were able to inhibit the aspartic peptidase activity produced by different species of Leishmania. Moreover, the treatment of Leishmania promastigotes with HIV PIs induced several perturbations on the parasite homeostasis, including loss of the motility and arrest of proliferation/growth. The HIV PIs also induced an increase in the level of reactive oxygen species and the appearance of irreversible morphological alterations, triggering parasite death pathways such as programed cell death (apoptosis) and uncontrolled autophagy. The blockage of physiological parasite events as well as the induction of death pathways culminated in its incapacity to adhere, survive and escape of phagocytic cells. Collectively, these results support the data showing that parasites treated with HIV PIs have a significant reduction in the ability to cause in vivo infection. Similarly, the treatment of Trypanosoma cruzi cells with pepstatin A showed a significant inhibition on both aspartic peptidase activity and growth as well as promoted several and irreversible morphological changes. These studies indicate that aspartic peptidases can be promising targets in

  2. Cost-effectiveness of dipeptidyl peptidase-4 inhibitor monotherapy in elderly type 2 diabetes patients in Thailand

    PubMed Central

    Permsuwan, Unchalee; Dilokthornsakul, Piyameth; Saokaew, Surasak; Thavorn, Kednapa; Chaiyakunapruk, Nathorn

    2016-01-01

    Background The management of type 2 diabetes mellitus (T2DM) in elderly population poses many challenges. Dipeptidyl peptidase-4 (DPP-4) inhibitors show particular promise due to excellent tolerability profiles, low risk of hypoglycemia, and little effect on body weight. This study evaluated, from the health care system’s perspective, the long-term cost-effectiveness of DPP-4 inhibitor monotherapy vs metformin and sulfonylurea (SFU) monotherapy in Thai elderly T2DM patients. Methods The clinical efficacy was estimated from a systematic review and meta-analysis. Baseline cohort characteristics and cost parameters were obtained from published studies and hospital databases in Thailand. A validated IMS CORE Diabetes Model version 8.5 was used to project clinical and economic outcomes over a lifetime horizon using a 3% annual discount rate. Costs were expressed in 2014 Thai Baht (THB) (US dollar value). Incremental cost-effectiveness ratios were calculated. Base-case assumptions were assessed through several sensitivity analyses. Results For treating elderly T2DM patients, DPP-4 inhibitors were more expensive and less effective, ie, a dominated strategy, than the metformin monotherapy. Compared with SFU, treatment with DPP-4 inhibitors gained 0.031 more quality-adjusted life years (QALYs) at a total cost incurred over THB113,701 or US$3,449.67, resulting in an incremental cost-effectiveness ratio of THB3.63 million or US$110,133.50 per QALY. At the acceptable Thai ceiling threshold of THB160,000/QALY (US$4,854.37/QALY), DPP-4 inhibitors were not a cost-effective treatment. Conclusion DPP-4 inhibitor monotherapy is not a cost-effective treatment for elderly T2DM patients compared with metformin monotherapy and SFU monotherapy, given current resource constraints in Thailand. PMID:27703387

  3. In silico screening of novel inhibitors of M17 Leucine Amino Peptidase (LAP) of Plasmodium vivax as therapeutic candidate.

    PubMed

    Rout, Subhashree; Mahapatra, Rajani Kanta

    2016-08-01

    M17 LAP (Leucine Amino Peptidase) plays an important role in the hydrolysis of amino acids essential for growth and development of Plasmodium vivax (Pv), the pathogen causing malaria. In this paper a homology model of PvLAP was generated using MODELLER v9.15. From different in-silico methods such as structure based, ligand based and de novo drug designing a total of 90 compounds were selected for docking studies. A final list of 10 compounds was prepared. The study reported the identification of 2-[(3-azaniumyl-2-hydroxy-4-phenylbutanoyl) amino]-4-methylpentanoate as the best inhibitor in terms of docking score and pharmacophoric features. The reliability of the binding mode of the inhibitor is confirmed by molecular dynamics (MD) simulation study with GROMACS software for a simulation time of 20ns in water environment. Finally, in silico ADMET analysis of the inhibitors using MedChem Designer v3 evaluated the drug likeness of the best hits to be considered for industrial pharmaceutical research.

  4. Addition of dipeptidyl peptidase-4 inhibitors to sulphonylureas and risk of hypoglycaemia: systematic review and meta-analysis

    PubMed Central

    Moore, Nicholas; Arnaud, Mickael; Robinson, Philip; Raschi, Emanuel; De Ponti, Fabrizio; Bégaud, Bernard; Pariente, Antoine

    2016-01-01

    Objective To quantify the risk of hypoglycaemia associated with the concomitant use of dipeptidyl peptidase-4 (DPP-4) inhibitors and sulphonylureas compared with placebo and sulphonylureas. Design Systematic review and meta-analysis. Data sources Medline, ISI Web of Science, SCOPUS, Cochrane Central Register of Controlled Trials, and clinicaltrial.gov were searched without any language restriction. Study selection Placebo controlled randomised trials comprising at least 50 participants with type 2 diabetes treated with DPP-4 inhibitors and sulphonylureas. Review methods Risk of bias in each trial was assessed using the Cochrane Collaboration tool. The risk ratio of hypoglycaemia with 95% confidence intervals was computed for each study and then pooled using fixed effect models (Mantel Haenszel method) or random effect models, when appropriate. Subgroup analyses were also performed (eg, dose of DPP-4 inhibitors). The number needed to harm (NNH) was estimated according to treatment duration. Results 10 studies were included, representing a total of 6546 participants (4020 received DPP-4 inhibitors plus sulphonylureas, 2526 placebo plus sulphonylureas). The risk ratio of hypoglycaemia was 1.52 (95% confidence interval 1.29 to 1.80). The NNH was 17 (95% confidence interval 11 to 30) for a treatment duration of six months or less, 15 (9 to 26) for 6.1 to 12 months, and 8 (5 to 15) for more than one year. In subgroup analysis, no difference was found between full and low doses of DPP-4 inhibitors: the risk ratio related to full dose DPP-4 inhibitors was 1.66 (1.34 to 2.06), whereas the increased risk ratio related to low dose DPP-4 inhibitors did not reach statistical significance (1.33, 0.92 to 1.94). Conclusions Addition of DPP-4 inhibitors to sulphonylurea to treat people with type 2 diabetes is associated with a 50% increased risk of hypoglycaemia and to one excess case of hypoglycaemia for every 17 patients in the first six months of treatment. This

  5. Treatment progression in sulfonylurea and dipeptidyl peptidase-4 inhibitor cohorts of type 2 diabetes patients on metformin

    PubMed Central

    Peng, Xiaomei; Jiang, Dingfeng; Liu, Dongju; Varnado, Oralee J; Bae, Jay P

    2016-01-01

    Background Metformin is an oral antidiabetic drug (OAD) widely used as first-line therapy in type 2 diabetes (T2D) treatments. Numerous treatment pathways after metformin failure exist. It is important to understand how treatment choices influence subsequent therapy progressions. This retrospective study compares adherence to, persistence with, and treatment progression in sulfonylurea (SU) and dipeptidyl peptidase-4 (DPP-4) inhibitor patient cohorts with T2D on metformin. Methods Using health insurance claims data, matched patient cohorts were created and OAD use was compared in patients with T2D initiating SU or DPP-4 inhibitors (index drugs) since January 1, 2010, to December 31, 2010, with background metformin therapy. Propensity score matching adjusted for possible selection bias. Persistence was measured via Cox regression as days to a ≥60-day gap in index drug possession; adherence was defined as proportion of days covered (PDC) ≥80%. Evolving treatment patterns were traced at 6-month intervals for 24 months following index drug discontinuation. Results From among 19,621 and 7,484 patients in the SU and DPP-4 inhibitor cohorts, respectively, 6,758 patient pairs were matched. Persistence at 12 months in the SU cohort was 48.0% compared to 52.5% for the DPP-4 inhibitor cohort. PDC adherence (mean [SD]) during the 12-month follow-up period was 63.3 (29.7) for the SU cohort and 65.5 (28.7) for the DPP-4 inhibitor cohort. PDC ≥80% was 40.5% and 43.4% in the SU and DPP-4 inhibitor cohorts, respectively. A higher percentage of patients in the SU cohort remained untreated. Following index drug discontinuation, monotherapy was more common in the SU cohort, while use of two or three OADs was more common in the DPP-4 inhibitor cohort. Insulin therapy initiation was higher in the SU cohort. Conclusion Slightly better adherence and persistence were seen in the DPP-4 inhibitor cohort. Adherence and persistence remain a challenge to many patients; understanding

  6. Quantum mechanics-based scoring rationalizes the irreversible inactivation of parasitic Schistosoma mansoni cysteine peptidase by vinyl sulfone inhibitors.

    PubMed

    Fanfrlík, Jindřich; Brahmkshatriya, Pathik S; Řezáč, Jan; Jílková, Adéla; Horn, Martin; Mareš, Michael; Hobza, Pavel; Lepšík, Martin

    2013-12-01

    The quantum mechanics (QM)-based scoring function that we previously developed for the description of noncovalent binding in protein-ligand complexes has been modified and extended to treat covalent binding of inhibitory ligands. The enhancements are (i) the description of the covalent bond breakage and formation using hybrid QM/semiempirical QM (QM/SQM) restrained optimizations and (ii) the addition of the new ΔG(cov)' term to the noncovalent score, describing the "free" energy difference between the covalent and noncovalent complexes. This enhanced QM-based scoring function is applied to a series of 20 vinyl sulfone-based inhibitory compounds inactivating the cysteine peptidase cathepsin B1 of the Schistosoma mansoni parasite (SmCB1). The available X-ray structure of the SmCB1 in complex with a potent vinyl sulfone inhibitor K11017 is used as a template to build the other covalently bound complexes and to model the derived noncovalent complexes. We present the correlation of the covalent score and its constituents with the experimental binding data. Four outliers are identified. They contain bulky R1' substituents structurally divergent from the template, which might induce larger protein rearrangements than could be accurately modeled. In summary, we propose a new computational approach and an optimal protocol for the rapid evaluation and prospective design of covalent inhibitors with a conserved binding mode. PMID:24195769

  7. Efficacy of different dipeptidyl peptidase-4 (DPP-4) inhibitors on metabolic parameters in patients with type 2 diabetes undergoing dialysis.

    PubMed

    Park, Se Hee; Nam, Joo Young; Han, Eugene; Lee, Yong-Ho; Lee, Byung-Wan; Kim, Beom Seok; Cha, Bong-Soo; Kim, Chul Sik; Kang, Eun Seok

    2016-08-01

    Hyperglycemia is associated with increased mortality and morbidity in patients with type 2 diabetes mellitus (T2DM) who are undergoing dialysis. Although dipeptidyl peptidase-4 (DPP-4) inhibitors have been widely used in end-stage renal disease (ESRD) patients with T2DM, there are few studies on their efficacy in this population. We studied the effect of 3 different DPP-4 inhibitors on metabolic parameters in ESRD patients with T2DM.Two hundred ESRD patients with T2DM who were treated with DPP-4 inhibitors (sitagliptin, vildagliptin, or linagliptin) were enrolled and analyzed retrospectively. The changes in glycated hemoglobin (HbA1c), fasting plasma glucose, and lipid profiles were assessed before and after 3 months of treatment with DPP-4 inhibitors. Subgroup analysis was done for each hemodialysis (HD) and peritoneal dialysis (PD) group.There was no significant difference in the decrease in the HbA1c level among sitagliptin, vildagliptin, and linagliptin treatment groups (-0.74 ± 1.57, -0.39 ± 1.45, and -0.08 ± 1.40, respectively, P = 0.076). The changes in fasting blood glucose and lipid profiles were also not significantly different. In HD patients (n = 115), there was no difference in the HbA1c level among the 3 groups. In contrast, in PD patients (n = 85), HbA1c was reduced more after 3 months of treatment with sitagliptin compared with vildagliptin and linagliptin (-1.58 ± 0.95, -0.46 ± 0.98, -0.04 ± 1.22, respectively, P = 0.001).There was no significant difference in the glucose-lowering effect between the different DPP-4 inhibitors tested in ESRD patients. In PD patients, sitagliptin tends to lower the HbA1c level more than the other inhibitors. The glucose-lowering efficacy of the 3 DPP-4 inhibitors was comparable. PMID:27512877

  8. Efficacy of different dipeptidyl peptidase-4 (DPP-4) inhibitors on metabolic parameters in patients with type 2 diabetes undergoing dialysis

    PubMed Central

    Park, Se Hee; Nam, Joo Young; Han, Eugene; Lee, Yong-ho; Lee, Byung-Wan; Kim, Beom Seok; Cha, Bong-Soo; Kim, Chul Sik; Kang, Eun Seok

    2016-01-01

    Abstract Hyperglycemia is associated with increased mortality and morbidity in patients with type 2 diabetes mellitus (T2DM) who are undergoing dialysis. Although dipeptidyl peptidase-4 (DPP-4) inhibitors have been widely used in end-stage renal disease (ESRD) patients with T2DM, there are few studies on their efficacy in this population. We studied the effect of 3 different DPP-4 inhibitors on metabolic parameters in ESRD patients with T2DM. Two hundred ESRD patients with T2DM who were treated with DPP-4 inhibitors (sitagliptin, vildagliptin, or linagliptin) were enrolled and analyzed retrospectively. The changes in glycated hemoglobin (HbA1c), fasting plasma glucose, and lipid profiles were assessed before and after 3 months of treatment with DPP-4 inhibitors. Subgroup analysis was done for each hemodialysis (HD) and peritoneal dialysis (PD) group. There was no significant difference in the decrease in the HbA1c level among sitagliptin, vildagliptin, and linagliptin treatment groups (−0.74 ± 1.57, −0.39 ± 1.45, and −0.08 ± 1.40, respectively, P = 0.076). The changes in fasting blood glucose and lipid profiles were also not significantly different. In HD patients (n = 115), there was no difference in the HbA1c level among the 3 groups. In contrast, in PD patients (n = 85), HbA1c was reduced more after 3 months of treatment with sitagliptin compared with vildagliptin and linagliptin (−1.58 ± 0.95, −0.46 ± 0.98, −0.04 ± 1.22, respectively, P = 0.001). There was no significant difference in the glucose-lowering effect between the different DPP-4 inhibitors tested in ESRD patients. In PD patients, sitagliptin tends to lower the HbA1c level more than the other inhibitors. The glucose-lowering efficacy of the 3 DPP-4 inhibitors was comparable. PMID:27512877

  9. Modulation of endothelin-1 in normal human keratinocytes by UVA1/B radiations, prostaglandin E2 and peptidase inhibitors.

    PubMed

    Pernet, I; Mayoux, C; Trompezinski, S; Schmitt, D; Viac, J

    2000-12-01

    In the skin, keratinocytes synthesize and secrete endothelin-(ET-1), a potent vasoconstrictor peptide which acts also as a growth factor for most skin cells. The aim of the study was to test the effects of UVA1 and the associations UVA1/B on the expression of ET-1 in normal human keratinocytes and to determine whether exogenously added prostaglandin E2 (PGE2) regulated ET-1 expression. As ET-1 is susceptible to degradation, we also evaluated whether ET-1 secretion was modulated by peptidase inhibitors. Our results showed that UVA1 (365 nm) did not modify the levels of preproET-1 mRNA and protein. Moreover, the associations UVA1+UVB or UVB+UVA1 down-regulated the overexpression of secreted ET-1 induced by UVB alone. PGE2 at 10(-5) M reduced the expression of ET-1 at the mRNA and protein levels but did not exert any significant modification at lower concentrations from 10(-10) to 10(6) M. Phosphoramidon, an endothelin converting enzyme (ECE) inhibitor, drastically decreased the amount of ET-1 accumulating in the culture medium in basal conditions or after UVB irradiation. Conversely, thiorphan, a specific inhibitor of neutral endopeptidase (NEP), rather increased the levels of ET-1 secretion mainly after UVB irradiation. Taken together, the results showed that normal human keratinocytes secrete and partly degrade ET-1 through ECE and NEP pathways and pointed out a differential regulation of ET-1 by UVB and UVA1 radiations without any noticeable role for PGE2.

  10. Renoprotective Effect of Gemigliptin, a Dipeptidyl Peptidase-4 Inhibitor, in Streptozotocin-Induced Type 1 Diabetic Mice

    PubMed Central

    Jung, Gwon-Soo; Jeon, Jae-Han; Choe, Mi Sun; Kim, Sung-Woo; Lee, In-Kyu

    2016-01-01

    Background Dipeptidyl peptidase-4 (DPP-4) inhibitors are widely used in the treatment of patients with type 2 diabetes and have proven protective effects on diabetic kidney disease (DKD). Whether DPP-4 inhibitors have renoprotective effects on insulin-deficient type 1 diabetes has not been comprehensively examined. The aim of this study was to determine whether gemigliptin, a new DPP-4 inhibitor, has renoprotective effects in streptozotocin (STZ)-induced type 1 diabetic mice. Methods Diabetes was induced by intraperitoneal administration of a single dose of STZ. Mice with diabetes were treated without or with gemigliptin (300 mg/kg) for 8 weeks. Morphological changes of the glomerular basement membrane (GBM) were observed by electron microscopy and periodic-acid Schiff staining. In addition, we measured blood glucose and urinary albumin excretion and evaluated fibrotic markers using immunohistochemical staining, quantitative reverse transcription polymerase chain reaction analysis, and Western blot analysis. Results Gemigliptin did not reduce the blood glucose levels of STZ-treated mice. In gemigliptin-treated mice with STZ, a significant reduction in urinary albumin excretion and GBM thickness was observed. Immunohistological examination revealed that gemigliptin attenuated renal fibrosis induced by STZ and decreased extracellular matrix protein levels, including those of type I collagen and fibronectin, and Smad3 phosphorylation. In cultured rat renal cells, gemigliptin inhibited transforming growth factor β-stimulated type I collagen and fibronectin mRNA and protein levels via down-regulation of Smad3 phosphorylation. Conclusion Our data demonstrate that gemigliptin has renoprotective effects on DKD, regardless of its glucose-lowering effect, suggesting that it could be used to prevent DKD, including in patients with type 1 diabetes. PMID:27098503

  11. Cardiovascular safety of dipeptidyl peptidase-4 inhibitors: recent evidence on heart failure

    PubMed Central

    Kankanala, Saumya Reddy; Syed, Rafay; Gong, Quan; Ren, Boxu; Rao, Xiaoquan; Zhong, Jixin

    2016-01-01

    The cardiovascular safety of DPP4 inhibitors as a class, especially in regards to heart failure, has been questioned after the publication of first trials (SAVOR-TIMI 53 and EXAMINE) assessing the cardiovascular risks of DPP4 inhibitors alogliptin and sitagliptin in 2013. Although there were no increased risks in composite cardiovascular outcomes, the SAVOR-TIMI 53 trial reported a 27% increase in hospitalization for heart failure in diabetic patients who received the DPP4 inhibitor saxagliptin. There has been substantial increase in knowledge on the heart failure effect of DPP4 inhibition since 2013. This review will summarize the role of the DPP4/incretin axis in heart failure and discuss the findings from recent large scale clinical trials assessing the effects of DPP4 inhibitors on heart failure. PMID:27347354

  12. Cardiovascular safety of dipeptidyl peptidase-4 inhibitors: recent evidence on heart failure.

    PubMed

    Kankanala, Saumya Reddy; Syed, Rafay; Gong, Quan; Ren, Boxu; Rao, Xiaoquan; Zhong, Jixin

    2016-01-01

    The cardiovascular safety of DPP4 inhibitors as a class, especially in regards to heart failure, has been questioned after the publication of first trials (SAVOR-TIMI 53 and EXAMINE) assessing the cardiovascular risks of DPP4 inhibitors alogliptin and sitagliptin in 2013. Although there were no increased risks in composite cardiovascular outcomes, the SAVOR-TIMI 53 trial reported a 27% increase in hospitalization for heart failure in diabetic patients who received the DPP4 inhibitor saxagliptin. There has been substantial increase in knowledge on the heart failure effect of DPP4 inhibition since 2013. This review will summarize the role of the DPP4/incretin axis in heart failure and discuss the findings from recent large scale clinical trials assessing the effects of DPP4 inhibitors on heart failure. PMID:27347354

  13. Design, synthesis and biological evaluation of hetero-aromatic moieties substituted pyrrole-2-carbonitrile derivatives as dipeptidyl peptidase IV inhibitors.

    PubMed

    Ji, Xun; Su, Mingbo; Wang, Jiang; Deng, Guanghui; Deng, Sisi; Li, Zeng; Tang, Chunlan; Li, Jingya; Li, Jia; Zhao, Linxiang; Jiang, Hualiang; Liu, Hong

    2014-03-21

    A series of novel hetero-aromatic moieties substituted α-amino pyrrole-2-carbonitrile derivatives was designed and synthesized based on structure-activity relationships (SARs) of pyrrole-2-carbonitrile inhibitors. All compounds demonstrated good dipeptidyl peptidase IV (DPP4) inhibitory activities (IC50 = 0.004-113.6 μM). Moreover, compounds 6h (IC50 = 0.004 μM) and 6n (IC50 = 0.01 μM) showed excellent inhibitory activities against DPP4, good selectivity (compound 6h, selective ratio: DPP8/DPP4 = 450.0; DPP9/DPP4 = 375.0; compound 6n, selective ratio: DPP8/DPP4 = 470.0; DPP9/DPP4 = 750.0) and good efficacy in an oral glucose tolerance test in ICR mice. Furthermore, compounds 6h and 6n demonstrated moderate PK properties (compound 6h, F% = 37.8%, t1/2 = 1.45 h; compound 6n, F% = 16.8%, t1/2 = 3.64 h). PMID:24531224

  14. Discovery of Potent and Selective Dipeptidyl Peptidase IV Inhibitors Derived from [beta]-Aminoamides Bearing Subsituted Triazolopiperazines

    SciTech Connect

    Kim, Dooseop; Kowalchick, Jennifer E.; Brockunier, Linda L.; Parmee, Emma R.; Eiermann, George J.; Fisher, Michael H.; He, Huaibing; Leiting, Barbara; Lyons, Kathryn; Scapin, Giovanna; Patel, Sangita B.; Petrov, Aleksandr; Pryor, KellyAnn D.; Roy, Ranabir Sinha; Wu, Joseph K.; Zhang, Xiaoping; Wyvratt, Matthew J.; Zhang, Bei B.; Zhu, Lan; Thornberry, Nancy A.; Weber, Ann E.

    2008-06-30

    A series of {beta}-aminoamides bearing triazolopiperazines have been discovered as potent, selective, and orally active dipeptidyl peptidase IV (DPP-4) inhibitors by extensive structure-activity relationship (SAR) studies around the triazolopiperazine moiety. Among these, compound 34b with excellent in vitro potency (IC{sub 50} = 4.3 nM) against DPP-4, high selectivity over other enzymes, and good pharmacokinetic profiles exhibited pronounced in vivo efficacy in an oral glucose tolerance test (OGTT) in lean mice. On the basis of these properties, compound 34b has been profiled in detail. Further refinement of the triazolopiperazines resulted in the discovery of a series of extremely potent compounds with subnanomolar activity against DPP-4 (42b-49b), that is, 4-fluorobenzyl-substituted compound 46b, which is notable for its superior potency (IC{sub 50} = 0.18 nM). X-ray crystal structure determination of compounds 34b and 46b in complex with DPP-4 enzyme revealed that (R)-stereochemistry at the 8-position of triazolopiperazines is strongly preferred over (S) with respect to DPP-4 inhibition.

  15. Comparative Analysis of Binding Kinetics and Thermodynamics of Dipeptidyl Peptidase-4 Inhibitors and Their Relationship to Structure.

    PubMed

    Schnapp, Gisela; Klein, Thomas; Hoevels, Yvette; Bakker, Remko A; Nar, Herbert

    2016-08-25

    The binding kinetics and thermodynamics of dipeptidyl peptidase (DPP)-4 inhibitors (gliptins) were investigated using surface plasmon resonance and isothermal titration calorimetry. Binding of gliptins to DPP-4 is a rapid electrostatically driven process. Off-rates were generally slow partly because of reversible covalent bond formation by some gliptins, and partly because of strong and extensive interactions. Binding of all gliptins is enthalpy-dominated due to strong ionic interactions and strong solvent-shielded hydrogen bonds. Using a congeneric series of molecules which represented the intermediates in the lead optimization program of linagliptin, the onset of slow binding kinetics and development of the thermodynamic repertoire were analyzed in the context of incremental changes of the chemical structures. All compounds rapidly associated, and therefore the optimization of affinity and residence time is highly correlated. The major contributor to the increasing free energy of binding was a strong increase of binding enthalpy, whereas entropic contributions remained low and constant despite significant addition of lipophilicity. PMID:27438064

  16. Dipeptidyl peptidase IV and its inhibitors: therapeutics for type 2 diabetes and what else?

    PubMed

    Juillerat-Jeanneret, Lucienne

    2014-03-27

    The proline-specific dipeptidyl aminopeptidase IV (DPP IV, DPP-4, CD26), widely expressed in mammalians, releases X-Pro/Ala dipeptides from the N-terminus of peptides. DPP IV is responsible of the degradation of the incretin peptide hormones regulating blood glucose levels. Several families of DPP IV inhibitors have been synthesized and evaluated. Their positive effects on the degradation of the incretins and the control of blood glucose levels have been demonstrated in biological models and in clinical trials. Presently, several DPP IV inhibitors, the "gliptins", are approved for type 2 diabetes or are under clinical evaluation. However, the gliptins may also be of therapeutic interest for other diseases beyond the inhibition of incretin degradation. In this Perspective, the biological functions and potential substrates of DPP IV enzymes are reviewed and the characteristics of the DPP IV inhibitors are discussed in view of type 2 diabetes and further therapeutic interest. PMID:24099035

  17. Fucoidans as Potential Inhibitors of HIV-1

    PubMed Central

    Prokofjeva, Maria M.; Imbs, Tatyana I.; Shevchenko, Natalya M.; Spirin, Pavel V.; Horn, Stefan; Fehse, Boris; Zvyagintseva, Tatyana N.; Prassolov, Vladimir S.

    2013-01-01

    The antiviral activity of different structure fucoidans (α-l-fucans and galactofucans) was studied using two model viral systems based on a lentiviral vectors and a replication competent Moloney murine leukemia virus (Mo-MuLV). It was found that investigated fucoidans have no cytotoxic effects on Jurkat and SC-1cell at the concentration range of 0.001–100 µg/mL. Fucoidans with different efficiency suppressed transduction of Jurkat cell line by pseudo-HIV-1 particles carrying the envelope protein of HIV-1 and infection of SC-1 cells by Mo-MuLV. According to our data, all natural fucoidans can be considered as potential anti-HIV agents regardless of their carbohydrate backbone and degree of sulfating, since their activity is shown at low concentrations (0.001–0.05 µg/mL). High molecular weight fucoidans isolated from Saccharina cichorioides (1.3-α-l-fucan), and S. japonica (galactofucan) were the most effective inhibitors. PMID:23966033

  18. Fucoidans as potential inhibitors of HIV-1.

    PubMed

    Prokofjeva, Maria M; Imbs, Tatyana I; Shevchenko, Natalya M; Spirin, Pavel V; Horn, Stefan; Fehse, Boris; Zvyagintseva, Tatyana N; Prassolov, Vladimir S

    2013-08-19

    The antiviral activity of different structure fucoidans (α-l-fucans and galactofucans) was studied using two model viral systems based on a lentiviral vectors and a replication competent Moloney murine leukemia virus (Mo-MuLV). It was found that investigated fucoidans have no cytotoxic effects on Jurkat and SC-1cell at the concentration range of 0.001-100 µg/mL. Fucoidans with different efficiency suppressed transduction of Jurkat cell line by pseudo-HIV-1 particles carrying the envelope protein of HIV-1 and infection of SC-1 cells by Mo-MuLV. According to our data, all natural fucoidans can be considered as potential anti-HIV agents regardless of their carbohydrate backbone and degree of sulfating, since their activity is shown at low concentrations (0.001-0.05 µg/mL). High molecular weight fucoidans isolated from Saccharina cichorioides (1.3-α-l-fucan), and S. japonica (galactofucan) were the most effective inhibitors.

  19. Combination therapy of sodium-glucose co-transporter-2 inhibitors and dipeptidyl peptidase-4 inhibitors in type 2 diabetes: rationale and evidences.

    PubMed

    Singh, Awadhesh Kumar; Singh, Ritu

    2016-01-01

    No single antidiabetic agent can correct all the pathophysiologic defects manifested in type 2 diabetes mellitus (T2DM) and, therefore, multiple agents are often required to achieve optimal glycemic control. Combination therapies, having different mechanisms of action, not only have the potential to complement their action, but may possess the properties to counter the undesired compensatory response. Recent finding suggests that sodium-glucose co-transporter-2 inhibitors (SGLT2i) increase endogenous glucose production (EGP) from liver, due to the increase in glucagon which may offset its glucose-lowering potential. In contrast, dipeptidyl peptidase-4 inhibitors (DPP4i) decrease glucagon and EGP. Especially in the light of this finding, combination therapies with SGLT2i and DPP4i are particularly appealing, and are expected to produce an additive effect. Indeed, studies find no drug-drug interaction between SGLT2i and DPP4i. Moreover, significant reduction in glycated hemoglobin has also been observed. This article aims to review the efficacy and safety of combination therapy of SGLT2i and DPP4i in T2DM.

  20. Peptide and non-peptide HIV fusion inhibitors.

    PubMed

    Jiang, Shibo; Zhao, Qian; Debnath, Asim K

    2002-01-01

    Fusion of the HIV envelope with the target cell membrane is a critical step of HIV entry into the target cell. The HIV envelope glycoprotein gp41 plays an important role in the fusion of viral and target cell membranes and serves as an attractive target for development of HIV fusion inhibitors. The extracellular domain of gp41 contains three important functional regions, i.e. fusion peptide (FP), N- and C-terminal heptad repeats (NHR and CHR, respectively). The FP region is composed of hydrophobic, glycine-rich residues that are essential for the initial penetration of the target cell membrane. NHR and CHR regions consist of hydrophobic residues, which have the tendency to form alpha-helical coiled coils. During the process of fusion of HIV or HIV-infected cells with uninfected cells, FP inserts into the target cell membrane and subsequently the NHR and CHR regions change conformations and associate with each other to form a fusion-active gp41 core. Peptides derived from NHR and CHR regions, designated N- and C-peptides, respectively, have potent inhibitory activity against HIV fusion by binding to the CHR and NHR regions, respectively, to prevent the formation of the fusion-active gp41 core. C-peptide may also bind to FP, thereby blocking its insertion into the target cell membrane. One of the C-peptides, T-20, which is in the phase III clinical trials, has potent in vivo activity against HIV infection and is expected to become the first peptide HIV fusion inhibitory drug in the near future. However, this peptide HIV fusion inhibitor lacks oral availability and is sensitive to the proteolytic digestion. Therefore, it is essential to develop small molecular non-peptide HIV fusion inhibitors having a mechanism of action similar to the C-peptides. One of the approaches in identifying the inhibitors is to use an immunological assay to screen chemical libraries for the compounds that potentially block the interaction between the NHR and CHR regions to form a fusion

  1. Pharmacokinetic and pharmacodynamic interactions between metformin and a novel dipeptidyl peptidase-4 inhibitor, evogliptin, in healthy subjects

    PubMed Central

    Rhee, Su-jin; Choi, YoonJung; Lee, SeungHwan; Oh, Jaeseong; Kim, Sung-Jin; Yoon, Seo Hyun; Cho, Joo-Youn; Yu, Kyung-Sang

    2016-01-01

    Evogliptin is a newly developed dipeptidyl peptidase-4 (DPP-4) inhibitor, which is expected to be combined with metformin for treating type 2 diabetes mellitus. We investigated the potential pharmacokinetic and pharmacodynamic interactions between evogliptin and metformin. A randomized, open-label, multiple-dose, six-sequence, three-period crossover study was conducted in 36 healthy male subjects. All subjects received three treatments, separated by 7-day washout intervals: evogliptin, 5 mg od for 7 days (EVO); metformin IR, 1,000 mg bid for 7 days (MET); and the combination of EVO and MET (EVO + MET). After the last dose in a period, serial blood samples were collected for 24 hours for pharmacokinetic assessments. During steady state, serial blood samples were collected for 2 hours after an oral glucose tolerance test, and DPP-4, active glucagon-like peptide-1, glucose, glucagon, insulin, and C-peptide were measured to assess pharmacodynamic properties. EVO + MET and EVO showed similar steady state maximum concentration and area under the concentration–time curve at steady state values for evogliptin; the geometric mean ratios (90% confidence interval) were 1.06 (1.01–1.12) and 1.02 (0.99–1.06), respectively. EVO + MET slightly reduced steady state maximum concentration and area under the concentration–time curve at steady state values for metformin compared to MET, with geometric mean ratios (90% confidence interval) of 0.84 (0.79–0.89) and 0.94 (0.89–0.98), respectively. EVO + MET and EVO had similar DPP-4 inhibition efficacy, but EVO + MET increased active glucagon-like peptide-1 and reduced glucose to larger extents than either EVO or MET alone. Our results suggested that EVO+MET could provide therapeutic benefits without clinically significant pharmacokinetic interactions. Thus, the EVO + MET combination is a promising option for treating type 2 diabetes mellitus. PMID:27570447

  2. Natural dipeptidyl peptidase-IV inhibitor mangiferin mitigates diabetes- and metabolic syndrome-induced changes in experimental rats

    PubMed Central

    Suman, Rajesh Kumar; Mohanty, Ipseeta Ray; Maheshwari, Ujwala; Borde, Manjusha K; Deshmukh, YA

    2016-01-01

    Background Mangiferin (MNG) is known to possess antidiabetic and antioxidant activity. However, there is no experimental evidence presently available in the literature with regard to its ameliorating effects on diabetes mellitus coexisting with metabolic syndrome. Objective The present study was designed to evaluate the protective effects of MNG on various components of metabolic syndrome with diabetes as an essential component. Material and methods Adult Wistar rats were fed high-fat diets for 10 weeks and challenged with streptozotocin (40 mg/kg) at week three (high-fat diabetic control group). After the confirmation of metabolic syndrome in the setting of diabetes, MNG 40 mg/kg was orally fed to these rats from the fourth to tenth week. Results The treatment with MNG showed beneficial effects on various components of metabolic syndrome, such as reduced dyslipidemia (decreased triglyceride, total cholesterol, low-density lipoprotein cholesterol, and increased high-density lipoprotein cholesterol) and diabetes mellitus (reduced blood glucose and glycosylated hemoglobin). In addition, an increase in serum insulin, C-peptide, and homeostasis model assessment-β and a reduction in homeostasis model assessment of insulin resistance-IR were observed in MNG-treated group compared with high-fat diabetic control group. MNG was also found to be cardioprotective (reduction in creatine phosphokinase-MB levels, atherogenic index, high-sensitivity C-reactive protein). Reduction in serum dipeptidyl peptidase–IV levels in the MNG-treated group correlated with improvement in insulin resistance and enhanced β-cell function. Conclusion The present study has demonstrated antidiabetic, hypolipidemic, and cardioprotective effects of MNG in the setting of diabetes with metabolic syndrome. Thus, MNG has the potential to be developed as a natural alternative to synthetic dipeptidyl peptidase-IV inhibitors beneficial in this comorbid condition. PMID:27621658

  3. Natural dipeptidyl peptidase-IV inhibitor mangiferin mitigates diabetes- and metabolic syndrome-induced changes in experimental rats

    PubMed Central

    Suman, Rajesh Kumar; Mohanty, Ipseeta Ray; Maheshwari, Ujwala; Borde, Manjusha K; Deshmukh, YA

    2016-01-01

    Background Mangiferin (MNG) is known to possess antidiabetic and antioxidant activity. However, there is no experimental evidence presently available in the literature with regard to its ameliorating effects on diabetes mellitus coexisting with metabolic syndrome. Objective The present study was designed to evaluate the protective effects of MNG on various components of metabolic syndrome with diabetes as an essential component. Material and methods Adult Wistar rats were fed high-fat diets for 10 weeks and challenged with streptozotocin (40 mg/kg) at week three (high-fat diabetic control group). After the confirmation of metabolic syndrome in the setting of diabetes, MNG 40 mg/kg was orally fed to these rats from the fourth to tenth week. Results The treatment with MNG showed beneficial effects on various components of metabolic syndrome, such as reduced dyslipidemia (decreased triglyceride, total cholesterol, low-density lipoprotein cholesterol, and increased high-density lipoprotein cholesterol) and diabetes mellitus (reduced blood glucose and glycosylated hemoglobin). In addition, an increase in serum insulin, C-peptide, and homeostasis model assessment-β and a reduction in homeostasis model assessment of insulin resistance-IR were observed in MNG-treated group compared with high-fat diabetic control group. MNG was also found to be cardioprotective (reduction in creatine phosphokinase-MB levels, atherogenic index, high-sensitivity C-reactive protein). Reduction in serum dipeptidyl peptidase–IV levels in the MNG-treated group correlated with improvement in insulin resistance and enhanced β-cell function. Conclusion The present study has demonstrated antidiabetic, hypolipidemic, and cardioprotective effects of MNG in the setting of diabetes with metabolic syndrome. Thus, MNG has the potential to be developed as a natural alternative to synthetic dipeptidyl peptidase-IV inhibitors beneficial in this comorbid condition.

  4. Glucose-independent renoprotective mechanisms of the tissue dipeptidyl peptidase-4 inhibitor, saxagliptin, in Dahl salt-sensitive hypertensive rats.

    PubMed

    Uchii, Masako; Kimoto, Naoya; Sakai, Mariko; Kitayama, Tetsuya; Kunori, Shunji

    2016-07-15

    Although previous studies have shown an important role of renal dipeptidyl peptidase-4 (DPP-4) inhibition in ameliorating kidney injury in hypertensive rats, the renal distribution of DPP-4 and mechanisms of renoprotective action of DPP-4 inhibition remain unclear. In this study, we examined the effects of the DPP-4 inhibitor saxagliptin on DPP-4 activity in renal cells (using in situ DPP-4 staining) and on renal gene expression related to inflammation and fibrosis in the renal injury in hypertensive Dahl salt-sensitive (Dahl-S) rats. Male rats fed a high-salt (8% NaCl) diet received vehicle (water) or saxagliptin (12.7mg/kg/day) for 4 weeks. Blood pressure (BP), serum glucose and 24-h urinary albumin and sodium excretions were measured, and renal histopathology was performed. High salt-diet increased BP and urinary albumin excretion, consequently resulting in glomerular sclerosis and tubulointerstitial fibrosis. Although saxagliptin did not affect BP and blood glucose levels, it significantly ameliorated urinary albumin excretion. In situ staining showed DPP-4 activity in glomerular and tubular cells. Saxagliptin significantly suppressed DPP-4 activity in renal tissue extracts and in glomerular and tubular cells. Saxagliptin also significantly attenuated the increase in inflammation and fibrosis-related gene expressions in the kidney. Our results demonstrate that saxagliptin inhibited the development of renal injury independent of its glucose-lowering effect. Glomerular and tubular DPP-4 inhibition by saxagliptin was associated with improvements in albuminuria and the suppression of inflammation and fibrosis-related genes. Thus, local glomerular and tubular DPP-4 inhibition by saxagliptin may play an important role in its renoprotective effects in Dahl-S rats. PMID:27063445

  5. Pharmacokinetic and pharmacodynamic interactions between metformin and a novel dipeptidyl peptidase-4 inhibitor, evogliptin, in healthy subjects.

    PubMed

    Rhee, Su-Jin; Choi, YoonJung; Lee, SeungHwan; Oh, Jaeseong; Kim, Sung-Jin; Yoon, Seo Hyun; Cho, Joo-Youn; Yu, Kyung-Sang

    2016-01-01

    Evogliptin is a newly developed dipeptidyl peptidase-4 (DPP-4) inhibitor, which is expected to be combined with metformin for treating type 2 diabetes mellitus. We investigated the potential pharmacokinetic and pharmacodynamic interactions between evogliptin and metformin. A randomized, open-label, multiple-dose, six-sequence, three-period crossover study was conducted in 36 healthy male subjects. All subjects received three treatments, separated by 7-day washout intervals: evogliptin, 5 mg od for 7 days (EVO); metformin IR, 1,000 mg bid for 7 days (MET); and the combination of EVO and MET (EVO + MET). After the last dose in a period, serial blood samples were collected for 24 hours for pharmacokinetic assessments. During steady state, serial blood samples were collected for 2 hours after an oral glucose tolerance test, and DPP-4, active glucagon-like peptide-1, glucose, glucagon, insulin, and C-peptide were measured to assess pharmacodynamic properties. EVO + MET and EVO showed similar steady state maximum concentration and area under the concentration-time curve at steady state values for evogliptin; the geometric mean ratios (90% confidence interval) were 1.06 (1.01-1.12) and 1.02 (0.99-1.06), respectively. EVO + MET slightly reduced steady state maximum concentration and area under the concentration-time curve at steady state values for metformin compared to MET, with geometric mean ratios (90% confidence interval) of 0.84 (0.79-0.89) and 0.94 (0.89-0.98), respectively. EVO + MET and EVO had similar DPP-4 inhibition efficacy, but EVO + MET increased active glucagon-like peptide-1 and reduced glucose to larger extents than either EVO or MET alone. Our results suggested that EVO+MET could provide therapeutic benefits without clinically significant pharmacokinetic interactions. Thus, the EVO + MET combination is a promising option for treating type 2 diabetes mellitus. PMID:27570447

  6. Grassypeptolides As Natural Inhibitors of Dipeptidyl Peptidase 8 and T-Cell Activation

    PubMed Central

    Kwan, Jason C.; Liu, Yanxia; Ratnayake, Ranjala; Hatano, Ryo; Kuribara, Akiko; Morimoto, Chiko; Ohnuma, Kei; Paul, Valerie J.; Ye, Tao

    2014-01-01

    Natural products made by marine cyanobacteria are often highly modified peptides and depsipeptides that have the potential to act as inhibitors for proteases. In the interest of finding novel protease inhibition activity and selectivity grassypeptolide A (1) was screened against a panel of proteases and found to selectively inhibit DPP8 over DPP4. Grassypeptolides were also found to inhibit IL-2 production and proliferation in activated T-cells, consistent with a putative role of DPP8 in the immune system. These effects were also observed in Jurkat cells, and DPP activity in Jurkat cell cytosol was shown to be inhibited by grassypeptolides. In silico docking suggests two possible binding modes of grassypeptolides – both at the active site of DPP8 and at one of the entrances to the internal cavity. Collectively these results suggest that grassypeptolides may be useful tool compounds in the study of DPP8 function. PMID:24591193

  7. Sodium-glucose co-transporter-2 inhibitors and dipeptidyl peptidase-4 inhibitors combination therapy in type 2 diabetes: A systematic review of current evidence

    PubMed Central

    Singh, Awadhesh Kumar; Singh, Ritu

    2016-01-01

    As type 2 diabetes mellitus (T2DM) is a chronic and progressive disease with multiple pathophysiologic defects, no single anti-diabetic agent can tackle all these multi-factorial pathways. Consequently, multiple agents working through the different mechanisms will be required for the optimal glycemic control. Moreover, the combination therapies of different anti-diabetic agents may complement their actions and possibly act synergistic. Furthermore, these combinations could possess the additional properties to counter their undesired physiological compensatory response. Sodium-glucose co-transporter-2 inhibitors (SGLT-2I) are newly emerging class of drugs, with a great potential to reduce glucose effectively with an additional quality of lowering cardiovascular events as demonstrated very recently by one of the agents of this class. However, increase in endogenous glucose production (EGP) from the liver, either due to the increase in glucagon or compensatory response to glucosuria can offset the glucose-lowering potential of SGLT-2I. Interestingly, another class of drugs such as dipeptidyl peptidase-4 inhibitors (DPP-4I) effectively decrease glucagon and reduce EGP. In light of these findings, combination therapies with SGLT-2I and DPP-4I are particularly appealing and are expected to produce a synergistic effect. Preclinical studies of combination therapies with DPP-4I and SGLT-2I have already demonstrated a significant lowering of hemoglobin A1c potential and human studies also find no drug-drug interaction between these agents. This article aims to systematically review the efficacy and safety of combination therapy of SGLT-2I and DPP-4I in T2DM. PMID:27042423

  8. A concise review of the bioanalytical methods for the quantitation of sitagliptin, an important dipeptidyl peptidase-4 (DPP4) inhibitor, utilized for the characterization of the drug.

    PubMed

    Suresh, P S; Srinivas, Nuggehally R; Mullangi, Ramesh

    2016-05-01

    Inhibition of dipeptidyl peptidase-4 (DPP4) is an emerging therapeutic approach for treating type 2 diabetes and has revolutionized the concept of diabetes management. Sitagliptin is the first approved orally active, potent, selective and nonpeptidomimetic DPP4 inhibitor. Incidence of hypoglycemia and weight gain is negligible with sitagliptin treatment. It is used as monotherapy or in combination with other anti-diabetic drugs to treat type 2 diabetes. There are numerous bioanalytical methods published for the analysis of sitagliptin in preclinical and clinical samples. This review focuses on the various HPLC and LC-MS/MS methods that have been used to analyze sitagliptin in various biological matrices. A small section is devoted to the bioanalysis of other DPP4 inhibitors such as vildagliptin, saxagliptin and linagliptin. This review provides key information in a concise manner regarding sample processing options, chromatographic/detection conditions and validation parameters of the chosen methods for sitagliptin and other DPP4 inhibitors. PMID:26873580

  9. Use of Dipeptidyl-Peptidase-4 Inhibitors and the Risk of Pneumonia: A Population-Based Cohort Study

    PubMed Central

    Wvan der Zanden, Rogier; de Vries, Frank; Lalmohamed, Arief; Driessen, Johanna H. M.; de Boer, Anthonius; Rohde, Gernot; Neef, Cees; den Heijer, Casper

    2015-01-01

    Background Dipeptidyl-peptidase-4 inhibitors (DPP4Is) are drugs for the treatment of type 2 diabetes mellitus (T2DM). There is increasing evidence that DPP4Is may result in suppression of the immune system and may increase the risk of infections such as pneumonia. Aim of this study was to evaluate the association between the use of DPP4Is and the risk of pneumonia in a population-based study. Methods We conducted a population-based cohort study using data from the world’s largest primary care database, the UK Clinical Practice Research Datalink (CPRD). We selected all users of non-insulin antidiabetic drugs (NIADs), including DPP4Is, between 2007 and 2012. To each NIAD user, we matched randomly selected non-users. The NIAD user’s first prescription defined the index date, which was then assigned to the matched non-users. Patients were followed from their first prescription until end of data collection or the first event of pneumonia, whichever came first. Cox regression analysis estimated the association between pneumonia and current use of DPP4Is versus 1) current use of other NIADs and 2) non-users. DPP4I use was then stratified to daily and cumulative dose. Analyses were statistically adjusted for age, sex, lifestyle factors and comorbidities and concomitant use of various other drugs. Results Risk of pneumonia was not increased with current DPP4I use versus use of other NIADs, adjusted Hazard Ratio (HR) 0.70; 95% Confidence Interval (CI) 0.55–0.91. Also higher cumulative doses or daily doses did not further increase risk of pneumonia. Conclusion We found no increased risk of pneumonia in T2DM patients using DPP4Is compared to T2DM patients using other NIADs. Our finding is in line with direct and indirect evidence from observational studies and RCTs. There is probably no need to avoid prescribing of DPP4Is to elderly patients who are at risk of pneumonia. PMID:26468883

  10. A rapid in vitro screening for delivery of peptide-derived peptidase inhibitors as potential drug candidates via epithelial peptide transporters.

    PubMed

    Foltz, Martin; Meyer, Antje; Theis, Stephan; Demuth, Hans-Ulrich; Daniel, Hannelore

    2004-08-01

    Targeting drugs or prodrugs to a specific enzyme by simultaneously targeting cell membrane carriers for efficient transport should provide the highest bioavailability along with specificity at the site of action. The peptide transporters PEPT1 and PEPT2 are expressed in a variety of tissues, including the brush-border membranes of epithelial cells of the small intestine and kidney. The transporters accept a wide range of substrates and are therefore good targets for a transporter-mediated drug delivery. Here, we report a screening procedure for peptidomimetic drug candidates combining two independent expression systems: 1) a competition assay in transgenic Pichia pastoris yeast cells expressing either mammalian PEPT1 or PEPT2 for identifying substrate interaction with the transporter binding site; and 2) a Xenopus laevis-based oocyte expression of the peptide transporter for assessing electrogenic transport of drug candidates. Based on the known oral availability and in vivo efficacy of the dipeptidyl peptidase IV (DPIV) inhibitor isoleucine-thiazolidide and its peptide-like structure, we first tested whether this compound is a substrate of epithelial peptide transporters. Additionally, a series of structurally related inhibitors were analyzed for transport. We identified various compounds that serve as substrates of the intestinal peptide transporter PEPT1. In contrast, none of these DPIV inhibitors showed electrogenic transport by PEPT2, although a variety of the compounds displayed good affinities for competition in peptide uptake in PEPT2-expressing cells, suggesting that they may serve as efficient inhibitors. In conclusion, we have applied an in vitro screening system that predicts efficient intestinal absorption of peptide-derived peptidase inhibitors via PEPT1 in vivo. PMID:15051798

  11. The Discovery of Potent, Selective, and Reversible Inhibitors of the House Dust Mite Peptidase Allergen Der p 1: An Innovative Approach to the Treatment of Allergic Asthma

    PubMed Central

    2014-01-01

    Blocking the bioactivity of allergens is conceptually attractive as a small-molecule therapy for allergic diseases but has not been attempted previously. Group 1 allergens of house dust mites (HDM) are meaningful targets in this quest because they are globally prevalent and clinically important triggers of allergic asthma. Group 1 HDM allergens are cysteine peptidases whose proteolytic activity triggers essential steps in the allergy cascade. Using the HDM allergen Der p 1 as an archetype for structure-based drug discovery, we have identified a series of novel, reversible inhibitors. Potency and selectivity were manipulated by optimizing drug interactions with enzyme binding pockets, while variation of terminal groups conferred the physicochemical and pharmacokinetic attributes required for inhaled delivery. Studies in animals challenged with the gamut of HDM allergens showed an attenuation of allergic responses by targeting just a single component, namely, Der p 1. Our findings suggest that these inhibitors may be used as novel therapies for allergic asthma. PMID:25365789

  12. Sulfotyrosine dipeptide: Synthesis and evaluation as HIV-entry inhibitor.

    PubMed

    Ju, Tong; Hu, Duoyi; Xiang, Shi-Hua; Guo, Jiantao

    2016-10-01

    Human immunodeficiency virus type 1 (HIV-1) is responsible for the worldwide AIDS pandemic. Due to the lack of prophylactic HIV-1 vaccine, drug treatment of the infected patients becomes essential to reduce the viral load and to slow down progression of the disease. Because of drug resistance, finding new antiviral agents is necessary for AIDS drug therapies. The interaction of gp120 and co-receptor (CCR5/CXCR4) mediates the entry of HIV-1 into host cells, which has been increasingly exploited in recent years as the target for new antiviral agents. A conserved co-receptor binding site on gp120 that recognizes sulfotyrosine (sTyr) residues represents a structural target to design novel HIV entry inhibitors. In this work, we developed an efficient synthesis of sulfotyrosine dipeptide and evaluated it as an HIV-1 entry inhibitor. PMID:27475281

  13. Dipeptidyl peptidase-4 inhibitor ameliorates early renal injury through its anti-inflammatory action in a rat model of type 1 diabetes

    SciTech Connect

    Kodera, Ryo; Shikata, Kenichi; Takatsuka, Tetsuharu; Oda, Kaori; Miyamoto, Satoshi; Kajitani, Nobuo; Hirota, Daisho; Ono, Tetsuichiro; Usui, Hitomi Kataoka; Makino, Hirofumi

    2014-01-17

    Highlights: •DPP-4 inhibitor decreased urinary albumin excretion in a rat of type 1 diabetes. •DPP-4 inhibitor ameliorated histlogical changes of diabetic nephropathy. •DPP-4 inhibitor has reno-protective effects through anti-inflammatory action. •DPP-4 inhibitor is beneficial on diabetic nephropathy besides lowering blood glucose. -- Abstract: Introduction: Dipeptidyl peptidase-4 (DPP-4) inhibitors are incretin-based drugs in patients with type 2 diabetes. In our previous study, we showed that glucagon-like peptide-1 (GLP-1) receptor agonist has reno-protective effects through anti-inflammatory action. The mechanism of action of DPP-4 inhibitor is different from that of GLP-1 receptor agonists. It is not obvious whether DPP-4 inhibitor prevents the exacerbation of diabetic nephropathy through anti-inflammatory effects besides lowering blood glucose or not. The purpose of this study is to clarify the reno-protective effects of DPP-4 inhibitor through anti-inflammatory actions in the early diabetic nephropathy. Materials and methods: Five-week-old male Sprague–Dawley (SD) rats were divided into three groups; non-diabetes, diabetes and diabetes treated with DPP-4 inhibitor (PKF275-055; 3 mg/kg/day). PKF275-055 was administered orally for 8 weeks. Results: PKF275-055 increased the serum active GLP-1 concentration and the production of urinary cyclic AMP. PKF275-055 decreased urinary albumin excretion and ameliorated histological change of diabetic nephropathy. Macrophage infiltration was inhibited, and inflammatory molecules were down-regulated by PKF275-055 in the glomeruli. In addition, nuclear factor-κB (NF-κB) activity was suppressed in the kidney. Conclusions: These results indicate that DPP-4 inhibitor, PKF275-055, have reno-protective effects through anti-inflammatory action in the early stage of diabetic nephropathy. The endogenous biological active GLP-1 might be beneficial on diabetic nephropathy besides lowering blood glucose.

  14. Comparative analysis of expression profiling of the trypsin and chymotrypsin genes from Lepidoptera species with different levels of sensitivity to soybean peptidase inhibitors.

    PubMed

    Souza, Thais P; Dias, Renata O; Castelhano, Elaine C; Brandão, Marcelo M; Moura, Daniel S; Silva-Filho, Marcio C

    2016-01-01

    Peptidase inhibitors (PIs) are essential proteins involved in plant resistance to herbivorous insects, yet many insect species are able to escape the negative effects of these molecules. We compared the effects of acute and chronic ingestion of soybean peptidase inhibitors (SPIs) on Spodoptera frugiperda and Diatraea saccharalis, two Lepidoptera species with different sensitivities to SPI ingestion. We analyzed the trypsin and chymotrypsin gene expression profiles in both species. Acute exposure of S. frugiperda to the inhibitors activated seven genes (SfChy5, SfChy9, SfChy19, SfChy22, SfTry6, SfTry8, and SfTry10), whereas chronic exposure activated 16 genes (SfChy2, SfChy4, SfChy5, SfChy8, SfChy9, SfChy11, SfChy12, SfChy15, SfChy17, SfChy21, SfChy22, SfTry6, SfTry8, SfTry9, SfTry10, and SfTry12). By contrast, the challenge of D. saccharalis with SPIs did not differentially induce the expression of trypsin- or chymotrypsin-encoding genes, with the exception of DsChy7. Bayesian phylogenetic analysis of S. frugiperda trypsin protein sequences revealed two gene clades: one composed of genes responsive to the SPIs and a second composed of the unresponsive genes. D. saccharalis trypsin proteins were clustered nearest to the S. frugiperda unresponsive genes. Overall, our findings support a hypothesized mechanism of resistance of Noctuidae moths to SPIs, involving gene number expansion of trypsin and chymotrypsin families and regulation of gene expression, which could also explain the variable susceptibility between S. frugiperda and D. saccharalis to these plant inhibitors. PMID:26944308

  15. Finding a Potential Dipeptidyl Peptidase-4 (DPP-4) Inhibitor for Type-2 Diabetes Treatment Based on Molecular Docking, Pharmacophore Generation, and Molecular Dynamics Simulation.

    PubMed

    Meduru, Harika; Wang, Yeng-Tseng; Tsai, Jeffrey J P; Chen, Yu-Ching

    2016-06-13

    Dipeptidyl peptidase-4 (DPP-4) is the vital enzyme that is responsible for inactivating intestinal peptides glucagon like peptide-1 (GLP-1) and Gastric inhibitory polypeptide (GIP), which stimulates a decline in blood glucose levels. The aim of this study was to explore the inhibition activity of small molecule inhibitors to DPP-4 following a computational strategy based on docking studies and molecular dynamics simulations. The thorough docking protocol we applied allowed us to derive good correlation parameters between the predicted binding affinities (pKi) of the DPP-4 inhibitors and the experimental activity values (pIC50). Based on molecular docking receptor-ligand interactions, pharmacophore generation was carried out in order to identify the binding modes of structurally diverse compounds in the receptor active site. Consideration of the permanence and flexibility of DPP-4 inhibitor complexes by means of molecular dynamics (MD) simulation specified that the inhibitors maintained the binding mode observed in the docking study. The present study helps generate new information for further structural optimization and can influence the development of new DPP-4 inhibitors discoveries in the treatment of type-2 diabetes.

  16. Finding a Potential Dipeptidyl Peptidase-4 (DPP-4) Inhibitor for Type-2 Diabetes Treatment Based on Molecular Docking, Pharmacophore Generation, and Molecular Dynamics Simulation

    PubMed Central

    Meduru, Harika; Wang, Yeng-Tseng; Tsai, Jeffrey J. P.; Chen, Yu-Ching

    2016-01-01

    Dipeptidyl peptidase-4 (DPP-4) is the vital enzyme that is responsible for inactivating intestinal peptides glucagon like peptide-1 (GLP-1) and Gastric inhibitory polypeptide (GIP), which stimulates a decline in blood glucose levels. The aim of this study was to explore the inhibition activity of small molecule inhibitors to DPP-4 following a computational strategy based on docking studies and molecular dynamics simulations. The thorough docking protocol we applied allowed us to derive good correlation parameters between the predicted binding affinities (pKi) of the DPP-4 inhibitors and the experimental activity values (pIC50). Based on molecular docking receptor-ligand interactions, pharmacophore generation was carried out in order to identify the binding modes of structurally diverse compounds in the receptor active site. Consideration of the permanence and flexibility of DPP-4 inhibitor complexes by means of molecular dynamics (MD) simulation specified that the inhibitors maintained the binding mode observed in the docking study. The present study helps generate new information for further structural optimization and can influence the development of new DPP-4 inhibitors discoveries in the treatment of type-2 diabetes. PMID:27304951

  17. Past, present, and future of entry inhibitors as HIV microbicides.

    PubMed

    Gibson, Richard M; Arts, Eric J

    2012-01-01

    Preventing the transmission of human immunodeficiency virus (HIV) is the main goal of numerous studies trying to develop an effective vaccine and microbicide agents. Here we review the use of antiretroviral drugs to inhibit viral entry as potential HIV microbicides. After the failure of nonoxynol-9 microbicide strategies shifted towards the use of compounds creating a physical barrier to virus attachment (e.g., surfactants) or inhibit the virus in the vaginal milieu (e.g., polyanions). These early, non-specific inhibitors showed promise in both in vitro and in vivo(non-human primates) studies but provided only modest protection from HIV transmission in clinical efficacy trials. The next generation of HIV entry microbicides was based on specifically blocking virus from entering host cells by targeting CD4 attachment, gp120 binding, and virus-cell membrane fusion events. Although protection from an SIV-HIV hybrid was evident in non-human primates treated and challenged in the vaginal cavity, none of these compounds have advanced to clinical trials as a microbicide. Here we will discuss the reasons for these failures, including the selection of drug resistant HIV variants, which raises questions as to the future of broadly effective microbicides based on HIV entry inhibitors. The outcome of continued research and potential efficacy trials on the next generation of entry inhibitors might reveal whether or not an effective entry microbicide can be developed. PMID:22264042

  18. The triple threat of HIV-1 protease inhibitors.

    PubMed

    Potempa, Marc; Lee, Sook-Kyung; Wolfenden, Richard; Swanstrom, Ronald

    2015-01-01

    Newly released human immunodeficiency virus type 1 (HIV-1) particles obligatorily undergo a maturation process to become infectious. The HIV-1 protease (PR) initiates this step, catalyzing the cleavage of the Gag and Gag-Pro-Pol structural polyproteins. Proper organization of the mature virus core requires that cleavage of these polyprotein substrates proceeds in a highly regulated, specific series of events. The vital role the HIV-1 PR plays in the viral life cycle has made it an extremely attractive target for inhibition and has accordingly fostered the development of a number of highly potent substrate-analog inhibitors. Though the PR inhibitors (PIs) inhibit only the HIV-1 PR, their effects manifest at multiple different stages in the life cycle due to the critical importance of the PR in preparing the virus for these subsequent events. Effectively, PIs masquerade as entry inhibitors, reverse transcription inhibitors, and potentially even inhibitors of post-reverse transcription steps. In this chapter, we review the triple threat of PIs: the intermolecular cooperativity in the form of a cooperative dose-response for inhibition in which the apparent potency increases with increasing inhibition; the pleiotropic effects of HIV-1 PR inhibition on entry, reverse transcription, and post-reverse transcription steps; and their potency as transition state analogs that have the potential for further improvement that could lead to an inability of the virus to evolve resistance in the context of single drug therapy. PMID:25778681

  19. Identification of HIV Inhibitors Guided by Free Energy Perturbation Calculations

    PubMed Central

    Acevedo, Orlando; Ambrose, Zandrea; Flaherty, Patrick T.; Aamer, Hadega; Jain, Prashi; Sambasivarao, Somisetti V.

    2013-01-01

    Free energy perturbation (FEP) theory coupled to molecular dynamics (MD) or Monte Carlo (MC) statistical mechanics offers a theoretically precise method for determining the free energy differences of related biological inhibitors. Traditionally requiring extensive computational resources and expertise, it is only recently that its impact is being felt in drug discovery. A review of computer-aided anti-HIV efforts employing FEP calculations is provided here that describes early and recent successes in the design of human immunodeficiency virus type 1 (HIV-1) protease and non-nucleoside reverse transcriptase inhibitors. In addition, our ongoing work developing and optimizing leads for small molecule inhibitors of cyclophilin A (CypA) is highlighted as an update on the current capabilities of the field. CypA has been shown to aid HIV-1 replication by catalyzing the cis/trans isomerization of a conserved Gly-Pro motif in the N-terminal domain of HIV-1 capsid (CA) protein. In the absence of a functional CypA, e.g., by the addition of an inhibitor such as cyclosporine A (CsA), HIV-1 has reduced infectivity. Our simulations of acylurea-based and 1-indanylketone-based CypA inhibitors have determined that their nanomolar and micromolar binding affinities, respectively, are tied to their ability to stabilize Arg55 and Asn102. A structurally novel 1-(2,6-dichlorobenzamido) indole core was proposed to maximize these interactions. FEP-guided optimization, experimental synthesis, and biological testing of lead compounds for toxicity and inhibition of wild-type HIV-1 and CA mutants have demonstrated a dose-dependent inhibition of HIV-1 infection in two cell lines. While the inhibition is modest compared to CsA, the results are encouraging. PMID:22316150

  20. Design of HIV Protease Inhibitors Based on Inorganic Polyhedral Metallacarboranes

    SciTech Connect

    Rezacova, Pavlina; Pokorna, Jana; Brynda, Ji; Kozisek, Milan; Cigler, Petr; Lesik, Martin; Fanfrlik, Jindrich; Rezac, Jan; Saskova, Klara Grantz; Sieglova, Irena; Plesek, Jaromir; Sicha, Vaclav; Gruner, Bohumir; Oberwinkler, Heike; Sedlacek, Juraj; Krausslich, Hans-Georg; Hobza, Pavel; Kral, Vladimir; Konvalinka, Jan

    2010-04-19

    HIV protease (HIV PR) is a primary target for anti-HIV drug design. We have previously identified and characterized substituted metallacarboranes as a new class of HIV protease inhibitors. In a structure-guided drug design effort, we connected the two cobalt bis(dicarbollide) clusters with a linker to substituted ammonium group and obtained a set of compounds based on a lead formula [H{sub 2}N-(8-(C{sub 2}H{sub 4}O){sub 2}-1,2-C{sub 2}B{sub 9}H{sub 10})(1',2'-C{sub 2}B{sub 9}H{sub 11})-3,3'-Co){sub 2}]Na. We explored inhibition properties of these compounds with various substitutions, determined the HIV PR:inhibitor crystal structure, and computationally explored the conformational space of the linker. Our results prove the capacity of linker-substituted dual-cage cobalt bis(dicarbollides) as lead compounds for design of more potent inhibitors of HIV PR.

  1. Antimalarial activity of HIV-1 protease inhibitor in chromone series.

    PubMed

    Lerdsirisuk, Pradith; Maicheen, Chirattikan; Ungwitayatorn, Jiraporn

    2014-12-01

    Increasing parasite resistance to nearly all available antimalarial drugs becomes a serious problem to human health and necessitates the need to continue the search for new effective drugs. Recent studies have shown that clinically utilized HIV-1 protease (HIV-1 PR) inhibitors can inhibit the in vitro and in vivo growth of Plasmodium falciparum. In this study, a series of chromone derivatives possessing HIV-1 PR inhibitory activity has been tested for antimalarial activity against P. falciparum (K1 multi-drug resistant strain). Chromone 15, the potent HIV-1 PR inhibitor (IC50=0.65μM), was found to be the most potent antimalarial compound with IC50=0.95μM while primaquine and tafenoquine showed IC50=2.41 and 1.95μM, respectively. Molecular docking study of chromone compounds against plasmepsin II, an aspartic protease enzyme important in hemoglobin degradation, revealed that chromone 15 exhibited the higher binding affinity (binding energy=-13.24kcal/mol) than the known PM II inhibitors. Thus, HIV-1 PR inhibitor in chromone series has the potential to be a new class of antimalarial agent. PMID:25462990

  2. Inhibitors of HIV-1 replication that inhibit HIV integrase.

    PubMed Central

    Robinson, W E; Reinecke, M G; Abdel-Malek, S; Jia, Q; Chow, S A

    1996-01-01

    HIV-1 replication depends on the viral enzyme integrase that mediates integration of a DNA copy of the virus into the host cell genome. This enzyme represents a novel target to which antiviral agents might be directed. Three compounds, 3,5-dicaffeoylquinic acid, 1-methoxyoxalyl-3,5-dicaffeoylquinic acid, and L-chicoric acid, inhibit HIV-1 integrase in biochemical assays at concentrations ranging from 0.06-0.66 microgram/ml; furthermore, these compounds inhibit HIV-1 replication in tissue culture at 1-4 microgram/ml. The toxic concentrations of these compounds are fully 100-fold greater than their antiviral concentrations. These compounds represent a potentially important new class of antiviral agents that may contribute to our understanding of the molecular mechanisms of viral integration. Thus, the dicaffeoylquinic acids are promising leads to new anti-HIV therapeutics and offer a significant advance in the search for new HIV enzyme targets as they are both specific for HIV-1 integrase and active against HIV-1 in tissue culture. Images Fig. 3 PMID:8692814

  3. Bovine pancreatic trypsin inhibitor immobilized onto sepharose as a new strategy to purify a thermostable alkaline peptidase from cobia (Rachycentron canadum) processing waste.

    PubMed

    França, Renata Cristina da Penha; Assis, Caio Rodrigo Dias; Santos, Juliana Ferreira; Torquato, Ricardo José Soares; Tanaka, Aparecida Sadae; Hirata, Izaura Yoshico; Assis, Diego Magno; Juliano, Maria Aparecida; Cavalli, Ronaldo Olivera; Carvalho, Luiz Bezerra de; Bezerra, Ranilson Souza

    2016-10-15

    A thermostable alkaline peptidase was purified from the processing waste of cobia (Rachycentron canadum) using bovine pancreatic trypsin inhibitor (BPTI) immobilized onto Sepharose. The purified enzyme had an apparent molecular mass of 24kDa by both sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE) and mass spectrometry. Its optimal temperature and pH were 50°C and 8.5, respectively. The enzyme was thermostable until 55°C and its activity was strongly inhibited by the classic trypsin inhibitors N-ρ-tosyl-l-lysine chloromethyl ketone (TLCK) and benzamidine. BPTI column allowed at least 15 assays without loss of efficacy. The purified enzyme was identified as a trypsin and the N-terminal amino acid sequence of this trypsin was IVGGYECTPHSQAHQVSLNSGYHFC, which was highly homologous to trypsin from cold water fish species. Using Nα-benzoyl-dl-arginine ρ-nitroanilide hydrochloride (BApNA) as substrate, the apparent km value of the purified trypsin was 0.38mM, kcat value was 3.14s(-1), and kcat/km was 8.26s(-1)mM(-1). The catalytic proficiency of the purified enzyme was 2.75×10(12)M(-1) showing higher affinity for the substrate at the transition state than other fish trypsin. The activation energy (AE) of the BApNA hydrolysis catalyzed by this enzyme was estimated to be 11.93kcalmol(-1) while the resulting rate enhancement of this reaction was found to be approximately in a range from 10(9) to 10(10)-fold evidencing its efficiency in comparison to other trypsin. This new purification strategy showed to be appropriate to obtain an alkaline peptidase from cobia processing waste with high purification degree. According with N-terminal homology and kinetic parameters, R. canadum trypsin may gathers desirable properties of psychrophilic and thermostable enzymes.

  4. Identification of potent maturation inhibitors against HIV-1 clade C

    PubMed Central

    Timilsina, Uddhav; Ghimire, Dibya; Timalsina, Bivek; Nitz, Theodore J.; Wild, Carl T.; Freed, Eric O.; Gaur, Ritu

    2016-01-01

    Antiretroviral therapy has led to a profound improvement in the clinical care of HIV-infected patients. However, drug tolerability and the evolution of drug resistance have limited treatment options for many patients. Maturation inhibitors are a new class of antiretroviral agents for treatment of HIV-1. They act by interfering with the maturation of the virus by blocking the last step in Gag processing: the cleavage of the capsid-spacer peptide 1 (CA-SP1) intermediate to mature CA by the viral protease (PR). The first-in-class maturation inhibitor bevirimat (BVM) failed against a subset of HIV-1 isolates in clinical trials due to polymorphisms present in the CA-SP1 region of the Gag protein. Sequence analysis indicated that these polymorphisms are more common in non-clade B strains of HIV-1 such as HIV-1 clade C. Indeed, BVM was found to be ineffective against HIV-1 clade C molecular clones tested in this study. A number of BVM analogs were synthesized by chemical modifications at the C-28 position to improve its activity. The new BVM analogs displayed potent activity against HIV-1 clade B and C and also reduced infectivity of the virus. This study identifies novel and broadly active BVM analogs that may ultimately demonstrate efficacy in the clinic. PMID:27264714

  5. Additivity in the Analysis and Design of HIV Protease Inhibitors

    PubMed Central

    Jorissen, Robert N.; Kiran Kumar Reddy, G. S.; Ali, Akbar; Altman, Michael D.; Chellappan, Sripriya; Anjum, Saima G.; Tidor, Bruce; Schiffer, Celia A.; Rana, Tariq M.; Gilson, Michael K.

    2009-01-01

    We explore the applicability of an additive treatment of substituent effects to the analysis and design of HIV protease inhibitors. Affinity data for a set of inhibitors with a common chemical framework were analyzed to provide estimates of the free energy contribution of each chemical substituent. These estimates were then used to design new inhibitors, whose high affinities were confirmed by synthesis and experimental testing. Derivations of additive models by least-squares and ridge-regression methods were found to yield statistically similar results. The additivity approach was also compared with standard molecular descriptor-based QSAR; the latter was not found to provide superior predictions. Crystallographic studies of HIV protease-inhibitor complexes help explain the perhaps surprisingly high degree of substituent additivity in this system, and allow some of the additivity coefficients to be rationalized on a structural basis. PMID:19193159

  6. The Dipeptidyl Peptidase-4 Inhibitor Teneligliptin Attenuates Hepatic Lipogenesis via AMPK Activation in Non-Alcoholic Fatty Liver Disease Model Mice

    PubMed Central

    Ideta, Takayasu; Shirakami, Yohei; Miyazaki, Tsuneyuki; Kochi, Takahiro; Sakai, Hiroyasu; Moriwaki, Hisataka; Shimizu, Masahito

    2015-01-01

    Non-alcoholic fatty liver disease (NAFLD), which is strongly associated with metabolic syndrome, is increasingly a major cause of hepatic disorder. Dipeptidyl peptidase (DPP)-4 inhibitors, anti-diabetic agents, are expected to be effective for the treatment of NAFLD. In the present study, we established a novel NAFLD model mouse using monosodium glutamate (MSG) and a high-fat diet (HFD) and investigated the effects of a DPP-4 inhibitor, teneligliptin, on the progression of NAFLD. Male MSG/HFD-treated mice were divided into two groups, one of which received teneligliptin in drinking water. Administration of MSG and HFD caused mice to develop severe fatty changes in the liver, but teneligliptin treatment improved hepatic steatosis and inflammation, as evaluated by the NAFLD activity score. Serum alanine aminotransferase and intrahepatic triglyceride levels were significantly decreased in teneligliptin-treated mice (p < 0.05). Hepatic mRNA levels of the genes involved in de novo lipogenesis were significantly downregulated by teneligliptin (p < 0.05). Moreover, teneligliptin increased hepatic expression levels of phosphorylated AMP-activated protein kinase (AMPK) protein. These findings suggest that teneligliptin attenuates lipogenesis in the liver by activating AMPK and downregulating the expression of genes involved in lipogenesis. DPP-4 inhibitors may be effective for the treatment of NAFLD and may be able to prevent its progression to non-alcoholic steatohepatitis. PMID:26670228

  7. The Place of Dipeptidyl Peptidase-4 Inhibitors in Type 2 Diabetes Therapeutics: A “Me Too” or “the Special One” Antidiabetic Class?

