Science.gov

Sample records for hiv peptidase inhibitors

  1. Decoding the Anti-Trypanosoma cruzi Action of HIV Peptidase Inhibitors Using Epimastigotes as a Model

    PubMed Central

    Sangenito, Leandro S.; Menna-Barreto, Rubem F. S.; d′Avila-Levy, Claudia M.; Branquinha, Marta H.

    2014-01-01

    Background Aspartic peptidase inhibitors have shown antimicrobial action against distinct microorganisms. Due to an increase in the occurrence of Chagas' disease/AIDS co-infection, we decided to explore the effects of HIV aspartic peptidase inhibitors (HIV-PIs) on Trypanosoma cruzi, the etiologic agent of Chagas' disease. Methodology and Principal Findings HIV-PIs presented an anti-proliferative action on epimastigotes of T. cruzi clone Dm28c, with IC50 values ranging from 0.6 to 14 µM. The most effective inhibitors, ritonavir, lopinavir and nelfinavir, also had an anti-proliferative effect against different phylogenetic T. cruzi strains. The HIV-PIs induced some morphological alterations in clone Dm28c epimastigotes, as reduced cell size and swollen of the cellular body. Transmission electron microscopy revealed that the flagellar membrane, mitochondrion and reservosomes are the main targets of HIV-PIs in T. cruzi epimastigotes. Curiously, an increase in the epimastigote-into-trypomastigote differentiation process of clone Dm28c was observed, with many of these parasites presenting morphological alterations including the detachment of flagellum from the cell body. The pre-treatment with the most effective HIV-PIs drastically reduced the interaction process between epimastigotes and the invertebrate vector Rhodnius prolixus. It was also noted that HIV-PIs induced an increase in the expression of gp63-like and calpain-related molecules, and decreased the cruzipain expression in epimastigotes as judged by flow cytometry and immunoblotting assays. The hydrolysis of a cathepsin D fluorogenic substrate was inhibited by all HIV-PIs in a dose-dependent manner, showing that the aspartic peptidase could be a possible target to these drugs. Additionally, we verified that ritonavir, lopinavir and nelfinavir reduced drastically the viability of clone Dm28c trypomastigotes, causing many morphological damages. Conclusions and Significance The results contribute to understand

  2. HIV aspartic peptidase inhibitors are effective drugs against the trypomastigote form of the human pathogen Trypanosoma cruzi.

    PubMed

    Sangenito, Leandro S; Gonçalves, Diego S; Seabra, Sergio H; d'Avila-Levy, Claudia M; Santos, André L S; Branquinha, Marta H

    2016-10-01

    There is a general lack of effective and non-toxic chemotherapeutic agents against Chagas' disease despite more than a century of research. In this regard, we have verified the impact of human immunodeficiency virus aspartic peptidase inhibitors (HIV-PIs) on the viability and morphology of infective trypomastigote forms of Trypanosoma cruzi as well as on the aspartic peptidase and proteasome activities produced by this parasite. The effects of HIV-PIs on viability were assessed by counting motile parasites in a Neubauer chamber. Morphological alterations were detected by light microscopy of Giemsa-stained smears and scanning electron microscopy. Modulation of aspartic peptidase and proteasome activities by the HIV-PIs was measured by cleavage of fluorogenic peptide substrates. The majority of the HIV-PIs (6/9) were able to drastically decrease the viability of trypomastigotes after 4 h of treatment, with nelfinavir and lopinavir being the most effective compounds presenting LD50 values of 8.6 µM and 10.6 µM, respectively. Additionally, both HIV-PIs were demonstrated to be effective in a time- and cell density-dependent manner. Treatment with nelfinavir and lopinavir caused many morphological/ultrastructural alterations in trypomastigotes; parasites became round in shape, with reduced cell size and flagellar shortening. Nelfinavir and lopinavir were also capable of significantly inhibiting the aspartic peptidase and proteasome activities measured in trypomastigote extracts. These results strengthen the data on the positive effects of HIV-PIs on parasitic infections, possibly by targeting the parasite aspartic peptidase(s) and proteasome(s), opening a new possibility for the use of these clinically approved drugs as an alternative chemotherapy to treat Chagas' disease. Copyright © 2016 Elsevier B.V. and International Society of Chemotherapy. All rights reserved.

  3. Beneficial Effects of HIV Peptidase Inhibitors on Fonsecaea pedrosoi: Promising Compounds to Arrest Key Fungal Biological Processes and Virulence

    PubMed Central

    Palmeira, Vanila F.; Kneipp, Lucimar F.; Rozental, Sonia; Alviano, Celuta S.; Santos, André L. S.

    2008-01-01

    Background Fonsecaea pedrosoi is the principal etiologic agent of chromoblastomycosis, a fungal disease whose pathogenic events are poorly understood. Current therapy for chromoblastomycosis is suboptimal due to toxicity of the available therapeutic agents and the emergence of drug resistance. Compounding these problems is the fact that endemic countries and regions are economically poor. Purpose and Principal Findings In the present work, we have investigated the effect of human immunodeficiency virus (HIV) peptidase inhibitors (PIs) on the F. pedrosoi conidial secreted peptidase, growth, ultrastructure and interaction with different mammalian cells. All the PIs impaired the acidic conidial-derived peptidase activity in a dose-dependent fashion, in which nelfinavir produced the best inhibitory effect. F. pedrosoi growth was also significantly reduced upon exposure to PIs, especially nelfinavir and saquinavir. PIs treatment caused profound changes in the conidial ultrastructure as shown by transmission electron microscopy, including invaginations in the cytoplasmic membrane, disorder and detachment of the cell wall, enlargement of fungi cytoplasmic vacuoles, and abnormal cell division. The synergistic action on growth ability between nelfinavir and amphotericin B, when both were used at sub-inhibitory concentrations, was also observed. PIs reduced the adhesion and endocytic indexes during the interaction between conidia and epithelial cells (CHO), fibroblasts or macrophages, in a cell type-dependent manner. Moreover, PIs interfered with the conidia into mycelia transformation when in contact with CHO and with the susceptibility killing by macrophage cells. Conclusions/Significance Overall, by providing the first evidence that HIV PIs directly affects F. pedrosoi development and virulence, these data add new insights on the wide-spectrum efficacy of HIV PIs, further arguing for the potential chemotherapeutic targets for aspartyl-type peptidase produced by this human

  4. Peptidases and peptidase inhibitors in gut of caterpillars and in the latex of their host plants.

    PubMed

    Ramos, Márcio V; Pereira, Danielle A; Souza, Diego P; Silva, Maria-Lídia S; Alencar, Luciana M R; Sousa, Jeanlex S; Queiroz, Juliany-Fátima N; Freitas, Cleverson D T

    2015-01-01

    Studies investigating the resistance-susceptibility of crop insects to proteins found in latex fluids have been reported. However, latex-bearing plants also host insects. In this study, the gut proteolytic system of Pseudosphinx tetrio, which feeds on Plumeria rubra leaves, was characterized and further challenged against the latex proteolytic system of its own host plant and those of other latex-bearing plants. The gut proteolytic system of Danaus plexippus (monarch) and the latex proteolytic system of its host plant (Calotropis procera) were also studied. The latex proteins underwent extensive hydrolysis when mixed with the corresponding gut homogenates of the hosted insects. The gut homogenates partially digested the latex proteins of foreign plants. The fifth instar of D. plexippus that were fed diets containing foreign latex developed as well as those individuals who were fed diets containing latex proteins from their host plant. In vitro assays detected serine and cysteine peptidase inhibitors in both the gut homogenates and the latex fluids. Curiously, the peptidase inhibitors of caterpillars did not inhibit the latex peptidases of their host plants. However, the peptidase inhibitors of laticifer origin inhibited the proteolysis of gut homogenates. In vivo analyses of the peritrophic membrane proteins of D. plexippus demonstrate resistance against latex peptidases. Only discrete changes were observed when the peritrophic membrane was directly treated with purified latex peptidases in vitro. This study concludes that peptidase inhibitors are involved in the defensive systems of both caterpillars and their host plants. Although latex peptidase inhibitors inhibit gut peptidases (in vitro), the ability of gut peptidases to digest latex proteins (in vivo) regardless of their origin seems to be important in governing the resistance-susceptibility of caterpillars.

  5. Dipeptidyl peptidase IV inhibitors and diabetes therapy.

    PubMed

    McIntosh, Christopher H S

    2008-01-01

    Current type 2 diabetes therapies are mainly targeted at stimulating pancreatic beta-cell secretion and reducing insulin resistance. A number of alternative therapies are currently being developed to take advantage of the actions of the incretin hormones Glucagon-Like Peptide-1 (GLP-1) and Glucose-dependent Insulinotropic Polypeptide (GIP). These hormones are released from the small intestine in response to nutrient ingestion and stimulate insulin secretion in a glucose-dependent manner. One approach to potentiating their actions is based on inhibiting dipeptidyl peptidase IV (DPP IV), the major enzyme responsible for degrading the incretins in vivo. DPP IV exhibits characteristics that have allowed the development of specific orally administered inhibitors with proven efficacy in improving glucose tolerance in animal models of diabetes. A number of clinical trials have demonstrated that DPP IV inhibitors are effective in improving glucose disposal and reducing hemoglobin A1c levels in type 2 diabetic patients and one inhibitor, sitagliptin, is now in therapeutic use, with others likely to receive FDA approval in the near future. Studies aimed at elucidating the mode of action of the inhibitors are still ongoing. Both enhancement of insulin secretion and reduction in glucagon secretion, resulting from the blockade of incretin degradation, are believed to play important roles in DPP IV inhibitor action. Preclinical studies indicate that increased levels of incretins improve beta-cell secretory function and exert effects on beta-cell mitogenesis and survival that can preserve beta-cell mass. Roles for other hormones, neuropeptides and cytokines in DPP IV inhibitor-medicated responses are also possible.

  6. Sugarcane Serine Peptidase Inhibitors, Serine Peptidases, and Clp Protease System Subunits Associated with Sugarcane Borer (Diatraea saccharalis) Herbivory and Wounding

    PubMed Central

    Medeiros, Ane H.; Mingossi, Fabiana B.; Dias, Renata O.; Franco, Flávia P.; Vicentini, Renato; Mello, Marcia O.; Moura, Daniel S.; Silva-Filho, Marcio C.

    2016-01-01

    Sugarcane’s (Saccharum spp.) response to Diatraea saccharalis (F.) (Lepidoptera: (Crambidae) herbivory was investigated using a macroarray spotted with 248 sugarcane Expressed Sequence Tags (ESTs) encoding serine peptidase inhibitors, serine peptidases. and Clp protease system subunits. Our results showed that after nine hours of herbivory, 13 sugarcane genes were upregulated and nine were downregulated. Among the upregulated genes, nine were similar to serine peptidase inhibitors and four were similar to Bowman-Birk Inhibitors (BBIs). Phylogenetic analysis revealed that these sequences belong to a phylogenetic group of sugarcane BBIs that are potentially involved in plant defense against insect predation. The remaining four upregulated genes included serine peptidases and one homolog to the Arabidopsis AAA+ chaperone subunit ClpD, which is a member of the Clp protease system. Among the downregulated genes, five were homologous to serine peptidases and four were homologous to Arabidopsis Clp subunits (three homologous to Clp AAA+ chaperones and one to a ClpP-related ClpR subunit). Although the roles of serine peptidase inhibitors in plant defenses against herbivory have been extensively investigated, the roles of plant serine peptidases and the Clp protease system represent a new and underexplored field of study. The up- and downregulated D. saccharalis genes presented in this study may be candidate genes for the further investigation of the sugarcane response to herbivory. PMID:27598134

  7. Sugarcane Serine Peptidase Inhibitors, Serine Peptidases, and Clp Protease System Subunits Associated with Sugarcane Borer (Diatraea saccharalis) Herbivory and Wounding.

    PubMed

    Medeiros, Ane H; Mingossi, Fabiana B; Dias, Renata O; Franco, Flávia P; Vicentini, Renato; Mello, Marcia O; Moura, Daniel S; Silva-Filho, Marcio C

    2016-09-01

    Sugarcane's (Saccharum spp.) response to Diatraea saccharalis (F.) (Lepidoptera: (Crambidae) herbivory was investigated using a macroarray spotted with 248 sugarcane Expressed Sequence Tags (ESTs) encoding serine peptidase inhibitors, serine peptidases. and Clp protease system subunits. Our results showed that after nine hours of herbivory, 13 sugarcane genes were upregulated and nine were downregulated. Among the upregulated genes, nine were similar to serine peptidase inhibitors and four were similar to Bowman-Birk Inhibitors (BBIs). Phylogenetic analysis revealed that these sequences belong to a phylogenetic group of sugarcane BBIs that are potentially involved in plant defense against insect predation. The remaining four upregulated genes included serine peptidases and one homolog to the Arabidopsis AAA+ chaperone subunit ClpD, which is a member of the Clp protease system. Among the downregulated genes, five were homologous to serine peptidases and four were homologous to Arabidopsis Clp subunits (three homologous to Clp AAA+ chaperones and one to a ClpP-related ClpR subunit). Although the roles of serine peptidase inhibitors in plant defenses against herbivory have been extensively investigated, the roles of plant serine peptidases and the Clp protease system represent a new and underexplored field of study. The up- and downregulated D. saccharalis genes presented in this study may be candidate genes for the further investigation of the sugarcane response to herbivory.

  8. Comparative review of dipeptidyl peptidase-4 inhibitors and sulphonylureas.

    PubMed

    Deacon, C F; Lebovitz, H E

    2016-04-01

    Type 2 diabetes (T2DM) is a progressive disease, and pharmacotherapy with a single agent does not generally provide durable glycaemic control over the long term. Sulphonylurea (SU) drugs have a history stretching back over 60 years, and have traditionally been the mainstay choice as second-line agents to be added to metformin once glycaemic control with metformin monotherapy deteriorates; however, they are associated with undesirable side effects, including increased hypoglycaemia risk and weight gain. Dipeptidyl peptidase (DPP)-4 inhibitors are, by comparison, more recent, with the first compound being launched in 2006, but the class now globally encompasses at least 11 different compounds. DPP-4 inhibitors improve glycaemic control with similar efficacy to SUs, but do not usually provoke hypoglycaemia or weight gain, are relatively free from adverse side effects, and have recently been shown not to increase cardiovascular risk in large prospective safety trials. Because of these factors, DPP-4 inhibitors have become an established therapy for T2DM and are increasingly being positioned earlier in treatment algorithms. The present article reviews these two classes of oral antidiabetic drugs (DPP-4 inhibitors and SUs), highlighting differences and similarities between members of the same class, as well as discussing the potential advantages and disadvantages of the two drug classes. While both classes have their merits, the choice of which to use depends on the characteristics of each individual patient; however, for the majority of patients, DPP-4 inhibitors are now the preferred choice.

  9. Potencies of phosphine peptide inhibitors of mammalian thimet oligopeptidase and neurolysin on two bacterial pz peptidases.

    PubMed

    Sugihara, Yusuke; Kawasaki, Akio; Tsujimoto, Yoshiyuki; Matsui, Hiroshi; Watanabe, Kunihiko

    2007-02-01

    Pz peptidases A and B, from a thermophile Geobacillus collagenovorans MO-1, recognize collagen-specific tripeptide units (Gly-Pro-Xaa). They share similarities in function but extremely low identities in primary sequence with mammalian thimet oligopeptidase (TOP) and neurolysin. Three phosphine peptide inhibitors that selectively inhibit TOP and neurolysin on two bacterial Pz peptidases were investigated. They showed potent inhibition of both Pz peptidases in a range from 10 to 100 nM.

  10. NAAG peptidase inhibitors and their potential for diagnosis and therapy.

    PubMed

    Zhou, Jia; Neale, Joseph H; Pomper, Martin G; Kozikowski, Alan P

    2005-12-01

    Modulation of N-acetyl-L-aspartyl-L-glutamate peptidase activity with small-molecule inhibitors holds promise for a wide variety of diseases that involve glutamatergic transmission, and has implications for the diagnosis and therapy of cancer. This new class of compounds, of which at least one has entered clinical trials and proven to be well tolerated, has demonstrated efficacy in experimental models of pain, schizophrenia, amyotrophic lateral sclerosis, traumatic brain injury and, when appropriately functionalized, can image prostate cancer. Further investigation of these promising drug candidates will be needed to bring them to the marketplace. The recent publication of the X-ray crystal structure for the enzymatic target of these compounds should facilitate the development of other new agents with enhanced activity that could improve both the diagnosis and treatment of neurological disorders.

  11. Natural and synthetic inhibitors of kallikrein-related peptidases (KLKs)

    PubMed Central

    Goettig, Peter; Magdolen, Viktor; Brandstetter, Hans

    2010-01-01

    Including the true tissue kallikrein KLK1, kallikrein-related peptidases (KLKs) represent a family of fifteen mammalian serine proteases. While the physiological roles of several KLKs have been at least partially elucidated, their activation and regulation remain largely unclear. This obscurity may be related to the fact that a given KLK fulfills many different tasks in diverse fetal and adult tissues, and consequently, the timescale of some of their physiological actions varies significantly. To date, a variety of endogenous inhibitors that target distinct KLKs have been identified. Among them are the attenuating Zn2+ ions, active site-directed proteinaceous inhibitors, such as serpins and the Kazal-type inhibitors, or the huge, unspecific compartment forming α2-macroglobulin. Failure of these inhibitory systems can lead to certain pathophysiological conditions. One of the most prominent examples is the Netherton syndrome, which is caused by dysfunctional domains of the Kazal-type inhibitor LEKTI-1 which fail to appropriately regulate KLKs in the skin. Small synthetic inhibitory compounds and natural polypeptidic exogenous inhibitors have been widely employed to characterize the activity and substrate specificity of KLKs and to further investigate their structures and biophysical properties. Overall, this knowledge leads not only to a better understanding of the physiological tasks of KLKs, but is also a strong fundament for the synthesis of small compound drugs and engineered biomolecules for pharmaceutical approaches. In several types of cancer, KLKs have been found to be overexpressed, which makes them clinically relevant biomarkers for prognosis and monitoring. Thus, down regulation of excessive KLK activity in cancer and in skin diseases by small inhibitor compounds may represent attractive therapeutical approaches. PMID:20615447

  12. NAAG peptidase inhibitors and deletion of NAAG peptidase gene enhance memory in novel object recognition test

    PubMed Central

    Janczura, Karolina J.; Olszewski, Rafal T.; Bzdega, Tomasz; Bacich, Dean J.; Heston, Warren D.; Neale, Joseph H.

    2012-01-01

    The peptide neurotransmitter N-acetylaspartylglutamate (NAAG) is inactivated by the extracellular enzyme glutamate carboxypeptidase II. Inhibitors of this enzyme reverse dizocilpine (MK-801)-induced impairment of short-term memory in the novel object recognition test. The objective of this study was to test the hypothesis that NAAG peptidase inhibition enhances the long-term (24 hr delay) memory of C57BL mice in this test. These mice and mice in which glutamate carboxypeptidase II had been knocked out were presented with two identical objects to explore for 10 minutes on day 1 and tested with one of these familiar objects and one novel object on day 2. Memory was assessed as the degree to which the mice recalled the familiar object and explored the novel object to a greater extent on day 2. Uninjected mice or mice injected with saline prior to the acquisition session on day 1 demonstrated a lack of memory of the acquisition experience by exploring the familiar and novel objects to the same extent on day 2. Mice treated with glutamate carboxypeptidase II inhibitors ZJ43 or 2-PMPA prior to the acquisition trial explored the novel object significantly more time than the familiar object on day 2. Consistent with these results, mice in which glutamate carboxypeptidase II had been knocked out distinguished the novel from the familiar object on day 2 while their heterozygous colony mates did not. Inhibition of glutamate carboxypeptidase II enhances recognition memory, a therapeutic action that might be useful in treatment of memory deficits related to age and neurological disorders. PMID:23200894

  13. Applications of dipeptidyl peptidase IV inhibitors in diabetes mellitus.

    PubMed

    McIntosh, Christopher H S; Demuth, Hans-Ulrich; Kim, Su-Jin; Pospisilik, J Andrew; Pederson, Raymond A

    2006-01-01

    A number of alternative therapies for type 2 diabetes are currently under development that take advantage of the actions of the incretin hormones glucagon-like peptide-1 and glucose-dependent insulinotropic polypeptide on the pancreatic beta-cell. One such approach is based on the inhibition of dipeptidyl peptidase IV (DP IV), the major enzyme responsible for degrading the incretins in vivo. DP IV exhibits characteristics that have allowed the development of specific inhibitors with proven efficacy in improving glucose tolerance in animal models of diabetes and type 2 human diabetics. While enhancement of insulin secretion, resulting from blockade of incretin degradation, has been proposed to be the major mode of inhibitor action, there is also evidence that inhibition of gastric emptying, reduction in glucagon secretion and important effects on beta-cell differentiation, mitogenesis and survival, by the incretins and other DP IV-sensitive peptides, can potentially preserve beta-cell mass, and improve insulin secretory function and glucose handling in diabetics.

  14. Cysteine peptidases and their inhibitors in Tetranychus urticae: a comparative genomic approach

    PubMed Central

    2012-01-01

    Background Cysteine peptidases in the two-spotted spider mite Tetranychus urticae are involved in essential physiological processes, including proteolytic digestion. Cystatins and thyropins are inhibitors of cysteine peptidases that modulate their activity, although their function in this species has yet to be investigated. Comparative genomic analyses are powerful tools to obtain advanced knowledge into the presence and evolution of both, peptidases and their inhibitors, and could aid to elucidate issues concerning the function of these proteins. Results We have performed a genomic comparative analysis of cysteine peptidases and their inhibitors in T. urticae and representative species of different arthropod taxonomic groups. The results indicate: i) clade-specific proliferations are common to C1A papain-like peptidases and for the I25B cystatin family of inhibitors, whereas the C1A inhibitors thyropins are evolutionarily more conserved among arthropod clades; ii) an unprecedented extensive expansion for C13 legumain-like peptidases is found in T. urticae; iii) a sequence-structure analysis of the spider mite cystatins suggests that diversification may be related to an expansion of their inhibitory range; and iv) an in silico transcriptomic analysis shows that most cathepsin B and L cysteine peptidases, legumains and several members of the cystatin family are expressed at a higher rate in T. urticae feeding stages than in embryos. Conclusion Comparative genomics has provided valuable insights on the spider mite cysteine peptidases and their inhibitors. Mite-specific proliferations of C1A and C13 peptidase and I25 cystatin families and their over-expression in feeding stages of mites fit with a putative role in mite’s feeding and could have a key role in its broad host feeding range. PMID:22784002

  15. Navigating the chemical space of dipeptidyl peptidase-4 inhibitors

    PubMed Central

    Shoombuatong, Watshara; Prachayasittikul, Veda; Anuwongcharoen, Nuttapat; Songtawee, Napat; Monnor, Teerawat; Prachayasittikul, Supaluk; Prachayasittikul, Virapong; Nantasenamat, Chanin

    2015-01-01

    This study represents the first large-scale study on the chemical space of inhibitors of dipeptidyl peptidase-4 (DPP4), which is a potential therapeutic protein target for the treatment of diabetes mellitus. Herein, a large set of 2,937 compounds evaluated for their ability to inhibit DPP4 was compiled from the literature. Molecular descriptors were generated from the geometrically optimized low-energy conformers of these compounds at the semiempirical AM1 level. The origins of DPP4 inhibitory activity were elucidated from computed molecular descriptors that accounted for the unique physicochemical properties inherently present in the active and inactive sets of compounds as defined by their respective half maximal inhibitory concentration values of less than 1 μM and greater than 10 μM, respectively. Decision tree analysis revealed the importance of molecular weight, total energy of a molecule, topological polar surface area, lowest unoccupied molecular orbital, and number of hydrogen-bond donors, which correspond to molecular size, energy, surface polarity, electron acceptors, and hydrogen bond donors, respectively. The prediction model was subjected to rigorous independent testing via three external sets. Scaffold and chemical fragment analysis was also performed on these active and inactive sets of compounds to shed light on the distinguishing features of the functional moieties. Docking of representative active DPP4 inhibitors was also performed to unravel key interacting residues. The results of this study are anticipated to be useful in guiding the rational design of novel and robust DPP4 inhibitors for the treatment of diabetes. PMID:26309399

  16. Role of inhibitors of serine peptidases in protecting Leishmania donovani against the hydrolytic peptidases of sand fly midgut.

    PubMed

    Verma, Sudha; Das, Sushmita; Mandal, Abhishek; Ansari, Md Yousuf; Kumari, Sujata; Mansuri, Rani; Kumar, Ajay; Singh, Ruby; Saini, Savita; Abhishek, Kumar; Kumar, Vijay; Sahoo, Ganesh Chandra; Das, Pradeep

    2017-06-23

    In vector-borne diseases such as leishmaniasis, the sand fly midgut is considered to be an important site for vector-parasite interaction. Digestive enzymes including serine peptidases such as trypsin and chymotrypsin, which are secreted in the midgut are one of the obstacles for Leishmania in establishing a successful infection. The presence of some natural inhibitors of serine peptidases (ISPs) has recently been reported in Leishmania. In the present study, we deciphered the role of these ISPs in the survival of Leishmania donovani in the hostile sand fly midgut environment. In silico and co-immunoprecipitation studies were performed to observe the interaction of L. donovani ISPs with trypsin and chymotrypsin. Zymography and in vitro enzyme assays were carried out to observe the inhibitory effect of purified recombinant ISPs of L. donovani (rLdISPs) on trypsin, chymotrypsin and the sand fly midgut peptidases. The expression of ISPs in the amastigote to promastigote transition stages were studied by semi-quantitative RT-PCR and Western blot. The role of LdISP on the survival of ISP overexpressed (OE) and ISP knocked down (KD) Leishmania parasites inside the sand fly gut was investigated by in vitro and in vivo cell viability assays. We identified two ecotin-like genes in L. donovani, LdISP1 and LdISP2. In silico and co-immunoprecipitation results clearly suggest a strong interaction of LdISP molecules with trypsin and chymotrypsin. Zymography and in vitro enzyme assay confirmed the inhibitory effect of rLdISP on trypsin, chymotrypsin and the sand fly midgut peptidases. The expression of LdISP2 was found to be strongly associated with the amastigote to promastigote phase transition. The activities of the digestive enzymes were found to be significantly reduced in the infected sand flies when compared to uninfected. To our knowledge, our study is the first report showing the possible reduction of chymotrypsin activity in L. donovani infected sand flies compared to

  17. Dipeptidyl peptidase IV inhibitors: a promising new therapeutic approach for the management of type 2 diabetes.

    PubMed

    Deacon, Carolyn F; Holst, Jens J

    2006-01-01

    Glucagon-like peptide-1 is an insulinotropic hormone with antidiabetic potential due to its spectrum of effects, which include glucose-dependent stimulation of insulin and inhibition of glucagon secretion, tropic effects on the pancreatic beta-cells, inhibition of gastric emptying and the reduction of appetite. Glucagon-like peptide-1 is, however, extremely rapidly inactivated by the serine peptidase, dipeptidyl peptidase IV, so that the native peptide is not useful clinically. A new approach to utilise the beneficial effects of glucagon-like peptide-1 in the treatment of type 2 diabetes has been the development of orally active dipeptidyl peptidase IV inhibitors. Preclinical studies have demonstrated that this approach is effective in enhancing endogenous levels of glucagon-like peptide-1, resulting in improved glucose tolerance in glucose-intolerant and diabetic animal models. In recent studies of 3-12 months duration in patients with type 2 diabetes, dipeptidyl peptidase IV inhibitors have proved efficacious, both as monotherapy and when given in combination with metformin. Fasting and postprandial glucose concentrations were reduced, leading to reductions in glycosylated haemoglobin levels, while beta-cell function was preserved. Current information suggests dipeptidyl peptidase IV inhibitors are body weight neutral and are well tolerated. A number of dipeptidyl peptidase IV inhibitors are now in the late stages of clinical development. These have different properties, in terms of their duration of action and anticipated dosing frequency, but data from protracted dosing studies is presently not available to allow comparison of their clinical efficacy.