    PubMed Central

    Godinho, Ricardo; Carvalho, Eugénia; Teixeira, Frederico

    2015-01-01

    Incretin-based therapies, the most recent therapeutic options for type 2 diabetes mellitus (T2DM) management, can modify various elements of the disease, including hypersecretion of glucagon, abnormal gastric emptying, postprandial hyperglycaemia, and, possibly, pancreatic β cell dysfunction. Dipeptidyl peptidase-4 (DPP-4) inhibitors (gliptins) increase glucagon-like peptide-1 (GLP-1) availability and correct the “incretin defect” seen in T2DM patients. Clinical studies have shown good glycaemic control with minimal risk of hypoglycaemia or any other adverse effects, despite the reports of pancreatitis, whose association remains to be proved. Recent studies have been focusing on the putative ability of DPP-4 inhibitors to preserve pancreas function, in particular due to the inhibition of apoptotic pathways and stimulation of β cell proliferation. In addition, other cytoprotective effects on other organs/tissues that are involved in serious T2DM complications, including the heart, kidney, and retina, have been increasingly reported. This review outlines the therapeutic potential of DPP-4 inhibitors for the treatment of T2DM, focusing on their main features, clinical applications, and risks, and discusses the major challenges for the future, in particular the possibility of becoming the preferred therapy for T2DM due to their ability to modify the natural history of the disease and ameliorate nephropathy, retinopathy, and cardiovascular complications. PMID:26075286

  8. Histone deacetylase inhibitor romidepsin inhibits de novo HIV-1 infections.

    PubMed

    Jønsson, Kasper L; Tolstrup, Martin; Vad-Nielsen, Johan; Kjær, Kathrine; Laustsen, Anders; Andersen, Morten N; Rasmussen, Thomas A; Søgaard, Ole S; Østergaard, Lars; Denton, Paul W; Jakobsen, Martin R

    2015-07-01

    Adjunct therapy with the histone deacetylase inhibitor (HDACi) romidepsin increases plasma viremia in HIV patients on combination antiretroviral therapy (cART). However, a potential concern is that reversing HIV latency with an HDACi may reactivate the virus in anatomical compartments with suboptimal cART concentrations, leading to de novo infection of susceptible cells in these sites. We tested physiologically relevant romidepsin concentrations known to reactivate latent HIV in order to definitively address this concern. We found that romidepsin significantly inhibited HIV infection in peripheral blood mononuclear cells and CD4(+) T cells but not in monocyte-derived macrophages. In addition, romidepsin impaired HIV spreading in CD4(+) T cell cultures. When we evaluated the impact of romidepsin on quantitative viral outgrowth assays with primary resting CD4(+) T cells, we found that resting CD4(+) T cells exposed to romidepsin exhibited reduced proliferation and viability. This significantly lowered assay sensitivity when measuring the efficacy of romidepsin as an HIV latency reversal agent. Altogether, our data indicate that romidepsin-based HIV eradication strategies are unlikely to reseed a latent T cell reservoir, even under suboptimal cART conditions, because romidepsin profoundly restricts de novo HIV infections.

  9. Dipeptidyl Peptidase-4 Inhibitors and the Risk of Acute Pancreatitis in Patients With Type 2 Diabetes in Taiwan: A Population-Based Cohort Study.

    PubMed

    Lai, Yun-Ju; Hu, Hsiao-Yun; Chen, Hsin-Hua; Chou, Pesus

    2015-10-01

    To investigate the effects of dipeptidyl peptidase-4 (DPP-4) inhibitors on the risk of acute pancreatitis in patients with type 2 diabetes.This nationwide population-based cohort study used the diabetes patients dataset of Taiwan's National Health Research Insurance Research Database. Patients with newly diagnosed type 2 diabetes between January 1, 2008 and December 31, 2009 and no history of acute pancreatitis were selected. This cohort was followed from the index date to the onset of acute pancreatitis or December 31, 2011. The main outcome measure was the hazard ratio (HR) for acute pancreatitis associated with DPP-4 inhibitor use. Cox proportional-hazards regression analyses were adjusted for alcohol use, hypertriglyceridemia, cholelithiasis, neoplasm, and Diabetes Complications Severity Index (DCSI) score. Subgroup analyses stratified by age and sex were conducted.The study cohort comprised 114,141 patients. Significant interaction effects were observed between sex and age (HR 0.80, 95% confidence interval [CI] 0.64-0.99) and age and DCSI score (HR 0.83, 95% CI: 0.71-0.97). In subgroup analyses, significant risks of acute pancreatitis were noted in female and elderly DPP-4 inhibitor users. Among women, the risk of acute pancreatitis was significantly higher among DPP-4 inhibitor users than among nonusers (HR 2.27, 95% CI: 1.30-3.97). This risk was also significantly higher in users than in nonusers among patients aged >65 years (HR 2.39, 95% CI: 1.11-5.15).Female and elderly DPP-4 inhibitor users had significantly elevated risks of acute pancreatitis development. Further well-conducted studies are needed to confirm our findings. PMID:26512613

  10. An updated systematic review and meta-analysis on the efficacy and tolerability of dipeptidyl peptidase-4 inhibitors in patients with type 2 diabetes with moderate to severe chronic kidney disease

    PubMed Central

    Singh-Franco, Devada; Harrington, Catherine; Tellez-Corrales, Eglis

    2016-01-01

    Objective: This updated meta-analysis determines the effect of dipeptidyl peptidase-4 inhibitors on glycemic and tolerability outcomes in patients with type 2 diabetes mellitus and chronic kidney disease with glomerular filtration rate of ⩽60 mL/min or on dialysis. Methods: In all, 14 citations were identified from multiple databases. Qualitative assessments and quantitative analyses were performed. Results: There were 2261 participants, 49–79 years of age, 49% men and 44% Caucasians. In seven placebo-comparator studies, reduction in hemoglobin A1c at weeks 12–24 was 0.55% (95% confidence interval: −0.68 to −0.43), P < 0.00001). In three sulfonylurea-comparator studies, dipeptidyl peptidase-4 inhibitors did not significantly reduce hemoglobin A1c at weeks 52–54 (−0.15% (95% confidence interval: −0.32 to 0.02)). In one sitagliptin versus albiglutide study, albiglutide significantly reduced hemoglobin A1c in patients with moderate renal impairment (−0.51%). A similar reduction in hemoglobin A1c was seen with sitagliptin versus vildagliptin (−0.56% vs −0.54%). Compared with placebo or sulfonylurea, dipeptidyl peptidase-4 inhibitors did not significantly reduce hemoglobin A1c after 12 and 54 weeks in patients on dialysis. Hypoglycemia was reported by ~30% of patients in both dipeptidyl peptidase-4 inhibitors and placebo groups over 24–52 weeks. While hypoglycemia was more common with a sulfonylurea at 52–54 weeks (risk ratio: 0.46 (95% confidence interval: 0.18 to 1.18)), there was significant heterogeneity (I2 = 87%). Limitations included high drop-out rate from most studies and small number of active-comparator studies. Conclusions: Dipeptidyl peptidase-4 inhibitors in patients with chronic kidney disease caused a modest reduction in hemoglobin A1c versus placebo, but not when compared with sulfonylureas or albiglutide, or when used in patients on dialysis. Additional active-comparator studies are needed to further

  11. Sulfonation Pathway Inhibitors Block Reactivation of Latent HIV-1

    PubMed Central

    Murry, Jeffrey P.; Godoy, Joseph; Mukim, Amey; Swann, Justine; Bruce, James W.; Ahlquist, Paul; Bosque, Alberto; Planelles, Vicente; Spina, Celsa A.; Young, John A. T.

    2015-01-01

    Long-lived pools of latently infected cells are a significant barrier to the development of a cure for HIV-1 infection. A better understanding of the mechanisms of reactivation from latency is needed to facilitate the development of novel therapies that address this problem. Here we show that chemical inhibitors of the sulfonation pathway prevent virus reactivation, both in latently infected J-Lat and U1 cell lines and in a primary human CD4+ T cell model of latency. In each of these models, sulfonation inhibitors decreased transcription initiation from the HIV-1 promoter. These inhibitors block transcription initiation at a step that lies downstream of nucleosome remodeling and affects RNA polymerase II recruitment to the viral promoter. These results suggest that the sulfonation pathway acts by a novel mechanism to regulate efficient virus transcription initiation during reactivation from latency, and further that augmentation of this pathway could be therapeutically useful. PMID:25310595

  12. Real-world evaluation of glycemic control among patients with type 2 diabetes mellitus treated with canagliflozin versus dipeptidyl peptidase-4 inhibitors.

    PubMed

    Thayer, Sarah; Chow, Wing; Korrer, Stephanie; Aguilar, Richard

    2016-06-01

    Objective To evaluate glycemic control among patients with type 2 diabetes mellitus (T2DM) treated with canagliflozin (CANA) vs. dipeptidyl peptidase-4 (DPP-4) inhibitors. Methods Using integrated claims and lab data from a US health plan of commercial and Medicare Advantage enrollees, this matched-control cohort study assessed adult T2DM patients receiving treatment with CANA or DPP-4 inhibitors (1 April 2013-31 December 2013). Cohorts were chosen hierarchically; the first pharmacy claim for CANA was identified as the index date; then the first pharmacy claim for a DPP-4 inhibitor was identified and index date set. Eligible patients had 6 months of continuous health plan enrollment before the index date (baseline) and 9 months after (follow-up) and no evidence of index drug in baseline. Patients were matched 1:1 using propensity score matching. Changes in glycated hemoglobin (HbA1c) and percentages of patients with HbA1c <8% and <7% during the follow-up were evaluated. Results The matched CANA and DPP-4 inhibitor cohorts (53.2% treated with sitagliptin) included 2766 patients each (mean age: 55.7 years). Among patients with baseline and follow-up HbA1c results, mean baseline HbA1c values were similar, 8.62% and 8.57% (p = 0.615) for the CANA (n = 729) and DPP-4 inhibitor (n = 710) cohorts, respectively. Change in HbA1c was greater among patients in the CANA cohort than for those in the DPP-4 inhibitor cohort (-0.92% vs. -0.63%, p < 0.001), and also among the subset of patients with baseline HbA1c ≥7% (-1.07% [n = 624] vs. -0.79% [n = 603], p = 0.004). During follow-up, greater percentages of the CANA cohort relative to the DPP-4 inhibitor cohort achieved HbA1c of <8% (66.0% vs. 58.6%, p = 0.004) and <7% (35.4% vs. 29.9%, p = 0.022). Limitations This study was observational and residual confounding remains a possibility. Conclusions In this real-world study of patients with T2DM, CANA use was associated with greater HbA1c

  13. DA-1229, a dipeptidyl peptidase IV inhibitor, protects against renal injury by preventing podocyte damage in an animal model of progressive renal injury.

    PubMed

    Eun Lee, Jee; Kim, Jung Eun; Lee, Mi Hwa; Song, Hye Kyoung; Ghee, Jung Yeon; Kang, Young Sun; Min, Hye Sook; Kim, Hyun Wook; Cha, Jin Joo; Han, Jee Young; Han, Sang Youb; Cha, Dae Ryong

    2016-05-01

    Although dipeptidyl peptidase IV (DPPIV) inhibitors are known to have renoprotective effects, the mechanism underlying these effects has remained elusive. Here we investigated the effects of DA-1229, a novel DPPIV inhibitor, in two animal models of renal injury including db/db mice and the adriamycin nephropathy rodent model of chronic renal disease characterized by podocyte injury. For both models, DA-1229 was administered at 300 mg/kg/day. DPPIV activity in the kidney was significantly higher in diabetic mice compared with their nondiabetic controls. Although DA-1229 did not affect glycemic control or insulin resistance, DA-1229 did improve lipid profiles, albuminuria and renal fibrosis. Moreover, DA-1229 treatment resulted in decreased urinary excretion of nephrin, decreased circulating and kidney DPPIV activity, and decreased macrophage infiltration in the kidney. In adriamycin-treated mice, DPPIV activity in the kidney and urinary nephrin loss were both increased, whereas glucagon-like peptide-1 concentrations were unchanged. Moreover, DA-1229 treatment significantly improved proteinuria, renal fibrosis and inflammation associated with decreased urinary nephrin loss, and kidney DPP4 activity. In cultured podocytes, DA-1229 restored the high glucose/angiotensin II-induced increase of DPPIV activity and preserved the nephrin levels in podocytes. These findings suggest that activation of DPPIV in the kidney has a role in the progression of renal disease, and that DA-1229 may exert its renoprotective effects by preventing podocyte injury.

  14. Purification and characterization of tenerplasminin-1, a serine peptidase inhibitor with antiplasmin activity from the coral snake (Micrurus tener tener) venom.

    PubMed

    Vivas, Jeilyn; Ibarra, Carlos; Salazar, Ana M; Neves-Ferreira, Ana G C; Sánchez, Elda E; Perales, Jonás; Rodríguez-Acosta, Alexis; Guerrero, Belsy

    2016-01-01

    A plasmin inhibitor, named tenerplasminin-1 (TP1), was isolated from Micrurus tener tener (Mtt) venom. It showed a molecular mass of 6542Da, similarly to Kunitz-type serine peptidase inhibitors. The amidolytic activity of plasmin (0.5nM) on synthetic substrate S-2251 was inhibited by 91% following the incubation with TP1 (1nM). Aprotinin (2nM) used as the positive control of inhibition, reduced the plasmin amidolytic activity by 71%. Plasmin fibrinolytic activity (0.05nM) was inhibited by 67% following incubation with TP1 (0.1nM). The degradation of fibrinogen chains induced by plasmin, trypsin or elastase was inhibited by TP1 at a 1:2, 1:4 and 1:20 enzyme:inhibitor ratio, respectively. On the other hand, the proteolytic activity of crude Mtt venom on fibrinogen chains, previously attributed to metallopeptidases, was not abolished by TP1. The tPA-clot lysis assay showed that TP1 (0.2nM) acts like aprotinin (0.4nM) inducing a delay in lysis time and lysis rate which may be associated with the inhibition of plasmin generated from the endogenous plasminogen activation. TP1 is the first serine protease plasmin-like inhibitor isolated from Mtt snake venom which has been characterized in relation to its mechanism of action, formation of a plasmin:TP1 complex and therapeutic potential as anti-fibrinolytic agent, a biological characteristic of great interest in the field of biomedical research. They could be used to regulate the fibrinolytic system in pathologies such as metastatic cancer, parasitic infections, hemophilia and other hemorrhagic syndromes, in which an intense fibrinolytic activity is observed.

  15. Purification and characterization of tenerplasminin-1, a serine peptidase inhibitor with antiplasmin activity from the coral snake (Micrurus tener tener) venom

    PubMed Central

    Vivas, Jeilyn; Ibarra, Carlos; Salazar, Ana M.; Neves-Ferreira, Ana G.C.; Sánchez, Elda E.; Perales, Jonás; Rodríguez-Acosta, Alexis; Guerrero, Belsy

    2015-01-01

    A plasmin inhibitor, named tenerplasminin-1 (TP1), was isolated from Micrurus tener tener (Mtt) venom. It showed a molecular mass of 6542 Da, similarly to Kunitz-type serine peptidase inhibitors. The amidolytic activity of plasmin (0.5 nM) on synthetic substrate S-2251 was inhibited by 91% following the incubation with TP1 (1 nM). Aprotinin (2 nM) used as the positive control of inhibition, reduced the plasmin amidolytic activity by 71%. Plasmin fibrinolytic activity (0.05 nM) was inhibited by 67% following incubation with TP1 (0.1 nM). The degradation of fibrinogen chains induced by plasmin, trypsin or elastase was inhibited by TP1 at a 1:2, 1:4 and 1:20 enzyme:inhibitor ratio, respectively. On the other hand, the proteolytic activity of crude Mtt venom on fibrinogen chains, previously attributed to metallopeptidases, was not abolished by TP1. The tPA-clot lysis assay showed that TP1 (0.2 nM) acts like aprotinin (0.4 nM) inducing a delay in lysis time and lysis rate which may be associated with the inhibition of plasmin generated from the endogenous plasminogen activation. TP1 is the first serine protease plasmin-like inhibitor isolated from Mtt snake venom which has been characterized in relation to its mechanism of action, formation of a plasmin:TP1 complex and therapeutic potential as anti-fibrinolytic agent, a biological characteristic of great interest in the field of biomedical research. They could be used to regulate the fibrinolytic system in pathologies such as metastatic cancer, parasitic infections, hemophilia and other hemorrhagic syndromes, in which an intense fibrinolytic activity is observed. PMID:26419785

  16. Development of Small-molecule HIV Entry Inhibitors Specifically Targeting gp120 or gp41

    PubMed Central

    Lu, Lu; Yu, Fei; Cai, Lifeng; Debnath, Asim K.; Jiang, Shibo

    2015-01-01

    Human immunodeficiency virus type 1 (HIV-1) envelope (Env) glycoprotein surface subunit gp120 and transmembrane subunit gp41 play important roles in HIV-1 entry, thus serving as key targets for the development of HIV-1 entry inhibitors. T20 peptide (enfuvirtide) is the first U.S. FDA-approved HIV entry inhibitor; however, its clinical application is limited by the lack of oral availability. Here, we have described the structure and function of the HIV-1 gp120 and gp41 subunits and reviewed advancements in the development of small-molecule HIV entry inhibitors specifically targeting these two Env glycoproteins. We then compared the advantages and disadvantages of different categories of HIV entry inhibitor candidates and further predicted the future trend of HIV entry inhibitor development. PMID:26324044

  17. Autophagy Induction by Histone Deacetylase Inhibitors Inhibits HIV Type 1*

    PubMed Central

    Campbell, Grant R.; Bruckman, Rachel S.; Chu, Yen-Lin; Spector, Stephen A.

    2015-01-01

    Histone deacetylase inhibitors (HDACi) are being evaluated in a “shock-and-kill” therapeutic approach to reverse human immunodeficiency virus type-1 (HIV) latency from CD4+ T cells. Using this approach, HDACi have induced HIV RNA synthesis in latently infected cells from some patients. The hope is that the increase in viral production will lead to killing of the infected cell either by the virus itself or by the patient's immune system, a “sterilizing cure.” Although administered within the context of combination antiretroviral therapy, the infection of bystander cells remains a concern. In this study, we investigated the effect of HDACi (belinostat, givinostat, panobinostat, romidepsin, and vorinostat) on the productive infection of macrophages. We demonstrate that the HDACi tested do not alter the initial susceptibility of macrophages to HIV infection. However, we demonstrate that HDACi decrease HIV release from macrophages in a dose-dependent manner (belinostat < givinostat < vorinostat < panobinostat < romidepsin) via degradation of intracellular HIV through the canonical autophagy pathway. This mechanism involves unc-51-like autophagy-activating kinase 1 (ULK1) and the inhibition of the mammalian target of rapamycin and requires the formation of autophagosomes and their maturation into autolysosomes in the absence of increased cell death. These data provide further evidence in support of a role for autophagy in the control of HIV infection and suggest that careful consideration of off-target effects will be essential if HDACi are to be a component of a multipronged approach to eliminate latently infected cells. PMID:25540204

  18. Nonpeptidic HIV protease inhibitors possessing excellent antiviral activities and therapeutic indices. PD 178390: a lead HIV protease inhibitor.

    PubMed

    Prasad, J V; Boyer, F E; Domagala, J M; Ellsworth, E L; Gajda, C; Hamilton, H W; Hagen, S E; Markoski, L J; Steinbaugh, B A; Tait, B D; Humblet, C; Lunney, E A; Pavlovsky, A; Rubin, J R; Ferguson, D; Graham, N; Holler, T; Hupe, D; Nouhan, C; Tummino, P J; Urumov, A; Zeikus, E; Zeikus, G; Gracheck, S J; Erickson, J W

    1999-12-01

    With the insight generated by the availability of X-ray crystal structures of various 5,6-dihydropyran-2-ones bound to HIV PR, inhibitors possessing various alkyl groups at the 6-position of 5,6-dihydropyran-2-one ring were synthesized. The inhibitors possessing a 6-alkyl group exhibited superior antiviral activities when compared to 6-phenyl analogues. Antiviral efficacies were further improved upon introduction of a polar group (hydroxyl or amino) on the 4-position of the phenethyl moiety as well as the polar group (hydroxymethyl) on the 3-(tert-butyl-5-methyl-phenylthio) moiety. The polar substitution is also advantageous for decreasing toxicity, providing inhibitors with higher therapeutic indices. The best inhibitor among this series, (S)-6-[2-(4-aminophenyl)-ethyl]-(3-(2-tert-butyl-5-methyl-phenylsulfa nyl)-4-hydroxy-6-isopropyl-5,6-dihydro-pyran-2-one (34S), exhibited an EC50 of 200 nM with a therapeutic index of > 1000. More importantly, these non-peptidic inhibitors, 16S and 34S, appear to offer little cross-resistance to the currently marketed peptidomimetic PR inhibitors. The selected inhibitors tested in vitro against mutant HIV PR showed a very small increase in binding affinities relative to wild-type HIV PR. Cmax and absolute bioavailability of 34S were higher and half-life and time above EC95 were longer compared to 16S. Thus 34S, also known as PD 178390, which displays good antiviral efficacy, promising pharmacokinetic characteristics and favorable activity against mutant enzymes and CYP3A4, has been chosen for further preclinical evaluation.

  19. The novel dipeptidyl peptidase-4 inhibitor teneligliptin prevents high-fat diet-induced obesity accompanied with increased energy expenditure in mice.

    PubMed

    Fukuda-Tsuru, Sayaka; Kakimoto, Tetsuhiro; Utsumi, Hiroyuki; Kiuchi, Satoko; Ishii, Shinichi

    2014-01-15

    Dipeptidyl peptidase-4 (DPP-4)-deficient mice exhibit prevention of obesity with increased energy expenditure, whereas currently available DPP-4 inhibitors do not induce similar changes. We investigated the impact of the novel DPP-4 inhibitor teneligliptin on body weight, energy expenditure, and obesity-related manifestations in diet-induced obese mice. Six-weeks-old C57BL/6N mice were fed a high-fat diet (60%kcal fat) ad libitum and administered teneligliptin (30 or 60mg/kg) via drinking water for 10 weeks. Mice fed a high-fat diet showed accelerated body weight gain. In contrast, compared with the vehicle group, the administration of teneligliptin reduced body weight to 88% and 71% at dose of 30mg/kg/day and 60mg/kg/day, respectively. Although there was no change in locomotor activity, indirect calorimetry studies showed that teneligliptin (60mg/kg) increased oxygen consumption by 22%. Adipocyte hypertrophy and hepatic steatosis induced by a high-fat diet were suppressed by teneligliptin. The mean adipocyte size in the 60-mg/kg treatment group was 44% and hepatic triglyceride levels were 34% of the levels in the vehicle group. Furthermore, treatment with teneligliptin (60mg/kg) reduced plasma levels of insulin to 40% and increased the glucose infusion rate to 39%, as measured in the euglycemic clamp study, indicating its beneficial effect on insulin resistance. We showed for the first time that the DPP-4 inhibitor prevents obesity and obesity-related manifestations with increased energy expenditure. Our findings suggest the potential utility of teneligliptin for the treatment of a broad spectrum of metabolic disorders related to obesity beyond glycemic control. PMID:24309217

  20. Excretion of the dipeptidyl peptidase-4 inhibitor linagliptin in rats is primarily by biliary excretion and P-gp-mediated efflux.

    PubMed

    Fuchs, Holger; Runge, Frank; Held, Heinz-Dieter

    2012-04-11

    Linagliptin is a selective, competitive dipeptidyl peptidase-4 (DPP-4) inhibitor, recently approved in the USA, Japan and Europe for the treatment of type 2 diabetes. It has non-linear pharmacokinetics and, unlike other DPP-4 inhibitors, a largely non-renal excretion route. It was hypothesised that P-glycoprotein (P-gp)-mediated intestinal transport could influence linagliptin bioavailability, and might contribute to its elimination. Two studies evaluated the role of P-gp-mediated transport in the bioavailability and intestinal secretion of linagliptin in rats. In the bioavailability study, male Wistar rats received single oral doses of linagliptin, 1 or 15 mg/kg, plus either the P-gp inhibitor, zosuquidar trihydrochloride, or vehicle. For the intestinal secretion study, rats underwent bile duct cannulation, and urine, faeces, and bile were collected. At the end of the study, gut content was sampled. Inhibition of intestinal P-gp increased the bioavailability of orally administered linagliptin, indicating that this transport system plays a role in limiting the uptake of linagliptin from the intestine. This effect was dependent on linagliptin dose, and could play a role in its non-linear pharmacokinetics after oral dosing. Systemically available linagliptin was mainly excreted unchanged via bile (49% of i.v. dose), but some (12%) was also excreted directly into the gut independently of biliary excretion. Thus, direct excretion of linagliptin into the gut may be an alternative excretion route in the presence of liver and renal impairment. The primarily non-renal route of excretion is likely to be of benefit to patients with type 2 diabetes, who have a high prevalence of renal insufficiency.

  1. Positioning of HIV-protease inhibitors in clinical practice.

    PubMed

    Andreoni, M; Perno, C F

    2012-01-01

    The availability of more than 20 drugs for the treatment of HIV infection, and the success of the current antiretroviral regimens, should not overlook the difficulty of long-term maintaining the control of viral replication. The therapy needs to be continued for decades, if not for lifetime, and there are clear evidences that, even in patients fully suppressed for many years, HIV starts again its replication cycles in case antiviral pressure is removed. The development of resistance is a natural event at the time of virological failure, that needs to be taken into account in the global strategy against HIV in each particular patient. Taking all together, therapeutic regiments must be embedded, since the beginning, in a long-term strategy whose main task is the stable control of the replication of HIV. To do so, the choice of the first antiviral regimen has to be highly appropriate to keep the virus in check, and at the same time maintain future therapeutic options. Change of therapy at the time of failure has to be also appropriate, in term of timing, diagnostic strategy, and selection of drugs. Under these circumstances, the use of protease inhibitors in the first line acquires a strong rationale, that balances the greater pure potency of non-nucleoside reverse transcriptase inhibitors (NNRTI), and makes them a valuable options for many patients that need to start antiviral therapy.

  2. Sitagliptin, a dipeptidyl peptidase-4 inhibitor, increases the number of circulating CD34⁺CXCR4⁺ cells in patients with type 2 diabetes.

    PubMed

    Aso, Yoshimasa; Jojima, T; Iijima, T; Suzuki, K; Terasawa, T; Fukushima, M; Momobayashi, A; Hara, K; Takebayashi, K; Kasai, K; Inukai, T

    2015-12-01

    We investigated the effects of sitagliptin, a dipeptidyl peptidase (DPP)-4 inhibitor, on the number of circulating CD34(+)CXCR4(+)cells, a candidate for endothelial progenitor cells (EPCs), plasma levels of stromal cell-derived factor (SDF)-1α, a ligand for CXCR4 receptor and a substrate for DPP-4, and plasma levels of interferon-inducible protein (IP)-10, for a substrate for DPP-4, in patients with type 2 diabetes. We studied 30 consecutive patients with type 2 diabetes who had poor glycemic control despite treatment with metformin and/or sulfonylurea. Thirty diabetic patients were randomized in a 2:1 ratio into a sitagliptin (50 mg/day) treatment group or an active placebo group (glimepiride 1 mg/day) for 12 weeks. Both groups showed similar improvements in glycemic control. The number of circulating CD34(+)CXCR4(+) cells was increased from 30.5 (20.0, 47.0)/10(6) cells at baseline to 55.5 (31.5, 80.5)/10(6) cells at 12 weeks of treatment with 50 mg/day sitagliptin (P = 0.0014), while showing no significant changes in patients treated with glimepiride. Plasma levels of SDF-1α and IP-10, both physiological substrates of endogenous DPP-4 and chemokines, were significantly decreased at 12 weeks of sitagliptin treatment. In conclusion, treatment with sitagliptin increased the number of circulating CD34(+)CXCR4(+) cells by approximately 2-fold in patients with type 2 diabetes.

  3. Sitagliptin, a dipeptidyl peptidase-4 inhibitor, increases the number of circulating CD34⁺CXCR4⁺ cells in patients with type 2 diabetes.

    PubMed

    Aso, Yoshimasa; Jojima, T; Iijima, T; Suzuki, K; Terasawa, T; Fukushima, M; Momobayashi, A; Hara, K; Takebayashi, K; Kasai, K; Inukai, T

    2015-12-01

    We investigated the effects of sitagliptin, a dipeptidyl peptidase (DPP)-4 inhibitor, on the number of circulating CD34(+)CXCR4(+)cells, a candidate for endothelial progenitor cells (EPCs), plasma levels of stromal cell-derived factor (SDF)-1α, a ligand for CXCR4 receptor and a substrate for DPP-4, and plasma levels of interferon-inducible protein (IP)-10, for a substrate for DPP-4, in patients with type 2 diabetes. We studied 30 consecutive patients with type 2 diabetes who had poor glycemic control despite treatment with metformin and/or sulfonylurea. Thirty diabetic patients were randomized in a 2:1 ratio into a sitagliptin (50 mg/day) treatment group or an active placebo group (glimepiride 1 mg/day) for 12 weeks. Both groups showed similar improvements in glycemic control. The number of circulating CD34(+)CXCR4(+) cells was increased from 30.5 (20.0, 47.0)/10(6) cells at baseline to 55.5 (31.5, 80.5)/10(6) cells at 12 weeks of treatment with 50 mg/day sitagliptin (P = 0.0014), while showing no significant changes in patients treated with glimepiride. Plasma levels of SDF-1α and IP-10, both physiological substrates of endogenous DPP-4 and chemokines, were significantly decreased at 12 weeks of sitagliptin treatment. In conclusion, treatment with sitagliptin increased the number of circulating CD34(+)CXCR4(+) cells by approximately 2-fold in patients with type 2 diabetes. PMID:26209038

  4. Comparative activity of proline-containing dipeptide noopept and inhibitor of dipeptidyl peptidase-4 sitagliptin in a rat model of developing diabetes.

    PubMed

    Ostrovskaya, R U; Ozerova, I V; Gudascheva, T A; Kapitsa, I G; Ivanova, E A; Voronina, T A; Seredenin, S B

    2014-01-01

    Developing diabetes was modeled on adult male Wistar rats by repeated intraperitoneal injections of streptozotocin in a subdiabetogenic dose of 30 mg/kg for 3 days. Proline-containing dipeptide drug Noopept or a standard diabetic drug dipeptidyl peptidase-4 inhibitor sitagliptin was administered per os in a dose of 5 mg/kg before each injection of the toxin and then for 16 days after streptozotocin course. In active control group, spontaneously increase glucose level and reduced tolerance to glucose load (1000 mg/kg intraperitoneally) were observed on the next day after the third administration of toxin. Basal glucose level decreased by day 16, but glucose tolerance remained impaired. Noopept normalized the basal blood glucose level and tolerance to glucose load on the next day after administration of streptozotocin. The effect of Noopept persisted to the end of the experiment. At early terms of the experiment, sitagliptin was somewhat superior to Noopept by the effect on baseline glucose level, but was inferior by the influence on glucose tolerance.. By the end of the experiment, Noopept significantly (by 2 times) surpassed sitagliptin by its effect on glucose tolerance. PMID:24771372

  5. Incretin therapies: highlighting common features and differences in the modes of action of glucagon-like peptide-1 receptor agonists and dipeptidyl peptidase-4 inhibitors.

    PubMed

    Nauck, M

    2016-03-01

    Over the last few years, incretin-based therapies have emerged as important agents in the treatment of type 2 diabetes (T2D). These agents exert their effect via the incretin system, specifically targeting the receptor for the incretin hormone glucagon-like peptide 1 (GLP-1), which is partly responsible for augmenting glucose-dependent insulin secretion in response to nutrient intake (the 'incretin effect'). In patients with T2D, pharmacological doses/concentrations of GLP-1 can compensate for the inability of diabetic β cells to respond to the main incretin hormone glucose-dependent insulinotropic polypeptide, and this is therefore a suitable parent compound for incretin-based glucose-lowering medications. Two classes of incretin-based therapies are available: GLP-1 receptor agonists (GLP-1RAs) and dipeptidyl peptidase-4 (DPP-4) inhibitors. GLP-1RAs promote GLP-1 receptor (GLP-1R) signalling by providing GLP-1R stimulation through 'incretin mimetics' circulating at pharmacological concentrations, whereas DPP-4 inhibitors prevent the degradation of endogenously released GLP-1. Both agents produce reductions in plasma glucose and, as a result of their glucose-dependent mode of action, this is associated with low rates of hypoglycaemia; however, there are distinct modes of action resulting in differing efficacy and tolerability profiles. Furthermore, as their actions are not restricted to stimulating insulin secretion, these agents have also been associated with additional non-glycaemic benefits such as weight loss, improvements in β-cell function and cardiovascular risk markers. These attributes have made incretin therapies attractive treatments for the management of T2D and have presented physicians with an opportunity to tailor treatment plans. This review endeavours to outline the commonalities and differences among incretin-based therapies and to provide guidance regarding agents most suitable for treating T2D in individual patients.

  6. Dipeptidyl-peptidase IV (DPP-IV) inhibitor delays tolerance to anxiolytic effect of ethanol and withdrawal-induced anxiety in rats.

    PubMed

    Sharma, Ajaykumar N; Pise, Ashish; Sharma, Jay N; Shukla, Praveen

    2015-06-01

    Dipeptidyl-peptidase IV (DPP-IV) is an enzyme responsible for the metabolism of endogenous gut-derived hormone, glucagon-like peptide-1 (GLP-1). DPP-IV is known for its role in energy homeostasis and pharmacological blockade of this enzyme is a recently approved clinical strategy for the management of type II diabetes. Accumulating evidences suggest that enzyme DPP-IV can affect spectrum of central nervous system (CNS) functions. However, little is known about the role of this enzyme in ethanol-mediated neurobehavioral complications. The objective of the present study was to examine the impact of DPP-IV inhibitor, sitagliptin on the development of tolerance to anxiolytic effect of ethanol and anxiety associated with ethanol withdrawal in rats. A dose-response study revealed that sitaglitpin (20 mg/kg, p.o.) per se exhibit anxiolytic effect in the elevated plus maze (EPM) test in rats. Tolerance to anxiolytic effect of ethanol (2 g/kg, i.p.; 8 % w/v) was observed from 7(th) day of ethanol-diet (6 % v/v) consumption. In contrast, tolerance to anxiolytic effect of ethanol was delayed in rats that were treated daily with sitagliptin (20 mg/kg, p.o.) as tolerance was observed from 13(th)day since commencement of ethanol-diet consumption. Discontinuation of rats from ethanol-diet after 15-days of ethanol consumption resulted in withdrawal anxiety between 8 h and 12 h post-abstinence. However, rats on 15-day ethanol-diet with concomitant sitagliptin (20 mg/kg, p.o.) treatment exhibited delay in appearance (24 h post-withdrawal) of withdrawal anxiety. In summary, DPP-IV inhibitors may prove as an attractive research strategy against ethanol tolerance and dependence.

  7. The Dose-Dependent Organ-Specific Effects of a Dipeptidyl Peptidase-4 Inhibitor on Cardiovascular Complications in a Model of Type 2 Diabetes

    PubMed Central

    Seo, Jung-Woo; Lee, Arah; Kim, Dong Jin; Kim, Yang-Gyun; Kim, Se-Yeun; Lee, Kyung Hye; Lim, Sung-Jig; Cheng, Xian Wu; Lee, Sang-Ho; Kim, Weon

    2016-01-01

    Objective Although dipeptidyl peptidase-4 (DPP-4) inhibitors have been suggested to have a non-glucoregulatory protective effect in various tissues, the effects of long-term inhibition of DPP-4 on the micro- and macro-vascular complications of type 2 diabetes remain uncertain. The aim of the present study was to investigate the organ-specific protective effects of DPP-4 inhibitor in rodent model of type 2 diabetes. Methods Eight-week-old diabetic and obese db/db mice and controls (db/m mice) received vehicle or one of two doses of gemigliptin (0.04 and 0.4%) daily for 12 weeks. Urine albumin excretion and echocardiography measured at 20 weeks of age. Heart and kidney tissue were subjected to molecular analysis and immunohistochemical evaluation. Results Gemigliptin effectively suppressed plasma DPP-4 activation in db/db mice in a dose-dependent manner. The HbA1c level was normalized in the 0.4% gemigliptin, but not in the 0.04% gemigliptin group. Gemigliptin showed a dose-dependent protective effect on podocytes, anti-apoptotic and anti-oxidant effects in the diabetic kidney. However, the dose-dependent effect of gemigliptin on diabetic cardiomyopathy was ambivalent. The lower dose significantly attenuated left ventricular (LV) dysfunction, apoptosis, and cardiac fibrosis, but the higher dose could not protect the LV dysfunction and cardiac fibrosis. Conclusion Gemigliptin exerted non-glucoregulatory protective effects on both diabetic nephropathy and cardiomyopathy. However, high-level inhibition of DPP-4 was associated with an organ-specific effect on cardiovascular complications in type 2 diabetes. PMID:26959365

  8. HIV Structural Database using Chem BLAST for all classes of AIDS inhibitors

    National Institute of Standards and Technology Data Gateway

    SRD 155 HIV Structural Database using Chem BLAST for all classes of AIDS inhibitors (Web, free access)   The HIV structural database (HIVSDB) is a comprehensive collection of the structures of HIV protease, both of unliganded enzyme and of its inhibitor complexes. It contains abstracts and crystallographic data such as inhibitor and protein coordinates for 248 data sets, of which only 141 are from the Protein Data Bank (PDB).

  9. Oral candidiasis in HIV+ patients under treatment with protease inhibitors.

    PubMed

    Witzel, Andréa Lusvarghi; Silveira, Fernando Ricardo Xavier da; Pires, Maria de Fátima Costa; Lotufo, Mônica Andrade

    2008-01-01

    The purpose of this work was to evaluate the influence of Protease Inhibitors (PI) on the occurrence of oral candidiasis in 111 HIV+ patients under PI therapy (Group A). The controls consisted of 56 patients that were not using PI drugs (Group B) and 26 patients that were not using any drugs for HIV therapy (Group C). The patient's cd4 cell counts were taken in account for the correlations. One hundred and ninety three patients were evaluated. The PI did not affect the prevalence of oral candidiasis (p = 0.158) or the frequency of C. albicans isolates (p = 0.133). Patients with lower cd4 cell counts showed a higher frequency of C. albicans isolates (p = 0.046) and a greater occurrence of oral candidiasis (p = 0.036).

  10. Identification of Novel Human Dipeptidyl Peptidase-IV Inhibitors of Natural Origin (Part I): Virtual Screening and Activity Assays

    PubMed Central

    Guasch, Laura; Ojeda, Maria José; González-Abuín, Noemí; Sala, Esther; Cereto-Massagué, Adrià; Mulero, Miquel; Valls, Cristina; Pinent, Montserrat; Ardévol, Anna; Garcia-Vallvé, Santiago; Pujadas, Gerard

    2012-01-01

    Background There has been great interest in determining whether natural products show biological activity toward protein targets of pharmacological relevance. One target of particular interest is DPP-IV whose most important substrates are incretins that, among other beneficial effects, stimulates insulin biosynthesis and secretion. Incretins have very short half-lives because of their rapid degradation by DPP-IV and, therefore, inhibiting this enzyme improves glucose homeostasis. As a result, DPP-IV inhibitors are of considerable interest to the pharmaceutical industry. The main goals of this study were (a) to develop a virtual screening process to identify potential DPP-IV inhibitors of natural origin; (b) to evaluate the reliability of our virtual-screening protocol by experimentally testing the in vitro activity of selected natural-product hits; and (c) to use the most active hit for predicting derivatives with higher binding affinities for the DPP-IV binding site. Methodology/Principal Findings We predicted that 446 out of the 89,165 molecules present in the natural products subset of the ZINC database would inhibit DPP-IV with good ADMET properties. Notably, when these 446 molecules were merged with 2,342 known DPP-IV inhibitors and the resulting set was classified into 50 clusters according to chemical similarity, there were 12 clusters that contained only natural products for which no DPP-IV inhibitory activity has been previously reported. Nine molecules from 7 of these 12 clusters were then selected for in vitro activity testing and 7 out of the 9 molecules were shown to inhibit DPP-IV (where the remaining two molecules could not be solubilized, preventing the evaluation of their DPP-IV inhibitory activity). Then, the hit with the highest activity was used as a lead compound in the prediction of more potent derivatives. Conclusions/Significance We have demonstrated that our virtual-screening protocol was successful in identifying novel lead compounds for

  11. Effect of a Dipeptidyl Peptidase-IV Inhibitor, Des-Fluoro-Sitagliptin, on Neointimal Formation after Balloon Injury in Rats

    PubMed Central

    Lim, Soo; Choi, Sung Hee; Shin, Hayley; Cho, Bong Jun; Park, Ho Seon; Ahn, Byung Yong; Kang, Seon Mee; Yoon, Ji Won; Jang, Hak Chul; Kim, Young-Bum; Park, Kyong Soo

    2012-01-01

    Background Recently, it has been suggested that enhancement of incretin effect improves cardiac function. We investigated the effect of a DPP-IV inhibitor, des-fluoro-sitagliptin, in reducing occurrence of restenosis in carotid artery in response to balloon injury and the related mechanisms. Methods and Findings Otsuka Long-Evans Tokushima Fatty rats were grouped into four: control (normal saline) and sitagliptin 100, 250 and 500 mg/kg per day (n = 10 per group). Sitagliptin or normal saline were given orally from 1 week before to 2 weeks after carotid injury. After 3 weeks of treatment, sitagliptin treatment caused a significant and dose-dependent reduction in intima-media ratio (IMR) in obese diabetic rats. This effect was accompanied by improved glucose homeostasis, decreased circulating levels of high-sensitivity C-reactive protein (hsCRP) and increased adiponectin level. Moreover, decreased IMR was correlated significantly with reduced hsCRP, tumor necrosis factor-α and monocyte chemoattractant protein-1 levels and plasminogen activator inhibitor-1 activity. In vitro evidence with vascular smooth muscle cells (VSMCs) demonstrated that proliferation and migration were decreased significantly after sitagliptin treatment. In addition, sitagliptin increased caspase-3 activity and decreased monocyte adhesion and NFκB activation in VSMCs. Conclusions Sitagliptin has protective properties against restenosis after carotid injury and therapeutic implications for treating macrovascular complications of diabetes. PMID:22493727

  12. Convenient cell fusion assay for rapid screening for HIV entry inhibitors

    NASA Astrophysics Data System (ADS)

    Jiang, Shibo; Radigan, Lin; Zhang, Li

    2000-03-01

    Human immunodeficiency viruses (HIV)-induced cell fusion is a critical pathway of HIV spread from infected cells to uninfected cells. A rapid and simple assay was established to measure HIV-induce cell fusion. This study is particularly useful to rapid screen for HIV inhibitors that block HIV cell-to-cell transmission. Present study demonstrated that coculture of HIV-infected cells with uninfected cells at 37 degree(s)C for 2 hours resulted in the highest cell fusion rate. Using this cell fusion assay, we have identified several potent HIV inhibitors targeted to the HIV gp41 core. These antiviral agents can be potentially developed as antiviral drugs for chemotherapy and prophylaxis of HIV infection and AIDS.

  13. Dipeptidyl peptidase-4 inhibitor use is not associated with elevated risk of severe joint pain in patients with type 2 diabetes: a population-based cohort study.

    PubMed

    Hou, Wen-Hsuan; Chang, Kai-Cheng; Li, Chung-Yi; Ou, Huang-Tz

    2016-09-01

    This is the first large longitudinal cohort study to investigate the putative association of severe joint pain (SJP) with dipeptidyl peptidase-4 inhibitor (DPP4i) use in patients with type 2 diabetes. The propensity score-matched population-based cohort study was performed between 2009 and 2013 in a group of type 2 diabetes patients with stable metformin use. In total, 4743 patients with type 2 diabetes used a DPP4i as the second-line antidiabetic drug (ie, DPP4i users), and the same number of matched non-DPP4i users was selected. The 2 study groups were followed up until SJP diagnosis (International Classification of Diseases, Ninth Reversion, Clinical Modification code 719.4), health insurance policy termination, or the end of 2013. The incidence rate of SJP was estimated under the Poisson assumption. Multiple Cox proportional hazard model was used to estimate the covariate-adjusted hazard ratio and 95% CI of SJP in association with DPP4i use. Over a maximum follow-up of 5 years, 679 DPP4i users and 767 non-DPP4i users were newly diagnosed with SJP, representing incidence rates of 47.20 and 50.66 per 1000 person-years, respectively. Cox proportional hazard model indicated that DPP4i use slightly but nonsignificantly reduced the risk of SJP (adjusted hazard ratio: 0.92 [95% CI: 0.83-1.02]). Such null results were also observed among all age and sex stratifications and in a sensitivity analysis using all nonspecific arthropathies as the study endpoint. This study provides no support for the putative risk of SJP related to DPP4i use in type 2 diabetes patients during a maximum follow-up of 5 years. PMID:27127847

  14. In vivo dual-delivery of glucagon like peptide-1 (GLP-1) and dipeptidyl peptidase-4 (DPP4) inhibitor through composites prepared by microfluidics for diabetes therapy

    NASA Astrophysics Data System (ADS)

    Araújo, F.; Shrestha, N.; Gomes, M. J.; Herranz-Blanco, B.; Liu, D.; Hirvonen, J. J.; Granja, P. L.; Santos, H. A.; Sarmento, B.

    2016-05-01

    Oral delivery of proteins is still a challenge in the pharmaceutical field. Nanoparticles are among the most promising carrier systems for the oral delivery of proteins by increasing their oral bioavailability. However, most of the existent data regarding nanosystems for oral protein delivery is from in vitro studies, lacking in vivo experiments to evaluate the efficacy of these systems. Herein, a multifunctional composite system, tailored by droplet microfluidics, was used for dual delivery of glucagon like peptide-1 (GLP-1) and dipeptidyl peptidase-4 inhibitor (iDPP4) in vivo. Oral delivery of GLP-1 with nano- or micro-systems has been studied before, but the simultaneous nanodelivery of GLP-1 with iDPP4 is a novel strategy presented here. The type 2 diabetes mellitus (T2DM) rat model, induced through the combined administration of streptozotocin and nicotinamide, a non-obese model of T2DM, was used. The combination of both drugs resulted in an increase in the hypoglycemic effects in a sustained, but prolonged manner, where the iDPP4 improved the therapeutic efficacy of GLP-1. Four hours after the oral administration of the system, blood glucose levels were decreased by 44%, and were constant for another 4 h, representing half of the glucose area under the curve when compared to the control. An enhancement of the plasmatic insulin levels was also observed 6 h after the oral administration of the dual-drug composite system and, although no statistically significant differences existed, the amount of pancreatic insulin was also higher. These are promising results for the oral delivery of GLP-1 to be pursued further in a chronic diabetic model study.

  15. In vivo dual-delivery of glucagon like peptide-1 (GLP-1) and dipeptidyl peptidase-4 (DPP4) inhibitor through composites prepared by microfluidics for diabetes therapy

    PubMed Central

    Araújo, F.; Shrestha, N.; Gomes, M. J.; Herranz-Blanco, B.; Liu, D.; Hirvonen, J. J.; Granja, P. L.; Santos, H. A.

    2016-01-01

    Oral delivery of proteins is still a challenge in the pharmaceutical field. Nanoparticles are among the most promising carrier systems for the oral delivery of proteins by increasing their oral bioavailability. However, most of the existent data regarding nanosystems for oral protein delivery is from in vitro studies, lacking in vivo experiments to evaluate the efficacy of these systems. Herein, a multifunctional composite system, tailored by droplet microfluidics, was used for dual delivery of glucagon like peptide-1 (GLP-1) and dipeptidyl peptidase-4 inhibitor (iDPP4) in vivo. Oral delivery of GLP-1 with nano- or micro-systems has been studied before, but the simultaneous nanodelivery of GLP-1 with iDPP4 is a novel strategy presented here. The type 2 diabetes mellitus (T2DM) rat model, induced through the combined administration of streptozotocin and nicotinamide, a non-obese model of T2DM, was used. The combination of both drugs resulted in an increase in the hypoglycemic effects in a sustained, but prolonged manner, where the iDPP4 improved the therapeutic efficacy of GLP-1. Four hours after the oral administration of the system, blood glucose levels were decreased by 44%, and were constant for another 4 h, representing half of the glucose area under the curve when compared to the control. An enhancement of the plasmatic insulin levels was also observed 6 h after the oral administration of the dual-drug composite system and, although no statistically significant differences existed, the amount of pancreatic insulin was also higher. These are promising results for the oral delivery of GLP-1 to be pursued further in a chronic diabetic model study. PMID:27150301

  16. Indole-based allosteric inhibitors of HIV-1 integrase.

    PubMed

    Patel, Pratiq A; Kvaratskhelia, Nina; Mansour, Yara; Antwi, Janet; Feng, Lei; Koneru, Pratibha; Kobe, Mathew J; Jena, Nivedita; Shi, Guqin; Mohamed, Mosaad S; Li, Chenglong; Kessl, Jacques J; Fuchs, James R

    2016-10-01

    Employing a scaffold hopping approach, a series of allosteric HIV-1 integrase (IN) inhibitors (ALLINIs) have been synthesized based on an indole scaffold. These compounds incorporate the key elements utilized in quinoline-based ALLINIs for binding to the IN dimer interface at the principal LEDGF/p75 binding pocket. The most potent of these compounds displayed good activity in the LEDGF/p75 dependent integration assay (IC50=4.5μM) and, as predicted based on the geometry of the five- versus six-membered ring, retained activity against the A128T IN mutant that confers resistance to many quinoline-based ALLINIs. PMID:27568085

  17. Dipeptidyl peptidase-4 inhibitors and risk of heart failure in type 2 diabetes: systematic review and meta-analysis of randomised and observational studies

    PubMed Central

    Li, Ling; Li, Sheyu; Deng, Ke; Liu, Jiali; Vandvik, Per Olav; Zhao, Pujing; Zhang, Longhao; Shen, Jiantong; Bala, Malgorzata M; Sohani, Zahra N; Wong, Evelyn; Busse, Jason W; Ebrahim, Shanil; Malaga, German; Rios, Lorena P; Wang, Yingqiang; Chen, Qunfei; Guyatt, Gordon H

    2016-01-01

    Objectives To examine the association between dipeptidyl peptidase-4 (DPP-4) inhibitors and the risk of heart failure or hospital admission for heart failure in patients with type 2 diabetes. Design Systematic review and meta-analysis of randomised and observational studies. Data sources Medline, Embase, Cochrane Central Register of Controlled Trials, and ClinicalTrials.gov searched up to 25 June 2015, and communication with experts. Eligibility criteria Randomised controlled trials, non-randomised controlled trials, cohort studies, and case-control studies that compared DPP-4 inhibitors against placebo, lifestyle modification, or active antidiabetic drugs in adults with type 2 diabetes, and explicitly reported the outcome of heart failure or hospital admission for heart failure. Data collection and analysis Teams of paired reviewers independently screened for eligible studies, assessed risk of bias, and extracted data using standardised, pilot tested forms. Data from trials and observational studies were pooled separately; quality of evidence was assessed by the GRADE approach. Results Eligible studies included 43 trials (n=68 775) and 12 observational studies (nine cohort studies, three nested case-control studies; n=1 777 358). Pooling of 38 trials reporting heart failure provided low quality evidence for a possible similar risk of heart failure between DPP-4 inhibitor use versus control (42/15 701 v 33/12 591; odds ratio 0.97 (95% confidence interval 0.61 to 1.56); risk difference 2 fewer (19 fewer to 28 more) events per 1000 patients with type 2 diabetes over five years). The observational studies provided effect estimates generally consistent with trial findings, but with very low quality evidence. Pooling of the five trials reporting admission for heart failure provided moderate quality evidence for an increased risk in patients treated with DPP-4 inhibitors versus control (622/18 554 v 552/18 474; 1.13 (1.00 to 1.26); 8 more (0 more to

  18. Antiviral activity of a Rac GEF inhibitor characterized with a sensitive HIV/SIV fusion assay

    SciTech Connect

    Pontow, Suzanne; Harmon, Brooke; Campbell, Nancy; Ratner, Lee

    2007-11-10

    A virus-dependent fusion assay was utilized to examine the activity of a panel of HIV-1, -2, and SIV isolates of distinct coreceptor phenotypes. This assay allowed identification of entry inhibitors, and characterization of an antagonist of a Rac guanine nucleotide exchange factor, as an inhibitor of HIV-mediated fusion.

  19. Discovery of MK-8718, an HIV Protease Inhibitor Containing a Novel Morpholine Aspartate Binding Group.

    PubMed

    Bungard, Christopher J; Williams, Peter D; Ballard, Jeanine E; Bennett, David J; Beaulieu, Christian; Bahnck-Teets, Carolyn; Carroll, Steve S; Chang, Ronald K; Dubost, David C; Fay, John F; Diamond, Tracy L; Greshock, Thomas J; Hao, Li; Holloway, M Katharine; Felock, Peter J; Gesell, Jennifer J; Su, Hua-Poo; Manikowski, Jesse J; McKay, Daniel J; Miller, Mike; Min, Xu; Molinaro, Carmela; Moradei, Oscar M; Nantermet, Philippe G; Nadeau, Christian; Sanchez, Rosa I; Satyanarayana, Tummanapalli; Shipe, William D; Singh, Sanjay K; Truong, Vouy Linh; Vijayasaradhi, Sivalenka; Wiscount, Catherine M; Vacca, Joseph P; Crane, Sheldon N; McCauley, John A

    2016-07-14

    A novel HIV protease inhibitor was designed using a morpholine core as the aspartate binding group. Analysis of the crystal structure of the initial lead bound to HIV protease enabled optimization of enzyme potency and antiviral activity. This afforded a series of potent orally bioavailable inhibitors of which MK-8718 was identified as a compound with a favorable overall profile. PMID:27437081

  20. Discovery of MK-8718, an HIV Protease Inhibitor Containing a Novel Morpholine Aspartate Binding Group.

    PubMed

    Bungard, Christopher J; Williams, Peter D; Ballard, Jeanine E; Bennett, David J; Beaulieu, Christian; Bahnck-Teets, Carolyn; Carroll, Steve S; Chang, Ronald K; Dubost, David C; Fay, John F; Diamond, Tracy L; Greshock, Thomas J; Hao, Li; Holloway, M Katharine; Felock, Peter J; Gesell, Jennifer J; Su, Hua-Poo; Manikowski, Jesse J; McKay, Daniel J; Miller, Mike; Min, Xu; Molinaro, Carmela; Moradei, Oscar M; Nantermet, Philippe G; Nadeau, Christian; Sanchez, Rosa I; Satyanarayana, Tummanapalli; Shipe, William D; Singh, Sanjay K; Truong, Vouy Linh; Vijayasaradhi, Sivalenka; Wiscount, Catherine M; Vacca, Joseph P; Crane, Sheldon N; McCauley, John A

    2016-07-14

    A novel HIV protease inhibitor was designed using a morpholine core as the aspartate binding group. Analysis of the crystal structure of the initial lead bound to HIV protease enabled optimization of enzyme potency and antiviral activity. This afforded a series of potent orally bioavailable inhibitors of which MK-8718 was identified as a compound with a favorable overall profile.

  1. Nucleoside reverse transcriptase inhibitors prevent HIV protease inhibitor-induced atherosclerosis by ubiquitination and degradation of protein kinase C.

    PubMed

    Bradshaw, Emily L; Li, Xiang-An; Guerin, Theresa; Everson, William V; Wilson, Melinda E; Bruce-Keller, Annadora J; Greenberg, Richard N; Guo, Ling; Ross, Stuart A; Smart, Eric J

    2006-12-01

    HIV protease inhibitors are important pharmacological agents used in the treatment of HIV-infected patients. One of the major disadvantages of HIV protease inhibitors is that they increase several cardiovascular risk factors, including the expression of CD36 in macrophages. The expression of CD36 in macrophages promotes the accumulation of cholesterol, the development of foam cells, and ultimately atherosclerosis. Recent studies have suggested that alpha-tocopherol can prevent HIV protease inhibitor-induced increases in macrophage CD36 levels. Because of the potential clinical utility of using alpha-tocopherol to limit some of the side effects of HIV protease inhibitors, we tested the ability of alpha-tocopherol to prevent ritonavir, a common HIV protease inhibitor, from inducing atherosclerosis in the LDL receptor (LDLR) null mouse model. Surprisingly, alpha-tocopherol did not prevent ritonavir-induced atherosclerosis. However, cotreatment with the nucleoside reverse transcriptase inhibitors (NRTIs), didanosine or D4T, did prevent ritonavir-induced atherosclerosis. Using macrophages isolated from LDLR null mice, we demonstrated that the NRTIs prevented the upregulation of CD36 and cholesterol accumulation in macrophages. Treatment of LDLR null mice with NRTIs promoted the ubiquitination and downregulation of protein kinase Calpha (PKC). Previous studies demonstrated that HIV protease inhibitor activation of PKC was necessary for the upregulation of CD36. Importantly, the in vivo inhibition of PKC with chelerythrine prevented ritonavir-induced upregulation of CD36, accumulation of cholesterol, and the formation of atherosclerotic lesions. These novel mechanistic studies suggest that NRTIs may provide protection from one of the negative side effects associated with HIV protease inhibitors, namely the increase in CD36 levels and subsequent cholesterol accumulation and atherogenesis.

  2. Targeting the AKT pathway: Repositioning HIV protease inhibitors as radiosensitizers

    PubMed Central

    Goda, Jayant S.; Pachpor, Tejaswini; Basu, Trinanjan; Chopra, Supriya; Gota, Vikram

    2016-01-01

    Cellular resistance in tumour cells to different therapeutic approaches has been a limiting factor in the curative treatment of cancer. Resistance to therapeutic radiation is a common phenomenon which significantly reduces treatment options and impacts survival. One of the mechanisms of acquiring resistance to ionizing radiation is the overexpression or activation of various oncogenes like the EGFR (epidermal growth factor receptor), RAS (rat sarcoma) oncogene or loss of PTEN (phosphatase and tensin homologue) which in turn activates the phosphatidyl inositol 3-kinase/protein kinase B (PI3-K)/AKT pathway responsible for radiation resistance in various tumours. Blocking the pathway enhances the radiation response both in vitro and in vivo. Due to the differential activation of this pathway (constitutively activated in tumour cells and not in the normal host cells), it is an excellent candidate target for molecular targeted therapy to enhance radiation sensitivity. In this regard, HIV protease inhibitors (HPIs) known to interfere with PI3-K/AKT signaling in tumour cells, have been shown to sensitize various tumour cells to radiation both in vitro and in vivo. As a result, HPIs are now being investigated as possible radiosensitizers along with various chemotherapeutic drugs. This review describes the mechanisms by which PI3-K/AKT pathway causes radioresistance and the role of HIV protease inhibitors especially nelfinavir as a potential candidate drug to target the AKT pathway for overcoming radioresistance and its use in various clinical trials for different malignancies. PMID:27121513

  3. Targeting the AKT pathway: Repositioning HIV protease inhibitors as radiosensitizers.

    PubMed

    Goda, Jayant S; Pachpor, Tejaswini; Basu, Trinanjan; Chopra, Supriya; Gota, Vikram

    2016-02-01

    Cellular resistance in tumour cells to different therapeutic approaches has been a limiting factor in the curative treatment of cancer. Resistance to therapeutic radiation is a common phenomenon which significantly reduces treatment options and impacts survival. One of the mechanisms of acquiring resistance to ionizing radiation is the overexpression or activation of various oncogenes like the EGFR (epidermal growth factor receptor), RAS (rat sarcoma) oncogene or loss of PTEN (phosphatase and tensin homologue) which in turn activates the phosphatidyl inositol 3-kinase/protein kinase B (PI3-K)/AKT pathway responsible for radiation resistance in various tumours. Blocking the pathway enhances the radiation response both in vitro and in vivo. Due to the differential activation of this pathway (constitutively activated in tumour cells and not in the normal host cells), it is an excellent candidate target for molecular targeted therapy to enhance radiation sensitivity. In this regard, HIV protease inhibitors (HPIs) known to interfere with PI3-K/AKT signaling in tumour cells, have been shown to sensitize various tumour cells to radiation both in vitro and in vivo. As a result, HPIs are now being investigated as possible radiosensitizers along with various chemotherapeutic drugs. This review describes the mechanisms by which PI3-K/AKT pathway causes radioresistance and the role of HIV protease inhibitors especially nelfinavir as a potential candidate drug to target the AKT pathway for overcoming radioresistance and its use in various clinical trials for different malignancies.

  4. An insight on the leading HIV entry inhibitors.

    PubMed

    Veiga, Ana Salomé; Santos, Nuno C; Castanho, Miguel A R B

    2006-01-01

    The main strategies nowadays to fight AIDS rely on chemical therapy to inhibit the reverse transcriptase or protease of HIV. However, a synthetic 36 amino-acids peptide that blocks the entry of the virus in the target cells (enfuvirtide) has recently reached approval for clinical application. This molecule may probably be just the leader of a new generation of drugs that is about to emerge to interrupt the first step in the HIV life cycle, i.e. preventing the virus from actually entering cells. This paper reviews the enfuvirtide path from clinical trials to the attempts to detail its molecular-level mode of action. It is commonly accepted that this peptide would block the fusion between viral and cell plasma membrane through binding to the N-terminal heptad repeat (NHR) region of the viral protein gp41. However, there has been growing evidence that this model of action may be unrealistic, the action of enfuvirtide being more complex and diverse than initially thought. Membrane-assisted local concentration increase and interference with gp120/co-receptor docking may also contribute for the inhibitory action of the peptide. Selected HIV-entry inhibitors on clinical trials are presented to characterize the future drugs in the market in this class. PMID:18221135

  5. Dipeptidyl Peptidase-4 Inhibitor Use Is Not Associated With Acute Pancreatitis in High-Risk Type 2 Diabetic Patients

    PubMed Central

    Chang, Chia-Hsuin; Lin, Jou-Wei; Chen, Shu-Ting; Lai, Mei-Shu; Chuang, Lee-Ming; Chang, Yi-Cheng

    2016-01-01

    Abstract To analyze the association between use of DPP-4 inhibitors and acute pancreatitis in high-risk type 2 diabetic patients. A retrospective nationwide cohort study was conducted using the Taiwan National Health Insurance claim database. The risk associated with sitagliptin was compared to that with acarbose, a second-line antidiabetic drug prescribed for patients with similar diabetes severity and with a known neutral effect on pancreatitis. Between January 1, 2009 and December 31, 2010, a total of 8526 sitagliptin initiators and 8055 acarbose initiators who had hypertriglyceridemia or prior hospitalization history for acute pancreatitis were analyzed for the risk of hospitalization due to acute pancreatitis stratified for baseline propensity score. In the crude analysis, sitagliptin was associated with a decreased risk of acute pancreatitis (hazard ratio [HR] 0.74; 95% confidence interval [CI]: 0.62–0.88) compared to acarbose in diabetic patients with prior history of hospitalization for pancreatitis or hypertriglyceridemia. The association was abolished after stratification for propensity score quintiles (adjusted HR 0.95; 95% CI: 0.79–1.16). Similar results were found separately in both patients’ histories of prior hospitalization of acute pancreatitis (adjusted HR 0.97; 95% CI: 0.76–1.24) and those with hypertriglyceridemia (adjusted HR 0.86; 95% CI: 0.65–1.13). No significant association was found for different durations or accumulative doses of sitagliptin. In the stratified analysis, no significant effect modification was found in relation to patients’ characteristics. Use of sitagliptin was not associated with an increased risk of acute pancreatitis in high-risk diabetic patients with hypertriglyceridemia or with history of acute pancreatitis. PMID:26886601

  6. Docking analysis of gallic acid derivatives as HIV-1 protease inhibitors.

    PubMed

    Singh, Anjali; Pal, Tapan Kumar

    2015-01-01

    HIV-1 Protease (HIV-1 PR) enzymes are essential for accurate assembly and maturation of infectious HIV retroviruses. The significant role of HIV-1 protease in viral replication has made it a potential drug target. In the recent past, phytochemical Gallic Acid (GA) derivatives have been screened for protease inhibitor activity. The present work aims to design and evaluate potential GA-based HIV-1 PR phytoinhibitors by docking approach. The ligands were prepared by ChemDraw and docking was performed in HEX software. In this present study, one of the GA analogues (GA4) emerged as a potent drug candidate for HIV-1 PR inhibition, and docking results showed it to be comparable with anti-HIV drugs, darunavir and amprenavir. The GA4 derivative provided a lead for designing more effective HIV-1 PR inhibitors.

  7. Discovery of raltegravir, a potent, selective orally bioavailable HIV-integrase inhibitor for the treatment of HIV-AIDS infection.

    PubMed

    Summa, Vincenzo; Petrocchi, Alessia; Bonelli, Fabio; Crescenzi, Benedetta; Donghi, Monica; Ferrara, Marco; Fiore, Fabrizio; Gardelli, Cristina; Gonzalez Paz, Odalys; Hazuda, Daria J; Jones, Philip; Kinzel, Olaf; Laufer, Ralph; Monteagudo, Edith; Muraglia, Ester; Nizi, Emanuela; Orvieto, Federica; Pace, Paola; Pescatore, Giovanna; Scarpelli, Rita; Stillmock, Kara; Witmer, Marc V; Rowley, Michael

    2008-09-25

    Human immunodeficiency virus type-1 (HIV-1) integrase is one of the three virally encoded enzymes required for replication and therefore a rational target for chemotherapeutic intervention in the treatment of HIV-1 infection. We report here the discovery of Raltegravir, the first HIV-integrase inhibitor approved by FDA for the treatment of HIV infection. It derives from the evolution of 5,6-dihydroxypyrimidine-4-carboxamides and N-methyl-4-hydroxypyrimidinone-carboxamides, which exhibited potent inhibition of the HIV-integrase catalyzed strand transfer process. Structural modifications on these molecules were made in order to maximize potency as HIV-integrase inhibitors against the wild type virus, a selection of mutants, and optimize the selectivity, pharmacokinetic, and metabolic profiles in preclinical species. The good profile of Raltegravir has enabled its progression toward the end of phase III clinical trials for the treatment of HIV-1 infection and culminated with the FDA approval as the first HIV-integrase inhibitor for the treatment of HIV-1 infection.

  8. New, potent P1/P2-morpholinone-based HIV-protease inhibitors.

    PubMed

    Kazmierski, Wieslaw M; Furfine, Eric; Spaltenstein, Andrew; Wright, Lois L

    2006-10-01

    We have developed efficient synthesis of morpholinone-based cyclic mimetics of the P1/P2 portion of the HIV-1 protease inhibitor Amprenavir. This effort led to discovery of allyl- and spiro-cyclopropyl-P2-substituted inhibitors 17 and 31, both 500 times more potent than the parent inhibitor 1. These results support morpholinones as novel mimetics of the P1/P2 portion of Amprenavir and potentially of other HIV-protease inhibitors, and thus provide a novel medicinal chemistry template for optimization toward more potent and drug-like inhibitors. PMID:16904316

  9. 3-Hydroxypyrimidine-2,4-diones as an Inhibitor Scaffold of HIV Integrase

    PubMed Central

    Tang, Jing; Maddali, Kasthuraiah; Sham, Yuk Y.; Vince, Robert; Pommier, Yves; Wang, Zhengqiang

    2011-01-01

    Integrase (IN) represents a clinically validated target for the development of antivirals against human immunodeficiency virus (HIV). Inhibitors with a novel structure core are essential for combating resistance associated with known IN inhibitors (INIs). We have previously disclosed a novel dual inhibitor scaffold of HIV IN and reverse transcriptase (RT). Here we report the complete structure-activity relationship (SAR), molecular modeling and resistance profile of this inhibitor type on IN inhibition. These studies support an antiviral mechanism of dual inhibition against both IN and RT and validate 3-hydroxypyrimidine-2,4-diones as an IN inhibitor scaffold. PMID:21381765

  10. 3-Hydroxypyrimidine-2,4-diones as an inhibitor scaffold of HIV integrase.

    PubMed

    Tang, Jing; Maddali, Kasthuraiah; Metifiot, Mathieu; Sham, Yuk Y; Vince, Robert; Pommier, Yves; Wang, Zhengqiang

    2011-04-14

    Integrase (IN) represents a clinically validated target for the development of antivirals against human immunodeficiency virus (HIV). Inhibitors with a novel structure core are essential for combating resistance associated with known IN inhibitors (INIs). We have previously disclosed a novel dual inhibitor scaffold of HIV IN and reverse transcriptase (RT). Here we report the complete structure-activity relationship (SAR), molecular modeling, and resistance profile of this inhibitor type on IN inhibition. These studies support an antiviral mechanism of dual inhibition against both IN and RT and validate 3-hydroxypyrimidine-2,4-diones as an IN inhibitor scaffold.

  11. Synthesis and anti-HIV activity of some [Nucleoside Reverse Transcriptase Inhibitor]-C5'-linker-[Integrase Inhibitor] heterodimers as inhibitors of HIV replication.

    PubMed

    Sugeac, Elena; Fossey, Christine; Ladurée, Daniel; Schmidt, Sylvie; Laumond, Geraldine; Aubertin, Anne-Marie

    2004-12-01

    Selected for their expected ability to inhibit HIV replication, a series of eight heterodimers containing a Nucleoside Reverse Transcriptase Inhibitor (NRTI) and an Integrase Inhibitor (INI), bound by a linker, were designed and synthesized. For the NRTIs, d4U, d2U and d4T were chosen. For the INIs, 4-[1-(4-fluorobenzyl)-1H-pyrrol-2-yl]-2,4-dioxobutyric acid (6) and 4-(3,5-dibenzyloxyphenyl)-2,4-dioxobutyric acid (9) (belonging to the beta-diketo acids class) were chosen. The conjugation of the two different inhibitors (NRTI and INI) was performed using an amino acid (glycine or beta-alanine) as a cleavable linker.

  12. Crystal structures of HIV-1 nonnucleoside reverse transcriptase inhibitors: N-benzyl-4-methyl-benzimidazoles

    NASA Astrophysics Data System (ADS)

    Ziółkowska, Natasza E.; Michejda, Christopher J.; Bujacz, Grzegorz D.

    2009-07-01

    HIV-1 nonnucleoside reverse transcriptase inhibitors are potentially specific and effective drugs in AIDS therapy. The presence of two aromatic systems with an angled orientation in the molecule of the inhibitor is crucial for interactions with HIV-1 RT. The inhibitor drives like a wedge into the cluster of aromatic residues of RT HIV-1 and restrains the enzyme in a conformation that blocks the chemical step of nucleotide incorporation. Structural studies provide useful information for designing new, more active inhibitors. The crystal structures of four NNRTIs are presented here. The investigated compounds are derivatives of N-benzyl-4-methyl-benzimidazole with various aliphatic and aromatic substituents at carbon 2 positions and a 2,6-dihalogeno-substituted N-benzyl moiety. Structural data reported here show that the conformation of the investigated compounds is relatively rigid. Such feature is important for the nonnucleoside inhibitor binding to HIV-1 reverse transcriptase.

  13. Methylene bisphosphonates as the inhibitors of HIV RT phosphorolytic activity.

    PubMed

    Yanvarev, D V; Korovina, A N; Usanov, N N; Khomich, O A; Vepsäläinen, J; Puljula, E; Kukhanova, M K; Kochetkov, S N

    2016-08-01

    The structure-function analysis of 36 methylenebisphosphonates (BPs) as inhibitors of the phosphorolytic activity of native and drug-resistant forms of HIV-1 reverse transcriptase (RT) was performed. It was shown that with the increase of the inhibitory potential of BPs towards the phosphorolytic activity raises their ability to inhibit the RT-catalyzed DNA elongation. Herein, we report the impact of the thymidine analog mutations (TAM) on the activity of bisphosphonates, as well as some structural features of the BPs, allowing them to maintain the inhibitory activity on the enzyme resistant to nucleoside analog therapy. We estimated the Mg(2+)-coordinating group structure, the linker and the aromatic pharmacophore influence on the inhibitory potential of the BPs. Based on the 31 BPs SAR, several BPs with improved inhibitory properties were designed and synthesized. PMID:27230835

  14. HIV-1 integrase inhibitor resistance and its clinical implications.

    PubMed

    Blanco, Jose-Luis; Varghese, Vici; Rhee, Soo-Yon; Gatell, Jose M; Shafer, Robert W

    2011-05-01

    With the approval in 2007 of the first integrase inhibitor (INI), raltegravir, clinicians became better able to suppress virus replication in patients infected with human immunodeficiency virus type 1 (HIV-1) who were harboring many of the most highly drug-resistant viruses. Raltegravir also provided clinicians with additional options for first-line therapy and for the simplification of regimens in patients with stable virological suppression. Two additional INIs in advanced clinical development-elvitegravir and S/GSK1349572-may prove equally versatile. However, the INIs have a relatively low genetic barrier to resistance in that 1 or 2 mutations are capable of causing marked reductions in susceptibility to raltegravir and elvitegravir, the most well-studied INIs. This perspective reviews the genetic mechanisms of INI resistance and their implications for initial INI therapy, the treatment of antiretroviral-experienced patients, and regimen simplification.

  15. Methylene bisphosphonates as the inhibitors of HIV RT phosphorolytic activity.

    PubMed

    Yanvarev, D V; Korovina, A N; Usanov, N N; Khomich, O A; Vepsäläinen, J; Puljula, E; Kukhanova, M K; Kochetkov, S N

    2016-08-01

    The structure-function analysis of 36 methylenebisphosphonates (BPs) as inhibitors of the phosphorolytic activity of native and drug-resistant forms of HIV-1 reverse transcriptase (RT) was performed. It was shown that with the increase of the inhibitory potential of BPs towards the phosphorolytic activity raises their ability to inhibit the RT-catalyzed DNA elongation. Herein, we report the impact of the thymidine analog mutations (TAM) on the activity of bisphosphonates, as well as some structural features of the BPs, allowing them to maintain the inhibitory activity on the enzyme resistant to nucleoside analog therapy. We estimated the Mg(2+)-coordinating group structure, the linker and the aromatic pharmacophore influence on the inhibitory potential of the BPs. Based on the 31 BPs SAR, several BPs with improved inhibitory properties were designed and synthesized.

  16. Design of HIV Protease Inhibitors Targeting Protein Backbone: An Effective Strategy for Combating Drug Resistance

    SciTech Connect

    Ghosh, Arun K.; Chapsal, Bruno D.; Weber, Irene T.; Mitsuya, Hiroaki

    2008-06-03

    The discovery of human immunodeficiency virus (HIV) protease inhibitors (PIs) and their utilization in highly active antiretroviral therapy (HAART) have been a major turning point in the management of HIV/acquired immune-deficiency syndrome (AIDS). However, despite the successes in disease management and the decrease of HIV/AIDS-related mortality, several drawbacks continue to hamper first-generation protease inhibitor therapies. The rapid emergence of drug resistance has become the most urgent concern because it renders current treatments ineffective and therefore compels the scientific community to continue efforts in the design of inhibitors that can efficiently combat drug resistance.

  17. Fullerene-based inhibitors of HIV-1 protease.

    PubMed

    Strom, T Amanda; Durdagi, Serdar; Ersoz, Suha Salih; Salmas, Ramin Ekhteiari; Supuran, Claudiu T; Barron, Andrew R

    2015-12-01

    A series of Fmoc-Phe(4-aza-C60)-OH of fullerene amino acid derived peptides have been prepared by solid phase peptide synthesis, in which the terminal amino acid, Phe(4-aza-C60)-OH, is derived from the dipolar addition to C60 of the Fmoc-Nα-protected azido amino acids derived from phenylalanine: Fmoc-Phe(4-aza-C60)-Lys3-OH (1), Fmoc-Phe(4-aza-C60)-Pro-Hyp-Lys-OH (2), and Fmoc-Phe(4-aza-C60)-Hyp-Hyp-Lys-OH (3). The inhibition constant of our fullerene aspartic protease PRIs utilized FRET-based assay to evaluate the enzyme kinetics of HIV-1 PR at various concentrations of inhibitors. Simulation of the docking of the peptide Fmoc-Phe-Pro-Hyp-Lys-OH overestimated the inhibition, while the amino acid PRIs were well estimated. The experimental results show that C60-based amino acids are a good base structure in the design of protease inhibitors and that their inhibition can be improved upon by the addition of designer peptide sequences.

  18. In vitro Isolation and Identification of Human Immunodeficiency Virus (HIV) Variants with Reduced Sensitivity to C-2 Symmetrical Inhibitors of HIV Type 1 Protease

    NASA Astrophysics Data System (ADS)

    Otto, M. J.; Garber, S.; Winslow, D. L.; Reid, C. D.; Aldrich, P.; Jadhav, P. K.; Patterson, C. E.; Hodge, C. N.; Cheng, Y.-S. E.

    1993-08-01

    Protease inhibitors are another class of compounds for treatment of human immunodeficiency virus (HIV)-caused disease. The emergence of resistance to the current anti-HIV drugs makes the determination of potential resistance to protease inhibitors imperative. Here we describe the isolation of an HIV type 1 (HIV-1) resistant to an HIV-protease inhibitor. Serial passage of HIV-1 (strain RF) in the presence of the inhibitor, [2-pyridylacetylisoleucylphenylalanyl-psi(CHOH)]_2 (P9941), failed to yield a stock of virus with a resistance phenotype. However, variants of the virus with 6- to 8-fold reduced sensitivity to P9941 were selected by using a combination of plaque assay and endpoint titration. Genetic analysis and computer modeling of the variant proteases revealed a single change in the codon for amino acid 82 (Val -> Ala), which resulted in a protease with lower affinity and reduced sensitivity to this inhibitor and certain, but not all, related inhibitors.

  19. In vitro isolation and identification of human immunodeficiency virus (HIV) variants with reduced sensitivity to C-2 symmetrical inhibitors of HIV type 1 protease.

    PubMed

    Otto, M J; Garber, S; Winslow, D L; Reid, C D; Aldrich, P; Jadhav, P K; Patterson, C E; Hodge, C N; Cheng, Y S

    1993-08-15

    Protease inhibitors are another class of compounds for treatment of human immunodeficiency virus (HIV)-caused disease. The emergence of resistance to the current anti-HIV drugs makes the determination of potential resistance to protease inhibitors imperative. Here we describe the isolation of an HIV type 1 (HIV-1) resistant to an HIV-protease inhibitor. Serial passage of HIV-1 (strain RF) in the presence of the inhibitor, [2-pyridylacetylisoleucylphenylalanyl-psi (CHOH)]2 (P9941), failed to yield a stock of virus with a resistance phenotype. However, variants of the virus with 6- to 8-fold reduced sensitivity to P9941 were selected by using a combination of plaque assay and endpoint titration. Genetic analysis and computer modeling of the variant proteases revealed a single change in the codon for amino acid 82 (Val-->Ala), which resulted in a protease with lower affinity and reduced sensitivity to this inhibitor and certain, but not all, related inhibitors.

  20. Triggering HIV polyprotein processing by light using rapid photodegradation of a tight-binding protease inhibitor.

    PubMed

    Schimer, Jiří; Pávová, Marcela; Anders, Maria; Pachl, Petr; Šácha, Pavel; Cígler, Petr; Weber, Jan; Majer, Pavel; Řezáčová, Pavlína; Kräusslich, Hans-Georg; Müller, Barbara; Konvalinka, Jan

    2015-01-01

    HIV protease (PR) is required for proteolytic maturation in the late phase of HIV replication and represents a prime therapeutic target. The regulation and kinetics of viral polyprotein processing and maturation are currently not understood in detail. Here we design, synthesize, validate and apply a potent, photodegradable HIV PR inhibitor to achieve synchronized induction of proteolysis. The compound exhibits subnanomolar inhibition in vitro. Its photolabile moiety is released on light irradiation, reducing the inhibitory potential by 4 orders of magnitude. We determine the structure of the PR-inhibitor complex, analyze its photolytic products, and show that the enzymatic activity of inhibited PR can be fully restored on inhibitor photolysis. We also demonstrate that proteolysis of immature HIV particles produced in the presence of the inhibitor can be rapidly triggered by light enabling thus to analyze the timing, regulation and spatial requirements of viral processing in real time. PMID:25751579

  1. Novel indole-3-sulfonamides as potent HIV non-nucleoside reverse transcriptase inhibitors (NNRTIs)

    SciTech Connect

    Zhao, Zhijian; Wolkenberg, Scott E.; Lu, Meiqing; Munshi, Vandna; Moyer, Gregory; Feng, Meizhen; Carella, Anthony V.; Ecto, Linda T.; Gabryelski, Lori J.; Lai, Ming-Tain; Prasad, Sridar G.; Yan, Youwei; McGaughey, Georgia B.; Miller, Michael D.; Lindsley, Craig W.; Hartman, George D.; Vacca, Joseph P.; Williams, Theresa M.

    2008-09-29

    This Letter describes the design, synthesis, and biological evaluation of novel 3-indole sulfonamides as potent non-nucleoside reverse transcriptase inhibitors (NNRTIs) with balanced profiles against common HIV RT mutants K103N and Y181C.

  2. Structural Evidence for Effectiveness of Darunavir and Two Related Antiviral Inhibitors against HIV-2 Protease

    SciTech Connect

    Kovalevsky, Andrey Y.; Louis, John M.; Aniana, Annie; Ghosh, Arun K.; Weber, Irene T.

    2008-12-08

    No drug has been targeted specifically for HIV-2 (human immunodeficiency virus type 2) infection despite its increasing prevalence worldwide. The antiviral HIV-1 (human immunodeficiency virus type 1) protease (PR) inhibitor darunavir and the chemically related GRL98065 and GRL06579A were designed with the same chemical scaffold and different substituents at P2 and P2' to optimize polar interactions for HIV-1 PR (PR1). These inhibitors are also effective antiviral agents for HIV-2-infected cells. Therefore, crystal structures of HIV-2 PR (PR2) complexes with the three inhibitors have been solved at 1.2-{angstrom} resolution to analyze the molecular basis for their antiviral potency. Unusually, the crystals were grown in imidazole and zinc acetate buffer, which formed interactions with the PR2 and the inhibitors. Overall, the structures were very similar to the corresponding inhibitor complexes of PR1 with an RMSD of 1.1 {angstrom} on main-chain atoms. Most hydrogen-bond and weaker C-H...O interactions with inhibitors were conserved in the PR2 and PR1 complexes, except for small changes in interactions with water or disordered side chains. Small differences were observed in the hydrophobic contacts for the darunavir complexes, in agreement with relative inhibition of the two PRs. These near-atomic-resolution crystal structures verify the inhibitor potency for PR1 and PR2 and will provide the basis for the development of antiviral inhibitors targeting PR2.

  3. Critical differences in HIV-1 and HIV-2 protease specificity for clinical inhibitors

    SciTech Connect

    Tie, Yunfeng; Wang, Yuan-Fang; Boross, Peter I.; Chiu, Ting-Yi; Ghosh, Arun K.; Tozser, Jozsef; Louis, John M.; Harrison, Robert W.; Weber, Irene T.

    2012-03-15

    Clinical inhibitor amprenavir (APV) is less effective on HIV-2 protease (PR{sub 2}) than on HIV-1 protease (PR{sub 1}). We solved the crystal structure of PR{sub 2} with APV at 1.5 {angstrom} resolution to identify structural changes associated with the lowered inhibition. Furthermore, we analyzed the PR{sub 1} mutant (PR{sub 1M}) with substitutions V32I, I47V, and V82I that mimic the inhibitor binding site of PR{sub 2}. PR{sub 1M} more closely resembled PR{sub 2} than PR{sub 1} in catalytic efficiency on four substrate peptides and inhibition by APV, whereas few differences were seen for two other substrates and inhibition by saquinavir (SQV) and darunavir (DRV). High resolution crystal structures of PR{sub 1M} with APV, DRV, and SQV were compared with available PR{sub 1} and PR{sub 2} complexes. Val/Ile32 and Ile/Val47 showed compensating interactions with SQV in PR{sub 1M} and PR{sub 1}, however, Ile82 interacted with a second SQV bound in an extension of the active site cavity of PR{sub 1M}. Residues 32 and 82 maintained similar interactions with DRV and APV in all the enzymes, whereas Val47 and Ile47 had opposing effects in the two subunits. Significantly diminished interactions were seen for the aniline of APV bound in PR{sub 1M} and PR{sub 2} relative to the strong hydrogen bonds observed in PR{sub 1}, consistent with 15- and 19-fold weaker inhibition, respectively. Overall, PR{sub 1M} partially replicates the specificity of PR{sub 2} and gives insight into drug resistant mutations at residues 32, 47, and 82. Moreover, this analysis provides a structural explanation for the weaker antiviral effects of APV on HIV-2.

  4. HIV type 1 tropism and inhibitors of viral entry: clinical implications.

    PubMed

    Weber, Jan; Piontkivska, Helen; Quiñones-Mateu, Miguel E

    2006-01-01

    Since their discovery in 1996, the two main coreceptors used by human immunodeficiency virus type 1 (HIV-1) to enter human cells (CCR5 and CXCR4) have been the subject of numerous scientific articles. A recent search in PubMed (www.pubmed.gov) using "HIV coreceptor" as keywords led to more than 1100 original research publications and 90 review articles. This number skyrocketed to more than double if we used "HIV CCR5". Most of the reviews described in detail several aspects of HIV tropism, viral entry mechanism, coreceptor usage and its implication on disease progression, antiretroviral therapy, and vaccine development. A few others centered on the tools utilized to measure the ability of HIV to use these coreceptors to infect target cells. On the other hand, identification of the HIV coreceptors renewed the effort and expectation to block HIV replication by targeting viral entry into the target cells. As with HIV tropism, hundreds of articles have been published addressing this topic (more than 350 original publications and 50 review articles when using "HIV entry inhibitor" as a descriptive word). Therefore, in addition to providing a brief update of the most important aspects described above, we discuss here how an accurate quantification of HIV coreceptor usage is essential for the successful management of HIV-infected individuals in this new era of entry inhibitors, mainly CCR5- or CXCR4-antagonists. PMID:16848274

  5. Hypoglycemia hospitalization frequency in patients with type 2 diabetes mellitus: a comparison of dipeptidyl peptidase 4 inhibitors and insulin secretagogues using the French health insurance database

    PubMed Central

    Detournay, Bruno; Halimi, Serge; Robert, Julien; Deschaseaux, Céline; Dejager, Sylvie

    2015-01-01

    Aim We aimed to compare the frequency of severe hypoglycemia leading to hospitalization (HH) and emergency visits (EV) for any cause in patients with type 2 diabetes mellitus exposed to dipeptidyl peptidase 4 (DPP4) inhibitors (DPP4-i) versus those exposed to insulin secretagogues (IS; sulfonylureas or glinides). Methods Data were extracted from the EGB (Echantillon Généraliste des Bénéficiaires) database, comprising a representative sample of ~1% of patients registered in the French National Health Insurance System (~600,000 patients). Type 2 diabetes mellitus patients exposed to regimens containing either a DPP4-i (excluding treatment with IS, insulin, or glucagon-like peptide 1 analog) or IS (excluding treatment with insulin and any incretin therapy) between 2009 and 2012 were selected. HH and EV during the exposure periods were identified in both cohorts. A similar analysis was conducted considering vildagliptin alone versus IS. Comparative analyses adjusting for covariates within the model (subjects matched for key characteristics) and using multinomial regression models were performed. Results Overall, 7,152 patients exposed to any DPP4-i and 1,440 patients exposed to vildagliptin were compared to 10,019 patients exposed to IS. Eight patients (0.11%) from the DPP4-i cohort and none from the vildagliptin cohort (0.0%) were hospitalized for hypoglycemia versus 130 patients (1.30%) from the IS cohort (138 hospitalizations) (P=0.02 and P<0.0001, respectively). Crude rates of HH/1,000 patient-years were 1.4 (95% CI: 0.7; 2.4) in the DPP4-i cohort, 0.0 in the vildagliptin cohort (95% CI: 0.0; 4.0), versus 5.6 (95% CI, 4.7; 6.6) in the IS cohort (P<0.0001). After adjustments, rates per 1,000 patient-years of HH were 1.4 (95% CI: 0.7; 2.4) with DPP4-i versus 7.5 (95% CI: 6.0; 9.2) with IS (P<0.0001), and 0.0 (95% CI: 0.0; 4.0) with vildagliptin versus 13.6 (95% CI: 10.4; 17.5) with IS (P<0.0001). Adjusted EV rates were also significantly lower with all DPP4-i or

  6. Identification of mechanistically distinct inhibitors of HIV-1 reverse transcriptase through fragment screening.

    PubMed

    La, Jennifer; Latham, Catherine F; Tinetti, Ricky N; Johnson, Adam; Tyssen, David; Huber, Kelly D; Sluis-Cremer, Nicolas; Simpson, Jamie S; Headey, Stephen J; Chalmers, David K; Tachedjian, Gilda

    2015-06-01

    Fragment-based screening methods can be used to discover novel active site or allosteric inhibitors for therapeutic intervention. Using saturation transfer difference (STD) NMR and in vitro activity assays, we have identified fragment-sized inhibitors of HIV-1 reverse transcriptase (RT) with distinct chemical scaffolds and mechanisms compared to nonnucleoside RT inhibitors (NNRTIs) and nucleoside/nucleotide RT inhibitors (NRTIs). Three compounds were found to inhibit RNA- and DNA-dependent DNA polymerase activity of HIV-1 RT in the micromolar range while retaining potency against RT variants carrying one of three major NNRTI resistance mutations: K103N, Y181C, or G190A. These compounds also inhibit Moloney murine leukemia virus RT but not the Klenow fragment of Escherichia coli DNA polymerase I. Steady-state kinetic analyses demonstrate that one of these fragments is a competitive inhibitor of HIV-1 RT with respect to deoxyribonucleoside triphosphate (dNTP) substrate, whereas a second compound is a competitive inhibitor of RT polymerase activity with respect to the DNA template/primer (T/P), and consequently also inhibits RNase H activity. The dNTP competing RT inhibitor retains activity against the NRTI-resistant mutants K65R and M184V, demonstrating a drug resistance profile distinct from the nucleotide competing RT inhibitors indolopyridone-1 (INDOPY-1) and 4-dimethylamino-6-vinylpyrimidine-1 (DAVP-1). In antiviral assays, the T/P competing compound inhibits HIV-1 replication at a step consistent with an RT inhibitor. Screening of additional structurally related compounds to the three fragments led to the discovery of molecules with improved potency against HIV-1 RT. These fragment inhibitors represent previously unidentified scaffolds for development of novel drugs for HIV-1 prevention or treatment. PMID:26038551

  7. Identification of mechanistically distinct inhibitors of HIV-1 reverse transcriptase through fragment screening

    PubMed Central

    La, Jennifer; Latham, Catherine F.; Tinetti, Ricky N.; Johnson, Adam; Tyssen, David; Huber, Kelly D.; Sluis-Cremer, Nicolas; Simpson, Jamie S.; Headey, Stephen J.; Chalmers, David K.; Tachedjian, Gilda

    2015-01-01

    Fragment-based screening methods can be used to discover novel active site or allosteric inhibitors for therapeutic intervention. Using saturation transfer difference (STD) NMR and in vitro activity assays, we have identified fragment-sized inhibitors of HIV-1 reverse transcriptase (RT) with distinct chemical scaffolds and mechanisms compared to nonnucleoside RT inhibitors (NNRTIs) and nucleoside/nucleotide RT inhibitors (NRTIs). Three compounds were found to inhibit RNA- and DNA-dependent DNA polymerase activity of HIV-1 RT in the micromolar range while retaining potency against RT variants carrying one of three major NNRTI resistance mutations: K103N, Y181C, or G190A. These compounds also inhibit Moloney murine leukemia virus RT but not the Klenow fragment of Escherichia coli DNA polymerase I. Steady-state kinetic analyses demonstrate that one of these fragments is a competitive inhibitor of HIV-1 RT with respect to deoxyribonucleoside triphosphate (dNTP) substrate, whereas a second compound is a competitive inhibitor of RT polymerase activity with respect to the DNA template/primer (T/P), and consequently also inhibits RNase H activity. The dNTP competing RT inhibitor retains activity against the NRTI-resistant mutants K65R and M184V, demonstrating a drug resistance profile distinct from the nucleotide competing RT inhibitors indolopyridone-1 (INDOPY-1) and 4-dimethylamino-6-vinylpyrimidine-1 (DAVP-1). In antiviral assays, the T/P competing compound inhibits HIV-1 replication at a step consistent with an RT inhibitor. Screening of additional structurally related compounds to the three fragments led to the discovery of molecules with improved potency against HIV-1 RT. These fragment inhibitors represent previously unidentified scaffolds for development of novel drugs for HIV-1 prevention or treatment. PMID:26038551

  8. Structure-Based Design of Novel HIV-1 Protease Inhibitors to Combat Drug Resistance

    SciTech Connect

    Ghosh,A.; Sridhar, P.; Leshchenko, S.; Hussain, A.; Li, J.; Kovalevsky, A.; Walters, D.; Wedelind, J.; Grum-Tokars, V.; et al.

    2006-01-01

    Structure-based design and synthesis of novel HIV protease inhibitors are described. The inhibitors are designed specifically to interact with the backbone of HIV protease active site to combat drug resistance. Inhibitor 3 has exhibited exceedingly potent enzyme inhibitory and antiviral potency. Furthermore, this inhibitor maintains impressive potency against a wide spectrum of HIV including a variety of multi-PI-resistant clinical strains. The inhibitors incorporated a stereochemically defined 5-hexahydrocyclopenta[b]furanyl urethane as the P2-ligand into the (R)-(hydroxyethylamino)sulfonamide isostere. Optically active (3aS,5R,6aR)-5-hydroxy-hexahydrocyclopenta[b]furan was prepared by an enzymatic asymmetrization of meso-diacetate with acetyl cholinesterase, radical cyclization, and Lewis acid-catalyzed anomeric reduction as the key steps. A protein-ligand X-ray crystal structure of inhibitor 3-bound HIV-1 protease (1.35 Angstroms resolution) revealed extensive interactions in the HIV protease active site including strong hydrogen bonding interactions with the backbone. This design strategy may lead to novel inhibitors that can combat drug resistance.

  9. Four Amino Acid Changes in HIV-2 Protease Confer Class-Wide Sensitivity to Protease Inhibitors

    PubMed Central

    Smith, Robert A.; Gottlieb, Geoffrey S.

    2015-01-01

    ABSTRACT Protease is essential for retroviral replication, and protease inhibitors (PI) are important for treating HIV infection. HIV-2 exhibits intrinsic resistance to most FDA-approved HIV-1 PI, retaining clinically useful susceptibility only to lopinavir, darunavir, and saquinavir. The mechanisms for this resistance are unclear; although HIV-1 and HIV-2 proteases share just 38 to 49% sequence identity, all critical structural features of proteases are conserved. Structural studies have implicated four amino acids in the ligand-binding pocket (positions 32, 47, 76, and 82). We constructed HIV-2ROD9 molecular clones encoding the corresponding wild-type HIV-1 amino acids (I32V, V47I, M76L, and I82V) either individually or together (clone PRΔ4) and compared the phenotypic sensitivities (50% effective concentration [EC50]) of mutant and wild-type viruses to nine FDA-approved PI. Single amino acid replacements I32V, V47I, and M76L increased the susceptibility of HIV-2 to multiple PI, but no single change conferred class-wide sensitivity. In contrast, clone PRΔ4 showed PI susceptibility equivalent to or greater than that of HIV-1 for all PI. We also compared crystallographic structures of wild-type HIV-1 and HIV-2 proteases complexed with amprenavir and darunavir to models of the PRΔ4 enzyme. These models suggest that the amprenavir sensitivity of PRΔ4 is attributable to stabilizing enzyme-inhibitor interactions in the P2 and P2′ pockets of the protease dimer. Together, our results show that the combination of four amino acid changes in HIV-2 protease confer a pattern of PI susceptibility comparable to that of HIV-1, providing a structural rationale for intrinsic HIV-2 PI resistance and resolving long-standing questions regarding the determinants of differential PI susceptibility in HIV-1 and HIV-2. IMPORTANCE Proteases are essential for retroviral replication, and HIV-1 and HIV-2 proteases share a great deal of structural similarity. However, only three of nine

  10. Use of tumor necrosis factor (TNF) inhibitors in patients with HIV/AIDS.

    PubMed

    Gallitano, Stephanie M; McDermott, Laura; Brar, Kanwaljit; Lowenstein, Eve

    2016-05-01

    Patients with HIV and AIDS are living longer because of advancements in antiretroviral therapy. These patients are often susceptible to debilitating inflammatory disorders that are refractory to standard treatment. We discuss the relationship of tumor necrosis factor-alpha and HIV and then review 27 published cases of patients with HIV being treated with tumor necrosis factor-alpha inhibitors. This review is limited because no randomized controlled trials have been performed with this patient population. Regardless, we propose that reliable seropositive patients, who are adherent to medication regimens and frequent monitoring and have failed other treatment modalities, should be considered for treatment with tumor necrosis factor-alpha inhibitors.

  11. Structural and thermodynamic basis of resistance to HIV-1 protease inhibition: implications for inhibitor design.

    PubMed

    Velazquez-Campoy, Adrian; Muzammil, Salman; Ohtaka, Hiroyasu; Schön, Arne; Vega, Sonia; Freire, Ernesto

    2003-12-01

    One of the most serious side effects associated with the therapy of HIV-1 infection is the appearance of viral strains that exhibit resistance to protease inhibitors. At the molecular level, resistance to protease inhibition predominantly takes the form of mutations within the protease molecule that preferentially lower the affinity of protease inhibitors with respect to protease substrates, while still maintaining a viable catalytic activity. Mutations associated with drug resistance occur within the active site cavity as well as distal sites. Active site mutations affect directly inhibitor/protease interactions while non-active site mutations affect inhibitor binding through long range cooperative perturbations. The effects of mutations associated with drug resistance are compounded by the presence of naturally occurring polymorphisms, especially those observed in non-B subtypes of HIV-1. The binding thermodynamics of all clinical inhibitors against the wild type protease, drug resistant mutations and non-B subtype HIV-1 proteases has been determined by high sensitivity isothermal titration calorimetry. In conjunction with structural information, these data have provided a precise characterization of the binding mechanism of different inhibitors and their response to mutations. Inhibitors that exhibit extremely high affinity and low susceptibility to the effects of mutations share common features and binding determinants even if they belong to different chemical scaffolds. These binding determinants define a set of rules and constraints for the design of better HIV-1 protease inhibitors.

  12. Structural investigation of HIV-1 nonnucleoside reverse transcriptase inhibitors: 2-Aryl-substituted benzimidazoles

    NASA Astrophysics Data System (ADS)

    Ziółkowska, Natasza E.; Michejda, Christopher J.; Bujacz, Grzegorz D.

    2009-11-01

    Acquired immunodeficiency syndrome (AIDS) caused by the human immunodeficiency virus (HIV) is one of the most destructive epidemics in history. Inhibitors of HIV enzymes are the main targets to develop drugs against that disease. Nonnucleoside reverse transcriptase inhibitors of HIV-1 (NNRTIs) are potentially effective and nontoxic. Structural studies provide information necessary to design more active compounds. The crystal structures of four NNRTI derivatives of 2-aryl-substituted N-benzyl-benzimidazole are presented here. Analysis of the geometrical parameters shows that the structures of the investigated inhibitors are rigid. The important geometrical parameter is the dihedral angle between the planes of the π-electron systems of the benzymidazole and benzyl moieties. The values of these dihedral angles are in a narrow range for all investigated inhibitors. There is no significant difference between the structure of the free inhibitor and the inhibitor in the complex with RT HIV-1. X-ray structures of the investigated inhibitors are a good basis for modeling enzyme-inhibitor interactions in rational drug design.

  13. From dihydroxypyrimidine carboxylic acids to carboxamide HIV-1 integrase inhibitors: SAR around the amide moiety.

    PubMed

    Petrocchi, Alessia; Koch, Uwe; Matassa, Victor G; Pacini, Barbara; Stillmock, Kara A; Summa, Vincenzo

    2007-01-15

    4,5-Dihyroxypyrimidine carboxamides, which evolved from a related series of HCV NS5b polymerase inhibitors, have been optimized to provide selective HIV integrase strand transfer inhibitors. Extensive SAR around the benzylamide moiety led to the identification of the p-fluorobenzylamide as optimal in the enzymatic assay.

  14. Inhibitors of HIV-1 attachment. Part 2: An initial survey of indole substitution patterns.

    PubMed

    Meanwell, Nicholas A; Wallace, Owen B; Fang, Haiquan; Wang, Henry; Deshpande, Milind; Wang, Tao; Yin, Zhiwei; Zhang, Zhongxing; Pearce, Bradley C; James, Jennifer; Yeung, Kap-Sun; Qiu, Zhilei; Kim Wright, J J; Yang, Zheng; Zadjura, Lisa; Tweedie, Donald L; Yeola, Suresh; Zhao, Fang; Ranadive, Sunanda; Robinson, Brett A; Gong, Yi-Fei; Wang, Hwei-Gene Heidi; Spicer, Timothy P; Blair, Wade S; Shi, Pei-Yong; Colonno, Richard J; Lin, Pin-Fang

    2009-04-01

    The effects of introducing simple halogen, alkyl, and alkoxy substituents to the 4, 5, 6 and 7 positions of 1-(4-benzoylpiperazin-1-yl)-2-(1H-indol-3-yl)ethane-1,2-dione, an inhibitor of the interaction between HIV gp120 and host cell CD4 receptors, on activity in an HIV entry assay was examined. Small substituents at C-4 generally resulted in increased potency whilst substitution at C-7 was readily tolerated and uniformly produced more potent HIV entry inhibitors. Substituents deployed at C-6 and, particularly, C-5 generally produced a modest to marked weakening of potency compared to the prototype. Small alkyl substituents at N-1 exerted minimal effect on activity whilst increasing the size of the alkyl moiety led to progressively reduced inhibitory properties. These studies establish a basic understanding of the indole element of the HIV attachment inhibitor pharmacophore.

  15. Biocatalytic ammonolysis of (5S)-4,5-dihydro-1H-pyrrole-1,5-dicarboxylic acid, 1-(1,1-dimethylethyl)-5-ethyl ester: preparation of an intermediate to the dipeptidyl peptidase IV inhibitor Saxagliptin.

    PubMed

    Gill, Iqbal; Patel, Ramesh

    2006-02-01

    An efficient biocatalytic method has been developed for the conversion of (5S)-4,5-dihydro-1H-pyrrole-1,5-dicarboxylic acid, 1-(1,1-dimethylethyl)-5-ethyl ester (1) into the corresponding amide (5S)-5-aminocarbonyl-4,5-dihydro-1H-pyrrole-1-carboxylic acid, 1-(1,1-dimethylethyl)ester (2), which is a critical intermediate in the synthesis of the dipeptidyl peptidase IV (DPP4) inhibitor Saxagliptin (3). Candida antartica lipase B mediates ammonolysis of the ester with ammonium carbamate as ammonia donor to yield up to 71% of the amide. The inclusion of Ascarite and calcium chloride as adsorbents for carbon dioxide and ethanol byproducts, respectively, increases the yield to 98%, thereby offering an efficient and practical alternative to chemical routes which yield 57-64%. PMID:16257208

  16. Biocatalytic ammonolysis of (5S)-4,5-dihydro-1H-pyrrole-1,5-dicarboxylic acid, 1-(1,1-dimethylethyl)-5-ethyl ester: preparation of an intermediate to the dipeptidyl peptidase IV inhibitor Saxagliptin.

    PubMed

    Gill, Iqbal; Patel, Ramesh

    2006-02-01

    An efficient biocatalytic method has been developed for the conversion of (5S)-4,5-dihydro-1H-pyrrole-1,5-dicarboxylic acid, 1-(1,1-dimethylethyl)-5-ethyl ester (1) into the corresponding amide (5S)-5-aminocarbonyl-4,5-dihydro-1H-pyrrole-1-carboxylic acid, 1-(1,1-dimethylethyl)ester (2), which is a critical intermediate in the synthesis of the dipeptidyl peptidase IV (DPP4) inhibitor Saxagliptin (3). Candida antartica lipase B mediates ammonolysis of the ester with ammonium carbamate as ammonia donor to yield up to 71% of the amide. The inclusion of Ascarite and calcium chloride as adsorbents for carbon dioxide and ethanol byproducts, respectively, increases the yield to 98%, thereby offering an efficient and practical alternative to chemical routes which yield 57-64%.

  17. Novel histone deacetylase inhibitor NCH-51 activates latent HIV-1 gene expression.

    PubMed

    Victoriano, Ann Florence B; Imai, Kenichi; Togami, Hiroaki; Ueno, Takaharu; Asamitsu, Kaori; Suzuki, Takayoshi; Miyata, Naoki; Ochiai, Kuniyasu; Okamoto, Takashi

    2011-04-01

    Pharmacological manipulations to purge human immunodeficiency virus (HIV) from latent reservoirs have been considered as an adjuvant therapeutic approach to highly-active antiretroviral therapy for the eradication of HIV. Our novel histone deacetylase inhibitor NCH-51 induced expression of latent HIV-1 with minimal cytotoxicity. Using chromatin immunoprecipitation assays, we observed a reduction of HDAC1 occupancy, histone hyperacetylation and the recruitment of positive transcription factors at the HIV-1 promoter in latently infected-cells under the treatment with NCH-51. Mutation studies of the long terminal repeat (LTR) revealed NCH-51 mediated gene expression through the Sp1 sites. When Sp1 expression was knocked-down by small interfering RNA, the NCH-51-mediated activation of a stably integrated HIV-1 LTR was attenuated. Moreover, the Sp1 inhibitor mithramycin A abolished the effects of NCH-51.

  18. Substituted indoles as HIV-1 non-nucleoside reverse transcriptase inhibitors: a patent evaluation (WO2015044928).

    PubMed

    Li, Xiao; Gao, Ping; Zhan, Peng; Liu, Xinyong

    2016-05-01

    The invention described in this patent (WO2015044928) is related to compounds based on the substituted indole scaffold, their synthetic process and application to inhibit HIV-1 replication as non-nucleoside reverse transcriptase inhibitors (NNRTIs). Some of the newly claimed compounds presented improved potency against wild-type (WT) HIV-1 strain in comparison to previously disclosed indole-based NNRTIs and were also shown to be effective against common resistant HIV-1 strains. In light of their novel structural characteristics, simple synthetic route and improved anti-HIV activity, these compounds deserve further study as promising NNRTIs.

  19. [RILPIVIRINE -- a novel HIV-1 non-nucleoside reverse transcriptase inhibitor].

    PubMed

    Snopková, Svatava; Havlíčková, Kateřina; Polák, Pavel; Šlesinger, Pavel; Husa, Petr

    2013-03-01

    The article summarizes the basic facts about the pharmacokinetic profile, metabolism and drug interactions of rilpivirine (RPV). This is the latest orally administered second-generation non-nucleoside reverse transcriptase inhibitor (NNRTI) for antiretroviral-naive patients with HIV-1 infection. Conformational flexibility and adaptability are the factors that dominantly determine the high resistance barrier of RPV and are the unique features of diarylpyrimidine inhibitors (DAPY inhibitors - 2nd generation NNRTIs). Multicentre studies ECHO and THRIVE are also reviewed. Current guidelines for the treatment of HIV/AIDS are mentioned as well as the role of RPV in current therapeutic regimens.

  20. Impact of protease inhibitors on intracellular concentration of tenofovir-diphosphate among HIV-1 infected patients

    PubMed Central

    Lahiri, Cecile D.; Tao, Sijia; Jiang, Yong; Sheth, Anandi N.; Acosta, Edward P.; Marconi, Vincent C.; Armstrong, Wendy S.; Schinazi, Raymond F.; Vunnava, Aswani; Sanford, Sara; Ofotokun, Ighovwerha

    2015-01-01

    Intracellular nucleoside reverse transcriptase inhibitor (NRTI) concentrations are associated with plasma HIV-1 response. Coadministration of protease inhibitors with NRTIs can affect intra-cellular concentrations due to protease inhibitor inhibition of efflux transporters. Tenofovir-diphosphate (TFV-DP) concentrations within peripheral blood mononuclear cells were compared among individuals receiving either atazanavir or darunavir-based regimens. There was a trend towards higher TFV-DP concentrations among women and among participants receiving atazanavir. TFV-DP intracellular concentrations were positively associated with undetectable plasma HIV-1 RNA. PMID:25870991

  1. Akt inhibitors as an HIV-1 infected macrophage-specific anti-viral therapy

    PubMed Central

    Chugh, Pauline; Bradel-Tretheway, Birgit; Monteiro-Filho, Carlos MR; Planelles, Vicente; Maggirwar, Sanjay B; Dewhurst, Stephen; Kim, Baek

    2008-01-01

    Background Unlike CD4+ T cells, HIV-1 infected macrophages exhibit extended life span even upon stress, consistent with their in vivo role as long-lived HIV-1 reservoirs. Results Here, we demonstrate that PI3K/Akt inhibitors, including clinically available Miltefosine, dramatically reduced HIV-1 production from long-living virus-infected macrophages. These PI3K/Akt inhibitors hyper-sensitize infected macrophages to extracellular stresses that they are normally exposed to, and eventually lead to cell death of infected macrophages without harming uninfected cells. Based on the data from these Akt inhibitors, we were able to further investigate how HIV-1 infection utilizes the PI3K/Akt pathway to establish the cytoprotective effect of HIV-1 infection, which extends the lifespan of infected macrophages, a key viral reservoir. First, we found that HIV-1 infection activates the well characterized pro-survival PI3K/Akt pathway in primary human macrophages, as reflected by decreased PTEN protein expression and increased Akt kinase activity. Interestingly, the expression of HIV-1 or SIV Tat is sufficient to mediate this cytoprotective effect, which is dependent on the basic domain of Tat – a region that has previously been shown to bind p53. Next, we observed that this interaction appears to contribute to the downregulation of PTEN expression, since HIV-1 Tat was found to compete with PTEN for p53 binding; this is known to result in p53 destabilization, with a consequent reduction in PTEN protein production. Conclusion Since HIV-1 infected macrophages display highly elevated Akt activity, our results collectively show that PI3K/Akt inhibitors may be a novel therapy for interfering with the establishment of long-living HIV-1 infected reservoirs. PMID:18237430

  2. MEROPS: the peptidase database.

    PubMed

    Rawlings, N D; Barrett, A J

    1999-01-01

    The MEROPS database (http://www.bi.bbsrc.ac.uk/Merops/Merops.+ ++htm) provides a catalogue and structure-based classification of peptidases (i.e. all proteolytic enzymes). This is a large group of proteins (approximately 2% of all gene products) that is of particular importance in medicine and biotechnology. An index of the peptidases by name or synonym gives access to a set of files termed PepCards each of which provides information on a single peptidase. Each card file contains information on classification and nomenclature, and hypertext links to the relevant entries in online databases for human genetics, protein and nucleic acid sequence data and tertiary structure. Another index provides access to the PepCards by organism name so that the user can retrieve all known peptidases from a particular species. The peptidases are classified into families on the basis of statistically significant similarities between the protein sequences in the part termed the 'peptidase unit' that is most directly responsible for activity. Families that are thought to have common evolutionary origins and are known or expected to have similar tertiary folds are grouped into clans. The MEROPS database provides sets of files called FamCards and ClanCards describing the individual families and clans. Each FamCard document provides links to other databases for sequence motifs and secondary and tertiary structures, and shows the distribution of the family across the major kingdoms of living creatures. Release 3.03 of MEROPS contains 758 peptidases, 153 families and 22 clans. We suggest that the MEROPS database provides a model for a way in which a system of classification for a functional group of proteins can be developed and used as an organizational framework around which to assemble a variety of related information.

  3. Soybean-derived Bowman-Birk Inhibitor (BBI) Inhibits HIV Replication in Macrophages

    PubMed Central

    Ma, Tong-Cui; Zhou, Run-Hong; Wang, Xu; Li, Jie-Liang; Sang, Ming; Zhou, Li; Zhuang, Ke; Hou, Wei; Guo, De-Yin; Ho, Wen-Zhe

    2016-01-01

    The Bowman-Birk inhibitor (BBI), a soybean-derived protease inhibitor, is known to have anti-inflammatory effect in both in vitro and in vivo systems. Macrophages play a key role in inflammation and immune activation, which is implicated in HIV disease progression. Here, we investigated the effect of BBI on HIV infection of peripheral blood monocyte-derived macrophages. We demonstrated that BBI could potently inhibit HIV replication in macrophages without cytotoxicity. Investigation of the mechanism(s) of BBI action on HIV showed that BBI induced the expression of IFN-β and multiple IFN stimulated genes (ISGs), including Myxovirus resistance protein 2 (Mx2), 2′,5′-oligoadenylate synthetase (OAS-1), Virus inhibitory protein (viperin), ISG15 and ISG56. BBI treatment of macrophages also increased the expression of several known HIV restriction factors, including APOBEC3F, APOBEC3G and tetherin. Furthermore, BBI enhanced the phosphorylation of IRF3, a key regulator of IFN-β. The inhibition of IFN-β pathway by the neutralization antibody to type I IFN receptor (Anti-IFNAR) abolished BBI-mediated induction of the anti-HIV factors and inhibition of HIV in macrophages. These findings that BBI could activate IFN-β-mediated signaling pathway, initialize the intracellular innate immunity in macrophages and potently inhibit HIV at multiple steps of viral replication cycle indicate the necessity to further investigate BBI as an alternative and cost-effective anti-HIV natural product. PMID:27734899

  4. Pyrroloaryls and pyrroloheteroaryls: Inhibitors of the HIV fusion/attachment, reverse transcriptase and integrase.

    PubMed

    Patel, Rahul V; Park, Se Won

    2015-09-01

    Heterocyclic compounds execute a very important role in drug design and discovery. This article provides the basic milestones of the research for pyrroloaryl and pyrroloheteroaryl based components targeting HIV viral replication cycle. Anti-HIV activity is elaborated for several classes of pyrrolo-compounds as pyrrolopyridines, pyrrolopyrimidines, pyrrolopyridazines, pyrrolobenzodiazepinones, pyrrolobenzothiazepines, pyrrolobenzoxazepinones, pyrrolophenanthridines, pyrroloquinoxalines, pyrrolotriazines, pyrroloquinolines, pyrrolopyrazinones, pyrrolothiatriazines, arylthiopyrroles and pyrrolopyrazolones targeting two essential HIV enzymes, reverse transcriptase and integrase as well as attachment/fusion of HIV virons to the host CD-4 cell. Such attempts were resulted in a discovery of highly potent anti-HIV agents suitable for clinical trials, for example, BMS-378806, BMS-585248, BMS-626529, BMS-663068, BMS-488043 and BMS-663749, etc. as anti-HIV attachment agents, triciribine, QX432, BI-1 and BI-2 as HIV RT inhibitors which are in preclinical or clinical development. Mechanism of action of compounds presented in this article towards the suppression of HIV attachment/fusion as well as against the activities of HIV enzymes reverse transcriptase and integrase has been discussed. Relationships of new compounds' molecular framework and HIV viral target has been overviewed in order to facilitate further construction of promising anti-HIV agents in future drug discovery process.

  5. Pyrroloaryls and pyrroloheteroaryls: Inhibitors of the HIV fusion/attachment, reverse transcriptase and integrase.

    PubMed

    Patel, Rahul V; Park, Se Won

    2015-09-01

    Heterocyclic compounds execute a very important role in drug design and discovery. This article provides the basic milestones of the research for pyrroloaryl and pyrroloheteroaryl based components targeting HIV viral replication cycle. Anti-HIV activity is elaborated for several classes of pyrrolo-compounds as pyrrolopyridines, pyrrolopyrimidines, pyrrolopyridazines, pyrrolobenzodiazepinones, pyrrolobenzothiazepines, pyrrolobenzoxazepinones, pyrrolophenanthridines, pyrroloquinoxalines, pyrrolotriazines, pyrroloquinolines, pyrrolopyrazinones, pyrrolothiatriazines, arylthiopyrroles and pyrrolopyrazolones targeting two essential HIV enzymes, reverse transcriptase and integrase as well as attachment/fusion of HIV virons to the host CD-4 cell. Such attempts were resulted in a discovery of highly potent anti-HIV agents suitable for clinical trials, for example, BMS-378806, BMS-585248, BMS-626529, BMS-663068, BMS-488043 and BMS-663749, etc. as anti-HIV attachment agents, triciribine, QX432, BI-1 and BI-2 as HIV RT inhibitors which are in preclinical or clinical development. Mechanism of action of compounds presented in this article towards the suppression of HIV attachment/fusion as well as against the activities of HIV enzymes reverse transcriptase and integrase has been discussed. Relationships of new compounds' molecular framework and HIV viral target has been overviewed in order to facilitate further construction of promising anti-HIV agents in future drug discovery process. PMID:26116177

  6. A small molecule HIV-1 inhibitor that targets the HIV-1 envelope and inhibits CD4 receptor binding

    PubMed Central

    Lin, Pin-Fang; Blair, Wade; Wang, Tao; Spicer, Timothy; Guo, Qi; Zhou, Nannan; Gong, Yi-Fei; Wang, H.-G. Heidi; Rose, Ronald; Yamanaka, Gregory; Robinson, Brett; Li, Chang-Ben; Fridell, Robert; Deminie, Carol; Demers, Gwendeline; Yang, Zheng; Zadjura, Lisa; Meanwell, Nicholas; Colonno, Richard

    2003-01-01

    BMS-378806 is a recently discovered small molecule HIV-1 inhibitor that blocks viral entrance to cells. The compound exhibits potent inhibitory activity against a panel of R5-(virus using the CCR5 coreceptor), X4-(virus using the CXCR4 coreceptor), and R5/X4 HIV-1 laboratory and clinical isolates of the B subtype (median EC50 of 0.04 μM) in culture assays. BMS-378806 is selective for HIV-1 and inactive against HIV-2, SIV and a panel of other viruses, and exhibits no significant cytotoxicity in the 14 cell types tested (concentration for 50% reduction of cell growth, >225 μM). Mechanism of action studies demonstrated that BMS-378806 binds to gp120 and inhibits the interactions of the HIV-1 envelope protein to cellular CD4 receptors. Further confirmation that BMS-378806 targets the envelope in infected cells was obtained through the isolation of resistant variants and the mapping of resistance substitutions to the HIV-1 envelope. In particular, two substitutions, M426L and M475I, are situated in the CD4 binding pocket of gp120. Recombinant HIV-1 carrying these two substitutions demonstrated significantly reduced susceptibility to compound inhibition. BMS-378806 displays many favorable pharmacological traits, such as low protein binding, minimal human serum effect on anti-HIV-1 potency, good oral bioavailability in animal species, and a clean safety profile in initial animal toxicology studies. Together, the data show that BMS-378806 is a representative of a new class of HIV inhibitors that has the potential to become a valued addition to our current armamentarium of antiretroviral drugs. PMID:12930892

  7. The Janus kinase inhibitor ruxolitinib reduces HIV replication in human macrophages and ameliorates HIV encephalitis in a murine model.

    PubMed

    Haile, Woldeab B; Gavegnano, Christina; Tao, Sijia; Jiang, Yong; Schinazi, Raymond F; Tyor, William R

    2016-08-01

    A hallmark of persistent HIV-1 infection in the central nervous system is increased activation of mononuclear phagocytes and surrounding astrogliosis, conferring persistent HIV-induced inflammation. This inflammation is believed to result in neuronal dysfunction and the clinical manifestations of HIV-associated neurocognitive disorders (HAND). The Jak/STAT pathway is activated in macrophages/myeloid cells upon HIV-1 infection, modulating many pro-inflammatory pathways that result in HAND, thereby representing an attractive cellular target. Thus, the impact of ruxolitinib, a Janus Kinase (Jak) 1/2 inhibitor that is FDA approved for myelofibrosis and polycythemia vera, was assessed for its potential to inhibit HIV-1 replication in macrophages and HIV-induced activation in monocytes/macrophages in culture. In addition, a murine model of HIV encephalitis (HIVE) was used to assess the impact of ruxolitinib on histopathological features of HIVE, brain viral load, as well as its ability to penetrate the blood-brain-barrier (BBB). Ruxolitinib was found to inhibit HIV-1 replication in macrophages, HIV-induced activation of monocytes (CD14/CD16) and macrophages (HLA-DR, CCR5, and CD163) without apparent toxicity. In vivo, systemically administered ruxolitinib was detected in the brain during HIVE in SCID mice and markedly inhibited astrogliosis. Together, these data indicate that ruxolitinib reduces HIV-induced activation and infiltration of monocytes/macrophages in vitro, reduces the replication of HIV in vitro, penetrates the BBB when systemically administered in mice and reduces astrogliosis in the brains of mice with HIVE. These data suggest that ruxolitinib will be useful as a novel therapeutic to treat humans with HAND. PMID:26851503

  8. Topical application of entry inhibitors as "virustats" to prevent sexual transmission of HIV infection

    PubMed Central

    Lederman, Michael M; Jump, Robin; Pilch-Cooper, Heather A; Root, Michael; Sieg, Scott F

    2008-01-01

    With the continuing march of the AIDS epidemic and little hope for an effective vaccine in the near future, work to develop a topical strategy to prevent HIV infection is increasingly important. This stated, the track record of large scale "microbicide" trials has been disappointing with nonspecific inhibitors either failing to protect women from infection or even increasing HIV acquisition. Newer strategies that target directly the elements needed for viral entry into cells have shown promise in non-human primate models of HIV transmission and as these agents have not yet been broadly introduced in regions of highest HIV prevalence, they are particularly attractive for prophylaxis. We review here the agents that can block HIV cellular entry and that show promise as topical strategies or "virustats" to prevent mucosal transmission of HIV infection PMID:19094217

  9. Inhibition Profiling of Retroviral Protease Inhibitors Using an HIV-2 Modular System

    PubMed Central

    Mahdi, Mohamed; Szojka, Zsófia; Mótyán, János András; Tőzsér, József

    2015-01-01

    Retroviral protease inhibitors (PIs) are fundamental pillars in the treatment of HIV infection and acquired immunodeficiency syndrome (AIDS). Currently used PIs are designed against HIV-1, and their effect on HIV-2 is understudied. Using a modular HIV-2 protease cassette system, inhibition profiling assays were carried out for protease inhibitors both in enzymatic and cell culture assays. Moreover, the treatment-associated resistance mutations (I54M, L90M) were introduced into the modular system, and comparative inhibition assays were performed to determine their effect on the susceptibility of the protease. Our results indicate that darunavir, saquinavir, indinavir and lopinavir were very effective HIV-2 protease inhibitors, while tipranavir, nelfinavir and amprenavir showed a decreased efficacy. I54M, L90M double mutation resulted in a significant reduction in the susceptibility to most of the inhibitors with the exception of tipranavir. To our knowledge, this modular system constitutes a novel approach in the field of HIV-2 protease characterization and susceptibility testing. PMID:26633459

  10. Resistance to reverse transcriptase inhibitors used in the treatment and prevention of HIV-1 infection.

    PubMed

    Sluis-Cremer, Nicolas; Wainberg, Mark A; Schinazi, Raymond F

    2015-01-01

    Inhibitors that target the retroviral enzyme reverse transcriptase (RT) have played an indispensable role in the treatment and prevention of HIV-1 infection. They can be grouped into two distinct therapeutic groups, namely the nucleoside and nucleotide RT inhibitors (NRTIs), and the non-nucleoside RT inhibitors (NNRTIs). NRTIs form the backbones of most first- and second-line antiretroviral therapy (ART) regimens formulated for the treatment of HIV-1 infection. They are also used to prevent mother-to-child transmission, and as pre-exposure prophylaxis in individuals at risk of HIV-1 infection. The NNRTIs nevirapine (NVP), efavirenz and rilpivirine also used to form part of first-line ART regimens, although this is no longer recommended, while etravirine can be used in salvage ART regimens. A single-dose of NVP administered to both mother and child has routinely been used in resource-limited settings to reduce the rate of HIV-1 transmission. Unfortunately, the development of HIV-1 resistance to RT inhibitors can compromise the efficacy of these antiviral drugs in both the treatment and prevention arenas. Here, we provide an up-to-date review on drug-resistance mutations in HIV-1 RT, and discuss their cross-resistance profiles, molecular mechanisms and clinical significance. PMID:26517190

  11. Inhibition Profiling of Retroviral Protease Inhibitors Using an HIV-2 Modular System.

    PubMed

    Mahdi, Mohamed; Szojka, Zsófia; Mótyán, János András; Tőzsér, József

    2015-12-01

    Retroviral protease inhibitors (PIs) are fundamental pillars in the treatment of HIV infection and acquired immunodeficiency syndrome (AIDS). Currently used PIs are designed against HIV-1, and their effect on HIV-2 is understudied. Using a modular HIV-2 protease cassette system, inhibition profiling assays were carried out for protease inhibitors both in enzymatic and cell culture assays. Moreover, the treatment-associated resistance mutations (I54M, L90M) were introduced into the modular system, and comparative inhibition assays were performed to determine their effect on the susceptibility of the protease. Our results indicate that darunavir, saquinavir, indinavir and lopinavir were very effective HIV-2 protease inhibitors, while tipranavir, nelfinavir and amprenavir showed a decreased efficacy. I54M, L90M double mutation resulted in a significant reduction in the susceptibility to most of the inhibitors with the exception of tipranavir. To our knowledge, this modular system constitutes a novel approach in the field of HIV-2 protease characterization and susceptibility testing. PMID:26633459

  12. The BET inhibitor OTX015 reactivates latent HIV-1 through P-TEFb.

    PubMed

    Lu, Panpan; Qu, Xiying; Shen, Yinzhong; Jiang, Zhengtao; Wang, Pengfei; Zeng, Hanxian; Ji, Haiyan; Deng, Junxiao; Yang, Xinyi; Li, Xian; Lu, Hongzhou; Zhu, Huanzhang

    2016-01-01

    None of the currently used anti-HIV-1 agents can effectively eliminate latent HIV-1 reservoirs, which is a major hurdle to a complete cure for AIDS. We report here that a novel oral BET inhibitor OTX015, a thienotriazolodiazepine compound that has entered phase Ib clinical development for advanced hematologic malignancies, can effectively reactivate HIV-1 in different latency models with an EC50 value 1.95-4.34 times lower than JQ1, a known BET inhibitor that can reactivate HIV-1 latency. We also found that OTX015 was more potent when used in combination with prostratin. More importantly, OTX015 treatment induced HIV-1 full-length transcripts and viral outgrowth in resting CD4(+) T cells from infected individuals receiving suppressive antiretroviral therapy (ART), while exerting minimal toxicity and effects on T cell activation. Finally, biochemical analysis showed that OTX015-mediated activation of HIV-1 involved an increase in CDK9 occupancy and RNAP II C-terminal domain (CTD) phosphorylation. Our results suggest that the BET inhibitor OTX015 may be a candidate for anti-HIV-1-latency therapies. PMID:27067814

  13. The BET inhibitor OTX015 reactivates latent HIV-1 through P-TEFb

    PubMed Central

    Lu, Panpan; Qu, Xiying; Shen, Yinzhong; Jiang, Zhengtao; Wang, Pengfei; Zeng, Hanxian; Ji, Haiyan; Deng, Junxiao; Yang, Xinyi; Li, Xian; Lu, Hongzhou; Zhu, Huanzhang

    2016-01-01

    None of the currently used anti-HIV-1 agents can effectively eliminate latent HIV-1 reservoirs, which is a major hurdle to a complete cure for AIDS. We report here that a novel oral BET inhibitor OTX015, a thienotriazolodiazepine compound that has entered phase Ib clinical development for advanced hematologic malignancies, can effectively reactivate HIV-1 in different latency models with an EC50 value 1.95–4.34 times lower than JQ1, a known BET inhibitor that can reactivate HIV-1 latency. We also found that OTX015 was more potent when used in combination with prostratin. More importantly, OTX015 treatment induced HIV-1 full-length transcripts and viral outgrowth in resting CD4+ T cells from infected individuals receiving suppressive antiretroviral therapy (ART), while exerting minimal toxicity and effects on T cell activation. Finally, biochemical analysis showed that OTX015-mediated activation of HIV-1 involved an increase in CDK9 occupancy and RNAP II C-terminal domain (CTD) phosphorylation. Our results suggest that the BET inhibitor OTX015 may be a candidate for anti-HIV-1-latency therapies. PMID:27067814

  14. Simian-Tropic HIV as a Model To Study Drug Resistance against Integrase Inhibitors

    PubMed Central

    Wares, Melissa; Hassounah, Said; Mesplède, Thibault; Sandstrom, Paul A.

    2015-01-01

    Drug resistance represents a key aspect of human immunodeficiency virus (HIV) treatment failure. It is important to develop nonhuman primate models for studying issues of drug resistance and the persistence and transmission of drug-resistant viruses. However, relatively little work has been conducted using either simian immunodeficiency virus (SIV) or SIV/HIV recombinant viruses for studying resistance against integrase strand transfer inhibitors (INSTIs). Here, we used a T-cell-tropic SIV/HIV recombinant virus in which the capsid and vif regions of HIV-1 were replaced with their SIV counterparts (simian-tropic HIV-1 [stHIV-1](SCA,SVIF)) to study the impact of a number of drug resistance substitutions in the integrase coding region at positions E92Q, G118R, E138K, Y143R, S153Y, N155H, and R263K on drug resistance, viral infectivity, and viral replication capacity. Our results show that each of these substitutions exerted effects that were similar to their effects in HIV-1. Substitutions associated with primary resistance against dolutegravir were more detrimental to stHIV-1(SCA,SVIF) infectiousness than were resistance substitutions associated with raltegravir and elvitegravir, consistent with data that have been reported for HIV-1. These findings support the role of stHIV-1(SCA,SVIF) as a useful model with which to evaluate the role of INSTI resistance substitutions on viral persistence, transmissibility, and pathogenesis in a nonhuman primate model. PMID:25583721

  15. Discovery of HIV-1 integrase inhibitors: pharmacophore mapping, virtual screening, molecular docking, synthesis, and biological evaluation.

    PubMed

    Bhatt, Hardik; Patel, Paresh; Pannecouque, Christophe

    2014-02-01

    HIV-1 integrase enzyme plays an important role in the life cycle of HIV and responsible for integration of virus into human genome. Here, both computational and synthetic approaches were used to design and synthesize newer HIV-1 integrase inhibitors. Pharmacophore mapping was performed on 20 chemically diverse molecules using DISCOtech, and refinement was carried out using GASP. Ten pharmacophore models were generated, and model 2, containing four features including two donor sites, one acceptor atom, and one hydrophobic region, was considered the best model as it has the highest fitness score. It was used as a query in NCI and Maybridge databases. Molecules having more than 99% Q(fit) value were used to design 30 molecules bearing pteridine ring and were docked on co-crystal structure of HIV-1 integrase enzyme. Among these, six molecules, showing good docking score compared with the reference standards, were synthesized by conventional as well as microwave-assisted methods. All compounds were characterized by physical and spectral data and evaluated for in vitro anti-HIV activity against the replication of HIV-1 (IIIB) in MT-4 cells. The used approach of molecular docking and anti-HIV activity data of designed molecules will provide significant insights to discover novel HIV-1 Integrase Inhibitors. PMID:23957390

  16. Identification of peptidases in highly pathogenic vs. weakly pathogenic Naegleria fowleri amebae.

    PubMed

    Vyas, Ishan K; Jamerson, Melissa; Cabral, Guy A; Marciano-Cabral, Francine

    2015-01-01

    Naegleria fowleri, a free-living ameba, is the causative agent of Primary Amebic Meningoencephalitis. Highly pathogenic mouse-passaged amebae (Mp) and weakly pathogenic axenically grown (Ax) N. fowleri were examined for peptidase activity. Zymography and azocasein peptidase activity assays demonstrated that Mp and Ax N. fowleri exhibited a similar peptidase pattern. Prominent for whole cell lysates, membranes and conditioned medium (CM) from Mp and Ax amebae was the presence of an activity band of approximately 58 kDa that was sensitive to E64, a cysteine peptidase inhibitor. However, axenically grown N. fowleri demonstrated a high level of this peptidase activity in membrane preparations. The inhibitor E64 also reduced peptidase activity in ameba-CM consistent with the presence of secreted cysteine peptidases. Exposure of Mp amebae to E64 reduced their migration through matrigel that was used as an extracellular matrix, suggesting a role for cysteine peptidases in invasion of the central nervous system (CNS). The collective results suggest that the profile of peptidases is not a discriminative marker for distinguishing Mp from Ax N. fowleri. However, the presence of a prominent level of activity for cysteine peptidases in N. fowleri membranes and CM, suggests that these enzymes may serve to facilitate passage of the amebae into the CNS. PMID:25066578

  17. Identification of peptidases in highly pathogenic vs. weakly pathogenic Naegleria fowleri amebae.

    PubMed

    Vyas, Ishan K; Jamerson, Melissa; Cabral, Guy A; Marciano-Cabral, Francine

    2015-01-01

    Naegleria fowleri, a free-living ameba, is the causative agent of Primary Amebic Meningoencephalitis. Highly pathogenic mouse-passaged amebae (Mp) and weakly pathogenic axenically grown (Ax) N. fowleri were examined for peptidase activity. Zymography and azocasein peptidase activity assays demonstrated that Mp and Ax N. fowleri exhibited a similar peptidase pattern. Prominent for whole cell lysates, membranes and conditioned medium (CM) from Mp and Ax amebae was the presence of an activity band of approximately 58 kDa that was sensitive to E64, a cysteine peptidase inhibitor. However, axenically grown N. fowleri demonstrated a high level of this peptidase activity in membrane preparations. The inhibitor E64 also reduced peptidase activity in ameba-CM consistent with the presence of secreted cysteine peptidases. Exposure of Mp amebae to E64 reduced their migration through matrigel that was used as an extracellular matrix, suggesting a role for cysteine peptidases in invasion of the central nervous system (CNS). The collective results suggest that the profile of peptidases is not a discriminative marker for distinguishing Mp from Ax N. fowleri. However, the presence of a prominent level of activity for cysteine peptidases in N. fowleri membranes and CM, suggests that these enzymes may serve to facilitate passage of the amebae into the CNS.

  18. 2-Aminothiazolones as Anti-HIV Agents That Act as gp120-CD4 Inhibitors

    PubMed Central

    Tiberi, Marika; Tintori, Cristina; Ceresola, Elisa Rita; Fazi, Roberta; Zamperini, Claudio; Calandro, Pierpaolo; Franchi, Luigi; Selvaraj, Manikandan; Botta, Lorenzo; Sampaolo, Michela; Saita, Diego; Ferrarese, Roberto; Clementi, Massimo

    2014-01-01

    We report here the synthesis of 2-aminothiazolones along with their biological properties as novel anti-HIV agents. Such compounds have proven to act through the inhibition of the gp120-CD4 protein-protein interaction that occurs at the very early stage of the HIV-1 entry process. No cytotoxicity was found for these compounds, and broad antiviral activities against laboratory strains and pseudotyped viruses were documented. Docking simulations have also been applied to predict the mechanism, at the molecular level, by which the inhibitors were able to interact within the Phe43 cavity of HIV-1 gp120. Furthermore, a preliminary absorption, distribution, metabolism, and excretion (ADME) evaluation was performed. Overall, this study led the basis for the development of more potent HIV entry inhibitors. PMID:24614386

  19. Safety and effectiveness of dipeptidyl peptidase-4 inhibitors versus intermediate-acting insulin or placebo for patients with type 2 diabetes failing two oral antihyperglycaemic agents: a systematic review and network meta-analysis

    PubMed Central

    Tricco, Andrea C; Antony, Jesmin; Khan, Paul A; Ghassemi, Marco; Hamid, Jemila S; Ashoor, Huda; Blondal, Erik; Soobiah, Charlene; Yu, Catherine H; Hutton, Brian; Hemmelgarn, Brenda R; Moher, David; Majumdar, Sumit R; Straus, Sharon E

    2014-01-01

    Objective To evaluate the effectiveness and safety of dipeptidyl peptidase-4 (DPP-4) inhibitors versus intermediate-acting insulin for adults with type 2 diabetes mellitus (T2DM) and poor glycaemic control despite treatment with two oral agents. Setting Studies were multicentre and multinational. Participants Ten studies including 2967 patients with T2DM. Interventions Studies that examined DPP-4 inhibitors compared with each other, intermediate-acting insulin, no treatment or placebo in patients with T2DM. Primary and secondary outcome measures Primary outcome was glycosylated haemoglobin (HbA1c). Secondary outcomes were healthcare utilisation, body weight, fractures, quality of life, microvascular complications, macrovascular complications, all-cause mortality, harms, cost and cost-effectiveness. Results 10 randomised clinical trials with 2967 patients were included after screening 5831 titles and abstracts, and 180 full-text articles. DPP-4 inhibitors significantly reduced HbA1c versus placebo in network meta-analysis (NMA; mean difference (MD) −0.62%, 95% CI −0.93% to −0.33%) and meta-analysis (MD −0.61%, 95% CI −0.81% to −0.41%), respectively. Significant differences in HbA1c were not observed for neutral protamine Hagedorn (NPH) insulin versus placebo and DPP-4 inhibitors versus NPH insulin in NMA. In meta-analysis, no significant differences were observed between DPP-4 inhibitors and placebo for severe hypoglycaemia, weight gain, cardiovascular disease, overall harms, treatment-related harms and mortality, although patients receiving DPP-4 inhibitors experienced less infections (relative risk 0.72, 95% CI 0.57 to 0.91). Conclusions DPP-4 inhibitors were superior to placebo in reducing HbA1c levels in adults with T2DM taking at least two oral agents. Compared with placebo, no safety signals were detected with DPP-4 inhibitors and there was a reduced risk of infection. There was no significant difference in HbA1c observed between NPH and placebo or

  20. In Vitro Reactivation of Replication-Competent and Infectious HIV-1 by Histone Deacetylase Inhibitors

    PubMed Central

    Banga, Riddhima; Procopio, Francesco Andrea; Cavassini, Matthias

    2015-01-01

    ABSTRACT The existence of long-lived HIV-1-infected resting memory CD4 T cells is thought to be the primary obstacle to HIV-1 eradication. In the search for novel therapeutic approaches that may reverse HIV-1 latency, inhibitors of histone deacetylases (HDACis) have been tested to reactivate HIV-1 replication with the objective of rendering HIV-1-infected cells susceptible to elimination either by HIV-specific CD8 T cells or through virus-mediated cytopathicity. In the present study, we evaluated the efficiency of HDACis to reactivate HIV-1 replication from resting memory CD4 T cells isolated from aviremic long-term-treated HIV-1-infected subjects. We demonstrate that following prolonged/repeated treatment of resting memory CD4 T cells with HDACis, HIV-1 replication may be induced from primary resting memory CD4 T cells isolated from aviremic long-term-treated HIV-1-infected subjects. More importantly, we demonstrate that HIV-1 reactivated in the cell cultures was not only replication competent but also infectious. Interestingly, givinostat, an HDACi that has not been investigated in clinical trials, was more efficient than vorinostat, panobinostat, and romidepsin in reversing HIV-1 latency in vitro. Taken together, these results support further evaluation of givinostat as a latency-reversing agent (LRA) in aviremic long-term-treated HIV-1-infected subjects. IMPORTANCE The major barrier to HIV cure is the existence of long-lived latently HIV-1-infected resting memory CD4 T cells. Latently HIV-1-infected CD4 T cells are transcriptionally silent and are therefore not targeted by conventional antiretroviral therapy (ART) or the immune system. In this context, one strategy to target latently infected cells is based on pharmacological molecules that may force the virus to replicate and would therefore render HIV-1-infected cells susceptible to elimination either by HIV-specific CD8 T cells or through virus-mediated cytopathicity. In this context, we developed an

  1. Computer tools in the discovery of HIV-I integrase inhibitors

    PubMed Central

    Liao, Chenzhong; Nicklaus, Marc C

    2010-01-01

    Computer-aided drug design (CADD) methodologies have made great advances and contributed significantly to the discovery and/or optimization of many clinically used drugs in recent years. CADD tools have likewise been applied to the discovery of inhibitors of HIV-I integrase, a difficult and worthwhile target for the development of efficient anti-HIV drugs. This article reviews the application of CADD tools, including pharmacophore search, quantitative structure–activity relationships, model building of integrase complexed with viral DNA and quantum-chemical studies in the discovery of HIV-I integrase inhibitors. Different structurally diverse integrase inhibitors have been identified by, or with significant help from, various CADD tools. PMID:21426160

  2. 6,7-Dihydroxy-1-oxoisoindoline-4-sulfonamide-containing HIV-1 integrase inhibitors.

    PubMed

    Zhao, Xue Zhi; Maddali, Kasthuraiah; Smith, Steven J; Métifiot, Mathieu; Johnson, Barry C; Marchand, Christophe; Hughes, Stephen H; Pommier, Yves; Burke, Terrence R

    2012-12-15

    Although an extensive body of scientific and patent literature exists describing the development of HIV-1 integrase (IN) inhibitors, Merck's raltegravir and Gilead's elvitegravir remain the only IN inhibitors FDA-approved for the treatment of AIDS. The emergence of raltegravir-resistant strains of HIV-1 containing mutated forms of IN underlies the need for continued efforts to enhance the efficacy of IN inhibitors against resistant mutants. We have previously described bicyclic 6,7-dihydroxyoxoisoindolin-1-ones that show good IN inhibitory potency. This report describes the effects of introducing substituents into the 4- and 5-positions of the parent 6,7-dihydroxyoxoisoindolin-1-one platform. We have developed several sulfonamide-containing analogs that enhance potency in cell-based HIV assays by more than two orders-of-magnitude and we describe several compounds that are more potent than raltegravir against the clinically relevant Y143R IN mutant.

  3. Probing Multidrug-Resistance and Protein-Ligand Interactions with Oxatricyclic Designed Ligands in HIV-1 Protease Inhibitors

    SciTech Connect

    Ghosh, Arun K.; Xu, Chun-Xiao; Rao, Kalapala V.; Baldridge, Abigail; Agniswamy, Johnson; Wang, Yuan-Fang; Weber, Irene T.; Aoki, Manabu; Miguel, Salcedo Pedro; Amano, Masayuki; Mitsuya, Hiroaki

    2010-10-29

    We report the design, synthesis, biological evaluation, and X-ray crystallographic analysis of a new class of HIV-1 protease inhibitors. Compound 4 proved to be an extremely potent inhibitor toward various multidrug-resistant HIV-1 variants, representing a near 10-fold improvement over darunavir (DRV). Compound 4 also blocked protease dimerization with at least 10-fold greater potency than DRV.

  4. Ebselen, a Small-Molecule Capsid Inhibitor of HIV-1 Replication

    PubMed Central

    Thenin-Houssier, Suzie; de Vera, Ian Mitchelle S.; Pedro-Rosa, Laura; Brady, Angela; Richard, Audrey; Konnick, Briana; Opp, Silvana; Buffone, Cindy; Fuhrmann, Jakob; Kota, Smitha; Billack, Blase; Pietka-Ottlik, Magdalena; Tellinghuisen, Timothy; Choe, Hyeryun; Spicer, Timothy; Scampavia, Louis; Diaz-Griffero, Felipe; Kojetin, Douglas J.

    2016-01-01

    The human immunodeficiency virus type 1 (HIV-1) capsid plays crucial roles in HIV-1 replication and thus represents an excellent drug target. We developed a high-throughput screening method based on a time-resolved fluorescence resonance energy transfer (HTS-TR-FRET) assay, using the C-terminal domain (CTD) of HIV-1 capsid to identify inhibitors of capsid dimerization. This assay was used to screen a library of pharmacologically active compounds, composed of 1,280 in vivo-active drugs, and identified ebselen [2-phenyl-1,2-benzisoselenazol-3(2H)-one], an organoselenium compound, as an inhibitor of HIV-1 capsid CTD dimerization. Nuclear magnetic resonance (NMR) spectroscopic analysis confirmed the direct interaction of ebselen with the HIV-1 capsid CTD and dimer dissociation when ebselen is in 2-fold molar excess. Electrospray ionization mass spectrometry revealed that ebselen covalently binds the HIV-1 capsid CTD, likely via a selenylsulfide linkage with Cys198 and Cys218. This compound presents anti-HIV activity in single and multiple rounds of infection in permissive cell lines as well as in primary peripheral blood mononuclear cells. Ebselen inhibits early viral postentry events of the HIV-1 life cycle by impairing the incoming capsid uncoating process. This compound also blocks infection of other retroviruses, such as Moloney murine leukemia virus and simian immunodeficiency virus, but displays no inhibitory activity against hepatitis C and influenza viruses. This study reports the use of TR-FRET screening to successfully identify a novel capsid inhibitor, ebselen, validating HIV-1 capsid as a promising target for drug development. PMID:26810656

  5. Mass Spectrometric Characterization of HIV-1 Reverse Transcriptase Interactions with Non-nucleoside Reverse Transcriptase Inhibitors.

    PubMed

    Thammaporn, Ratsupa; Ishii, Kentaro; Yagi-Utsumi, Maho; Uchiyama, Susumu; Hannongbua, Supa; Kato, Koichi

    2016-01-01

    Non-nucleoside reverse transcriptase inhibitors (NNRTIs) of human immunodeficiency virus type 1 reverse transcriptase (HIV-1 RT) have been developed for the treatment of acquired immunodeficiency syndrome. HIV-1 RT binding to NNRTIs has been characterized by various biophysical techniques. However, these techniques are often hampered by the low water solubility of the inhibitors, such as the current promising diarylpyrimidine-based inhibitors rilpivirine and etravirine. Hence, a conventional and rapid method that requires small sample amounts is desirable for studying NNRTIs with low water solubility. Here we successfully applied a recently developed mass spectrometric technique under non-denaturing conditions to characterize the interactions between the heterodimeric HIV-1 RT enzyme and NNRTIs with different inhibitory activities. Our data demonstrate that mass spectrometry serves as a semi-quantitative indicator of NNRTI binding affinity for HIV-1 RT using low and small amounts of samples, offering a new high-throughput screening tool for identifying novel RT inhibitors as anti-HIV drugs. PMID:26934936

  6. SAMHD1 has differential impact on the efficacies of HIV nucleoside reverse transcriptase inhibitors.

    PubMed

    Huber, Andrew D; Michailidis, Eleftherios; Schultz, Megan L; Ong, Yee T; Bloch, Nicolin; Puray-Chavez, Maritza N; Leslie, Maxwell D; Ji, Juan; Lucas, Anthony D; Kirby, Karen A; Landau, Nathaniel R; Sarafianos, Stefan G

    2014-08-01

    Sterile alpha motif- and histidine/aspartic acid domain-containing protein 1 (SAMHD1) limits HIV-1 replication by hydrolyzing deoxynucleoside triphosphates (dNTPs) necessary for reverse transcription. Nucleoside reverse transcriptase inhibitors (NRTIs) are components of anti-HIV therapies. We report here that SAMHD1 cleaves NRTI triphosphates (TPs) at significantly lower rates than dNTPs and that SAMHD1 depletion from monocytic cells affects the susceptibility of HIV-1 infections to NRTIs in complex ways that depend not only on the relative changes in dNTP and NRTI-TP concentrations but also on the NRTI activation pathways. PMID:24867973

  7. SAMHD1 Has Differential Impact on the Efficacies of HIV Nucleoside Reverse Transcriptase Inhibitors

    PubMed Central

    Huber, Andrew D.; Michailidis, Eleftherios; Schultz, Megan L.; Ong, Yee T.; Bloch, Nicolin; Puray-Chavez, Maritza N.; Leslie, Maxwell D.; Ji, Juan; Lucas, Anthony D.; Kirby, Karen A.; Landau, Nathaniel R.

    2014-01-01

    Sterile alpha motif- and histidine/aspartic acid domain-containing protein 1 (SAMHD1) limits HIV-1 replication by hydrolyzing deoxynucleoside triphosphates (dNTPs) necessary for reverse transcription. Nucleoside reverse transcriptase inhibitors (NRTIs) are components of anti-HIV therapies. We report here that SAMHD1 cleaves NRTI triphosphates (TPs) at significantly lower rates than dNTPs and that SAMHD1 depletion from monocytic cells affects the susceptibility of HIV-1 infections to NRTIs in complex ways that depend not only on the relative changes in dNTP and NRTI-TP concentrations but also on the NRTI activation pathways. PMID:24867973

  8. Discovery and crystallography of bicyclic arylaminoazines as potent inhibitors of HIV-1 reverse transcriptase.

    PubMed

    Lee, Won-Gil; Frey, Kathleen M; Gallardo-Macias, Ricardo; Spasov, Krasimir A; Chan, Albert H; Anderson, Karen S; Jorgensen, William L

    2015-11-01

    Non-nucleoside inhibitors of HIV-1 reverse transcriptase (HIV-RT) are reported that incorporate a 7-indolizinylamino or 2-naphthylamino substituent on a pyrimidine or 1,3,5-triazine core. The most potent compounds show below 10 nanomolar activity towards wild-type HIV-1 and variants bearing Tyr181Cys and Lys103Asn/Tyr181Cys resistance mutations. The compounds also feature good aqueous solubility. Crystal structures for two complexes enhance the analysis of the structure-activity data.