  18. Astacin Family Metallopeptidases and Serine Peptidase Inhibitors in Spider Digestive Fluid

    PubMed Central

    Foradori, Matthew J.; Tillinghast, Edward K.; Smith, J. Stephen; Townley, Mark A.; Mooney, Robert E.

    2006-01-01

    Digestive fluid of the araneid spider Argiope aurantia is known to contain zinc metallopeptidases. Using anion-exchange chromatography, size-exclusion chromatography, sucrose density gradient centrifugation, and gel electrophoresis, we isolated two lower-molecular-mass peptidases, designated p16 and p18. The N-terminal amino acid sequences of p16 (37 residues) and p18 (20 residues) are 85% identical over the first 20 residues and are most similar to the N-terminal sequences of the fully active form of meprin (β subunits) from several vertebrates (47–52% and 50–60% identical, respectively). Meprin is a peptidase in the astacin (M12A) subfamily of the astacin (M12) family. Additionally, a 66-residue internal sequence obtained from p16 aligns with the conserved astacin subfamily domain. Thus, at least some spider digestive peptidases appear related to astacin of decapod crustaceans. However, important differences between spider and crustacean metallopeptidases with regard to isoelectric point and their susceptibility to hemolymph-borne inhibitors are demonstrated. Anomalous behavior of the lower-molecular-mass Argiope peptidases during certain fractionation procedures indicates that these peptidases may take part in reversible associations with each other or with other proteins. A. aurantia digestive fluid also contains inhibitory activity effective against insect digestive peptidases. Here we present evidence for at least thirteen, heat-stable serine peptidase inhibitors ranging in molecular mass from about 15 to 32 kDa. PMID:16458560

  19. Linagliptin: a novel methylxanthin based approved dipeptidyl peptidase-4 inhibitor.

    PubMed

    Agrawal, Ritesh; Jain, Pratima; Dikshit, S N

    2012-06-01

    Chemically, methylxanthine nucleus based Linagliptin (BI-1356, BI-1356-BS) is a dipeptidyl peptidase-IV inhibitor, which has been developed by Boehringer Ingelheim in association with Lilly for the treatment of Type-II Diabetes. Linagliptin was marketed by Lilly under the trade name Tradjenta and Trajenta. Linagliptin was approved as the once-daily dose by USFDA on 2 May 2011, for the treatment of Type-II Diabetes. Linagliptin 5mg once daily dose was approved based on a clinical trial program, which was conducted on approximately 4,000 adults with Type-II Diabetes. Linagliptin demonstrated statistically significant mean difference in HbA1c from placebo of up to 0.72 percent, when it was used monotherapically. In patients, who were not adequately controlled on metformin or metformin plus sulphonylurea, the addition of Linagliptin resulted in a statistically significant mean difference in HbA1c from placebo of -0.6 percent. Linagliptin was observed to produce significant reduction in fasting plasma glucose (FPG) compared to placebo, when used as a monotherapy in combination with metformin, sulfonylurea and/or pioglitazone. Linagliptin demonstrated significant reduction post-prandial glucose (PPG) levels in two hours as compared with placebo in monotherapy as well as in combination with metformin. In vitro assays also anticipated that Linagliptin is a potent DPPIV inhibitor as well as it exhibits good selectivity for DPP-IV as compared with other DPPs. The in-vivo studies also demonstrated same anticipation with respect to Linagliptin. Consequently, increasing the GLP-1 levels so far improved glucose tolerance in both healthy animals. X-ray crystallography anticipates that Linagliptin complexes with human DPPIV enzyme, e.g. butynyl substituent occupies the S1 hydrophobic pocket of the enzyme; the aminopiperidine substituent in the xanthine scaffold occupies the S2 subsite and its primary amine interacts with the key amino acid residues, which involves in the

  20. Prokaryote-derived protein inhibitors of peptidases: a sketchy occurrence and mostly unknown function

    PubMed Central

    Kantyka, Tomasz; Rawlings, Neil D.; Potempa, Jan

    2010-01-01

    In metazoan organisms protein inhibitors of peptidases are important factors essential for regulation of proteolytic activity. In vertebrates genes encoding peptidase inhibitors constitute up to 1% of genes reflecting a need for tight and specific control of proteolysis especially in extracellular body fluids. In stark contrast unicellular organisms, both prokaryotic and eukaryotic consistently contain only few, if any, genes coding for putative peptidase inhibitors. This may seem perplexing in the light of the fact that these organisms produce large numbers of proteases of different catalytic classes with the genes constituting up to 6% of the total gene count with the average being about 3%. Apparently, however, a unicellular life-style is fully compatible with other mechanisms of regulation of proteolysis and does not require protein inhibitors to control their intracellular and extracellular proteolytic activity. So in prokaryotes occurrence of genes encoding different types of peptidase inhibitors is infrequent and often scattered among phylogenetically distinct orders or even phyla of microbiota. Genes encoding proteins homologous to alpha-2-macroglobulin (family I39), serine carboxypeptidase Y inhibitor (family I51), alpha-1-peptidase inhibitor (family I4) and ecotin (family I11) are the most frequently represented in Bacteria. Although several of these gene products were shown to possess inhibitory activity, with an exception of ecotin and staphostatins, the biological function of microbial inhibitors is unclear. In this review we present distribution of protein inhibitors from different families among prokaryotes, describe their mode of action and hypothesize on their role in microbial physiology and interactions with hosts and environment. PMID:20558234

  1. Phytomonas serpens: cysteine peptidase inhibitors interfere with growth, ultrastructure and host adhesion.

    PubMed

    Santos, André L S; d'Avila-Levy, Claudia M; Dias, Felipe A; Ribeiro, Rachel O; Pereira, Fernanda M; Elias, Camila G R; Souto-Padrón, Thaïs; Lopes, Angela H C S; Alviano, Celuta S; Branquinha, Marta H; Soares, Rosangela M A

    2006-01-01

    In this study, we report the ultrastructural and growth alterations caused by cysteine peptidase inhibitors on the plant trypanosomatid Phytomonas serpens. We showed that the cysteine peptidase inhibitors at 10 microM were able to arrest cellular growth as well as promote alterations in the cell morphology, including the parasites becoming short and round. Additionally, iodoacetamide induced ultrastructural alterations, such as disintegration of cytoplasmic organelles, swelling of the nucleus and kinetoplast-mitochondrion complex, which culminated in parasite death. Leupeptin and antipain induced the appearance of microvillar extensions and blebs on the cytoplasmic membrane, resembling a shedding process. A 40 kDa cysteine peptidase was detected in hydrophobic and hydrophilic phases of P. serpens cells after Triton X-114 extraction. Additionally, we have shown through immunoblotting that anti-cruzipain polyclonal antibodies recognised two major polypeptides in P. serpens, including a 40 kDa component. Flow cytometry analysis confirmed that this cruzipain-like protein has a location on the cell surface. Ultrastructural immunocytochemical analysis demonstrated the presence of the cruzipain-like protein on the surface and in small membrane fragments released from leupeptin-treated parasites. Furthermore, the involvement of cysteine peptidases of P. serpens in the interaction with explanted salivary glands of the phytophagous insect Oncopeltus fasciatus was also investigated. When P. serpens cells were pre-treated with either cysteine peptidase inhibitors or anti-cruzipain antibody, a significant reduction of the interaction process was observed. Collectively, these results suggest that cysteine peptidases participate in several biological processes in P. serpens including cell growth and interaction with the invertebrate vector.

  2. Authentic HIV-1 integrase inhibitors

    PubMed Central

    Liao, Chenzhong; Marchand, Christophe; Burke, Terrence R; Pommier, Yves; Nicklaus, Marc C

    2010-01-01

    HIV-1 integrase (IN) is indispensable for HIV-1 replication and has become a validated target for developing anti-AIDS agents. In two decades of development of IN inhibition-based anti-HIV therapeutics, a significant number of compounds were identified as IN inhibitors, but only some of them showed antiviral activity. This article reviews a number of patented HIV-1 IN inhibitors, especially those that possess high selectivity for the strand transfer reaction. These compounds generally have a polar coplanar moiety, which is assumed to chelate two magnesium ions in the binding site. Resistance to those compounds, when given to patients, can develop as a result of IN mutations. We refer to those compounds as authentic IN inhibitors. Continued drug development has so far delivered one authentic IN inhibitor to the market (raltegravir in 2007). Current and future attention will be focused on the development of novel authentic IN inhibitors with the goal of overcoming viral resistance. PMID:21426159

  3. Dipeptidyl peptidase-4 inhibitors and fracture risk: an updated meta-analysis of randomized clinical trials

    PubMed Central

    Fu, Jianying; Zhu, Jianhong; Hao, Yehua; Guo, Chongchong; Zhou, Zhikun

    2016-01-01

    Data on the effects of dipeptidyl peptidase-4 (DPP-4) inhibitors on fracture risk are conflicting. Here, we performed a systematic review and meta-analysis of randomized controlled trials (RCTs) assessing the effects of DPP-4 inhibitors. Electronic databases were searched for relevant published articles, and unpublished studies presented at ClinicalTrials.gov were searched for relevant clinical data. Eligible studies included prospective randomized trials evaluating DPP-4 inhibitors versus placebo or other anti-diabetic medications in patients with type 2 diabetes. Study quality was determined using Jadad scores. Statistical analyses were performed to calculate the risk ratios (RRs) and 95% confidence intervals (CIs) using fixed-effects models. There were 62 eligible RCTs with 62,206 participants, including 33,452 patients treated with DPP-4 inhibitors. The number of fractures was 364 in the exposed group and 358 in the control group. The overall risk of fracture did not differ between patients exposed to DPP-4 inhibitors and controls (RR, 0.95; 95% CI, 0.83–1.10; P = 0.50). The results were consistent across subgroups defined by type of DPP-4 inhibitor, type of control, and length of follow-up. The study showed that DPP-4 inhibitor use does not modify the risk of bone fracture compared with placebo or other anti-diabetic medications in patients with type 2 diabetes. PMID:27384445

  4. Identification and characterization of a dipeptidyl peptidase IV inhibitor from aronia juice

    SciTech Connect

    Kozuka, Miyuki; Yamane, Takuya; Nakano, Yoshihisa; Nakagaki, Takenori; Ohkubo, Iwao; Ariga, Hiroyoshi

    2015-09-25

    Aronia berries have many potential effects on health, including an antioxidant effect, effect for antimutagenesis, hepatoprotection and cardioprotection, an antidiabetic effect and inhibition of cancer cell proliferation. Previous human studies have shown that aronia juice may be useful for treatment of obesity disorders. In this study, we found that aronia juice has an inhibitory effect against dipeptidyl peptidase IV (DPP IV) (EC 3.4.14.5). DPP IV is a peptidase that cleaves the N-terminal region of incretins such as glucagon-dependent insulinotropic polypeptide (GIP) and glucagon-like peptide-1 (GLP-1). Inactivation of incretins by DPP IV induces reduction of insulin secretion. Furthermore, we identified that cyanidin 3, 5-diglucoside as the DPP IV inhibitor in aronia juice. DPP IV was inhibited more strongly by cyanidin 3, 5-diglucoside than by cyanidin and cyanidin 3-glucoside. The results suggest that DPP IV is inhibited by cyanidin 3, 5-diglucoside present in aronia juice. The antidiabetic effect of aronia juice may be mediated through DPP IV inhibition by cyanidin 3, 5-diglucoside. - Highlights: • DPP IV activity is inhibited by aronia juice. • DPP IV inhibitor is cyanidin 3, 5-diglucoside in aronia juice. • DPP IV is inhibited by cyanidin 3, 5-diglucoside more than cyanidin and cyanidin 3-glucoside.

  5. Analyzing a dipeptide library to identify human dipeptidyl peptidase IV inhibitor.

    PubMed

    Lan, Vu Thi Tuyet; Ito, Keisuke; Ohno, Masumi; Motoyama, Takayasu; Ito, Sohei; Kawarasaki, Yasuaki

    2015-05-15

    Human dipeptidyl peptidase IV (hDPPIV) inhibitors provide an effective strategy for the treatment of type 2 diabetes. Because certain peptides are known to act as hDPPIV inhibitors, a dataset of possible peptides with their inhibition intensities will facilitate the development of functional food for type 2 diabetes. In this study, we examined a total of 337 dipeptides with respect to their hDPPIV inhibitory effects. Amino acid residues at N-termini dominated their inhibition intensities. Particularly highly inhibitory dipeptides discovered included the following novel dipeptides: Thr-His, Asn-His, Val-Leu, Met-Leu, and Met-Met. Using our dataset, prime candidates contributing to the hDPPIV inhibitory effect of soy protein hydrolyzates were successfully identified. Possible dietary proteins potentially able to produce particularly highly hDPPIV inhibitory peptides are also discussed on the basis of the dataset.

  6. Trp-Arg-Xaa tripeptides act as uncompetitive-type inhibitors of human dipeptidyl peptidase IV.

    PubMed

    Lan, Vu Thi Tuyet; Ito, Keisuke; Ito, Sohei; Kawarasaki, Yasuaki

    2014-04-01

    Human dipeptidyl peptidase IV (hDPPIV, alternative name: CD26) inhibitors provide an effective strategy for the treatment of type 2 diabetes. Recently, our research group discovered a non substrate-mimic inhibitory dipeptide, Trp-Arg, by the systematic analysis of a dipeptide library. In the present study, a tripeptide library Trp-Arg-Xaa (where Xaa represents any amino acid) was analyzed to investigate the interactions of peptidergic inhibitors with hDPPIV. Trp-Arg-Glu showed the highest inhibitory effect toward hDPPIV (Ki=130 μM). All of the tested 19 Trp-Arg-Xaa tripeptides showed unique uncompetitive-type inhibition. The inhibition mechanism of Trp-Arg-Xaa is discussed based on the crystal structure of hDPPIV. The information obtained by this study suggests a novel concept for developing hDPPIV inhibitory peptides and drugs.

  7. The effects of dipeptidyl peptidase-4 inhibitors on cardiovascular disease risks in type 2 diabetes mellitus.

    PubMed

    Yousefzadeh, Pegah; Wang, Xiangbing

    2013-01-01

    To review the current literature investigating the effects of dipeptidyl peptidase-4 (DPP-4) inhibitors on the risk factors of cardiovascular disease (CVD). We conducted a search of PubMed and MEDLINE database, using the term DPP-4 inhibitor in combination with the following terms: metabolic syndrome, hypertension, dyslipidemia, insulin resistance, obesity, and CVD. We reviewed 100 relevant studies out of 227 articles, excluding single case reports, studies using animal models, and reports not written in English. We included 38 references in this review article. The majority of the recent clinical studies have demonstrated that DPP-4 inhibitors have beneficial effects on cardiovascular (CV) system. These agents may have the potential to lower blood pressure, improve lipid profile and endothelial dysfunction, decrease the macrophage-mediated inflammatory response, and prevent myocardial injury. DPP-4 inhibitors have some CV protective effects in type 2 diabetes mellitus (T2DM) in addition to their antidiabetic actions. Long-term outcome clinical trials are under way to investigate the effects of the DPP-4 inhibitors on the elevated CV risks in patients with T2DM. Further investigation in a large cohort is warranted to assess the exact mechanisms of CV protective effects of DPP-4 inhibitors.

  8. Computational Analysis of Gynura bicolor Bioactive Compounds as Dipeptidyl Peptidase-IV Inhibitor.

    PubMed

    Rozano, Lina; Abdullah Zawawi, Muhammad Redha; Ahmad, Muhamad Aizuddin; Jaganath, Indu Bala

    2017-01-01

    The inhibition of dipeptidyl peptidase-IV (DPPIV) is a popular route for the treatment of type-2 diabetes. Commercially available gliptin-based drugs such as sitagliptin, anagliptin, linagliptin, saxagliptin, and alogliptin were specifically developed as DPPIV inhibitors for diabetic patients. The use of Gynura bicolor in treating diabetes had been reported in various in vitro experiments. However, an understanding of the inhibitory actions of G. bicolor bioactive compounds on DPPIV is still lacking and this may provide crucial information for the development of more potent and natural sources of DPPIV inhibitors. Evaluation of G. bicolor bioactive compounds for potent DPPIV inhibitors was computationally conducted using Lead IT and iGEMDOCK software, and the best free-binding energy scores for G. bicolor bioactive compounds were evaluated in comparison with the commercial DPPIV inhibitors, sitagliptin, anagliptin, linagliptin, saxagliptin, and alogliptin. Drug-likeness and absorption, distribution, metabolism, and excretion (ADME) analysis were also performed. Based on molecular docking analysis, four of the identified bioactive compounds in G. bicolor, 3-caffeoylquinic acid, 5-O-caffeoylquinic acid, 3,4-dicaffeoylquinic acid, and trans-5-p-coumaroylquinic acid, resulted in lower free-binding energy scores when compared with two of the commercially available gliptin inhibitors. The results revealed that bioactive compounds in G. bicolor are potential natural inhibitors of DPPIV.

  9. Gene Pyramiding of Peptidase Inhibitors Enhances Plant Resistance to the Spider Mite Tetranychus urticae

    PubMed Central

    Santamaria, Maria Estrella; Cambra, Inés; Martinez, Manuel; Pozancos, Clara; González-Melendi, Pablo; Grbic, Vojislava; Castañera, Pedro; Ortego, Felix; Diaz, Isabel

    2012-01-01

    The two-spotted spider mite Tetranychus urticae is a damaging pest worldwide with a wide range of host plants and an extreme record of pesticide resistance. Recently, the complete T. urticae genome has been published and showed a proliferation of gene families associated with digestion and detoxification of plant secondary compounds which supports its polyphagous behaviour. To overcome spider mite adaptability a gene pyramiding approach has been developed by co-expressing two barley proteases inhibitors, the cystatin Icy6 and the trypsin inhibitor Itr1 genes in Arabidopsis plants by Agrobacterium-mediated transformation. The presence and expression of both transgenes was studied by conventional and quantitative real time RT-PCR assays and by indirect ELISA assays. The inhibitory activity of cystatin and trypsin inhibitor was in vitro analysed using specific substrates. Single and double transformants were used to assess the effects of spider mite infestation. Double transformed lines showed the lowest damaged leaf area in comparison to single transformants and non-transformed controls and different accumulation of H2O2 as defence response in the leaf feeding site, detected by diaminobenzidine staining. Additionally, an impact on endogenous mite cathepsin B- and L-like activities was observed after feeding on Arabidopsis lines, which correlates with a significant increase in the mortality of mites fed on transformed plants. These effects were analysed in view of the expression levels of the target mite protease genes, C1A cysteine peptidase and S1 serine peptidase, identified in the four developmental mite stages (embryo, larvae, nymphs and adults) performed using the RNA-seq information available at the BOGAS T. urticae database. The potential of pyramiding different classes of plant protease inhibitors to prevent plant damage caused by mites as a new tool to prevent pest resistance and to improve pest control is discussed. PMID:22900081

  10. Gene pyramiding of peptidase inhibitors enhances plant resistance to the spider mite Tetranychus urticae.

    PubMed

    Santamaria, Maria Estrella; Cambra, Inés; Martinez, Manuel; Pozancos, Clara; González-Melendi, Pablo; Grbic, Vojislava; Castañera, Pedro; Ortego, Felix; Diaz, Isabel

    2012-01-01

    The two-spotted spider mite Tetranychus urticae is a damaging pest worldwide with a wide range of host plants and an extreme record of pesticide resistance. Recently, the complete T. urticae genome has been published and showed a proliferation of gene families associated with digestion and detoxification of plant secondary compounds which supports its polyphagous behaviour. To overcome spider mite adaptability a gene pyramiding approach has been developed by co-expressing two barley proteases inhibitors, the cystatin Icy6 and the trypsin inhibitor Itr1 genes in Arabidopsis plants by Agrobacterium-mediated transformation. The presence and expression of both transgenes was studied by conventional and quantitative real time RT-PCR assays and by indirect ELISA assays. The inhibitory activity of cystatin and trypsin inhibitor was in vitro analysed using specific substrates. Single and double transformants were used to assess the effects of spider mite infestation. Double transformed lines showed the lowest damaged leaf area in comparison to single transformants and non-transformed controls and different accumulation of H(2)O(2) as defence response in the leaf feeding site, detected by diaminobenzidine staining. Additionally, an impact on endogenous mite cathepsin B- and L-like activities was observed after feeding on Arabidopsis lines, which correlates with a significant increase in the mortality of mites fed on transformed plants. These effects were analysed in view of the expression levels of the target mite protease genes, C1A cysteine peptidase and S1 serine peptidase, identified in the four developmental mite stages (embryo, larvae, nymphs and adults) performed using the RNA-seq information available at the BOGAS T. urticae database. The potential of pyramiding different classes of plant protease inhibitors to prevent plant damage caused by mites as a new tool to prevent pest resistance and to improve pest control is discussed.

  11. Dipeptidyl Peptidase-4 Inhibitors, Peripheral Arterial Disease, and Lower Extremity Amputation Risk in Diabetic Patients.

    PubMed

    Chang, Chun-Chin; Chen, Yung-Tai; Hsu, Chien-Yi; Su, Yu-Wen; Chiu, Chun-Chih; Leu, Hsin-Bang; Huang, Po-Hsun; Chen, Jaw-Wen; Lin, Shing-Jong

    2017-03-01

    Recent studies have elucidated the vascular protective effects of dipeptidyl peptidase-4 (DPP-4) inhibitors. However, to date, no large-scale studies have been carried out to determine the impact of DPP-4 inhibitors on the occurrence of peripheral arterial disease, and lower extremity amputation risk in patients with type 2 diabetes mellitus. We conducted a retrospective registry analysis using Taiwan's National Health Insurance Research Database to investigate the correlation between the use of DPP-4 inhibitors and risk of peripheral arterial disease in patients with type 2 diabetes mellitus. A total of 82,169 propensity score-matched pairs of DPP-4 inhibitor users and nonusers with type 2 diabetes mellitus were examined for the period 2009 to 2011. The mean age of the study subjects was 58.9 ± 12.0 years, and 54% of subjects were male. During the mean follow-up of 3.0 years (maximum, 4.8 years), a total of 3369 DPP-4 inhibitor users and 3880 DPP-4 inhibitor nonusers were diagnosed with peripheral arterial disease. Compared with nonusers, DPP-4 inhibitor users were associated with a lower risk of peripheral arterial disease (hazard ratio 0.84; 95% confidence interval, 0.80-0.88). Additionally, DPP-4 inhibitor users had a decreased risk of lower-extremity amputation than nonusers (hazard ratio 0.65; 95% confidence interval, 0.54-0.79). The association between use of DPP-4 inhibitors and risk of peripheral arterial disease was also consistent in subgroup analysis. This large-scale nationwide population-based cohort study is the first to demonstrate that treatment with DPP-4 inhibitors is associated with lower risk of peripheral arterial disease occurrence and limb amputation in patients with type 2 diabetes mellitus. Copyright © 2016 Elsevier Inc. All rights reserved.

  12. Dipeptidyl Peptidase-4 Inhibitor Increases Vascular Leakage in Retina through VE-cadherin Phosphorylation

    PubMed Central

    Lee, Choon-Soo; Kim, Yun Gi; Cho, Hyun-Jai; Park, Jonghanne; Jeong, Heewon; Lee, Sang-Eun; Lee, Seung-Pyo; Kang, Hyun-Jae; Kim, Hyo-Soo

    2016-01-01

    The inhibitors of CD26 (dipeptidyl peptidase-4; DPP4) have been widely prescribed to control glucose level in diabetic patients. DPP4-inhibitors, however, accumulate stromal cell-derived factor-1α (SDF-1α), a well-known inducer of vascular leakage and angiogenesis both of which are fundamental pathophysiology of diabetic retinopathy. The aim of this study was to investigate the effects of DPP4-inhibitors on vascular permeability and diabetic retinopathy. DPP4-inhibitor (diprotin A or sitagliptin) increased the phosphorylation of Src and vascular endothelial-cadherin (VE-cadherin) in human endothelial cells and disrupted endothelial cell-to-cell junctions, which were attenuated by CXCR4 (receptor of SDF-1α)-blocker or Src-inhibitor. Disruption of endothelial cell-to-cell junctions in the immuno-fluorescence images correlated with the actual leakage of the endothelial monolayer in the transwell endothelial permeability assay. In the Miles assay, vascular leakage was observed in the ears into which SDF-1α was injected, and this effect was aggravated by DPP4-inhibitor. In the model of retinopathy of prematurity, DPP4-inhibitor increased not only retinal vascularity but also leakage. Additionally, in the murine diabetic retinopathy model, DPP4-inhibitor increased the phosphorylation of Src and VE-cadherin and aggravated vascular leakage in the retinas. Collectively, DPP4-inhibitor induced vascular leakage by augmenting the SDF-1α/CXCR4/Src/VE-cadherin signaling pathway. These data highlight safety issues associated with the use of DPP4-inhibitors. PMID:27381080

  13. The dipeptidyl peptidase-4 inhibitor sitagliptin suppresses mouse colon tumorigenesis in type 2 diabetic mice.

    PubMed

    Yorifuji, Naoki; Inoue, Takuya; Iguchi, Munetaka; Fujiwara, Kaori; Kakimoto, Kazuki; Nouda, Sadaharu; Okada, Toshihiko; Kawakami, Ken; Abe, Yosuke; Takeuchi, Toshihisa; Higuchi, Kazuhide

    2016-02-01

    Patients with type 2 diabetes mellitus are known to have an increased risk of colorectal neoplasia. Dipeptidyl peptidase-4 (DPP-4) inhibitors have been used as a new therapeutic tool for type 2 diabetes. Since the substrates for DPP-4 include intestinotrophic hormones and chemokines such as GLP-2 and stromal cell-derived factor-1 (SDF-1), which are associated with tumor progression, DPP-4 inhibitors may increase the risk of colorectal tumors. However, the influence of DPP-4 inhibitors on colorectal neoplasia in patients with type 2 diabetes remains unknown. In the present study, we show that long-term administration of a DPP-4 inhibitor, sitagliptin (STG), suppressed colon carcinogenesis in leptin-deficient (ob/ob) C57BL/6J mice. Colonic mucosal concentrations of glucagon‑like peptide-1 (GLP-1) and GLP-2 were significantly elevated in the ob/ob mice. However, mucosal GLP concentrations and the plasma level of SDF-1 were not affected by the administration of STG. Real‑time PCR analysis revealed that colonic mucosal IL-6 mRNA expression, which was significantly upregulated in the ob/ob mice, was significantly suppressed by the long-term administration of STG. These results suggest that a DPP-4 inhibitor may suppress colon carcinogenesis in mice with type 2 diabetes in a GLP-independent manner. Since DPP-4 has multiple biological functions, further studies analyzing other factors related to colon carcinogenesis are needed.