  9. Dipeptidyl peptidase 4 - An important digestive peptidase in Tenebrio molitor larvae.

    PubMed

    Tereshchenkova, Valeriia F; Goptar, Irina A; Kulemzina, Irina A; Zhuzhikov, Dmitry P; Serebryakova, Marina V; Belozersky, Mikhail A; Dunaevsky, Yakov E; Oppert, Brenda; Filippova, Irina Yu; Elpidina, Elena N

    2016-09-01

    Dipeptidyl peptidase 4 (DPP 4) is a proline specific serine peptidase that plays an important role in different regulatory processes in mammals. In this report, we isolated and characterized a unique secreted digestive DPP 4 from the anterior midgut of a stored product pest, Tenebrio molitor larvae (TmDPP 4), with a biological function different than that of the well-studied mammalian DPP 4. The sequence of the purified enzyme was confirmed by mass-spectrometry, and was identical to the translated RNA sequence found in a gut EST database. The purified peptidase was characterized according to its localization in the midgut, and substrate specificity and inhibitor sensitivity were compared with those of human recombinant DPP 4 (rhDPP 4). The T. molitor enzyme was localized mainly in the anterior midgut of the larvae, and 81% of the activity was found in the fraction of soluble gut contents, while human DPP 4 is a membrane enzyme. TmDPP 4 was stable in the pH range 5.0-9.0, with an optimum activity at pH 7.9, similar to human DPP 4. Only specific inhibitors of serine peptidases, diisopropyl fluorophosphate and phenylmethylsulfonyl fluoride, suppressed TmDPP 4 activity, and the specific dipeptidyl peptidase inhibitor vildagliptin was most potent. The highest rate of TmDPP 4 hydrolysis was found for the synthetic substrate Arg-Pro-pNA, while Ala-Pro-pNA was a better substrate for rhDPP 4. Related to its function in the insect midgut, TmDPP 4 efficiently hydrolyzed the wheat storage proteins gliadins, which are major dietary proteins of T. molitor. PMID:27395781

  10. Protease inhibitors effectively block cell-to-cell spread of HIV-1 between T cells

    PubMed Central

    2013-01-01

    Background The Human Immunodeficiency Virus type-1 (HIV-1) spreads by cell-free diffusion and by direct cell-to-cell transfer, the latter being a significantly more efficient mode of transmission. Recently it has been suggested that cell-to-cell spread may permit ongoing virus replication in the presence of antiretroviral therapy (ART) based on studies performed using Reverse Transcriptase Inhibitors (RTIs). Protease Inhibitors (PIs) constitute an important component of ART; however whether this class of inhibitors can suppress cell-to-cell transfer of HIV-1 is unexplored. Here we have evaluated the inhibitory effect of PIs during cell-to-cell spread of HIV-1 between T lymphocytes. Results Using quantitative assays in cell line and primary cell systems that directly measure the early steps of HIV-1 infection we find that the PIs Lopinavir and Darunavir are equally potent against both cell-free and cell-to-cell spread of HIV-1. We further show that a protease resistant mutant maintains its resistant phenotype during cell-to-cell spread and is transmitted more efficiently than wild-type virus in the presence of drug. By contrast we find that T cell-T cell spread of HIV-1 is 4–20 fold more resistant to inhibition by the RTIs Nevirapine, Zidovudine and Tenofovir. Notably, varying the ratio of infected and uninfected cells in co-culture impacted on the degree of inhibition, indicating that the relative efficacy of ART is dependent on the multiplicity of infection. Conclusions We conclude that if the variable effects of antiviral drugs on cell-to-cell virus dissemination of HIV-1 do indeed impact on viral replication and maintenance of viral reservoirs this is likely to be influenced by the antiviral drug class, since PIs appear particularly effective against both modes of HIV-1 spread. PMID:24364896

  11. (2R)-4-Oxo-4[3-(Trifluoromethyl)-5,6-diihydro:1,2,4}triazolo[4,3-a}pyrazin-7(8H)-y1]-1-(2,4,5-trifluorophenyl)butan-2-amine: A Potent, Orally Active Dipeptidyl Peptidase IV Inhibitor for the Treatment of Type 2 Diabetes

    SciTech Connect

    Kim, D.; Wang, L.; Beconi, M.; Eiermann, G.; Fisher, M.; He, H.; Hickey, G.; Kowalchick, Jennifer; Leiting, Barbara; Lyons, K.; Marsilio, F.; McCann, F.; Patel, R.; Petrov, A.; Scapin, G.; Patel, S.; Roy, R.; Wu, J.; Wyvratt, M.; Zhang, B.; Zhu, L.; Thornberry, N.; Weber, A.

    2010-11-10

    A novel series of {beta}-amino amides incorporating fused heterocycles, i.e., triazolopiperazines, were synthesized and evaluated as inhibitors of dipeptidyl peptidase IV (DPP-IV) for the treatment of type 2 diabetes. (2R)-4-Oxo-4-[3-(trifluoromethyl)-5,6-dihydro[1,2,4]triazolo[4,3-a]pyrazin-7(8H)-yl]-1-(2,4,5-trifluorophenyl)butan-2-amine (1) is a potent, orally active DPP-IV inhibitor (IC{sub 50} = 18 nM) with excellent selectivity over other proline-selective peptidases, oral bioavailability in preclinical species, and in vivo efficacy in animal models. MK-0431, the phosphate salt of compound 1, was selected for development as a potential new treatment for type 2 diabetes.

  12. Synergistic reduction of HIV-1 infectivity by 5-azacytidine and inhibitors of ribonucleotide reductase.

    PubMed

    Rawson, Jonathan M O; Roth, Megan E; Xie, Jiashu; Daly, Michele B; Clouser, Christine L; Landman, Sean R; Reilly, Cavan S; Bonnac, Laurent; Kim, Baek; Patterson, Steven E; Mansky, Louis M

    2016-06-01

    Although many compounds have been approved for the treatment of human immunodeficiency type-1 (HIV-1) infection, additional anti-HIV-1 drugs (particularly those belonging to new drug classes) are still needed due to issues such as long-term drug-associated toxicities, transmission of drug-resistant variants, and development of multi-class resistance. Lethal mutagenesis represents an antiviral strategy that has not yet been clinically translated for HIV-1 and is based on the use of small molecules to induce excessive levels of deleterious mutations within the viral genome. Here, we show that 5-azacytidine (5-aza-C), a ribonucleoside analog that induces the lethal mutagenesis of HIV-1, and multiple inhibitors of the enzyme ribonucleotide reductase (RNR) interact in a synergistic fashion to more effectively reduce the infectivity of HIV-1. In these drug combinations, RNR inhibitors failed to significantly inhibit the conversion of 5-aza-C to 5-aza-2'-deoxycytidine, suggesting that 5-aza-C acts primarily as a deoxyribonucleoside even in the presence of RNR inhibitors. The mechanism of antiviral synergy was further investigated for the combination of 5-aza-C and one specific RNR inhibitor, resveratrol, as this combination improved the selectivity index of 5-aza-C to the greatest extent. Antiviral synergy was found to be primarily due to the reduced accumulation of reverse transcription products rather than the enhancement of viral mutagenesis. To our knowledge, these observations represent the first demonstration of antiretroviral synergy between a ribonucleoside analog and RNR inhibitors, and encourage the development of additional ribonucleoside analogs and RNR inhibitors with improved antiretroviral activity. PMID:27117260

  13. Bis-Tetrahydrofuran: a Privileged Ligand for Darunavir and a New Generation of HIV Protease Inhibitors That Combat Drug Resistance

    SciTech Connect

    Ghosh, Arun K.; Sridhar, Perali Ramu; Kumaragurubaran, Nagaswamy; Koh, Yasuhiro; Weber, Irene T.; Mitsuya, Hiroaki

    2008-06-06

    Two inhibitors that incorporate bis-THF as an effective high-affinity P{sub 2} ligand for the HIV-1 protease substrate binding site maintain impressive potency against mutant strains resistant to currently approved protease inhibitors. Crystallographic structures of protein-ligand complexes help to explain the superior antiviral property of these inhibitors and their potency against a wide spectrum of HIV-1 strains.

  14. Small Molecule Inhibitors of BAF; A Promising Family of Compounds in HIV-1 Latency Reversal

    PubMed Central

    Stoszko, Mateusz; De Crignis, Elisa; Rokx, Casper; Khalid, Mir Mubashir; Lungu, Cynthia; Palstra, Robert-Jan; Kan, Tsung Wai; Boucher, Charles; Verbon, Annelies; Dykhuizen, Emily C.; Mahmoudi, Tokameh

    2015-01-01

    Persistence of latently infected cells in presence of Anti-Retroviral Therapy presents the main obstacle to HIV-1 eradication. Much effort is thus placed on identification of compounds capable of HIV-1 latency reversal in order to render infected cells susceptible to viral cytopathic effects and immune clearance. We identified the BAF chromatin remodeling complex as a key player required for maintenance of HIV-1 latency, highlighting its potential as a molecular target for inhibition in latency reversal. Here, we screened a recently identified panel of small molecule inhibitors of BAF (BAFi's) for potential to activate latent HIV-1. Latency reversal was strongly induced by BAFi's Caffeic Acid Phenethyl Ester and Pyrimethamine, two molecules previously characterized for clinical application. BAFi's reversed HIV-1 latency in cell line based latency models, in two ex vivo infected primary cell models of latency, as well as in HIV-1 infected patient's CD4 + T cells, without inducing T cell proliferation or activation. BAFi-induced HIV-1 latency reversal was synergistically enhanced upon PKC pathway activation and HDAC-inhibition. Therefore BAFi's constitute a promising family of molecules for inclusion in therapeutic combinatorial HIV-1 latency reversal. PMID:26870822

  15. Small Molecule Inhibitors of BAF; A Promising Family of Compounds in HIV-1 Latency Reversal.

    PubMed

    Stoszko, Mateusz; De Crignis, Elisa; Rokx, Casper; Khalid, Mir Mubashir; Lungu, Cynthia; Palstra, Robert-Jan; Kan, Tsung Wai; Boucher, Charles; Verbon, Annelies; Dykhuizen, Emily C; Mahmoudi, Tokameh

    2016-01-01

    Persistence of latently infected cells in presence of Anti-Retroviral Therapy presents the main obstacle to HIV-1 eradication. Much effort is thus placed on identification of compounds capable of HIV-1 latency reversal in order to render infected cells susceptible to viral cytopathic effects and immune clearance. We identified the BAF chromatin remodeling complex as a key player required for maintenance of HIV-1 latency, highlighting its potential as a molecular target for inhibition in latency reversal. Here, we screened a recently identified panel of small molecule inhibitors of BAF (BAFi's) for potential to activate latent HIV-1. Latency reversal was strongly induced by BAFi's Caffeic Acid Phenethyl Ester and Pyrimethamine, two molecules previously characterized for clinical application. BAFi's reversed HIV-1 latency in cell line based latency models, in two ex vivo infected primary cell models of latency, as well as in HIV-1 infected patient's CD4 + T cells, without inducing T cell proliferation or activation. BAFi-induced HIV-1 latency reversal was synergistically enhanced upon PKC pathway activation and HDAC-inhibition. Therefore BAFi's constitute a promising family of molecules for inclusion in therapeutic combinatorial HIV-1 latency reversal. PMID:26870822

  16. Structures of HIV Protease Guide Inhibitor Design to Overcome Drug Resistance

    SciTech Connect

    Weber, Irene T.; Kovalevsky, Andrey Y.; Harrison, Robert W.

    2008-06-03

    The HIV/AIDS infection continues to be a major epidemic worldwide despite the initial promise of antiviral drugs. Current therapy includes a combination of drugs that inhibit two of the virally-encoded enzymes, the reverse transcriptase and the protease. The first generation of HIV protease inhibitors that have been in clinical use for treatment of AIDS since 1995 was developed with the aid of structural analysis of protease-inhibitor complexes. These drugs were successful in improving the life span of HIV-infected people. Subsequently, the rapid emergence of drug resistance has necessitated the design of new inhibitors that target mutant proteases. This second generation of antiviral protease inhibitors has been developed with the aid of data from medicinal chemistry, kinetics, and X-ray crystallographic analysis. Traditional computational methods such as molecular mechanics and dynamics can be supplemented with intelligent data mining approaches. One approach, based on similarities to the protease interactions with substrates, is to incorporate additional interactions with main chain atoms that cannot easily be eliminated by mutations. Our structural and inhibition data for darunavir have helped to understand its antiviral activity and effectiveness on drug resistant HIV and demonstrate the success of this approach.

  17. Pulsed EPR Characterization of HIV-1 Protease Conformational Sampling and Inhibitor-Induced Population Shifts

    PubMed Central

    Liu, Zhanglong; Casey, Thomas M.; Blackburn, Mandy E.; Huang, Xi; Pham, Linh; de Vera, Ian Mitchelle S.; Carter, Jeffrey D.; Kear-Scott, Jamie L.; Veloro, Angelo M.; Galiano, Luis; Fanucci, Gail E.

    2015-01-01

    The conformational landscape of HIV-1 protease (PR) can be experimentally characterized by pulsed-EPR double electron-electron resonance (DEER). For this characterization, nitroxide spin labels are attached to an engineered cysteine residue in the flap region of HIV-1 PR. DEER distance measurements from spin-labels contained within each flap of the homodimer provide a detailed description of the conformational sampling of apo-enzyme as well as induced conformational shifts as a function inhibitor binding. The distance distribution profiles are further interpreted in terms of a conformational ensemble scheme that consists of four unique states termed “curled/tucked”, “closed”, “semi-open” and “wide-open” conformations. Reported here are the DEER results for a drug-resistant variant clinical isolate sequence, V6, in the presence of FDA approved protease inhibitors (PIs) as well as a non-hydrolyzable substrate mimic, CaP2. Results are interpreted in the context of the current understanding of the relationship between conformational sampling, drug resistance, and kinetic efficiency of HIV-1PR as derived from previous DEER and kinetic data for a series of HIV-1PR constructs that contain drug-pressure selected mutations or natural polymorphisms. Specifically, these collective results support the notion that inhibitor-induced closure of the flaps correlates with inhibitor efficiency and drug resistance. This body of work also suggests DEER as a tool for studying conformational sampling in flexible enzymes as it relates to function. PMID:26489725

  18. Inhibitors of HIV-1 protease: a major success of structure-assisted drug design.

    PubMed

    Wlodawer, A; Vondrasek, J

    1998-01-01

    Retroviral protease (PR) from the human immunodeficiency virus type 1 (HIV-1) was identified over a decade ago as a potential target for structure-based drug design. This effort was very successful. Four drugs are already approved, and others are undergoing clinical trials. The techniques utilized in this remarkable example of structure-assisted drug design included crystallography, NMR, computational studies, and advanced chemical synthesis. The development of these drugs is discussed in detail. Other approaches to designing HIV-1 PR inhibitors, based on the concepts of symmetry and on the replacement of a water molecule that had been found tetrahedrally coordinated between the enzyme and the inhibitors, are also discussed. The emergence of drug-induced mutations of HIV-1 PR leads to rapid loss of potency of the existing drugs and to the need to continue the development process. The structural basis of drug resistance and the ways of overcoming this phenomenon are mentioned.

  19. Raltegravir, elvitegravir, and metoogravir: the birth of "me-too" HIV-1 integrase inhibitors

    PubMed Central

    Serrao, Erik; Odde, Srinivas; Ramkumar, Kavya; Neamati, Nouri

    2009-01-01

    Merck's MK-0518, known as raltegravir, has recently become the first FDA-approved HIV-1 integrase (IN) inhibitor and has since risen to blockbuster drug status. Much research has in turn been conducted over the last few years aimed at recreating but optimizing the compound's interactions with the protein. Resulting me-too drugs have shown favorable pharmacokinetic properties and appear drug-like but, as expected, most have a highly similar interaction with IN to that of raltegravir. We propose that, based upon conclusions drawn from our docking studies illustrated herein, most of these me-too MK-0518 analogues may experience a low success rate against raltegravir-resistant HIV strains. As HIV has a very high mutational competence, the development of drugs with new mechanisms of inhibitory action and/or new active substituents may be a more successful route to take in the development of second- and third-generation IN inhibitors. PMID:19265512

  20. Tetrahydrofuran, tetrahydropyran, triazoles and related heterocyclic derivatives as HIV protease inhibitors

    PubMed Central

    Ghosh, Arun K; Anderson, David D

    2011-01-01

    HIV/AIDS remains a formidable disease with millions of individuals inflicted worldwide. Although treatment regimens have improved considerably, drug resistance brought on by viral mutation continues to erode their effectiveness. Intense research efforts are currently underway in search of new and improved therapies. This review is concerned with the design of novel HIV-1 protease inhibitors that incorporate heterocyclic scaffolds and which have been reported within the recent literature (2005–2010). Various examples in this review showcase the essential role heterocycles play as scaffolds and bioisosteres in HIV-1 protease inhibitor drug development. This review will hopefully stimulate the widespread application of these heterocycles in the design of other therapeutic agents. PMID:21806380

  1. Protonation state and free energy calculation of HIV-1 protease-inhibitor complex based on electrostatic polarisation effect

    NASA Astrophysics Data System (ADS)

    Yang, Maoyou; Jiang, Xiaonan; Jiang, Ning

    2014-06-01

    The protonation states of catalytic Asp25/25‧ residues remarkably affect the binding mechanism of the HIV-1 protease-inhibitor complex. Here we report a molecular dynamics simulation study, which includes electrostatic polarisation effect, to investigate the influence of Asp25/25‧ protonation states upon the binding free energy of the HIV-1 protease and a C2-symmetric inhibitor. Good agreements are obtained on inhibitor structure, hydrogen bond network, and binding free energy between our theoretical calculations and the experimental data. The calculations show that the Asp25 residue is deprotonated, and the Asp25‧ residue is protonated. Our results reveal that the Asp25/25‧ residues can have different protonation states when binding to different inhibitors although the protease and the inhibitors have the same symmetry. This study offers some insights into understanding the protonation state of HIV-1 protease-inhibitor complex, which could be helpful in designing new inhibitor molecules.

  2. Virtual Screening of Indonesian Herbal Database as HIV-1 Protease Inhibitor.

    PubMed

    Yanuar, Arry; Suhartanto, Heru; Munim, Abdul; Anugraha, Bram Hik; Syahdi, Rezi Riadhi

    2014-01-01

    HIV-1 (Human immunodeficiency virus type 1)׳s infection is considered as one of most harmful disease known by human, the survivability rate of the host reduced significantly when it developed into AIDS. HIV drug resistance is one of the main problems of its treatment and several drug designs have been done to find new leads compound as the cure. In this study, in silico virtual screening approach was used to find lead molecules from the library or database of natural compounds as HIV-1 protease inhibitor. Virtual screening against Indonesian Herbal Database with AutoDock was performed on HIV-1 protease. From the virtual screening, top ten compounds obtained were 8-Hydroxyapigenin 8-(2",4"-disulfatoglucuronide), Isoscutellarein 4'-methyl ether, Amaranthin, Torvanol A, Ursonic acid, 5-Carboxypyranocyanidin 3-O-(6"-O-malonyl-beta-glucopyranoside), Oleoside, Jacoumaric acid, Platanic acid and 5-Carboxypyranocyanidin 3-O-beta-glucopyranoside.

  3. Design of Annulated Pyrazoles As Inhibitors of HIV-1 Reverse Transcriptase

    SciTech Connect

    Sweeney, Z.K.; Harris, S.F.; Arora, N.; Javanbakht, H.; Li, Y.; Fretland, J.; Davidson, J.P.; Billedeau, J.R.; Gleason, S.; Hirschfeld, D.; Kennedy-Smith, J.J.; Mirzadegan, T.; Roetz, R.; Smith, M.; Sperry, S.; Suh, J.M.; Wu, J.; Tsing, S.; Villasenor, A.G.; Paul, A.; Su, G.

    2009-05-26

    Non-nucleoside reverse transcriptase inhibitors (NNRTIs) are recommended components of preferred combination antiretroviral therapies used for the treatment of HIV. These regimens are extremely effective in suppressing virus replication. Structure-based optimization of diaryl ether inhibitors led to the discovery of a new series of pyrazolo[3,4-c]pyridazine NNRTIs that bind the reverse transcriptase enzyme of human immunodeficiency virus-1 (HIV-RT) in an expanded volume relative to most other inhibitors in this class. The binding mode maintains the {beta}13 and {beta}14 strands bearing Pro236 in a position similar to that in the unliganded reverse transcriptase structure, and the distribution of interactions creates the opportunity for substantial resilience to single point mutations. Several pyrazolopyridazine NNRTIs were found to be highly effective against wild-type and NNRTI-resistant viral strains in cell culture.

  4. Investigating the role of metal chelation in HIV-1 integrase strand transfer inhibitors.

    PubMed

    Bacchi, Alessia; Carcelli, Mauro; Compari, Carlotta; Fisicaro, Emilia; Pala, Nicolino; Rispoli, Gabriele; Rogolino, Dominga; Sanchez, Tino W; Sechi, Mario; Sinisi, Valentina; Neamati, Nouri

    2011-12-22

    HIV-1 integrase (IN) has been validated as an attractive target for the treatment of HIV/AIDS. Several studies have confirmed that the metal binding function is a crucial feature in many of the reported IN inhibitors. To provide new insights on the metal chelating mechanism of IN inhibitors, we prepared a series of metal complexes of two ligands (HL1 and HL2), designed as representative models of the clinically used compounds raltegravir and elvitegravir. Potentiometric measurements were conducted for HL2 in the presence of Mg(II), Mn(II), Co(II), and Zn(II) in order to delineate a metal speciation model. We also determined the X-ray structures of both of the ligands and of three representative metal complexes. Our results support the hypothesis that several selective strand transfer inhibitors preferentially chelate one cation in solution and that the metal complexes can interact with the active site of the enzyme.

  5. Synergistic binding of inhibitors to the protease from HIV type 1.

    PubMed Central

    Asante-Appiah, E; Chan, W W

    1996-01-01

    Inhibition of the protease in HIV is a potentially useful approach for the treatment of AIDS. In the course of evaluating inhibitors of the HIV-1 protease, we observed a strong synergism between certain inhibitors that might be expected to bind to different sites in this enzyme. The binding affinity of carbobenzyloxyisoleucinylphenylalaninol, for example, is increased 125-fold in the presence of carbobenzyloxyglutaminylisoamylamide. These synergistic effects between inhibitors have specific structural requirements that correlate well with the known substrate preference of the enzyme. The modular basis for this phenomenon remains to be elucidated but it could involve substrate-induced conformational change as part of the reaction mechanism. Similar effects have been reported previously for several zinc proteases. Thus this work extends the observation to a different class of enzymes and suggests that the phenomenon might be widespread. PMID:8670094

  6. Synthesis of a Vpr-Binding Derivative for Use as a Novel HIV-1 Inhibitor

    PubMed Central

    Hagiwara, Kyoji; Ishii, Hideki; Murakami, Tomoyuki; Takeshima, Shin-nosuke; Chutiwitoonchai, Nopporn; Kodama, Eiichi N.; Kawaji, Kumi; Kondoh, Yasumitsu; Honda, Kaori; Osada, Hiroyuki; Tsunetsugu-Yokota, Yasuko; Suzuki, Masaaki; Aida, Yoko

    2015-01-01

    The emergence of multidrug-resistant viruses compromises the efficacy of anti-human immunodeficiency virus type 1 (HIV-1) therapy and limits treatment options. Therefore, new targets that can be used to develop novel antiviral agents need to be identified. We previously identified a potential parent compound, hematoxylin, which suppresses the nuclear import of HIV-1 via the Vpr-importin α interaction and inhibits HIV-1 replication in a Vpr-dependent manner by blocking nuclear import of the pre-integration complex. However, it was unstable. Here, we synthesized a stable derivative of hematoxylin that bound specifically and stably to Vpr and inhibited HIV-1 replication in macrophages. Furthermore, like hematoxylin, the derivative inhibited nuclear import of Vpr in an in vitro nuclear import assay, but had no effect on Vpr-induced G2/M phase cell cycle arrest or caspase activity. Interestingly, this derivative bound strongly to amino acid residues 54–74 within the C-terminal α-helical domain (αH3) of Vpr. These residues are highly conserved among different HIV strains, indicating that this region is a potential target for drug-resistant HIV-1 infection. Thus, we succeeded in developing a stable hematoxylin derivative that bound directly to Vpr, suggesting that specific inhibitors of the interaction between cells and viral accessory proteins may provide a new strategy for the treatment of HIV-1 infection. PMID:26701275

  7. Inhibition of human preadipocyte proteasomal activity by HIV protease inhibitors or specific inhibitor lactacystin leads to a defect in adipogenesis, which involves matrix metalloproteinase-9.

    PubMed

    De Barros, Sandra; Zakaroff-Girard, Alexia; Lafontan, Max; Galitzky, Jean; Bourlier, Virginie

    2007-01-01

    In a previous publication, we reported that human immunodeficiency virus (HIV) protease inhibitors (PIs) inhibited the differentiation of human preadipocytes in primary culture, reducing the expression and secretion of matrix metalloproteinase 9 (MMP-9). The present work was performed to clarify this mechanism. Interestingly, HIV-PIs have been reported to be inhibitors of the proteasome complex, which is known to regulate nuclear factor (NF)-kappaB activation and transcription of its target genes, among them MMP-9. We thus investigated the potential involvement of the proteasome in the antiadipogenic effects of HIV-PIs. The effect of four HIV-PIs was tested on preadipocyte proteasomal activity, and chronic treatment with the specific proteasome inhibitor lactacystin was performed to evaluate alterations of adipogenesis and MMP-9 expression/secretion. Finally, modifications of the NF-kappaB pathway induced by either HIV-PIs or lactacystin were studied. We demonstrated that preadipocyte proteasomal activity was decreased by several HIV-PIs and that chronic treatment with lactacystin mimicked the effects of HIV-PIs by reducing adipogenesis and MMP-9 expression/secretion. Furthermore, we observed an intracellular accumulation of the NF-kappaB inhibitor, IkappaBbeta, with chronic treatment with HIV-PIs or lactacystin as well as a decrease in MMP-9 expression induced by acute tumor necrosis factor-alpha stimulation. These results indicate that inhibition of the proteasome by specific (lactacystin) or nonspecific (HIV-PIs) inhibitors leads to a reduction of human adipogenesis, and they therefore implicate deregulation of the NF-kappaB pathway and the related decrease of the key adipogenic factor, MMP-9. This study adds significantly to recent reports that have linked HIV-PI-related lipodystrophic syndrome with altered proteasome function, endoplasmic reticulum stress, and metabolic disorders.

  8. An intravaginal ring for the simultaneous delivery of an HIV-1 maturation inhibitor and reverse transcriptase inhibitor for prophylaxis of HIV transmission

    PubMed Central

    Ugaonkar, Shweta R.; Clark, Justin T.; English, Lexie B.; Johnson, Todd J.; Buckheit, Karen W.; Bahde, Robert J.; Appella, Daniel H.; Buckheit, Robert W.; Kiser, Patrick F.

    2016-01-01

    Nucleocapsid 7 (NCp7) inhibitors have been investigated extensively for their role in impeding the function of HIV-1 replication machinery and their ability to directly inactivate the virus. A class of NCp7 zinc finger inhibitors, S-acyl-2-mercaptobenzamide thioesters (SAMTs), was investigated for topical drug delivery. SAMTs are inherently unstable due to their hydrolytically labile thioester bond thus requiring formulation approaches that can lend stability. We describe the delivery of N-[2-(3,4,5-trimethoxybenzoylthio)benzoyl]-β-alanine amide (SAMT-10), as a single agent antiretroviral (ARV) therapeutic and in combination with the HIV-1 reverse transcriptase inhibitor pyrimidinedione IQP-0528, from a hydrophobic polyether urethane (PEU) intravaginal ring (IVR) for a month. The physicochemical stability of the ARV-loaded IVRs was confirmed after 3 months at 40°C/75% relative humidity (RH). In vitro, 25 ± 3 mg/IVR of SAMT-10 and 86 ± 13 mg/IVR of IQP-0528 were released. No degradation of the hydrolytically labile SAMT-10 was observed within the matrix. The combination of ARVs had synergistic antiviral activity when tested in in vitro cell based assays. Toxicological evaluations performed on an organotypic EpiVaginal™ tissue model demonstrated a lack of formulation toxicity. Overall, SAMT-10 and IQP-0528 were formulated in a stable PEU IVR for sustained release. Our findings support the need for further preclinical evaluation. PMID:26149293

  9. Design and synthesis of tetrahydrophthalimide derivatives as inhibitors of HIV-1 reverse transcriptase

    PubMed Central

    2013-01-01

    Background Non-nucleoside reverse transcriptase inhibitors (NNRTIs) are one of the key components in highly active anti-retroviral therapy because of their high specificity and less toxicity. NNRTIs inhibit reverse transcriptase enzyme by binding to the allosteric site, which is 10Å away from the active site. Rapid emergence of resistance is the major problem with all anti-HIV agents. Hence, there is continuous need to develop novel anti-HIV agents active against both drug sensitive and resistance strains. Results All the 16 synthesized 2-(1,3-dioxo-3a,4-dihydro-1H-isoindol-2(3H,7H,7aH)-yl)-N-(substitutedphenyl) acetamide 4(a-p) analogs were characterized by Fourier transform infrared spectroscopy, proton nuclear magnetic resonance spectroscopy, mass spectroscopy, and elemental analysis. Lipinski rule of five parameters and molecular parameters like solubility, drug likeness, and drug score were derived for designed analogs using online servers like Molinspiration and Osiris property explorer. Synthesized compounds were evaluated for their HIV-1 reverse transcriptase inhibitor activity by HIV-1 RNA-dependent DNA polymerase activity assay at 2 and 20 μM concentrations. Conclusions Among the 16 synthesized compounds, 4a, 4b, 4f, 4g, 4k, and 4l showed weak reverse transcriptase inhibitor activity at 20 μM concentration. For the designed compounds, there was no correlation observed between molecular modeling and in vitro studies. PMID:23968361

  10. The Tat Inhibitor Didehydro-Cortistatin A Prevents HIV-1 Reactivation from Latency

    PubMed Central

    Mousseau, Guillaume; Kessing, Cari F.; Fromentin, Rémi; Trautmann, Lydie; Chomont, Nicolas

    2015-01-01

    ABSTRACT Antiretroviral therapy (ART) inhibits HIV-1 replication, but the virus persists in latently infected resting memory CD4+ T cells susceptible to viral reactivation. The virus-encoded early gene product Tat activates transcription of the viral genome and promotes exponential viral production. Here we show that the Tat inhibitor didehydro-cortistatin A (dCA), unlike other antiretrovirals, reduces residual levels of viral transcription in several models of HIV latency, breaks the Tat-mediated transcriptional feedback loop, and establishes a nearly permanent state of latency, which greatly diminishes the capacity for virus reactivation. Importantly, treatment with dCA induces inactivation of viral transcription even after its removal, suggesting that the HIV promoter is epigenetically repressed. Critically, dCA inhibits viral reactivation upon CD3/CD28 or prostratin stimulation of latently infected CD4+ T cells from HIV-infected subjects receiving suppressive ART. Our results suggest that inclusion of a Tat inhibitor in current ART regimens may contribute to a functional HIV-1 cure by reducing low-level viremia and preventing viral reactivation from latent reservoirs. PMID:26152583

  11. Identification of a D-amino acid decapeptide HIV-1 entry inhibitor

    SciTech Connect

    Boggiano, Cesar; Jiang Shibo; Lu Hong; Zhao Qian; Liu Shuwen; Binley, James; Blondelle, Sylvie E. . E-mail: sylvieb@burnham.org

    2006-09-08

    Entry of human immunodeficiency virus type 1 (HIV-1) virion into host cells involves three major steps, each being a potential target for the development of entry inhibitors: gp120 binding to CD4, gp120-CD4 complex interacting with a coreceptor, and gp41 refolding to form a six-helix bundle. Using a D-amino acid decapeptide combinatorial library, we identified peptide DC13 as having potent HIV-1 fusion inhibitory activity, and effectively inhibiting infection by several laboratory-adapted and primary HIV-1 strains. While DC13 did not block binding of gp120 to CD4, nor disrupt the gp41 six-helix bundle formation, it effectively blocked the binding of an anti-CXCR4 monoclonal antibody and chemokine SDF-1{alpha} to CXCR4-expressing cells. However, because R5-using primary viruses were also neutralized, the antiviral activity of DC13 implies additional mode(s) of action. These results suggest that DC13 is a useful HIV-1 coreceptor antagonist for CXCR4 and, due to its biostability and simplicity, may be of value for developing a new class of HIV-1 entry inhibitors.

  12. Multimerized HIV-gp41-derived peptides as fusion inhibitors and vaccines.

    PubMed

    Nomura, Wataru; Mizuguchi, Takaaki; Tamamura, Hirokazu

    2016-11-01

    To date, several antigens based on the amino-terminal leucine/isoleucine heptad repeat (NHR) region of an HIV-1 envelope protein gp41 and fusion inhibitors based on the carboxy-terminal leucine/isoleucine heptad repeat (CHR) region of gp41 have been reported. We have developed a synthetic antigen targeting the membrane-fusion mechanism of HIV-1. This uses a template designed with C3-symmetric linkers and mimics the trimeric form of the NHR-derived peptide N36. The antiserum obtained by immunization of the N36 trimeric antigen binds preferentially to the N36 trimer and blocks HIV-1 infection effectively, compared with the antiserum obtained by immunization of the N36 monomer. Using another template designed with different C3-symmetric linkers, we have also developed a synthetic peptide mimicking the trimeric form of the CHR-derived peptide C34, with ∼100 times the inhibitory activity against the HIV-1 fusion mechanism than that of the monomer C34 peptide. A dimeric derivative of C34 has potent inhibitory activity at almost the same levels as this C34 trimer mimic, suggesting that presence of a dimeric form of C34 is structurally critical for fusion inhibitors. As examples of rising mid-size drugs, this review describes an effective strategy for the design of HIV vaccines and fusion inhibitors based on a relationship with the native structure of proteins involved in HIV fusion mechanisms. © 2015 Wiley Periodicals, Inc. Biopolymers (Pept Sci) 106: 622-628, 2016.

  13. Broad antiviral activity and crystal structure of HIV-1 fusion inhibitor sifuvirtide.

    PubMed

    Yao, Xue; Chong, Huihui; Zhang, Chao; Waltersperger, Sandro; Wang, Meitian; Cui, Sheng; He, Yuxian

    2012-02-24

    Sifuvirtide (SFT) is an electrostatically constrained α-helical peptide fusion inhibitor showing potent anti-HIV activity, good safety, and pharmacokinetic profiles, and it is currently under phase II clinical trials in China. In this study, we demonstrate its potent and broad anti-HIV activity by using diverse HIV-1 subtypes and variants, including subtypes A, B, and C that dominate the AIDS epidemic worldwide, and subtypes B', CRF07_BC, and CRF01_AE recombinants that are currently circulating in China, and those possessing cross-resistance to the first and second generation fusion inhibitors. To elucidate its mechanism of action, we determined the crystal structure of SFT in complex with its target N-terminal heptad repeat region (NHR) peptide (N36), which fully supports our rational inhibitor design and reveals its key motifs and residues responsible for the stability and anti-HIV activity. As anticipated, SFT adopts fully helical conformation stabilized by the multiple engineered salt bridges. The designing of SFT also provide novel inter-helical salt bridges and hydrogen bonds that improve the affinity of SFT to NHR trimer. The extra serine residue and acetyl group stabilize α-helicity of the N-terminal portion of SFT, whereas Thr-119 serves to stabilize the hydrophobic NHR pocket. In addition, our structure demonstrates that the residues critical for drug resistance, located at positions 37, 38, 41, and 43 of NHR, are irreplaceable for maintaining the stable fusogenic six-helix bundle structure. Our data present important information for developing SFT for clinical use and for designing novel HIV fusion inhibitors.

  14. Pentosan polysulfate as an inhibitor of extracellular HIV-1 Tat.

    PubMed

    Rusnati, M; Urbinati, C; Caputo, A; Possati, L; Lortat-Jacob, H; Giacca, M; Ribatti, D; Presta, M

    2001-06-22

    HIV-1 Tat protein, released from HIV-infected cells, may act as a pleiotropic heparin-binding growth factor. From this observation, extracellular Tat has been implicated in the pathogenesis of AIDS and of AIDS-associated pathologies. Here we demonstrate that the heparin analog pentosan polysulfate (PPS) inhibits the interaction of glutathione S-transferase (GST)-Tat protein with heparin immobilized to a BIAcore sensor chip. Competition experiments showed that Tat-PPS interaction occurs with high affinity (K(d) = 9.0 nm). Also, GST.Tat prevents the binding of [(3)H]heparin to GST.Tat immobilized to glutathione-agarose beads. In vitro, PPS inhibits GST.Tat internalization and, consequently, HIV-1 long terminal repeat transactivation in HL3T1 cells. Also, PPS inhibits cell surface interaction and mitogenic activity of GST.Tat in murine adenocarcinoma T53 Tat-less cells. In all assays, PPS exerts its Tat antagonist activity with an ID(50) equal to approximately 1.0 nm. In vivo, PPS inhibits the neovascularization induced by GST.Tat or by Tat-overexpressing T53 cells in the chick embryo chorioallantoic membrane. In conclusion, PPS binds Tat protein and inhibits its cell surface interaction, internalization, and biological activity in vitro and in vivo. PPS may represent a prototypic molecule for the development of novel Tat antagonists with therapeutic implications in AIDS and AIDS-associated pathologies, including Kaposi's sarcoma.

  15. Identification of a small molecule HIV-1 inhibitor that targets the capsid hexamer.

    PubMed

    Xu, Jimmy P; Branson, Jeffrey D; Lawrence, Rae; Cocklin, Simon

    2016-02-01

    The HIV-1 CA protein is an attractive therapeutic target for the development of new antivirals. An inter-protomer pocket within the hexamer configuration of the CA, which is a binding site for key host dependency factors, is an especially appealing region for small molecule targeting. Using a field-based pharmacophore derived from an inhibitor known to interact with this region, coupled to biochemical and biological assessment, we have identified a new compound that inhibits HIV-1 infection and that targets the assembled CA hexamer. PMID:26747394

  16. The evaluation of catechins that contain a galloyl moiety as potential HIV-1 integrase inhibitors.

    PubMed

    Jiang, Fan; Chen, Wei; Yi, Kejia; Wu, Zhiqiang; Si, Yiling; Han, Weidong; Zhao, Yali

    2010-12-01

    Four catechins with the galloyl moiety, including catechin gallate (CG), epigallocatechin gallate (EGCG), gallocatechin gallate (GCG), and epicatechin gallate (ECG), were found to inhibit HIV-1 integrase effectively as determined by our ELISA method. In our docking study, it is proposed that when the HIV-1 integrase does not combine with virus DNA, the four catechins may bind to Tyr143 and Gln148, thus altering the flexibility of the loop (Gly140-Gly149), which could lead to an inhibition of HIV-1 integrase activity. In addition, after combining HIV-1 integrase with virus DNA, the four catechins may bind between the integrase and virus DNA, consequently, disrupt this interaction. Thus, the four catechins may reduce the activity of HIV-1 integrase by disrupting its interaction with virus DNA. The four catechins have a highly cooperative inhibitory effect (IC₅₀=0.1 μmol/L). Our study suggests that catechins with the galloyl moiety could be a novel and effective class of HIV-1 integrase inhibitors.

  17. Structure of HIV-1 nonnucleoside reverse transcriptase inhibitors derivatives of N-benzyl-benzimidazole with different substituents in position 4

    NASA Astrophysics Data System (ADS)

    Ziółkowska, Natasza E.; Michejda, Christopher J.; Bujacz, Grzegorz D.

    2010-01-01

    The constant development of new drugs against HIV-1 is necessary due to global expansion of AIDS and HIV-1 drug resistance. Nonnucleoside reverse transcriptase inhibitors of HIV-1 (NNRTIs) are potentially effective and nontoxic drugs in AIDS therapy. The crystal structures of six nonnucleoside inhibitors of HIV-1 reverse transcriptase (RT) derivatives of N-benzyl-benzimidazole are reported here. The investigated compounds belong to the group of so called "butterfly like" inhibitors with characteristic two π-electron moieties with an angled orientation. The structural data show the influence of the substituents of the benzimidazole ring on the geometry of the molecule and correlation between the structure of the inhibitor and its biological activity.

  18. Selective chromogenic and fluorogenic peptide substrates for the assay of cysteine peptidases in complex mixtures.

    PubMed

    Semashko, Tatiana A; Vorotnikova, Elena A; Sharikova, Valeriya F; Vinokurov, Konstantin S; Smirnova, Yulia A; Dunaevsky, Yakov E; Belozersky, Mikhail A; Oppert, Brenda; Elpidina, Elena N; Filippova, Irina Y

    2014-03-15

    This study describes the design, synthesis, and use of selective peptide substrates for cysteine peptidases of the C1 papain family, important in many biological processes. The structure of the newly synthesized substrates is Glp-Xaa-Ala-Y (where Glp=pyroglutamyl; Xaa=Phe or Val; and Y=pNA [p-nitroanilide], AMC [4-amino-7-methylcoumaride], or AFC [4-amino-7-trifluoromethyl-coumaride]). Substrates were synthesized enzymatically to guarantee selectivity of the reaction and optical purity of the target compounds, simplifying the scheme of synthesis and isolation of products. The hydrolysis of the synthesized substrates was evaluated by C1 cysteine peptidases from different organisms and with different functions, including plant enzymes papain, bromelain, ficin, and mammalian lysosomal cathepsins B and L. The new substrates were selective for C1 cysteine peptidases and were not hydrolyzed by serine, aspartic, or metallo peptidases. We demonstrated an application of the selectivity of the synthesized substrates during the chromatographic separation of a multicomponent set of digestive peptidases from a beetle, Tenebrio molitor. Used in combination with the cysteine peptidase inhibitor E-64, these substrates were able to differentiate cysteine peptidases from peptidases of other classes in midgut extracts from T. molitor larvae and larvae of the genus Tribolium; thus, they are useful in the analysis of complex mixtures containing peptidases from different classes.

  19. Synthesis, Anti-HIV Activity, and Metabolic Stability of New Alkenyldiarylmethane (ADAM) HIV-1 Non-Nucleoside Reverse Transcriptase Inhibitors (NNRTIs)

    PubMed Central

    Deng, Bo-Liang; Hartman, Tracy L.; Buckheit, Robert W.; Pannecouque, Christophe; De Clercq, Erik; Fanwick, Phillip E.; Cushman, Mark

    2008-01-01

    Non-nucleoside inhibitors of HIV-1 reverse transcriptase (NNRTIs) are part of the combination therapy currently used to treat HIV infection. Based on analogy with known HIV-1 NNRT inhibitors, eighteen novel alkenyldiarylmethanes (ADAMs) containing 5-chloro-2-methoxyphenyl, 3-cyanophenyl or 3-fluoro-5-trifluoromethylphenyl groups were synthesized and evaluated as HIV inhibitors. Their stabilities in rat plasma have also been investigated. Although introducing 5-chloro-2-methoxyphenyl, or 3-fluoro-5-trifluoromethylphenyl groups into alkenyldiarylmethanes does not maintain the antiviral potency, the structural modification of alkenyldiarylmethanes with a 3-cyanophenyl substituent can be made without a large decrease in activity. The oxazolidinonyl group was introduced into the alkenyldiarylmethane framework and found to confer enhanced metabolic stability in rat plasma. PMID:16162014

  20. Fragment Based Strategies for Discovery of Novel HIV-1 Reverse Transcriptase and Integrase Inhibitors.

    PubMed

    Latham, Catherine F; La, Jennifer; Tinetti, Ricky N; Chalmers, David K; Tachedjian, Gilda

    2016-01-01

    Human immunodeficiency virus (HIV) remains a global health problem. While combined antiretroviral therapy has been successful in controlling the virus in patients, HIV can develop resistance to drugs used for treatment, rendering available drugs less effective and limiting treatment options. Initiatives to find novel drugs for HIV treatment are ongoing, although traditional drug design approaches often focus on known binding sites for inhibition of established drug targets like reverse transcriptase and integrase. These approaches tend towards generating more inhibitors in the same drug classes already used in the clinic. Lack of diversity in antiretroviral drug classes can result in limited treatment options, as cross-resistance can emerge to a whole drug class in patients treated with only one drug from that class. A fresh approach in the search for new HIV-1 drugs is fragment-based drug discovery (FBDD), a validated strategy for drug discovery based on using smaller libraries of low molecular weight molecules (<300 Da) screened using primarily biophysical assays. FBDD is aimed at not only finding novel drug scaffolds, but also probing the target protein to find new, often allosteric, inhibitory binding sites. Several fragment-based strategies have been successful in identifying novel inhibitory sites or scaffolds for two proven drug targets for HIV-1, reverse transcriptase and integrase. While any FBDD-generated HIV-1 drugs have yet to enter the clinic, recent FBDD initiatives against these two well-characterised HIV-1 targets have reinvigorated antiretroviral drug discovery and the search for novel classes of HIV-1 drugs. PMID:26324045

  1. Synthesis, antiviral activity, and bioavailability studies of gamma-lactam derived HIV protease inhibitors.

    PubMed

    Hungate, R W; Chen, J L; Starbuck, K E; Vacca, J P; McDaniel, S L; Levin, R B; Dorsey, B D; Guare, J P; Holloway, M K; Whitter, W

    1994-09-01

    Incorporation of a gamma-lactam in hydroxyethylene isosteres results in modest inhibitors of HIV-1 protease. Additional structural activity studies have produced significantly more potent inhibitors with the introduction of the trisubstituted cyclopentane (see compound 20) as the optimum substituent for the C-terminus. This new amino acid amide surrogate can be readily prepared in large scale from (R)-pulegone. Optimized compounds (36) and (60) are potent antiviral agents and are well absorbed (15-20%) in a dog model after oral administration. PMID:7712123

  2. Crystal structures of HIV-1 reverse transcriptase complexes with thiocarbamate non-nucleoside inhibitors

    SciTech Connect

    Spallarossa, Andrea Cesarini, Sara; Ranise, Angelo; Ponassi, Marco; Unge, Torsten; Bolognesi, Martino

    2008-01-25

    O-Phthalimidoethyl-N-arylthiocarbamates (TCs) have been recently identified as a new class of potent HIV-1 reverse transcriptase (RT) non-nucleoside inhibitors (NNRTIs), by means of computer-aided drug design techniques [Ranise A. Spallarossa, S. Cesarini, F. Bondavalli, S. Schenone, O. Bruno, G. Menozzi, P. Fossa, L. Mosti, M. La Colla, et al., Structure-based design, parallel synthesis, structure-activity relationship, and molecular modeling studies of thiocarbamates, new potent non-nucleoside HIV-1 reverse transcriptase inhibitor isosteres of phenethylthiazolylthiourea derivatives, J. Med. Chem. 48 (2005) 3858-3873]. To elucidate the atomic details of RT/TC interaction and validate an earlier TC docking model, the structures of three RT/TC complexes were determined at 2.8-3.0 A resolution by X-ray crystallography. The conformations adopted by the enzyme-bound TCs were analyzed and compared with those of bioisosterically related NNRTIs.

  3. Development of a receptor model for efficient in silico screening of HIV-1 integrase inhibitors.

    PubMed

    Quevedo, Mario A; Ribone, Sergio R; Briñón, Margarita C; Dehaen, Wim

    2014-07-01

    Integrase (IN) is a key viral enzyme for the replication of the type-1 human immunodeficiency virus (HIV-1), and as such constitutes a relevant therapeutic target for the development of anti-HIV agents. However, the lack of crystallographic data of HIV IN complexed with the corresponding viral DNA has historically hindered the application of modern structure-based drug design techniques to the discovery of new potent IN inhibitors (INIs). Consequently, the development and validation of reliable HIV IN structural models that may be useful for the screening of large databases of chemical compounds is of particular interest. In this study, four HIV-1 IN homology models were evaluated respect to their capability to predict the inhibition potency of a training set comprising 36 previously reported INIs with IC50 values in the low nanomolar to the high micromolar range. Also, 9 inactive structurally related compounds were included in this training set. In addition, a crystallographic structure of the IN-DNA complex corresponding to the prototype foamy virus (PFV) was also evaluated as structural model for the screening of inhibitors. The applicability of high throughput screening techniques, such as blind and ligand-guided exhaustive rigid docking was assessed. The receptor models were also refined by molecular dynamics and clustering techniques to assess protein sidechain flexibility and solvent effect on inhibitor binding. Among the studied models, we conclude that the one derived from the X-ray structure of the PFV integrase exhibited the best performance to rank the potencies of the compounds in the training set, with the predictive power being further improved by explicitly modeling five water molecules within the catalytic side of IN. Also, accounting for protein sidechain flexibility enhanced the prediction of inhibition potencies among the studied compounds. Finally, an interaction fingerprint pattern was established for the fast identification of potent IN

  4. Fluorogenic Assay for Inhibitors of HIV-1 Protease with Sub-picomolar Affinity

    NASA Astrophysics Data System (ADS)

    Windsor, Ian W.; Raines, Ronald T.

    2015-08-01

    A fluorogenic substrate for HIV-1 protease was designed and used as the basis for a hypersensitive assay. The substrate exhibits a kcat of 7.4 s-1, KM of 15 μM, and an increase in fluorescence intensity of 104-fold upon cleavage, thus providing sensitivity that is unmatched in a continuous assay of HIV-1 protease. These properties enabled the enzyme concentration in an activity assay to be reduced to 25 pM, which is close to the Kd value of the protease dimer. By fitting inhibition data to Morrison’s equation, Ki values of amprenavir, darunavir, and tipranavir were determined to be 135, 10, and 82 pM, respectively. This assay, which is capable of measuring Ki values as low as 0.25 pM, is well-suited for characterizing the next generation of HIV-1 protease inhibitors.

  5. Naturally occurring variability in the envelope glycoprotein of HIV-1 and development of cell entry inhibitors.

    PubMed

    Brower, Evan T; Schön, Arne; Freire, Ernesto

    2010-03-23

    Naturally occurring genetic variability across HIV-1 subtypes causes amino acid polymorphisms in encoded HIV-1 proteins including the envelope glycoproteins associated with viral entry. The effects of amino acid polymorphisms on the mechanism of HIV-1 entry into cells, a process initiated by the binding of the viral envelope glycoprotein gp120 to the cellular CD4 receptor, are largely unknown. In this study, we demonstrate that amino acid polymorphisms affect the structural stability and domain cooperativity of gp120 and that those differences are reflected in the binding mechanism of the viral envelope glycoprotein to the cell surface receptor and coreceptor. Moreover, subtype differences also affect the binding behavior of experimental HIV cell entry inhibitors. While gp120-A has a slightly lower denaturation temperature than gp120-B, the most notable stability difference is that for gp120-B the van't Hoff to calorimetric enthalpy ratio (DeltaH(vH)/DeltaH) is 0.95 whereas for gp120-A is 0.6, indicative of more cooperative domain/domain interactions in gp120-B, as this protein more closely approaches a two-state transition. Isothermal titration calorimetry demonstrates that CD4 and 17b (a surrogate antibody for the chemokine coreceptor) exhibit 7- and 3-fold weaker binding affinities for gp120-A. The binding of these proteins as well as that of the experimental entry inhibitor NBD-556 induces smaller conformational changes in gp120-A as evidenced by significantly smaller binding enthalpies and binding entropies. Together, these results describe the effects of gp120 polymorphisms on binding to host cell receptors and emphasize that guidelines for developing future entry inhibitors must recognize and deal with genomic differences between HIV strains.

  6. Intrahepatic lymphocyte expression of dipeptidyl peptidase I-processed granzyme B and perforin induces hepatocyte expression of serine proteinase inhibitor 6 (Serpinb9/SPI-6).

    PubMed

    Stout-Delgado, Heather W; Getachew, Yonas; Miller, Bonnie C; Thiele, Dwain L

    2007-11-15

    Human proteinase inhibitor 9 (PI-9/serpinB9) and the murine ortholog, serine proteinase inhibitor 6 (SPI-6/serpinb9) are members of a family of intracellular serine proteinase inhibitors (serpins). PI-9 and SPI-6 expression in immune-privileged cells, APCs, and CTLs protects these cells against the actions of granzyme B, and when expressed in tumor cells or virally infected hepatocytes, confers resistance to killing by CTL and NK cells. The present studies were designed to assess the existence of any correlation between granzyme B activity in intrahepatic lymphocytes and induction of hepatic SPI-6 expression. To this end, SPI-6, PI-9, and serpinB9 homolog expression was examined in response to IFN-alpha treatment and during in vivo adenoviral infection of the liver. SPI-6 mRNA expression increased 10- to 100-fold in the liver after IFN-alpha stimulation and during the course of viral infection, whereas no significant up-regulation of SPI-8 and <5-fold increases in other PI-9/serpinB9 homolog mRNAs was observed. Increased SPI-6 gene expression during viral infection correlated with influxes of NK cells and CTL. Moreover, IFN-alpha-induced up-regulation of hepatocyte SPI-6 mRNA expression was not observed in NK cell-depleted mice. Additional experiments using genetically altered mice either deficient in perforin or unable to process or express granzyme B indicated that SPI-6 is selectively up-regulated in hepatocytes in response to infiltration of the liver by NK cells that express perforin and enzymatically active granzyme B.

  7. A preference-based free-energy parameterization of enzyme-inhibitor binding. Applications to HIV-1-protease inhibitor design.

    PubMed Central

    Wallqvist, A.; Jernigan, R. L.; Covell, D. G.

    1995-01-01

    The interface between protein receptor-ligand complexes has been studied with respect to their binary interatomic interactions. Crystal structure data have been used to catalogue surfaces buried by atoms from each member of a bound complex and determine a statistical preference for pairs of amino-acid atoms. A simple free energy model of the receptor-ligand system is constructed from these atom-atom preferences and used to assess the energetic importance of interfacial interactions. The free energy approximation of binding strength in this model has a reliability of about +/- 1.5 kcal/mol, despite limited knowledge of the unbound states. The main utility of such a scheme lies in the identification of important stabilizing atomic interactions across the receptor-ligand interface. Thus, apart from an overall hydrophobic attraction (Young L, Jernigan RL, Covell DG, 1994, Protein Sci 3:717-729), a rich variety of specific interactions is observed. An analysis of 10 HIV-1 protease inhibitor complexes is presented that reveals a common binding motif comprised of energetically important contacts with a rather limited set of atoms. Design improvements to existing HIV-1 protease inhibitors are explored based on a detailed analysis of this binding motif. PMID:8528086

  8. Thermodynamics of peptide inhibitor binding to HIV-1 gp41.

    PubMed

    Cole, J L; Garsky, V M

    2001-05-15

    The gp41 subunit of the human immunodeficiency virus type 1 envelope glycoprotein mediates fusion of the cellular and viral membranes. The gp41 ectodomain is a trimer of alpha-helical hairpins, where N-terminal helices form a parallel three-stranded coiled-coil core and C-terminal helices pack around the core. A deep hydrophobic pocket on the N-terminal core represents an attractive target for antiviral therapeutics. We have employed a soluble derivative of the gp41 core ectodomain and small cyclic disulfide D-peptide inhibitors to define the stoichiometry, affinity, and thermodynamics of ligand binding to this pocket using isothermal titration calorimetry. These inhibitors bind with micromolar affinity to the pocket with the expected stoichiometry of three peptides per gp41 core trimer. There are no cooperative interactions among the three binding sites. Linear eight- or nine-residue D-peptides derived from the pocket-binding domain of the cyclic molecules also bind specifically. A negative heat capacity change is observed and is consistent with burial of hydrophobic surface upon binding. Contrary to expectations for a reaction dominated by the classical hydrophobic effect, peptide binding is enthalpically driven and is opposed by an unfavorable negative entropy change. The calorimetry data support models whereby dominant negative inhibitors bind to a transiently exposed surface on the prefusion intermediate state of gp41 and disrupt subsequent resolution to the fusion-active six-stranded hairpin conformation.

  9. Swapped domain constructs of the glycoprotein-41 ectodomain are potent inhibitors of HIV infection

    PubMed Central

    Chu, Shidong; Kaur, Hardeep; Nemati, Ariana; Walsh, Joseph D.; Partida, Vivian; Zhang, Shao-Qing; Gochin, Miriam

    2015-01-01

    The conformational rearrangement of N-and C-heptad repeats (NHR, CHR) of the HIV-1 glycoprotein-41 (gp41) ectodomain into a trimer of hairpins triggers virus – cell fusion by bringing together membrane-spanning N- and C-terminal domains. Peptides derived from the NHR and CHR inhibit fusion by targeting a prehairpin intermediate state of gp41. Typically, peptides derived from the CHR are low nM inhibitors, while peptides derived from the NHR are low μM inhibitors. Here we describe the inhibitory activity of swapped domain gp41 mimics of the form CHR-loop-NHR, which were designed to form reverse hairpin trimers exposing NHR grooves. We observed low nM inhibition of HIV fusion in constructs that possessed the following properties: an extended NHR C-terminus, an exposed conserved hydrophobic pocket on the NHR, high helical content and trimer stability. Low nM activity was independent of CHR length. CD studies in membrane mimetic dodecylphosphocholine micelles suggested that bioactivity could be related to the ability of the inhibitors to interact with a membrane-associated prehairpin intermediate. The swapped domain design resolves the problem of unstable and weakly active NHR peptides, and suggests a different mechanism of action from that of CHR peptides in inhibition of HIV-1 fusion. PMID:25646644

  10. Design, Synthesis, Biological and Structural Evaluations of Novel HIV-1 Protease Inhibitors to Combat Drug Resistance

    PubMed Central

    Parai, Maloy Kumar; Huggins, David J.; Cao, Hong; Nalam, Madhavi N. L.; Ali, Akbar; Schiffer, Celia A.; Tidor, Bruce; Rana, Tariq M.

    2012-01-01

    A series of new HIV-1 protease inhibitors (PIs) were designed using a general strategy that combines computational structure-based design with substrate-envelope constraints. The PIs incorporate various alcohol-derived P2 carbamates with acyclic and cyclic heteroatomic functionalities into the (R)-hydroxyethylamine isostere. Most of the new PIs show potent binding affinities against wild-type HIV-1 protease and three multidrug resistant (MDR) variants, in particular inhibitors containing 2,2-dichloroacetamide, pyrrolidinone, imidazolidinone, and oxazolidinone moieties at P2 are the most potent with Ki values in the picomolar range. Several new PIs exhibit nanomolar antiviral potencies against patient-derived wild-type viruses from HIV-1 clades A, B, and C and two MDR variants. Crystal structure analyses of four potent inhibitors revealed that carbonyl groups of the new P2 moieties promote extensive hydrogen bond interactions with the invariant Asp-29 residue of the protease. These structure-activity relationship findings can be utilized to design new PIs with enhanced enzyme inhibitory and antiviral potencies. PMID:22708897

  11. Evaluation of novel Saquinavir analogs for resistance mutation compatibility and potential as an HIV-Protease inhibitor drug

    PubMed Central

    Jayaswal, Amit; Mishra, Ankita; Mishra, Hirdyesh; Shah, Kavita

    2014-01-01

    A fundamental issue related to therapy of HIV-1 infection is the emergence of viral mutations which severely limits the long term efficiency of the HIV-protease (HIV-PR) inhibitors. Development of new drugs is therefore continuously needed. Chemoinformatics enables to design and discover novel molecules analogous to established drugs using computational tools and databases. Saquinavir, an anti-HIV Protease drug is administered for HIV therapy. In this work chemoinformatics tools were used to design structural analogs of Saquinavir as ligand and molecular dockings at AutoDock were performed to identify potential HIV-PR inhibitors. The analogs S1 and S2 when docked with HIV-PR had binding energies of -4.08 and -3.07 kcal/mol respectively which were similar to that for Saquinavir. The molecular docking studies revealed that the changes at N2 of Saquinavir to obtain newly designed analogs S1 (having N2 benzoyl group at N1) and S2 (having 3-oxo-3phenyl propanyl group at N2) were able to dock with HIV-PR with similar affinity as that of Saquinavir. Docking studies and computationally derived pharmacodynamic and pharmacokinetic properties׳ comparisons at ACD/I-lab establish that analog S2 has more potential to evade the problem of drug resistance mutation against HIV-1 PR subtype-A. S2 can be further developed and tested clinically as a real alternative drug for HIV-1 PR across the clades in future. PMID:24966525

  12. Directed HIV-1 Evolution of Protease Inhibitor Resistance by Second-Generation Short Hairpin RNAs

    PubMed Central

    Schopman, Nick C. T.; Braun, Anja

    2012-01-01

    Despite the success of antiretroviral drugs in decreasing AIDS-related mortality, a substantial fraction of HIV-infected patients experience therapy failure due to the emergence of drug-resistant virus variants. For durable inhibition of HIV-1 replication, the emergence of such escape viruses must be controlled. In addition to antiretroviral drugs, RNA interference (RNAi)-based gene therapy can be used to inhibit HIV-1 replication by targeting the viral RNA genome. RNAi is an evolutionary conserved gene silencing mechanism that mediates the sequence-specific breakdown of the targeted mRNA. Here we investigated an alternative strategy combining the activity of a protease inhibitor (PI) with second-generation short hairpin RNAs (shRNAs) designed to specifically block the emergence of PI-resistant HIV-1 variants. We demonstrate that dominant viral escape routes can be effectively blocked by second-generation shRNAs and that virus evolution can be redirected toward less-fit variants. These results are of importance for a deeper understanding of HIV-1 evolution under combined drug and RNAi pressure and may be used to design future therapeutic approaches. PMID:22064528

  13. Directed HIV-1 evolution of protease inhibitor resistance by second-generation short hairpin RNAs.

    PubMed

    Schopman, Nick C T; Braun, Anja; Berkhout, Ben

    2012-01-01

    Despite the success of antiretroviral drugs in decreasing AIDS-related mortality, a substantial fraction of HIV-infected patients experience therapy failure due to the emergence of drug-resistant virus variants. For durable inhibition of HIV-1 replication, the emergence of such escape viruses must be controlled. In addition to antiretroviral drugs, RNA interference (RNAi)-based gene therapy can be used to inhibit HIV-1 replication by targeting the viral RNA genome. RNAi is an evolutionary conserved gene silencing mechanism that mediates the sequence-specific breakdown of the targeted mRNA. Here we investigated an alternative strategy combining the activity of a protease inhibitor (PI) with second-generation short hairpin RNAs (shRNAs) designed to specifically block the emergence of PI-resistant HIV-1 variants. We demonstrate that dominant viral escape routes can be effectively blocked by second-generation shRNAs and that virus evolution can be redirected toward less-fit variants. These results are of importance for a deeper understanding of HIV-1 evolution under combined drug and RNAi pressure and may be used to design future therapeutic approaches. PMID:22064528

  14. Design and synthesis of bicyclic pyrimidinones as potent and orally bioavailable HIV-1 integrase inhibitors.

    PubMed

    Muraglia, Ester; Kinzel, Olaf; Gardelli, Cristina; Crescenzi, Benedetta; Donghi, Monica; Ferrara, Marco; Nizi, Emanuela; Orvieto, Federica; Pescatore, Giovanna; Laufer, Ralph; Gonzalez-Paz, Odalys; Di Marco, Annalise; Fiore, Fabrizio; Monteagudo, Edith; Fonsi, Massimiliano; Felock, Peter J; Rowley, Michael; Summa, Vincenzo

    2008-02-28

    HIV integrase is one of the three enzymes encoded by HIV genome and is essential for viral replication, but integrase inhibitors as marketed drugs have just very recently started to emerge. In this study, we show the evolution from the N-methylpyrimidinone structure to bicyclic pyrimidinones. Introduction of a suitably substituted amino moiety modulated the physical-chemical properties of the molecules and conferred nanomolar activity in the inhibition of spread of HIV-1 infection in cell culture. An extensive SAR study led to sulfamide (R)- 22b, which inhibited the strand transfer with an IC50 of 7 nM and HIV infection in MT4 cells with a CIC95 of 44 nM, and ketoamide (S)- 28c that inhibited strand transfer with an IC50 of 12 nM and the HIV infection in MT4 cells with a CIC95 of 13 nM and exhibited a good pharmacokinetic profile when dosed orally to preclinical species.

  15. Structure–Activity Relationships of a Novel Capsid Targeted Inhibitor of HIV-1 Replication

    PubMed Central

    2015-01-01

    Despite the considerable successes of highly active antiretroviral therapy (HAART) for the treatment of HIV/AIDS, cumulative drug toxicities and the development of multidrug-resistant virus necessitate the search for new classes of antiretroviral agents with novel modes of action. The HIV-1 capsid (CA) protein has been structurally and functionally characterized as a druggable target. We have recently designed a novel small molecule inhibitor I-XW-053 using the hybrid structure based method to block the interface between CA N-terminal domains (NTD–NTD interface) with micromolar affinity. In an effort to optimize and improve the efficacy of I-XW-053, we have developed the structure activity relationship of I-XW-053 compound series using ligand efficiency methods. Fifty-six analogues of I-XW-053 were designed that could be subclassified into four different core domains based on their ligand efficiency values computed as the ratio of binding efficiency (BEI) and surface efficiency (SEI) indices. Compound 34 belonging to subcore-3 showed an 11-fold improvement over I-XW-053 in blocking HIV-1 replication in primary human peripheral blood mononuclear cells (PBMCs). Surface plasmon resonance experiments confirmed the binding of compound 34 to purified HIV-1 CA protein. Molecular docking studies on compound 34 and I-XW-053 to HIV-1 CA protein suggested that they both bind to NTD–NTD interface region but with different binding modes, which was further validated using site-directed mutagenesis studies. PMID:25302989

  16. Punica granatum (Pomegranate) juice provides an HIV-1 entry inhibitor and candidate topical microbicide

    PubMed Central

    Neurath, A Robert; Strick, Nathan; Li, Yun-Yao; Debnath, Asim K

    2004-01-01

    Background For ≈ 24 years the AIDS pandemic has claimed ≈ 30 million lives, causing ≈ 14,000 new HIV-1 infections daily worldwide in 2003. About 80% of infections occur by heterosexual transmission. In the absence of vaccines, topical microbicides, expected to block virus transmission, offer hope for controlling the pandemic. Antiretroviral chemotherapeutics have decreased AIDS mortality in industrialized countries, but only minimally in developing countries. To prevent an analogous dichotomy, microbicides should be: acceptable; accessible; affordable; and accelerative in transition from development to marketing. Already marketed pharmaceutical excipients or foods, with established safety records and adequate anti-HIV-1 activity, may provide this option. Methods Fruit juices were screened for inhibitory activity against HIV-1 IIIB using CD4 and CXCR4 as cell receptors. The best juice was tested for inhibition of: (1) infection by HIV-1 BaL, utilizing CCR5 as the cellular coreceptor; and (2) binding of gp120 IIIB and gp120 BaL, respectively, to CXCR4 and CCR5. To remove most colored juice components, the adsorption of the effective ingredient(s) to dispersible excipients and other foods was investigated. A selected complex was assayed for inhibition of infection by primary HIV-1 isolates. Results HIV-1 entry inhibitors from pomegranate juice adsorb onto corn starch. The resulting complex blocks virus binding to CD4 and CXCR4/CCR5 and inhibits infection by primary virus clades A to G and group O. Conclusion These results suggest the possibility of producing an anti-HIV-1 microbicide from inexpensive, widely available sources, whose safety has been established throughout centuries, provided that its quality is adequately standardized and monitored. PMID:15485580

  17. A rationally engineered anti-HIV peptide fusion inhibitor with greatly reduced immunogenicity.

    PubMed

    Brauer, Frances; Schmidt, Kerstin; Zahn, Roland C; Richter, Cornelia; Radeke, Heinfried H; Schmitz, Jörn E; von Laer, Dorothee; Egerer, Lisa

    2013-02-01

    Peptides derived from the C-terminal heptad repeat 2 (HR2) region of the HIV-1 gp41 envelope glycoprotein, so-called C peptides, are very efficient HIV-1 fusion inhibitors. We previously developed innovative gene therapeutic approaches aiming at the direct in vivo production of C peptides from genetically modified host cells and found that T cells expressing membrane-anchored or secreted C peptides are protected from HIV-1 infection. However, an unwanted immune response against such antiviral peptides may significantly impair clinical efficacy and pose safety risks to patients. To overcome this problem, we engineered a novel C peptide, V2o, with greatly reduced immunogenicity and excellent antiviral activity. V2o is based on the chimeric C peptide C46-EHO, which is derived from the HR2 regions of HIV-2(EHO) and HIV-1(HxB2) and has broad anti-HIV and anti-simian immunodeficiency virus activity. Antibody and major histocompatibility complex class I epitopes within the C46-EHO peptide sequence were identified by in silico and in vitro analyses. Using rational design, we removed these epitopes by amino acid substitutions and thus minimized antigenicity and immunogenicity considerably. At the same time, the antiviral activity of the deimmunized peptide V2o was preserved or even enhanced compared to that of the parental C46-EHO peptide. Thus, V2o is an ideal candidate, especially for those novel therapeutic approaches for HIV infection that involve direct in vivo production of antiviral C peptides. PMID:23147734

  18. Carotid artery intima–media thickness and HIV infection: traditional risk factors overshadow impact of protease inhibitor exposure

    PubMed Central

    Currier, Judith S.; Kendall, Michelle A.; Zackin, Robert; Henry, W. Keith; Alston-Smith, Beverly; Torriani, Francesca J.; Schouten, Jeff; Mickelberg, Keith; Li, Yanjie; Hodis, Howard N.

    2005-01-01

    Context The impact of HIV infection and exposure to antiretroviral therapy on the development of subclinical atherosclerosis is incompletely understood. Objective To compare intima–media thickness (IMT) of the carotid artery between HIV-infected subjects receiving protease inhibitor-containing regimens and subjects not receiving these regimens and to compare differences in the IMT of the carotid artery between HIV-infected subjects and HIV-uninfected subjects. Methods A prospective matched cohort study in university-based outpatient clinics. Groups of three individuals (triads) matched on the following characteristics were enrolled: age, sex, race/ethnicity, smoking status, blood pressure and menopausal status. Group 1, HIV-infected subjects with continuous use of protease inhibitor (PI) therapy for ≥ 2 years; group 2, HIV-infected subjects without prior PI use; and group 3: HIV-uninfected. Ultrasonographers at six sites sent standardized ultrasound images to a central reading site for carotid IMT measurements. Carotid IMT was compared within the HIV-infected groups (1 and 2) and between the HIV-infected and uninfected groups in a matched analysis. Results One hundred and thirty-four individuals were enrolled in 45 triads. The median IMT in groups 1, 2 and 3 was 0.690, 0.712 and 0.698 mm, respectively. There were no statistically significant differences in IMT between groups 1 and 2, or in the combined HIV groups compared with the HIV uninfected group. Significant predictors of carotid IMT in a multivariate model included high-density lipoprotein (HDL) cholesterol, the interaction of HDL cholesterol and triglycerides, age and body mass index. Conclusions We found no association between PI inhibitor exposure or HIV infection and carotid IMT. PMID:15905673

  19. Pyrazolo[1,5-a]pyrimidine-based macrocycles as novel HIV-1 inhibitors: a patent evaluation of WO2015123182.

    PubMed

    Sun, Lin; Gao, Ping; Zhan, Peng; Liu, Xinyong

    2016-09-01

    The emergence of drug resistance in Combination Antiretroviral Therapy (cART) confirms a continuing need to investigate novel HIV-1 inhibitors with unexplored mechanisms of action. Recently, a series of pyrazolopyrimidine-based macrocyclic compounds were reported as inhibitors of HIV-1 replication disclosed in the patent WO2015123182. Most of the disclosed compounds possessed in vitro antiviral potency in single-digit nanomolar range, which were determined by MT-2 cell assay. Then, the structural diversity, pharmacophore similarity of HIV-1 IN-LEDGF/p75 inhibitors, and implications for drug design were analyzed. In the end of this article, a glimpse of some macrocycles as potent antiviral agents (drug candidates) was provided. Some strategies and technologies enabling macrocycle design were also described. We expect that further development of these macrocyclic compounds will offer new anti-HIV-1 drug candidates.

  20. Improved Pharmacological and Structural Properties of HIV Fusion Inhibitor AP3 over Enfuvirtide: Highlighting Advantages of Artificial Peptide Strategy

    DOE PAGESBeta

    Zhu, Xiaojie; Zhu, Yun; Ye, Sheng; Wang, Qian; Xu, Wei; Su, Shan; Sun, Zhiwu; Yu, Fei; Liu, Qi; Wang, Chao; et al

    2015-08-19

    Enfuvirtide (T20), is the first HIV fusion inhibitor approved for treatment of HIV/AIDS patients who fail to respond to the current antiretroviral drugs. However, its clinical application is limited because of short half-life, drug resistance and cross-reactivity with the preexisting antibodies in HIV-infected patients. Using an artificial peptide strategy, we designed a peptide with non-native protein sequence, AP3, which exhibited potent antiviral activity against a broad spectrum of HIV-1 strains, including those resistant to T20, and had remarkably longer in vivo half-life than T20. While the preexisting antibodies in HIV-infected patients significantly suppressed T20’s antiviral activity, these antibodies neither recognizedmore » AP3, nor attenuated its anti-HIV-1 activity. Structurally different from T20, AP3 could fold into single-helix and interact with gp41 NHR. The two residues, Met and Thr, at the N-terminus of AP3 form a hook-like structure to stabilize interaction between AP3 and NHR helices. Therefore, AP3 has potential for further development as a new HIV fusion inhibitor with improved antiviral efficacy, resistance profile and pharmacological properties over enfuvirtide. Meanwhile, this study highlighted the advantages of artificially designed peptides, and confirmed that this strategy could be used in developing artificial peptide-based viral fusion inhibitors against HIV and other enveloped viruses.« less

  1. Relation between flexibility and positively selected HIV-1 protease mutants against inhibitors.

    PubMed

    Braz, Antônio S K; Tufanetto, Patrícia; Perahia, David; Scott, Luis P B

    2012-12-01

    The antiretroviral chemotherapy helps to reduce the mortality of HIVs infected patients. However, RNA dependant virus replication has a high mutation rate. Human immunodeficiency virus Type 1 protease plays an essential role in viral replication cycle. This protein is an important target for therapy with viral protein inhibitors. There are few works using normal mode analysis to investigate this problem from the structural changes viewpoint. The investigation of protein flexibility may be important for the study of processes associated with conformational changes and state transitions. The normal mode analysis allowed us to investigate structural changes in the protease (such as flexibility) in a straightforward way and try to associate these changes with the increase of fitness for each positively selected HIV-1 mutant protease of patients treated with several protease inhibitors (saquinavir, indinavir, ritonavir, nelfinavir, lopinavir, fosamprenavir, atazanavir, darunavir, and tripanavir) in combination or separately. These positively selected mutations introduce significant flexibility in important regions such as the active site cavity and flaps. These mutations were also able to cause changes in accessible solvent area. This study showed that the majority of HIV-1 protease mutants can be grouped into two main classes of protein flexibility behavior. We presented a new approach to study structural changes caused by positively selected mutations in a pathogen protein, for instance the HIV-1 protease and their relationship with their resistance mechanism against known inhibitors. The method can be applied to any pharmaceutically relevant pathogen proteins and could be very useful to understand the effects of positively selected mutations in the context of structural changes.