  14. Dipeptidyl peptidase-4 inhibitors as add-on therapy to insulin: rationale and evidences.

    PubMed

    Singh, Awadhesh Kumar; Singh, Ritu

    2016-01-08

    Type 2 diabetes mellitus being a progressive disease will eventually require insulin therapy. While insulin therapy is the ultimate option, many patients still fall short of target glycemic goals. This could, perhaps be due to the fear, unwillingness and practical barriers to insulin intensification. Hypoglycemia, oedema and weight gain is another limitation. Newer therapies with dipeptidyl peptidase-4 (DPP-4) inhibitors and sodium-glucose co-transporter-2 (SGLT-2) inhibitors are exciting options as both classes do not cause hypoglycemia and are either weight neutral or cause weight loss. DPP-4 inhibitors are an appealing option as an add-on therapy to insulin especially in elderly and patients with renal impairment. Moreover, glucose-dependent insulinotropic polypeptide (GIP) mediated augmentation of glucagon by DPP-4 inhibitors could also protect against hypoglycemia. These collective properties make these class a potential add-on candidate to insulin therapy. This article will review the efficacy and safety of DPP-4 inhibitors as an add-on to insulin therapy.

  15. Differential Inhibition of Signal Peptide Peptidase Family Members by Established γ-Secretase Inhibitors

    PubMed Central

    Ran, Yong; Ladd, Gabriela Z.; Ceballos-Diaz, Carolina; Jung, Joo In; Greenbaum, Doron; Felsenstein, Kevin M.; Golde, Todd E.

    2015-01-01

    The signal peptide peptidases (SPPs) are biomedically important proteases implicated as therapeutic targets for hepatitis C (human SPP, (hSPP)), plasmodium (Plasmodium SPP (pSPP)), and B-cell immunomodulation and neoplasia (signal peptide peptidase like 2a, (SPPL2a)). To date, no drug-like, selective inhibitors have been reported. We use a recombinant substrate based on the amino-terminus of BRI2 fused to amyloid β 1-25 (Aβ1-25) (FBA) to develop facile, cost-effective SPP/SPPL protease assays. Co-transfection of expression plasmids expressing the FBA substrate with SPP/SPPLs were conducted to evaluate cleavage, which was monitored by ELISA, Western Blot and immunoprecipitation/MALDI-TOF Mass spectrometry (IP/MS). No cleavage is detected in the absence of SPP/SPPL overexpression. Multiple γ-secretase inhibitors (GSIs) and (Z-LL)2 ketone differentially inhibited SPP/SPPL activity; for example, IC50 of LY-411,575 varied from 51±79 nM (on SPPL2a) to 5499±122 nM (on SPPL2b), while Compound E showed inhibition only on hSPP with IC50 of 1465±93 nM. Data generated were predictive of effects observed for endogenous SPPL2a cleavage of CD74 in a murine B-Cell line. Thus, it is possible to differentially inhibit SPP family members. These SPP/SPPL cleavage assays will expedite the search for selective inhibitors. The data also reinforce similarities between SPP family member cleavage and cleavage catalyzed by γ-secretase. PMID:26046535

  16. Identification and characterization of a dipeptidyl peptidase IV inhibitor from aronia juice.

    PubMed

    Kozuka, Miyuki; Yamane, Takuya; Nakano, Yoshihisa; Nakagaki, Takenori; Ohkubo, Iwao; Ariga, Hiroyoshi

    2015-09-25

    Aronia berries have many potential effects on health, including an antioxidant effect, effect for antimutagenesis, hepatoprotection and cardioprotection, an antidiabetic effect and inhibition of cancer cell proliferation. Previous human studies have shown that aronia juice may be useful for treatment of obesity disorders. In this study, we found that aronia juice has an inhibitory effect against dipeptidyl peptidase IV (DPP IV) (EC 3.4.14.5). DPP IV is a peptidase that cleaves the N-terminal region of incretins such as glucagon-dependent insulinotropic polypeptide (GIP) and glucagon-like peptide-1 (GLP-1). Inactivation of incretins by DPP IV induces reduction of insulin secretion. Furthermore, we identified that cyanidin 3, 5-diglucoside as the DPP IV inhibitor in aronia juice. DPP IV was inhibited more strongly by cyanidin 3, 5-diglucoside than by cyanidin and cyanidin 3-glucoside. The results suggest that DPP IV is inhibited by cyanidin 3, 5-diglucoside present in aronia juice. The antidiabetic effect of aronia juice may be mediated through DPP IV inhibition by cyanidin 3, 5-diglucoside. Copyright © 2015 Elsevier Inc. All rights reserved.

  17. SVMDLF: A novel R-based Web application for prediction of dipeptidyl peptidase 4 inhibitors.

    PubMed

    Chandra, Sharat; Pandey, Jyotsana; Tamrakar, Akhilesh K; Siddiqi, Mohammad Imran

    2017-06-06

    Dipeptidyl peptidase 4 (DPP4) is a well-known target for the antidiabetic drugs. However, currently available DPP4 inhibitor screening assays are costly and labor-intensive. It is important to create a robust in silico method to predict the activity of DPP4 inhibitor for the new lead finding. Here, we introduce an R-based Web application SVMDLF (SVM-based DPP4 Lead Finder) to predict the inhibitor of DPP4, based on support vector machine (SVM) model, predictions of which are confirmed by in vitro biological evaluation. The best model generated by MACCS structure fingerprint gave the Matthews correlation coefficient of 0.87 for the test set and 0.883 for the external test set. We screened Maybridge database consisting approximately 53,000 compounds. For further bioactivity assay, six compounds were shortlisted, and of six hits, three compounds showed significant DPP4 inhibitory activities with IC50 values ranging from 8.01 to 10.73 μm. This application is an OpenCPU server app which is a novel single-page R-based Web application for the DPP4 inhibitor prediction. The SVMDLF is freely available and open to all users at http://svmdlf.net/ocpu/library/dlfsvm/www/ and http://www.cdri.res.in/svmdlf/. © 2017 John Wiley & Sons A/S.

  18. Dipeptidyl peptidase-4 inhibitors and the ischemic heart: Additional benefits beyond glycemic control.

    PubMed

    Chattipakorn, Nipon; Apaijai, Nattayaporn; Chattipakorn, Siriporn C

    2016-01-01

    Obese-insulin resistance and type 2 diabetes mellitus (T2DM) have become global health problems, and they are both associated with a higher risk of ischemic heart disease. Although reperfusion therapy is the treatment to increase blood supply to the ischemic myocardium, this intervention potentially causes cardiac tissue damage and instigates arrhythmias, processes known as reperfusion injury. Dipeptidyl peptidase 4 (DPP-4) inhibitors are glycemic control drugs commonly used in T2DM patients. Growing evidence from basic and clinical studies demonstrates that a DPP-4 inhibitor could exert cardioprotection and improve left ventricular function by reducing oxidative stress, apoptosis, and increasing reperfusion injury salvage kinase (RISK) activity. However, recent reports also showed potentially adverse cardiac events due to the use of a DPP-4 inhibitor. To investigate this disparity, future large clinical trials are essential in verifying whether DPP-4 inhibitors are beneficial beyond their glycemic control particularly for the ischemic heart in obese-insulin resistant subjects and T2DM patients. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  19. C-Peptide Levels Predict the Effectiveness of Dipeptidyl Peptidase-4 Inhibitor Therapy

    PubMed Central

    Demir, Sevin; Sargin, Mehmet

    2016-01-01

    Background. Our aim was to define the conditions that affect therapeutic success when dipeptidyl peptidase-4 (DPP-4) inhibitor is added to metformin monotherapy. Materials and Methods. We reviewed the medical records of 56 patients who had received DPP-4 inhibitor as an add-on to metformin monotherapy and evaluated their response in the first year of therapy. Fasting blood glucose (FBG), HbA1c, C-peptide, and weight of the patients were recorded at 3-month intervals during the first year of treatment. Results. Patients who added DPP-4 inhibitor to metformin monotherapy had significant weight loss (P = 0.004) and FBG and HbA1c levels were significantly lowered during the first 6 months (both P < 0.001). Baseline levels of C-peptide were predictive for success of the treatment (P = 0.02), even after correction for confounding factors, for example, age, gender, or BMI (P = 0.03). Duration of diabetes was not a predictor of response to treatment (P = 0.60). Conclusion. Our study demonstrates that in patients having inadequate glycemic control, the addition of a DPP-4 inhibitor as a second oral agent to metformin monotherapy provides better glycemic control, protects β-cell reserves, and does not cause weight gain. These effects depend on baseline C-peptide levels. PMID:27882332

  20. Role of dipeptidyl peptidase-4 inhibitors in new-onset diabetes after transplantation

    PubMed Central

    Lim, Sun Woo; Jin, Ji Zhe; Jin, Long; Jin, Jian; Li, Can

    2015-01-01

    Despite strict pre- and post-transplantation screening, the incidence of new-onset diabetes after transplantation (NODAT) remains as high as 60%. This complication affects the risk of cardiovascular events and patient and graft survival rates. Thus, reducing the impact of NODAT could improve overall transplant success. The pathogenesis of NODAT is multifactorial, and both modifiable and nonmodifiable risk factors have been implicated. Monitoring and controlling the blood glucose profile, implementing multidisciplinary care, performing lifestyle modifications, using a modified immunosuppressive regimen, administering anti-metabolite agents, and taking a conventional antidiabetic approach may diminish the incidence of NODAT. In addition to these preventive strategies, inhibition of dipeptidyl peptidase-4 (DPP4) by the gliptin family of drugs has recently gained considerable interest as therapy for type 2 diabetes mellitus and NODAT. This review focuses on the role of DPP4 inhibitors and discusses recent literature regarding management of NODAT. PMID:26552451

  1. Predictive Factors for Efficacy of Dipeptidyl Peptidase-4 Inhibitors in Patients with Type 2 Diabetes Mellitus.

    PubMed

    Yagi, Shusuke; Aihara, Ken-Ichi; Akaike, Masashi; Fukuda, Daiju; Salim, Hotimah Masdan; Ishida, Masayoshi; Matsuura, Tomomi; Ise, Takayuki; Yamaguchi, Koji; Iwase, Takashi; Yamada, Hirotsugu; Soeki, Takeshi; Wakatsuki, Tetsuzo; Shimabukuro, Michio; Matsumoto, Toshio; Sata, Masataka

    2015-08-01

    Predictive factors for the efficacy of dipeptidyl peptidase-4 (DPP-4) inhibitors for lowering glycosylated hemoglobin (HbA1c) remain unclear in patients with type 2 diabetes mellitus. The aim of this study is therefore to clarify predictive factors of the efficacy of DPP-4 inhibitors for lowering HbA1c after 12 months of treatment. A total of 191 consecutive type 2 diabetic patients (male sex 55%, mean age, 68.3±35.8 years), who had been treated with DPP-4 inhibitors for 12 months, were enrolled in this study and evaluated retrospectively. After 12 months of DPP-4 inhibitor treatment, random blood glucose level, and HbA1c level, decreased from 167±63 to 151±49 mg/dL (P<0.01), and from 7.5%±1.3% to 6.9%±0.9% (P<0.01) respectively, without severe side effects. Multiple regression analysis showed that predictors of DPP-4 inhibitor treatment efficacy in lowering HbA1c level after 12 months were a decrease in HbA1c level after 3 months of treatment, a high baseline HbA1c level, a low baseline body mass index, and the absence of coronary artery disease. Most suitable candidates for treatment with DPP-4 inhibitors are diabetics who are not obese and do not have coronary artery disease. In addition, long-term efficacy of DPP-4 inhibitors can be predicted by decrement of HbA1c after 3 months of treatment.

  2. Linagliptin: the newest dipeptidyl peptidase-4 inhibitor for type 2 diabetes mellitus.

    PubMed

    Aletti, Rachael; Cheng-Lai, Angela

    2012-01-01

    Dipeptidyl peptidase-4 (DPP-4) inhibitors are some of the newest medications in our armamentarium for the management of type 2 diabetes mellitus. Through inhibition of the DPP-4 enzyme, these agents increase the amount of circulating incretin hormones, leading to an increase in insulin release and a suppression of glucagon secretion. Linagliptin is the third DPP-4 inhibitor approved by the Food and Drug Administration in the United States. It has been studied as monotherapy and as an adjunctive therapy to other oral agents in a dual or triple combination regimen. Linagliptin lowers glycosylated hemoglobin by about 0.4% when used as monotherapy and by about 0.5% to 1.1% when used in combination with other oral antihyperglycemic agents. Since linagliptin is mostly eliminated via the enterohepatic system (80%) and not to a significant extent through renal excretion, dosage adjustment is not necessary in patients with renal impairment. Linagliptin also has a favorable safety profile; nasopharyngitis is one of the more common observed side effects. Given its encouraging safety and efficacy profile, linagliptin is a good alternative to the other 2 agents in this class, especially for patients with renal impairment. This article provides a review of the pharmacologic and pharmacokinetic properties of linagliptin. The differences among the 3 available DPP-4 inhibitors will also be examined.

  3. Renoprotective effects of a dipeptidyl peptidase 4 inhibitor in a mouse model of progressive renal fibrosis.

    PubMed

    Uchida, Takahiro; Oda, Takashi; Matsubara, Hidehito; Watanabe, Atsushi; Takechi, Hanako; Oshima, Naoki; Sakurai, Yutaka; Kumagai, Hiroo

    2017-11-01

    Although the effects of dipeptidyl peptidase 4 (DPP-4) inhibitors beyond their hypoglycemic action have been reported, whether these inhibitors have renoprotective effects in nondiabetic chronic kidney disease (CKD) is unclear. We examined the therapeutic effects of DPP-4 inhibition in mice with unilateral ureteral obstruction (UUO), a nondiabetic model of progressive renal fibrosis. After UUO surgery, mice were administered either the DPP-4 inhibitor alogliptin or a vehicle by oral gavage once a day for 10 days. Physiological parameters, degrees of renal fibrosis and inflammation, and molecules related to renal fibrosis and inflammation were then evaluated using sham-operated mice as controls. Positive area of α-smooth muscle actin was significantly smaller and expression of transforming growth factor β messenger RNA was significantly lower in the alogliptin-treated group than in the vehicle-treated group. Renal total collagen content was also significantly lower in the alogliptin-treated group than in the vehicle-treated group. These results suggest that alogliptin exerted renoprotective antifibrotic effects. The positive area of F4/80 was significantly smaller and expression of CD68 messenger RNA was significantly lower in the alogliptin-treated group than in the vehicle-treated group, suggesting an anti-inflammatory action by the DPP-4 inhibitor. Compared to the results for the vehicle-treated group, expression of markers for M1 macrophages tended to be lower in the alogliptin-treated group, and the relative expression of M2 macrophages tended to be higher. These data indicate the various protective effects of DPP-4 inhibition in nondiabetic mice with UUO. DPP-4 inhibitors may therefore be promising therapeutic choices even for nondiabetic CKD patients.

  4. Decreased hepatic glucose production in obese rats by dipeptidyl peptidase-IV inhibitor sitagliptin.

    PubMed

    Lu, Ying-Li; Zhou, De-Quan; Zhai, Hua-Ling; Wu, Hui; Guo, Zeng-Kui

    2012-05-01

    Dipeptidyl peptidase-IV (DPP-4) inhibitors are now used to improve postprandial glycemic control in type 2 diabetes. However, their effects on hepatic glucose production (HGP) in obesity are not clear. This study was designed to test the hypothesis that gluconeogenesis and HGP can be modulated by DPP-4 inhibitors in obesity. Sprague Dawley male rats were divided into four groups, each on a different diet: general rat chow, n = 10 (G); G + sitagliptin, n = 10; high fat chow (obesity), n = 10 (55% fat calories, HFO); HFO + sitagliptin, n = 10. After 10 weeks, the rats were fasted overnight and glucose metabolism was determined using 3-(3)H-glucose and (14)C-glycerol as tracers. Glycerol rate of appearance (P < 0.00001), plasma glycerol (P < 0.05) and free fatty acid (FFA) (P < 0.05) concentrations, and HGP (P < 0.05) were decreased in HFO + sitagliptin group compared with HFO group, but there was no significant difference between G and G + sitagliptin groups (P > 0.05). Gluconeogenesis in HFO group was five times of that in G rats (P < 0.01), but was significantly declined in HFO + sitagliptin group (P < 0.0001). Gluconeogenesis and HGP were inhibited by sitagliptin in high fat-induced obese rats due to decreased glycerol availability, which was a result of reduced glycerol release from adipose tissues. The finding suggests that sitagliptin is potentially useful for controlling fasting glucose in obesity, thereby delaying or preventing the development of diabetes.

  5. Cost effectiveness of dipeptidyl peptidase-4 inhibitors for type 2 diabetes.

    PubMed

    Geng, Jinsong; Yu, Hao; Mao, Yiwei; Zhang, Peng; Chen, Yingyao

    2015-06-01

    Dipeptidyl peptidase-4 (DPP-4) inhibitors are a new class of antidiabetic drugs used for treating type 2 diabetes mellitus. While many studies have reported on the cost-effectiveness of DPP-4 inhibitors for treating type 2 diabetes, a systematic review of economic evaluations of DPP-4 inhibitors is currently lacking. The aim of this systematic review was to assess the cost effectiveness of DPP-4 inhibitors for patients with type 2 diabetes. MEDLINE, EMBASE, National Health Service Economic Evaluation Database (NHS EED), Web of Science, EconLit databases, and the Cochrane Library were searched in November 2013. Studies assessing the cost effectiveness of DPP-4 inhibitors for type 2 diabetes were eligible for analysis. DPP-4 inhibitor monotherapy or combinations with other antidiabetic agents were included in the review. The DPP-4 inhibitors were all marketed drugs. Two reviewers independently reviewed titles, abstracts, and articles sequentially to select studies for data abstraction based on the inclusion and exclusion criteria. Disagreements were resolved by consensus. The quality of included studies was assessed according to the 24-item checklist of the Consolidated Health Economic Evaluation Reporting Standards (CHEERS) statement. The costs reported by the included studies were converted to US dollars via purchasing power parities (PPP) in the year 2013 using the CCEMG-EPPI-Center Cost Converter. A total of 11 published studies were selected for inclusion; all were cost-utility analyses. Nine studies were conducted from a payer perspective and one used a societal perspective; however, the perspective of the other study was unclear. Four studies were of good quality, six were of moderate quality, and one was of low quality. Of the seven studies comparing DPP-4 inhibitors plus metformin with sulfonylureas plus metformin, six concluded that DPP-4 inhibitors were cost effective in patients with type 2 diabetes who were no longer adequately controlled by metformin

  6. Alogliptin: a new dipeptidyl peptidase-4 inhibitor for type 2 diabetes mellitus.

    PubMed

    Jarvis, Courtney I; Cabrera, Adriana; Charron, Derek

    2013-11-01

    To review the pharmacology, pharmacokinetics, safety, and efficacy of alogliptin, a dipeptidyl peptidase-4 (DPP-4) inhibitor in the management of type 2 diabetes mellitus (T2DM). Searches were conducted in MEDLINE (1946-August 2013) and Embase (1974-August 2013) for English language articles using key words alogliptin, SYR-332, Nesina, Oseni, and Kazano. References of articles were reviewed to identify any additional sources. Articles with adequate sample sizes, evaluating clinically relevant end points were included. Alogliptin is a highly selective and potent competitive inhibitor of DPP-4. The DPP-4 enzyme rapidly inactivates the incretin hormones glucagon-like peptide-1 (GLP-1) and glucose-dependent insulinotropic polypeptide. GLP-1, which releases postprandial insulin in response to meals, is thought to be deficient in patients with T2DM. Studies evaluating the role of alogliptin in T2DM have shown significant reductions in blood glucose and hemoglobin A1C (A1C) levels. Alogliptin doses of 12.5 to 25 mg once daily reduced A1C by 0.56% to 0.59% as monotherapy. Patients given alogliptin in addition to other antidiabetic agentsexperienced additional A1C lowering of 0.4% to 0.8%. Side effects of alogliptin include nasopharyngitis, upper-respiratory tract infections, and headache. Alogliptin demonstrates a neutral effect on weight. A large trial evaluating the cardiovascular safety of alogliptin is currently being conducted. Alogliptin is the fourth DDP-4 inhibitor approved in the US for the treatment of T2DM. It is available alone (Nesina) and in fixed-dose combinations with metformin (Kazano) and pioglitazone (Oseni). It has no demonstrable advantages over other agents in its class.

  7. Clinical implications of cardiovascular preventing pleiotropic effects of dipeptidyl peptidase-4 inhibitors.

    PubMed

    Chrysant, Steven G; Chrysant, George S

    2012-06-01

    Dipeptidyl peptidase-4 (DPP-4) inhibitors are novel drugs for the treatment of type 2 diabetes mellitus. They exert their action through inhibition of the catabolism of locally secreted incretins such as glucagon-like peptide-4 (GLP-4) and glucose-dependent insulinotropic polypeptide (GIP) by inhibiting enzyme DPP-4. GLP-1 and GIP are secreted from the gastrointestinal tract in response to food intake. GLP-1 is secreted from L cells present in the mucosa of the small intestine and colon, whereas GIP is secreted from K cells of the jejunum. These 2 incretins lower blood glucose levels and postprandial hyperglycemia by stimulating insulin release from b cells of the pancreas, thus increasing insulin sensitivity, delaying gastrointestinal emptying, decreasing food intake through early satiety, and causing weight loss in the long term. However, their action is short-lived (2 to 3 minutes) because of catabolism by the DPP-4 enzyme. The importance of DPP-4 inhibitors lies in their blockade of the DPP-4 enzyme leading to the prevention of their catabolism and thus increasing their blood levels, extending the duration of their action, and improving their blood glucose-lowering effect. In addition to their antidiabetic action, recent experimental and clinical studies have demonstrated a pleiotropic cardiovascular protective effect of these agents independent of their antidiabetic action. They prevent atherosclerosis, improve endothelial dysfunction, lower blood pressure, and prevent myocardial injury. All these actions are discussed in this concise review. In conclusion, DPP-4 inhibitors are novel antidiabetic agents with pleiotropic cardiovascular protective effects in addition to their antidiabetic action. Copyright © 2012 Elsevier Inc. All rights reserved.

  8. Linagliptin: a novel dipeptidyl peptidase 4 inhibitor with a unique place in therapy.

    PubMed

    Barnett, Anthony H

    2011-06-01

    The dipeptidyl peptidase 4 (DPP-4) inhibitors comprise a promising new class of agent for the management of type 2 diabetes. They possess a range of physiological effects associated with improved glycemic control including stimulation of glucose-dependent insulin secretion and suppression of glucagon secretion, and lower blood glucose levels through different, but potentially complementary, mechanisms to standard oral therapies. Linagliptin is the latest DPP-4 inhibitor to complete pivotal phase 3 trials. The data show that linagliptin provides significant, clinically meaningful and sustained improvements in glycemic control, with an incidence of adverse events similar to placebo and an excellent tolerability profile. In addition, linagliptin has been shown to be weight neutral and, importantly, there was no increased risk of hypoglycemia attributed to linagliptin use in monotherapy or combination therapy with metformin or pioglitazone. A unique characteristic of linagliptin that differentiates it from other members of the class is its primarily nonrenal route of excretion. The linagliptin phase 3 program included several hundred patients with type 2 diabetes and different stages of renal disease and the data suggest that the drug would not need dose adjustment, regardless of the degree of renal impairment. There is a particular need for safe and effective therapeutic agents that can be used when renal function declines. Linagliptin has recently been approved by the US Food and Drug Administration and may find a place in therapy as a treatment option for the significant number of patients in whom metformin and the other DPP-4 inhibitors are either contraindicated or require dose adjustment because of moderate to severe renal impairment.

  9. Crystal structures of DPP-IV (CD26) from rat kidney exhibit flexible accommodation of peptidase-selective inhibitors.

    PubMed

    Longenecker, Kenton L; Stewart, Kent D; Madar, David J; Jakob, Clarissa G; Fry, Elizabeth H; Wilk, Sherwin; Lin, Chun W; Ballaron, Stephen J; Stashko, Michael A; Lubben, Thomas H; Yong, Hong; Pireh, Daisy; Pei, Zhonghua; Basha, Fatima; Wiedeman, Paul E; von Geldern, Thomas W; Trevillyan, James M; Stoll, Vincent S

    2006-06-20

    Dipeptidyl peptidase IV (DPP-IV) belongs to a family of serine peptidases, and due to its indirect regulatory role in plasma glucose modulation, DPP-IV has become an attractive pharmaceutical target for diabetes therapy. DPP-IV inactivates the glucagon-like peptide (GLP-1) and several other naturally produced bioactive peptides that contain preferentially a proline or alanine residue in the second amino acid sequence position by cleaving the N-terminal dipeptide. To elucidate the details of the active site for structure-based drug design, we crystallized a natural source preparation of DPP-IV isolated from rat kidney and determined its three-dimensional structure using X-ray diffraction techniques. With a high degree of similarity to structures of human DPP-IV, the active site architecture provides important details for the design of inhibitory compounds, and structures of inhibitor-protein complexes offer detailed insight into three-dimensional structure-activity relationships that include a conformational change of Tyr548. Such accommodation is exemplified by the response to chemical substitution on 2-cyanopyrrolidine inhibitors at the 5 position, which conveys inhibitory selectivity for DPP-IV over closely related homologues. A similar conformational change is also observed in the complex with an unrelated synthetic inhibitor containing a xanthine core that is also selective for DPP-IV. These results suggest the conformational flexibility of Tyr548 is unique among protein family members and may be utilized in drug design to achieve peptidase selectivity.

  10. Dipeptidyl peptidase-4 inhibitors and bone metabolism: is vitamin D the link?

    PubMed

    Barchetta, I; Cimini, F A; Bloise, D; Cavallo, M G

    2016-10-01

    Dipeptidyl peptidase-4 inhibitors (DPP4-Is) represent a promising class of agents for type 2 diabetes treatment. Experimental models and clinical studies have reported positive effects of DPP4-Is on bone; however, how DPP4-Is positively impact bone homeostasis in humans remains an unanswered question. Aim of this study investigated the relationship between treatment with DPP4-Is and vitamin D balance in patients with type 2 diabetes. This is a cross-sectional study. A total of 295 consecutive individuals with type 2 diabetes referring to our diabetes outpatient clinics were enrolled; among them, 53 % were in treatment with DPP4-Is. Metabolic profile and routine biochemistry were assessed by standard methods; serum 25(OH) vitamin D levels [25(OH)D] were measured by colorimetric method (LAISON, DiaSorin). DPP4-Is-treated participants had significantly higher serum 25(OH)D levels then those undertaking other antidiabetic therapies (18.4 ± 10.7 vs. 14.9 ± 8.6 ng/ml, p = 0.004); this association persisted after adjusting for all major confounders. Increased 25(OH)D concentrations also correlated with the duration of DPP4-Is treatment and with a stronger DPP4 inhibitory activity. DPP4-Is treatment is associated with improved vitamin D balance in people with type 2 diabetes; our findings suggest that vitamin D may underlie the link between DPP4-Is and bone metabolism.

  11. Saxagliptin: a new dipeptidyl peptidase-4 inhibitor for the treatment of type 2 diabetes.

    PubMed

    Deacon, Carolyn F; Holst, Jens J

    2009-05-01

    Saxagliptin is a potent and selective reversible inhibitor of dipeptidyl peptidase-4, which is being developed for the treatment of type 2 diabetes. It is absorbed rapidly after oral administration and has a pharmacokinetic profile compatible with once daily dosing. Saxagliptin is metabolized in vivo to form an active metabolite, and both parent drug and metabolite are excreted primarily via the kidneys. Saxagliptin reduces the degradation of the incretin hormone glucagon-like peptide-1, thereby enhancing its actions, and is associated with improved beta-cell function and suppression of glucagon secretion. Clinical trials of up to 24 weeks duration have shown that saxagliptin improves glycemic control in monotherapy and provides additional efficacy when used in combination with other oral antidiabetic agents (metformin, sulfonylurea, thiazolidinedione). Both fasting and postprandial glucose concentrations are reduce leading to clinically meaningful reductions in glycated hemoglobin, and due to the glucose-dependency of its mechanism of action, there is a low risk of hypoglycemia. Saxagliptin is reported to be well tolerated with a side-effect profile similar to placebo. It has a neutral effect on body weight and dose adjustment because of age, gender, or hepatic impairment is not necessary. Saxagliptin is being co-developed by Bristol-Myers-Squibb (New York, NY, USA) and AstraZeneca (Cheshire, UK), and is currently undergoing regulatory review.

  12. Dipeptidyl Peptidase IV Inhibition Does Not Adversely Affect Immune or Virological Status in HIV Infected Men And Women: A Pilot Safety Study

    PubMed Central

    Goodwin, Scott R.; Reeds, Dominic N.; Royal, Michael; Struthers, Heidi; Laciny, Erin

    2013-01-01

    Context: People infected with HIV have a higher risk for developing insulin resistance, diabetes, and cardiovascular disease than the general population. Dipeptidyl peptidase IV (DPP4) inhibitors are glucose-lowering medications with pleiotropic actions that may particularly benefit people with HIV, but the immune and virological safety of DPP4 inhibition in HIV is unknown. Objective: DPP4 inhibition will not reduce CD4+ T lymphocyte number or increase HIV viremia in HIV-positive adults. Design: This was a randomized, placebo-controlled, double-blind safety trial of sitagliptin in HIV-positive adults. Setting: The study was conducted at an academic medical center. Participants: Twenty nondiabetic HIV-positive men and women (9.8 ± 5.5 years of known HIV) taking antiretroviral therapy and with stable immune (625 ± 134 CD4+ T cells per microliter) and virological (<48 copies HIV RNA per milliliter) status. Intervention: The intervention included sitagliptin (100 mg/d) vs matching placebo for up to 24 weeks. Main Outcome Measures: CD4+ T cell number and plasma HIV RNA were measured every 4 weeks; fasting serum regulated upon activation normal T-cell expressed and secreted (RANTES), stromal derived factor (SDF)-1α, Soluble TNF receptor II, and oral glucose tolerance were measured at baseline, week 8, and the end of study. ANOVA was used for between-group comparisons; P < .05 was considered significant. Results: Compared with placebo, sitagliptin did not reduce CD4+ T cell count, plasma HIV RNA remained less than 48 copies/mL, RANTES and soluble TNF receptor II concentrations did not increase. SDF1α concentrations declined (P < .0002) in the sitagliptin group. The oral glucose tolerance levels improved in the sitagliptin group at week 8. Conclusions: Despite lowering SDF1α levels, sitagliptin did not adversely affect immune or virological status, or increase immune activation, but did improve glycemia in healthy, nondiabetic HIV-positive adults. These safety data

  13. Curcumin derivatives as HIV-1 protease inhibitors

    SciTech Connect

    Sui, Z.; Li, J.; Craik, C.S.; Ortiz de Montellano, P.R.

    1993-12-31

    Curcumin, a non-toxic natural compound from Curcuma longa, has been found to be an HIV-1 protease inhibitor. Some of its derivatives were synthesized and their inhibitory activity against the HIV-1 protease was tested. Curcumin analogues containing boron enhanced the inhibitory activity. At least of the the synthesized compounds irreversibly inhibits the HIV-1 protease.

  14. Impact of dipeptidyl peptidase-4 inhibitors on serum adiponectin: a meta-analysis.

    PubMed

    Liu, Xin; Men, Peng; Wang, Yuhui; Zhai, Suodi; Liu, George

    2016-11-23

    Adiponectin, an adipose-specific protein, is negatively correlated with pro-atherogenic low-density lipoprotein cholesterol (LDL-C) and other cardiovascular risk factors such as insulin resistance. Therefore, low levels of adiponectin are associated with a higher risk for diabetes and cardiovascular disease. Dipeptidyl peptidase-4 inhibitors (DPP4i) have been used for the treatment of type 2 diabetes mellitus (T2DM) as reversible inhibitors through interacting with DPP4 substrate and increase serum incretins such as glucagon-like peptide-1 (GLP-1). The present study aimed to evaluate the effect of DPP4i on serum adiponectin in T2DM patients. The PubMed, Embase, and Cochrane library databases were searched from inception to February 2016. Randomized controlled trials, evaluating the DPP4i (sitagliptin and vildagliptin) versus comparator (placebo or active-comparison), in T2DM patients with duration of ≥ 12 weeks, were identified. Weighted differences in means of adiponectin levels were calculated by using a fixed or random-effects model. Ten randomized controlled trials, including 1,495 subjects, were identified. Compared with placebo, DPP4i (sitagliptin and vildagliptin) treatment significantly elevated adiponectin levels by 0.74 μg/mL (95% confidence interval [CI], 0.45 to 1.03) relative to that using an active-comparison by 0.00 μg/mL (95% CI, -0.57 to 0.56). Compared with active-comparison, vildagliptin treatment increased adiponectin levels by 0.32 μg/mL (95% CI, -0.01 to 0.65), whereas sitagliptin treatment decreased adiponectin levels by -0.24 μg/mL (95% CI, -1.07 to 0.58). Trials examining effects of other DPP4i were not found. Sitagliptin and vildagliptin increased serum adiponectin levels and had no stronger effect than traditional oral antidiabetic drugs. Further trials with larger sample size are needed to confirm the results and investigate the association between serum adiponectin levels and treatment of other DPP-4 inhibitors

  15. Dipeptidyl peptidase-4 inhibitors in type 2 diabetes therapy--focus on alogliptin.

    PubMed

    Capuano, Annalisa; Sportiello, Liberata; Maiorino, Maria Ida; Rossi, Francesco; Giugliano, Dario; Esposito, Katherine

    2013-01-01

    Type 2 diabetes mellitus is a complex and progressive disease that is showing an apparently unstoppable increase worldwide. Although there is general agreement on the first-line use of metformin in most patients with type 2 diabetes, the ideal drug sequence after metformin failure is an area of increasing uncertainty. New treatment strategies target pancreatic islet dysfunction, in particular gut-derived incretin hormones. Inhibition of the enzyme dipeptidyl peptidase-4 (DPP-4) slows degradation of endogenous glucagon-like peptide-1 (GLP-1) and thereby enhances and prolongs the action of the endogenous incretin hormones. The five available DPP-4 inhibitors, also known as 'gliptins' (sitagliptin, vildagliptin, saxagliptin, linagliptin, alogliptin), are small molecules used orally with similar overall clinical efficacy and safety profiles in patients with type 2 diabetes. The main differences between the five gliptins on the market include: potency, target selectivity, oral bioavailability, long or short half-life, high or low binding to plasma proteins, metabolism, presence of active or inactive metabolites, excretion routes, dosage adjustment for renal and liver insufficiency, and potential drug-drug interactions. On average, treatment with gliptins is expected to produce a mean glycated hemoglobin (HbA1c) decrease of 0.5%-0.8%, with about 40% of diabetic subjects at target for the HbA1c goal <7%. There are very few studies comparing DPP-4 inhibitors. Alogliptin as monotherapy or added to metformin, pioglitazone, glibenclamide, voglibose, or insulin therapy significantly improves glycemic control compared with placebo in adult or elderly patients with inadequately controlled type 2 diabetes. In the EXAMINE trial, alogliptin is being compared with placebo on cardiovascular outcomes in approximately 5,400 patients with type 2 diabetes. In clinical studies, DPP-4 inhibitors were generally safe and well tolerated. However, there are limited data on their tolerability

  16. Disposition of vildagliptin, a novel dipeptidyl peptidase 4 inhibitor, in rats and dogs.

    PubMed

    He, Handan; Tran, Phi; Yin, Hequn; Smith, Harold; Flood, Dennis; Kramp, Roger; Filipeck, Ron; Fischer, Volker; Howard, Dan

    2009-03-01

    The pharmacokinetics, absorption, metabolism, and excretion of vildagliptin, a potent and orally active inhibitor of dipeptidyl peptidase 4, were evaluated in male rats and dogs. Vildagliptin was rapidly absorbed with peak plasma concentrations occurring between 0.5 and 1.5 h. Moderate to high bioavailability was observed in both species (45-100%). The distribution and elimination half-lives of vildagliptin were short: 0.57 h [82% of area under the plasma drug concentration-time curve (AUC)] and 8.8 h in the rat and 0.05 and 0.89 h (87% of AUC) in the dog, respectively. The volume of distribution was 1.6 and 8.6 l/kg in dogs and rats, respectively, indicating moderate to high tissue distribution. The plasma clearance of vildagliptin was relatively high for the rat (2.9 l/h/kg) and dog (1.3 l/h/kg) compared with their hepatic blood flow. The major circulating components in plasma after an intravenous or oral dose were the parent compound (rat and dog), a carboxylic acid metabolite from the hydrolysis of the amide bond M15.3 (dog), and a carboxylic acid metabolite from the hydrolysis of the cyano moiety M20.7 (rat and dog). After intravenous dosing, urinary excretion of radioactivity (47.6-72.4%) was the major route of elimination for rats and dogs as 18.9 to 21.3% of the dose was excreted into urine as unchanged parent drug. The recovery was good in both species (81-100% of the dose). Vildagliptin was mainly metabolized before excretion in both species. Similar to plasma, the most predominant metabolite in excreta was M20.7 in rats and dogs, and another major metabolite in dogs was M15.3.

  17. Serpin peptidase inhibitor (SERPINB5) haplotypes are associated with susceptibility to hepatocellular carcinoma

    NASA Astrophysics Data System (ADS)

    Yang, Shun-Fa; Yeh, Chao-Bin; Chou, Ying-Erh; Lee, Hsiang-Lin; Liu, Yu-Fan

    2016-05-01

    Hepatocellular carcinoma (HCC) represents the second leading cause of cancer-related death worldwide. The serpin peptidase inhibitor SERPINB5 is a tumour-suppressor gene that promotes the development of various cancers in humans. However, whether SERPINB5 gene variants play a role in HCC susceptibility remains unknown. In this study, we genotyped 6 SNPs of the SERPINB5 gene in an independent cohort from a replicate population comprising 302 cases and 590 controls. Additionally, patients who had at least one rs2289520 C allele in SERPINB5 tended to exhibit better liver function than patients with genotype GG (Child-Pugh grade A vs. B or C; P = 0.047). Next, haplotype blocks were reconstructed according to the linkage disequilibrium structure of the SERPINB5 gene. A haplotype “C-C-C” (rs17071138 + rs3744941 + rs8089204) in SERPINB5-correlated promoter showed a significant association with an increased HCC risk (AOR = 1.450 P = 0.031). Haplotypes “T-C-A” and “C-C-C” (rs2289519 + rs2289520 + rs1455555) located in the SERPINB5 coding region had a decreased (AOR = 0.744 P = 0.031) and increased (AOR = 1.981 P = 0.001) HCC risk, respectively. Finally, an additional integrated in silico analysis confirmed that these SNPs affected SERPINB5 expression and protein stability, which significantly correlated with tumour expression and subsequently with tumour development and aggressiveness. Taken together, our findings regarding these biomarkers provide a prediction model for risk assessment.

  18. Serpin peptidase inhibitor (SERPINB5) haplotypes are associated with susceptibility to hepatocellular carcinoma

    PubMed Central

    Yang, Shun-Fa; Yeh, Chao-Bin; Chou, Ying-Erh; Lee, Hsiang-Lin; Liu, Yu-Fan

    2016-01-01

    Hepatocellular carcinoma (HCC) represents the second leading cause of cancer-related death worldwide. The serpin peptidase inhibitor SERPINB5 is a tumour-suppressor gene that promotes the development of various cancers in humans. However, whether SERPINB5 gene variants play a role in HCC susceptibility remains unknown. In this study, we genotyped 6 SNPs of the SERPINB5 gene in an independent cohort from a replicate population comprising 302 cases and 590 controls. Additionally, patients who had at least one rs2289520 C allele in SERPINB5 tended to exhibit better liver function than patients with genotype GG (Child-Pugh grade A vs. B or C; P = 0.047). Next, haplotype blocks were reconstructed according to the linkage disequilibrium structure of the SERPINB5 gene. A haplotype “C-C-C” (rs17071138 + rs3744941 + rs8089204) in SERPINB5-correlated promoter showed a significant association with an increased HCC risk (AOR = 1.450; P = 0.031). Haplotypes “T-C-A” and “C-C-C” (rs2289519 + rs2289520 + rs1455555) located in the SERPINB5 coding region had a decreased (AOR = 0.744; P = 0.031) and increased (AOR = 1.981; P = 0.001) HCC risk, respectively. Finally, an additional integrated in silico analysis confirmed that these SNPs affected SERPINB5 expression and protein stability, which significantly correlated with tumour expression and subsequently with tumour development and aggressiveness. Taken together, our findings regarding these biomarkers provide a prediction model for risk assessment. PMID:27221742

  19. Pharmacology of HIV Integrase Inhibitors

    PubMed Central

    Adams, Jessica L; Greener, Benjamin N; Kashuba, Angela DM

    2013-01-01

    Purpose of Review The purpose of this paper is to review recent and relevant pharmacology data for three HIV integrase inhibitors: raltegravir (marketed), dolutegravir and elvitegravir (both in Phase III drug development). Recent Findings Data from January 2011 to April 2012 were evaluated. These data better characterized integrase inhibitor pharmacokinetics, assessed dosing regimens and investigated previously undescribed drug-drug interactions. Due to formulation challenges, raltegravir inter- and intra-patient pharmacokinetic variability is high. Twice daily 400mg dosing has been shown to be clinically superior to 800mg once daily dosing. A pediatric formulation of raltegravir with less variable pharmacokinetics and greater bioavailability was FDA approved in December 2011. Cobicistat-boosted elvitegravir, and the second generation integrase inhibitor dolutegravir, have lower pharmacokinetic variability and are dosed once daily. Dolutegravir drug interactions are similar to raltegravir, while boosted elvitegravir participates in additional CYP3A mediated interactions. Summary Raltegravir’s potent antiretroviral activity has resulted in widespread use in both treatment naïve and experienced patients. Dolutegravir and cobicistat-boosted elvitegravir have some pharmacokinetic advantages. Pharmacokinetic data in special populations (pregnancy, pediatrics) to optimize dosing are still required. PMID:22789987

  20. Glucose dependent insulinotropic polypeptide and dipeptidyl peptidase inhibitors: Their roles in management of type 2 diabetes mellitus.

    PubMed

    Gupta, Ankit; Al-Aubaidy, Hayder A; Mohammed, Bassim I

    2016-01-01

    This review paper highlights the major advances investigating the roles of glucose dependent insulinotropic polypeptide and its receptors in glucose metabolism and their potential use in management of type 2 diabetes mellitus. It also focusses on the role of dipeptidyl peptidase-4 inhibitors in the treatment of this disease. This study discussed the recent therapeutic development which have occurred in this field, and also covering the evolvement of the potential treatments for diabetes which can be discovered and implemented in the near future to design an effective therapy for diabetes and prediabetes. Copyright © 2016 Diabetes India. Published by Elsevier Ltd. All rights reserved.

  1. The dipeptidyl peptidase IV inhibitors vildagliptin and K-579 inhibit a phospholipase C: a case of promiscuous scaffolds in proteins

    PubMed Central

    Dutta, Mouparna; Ghosh, Anindya S.; Oda, Masataka; Venkatramani, Ravindra; Rao, Basuthkar J.; Dandekar, Abhaya M.; Goñi, Félix M.

    2015-01-01

    The long term side effects of any newly introduced drug is a subject of intense research, and often raging controversies. One such example is the dipeptidyl peptidase-IV (DPP4) inhibitor used for treating type 2 diabetes, which is inconclusively implicated in increased susceptibility to acute pancreatitis. Previously, based on a computational analysis of the spatial and electrostatic properties of active site residues, we have demonstrated that phosphoinositide-specific phospholipase C (PI-PLC) from Bacillus cereus is a prolyl peptidase using in vivo experiments. In the current work, we first report the inhibition of the native activity of PI-PLC by two DPP4 inhibitors - vildagliptin (LAF-237) and K-579. While vildagliptin inhibited PI-PLC at micromolar concentrations, K-579 was a potent inhibitor even at nanomolar concentrations. Subsequently, we queried a comprehensive, non-redundant set of 5000 human proteins (50% similarity cutoff) with known structures using serine protease (SPASE) motifs derived from trypsin and DPP4. A pancreatic lipase and a gastric lipase are among the proteins that are identified as proteins having promiscuous SPASE scaffolds that could interact with DPP4 inhibitors. The presence of such scaffolds in human lipases is expected since they share the same catalytic mechanism with PI-PLC. However our methodology also detects other proteins, often with a completely different enzymatic mechanism, that have significantly congruent domains with the SPASE motifs. The reported elevated levels of serum lipase, although contested, could be rationalized by inhibition of lipases reported here. In an effort to further our understanding of the spatial and electrostatic basis of DPP4 inhibitors, we have also done a comprehensive analysis of all 76 known DPP4 structures liganded to inhibitors till date. Also, the methodology presented here can be easily adopted for other drugs, and provide the first line of filtering in the identification of pathways that

  2. The dipeptidyl peptidase IV inhibitors vildagliptin and K-579 inhibit a phospholipase C: a case of promiscuous scaffolds in proteins.

    PubMed

    Chakraborty, Sandeep; Rendón-Ramírez, Adela; Ásgeirsson, Bjarni; Dutta, Mouparna; Ghosh, Anindya S; Oda, Masataka; Venkatramani, Ravindra; Rao, Basuthkar J; Dandekar, Abhaya M; Goñi, Félix M

    2013-01-01

    The long term side effects of any newly introduced drug is a subject of intense research, and often raging controversies. One such example is the dipeptidyl peptidase-IV (DPP4) inhibitor used for treating type 2 diabetes, which is inconclusively implicated in increased susceptibility to acute pancreatitis. Previously, based on a computational analysis of the spatial and electrostatic properties of active site residues, we have demonstrated that phosphoinositide-specific phospholipase C (PI-PLC) from Bacillus cereus is a prolyl peptidase using in vivo experiments. In the current work, we first report the inhibition of the native activity of PI-PLC by two DPP4 inhibitors - vildagliptin (LAF-237) and K-579. While vildagliptin inhibited PI-PLC at micromolar concentrations, K-579 was a potent inhibitor even at nanomolar concentrations. Subsequently, we queried a comprehensive, non-redundant set of 5000 human proteins (50% similarity cutoff) with known structures using serine protease (SPASE) motifs derived from trypsin and DPP4. A pancreatic lipase and a gastric lipase are among the proteins that are identified as proteins having promiscuous SPASE scaffolds that could interact with DPP4 inhibitors. The presence of such scaffolds in human lipases is expected since they share the same catalytic mechanism with PI-PLC. However our methodology also detects other proteins, often with a completely different enzymatic mechanism, that have significantly congruent domains with the SPASE motifs. The reported elevated levels of serum lipase, although contested, could be rationalized by inhibition of lipases reported here. In an effort to further our understanding of the spatial and electrostatic basis of DPP4 inhibitors, we have also done a comprehensive analysis of all 76 known DPP4 structures liganded to inhibitors till date. Also, the methodology presented here can be easily adopted for other drugs, and provide the first line of filtering in the identification of pathways that

  3. Use of dipeptidyl peptidase-4 inhibitors for the treatment of patients with type 2 diabetes mellitus and chronic kidney disease.

    PubMed

    Mikhail, Nasser

    2012-07-01

    Choices of antidiabetic agents for patients with type 2 diabetes mellitus (T2DM) and chronic kidney disease (CKD) are limited. Available data suggest that the use of dipeptidyl peptidase-4 (DPP-4) inhibitors may be safe in patients at various stages of renal insufficiency. However, except for linagliptin, dosage adjustment is necessary. The efficacy of DPP-4 inhibitors in patients with renal insufficiency is generally similar to that of the general population with T2DM, with reductions in mean glycated hemoglobin (HbA(1c)) levels of 0.7% to 1.0% compared with baseline, and 0.4% to 0.7% compared with placebo. The frequency of moderate hypoglycemia is 21% to 80% higher with DPP-4 inhibitors compared with placebo, but the frequency of severe hypoglycemia is similar to that with placebo. The use of DPP-4 inhibitors in patients with renal insufficiency is associated with a slight weight loss of < 1 kg. Dipeptidyl peptidase-4 inhibitors may be used as monotherapy in patients with CKD and HbA1c levels < 8.5% as an alternative to insulin, glipizide, or pioglitazone. They can also be used as add-on therapy to glipizide and/or pioglitazone in patients with HbA(1c) levels < 9%, but studies are needed to evaluate these combinations in patients with renal insufficiency. Long-term and large-scale clinical trials are underway to better determine the safety and efficacy of DPP-4 inhibitors in patients with T2DM with and without CKD.

  4. Identification of novel functional sequence variants in the gene for peptidase inhibitor 3

    PubMed Central

    Chowdhury, Mahboob A; Kuivaniemi, Helena; Romero, Roberto; Edwin, Samuel; Chaiworapongsa, Tinnakorn; Tromp, Gerard

    2006-01-01

    Background Peptidase inhibitor 3 (PI3) inhibits neutrophil elastase and proteinase-3, and has a potential role in skin and lung diseases as well as in cancer. Genome-wide expression profiling of chorioamniotic membranes revealed decreased expression of PI3 in women with preterm premature rupture of membranes. To elucidate the molecular mechanisms contributing to the decreased expression in amniotic membranes, the PI3 gene was searched for sequence variations and the functional significance of the identified promoter variants was studied. Methods Single nucleotide polymorphisms (SNPs) were identified by direct sequencing of PCR products spanning a region from 1,173 bp upstream to 1,266 bp downstream of the translation start site. Fourteen SNPs were genotyped from 112 and nine SNPs from 24 unrelated individuals. Putative transcription factor binding sites as detected by in silico search were verified by electrophoretic mobility shift assay (EMSA) using nuclear extract from Hela and amnion cell nuclear extract. Deviation from Hardy-Weinberg equilibrium (HWE) was tested by χ2 goodness-of-fit test. Haplotypes were estimated using expectation maximization (EM) algorithm. Results Twenty-three sequence variations were identified by direct sequencing of polymerase chain reaction (PCR) products covering 2,439 nt of the PI3 gene (-1,173 nt of promoter sequences and all three exons). Analysis of 112 unrelated individuals showed that 20 variants had minor allele frequencies (MAF) ranging from 0.02 to 0.46 representing "true polymorphisms", while three had MAF ≤ 0.01. Eleven variants were in the promoter region; several putative transcription factor binding sites were found at these sites by database searches. Differential binding of transcription factors was demonstrated at two polymorphic sites by electrophoretic mobility shift assays, both in amniotic and HeLa cell nuclear extracts. Differential binding of the transcription factor GATA1 at -689C>G site was confirmed by a

  5. Inadequate Triglyceride Management Worsens the Durability of Dipeptidyl Peptidase-4 Inhibitor in Subjects with Type 2 Diabetes Mellitus.

    PubMed

    Shimoda, Masashi; Miyoshi-Takai, Maiko; Irie, Shintaro; Tanabe, Akihito; Obata, Atsushi; Okauchi, Seizo; Hirukawa, Hidenori; Kimura, Tomohiko; Kohara, Kenji; Kamei, Shinji; Mune, Tomoatsu; Kaku, Kohei; Kaneto, Hideaki

    2017-01-01

    Dipeptidyl peptidase-4 (DPP-4) inhibitors are often used all over the world and exert various beneficial effects including glucose-lowering effect in many subjects with type 2 diabetes. It is poorly understood, however, which factors are closely related with the durability of glucose-lowering effect by DPP-4 inhibitor. In this study, we examined retrospectively which factors could mainly influence the durability of DPP-4 inhibitor. We enrolled 212 participants with type 2 diabetes to whom DPP-4 inhibitor was administered for over 1 year without an addition or increase of other hypoglycemic agents. Age and baseline HbA1c level were significantly higher in the effective group than those in the ineffective group. The effective group had a tendency of smaller amounts of weight change, average total cholesterol, and average triglyceride compared with the ineffective group. Multiple logistic regression analysis showed that average triglyceride and baseline HbA1c were independent predictors associated with the durability of DPP-4 inhibitor. Moreover, an average triglyceride level contributed to the durability of DPP-4 inhibitor in the obese group (BMI ≥ 25 kg/m(2)) but not in the nonobese group (BMI < 25 kg/m(2)). These results suggest the importance of strict triglyceride management to maintain the durability of glucose-lowering effect by DPP-4 inhibitor, especially in obese subjects with type 2 diabetes.

  6. Emerging roles of dipeptidyl peptidase 4 inhibitors: anti-inflammatory and immunomodulatory effect and its application in diabetes mellitus.

    PubMed

    Yang, Lin; Yuan, Jiao; Zhou, Zhiguang

    2014-12-01

    Dipeptidyl peptidase 4 (DPP4) inhibitors have been widely used in the treatment of type 2 diabetes mellitus. It is well known that DPP4 inhibitors exert their antidiabetes effects mainly by inhibiting the enzymatic degradation of glucagon-like peptide-1 and glucose-dependent insulinotropic peptide. The anti-inflammatory effect of DPP4 inhibitors was proved by preclinical and clinical studies of type 2 diabetes and coronary artery disease. Preclinical data using DPP4 inhibitors-based therapies in studies of nonobese diabetic mice demonstrated additional effects, including immunomodulation, preserving beta-cell mass, promoting beta-cell regeneration and reversing newly diagnosed diabetes. Thus, these data show that DPP4 inhibitors may be effective for type 1 diabetes mellitus. However, their potential clinical benefits for type 1 diabetes remain to be evaluated. This paper will provide an overview of the progress of the anti-inflammatory and immunomodulatory effects of DPP4 inhibitors in treating both type 1 and type 2 diabetes.