  2. HIV protease inhibitors disrupt astrocytic glutamate transporter function and neurobehavioral performance

    PubMed Central

    Vivithanaporn, Pornpun; Asahchop, Eugene L.; Acharjee, Shaona; Baker, Glen B.; Power, Christopher

    2016-01-01

    Objective: The neurotoxic actions of the HIV protease inhibitors, amprenavir (APV) and lopinavir (LPV) were investigated. Design: With combination antiretroviral therapy (cART), HIV-infected persons exhibit neurocognitive impairments, raising the possibility that cART might exert adverse central nervous system (CNS) effects. We examined the effects of LPV and APV using in-vitro and in-vivo assays of CNS function. Methods: Gene expression, cell viability and amino-acid levels were measured in human astrocytes, following exposure to APV or LPV. Neurobehavioral performance, amino-acid levels and neuropathology were examined in HIV-1 Vpr transgenic mice after treatment with APV or LPV. Results: Excitatory amino-acid transporter-2 (EAAT2) expression was reduced in astrocytes treated with LPV or APV, especially LPV (P < 0.05), which was accompanied by reduced intracellular l-glutamate levels in LPV-treated cells (P < 0.05). Treatment of astrocytes with APV or LPV reduced the expression of proliferating cell nuclear antigen (PCNA) and Ki-67 (P < 0.05) although cell survival was unaffected. Exposure of LPV to astrocytes augmented glutamate-evoked transient rises in [Cai] (P < 0.05). Vpr mice treated with LPV showed lower concentrations of l-glutamate, l-aspartate and l-serine in cortex compared with vehicle-treated mice (P < 0.05). Total errors in T-maze assessment were increased in LPV and APV-treated animals (P < 0.05). EAAT2 expression was reduced in the brains of protease inhibitor-treated animals, which was associated with gliosis (P < 0.05). Conclusion: These results indicated that contemporary protease inhibitors disrupt astrocyte functions at therapeutic concentrations with enhanced sensitivity to glutamate, which can lead to neurobehavioral impairments. ART neurotoxicity should be considered in future therapeutic regimens for HIV/AIDS. PMID:26558720

  3. Effect of mimetic CDK9 inhibitors on HIV-1 activated transcription

    PubMed Central

    Van Duyne, Rachel; Guendel, Irene; Jaworski, Elizabeth; Sampey, Gavin; Klase, Zachary; Chen, Hao; Zeng, Chen; Kovalskyy, Dmytro; el Kouni, Mahmoud H.; Lepene, Benjamin; Patanarut, Alexis; Nekhai, Sergei; Price, David H.; Kashanchi, Fatah

    2013-01-01

    Potent antiretroviral therapy (ART) has transformed HIV-1 infection into a chronic manageable disease; however drug resistance remains a common problem that limits the effectiveness and clinical benefits of this type of treatment. The discovery of viral reservoirs in the body, in which HIV-1 may persist, has helped to explain why therapeutic eradication of HIV-1 has proved so difficult. In the current study we utilized a combination of structure based analysis of Cyclin/CDK complexes with our previously published Tat peptide derivatives. We modeled the Tat peptide inhibitors with CDKs and found a particular pocket which showed the most stable binding site (Cavity 1) using in silico analysis. Furthermore, we were able to find peptide mimetics that bound to similar regions using in silico searches of a chemical library, followed by cell based biological assays. Using these methods we obtained the first generation mimetic drugs and tested these compounds on HIV-1 LTR activated transcription. Using biological assays followed by similar in silico analysis to find a 2nd generation drugs resembling the original mimetic, we found the new targets of Cavity 1 and Cavity 2 regions on CDK9. We examined the 2nd generation mimetic against various viral isolates, and observed a generalized suppression of most HIV-1 isolates. Finally, the drug inhibited viral replication in humanized mouse models of Rag2-/-γc-/- with no toxicity to the animals at tested concentrations. Our results suggest that it may be possible to model peptide inhibitors into available crystal structures and further find drug mimetics using in silico analysis. PMID:23247501

  4. HIV-1 Protease with 20 Mutations Exhibits Extreme Resistance to Clinical Inhibitors through Coordinated Structural Rearrangements

    SciTech Connect

    Agniswamy, Johnson; Shen, Chen-Hsiang; Aniana, Annie; Sayer, Jane M.; Louis, John M.; Weber, Irene T.

    2012-06-28

    The escape mutant of HIV-1 protease (PR) containing 20 mutations (PR20) undergoes efficient polyprotein processing even in the presence of clinical protease inhibitors (PIs). PR20 shows >3 orders of magnitude decreased affinity for PIs darunavir (DRV) and saquinavir (SQV) relative to PR. Crystal structures of PR20 crystallized with yttrium, substrate analogue p2-NC, DRV, and SQV reveal three distinct conformations of the flexible flaps and diminished interactions with inhibitors through the combination of multiple mutations. PR20 with yttrium at the active site exhibits widely separated flaps lacking the usual intersubunit contacts seen in other inhibitor-free dimers. Mutations of residues 35-37 in the hinge loop eliminate interactions and perturb the flap conformation. Crystals of PR20/p2-NC contain one uninhibited dimer with one very open flap and one closed flap and a second inhibitor-bound dimer in the closed form showing six fewer hydrogen bonds with the substrate analogue relative to wild-type PR. PR20 complexes with PIs exhibit expanded S2/S2' pockets and fewer PI interactions arising from coordinated effects of mutations throughout the structure, in agreement with the strikingly reduced affinity. In particular, insertion of the large aromatic side chains of L10F and L33F alters intersubunit interactions and widens the PI binding site through a network of hydrophobic contacts. The two very open conformations of PR20 as well as the expanded binding site of the inhibitor-bound closed form suggest possible approaches for modifying inhibitors to target extreme drug-resistant HIV.

  5. Structure of HIV-1 Reverse Transcriptase with the Inhibitor -thujaplicinol Bound at the RNase H Active Site

    SciTech Connect

    Himmel, D.; Maegley, K; Pauly, T; Bauman, J; Das, K; Dharia, C; Clark, Jr., A; Ryan, K; Hickey, M; et al.

    2009-01-01

    Novel inhibitors are needed to counteract the rapid emergence of drug-resistant HIV variants. HIV-1 reverse transcriptase (RT) has both DNA polymerase and RNase H (RNH) enzymatic activities, but approved drugs that inhibit RT target the polymerase. Inhibitors that act against new targets, such as RNH, should be effective against all of the current drug-resistant variants. Here, we present 2.80 {angstrom} and 2.04 {angstrom} resolution crystal structures of an RNH inhibitor, {beta}-thujaplicinol, bound at the RNH active site of both HIV-1 RT and an isolated RNH domain. {beta}-thujaplicinol chelates two divalent metal ions at the RNH active site. We provide biochemical evidence that {beta}-thujaplicinol is a slow-binding RNH inhibitor with noncompetitive kinetics and suggest that it forms a tropylium ion that interacts favorably with RT and the RNA:DNA substrate.

  6. Neutralizing antibody and anti-retroviral drug sensitivities of HIV-1 isolates resistant to small molecule CCR5 inhibitors

    SciTech Connect

    Pugach, Pavel; Ketas, Thomas J.; Michael, Elizabeth; Moore, John P.

    2008-08-01

    The small molecule CCR5 inhibitors are a new class of drugs for treating infection by human immunodeficiency virus type 1 (HIV-1). They act by binding to the CCR5 co-receptor and preventing its use during HIV-1-cell fusion. Escape mutants can be raised against CCR5 inhibitors in vitro and will arise when these drugs are used clinically. Here, we have assessed the responses of CCR5 inhibitor-resistant viruses to other anti-retroviral drugs that act by different mechanisms, and their sensitivities to neutralizing antibodies (NAbs). The rationale for the latter study is that the resistance pathway for CCR5 inhibitors involves changes in the HIV-1 envelope glycoproteins (Env), which are also targets for NAbs. The escape mutants CC101.19 and D1/85.16 were selected for resistance to AD101 and vicriviroc (VVC), respectively, from the primary R5 HIV-1 isolate CC1/85. Each escape mutant was cross-resistant to other small molecule CCR5 inhibitors (aplaviroc, maraviroc, VVC, AD101 and CMPD 167), but sensitive to protein ligands of CCR5: the modified chemokine PSC-RANTES and the humanized MAb PRO-140. The resistant viruses also retained wild-type sensitivity to the nucleoside reverse transcriptase inhibitor (RTI) zidovudine, the non-nucleoside RTI nevirapine, the protease inhibitor atazanavir and other attachment and fusion inhibitors that act independently of CCR5 (BMS-806, PRO-542 and enfuvirtide). Of note is that the escape mutants were more sensitive than the parental CC1/85 isolate to a subset of neutralizing monoclonal antibodies and to some sera from HIV-1-infected people, implying that sequence changes in Env that confer resistance to CCR5 inhibitors can increase the accessibility of some NAb epitopes. The need to preserve NAb resistance may therefore be a constraint upon how escape from CCR5 inhibitors occurs in vivo.

  7. Dipeptidyl Peptidase-4 Inhibitor Use Is Not Associated With Acute Pancreatitis in High-Risk Type 2 Diabetic Patients: A Nationwide Cohort Study.

    PubMed

    Chang, Chia-Hsuin; Lin, Jou-Wei; Chen, Shu-Ting; Lai, Mei-Shu; Chuang, Lee-Ming; Chang, Yi-Cheng

    2016-02-01

    To analyze the association between use of DPP-4 inhibitors and acute pancreatitis in high-risk type 2 diabetic patients. A retrospective nationwide cohort study was conducted using the Taiwan National Health Insurance claim database. The risk associated with sitagliptin was compared to that with acarbose, a second-line antidiabetic drug prescribed for patients with similar diabetes severity and with a known neutral effect on pancreatitis. Between January 1, 2009 and December 31, 2010, a total of 8526 sitagliptin initiators and 8055 acarbose initiators who had hypertriglyceridemia or prior hospitalization history for acute pancreatitis were analyzed for the risk of hospitalization due to acute pancreatitis stratified for baseline propensity score. In the crude analysis, sitagliptin was associated with a decreased risk of acute pancreatitis (hazard ratio [HR] 0.74; 95% confidence interval [CI]: 0.62-0.88) compared to acarbose in diabetic patients with prior history of hospitalization for pancreatitis or hypertriglyceridemia. The association was abolished after stratification for propensity score quintiles (adjusted HR 0.95; 95% CI: 0.79-1.16). Similar results were found separately in both patients' histories of prior hospitalization of acute pancreatitis (adjusted HR 0.97; 95% CI: 0.76-1.24) and those with hypertriglyceridemia (adjusted HR 0.86; 95% CI: 0.65-1.13). No significant association was found for different durations or accumulative doses of sitagliptin. In the stratified analysis, no significant effect modification was found in relation to patients' characteristics. Use of sitagliptin was not associated with an increased risk of acute pancreatitis in high-risk diabetic patients with hypertriglyceridemia or with history of acute pancreatitis.

  8. Dipeptidyl Peptidase-4 Inhibitor Use Is Not Associated With Acute Pancreatitis in High-Risk Type 2 Diabetic Patients: A Nationwide Cohort Study.

    PubMed

    Chang, Chia-Hsuin; Lin, Jou-Wei; Chen, Shu-Ting; Lai, Mei-Shu; Chuang, Lee-Ming; Chang, Yi-Cheng

    2016-02-01

    To analyze the association between use of DPP-4 inhibitors and acute pancreatitis in high-risk type 2 diabetic patients. A retrospective nationwide cohort study was conducted using the Taiwan National Health Insurance claim database. The risk associated with sitagliptin was compared to that with acarbose, a second-line antidiabetic drug prescribed for patients with similar diabetes severity and with a known neutral effect on pancreatitis. Between January 1, 2009 and December 31, 2010, a total of 8526 sitagliptin initiators and 8055 acarbose initiators who had hypertriglyceridemia or prior hospitalization history for acute pancreatitis were analyzed for the risk of hospitalization due to acute pancreatitis stratified for baseline propensity score. In the crude analysis, sitagliptin was associated with a decreased risk of acute pancreatitis (hazard ratio [HR] 0.74; 95% confidence interval [CI]: 0.62-0.88) compared to acarbose in diabetic patients with prior history of hospitalization for pancreatitis or hypertriglyceridemia. The association was abolished after stratification for propensity score quintiles (adjusted HR 0.95; 95% CI: 0.79-1.16). Similar results were found separately in both patients' histories of prior hospitalization of acute pancreatitis (adjusted HR 0.97; 95% CI: 0.76-1.24) and those with hypertriglyceridemia (adjusted HR 0.86; 95% CI: 0.65-1.13). No significant association was found for different durations or accumulative doses of sitagliptin. In the stratified analysis, no significant effect modification was found in relation to patients' characteristics. Use of sitagliptin was not associated with an increased risk of acute pancreatitis in high-risk diabetic patients with hypertriglyceridemia or with history of acute pancreatitis. PMID:26886601

  9. The Dipeptidyl Peptidase-4 Inhibitor Linagliptin Preserves Endothelial Function in Mesenteric Arteries from Type 1 Diabetic Rats without Decreasing Plasma Glucose

    PubMed Central

    Salheen, Salheen M.; Panchapakesan, Usha; Pollock, Carol A.; Woodman, Owen L.

    2015-01-01

    The aim of the study was to investigate the effect of the DPP-4 inhibitor linagliptin on the mechanism(s) of endothelium-dependent relaxation in mesenteric arteries from STZ-induced diabetic rats. Both normal and diabetic animals received linagliptin (2 mg/kg) daily by oral gavage for a period of 4 weeks. To measure superoxide generation in mesenteric arteries, lucigenin-enhanced chemiluminescence was used. ACh-induced relaxation of mesenteric arteries was assessed using organ bath techniques and Western blotting was used to investigate protein expression. Pharmacological tools (1μM TRAM-34, 1μM apamin, 100 nM Ibtx, 100 μM L-NNA, 10 μM ODQ) were used to distinguish between NO and EDH-mediated relaxation. Linagliptin did not affect plasma glucose, but did decrease vascular superoxide levels. Diabetes reduced responses to ACh but did not affect endothelium-independent responses to SNP. Linagliptin improved endothelial function indicated by a significant increase in responses to ACh. Diabetes impaired the contribution of both nitric oxide (NO) and endothelium-dependent hyperpolarization (EDH) to endothelium-dependent relaxation and linagliptin treatment significantly enhanced the contribution of both relaxing factors. Western blotting demonstrated that diabetes also increased expression of Nox2 and decreased expression and dimerization of endothelial NO synthase, effects that were reversed by linagliptin. These findings demonstrate treatment of type 1 diabetic rats with linagliptin significantly reduced vascular superoxide levels and preserved both NO and EDH-mediated relaxation indicating that linagliptin can improve endothelial function in diabetes independently of any glucose lowering activity. PMID:26618855

  10. Drug Resistance Mutations Alter Dynamics of Inhibitor-Bound HIV-1 Protease.

    PubMed

    Cai, Yufeng; Myint, Wazo; Paulsen, Janet L; Schiffer, Celia A; Ishima, Rieko; Kurt Yilmaz, Nese

    2014-08-12

    Under the selective pressure of therapy, HIV-1 protease mutants resistant to inhibitors evolve to confer drug resistance. Such mutations can impact both the dynamics and structures of the bound and unbound forms of the enzyme. Flap+ is a multidrug-resistant variant of HIV-1 protease with a combination of primary and secondary resistance mutations (L10I, G48V, I54V, V82A) and a strikingly altered thermodynamic profile for darunavir (DRV) binding relative to the wild-type protease. We elucidated the impact of these mutations on protein dynamics in the DRV-bound state using molecular dynamics simulations and NMR relaxation experiments. Both methods concur in that the conformational ensemble and dynamics of protease are impacted by the drug resistance mutations in Flap+ variant. Surprisingly this change in ensemble dynamics is different from that observed in the unliganded form of the same variant (Cai, Y. et al. J. Chem. Theory Comput. 2012, 8, 3452-3462). Our comparative analysis of both inhibitor-free and bound states presents a comprehensive picture of the altered dynamics in drug-resistant mutant HIV-1 protease and underlies the importance of incorporating dynamic analysis of the whole system, including the unliganded state, into revealing drug resistance mechanisms. PMID:25136270

  11. Interaction of small molecule inhibitors of HIV-1 entry with CCR5

    SciTech Connect

    Seibert, Christoph . E-mail: seiberc@mail.rockefeller.edu; Ying Weiwen; Gavrilov, Svetlana; Tsamis, Fotini; Kuhmann, Shawn E.; Palani, Anandan; Tagat, Jayaram R.; Clader, John W.; McCombie, Stuart W.; Baroudy, Bahige M.; Smith, Steven O.; Dragic, Tatjana; Moore, John P.; Sakmar, Thomas P.

    2006-05-25

    The CC-chemokine receptor 5 (CCR5) is the major coreceptor for macrophage-tropic (R5) HIV-1 strains. Several small molecule inhibitors of CCR5 that block chemokine binding and HIV-1 entry are being evaluated as drug candidates. Here we define how CCR5 antagonists TAK-779, AD101 (SCH-350581) and SCH-C (SCH-351125), which inhibit HIV-1 entry, interact with CCR5. Using a mutagenesis approach in combination with a viral entry assay to provide a direct functional read out, we tested predictions based on a homology model of CCR5 and analyzed the functions of more than 30 amino acid residues. We find that a key set of aromatic and aliphatic residues serves as a hydrophobic core for the ligand binding pocket, while E283 is critical for high affinity interaction, most likely by acting as the counterion for a positively charged nitrogen atom common to all three inhibitors. These results provide a structural basis for understanding how specific antagonists interact with CCR5, and may be useful for the rational design of new, improved CCR5 ligands.

  12. Treating chemical diversity in QSAR analysis: modeling diverse HIV-1 integrase inhibitors using 4D fingerprints.

    PubMed

    Iyer, Manisha; Hopfinger, A J

    2007-01-01

    A set of 213 compounds across 12 structurally diverse classes of HIV-1 integrase inhibitors was used to develop and evaluate a combined clustering and QSAR modeling methodology to construct significant, reliable, and robust models for structurally diverse data sets. The trial-descriptor pool for both clustering- and QSAR-model building consisted of 4D fingerprints and classic QSAR descriptors. Clustering was carried out using a combination of the partitioning around medoids method and divisive hierarchical clustering. QSAR models were constructed for members of each cluster by linear-regression fitting and model optimization using the genetic function approximation. The 12 structurally diverse classes of integrase inhbitors were partitioned into five clusters from which corresponding QSAR models, overwhelmingly composed of 4D fingerprint descriptors, were constructed. Analysis of the five QSAR models suggests that three models correspond to structurally diverse inhibitors that likely bind at a common site on integrase characterized by a common inhibitor hydrogen-bond donor, but involving somewhat different alignments and/or poses for the inhibitors of each of the three clusters. The particular alignments for the inhibitors of each of the three QSAR models involve specific distributions of nonpolar groups over the inhibitors. The two other clusters, one for coumarins and the other for depsides and depsidones, lead to QSAR models with less-defined pharmacophores, likely representing an inhibitor binding to a site(s) different from that of the other nine classes of inhibitors. Overall, the clustering and QSAR methodology employed in this study suggests that it can meaningfully partition structurally diverse compounds expressing a common endpoint in such a manner that leads to statistically significant and pharmacologically insightful composite QSAR models. PMID:17661457

  13. Crystal Structure of An FIV/HIV Chimeric Protease Complexed With the Broad-Based Inhibitor, TL-3

    SciTech Connect

    Heaslet, H.; Lin, Y.-C.; Tam, K.; Torbett, B.E.; Elder, J.E.; Stout, C.D.; /Pfizer Global Res. Devel. /Scripps Res. Inst.

    2007-07-09

    We have obtained the 1.7 angstrom crystal structure of FIV protease (PR) in which 12 critical residues around the active site have been substituted with the structurally equivalent residues of HIV PR (12X FIV PR). The chimeric PR was crystallized in complex with the broad-based inhibitor TL-3, which inhibits wild type FIV and HIV PRs, as well as 12X FIV PR and several drug-resistant HIV mutants [1-4]. Biochemical analyses have demonstrated that TL-3 inhibits these PRs in the order HIV PR > 12X FIV PR > FIV PR, with Ki values of 1.5 nM, 10 nM, and 41 nM, respectively [2-4]. Comparison of the crystal structures of the TL-3 complexes of 12X FIV and wild-typeFIV PR revealed the formation of additional van der Waals interactions between the enzyme inhibitor in the mutant PR. The 12X FIV PR retained the hydrogen bonding interactions between residues in the flap regions and active site involving the enzyme and the TL-3 inhibitor in comparison to both FIV PR and HIV PR. However, the flap regions of the 12X FIV PR more closely resemble those of HIV PR, having gained several stabilizing intra-flap interactions not present in wild type FIV PR. These findings offer a structural explanation for the observed inhibitor/substrate binding properties of the chimeric PR.

  14. Pregnane X Receptor Mediates Dyslipidemia Induced by the HIV Protease Inhibitor Amprenavir in Mice

    PubMed Central

    Helsley, Robert N.; Sui, Yipeng; Ai, Ni; Park, Se-Hyung; Welsh, William J.

    2013-01-01

    Human immunodeficiency virus (HIV) protease inhibitors (PIs) have been used successfully in extending the life span of people infected with HIV. The use of PIs has also been associated with dyslipidemia and an increased risk of cardiovascular disease, but the underlying mechanisms remain elusive. Several PIs have been implicated in activating the nuclear receptor pregnane X receptor (PXR), which acts as a xenobiotic sensor to regulate xenobiotic metabolism in the liver and intestine. Recent studies indicate that PXR may also play an important role in the regulation of lipid homeostasis. In the present study, we identified amprenavir, a widely used HIV PI, as a potent PXR-selective agonist. Computational docking studies combined with site-direct mutagenesis identified several key residues within the ligand-binding pocket of PXR that constitute points of interaction with amprenavir. Amprenavir efficiently activated PXR and induced PXR target gene expression in vitro and in vivo. Short-term exposure to amprenavir significantly increased plasma total cholesterol and atherogenic low-density lipoprotein cholesterol levels in wild-type mice, but not in PXR-deficient mice. Amprenavir-mediated PXR activation stimulated the expression of several key intestinal genes involved in lipid homeostasis. These findings provide critical mechanistic insight for understanding the impact of PIs on cardiovascular disease and demonstrate a potential role of PXR in mediating the adverse effects of HIV PIs in humans. PMID:23519392

  15. Synergistic Activation of Latent HIV-1 Expression by Novel Histone Deacetylase Inhibitors and Bryostatin-1

    PubMed Central

    Martínez-Bonet, Marta; Isabel Clemente, Maria; Jesús Serramía, Maria; Muñoz, Eduardo; Moreno, Santiago; Ángeles Muñoz-Fernández, Maria

    2015-01-01

    Viral reactivation from latently infected cells has become a promising therapeutic approach to eradicate HIV. Due to the complexity of the viral latency, combinations of efficient and available drugs targeting different pathways of latency are needed. In this work, we evaluated the effect of various combinations of bryostatin-1 (BRY) and novel histone deacetylase inhibitors (HDACIs) on HIV-reactivation and on cellular phenotype. The lymphocyte (J89GFP) or monocyte/macrophage (THP89GFP) latently infected cell lines were treated with BRY, panobinostat (PNB) and romidepsin (RMD) either alone or in combination. Thus, the effect on the viral reactivation was evaluated. We calculated the combination index for each drug combination; the BRY/HDACIs showed a synergistic HIV-reactivation profile in the majority of the combinations tested, whereas non-synergistic effects were observed when PNB was mixed with RMD. Indeed, the 75% effective concentrations of BRY, PNB and RMD were reduced in these combinations. Moreover, primary CD4 T cells treated with such drug combinations presented similar activation and proliferation profiles in comparison with single drug treated cells. Summing up, combinations between BRY, PNB and/or RMD presented a synergistic profile by inducing virus expression in HIV-latently infected cells, rendering these combinations an attractive novel and safe option for future clinical trials. PMID:26563568

  16. Synergistic Activation of Latent HIV-1 Expression by Novel Histone Deacetylase Inhibitors and Bryostatin-1.

    PubMed

    Martínez-Bonet, Marta; Clemente, Maria Isabel; Serramía, Maria Jesús; Muñoz, Eduardo; Moreno, Santiago; Muñoz-Fernández, Maria Ángeles

    2015-11-13

    Viral reactivation from latently infected cells has become a promising therapeutic approach to eradicate HIV. Due to the complexity of the viral latency, combinations of efficient and available drugs targeting different pathways of latency are needed. In this work, we evaluated the effect of various combinations of bryostatin-1 (BRY) and novel histone deacetylase inhibitors (HDACIs) on HIV-reactivation and on cellular phenotype. The lymphocyte (J89GFP) or monocyte/macrophage (THP89GFP) latently infected cell lines were treated with BRY, panobinostat (PNB) and romidepsin (RMD) either alone or in combination. Thus, the effect on the viral reactivation was evaluated. We calculated the combination index for each drug combination; the BRY/HDACIs showed a synergistic HIV-reactivation profile in the majority of the combinations tested, whereas non-synergistic effects were observed when PNB was mixed with RMD. Indeed, the 75% effective concentrations of BRY, PNB and RMD were reduced in these combinations. Moreover, primary CD4 T cells treated with such drug combinations presented similar activation and proliferation profiles in comparison with single drug treated cells. Summing up, combinations between BRY, PNB and/or RMD presented a synergistic profile by inducing virus expression in HIV-latently infected cells, rendering these combinations an attractive novel and safe option for future clinical trials.

  17. CD4-Specific Designed Ankyrin Repeat Proteins Are Novel Potent HIV Entry Inhibitors with Unique Characteristics

    PubMed Central

    Schweizer, Andreas; Rusert, Peter; Berlinger, Livia; Ruprecht, Claudia R.; Mann, Axel; Corthésy, Stéphanie; Turville, Stuart G.; Aravantinou, Meropi; Fischer, Marek; Robbiani, Melissa; Amstutz, Patrick; Trkola, Alexandra

    2008-01-01

    Here, we describe the generation of a novel type of HIV entry inhibitor using the recently developed Designed Ankyrin Repeat Protein (DARPin) technology. DARPin proteins specific for human CD4 were selected from a DARPin DNA library using ribosome display. Selected pool members interacted specifically with CD4 and competed with gp120 for binding to CD4. DARPin proteins derived in the initial selection series inhibited HIV in a dose-dependent manner, but showed a relatively high variability in their capacity to block replication of patient isolates on primary CD4 T cells. In consequence, a second series of CD4-specific DARPins with improved affinity for CD4 was generated. These 2nd series DARPins potently inhibit infection of genetically divergent (subtype B and C) HIV isolates in the low nanomolar range, independent of coreceptor usage. Importantly, the actions of the CD4 binding DARPins were highly specific: no effect on cell viability or activation, CD4 memory cell function, or interference with CD4-independent virus entry was observed. These novel CD4 targeting molecules described here combine the unique characteristics of DARPins—high physical stability, specificity and low production costs—with the capacity to potently block HIV entry, rendering them promising candidates for microbicide development. PMID:18654624

  18. HIV gp120 H375 Is Unique to HIV-1 Subtype CRF01_AE and Confers Strong Resistance to the Entry Inhibitor BMS-599793, a Candidate Microbicide Drug

    PubMed Central

    Schader, Susan M.; Colby-Germinario, Susan P.; Quashie, Peter K.; Oliveira, Maureen; Ibanescu, Ruxandra-Ilinca; Moisi, Daniela; Mespléde, Thibault

    2012-01-01

    BMS-599793 is a small molecule entry inhibitor that binds to human immunodeficiency virus type 1 (HIV-1) gp120, resulting in the inhibition of CD4-dependent entry into cells. Since BMS-599793 is currently considered a candidate microbicide drug, we evaluated its efficacy against a number of primary patient HIV isolates from different subtypes and circulating recombinant forms (CRFs) and showed that activity varied between ∼3 ρM and 7 μM at 50% effective concentrations (EC50s). Interestingly, CRF01_AE HIV-1 isolates consistently demonstrated natural resistance against this compound. Genotypic analysis of >1,600 sequences (Los Alamos HIV sequence database) indicated that a single amino acid polymorphism in Env, H375, may account for the observed BMS-599793 resistance in CRF01_AE HIV-1. Results of site-directed mutagenesis experiments confirmed this hypothesis, and in silico drug docking simulations identified a drug resistance mechanism at the molecular level. In addition, CRF01_AE viruses were shown to be resistant to multiple broadly neutralizing monoclonal antibodies. Thus, our results not only provide insight into how Env polymorphisms may contribute to entry inhibitor resistance but also may help to elucidate how HIV can evade some broadly neutralizing antibodies. Furthermore, the high frequency of H375 in CRF01_AE HIV-1, and its apparent nonoccurrence in other subtypes, could serve as a means for rapid identification of CRF01_AE infections. PMID:22615295

  19. HIV-1 IN strand transfer chelating inhibitors: a focus on metal binding.

    PubMed

    Bacchi, Alessia; Carcelli, Mauro; Compari, Carlotta; Fisicaro, Emilia; Pala, Nicolino; Rispoli, Gabriele; Rogolino, Dominga; Sanchez, Tino W; Sechi, Mario; Neamati, Nouri

    2011-04-01

    Most active and selective strand transfer HIV-1 integrase (IN) inhibitors contain chelating functional groups that are crucial feature for the inhibition of the catalytic activities of the enzyme. In particular, diketo acids and their derivatives can coordinate one or two metal ions within the catalytic core of the enzyme. The present work is intended as a contribution to elucidate the mechanism of action of the HIV-IN inhibitors by studying the coordinative features of H₂L¹ (L-708,906), an important member of the diketo acids family of inhibitors, and H₂L₂, a model for S-1360, another potent IN inhibitor. Magnesium(II) and manganese(II) complexes of H₂L¹ and H₂L² were isolated and fully characterized in solution and in the solid state. The crystal structures of the manganese complex [Mn(HL₂)₂(CH₃OH)₂]·2CH₃OH were solved by X-ray diffraction analysis. Moreover, the speciation models for H₂L₂ with magnesium(II) and manganese(II) ions were performed and the formation constants of the complexes were measured. M(HL₂)₂ (M = Mg²+, Mn²+) was the most abundant species in solution at physiological pH. All the synthesized compounds were tested for their anti-IN activity, showing good results both for the ligand and the corresponding complexes. From analysis of the speciation models and of the biological data we can conclude that coordination of both metal cofactors could not be strictly necessary and that inhibitors can act as complexes and not only as free ligands.

  20. Discovery, characterization, and lead optimization of 7-azaindole non-nucleoside HIV-1 reverse transcriptase inhibitors.

    PubMed

    Stanton, Richard A; Lu, Xiao; Detorio, Mervi; Montero, Catherine; Hammond, Emily T; Ehteshami, Maryam; Domaoal, Robert A; Nettles, James H; Feraud, Michel; Schinazi, Raymond F

    2016-08-15

    A library of 585 compounds built off a 7-azaindole core was evaluated for anti-HIV-1 activity, and ten hits emerged with submicromolar potency and therapeutic index >100. Of these, three were identified as non-nucleoside reverse transcriptase (RT) inhibitors and were assayed against relevant resistant mutants. Lead compound 8 inhibited RT with submicromolar potency (IC50=0.73μM) and also maintained some activity against the clinically important RT mutants K103N and Y181C (IC50=9.2, 3.5μM) in cell-free assays. Free energy perturbation guided lead optimization resulted in the development of a compound with a two-fold increase in potency against RT (IC50=0.36μM). These data highlight the discovery of a unique scaffold with the potential to move forward as next-generation anti-HIV-1 agents. PMID:27390064

  1. Novel quinolinonyl diketo acid derivatives as HIV-1 integrase inhibitors: design, synthesis, and biological activities.

    PubMed

    Di Santo, Roberto; Costi, Roberta; Roux, Alessandra; Miele, Gaetano; Crucitti, Giuliana Cuzzucoli; Iacovo, Alberto; Rosi, Federica; Lavecchia, Antonio; Marinelli, Luciana; Di Giovanni, Carmen; Novellino, Ettore; Palmisano, Lucia; Andreotti, Mauro; Amici, Roberta; Galluzzo, Clementina Maria; Nencioni, Lucia; Palamara, Anna Teresa; Pommier, Yves; Marchand, Christophe

    2008-08-14

    Novel quinolinonyl diketo acids were designed to obtain integrase (IN) inhibitors selectively active against the strand transfer (ST) step of the HIV integration process. Those new compounds are characterized by a single aryl diketo acid (DKA) chain in comparison to 4, a bifunctional diketo acid reported by our group as an anti-IN agent highly potent against both the 3'-processing and ST steps. Compound 6d was the most potent derivative in IN enzyme assays, while 6i showed the highest potency against HIV-1 in acutely infected cells. The selective inhibition of ST suggested the newly designed monofunctional DKAs bind the IN-DNA acceptor site without affecting the DNA donor site.

  2. Complete inactivation of HIV-1 using photo-labeled non-nucleoside reverse transcriptase inhibitors.

    PubMed

    Rios, Adan; Quesada, Jorge; Anderson, Dallas; Goldstein, Allan; Fossum, Theresa; Colby-Germinario, Susan; Wainberg, Mark A

    2011-01-01

    We demonstrate that a photo-labeled derivative of the non-nucleoside reverse transcriptase inhibitor (NNRTI) dapivirine termed DAPY, when used together with exposure to ultraviolet light, was able to completely and irreversibly inactivate both HIV-1 RT activity as well as infectiousness in each of a T cell line and peripheral blood mononuclear cells. Control experiments using various concentrations of DAPY revealed that a combination of exposure to ultraviolet light together with use of the specific, high affinity photo-labeled compound was necessary for complete inactivation to occur. This method of HIV RT inactivation may have applicability toward preservation of an intact viral structure and warrants further investigation in regard to the potential of this approach to elicit a durable, broad protective immune response. PMID:20937333

  3. The thioacetate-ω(γ-lactam carboxamide) HDAC inhibitor ST7612AA1 as HIV-1 latency reactivation agent.

    PubMed

    Badia, Roger; Grau, Judith; Riveira-Muñoz, Eva; Ballana, Ester; Giannini, Giuseppe; Esté, José A

    2015-11-01

    Antiretroviral therapy (ART) is unable to cure HIV infection. The ability of HIV to establish a subset of latent infected CD4(+) T cells, which remain undetectable to the immune system, becomes a major roadblock to achieve viral eradication. Histone deacetylase inhibitors (HDACi) have been shown to potently induce the reactivation of latent HIV. Here, we show that a new thiol-based HDACi, the thioacetate-ω(γ-lactam carboxamide) derivative ST7612AA1, is a potent inducer of HIV reactivation. We evaluated HIV reactivation activity of ST7612AA1 compared to panobinostat (PNB), romidepsin (RMD) and vorinostat (VOR) in cell culture models of HIV-1 latency, in latently infected primary CD4(+) T lymphocytes and in PBMCs from HIV(+) patients. ST7612AA1 potently induced HIV-1 reactivation at submicromolar concentrations with comparable potency to panobinostat or superior to vorinostat. The presence of known antiretrovirals did not affect ST7612AA1-induced reactivation and their activity was not affected by ST7612AA1. Cell proliferation and cell activation were not affected by ST7612AA1, or any other HDACi used. In conclusion, our results indicate that ST7612AA1 is a potent activator of latent HIV and that reactivation activity of ST7612AA1 is exerted without activation or proliferation of CD4(+) T cells. ST7612AA1 is a suitable candidate for further studies of HIV reactivation strategies and potential new therapies to eradicate the viral reservoirs. PMID:26348004

  4. Structure-based Design of Potent HIV-1 Protease Inhibitors with Modified P1 - Biphenyl Ligands: Synthesis, Biological Evaluation, and Enzyme-inhibitor X-ray Structural studies

    PubMed Central

    Ghosh, Arun K.; Yu, Xufen; Osswald, Heather L.; Agniswamy, Johnson; Wang, Yuan-Fang; Amano, Masayuki; Weber, Irene T.; Mitsuya, Hiroaki

    2016-01-01

    We report the design, synthesis, X-ray structural studies, and biological evaluation of a novel series of HIV-1 protease inhibitors. We designed a variety of functionalized biphenyl derivatives to make enhanced van der Waals interactions in the S1 subsite of HIV-1 protease. These biphenyl derivatives were conveniently synthesized using a Suzuki-Miyaura cross-coupling reaction as the key step. We examined the potential of these functionalized biphenyl-derived P1 ligands in combination with 3-(S)-tetrahydrofuranyl urethane and bis-tetrahydrofuranyl urethane as the P2 ligands. Inhibitor 21e, with a 2-methoxy-1, 1’-biphenyl derivative as P1 ligand and bis-THF as the P2 ligand, displayed the most potent enzyme inhibitory and antiviral activity. This inhibitor also exhibited potent activity against a panel of multidrug-resistant HIV-1 variants. A high resolution X-ray crystal structure of related Boc-derivative 17a-bound HIV-1 protease provided important molecular insight into the ligand-binding site interactions of the biphenyl core in the S1 subsite of HIV-1 protease. PMID:26107245

  5. Electronic transitions of neutral and anionic quinolinone HIV-1 integrase inhibitor: Joint theory/experiment investigation

    NASA Astrophysics Data System (ADS)

    Vandurm, Pierre; Cauvin, Christine; Wouters, Johan; Perpète, Eric A.; Jacquemin, Denis

    2009-08-01

    In this joint experimental and theoretical study, the solution-state conformation of [6-bromo-1-(4-fluorophenylmethyl)-4(1 H)-quinolinon-3-yl)]-4-hydroxy-2-oxo-3-butenoïc acid (QDKA), a potential HIV-1 integrase inhibitor, is investigated by using UV-visible spectroscopy and Time-Dependent Density Functional Theory. The neutral, mono-anionic and di-anionic species have been identified and their spectral characteristics rationalized. The possibility of forming enol tautomers and keto structures is assessed.

  6. Trelagliptin (SYR-472, Zafatek), Novel Once-Weekly Treatment for Type 2 Diabetes, Inhibits Dipeptidyl Peptidase-4 (DPP-4) via a Non-Covalent Mechanism.

    PubMed

    Grimshaw, Charles E; Jennings, Andy; Kamran, Ruhi; Ueno, Hikaru; Nishigaki, Nobuhiro; Kosaka, Takuo; Tani, Akiyoshi; Sano, Hiroki; Kinugawa, Yoshinobu; Koumura, Emiko; Shi, Lihong; Takeuchi, Koji

    2016-01-01

    Trelagliptin (SYR-472), a novel dipeptidyl peptidase-4 inhibitor, shows sustained efficacy by once-weekly dosing in type 2 diabetes patients. In this study, we characterized in vitro properties of trelagliptin, which exhibited approximately 4- and 12-fold more potent inhibition against human dipeptidyl peptidase-4 than alogliptin and sitagliptin, respectively, and >10,000-fold selectivity over related proteases including dipeptidyl peptidase-8 and dipeptidyl peptidase-9. Kinetic analysis revealed reversible, competitive and slow-binding inhibition of dipeptidyl peptidase-4 by trelagliptin (t1/2 for dissociation ≈ 30 minutes). X-ray diffraction data indicated a non-covalent interaction between dipeptidyl peptidase and trelagliptin. Taken together, potent dipeptidyl peptidase inhibition may partially contribute to sustained efficacy of trelagliptin. PMID:27328054

  7. Trelagliptin (SYR-472, Zafatek), Novel Once-Weekly Treatment for Type 2 Diabetes, Inhibits Dipeptidyl Peptidase-4 (DPP-4) via a Non-Covalent Mechanism

    PubMed Central

    Jennings, Andy; Kamran, Ruhi; Ueno, Hikaru; Nishigaki, Nobuhiro; Kosaka, Takuo; Tani, Akiyoshi; Sano, Hiroki; Kinugawa, Yoshinobu; Koumura, Emiko; Shi, Lihong; Takeuchi, Koji

    2016-01-01

    Trelagliptin (SYR-472), a novel dipeptidyl peptidase-4 inhibitor, shows sustained efficacy by once-weekly dosing in type 2 diabetes patients. In this study, we characterized in vitro properties of trelagliptin, which exhibited approximately 4- and 12-fold more potent inhibition against human dipeptidyl peptidase-4 than alogliptin and sitagliptin, respectively, and >10,000-fold selectivity over related proteases including dipeptidyl peptidase-8 and dipeptidyl peptidase-9. Kinetic analysis revealed reversible, competitive and slow-binding inhibition of dipeptidyl peptidase-4 by trelagliptin (t1/2 for dissociation ≈ 30 minutes). X-ray diffraction data indicated a non-covalent interaction between dipeptidyl peptidase and trelagliptin. Taken together, potent dipeptidyl peptidase inhibition may partially contribute to sustained efficacy of trelagliptin. PMID:27328054

  8. Trelagliptin (SYR-472, Zafatek), novel once-weekly treatment for type 2 diabetes, inhibits dipeptidyl peptidase-4 (DPP-4) via a non-covalent mechanism

    DOE PAGESBeta

    Grimshaw, Charles E.; Jennings, Andy; Kamran, Ruhi; Ueno, Hikaru; Nishigaki, Nobuhiro; Kosaka, Takuo; Tani, Akiyoshi; Sano, Hiroki; Kinugawa, Yoshinobu; Koumura, Emiko; et al

    2016-06-21

    Trelagliptin (SYR-472), a novel dipeptidyl peptidase-4 inhibitor, shows sustained efficacy by once-weekly dosing in type 2 diabetes patients. In this study, we characterized in vitro properties of trelagliptin, which exhibited approximately 4-and 12-fold more potent inhibition against human dipeptidyl peptidase-4 than alogliptin and sitagliptin, respectively, and >10,000-fold selectivity over related proteases including dipeptidyl peptidase-8 and dipeptidyl peptidase-9. Kinetic analysis revealed reversible, competitive and slow-binding inhibition of dipeptidyl peptidase-4 by trelagliptin (t1/2 for dissociation ≈ 30 minutes). X-ray diffraction data indicated a non-covalent interaction between dipeptidyl peptidase and trelagliptin. Altogether, potent dipeptidyl peptidase inhibitionmay partially contribute to sustained efficacy of trelagliptin.

  9. A novel dipyridodiazepinone inhibitor of HIV-1 reverse transcriptase acts through a nonsubstrate binding site

    SciTech Connect

    Wu, J.C.; Warren, T.C.; Adams, J.; Proudfoot, J.; Skiles, J.; Raghavan, P.; Perry, C.; Potocki, I.; Farina, P.R.; Grob, P.M. )

    1991-02-26

    A novel dipyridodiazepinone, 6,11-dihydro-11-cyclopropyl-4-methyldipyrido(2,3-b:2{prime},3{prime}-e)-(1,4)diazepin-6-one (BI-RG-587), is a selective noncompetitive inhibitor of HIV-1 reverse transcriptase (RT-1). An azido photoaffinity analogue of BI-RG-587 was synthesized and found to irreversibly inhibit the enzyme upon UV irradiation. BI-RG-587 and close structural analogues competitively protected RT-1 from inactivation by the photoaffinity label. A thiobenzimidazolone (TIBO) derivative, a nonnucleoside inhibitor of RT-1, also protected the enzyme from photoinactivation, which suggests a common binding site for these compounds. Substrates dGTP, template-primer, and tRNA afforded no protection from enzyme inactivation. A tritiated photoaffinity probe was found to stoichiometrically and selectively label p66 such that 1 mol of probe inactivates 1 mol of RT-1.

  10. Diketoacid chelating ligands as dual inhibitors of HIV-1 integration process.

    PubMed

    Rogolino, Dominga; Carcelli, Mauro; Compari, Carlotta; De Luca, Laura; Ferro, Stefania; Fisicaro, Emilia; Rispoli, Gabriele; Neamati, Nouri; Debyser, Zeger; Christ, Frauke; Chimirri, Alba

    2014-05-01

    HIV-1 Integrase (IN) represents a very attractive pharmacological target for the development of new and more efficient drugs. Recently, an allosteric inhibitory approach also emerged, that targets the interaction between IN and cellular cofactors, such as LEDGF/p75. Small molecules based on the diketoacid pharmachophore were studied for their ability to inhibit at the same time integration and IN-LEDGF/p75 interaction (dual inhibitors): in this study, we evaluated three indole diketoacid derivatives and their magnesium(II) complexes for their ability to act as dual inhibitors. Effectively, the metal complexes exhibited IN inhibition potency in low nanomolar/micromolar concentration range; both the complexes and the free ligands are also able to inhibit the IN-LEDGF/p75 interaction at low μM values. Moreover, these magnesium compounds showed good antiviral activity, suggesting the possibility to exploit metal coordination for the design of new antivirals.

  11. Anti-human immunodeficiency virus (HIV) activities of halogenated gomisin J derivatives, new nonnucleoside inhibitors of HIV type 1 reverse transcriptase.

    PubMed Central

    Fujihashi, T; Hara, H; Sakata, T; Mori, K; Higuchi, H; Tanaka, A; Kaji, H; Kaji, A

    1995-01-01

    Halogenated gomisin J (a derivative of lignan compound), represented by the bromine derivative 1506 [(6R, 7S, S-biar)-4,9-dibromo-3,10-dihydroxy-1,2,11,12-tetramethoxy-6, 7-dimethyl-5,6,7,8- tetrahydrodibenzo[a,c]cyclo-octene], was found to be a potent inhibitor of the cytopathic effects of human immunodeficiency virus type 1 (HIV-1) on MT-4 human T cells (50% effective dose, 0.1 to 0.5 microM). Gomisin J derivatives were active in preventing p24 production from acutely HIV-1-infected H9 cells. The selective indices (toxic dose/effective dose) of these compounds were as high as > 300 in some systems. 1506 was active against 3'-azido-3'-deoxythymidine-resistant HIV-1 and acted synergistically with AZT and 2',3'-ddC. 1506 inhibited HIV-1 reverse transcriptase (RT) in vitro but not HIV-1 protease. From the time-of-addition experiment, 1506 was found to inhibit the early phase of the HIV life cycle. A 1506-resistant HIV mutant was selected and shown to possess a mutation within the RT-coding region (at position 188 [Tyr to Leu]). The mutant RT expressed in Escherichia coli was resistant to 1506 in the in vitro RT assay. Some of the HIV strains resistant to other nonnucleoside HIV-1 RT inhibitors were also resistant to 1506. Comparison of various gomisin J derivatives with gomisin J showed that iodine, bromine, and chlorine in the fourth and ninth positions increased RT inhibitory activity as well as cytoprotective activity. PMID:8540706

  12. Screening of the Pan-African Natural Product Library Identifies Ixoratannin A-2 and Boldine as Novel HIV-1 Inhibitors

    PubMed Central

    Tietjen, Ian; Ntie-Kang, Fidele; Mwimanzi, Philip; Onguéné, Pascal Amoa; Scull, Margaret A.; Idowu, Thomas Oyebode; Ogundaini, Abiodun Oguntuga; Meva’a, Luc Mbaze; Abegaz, Berhanu M.; Rice, Charles M.; Andrae-Marobela, Kerstin; Brockman, Mark A.; Brumme, Zabrina L.; Fedida, David

    2015-01-01

    The continued burden of HIV in resource-limited regions such as parts of sub-Saharan Africa, combined with adverse effects and potential risks of resistance to existing antiretroviral therapies, emphasize the need to identify new HIV inhibitors. Here we performed a virtual screen of molecules from the pan-African Natural Product Library, the largest collection of medicinal plant-derived pure compounds on the African continent. We identified eight molecules with structural similarity to reported interactors of Vpu, an HIV-1 accessory protein with reported ion channel activity. Using in vitro HIV-1 replication assays with a CD4+ T cell line and peripheral blood mononuclear cells, we confirmed antiviral activity and minimal cytotoxicity for two compounds, ixoratannin A-2 and boldine. Notably, ixoratannin A-2 retained inhibitory activity against recombinant HIV-1 strains encoding patient-derived mutations that confer resistance to protease, non-nucleoside reverse transcriptase, or integrase inhibitors. Moreover, ixoratannin A-2 was less effective at inhibiting replication of HIV-1 lacking Vpu, supporting this protein as a possible direct or indirect target. In contrast, boldine was less effective against a protease inhibitor-resistant HIV-1 strain. Both ixoratannin A-2 and boldine also inhibited in vitro replication of hepatitis C virus (HCV). However, BIT-225, a previously-reported Vpu inhibitor, demonstrated antiviral activity but also cytotoxicity in HIV-1 and HCV replication assays. Our work identifies pure compounds derived from African plants with potential novel activities against viruses that disproportionately afflict resource-limited regions of the world. PMID:25830320

  13. Screening of the Pan-African natural product library identifies ixoratannin A-2 and boldine as novel HIV-1 inhibitors.

    PubMed

    Tietjen, Ian; Ntie-Kang, Fidele; Mwimanzi, Philip; Onguéné, Pascal Amoa; Scull, Margaret A; Idowu, Thomas Oyebode; Ogundaini, Abiodun Oguntuga; Meva'a, Luc Mbaze; Abegaz, Berhanu M; Rice, Charles M; Andrae-Marobela, Kerstin; Brockman, Mark A; Brumme, Zabrina L; Fedida, David

    2015-01-01

    The continued burden of HIV in resource-limited regions such as parts of sub-Saharan Africa, combined with adverse effects and potential risks of resistance to existing antiretroviral therapies, emphasize the need to identify new HIV inhibitors. Here we performed a virtual screen of molecules from the pan-African Natural Product Library, the largest collection of medicinal plant-derived pure compounds on the African continent. We identified eight molecules with structural similarity to reported interactors of Vpu, an HIV-1 accessory protein with reported ion channel activity. Using in vitro HIV-1 replication assays with a CD4+ T cell line and peripheral blood mononuclear cells, we confirmed antiviral activity and minimal cytotoxicity for two compounds, ixoratannin A-2 and boldine. Notably, ixoratannin A-2 retained inhibitory activity against recombinant HIV-1 strains encoding patient-derived mutations that confer resistance to protease, non-nucleoside reverse transcriptase, or integrase inhibitors. Moreover, ixoratannin A-2 was less effective at inhibiting replication of HIV-1 lacking Vpu, supporting this protein as a possible direct or indirect target. In contrast, boldine was less effective against a protease inhibitor-resistant HIV-1 strain. Both ixoratannin A-2 and boldine also inhibited in vitro replication of hepatitis C virus (HCV). However, BIT-225, a previously-reported Vpu inhibitor, demonstrated antiviral activity but also cytotoxicity in HIV-1 and HCV replication assays. Our work identifies pure compounds derived from African plants with potential novel activities against viruses that disproportionately afflict resource-limited regions of the world.

  14. Discovery of novel small-molecule HIV-1 replication inhibitors that stabilize capsid complexes.

    PubMed

    Lamorte, Louie; Titolo, Steve; Lemke, Christopher T; Goudreau, Nathalie; Mercier, Jean-François; Wardrop, Elizabeth; Shah, Vaibhav B; von Schwedler, Uta K; Langelier, Charles; Banik, Soma S R; Aiken, Christopher; Sundquist, Wesley I; Mason, Stephen W

    2013-10-01

    The identification of novel antiretroviral agents is required to provide alternative treatment options for HIV-1-infected patients. The screening of a phenotypic cell-based viral replication assay led to the identification of a novel class of 4,5-dihydro-1H-pyrrolo[3,4-c]pyrazol-6-one (pyrrolopyrazolone) HIV-1 inhibitors, exemplified by two compounds: BI-1 and BI-2. These compounds inhibited early postentry stages of viral replication at a step(s) following reverse transcription but prior to 2 long terminal repeat (2-LTR) circle formation, suggesting that they may block nuclear targeting of the preintegration complex. Selection of viruses resistant to BI-2 revealed that substitutions at residues A105 and T107 within the capsid (CA) amino-terminal domain (CANTD) conferred high-level resistance to both compounds, implicating CA as the antiviral target. Direct binding of BI-1 and/or BI-2 to CANTD was demonstrated using isothermal titration calorimetry and nuclear magnetic resonance (NMR) chemical shift titration analyses. A high-resolution crystal structure of the BI-1:CANTD complex revealed that the inhibitor bound within a recently identified inhibitor binding pocket (CANTD site 2) between CA helices 4, 5, and 7, on the surface of the CANTD, that also corresponds to the binding site for the host factor CPSF-6. The functional consequences of BI-1 and BI-2 binding differ from previously characterized inhibitors that bind the same site since the BI compounds did not inhibit reverse transcription but stabilized preassembled CA complexes. Hence, this new class of antiviral compounds binds CA and may inhibit viral replication by stabilizing the viral capsid.

  15. Discovery of Novel Small-Molecule HIV-1 Replication Inhibitors That Stabilize Capsid Complexes

    PubMed Central

    Titolo, Steve; Lemke, Christopher T.; Goudreau, Nathalie; Mercier, Jean-François; Wardrop, Elizabeth; Shah, Vaibhav B.; von Schwedler, Uta K.; Langelier, Charles; Banik, Soma S. R.; Aiken, Christopher; Sundquist, Wesley I.

    2013-01-01

    The identification of novel antiretroviral agents is required to provide alternative treatment options for HIV-1-infected patients. The screening of a phenotypic cell-based viral replication assay led to the identification of a novel class of 4,5-dihydro-1H-pyrrolo[3,4-c]pyrazol-6-one (pyrrolopyrazolone) HIV-1 inhibitors, exemplified by two compounds: BI-1 and BI-2. These compounds inhibited early postentry stages of viral replication at a step(s) following reverse transcription but prior to 2 long terminal repeat (2-LTR) circle formation, suggesting that they may block nuclear targeting of the preintegration complex. Selection of viruses resistant to BI-2 revealed that substitutions at residues A105 and T107 within the capsid (CA) amino-terminal domain (CANTD) conferred high-level resistance to both compounds, implicating CA as the antiviral target. Direct binding of BI-1 and/or BI-2 to CANTD was demonstrated using isothermal titration calorimetry and nuclear magnetic resonance (NMR) chemical shift titration analyses. A high-resolution crystal structure of the BI-1:CANTD complex revealed that the inhibitor bound within a recently identified inhibitor binding pocket (CANTD site 2) between CA helices 4, 5, and 7, on the surface of the CANTD, that also corresponds to the binding site for the host factor CPSF-6. The functional consequences of BI-1 and BI-2 binding differ from previously characterized inhibitors that bind the same site since the BI compounds did not inhibit reverse transcription but stabilized preassembled CA complexes. Hence, this new class of antiviral compounds binds CA and may inhibit viral replication by stabilizing the viral capsid. PMID:23817385

  16. Structural Studies of the HIV-1 Integrase Protein: Compound Screening and Characterization of a DNA-Binding Inhibitor

    PubMed Central

    Hassounah, Said; Mesplède, Thibault; Wainberg, Mark A.

    2015-01-01

    Understanding the HIV integrase protein and mechanisms of resistance to HIV integrase inhibitors is complicated by the lack of a full length HIV integrase crystal structure. Moreover, a lentiviral integrase structure with co-crystallised DNA has not been described. For these reasons, we have developed a structural method that utilizes free software to create quaternary HIV integrase homology models, based partially on available full-length prototype foamy virus integrase structures as well as several structures of truncated HIV integrase. We have tested the utility of these models in screening of small anti-integrase compounds using randomly selected molecules from the ZINC database as well as a well characterized IN:DNA binding inhibitor, FZ41, and a putative IN:DNA binding inhibitor, HDS1. Docking studies showed that the ZINC compounds that had the best binding energies bound at the IN:IN dimer interface and that the FZ41 and HDS1 compounds docked at approximately the same location in integrase, i.e. behind the DNA binding domain, although there is some overlap with the IN:IN dimer interface to which the ZINC compounds bind. Thus, we have revealed two possible locations in integrase that could potentially be targeted by allosteric integrase inhibitors, that are distinct from the binding sites of other allosteric molecules such as LEDGF inhibitors. Virological and biochemical studies confirmed that HDS1 and FZ41 share a similar activity profile and that both can inhibit each of integrase and reverse transcriptase activities. The inhibitory mechanism of HDS1 for HIV integrase seems to be at the DNA binding step and not at either of the strand transfer or 3' processing steps of the integrase reaction. Furthermore, HDS1 does not directly interact with DNA. The modeling and docking methodology described here will be useful for future screening of integrase inhibitors as well as for the generation of models for the study of integrase drug resistance. PMID:26046987

  17. A high throughput Cre-lox activated viral membrane fusion assay identifies pharmacological inhibitors of HIV entry.

    PubMed

    Esposito, Anthony M; Cheung, Pamela; Swartz, Talia H; Li, Hongru; Tsibane, Tshidi; Durham, Natasha D; Basler, Christopher F; Felsenfeld, Dan P; Chen, Benjamin K

    2016-03-01

    Enveloped virus entry occurs when viral and cellular membranes fuse releasing particle contents into the target cell. Human immunodeficiency virus (HIV) entry occurs by cell-free virus or virus transferred between infected and uninfected cells through structures called virological synapses. We developed a high-throughput cell-based assay to identify small molecule inhibitors of cell-free or virological synapse-mediated entry. An HIV clone carrying Cre recombinase as a Gag-internal gene fusion releases active Cre into cells upon viral entry activating a recombinatorial gene switch changing dsRed to GFP-expression. A screen of a 1998 known-biological profile small molecule library identified pharmacological HIV entry inhibitors that block both cell-free and cell-to-cell infection. Many top hits were noted as HIV inhibitors in prior studies, but not previously recognized as entry antagonists. Modest therapeutic indices for simvastatin and nigericin were observed in confirmatory HIV infection assays. This robust assay is adaptable to study HIV and heterologous viral pseudotypes.

  18. Relationships between structure and interaction kinetics for HIV-1 protease inhibitors.

    PubMed

    Markgren, Per-Olof; Schaal, Wesley; Hämäläinen, Markku; Karlén, Anders; Hallberg, Anders; Samuelsson, Bertil; Danielson, U Helena

    2002-12-01

    The interaction between HIV-1 protease and 58 structurally diverse transition-state analogue inhibitors has been analyzed by a surface plasmon resonance based biosensor. Association and dissociation rate constants and affinities were determined and displayed as k(on)-k(off)-K(D) maps. It was shown that different classes of inhibitors fall into distinct clusters in these maps. Significant changes in association and dissociation rates were found as a result of modifying the P1/P1' or P2/P2' side chains of a linear lead compound. Similarly, cyclic urea and cyclic sulfamide inhibitors displayed different kinetic features and the affinities of both classes of cyclic compounds were limited by fast dissociation rates. These results confirm that association and dissociation rates are important features of drug-target interactions and indicate that optimization of inhibitor efficacy may be guided by aiming for high association and low dissociation rates rather than high affinity alone. The present approach thus provides a new tool for structure-interaction kinetic analysis and drug discovery. PMID:12459011

  19. Rationally designed anti-HIV peptides containing multifunctional domains as molecule probes for studying the mechanisms of action of the first and second generation HIV fusion inhibitors.

    PubMed

    Qi, Zhi; Shi, Weiguo; Xue, Na; Pan, Chungen; Jing, Weiguo; Liu, Keliang; Jiang, Shibo

    2008-10-31

    We have previously shown that the first generation human immunodeficiency virus (HIV) fusion inhibitor T20 (Fuzeon) contains a critical lipid-binding domain (LBD), whereas C34, another anti-HIV peptide derived from the gp41 C-terminal heptad repeat, consists of an important pocket-binding domain (PBD), and both share a common 4-3 heptad repeat (HR) sequence (Liu, S., Jing, W., Cheung, B., Lu, H., Sun, J., Yan, X., Niu, J., Farmar, J., Wu, S., and Jiang, S. (2007) J. Biol. Chem. 282, 9612-9620). T1249, the second generation HIV fusion inhibitor, has both LBD and PBD but a different HR sequence, suggesting that these three anti-HIV peptides may have distinct mechanisms of action. Here we rationally designed a set of peptides that contain multiple copies of a predicted HR sequence (5HR) or the HR sequence plus either LBD (4HR-LBD) or PBD (PBD-4HR) or both (PBD-3HR-LBD), and we compared their anti-HIV-1 activity and biophysical properties. We found that the peptide 5HR exhibited low-to-moderate inhibitory activity on HIV-1-mediated cell-cell fusion, whereas addition of LBD and/or PBD to the HR sequence resulted in a significant increase of the anti-HIV-1 activity. The peptides containing PBD, including PBD-4HR and PBD-3HR-LBD, could form a stable six-helix bundle with the N-peptide N46 and effectively blocked the gp41 core formation, whereas the peptides containing LBD, e.g. 4HR-LBD and PBD-3HR-LBD, could interact with the lipid vehicles. These results suggest that the HR sequence in these anti-HIV peptides acts as a structure domain and is responsible for its interaction with the HR sequence in N-terminal heptad repeat, whereas PBD and LBD are critical for interactions with their corresponding targets. T20, C34, and T1249 may function like 4HR-LBD, PBD-4HR, and PBD-3HR-LBD, respectively, to interact with different target sites for inhibiting HIV fusion and entry. Therefore, this study provides important information for understanding the mechanisms of action of the

  20. Crystal structure of a novel synthetic inhibitor of HIV-1 protease

    NASA Astrophysics Data System (ADS)

    Hilgeroth, Andreas; Tykarska, Ewa; Jaskolski, Mariusz

    2002-02-01

    The crystal structure of a novel non-peptidic HIV-1 protease inhibitor derived by simple solid-state dimerization of 4-aryl-1,4-dihydropyridines, reveals a strained central cage and the conformation of its phenyl, benzyl, and hydroxymethylene substituents. The polycyclic cage includes two nearly flat cyclobutane rings and four fused piperidine rings in boat conformations. The cage geometry reveals two unexpected features, namely marked distortions of the valence angles in every second piperidine and a shortening of one of the cyclobutane bonds. The molecule displays exact centrosymmetry, but the central cage and the hydroxymethylene substituents also approximate the C2-symmetry of the target enzyme. The two independent hydroxyl groups are involved in intermolecular hydrogen bonding, one as a donor, the other as an acceptor. The disposition of the hydroxyl groups in the molecular framework is compatible with the dual role of the inhibitor in the active-site cavity of HIV-1 protease, whereby one OH group is hydrogen-bonded to the catalytic aspartates, whereas another one provides an interface to the locked flaps of the enzyme.

  1. FRET-based assay to screen inhibitors of HIV-1 reverse transcriptase and nucleocapsid protein

    PubMed Central

    Sharma, Kamal K.; Przybilla, Frédéric; Restle, Tobias; Godet, Julien; Mély, Yves

    2016-01-01

    During HIV-1 reverse transcription, the single-stranded RNA genome is converted into proviral double stranded DNA by Reverse Transcriptase (RT) within a reverse transcription complex composed of the genomic RNA and a number of HIV-1 encoded proteins, including the nucleocapsid protein NCp7. Here, we developed a one-step and one-pot RT polymerization assay. In this in vitro assay, RT polymerization is monitored in real-time by Förster resonance energy transfer (FRET) using a commercially available doubly-labeled primer/template DNA. The assay can monitor and quantify RT polymerization activity as well as its promotion by NCp7. Z-factor values as high as 0.89 were obtained, indicating that the assay is suitable for high-throughput drug screening. Using Nevirapine and AZT as prototypical RT inhibitors, reliable IC50 values were obtained from the changes in the RT polymerization kinetics. Interestingly, the assay can also detect NCp7 inhibitors, making it suitable for high-throughput screening of drugs targeting RT, NCp7 or simultaneously, both proteins. PMID:26762982

  2. Evaluation of Potential Genotoxicity of HIV Entry Inhibitors Derived from Natural Sources

    PubMed Central

    Paskaleva, Elena E.; Arra, Manoj; Liu, Yanze; Guo, Huijun; Swartz, Glenn; Kennedy, Jeffrey S.; Breneman, Curt; Shekhtman, Alexander; Canki, Mario

    2014-01-01

    AIDS is a global pandemic that has seen the development of novel and effective treatments to improve the quality of life of those infected and reduction of spread of the disease. Palmitic Acid (PA), which we identified and isolated from Sargassum fusiforme, is a naturally occurring fatty acid that specifically inhibits HIV entry by binding to a novel pocket on the CD4 receptor. We also identified a structural analogue, 2-bromopalmitate (2-BP), as a more effective HIV entry inhibitor with a 20-fold increase in efficacy. We have used the structure-activity relationship (SAR) of 2-BP as a platform to identify new small chemical molecules that fit into the various identified active sites in an effort to identify more potent CD4 entry inhibitors. To validate further drug development, we tested the PA and 2-BP scaffold molecules for genotoxic potential. The FDA and International Conference on Harmonisation (ICH) recommends using a standardized 3-test battery for testing compound genotoxicity consisting of the bacterial reverse mutation assay, mouse lymphoma assay, and rat micronucleus assay. PA and 2-BP and their metabolites tested negative in all three genotoxicty tests. 2-BP is the first derivative of PA to undergo pre-clinical screening, which will enable us to now test multiple simultaneous small chemical structures based on activity in scaffold modeling across the dimension of pre-clinical testing to enable transition to human testing. PMID:24667334

  3. The tyrosine kinase inhibitor genistein blocks HIV-1 infection in primary human macrophages.

    PubMed

    Stantchev, Tzanko S; Markovic, Ingrid; Telford, William G; Clouse, Kathleen A; Broder, Christopher C

    2007-02-01

    Binding of HIV-1 envelope glycoprotein (Env) to its cellular receptors elicits a variety of signaling events, including the activation of select tyrosine kinases. To evaluate the potential role of such signaling, we examined the effects of the tyrosine kinase inhibitor, genistein, on HIV-1 entry and infection of human macrophages using a variety of assays. Without altering cell viability, cell surface expression of CD4 and CCR5 or their abilities to interact with Env, genistein inhibited infection of macrophages by reporter gene-encoding, beta-lactamase containing, or wild type virions, as well as Env-mediated cell-fusion. The observation that genistein blocked virus infection if applied before, during or immediately after the infection period, but not 24h later; coupled with a more pronounced inhibition of infection in the reporter gene assays as compared to both beta-lactamase and p24 particle entry assays, imply that genistein exerts its inhibitory effects on both entry and early post-entry steps. These findings suggest that other exploitable targets, or steps, of the HIV-1 infection process may exist and could serve as additional opportunities for the development of new therapeutics.

  4. A broad HIV-1 inhibitor blocks envelope glycoprotein transitions critical for entry

    PubMed Central

    Herschhorn, Alon; Gu, Christopher; Espy, Nicole; Richard, Jonathan; Finzi, Andrés; Sodroski, Joseph G.

    2014-01-01

    Binding to the primary receptor, CD4, triggers conformational changes in the metastable envelope glycoprotein (Env) trimer (gp1203/gp413) of human immunodeficiency virus (HIV-1) that are important for virus entry into host cells. These changes include an “opening” of the trimer, creation of a binding site for the CCR5 coreceptor, and formation/exposure of a gp41 coiled coil. Here we identify a new compound, 18A (1), that specifically inhibits the entry of a wide range of HIV-1 isolates. 18A does not interfere with CD4 or CCR5 binding, but inhibits the CD4-induced disruption of quaternary structures at the trimer apex and the formation/exposure of the gp41 HR1 coiled coil. Analysis of HIV-1 variants exhibiting increased or reduced sensitivity to 18A suggests that the inhibitor can distinguish distinct conformational states of gp120 in the unliganded Env trimer. The broad-range activity and observed hypersensitivity of resistant mutants to antibody neutralization support further investigation of 18A. PMID:25174000

  5. Microglial activation decreases retention of the protease inhibitor saquinavir: implications for HIV treatment

    PubMed Central

    2013-01-01

    Background Active HIV infection within the central nervous system (CNS) is confined primarily to microglia. The glial cell compartment acts as a viral reservoir behind the blood-brain barrier. It provides an additional roadblock to effective pharmacological treatment via expression of multiple drug efflux transporters, including P-glycoprotein. HIV/AIDS patients frequently suffer bacterial and viral co-infections, leading to deregulation of glial cell function and release of pro-inflammatory mediators including cytokines, chemokines, and nitric oxide. Methods To better define the role of inflammation in decreased HIV drug accumulation into CNS targets, accumulation of the antiretroviral saquinavir was examined in purified cultures of rodent microglia exposed to the prototypical inflammatory mediator lipopolysaccharide (LPS). Results [3H]-Saquinavir accumulation by microglia was rapid, and was increased up to two-fold in the presence of the specific P-glycoprotein inhibitor, PSC833. After six or 24 hours of exposure to 10 ng/ml LPS, saquinavir accumulation was decreased by up to 45%. LPS did not directly inhibit saquinavir transport, and did not affect P-glycoprotein protein expression. LPS exposure did not alter RNA and/or protein expression of other transporters including multidrug resistance-associated protein 1 and several solute carrier uptake transporters. Conclusions The decrease in saquinavir accumulation in microglia following treatment with LPS is likely multi-factorial, since drug accumulation was attenuated by inhibitors of NF-κβ and the MEK1/2 pathway in the microglia cell line HAPI, and in primary microglia cultures from toll-like receptor 4 deficient mice. These data provide new pharmacological insights into why microglia act as a difficult-to-treat viral sanctuary site. PMID:23642074

  6. [Dysmetabolic syndrome related to HIV-1 protease inhibitors. Review of the literature and personal data].

    PubMed

    Urso, R; Croce, G F; Tubili, C; De Marco, M; La Scala, P; Luglio, D; Narciso, P

    2000-02-01

    HIV-positive patients receiving antiretroviral therapy with HIV-1 protease-inhibitors (PI) frequently show insulin-resistance, impaired glucose tolerance, hypertriglyceridaemia and lipodystrophy (LD). LD has often been reported only after the beginning of PI therapy. Some authors link LD to HIV chronic infection, some others suggest that PIs increase pre-existent disturb. Preliminary data of an observational study drawn in IV day-hospital of Spallanzani Institute in Rome showed hypertriglyceridaemia in 36.4% and hyperglycaemia in 11.2% of patients treated with PI. Carr suggests that such drugs should have this lipid-increasing effect because of their inhibition of low density lipoprotein-receptor-related protein, cytoplasmic retinoic-acid binding protein type 1 and P450 3A cytochrome. This theory doesn't explain why both untreated patients and treated with only reverse transcriptase inhibitors show sometimes the same disorders. According to another hypothesis Tumor necrosis factor-alpha, through inhibition of lipoprotein-lipase, would determine high fat-storage in the adipose tissue. Cardiovascular risk factors have always to be assessed before starting a therapy with PI. Glycaemia, triglyceridaemia, cholesterolaemia have to be performed every three months during the treatment and, if necessary, C-Peptide and insulinaemia too. A treatment with lipid-lowering drugs is always recommended in patients with hypertriglyceridaemia > 500 mg/dl and/or hypercholesterolaemia LDL > 190 mg/dl in two following checks. Fibrates have proven to be effective in reducing hypertriglyceridaemia, but there is no certainty that such therapies could have good effects on the LD itself too.

  7. The HIV-protease inhibitor saquinavir reduces proliferation, invasion and clonogenicity in cervical cancer cell lines

    PubMed Central

    Bandiera, Elisabetta; Todeschini, Paola; Romani, Chiara; Zanotti, Laura; Erba, Eugenio; Colmegna, Benedetta; Bignotti, Eliana; Santin, Alessandro Davide; Sartori, Enrico; Odicino, Franco Edoardo; Pecorelli, Sergio; Tassi, Renata Alessandra; Ravaggi, Antonella

    2016-01-01

    Innovative therapies in cervical cancer (CC) remain a priority. Recent data indicate that human immunodeficiency virus (HIV)-protease inhibitors used in highly active antiretroviral therapy can exert direct antitumor activities also in HIV-free preclinical and clinical models. The aim of the present study was to evaluate the antineoplastic effects of various HIV-protease inhibitors (indinavir, ritonavir and saquinavir) on primary and established CC cell lines. Two CC cell lines established in our laboratory and four commercially available CC cell lines were treated with indinavir, ritonavir and saquinavir at different concentrations and for different times. Proliferation, clonogenicity and radiosensitivity were evaluated by crystal violet staining. Proteasomal activities were assessed using a cell-based assay and immunoblotting. Cell cycle was analyzed by propidium iodide staining and flow cytometric analysis. Invasion was tested with Matrigel chambers. A t-test for paired samples was used for statistical analysis. In all cell lines, saquinavir was more effective than ritonavir in reducing cell proliferation and inhibiting proteasomal activities (P≤0.05). Conversely, indinavir exerted a negligible effect. The saquinavir concentrations required to modulate the proteasome activities were higher than those observed to be effective in inhibiting cell proliferation. In HeLa cells, saquinavir was strongly effective in inhibiting cell invasion and clonogenicity (P≤0.05) at concentrations much lower than those required to perturb proteasomal activities. Saquinavir did not contribute to increase the sensitivity of HeLa cells to X-rays. In conclusion, the present results demonstrate that saquinavir is able to significantly reduce cell proliferation, cell invasion and clonogenicity in a proteasome-independent manner in in vitro models of CC, and suggest that saquinavir could be a promising CC therapeutic agent.

  8. The HIV-protease inhibitor saquinavir reduces proliferation, invasion and clonogenicity in cervical cancer cell lines

    PubMed Central

    Bandiera, Elisabetta; Todeschini, Paola; Romani, Chiara; Zanotti, Laura; Erba, Eugenio; Colmegna, Benedetta; Bignotti, Eliana; Santin, Alessandro Davide; Sartori, Enrico; Odicino, Franco Edoardo; Pecorelli, Sergio; Tassi, Renata Alessandra; Ravaggi, Antonella

    2016-01-01

    Innovative therapies in cervical cancer (CC) remain a priority. Recent data indicate that human immunodeficiency virus (HIV)-protease inhibitors used in highly active antiretroviral therapy can exert direct antitumor activities also in HIV-free preclinical and clinical models. The aim of the present study was to evaluate the antineoplastic effects of various HIV-protease inhibitors (indinavir, ritonavir and saquinavir) on primary and established CC cell lines. Two CC cell lines established in our laboratory and four commercially available CC cell lines were treated with indinavir, ritonavir and saquinavir at different concentrations and for different times. Proliferation, clonogenicity and radiosensitivity were evaluated by crystal violet staining. Proteasomal activities were assessed using a cell-based assay and immunoblotting. Cell cycle was analyzed by propidium iodide staining and flow cytometric analysis. Invasion was tested with Matrigel chambers. A t-test for paired samples was used for statistical analysis. In all cell lines, saquinavir was more effective than ritonavir in reducing cell proliferation and inhibiting proteasomal activities (P≤0.05). Conversely, indinavir exerted a negligible effect. The saquinavir concentrations required to modulate the proteasome activities were higher than those observed to be effective in inhibiting cell proliferation. In HeLa cells, saquinavir was strongly effective in inhibiting cell invasion and clonogenicity (P≤0.05) at concentrations much lower than those required to perturb proteasomal activities. Saquinavir did not contribute to increase the sensitivity of HeLa cells to X-rays. In conclusion, the present results demonstrate that saquinavir is able to significantly reduce cell proliferation, cell invasion and clonogenicity in a proteasome-independent manner in in vitro models of CC, and suggest that saquinavir could be a promising CC therapeutic agent. PMID:27698818

  9. TET peptidases: A family of tetrahedral complexes conserved in prokaryotes.

    PubMed

    Appolaire, Alexandre; Colombo, Matteo; Basbous, Hind; Gabel, Frank; Girard, E; Franzetti, Bruno

    2016-03-01

    The TET peptidases are large polypeptide destruction machines present among prokaryotes. They form 12-subunits hollow tetrahedral particles, and belong to the family of M42 metallo-peptidases. Structural characterization of various archaeal and bacterial complexes has revealed a unique mechanism of internal compartmentalization and peptide trafficking that distinguishes them from the other oligomeric peptidases. Different versions of the TET complex often co-exist in the cytosol of microorganisms. In depth enzymatic studies have revealed that they are non-processive cobalt-activated aminopeptidases and display contrasting substrate specificities based on the properties of the catalytic chambers. Recent studies have shed light on the assembly mechanism of homo and hetero-dodecameric TET complexes and shown that the activity of TET aminopeptidase towards polypeptides is coupled with its assembly process. These findings suggested a functional regulation based on oligomerization control in vivo. This review describes a current knowledge on M42 TET peptidases biochemistry and discuss their possible physiological roles. This article is a part of the Special Issue entitled: «A potpourri of proteases and inhibitors: from molecular toolboxes to signalling scissors».