  7. NAAG peptidase inhibitors block cognitive deficit induced by MK-801 and motor activation induced by d-amphetamine in animal models of schizophrenia

    PubMed Central

    Olszewski, R T; Janczura, K J; Ball, S R; Madore, J C; Lavin, K M; Lee, J C-M; Lee, M J; Der, E K; Hark, T J; Farago, P R; Profaci, C P; Bzdega, T; Neale, J H

    2012-01-01

    The most widely validated animal models of the positive, negative and cognitive symptoms of schizophrenia involve administration of d-amphetamine or the open channel NMDA receptor blockers, dizocilpine (MK-801), phencyclidine (PCP) and ketamine. The drug ZJ43 potently inhibits glutamate carboxypeptidase II (GCPII), an enzyme that inactivates the peptide transmitter N-acetylaspartylglutamate (NAAG) and reduces positive and negative behaviors induced by PCP in several of these models. NAAG is an agonist at the metabotropic glutamate receptor 3 (mGluR3). Polymorphisms in this receptor have been associated with expression of schizophrenia. This study aimed to determine whether two different NAAG peptidase inhibitors are effective in dopamine models, whether their efficacy was eliminated in GCPII knockout mice and whether the efficacy of these inhibitors extended to MK-801-induced cognitive deficits as assessed using the novel object recognition test. ZJ43 blocked motor activation when given before or after d-amphetamine treatment. (R,S)-2-phosphono-methylpentanedioic acid (2-PMPA), another potent NAAG peptidase inhibitor, also reduced motor activation induced by PCP or d-amphetamine. 2-PMPA was not effective in GCPII knockout mice. ZJ43 and 2-PMPA also blocked MK-801-induced deficits in novel object recognition when given before, but not after, the acquisition trial. The group II mGluR antagonist LY341495 blocked the effects of NAAG peptidase inhibition in these studies. 2-PMPA was more potent than ZJ43 in a test of NAAG peptidase inhibition in vivo. By bridging the dopamine and glutamate theories of schizophrenia with two structurally different NAAG peptidase inhibitors and demonstrating their efficacy in blocking MK-801-induced memory deficits, these data advance the concept that NAAG peptidase inhibition represents a potentially novel antipsychotic therapy. PMID:22850437

  8. A Target-Based Whole Cell Screen Approach To Identify Potential Inhibitors of Mycobacterium tuberculosis Signal Peptidase

    PubMed Central

    2016-01-01

    The general secretion (Sec) pathway is a conserved essential pathway in bacteria and is the primary route of protein export across the cytoplasmic membrane. During protein export, the signal peptidase LepB catalyzes the cleavage of the signal peptide and subsequent release of mature proteins into the extracellular space. We developed a target-based whole cell assay to screen for potential inhibitors of LepB, the sole signal peptidase in Mycobacterium tuberculosis, using a strain engineered to underexpress LepB (LepB-UE). We screened 72,000 compounds against both the Lep-UE and wild-type (wt) strains. We identified the phenylhydrazone (PHY) series as having higher activity against the LepB-UE strain. We conducted a limited structure–activity relationship determination around a representative PHY compound with differential activity (MICs of 3.0 μM against the LepB-UE strain and 18 μM against the wt); several analogues were less potent against the LepB overexpressing strain. A number of chemical modifications around the hydrazone moiety resulted in improved potency. Inhibition of LepB activity was observed for a number of compounds in a biochemical assay using cell membrane fraction derived from M. tuberculosis. Compounds did not increase cell permeability, dissipate membrane potential, or inhibit an unrelated mycobacterial enzyme, suggesting a specific mode of action related to the LepB secretory mechanism. PMID:27642770

  9. Identification of Novel Human Dipeptidyl Peptidase-IV Inhibitors of Natural Origin (Part II): In Silico Prediction in Antidiabetic Extracts

    PubMed Central

    Guasch, Laura; Sala, Esther; Ojeda, María José; Valls, Cristina; Bladé, Cinta; Mulero, Miquel; Blay, Mayte; Ardévol, Anna; Garcia-Vallvé, Santiago; Pujadas, Gerard

    2012-01-01

    Background Natural extracts play an important role in traditional medicines for the treatment of diabetes mellitus and are also an essential resource for new drug discovery. Dipeptidyl peptidase IV (DPP-IV) inhibitors are potential candidates for the treatment of type 2 diabetes mellitus, and the effectiveness of certain antidiabetic extracts of natural origin could be, at least partially, explained by the inhibition of DPP-IV. Methodology/Principal Findings Using an initial set of 29,779 natural products that are annotated with their natural source and an experimentally validated virtual screening procedure previously developed in our lab (Guasch et al.; 2012) [1], we have predicted 12 potential DPP-IV inhibitors from 12 different plant extracts that are known to have antidiabetic activity. Seven of these molecules are identical or similar to molecules with described antidiabetic activity (although their role as DPP-IV inhibitors has not been suggested as an explanation for their bioactivity). Therefore, it is plausible that these 12 molecules could be responsible, at least in part, for the antidiabetic activity of these extracts through their inhibitory effect on DPP-IV. In addition, we also identified as potential DPP-IV inhibitors 6 molecules from 6 different plants with no described antidiabetic activity but that share the same genus as plants with known antidiabetic properties. Moreover, none of the 18 molecules that we predicted as DPP-IV inhibitors exhibits chemical similarity with a group of 2,342 known DPP-IV inhibitors. Conclusions/Significance Our study identified 18 potential DPP-IV inhibitors in 18 different plant extracts (12 of these plants have known antidiabetic properties, whereas, for the remaining 6, antidiabetic activity has been reported for other plant species from the same genus). Moreover, none of the 18 molecules exhibits chemical similarity with a large group of known DPP-IV inhibitors. PMID:23028712

  10. Effect of Dipeptidyl Peptidase-4 Inhibitor on All-Cause Mortality and Coronary Revascularization in Diabetic Patients

    PubMed Central

    Park, Hyo Eun; Jeon, Jooyeong; Hwang, In-Chang; Sung, Jidong; Lee, Seung-Pyo; Kim, Hyung-Kwan; Cho, Goo-Yeong; Sohn, Dae-Won

    2015-01-01

    Background Anti-atherosclerotic effect of dipeptidyl peptidase-4 (DPP-4) inhibitors has been suggested from previous studies, and yet, its association with cardiovascular outcome has not been demonstrated. We aimed to evaluate the effect of DPP-4 inhibitors in reducing mortality and coronary revascularization, in association with baseline coronary computed tomography (CT). Methods The current study was performed as a multi-center, retrospective observational cohort study. All subjects with diabetes mellitus who had diagnostic CT during 2007-2011 were included, and 1866 DPP-4 inhibitor users and 5179 non-users were compared for outcome. The primary outcome was all-cause mortality and secondary outcome included any coronary revascularization therapy after 90 days of CT in addition to all-cause mortality. Results DPP-4 inhibitors users had significantly less adverse events [0.8% vs. 4.4% in users vs. non-users, adjusted hazard ratios (HR) 0.220, 95% confidence interval (CI) 0.102-0.474, p = 0.0001 for primary outcome, 4.1% vs. 7.6% in users vs. non-users, HR 0.517, 95% CI 0.363-0.735, p = 0.0002 for secondary outcome, adjusted variables were age, sex, presence of hypertension, high sensitivity C-reactive protein, glycated hemoglobin, statin use, coronary artery calcium score and degree of stenosis]. Interestingly, DPP-4 inhibitor seemed to be beneficial only in subjects without significant stenosis (adjusted HR 0.148, p = 0.0013 and adjusted HR 0.525, p = 0.0081 for primary and secondary outcome). Conclusion DPP-4 inhibitor is associated with reduced all-cause mortality and coronary revascularization in diabetic patients. Such beneficial effect was significant only in those without significant coronary stenosis, which implies that DPP-4 inhibitor may have beneficial effect in earlier stage of atherosclerosis. PMID:26755932

  11. Sifuvirtide, a potent HIV fusion inhibitor peptide

    SciTech Connect

    Wang, Rui-Rui; Yang, Liu-Meng; Wang, Yun-Hua; Pang, Wei; Tam, Siu-Cheung; Tien, Po; Zheng, Yong-Tang

    2009-05-08

    Enfuvirtide (ENF) is currently the only FDA approved HIV fusion inhibitor in clinical use. Searching for more drugs in this category with higher efficacy and lower toxicity seems to be a logical next step. In line with this objective, a synthetic peptide with 36 amino acid residues, called Sifuvirtide (SFT), was designed based on the crystal structure of gp41. In this study, we show that SFT is a potent anti-HIV agent with relatively low cytotoxicity. SFT was found to inhibit replication of all tested HIV strains. The effective concentrations that inhibited 50% viral replication (EC{sub 50}), as determined in all tested strains, were either comparable or lower than benchmark values derived from well-known anti-HIV drugs like ENF or AZT, while the cytotoxic concentrations causing 50% cell death (CC{sub 50}) were relatively high, rendering it an ideal anti-HIV agent. A GST-pull down assay was performed to confirm that SFT is a fusion inhibitor. Furthermore, the activity of SFT on other targets in the HIV life cycle was also investigated, and all assays showed negative results. To further understand the mechanism of action of HIV peptide inhibitors, resistant variants of HIV-1{sub IIIB} were derived by serial virus passage in the presence of increasing doses of SFT or ENF. The results showed that there was cross-resistance between SFT and ENF. In conclusion, SFT is an ideal anti-HIV agent with high potency and low cytotoxicity, but may exhibit a certain extent of cross-resistance with ENF.

  12. Trichosporon asahii secretes a 30-kDa aspartic peptidase.

    PubMed

    Valle, Roberta S; Ramos, Lívia S; Reis, Vanessa J; Ziccardi, Mariangela; Dornelas-Ribeiro, Marcos; Sodré, Cátia L; Branquinha, Marta H; Santos, André L S

    2017-12-01

    Trichosporon asahii is a fungal opportunistic pathogen that causes superficial and deep-seated infections presenting high mortality. Very little is known about the virulence attributes produced by this fungus. Herein, aspartic peptidase production was identified in Brazilian clinical isolates of T. asahii by different methodologies. Initially, T. asahii strain 250 (from skin lesion) was inoculated in both liquid and solid culture media containing bovine serum albumin (BSA) as the sole nitrogenous source. A translucent halo around the fungal colony was observed from the 5th day of culture. The cell-free culture supernatant revealed that soluble BSA was hydrolyzed along the growth, generating low molecular mass polypeptides as observed by electrophoresis. Subsequently, the secretions from four clinical strains of T. asahii were analyzed by BSA-SDS-PAGE and a single proteolytic band of 30-kDa was detected under acidic pH at 37°C. The secreted aspartic peptidase of T. asahii efficiently cleaved the cathepsin D peptide substrate, but not the substrates with specificity to HIV-1 peptidase and rennin. The capability to cleave either cathepsin D substrate in a fluorogenic assay or BSA immobilized within a gel matrix varied according to the T. asahii isolate. T. asahii extracellular peptidase activity was strongly inhibited by pepstatin A and HIV peptidase inhibitors, classifying it as an aspartic-type peptidase. Human serum albumin, mucin, non-immune immunoglobulin G and gelatin induced, in different levels, the secretion of this aspartic peptidase. With these results, T. asahii must be included in the list of many human fungal opportunistic pathogens able to secrete an aspartic-type peptidase. Copyright © 2017 Elsevier GmbH. All rights reserved.

  13. Current and Novel Inhibitors of HIV Protease

    PubMed Central

    Pokorná, Jana; Machala, Ladislav; Řezáčová, Pavlína; Konvalinka, Jan

    2009-01-01

    The design, development and clinical success of HIV protease inhibitors represent one of the most remarkable achievements of molecular medicine. This review describes all nine currently available FDA-approved protease inhibitors, discusses their pharmacokinetic properties, off-target activities, side-effects, and resistance profiles. The compounds in the various stages of clinical development are also introduced, as well as alternative approaches, aiming at other functional domains of HIV PR. The potential of these novel compounds to open new way to the rational drug design of human viruses is critically assessed. PMID:21994591

  14. Development of HIV-1 fusion inhibitors targeting gp41.

    PubMed

    Lu, K; Asyifah, M R; Shao, F; Zhang, D

    2014-06-01

    The HIV-1 envelope protein glycoprotein 41 (gp41) is crucial in the HIV-1 infection process, therefore gp41 has emerged as an attractive target for drug design against AIDS. During the past few decades, tremendous efforts have been made on developing inhibitors that can prevent the HIV-1 entry process via suppressing functional gp41. In this review, the development of HIV-1 fusion inhibitors targeting gp41 including peptide inhibitors, small molecule inhibitors, vaccines and neutralized antibodies will be discussed.

  15. Sodium-glucose cotransporter 2 inhibitors combined with dipeptidyl peptidase-4 inhibitors in the management of type 2 diabetes: a review of current clinical evidence and rationale

    PubMed Central

    Yassin, Sayf A; Aroda, Vanita R

    2017-01-01

    Type 2 diabetes mellitus (T2DM) is a progressive and multifactorial cardiometabolic disorder. Almost half of adults with diabetes fail to achieve their recommended glucose control target. This has prompted some clinicians to advocate the use of more intensive initial therapy, including the use of combination therapy to target multiple physiologic defects in diabetes with the goal of achieving and sustaining glucose control. Numerous options exist for combining the various classes of glucose-lowering agents in the treatment of T2DM. This report reviews the mechanism, rationale, and evidence from clinical trials for combining two of the newer drug classes, namely, dipeptidyl peptidase-4 inhibitors and sodium-glucose cotransporter 2 inhibitors, and considers the possible role of such dual therapy in the management of T2DM. PMID:28356718

  16. Cost-effectiveness of dipeptidyl peptidase-4 inhibitor monotherapy in elderly type 2 diabetes patients in Thailand.

    PubMed

    Permsuwan, Unchalee; Dilokthornsakul, Piyameth; Saokaew, Surasak; Thavorn, Kednapa; Chaiyakunapruk, Nathorn

    2016-01-01

    The management of type 2 diabetes mellitus (T2DM) in elderly population poses many challenges. Dipeptidyl peptidase-4 (DPP-4) inhibitors show particular promise due to excellent tolerability profiles, low risk of hypoglycemia, and little effect on body weight. This study evaluated, from the health care system's perspective, the long-term cost-effectiveness of DPP-4 inhibitor monotherapy vs metformin and sulfonylurea (SFU) monotherapy in Thai elderly T2DM patients. The clinical efficacy was estimated from a systematic review and meta-analysis. Baseline cohort characteristics and cost parameters were obtained from published studies and hospital databases in Thailand. A validated IMS CORE Diabetes Model version 8.5 was used to project clinical and economic outcomes over a lifetime horizon using a 3% annual discount rate. Costs were expressed in 2014 Thai Baht (THB) (US dollar value). Incremental cost-effectiveness ratios were calculated. Base-case assumptions were assessed through several sensitivity analyses. For treating elderly T2DM patients, DPP-4 inhibitors were more expensive and less effective, ie, a dominated strategy, than the metformin monotherapy. Compared with SFU, treatment with DPP-4 inhibitors gained 0.031 more quality-adjusted life years (QALYs) at a total cost incurred over THB113,701 or US$3,449.67, resulting in an incremental cost-effectiveness ratio of THB3.63 million or US$110,133.50 per QALY. At the acceptable Thai ceiling threshold of THB160,000/QALY (US$4,854.37/QALY), DPP-4 inhibitors were not a cost-effective treatment. DPP-4 inhibitor monotherapy is not a cost-effective treatment for elderly T2DM patients compared with metformin monotherapy and SFU monotherapy, given current resource constraints in Thailand.

  17. Cost-effectiveness of dipeptidyl peptidase-4 inhibitor monotherapy in elderly type 2 diabetes patients in Thailand

    PubMed Central

    Permsuwan, Unchalee; Dilokthornsakul, Piyameth; Saokaew, Surasak; Thavorn, Kednapa; Chaiyakunapruk, Nathorn

    2016-01-01

    Background The management of type 2 diabetes mellitus (T2DM) in elderly population poses many challenges. Dipeptidyl peptidase-4 (DPP-4) inhibitors show particular promise due to excellent tolerability profiles, low risk of hypoglycemia, and little effect on body weight. This study evaluated, from the health care system’s perspective, the long-term cost-effectiveness of DPP-4 inhibitor monotherapy vs metformin and sulfonylurea (SFU) monotherapy in Thai elderly T2DM patients. Methods The clinical efficacy was estimated from a systematic review and meta-analysis. Baseline cohort characteristics and cost parameters were obtained from published studies and hospital databases in Thailand. A validated IMS CORE Diabetes Model version 8.5 was used to project clinical and economic outcomes over a lifetime horizon using a 3% annual discount rate. Costs were expressed in 2014 Thai Baht (THB) (US dollar value). Incremental cost-effectiveness ratios were calculated. Base-case assumptions were assessed through several sensitivity analyses. Results For treating elderly T2DM patients, DPP-4 inhibitors were more expensive and less effective, ie, a dominated strategy, than the metformin monotherapy. Compared with SFU, treatment with DPP-4 inhibitors gained 0.031 more quality-adjusted life years (QALYs) at a total cost incurred over THB113,701 or US$3,449.67, resulting in an incremental cost-effectiveness ratio of THB3.63 million or US$110,133.50 per QALY. At the acceptable Thai ceiling threshold of THB160,000/QALY (US$4,854.37/QALY), DPP-4 inhibitors were not a cost-effective treatment. Conclusion DPP-4 inhibitor monotherapy is not a cost-effective treatment for elderly T2DM patients compared with metformin monotherapy and SFU monotherapy, given current resource constraints in Thailand. PMID:27703387

  18. Dipeptidyl peptidase-4 inhibitor sitagliptin improves pancreatic β-cell function in hypertensive diabetic patients treated with angiotensin receptor blockers.

    PubMed

    Fukui, Kensuke; Kawahito, Hiroyuki; Wakana, Noriyuki; Kikai, Masakazu; Terada, Kensuke; Yamamoto, Keita; Irie, Daisuke; Kato, Taku; Miyagawa, Sonoko; Yamada, Hiroyuki

    2015-12-01

    Dipeptidyl peptidase (DPP)-4 inhibitors, a novel oral anti-diabetic agents, exert a protective effect on pancreatic β-cell function in patients with type 2 diabetic mellitus (T2DM). However, their beneficial effect in hypertensive T2DM patients treated with angiotensin receptor blockers (ARBs) has not been investigated. In this open-label multicenter randomized study, a total of 55 hypertensive T2DM patients treated with ARBs were randomly assigned to receive the DPP-4 inhibitor sitagliptin or sulfonylurea (SU). After 24 weeks of treatment, a significant reduction in fasting blood glucose was only observed in the sitagliptin group, while HbA1c was significantly reduced in both groups. Homeostasis model assessment of insulin resistance was not significantly improved in either group. Indicators of pancreatic β-cell function, including proinsulin to insulin ratio and homeostasis model assessment of β-cell function, were significantly improved in the sitagliptin group, but not in the SU group. The beneficial effects of sitagliptin were observed in hypoglycemic drug naïve patients, but not in patients who had received SU monotherapy prior to the study. Treatment with the DPP-4 inhibitor sitagliptin might exert beneficial effects on pancreatic β-cell function in ARB-treated T2DM patients and its efficacy might be more pronounced in hypoglycemic drug naïve patients. © The Author(s) 2015.

  19. Aspartic Peptidases of Human Pathogenic Trypanosomatids: Perspectives and Trends for Chemotherapy

    PubMed Central

    Santos, L.O.; Garcia-Gomes, A.S.; Catanho, M.; Sodré, C.L.; Santos, A.L.S.; Branquinha, M.H.; d’Avila-Levy, C.M.

    2013-01-01

    Aspartic peptidases are proteolytic enzymes present in many organisms like vertebrates, plants, fungi, protozoa and in some retroviruses such as human immunodeficiency virus (HIV). These enzymes are involved in important metabolic processes in microorganisms/virus and play major roles in infectious diseases. Although few studies have been performed in order to identify and characterize aspartic peptidase in trypanosomatids, which include the etiologic agents of leishmaniasis, Chagas’ disease and sleeping sickness, some beneficial properties of aspartic peptidase inhibitors have been described on fundamental biological events of these pathogenic agents. In this context, aspartic peptidase inhibitors (PIs) used in the current chemotherapy against HIV (e.g., amprenavir, indinavir, lopinavir, nelfinavir, ritonavir and saquinavir) were able to inhibit the aspartic peptidase activity produced by different species of Leishmania. Moreover, the treatment of Leishmania promastigotes with HIV PIs induced several perturbations on the parasite homeostasis, including loss of the motility and arrest of proliferation/growth. The HIV PIs also induced an increase in the level of reactive oxygen species and the appearance of irreversible morphological alterations, triggering parasite death pathways such as programed cell death (apoptosis) and uncontrolled autophagy. The blockage of physiological parasite events as well as the induction of death pathways culminated in its incapacity to adhere, survive and escape of phagocytic cells. Collectively, these results support the data showing that parasites treated with HIV PIs have a significant reduction in the ability to cause in vivo infection. Similarly, the treatment of Trypanosoma cruzi cells with pepstatin A showed a significant inhibition on both aspartic peptidase activity and growth as well as promoted several and irreversible morphological changes. These studies indicate that aspartic peptidases can be promising targets in

  20. Aspartic peptidases of human pathogenic trypanosomatids: perspectives and trends for chemotherapy.

    PubMed

    Santos, L O; Garcia-Gomes, A S; Catanho, M; Sodre, C L; Santos, A L S; Branquinha, M H; d'Avila-Levy, C M

    2013-01-01

    Aspartic peptidases are proteolytic enzymes present in many organisms like vertebrates, plants, fungi, protozoa and in some retroviruses such as human immunodeficiency virus (HIV). These enzymes are involved in important metabolic processes in microorganisms/virus and play major roles in infectious diseases. Although few studies have been performed in order to identify and characterize aspartic peptidase in trypanosomatids, which include the etiologic agents of leishmaniasis, Chagas' disease and sleeping sickness, some beneficial properties of aspartic peptidase inhibitors have been described on fundamental biological events of these pathogenic agents. In this context, aspartic peptidase inhibitors (PIs) used in the current chemotherapy against HIV (e.g., amprenavir, indinavir, lopinavir, nelfinavir, ritonavir and saquinavir) were able to inhibit the aspartic peptidase activity produced by different species of Leishmania. Moreover, the treatment of Leishmania promastigotes with HIV PIs induced several perturbations on the parasite homeostasis, including loss of the motility and arrest of proliferation/growth. The HIV PIs also induced an increase in the level of reactive oxygen species and the appearance of irreversible morphological alterations, triggering parasite death pathways such as programed cell death (apoptosis) and uncontrolled autophagy. The blockage of physiological parasite events as well as the induction of death pathways culminated in its incapacity to adhere, survive and escape of phagocytic cells. Collectively, these results support the data showing that parasites treated with HIV PIs have a significant reduction in the ability to cause in vivo infection. Similarly, the treatment of Trypanosoma cruzi cells with pepstatin A showed a significant inhibition on both aspartic peptidase activity and growth as well as promoted several and irreversible morphological changes. These studies indicate that aspartic peptidases can be promising targets in

  1. FAITH - Fast Assembly Inhibitor Test for HIV.

    PubMed

    Hadravová, Romana; Rumlová, Michaela; Ruml, Tomáš

    2015-12-01

    Due to the high number of drug-resistant HIV-1 mutants generated by highly active antiretroviral therapy (HAART), there is continuing demand for new types of inhibitors. Both the assembly of the Gag polyprotein into immature and mature HIV-1 particles are attractive candidates for the blocking of the retroviral life cycle. Currently, no therapeutically-used assembly inhibitor is available. One possible explanation is the lack of a reliable and simple assembly inhibitor screening method. To identify compounds potentially inhibiting the formation of both types of HIV-1 particles, we developed a new fluorescent high-throughput screening assay. This assay is based on the quantification of the assembly efficiency in vitro in a 96-well plate format. The key components of the assay are HIV-1 Gag-derived proteins and a dual-labelled oligonucleotide, which emits fluorescence only when the assembly of retroviral particles is inhibited. The method was validated using three (CAI, BM2, PF74) reported assembly inhibitors. Copyright © 2015 The Authors. Published by Elsevier Inc. All rights reserved.

  2. Probing chelation motifs in HIV integrase inhibitors

    PubMed Central

    Agrawal, Arpita; DeSoto, Jamie; Fullagar, Jessica L.; Maddali, Kasthuraiah; Rostami, Shahrzad; Richman, Douglas D.; Pommier, Yves; Cohen, Seth M.

    2012-01-01

    A series of HIV integrase (HIV-1 IN) inhibitors were synthesized to evaluate the role of the metal-binding group (MBG) in this class of metalloenzyme inhibitors. A total of 21 different raltegravir-chelator derivative (RCD) compounds were prepared that differed only in the nature of the MBG. These IN strand-transfer inhibitors (INSTIs) were evaluated in vitro in cell-free enzyme activity assays, and the in vitro results were further validated in cell culture experiments. All of the active compounds showed selective inhibition of the strand-transfer reaction over 3′-processing, suggesting a common mode of action with raltegravir. The results of the in vitro activity suggest that the nature of the MBG donor atoms, the overall MBG structure, and the specific arrangement of the MBG donor atom triad are essential for obtaining maximal HIV-1 IN inhibition. At least two compounds (RCD-4, RCD-5) containing a hydroxypyrone MBG were found to display superior strand-transfer inhibition when compared to an abbreviated analogue of raltegravir (RCD-1). By isolating and examining the role of the MBG in a series of INSTIs, we have identified a scaffold (hydroxypyrones) that may provide access to a unique class of HIV-1 IN inhibitors, and may help overcome rising raltegravir resistance. PMID:22308350

  3. Cost-effectiveness analysis of different dipeptidyl-peptidase 4 inhibitor drugs for treatment of type 2 diabetes mellitus.

    PubMed

    Cazarim, Maurílio de Souza; da Cruz-Cazarim, Estael Luzia Coelho; Baldoni, André de Oliveira; Dos Santos, Thais Bueno Enes; de Souza, Paula Gonçalves; Silva, Ingrid de Almeida; Rodrigues, Roberta Niriam Reis; Maia, Alda Cristina Franco Correa; Pereira, Leonardo Régis Leira; Sanches, Cristina

    2017-07-03

    Type 2 diabetes mellitus (T2DM) has burdened health systems in the world to the value of 500 billion dollars/year. Dipeptidyl peptidase 4 inhibitors (DPP-4 Inhibitors) have been strongly associated with spending on the treatment of T2DM by the courts in Brazil. The aim of this study was to estimate the most cost-effective DPP-4 Inhibitor for T2DM treatment. A pharmacoeconomic study of cost-effectiveness was performed in a medium-sized municipality in Minas Gerais state, Brazil. The data are from legalization in municipal health in 2013. The effectiveness of DPP-4 Inhibitors was measured by the reduction in glycated hemoglobin (A1c). The direct medical costs of drug and adverse drug reactions were identified. With these data, a cost-effectiveness ratio (CER) and construction of the decision tree for sensitivity analysis were performed. The representative of the most effective in reducing A1c gliptins was sitagliptin in combination with metformin, it was able to reduce A1c by 1.16% (1.09 to 1.22, CI 95%). The drug with the lowest cost was linagliptin, with a cost per patient/year of US$ 481.42. Sensitivity analysis performed by the decision tree shows that sitagliptin in association with metformin had the CER of US$ 1,506.75 per patient/year, to reduce A1c by 1%. The most cost-effective DPP-4 Inhibitor was sitagliptin with metformin. Copyright © 2017 Diabetes India. Published by Elsevier Ltd. All rights reserved.

  4. Crystal structure of Porphyromonas gingivalis dipeptidyl peptidase 4 and structure-activity relationships based on inhibitor profiling.

    PubMed

    Rea, Dean; Van Elzen, Roos; De Winter, Hans; Van Goethem, Sebastiaan; Landuyt, Bart; Luyten, Walter; Schoofs, Liliane; Van Der Veken, Pieter; Augustyns, Koen; De Meester, Ingrid; Fülöp, Vilmos; Lambeir, Anne-Marie

    2017-10-20

    The Gram-negative anaerobe Porphyromonas gingivalis is associated with chronic periodontitis. Clinical isolates of P. gingivalis strains with high dipeptidyl peptidase 4 (DPP4) expression also had a high capacity for biofilm formation and were more infective. The X-ray crystal structure of P. gingivalis DPP4 was solved at 2.2 Å resolution. Despite a sequence identity of 32%, the overall structure of the dimer was conserved between P. gingivalis DPP4 and mammalian orthologues. The structures of the substrate binding sites were also conserved, except for the region called S2-extensive, which is exploited by specific human DPP4 inhibitors currently used as antidiabetic drugs. Screening of a collection of 450 compounds as inhibitors revealed a structure-activity relationship that mimics in part that of mammalian DPP9. The functional similarity between human and bacterial DPP4 was confirmed using 124 potential peptide substrates. Copyright © 2017 Elsevier Masson SAS. All rights reserved.

  5. Diuretic and Natriuretic Effects of Dipeptidyl Peptidase-4 Inhibitor Teneligliptin: The Contribution of Glucagon-like Peptide-1.

    PubMed

    Moroi, Masao; Kubota, Tetsuya

    2015-08-01

    Glucagon-like peptide-1 receptor (GLP-1R) agonists and dipeptidyl peptidase-4 (DPP-4) inhibitors are antidiabetic agents; however, their mechanisms of action are different. GLP-1R and DPP-4 are also expressed in the renal proximal tubular brush border, where they regulate Na reabsorption. We investigated whether the DPP-4 inhibitor, teneligliptin, has diuretic and natriuretic effects and whether these are associated with the stimulation of the GLP-1R in rats. Oral administration of teneligliptin resulted in a reduction of plasma DPP-4 activity over 6 hours, as well as an induction of diuresis and natriuresis. Although teneligliptin did not change the increase in blood glucose levels by glucose loading, percentage of urine volume and Na/K ratio with teneligliptin to vehicle were augmented by glucose loading. Peak levels of plasma GLP-1 did not change after oral administration of teneligliptin when glucose was not loaded but increased at least 2-fold with glucose loading. Furthermore, the natriuretic effect of teneligliptin was inhibited by the GLP-1R antagonist, exendin9-39, whereas the diuresis was not affected. These results suggest that the mechanism of natriuresis was different from that of diuresis, and the natriuresis is associated with the stimulation of GLP-1R. There may be mechanistic differences in DPP-4 inhibition between diuresis and natriuresis.

  6. Efficacy of different dipeptidyl peptidase-4 (DPP-4) inhibitors on metabolic parameters in patients with type 2 diabetes undergoing dialysis

    PubMed Central

    Park, Se Hee; Nam, Joo Young; Han, Eugene; Lee, Yong-ho; Lee, Byung-Wan; Kim, Beom Seok; Cha, Bong-Soo; Kim, Chul Sik; Kang, Eun Seok

    2016-01-01

    Abstract Hyperglycemia is associated with increased mortality and morbidity in patients with type 2 diabetes mellitus (T2DM) who are undergoing dialysis. Although dipeptidyl peptidase-4 (DPP-4) inhibitors have been widely used in end-stage renal disease (ESRD) patients with T2DM, there are few studies on their efficacy in this population. We studied the effect of 3 different DPP-4 inhibitors on metabolic parameters in ESRD patients with T2DM. Two hundred ESRD patients with T2DM who were treated with DPP-4 inhibitors (sitagliptin, vildagliptin, or linagliptin) were enrolled and analyzed retrospectively. The changes in glycated hemoglobin (HbA1c), fasting plasma glucose, and lipid profiles were assessed before and after 3 months of treatment with DPP-4 inhibitors. Subgroup analysis was done for each hemodialysis (HD) and peritoneal dialysis (PD) group. There was no significant difference in the decrease in the HbA1c level among sitagliptin, vildagliptin, and linagliptin treatment groups (−0.74 ± 1.57, −0.39 ± 1.45, and −0.08 ± 1.40, respectively, P = 0.076). The changes in fasting blood glucose and lipid profiles were also not significantly different. In HD patients (n = 115), there was no difference in the HbA1c level among the 3 groups. In contrast, in PD patients (n = 85), HbA1c was reduced more after 3 months of treatment with sitagliptin compared with vildagliptin and linagliptin (−1.58 ± 0.95, −0.46 ± 0.98, −0.04 ± 1.22, respectively, P = 0.001). There was no significant difference in the glucose-lowering effect between the different DPP-4 inhibitors tested in ESRD patients. In PD patients, sitagliptin tends to lower the HbA1c level more than the other inhibitors. The glucose-lowering efficacy of the 3 DPP-4 inhibitors was comparable. PMID:27512877

  7. Absorption, metabolism, and excretion of [14C]vildagliptin, a novel dipeptidyl peptidase 4 inhibitor, in humans.

    PubMed

    He, Handan; Tran, Phi; Yin, Hequn; Smith, Harold; Batard, Yannick; Wang, Lai; Einolf, Heidi; Gu, Helen; Mangold, James B; Fischer, Volker; Howard, Dan

    2009-03-01

    The absorption, metabolism, and excretion of (1-[[3-hydroxy-1-adamantyl) amino] acetyl]-2-cyano-(S)-pyrrolidine (vildagliptin), an orally active and highly selective dipeptidyl peptidase 4 inhibitor developed for the treatment of type 2 diabetes, were evaluated in four healthy male subjects after a single p.o. 100-mg dose of [(14)C]vildagliptin. Serial blood and complete urine and feces were collected for 168 h postdose. Vildagliptin was rapidly absorbed, and peak plasma concentrations were attained at 1.1 h postdose. The fraction of drug absorbed was calculated to be at least 85.4%. Unchanged drug and a carboxylic acid metabolite (M20.7) were the major circulating components in plasma, accounting for 25.7% (vildagliptin) and 55% (M20.7) of total plasma radioactivity area under the curve. The terminal half-life of vildagliptin was 2.8 h. Complete recovery of the dose was achieved within 7 days, with 85.4% recovered in urine (22.6% unchanged drug) and the remainder in feces (4.54% unchanged drug). Vildagliptin was extensively metabolized via at least four pathways before excretion, with the major metabolite M20.7 resulting from cyano group hydrolysis, which is not mediated by cytochrome P450 (P450) enzymes. Minor metabolites resulted from amide bond hydrolysis (M15.3), glucuronidation (M20.2), or oxidation on the pyrrolidine moiety of vildagliptin (M20.9 and M21.6). The diverse metabolic pathways combined with a lack of significant P450 metabolism (1.6% of the dose) make vildagliptin less susceptible to potential pharmacokinetic interactions with comedications of P450 inhibitors/inducers. Furthermore, as vildagliptin is not a P450 inhibitor, it is unlikely that vildagliptin would affect the metabolic clearance of comedications metabolized by P450 enzymes.

  8. Renoprotective Effect of Gemigliptin, a Dipeptidyl Peptidase-4 Inhibitor, in Streptozotocin-Induced Type 1 Diabetic Mice

    PubMed Central

    Jung, Gwon-Soo; Jeon, Jae-Han; Choe, Mi Sun; Kim, Sung-Woo; Lee, In-Kyu

    2016-01-01

    Background Dipeptidyl peptidase-4 (DPP-4) inhibitors are widely used in the treatment of patients with type 2 diabetes and have proven protective effects on diabetic kidney disease (DKD). Whether DPP-4 inhibitors have renoprotective effects on insulin-deficient type 1 diabetes has not been comprehensively examined. The aim of this study was to determine whether gemigliptin, a new DPP-4 inhibitor, has renoprotective effects in streptozotocin (STZ)-induced type 1 diabetic mice. Methods Diabetes was induced by intraperitoneal administration of a single dose of STZ. Mice with diabetes were treated without or with gemigliptin (300 mg/kg) for 8 weeks. Morphological changes of the glomerular basement membrane (GBM) were observed by electron microscopy and periodic-acid Schiff staining. In addition, we measured blood glucose and urinary albumin excretion and evaluated fibrotic markers using immunohistochemical staining, quantitative reverse transcription polymerase chain reaction analysis, and Western blot analysis. Results Gemigliptin did not reduce the blood glucose levels of STZ-treated mice. In gemigliptin-treated mice with STZ, a significant reduction in urinary albumin excretion and GBM thickness was observed. Immunohistological examination revealed that gemigliptin attenuated renal fibrosis induced by STZ and decreased extracellular matrix protein levels, including those of type I collagen and fibronectin, and Smad3 phosphorylation. In cultured rat renal cells, gemigliptin inhibited transforming growth factor β-stimulated type I collagen and fibronectin mRNA and protein levels via down-regulation of Smad3 phosphorylation. Conclusion Our data demonstrate that gemigliptin has renoprotective effects on DKD, regardless of its glucose-lowering effect, suggesting that it could be used to prevent DKD, including in patients with type 1 diabetes. PMID:27098503

  9. Effect of dipeptidyl peptidase 4 inhibitors on acute and subacute models of inflammation in male Wistar rats: An experimental study

    PubMed Central

    Kagal, Urmila Anil; Angadi, Netravathi Basavaraj; Matule, Somnath Mallikarjun

    2017-01-01

    Introduction: The prevalence of Type 2 diabetes mellitus (T2DM) has reached alarming proportions due to the rapidly increasing rates of this disease worldwide. Preclinical and clinical studies have revealed elevated levels of inflammatory markers in a vast number of illnesses such as T2DM, obesity, and atherothrombosis collectively called metabolic syndrome leading to adverse cardiovascular events. Dipeptidyl peptidase 4 (DPP-4) inhibitors which are the enhancers of glucagon-like peptide 1 (GLP -1), could have anti-inflammatory potential which could help in reducing cardiovascular complications of diabetes and benefit patients suffering from the metabolic syndrome. Objective: The objective of this study was to analyze the effect of DPP-4 inhibitors, namely vildagliptin and saxagliptin on acute and subacute models of inflammation. Materials and Methods: Male Wistar rats were randomly divided into control, standard, and two treatment groups (6 animals in each group, total 24 animals). The animals received the drugs orally. The effects of vildagliptin and saxagliptin on inflammation were tested in acute (carrageenan-induced paw edema method) and subacute (grass pith and cotton pellet implantation method) models of inflammation. Results: Vildagliptin and saxagliptin used in the present study showed a significant anti-inflammatory activity in acute and subacute models of inflammation. Conclusion: The present study suggests that vildagliptin and saxagliptin have significant anti-inflammatory potential. Based on the findings of the present study and the available literature, it can be concluded that the anti-inflammatory potential of DPP-4 inhibitors could help to reduce the cardiovascular complications of Type 2 diabetes and the related cluster of metabolic disorders collectively called the metabolic syndrome. PMID:28251104

  10. Comparative Analysis of Binding Kinetics and Thermodynamics of Dipeptidyl Peptidase-4 Inhibitors and Their Relationship to Structure.

    PubMed

    Schnapp, Gisela; Klein, Thomas; Hoevels, Yvette; Bakker, Remko A; Nar, Herbert

    2016-08-25

    The binding kinetics and thermodynamics of dipeptidyl peptidase (DPP)-4 inhibitors (gliptins) were investigated using surface plasmon resonance and isothermal titration calorimetry. Binding of gliptins to DPP-4 is a rapid electrostatically driven process. Off-rates were generally slow partly because of reversible covalent bond formation by some gliptins, and partly because of strong and extensive interactions. Binding of all gliptins is enthalpy-dominated due to strong ionic interactions and strong solvent-shielded hydrogen bonds. Using a congeneric series of molecules which represented the intermediates in the lead optimization program of linagliptin, the onset of slow binding kinetics and development of the thermodynamic repertoire were analyzed in the context of incremental changes of the chemical structures. All compounds rapidly associated, and therefore the optimization of affinity and residence time is highly correlated. The major contributor to the increasing free energy of binding was a strong increase of binding enthalpy, whereas entropic contributions remained low and constant despite significant addition of lipophilicity.

  11. Discovery of Potent and Selective Dipeptidyl Peptidase IV Inhibitors Derived from [beta]-Aminoamides Bearing Subsituted Triazolopiperazines

    SciTech Connect

    Kim, Dooseop; Kowalchick, Jennifer E.; Brockunier, Linda L.; Parmee, Emma R.; Eiermann, George J.; Fisher, Michael H.; He, Huaibing; Leiting, Barbara; Lyons, Kathryn; Scapin, Giovanna; Patel, Sangita B.; Petrov, Aleksandr; Pryor, KellyAnn D.; Roy, Ranabir Sinha; Wu, Joseph K.; Zhang, Xiaoping; Wyvratt, Matthew J.; Zhang, Bei B.; Zhu, Lan; Thornberry, Nancy A.; Weber, Ann E.

    2008-06-30

    A series of {beta}-aminoamides bearing triazolopiperazines have been discovered as potent, selective, and orally active dipeptidyl peptidase IV (DPP-4) inhibitors by extensive structure-activity relationship (SAR) studies around the triazolopiperazine moiety. Among these, compound 34b with excellent in vitro potency (IC{sub 50} = 4.3 nM) against DPP-4, high selectivity over other enzymes, and good pharmacokinetic profiles exhibited pronounced in vivo efficacy in an oral glucose tolerance test (OGTT) in lean mice. On the basis of these properties, compound 34b has been profiled in detail. Further refinement of the triazolopiperazines resulted in the discovery of a series of extremely potent compounds with subnanomolar activity against DPP-4 (42b-49b), that is, 4-fluorobenzyl-substituted compound 46b, which is notable for its superior potency (IC{sub 50} = 0.18 nM). X-ray crystal structure determination of compounds 34b and 46b in complex with DPP-4 enzyme revealed that (R)-stereochemistry at the 8-position of triazolopiperazines is strongly preferred over (S) with respect to DPP-4 inhibition.

  12. Identification of a Gene Involved in the Synthesis of a Dipeptidyl Peptidase IV Inhibitor in Aspergillus oryzae

    PubMed Central

    Tsuyama, Yoshihito; Hirata, Terukage; Shiraishi, Sumihiro; Sakamoto, Kazutoshi; Yamada, Osamu; Akita, Osamu; Shimoi, Hitoshi

    2012-01-01

    WYK-1 is a dipeptidyl peptidase IV inhibitor produced by Aspergillus oryzae strain AO-1. Because WYK-1 is an isoquinoline derivative consisting of three l-amino acids, we hypothesized that a nonribosomal peptide synthetase was involved in its biosynthesis. We identified 28 nonribosomal peptide synthetase genes in the sequenced genome of A. oryzae RIB40. These genes were also identified in AO-1. Among them, AO090001000009 (wykN) was specifically expressed under WYK-1-producing conditions in AO-1. Therefore, we constructed wykN gene disruptants of AO-1 after nonhomologous recombination was suppressed by RNA interference to promote homologous recombination. Our results demonstrated that the disruptants did not produce WYK-1. Furthermore, the expression patterns of 10 genes downstream of wykN were similar to the expression pattern of wykN under several conditions. Additionally, homology searches revealed that some of these genes were predicted to be involved in WYK-1 biosynthesis. Therefore, we propose that wykN and the 10 genes identified in this study constitute the WYK-1 biosynthetic gene cluster. PMID:22843525

  13. Dipeptidyl peptidase-4 inhibitor, linagliptin, ameliorates endothelial dysfunction and atherogenesis in normoglycemic apolipoprotein-E deficient mice.

    PubMed

    Salim, Hotimah Masdan; Fukuda, Daiju; Higashikuni, Yasutomi; Tanaka, Kimie; Hirata, Yoichiro; Yagi, Shusuke; Soeki, Takeshi; Shimabukuro, Michio; Sata, Masataka

    2016-04-01

    Dipeptidyl peptidase-4 (DPP-4) inhibitors have vasoprotective effects. This study investigated whether a recently approved DPP-4 inhibitor, linagliptin (Lina), suppresses atherogenesis in non-diabetic apolipoprotein-E deficient (ApoE(-/-)) mice, and examined its effects on endothelial function. Lina (10mg/kg/day) was administered orally to ApoE(-/-) mice for 20 weeks. Lina reduced atherogenesis without alteration of metabolic parameters including blood glucose level compared with control (P<0.05). Results of immunohistochemical analyses and quantitative RT-PCR demonstrated that Lina significantly decreased inflammatory molecule expression and macrophage infiltration in the atherosclerotic aorta. Lina administration to ApoE(-/-) mice for 9 weeks ameliorated endothelium-dependent vasodilation compared with that in untreated mice. Plasma active glucagon-like peptide-1 (GLP-1) level was significantly higher in the treated group (P<0.05). Exendin-4 (Ex-4), a GLP-1 analog, ameliorated endothelium-dependent vasodilation impaired by palmitic acid (PA) in wild-type mouse aortic segments. Ex-4 promoted phosphorylation of eNOS(Ser1177) and Akt, both of which were abrogated by PA, in human umbilical vein endothelial cells. In addition, Lina administration to ApoE(-/-) mice decreased oxidative stress, as determined by urinary 8-OHdG secretion and NADPH oxidase subunit expression in the abdominal aorta. Lina inhibited atherogenesis in non-diabetic ApoE(-/-) mice. Amelioration of endothelial dysfunction associated with a reduction of oxidative stress by GLP-1 contributes to the atheroprotective effects of Lina. Copyright © 2015 Elsevier Inc. All rights reserved.

  14. Dipeptidyl peptidase 4 inhibitor improves brain insulin sensitivity, but fails to prevent cognitive impairment in orchiectomy obese rats.

    PubMed

    Pintana, Hiranya; Pongkan, Wanpitak; Pratchayasakul, Wasana; Chattipakorn, Nipon; Chattipakorn, Siriporn C

    2015-08-01

    It is unclear whether the dipeptidyl peptidase 4 (DPP4) inhibitor can counteract brain insulin resistance, brain mitochondrial dysfunction, impairment of hippocampal synaptic plasticity and cognitive decline in testosterone-deprived obese rats. We hypothesized that DPP4 inhibitor vildagliptin improves cognitive function in testosterone-deprived obese rats by restoring brain insulin sensitivity, brain mitochondrial function and hippocampal synaptic plasticity. Thirty male Wistar rats received either a sham-operated (S, n=6) or bilateral orchiectomy (ORX, n=24). ORX rats were divided into two groups and fed with either a normal diet (ND (NDO)) or a high-fat diet (HFO) for 12 weeks. Then, ORX rats in each dietary group were divided into two subgroups (n=6/subgroup) to receive either a vehicle or vildagliptin (3 mg/kg per day, p.o.) for 4 weeks. After treatment, cognitive function, metabolic parameters, brain insulin sensitivity, hippocampal synaptic plasticity and brain mitochondrial function were determined in each rat. We found that HFO rats exhibited peripheral and brain insulin resistance, brain mitochondrial dysfunction, impaired hippocampal synaptic plasticity and cognitive decline. NDO rats did not develop peripheral and brain insulin resistance. However, impaired hippocampal synaptic plasticity and cognitive decline occurred. Vildagliptin significantly improved peripheral insulin sensitivity, restored brain insulin sensitivity and decreased brain mitochondrial reactive oxygen species production in HFO rats. However, vildagliptin did not restore hippocampal synaptic plasticity and cognitive function in both NDO and HFO rats. These findings suggest that vildagliptin could not counteract the impairment of hippocampal synaptic plasticity and cognitive decline in testosterone-deprived subjects, despite its effects on improved peripheral and brain insulin sensitivity as well as brain mitochondrial function.

  15. Bullous Pemphigoid Associated with the Dipeptidyl Peptidase-4 Inhibitor Sitagliptin in a Patient with Liver Cirrhosis Complicated with Rapidly Progressive Hepatocellular Carcinoma.

    PubMed

    Harada, Masaru; Yoneda, Akitoshi; Haruyama, Sanehito; Yabuki, Kei; Honma, Yuichi; Hiura, Masaaki; Shibata, Michihiko; Matsuoka, Hidehiko; Uchiwa, Yasuhiro

    2017-09-15

    A 78-year-old man presented with cutaneous blisters of the limbs and abdominal distension. He had been treated for various diseases, including liver cirrhosis. He had begun receiving sitagliptin, a dipeptidyl peptidase-4 (DPP-4) inhibitor, for diabetes mellitus three years before the hospitalization. A skin biopsy demonstrated bullous pemphigoid. Ultrasonography (US) revealed multiple liver tumors, although he had been receiving regular US studies. We stopped sitagliptin and started insulin and corticosteroids. However, his renal dysfunction progressed, and he died 14 days after the hospitalization. We should therefore be careful of various complications, including bullous pemphigoid and progression of tumors, when using DPP-4 inhibitors.

  16. Pyrrolidine-constrained phenethylamines: The design of potent, selective, and pharmacologically efficacious dipeptidyl peptidase IV (DPP4) inhibitors from a lead-like screening hit.

    PubMed

    Backes, Bradley J; Longenecker, Kenton; Hamilton, Gregory L; Stewart, Kent; Lai, Chunqiu; Kopecka, Hana; von Geldern, Thomas W; Madar, David J; Pei, Zhonghua; Lubben, Thomas H; Zinker, Bradley A; Tian, Zhenping; Ballaron, Stephen J; Stashko, Michael A; Mika, Amanda K; Beno, David W A; Kempf-Grote, Anita J; Black-Schaefer, Candace; Sham, Hing L; Trevillyan, James M

    2007-04-01

    A novel series of pyrrolidine-constrained phenethylamines were developed as dipeptidyl peptidase IV (DPP4) inhibitors for the treatment of type 2 diabetes. The cyclohexene ring of lead-like screening hit 5 was replaced with a pyrrolidine to enable parallel chemistry, and protein co-crystal structural data guided the optimization of N-substituents. Employing this strategy, a >400x improvement in potency over the initial hit was realized in rapid fashion. Optimized compounds are potent and selective inhibitors with excellent pharmacokinetic profiles. Compound 30 was efficacious in vivo, lowering blood glucose in ZDF rats that were allowed to feed freely on a mixed meal.

  17. Novel pseudosymmetric inhibitors of HIV-1 protease

    SciTech Connect

    Faessler, A.; Roesel, J.; Gruetter, M.; Tintelnot-Blomley, M.; Alteri, E.; Bold, G.; Lang, M.

    1993-12-31

    Taking into account the unique C-2 symmetric nature of the HIV-1 protease homodimer, the authors have designed and synthesized novel inhibitors featuring an almost symmetric structure. Compounds containing the easily accessible Phe[CH(OH)CH{sub 2}N(NH)]Cha dipeptide isostere as a nonhydrolyzable replacement of the scissile amide bond of the natural substrate are potent inhibitors in vitro with IC{sub 50} values of 9 to 50 nM. The antiviral activity depends mainly on the nature of the anylated valine residues linked to the dipeptide mimic. In this series, CGP 53820 combines both high potency and excellent specificity. Its predicted symmetric binding pattern is illustrated by the X-ray structure analysis performed with the corresponding enzyme-inhibitor complex.

  18. Dipeptidyl peptidase-4 inhibitors and GLP-1 reduce myocardial infarct size in a glucose-dependent manner.

    PubMed

    Hausenloy, Derek J; Whittington, Hannah J; Wynne, Abigail M; Begum, Shah S; Theodorou, Louise; Riksen, Niels; Mocanu, Mihaela M; Yellon, Derek M

    2013-10-22

    The dipeptidyl peptidase-4 (DPP-4) inhibitors Sitagliptin and Vildagliptin lower blood glucose by augmenting endogenous levels of glucagon-like peptide-1 (GLP-1), an incretin which also confers cardioprotection. As such, we hypothesized that treatment with DPP-4 inhibitors are also cardioprotective. In ex vivo experiments: Male Sprague-Dawley rats were randomized to receive by oral gavage either Vildagliptin (20 mg/kg/day), Sitagliptin (100 mg/kg/day), or water for 2 weeks. Excised hearts were Langendorff-perfused with buffer containing either 5 mmol/L or 11 mmol/L glucose and subjected to 35 minutes ischaemia/120 minutes reperfusion. In in vivo experiments: Male young Wistar and Sprague-Dawley rats, middle aged Wistar and Goto-Kakizaki diabetic rats were randomized to receive by oral gavage either Sitagliptin (100 mg/kg/day), or water for 2 weeks. Rats were then subjected to 30 minutes ischaemia/120 minutes reperfusion and infarct size ascertained. Two weeks pre-treatment with either Vildagliptin or Sitagliptin reduced ex vivo myocardial infarction (MI) size in hearts perfused with buffer containing 11 mmol/L glucose but not 5 mmol/L glucose. This effect was abolished by Exendin 9-39 (GLP-1 receptor antagonist) and H-89 (PKA antagonist). Treatment of perfused hearts with native GLP-1 was also glucose-sensitive, reducing MI size, at glucose concentrations 7, 9, and 11 mmol/L but not at 5 mmol/L. Finally, Sitagliptin reduced in vivo MI size in middle aged Wistar (7-8 mmol/L glucose) and Goto-Kakizaki (9-10 mmol/L glucose) rats where blood glucose was elevated, but not in young Wistar (5 mmol/L glucose) or Sprague-Dawley (5 mmol/L glucose) rats, where blood glucose was normal. We find that chronic treatment with DPP-4 inhibitors reduced MI size, via the GLP-1 receptor-PKA pathway, in a glucose-dependent manner. Glucose-sensitive cardioprotection of endogenous GLP-1 in diabetic patients may in part explain why intensive control of serum glucose

  19. Cardiovascular Actions and Clinical Outcomes With Glucagon-Like Peptide-1 Receptor Agonists and Dipeptidyl Peptidase-4 Inhibitors.

    PubMed

    Nauck, Michael A; Meier, Juris J; Cavender, Matthew A; Abd El Aziz, Mirna; Drucker, Daniel J

    2017-08-29

    Potentiation of glucagon-like peptide-1 (GLP-1) action through selective GLP-1 receptor (GLP-1R) agonism or by prevention of enzymatic degradation by inhibition of dipeptidyl peptidase-4 (DPP-4) promotes glycemic reduction for the treatment of type 2 diabetes mellitus by glucose-dependent control of insulin and glucagon secretion. GLP-1R agonists also decelerate gastric emptying, reduce body weight by reduction of food intake and lower circulating lipoproteins, inflammation, and systolic blood pressure. Preclinical studies demonstrate that both GLP-1R agonists and DPP-4 inhibitors exhibit cardioprotective actions in animal models of myocardial ischemia and ventricular dysfunction through incompletely characterized mechanisms. The results of cardiovascular outcome trials in human subjects with type 2 diabetes mellitus and increased cardiovascular risk have demonstrated a cardiovascular benefit (significant reduction in time to first major adverse cardiovascular event) with the GLP-1R agonists liraglutide (LEADER trial [Liraglutide Effect and Action in Diabetes: Evaluation of Cardiovascular Ourcome Results], -13%) and semaglutide (SUSTAIN-6 trial [Trial to Evaluate Cardiovascular and Other Long-term Outcomes with Semaglutide], -24%). In contrast, cardiovascular outcome trials examining the safety of the shorter-acting GLP-1R agonist lixisenatide (ELIXA trial [Evaluation of Lixisenatide in Acute Coronary Syndrom]) and the DPP-4 inhibitors saxagliptin (SAVOR-TIMI 53 trial [Saxagliptin Assessment of Vascular Outcomes Recorded in Patients With Diabetes Mellitus-Thrombolysis in Myocardial Infarction 53]), alogliptin (EXAMINE trial [Examination of Cardiovascular Outcomes With Alogliptin Versus Standard of Care in Patients With Type 2 Diabetes Mellitus and Acute Coronary Syndrome]), and sitagliptin (TECOS [Trial Evaluating Cardiovascular Outcomes With Sitagliptin]) found that these agents neither increased nor decreased cardiovascular events. Here we review the

  20. In vitro screening for protein tyrosine phosphatase 1B and dipeptidyl peptidase IV inhibitors from selected Nigerian medicinal plants

    PubMed Central

    Saidu, Yusuf; Muhammad, Suleiman Alhaji; Abbas, Abdullahi Yahaya; Onu, Andrew; Tsado, Ibrahim Mohammed; Muhammad, Luba

    2017-01-01

    Background/Aim: Protein tyrosine phosphatase 1B (PTP 1B) and dipeptidyl peptidase IV (DPP IV) have been identified as one of the drug targets for the treatment of Type-2 diabetes. This study was designed to screen for PTP 1B and DPP-IV inhibitors from some Nigerian medicinal plants. Materials and Methods: PTP 1B and DPP-IV drug discovery kits from Enzo Life Sciences were used to investigate in vitro inhibitory effect of crude methanolic extract of 10 plants; Mangifera indica, Moringa oleifera, Acacia nilotica, Arachis hypogaea, Senna nigricans, Azadirachta indica, Calotropis procera, Leptadenia hastata, Ziziphus mauritiana, and Solanum incanum. Results: The results indicated PTP IB inhibition by S. nigricans (68.2 ± 2.29%), A. indica (67.4 ± 2.80%), A. hypogaea (57.2 ± 2.50%), A. nilotica (55.1 ± 2.19%), and M. oleifera (41.2 ± 1.87%) were significantly (P < 0.05) higher as compared with standard inhibitor, sumarin while that of L. hastata (18.1 ± 2.00%) was significantly lower as compared with sumarin. The PTB 1B inhibition by M. indica (31.5 ± 1.90%) was not significantly (P > 0.05) different from that of sumarin. The DPP-IV inhibition by S. incanum (68.1 ± 2.71%) was significantly higher as compared with a known inhibitor, P32/98. S. nigrican (57.0±1.91%), Z. mauritiana (56.6±2.01%), A. hypogaea (51.0±1.30%), M. indica (44.6 ± 2.40%), C. procera (36.2 ± 2.00%), A. nilotica (35.4 ± 2.10%), and A. indica (33.6 ± 1.50%) show significantly (P < 0.05) lower inhibitions toward DPP-IV. Conclusion: The work demonstrated that these plant materials could serve as sources of lead compounds in the development of anti-diabetic agent(s) targeting PTP 1B and/or DPP-IV. PMID:28512596

  1. In vitro screening for protein tyrosine phosphatase 1B and dipeptidyl peptidase IV inhibitors from selected Nigerian medicinal plants.