  10. Use of Nucleoside Reverse Transcriptase Inhibitor Only Regimens in HIV-infected Children and Adolescents

    PubMed Central

    Neely, Michael; Rutstein, Richard; Del Bianco, Gabriela; Heresi, Gloria; Barton, Theresa; Wiznia, Andrew; Wiegand, Ryan; Wheeling, Travis; Bohannon, Beverly; Dominguez, Kenneth

    2013-01-01

    In adults, nucleoside reverse transcriptase inhibitor (NRTI)-only antiretroviral regimens (NOARs) with ≥ three NRTIs are less potent than highly active antiretroviral therapy (HAART). However published pediatric experience with NOARs is limited. Methods We analyzed data from NOAR-treated participants in LEGACY, a multicenter observational cohort study of HIV-infected children and adolescents. NOAR-treated case-participantswere matched to participantswithout prior NOAR who initiated HAART during the same year for comparison. Results Of 575 participants with data from time of HIV diagnosis through 2006, 67 (12%) received NOARs for at least 24 weeks; most (46%) received the fixed dose combination of zidovudine/lamivudine/abacavir. NOAR use peaked in 2001-2002. NOAR-treated participants were significantly older and more treatment-experienced than HAART-treated participants. Virologic outcomes, including the percentage of participants with a plasma HIV RNA viral load <400 copies/mL at week 24 (47% vs. 34%) and the mean 24-week change in log10 plasma HIV RNA viral load from baseline (−0.63 vs. −1.02) were similar between NOAR- and HAART-treated participants, but virologic rebound was more likely in NOAR-treated participants (77% vs. 54%, P = 0.02). Increase in CD4 percentage points from baseline to 24 weeks was negligible in NOAR-treated participants compared with HAART-treated participants (0.95% vs. 10.1%, P <0.001). Anemia and leukopenia were more commonly reported with NOARs than HAART. Discussion Week 24 virologic outcomes were similar between NOAR- and HAART-treated participants, but NOAR durability was poorer and their use was associated with less immunologic reconstitution. NOARs should play a limited role in pediatric and adolescent ART. PMID:24008749

  11. Preclinical Profile of BI 224436, a Novel HIV-1 Non-Catalytic-Site Integrase Inhibitor

    PubMed Central

    Amad, Ma'an; Bailey, Murray D.; Bethell, Richard; Bös, Michael; Bonneau, Pierre; Cordingley, Michael; Coulombe, René; Duan, Jianmin; Edwards, Paul; Faucher, Anne-Marie; Garneau, Michel; Jakalian, Araz; Kawai, Stephen; Lamorte, Louie; LaPlante, Steven; Luo, Laibin; Mason, Steve; Poupart, Marc-André; Rioux, Nathalie; Schroeder, Patricia; Simoneau, Bruno; Tremblay, Sonia; Tsantrizos, Youla; Witvrouw, Myriam; Yoakim, Christiane

    2014-01-01

    BI 224436 is an HIV-1 integrase inhibitor with effective antiviral activity that acts through a mechanism that is distinct from that of integrase strand transfer inhibitors (INSTIs). This 3-quinolineacetic acid derivative series was identified using an enzymatic integrase long terminal repeat (LTR) DNA 3′-processing assay. A combination of medicinal chemistry, parallel synthesis, and structure-guided drug design led to the identification of BI 224436 as a candidate for preclinical profiling. It has antiviral 50% effective concentrations (EC50s) of <15 nM against different HIV-1 laboratory strains and cellular cytotoxicity of >90 μM. BI 224436 also has a low, ∼2.1-fold decrease in antiviral potency in the presence of 50% human serum and, by virtue of a steep dose-response curve slope, exhibits serum-shifted EC95 values ranging between 22 and 75 nM. Passage of virus in the presence of inhibitor selected for either A128T, A128N, or L102F primary resistance substitutions, all mapping to a conserved allosteric pocket on the catalytic core of integrase. BI 224436 also retains full antiviral activity against recombinant viruses encoding INSTI resistance substitutions N155S, Q148H, and E92Q. In drug combination studies performed in cellular antiviral assays, BI 224436 displays an additive effect in combination with most approved antiretrovirals, including INSTIs. BI 224436 has drug-like in vitro absorption, distribution, metabolism, and excretion (ADME) properties, including Caco-2 cell permeability, solubility, and low cytochrome P450 inhibition. It exhibited excellent pharmacokinetic profiles in rat (clearance as a percentage of hepatic flow [CL], 0.7%; bioavailability [F], 54%), monkey (CL, 23%; F, 82%), and dog (CL, 8%; F, 81%). Based on the excellent biological and pharmacokinetic profile, BI 224436 was advanced into phase 1 clinical trials. PMID:24663024

  12. Recombinant protein of heptad-repeat HR212, a stable fusion inhibitor with potent anti-HIV action in vitro

    SciTech Connect

    Pang, Wei; Wang Ruirui; Yang Liumeng; Liu Changmei; Tien Po Zheng Yongtang

    2008-07-20

    HR212, a recombinant protein expressed in Escherichia coli, has been previously reported to inhibit HIV-1 membrane fusion at low nanomolar level. Here we report that HR212 is effective in blocking laboratory strain HIV-1{sub IIIB} entry and replication with EC{sub 50} values of 3.92 {+-} 0.62 and 6.59 {+-} 1.74 nM, respectively, and inhibiting infection by clinic isolate HIV-1{sub KM018} with EC{sub 50} values of 44.44 {+-} 10.20 nM, as well as suppressing HIV-1-induced cytopathic effect with an EC{sub 50} value of 3.04 {+-} 1.20 nM. It also inhibited HIV-2{sub ROD} and HIV-2{sub CBL-20} entry and replication in the {mu}M range. Notably, HR212 was highly effective against T20-resistant strains with EC{sub 50} values ranging from 5.09 to 7.75 nM. Unlike T20, HR212 showed stability sufficient to inhibit syncytia formation in a time-of-addition assay, and was insensitive to proteinase K digestion. These results suggest that HR212 has great potential to be further developed as novel HIV-1 fusion inhibitor for treatment of HIV/AIDS patients, particularly for those infected by T20-resistant variants.

  13. Physiological Roles of Pneumococcal Peptidases

    PubMed Central

    Johnson, Mary K.

    1974-01-01

    A methionyl-specific dipeptidase from Streptococcus pneumoniae has been described. This enzyme and the pneumococcal tripeptidase have been shown to be intracellular, soluble, and constitutive. In addition to their function in cleavage of peptide nutrients, these peptidases may play a role in protein synthesis and turnover. PMID:4212242

  14. Algorithm to design inhibitors using stereochemically mixed l,d polypeptides: Validation against HIV protease.

    PubMed

    Gupta, Pooja; Durani, Susheel

    2015-11-01

    Polypeptides have potential to be designed as drugs or inhibitors against the desired targets. In polypeptides, every chiral α-amino acid has enantiomeric structural possibility to become l or d amino acids and can be used as design monomer. Among the various possibilities, use of stereochemistry as a design tool has potential to determine both functional specificity and metabolic stability of the designed polypeptides. The polypeptides with mixed l,d amino acids are a class of peptidomimitics, an attractive drug like molecules and also less susceptible to proteolytic activities. Therefore in this study, a three step algorithm is proposed to design the polypeptides against desired drug targets. For this, all possible configurational isomers of mixed l,d polyleucine (Ac-Leu8-NHMe) structure were randomly modeled with simulated annealing molecular dynamics and the resultant library of discrete folds were scored against HIV protease as a model target. The best scored folds of mixed l,d structures were inverse optimized for sequences in situ and the resultant sequences as inhibitors were validated for conformational integrity using molecular dynamics. This study presents and validates an algorithm to design polypeptides of mixed l,d structures as drugs/inhibitors by inverse fitting them as molecular ligands against desired target.

  15. Implications of integrase inhibitors for HIV-infected transplantation recipients: raltegravir and dolutegravir (S/GSK 1349572).

    PubMed

    Waki, Kayo; Sugawara, Yasuhiko

    2011-01-01

    In the modern era of highly active antiretroviral therapy (HAART), reluctance to perform transplantation (Tx) in HIV-infected individuals is no longer justified. Non-nucleoside reverse transcriptase inhibitors (NNRTIs) or protease inhibitors (PIs), the current first line regimens of HAART, are metabolized by the cytochrome P450 family (CYP3A4). Most NNRTIs induce CYP3A4, whereas PIs inhibit it. Calcinuerin inhibitors (CNIs), which are mandatory for Tx, need the same enzyme complex for their clearance. Therefore, a significant drug-drug interaction (DDI) is encountered between current HAART and CNIs. This results in extreme difficulty in adjusting the optimal dose of CNIs, for which the therapeutic range is narrow. Of interest, integrase inhibitors (INIs) - novel, potent anti-HIV drugs - are mainly metabolized by uridine diphosphate glucuronosyltransferase (UGT) 1A1 and do not induce or inhibit CYP3A4. DDI is presumably absent when NNTRIs or PIs are replaced by INIs. Raltegravir (RAL), a first generation INI, has been introduced into kidney and liver Tx. There is increasing evidence that rejection is well controlled without renal impairment due to CNI over-exposure while persistent, robust suppression of HIV is achieved. Global phase III clinical trials of dolutegravir (DTG), a second generation INI, are currently in progress. In vitro data has suggested that DTG may be less prone to resistance than RAL (referred to as having a higher genetic barrier). The time has come to extensively discuss the implications of INIs in Tx for HIV positive patients.

  16. Bringing Research into a First Semester Organic Chemistry Laboratory with the Multistep Synthesis of Carbohydrate-Based HIV Inhibitor Mimics

    ERIC Educational Resources Information Center

    Pontrello, Jason K.

    2015-01-01

    Benefits of incorporating research experiences into laboratory courses have been well documented, yet examples of research projects designed for the first semester introductory organic chemistry lab course are extremely rare. To address this deficiency, a Carbohydrate-Based human immunodeficiency virus (HIV) Inhibitor project consisting of a…

  17. Insights From Atomic-Resolution X-Ray Structures Of Chemically-Synthesized Hiv-1 Protease In Complex With Inhibitors

    PubMed Central

    Johnson, Erik C.B.; Malito, Enrico; Shen, Yuequan; Pentelute, Brad; Rich, Dan; Florián, Jan; Tang, Wei-Jen; Kent, Stephen B.H.

    2007-01-01

    Summary The HIV-1 protease is an aspartyl protease essential for HIV-1 viral infectivity. HIV-1 protease has one catalytic site formed by the homodimeric enzyme. We have chemically synthesized fully active HIV-1 protease using modern ligation methods. When complexed with the classic substrate-derived inhibitors JG-365 and MVT-101, the synthetic HIV-1 protease formed crystals that diffracted to 1.04 and 1.2Å resolution, respectively. These atomic resolution structures revealed additional structural details of the HIV-1 protease interactions with its active site ligands. Heptapeptide inhibitor JG-365, which has a hydroxyethylamine moiety in place of the scissile bond, binds in two equivalent antiparallel orientations within the catalytic groove, whereas the reduced isostere hexapeptide MVT-101 binds in a single orientation. When JG-365 was converted into the natural peptide substrate for molecular dynamic simulations, we found putative catalytically competent reactant states for both lytic water and direct nucleophilic attack mechanisms. Moreover, free energy perturbation calculations indicated that the insertion of catalytic water into the catalytic site is an energetically favorable process. PMID:17869270

  18. Insights from atomic-resolution X-ray structures of chemically synthesized HIV-1 protease in complex with inhibitors.

    PubMed

    Johnson, Erik C B; Malito, Enrico; Shen, Yuequan; Pentelute, Brad; Rich, Dan; Florián, Jan; Tang, Wei-Jen; Kent, Stephen B H

    2007-10-26

    The human immunodeficiency virus 1 (HIV-1) protease (PR) is an aspartyl protease essential for HIV-1 viral infectivity. HIV-1 PR has one catalytic site formed by the homodimeric enzyme. We chemically synthesized fully active HIV-1 PR using modern ligation methods. When complexed with the classic substrate-derived inhibitors JG-365 and MVT-101, the synthetic HIV-1 PR formed crystals that diffracted to 1.04- and 1.2-A resolution, respectively. These atomic-resolution structures revealed additional structural details of the HIV-1 PR's interactions with its active site ligands. Heptapeptide inhibitor JG-365, which has a hydroxyethylamine moiety in place of the scissile bond, binds in two equivalent antiparallel orientations within the catalytic groove, whereas the reduced isostere hexapeptide MVT-101 binds in a single orientation. When JG-365 was converted into the natural peptide substrate for molecular dynamic simulations, we found putative catalytically competent reactant states for both lytic water and direct nucleophilic attack mechanisms. Moreover, free energy perturbation calculations indicated that the insertion of catalytic water into the catalytic site is an energetically favorable process.

  19. Screening of Potential HIV-1 Inhibitors/Replication Blockers Using Secure Lentiviral in Vitro System.

    PubMed

    Prokofjeva, M M; Spirin, P V; Yanvarev, D V; Ivanov, A V; Novikov, M S; Stepanov, O A; Gottikh, M B; Kochetkov, S N; Fehse, B; Stocking, C; Prassolov, V S

    2011-10-01

    The development and usage of safe cell systems for testing agents which possess anti-HIV activity is a very important factor in the design of new drugs. We have described in detail a system we designed that is based on lentiviral vectors (Prokofjeva et. al.,Antiviral Therapy,in print) for swift and completely safe screening of potential HIV-1 replication inhibitors. The system enables one to test the efficiency of the inhibitory activity of compounds whose action is directed towards either wild-type HIV-1 reverse transcriptase or integrase, or mutant enzymes corresponding to the drug-resistant virus form. Testing results of a number of already known drugs, which correlate well with published data as well as data on newly synthesized compounds, were obtained. Application of this system substantially broadens the possibilities of preclinical anti-HIV drugs testing.

  20. Screening of Potential HIV-1 Inhibitors/Replication Blockers Using Secure Lentiviral in Vitro System

    PubMed Central

    Prokofjeva, M.M.; Spirin, P.V.; Yanvarev, D.V.; Ivanov, A.V.; Novikov, M.S.; Stepanov, O.A.; Gottikh, M.B.; Kochetkov, S.N.; Fehse, B.; Stocking, C.; Prassolov, V.S.

    2011-01-01

    The development and usage of safe cell systems for testing agents which possess anti-HIV activity is a very important factor in the design of new drugs. We have described in detail a system we designed that is based on lentiviral vectors (Prokofjeva et. al.,Antiviral Therapy,in print) for swift and completely safe screening of potential HIV-1 replication inhibitors. The system enables one to test the efficiency of the inhibitory activity of compounds whose action is directed towards either wild-type HIV-1 reverse transcriptase or integrase, or mutant enzymes corresponding to the drug-resistant virus form. Testing results of a number of already known drugs, which correlate well with published data as well as data on newly synthesized compounds, were obtained. Application of this system substantially broadens the possibilities of preclinical anti-HIV drugs testing. PMID:22649704

  1. Nucleoside reverse-transcriptase inhibitor dosing errors in an outpatient HIV clinic in the electronic medical record era.

    PubMed

    Willig, James H; Westfall, Andrew O; Allison, Jeroan; Van Wagoner, Nicholas; Chang, Pei-Wen; Raper, James; Saag, Michael S; Mugavero, Michael J

    2007-09-01

    Information on antiretroviral dosing errors among health care providers for outpatient human immunodeficiency virus (HIV)-infected patients is lacking. We evaluated factors associated with nucleoside reverse-transcriptase inhibitor dosing errors in a university-based HIV clinic using an electronic medical record. Overall, older age, minority race or ethnicity, and didanosine use were related to such errors. Impaired renal function was more common in older patients and racial or ethnic minorities and, in conjunction with fixed-dose combination drugs, contributed to the higher rates of errors in nucleoside reverse-transcriptase inhibitor dosing. Understanding the factors related to nucleoside reverse-transcriptase inhibitor dosing errors is an important step in the building of preventive tools.

  2. Molecular docking guided structure based design of symmetrical N,N'-disubstituted urea/thiourea as HIV-1 gp120-CD4 binding inhibitors.

    PubMed

    Sivan, Sree Kanth; Vangala, Radhika; Manga, Vijjulatha

    2013-08-01

    Induced fit molecular docking studies were performed on BMS-806 derivatives reported as small molecule inhibitors of HIV-1 gp120-CD4 binding. Comprehensive study of protein-ligand interactions guided in identification and design of novel symmetrical N,N'-disubstituted urea and thiourea as HIV-1 gp120-CD4 binding inhibitors. These molecules were synthesized in aqueous medium using microwave irradiation. Synthesized molecules were screened for their inhibitory ability by HIV-1 gp120-CD4 capture enzyme-linked immunosorbent assay (ELISA). Designed compounds were found to inhibit HIV-1 gp120-CD4 binding in micromolar (0.013-0.247 μM) concentrations.

  3. NMR characterization of HIV-1 reverse transcriptase binding to various non-nucleoside reverse transcriptase inhibitors with different activities

    PubMed Central

    Thammaporn, Ratsupa; Yagi-Utsumi, Maho; Yamaguchi, Takumi; Boonsri, Pornthip; Saparpakorn, Patchreenart; Choowongkomon, Kiattawee; Techasakul, Supanna; Kato, Koichi; Hannongbua, Supa

    2015-01-01

    Human immunodeficiency virus type 1 reverse transcriptase (HIV-1 RT) is an important target for antiviral therapy against acquired immunodeficiency syndrome. However, the efficiency of available drugs is impaired most typically by drug-resistance mutations in this enzyme. In this study, we applied a nuclear magnetic resonance (NMR) spectroscopic technique to the characterization of the binding of HIV-1 RT to various non-nucleoside reverse transcriptase inhibitors (NNRTIs) with different activities, i.e., nevirapine, delavirdine, efavirenz, dapivirine, etravirine, and rilpivirine. 1H-13C heteronuclear single-quantum coherence (HSQC) spectral data of HIV-1 RT, in which the methionine methyl groups of the p66 subunit were selectively labeled with 13C, were collected in the presence and absence of these NNRTIs. We found that the methyl 13C chemical shifts of the M230 resonance of HIV-1 RT bound to these drugs exhibited a high correlation with their anti-HIV-1 RT activities. This methionine residue is located in proximity to the NNRTI-binding pocket but not directly involved in drug interactions and serves as a conformational probe, indicating that the open conformation of HIV-1 RT was more populated with NNRTIs with higher inhibitory activities. Thus, the NMR approach offers a useful tool to screen for novel NNRTIs in developing anti-HIV drugs. PMID:26510386

  4. Association of Hypercholesterolemia Incidence With Antiretroviral Treatment, Including Protease Inhibitors, Among Perinatally HIV-Infected Children

    PubMed Central

    Tassiopoulos, Katherine; Williams, Paige L.; Seage, George R.; Crain, Marilyn; Oleske, James; Farley, John

    2011-01-01

    Context Antiretroviral therapy has been associated with hypercholesterolemia in HIV-infected children. Few longitudinal studies have been conducted to examine this association, however. Objective To evaluate the incidence of and risk factors for development of hypercholesterolemia in a large pediatric study. Design Prospective cohort study (Pediatric AIDS Clinical Trials Group 219C). Participants A total of 2122 perinatally HIV-infected children free of hypercholesterolemia at entry. Outcome Development of hypercholesterolemia (total cholesterol ≥220 mg/dL at 2 consecutive visits). Cox proportional hazards models were used to evaluate risk factors. Results Thirteen percent of children had hypercholesterolemia at entry, and an additional 13% developed hypercholesterolemia during follow-up for an incidence rate of 3.4 cases per 100 person-years (95% confidence interval [CI]: 3.0 to 3.9). After adjustment for age, boosted protease inhibitor (PI) use (hazard ratio [HR] = 13.9, 95% CI: 6.73 to 28.6), nonboosted PI use (HR = 8.65, 95% CI: 4.19 to 17.9), and nonnucleoside reverse transcriptase inhibitor use (HR = 1.33, 95% CI: 1.04 to 1.71) were associated with increased risk of hypercholesterolemia, and higher viral load was protective (>50,000 vs. ≤400 copies/mL; HR = 0.59, 95% CI: 0.39 to 0.90). Self-reported adherent subjects had higher risk. Conclusions PIs were significant risk factors for hypercholesterolemia. Higher viral load was protective and may reflect non-adherence. Further follow-up is critical to evaluate long-term consequences of chronic PI exposure and hypercholesterolemia. PMID:18209684

  5. Inhibitor Ranking through QM Based Chelation Calculations for Virtual Screening of HIV-1 RNase H Inhibition

    PubMed Central

    Poongavanam, Vasanthanathan; Steinmann, Casper; Kongsted, Jacob

    2014-01-01

    Quantum mechanical (QM) calculations have been used to predict the binding affinity of a set of ligands towards HIV-1 RT associated RNase H (RNH). The QM based chelation calculations show improved binding affinity prediction for the inhibitors compared to using an empirical scoring function. Furthermore, full protein fragment molecular orbital (FMO) calculations were conducted and subsequently analysed for individual residue stabilization/destabilization energy contributions to the overall binding affinity in order to better understand the true and false predictions. After a successful assessment of the methods based on the use of a training set of molecules, QM based chelation calculations were used as filter in virtual screening of compounds in the ZINC database. By this, we find, compared to regular docking, QM based chelation calculations to significantly reduce the large number of false positives. Thus, the computational models tested in this study could be useful as high throughput filters for searching HIV-1 RNase H active-site molecules in the virtual screening process. PMID:24897431

  6. Side Effects of HIV Medicines: HIV and Lactic Acidosis

    MedlinePlus

    ... HIV medicines. All HIV medicines in the nucleoside reverse transcriptase inhibitor (NRTI) drug class may cause lactic acidosis, but ... some HIV medicines. HIV medicines in the nucleoside reverse transcriptase inhibitor (NRTI) drug class can cause the body to ...

  7. Activity of the HIV-1 attachment inhibitor BMS-626529, the active component of the prodrug BMS-663068, against CD4-independent viruses and HIV-1 envelopes resistant to other entry inhibitors.

    PubMed

    Li, Zhufang; Zhou, Nannan; Sun, Yongnian; Ray, Neelanjana; Lataillade, Max; Hanna, George J; Krystal, Mark

    2013-09-01

    BMS-626529 is a novel small-molecule HIV-1 attachment inhibitor active against both CCR5- and CXCR4-tropic viruses. BMS-626529 functions by preventing gp120 from binding to CD4. A prodrug of this compound, BMS-663068, is currently in clinical development. As a theoretical resistance pathway to BMS-663068 could be the development of a CD4-independent phenotype, we examined the activity of BMS-626529 against CD4-independent viruses and investigated whether resistance to BMS-626529 could be associated with a CD4-independent phenotype. Finally, we evaluated whether cross-resistance exists between BMS-626529 and other HIV-1 entry inhibitors. Two laboratory-derived envelopes with a CD4-independent phenotype (one CXCR4 tropic and one CCR5 tropic), five envelopes from clinical isolates with preexisting BMS-626529 resistance, and several site-specific mutant BMS-626529-resistant envelopes were examined for their dependence on CD4 for infectivity or susceptibility to BMS-626529. Viruses resistant to other entry inhibitors (enfuvirtide, maraviroc, and ibalizumab) were also examined for susceptibility to BMS-626529. Both CD4-independent laboratory isolates retained sensitivity to BMS-626529 in CD4(-) cells, while HIV-1 envelopes from viruses resistant to BMS-626529 exhibited no evidence of a CD4-independent phenotype. BMS-626529 also exhibited inhibitory activity against ibalizumab- and enfuvirtide-resistant envelopes. While there appeared to be some association between maraviroc resistance and reduced susceptibility to BMS-626529, an absolute correlation cannot be presumed, since some CCR5-tropic maraviroc-resistant envelopes remained sensitive to BMS-626529. Clinical use of the prodrug BMS-663068 is unlikely to promote resistance via generation of CD4-independent virus. No cross-resistance between BMS-626529 and other HIV entry inhibitors was observed, which could allow for sequential or concurrent use with different classes of entry inhibitors.

  8. Receptor-independent 4D-QSAR analysis of a set of norstatine derived inhibitors of HIV-1 protease.

    PubMed

    Senese, Craig L; Hopfinger, A J

    2003-01-01

    A training set of 27 norstatine derived inhibitors of HIV-1 protease, based on the 3(S)-amino-2(S)-hydroxyl-4-phenylbutanoic acid core (AHPBA), for which the -log IC(50) values were measured, was used to construct 4D-QSAR models. Five unique RI-4D-QSAR models, from two different alignments, were identified (q(2) = 0.86-0.95). These five models were used to map the atom type morphology of the lining of the inhibitor binding site at the HIV protease receptor site as well as predict the inhibition potencies of seven test set compounds for model validation. The five models, overall, predict the -log IC(50) activity values for the test set compounds in a manner consistent with their q(2) values. The models also correctly identify the hydrophobic nature of the HIV protease receptor site, and inferences are made as to further structural modifications to improve the potency of the AHPBA inhibitors of HIV protease. The finding of five unique, and nearly statistically equivalent, RI-4D-QSAR models for the training set demonstrates that there can be more than one way to fit structure-activity data even within a given QSAR methodology. This set of unique, equally good individual models is referred to as the manifold model.

  9. HIV-1 Reverse Transcriptase Structure with RNase H Inhibitor dihydroxy benzoyl naphthyl Hydrazone Bound at a Novel Site

    SciTech Connect

    Himmel,D.; Sarafianos, S.; Dharmasena, S.; Hossain, M.; McCoy-Simandle, K.; Ilina, T.; Clark, A.; Knight, J.; Julias, J.; et al.

    2007-01-01

    The rapid emergence of drug-resistant variants of human immunodeficiency virus, type 1 (HIV-1), has limited the efficacy of anti-acquired immune deficiency syndrome (AIDS) treatments, and new lead compounds that target novel binding sites are needed. We have determined the 3.15 {angstrom} resolution crystal structure of HIV-1 reverse transcriptase (RT) complexed with dihydroxy benzoyl naphthyl hydrazone (DHBNH), an HIV-1 RT RNase H (RNH) inhibitor (RNHI). DHBNH is effective against a variety of drug-resistant HIV-1 RT mutants. While DHBNH has little effect on most aspects of RT-catalyzed DNA synthesis, at relatively high concentrations it does inhibit the initiation of RNA-primed DNA synthesis. Although primarily an RNHI, DHBNH binds >50 {angstrom} away from the RNH active site, at a novel site near both the polymerase active site and the non-nucleoside RT inhibitor (NNRTI) binding pocket. When DHBNH binds, both Tyr181 and Tyr188 remain in the conformations seen in unliganded HIV-1 RT. DHBNH interacts with conserved residues (Asp186, Trp229) and has substantial interactions with the backbones of several less well-conserved residues. On the basis of this structure, we designed substituted DHBNH derivatives that interact with the NNRTI-binding pocket. These compounds inhibit both the polymerase and RNH activities of RT.

  10. Extracellular peptidases from Deinococcus radiodurans.

    PubMed

    Dalmaso, Gabriel Z L; Lage, Claudia A S; Mazotto, Ana Maria; Dias, Edilma Paraguai de Souza; Caldas, Lucio Ayres; Ferreira, Davis; Vermelho, Alane B

    2015-09-01

    The extremophile Deinococcus radiodurans wild type R1 produces peptidases (metallo- and serine-) in TGY medium and in the media supplemented with human hair (HMY) and chicken feathers (FMY). Enzymatic screening on agar plates revealed peptidase activity. In TGY medium metallopeptidases were detected corresponding to a molecular mass range of 300-85 kDa (gelatinases); 280-130 (caseinases) and a 300 and a 170 kDa (keratinases); and a gelatinolytic serine peptidase (75 kDa). In HMY medium after 144 h, D. radiodurans produced keratinase (290 U/ml), gelatinase (619 U/ml) and sulfite (26 µg/ml). TGY medium produced higher proteolytic activity: 950 U/ml of gelatinolytic (24 h); 470 U/ml of keratinolytic (24 h) and 110 U/ml of caseinolytic (72 h). In the FMY medium, we found gelatinolytic (317 U/ml), keratinolytic (43 U/ml) and caseinolytic (85 U/ml) activities. The sulfite had a maximum release at 48 h (8.1 µg/ml). Enzymography analysis revealed that the keratinases degraded keratin after 24 h of reaction. The addition of sodium sulfite (1.0 %) improved the keratin degradation. Environmental Scanning Electron microscopy revealed alterations such as damage and holes in the hair fiber cuticle after D. radiodurans growth. This work presents for the first time D. radiodurans as a new keratinolytic microorganism.

  11. Extracellular peptidases from Deinococcus radiodurans.

    PubMed

    Dalmaso, Gabriel Z L; Lage, Claudia A S; Mazotto, Ana Maria; Dias, Edilma Paraguai de Souza; Caldas, Lucio Ayres; Ferreira, Davis; Vermelho, Alane B

    2015-09-01

    The extremophile Deinococcus radiodurans wild type R1 produces peptidases (metallo- and serine-) in TGY medium and in the media supplemented with human hair (HMY) and chicken feathers (FMY). Enzymatic screening on agar plates revealed peptidase activity. In TGY medium metallopeptidases were detected corresponding to a molecular mass range of 300-85 kDa (gelatinases); 280-130 (caseinases) and a 300 and a 170 kDa (keratinases); and a gelatinolytic serine peptidase (75 kDa). In HMY medium after 144 h, D. radiodurans produced keratinase (290 U/ml), gelatinase (619 U/ml) and sulfite (26 µg/ml). TGY medium produced higher proteolytic activity: 950 U/ml of gelatinolytic (24 h); 470 U/ml of keratinolytic (24 h) and 110 U/ml of caseinolytic (72 h). In the FMY medium, we found gelatinolytic (317 U/ml), keratinolytic (43 U/ml) and caseinolytic (85 U/ml) activities. The sulfite had a maximum release at 48 h (8.1 µg/ml). Enzymography analysis revealed that the keratinases degraded keratin after 24 h of reaction. The addition of sodium sulfite (1.0 %) improved the keratin degradation. Environmental Scanning Electron microscopy revealed alterations such as damage and holes in the hair fiber cuticle after D. radiodurans growth. This work presents for the first time D. radiodurans as a new keratinolytic microorganism. PMID:26216108

  12. Synthesis and Biological Evaluation of Macrocyclized Betulin Derivatives as a Novel Class of Anti-HIV-1 Maturation Inhibitors

    PubMed Central

    Tang, Jun; Jones, Stacey A.; Jeffery, Jerry L.; Miranda, Sonia R.; Galardi, Cristin M.; Irlbeck, David M.; Brown, Kevin W.; McDanal, Charlene B.; Han, Nianhe; Gao, Daxin; Wu, Yongyong; Shen, Bin; Liu, Chunyu; Xi, Caiming; Yang, Heping; Li, Rui; Yu, Yajun; Sun, Yufei; Jin, Zhimin; Wang, Erjuan; Johns, Brian A.

    2014-01-01

    A macrocycle provides diverse functionality and stereochemical complexity in a conformationally preorganized ring structure, and it occupies a unique chemical space in drug discovery. However, the synthetic challenge to access this structural class is high and hinders the exploration of macrocycles. In this study, efficient synthetic routes to macrocyclized betulin derivatives have been established. The macrocycle containing compounds showed equal potency compared to bevirimat in multiple HIV-1 antiviral assays. The synthesis and biological evaluation of this novel series of HIV-1 maturation inhibitors will be discussed. PMID:25250097

  13. Entry inhibitor-based microbicides are active in vitro against HIV-1 isolates from multiple genetic subtypes

    SciTech Connect

    Ketas, Thomas J.; Schader, Susan M.; Zurita, Juan; Teo, Esther; Polonis, Victoria; Lu Min; Klasse, Per Johan; Moore, John P. . E-mail: jpm2003@med.cornell.edu

    2007-08-01

    Inhibitors of viral entry are under consideration as topical microbicides to prevent HIV-1 sexual transmission. Small molecules targeting HIV-1 gp120 (BMS-378806) or CCR5 (CMPD167), and a peptide fusion inhibitor (C52L), each blocks vaginal infection of macaques by a SHIV. A microbicide, however, must be active against multiple HIV-1 variants. We therefore tested BMS-C (a BMS-378806 derivative), CMPD167, C52L and the CXCR4 ligand AMD3465, alone and in combination, against 25 primary R5, 12 X4 and 7 R5X4 isolates from subtypes A-G. At high concentrations (0.1-1 {mu}M), the replication of most R5 isolates in human donor lymphocytes was inhibited by > 90%. At lower concentrations, double and triple combinations were more effective than individual inhibitors. Similar results were obtained with X4 viruses when AMD3465 was substituted for CMPD167. The R5X4 viruses were inhibited by combining AMD3465 with CMPD167, or by the coreceptor-independent compounds. Thus, combining entry inhibitors may improve microbicide effectiveness.

  14. Comparison of cysteine peptidase activities in Trichobilharzia regenti and Schistosoma mansoni cercariae.

    PubMed

    Kasný, M; Mikes, L; Dalton, J P; Mountford, A P; Horák, P

    2007-10-01

    Cercariae of the bird schistosome Trichobilharzia regenti and of the human schistosome Schistosoma mansoni employ proteases to invade the skin of their definitive hosts. To investigate whether a similar proteolytic mechanism is used by both species, cercarial extracts of T. regenti and S. mansoni were biochemically characterized, with the primary focus on cysteine peptidases. A similar pattern of cysteine peptidase activities was detected by zymography of cercarial extracts and their chromatographic fractions from T. regenti and S. mansoni. The greatest peptidase activity was recorded in both species against the fluorogenic peptide substrate Z-Phe-Arg-AMC, commonly used to detect cathepsins B and L, and was markedly inhibited (> 96%) by Z-Phe-Ala-CHN2 at pH 4.5. Cysteine peptidases of 33 kDa and 33-34 kDa were identified in extracts of T. regenti and S. mansoni cercariae employing a biotinylated Clan CA cysteine peptidase-specific inhibitor (DCG-04). Finally, cercarial extracts from both T. regenti and S. mansoni were able to degrade native substrates present in skin (collagen II and IV, keratin) at physiological pH suggesting that cysteine peptidases are important in the pentration of host skin. PMID:17517170

  15. Design and discovery of 5-hydroxy-6-oxo-1,6-dihydropyrimidine-4-carboxamide inhibitors of HIV-1 integrase.

    PubMed

    Zhang, Daoguang; Debnath, Bikash; Yu, Shenghui; Sanchez, Tino Wilson; Christ, Frauke; Liu, Yang; Debyser, Zeger; Neamati, Nouri; Zhao, Guisen

    2014-10-01

    Raltegravir (RAL) is a first clinically approved integrase (IN) inhibitor for the treatment of HIV but rapid mutation of the virus has led to chemo-resistant strains. Therefore, there is a medical need to develop new IN inhibitors to overcome drug resistance. At present, several IN inhibitors are in different phases of clinical trials and few have been discontinued due to toxicity and lack of efficacy. The development of potent second-generation IN inhibitors with improved safety profiles is key for selecting new clinical candidates. In this article, we report the design and synthesis of potent 5-hydroxy-6-oxo-1,6-dihydropyrimidine-4-carboxamide analogues as second-generation IN inhibitors. These compounds satisfy two structural requirements known for potent inhibition of HIV-1 IN catalysis: a metal chelating moiety and a hydrophobic functionality necessary for selectivity against the strand transfer reaction. Most of the new compounds described herein are potent and selective for the strand transfer reaction and show antiviral activity in cell-based assays. Furthermore, this class of compounds are drug-like and suitable for further optimization and preclinical studies.

  16. The Need for Development of New HIV-1 Reverse Transcriptase and Integrase Inhibitors in the Aftermath of Antiviral Drug Resistance

    PubMed Central

    Wainberg, Mark A.

    2012-01-01

    The use of highly active antiretroviral therapy (HAART) involves combinations of drugs to achieve maximal virological response and reduce the potential for the emergence of antiviral resistance. There are two broad classes of reverse transcriptase inhibitors, the nucleoside reverse transcriptase inhibitors (NRTIs) and nonnucleoside reverse transcriptase inhibitors (NNRTIs). Since the first classes of such compounds were developed, viral resistance against them has necessitated the continuous development of novel compounds within each class. This paper considers the NRTIs and NNRTIs currently in both preclinical and clinical development or approved for second line therapy and describes the patterns of resistance associated with their use, as well as the underlying mechanisms that have been described. Due to reasons of both affordability and availability, some reverse transcriptase inhibitors with low genetic barrier are more commonly used in resource-limited settings. Their use results to the emergence of specific patterns of antiviral resistance and so may require specific actions to preserve therapeutic options for patients in such settings. More recently, the advent of integrase strand transfer inhibitors represents another major step forward toward control of HIV infection, but these compounds are also susceptible to problems of HIV drug resistance. PMID:24278679

  17. Lead expansion and virtual screening of Indinavir derivate HIV-1 protease inhibitors using pharmacophoric - shape similarity scoring function

    PubMed Central

    Shityakov, Sergey; Dandekar, Thomas

    2010-01-01

    Indinavir (Crivaxan®) is a potent inhibitor of the HIV (human immunodeficiency virus) protease. This enzyme has an important role in viral replication and is considered to be very attractive target for new antiretroviral drugs. However, it becomes less effective due to highly resistant new viral strains of HIV, which have multiple mutations in their proteases. For this reason, we used a lead expansion method to create a new set of compounds with a new mode of action to protease binding site. 1300 compounds chemically diverse from the initial hit were generated and screened to determine their ability to interact with protease and establish their QSAR properties. Further computational analyses revealed one unique compound with different protease binding ability from the initial hit and its role for possible new class of protease inhibitors is discussed in this report. PMID:20978602

  18. Design, Synthesis, and Evaluation of Diarylpyridines and Diarylanilines as Potent Non-nucleoside HIV-1 Reverse Transcriptase Inhibitors

    PubMed Central

    Tian, Xingtao; Qin, Bingjie; Wu, Zhiyuan; Wang, Xiaofeng; Lu, Hong; Morris-Natschke, Susan L.; Chen, Chin Ho; Jiang, Shibo; Lee, Kuo-Hsiung; Xie, Lan

    2010-01-01

    Based on the structures and activities of our previously identified non-nucleoside reverse transcriptase inhibitors (NNRTIs), we designed and synthesized two sets of derivatives, diarylpyridines (A) and diarylanilines (B), and tested their anti-HIV-1 activity against infection by HIV-1 NL4-3 and IIIB in TZM-bl and MT-2 cells, respectively. The results showed that most compounds exhibited potent anti-HIV-1 activity with low nanomolar EC50 values, and some of them, such as 13m, 14c, and 14e, displayed high potency with subnanomolar EC50 values, which were more potent than etravirine (TMC125, 1) in the same assays. Notably, these compounds were also highly effective against infection by multi-RTI-resistant strains, suggesting a high potential to further develop these compounds as a novel class of NNRTIs with improved antiviral efficacy and resistance profile. PMID:21049929

  19. Mechanism-Based Model of the Pharmacokinetics of Enfuvirtide, an HIV Fusion Inhibitor

    PubMed Central

    Mohanty, Utkala; Dixit, Narendra M.

    2008-01-01

    We present a model of the pharmacokinetics of enfuvirtide, a potent inhibitor of the fusion of human immunodeficiency virus type 1 (HIV-1) with target cells. We assume that subcutaneously administered enfuvirtide accumulates in the injection region, diffuses locally, and gets absorbed into blood, where it reversibly associates with lipidic cell membranes and is eventually eliminated. We develop mathematical descriptions of each of these processes and predict the time-evolution of the concentration of enfuvirtide in plasma, Cp. We find, interestingly, that diffusion of enfuvirtide in the subcutaneous region is decoupled from absorption, which enables deduction of analytical expressions for Cp following single dose administration and ordinary differential equations following multiple dose administration and renders our model amenable to data analysis. Model predictions provide excellent fits to observed plasma concentration-time profiles of enfuvirtide following the intravenous and subcutaneous administration of a single dose and without any adjustable parameters capture quantitatively concentration-time profiles following the administration of multiple doses. Our model thus presents a robust description of the pharmacokinetics of enfuvirtide and may be applied in conjunction with models of viral dynamics to assess responses of HIV-1 patients to alternative enfuvirtide-based therapies. Further, our model reveals that key pharmacokinetic characteristics of enfuvirtide, viz., steady state values of peak and trough concentrations and area under the concentration-time curve, vary nearly linearly with dosage over a broad range of dosages and for different dosing regimens, which enables a priori estimation of enfuvirtide exposure levels for different treatment protocols and may serve to establish guidelines for therapy optimization. PMID:18258267

  20. Naturally Occurring Variability in the Envelope Glycoprotein of HIV-1 and the Development of Cell Entry Inhibitors

    PubMed Central

    Brower, Evan T.; Schön, Arne; Freire, Ernesto

    2010-01-01

    Naturally occurring genetic variability across HIV-1 subtypes causes amino acid polymorphisms in encoded HIV-1 proteins including the envelope glycoproteins associated with viral entry. The effects of amino acid polymorphisms on the mechanism of HIV-1 entry into cells, a process initiated by the binding of the viral envelope glycoprotein gp120 to the cellular CD4 receptor, are largely unknown. In this study, we demonstrate that amino acid polymorphisms affect the structural stability and domain cooperativity of gp120 and that those differences are reflected in the binding mechanism of the viral envelope glycoprotein to the cell surface receptor and coreceptor. Moreover, subtype differences also affect the binding behavior of experimental HIV cell entry inhibitors. While gp120-A has a slightly lower denaturation temperature than gp120-B, the most notable stability difference is that for gp120-B the van't Hoff to calorimetric enthalpy ratio (ΔHvH/ΔH) is 0.95 whereas for gp120-A is 0.6, indicative of more cooperative domain/domain interactions in gp120-B, as this protein more closely approaches a two-state transition. Isothermal titration calorimetry demonstrates that CD4 and 17b (a surrogate antibody for the chemokine coreceptor) exhibit 7 and 3-fold weaker binding affinities for gp120-A. The binding of these proteins as well as that of the experimental entry inhibitor NBD-556 induce smaller conformational changes in gp120-A as evidenced by significantly smaller binding enthalpies and binding entropies. Together, these results describe the effects of gp120 polymorphisms on binding to host cell receptors and emphasize that guidelines for developing future entry inhibitors must recognize and deal with genomic differences between HIV strains. PMID:20166763

  1. Polyanion inhibitors of HIV and other viruses. 7. Polyanionic compounds and polyzwitterionic compounds derived from cyclodextrins as inhibitors of HIV transmission.

    PubMed

    Leydet, A; Moullet, C; Roque, J P; Witvrouw, M; Pannecouque, C; Andrei, G; Snoeck, R; Neyts, J; Schols, D; De Clercq, E

    1998-12-01

    New polyanionic compounds were obtained from radical addition of thiomalic acid and mercaptopropionic acid onto perallylated cyclodextrins (CDs) under UV irradiation with a catalytic amount of alpha,alpha'-azobis(isobutyronitrile). All these polyanions, bearing 18-48 carboxylate groups, inhibited human immunodeficiency virus type 1 (HIV-1) strain IIIB replication in MT-4 cells at a 50% inhibitory concentration (IC50) of 0.1-2.9 microM, while not being toxic to the host cells at concentrations up to 62 microM. These compounds were also active against a clinical HIV-1 isolate (HE) at >/=4-fold higher concentrations. Only some compounds showed activity against the two HIV-2 strains (ROD and EHO) but at higher concentrations than those required to inhibit HIV-1 (IIIB and HE) replication. In addition, these compounds were not active against the M-tropic HIV-1 strain BaL but were active against simian immunodeficiency virus [SIV (MAC251)]. These compounds were also inhibitory to the replication of human cytomegalovirus at an IC50 of 1-10 microM, but not herpes simplex virus (type 1 and type 2) or other (picorna-, toga-, reo-, orthomyxo-, paramyxo-, bunya-, rhabdo-, and poxvirus) viruses. Radical addition on perallylated CDs of a protected cysteine gave polyzwitterionic compounds. None of these last compounds proved inhibitory to the replication of HIV-1, HIV-2, or any of the other viruses tested. PMID:9836609

  2. Structural studies of series HIV-1 nonnucleoside reverse transcriptase inhibitors 1-(2,6-difluorobenzyl)-2-(2,6-difluorophenyl)-benzimidazoles with different 4-substituents

    NASA Astrophysics Data System (ADS)

    Ziółkowska, Natasza E.; Michejda, Christopher J.; Bujacz, Grzegorz D.

    2010-03-01

    Over the past 10 years, several anti-viral drugs have become available to fight the HIV infection. Antiretroviral treatment reduces the mortality of AIDS. Nonnucleoside inhibitors of HIV-1 reverse transcriptase are specific and potentially nontoxic drugs against AIDS. The crystal structures of five nonnucleoside inhibitors of HIV-1 reverse transcriptase are presented here. The structural parameters, especially those describing the angular orientation of the π-electron systems and influencing biological activity, were determined for all of the investigated inhibitors. The chemical character and orientation of the substituent at C4 position of the benzimidazole moiety substantially influences the anti-viral activity. The structural data of the investigated inhibitors is a good basis for modeling enzyme-inhibitor interactions for structure-assisted drug design.

  3. Discovery of novel inhibitors of HIV-1 reverse transcriptase through virtual screening of experimental and theoretical ensembles.

    PubMed

    Ivetac, Anthony; Swift, Sara E; Boyer, Paul L; Diaz, Arturo; Naughton, John; Young, John A T; Hughes, Stephen H; McCammon, J Andrew

    2014-05-01

    Non-nucleoside reverse transcriptase inhibitors (NNRTIs) are potent anti-HIV chemotherapeutics. Although there are FDA-approved NNRTIs, challenges such as the development of resistance have limited their utility. Here, we describe the identification of novel NNRTIs through a combination of computational and experimental approaches. Based on the known plasticity of the NNRTI binding pocket (NNIBP), we adopted an ensemble-based virtual screening strategy: coupling receptor conformations from 10 X-ray crystal structures with 120 snapshots from a total of 480 ns of molecular dynamics (MD) trajectories. A screening library of 2864 National Cancer Institute (NCI) compounds was built and docked against the ensembles in a hierarchical fashion. Sixteen diverse compounds were tested for their ability to block HIV infection in human tissue cultures using a luciferase-based reporter assay. Three promising compounds were further characterized, using a HIV-1 RT-based polymerase assay, to determine the specific mechanism of inhibition. We found that 2 of the three compounds inhibited the polymerase activity of RT (with potency similar to the positive control, the FDA-approved drug nevirapine). Through a computational approach, we were able to discover two compounds which inhibit HIV replication and block the activity of RT, thus offering the potential for optimization into mature inhibitors.

  4. Design, Synthesis, and Biological and Structural Evaluations of Novel HIV-1 Protease Inhibitors To Combat Drug Resistance

    SciTech Connect

    Parai, Maloy Kumar; Huggins, David J.; Cao, Hong; Nalam, Madhavi N.L.; Ali, Akbar; Schiffer, Celia A.; Tidor, Bruce; Rana, Tariq M.

    2012-09-11

    A series of new HIV-1 protease inhibitors (PIs) were designed using a general strategy that combines computational structure-based design with substrate-envelope constraints. The PIs incorporate various alcohol-derived P2 carbamates with acyclic and cyclic heteroatomic functionalities into the (R)-hydroxyethylamine isostere. Most of the new PIs show potent binding affinities against wild-type HIV-1 protease and three multidrug resistant (MDR) variants. In particular, inhibitors containing the 2,2-dichloroacetamide, pyrrolidinone, imidazolidinone, and oxazolidinone moieties at P2 are the most potent with Ki values in the picomolar range. Several new PIs exhibit nanomolar antiviral potencies against patient-derived wild-type viruses from HIV-1 clades A, B, and C and two MDR variants. Crystal structure analyses of four potent inhibitors revealed that carbonyl groups of the new P2 moieties promote extensive hydrogen bond interactions with the invariant Asp29 residue of the protease. These structure-activity relationship findings can be utilized to design new PIs with enhanced enzyme inhibitory and antiviral potencies.

  5. Tuning of AKT-pathway by Nef and its blockade by protease inhibitors results in limited recovery in latently HIV infected T-cell line

    PubMed Central

    Kumar, Amit; Abbas, Wasim; Colin, Laurence; Khan, Kashif Aziz; Bouchat, Sophie; Varin, Audrey; Larbi, Anis; Gatot, Jean-Stéphane; Kabeya, Kabamba; Vanhulle, Caroline; Delacourt, Nadège; Pasquereau, Sébastien; Coquard, Laurie; Borch, Alexandra; König, Renate; Clumeck, Nathan; De Wit, Stephane; Rohr, Olivier; Rouzioux, Christine; Fulop, Tamas; Van Lint, Carine; Herbein, Georges

    2016-01-01

    Akt signaling plays a central role in many biological processes, which are key players in human immunodeficiency virus 1 (HIV-1) pathogenesis. We found that Akt interacts with HIV-1 Nef protein. In primary T cells treated with exogenous Nef or acutely infected with Nef-expressing HIV-1 in vitro, Akt became phosphorylated on serine473 and threonine308. In vitro, Akt activation mediated by Nef in T-cells was blocked by HIV protease inhibitors (PI), but not by reverse transcriptase inhibitors (RTI). Ex vivo, we found that the Akt pathway is hyperactivated in peripheral blood lymphocytes (PBLs) from cART naïve HIV-1-infected patients. PBLs isolated from PI-treated patients, but not from RTI-treated patients, exhibited decreased Akt activation, T-cell proliferation and IL-2 production. We found that PI but not RTI can block HIV-1 reactivation in latently infected J-Lat lymphoid cells stimulated with various stimuli. Using luciferase measurement, we further confirmed that Nef-mediated reactivation of HIV-1 from latency in 1G5 cells was blocked by PI parallel to decreased Akt activation. Our results indicate that PI-mediated blockade of Akt activation could impact the HIV-1 reservoir and support the need to further assess the therapeutic use of HIV-1 PI in order to curtail latently infected cells in HIV-1-infected patients. PMID:27076174

  6. A randomized trial of Raltegravir replacement for protease inhibitor or non-nucleoside reverse transcriptase inhibitor in HIV-infected women with lipohypertrophy.

    PubMed

    Lake, Jordan E; McComsey, Grace A; Hulgan, Todd M; Wanke, Christine A; Mangili, Alexandra; Walmsley, Sharon L; Boger, M Sean; Turner, Ralph R; McCreath, Heather E; Currier, Judith S

    2012-09-01

    Lipohypertrophy in HIV-infected patients is associated with metabolic abnormalities. Raltegravir (RAL) is not known to induce fat changes or severe metabolic perturbations. HIV-infected women with central adiposity and HIV-1 RNA less than 50 copies per milliliter on non-nucleoside reverse transcriptase inhibitor (NNRTI)- or protease inhibitor (PI)-based antiretroviral therapy (ART) continued their nucleoside reverse transcriptase inhibitor (NRTI) backbone and were randomized to switch to open label RAL immediately or after 24 weeks. The primary end point was 24-week between-group change in computed tomography (CT)-quantified visceral adipose tissue (AT) volume. Fasting lipids, glucose, C-reactive protein (CRP), anthropometric measurements, and patient-reported quality of life assessments were also measured. Thirty-six subjects provided 80% power to detect a 10% between-group difference in visceral AT over 24 weeks. Thirty-seven of 39 enrolled subjects completed week 24. At entry, subjects were 75% black or Hispanic, and on 62% PI-based and 38% NNRTI-based regimens. The median age was 43 years, CD4 count 558 cells per microliter, and body mass index (BMI) 32 kg/m(2). After 24 weeks, no statistically significant changes in visceral or subcutaneous AT, anthropometrics, BMI, glucose, or CRP were observed. In subjects receiving RAL, significant improvements in total and LDL cholesterol (p=0.04), self-reported belly size (p=0.02) and composite body size (p=0.02) were observed. Body size changes correlated well with percent visceral AT change. No RAL-related adverse events occurred. Compared to continued PI or NNRTI, switch to RAL was associated with statistically significant 24-week improvements in total and LDL cholesterol but not AT volumes. Additional insights into AT and metabolic changes in women on RAL will be provided by 48-week follow-up of the immediate-switch arm.

  7. Discovery of small-molecule HIV-1 fusion and integrase inhibitors oleuropein and hydroxytyrosol: Part I. Integrase inhibition

    SciTech Connect

    Lee-Huang, Sylvia . E-mail: sylvia.lee-huang@med.nyu.edu; Huang, Philip Lin; Zhang Dawei; Lee, Jae Wook; Bao Ju; Sun Yongtao; Chang, Young-Tae; Zhang, John; Huang, Paul Lee

    2007-03-23

    We have identified oleuropein (Ole) and hydroxytyrosol (HT) as a unique class of HIV-1 inhibitors from olive leaf extracts effective against viral fusion and integration. We used molecular docking simulation to study the interactions of Ole and HT with viral targets. We find that Ole and HT bind to the conserved hydrophobic pocket on the surface of the HIV-gp41 fusion domain by hydrogen bonds with Q577 and hydrophobic interactions with I573, G572, and L568 on the gp41 N-terminal heptad repeat peptide N36, interfering with formation of the gp41 fusion-active core. To test and confirm modeling predications, we examined the effect of Ole and HT on HIV-1 fusion complex formation using native polyacrylamide gel electrophoresis and circular dichroism spectroscopy. Ole and HT exhibit dose-dependent inhibition on HIV-1 fusion core formation with EC{sub 50}s of 66-58 nM, with no detectable toxicity. Our findings on effects of HIV-1 integrase are reported in the subsequent article.

  8. Identification of myxobacteria-derived HIV inhibitors by a high-throughput two-step infectivity assay

    PubMed Central

    2013-01-01

    Background Drug-resistance and therapy failure due to drug-drug interactions are the main challenges in current treatment against Human Immunodeficiency Virus (HIV) infection. As such, there is a continuous need for the development of new and more potent anti-HIV drugs. Here we established a high-throughput screen based on the highly permissive TZM-bl cell line to identify novel HIV inhibitors. The assay allows discriminating compounds acting on early and/or late steps of the HIV replication cycle. Results The platform was used to screen a unique library of secondary metabolites derived from myxobacteria. Several hits with good anti-HIV profiles were identified. Five of the initial hits were tested for their antiviral potency. Four myxobacterial compounds, sulfangolid C, soraphen F, epothilon D and spirangien B, showed EC50 values in the nM range with SI > 15. Interestingly, we found a high amount of overlapping hits compared with a previous screen for Hepatitis C Virus (HCV) using the same library. Conclusion The unique structures and mode-of-actions of these natural compounds make myxobacteria an attractive source of chemicals for the development of broad-spectrum antivirals. Further biological and structural studies of our initial hits might help recognize smaller drug-like derivatives that in turn could be synthesized and further optimized. PMID:24063434

  9. Identification and characterization of a dense cluster of placenta-specific cysteine peptidase genes and related genes on mouse chromosome 13.

    PubMed

    Deussing, Jan; Kouadio, Martin; Rehman, Salima; Werber, Ingrid; Schwinde, Anne; Peters, Christoph

    2002-02-01

    Genes encoding novel murine cysteine peptidases of the papain family C1A and related genes were cloned and mapped to mouse chromosome 13, colocalizing with the previously assigned cathepsin J gene. We constructed a <460-kb phage artificial chromosome (PAC) contig and characterized a dense cluster comprising eight C1A cysteine peptidase genes, cathepsins J, M, Q, R, -1, -2, -3, and -6; three pseudogenes of cathepsins M, -1, and -2; and four genes encoding putative cysteine peptidase inhibitors related to the proregion of C1A peptidases (trophoblast-specific proteins alpha and beta and cytotoxic T-lymphocyte-associated proteins 2alpha and -beta). Because of sequence homologies of 61.9-72.0% between cathepsin J and the other seven putative cysteine peptidases of the cluster, these peptidases are classified as "cathepsin J-like". The absence of cathepsin J-like peptidases and related genes from the human genome suggests that the cathepsin J cluster arose by partial and complete gene duplication events after the divergence of primate and rodent lineages. The expression of cathepsin J-like peptidases and related genes in the cluster is restricted to the placenta only. Clustered genes are induced at specific time points, and their expression increases toward the end of gestation. The specific expression pattern and high expression level suggest an essential role of cathepsin J-like peptidases and related genes in formation and development of the murine placenta.

  10. Second-line protease inhibitor-based highly active antiretroviral therapy after failing non-nucleoside reverse transcriptase inhibitors-based regimens in Asian HIV-infected children

    PubMed Central

    Bunupuradah, Torsak; Puthanakit, Thanyawee; Fahey, Paul; Kariminia, Azar; Yusoff, Nik Khairulddin Nik; Khanh, Truong Huu; Sohn, Annette H.; Chokephaibulkit, Kulkanya; Lumbiganon, Pagakrong; Hansudewechakul, Rawiwan; Razali, Kamarul; Kurniati, Nia; Huy, Bui Vu; Sudjaritruk, Tavitiya; Kumarasamy, Nagalingeswaran; Fong, Siew Moy; Saphonn, Vonthanak; Ananworanich, Jintanat

    2013-01-01

    Background The WHO recommends boosted protease inhibitor (bPI)-based highly active antiretroviral therapy (HAART) after failing non-nucleoside reverse transcriptase inhibitor (NNRTI) treatment. We examined outcomes of this regimen in Asian HIV-infected children. Methods Children from five Asian countries in the TREAT Asia Pediatric HIV Observational Database (TApHOD) with ≥24 weeks of NNRTI-based HAART followed by ≥24 weeks of bPI-based HAART were eligible. Primary outcomes were the proportions with virologic suppression (HIV-RNA <400 copies/ml) and immune recovery (CD4% ≥25% if age <5 years and CD4 count ≥500 cells/mm3 if age ≥5 years) at 48 and 96 weeks. Results Of 3422 children, 153 were eligible; 52% were female. At switch, median age was 10 years, 26% were in WHO stage 4. Median weight-for-age z-score (WAZ) was −1.9 (n=121), CD4% was 12.5% (n=106), CD4 count was 237 (n=112) cells/mm3, and HIV-RNA was 4.6 log10copies/ml (n=61). The most common PI was lopinavir/ritonavir (83%). At 48 weeks, 61% (79/129) had immune recovery, 60% (26/43) had undetectable HIV-RNA and 73% (58/79) had fasting triglycerides ≥130mg/dl. By 96 weeks, 70% (57/82) achieved immune recovery, 65% (17/26) virologic suppression, and hypertriglyceridemia occurred in 66% (33/50). Predictors for virologic suppression at week 48 were longer duration of NNRTI-based HAART (p=0.006), younger age (p=0.007), higher WAZ (p=0.020), and HIV-RNA at switch <10,000 copies/ml (p=0.049). Conclusion In this regional cohort of Asian children on bPI-based second-line HAART, 60% of children tested had immune recovery by one year, and two-thirds had hyperlipidemia, highlighting difficulties in optimizing second-line HAART with limited drug options. PMID:23296119

  11. Dual inhibition of HIV-1 replication by integrase-LEDGF allosteric inhibitors is predominant at the post-integration stage

    PubMed Central

    2013-01-01

    Background LEDGF/p75 (LEDGF) is the main cellular cofactor of HIV-1 integrase (IN). It acts as a tethering factor for IN, and targets the integration of HIV in actively transcribed gene regions of chromatin. A recently developed class of IN allosteric inhibitors can inhibit the LEDGF-IN interaction. Results We describe a new series of IN-LEDGF allosteric inhibitors, the most active of which is Mut101. We determined the crystal structure of Mut101 in complex with IN and showed that the compound binds to the LEDGF-binding pocket, promoting conformational changes of IN which explain at the atomic level the allosteric effect of the IN/LEDGF interaction inhibitor on IN functions. In vitro, Mut101 inhibited both IN-LEDGF interaction and IN strand transfer activity while enhancing IN-IN interaction. Time of addition experiments indicated that Mut101 behaved as an integration inhibitor. Mut101 was fully active on HIV-1 mutants resistant to INSTIs and other classes of anti-HIV drugs, indicative that this compound has a new mode of action. However, we found that Mut101 also displayed a more potent antiretroviral activity at a post-integration step. Infectivity of viral particles produced in presence of Mut101 was severely decreased. This latter effect also required the binding of the compound to the LEDGF-binding pocket. Conclusion Mut101 has dual anti-HIV-1 activity, at integration and post-integration steps of the viral replication cycle, by binding to a unique target on IN (the LEDGF-binding pocket). The post-integration block of HIV-1 replication in virus-producer cells is the mechanism by which Mut101 is most active as an antiretroviral. To explain this difference between Mut101 antiretroviral activity at integration and post-integration stages, we propose the following model: LEDGF is a nuclear, chromatin-bound protein that is absent in the cytoplasm. Therefore, LEDGF can outcompete compound binding to IN in the nucleus of target cells lowering its antiretroviral

  12. 3D-QSAR studies on chromone derivatives as HIV-1 protease inhibitors

    NASA Astrophysics Data System (ADS)

    Ungwitayatorn, Jiraporn; Samee, Weerasak; Pimthon, Jutarat

    2004-02-01

    The three-dimensional quantitative structure-activity relationship (3D-QSAR) approach using comparative molecular field analysis (CoMFA) and comparative molecular similarity indices analysis (CoMSIA) was applied to a series of 30 chromone derivatives, a new class of HIV-1 protease inhibitors. The best predictive CoMFA model gives cross-validated r2 ( q2)=0.763, non-cross-validated r2=0.967, standard error of estimate ( S)=5.092, F=90.701. The best CoMSIA model has q2=0.707, non-cross-validated r2=0.943, S=7.018, F=51.734, included steric, electrostatic, hydrophobic, and hydrogen bond donor fields. The predictive ability of these models was validated by a set of five compounds that were not included in the training set. The calculated (predicted) and experimental inhibitory activities were well correlated. The contour maps obtained from CoMFA and CoMSIA models were in agreement with the previous docking study for this chromone series.

  13. Dynamic pharmacophore model optimization: identification of novel HIV-1 integrase inhibitors.

    PubMed

    Deng, Jinxia; Sanchez, Tino; Neamati, Nouri; Briggs, James M

    2006-03-01

    We extended the previously described dynamic pharmacophore model studies of HIV-1 integrase (IN) by considering more key residues in the active site, including Mg2+. First, we applied a Monte Carlo sampling method to map the complementary features of the IN binding surface. Two types of dynamic pharmacophore models were generated. One considers Mg2+ as part of the IN and therefore as an excluded volume, and the other treats Mg2+ as a positively charged feature, representing a new type of pharmacophore model aimed to identify compounds potentially preventing Mg2+ binding. Second, we validated the models with 385 known active (IC50 < 20 microM) and 235 (IC50 > 100 microM) inactive IN inhibitors. Third, we used the derived models to screen our small molecule database. Twenty-two structurally novel compounds were tested in an in vitro assay specific for IN, and two of them showed IC50 < or = 10 microM for strand transfer reaction.

  14. HIV-1 integrase strand-transfer inhibitors: design, synthesis and molecular modeling investigation.

    PubMed

    De Luca, Laura; De Grazia, Sara; Ferro, Stefania; Gitto, Rosaria; Christ, Frauke; Debyser, Zeger; Chimirri, Alba

    2011-02-01

    This study is focused on a new series of benzylindole derivatives with various substituents at the benzene-fused ring, suggested by our 3D pharmacophore model developed for HIV-1 integrase inhibitors (INIs). All synthesized compounds proved to be active in the nanomolar range (6-35 nM) on the strand-transfer step (ST). In particular, derivative 4-[1-(4-fluorobenzyl)-5,7-dimethoxy-1H-indol-3-yl]-2-hydroxy-4-oxobut-2-enoic acid (8e), presenting the highest best-fit value on pharmacophore model, showed a potency comparable to that of clinical INSTIs GS 9137 (1) and MK-0518 (2). The binding mode of our molecules has been investigated using the recently published crystal structure of the complex of full-length integrase from the prototype foamy virus in complex with its cognate DNA (PFV-IN/DNA). The results highlighted the ability of derivative 8e to assume the same binding mode of MK-0518 and GS 9137.

  15. Quassinoids: Viral protein R inhibitors from Picrasma javanica bark collected in Myanmar for HIV infection.

    PubMed

    Win, Nwet Nwet; Ito, Takuya; Win, Yi Yi; Ngwe, Hla; Kodama, Takeshi; Abe, Ikuro; Morita, Hiroyuki

    2016-10-01

    Viral protein R (Vpr) is an accessory protein that plays important roles in the viral pathogenesis of Human Immunodeficiency Virus-1 (HIV-1). An assay for anti-Vpr activity, using TREx-HeLa-Vpr cells, is a promising strategy to discover Vpr inhibitors. The anti-Vpr assay revealed that the CHCl3-soluble extract of Picrasma javanica bark possesses potent anti-Vpr activity. Furthermore, studies of quassinoids (1-15) previously isolated from the extract demonstrated that all of the tested quassinoids exhibit anti-Vpr activity. Among the tested compounds, javanicin I (15) exhibited the most potent anti-Vpr activity ((***)p <0.001) in comparing with that of the positive control, damnacanthal. The structure-activity relationships of the active quassinoids suggested that the presence of a methyl group at C-13 in the 2,12,14-triene-1,11,16-trione-2,12-dimethoxy-18-norpicrasane quassinoids is the important factor for the potent inhibitory effect in TREx-HeLa-Vpr cells. PMID:27575477

  16. Identification of dipeptidyl peptidase 3 as the Angiotensin-(1-7) degrading peptidase in human HK-2 renal epithelial cells.

    PubMed

    Cruz-Diaz, Nildris; Wilson, Bryan A; Pirro, Nancy T; Brosnihan, K Bridget; Marshall, Allyson C; Chappell, Mark C

    2016-09-01

    Angiotensin-(1-7) (Ang-(1-7)) is expressed within the kidney and exhibits renoprotective actions that antagonize the inflammatory, fibrotic and pro-oxidant effects of the Ang II-AT1 receptor axis. We previously identified a peptidase activity from sheep brain, proximal tubules and human HK-2 proximal tubule cells that metabolized Ang-(1-7); thus, the present study isolated and identified the Ang-(1-7) peptidase. Utilizing ion exchange and hydrophobic interaction chromatography, a single 80kDa protein band on SDS-PAGE was purified from HK-2 cells. The 80kDa band was excised, the tryptic digest peptides analyzed by LC-MS and a protein was identified as the enzyme dipeptidyl peptidase 3 (DPP 3, EC: 3.4.14.4). A human DPP 3 antibody identified a single 80kDa band in the purified enzyme preparation identical to recombinant human DPP 3. Both the purified Ang-(1-7) peptidase and DPP 3 exhibited an identical hydrolysis profile of Ang-(1-7) and both activities were abolished by the metallopeptidase inhibitor JMV-390. DPP 3 sequentially hydrolyzed Ang-(1-7) to Ang-(3-7) and rapidly converted Ang-(3-7) to Ang-(5-7). Kinetic analysis revealed that Ang-(3-7) was hydrolyzed at a greater rate than Ang-(1-7) [17.9 vs. 5.5 nmol/min/μg protein], and the Km for Ang-(3-7) was lower than Ang-(1-7) [3 vs. 12μM]. Finally, chronic treatment of the HK-2 cells with 20nM JMV-390 reduced intracellular DPP 3 activity and tended to augment the cellular levels of Ang-(1-7). We conclude that DPP 3 may influence the cellular expression of Ang-(1-7) and potentially reflect a therapeutic target to augment the actions of the peptide. PMID:27315786

  17. Design of HIV-1 Protease Inhibitors with C3-Substituted Hexahydrocyclopentafuranyl Urethanes as P2-Ligands: Synthesis, Biological Evaluation, and Protein-Ligand X-ray Crystal Structure

    SciTech Connect

    Ghosh, Arun K; Chapsal, Bruno D; Parham, Garth L; Steffey, Melinda; Agniswamy, Johnson; Wang, Yuan-Fang; Amano, Masayuki; Weber, Irene T; Mitsuya, Hiroaki

    2011-11-07

    We report the design, synthesis, biological evaluation, and the X-ray crystal structure of a novel inhibitor bound to the HIV-1 protease. Various C3-functionalized cyclopentanyltetrahydrofurans (Cp-THF) were designed to interact with the flap Gly48 carbonyl or amide NH in the S2-subsite of the HIV-1 protease. We investigated the potential of those functionalized ligands in combination with hydroxyethylsulfonamide isosteres. Inhibitor 26 containing a 3-(R)-hydroxyl group on the Cp-THF core displayed the most potent enzyme inhibitory and antiviral activity. Our studies revealed a preference for the 3-(R)-configuration over the corresponding 3-(S)-derivative. Inhibitor 26 exhibited potent activity against a panel of multidrug-resistant HIV-1 variants. A high resolution X-ray structure of 26-bound HIV-1 protease revealed important molecular insight into the ligand-binding site interactions.

  18. Discovery of novel low-molecular-weight HIV-1 inhibitors interacting with cyclophilin A using in silico screening and biological evaluations.

    PubMed

    Tian, Yu-Shi; Verathamjamras, Chris; Kawashita, Norihito; Okamoto, Kousuke; Yasunaga, Teruo; Ikuta, Kazuyoshi; Kameoka, Masanori; Takagi, Tatsuya

    2013-01-01

    Cyclophilin A has attracted attention recently as a new target of anti-human immunodeficiency virus type 1 (HIV-1) drugs. However, so far no drug against HIV-1 infection exhibiting this mechanism of action has been approved. To identify new potent candidates for inhibitors, we performed in silico screening of a commercial database of more than 1,300 drug-like compounds by using receptor-based docking studies. The candidates selected from docking studies were subsequently tested using biological assays to assess anti-HIV activities. As a result, two compounds were identified as the most active. Specifically, both exhibited anti-HIV activity against viral replication at a low concentration and relatively low cytotoxicity at the effective concentration inhibiting viral growth by 50%. Further modification of these molecules may lead to the elucidation of potent inhibitors of HIV-1.

  19. An Essential Signal Peptide Peptidase Identified in an RNAi Screen of Serine Peptidases of Trypanosoma brucei

    PubMed Central

    Moss, Catherine X.; Brown, Elaine; Hamilton, Alana; Van der Veken, Pieter; Augustyns, Koen; Mottram, Jeremy C.

    2015-01-01

    The serine peptidases of Trypanosoma brucei have been viewed as potential drug targets. In particular, the S9 prolyl oligopeptidase subfamily is thought to be a good avenue for drug discovery. This is based on the finding that some S9 peptidases are secreted and active in the mammalian bloodstream, and that they are a class of enzyme against which drugs have successfully been developed. We collated a list of all serine peptidases in T. brucei, identifying 20 serine peptidase genes, of which nine are S9 peptidases. We screened all 20 serine peptidases by RNAi to determine which, if any, are essential for bloodstream form T. brucei survival. All S9 serine peptidases were dispensable for parasite survival in vitro, even when pairs of similar genes, coding for oligopeptidase B or prolyl oligopeptidase, were targeted simultaneously. We also found no effect on parasite survival in an animal host when the S9 peptidases oligopeptidase B, prolyl oligopeptidase or dipeptidyl peptidase 8 were targeted. The only serine peptidase to emerge from the RNAi screen as essential was a putative type-I signal peptide peptidase (SPP1). This gene was essential for parasite survival both in vitro and in vivo. The growth defect conferred by RNAi depletion of SPP1 was rescued by expression of a functional peptidase from an RNAi resistant SPP1 gene. However, expression of catalytically inactive SPP1 was unable to rescue cells from the SPP1 depleted phenotype, demonstrating that SPP1 serine peptidase activity is necessary for T. brucei survival. PMID:25816352

  20. HIV Pre-Exposure Prophylaxis: Mucosal Tissue Drug Distribution of RT Inhibitor Tenofovir and Entry Inhibitor Maraviroc in a Humanized Mouse Model

    PubMed Central

    Veselinovic, Milena; Yang, Kuo-Hsiung; LeCureux, Jonathan; Sykes, Craig; Remling-Mulder, Leila; Kashuba, Angela DM; Akkina, Ramesh

    2015-01-01

    Pre-exposure prophylaxis (PrEP) strategies utilizing anti-retroviral drugs show considerable promise for HIV prevention. However there is insufficient pharmacokinetic (PK) data on drug concentrations required for protection at the relevant mucosal tissues where the infection is initiated. Here we evaluated the utility of a humanized mouse model to derive PK data on two leading drugs, the RT inhibitor tenofovir (TFV) and CCR5 inhibitor maraviroc (MVC). Following oral dosing, both the drugs and the intracellular active TFV-diphosphate could be detected in vaginal, rectal and intestinal tissues. The drug exposures (AUC24hr) were found to be higher in vaginal tissue compared to plasma with even higher levels detected in rectal and intestinal tissues. The overall trends of drug concentrations seen in humanized mice reflect those seen in the human thus establishing the utility of this model complementing the present non-human primate (NHP) models for future pre-clinical evaluations of promising HIV PrEP drug candidates. PMID:25105490

  1. Inhibition of a Secreted Glutamic Peptidase Prevents Growth of the Fungus Talaromyces emersonii*

    PubMed Central

    O'Donoghue, Anthony J.; Mahon, Cathal S.; Goetz, David H.; O'Malley, James M.; Gallagher, Denise M.; Zhou, Min; Murray, Patrick G.; Craik, Charles S.; Tuohy, Maria G.

    2008-01-01

    The thermophilic filamentous fungus Talaromyces emersonii secretes a variety of hydrolytic enzymes that are of interest for processing of biomass into fuel. Many carbohydrases have been isolated and characterized from this fungus, but no studies had been performed on peptidases. In this study, two acid-acting endopeptidases were isolated and characterized from the culture filtrate of T. emersonii. One of these enzymes was identified as a member of the recently classified glutamic peptidase family and was subsequently named T. emersonii glutamic peptidase 1 (TGP1). The second enzyme was identified as an aspartyl peptidase (PEP1). TGP1 was cloned and sequenced and shown to exhibit 64 and 47% protein identity to peptidases from Aspergillus niger and Scytalidium lignocolum, respectively. Substrate profiling of 16 peptides determined that TGP1 has broad specificity with a preference for large residues in the P1 site, particularly Met, Gln, Phe, Lys, Glu, and small amino acids at P1′ such as Ala, Gly, Ser, or Thr. This enzyme efficiently cleaves an internally quenched fluorescent substrate containing the zymogen activation sequence (kcat/Km = 2 × 105 m-1 s-1). Maximum hydrolysis occurs at pH 3.4 and 50 °C. The reaction is strongly inhibited by a transition state peptide analog, TA1 (Ki = 1.5 nm), as well as a portion of the propeptide sequence, PT1 (Ki = 32 nm). Ex vivo studies show that hyphal extension of T. emersonii in complex media is unaffected by the aspartyl peptidase inhibitor pepstatin but is inhibited by TA1 and PT1. This study provides insight into the functional role of the glutamic peptidase TGP1 for growth of T. emersonii. PMID:18687686

  2. Structural and electronic properties of new fullerene derivatives and their possible application as HIV-1 protease inhibitors

    NASA Astrophysics Data System (ADS)

    Ibrahim, Medhat; Saleh, Noha A.; Hameed, Ali Jameel; Elshemey, Wael M.; Elsayed, Anwar A.