    PubMed

    Saidu, Yusuf; Muhammad, Suleiman Alhaji; Abbas, Abdullahi Yahaya; Onu, Andrew; Tsado, Ibrahim Mohammed; Muhammad, Luba

    2017-01-01

    Protein tyrosine phosphatase 1B (PTP 1B) and dipeptidyl peptidase IV (DPP IV) have been identified as one of the drug targets for the treatment of Type-2 diabetes. This study was designed to screen for PTP 1B and DPP-IV inhibitors from some Nigerian medicinal plants. PTP 1B and DPP-IV drug discovery kits from Enzo Life Sciences were used to investigate in vitro inhibitory effect of crude methanolic extract of 10 plants; Mangifera indica, Moringa oleifera, Acacia nilotica, Arachis hypogaea, Senna nigricans, Azadirachta indica, Calotropis procera, Leptadenia hastata, Ziziphus mauritiana, and Solanum incanum. The results indicated PTP IB inhibition by S. nigricans (68.2 ± 2.29%), A. indica (67.4 ± 2.80%), A. hypogaea (57.2 ± 2.50%), A. nilotica (55.1 ± 2.19%), and M. oleifera (41.2 ± 1.87%) were significantly (P < 0.05) higher as compared with standard inhibitor, sumarin while that of L. hastata (18.1 ± 2.00%) was significantly lower as compared with sumarin. The PTB 1B inhibition by M. indica (31.5 ± 1.90%) was not significantly (P > 0.05) different from that of sumarin. The DPP-IV inhibition by S. incanum (68.1 ± 2.71%) was significantly higher as compared with a known inhibitor, P32/98. S. nigrican (57.0±1.91%), Z. mauritiana (56.6±2.01%), A. hypogaea (51.0±1.30%), M. indica (44.6 ± 2.40%), C. procera (36.2 ± 2.00%), A. nilotica (35.4 ± 2.10%), and A. indica (33.6 ± 1.50%) show significantly (P < 0.05) lower inhibitions toward DPP-IV. The work demonstrated that these plant materials could serve as sources of lead compounds in the development of anti-diabetic agent(s) targeting PTP 1B and/or DPP-IV.

  2. Di-peptidyl peptidase-4 inhibitor sitagliptin protects vascular function in metabolic syndrome: possible role of epigenetic regulation.

    PubMed

    Cicek, Figen Amber; Amber, Cicek Figen; Tokcaer-Keskin, Zeynep; Zeynep, Tokcaer-Keskin; Ozcinar, Evren; Evren, Ozcinar; Bozkus, Yosuf; Yusuf, Bozkus; Akcali, Kamil Can; Can, Akcali Kamil; Turan, Belma; Belma, Turan

    2014-08-01

    Metabolic syndrome (MetS) is a complex medical disorder characterized by insulin resistance, hypertension, and high risk of coronary disease and stroke. Microvascular rarefaction and endothelial dysfunction have also been linked with MetS, and recent evidence from clinical studies supports the efficacy of incretin-based antidiabetic therapies for vascular protection in diabetes. Previous studies pointed out the importance of dipeptidyl peptidase-4 (DPP-4) inhibition in endothelial cells due to getting protection against metabolic pathologies. We therefore aimed to investigate the acute effects of a DPP-4 inhibitor, sitagliptin, on vascular function in rats with high-sucrose diet-induced MetS. In order to elucidate the mechanisms implicated in the effects of DPP-4 inhibition, we tested the involvement of NO pathway and epigenetic regulation in the MetS. Acute use of sitagliptin protects the vascular function in the rats with MetS in part due to NO pathway via restoring the depressed aortic relaxation responses mediated by receptors. Application of sitagliptin enhanced the depressed phosphorylation levels of both the endothelial NO synthase and the apoptotic status of protein kinase B, known as Akt, in endothelium-intact thoracic aorta from rats with MetS. One-hour application of sitagliptin on aortic rings from rats with MetS also induced remarkable histon posttranslational modifications such as increased expression of H3K27Me3, but not of H3K27Me2, resulting in an accumulation of the H3K27Me3. Our findings suggest that, in addition to its well-known hypoglycemic action, sitagliptin may also have beneficial effects on hyperglycemia-induced vascular changes in an endotheium-dependent manner. These present results with sitagliptin aside from the glycaemic control, may demonstrate its important role in the treatment of patients with MetS.

  3. Pharmacokinetic and pharmacodynamic interactions between metformin and a novel dipeptidyl peptidase-4 inhibitor, evogliptin, in healthy subjects

    PubMed Central

    Rhee, Su-jin; Choi, YoonJung; Lee, SeungHwan; Oh, Jaeseong; Kim, Sung-Jin; Yoon, Seo Hyun; Cho, Joo-Youn; Yu, Kyung-Sang

    2016-01-01

    Evogliptin is a newly developed dipeptidyl peptidase-4 (DPP-4) inhibitor, which is expected to be combined with metformin for treating type 2 diabetes mellitus. We investigated the potential pharmacokinetic and pharmacodynamic interactions between evogliptin and metformin. A randomized, open-label, multiple-dose, six-sequence, three-period crossover study was conducted in 36 healthy male subjects. All subjects received three treatments, separated by 7-day washout intervals: evogliptin, 5 mg od for 7 days (EVO); metformin IR, 1,000 mg bid for 7 days (MET); and the combination of EVO and MET (EVO + MET). After the last dose in a period, serial blood samples were collected for 24 hours for pharmacokinetic assessments. During steady state, serial blood samples were collected for 2 hours after an oral glucose tolerance test, and DPP-4, active glucagon-like peptide-1, glucose, glucagon, insulin, and C-peptide were measured to assess pharmacodynamic properties. EVO + MET and EVO showed similar steady state maximum concentration and area under the concentration–time curve at steady state values for evogliptin; the geometric mean ratios (90% confidence interval) were 1.06 (1.01–1.12) and 1.02 (0.99–1.06), respectively. EVO + MET slightly reduced steady state maximum concentration and area under the concentration–time curve at steady state values for metformin compared to MET, with geometric mean ratios (90% confidence interval) of 0.84 (0.79–0.89) and 0.94 (0.89–0.98), respectively. EVO + MET and EVO had similar DPP-4 inhibition efficacy, but EVO + MET increased active glucagon-like peptide-1 and reduced glucose to larger extents than either EVO or MET alone. Our results suggested that EVO+MET could provide therapeutic benefits without clinically significant pharmacokinetic interactions. Thus, the EVO + MET combination is a promising option for treating type 2 diabetes mellitus. PMID:27570447

  4. Sitagliptin, a dipeptidyl peptidase-4 inhibitor, does not affect the pharmacokinetics of ethinyl estradiol or norethindrone in healthy female subjects.

    PubMed

    Migoya, Elizabeth; Larson, Patrick; Bergman, Arthur; Miller, Jutta; Johnson-Levonas, Amy O; Lasseter, Kenneth C; Wagner, John A

    2011-09-01

    Sitagliptin is a dipeptidyl peptidase-IV (DPP-4) inhibitor used for the treatment of patients with type 2 diabetes mellitus. This randomized, placebo-controlled, 2-period, crossover study evaluated the effect of sitagliptin on the pharmacokinetics of 17 α-ethinyl estradiol (EE(2)) and norethindrone (NET) in healthy female subjects who were receiving oral contraceptives for >3 months prior to enrollment. A total of 18 subjects with normal menstrual cycles received the oral contraceptive pill ORTHO-NOVUM(®) 7/7/7 on days 1 to 28 for 2 successive cycles, and on days 1 to 21 were randomly assigned to receive sitagliptin 200 mg/day (2 × 100 mg tablets) or placebo using a computer-generated allocation schedule. Blood samples for determination of plasma EE(2) and NET concentrations were collected predose and 0.5, 1, 1.5, 2, 3, 4, 6, 8, 12, 18, and 24 hours postdose on day 20 or 21 of each treatment period. The GMRs (90% confidence interval [CI]) for the AUC(0-24 hr) of EE(2) and NET were 0.99 (0.93, 1.06) and 1.03 (0.97, 1.09), respectively, and for C(max) were 0.97 (0.86, 1.10) and 0.98 (0.89, 1.07), respectively. The coadministration of sitagliptin 200 mg/day with an oral contraceptive for 21 days did not lead to clinically meaningful alterations in the pharmacokinetics of EE(2) and NET.

  5. Clinical and economical consequences of the combination of metformin with dipeptidyl peptidase inhibitors in type 2 diabetes patients.

    PubMed

    Sicras Mainar, A; Roldán Suárez, C; Font Ramos, B; Navarro Artieda, R; Ibáñez Nolla, J

    2013-11-01

    There are different second line glucose lowering drugs whose efficacy, safety and economic profile have not been established in our setting. We have analyzed the clinical (diabetic treatment adherence, metabolic control, hypoglycemia and macrovascular complications) and economic (resource use and costs) consequences of the combination of metformin with dipeptidyl peptidase inhibitors (DPPIV) in patients with type 2 diabetes. We conducted a multicenter, observational and retrospective study. Patients ≥30 years treated with metformin who initiated a second antidiabetic treatment during 2008-2009 were enrolled in the study. Two groups of patients were established: a) metformin with DPPIV and metformin with other diabetic drugs. The main measurements were comorbidity, compliance/persistence, metabolic control (glycosylated hemoglobin <7%), complications (hypoglycemia, macrovascular) and total costs. Patients were followed-up for 2 years. A total of 2,067 patients were enrolled (mean age: 66.6 years, 53.1% male). Of these, 519 patients (25.1%) were analyzed in the metformin+DPPIV group and 1,548 patients (74.9%) in the group metformin+other antidiabetic drug. The DPPIV group patients showed better compliance (70.3 vs. 59.6%), persistence (63.4 vs. 51.0%) and metabolic control (64.3 vs. 59.6%), respectively (P<.001) compared to the other group. They also showed a lower proportion of hypoglycemia (13.9 vs. 44.3%), cardiovascular events (3.7 vs. 7.6%) and total costs (2,347 vs. € 2,682), P<.05. Despite the limitations of the study, patients treated with metformin associated to DPPIV were more likely to show increased adherence, metabolic control and lower rates of hypoglycemia than those treated with metformin associated to other antidiabetics. Copyright © 2013 Elsevier España, S.L. All rights reserved.

  6. Dipeptidyl peptidase-4 inhibitor gemigliptin protects against vascular calcification in an experimental chronic kidney disease and vascular smooth muscle cells.

    PubMed

    Choi, Soon-Youn; Ryu, Hye-Myung; Oh, Eun-Joo; Choi, Ji-Young; Cho, Jang-Hee; Kim, Chan-Duck; Kim, Yong-Lim; Park, Sun-Hee

    2017-01-01

    Although dipeptidyl peptidase-4 inhibitors, a class of antidiabetic drugs, have various pleiotropic effects, it remains undetermined whether gemigliptin has a beneficial effect on vascular calcification. Therefore, this study was performed to evaluate the effect of gemigliptin on vascular calcification in a rat model of adenine-induced chronic kidney disease and in cultured vascular smooth muscle cells. Gemigliptin attenuated calcification of abdominal aorta and expression of RUNX2 in adenine-induced chronic kidney disease rats. In cultured vascular smooth muscle cells, phosphate-induced increase in calcium content was reduced by gemigliptin. Gemigliptin reduced phosphate-induced PiT-1 mRNA expression, reactive oxygen species generation, and NADPH oxidase mRNA expression (p22phox and NOX4). The reduction of oxidative stress by gemigliptin was associated with the downregulation of phospho-PI3K/AKT expression. High phosphate increased the expression of frizzled-3 (FDZ3) and decreased the expression of dickkopf-related protein-1 (DKK-1) in the Wnt pathway. These changes were attenuated by gemigliptin treatment. Gemigliptin restored the decreased expression of vascular smooth muscle cells markers (α-SMA and SM22α) and increased expression of osteogenic makers (CBFA1, OSX, E11, and SOST) induced by phosphate. In conclusion, gemigliptin attenuated vascular calcification and osteogenic trans-differentiation in vascular smooth muscle cells via multiple steps including downregulation of PiT-1 expression and suppression of reactive oxygen species generation, phospho-PI3K/AKT, and the Wnt signaling pathway.

  7. Natural dipeptidyl peptidase-IV inhibitor mangiferin mitigates diabetes- and metabolic syndrome-induced changes in experimental rats

    PubMed Central

    Suman, Rajesh Kumar; Mohanty, Ipseeta Ray; Maheshwari, Ujwala; Borde, Manjusha K; Deshmukh, YA

    2016-01-01

    Background Mangiferin (MNG) is known to possess antidiabetic and antioxidant activity. However, there is no experimental evidence presently available in the literature with regard to its ameliorating effects on diabetes mellitus coexisting with metabolic syndrome. Objective The present study was designed to evaluate the protective effects of MNG on various components of metabolic syndrome with diabetes as an essential component. Material and methods Adult Wistar rats were fed high-fat diets for 10 weeks and challenged with streptozotocin (40 mg/kg) at week three (high-fat diabetic control group). After the confirmation of metabolic syndrome in the setting of diabetes, MNG 40 mg/kg was orally fed to these rats from the fourth to tenth week. Results The treatment with MNG showed beneficial effects on various components of metabolic syndrome, such as reduced dyslipidemia (decreased triglyceride, total cholesterol, low-density lipoprotein cholesterol, and increased high-density lipoprotein cholesterol) and diabetes mellitus (reduced blood glucose and glycosylated hemoglobin). In addition, an increase in serum insulin, C-peptide, and homeostasis model assessment-β and a reduction in homeostasis model assessment of insulin resistance-IR were observed in MNG-treated group compared with high-fat diabetic control group. MNG was also found to be cardioprotective (reduction in creatine phosphokinase-MB levels, atherogenic index, high-sensitivity C-reactive protein). Reduction in serum dipeptidyl peptidase–IV levels in the MNG-treated group correlated with improvement in insulin resistance and enhanced β-cell function. Conclusion The present study has demonstrated antidiabetic, hypolipidemic, and cardioprotective effects of MNG in the setting of diabetes with metabolic syndrome. Thus, MNG has the potential to be developed as a natural alternative to synthetic dipeptidyl peptidase-IV inhibitors beneficial in this comorbid condition. PMID:27621658

  8. Distinct effects of dipeptidyl peptidase-4 inhibitor and glucagon-like peptide-1 receptor agonist on islet morphology and function.

    PubMed

    Morita, Asuka; Mukai, Eri; Hiratsuka, Ayano; Takatani, Tomozumi; Iwanaga, Toshihiko; Lee, Eun Young; Miki, Takashi

    2016-03-01

    Although the two anti-diabetic drugs, dipeptidyl peptidase-4 inhibitors (DPP4is) and glucagon-like peptide-1 (GLP-1) receptor agonists (GLP1RAs), have distinct effects on the dynamics of circulating incretins, little is known of the difference in their consequences on morphology and function of pancreatic islets. We examined these in a mouse model of β cell injury/regeneration. The model mice were generated so as to express diphtheria toxin (DT) receptor and a fluorescent protein (Tomato) specifically in β cells. The mice were treated with a DPP4i (MK-0626) and a GLP1RA (liraglutide), singly or doubly, and the morphology and function of the islets were compared. Prior administration of MK-0626 and/or liraglutide similarly protected β cells from DT-induced cell death, indicating that enhanced GLP-1 signaling can account for the cytoprotection. However, 2-week intervention of MK-0626 and/or liraglutide in DT-injected mice resulted in different islet morphology and function: β cell proliferation and glucose-stimulated insulin secretion (GSIS) were increased by MK-0626 but not by liraglutide; α cell mass was decreased by liraglutide but not by MK-0626. Although liraglutide administration nullified MK-0626-induced β cell proliferation, their co-administration resulted in increased GSIS, decreased α cell mass, and improved glucose tolerance. The pro-proliferative effect of MK-0626 was lost by co-administration of the GLP-1 receptor antagonist exendin-(9-39), indicating that GLP-1 signaling is required for this effect. Comparison of the effects of DPP4is and/or GLP1RAs treatment in a single mouse model shows that the two anti-diabetic drugs have distinct consequences on islet morphology and function.

  9. The dipeptidyl peptidase-4 inhibitor vildagliptin has the capacity to repair β-cell dysfunction and insulin resistance.

    PubMed

    Horie, A; Tokuyama, Y; Ishizuka, T; Suzuki, Y; Marumo, K; Oshikiri, K; Ide, K; Sunaga, M; Kanatsuka, A

    2014-10-01

    The aim of the present study was to determine whether the dipeptidyl peptidase (DPP)-4 inhibitor could repair pancreatic β-cell dysfunction and insulin resistance. Ten subjects with type 2 diabetes who had never received DPP-4 inhibitor treatment were enrolled in the study. Just before and 3 months after twice-daily administration of vildagliptin (50 mg tablets), insulin secretion and insulin sensitivity were estimated using 2-compartment model analysis of C-peptide kinetics and insulin-modified minimal model parameters, respectively. The first-phase insulin secretion (CS1) was determined as the sum of the C-peptide secretion rate (CSR) from 0 to 5 min (normal range 6.8-18.5 ng/ml/min). The whole-body insulin sensitivity index (SI) was calculated using a minimal model software program (normal range 2.6-7.6×10(-4)/min/μU/ml). After vildagliptin treatment, reductions in mean (± SE) HbA1c were noted (43.28±1.53 vs. 40.98±1.77 mmol/mol; p=0.019). Vildagliptin treatment increased the area under the curve for the C peptide reactivity (CPR) (AUCCPR; 26.66±5.15 vs. 33.02±6.12 ng/ml · 20 min; p=0.003) and CS1 (0.80±0.20 vs. 1.35±0.38 ng/ml/min; p=0.037) in response to an intravenous glucose load. -Vildagliptin treatment significantly increased SI (0.46±0.27 vs. 1.21±0.48×10(-4)/min/μU/ml; p=0.037). The long-term administration of vildagliptin improved CS1 and Si suggesting that this drug has the capacity to repair impairments in pancreatic β-cell function and insulin resistance in type 2 diabetes.

  10. Inhibition of HIV-1 by fusion inhibitors.

    PubMed

    Eggink, Dirk; Berkhout, Ben; Sanders, Rogier W

    2010-01-01

    The envelope glycoprotein complex (Env) is responsible for entry of the human immunodeficiency virus type 1 (HIV-1) into cells by mediating attachment to target cells and subsequent membrane fusion. Env consists of three gp120 subunits that mediate receptor and co-receptor attachment and three gp41 subunits responsible for membrane fusion. Several steps of the entry process can serve as drug targets. Receptor antagonists prevent attachment of gp120 to the receptor or co-receptor and conformational changes within gp41 required for membrane fusion can be inhibited by fusion inhibitors. Enfuvirtide (T20, Fuzeon) is a peptide based on the gp41 sequence and is the only approved fusion inhibitor. It prevents membrane fusion by competitively binding to gp41 and blocking the formation of the post-fusion structure. New generations of T20-like peptides have been developed with improved potency and stability. Besides T20 and derivatives, other fusion inhibitors have been developed that target different domains of gp41. Here we discuss the development of fusion inhibitors, their mode of action and their potential for incorporation in future drug regimens.

  11. Fucoidans as potential inhibitors of HIV-1.

    PubMed

    Prokofjeva, Maria M; Imbs, Tatyana I; Shevchenko, Natalya M; Spirin, Pavel V; Horn, Stefan; Fehse, Boris; Zvyagintseva, Tatyana N; Prassolov, Vladimir S

    2013-08-19

    The antiviral activity of different structure fucoidans (α-l-fucans and galactofucans) was studied using two model viral systems based on a lentiviral vectors and a replication competent Moloney murine leukemia virus (Mo-MuLV). It was found that investigated fucoidans have no cytotoxic effects on Jurkat and SC-1cell at the concentration range of 0.001-100 µg/mL. Fucoidans with different efficiency suppressed transduction of Jurkat cell line by pseudo-HIV-1 particles carrying the envelope protein of HIV-1 and infection of SC-1 cells by Mo-MuLV. According to our data, all natural fucoidans can be considered as potential anti-HIV agents regardless of their carbohydrate backbone and degree of sulfating, since their activity is shown at low concentrations (0.001-0.05 µg/mL). High molecular weight fucoidans isolated from Saccharina cichorioides (1.3-α-l-fucan), and S. japonica (galactofucan) were the most effective inhibitors.

  12. Combination Therapy with a Sodium-Glucose Cotransporter 2 Inhibitor and a Dipeptidyl Peptidase-4 Inhibitor Additively Suppresses Macrophage Foam Cell Formation and Atherosclerosis in Diabetic Mice

    PubMed Central

    Hiromura, Munenori; Mori, Yusaku; Kohashi, Kyoko; Kushima, Hideki; Ohara, Makoto; Watanabe, Takuya; Andersson, Olov

    2017-01-01

    Dipeptidyl peptidase-4 inhibitors (DPP-4is), in addition to their antihyperglycemic roles, have antiatherosclerotic effects. We reported that sodium-glucose cotransporter 2 inhibitors (SGLT2is) suppress atherosclerosis in a glucose-dependent manner in diabetic mice. Here, we investigated the effects of combination therapy with SGLT2i and DPP-4i on atherosclerosis in diabetic mice. SGLT2i (ipragliflozin, 1.0 mg/kg/day) and DPP-4i (alogliptin, 8.0 mg/kg/day), either alone or in combination, were administered to db/db mice or streptozotocin-induced diabetic apolipoprotein E-null (Apoe−/−) mice. Ipragliflozin and alogliptin monotherapies improved glucose intolerance; however, combination therapy did not show further improvement. The foam cell formation of peritoneal macrophages was suppressed by both the ipragliflozin and alogliptin monotherapies and was further enhanced by combination therapy. Although foam cell formation was closely associated with HbA1c levels in all groups, DPP-4i alone or the combination group showed further suppression of foam cell formation compared with the control or SGLT2i group at corresponding HbA1c levels. Both ipragliflozin and alogliptin monotherapies decreased scavenger receptors and increased cholesterol efflux regulatory genes in peritoneal macrophages, and combination therapy showed additive changes. In diabetic Apoe−/− mice, combination therapy showed the greatest suppression of plaque volume in the aortic root. In conclusion, combination therapy with SGLT2i and DPP4i synergistically suppresses macrophage foam cell formation and atherosclerosis in diabetic mice. PMID:28408925

  13. Dipeptidyl peptidase-4 inhibitors or sodium glucose co-transporter-2 inhibitors as an add-on to insulin therapy: A comparative review

    PubMed Central

    Singh, Awadhesh Kumar; Singh, Ritu

    2016-01-01

    The gradual decline in β-cell function is inevitable in type 2 diabetes mellitus and therefore, substantial proportions of patients require insulin subsequently, in order to achieve optimal glucose control. While weight gain, hypoglycemia, and fluid retention especially during dose intensification is a known limitation to insulin therapy, these adverse effects also reduce patient satisfaction and treatment adherence. It is also possible that the benefits of intensive control achieved by insulin therapy, perhaps get nullified by the weight gain and hypoglycemia. In addition, improvement in plasma glucose or glycated hemoglobin (HbA1c) itself is associated with weight gain. Notably, studies have already suggested that reduction in body weight by ~3–5%, may allow a significantly better glycemic control. Thus, a class of drugs, which can reduce HbA1c effectively, yet are weight neutral or preferably reduce body weight, could be the most sought out strategy as an add-on therapy to insulin. While sulfonylureas (SUs) are associated with weight gain and hypoglycemia, pioglitazone increases body weight and fluid retention. Moreover, SUs are not recommended once premix or prandial insulin is commenced. The addition of newer agents, such as glucagon-like peptide-1 receptor agonist to insulin certainly appears to be an effective tool in reducing both HbA1c and body weight as is evident across the studies; however, this approach incurs an additional injection as well as cost. Dipeptidyl peptidase-4 inhibitors (DPP-4I) and sodium-glucose co-transporter-2 inhibitors (SGLT-2I) are other exciting options, as an add-on to insulin therapy primarily because these are oral drugs and do not possess any intrinsic potential of hypoglycemia. Furthermore, these are either weight neutral or induce significant weight loss. This review article aims to comparatively analyze the safety and efficacy of DPP-4I and SGLT-2I, as an add-on therapy to insulin. PMID:26904466

  14. Dipeptidyl peptidase-4 inhibitors or sodium glucose co-transporter-2 inhibitors as an add-on to insulin therapy: A comparative review.

    PubMed

    Singh, Awadhesh Kumar; Singh, Ritu

    2016-01-01

    The gradual decline in β-cell function is inevitable in type 2 diabetes mellitus and therefore, substantial proportions of patients require insulin subsequently, in order to achieve optimal glucose control. While weight gain, hypoglycemia, and fluid retention especially during dose intensification is a known limitation to insulin therapy, these adverse effects also reduce patient satisfaction and treatment adherence. It is also possible that the benefits of intensive control achieved by insulin therapy, perhaps get nullified by the weight gain and hypoglycemia. In addition, improvement in plasma glucose or glycated hemoglobin (HbA1c) itself is associated with weight gain. Notably, studies have already suggested that reduction in body weight by ~3-5%, may allow a significantly better glycemic control. Thus, a class of drugs, which can reduce HbA1c effectively, yet are weight neutral or preferably reduce body weight, could be the most sought out strategy as an add-on therapy to insulin. While sulfonylureas (SUs) are associated with weight gain and hypoglycemia, pioglitazone increases body weight and fluid retention. Moreover, SUs are not recommended once premix or prandial insulin is commenced. The addition of newer agents, such as glucagon-like peptide-1 receptor agonist to insulin certainly appears to be an effective tool in reducing both HbA1c and body weight as is evident across the studies; however, this approach incurs an additional injection as well as cost. Dipeptidyl peptidase-4 inhibitors (DPP-4I) and sodium-glucose co-transporter-2 inhibitors (SGLT-2I) are other exciting options, as an add-on to insulin therapy primarily because these are oral drugs and do not possess any intrinsic potential of hypoglycemia. Furthermore, these are either weight neutral or induce significant weight loss. This review article aims to comparatively analyze the safety and efficacy of DPP-4I and SGLT-2I, as an add-on therapy to insulin.