    2010-02-01

    Density functional theory (DFT) calculations have been carried out at the hybrid Becke 3-Lee-Yang-Parr; B3LYP/3-21G** level of theory to study two series of hydroxy-chalca-acetic acid-(4-pyrrolidin-1-yl-phenyl) ester [C 60-C 2H 4N-(4-XCOCH 2OH)C 6H 4] and hydroxy-chalcoacetic acid-[2-(2-hydroxy-acetylchalcanyl)-4-pyrrolidin-1-yl-phenyl] ester[C 60-C 2H 4N-(3,4-XCOCH 2OH)C 6H 4]. The X atom is O, S or Se for the two series. The vibrational spectra, physical, chemical, thermodynamics and Quantitative Structure Activity Relationship (QSAR) properties of the studied molecules are calculated and discussed. We have evaluated these molecules as HIV-1 protease inhibitors based on the hydrogenation interaction between the hydroxymethylcarbonyl (HMC) groups and the two aspartic acid of the HIV-1 protease active site. Results show that some of the investigated fullerene-based derivatives can be considered promising as HIV-1 protease inhibitors.

  3. Docking of anti-HIV-1 oxoquinoline-acylhydrazone derivatives as potential HSV-1 DNA polymerase inhibitors

    NASA Astrophysics Data System (ADS)

    Yoneda, Julliane Diniz; Albuquerque, Magaly Girão; Leal, Kátia Zaccur; Santos, Fernanda da Costa; Batalha, Pedro Netto; Brozeguini, Leonardo; Seidl, Peter R.; de Alencastro, Ricardo Bicca; Cunha, Anna Cláudia; de Souza, Maria Cecília B. V.; Ferreira, Vitor F.; Giongo, Viveca A.; Cirne-Santos, Cláudio; Paixão, Izabel C. P.

    2014-09-01

    Although there are many antiviral drugs available for the treatment of herpes simplex virus (HSV) infections, still the synthesis of new anti-HSV candidates is an important strategy to be pursued, due to the emergency of resistant HSV strains mainly in human immunodeficiency virus (HIV) co-infected patients. Some 1,4-dihydro-4-oxoquinolines, such as PNU-183792 (1), show a broad spectrum antiviral activity against human herpes viruses, inhibiting the viral DNA polymerase (POL) without affecting the human POLs. Thus, on an ongoing antiviral research project, our group has synthesized ribonucleosides containing the 1,4-dihydro-4-oxoquinoline (quinolone) heterocyclic moiety, such as the 6-Cl derivative (2), which is a dual antiviral agent (HSV-1 and HIV-1). Molecular dynamics simulations of the complexes of 1 and 2 with the HSV-1 POL suggest that structural modifications of 2 should increase its experimental anti-HSV-1 activity, since its ribosyl and carboxyl groups are highly hydrophilic to interact with a hydrophobic pocket of this enzyme. Therefore, in this work, comparative molecular docking simulations of 1 and three new synthesized oxoquinoline-acylhydrazone HIV-1 inhibitors (3-5), which do not contain those hydrophilic groups, were carried out, in order to access these modifications in the proposition of new potential anti-HSV-1 agents, but maintaining the anti-HIV-1 activity. Among the docked compounds, the oxoquinoline-acylhydrazone 3 is the best candidate for an anti-HSV-1 agent, and, in addition, it showed anti-HIV-1 activity (EC50 = 3.4 ± 0.3 μM). Compounds 2 and 3 were used as templates in the design of four new oxoquinoline-acylhydrazones (6-9) as potential anti-HSV-1 agents to increase the antiviral activity of 2. Among the docked compounds, oxoquinoline-acylhydrazone 7 was selected as the best candidate for further development of dual anti-HIV/HSV activity.

  4. Subtype diversity associated with the development of HIV-1 resistance to integrase inhibitors.

    PubMed

    Brenner, Bluma G; Lowe, Matthew; Moisi, Daniela; Hardy, Isabelle; Gagnon, Simon; Charest, Hugues; Baril, Jean Guy; Wainberg, Mark A; Roger, Michel

    2011-05-01

    We used genotypic and phylogenetic analysis to determine integrase diversity among subtypes, and studied natural polymorphisms and mutations implicated in resistance to integrase inhibitors (INI) in treatment-naïve persons (n = 220) and -experienced individuals (n = 24). Phylogenetics revealed 7 and 10% inter-subtype diversity in the integrase and reverse transcriptase (RT)/protease regions, respectively. Integrase sequencing identified a novel A/B recombinant in which all viruses in a male-sex-male (MSM) transmission cluster (n = 12) appeared to possess subtype B in integrase and subtype A in the remainder of the pol region. Natural variations and signature polymorphisms were observed at codon positions 140, 148, 151, 157, and 160 among HIV subtypes. These variations predicted higher genetic barriers to G140S and G140C in subtypes C, CRF02_AG, and A/CRF01_AE, as well as higher genetic barriers toward acquisition of V151I in subtypes CRF02_AG and A/CRF01_AE. The E157Q and E160Q mutational motif was observed in 35% of INI-naïve patients harboring subtype C infections, indicating intra-subtype variations. Thirteen patients failed raltegravir (RAL)-containing regimens within 8 ± 1 months, in association with the major Q148K/R/H and G140A/S (n = 8/24) or N155H (n = 5/24) mutational pathways. Of note, the remaining patients on RAL regimens for 14 ± 3 months harbored no or only minor integrase mutations/polymorphisms (T66I, T97A, H114P, S119P, A124S, G163R, I203M, R263K). These results demonstrate the importance of understanding subtype variability in the development of resistance to INIs.

  5. Synthesis and oxidation of 2-hydroxynevirapine, a metabolite of the HIV reverse transcriptase inhibitor nevirapine.

    PubMed

    Antunes, Alexandra M M; Novais, David A; da Silva, J L Ferreira; Santos, Pedro P; Oliveira, M Conceição; Beland, Frederick A; Marques, M Matilde

    2011-10-26

    Nevirapine (11-cyclopropyl-5,11-dihydro-4-methyl-6H-dipyrido[3,2-b:2',3'-e][1,4]diazepin-6-one, NVP) is a non-nucleoside HIV-1 reverse transcriptase inhibitor used to prevent mother-to-child transmission of the virus. However, severe hepatotoxicity and serious adverse cutaneous effects have raised concerns about the safety of NVP administration. NVP metabolism yields several phenol-type derivatives conceivably capable of undergoing further metabolic oxidation to electrophilic quinoid species that could react with bionucleophiles. The covalent adducts thus formed might be at the genesis of toxic responses. As an initial step to test this hypothesis, we synthesized the phenolic metabolite, 2-hydroxy-NVP, and investigated its oxidation in vitro. Using potassium nitrosodisulfonate and sodium periodate as model oxidants, we obtained evidence for fast generation of an electrophilic quinone-imine, which readily underwent hydrolytic conversion to fully characterized spiro derivatives, 1'-cyclopropyl-4-methyl-1H,1'H-spiro[pyridine-2,2'-pyrido[2,3-d]pyrimidine]-3,4',6(3'H)-trione in aqueous media and 1'-cyclopropyl-4-methyl-1'H,2H-spiro[pyridine-3,2'-pyrido[2,3-d]pyrimidine]-2,4',6(1H,3'H)-trione in non-aqueous media. The spiro compound generated in aqueous solution underwent subsequent hydrolytic degradation of the NVP ring system, whereas the one formed in non-aqueous media was stable to hydrolysis. The product profile observed with the chemical oxidants in aqueous solution was replicated using lactoperoxidase-mediated oxidation of 2-hydroxy-NVP. These observations suggest that metabolic activation of NVP, via Phase I oxidation to 2-hydroxy-NVP and subsequent generation of a quinone-imine, could occur in vivo and play a role in NVP-induced toxicity.

  6. Cysteine Peptidases, Secreted by Trichomonas gallinae, Are Involved in the Cytopathogenic Effects on a Permanent Chicken Liver Cell Culture

    PubMed Central

    Amin, Aziza; Nöbauer, Katharina; Patzl, Martina; Berger, Evelyn; Hess, Michael; Bilic, Ivana

    2012-01-01

    Trichomonas gallinae, the aetiological agent of avian trichomonosis, was shown to secrete soluble factors involved in cytopathogenic effect on a permanent chicken liver (LMH) cell culture. The present study focused on the characterization of these molecules. The addition of specific peptidase inhibitors to the cell-free filtrate partially inhibited the monolayer destruction, which implied the presence of peptidases in the filtrate and their involvement in the cytopathogenic effect. One-dimensional substrate (gelatin) SDS-PAGE confirmed the proteolytic character of the filtrate by demonstrating the proteolytic activity within the molecular weight range from 38 to 110 kDa. In addition, the proteolytic activity was specifically inhibited by addition of TLCK and E-64 cysteine peptidase inhibitors implying their cysteine peptidase nature. Furthermore, variations in the intensity and the number of proteolytic bands were observed between cell-free filtrates of low and high passages of the same T. gallinae clonal culture. Two-dimensional substrate gel electrophoresis of concentrated T. gallinae cell-free filtrate identified at least six proteolytic spots. The mass spectrometric analysis of spots from 2-D gels identified the presence of at least two different Clan CA, family C1, cathepsin L-like cysteine peptidases in the cell-free filtrate of T. gallinae. In parallel, a PCR approach using degenerated primers based on the conserved amino acid sequence region of cysteine peptidases from Trichomonas vaginalis identified the coding sequences for four different Clan CA, family C1, cathepsin L-like cysteine peptidases. Finally, this is the first report analyzing molecules secreted by T. gallinae and demonstrating the ubiquity of peptidases secreted by this protozoon. PMID:22649527

  7. Computer-based design of novel HIV-1 entry inhibitors: neomycin conjugated to arginine peptides at two specific sites.

    PubMed

    Berchanski, Alexander; Lapidot, Aviva

    2009-03-01

    Aminoglycoside-arginine conjugates (AAC and APAC) are multi-target inhibitors of human immunodeficiency virus type-1 (HIV-1). Here, we predict new conjugates of neomycin with two arginine peptide chains binding at specific sites on neomycin [poly-arginine-neomycin-poly-arginine (PA-Neo-PA)]. The rationale for the design of such compounds is to separate two short arginine peptides with neomycin, which may extend the binding region of the CXC chemokine receptor type 4 (CXCR4). We used homology models of CXCR4 and unliganded envelope glycoprotein 120 (HIV-1(IIIB) gp120) and docked PA-Neo-PAs and APACs to these using a multistep docking procedure. The results indicate that PA-Neo-PAs spread over two negatively charged patches of CXCR4. PA-Neo-PA-CXCR4 complexes are energetically more favorable than AACs/APAC-CXCR4 complexes. Notably, our CXCR4 model and docking procedure can be applied to predict new compounds that are either inhibitors of gp120-CXCR4 binding without affecting stromal cell-derived factor 1 alpha (SDF-1 alpha) chemotaxis activity, or inhibitors of SDF-1 alpha-CXCR4 binding resulting in an anti-metastasis effect. We also predict that PA-Neo-PAs and APACs can interfere with CD4-gp120 binding in unliganded conformation.

  8. Effects of sequence changes in the HIV-1 gp41 fusion peptide on CCR5 inhibitor resistance

    SciTech Connect

    Anastassopoulou, Cleo G.; Ketas, Thomas J.; Sanders, Rogier W.; Johan Klasse, Per; Moore, John P.

    2012-07-05

    A rare pathway of HIV-1 resistance to small molecule CCR5 inhibitors such as Vicriviroc (VCV) involves changes solely in the gp41 fusion peptide (FP). Here, we show that the G516V change is critical to VCV resistance in PBMC and TZM-bl cells, although it must be accompanied by either M518V or F519I to have a substantial impact. Modeling VCV inhibition data from the two cell types indicated that G516V allows both double mutants to use VCV-CCR5 complexes for entry. The model further identified F519I as an independent determinant of preference for the unoccupied, high-VCV affinity form of CCR5. From inhibitor-free reversion cultures, we also identified a substitution in the inner domain of gp120, T244A, which appears to counter the resistance phenotype created by the FP substitutions. Examining the interplay of these changes will enhance our understanding of Env complex interactions that influence both HIV-1 entry and resistance to CCR5 inhibitors.

  9. Molecular mechanisms and design principles for promiscuous inhibitors to avoid drug resistance: lessons learned from HIV-1 protease inhibition.

    PubMed

    Shen, Yang; Radhakrishnan, Mala L; Tidor, Bruce

    2015-02-01

    Molecular recognition is central to biology and ranges from highly selective to broadly promiscuous. The ability to modulate specificity at will is particularly important for drug development, and discovery of mechanisms contributing to binding specificity is crucial for our basic understanding of biology and for applications in health care. In this study, we used computational molecular design to create a large dataset of diverse small molecules with a range of binding specificities. We then performed structural, energetic, and statistical analysis on the dataset to study molecular mechanisms of achieving specificity goals. The work was done in the context of HIV-1 protease inhibition and the molecular designs targeted a panel of wild-type and drug-resistant mutant HIV-1 protease structures. The analysis focused on mechanisms for promiscuous binding to bind robustly even to resistance mutants. Broadly binding inhibitors tended to be smaller in size, more flexible in chemical structure, and more hydrophobic in nature compared to highly selective ones. Furthermore, structural and energetic analyses illustrated mechanisms by which flexible inhibitors achieved binding; we found ligand conformational adaptation near mutation sites and structural plasticity in targets through torsional flips of asymmetric functional groups to form alternative, compensatory packing interactions or hydrogen bonds. As no inhibitor bound to all variants, we designed small cocktails of inhibitors to do so and discovered that they often jointly covered the target set through mechanistic complementarity. Furthermore, using structural plasticity observed in experiments, and potentially in simulations, is suggested to be a viable means of designing adaptive inhibitors that are promiscuous binders.

  10. A lectin isolated from bananas is a potent inhibitor of HIV replication.

    PubMed

    Swanson, Michael D; Winter, Harry C; Goldstein, Irwin J; Markovitz, David M

    2010-03-19

    BanLec is a jacalin-related lectin isolated from the fruit of bananas, Musa acuminata. This lectin binds to high mannose carbohydrate structures, including those found on viruses containing glycosylated envelope proteins such as human immunodeficiency virus type-1 (HIV-1). Therefore, we hypothesized that BanLec might inhibit HIV-1 through binding of the glycosylated HIV-1 envelope protein, gp120. We determined that BanLec inhibits primary and laboratory-adapted HIV-1 isolates of different tropisms and subtypes. BanLec possesses potent anti-HIV activity, with IC(50) values in the low nanomolar to picomolar range. The mechanism for BanLec-mediated antiviral activity was investigated by determining if this lectin can directly bind the HIV-1 envelope protein and block entry of the virus into the cell. An enzyme-linked immunosorbent assay confirmed direct binding of BanLec to gp120 and indicated that BanLec can recognize the high mannose structures that are recognized by the monoclonal antibody 2G12. Furthermore, BanLec is able to block HIV-1 cellular entry as indicated by temperature-sensitive viral entry studies and by the decreased levels of the strong-stop product of early reverse transcription seen in the presence of BanLec. Thus, our data indicate that BanLec inhibits HIV-1 infection by binding to the glycosylated viral envelope and blocking cellular entry. The relative anti-HIV activity of BanLec compared favorably to other anti-HIV lectins, such as snowdrop lectin and Griffithsin, and to T-20 and maraviroc, two anti-HIV drugs currently in clinical use. Based on these results, BanLec is a potential component for an anti-viral microbicide that could be used to prevent the sexual transmission of HIV-1.

  11. A novel assay for screening inhibitors targeting HIV-1 integrase dimerization based on Ni-NTA magnetic agarose beads.

    PubMed

    Zhang, Dawei; He, Hongqiu; Liu, Mengmeng; Meng, Zhixia; Guo, Shunxing

    2016-05-03

    Human immunodeficiency virus (HIV)-1 integrase (IN), which mediates integration of viral cDNA into the cellular chromosome, is a validated antiviral drug target. Three IN inhibitors, raltegravir, elvitegravir and dolutegravir, have been clinically approved since 2008. However, drug resistance have emerged in infected patients receiving treatment using these drugs which share the same mechanism of action and have a low genetic barrier for resistance. Therefore, there is an urgent need to develop drugs with novel mechanism. IN requires a precise and dynamic equilibrium between several oligomeric species for its activities. The modulation of the process which is termed as IN oligomerization, presents an interesting allosteric target for drug development. In this research, we developed a magnetic beads based approach to assay the IN dimerization. Then, using the assay we screened a library of 1000 Food and Drug Administration (FDA)-approved drugs for IN dimerization inhibitors and identified dexlansoprazole as a potential IN dimerization inhibitor. In conclusion, the assay presented here has been proven to be sensitive and specific for the detection of IN dimerization as well as for the identification of antiviral drugs targeting IN dimerization. Moreover, a FDA-approved proton-pump inhibitors, dexlansoprazole, was identified as a potential inhibitor for IN dimerization.

  12. A novel assay for screening inhibitors targeting HIV-1 integrase dimerization based on Ni-NTA magnetic agarose beads

    PubMed Central

    Zhang, Dawei; He, Hongqiu; Liu, Mengmeng; Meng, Zhixia; Guo, Shunxing

    2016-01-01

    Human immunodeficiency virus (HIV)-1 integrase (IN), which mediates integration of viral cDNA into the cellular chromosome, is a validated antiviral drug target. Three IN inhibitors, raltegravir, elvitegravir and dolutegravir, have been clinically approved since 2008. However, drug resistance have emerged in infected patients receiving treatment using these drugs which share the same mechanism of action and have a low genetic barrier for resistance. Therefore, there is an urgent need to develop drugs with novel mechanism. IN requires a precise and dynamic equilibrium between several oligomeric species for its activities. The modulation of the process which is termed as IN oligomerization, presents an interesting allosteric target for drug development. In this research, we developed a magnetic beads based approach to assay the IN dimerization. Then, using the assay we screened a library of 1000 Food and Drug Administration (FDA)-approved drugs for IN dimerization inhibitors and identified dexlansoprazole as a potential IN dimerization inhibitor. In conclusion, the assay presented here has been proven to be sensitive and specific for the detection of IN dimerization as well as for the identification of antiviral drugs targeting IN dimerization. Moreover, a FDA-approved proton-pump inhibitors, dexlansoprazole, was identified as a potential inhibitor for IN dimerization. PMID:27137477

  13. A combined 3D-QSAR and docking studies for the In-silico prediction of HIV-protease inhibitors

    PubMed Central

    2013-01-01

    Background Tremendous research from last twenty years has been pursued to cure human life against HIV virus. A large number of HIV protease inhibitors are in clinical trials but still it is an interesting target for researchers due to the viral ability to get mutated. Mutated viral strains led the drug ineffective but still used to increase the life span of HIV patients. Results In the present work, 3D-QSAR and docking studies were performed on a series of Danuravir derivatives, the most potent HIV- protease inhibitor known so far. Combined study of 3D-QSAR was applied for Danuravir derivatives using ligand-based and receptor-based protocols and generated models were compared. The results were in good agreement with the experimental results. Additionally, docking analysis of most active 32 and least active 46 compounds into wild type and mutated protein structures further verified our results. The 3D-QSAR and docking results revealed that compound 32 bind efficiently to the wild and mutated protein whereas, sufficient interactions were lost in compound 46. Conclusion The combination of two computational techniques would helped to make a clear decision that compound 32 with well inhibitory activity bind more efficiently within the binding pocket even in case of mutant virus whereas compound 46 lost its interactions on mutation and marked as least active compound of the series. This is all due to the presence or absence of substituents on core structure, evaluated by 3D-QSAR studies. This set of information could be used to design highly potent drug candidates for both wild and mutated form of viruses. PMID:23683267

  14. Secreted phospholipases A2, a new class of HIV inhibitors that block virus entry into host cells

    PubMed Central

    Fenard, David; Lambeau, Gérard; Valentin, Emmanuel; Lefebvre, Jean-Claude; Lazdunski, Michel; Doglio, Alain

    1999-01-01

    Mammalian and venom secreted phospholipases A2 (sPLA2s) have been associated with a variety of biological effects. Here we show that several sPLA2s protect human primary blood leukocytes from the replication of various macrophage and T cell–tropic HIV-1 strains. Inhibition by sPLA2s results neither from a virucidal effect nor from a cytotoxic effect on host cells, but it involves a more specific mechanism. sPLA2s have no effect on virus binding to cells nor on syncytia formation, but they prevent the intracellular release of the viral capsid protein, suggesting that sPLA2s block viral entry into cells before virion uncoating and independently of the coreceptor usage. Various inhibitors and catalytic products of sPLA2 have no effect on HIV-1 infection, suggesting that sPLA2 catalytic activity is not involved in the antiviral effect. Instead, the antiviral activity appears to involve a specific interaction of sPLA2s to host cells. Indeed, of 11 sPLA2s from venom and mammalian tissues assayed, 4 venom sPLA2s were found to be very potent HIV-1 inhibitors (ID50 < 1 nM) and also to bind specifically to host cells with high affinities (K0.5 < 1 nM). Although mammalian pancreatic group IB and inflammatory-type group IIA sPLA2s were inactive against HIV-1 replication, our results could be of physiological interest, as novel sPLA2s are being characterized in humans. PMID:10487775

  15. A Novel Assay for Screening Inhibitors Targeting HIV Integrase LEDGF/p75 Interaction Based on Ni2+ Coated Magnetic Agarose Beads

    PubMed Central

    Dawei, Zhang; Hongqiu, He; Mengmeng, Liu; Zhixia, Meng; Shunxing, Guo

    2016-01-01

    HIV-1 integrase (IN) plays an essential role in viral replication and thus serves as an important target for chemotherapeutic intervention against HIV-1 infection. However, the current three clinical IN inhibitors, raltegravir, elvitegravir and dolutegravir share the same inhibitory mechanism, resulting in a common clinical resistance profile which have emerged in infected patients receiving treatment. Therefore, it is important to develop small molecule inhibitors that impair IN function with distinct mechanisms of action. In this work, a magnetic-beads based biochemical assay targeting the protein-protein interaction (PPI) between HIV IN and the cellular cofactor LEDGF/p75 was developed for identification of HIV-1 IN inhibitors. Furthermore, a library containing 1000 US. Food and Drug Administration (FDA)-approved drugs currently used for human medication was screened to identify inhibitors targeting the PPI. The assay was proved to be quite robust and with the novel assay we successfully identified dexlansoprazole (IC50 of 4.8 μM), a FDA-approved proton pump inhibitor, as a potential inhibitor for the PPI between IN and LEDGF/p75, which bound to the LEDGF/p75 partner with a kinetic dissociation (Kd) constant of 330 nM ± 2.6 nM. PMID:27633629

  16. A Novel Assay for Screening Inhibitors Targeting HIV Integrase LEDGF/p75 Interaction Based on Ni(2+) Coated Magnetic Agarose Beads.

    PubMed

    Dawei, Zhang; Hongqiu, He; Mengmeng, Liu; Zhixia, Meng; Shunxing, Guo

    2016-01-01

    HIV-1 integrase (IN) plays an essential role in viral replication and thus serves as an important target for chemotherapeutic intervention against HIV-1 infection. However, the current three clinical IN inhibitors, raltegravir, elvitegravir and dolutegravir share the same inhibitory mechanism, resulting in a common clinical resistance profile which have emerged in infected patients receiving treatment. Therefore, it is important to develop small molecule inhibitors that impair IN function with distinct mechanisms of action. In this work, a magnetic-beads based biochemical assay targeting the protein-protein interaction (PPI) between HIV IN and the cellular cofactor LEDGF/p75 was developed for identification of HIV-1 IN inhibitors. Furthermore, a library containing 1000 US. Food and Drug Administration (FDA)-approved drugs currently used for human medication was screened to identify inhibitors targeting the PPI. The assay was proved to be quite robust and with the novel assay we successfully identified dexlansoprazole (IC50 of 4.8 μM), a FDA-approved proton pump inhibitor, as a potential inhibitor for the PPI between IN and LEDGF/p75, which bound to the LEDGF/p75 partner with a kinetic dissociation (Kd) constant of 330 nM ± 2.6 nM. PMID:27633629

  17. A Novel Assay for Screening Inhibitors Targeting HIV Integrase LEDGF/p75 Interaction Based on Ni(2+) Coated Magnetic Agarose Beads.

    PubMed

    Dawei, Zhang; Hongqiu, He; Mengmeng, Liu; Zhixia, Meng; Shunxing, Guo

    2016-09-16

    HIV-1 integrase (IN) plays an essential role in viral replication and thus serves as an important target for chemotherapeutic intervention against HIV-1 infection. However, the current three clinical IN inhibitors, raltegravir, elvitegravir and dolutegravir share the same inhibitory mechanism, resulting in a common clinical resistance profile which have emerged in infected patients receiving treatment. Therefore, it is important to develop small molecule inhibitors that impair IN function with distinct mechanisms of action. In this work, a magnetic-beads based biochemical assay targeting the protein-protein interaction (PPI) between HIV IN and the cellular cofactor LEDGF/p75 was developed for identification of HIV-1 IN inhibitors. Furthermore, a library containing 1000 US. Food and Drug Administration (FDA)-approved drugs currently used for human medication was screened to identify inhibitors targeting the PPI. The assay was proved to be quite robust and with the novel assay we successfully identified dexlansoprazole (IC50 of 4.8 μM), a FDA-approved proton pump inhibitor, as a potential inhibitor for the PPI between IN and LEDGF/p75, which bound to the LEDGF/p75 partner with a kinetic dissociation (Kd) constant of 330 nM ± 2.6 nM.

  18. Metal-dependent inhibition of HIV-1 integrase by 5CITEP inhibitor: A theoretical QM/MM approach

    NASA Astrophysics Data System (ADS)

    do Nascimento, Josenaide P.; Araújo Silva, José Rogério; Lameira, Jerônimo; Alves, Cláudio N.

    2013-09-01

    HIV-1 integrase (IN) is a potential target for developing drugs against AIDS. In this letter, QM/MM approach was used to study the inhibition of IN by 5CITEP inhibitor in presence of divalent cations (Mg2+ or Mn2+). In addition, the main interactions occurring in 5CITEP-IN complex and the influence of divalent cations (Mg2+ or Mn2+) in enzymatic inhibition were investigated using B3LYP/6-31+G(d,p)/MM. The results suggest that the Asp64, Asp116 and four crystal water molecules plays a crucial role in cation (Mg2+ or Mn2+) coordination sphere.

  19. Prevalence, mutation patterns, and effects on protease inhibitor susceptibility of the L76V mutation in HIV-1 protease.

    PubMed

    Young, Thomas P; Parkin, Neil T; Stawiski, Eric; Pilot-Matias, Tami; Trinh, Roger; Kempf, Dale J; Norton, Michael

    2010-11-01

    Patterns of HIV-1 protease inhibitor (PI) resistance-associated mutations (RAMs) and effects on PI susceptibility associated with the L76V mutation were studied in a large database. Of 20,501 sequences with ≥1 PI RAM, 3.2% contained L76V; L76V was alone in 0.04%. Common partner mutations included M46I, I54V, V82A, I84V, and L90M. L76V was associated with a 2- to 6-fold decrease in susceptibility to lopinavir, darunavir, amprenavir, and indinavir and a 7- to 8-fold increase in susceptibility to atazanavir and saquinavir. PMID:20805393

  20. Azaindole N-methyl hydroxamic acids as HIV-1 integrase inhibitors-II. The impact of physicochemical properties on ADME and PK.

    PubMed

    Tanis, Steven P; Plewe, Michael B; Johnson, Ted W; Butler, Scott L; Dalvie, Deepak; DeLisle, Dorothy; Dress, Klaus R; Hu, Qiyue; Huang, Buwen; Kuehler, Jon E; Kuki, Atsuo; Liu, Wen; Peng, Qinghai; Smith, Graham L; Solowiej, Jim; Tran, Khanh T; Wang, Hai; Yang, Anle; Yin, Chunfeng; Yu, Xiaoming; Zhang, Junhu; Zhu, Huichun

    2010-12-15

    HIV-1 integrase is one of three enzymes encoded by the HIV genome and is essential for viral replication, and HIV-1 IN inhibitors have emerged as a new promising class of therapeutics. Recently, we reported the discovery of azaindole hydroxamic acids that were potent inhibitors of the HIV-1 IN enzyme. N-Methyl hydroxamic acids were stable against oxidative metabolism, however were cleared rapidly through phase 2 glucuronidation pathways. We were able to introduce polar groups at the β-position of the azaindole core thereby altering physical properties by lowering calculated log D values (c Log D) which resulted in attenuated clearance rates in human hepatocytes. Pharmacokinetic data in dog for representative compounds demonstrated moderate oral bioavailability and reasonable half-lives. These ends were accomplished without a large negative impact on enzymatic and antiviral activity, thus suggesting opportunities to alter clearance parameters in future series.

  1. Clinical validation and applicability of different tipranavir/ritonavir genotypic scores in HIV-1 protease inhibitor-experienced patients.

    PubMed

    Saracino, Annalisa; Monno, Laura; Tartaglia, Alessandra; Tinelli, Carmine; Seminari, Elena; Maggiolo, Franco; Bonora, Stefano; Rusconi, Stefano; Micheli, Valeria; Lo Caputo, Sergio; Lazzaroni, Laura; Ferrara, Sergio; Ladisa, Nicoletta; Nasta, Paola; Parruti, Giustino; Bellagamba, Rita; Forbici, Federica; Angarano, Gioacchino

    2009-07-01

    Tipranavir, a non-peptidic protease inhibitor which shows in vitro efficacy against some HIV-1-resistant strains, can be used in salvage therapies for multi-experienced HIV patients due to its peculiar resistance profile including 21 mutations at 16 protease positions according to International AIDS Society (IAS). Other genotypic scores, however, which attribute a different weight to single amino-acid substitutions, have been recently proposed. To validate the clinical utility of four different genotypic scores for selecting tipranavir responders, the baseline resistance pattern of 176 HIV heavily experienced patients was correlated with virological success (HIV-RNA<50 copies/ml) after 24 weeks of a new treatment based on tipranavir/ritonavir. Virological suppression after 24 weeks was reached by 42.5% of patients. With univariate analysis, genotypic scores were all associated with outcome but showed a low accuracy with ROC analysis, with the weighted score (WS) by Scherer et al. demonstrating the best performance with an AUC of 68%. Only 52% of patients classified as susceptible (WS< or =3) responded to the new therapy. The following variables were significantly associated (p<0.05) to failure with multivariate analysis: WS, log peak of HIV-RNA, IAS mutations: L33F, I54AMV, Q58E, and non-IAS mutation: N37DES. On the contrary, the use of T20 in T20-naïve patients and the V82AFSI and F53LY non-IAS mutations were associated with virological success. The study suggests that even if the "weighted" scores are able to interpret correctly the antiretroviral resistance profile of multi-experienced patients, it is difficult to individuate a cut-off which can be easily applied to this population for discriminating responders.

  2. Antiviral Characteristics of GSK1265744, an HIV Integrase Inhibitor Dosed Orally or by Long-Acting Injection

    PubMed Central

    Kobayashi, Masanori; Seki, Takahiro; Miki, Shigeru; Wakasa-Morimoto, Chiaki; Suyama-Kagitani, Akemi; Kawauchi-Miki, Shinobu; Taishi, Teruhiko; Kawasuji, Takashi; Johns, Brian A.; Underwood, Mark R.; Garvey, Edward P.; Sato, Akihiko; Fujiwara, Tamio

    2014-01-01

    GSK1265744 is a new HIV integrase strand transfer inhibitor (INSTI) engineered to deliver efficient antiviral activity with a once-daily, low-milligram dose that does not require a pharmacokinetic booster. The in vitro antiviral profile and mechanism of action of GSK1265744 were established through integrase enzyme assays, resistance passage experiments, and cellular assays with site-directed molecular (SDM) HIV clones resistant to other classes of anti-HIV-1 agents and earlier INSTIs. GSK1265744 inhibited HIV replication with low or subnanomolar efficacy and with a selectivity index of at least 22,000 under the same culture conditions. The protein-adjusted half-maximal inhibitory concentration (PA-EC50) extrapolated to 100% human serum was 102 nM. When the virus was passaged in the presence of GSK1265744, highly resistant mutants with more than a 10-fold change (FC) in EC50 relative to that of the wild-type were not observed for up to 112 days of culture. GSK1265744 demonstrated activity against SDM clones containing the raltegravir (RAL)-resistant Y143R, Q148K, N155H, and G140S/Q148H signature variants (FC less than 6.1), while these mutants had a high FC in the EC50 for RAL (11 to >130). Either additive or synergistic effects were observed when GSK1265744 was tested in combination with representative anti-HIV agents, and no antagonistic effects were seen. These findings demonstrate that, similar to dolutegravir, GSK1265744 is differentiated as a new INSTI, having a markedly distinct resistance profile compared with earlier INSTIs, RAL, and elvitegravir (EVG). The collective data set supports further clinical development of GSK1265744. PMID:25367908

  3. Homology models of the HIV-1 attachment inhibitor BMS-626529 bound to gp120 suggest a unique mechanism of action

    PubMed Central

    Langley, David R; Roy Kimura, S; Sivaprakasam, Prasanna; Zhou, Nannan; Dicker, Ira; McAuliffe, Brian; Wang, Tao; Kadow, John F; Meanwell, Nicholas A; Krystal, Mark

    2015-01-01

    HIV-1 gp120 undergoes multiple conformational changes both before and after binding to the host CD4 receptor. BMS-626529 is an attachment inhibitor (AI) in clinical development (administered as prodrug BMS-663068) that binds to HIV-1 gp120. To investigate the mechanism of action of this new class of antiretroviral compounds, we constructed homology models of unliganded HIV-1 gp120 (UNLIG), a pre-CD4 binding-intermediate conformation (pCD4), a CD4 bound-intermediate conformation (bCD4), and a CD4/co-receptor-bound gp120 (LIG) from a series of partial structures. We also describe a simple pathway illustrating the transition between these four states. Guided by the positions of BMS-626529 resistance substitutions and structure–activity relationship data for the AI series, putative binding sites for BMS-626529 were identified, supported by biochemical and biophysical data. BMS-626529 was docked into the UNLIG model and molecular dynamics simulations were used to demonstrate the thermodynamic stability of the different gp120 UNLIG/BMS-626529 models. We propose that BMS-626529 binds to the UNLIG conformation of gp120 within the structurally conserved outer domain, under the antiparallel β20–β21 sheet, and adjacent to the CD4 binding loop. Through this binding mode, BMS-626529 can inhibit both CD4-induced and CD4-independent formation of the “open state” four-stranded gp120 bridging sheet, and the subsequent formation and exposure of the chemokine co-receptor binding site. This unique mechanism of action prevents the initial interaction of HIV-1 with the host CD4+ T cell, and subsequent HIV-1 binding and entry. Our findings clarify the novel mechanism of BMS-626529, supporting its ongoing clinical development. Proteins 2015; 83:331–350. © 2014 Wiley Periodicals, Inc. PMID:25401969

  4. The root extract of the medicinal plant Pelargonium sidoides is a potent HIV-1 attachment inhibitor.

    PubMed

    Helfer, Markus; Koppensteiner, Herwig; Schneider, Martha; Rebensburg, Stephanie; Forcisi, Sara; Müller, Constanze; Schmitt-Kopplin, Philippe; Schindler, Michael; Brack-Werner, Ruth

    2014-01-01

    Global HIV-1 treatment would benefit greatly from safe herbal medicines with scientifically validated novel anti-HIV-1 activities. The root extract from the medicinal plant Pelargonium sidoides (PS) is licensed in Germany as the herbal medicine EPs®7630, with numerous clinical trials supporting its safety in humans. Here we provide evidence from multiple cell culture experiments that PS extract displays potent anti-HIV-1 activity. We show that PS extract protects peripheral blood mononuclear cells and macrophages from infection with various X4 and R5 tropic HIV-1 strains, including clinical isolates. Functional studies revealed that the extract from PS has a novel mode-of-action. It interferes directly with viral infectivity and blocks the attachment of HIV-1 particles to target cells, protecting them from virus entry. Analysis of the chemical footprint of anti-HIV activity indicates that HIV-1 inhibition is mediated by multiple polyphenolic compounds with low cytotoxicity and can be separated from other extract components with higher cytotoxicity. Based on our data and its excellent safety profile, we propose that PS extract represents a lead candidate for the development of a scientifically validated herbal medicine for anti-HIV-1 therapy with a mode-of-action different from and complementary to current single-molecule drugs.

  5. The root extract of the medicinal plant Pelargonium sidoides is a potent HIV-1 attachment inhibitor.

    PubMed

    Helfer, Markus; Koppensteiner, Herwig; Schneider, Martha; Rebensburg, Stephanie; Forcisi, Sara; Müller, Constanze; Schmitt-Kopplin, Philippe; Schindler, Michael; Brack-Werner, Ruth

    2014-01-01

    Global HIV-1 treatment would benefit greatly from safe herbal medicines with scientifically validated novel anti-HIV-1 activities. The root extract from the medicinal plant Pelargonium sidoides (PS) is licensed in Germany as the herbal medicine EPs®7630, with numerous clinical trials supporting its safety in humans. Here we provide evidence from multiple cell culture experiments that PS extract displays potent anti-HIV-1 activity. We show that PS extract protects peripheral blood mononuclear cells and macrophages from infection with various X4 and R5 tropic HIV-1 strains, including clinical isolates. Functional studies revealed that the extract from PS has a novel mode-of-action. It interferes directly with viral infectivity and blocks the attachment of HIV-1 particles to target cells, protecting them from virus entry. Analysis of the chemical footprint of anti-HIV activity indicates that HIV-1 inhibition is mediated by multiple polyphenolic compounds with low cytotoxicity and can be separated from other extract components with higher cytotoxicity. Based on our data and its excellent safety profile, we propose that PS extract represents a lead candidate for the development of a scientifically validated herbal medicine for anti-HIV-1 therapy with a mode-of-action different from and complementary to current single-molecule drugs. PMID:24489923

  6. The Root Extract of the Medicinal Plant Pelargonium sidoides Is a Potent HIV-1 Attachment Inhibitor

    PubMed Central

    Helfer, Markus; Koppensteiner, Herwig; Schneider, Martha; Rebensburg, Stephanie; Forcisi, Sara; Müller, Constanze; Schmitt-Kopplin, Philippe; Schindler, Michael; Brack-Werner, Ruth

    2014-01-01

    Global HIV-1 treatment would benefit greatly from safe herbal medicines with scientifically validated novel anti-HIV-1 activities. The root extract from the medicinal plant Pelargonium sidoides (PS) is licensed in Germany as the herbal medicine EPs®7630, with numerous clinical trials supporting its safety in humans. Here we provide evidence from multiple cell culture experiments that PS extract displays potent anti-HIV-1 activity. We show that PS extract protects peripheral blood mononuclear cells and macrophages from infection with various X4 and R5 tropic HIV-1 strains, including clinical isolates. Functional studies revealed that the extract from PS has a novel mode-of-action. It interferes directly with viral infectivity and blocks the attachment of HIV-1 particles to target cells, protecting them from virus entry. Analysis of the chemical footprint of anti-HIV activity indicates that HIV-1 inhibition is mediated by multiple polyphenolic compounds with low cytotoxicity and can be separated from other extract components with higher cytotoxicity. Based on our data and its excellent safety profile, we propose that PS extract represents a lead candidate for the development of a scientifically validated herbal medicine for anti-HIV-1 therapy with a mode-of-action different from and complementary to current single-molecule drugs. PMID:24489923

  7. Highly Potent HIV-1 Protease Inhibitors with Novel Tricyclic P2 Ligands: Design, Synthesis, and Protein-Ligand X-ray Studies

    SciTech Connect

    Ghosh, Arun K.; Parham, Garth L.; Martyr, Cuthbert D.; Nyalapatla, Prasanth R.; Osswald, Heather L.; Agniswamy, Johnson; Wang, Yuan-Fang; Amano, Masayuki; Weber, Irene T.; Mitsuya, Hiroaki

    2013-10-08

    The design, synthesis, and biological evaluation of a series of HIV-1 protease inhibitors incorporating stereochemically defined fused tricyclic P2 ligands are described. Various substituent effects were investigated to maximize the ligand-binding site interactions in the protease active site. Inhibitors 16a and 16f showed excellent enzyme inhibitory and antiviral activity, although the incorporation of sulfone functionality resulted in a decrease in potency. Both inhibitors 16a and 16f maintained activity against a panel of multidrug resistant HIV-1 variants. A high-resolution X-ray crystal structure of 16a-bound HIV-1 protease revealed important molecular insights into the ligand-binding site interactions, which may account for the inhibitor’s potent antiviral activity and excellent resistance profiles.

  8. Synthesis and structure-activity relationships of a series of penicillin-derived HIV proteinase inhibitors containing a stereochemically unique peptide isostere.

    PubMed

    Holmes, D S; Bethell, R C; Cammack, N; Clemens, I R; Kitchin, J; McMeekin, P; Mo, C L; Orr, D C; Patel, B; Paternoster, I L

    1993-10-15

    A series of HIV-1 proteinase inhibitors was synthesized based upon a single penicillin derived thiazolidine moiety. Reaction of the C-4 carboxyl group with (R)-phenylalaninol gave amide 10 which was a moderately potent inhibitor of HIV-1 proteinase (IC50 = 0.15 microM). Further modifications based on molecular modeling studies led to compound 48 which contained a stereochemically unique statine-based isostere. This was a potent competitive inhibitor (Ki = 0.25 nM) with antiviral activity against HIV-1 in vitro (5 microM). Neither modification to the benzyl group in an attempt to improve interaction with the S2' pocket, nor introduction of a hydrogen bond donating group to interact with residue Gly48' resulted in improved inhibitory or antiviral activity. PMID:8230099

  9. 4,5-dihydroxypyrimidine carboxamides and N-alkyl-5-hydroxypyrimidinone carboxamides are potent, selective HIV integrase inhibitors with good pharmacokinetic profiles in preclinical species.

    PubMed

    Summa, Vincenzo; Petrocchi, Alessia; Matassa, Victor G; Gardelli, Cristina; Muraglia, Ester; Rowley, Michael; Paz, Odalys Gonzalez; Laufer, Ralph; Monteagudo, Edith; Pace, Paola

    2006-11-16

    The dihydroxypyrimidine carboxamide 4a was discovered as a potent and selective HIV integrase strand transfer inhibitor. The optimization of physicochemical properties, pharmacokinetic profiles, and potency led to the identification of 13 in the dihydroxypyrimidine series and 18 in the N-methylpyrimidinone series having low nanomolar activity in the cellular HIV spread assay in the presence of 50% normal human serum and very good pharmacokinetics in preclinical species.

  10. Trypsin-like serine peptidase profiles in the egg, larval, and pupal stages of Aedes albopictus

    PubMed Central

    2013-01-01

    Background Aedes albopictus, a ubiquitous mosquito, is one of the main vectors of dengue and yellow fever, representing an important threat to public health worldwide. Peptidases play key roles in processes such as digestion, oogenesis, and metamorphosis of insects. However, most of the information on the proteolytic enzymes of mosquitoes is derived from insects in the adult stages and is often directed towards the understanding of blood digestion. The aim of this study was to investigate the expression of active peptidases from the preimaginal stages of Ae. albopictus. Methods Ae. albopictus eggs, larvae, and pupae were analyzed using zymography with susbtrate-SDS-PAGE. The pH, temperature and peptidase inhibitor sensitivity was evaluated. In addition, the proteolytic activities of larval instars were assayed using the fluorogenic substrate Z-Phe-Arg-AMC. Results The proteolytic profile of the larval stage was composed of 8 bands ranging from 17 to 130 kDa. These enzymes displayed activity in a broad range of pH values, from 5.5 to 10.0. The enzymatic profile of the eggs was similar to that of the larvae, although the proteolytic bands of the eggs showed lower intensities. The pupal stage showed a complex proteolytic pattern, with at least 6 bands with apparent molecular masses ranging from 30 to 150 kDa and optimal activity at pH 7.5. Peptidases from larval instars were active from 10°C to 60°C, with optimal activity at temperatures between 37°C and 50°C. The proteolytic profile of both the larval and pupal stages was inhibited by phenyl-methyl sulfonyl-fluoride (PMSF) and Nα-Tosyl L-lysine chloromethyl ketone hydrochloride (TLCK), indicating that the main peptidases expressed during these developmental stages are trypsin-like serine peptidases. Conclusion The preimaginal stages of Ae. albopictus exhibited a complex profile of trypsin-like serine peptidase activities. A comparative analysis of the active peptidase profiles revealed differential expression

  11. INTERACTIONS OF DIFFERENT INHIBITORS WITH ACTIVE-SITE ASPARTYL RESIDUES OF HIV-1 PROTEASE AND POSSIBLE RELEVANCE TO PEPSINS

    PubMed Central

    Sayer, Jane M.; Louis, John M.

    2008-01-01

    The importance of the active site region aspartyl residues 25 and 29 of the mature HIV-1 protease (PR) for the binding of five clinical and three experimental protease inhibitors (symmetric cyclic urea inhibitor DMP323, non-hydrolysable substrate analog (RPB) and the generic aspartic protease inhibitor acetyl-pepstatin (Ac-PEP)) was assessed by differential scanning calorimetry. ΔTm values, defined as the difference in Tm for a given protein in the presence and absence of inhibitor, for PR with DRV, ATV, SQV, RTV, APV, DMP323, RPB and Ac-PEP are 22.4, 20.8, 19.3, 15.6, 14.3, 14.7, 8.7, and 6.5 °C, respectively. Binding of APV and Ac-PEP is most sensitive to the D25N mutation, as shown by ΔTm ratios [ΔTm(PR)/ΔTm(PRD25N)] of 35.8 and 16.3, respectively, whereas binding of DMP323 and RPB (ΔTm ratios of 1-2) is least affected. Binding of the substrate-like inhibitors RPB and Ac-PEP is nearly abolished (ΔTm(PR)/ΔTm(PRD29N) ≥ 44) by the D29N mutation, whereas this mutation only moderately affects binding of the smaller inhibitors (ΔTm ratios of 1.4-2.2). Of the 9 FDA approved clinical HIV-1 protease inhibitors screened, APV, RTV and DRV competitively inhibit porcine pepsin with Ki values of 0.3, 0.6 and 2.14 μM, respectively. DSC results were consistent with this relatively weak binding of APV (ΔTm 2.7 °C) compared with the tight binding of AcPEP (ΔTm ≥17 °C). Comparison of superimposed structures of the PR/APV complex with those of PR/Ac-PEP and pepsin/pepstatin A complexes suggests a role for Asp215, Asp32 and Ser219 in pepsin, equivalent to Asp25, Asp25′ and Asp29 in PR, in the binding and stabilization of the pepsin/APV complex. PMID:18951411

  12. N-(4-Fluorobenzyl)-3-hydroxy-9,9-dimethyl-4-oxo-6,7,8,9-tetrahydro-4H-pyrazino[1,2-a]pyrimidine-2-carboxamides a novel class of potent HIV-1 integrase inhibitors.

    PubMed

    Petrocchi, Alessia; Jones, Philip; Rowley, Michael; Fiore, Fabrizio; Summa, Vincenzo

    2009-08-01

    A novel class of tetrahydro-pyrazinopyrimidine-2-carboxamides have been identified as HIV-1 integrase inhibitors. Optimization of the initial lead culminated in the discovery of a series of compounds with high potency on the enzyme and an antiviral cell-based activity equivalent to that showed by Raltegravir, the first in class HIV-1 integrase inhibitor.

  13. High-throughput screening using pseudotyped lentiviral particles: a strategy for the identification of HIV-1 inhibitors in a cell-based assay.

    PubMed

    Garcia, Jean-Michel; Gao, Anhui; He, Pei-Lan; Choi, Joyce; Tang, Wei; Bruzzone, Roberto; Schwartz, Olivier; Naya, Hugo; Nan, Fa-Jun; Li, Jia; Altmeyer, Ralf; Zuo, Jian-Ping

    2009-03-01

    Two decades after its discovery the human immunodeficiency virus (HIV) is still spreading worldwide and killing millions. There are 25 drugs formally approved for HIV currently on the market, but side effects as well as the emergence of HIV strains showing single or multiple resistances to current drug-therapy are causes for concern. Furthermore, these drugs target only 4 steps of the viral cycle, hence the urgent need for new drugs and also new targets. In order to tackle this problem, we have devised a cell-based assay using lentiviral particles to look for post-entry inhibitors of HIV-1. We report here the assay development, validation as well as confirmation of the hits using both wild-type and drug-resistant HIV-1 viruses. The screening was performed on an original library, rich in natural compounds and pure molecules from Traditional Chinese Medicine pharmacopoeia, which had never been screened for anti-HIV activity. The identified hits belong to four chemical sub-families that appear to be all non-nucleoside reverse transcriptase inhibitors (NNRTIs). Secondary tests with live viruses showed that there was good agreement with pseudotyped particles, confirming the validity of this approach for high-throughput drug screens. This assay will be a useful tool that can be easily adapted to screen for inhibitors of viral entry.

  14. Exceptionally Potent and Broadly Cross-Reactive, Bispecific Multivalent HIV-1 Inhibitors Based on Single Human CD4 and Antibody Domains

    PubMed Central

    Feng, Yang; Prabakaran, Ponraj; Ying, Tianlei; Wang, Yanping; Sun, Jianping; Macedo, Camila D. S.; Zhu, Zhongyu; He, Yuxian; Polonis, Victoria R.

    2014-01-01

    Soluble forms of the human immunodeficiency virus type 1 (HIV-1) primary receptor CD4 (soluble CD4 [sCD4]) have been extensively characterized for a quarter of a century as promising HIV-1 inhibitors, but they have not been clinically successful. By combining a protein cavity-filling strategy and the power of library technology, we identified an engineered cavity-altered single-domain sCD4 (mD1.22) with a unique combination of excellent properties, including broad and potent neutralizing activity, high specificity, stability, solubility, and affinity for the HIV-1 envelope glycoprotein gp120, and small molecular size. To further improve its neutralizing potency and breadth, we generated bispecific multivalent fusion proteins of mD1.22 with another potent HIV-1 inhibitor, an antibody domain (m36.4) that targets the coreceptor-binding site on gp120. The fusion proteins neutralized all HIV-1 isolates tested, with potencies about 10-, 50-, and 200-fold higher than those of the broadly neutralizing antibody VRC01, the U.S. FDA-approved peptide inhibitor T20, and the clinically tested sCD4-Fc fusion protein CD4-Ig, respectively. In addition, they exhibited higher stability and specificity and a lower aggregation propensity than CD4-Ig. Therefore, mD1.22 and related fusion proteins could be useful for HIV-1 prevention and therapy, including eradication of the virus. PMID:24198429

  15. An amphiphilic conjugate approach toward the design and synthesis of betulinic acid-polyphenol conjugates as inhibitors of the HIV-1 gp41 fusion core formation.

    PubMed

    Liu, Yan; Ke, Zhuofeng; Wu, Kwok Yiu; Liu, Shuwen; Chen, Wen-Hua; Jiang, Shibo; Jiang, Zhi-Hong

    2011-09-01

    Exploration of potent inhibitors of the HIV-1 gp41 fusion core formation is a promising strategy to discover small-molecule HIV-1 entry inhibitors for the treatment of HIV-1 infection. In this paper, a series of novel betulinic acid-polyphenol conjugates was designed, guided by molecular modeling of the binding of betulinic acid (BA) and phenolic galloyl/caffeoyl groups in the groove on the gp41 N-terminal heptad repeat (NHR) trimeric coiled coil. These conjugates were synthesized via conjugation of galloyl and caffeoyl groups with BA at the C-28 position. Their inhibitory activities of HIV gp41 six-helix bundle (6-HB) formation between the NHR peptide N36 and the C-terminal heptad repeat (CHR) peptide C34 were evaluated with size-exclusion HPLC. Conjugates bearing a galloyl group were found to exhibit four to sixfold higher inhibitory activities than that of parent compound BA, suggesting that they may be exploitable as HIV-1 fusion/entry inhibitors targeting gp41. The docking study on BA and its derivatives suggests that hydrophobic and hydrogen-bonding pockets exist in the groove of the gp41 NHR trimeric coiled coil and that a potent inhibitor should have amphiphilic structures to cooperatively interact with both pockets. This possibility was explored by incorporating both lipophilic and hydrophilic groups into the conjugates in a well-defined orientation to bind with both pockets in the gp41 NHR-trimer.

  16. Rational improvement of gp41-targeting HIV-1 fusion inhibitors: an innovatively designed Ile-Asp-Leu tail with alternative conformations

    PubMed Central

    Zhu, Yun; Su, Shan; Qin, Lili; Wang, Qian; Shi, Lei; Ma, Zhenxuan; Tang, Jianchao; Jiang, Shibo; Lu, Lu; Ye, Sheng; Zhang, Rongguang

    2016-01-01

    Peptides derived from the C-terminal heptad repeat (CHR) of HIV gp41 have been developed as effective fusion inhibitors against HIV-1, but facing the challenges of enhancing potency and stability. Here, we report a rationally designed novel HIV-1 fusion inhibitor derived from CHR-derived peptide (Trp628~Gln653, named CP), but with an innovative Ile-Asp-Leu tail (IDL) that dramatically increased the inhibitory activity by up to 100 folds. We also determined the crystal structures of artificial fusion peptides N36- and N43-L6-CP-IDL. Although the overall structures of both fusion peptides share the canonical six-helix bundle (6-HB) configuration, their IDL tails adopt two different conformations: a one-turn helix with the N36, and a hook-like structure with the longer N43. Structural comparison showed that the hook-like IDL tail possesses a larger interaction interface with NHR than the helical one. Further molecular dynamics simulations of the two 6-HBs and isolated CP-IDL peptides suggested that hook-like form of IDL tail can be stabilized by its binding to NHR trimer. Therefore, CP-IDL has potential for further development as a new HIV fusion inhibitor, and this strategy could be widely used in developing artificial fusion inhibitors against HIV and other enveloped viruses. PMID:27666394

  17. Dipeptidyl peptidase 4 – an important digestive peptidase in Tenebrio molitor larvae

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Dipeptidyl peptidase 4 (DPP 4) is a proline specific serine peptidase that plays an important role in different regulatory processes in mammals. In this report, we isolated and characterized a unique secreted digestive DPP 4 from the anterior midgut of a stored product pest, Tenebrio molitor larvae ...

  18. Types of HIV/AIDS Antiretroviral Drugs

    MedlinePlus

    ... reverse transcriptase (RT) from converting single-stranded HIV RNA into double-stranded HIV DNA―a process called ... RT, interfering with its ability to convert HIV RNA into HIV DNA Integrase Inhibitors block the HIV ...

  19. Treatment of human immunodeficiency virus type 1 (HIV-1)-infected cells with combinations of HIV-1-specific inhibitors results in a different resistance pattern than does treatment with single-drug therapy.

    PubMed Central

    Balzarini, J; Karlsson, A; Pérez-Pérez, M J; Camarasa, M J; Tarpley, W G; De Clercq, E

    1993-01-01

    Human immunodeficiency virus type 1 (HIV-1)-infected CEM cells were treated by the HIV-1-specific inhibitors bis-heteroarylpiperazine (BHAP), 4,5,6,7-tetrahydro-5-methylimidazo[4,5,1-jk][1,4]benzodiazepin-2(1 H)-on e (TIBO) R82913, nevirapine, and the N3-methylthymine derivative of [2',5'-bis-O-(tert-butyldimethylsilyl)-beta-D-ribofuranosyl]-3'-spiro- 5''-(4''-amino-1'',2''-oxathiole-2'',2''-dioxide) (TSAO-m3T), as single agents or in combination, at escalating concentrations. When used individually, the compounds led to the emergence of drug-resistant virus strains within two to five subcultivations. The resulting strains were designated HIV-1/BHAP, HIV-1/TIBO, HIV-1/Nev, and HIV-1/TSAO-m3T, respectively. The mutant viruses showed the following amino acid substitutions in their reverse transcriptase (RT): Leu-100-->Ile for HIV-1/BHAP; Lys-103-->Asn for HIV-1/TIBO; Val-106-->Ala for HIV-1/Nev; and Glu-138-->Lys for HIV-1/TSAO-m3T. Both the Tyr-181-->Cys and Val-106-->Ala mutations were found in another mutant emerging following treatment with nevirapine at escalating concentrations. The BHAP-resistant virus remained fully sensitive to the inhibitory effects of nevirapine and TSAO-m3T, whereas the TSAO-m3T-resistant virus remained fully sensitive to the inhibitory effects of nevirapine and BHAP. When different pairs of nonnucleoside RT inhibitors (i.e., BHAP plus TSAO-m3T, nevirapine plus TSAO-m3T, TIBO plus TSAO-m3T, nevirapine plus TIBO, and BHAP plus nevirapine) were used, resistant virus emerged as fast as with single-drug therapy. In all cases the Tyr-181-->Cys mutation appeared; the virus showed markedly reduced sensitivity to all HIV-1-specific inhibitors but retained sensitivity to 2',3'-dideoxynucleoside analogs such as zidovudine, ddC, and ddI. Our findings argue against simultaneous combination of two different nonnucleoside RT inhibitors that are unable to inhibit HIV-1 mutant strains containing the Tyr-181-->Cys mutation when administered as single

  20. Conformation of inhibitor-free HIV-1 protease derived from NMR spectroscopy in a weakly oriented solution

    PubMed Central

    Roche, Julien; Louis, John M.; Bax, Ad

    2014-01-01

    Flexibility of the glycine-rich flaps is known to be essential for catalytic activity of the HIV-1 protease, but their exact conformations at the different stages of the enzymatic pathway remain subject to much debate. While hundreds of crystal structures of protease-inhibitor complexes have been solved, only about a dozen inhibitor-free protease structures have been reported. These apo-structures reveal a large diversity of flap conformations, ranging from closed, to semi-open and wide-open. To evaluate the average structure in solution, we measured residual dipolar couplings (RDCs) and compared these to values calculated for crystal structures representative of the closed, semi-open and wide-open states. The RDC data clearly indicate that the inhibitor-free protease, on average, adopts a closed conformation in solution that is very similar to the inhibitor-bound state. By contrast, a highly drug-resistant protease mutant, PR20, adopts the wide-open flap conformation. PMID:25470009

  1. Crystal structure of chemically synthesized HIV-1 protease and a ketomethylene isostere inhibitor based on the p2/NC cleavage site

    SciTech Connect

    Torbeev, Vladimir Yu.; Mandal, Kalyaneswar; Terechko, Valentina A.; Kent, Stephen B.H.

    2009-09-02

    Here we report the X-ray structures of chemically synthesized HIV-1 protease and the inactive [D25N]HIV-1 protease complexed with the ketomethylene isostere inhibitor Ac-Thr-Ile-Nle{psi}[CO-CH{sub 2}]Nle-Gln-Arg.amide at 1.4 and 1.8 {angstrom} resolution, respectively. In complex with the active enzyme, the keto-group was found to be converted into the hydrated gem-diol, while the structure of the complex with the inactive D25N enzyme revealed an intact keto-group. These data support the general acid-general base mechanism for HIV-1 protease catalysis.

  2. Free energy component analysis for drug design: a case study of HIV-1 protease-inhibitor binding.

    PubMed

    Kalra, P; Reddy, T V; Jayaram, B

    2001-12-01

    A theoretically rigorous and computationally tractable methodology for the prediction of the free energies of binding of protein-ligand complexes is presented. The method formulated involves developing molecular dynamics trajectories of the enzyme, the inhibitor, and the complex, followed by a free energy component analysis that conveys information on the physicochemical forces driving the protein-ligand complex formation and enables an elucidation of drug design principles for a given receptor from a thermodynamic perspective. The complexes of HIV-1 protease with two peptidomimetic inhibitors were taken as illustrative cases. Four-nanosecond-level all-atom molecular dynamics simulations using explicit solvent without any restraints were carried out on the protease-inhibitor complexes and the free proteases, and the trajectories were analyzed via a thermodynamic cycle to calculate the binding free energies. The computed free energies were seen to be in good accord with the reported data. It was noted that the net van der Waals and hydrophobic contributions were favorable to binding while the net electrostatics, entropies, and adaptation expense were unfavorable in these protease-inhibitor complexes. The hydrogen bond between the CH2OH group of the inhibitor at the scissile position and the catalytic aspartate was found to be favorable to binding. Various implicit solvent models were also considered and their shortcomings discussed. In addition, some plausible modifications to the inhibitor residues were attempted, which led to better binding affinities. The generality of the method and the transferability of the protocol with essentially no changes to any other protein-ligand system are emphasized.

  3. Association between HIV in pregnancy and antiretroviral therapy, including protease inhibitors and low birth weight infants.

    PubMed Central

    Goldstein, P J; Smit, R; Stevens, M; Sever, J L

    2000-01-01

    OBJECTIVE: To determine the incidence of low birth weight infants born to HIV seropositive women and to demonstrate any effects of antiretroviral therapy on birth weight. METHODS: Retrospective review of all obstetrical medical records from January 1, 1995 through June 30, 1998 to identify HIV seropositive women. We evaluated their antiretroviral therapy, CD4 counts, and birth weights of their newborns. We conducted detailed review of the clinical and laboratory findings for the HIV-infected untreated patients, women who received ZDV antepartum alone, and those who received PIs as part of antiretroviral treatment. RESULTS: The frequency of low birth weight infants was significantly increased in HIV seropositive compared to HIV seronegative parturients. Low birth weight infants were more frequent among HIV infected women with lower CD4 counts but the association was not statistically significant. Women who received no antepartum treatment, antepartum only ZDV, and those treated with PIs had significantly more low birth weight infants than did comparison groups. HIV seropositive women also had high frequencies of several obstetrical risk factors for low birth weight infants. CONCLUSION: The present study showed a significantly increased frequency of low birth weight infants among HIV infected women and especially the subgroups of infected women who received no antepartum treatment, antepartum ZDV only, and those treated with PIs. This association, however, may be related to the presence of many other preterm obstetrical risk factors noted in this study. Increasing numbers of HIV seropositive women are being treated with PIs according to the Centers for Disease Control (CDC) guidelines. If PIs are a cause of low birth weight infants, women taking these drugs may have incremental risk of low birth weight. PMID:10805364

  4. Expression patterns of cysteine peptidase genes across the Tribolium castaneum life cycle provide clues to biological function.

    PubMed

    Perkin, Lindsey; Elpidina, Elena N; Oppert, Brenda

    2016-01-01

    The red flour beetle, Tribolium castaneum, is a major agricultural pest responsible for considerable loss of stored grain and cereal products worldwide. T. castaneum larvae have a highly compartmentalized gut, with cysteine peptidases mostly in the acidic anterior part of the midgut that are critical to the early stages of food digestion. In previous studies, we described 26 putative cysteine peptidase genes in T. castaneum (types B, L, O, F, and K) located mostly on chromosomes 3, 7, 8, and 10. In the present study, we hypothesized that specific cysteine peptidase genes could be associated with digestive functions for food processing based on comparison of gene expression profiles in different developmental stages, feeding and non-feeding. RNA-Seq was used to determine the relative expression of cysteine peptidase genes among four major developmental stages (egg, larvae, pupae, and adult) of T. castaneum. We also compared cysteine peptidase genes in T. castaneum to those in other model insects and coleopteran pests. By combining transcriptome expression, phylogenetic comparisons, response to dietary inhibitors, and other existing data, we identified key cysteine peptidases that T. castaneum larvae and adults use for food digestion, and thus new potential targets for biologically-based control products.

  5. Expression patterns of cysteine peptidase genes across the Tribolium castaneum life cycle provide clues to biological function

    PubMed Central

    Elpidina, Elena N.; Oppert, Brenda

    2016-01-01

    The red flour beetle, Tribolium castaneum, is a major agricultural pest responsible for considerable loss of stored grain and cereal products worldwide. T. castaneum larvae have a highly compartmentalized gut, with cysteine peptidases mostly in the acidic anterior part of the midgut that are critical to the early stages of food digestion. In previous studies, we described 26 putative cysteine peptidase genes in T. castaneum (types B, L, O, F, and K) located mostly on chromosomes 3, 7, 8, and 10. In the present study, we hypothesized that specific cysteine peptidase genes could be associated with digestive functions for food processing based on comparison of gene expression profiles in different developmental stages, feeding and non-feeding. RNA-Seq was used to determine the relative expression of cysteine peptidase genes among four major developmental stages (egg, larvae, pupae, and adult) of T. castaneum. We also compared cysteine peptidase genes in T. castaneum to those in other model insects and coleopteran pests. By combining transcriptome expression, phylogenetic comparisons, response to dietary inhibitors, and other existing data, we identified key cysteine peptidases that T. castaneum larvae and adults use for food digestion, and thus new potential targets for biologically-based control products. PMID:26819843

  6. Design, Synthesis, and X-ray Structure of Substituted Bis-tetrahydrofuran (Bis-THF)-Derived Potent HIV-1 Protease Inhibitors

    SciTech Connect

    Ghosh, Arun K.; Martyr, Cuthbert D.; Steffey, Melinda; Wang, Yuan-Fang; Agniswamy, Johnson; Amano, Masayuki; Weber, Irene T.; Mitsuya, Hiroaki

    2012-06-18

    We investigated substituted bis-THF-derived HIV-1 protease inhibitors in order to enhance ligand-binding site interactions in the HIV-1 protease active site. In this context, we have carried out convenient syntheses of optically active bis-THF and C4-substituted bis-THF ligands using a [2,3]-sigmatropic rearrangement as the key step. The synthesis provided convenient access to a number of substituted bis-THF derivatives. Incorporation of these ligands led to a series of potent HIV-1 protease inhibitors. Inhibitor 23c turned out to be the most potent (K{sub i} = 2.9 pM; IC{sub 50} = 2.4 nM) among the inhibitors. An X-ray structure of 23c-bound HIV-1 protease showed extensive interactions of the inhibitor with the protease active site, including a unique water-mediated hydrogen bond to the Gly-48 amide NH in the S2 site.

  7. Histone deacetylase inhibitor romidepsin induces HIV expression in CD4 T cells from patients on suppressive antiretroviral therapy at concentrations achieved by clinical dosing.

    PubMed

    Wei, Datsen George; Chiang, Vicki; Fyne, Elizabeth; Balakrishnan, Mini; Barnes, Tiffany; Graupe, Michael; Hesselgesser, Joseph; Irrinki, Alivelu; Murry, Jeffrey P; Stepan, George; Stray, Kirsten M; Tsai, Angela; Yu, Helen; Spindler, Jonathan; Kearney, Mary; Spina, Celsa A; McMahon, Deborah; Lalezari, Jacob; Sloan, Derek; Mellors, John; Geleziunas, Romas; Cihlar, Tomas

    2014-04-01

    Persistent latent reservoir of replication-competent proviruses in memory CD4 T cells is a major obstacle to curing HIV infection. Pharmacological activation of HIV expression in latently infected cells is being explored as one of the strategies to deplete the latent HIV reservoir. In this study, we characterized the ability of romidepsin (RMD), a histone deacetylase inhibitor approved for the treatment of T-cell lymphomas, to activate the expression of latent HIV. In an in vitro T-cell model of HIV latency, RMD was the most potent inducer of HIV (EC50 = 4.5 nM) compared with vorinostat (VOR; EC50 = 3,950 nM) and other histone deacetylase (HDAC) inhibitors in clinical development including panobinostat (PNB; EC50 = 10 nM). The HIV induction potencies of RMD, VOR, and PNB paralleled their inhibitory activities against multiple human HDAC isoenzymes. In both resting and memory CD4 T cells isolated from HIV-infected patients on suppressive combination antiretroviral therapy (cART), a 4-hour exposure to 40 nM RMD induced a mean 6-fold increase in intracellular HIV RNA levels, whereas a 24-hour treatment with 1 µM VOR resulted in 2- to 3-fold increases. RMD-induced intracellular HIV RNA expression persisted for 48 hours and correlated with sustained inhibition of cell-associated HDAC activity. By comparison, the induction of HIV RNA by VOR and PNB was transient and diminished after 24 hours. RMD also increased levels of extracellular HIV RNA and virions from both memory and resting CD4 T-cell cultures. The activation of HIV expression was observed at RMD concentrations below the drug plasma levels achieved by doses used in patients treated for T-cell lymphomas. In conclusion, RMD induces HIV expression ex vivo at concentrations that can be achieved clinically, indicating that the drug may reactivate latent HIV in patients on suppressive cART.

  8. [d4U]-spacer-[HI-236] double-drug inhibitors of HIV-1 reverse-transcriptase

    PubMed Central

    Younis, Yassir; Hunter, Roger; Muhanji, Clare I; Hale, Ian; Singh, Rajinder; Bailey, Christopher M.; Sullivan, Todd S.; Anderson, Karen S.

    2010-01-01

    Four double-drug HIV NRTI / NNRTI inhibitors 15a-d of the type [d4U]-spacer-[HI-236] in which the spacer is varied as 1-butynyl (15a), propargyl-1-PEG (15b), propargyl-2-PEG (15c) and propargyl-4-PEG (15d) have been synthesized and biologically evaluated as RT inhibitors against HIV-1. The key step in their synthesis involved a Sonogashira coupling of 5-iodo d4U's benzoate with an alkynylated tethered HI-236 precursor followed by introduction of the HI-236 thiourea functionality. Biological evaluation in both cell-culture (MT-2 cells) as well as using an in vitro RT assay revealed 15a-c to be all more active than d4T. However, overall the results indicate the derivatives are acting as chain-extended NNRTIs in which for 15b-d the nucleoside component is likely situated outside of the pocket but with no evidence for any synergistic double binding between the NRTI and NNRTI sites. This is attributed, in part, to the lack of phosphorylation of the nucleoside component of the double drug as a result of kinase recognition failure, which is not improved upon with the phosphoramidate of 15d incorporating a 4-PEG spacer. PMID:20605472

  9. Effect of template secondary structure on the inhibition of HIV-1 reverse transcriptase by a pyridinone non-nucleoside inhibitor.

    PubMed Central

    Olsen, D B; Carroll, S S; Culberson, J C; Shafer, J A; Kuo, L C

    1994-01-01

    The importance of RNA secondary structure on HIV-1 reverse transcriptase catalyzed polymerization and on the potency of the pyridin-2-one inhibitor 3-(4,7-dichlorobenzoxazol-2-ylmethylamino)-5-ethyl-6-meth ylpyridin-2(1H)-one, L-697,661, were investigated by employing heteromeric primer-template systems. Our data revealed that a stem-loop hairpin secondary structure in the RNA template could lead to strong hindrance of reverse transcription in the reaction catalyzed by HIV-1 reverse transcriptase resulting in the build up of intermediate-length (pause) polymerization products. The presence of L-697,661 greatly enhanced the accumulation of the pause products suggesting that the rate of enzyme translocation from the pause product might be more potently inhibited than polymerization up to the pause site. Model experiments using a synthetic RNA template containing a stem-loop hairpin revealed that the inhibitory potency of L-697, 661 increased 2-fold upon polymerization to within four bases of the secondary structure. Inhibitor potency was enhanced over 6-fold when primer-extension proceeded through the duplex region of the stem-loop. Images PMID:7514786

  10. Modification and structure-activity relationship of a small molecule HIV-1 inhibitor targeting the viral envelope glycoprotein gp120.

    PubMed

    Wang, Jingsong; Le, Nhut; Heredia, Alonso; Song, Haijing; Redfield, Robert; Wang, Lai-Xi

    2005-05-01

    This paper describes selected modification and structure-activity relationship of the small molecule HIV-1 inhibitor, 4-benzoyl-1-[(4-methoxy-1H-pyrrolo[2,3-b]pyridin-3-yl)oxoacetyl]-2-(R)-methylpiperazine (BMS-378806). The results revealed: i) that both the presence and configuration (R vs. S) of the 3-methyl group on the piperazine moiety are important for the antiviral activity, with the 3-(R)-methyl derivatives showing the highest activity; ii) that the electronegativity of the C-4 substituent on the indole or azaindole ring seems to be important for the activity, with a small, electron-donating group such as a fluoro or a methoxy group showing enhanced activity, while a nitro group diminishes the activity; iii) that the N-1 position of the indole ring is not eligible for modification without losing activity; and iv) that bulky groups around the C-4 position of the indole or azaindole ring diminish the activity, probably due to steric hindrance in the binding. We found that a synthetic bivalent compound with two BMS-378806 moieties being tethered by a spacer demonstrated about 5-fold enhanced activity in an nM range against HIV-1 infection than the corresponding monomeric inhibitor. But the polyacrylamide-based polyvalent compounds did not show inhibitory activity at up to 200 nM.

  11. Structure-Based Design and Synthesis of an HIV-1 Entry Inhibitor Exploiting X-ray and Thermodynamic Characterization

    PubMed Central

    2013-01-01

    The design, synthesis, thermodynamic and crystallographic characterization of a potent, broad spectrum, second-generation HIV-1 entry inhibitor that engages conserved carbonyl hydrogen bonds within gp120 has been achieved. The optimized antagonist exhibits a submicromolar binding affinity (110 nM) and inhibits viral entry of clade B and C viruses (IC50 geometric mean titer of 1.7 and 14.0 μM, respectively), without promoting CD4-independent viral entry. The thermodynamic signatures indicate a binding preference for the (R,R)- over the (S,S)-enantiomer. The crystal structure of the small-molecule/gp120 complex reveals the displacement of crystallographic water and the formation of a hydrogen bond with a backbone carbonyl of the bridging sheet. Thus, structure-based design and synthesis targeting the highly conserved and structurally characterized CD4–gp120 interface is an effective tactic to enhance the neutralization potency of small-molecule HIV-1 entry inhibitors. PMID:23667716

  12. Modification and structure-activity relationship of a small molecule HIV-1 inhibitor targeting the viral envelope glycoprotein gp120.

    PubMed

    Wang, Jingsong; Le, Nhut; Heredia, Alonso; Song, Haijing; Redfield, Robert; Wang, Lai-Xi

    2005-05-01

    This paper describes selected modification and structure-activity relationship of the small molecule HIV-1 inhibitor, 4-benzoyl-1-[(4-methoxy-1H-pyrrolo[2,3-b]pyridin-3-yl)oxoacetyl]-2-(R)-methylpiperazine (BMS-378806). The results revealed: i) that both the presence and configuration (R vs. S) of the 3-methyl group on the piperazine moiety are important for the antiviral activity, with the 3-(R)-methyl derivatives showing the highest activity; ii) that the electronegativity of the C-4 substituent on the indole or azaindole ring seems to be important for the activity, with a small, electron-donating group such as a fluoro or a methoxy group showing enhanced activity, while a nitro group diminishes the activity; iii) that the N-1 position of the indole ring is not eligible for modification without losing activity; and iv) that bulky groups around the C-4 position of the indole or azaindole ring diminish the activity, probably due to steric hindrance in the binding. We found that a synthetic bivalent compound with two BMS-378806 moieties being tethered by a spacer demonstrated about 5-fold enhanced activity in an nM range against HIV-1 infection than the corresponding monomeric inhibitor. But the polyacrylamide-based polyvalent compounds did not show inhibitory activity at up to 200 nM. PMID:15858664

  13. Genetic Changes in HIV-1 Gag-Protease Associated with Protease Inhibitor-Based Therapy Failure in Pediatric Patients

    PubMed Central

    Giandhari, Jennifer; Basson, Adriaan E.; Coovadia, Ashraf; Kuhn, Louise; Abrams, Elaine J.; Strehlau, Renate; Morris, Lynn

    2015-01-01

    Abstract Studies have shown a low frequency of HIV-1 protease drug resistance mutations in patients failing protease inhibitor (PI)-based therapy. Recent studies have identified mutations in Gag as an alternate pathway for PI drug resistance in subtype B viruses. We therefore genotyped the Gag and protease genes from 20 HIV-1 subtype C-infected pediatric patients failing a PI-based regimen. Major protease resistance mutations (M46I, I54V, and V82A) were identified in eight (40%) patients, as well as Gag cleavage site (CS) mutations (at codons 373, 374, 378, 428, 431, 449, 451, and 453) in nine (45%) patients. Four of these Gag CS mutations occurred in the absence of major protease mutations at PI failure. In addition, amino acid changes were noted at Gag non-CS with some predicted to be under HLA/KIR immune-mediated pressure and/or drug selection pressure. Changes in Gag during PI failure therefore warrant further investigation of the Gag gene and its role in PI failure in HIV-1 subtype C infection. PMID:25919760

  14. Non-aqueous silicone elastomer gels as a vaginal microbicide delivery system for the HIV-1 entry inhibitor maraviroc

    PubMed Central

    Forbes, Claire J.; Lowry, Deborah; Geer, Leslie; Veazey, Ronald S.; Shattock, Robin J.; Klasse, Per Johan; Mitchnick, Mark; Goldman, Laurie; Doyle, Lara A.; Muldoon, Brendan C.O.; Woolfson, A. David; Moore, John P.; Malcolm, R. Karl

    2011-01-01

    Aqueous semi-solid polymeric gels, such as those based on hydroxyethylcellulose (HEC) and polyacrylic acid (e.g. Carbopol®), have a long history of use in vaginal drug delivery. However, despite their ubiquity, they often provide sub-optimal clinical performance, due to poor mucosal retention and limited solubility for poorly water-soluble actives. These issues are particularly pertinent for vaginal HIV microbicides, since many lead candidates are poorly water-soluble and where a major goal is the development of a coitally independent, once daily gel product. In this study, we report the use of a non-aqueous silicone elastomer gel for vaginal delivery of the HIV-1 entry inhibitor maraviroc. In vitro rheological, syringeability and retention studies demonstrated enhanced performance for silicone gels compared with a conventional aqueous HEC gel, while testing of the gels in the slug model confirmed a lack of mucosal irritancy. Pharmacokinetic studies following single dose vaginal administration of a maraviroc silicone gel in rhesus macaques showed higher and sustained MVC levels in vaginal fluid, vaginal tissue and plasma compared with a HEC gel containing the same maraviroc loading. The results demonstrate that non-aqueous silicone gels have potential as a formulation platform for coitally independent vaginal HIV microbicides. PMID:21864598

  15. Inhibitors

    MedlinePlus

    ... Community Counts Blood Safety Inhibitors Articles & Key Findings Free Materials Videos Starting the Conversation Playing it Safe A Look at Hemophilia Joint Range of Motion My Story Links to Other Websites ...

  16. Trp42 rotamers report reduced flexibility when the inhibitor acetyl-pepstatin is bound to HIV-1 protease.

    PubMed Central

    Ullrich, B.; Laberge, M.; Tölgyesi, F.; Szeltner, Z.; Polgár, L.; Fidy, J.

    2000-01-01

    The Q7K/L331/L631 HIV-1 protease mutant was expressed in Escherichia coli and the effect of binding a substrate-analog inhibitor, acetyl-pepstatin, was investigated by fluorescence spectroscopy and molecular dynamics. The dimeric enzyme has four intrinsic tryptophans, located at positions 6 and 42 in each monomer. Fluorescence spectra and acrylamide quenching experiments show two differently accessible Trp populations in the apoenzyme with k(q1) = 6.85 x 10(9) M(-1) s(-1) and k(q2) = 1.88 x 10(9) M(-1) s(-1), that merge into one in the complex with k(q) = 1.78 x 10(9) M(-1) s(-1). 500 ps trajectory analysis of Trp X1/X2 rotameric interconversions suggest a model to account for the observed Trp fluorescence. In the simulations, Trp6/Trp6B rotameric interconversions do not occur on this timescale for both HIV forms. In the apoenzyme simulations, however, both Trp42s and Trp42Bs are flipping between X1/X2 states; in the complexed form, no such interconverions occur. A detailed investigation of the local Trp environments sampled during the molecular dynamics simulation suggests that one of the apoenzyme Trp42B rotameric interconversions would allow indole-quencher contact, such as with nearby Tyr59. This could account for the short lifetime component. The model thus interprets the experimental data on the basis of the conformational fluctuations of Trp42s alone. It suggests that the rotameric interconversions of these Trps, located relatively far from the active site and at the very start of the flap region, becomes restrained when the apoenzyme binds the inhibitor. The model is thus consistent with associating components of the fluorescence decay in HIV-1 protease to ground state conformational heterogeneity. PMID:11152134

  17. Structure of the CCR5 Chemokine Receptor-HIV Entry Inhibitor Maraviroc Complex

    SciTech Connect

    Tan, Qiuxiang; Zhu, Ya; Li, Jian; Chen, Zhuxi; Han, Gye Won; Kufareva, Irina; Li, Tingting; Ma, Limin; Fenalti, Gustavo; Li, Jing; Zhang, Wenru; Xie, Xin; Yang, Huaiyu; Jiang, Hualiang; Cherezov, Vadim; Liu, Hong; Stevens, Raymond C.; Zhao, Qiang; Wu, Beili

    2013-10-21

    The CCR5 chemokine receptor acts as a co-receptor for HIV-1 viral entry. Here we report the 2.7 angstrom–resolution crystal structure of human CCR5 bound to the marketed HIV drug maraviroc. The structure reveals a ligand-binding site that is distinct from the proposed major recognition sites for chemokines and the viral glycoprotein gp120, providing insights into the mechanism of allosteric inhibition of chemokine signaling and viral entry. A comparison between CCR5 and CXCR4 crystal structures, along with models of co-receptor–gp120-V3 complexes, suggests that different charge distributions and steric hindrances caused by residue substitutions may be major determinants of HIV-1 co-receptor selectivity. These high-resolution insights into CCR5 can enable structure-based drug discovery for the treatment of HIV-1 infection.

  18. TALEN Knockout of the PSIP1 Gene in Human Cells: Analyses of HIV-1 Replication and Allosteric Integrase Inhibitor Mechanism

    PubMed Central

    Morrison, James H.; Saenz, Dyana T.; Fuchs, James R.; Kvaratskhelia, Mamuka; Ekker, Stephen C.

    2014-01-01

    ABSTRACT HIV-1 utilizes the cellular protein LEDGF/p75 as a chromosome docking and integration cofactor. The LEDGF/p75 gene, PSIP1, is a potential therapeutic target because, like CCR5, depletion of LEDGF/p75 is tolerated well by human CD4+ T cells, and knockout mice have normal immune systems. RNA interference (RNAi) has been useful for studying LEDGF/p75, but the potent cofactor activity of small protein residua can be confounding. Here, in human cells with utility for HIV research (293T and Jurkat), we used transcription activator-like effector nucleases (TALENs) to completely eradicate all LEDGF/p75 expression. We performed two kinds of PSIP1 knockouts: whole-gene deletion and deletion of the integrase binding domain (IBD)-encoding exons. HIV-1 integration was inhibited, and spreading viral replication was severely impaired in PSIP1−/− Jurkat cells infected at high multiplicity. Furthermore, frameshifting the gene in the first coding exon with a single TALEN pair yielded trace LEDGF/p75 levels that were virologically active, affirming the cofactor's potency and the value of definitive gene or IBD exon segment deletion. Some recent studies have suggested that LEDGF/p75 may participate in HIV-1 assembly. However, we determined that assembly of infectious viral particles is normal in PSIP1−/− cells. The potency of an allosteric integrase inhibitor, ALLINI-2, for rendering produced virions noninfectious was also unaffected by total eradication of cellular LEDGF/p75. We conclude that HIV-1 particle assembly and the main ALLINI mechanism are LEDGF/p75 independent. The block to HIV-1 propagation in PSIP1−/− human CD4+ T cells raises the possibility of gene targeting PSIP1 combinatorially with CCR5 for HIV-1 cure. IMPORTANCE LEDGF/p75 dependence is universally conserved in the retroviral genus Lentivirus. Once inside the nucleus, lentiviral preintegration complexes are thought to attach to the chromosome when integrase binds to LEDGF/p75. This tethering

  19. Computational Design of Hypothetical New Peptides Based on a Cyclotide Scaffold as HIV gp120 Inhibitor

    PubMed Central

    Sangphukieo, Apiwat; Nawae, Wanapinun; Laomettachit, Teeraphan; Supasitthimethee, Umaporn; Ruengjitchatchawalya, Marasri

    2015-01-01

    Cyclotides are a family of triple disulfide cyclic peptides with exceptional resistance to thermal/chemical denaturation and enzymatic degradation. Several cyclotides have been shown to possess anti-HIV activity, including kalata B1 (KB1). However, the use of cyclotides as anti-HIV therapies remains limited due to the high toxicity in normal cells. Therefore, grafting anti-HIV epitopes onto a cyclotide might be a promising approach for reducing toxicity and simultaneously improving anti-HIV activity. Viral envelope glycoprotein gp120 is required for entry of HIV into CD4+ T cells. However, due to a high degree of variability and physical shielding, the design of drugs targeting gp120 remains challenging. We created a computational protocol in which molecular modeling techniques were combined with a genetic algorithm (GA) to automate the design of new cyclotides with improved binding to HIV gp120. We found that the group of modified cyclotides has better binding scores (23.1%) compared to the KB1. By using molecular dynamic (MD) simulation as a post filter for the final candidates, we identified two novel cyclotides, GA763 and GA190, which exhibited better interaction energies (36.6% and 22.8%, respectively) when binding to gp120 compared to KB1. This computational design represents an alternative tool for modifying peptides, including cyclotides and other stable peptides, as therapeutic agents before the synthesis process. PMID:26517259

  20. Computational Design of Hypothetical New Peptides Based on a Cyclotide Scaffold as HIV gp120 Inhibitor.

    PubMed

    Sangphukieo, Apiwat; Nawae, Wanapinun; Laomettachit, Teeraphan; Supasitthimethee, Umaporn; Ruengjitchatchawalya, Marasri

    2015-01-01

    Cyclotides are a family of triple disulfide cyclic peptides with exceptional resistance to thermal/chemical denaturation and enzymatic degradation. Several cyclotides have been shown to possess anti-HIV activity, including kalata B1 (KB1). However, the use of cyclotides as anti-HIV therapies remains limited due to the high toxicity in normal cells. Therefore, grafting anti-HIV epitopes onto a cyclotide might be a promising approach for reducing toxicity and simultaneously improving anti-HIV activity. Viral envelope glycoprotein gp120 is required for entry of HIV into CD4+ T cells. However, due to a high degree of variability and physical shielding, the design of drugs targeting gp120 remains challenging. We created a computational protocol in which molecular modeling techniques were combined with a genetic algorithm (GA) to automate the design of new cyclotides with improved binding to HIV gp120. We found that the group of modified cyclotides has better binding scores (23.1%) compared to the KB1. By using molecular dynamic (MD) simulation as a post filter for the final candidates, we identified two novel cyclotides, GA763 and GA190, which exhibited better interaction energies (36.6% and 22.8%, respectively) when binding to gp120 compared to KB1. This computational design represents an alternative tool for modifying peptides, including cyclotides and other stable peptides, as therapeutic agents before the synthesis process.

  1. The QSAR and docking calculations of fullerene derivatives as HIV-1 protease inhibitors

    NASA Astrophysics Data System (ADS)

    Saleh, Noha A.

    2015-02-01

    The inhibition of HIV-1 protease is considered as one of the most important targets for drug design and the deactivation of HIV-1. In the present work, the fullerene surface (C60) is modified by adding oxygen atoms as well as hydroxymethylcarbonyl (HMC) groups to form 6 investigated fullerene derivative compounds. These compounds have one, two, three, four or five O atoms + HMC groups at different positions on phenyl ring. The effect of the repeating of these groups on the ability of suggested compounds to inhibit the HIV protease is studied by calculating both Quantitative Structure Activity Relationship (QSAR) properties and docking simulation. Based on the QSAR descriptors, the solubility and the hydrophilicity of studied fullerene derivatives increased with increasing the number of oxygen atoms + HMC groups in the compound. While docking calculations indicate that, the compound with two oxygen atoms + HMC groups could interact and binds with HIV-1 protease active site. This is could be attributed to the active site residues of HIV-1 protease are hydrophobic except the two aspartic acids. So that, the increase in the hydrophilicity and polarity of the compound is preventing and/or decreasing the hydrophobic interaction between the compound and HIV-1 protease active site.

  2. Guanylate Binding Protein (GBP) 5 Is an Interferon-Inducible Inhibitor of HIV-1 Infectivity.

    PubMed

    Krapp, Christian; Hotter, Dominik; Gawanbacht, Ali; McLaren, Paul J; Kluge, Silvia F; Stürzel, Christina M; Mack, Katharina; Reith, Elisabeth; Engelhart, Susanne; Ciuffi, Angela; Hornung, Veit; Sauter, Daniel; Telenti, Amalio; Kirchhoff, Frank

    2016-04-13

    Guanylate binding proteins (GBPs) are an interferon (IFN)-inducible subfamily of guanosine triphosphatases (GTPases) with well-established activity against intracellular bacteria and parasites. Here we show that GBP5 potently restricts HIV-1 and other retroviruses. GBP5 is expressed in the primary target cells of HIV-1, where it impairs viral infectivity by interfering with the processing and virion incorporation of the viral envelope glycoprotein (Env). GBP5 levels in macrophages determine and inversely correlate with infectious HIV-1 yield over several orders of magnitude, which may explain the high donor variability in macrophage susceptibility to HIV. Antiviral activity requires Golgi localization of GBP5, but not its GTPase activity. Start codon mutations in the accessory vpu gene from macrophage-tropic HIV-1 strains conferred partial resistance to GBP5 inhibition by increasing Env expression. Our results identify GBP5 as an antiviral effector of the IFN response and may explain the increased frequency of defective vpu genes in primary HIV-1 strains. PMID:26996307

  3. Nonhuman Primate IFITM Proteins Are Potent Inhibitors of HIV and SIV

    PubMed Central

    Wilkins, Jordan; Zheng, Yi-Min; Yu, Jingyou; Liang, Chen

    2016-01-01

    Interferon-induced transmembrane (IFITM) proteins are potent antiviral factors shown to restrict the infection of many enveloped viruses, including HIV. Here we report cloning and characterization of a panel of nonhuman primate IFITMs. We show that, similar to human IFITM, nonhuman primate IFITM proteins inhibit HIV and other primate lentiviruses. While some nonhuman primate IFITM proteins are more potent than human counterparts to inhibit HIV-1, they are generally not effective against HIV-2 similar to that of human IFITMs. Notably, depending on SIV strains and also IFITM species tested, nonhuman primate IFITM proteins exhibit distinct activities against SIVs; no correlation was found to support the notion that IFITM proteins are most active in non-natural primate hosts. Consistent with our recent findings for human IFITMs, nonhuman primate IFITM proteins interact with HIV-1 Env and strongly act in viral producer cells to impair viral infectivity and block cell-to-cell transmission. Accordingly, knockdown of primate IFITM3 increases HIV-1 replication in nohuman primate cells. Interestingly, analysis of DNA sequences of human and nonhuman primate IFITMs suggest that IFITM proteins have been undergoing purifying selection, rather than positive selection typical for cellular restriction factors. Overall, our study reveals some new and unexpected features of IFITMs in restricting primate lentiviruses, which enhances our understanding of virus-host interaction and AIDS pathogenesis. PMID:27257969

  4. Improved Pharmacological and Structural Properties of HIV Fusion Inhibitor AP3 over Enfuvirtide: Highlighting Advantages of Artificial Peptide Strategy

    SciTech Connect

    Zhu, Xiaojie; Zhu, Yun; Ye, Sheng; Wang, Qian; Xu, Wei; Su, Shan; Sun, Zhiwu; Yu, Fei; Liu, Qi; Wang, Chao; Zhang, Tianhong; Zhang, Zhenqing; Zhang, Xiaoyan; Xu, Jianqing; Du, Lanying; Liu, Keliang; Lu, Lu; Zhang, Rongguang; Jiang, Shibo

    2015-08-19

    Enfuvirtide (T20), is the first HIV fusion inhibitor approved for treatment of HIV/AIDS patients who fail to respond to the current antiretroviral drugs. However, its clinical application is limited because of short half-life, drug resistance and cross-reactivity with the preexisting antibodies in HIV-infected patients. Using an artificial peptide strategy, we designed a peptide with non-native protein sequence, AP3, which exhibited potent antiviral activity against a broad spectrum of HIV-1 strains, including those resistant to T20, and had remarkably longer in vivo half-life than T20. While the preexisting antibodies in HIV-infected patients significantly suppressed T20’s antiviral activity, these antibodies neither recognized AP3, nor attenuated its anti-HIV-1 activity. Structurally different from T20, AP3 could fold into single-helix and interact with gp41 NHR. The two residues, Met and Thr, at the N-terminus of AP3 form a hook-like structure to stabilize interaction between AP3 and NHR helices. Therefore, AP3 has potential for further development as a new HIV fusion inhibitor with improved antiviral efficacy, resistance profile and pharmacological properties over enfuvirtide. Meanwhile, this study highlighted the advantages of artificially designed peptides, and confirmed that this strategy could be used in developing artificial peptide-based viral fusion inhibitors against HIV and other enveloped viruses.

  5. Peptidase activity of beta-lactamases.

    PubMed Central

    Rhazi, N; Galleni, M; Page, M I; Frère, J M

    1999-01-01

    Although beta-lactamases have generally been considered as being devoid of peptidase activity, a low but significant hydrolysis of various N-acylated dipeptides was observed with representatives of each class of beta-lactamases. The kcat/Km values were below 0.1 M(-1). s(-1), but the enzyme rate enhancement factors were in the range 5000-20000 for the best substrates. Not unexpectedly, the best 'peptidase' was the class C beta-lactamase of Enterobacter cloacae P99, but, more surprisingly, the activity was always higher with the phenylacetyl- and benzoyl-d-Ala-d-Ala dipeptides than with the diacetyl- and alpha-acetyl-l-Lys-d-Ala-d-Ala tripeptides, which are the preferred substrates of the low-molecular-mass, soluble dd-peptidases. A comparison between the beta-lactamases and dd-peptidases showed that it might be as difficult for a dd-peptidase to open the beta-lactam ring as it is for the beta-lactamases to hydrolyse the peptides, an observation which can be explained by geometric and stereoelectronic considerations. PMID:10393100

  6. Long-term changes in bone mineral density after switching to a protease inhibitor monotherapy in HIV-infected subject.

    PubMed

    Negredo, Eugènia; Bonjoch, Anna; Puig, Jordi; Echeverría, Patricia; Estany, Carla; Santos, José R; Moltó, José; Pérez-Álvarez, Nuria; Ornelas, Arelly; Clotet, Bonaventura

    2015-04-01

    Although some clinical trials have studied the impact of treatments on bone mineral density (BMD), scarce data are available about the impact of protease inhibitor (PI) monotherapies on BMD. The aim of this study was to evaluate changes in BMD in patients after one, two, or three years of a PI monotherapy. This study included 46 HIV-infected patients who switched from a conventional triple antiretroviral strategy to a monotherapy with lopinavir/ritonavir (LPV/r) or darunavir/ritonavir (DRV/r) for one (one-year group, n=16), two (two-year group, n=20), and three (three-year group, n=10) years. BMD was assessed by dual-energy X-ray absorptiometry (DXA). The median percentage of change in total femur BMD was 0.20% after one, 0.79% after two, and -0.31% after three years. The change in lumbar spine was -0.08%, -0.14%, and 0.50% % after the same years. No significant differences were found when patients were classified regarding the type of PI and whether or not had previously received PI or tenofovir. However, patients who interrupted tenofovir or those who started with DRV/r had a higher BMD increment. Patients who had taken non-nucleoside reverse transcriptase inhibitors previously decreased BMD when started PIs. Monotherapy treatment with ritonavir-boosted protease inhibitors (both LPV/r and DRV/r) during one, two, or three years leads to the stabilization of BMD in HIV-infected patients with long-term virological suppression. Larger studies are necessary to compare the effect of starting or withdrawing PIs on BMD. PMID:25938744

  7. The Effect of Clade-Specific Sequence Polymorphisms on HIV-1 Protease Activity and Inhibitor Resistance Pathways

    SciTech Connect

    Bandaranayake, Rajintha M.; Kolli, Madhavi; King, Nancy M.; Nalivaika, Ellen A.; Heroux, Annie; Kakizawa, Junko; Sugiura, Wataru; Schiffer, Celia A.

    2010-09-08

    The majority of HIV-1 infections around the world result from non-B clade HIV-1 strains. The CRF01{_}AE (AE) strain is seen principally in Southeast Asia. AE protease differs by {approx}10% in amino acid sequence from clade B protease and carries several naturally occurring polymorphisms that are associated with drug resistance in clade B. AE protease has been observed to develop resistance through a nonactive-site N88S mutation in response to nelfinavir (NFV) therapy, whereas clade B protease develops both the active-site mutation D30N and the nonactive-site mutation N88D. Structural and biochemical studies were carried out with wild-type and NFV-resistant clade B and AE protease variants. The relationship between clade-specific sequence variations and pathways to inhibitor resistance was also assessed. AE protease has a lower catalytic turnover rate than clade B protease, and it also has weaker affinity for both NFV and darunavir (DRV). This weaker affinity may lead to the nonactive-site N88S variant in AE, which exhibits significantly decreased affinity for both NFV and DRV. The D30N/N88D mutations in clade B resulted in a significant loss of affinity for NFV and, to a lesser extent, for DRV. A comparison of crystal structures of AE protease shows significant structural rearrangement in the flap hinge region compared with those of clade B protease and suggests insights into the alternative pathways to NFV resistance. In combination, our studies show that sequence polymorphisms within clades can alter protease activity and inhibitor binding and are capable of altering the pathway to inhibitor resistance.

  8. Complete and repeatable inactivation of HIV-1 viral particles in suspension using a photo-labeled non-nucleoside reverse transcriptase inhibitor.

    PubMed

    Marin-Muller, C; Rios, A; Anderson, D; Siwak, E; Yao, Q

    2013-04-01

    A method is described for achieving repeatable, complete inactivation of HIV, based on photo-inactivation of HIV reverse transcriptase (RT) with a non-nucleoside reverse transcriptase inhibitor (NNRTI), photoactive 4-[[4-[(4-azido-2,6-dimethylphenyl) amino]-2-pyrimidinyl]amino]benzonitrile (PA-DAPYa). These results show that PA-DAPYa inactivated completely a suspension of cell-free HIV-1 viral particles in a dose and time-dependent manner. Using an ELISA assay for p24, it is demonstrated that a 500nM concentration of PA-DAPYa is able to inactivate 500 TCID50 of HIV viral particles in suspension when irradiated with non-microbicidal wavelength UV light for 30min. No active p24 was detected on days 7, 14, and 21 days after culturing the inactivated HIV in peripheral blood mononuclear cells (PBMCs). Several batches of large quantities of HIV viral particles were demonstrated to be inactivated completely and repeatedly by this method. Therefore, a reliable method has been developed to inactivate HIV viral particles in a reproducible manner using an optimal concentration of PA-DAPYa and duration of UV exposure time of the treated particles. The inactivation of viral particles in suspension allows for large-scale production of an injectable formulation of inactivated HIV viral particles for vaccine development which should preserve the conformational and antigenic integrity of viral surface proteins. PMID:23384676

  9. Aspartate-specific peptidases in Salmonella typhimurium: mutants deficient in peptidase E.

    PubMed Central

    Carter, T H; Miller, C G

    1984-01-01

    The only dipeptide found to serve as a leucine source for a Salmonella strain lacking peptidases N, A, B, D, P, and Q was alpha-L-aspartyl-L-leucine. A peptidase (peptidase E) that specifically hydrolyzes Asp-X peptides was identified and partially purified from cell extracts. The enzyme (molecular weight, 35,000) is inactive toward dipeptides with N-terminal asparagine or glutamic acid. Mutants (pepE) lacking this enzyme were isolated by screening extracts for loss of the activity. Genetic mapping placed the pepE locus at 91.5 map units and established the gene order metA pepE zja-861::Tn5 malB. Duplications of the pepE locus showed a gene dosage effect on levels of peptidase E, suggesting that pepE is the structural gene for this enzyme. Mutations in pepE resulted in the loss of the ability to grow on Asp-Pro as a proline source but did not affect utilization of other dipeptides with N-terminal aspartic acid. Loss of peptidase E did not cause a detectable impairment in protein degradation. Two other peptidases present in cell extracts of mutants lacking peptidases N, A, B, D, P, Q, and E also hydrolyze many Asp-X dipeptides. Images PMID:6086568

  10. Support Vector Machine (SVM) Models for Predicting Inhibitors of the 3' Processing Step of HIV-1 Integrase.

    PubMed

    Xuan, Shouyi; Wang, Maolin; Kang, Hang; Kirchmair, Johannes; Tan, Lu; Yan, Aixia

    2013-10-01

    Inhibition of the 3' processing step of HIV-1 integrase by small molecule inhibitors is one of the most promising strategies for the treatment of AIDS. Using a support vector machine (SVM) approach, we developed six classification models for predicting 3'P inhibitors. The models are based on up to 48 selected molecular descriptors and a comprehensive data set of 1253 molecules, with measured activities ranging from nanomolar to micromolar IC50 values. Model B2, the most robust SVM model, obtains a prediction accuracy, sensitivity, specificity and Matthews correlation coefficient (MCC) of 93 %, 81 %, 94 % and 0.67 on the test set, respectively. The presence of hydrogen bonding features and hydrophilicity in general were identified as key determinants of inhibitory activity. Further important properties include molecular refractivity, π atom charge, total charge, lone pair electronegativity, and effective atom polarizability. Comparative fragment-based analysis of the active and inactive molecules corroborated these observations and revealed several characteristic structural elements of 3'P inhibitors. The models built in this study can be obtained from the authors.

  11. From the traditional Chinese medicine plant Schisandra chinensis new scaffolds effective on HIV-1 reverse transcriptase resistant to non-nucleoside inhibitors.

    PubMed

    Xu, Lijia; Grandi, Nicole; Del Vecchio, Claudia; Mandas, Daniela; Corona, Angela; Piano, Dario; Esposito, Francesca; Parolin, Cristina; Tramontano, Enzo

    2015-04-01

    HIV-1 reverse transcriptase (RT) is still an extremely attractive pharmaceutical target for the identification of new inhibitors possibly active on drug resistant strains. Medicinal plants are a rich source of chemical diversity and can be used to identify novel scaffolds to be further developed by chemical modifications. We investigated the ability of the main lignans from Schisandra chinensis (Turcz.) Baill. fruits, commonly used in Traditional Chinese Medicine, to affect HIV-1 RT functions. We purified 6 lignans from Schisandra chinensis fruits and assayed their effects on HIV-1 RT and viral replication. Among the S. chinensis fruit lignans, Schisandrin B and Deoxyschizandrin selectively inhibited the HIV-1 RT-associated DNA polymerase activity. Structure activity relationship revealed the importance of cyclooctadiene ring substituents for efficacy. In addition, Schisandrin B was also able to impair HIV-1 RT drug resistant mutants and the early phases of viral replication. We identified Schisandrin B and Deoxyschizandrin as new scaffold for the further development of novel HIV-1 RT inhibitors.

  12. An inhibitor of HIV-1 protease modulates constitutive eIF2α dephosphorylation to trigger a specific integrated stress response

    PubMed Central

    De Gassart, Aude; Bujisic, Bojan; Zaffalon, Léa; Decosterd, Laurent A.; Di Micco, Antonia; Frera, Gianluca; Tallant, Rémy; Martinon, Fabio

    2016-01-01

    Inhibitors of the HIV aspartyl protease [HIV protease inhibitors (HIV-PIs)] are the cornerstone of treatment for HIV. Beyond their well-defined antiretroviral activity, these drugs have additional effects that modulate cell viability and homeostasis. However, little is known about the virus-independent pathways engaged by these molecules. Here we show that the HIV-PI Nelfinavir decreases translation rates and promotes a transcriptional program characteristic of the integrated stress response (ISR). Mice treated with Nelfinavir display hallmarks of this stress response in the liver, including α subunit of translation initiation factor 2 (eIF2α) phosphorylation, activating transcription factor-4 (ATF4) induction, and increased expression of known downstream targets. Mechanistically, Nelfinavir-mediated ISR bypassed direct activation of the eIF2α stress kinases and instead relied on the inhibition of the constitutive eIF2α dephosphorylation and down-regulation of the phophatase cofactor CReP (Constitutive Repressor of eIF2α Phosphorylation; also known as PPP1R15B). These findings demonstrate that the modulation of eIF2α-specific phosphatase cofactor activity can be a rheostat of cellular homeostasis that initiates a functional ISR and suggest that the HIV-PIs could be repositioned as therapeutics in human diseases to modulate translation rates and stress responses. PMID:26715744

  13. An inhibitor of HIV-1 protease modulates constitutive eIF2α dephosphorylation to trigger a specific integrated stress response.

    PubMed

    De Gassart, Aude; Bujisic, Bojan; Zaffalon, Léa; Decosterd, Laurent A; Di Micco, Antonia; Frera, Gianluca; Tallant, Rémy; Martinon, Fabio

    2016-01-12

    Inhibitors of the HIV aspartyl protease [HIV protease inhibitors (HIV-PIs)] are the cornerstone of treatment for HIV. Beyond their well-defined antiretroviral activity, these drugs have additional effects that modulate cell viability and homeostasis. However, little is known about the virus-independent pathways engaged by these molecules. Here we show that the HIV-PI Nelfinavir decreases translation rates and promotes a transcriptional program characteristic of the integrated stress response (ISR). Mice treated with Nelfinavir display hallmarks of this stress response in the liver, including α subunit of translation initiation factor 2 (eIF2α) phosphorylation, activating transcription factor-4 (ATF4) induction, and increased expression of known downstream targets. Mechanistically, Nelfinavir-mediated ISR bypassed direct activation of the eIF2α stress kinases and instead relied on the inhibition of the constitutive eIF2α dephosphorylation and down-regulation of the phophatase cofactor CReP (Constitutive Repressor of eIF2α Phosphorylation; also known as PPP1R15B). These findings demonstrate that the modulation of eIF2α-specific phosphatase cofactor activity can be a rheostat of cellular homeostasis that initiates a functional ISR and suggest that the HIV-PIs could be repositioned as therapeutics in human diseases to modulate translation rates and stress responses.

  14. Synthesis and anti-HIV evaluation of hybrid-type prodrugs conjugating HIV integrase inhibitors with d4t by self-cleavable spacers containing an amino acid residue.

    PubMed

    Fossey, Christine; Huynh, Ngoc-Trinh; Vu, Anh-Hoang; Vidu, Anamaria; Zarafu, Irina; Laduree, Daniel; Schmidt, Sylvie; Laumond, Geraldine; Aubertin, Anne-Marie

    2007-10-01

    In an attempt to combine the anti-HIV inhibitory capacity of reverse transcriptase (RT) inhibitors (NRTIs) and integrase (IN) inhibitors (INIs), several heterodimer analogues of the previously reported [d4T]-PABC-[INI] and [d4T]-OABC-[INI] prototypes have been prepared. In these novel series, we wished to extend our results to conjugates which incorporated an enzymatically labile aminoacid unit (L-alanine) connected to d4T through a self-immolative para- or ortho-aminobenzyl carbonate (PABC or OABC) spacer. Among the novel heterodimers, several derivatives show a potent anti-HIV-1 activity, which proved comparable to that of the [L-708,906]-PABC-[d4T] Heterodimer A prototype. However, although the compounds proved inhibitory to HIV-1, they were less potent than the parent compounds from which they were derived.

  15. HIV-protease inhibitors block the replication of both vesicular stomatitis and influenza viruses at an early post-entry replication step

    SciTech Connect

    Federico, Maurizio

    2011-08-15

    The inhibitors of HIV-1 protease (PIs) have been designed to block the activity of the viral aspartyl-protease. However, it is now accepted that this family of inhibitors can also affect the activity of cell proteases. Since the replication of many virus species requires the activity of host cell proteases, investigating the effects of PIs on the life cycle of viruses other than HIV would be of interest. Here, the potent inhibition induced by saquinavir and nelfinavir on the replication of both vesicular stomatitis and influenza viruses is described. These are unrelated enveloped RNA viruses infecting target cells upon endocytosis and intracellular fusion. The PI-induced inhibition was apparently a consequence of a block at the level of the fusion between viral envelope and endosomal membranes. These findings would open the way towards the therapeutic use of PIs against enveloped RNA viruses other than HIV.

  16. Design, Synthesis, Evaluation, and Crystallographic-Based Structural Studies of HIV-1 Protease Inhibitors with Reduced Response to the V82A Mutation

    SciTech Connect

    Clemente,J.; Robbins, A.; Grana, P.; Paleo, M.; Correa, J.; Villaverde, M.; Sardina, F.; Govindasamy, L.; Agbandje-McKenna, M.; et al

    2008-01-01

    In our quest for HIV-1 protease inhibitors that are not affected by the V82A resistance mutation, we have synthesized and tested a second generation set of C2-symmetric HIV-1 protease inhibitors that contain a cyclohexane group at P1 and/or P1'. The binding affinity results indicate that these compounds have an improved response to the appearance of the V82A mutation than the parent compound. The X-ray structure of one of these compounds with the V82A HIV-1 PR variant provides the structural rationale for the better resistance profile of these compounds. Moreover, scrutiny of the X-ray structure suggests that the ring of the Cha side chain might be in a boat rather than in the chair conformation, a result supported by molecular dynamics simulations.

  17. Comparison of efavirenz and protease inhibitor based combination antiretroviral therapy regimens in treatment-naïve people living with HIV with baseline resistance.

    PubMed

    Lim, Charlotte; McFaul, Katie; Kabagambe, Samuel; Sonecha, Sonali; Jones, Rachael; Asboe, David; Pozniak, Anton; Nwokolo, Nneka; Boffito, Marta

    2016-07-17

    A retrospective cohort analysis comparing the efficacy of boosted protease inhibitor-based and efavirenz-based combination antiretroviral therapy in treatment-naïve people living with HIV with baseline resistance found that efavirenz-based treatment led to a shorter mean time to undetectable viral load. A higher proportion of patients with nonnucleoside reverse transcriptase inhibitor related baseline resistance mutations in the efavirenz-treatment group achieved an undetectable viral load at both 6 and 12 months post-treatment initiation, compared with the boosted protease-inhibitor-treatment group.Supplementary content: http://links.lww.com/QAD/A930. PMID:27139315

  18. (3,3-Difluoro-pyrrolidin-1-yl)-[(2S,4S)-(4-(4-pyrimidin-2-yl-piperazin-1-yl)-pyrrolidin-2-yl]-methanone: A potent, selective, orally active dipeptidyl peptidase IV inhibitor

    SciTech Connect

    Ammirati, Mark J.; Andrews, Kim M.; Boyer, David D.; Brodeur, Anne M.; Danley, Dennis E.; Doran, Shawn D.; Hulin, Bernard; Liu, Shenping; McPherson, R. Kirk; Orena, Stephen J.; Parker, Janice C.; Polivkova, Jana; Qiu, Xiayang; Soglia, Carolyn B.; Treadway, Judith L.; VanVolkenburg, Maria A.; Wilder, Donald C.; Piotrowski, David W.; Pfizer

    2010-10-01

    A series of 4-substituted proline amides was synthesized and evaluated as inhibitors of dipeptidyl pepdidase IV for the treatment of type 2 diabetes. (3,3-Difluoro-pyrrolidin-1-yl)-[(2S,4S)-(4-(4-pyrimidin-2-yl-piperazin-1-yl)-pyrrolidin-2-yl]-methanone (5) emerged as a potent (IC{sub 50} = 13 nM) and selective compound, with high oral bioavailability in preclinical species and low plasma protein binding. Compound 5, PF-00734200, was selected for development as a potential new treatment for type 2 diabetes.

  19. Dolutegravir Plus Two Nucleoside Reverse Transcriptase Inhibitors versus Efavirenz Plus Two Nucleoside Reverse Transcriptase Inhibitors As Initial Antiretroviral Therapy for People with HIV: A Systematic Review

    PubMed Central

    Rutherford, George W.; Horvath, Hacsi

    2016-01-01

    Background Dolutegravir (DTG) is a once-daily unboosted second-generation integrase-inhibitor that along with two nucleoside reverse transcriptase inhibitors is one of several regimens recommended by the United States, United Kingdom and European Union for first-line antiretroviral treatment of people with HIV infection. Our objective was to review the evidence for the efficacy and safety of DTG-based first-line regimens compared to efavirenz (EFV)-based regimens. Methods We conducted a systematic review. We comprehensively searched a range of databases as well as conference abstracts and a trials registry. We used Cochrane methods in screening and data collection and assessed each study’s risk of bias with the Cochrane tool. We meta-analyzed data using a fixed-effects model. We used GRADE to assess evidence quality. Results From 492 search results, we identified two randomized controlled trials, reported in five peer-reviewed articles and one conference abstract. One trial tested two DTG-based regimens (DTG + abacavir (ABC) + lamivudine (3TC) or DTG + tenofovir + emtricitabine) against an EFV-based regimen (EFV+ ABC+3TC). The other trial tested DTG+ABC+3TC against EFV+ABC+3TC. In meta-analysis, DTG-containing regimens were superior to EFV-containing regimens at 48 weeks and at 96 weeks (RR = 1.10, 95% CI 1.04–1.16; and RR = 1.12, 95% CI 1.04–1.21, respectively). In one trial, the DTG-containing regimen was superior at 144 weeks (RR = 1.13, 95% CI 1.02–1.24). DTG-containing regimens were superior in reducing treatment discontinuation compared to those containing EFV at 96 weeks and at 144 weeks (RR = 0.27, 95% CI 0.15–0.50; and RR = 0.28, 95% CI 0.16–0.48, respectively). Risk of serious adverse events was similar in each regimen at 96 weeks (RR = 1.15, 95% CI 0.80–1.63) and 144 weeks (RR = 0.93, 95% CI 0.68–1.29). Risk of bias was moderate overall, as was GRADE evidence quality. Conclusions DTG-based regimens should be considered in future World

  20. A Novel Tricyclic Ligand-Containing Nonpeptidic HIV-1 Protease Inhibitor, GRL-0739, Effectively Inhibits the Replication of Multidrug-Resistant HIV-1 Variants and Has a Desirable Central Nervous System Penetration Property In Vitro

    PubMed Central

    Amano, Masayuki; Tojo, Yasushi; Salcedo-Gómez, Pedro Miguel; Parham, Garth L.; Nyalapatla, Prasanth R.; Das, Debananda; Ghosh, Arun K.

    2015-01-01

    We report here that GRL-0739, a novel nonpeptidic HIV-1 protease inhibitor containing a tricycle (cyclohexyl-bis-tetrahydrofuranylurethane [THF]) and a sulfonamide isostere, is highly active against laboratory HIV-1 strains and primary clinical isolates (50% effective concentration [EC50], 0.0019 to 0.0036 μM), with minimal cytotoxicity (50% cytotoxic concentration [CC50], 21.0 μM). GRL-0739 blocked the infectivity and replication of HIV-1NL4-3 variants selected by concentrations of up to 5 μM ritonavir or atazanavir (EC50, 0.035 to 0.058 μM). GRL-0739 was also highly active against multidrug-resistant clinical HIV-1 variants isolated from patients who no longer responded to existing antiviral regimens after long-term antiretroviral therapy, as well as against the HIV-2ROD variant. The development of resistance against GRL-0739 was substantially delayed compared to that of amprenavir (APV). The effects of the nonspecific binding of human serum proteins on the anti-HIV-1 activity of GRL-0739 were insignificant. In addition, GRL-0739 showed a desirable central nervous system (CNS) penetration property, as assessed using a novel in vitro blood-brain barrier model. Molecular modeling demonstrated that the tricyclic ring and methoxybenzene of GRL-0739 have a larger surface and make greater van der Waals contacts with protease than in the case of darunavir. The present data demonstrate that GRL-0739 has desirable features as a compound with good CNS-penetrating capability for treating patients infected with wild-type and/or multidrug-resistant HIV-1 variants and that the newly generated cyclohexyl-bis-THF moiety with methoxybenzene confers highly desirable anti-HIV-1 potency in the design of novel protease inhibitors with greater CNS penetration profiles. PMID:25691652

  1. In vitro and ex vivo anti-human immunodeficiency virus (HIV) activities of a new water-soluble HIV protease inhibitor, R-87366, containing (2S,3S)-3-amino-2-hydroxy-4-phenylbutanoic acid.

    PubMed

    Komai, T; Yagi, R; Suzuki-Sunagawa, H; Sakurai, M; Higashida, S; Sugano, M; Handa, H; Mohri, H; Yasuoka, A; Oka, S; Yabe, Y; Nishigaki, T; Kimura, S; Shimada, K

    1997-02-01

    In a series of compounds containing (2S,3S)-3-amino-2-hydroxy-4-phenylbutanoic acid (AHPBA), a transitionstate mimetic, R-87366:(2S,3S)-3-[N-(quinoxaline-2-carbonyl)-L-asparaginyl]amino- 2-hydroxy-4-phenylbutanoyl-L-proline tert-butylamide, was found to be a potent human immunodeficiency virus protease inhibitor (Ki value was 11 nM) and anti-HIV agent (IC90 value was 0.5 microM for HIV-1IIIB acutely infected cells) with moderate water-solubility (4.2 mg/ml at 25 degrees C). The compound was also active in chronically infected Molt-4/HIV-1IIIB cells, and inhibited the proteolytic processing of p55 into p17, suggesting that its anti-HIV activity was derived from HIV protease inhibition. The compound showed more potent activity (IC90 value was 0.03-0.25 microM) against clinical isolates of HIV in 5 out of 6 patients examined with varying clinical status in an ex vivo assay. One isolate, however, from the sixth patient, was less sensitive to R-87366 (IC90 value was 0.5 microM). In experiments with this strain, R-87366 showed comparatively low efficacy in acutely infected peripheral blood mononuclear cell (PBMC). This result suggests that the diversity of sensitivity shown in the ex vivo assay could be caused by the viral property itself. As a result of the determination of nucleic acid sequences in the clinical isolates, some amino acids were found to be substituted in the protease region, in contrast to the HIV-1 clade B consensus sequence, and some of them have been reported to contribute to the susceptibility of HIV protease inhibitors.

  2. Vaginal microbicide film combinations of two reverse transcriptase inhibitors, EFdA and CSIC, for the prevention of HIV-1 sexual transmission

    PubMed Central

    Zhang, Wei; Hu, Minlu; Shi, Yuan; Gong, Tiantian; Dezzutti, Charlene S.; Moncla, Bernard; Sarafianos, Stefan G.; Parniak, Michael A.; Rohan, Lisa C.

    2015-01-01

    Purpose EFdA is a potent nucleoside reverse transcriptase inhibitor (NRTI) with activity against a wide spectrum of wild-type and drug resistant HIV-1 variants. CSIC is a tight-binding non-nucleoside reverse transcriptase inhibitor (NNRTI) with demonstrated anti-HIV properties important for use in topical prevention of HIV transmission. The objective of this study was to develop and characterize film-formulated EFdA and CSIC for use as a female-controlled vaginal microbicide to prevent sexual transmission of HIV. Methods Assessments of EFdA- and CSIC-loaded films included physicochemical characteristics, in vitro cytotoxicity, epithelia integrity studies, compatibility with the normal vaginal Lactobacillus flora and anti-HIV bioactivity evaluations. Results No significant change in physicochemical properties or biological activity of the combination films were noted during 3 months storage. In vitro cytotoxicity and bioactivity testing showed that 50% cytotoxic concentration (CC50) of either EFdA or CSIC was several orders of magnitude higher than the 50% effective concentration (EC50) values. Film-formulated EFdA and CSIC combination showed additive inhibitory activity against wild type and drug-resistant variants of HIV. Epithelial integrity studies demonstrated that the combination vaginal film had a much lower toxicity to HEC-1A monolayers compared to that of VCF®, a commercial vaginal film product containing nonoxynol-9. Polarized ectocervical explants showed films with drug alone or in combination were effective at preventing HIV infection. Conclusions Our data suggest that vaginal microbicide films containing a combination of the NRTI EFdA and the NNRTI CSIC have potential to prevent HIV-1 sexual transmission. PMID:25794967

  3. Bioavailable inhibitors of HIV-1 RNA biogenesis identified through a Rev-based screen.

    PubMed

    Prado, Silvia; Beltrán, Manuela; Coiras, Mayte; Bedoya, Luis M; Alcamí, José; Gallego, José

    2016-05-01

    New antiretroviral agents with alternative mechanisms are needed to complement the combination therapies used to treat HIV-1 infections. Here we report the identification of bioavailable molecules that interfere with the gene expression processes of HIV-1. The compounds were detected by screening a small library of FDA-approved drugs with an assay based on measuring the displacement of Rev, and essential virus-encoded protein, from its high-affinity RNA binding site. The antiretroviral activity of two hits was based on interference with post-integration steps of the HIV-1 cycle. Both hits inhibited RRE-Rev complex formation in vitro, and blocked LTR-dependent gene expression and viral transcription in cellular assays. The best compound altered the splicing pattern of HIV-1 transcripts in a manner consistent with Rev inhibition. This mechanism of action is different from those used by current antiretroviral agents. The screening hits recognized the Rev binding site in the viral RNA, and the best compound did so with substantial selectivity, allowing the identification of a new RNA-binding scaffold. These results may be used for developing novel antiretroviral drugs.

  4. A scalable low-cost cGMP process for clinical grade production of the HIV inhibitor 5P12-RANTES in Pichia pastoris

    PubMed Central

    Cerini, Fabrice; Gaertner, Hubert; Madden, Knut; Tolstorukov, Ilya; Brown, Scott; Laukens, Bram; Callewaert, Nico; Harner, Jay C.; Oommen, Anna M.; Harms, John T.; Sump, Anthony R.; Sealock, Robert C.; Peterson, Dustin J.; Johnson, Scott K.; Abramson, Stephan B.; Meagher, Michael; Offord, Robin; Hartley, Oliver

    2016-01-01

    In the continued absence of an effective anti-HIV vaccine, approximately 2 million new HIV infections occur every year, with over 95% of these in developing countries. Calls have been made for the development of anti-HIV drugs that can be formulated for topical use to prevent HIV transmission during sexual intercourse. Because these drugs are principally destined for use in low-resource regions, achieving production costs that are as low as possible is an absolute requirement. 5P12-RANTES, an analog of the human chemokine protein RANTES/CCL5, is a highly potent HIV entry inhibitor which acts by achieving potent blockade of the principal HIV coreceptor, CCR5. Here we describe the development and optimization of a scalable low-cost production process for 5P12-RANTES based on expression in Pichia pastoris. At pilot (150 L) scale, this cGMP compliant process yielded 30 g of clinical grade 5P12-RANTES. As well as providing sufficient material for the first stage of clinical development, this process represents an important step towards achieving production of 5P12-RANTES at a cost and scale appropriate to meet needs for topical HIV prevention worldwide. PMID:26506568

  5. A scalable low-cost cGMP process for clinical grade production of the HIV inhibitor 5P12-RANTES in Pichia pastoris.

    PubMed

    Cerini, Fabrice; Gaertner, Hubert; Madden, Knut; Tolstorukov, Ilya; Brown, Scott; Laukens, Bram; Callewaert, Nico; Harner, Jay C; Oommen, Anna M; Harms, John T; Sump, Anthony R; Sealock, Robert C; Peterson, Dustin J; Johnson, Scott K; Abramson, Stephan B; Meagher, Michael; Offord, Robin; Hartley, Oliver

    2016-03-01

    In the continued absence of an effective anti-HIV vaccine, approximately 2 million new HIV infections occur every year, with over 95% of these in developing countries. Calls have been made for the development of anti-HIV drugs that can be formulated for topical use to prevent HIV transmission during sexual intercourse. Because these drugs are principally destined for use in low-resource regions, achieving production costs that are as low as possible is an absolute requirement. 5P12-RANTES, an analog of the human chemokine protein RANTES/CCL5, is a highly potent HIV entry inhibitor which acts by achieving potent blockade of the principal HIV coreceptor, CCR5. Here we describe the development and optimization of a scalable low-cost production process for 5P12-RANTES based on expression in Pichia pastoris. At pilot (150 L) scale, this cGMP compliant process yielded 30 g of clinical grade 5P12-RANTES. As well as providing sufficient material for the first stage of clinical development, this process represents an important step towards achieving production of 5P12-RANTES at a cost and scale appropriate to meet needs for topical HIV prevention worldwide.

  6. C-5-Modified Tetrahydropyrano-Tetrahydofuran-Derived Protease Inhibitors (PIs) Exert Potent Inhibition of the Replication of HIV-1 Variants Highly Resistant to Various PIs, including Darunavir

    PubMed Central

    Aoki, Manabu; Hayashi, Hironori; Yedidi, Ravikiran S.; Martyr, Cuthbert D.; Takamatsu, Yuki; Aoki-Ogata, Hiromi; Nakamura, Teruya; Nakata, Hirotomo; Das, Debananda; Yamagata, Yuriko; Ghosh, Arun K.

    2015-01-01

    ABSTRACT We identified three nonpeptidic HIV-1 protease inhibitors (PIs), GRL-015, -085, and -097, containing tetrahydropyrano-tetrahydrofuran (Tp-THF) with a C-5 hydroxyl. The three compounds were potent against a wild-type laboratory HIV-1 strain (HIV-1WT), with 50% effective concentrations (EC50s) of 3.0 to 49 nM, and exhibited minimal cytotoxicity, with 50% cytotoxic concentrations (CC50) for GRL-015, -085, and -097 of 80, >100, and >100 μM, respectively. All the three compounds potently inhibited the replication of highly PI-resistant HIV-1 variants selected with each of the currently available PIs and recombinant clinical HIV-1 isolates obtained from patients harboring multidrug-resistant HIV-1 variants (HIVMDR). Importantly, darunavir (DRV) was >1,000 times less active against a highly DRV-resistant HIV-1 variant (HIV-1DRVRP51); the three compounds remained active against HIV-1DRVRP51 with only a 6.8- to 68-fold reduction. Moreover, the emergence of HIV-1 variants resistant to the three compounds was considerably delayed compared to the case of DRV. In particular, HIV-1 variants resistant to GRL-085 and -097 did not emerge even when two different highly DRV-resistant HIV-1 variants were used as a starting population. In the structural analyses, Tp-THF of GRL-015, -085, and -097 showed strong hydrogen bond interactions with the backbone atoms of active-site amino acid residues (Asp29 and Asp30) of HIV-1 protease. A strong hydrogen bonding formation between the hydroxyl moiety of Tp-THF and a carbonyl oxygen atom of Gly48 was newly identified. The present findings indicate that the three compounds warrant further study as possible therapeutic agents for treating individuals harboring wild-type HIV and/or HIVMDR. IMPORTANCE Darunavir (DRV) inhibits the replication of most existing multidrug-resistant HIV-1 strains and has a high genetic barrier. However, the emergence of highly DRV-resistant HIV-1 strains (HIVDRVR) has recently been observed in vivo and in

  7. Efavirenz, nelfinavir, and stavudine rescue combination therapy in HIV-1-positive patients heavily pretreated with nucleoside analogues and protease inhibitors.

    PubMed

    Seminari, E; Maggiolo, F; Villani, P; Suter, F; Pan, A; Regazzi, M B; Paolucci, S; Baldanti, F; Tinelli, C; Maserati, R

    1999-12-15

    Tolerability, activity, and pharmacokinetic parameters of a combination therapy with efavirenz (EFV), nelfinavir (NFV), and stavudine (d4T) were evaluated in this study. Forty-seven HIV-1-infected study subjects, naive to NFV and nonnucleoside reverse transcriptase inhibitors (NNRTIs), who had experienced virologic failure while being treated with combination antiretroviral therapies including protease inhibitors (PIs), were enrolled. At baseline, HIV-1 viral load in plasma was 4.8 log10, CD4+ count was 204 cells/microl (both mean values); patients had received a mean of 3.1 different treatments (range, 2-5 treatments). Study medications were generally well tolerated; 7 of 47 patients (14.8%) were dropped from the study because of related drug toxicity. At week 24, mean plasma viral load (pVL) was reduced by 1.9 log10, with mean CD4+ count increased to 324 cells/microl (+/-59% from baseline); pVL was below the limit of detection (500 copies/ml) in 46.1% of patients. An extended follow-up study was performed at 12 months. Results showed a reduction of 1.7 log10 in pVL from basal values that was consistent with values observed at months 3 and 6. A history of previous use of PIs represented a negative prognostic marker. Sequencing analysis, performed in a subset of patients, showed the presence of multiple point mutations associated with PI resistance. Pharmacokinetic analysis demonstrated a marked interindividual variability in NFV plasma concentrations, producing in 4 of 18 patients (22%) trough concentrations lower than minimum effective concentration. In pretreated patients, further studies are needed to characterize the pharmacokinetic factors that affect response to therapy and the association of these results with the 95% inhibitory concentration (IC95) determined by phenotyping.

  8. PL-100, a novel HIV-1 protease inhibitor displaying a high genetic barrier to resistance: an in vitro selection study.

    PubMed

    Dandache, Serge; Coburn, Craig A; Oliveira, Maureen; Allison, Timothy J; Holloway, M Katharine; Wu, Jinzi J; Stranix, Brent R; Panchal, Chandra; Wainberg, Mark A; Vacca, Joseph P

    2008-12-01

    The development of new HIV inhibitors with distinct resistance profiles is essential in order to combat the development of multi-resistant viral strains. A drug discovery program based on the identification of compounds that are active against drug-resistant viruses has produced PL-100, a novel potent protease inhibitor (PI) that incorporates a lysine-based scaffold. A selection for resistance against PL-100 in cord blood mononuclear cells was performed, using the laboratory-adapted IIIb strain of HIV-1, and it was shown that resistance appears to develop slower against this compound than against amprenavir, which was studied as a control. Four mutations in protease (PR) were selected after 25 weeks: two flap mutations (K45R and M46I) and two novel active site mutations (T80I and P81S). Site-directed mutagenesis revealed that all four mutations were required to develop low-level resistance to PL-100, which is indicative of the high genetic barrier of the compound. Importantly, these mutations did not cause cross-resistance to currently marketed PIs. In contrast, the P81S mutation alone caused hypersensitivity to two other PIs, saquinavir (SQV) and nelfinavir (NFV). Analysis of p55Gag processing showed that a marked defect in protease activity caused by mutation P81S could only be compensated when K45R and M46I were present. These data correlated well with the replication capacity (RC) of the mutant viruses as measured by a standard viral growth assay, since only viruses containing all four mutations approached the RC of wild type virus. X-ray crystallography provided insight on the structural basis of the resistance conferred by the identified mutations. PMID:19040279

  9. Positional adaptability in the design of mutation-resistant nonnucleoside HIV-1 reverse transcriptase inhibitors: a supramolecular perspective.

    PubMed

    Bruccoleri, Aldo

    2013-01-01

    Drug resistance is a key cause of failed treatment of HIV infection. The efficacy of nonnucleoside reverse transcriptase-inhibiting (NNRTI) drugs is impaired by the rapid emergence of drug-resistant mutations. The literature supports the idea that purposefully designed flexible NNRTIs at an active site may help overcome drug resistance. It is proposed here that the usual "lock and key" model, with respect to NNRTI drug design, be expanded to consider creating "master keys" that would automatically adjust conformations to fit all of the "locks" mutations may make. The present work introduces the novel perspective of designing and creating supramolecular assemblies as potential NNRTIs (instead of the relatively more rigid single-molecule inhibitors). Specifically, flexible self-assembling quinhydrone supramolecular dimers formed from quinonoid monomers (designed to be highly flexible NNRTIs themselves) will be offered as a working example of this new perspective in NNRTI drug design. Quinonoid compounds have demonstrated binding interactions at various sites of the HIV-1 RT enzyme, including the elusive ribonuclease H area. Quinhydrone self-organized dimers have at some point in their molecular architecture a noncovalently interacting donor-acceptor ring pair complex. This complex is at the heart of the increased torsional, rotational, and translational motion this species will experience at a particular active site. Flexible supramolecular assemblies, together with their flexible monomer components, may offer a critical advantage in retaining potency against a wide range of drug-resistant HIV-1 RTs. This new supramolecular perspective may also have broader implications in the general field of antimicrobial drug design. PMID:22938539

  10. Docking and 3-D QSAR studies on the binding of tetrahydropyrimid-2-one HIV-1 protease inhibitors

    NASA Astrophysics Data System (ADS)

    Rao, Shashidhar N.; Balaji, Govardhan A.; Balaji, Vitukudi N.

    2013-06-01

    We present molecular docking and 3-D QSAR studies on a series of tetrahydropyrimid-2-one HIV-1 protease inhibitors whose binding affinities to the enzyme span nearly 6 orders of magnitude. The docking investigations have been carried out with Surflex (GEOM, GEOMX) and Glide (SP and XP) methodologies available through Tripos and Schrodinger suite of tools in the context of Sybyl-X and Maestro interfaces, respectively. The alignments for 3-D QSAR studies were obtained by using the automated Surflex-SIM methodology in Sybyl-X and the analyses were performed using the CoMFA and CoMSIA methods. Additionally, the top-ranked poses obtained from various docking protocols were also employed to generate CoMFA and CoMSIA models to evaluate the qualitative consistency of the docked models with experimental data. Our studies demonstrate that while there are a number of common features in the docked models obtained from Surflex-dock and Glide methodologies, the former sets of models are generally better correlated with deduced experimental binding modes based on the X-ray structures of known HIV-1 protease complexes with cyclic ureas. The urea moiety common to all the ligands are much more tightly aligned in Surflex docked structures than in the models obtained from Glide SP and XP dockings. The 3-D QSAR models are qualitatively and quantitatively similar to those previously reported, suggesting the utility of automatically generated alignments from Surflex-SIM methodology.

  11. Bringing research into a first semester organic chemistry laboratory with the multistep synthesis of carbohydrate-based HIV inhibitor mimics.

    PubMed

    Pontrello, Jason K

    2015-01-01

    Benefits of incorporating research experiences into laboratory courses have been well documented, yet examples of research projects designed for the first semester introductory organic chemistry lab course are extremely rare. To address this deficiency, a Carbohydrate-Based human immunodeficiency virus (HIV) Inhibitor project consisting of a synthetic scheme of four reactions was developed for and implemented in the first semester organic lab. Students carried out the synthetic reactions during the last 6 of 10 total labs in the course, generating carbohydrate-based dimeric target molecules modeled after published dimers with application in HIV therapy. The project was designed to provide a research experience through use of literature procedures for reactions performed, exploration of variation in linker length in the target structure, and synthesis of compounds not previously reported in the scientific literature. Project assessment revealed strong student support, indicating enhanced engagement and interest in the course as a direct result of the use of scientific literature and the applications of the synthesized carbohydrate-based molecules. Regardless of discussed challenges in designing a research project for the first semester lab course, the finding from data analysis that a project implemented in the first semester lab had significantly greater student impact than a second semester project should provide motivation for development of additional research projects for a first semester organic course.

  12. Discovery of small-molecule HIV-1 fusion and integrase inhibitors oleuropein and hydroxytyrosol: Part II. Integrase inhibition

    SciTech Connect

    Lee-Huang, Sylvia; Huang, Philip Lin; Zhang Dawei; Lee, Jae Wook; Bao Ju; Sun Yongtao; Chang, Young-Tae; Zhang, John; Huang, Paul Lee . E-mail: sylvia.lee-huang@med.nyu.edu

    2007-03-23

    We report molecular modeling and functional confirmation of Ole and HT binding to HIV-1 integrase. Docking simulations identified two binding regions for Ole within the integrase active site. Region I encompasses the conserved D64-D116-E152 motif, while region II involves the flexible loop region formed by amino acid residues 140-149. HT, on the other hand, binds to region II. Both Ole and HT exhibit favorable interactions with important amino acid residues through strong H-bonding and van der Waals contacts, predicting integrase inhibition. To test and confirm modeling predictions, we examined the effect of Ole and HT on HIV-1 integrase activities including 3'-processing, strand transfer, and disintegration. Ole and HT exhibit dose-dependent inhibition on all three activities, with EC{sub 50}s in the nanomolar range. These studies demonstrate that molecular modeling of target-ligand interaction coupled with structural-activity analysis should facilitate the design and identification of innovative integrase inhibitors and other therapeutics.

  13. Secondary mutations in viruses resistant to HIV-1 integrase inhibitors that restore viral infectivity and replication kinetics.

    PubMed

    Nakahara, Koichiro; Wakasa-Morimoto, Chiaki; Kobayashi, Masanori; Miki, Shigeru; Noshi, Takeshi; Seki, Takahiro; Kanamori-Koyama, Mikiko; Kawauchi, Shinobu; Suyama, Akemi; Fujishita, Toshio; Yoshinaga, Tomokazu; Garvey, Edward P; Johns, Brian A; Foster, Scott A; Underwood, Mark R; Sato, Akihiko; Fujiwara, Tamio

    2009-02-01

    Passage of HIV-1 in the presence of integrase inhibitors (INIs) generates resistant viruses that have mutations in the integrase region. Integrase-resistant mutations Q148K and Q148R were identified as primary mutations with the passage of HIV-1 IIIB in the presence of INIs S-1360 or S/GSK-364735, respectively. Secondary amino acid substitutions E138K or G140S were observed when passage with INI was continued. The role of these mutations was investigated with molecular clones. Relative to Q148K alone, Q148K/E138K had 2- and >6-fold increases in resistance to S-1360 and S/GSK-364735, respectively, and the double mutant had slightly better infectivity and replication kinetics. In contrast, Q148K/G140S and Q148R/E138K had nearly equivalent or slightly reduced fold resistance to the INI compared with their respective Q148 primary mutants, and had increases in infectivity and replication kinetics. Recovery of these surrogates of viral fitness coincided with the recovery of integration efficiency of viral DNA into the host cell chromosome for these double mutants. These data show that recovery of viral integration efficiency can be an important factor for the emergence and maintenance of INI-resistant mutations.

  14. Structure-Based Evaluation of Non-nucleoside Inhibitors with Improved Potency and Solubility That Target HIV Reverse Transcriptase Variants

    PubMed Central

    2015-01-01

    The development of novel non-nucleoside inhibitors (NNRTIs) with activity against variants of HIV reverse transcriptase (RT) is crucial for overcoming treatment failure. The NNRTIs bind in an allosteric pocket in RT ∼10 Å away from the active site. Earlier analogues of the catechol diether compound series have picomolar activity against HIV strains with wild-type RT but lose potency against variants with single Y181C and double K103N/Y181C mutations. As guided by structure-based and computational studies, removal of the 5-Cl substitution of compound 1 on the catechol aryl ring system led to a new analogue compound 2 that maintains greater potency against Y181C and K103N/Y181C variants and better solubility (510 μg/mL). Crystal structures were determined for wild-type, Y181C, and K103N/Y181C RT in complex with both compounds 1 and 2 to understand the structural basis for these findings. Comparison of the structures reveals that the Y181C mutation destabilizes the binding mode of compound 1 and disrupts the interactions with residues in the pocket. Compound 2 maintains the same conformation in wild-type and mutant structures, in addition to several interactions with the NNRTI binding pocket. Comparison of the six crystal structures will assist in the understanding of compound binding modes and future optimization of the catechol diether series. PMID:25700160

  15. Structure-Based Design, Synthesis, and Characterization of Dual Hotspot Small-Molecule HIV-1 Entry Inhibitors

    SciTech Connect

    LaLonde, Judith M.; Kwon, Young Do; Jones, David M.; Sun, Alexander W.; Courter, Joel R.; Soeta, Takahiro; Kobayashi, Toyoharu; Princiotto, Amy M.; Wu, Xueling; Schön, Arne; Freire, Ernesto; Kwong, Peter D.; Mascola, John R.; Sodroski, Joseph; Madani, Navid; Smith, III, Amos B.

    2012-06-19

    Cellular infection by HIV-1 is initiated with a binding event between the viral envelope glycoprotein gp120 and the cellular receptor protein CD4. The CD4-gp120 interface is dominated by two hotspots: a hydrophobic gp120 cavity capped by Phe43{sub CD4} and an electrostatic interaction between residues Arg59{sub CD4} and Asp368{sub gp120}. The CD4 mimetic small-molecule NBD-556 (1) binds within the gp120 cavity; however, 1 and related congeners demonstrate limited viral neutralization breadth. Herein, we report the design, synthesis, characterization, and X-ray structures of gp120 in complex with small molecules that simultaneously engage both binding hotspots. The compounds specifically inhibit viral infection of 42 tier 2 clades B and C viruses and are shown to be antagonists of entry into CD4-negative cells. Dual hotspot design thus provides both a means to enhance neutralization potency of HIV-1 entry inhibitors and a novel structural paradigm for inhibiting the CD4-gp120 protein-protein interaction.

  16. Inhibitors and facilitators of willingness to participate (WTP) in an HIV vaccine trial: construction and initial validation of the Inhibitors and Facilitators of Willingness to Participate Scale (WPS) among women at risk for HIV infection.

    PubMed

    Fincham, Dylan; Kagee, Ashraf; Swartz, Leslie

    2010-04-01

    A psychometric scale assessing inhibitors and facilitators of willingness to participate (WTP) in an HIV vaccine trial has not yet been developed. This study aimed to construct and derive the exploratory factor structure of such a scale. The 35-item Inhibitors and Facilitators of Willingness to Participate Scale (WPS) was developed and administered to a convenience sample of 264 Black females between the ages of 16 and 49 years living in an urban-informal settlement near Cape Town. The subscales of the WPS demonstrated good internal consistency with Cronbach's alpha coefficients ranging between 0.69 and 0.82. A principal components exploratory factor analysis revealed the presence of five latent factors. The factors, which accounted for 45.93% of the variance in WTP, were (1) personal costs, (2) safety and convenience, (3) stigmatisation, (4) personal gains and (5) social approval and trust. Against the backdrop of the study limitations, these results provide initial support for the reliability and construct validity of the WPS among the most eligible trial participants in the Western Cape of South Africa.

  17. The Crude Skin Secretion of the Pepper Frog Leptodactylus labyrinthicus Is Rich in Metallo and Serine Peptidases

    PubMed Central

    Libério, Michelle da Silva; Bastos, Izabela M. D.; Pires Júnior, Osmindo R.; Fontes, Wagner; Santana, Jaime M.; Castro, Mariana S.

    2014-01-01

    Peptidases are ubiquitous enzymes involved in diverse biological processes. Fragments from bioactive peptides have been found in skin secretions from frogs, and their presence suggests processing by peptidases. Thus, the aim of this work was to characterize the peptidase activity present in the skin secretion of Leptodactylus labyrinthicus. Zymography revealed the presence of three bands of gelatinase activity of approximately 60 kDa, 66 kDa, and 80 kDa, which the first two were calcium-dependent. These three bands were inhibited either by ethylenediaminetetraacetic acid (EDTA) and phenathroline; thus, they were characterized as metallopeptidases. Furthermore, the proteolytic enzymes identified were active only at pH 6.0–10.0, and their activity increased in the presence of CHAPS or NaCl. Experiments with fluorogenic substrates incubated with skin secretions identified aminopeptidase activity, with cleavage after leucine, proline, and alanine residues. This activity was directly proportional to the protein concentration, and it was inhibited in the presence of metallo and serine peptidase inhibitors. Besides, the optimal pH for substrate cleavage was determined to be 7.0–8.0. The results of the in gel activity assay showed that all substrates were hydrolyzed by a 45 kDa peptidase. Gly-Pro-AMC was also cleaved by a peptidase greater than 97 kDa. The data suggest the presence of dipeptidyl peptidases (DPPs) and metallopeptidases; however, further research is necessary. In conclusion, our work will help to elucidate the implication of these enzymatic activities in the processing of the bioactive peptides present in frog venom, expanding the knowledge of amphibian biology. PMID:24906116

  18. HIV

    PubMed Central

    Chawla, Sumit; Sahoo, Soumya Swaroop; Jain, Rambilas; Khanna, Pardeep; Mehta, Bharti; Singh, Inderjeet

    2014-01-01

    Getting to zero: zero new HIV infections, zero deaths from AIDS-related illness, zero discrimination is the theme of World AIDS Day 2012. Given the spread of the epidemic today, getting to zero may sound difficult, but significant progress is underway. The total annual loss for the entire country due to HIV is 7% of GDP, which exceeds India’s annual health expenditure in 2004. The additional loss due to loss of labor income and increased medical expenditure as measured by the external transfers, account for 5% of the country’s health expenditure and 0.23% of GDP. Given that the HIV incidence rate is only 0.27% in India, these losses are quite staggering. Despite the remarkable achievements in development of anti-retroviral therapies against HIV and the recent advances in new prevention technologies, the rate of new HIV infections continue to outpace efforts on HIV prevention and control. Thus, the development of a safe and effective vaccine for prevention and control of AIDS remains a global public health priority and the greatest opportunity to eventually end the AIDS pandemic. PMID:24056755

  19. Inhibition of DD-Peptidases by a Specific Trifluoroketone: Crystal Structure of a Complex with the Actinomadura R39 DD-Peptidase†

    PubMed Central

    Dzhekieva, Liudmila; Adediran, S. A.; Herman, Raphael; Kerff, Frédéric; Duez, Colette; Charlier, Paulette; Sauvage, Eric; Pratt, R.F.

    2013-01-01

    Inhibitors of bacterial DD-peptidases represent potential antibiotics. In the search for alternatives to β-lactams, we have investigated a series of compounds designed to generate transition state analogue structures on reaction with DD-peptidases. The compounds contain a combination of a peptidoglycan-mimetic specificity handle and a warhead capable of delivering a tetrahedral anion to the enzyme active site. The latter include a boronic acid, two alcohols, an aldehyde and a trifluoroketone. The compounds were tested against two low molecular mass class C DD-peptidases. As expected from previous observations, the boronic acid was a potent inhibitor, but, rather unexpectedly from precedent, the trifluoroketone [D-α-aminopimelyl-(1,1,1-trifluoro-3-amino)butan-2-one] was also very effective. Taking into account competing hydration, the trifluoroketone was the strongest inhibitor of the Actinomadura R39 DD-peptidase, with a subnanomolar (free ketone) inhibition constant. A crystal structure of the complex between the trifluoroketone and the R39 enzyme showed that a tetrahedral adduct had indeed formed with the active site serine nucleophile. The trifluoroketone moiety, therefore, should be considered along with boronic acids and phosphonates, as a warhead that can be incorporated into new and effective DD-peptidase inhibitors and therefore, perhaps, antibiotics. PMID:23484909

  20. Design and discovery of flavonoid-based HIV-1 integrase inhibitors targeting both the active site and the interaction with LEDGF/p75.

    PubMed

    Li, Bo-Wen; Zhang, Feng-Hua; Serrao, Erik; Chen, Huan; Sanchez, Tino W; Yang, Liu-Meng; Neamati, Nouri; Zheng, Yong-Tang; Wang, Hui; Long, Ya-Qiu

    2014-06-15

    HIV integrase (IN) is an essential enzyme for the viral replication. Currently, three IN inhibitors have been approved for treating HIV-1 infection. All three drugs selectively inhibit the strand transfer reaction by chelating a divalent metal ion in the enzyme active site. Flavonoids are a well-known class of natural products endowed with versatile biological activities. Their β-ketoenol or catechol structures can serve as a metal chelation motif and be exploited for the design of novel IN inhibitors. Using the metal chelation as a common pharmacophore, we introduced appropriate hydrophobic moieties into the flavonol core to design natural product-based novel IN inhibitors. We developed selective and efficient syntheses to generate a series of mono 3/5/7/3'/4'-substituted flavonoid derivatives. Most of these new compounds showed excellent HIV-1 IN inhibitory activity in enzyme-based assays and protected against HIV-1 infection in cell-based assays. The 7-morpholino substituted 7c showed effective antiviral activity (EC50=0.826 μg/mL) and high therapeutic index (TI>242). More significantly, these hydroxyflavones block the IN-LEDGF/p75 interaction with low- to sub-micromolar IC50 values and represent a novel scaffold to design new generation of drugs simultaneously targeting the catalytic site as well as protein-protein interaction domains.

  1. Binding of novel fullerene inhibitors to HIV-1 protease: insight through molecular dynamics and molecular mechanics Poisson-Boltzmann surface area calculations.

    PubMed

    Tzoupis, Haralambos; Leonis, Georgios; Durdagi, Serdar; Mouchlis, Varnavas; Mavromoustakos, Thomas; Papadopoulos, Manthos G

    2011-10-01

    The objectives of this study include the design of a series of novel fullerene-based inhibitors for HIV-1 protease (HIV-1 PR), by employing two strategies that can also be applied to the design of inhibitors for any other target. Additionally, the interactions which contribute to the observed exceptionally high binding free energies were analyzed. In particular, we investigated: (1) hydrogen bonding (H-bond) interactions between specific fullerene derivatives and the protease, (2) the regions of HIV-1 PR that play a significant role in binding, (3) protease changes upon binding and (4) various contributions to the binding free energy, in order to identify the most significant of them. This study has been performed by employing a docking technique, two 3D-QSAR models, molecular dynamics (MD) simulations and the mo