  15. [Coreceptors of HIV infection and the development of HIV entry inhibitors: overview and targets].

    PubMed

    Hoshino, Hiroo

    2002-01-01

    In 1996 CXCR4 was identified as a coreceptor for HIV-1. This finding has lead to further identification of more than ten G-protein-coupled receptors (GPCRs) as coreceptors for HIV/SIV. Cell tropisms and coreceptor uses of HIV during the course of HIV infection are summarized. Promiscuous properties of correlations between chemokines and their chemokine receptor uses and also between variable amino acid sequences in the V3 region of HIV gp120 Env and HIV coreceptor uses are discussed. This promiscuous property of HIV-1 is claimed to be a possible cause of a difficulty in developing highly effective entry inhibitors and in addition to allow rapid appearance of immune escape HIV mutants. Representative agents that inhibit HIV entry with a special reference to inhibitors of coreceptor use and gp41 function are summarized. gp41 is discussed as a promising target for the development of effective entry inhibitors.

  16. HIV Integrase Inhibitors with Nucleobase Scaffolds: Discovery of a Highly Potent anti-HIV Agent

    PubMed Central

    Nair, Vasu; Chi, Guochen; Ptak, Roger; Neamati, Nouri

    2008-01-01

    HIV integrase is essential for HIV replication. However, there are currently no integrase inhibitors in clinical use for AIDS. We have discovered a conceptually new β-diketo acid that is a powerful inhibitor of both the 3′-processing and strand transfer steps of HIV-1 integrase. The in vitro anti-HIV data of this inhibitor were remarkable as exemplified by its highly potent antiviral therapeutic efficacy against HIVTEKI and HIV-1NL4-3 replication in PBMC (TI >4,000 and >10,000, respectively). PMID:16420027

  17. Effects of dipeptidyl peptidase-4 inhibitors on beta-cell function and insulin resistance in type 2 diabetes: meta-analysis of randomized controlled trials

    PubMed Central

    Lyu, Xiafei; Zhu, Xiaolin; Zhao, Bin; Du, Liang; Chen, Dawei; Wang, Chun; Liu, Guanjian; Ran, Xingwu

    2017-01-01

    Dipeptidyl peptidase-4 (DPP-4) inhibitors are a novel family of glucose-lowering agents. Accumulating evidence suggests that DPP-4 inhibitors preserve pancreatic beta-cell function, but results in previous studies have been inconsistent. We assessed the effects of DPP-4 inhibitors on the homoeostasis model assessment beta-cell function (HOMA-B) or insulin resistance (HOMA-IR) index in patients with type 2 diabetes through a systematic review and meta-analysis of randomized controlled trials (RCTs). Relevant articles were identified from PubMed, Embase, and Cochrane Library databases up to December 27, 2016. We calculated weighted mean differences (WMDs) and 95% confidence intervals (CIs) in each included trial and pooled the data using a random-effects model. Fifty-two trials were included in the present analysis. Compared with placebo control, DPP-4 inhibitors as monotherapy significantly improved HOMA-B (WMD 9.15; 95% CI 7.48, 10.81). Similarly, DPP-4 inhibitors as add-on therapy in combination with other drugs showed significant improvement in HOMA-B (WMD 9.04; 95% CI 5.72, 12.37). However, we found no significant improvement in HOMA-IR following treatment with DPP-4 inhibitors as mono-therapy or as add-on therapy. In conclusion, DPP-4 inhibitors as monotherapy or as add-on therapy significantly improved beta-cell function but had no significant effect on insulin resistance in type 2 diabetes. PMID:28322294

  18. HIV-1 protease inhibitors in development.

    PubMed

    Rusconi, Stefano; La Seta Catamancio, Simona

    2002-03-01

    Several pharmaceutical companies have developed an increasing number of second generation protease inhibitors (PI) during the last few years. Many of these compounds have been in preclinical trials and some are now in clinical use. All drugs in this category have been designed to be well absorbed and overcome the crucial problem of cross-resistance within this class of compounds. Taking into account the rapid occurrence of PI cross-resistance, clinicians who are treating patients with the HIV-1 infection will need new active PIs in the near future. The clinical and antiviral efficacy of the new molecules versus the older PIs will be investigated through comparative trials that are likely to be completed over the next 12 months. These third-generation PIs currently in development will be the subject of our review.

  19. Dipeptidyl peptidase-4 inhibitor ameliorates early renal injury through its anti-inflammatory action in a rat model of type 1 diabetes

    SciTech Connect

    Kodera, Ryo; Shikata, Kenichi; Takatsuka, Tetsuharu; Oda, Kaori; Miyamoto, Satoshi; Kajitani, Nobuo; Hirota, Daisho; Ono, Tetsuichiro; Usui, Hitomi Kataoka; Makino, Hirofumi

    2014-01-17

    Highlights: •DPP-4 inhibitor decreased urinary albumin excretion in a rat of type 1 diabetes. •DPP-4 inhibitor ameliorated histlogical changes of diabetic nephropathy. •DPP-4 inhibitor has reno-protective effects through anti-inflammatory action. •DPP-4 inhibitor is beneficial on diabetic nephropathy besides lowering blood glucose. -- Abstract: Introduction: Dipeptidyl peptidase-4 (DPP-4) inhibitors are incretin-based drugs in patients with type 2 diabetes. In our previous study, we showed that glucagon-like peptide-1 (GLP-1) receptor agonist has reno-protective effects through anti-inflammatory action. The mechanism of action of DPP-4 inhibitor is different from that of GLP-1 receptor agonists. It is not obvious whether DPP-4 inhibitor prevents the exacerbation of diabetic nephropathy through anti-inflammatory effects besides lowering blood glucose or not. The purpose of this study is to clarify the reno-protective effects of DPP-4 inhibitor through anti-inflammatory actions in the early diabetic nephropathy. Materials and methods: Five-week-old male Sprague–Dawley (SD) rats were divided into three groups; non-diabetes, diabetes and diabetes treated with DPP-4 inhibitor (PKF275-055; 3 mg/kg/day). PKF275-055 was administered orally for 8 weeks. Results: PKF275-055 increased the serum active GLP-1 concentration and the production of urinary cyclic AMP. PKF275-055 decreased urinary albumin excretion and ameliorated histological change of diabetic nephropathy. Macrophage infiltration was inhibited, and inflammatory molecules were down-regulated by PKF275-055 in the glomeruli. In addition, nuclear factor-κB (NF-κB) activity was suppressed in the kidney. Conclusions: These results indicate that DPP-4 inhibitor, PKF275-055, have reno-protective effects through anti-inflammatory action in the early stage of diabetic nephropathy. The endogenous biological active GLP-1 might be beneficial on diabetic nephropathy besides lowering blood glucose.

  20. Finding a Potential Dipeptidyl Peptidase-4 (DPP-4) Inhibitor for Type-2 Diabetes Treatment Based on Molecular Docking, Pharmacophore Generation, and Molecular Dynamics Simulation

    PubMed Central

    Meduru, Harika; Wang, Yeng-Tseng; Tsai, Jeffrey J. P.; Chen, Yu-Ching

    2016-01-01

    Dipeptidyl peptidase-4 (DPP-4) is the vital enzyme that is responsible for inactivating intestinal peptides glucagon like peptide-1 (GLP-1) and Gastric inhibitory polypeptide (GIP), which stimulates a decline in blood glucose levels. The aim of this study was to explore the inhibition activity of small molecule inhibitors to DPP-4 following a computational strategy based on docking studies and molecular dynamics simulations. The thorough docking protocol we applied allowed us to derive good correlation parameters between the predicted binding affinities (pKi) of the DPP-4 inhibitors and the experimental activity values (pIC50). Based on molecular docking receptor-ligand interactions, pharmacophore generation was carried out in order to identify the binding modes of structurally diverse compounds in the receptor active site. Consideration of the permanence and flexibility of DPP-4 inhibitor complexes by means of molecular dynamics (MD) simulation specified that the inhibitors maintained the binding mode observed in the docking study. The present study helps generate new information for further structural optimization and can influence the development of new DPP-4 inhibitors discoveries in the treatment of type-2 diabetes. PMID:27304951

  1. Finding a Potential Dipeptidyl Peptidase-4 (DPP-4) Inhibitor for Type-2 Diabetes Treatment Based on Molecular Docking, Pharmacophore Generation, and Molecular Dynamics Simulation.

    PubMed

    Meduru, Harika; Wang, Yeng-Tseng; Tsai, Jeffrey J P; Chen, Yu-Ching

    2016-06-13

    Dipeptidyl peptidase-4 (DPP-4) is the vital enzyme that is responsible for inactivating intestinal peptides glucagon like peptide-1 (GLP-1) and Gastric inhibitory polypeptide (GIP), which stimulates a decline in blood glucose levels. The aim of this study was to explore the inhibition activity of small molecule inhibitors to DPP-4 following a computational strategy based on docking studies and molecular dynamics simulations. The thorough docking protocol we applied allowed us to derive good correlation parameters between the predicted binding affinities (pKi) of the DPP-4 inhibitors and the experimental activity values (pIC50). Based on molecular docking receptor-ligand interactions, pharmacophore generation was carried out in order to identify the binding modes of structurally diverse compounds in the receptor active site. Consideration of the permanence and flexibility of DPP-4 inhibitor complexes by means of molecular dynamics (MD) simulation specified that the inhibitors maintained the binding mode observed in the docking study. The present study helps generate new information for further structural optimization and can influence the development of new DPP-4 inhibitors discoveries in the treatment of type-2 diabetes.

  2. FAITH – Fast Assembly Inhibitor Test for HIV

    SciTech Connect

    Hadravová, Romana; Rumlová, Michaela; Ruml, Tomáš

    2015-12-15

    Due to the high number of drug-resistant HIV-1 mutants generated by highly active antiretroviral therapy (HAART), there is continuing demand for new types of inhibitors. Both the assembly of the Gag polyprotein into immature and mature HIV-1 particles are attractive candidates for the blocking of the retroviral life cycle. Currently, no therapeutically-used assembly inhibitor is available. One possible explanation is the lack of a reliable and simple assembly inhibitor screening method. To identify compounds potentially inhibiting the formation of both types of HIV-1 particles, we developed a new fluorescent high-throughput screening assay. This assay is based on the quantification of the assembly efficiency in vitro in a 96-well plate format. The key components of the assay are HIV-1 Gag-derived proteins and a dual-labelled oligonucleotide, which emits fluorescence only when the assembly of retroviral particles is inhibited. The method was validated using three (CAI, BM2, PF74) reported assembly inhibitors. - Highlights: • Allows screening of assembly inhibitors of both mature and immature HIV-1 particles. • Based on Gag-derived proteins with CA in mature or immature conformation. • Simple and sensitive method suitable for high-throughput screening of inhibitors. • Unlike in other HIV assembly methods, works under physiological conditions. • No washing steps are necessary.

  3. Effects of Dipeptidyl Peptidase-4 Inhibitors on Hyperglycemia and Blood Cyclosporine Levels in Renal Transplant Patients with Diabetes: A Pilot Study

    PubMed Central

    Bae, Jaehyun; Lee, Min Jung; Choe, Eun Yeong; Jung, Chang Hee; Wang, Hye Jin; Kim, Myoung Soo; Kim, Yu Seun

    2016-01-01

    Background The use of dipeptidyl peptidase-4 (DPP-4) inhibitors is increasing among renal transplant patients with diabetes. However, the glucose-lowering efficacies of various DPP-4 inhibitors and their effects on blood cyclosporine levels have not been fully investigated. We compared the glucose-lowering efficacies of DPP 4 inhibitors and evaluate their effects on the blood levels of cyclosporine in renal transplant recipients with diabetes. Methods Sixty-five renal allograft recipients who received treatment with DPP-4 inhibitors (vildagliptin, sitagliptin, or linagliptin) following kidney transplant were enrolled. The glucose-lowering efficacies of the DPP-4 inhibitors were compared according to the changes in the hemoglobin A1c (HbA1c) levels after 3 months of treatment. Changes in the trough levels of the cyclosporine were also assessed 2 months after treatment with each DPP-4 inhibitor. Results HbA1c significantly decreased in the linagliptin group in comparison with other DPP-4 inhibitors (vildagliptin –0.38%±1.03%, sitagliptin –0.53%±0.95%, and linagliptin –1.40±1.34; P=0.016). Cyclosporine trough levels were significantly increased in the sitagliptin group compared with vildagliptin group (30.62±81.70 ng/mL vs. –24.22±53.54 ng/mL, P=0.036). Cyclosporine trough levels were minimally changed in patients with linagliptin. Conclusion Linagliptin demonstrates superior glucose-lowering efficacy and minimal effect on cyclosporine trough levels in comparison with other DPP-4 inhibitors in kidney transplant patients with diabetes. PMID:26754588

  4. Effects of dipeptidyl peptidase-4 inhibitors on blood pressure in patients with type 2 diabetes: A systematic review and meta-analysis.

    PubMed

    Zhang, Xiaodan; Zhao, Qingyu

    2016-02-01

    This review was undertaken to assess the effects of dipeptidyl peptidase-4 (DPP-4) inhibitors on blood pressure (BP) in patients with type 2 diabetes (T2DM). We searched three main databases (PubMed, Web of Science, and Scopus) for relevant articles. Randomized controlled trials which reported BP changes from baseline to study endpoint in patients with T2DM receiving treatment of DPP-4 inhibitors were included for analysis. Random effects models were used to measure the mean differences with 95% confidence intervals (CIs). Fifteen trials involving 5636 participants were identified. When compared with placebo or nontreatment, DPP-4 inhibitors achieved greater reductions for both SBP (mean difference, -3.04  mmHg; 95% CI, -4.37 to -1.72; P < 0.00001) and DBP (mean difference, -1.47  mmHg; 95% CI, -1.79 to -1.15; P < 0.00001). But the BP-lowering effects of sodium-glucose cotransporter 2 inhibitors were more significant than those of DPP-4 inhibitors for both SBP (mean difference, 4.44  mmHg; 95% CI, 2.67-6.22; P < 0.00001) and DBP (mean difference, 2.15  mmHg; 95% CI, 1.08-3.21; P < 0.00001). No significant differences in BP changes were shown between DPP-4 inhibitors with other antidiabetic agents including glucagon-like peptide 1 receptor agonists, pioglitazone, sulphonylureas, metformin, and α-glucosidase inhibitors. DPP-4 inhibitors may exert modest BP-lowering effects compared with placebo or nontreatment for patients with T2DM, but no significant BP improvement was seen with this drug class when compared with other antidiabetic medications.

  5. Selective Substrates and Inhibitors for Kallikrein-Related Peptidase 7 (KLK7) Shed Light on KLK Proteolytic Activity in the Stratum Corneum.

    PubMed

    de Veer, Simon J; Furio, Laetitia; Swedberg, Joakim E; Munro, Christopher A; Brattsand, Maria; Clements, Judith A; Hovnanian, Alain; Harris, Jonathan M

    2017-02-01

    Proteases have pivotal roles in the skin's outermost layer, the epidermis. In the stratum corneum, serine proteases from the kallikrein-related peptidase (KLK) family have been implicated in several key homeostatic processes, including desquamation. However, the precise contribution of specific KLKs to each process remains unclear. To address this, we used a chemical biology approach and designed selective substrates and inhibitors for KLK7, the most abundant KLK protease in the stratum corneum. The resulting KLK7 inhibitor is the most potent inhibitor of this protease reported to date (Ki = 140 pM), and displays at least 1,000-fold selectivity over several proteases that are related by function (KLK5 and KLK14) or specificity (chymotrypsin). We then used substrates and inhibitors for KLK5, KLK7, and KLK14 to explore the activity of each protease in the stratum corneum using casein zymography and an ex vivo desquamation assay. These experiments provide the most detailed assessment of each KLK's contribution to corneocyte shedding in the plantar stratum corneum, revealing that inhibition of KLK7 alone is sufficient to block shedding, whereas KLK5 is also a major contributor. Collectively, these findings unveil chemical tools for studying KLK activity and demonstrate their potential for characterizing KLK biological functions in epidermal homeostasis. Copyright © 2016 The Authors. Published by Elsevier Inc. All rights reserved.

  6. Bovine pancreatic trypsin inhibitor immobilized onto sepharose as a new strategy to purify a thermostable alkaline peptidase from cobia (Rachycentron canadum) processing waste.

    PubMed

    França, Renata Cristina da Penha; Assis, Caio Rodrigo Dias; Santos, Juliana Ferreira; Torquato, Ricardo José Soares; Tanaka, Aparecida Sadae; Hirata, Izaura Yoshico; Assis, Diego Magno; Juliano, Maria Aparecida; Cavalli, Ronaldo Olivera; Carvalho, Luiz Bezerra de; Bezerra, Ranilson Souza

    2016-10-15

    A thermostable alkaline peptidase was purified from the processing waste of cobia (Rachycentron canadum) using bovine pancreatic trypsin inhibitor (BPTI) immobilized onto Sepharose. The purified enzyme had an apparent molecular mass of 24kDa by both sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE) and mass spectrometry. Its optimal temperature and pH were 50°C and 8.5, respectively. The enzyme was thermostable until 55°C and its activity was strongly inhibited by the classic trypsin inhibitors N-ρ-tosyl-l-lysine chloromethyl ketone (TLCK) and benzamidine. BPTI column allowed at least 15 assays without loss of efficacy. The purified enzyme was identified as a trypsin and the N-terminal amino acid sequence of this trypsin was IVGGYECTPHSQAHQVSLNSGYHFC, which was highly homologous to trypsin from cold water fish species. Using Nα-benzoyl-dl-arginine ρ-nitroanilide hydrochloride (BApNA) as substrate, the apparent km value of the purified trypsin was 0.38mM, kcat value was 3.14s(-1), and kcat/km was 8.26s(-1)mM(-1). The catalytic proficiency of the purified enzyme was 2.75×10(12)M(-1) showing higher affinity for the substrate at the transition state than other fish trypsin. The activation energy (AE) of the BApNA hydrolysis catalyzed by this enzyme was estimated to be 11.93kcalmol(-1) while the resulting rate enhancement of this reaction was found to be approximately in a range from 10(9) to 10(10)-fold evidencing its efficiency in comparison to other trypsin. This new purification strategy showed to be appropriate to obtain an alkaline peptidase from cobia processing waste with high purification degree. According with N-terminal homology and kinetic parameters, R. canadum trypsin may gathers desirable properties of psychrophilic and thermostable enzymes.

  7. Synergistic Combinations of the CCR5 Inhibitor VCH-286 with Other Classes of HIV-1 Inhibitors

    PubMed Central

    Asin-Milan, Odalis; Sylla, Mohamed; El-Far, Mohamed; Belanger-Jasmin, Geneviève; Haidara, Alpha; Blackburn, Julie; Chamberland, Annie

    2014-01-01

    Here, we evaluated the in vitro anti-HIV-1 activity of the experimental CCR5 inhibitor VCH-286 as a single agent or in combination with various classes of HIV-1 inhibitors. Although VCH-286 used alone had highly inhibitory activity, paired combinations with different drug classes led to synergistic or additive interactions. However, combinations with other CCR5 inhibitors led to effects ranging from synergy to antagonism. We suggest that caution should be exercised when combining CCR5 inhibitors in vivo. PMID:25267674

  8. Beneficial Effects of Evogliptin, a Novel Dipeptidyl Peptidase 4 Inhibitor, on Adiposity with Increased Ppargc1a in White Adipose Tissue in Obese Mice.

    PubMed

    Chae, Yu-Na; Kim, Tae-Hyoung; Kim, Mi-Kyung; Shin, Chang-Yell; Jung, Il-Hoon; Sohn, Yong Sung; Son, Moon-Ho

    2015-01-01

    Although dipeptidyl peptidase 4 (DPP4) is an adipokine known to positively correlate with adiposity, the effects of pharmacological DPP4 inhibition on body composition have not been fully understood. This study was aimed to assess the effects of DPP4 inhibitors on adiposity for the first time in the established obese mice model. The weight loss effects of multiple DPP4 inhibitors were compared after a 4 week treatment in diet-induced obese mice. In addition, a 2 week study was performed to explore and compare the acute effects of evogliptin, a novel DPP4 inhibitor, and exenatide, a glucagon-like peptide-1 (GLP-1) analogue, on whole body composition, energy consumption, various plasma adipokines and gene expression in white adipose tissue (WAT). After the 4 week treatment, weight loss and blood glucose reductions were consistently observed with multiple DPP4 inhibitors. Moreover, after 2-week treatment, evogliptin dose-dependently reduced whole body fat mass while increasing the proportion of smaller adipocytes. However, insulin sensitivity or plasma lipid levels were not significantly altered. In addition to increased active GLP-1 levels by plasma DPP4 inhibition, evogliptin also enhanced basal metabolic rate without reduction in caloric intake, in contrast to exenatide; this finding suggested evogliptin's effects may be mediated by pathways other than via GLP-1. Evogliptin treatment also differentially increased Ppargc1a expression, a key metabolic regulator, in WAT, but not in skeletal muscle and brown adipose tissue. The increased expression of the downstream mitochondrial gene, Cox4i1, was also suggestive of the potential metabolic alteration in WAT by DPP4 inhibitors. We are the first to demonstrate that pharmacological DPP4 inhibition by evogliptin directly causes fat loss in established obese mice. In contradistinction to exenatide, the fat-loss effect of DPP4 inhibitor is partly attributed to enhanced energy expenditure along with metabolic changes in WAT

  9. The Dipeptidyl Peptidase-4 Inhibitor Teneligliptin Attenuates Hepatic Lipogenesis via AMPK Activation in Non-Alcoholic Fatty Liver Disease Model Mice.

    PubMed

    Ideta, Takayasu; Shirakami, Yohei; Miyazaki, Tsuneyuki; Kochi, Takahiro; Sakai, Hiroyasu; Moriwaki, Hisataka; Shimizu, Masahito

    2015-12-08

    Non-alcoholic fatty liver disease (NAFLD), which is strongly associated with metabolic syndrome, is increasingly a major cause of hepatic disorder. Dipeptidyl peptidase (DPP)-4 inhibitors, anti-diabetic agents, are expected to be effective for the treatment of NAFLD. In the present study, we established a novel NAFLD model mouse using monosodium glutamate (MSG) and a high-fat diet (HFD) and investigated the effects of a DPP-4 inhibitor, teneligliptin, on the progression of NAFLD. Male MSG/HFD-treated mice were divided into two groups, one of which received teneligliptin in drinking water. Administration of MSG and HFD caused mice to develop severe fatty changes in the liver, but teneligliptin treatment improved hepatic steatosis and inflammation, as evaluated by the NAFLD activity score. Serum alanine aminotransferase and intrahepatic triglyceride levels were significantly decreased in teneligliptin-treated mice (p < 0.05). Hepatic mRNA levels of the genes involved in de novo lipogenesis were significantly downregulated by teneligliptin (p < 0.05). Moreover, teneligliptin increased hepatic expression levels of phosphorylated AMP-activated protein kinase (AMPK) protein. These findings suggest that teneligliptin attenuates lipogenesis in the liver by activating AMPK and downregulating the expression of genes involved in lipogenesis. DPP-4 inhibitors may be effective for the treatment of NAFLD and may be able to prevent its progression to non-alcoholic steatohepatitis.

  10. Effects of three peptidase inhibitors, amastatin, captopril and phosphoramidon, on the hydrolysis of [Met5]-enkephalin-Arg6-Phe7 and other opioid peptides.

    PubMed

    Hiranuma, T; Kitamura, K; Taniguchi, T; Kobayashi, T; Tamaki, R; Kanai, M; Akahori, K; Iwao, K; Oka, T

    1998-03-01

    The contents of [Met5]-enkephalin-Arg6-Phe7 (met-enk-RF) and its six hydrolysis products: Y, YG, YGG, YGGF, YGGFM, and YGGFMR were estimated after incubating met-enk-RF with either a guinea-pig ileal or striatal membrane fraction for various times at 37 degrees C. After 45 min incubation with either ileal or striatal membranes, met-enk-RF was completely hydrolyzed, yielding Y as the major product. Incubation with either membrane preparation for 60 min in the presence of the aminopeptidase inhibitor amastatin hydrolyzed 90 or 92% of met-enk-RF, respectively, with YGG being the major product. If the dipeptidyl carboxypeptidase I inhibitor captopril is also included in the incubation, met-enk-RF hydrolysis decreases by about half for both membranes, with YGG remaining the major product. Inclusion of three peptidase inhibitors, amastatin, captopril, and phosphoramidon (inhibition of endopeptidase-24.11) further reduced met-enk-hydrolysis, with 87% or more remaining intact. This shows that met-enk-RF was mainly hydrolyzed by three enzymes, amastatin-sensitive aminopeptidase, captopril-sensitive dipeptidyl carboxypeptidase I and phosphoramidon-sensitive endopeptidase-24.11, in both ileal and striatal membranes. Additionally, estimations of [Leu5]-enkephalin (leu-enk), alpha- and beta-neoendorphins (alpha- and beta-neoends), and dynorphin B (dyn B) contents after incubating the individual peptides with striatal membrane for 60 min in the presence of the three peptidase inhibitors showed that 98, 32, 5, and 23%, respectively, remained intact. Our previous studies together with the data obtained here show that one group of endogenous opioid peptides: met-enk, leu-enk, met-enk-RF, met-enk-RGL, and dyn A-(1-8) are largely or almost exclusively hydrolyzed by the three enzymes, amastatin-sensitive aminopeptidase, captopril-sensitive dipeptidyl carboxypeptidase I, and phosphoramidon-sensitive endopeptidase-24.11, and indicate that an unidentified fourth enzyme(s) is involved in

  11. HIV-1 protease inhibitor mutations affect the development of HIV-1 resistance to the maturation inhibitor bevirimat.

    PubMed

    Fun, Axel; van Maarseveen, Noortje M; Pokorná, Jana; Maas, Renée Em; Schipper, Pauline J; Konvalinka, Jan; Nijhuis, Monique

    2011-08-24

    Maturation inhibitors are an experimental class of antiretrovirals that inhibit Human Immunodeficiency Virus (HIV) particle maturation, the structural rearrangement required to form infectious virus particles. This rearrangement is triggered by the ordered cleavage of the precursor Gag polyproteins into their functional counterparts by the viral enzyme protease. In contrast to protease inhibitors, maturation inhibitors impede particle maturation by targeting the substrate of protease (Gag) instead of the protease enzyme itself. Direct cross-resistance between protease and maturation inhibitors may seem unlikely, but the co-evolution of protease and its substrate, Gag, during protease inhibitor therapy, could potentially affect future maturation inhibitor therapy. Previous studies showed that there might also be an effect of protease inhibitor resistance mutations on the development of maturation inhibitor resistance, but the exact mechanism remains unclear. We used wild-type and protease inhibitor resistant viruses to determine the impact of protease inhibitor resistance mutations on the development of maturation inhibitor resistance. Our resistance selection studies demonstrated that the resistance profiles for the maturation inhibitor bevirimat are more diverse for viruses with a mutated protease compared to viruses with a wild-type protease. Viral replication did not appear to be a major factor during emergence of bevirimat resistance. In all in vitro selections, one of four mutations was selected: Gag V362I, A364V, S368N or V370A. The impact of these mutations on maturation inhibitor resistance and viral replication was analyzed in different protease backgrounds. The data suggest that the protease background affects development of HIV-1 resistance to bevirimat and the replication profiles of bevirimat-selected HIV-1. The protease-dependent bevirimat resistance and replication levels can be explained by differences in CA/p2 cleavage processing by the different

  12. Cost-effectiveness of dipeptidyl peptidase-4 inhibitor monotherapy versus sulfonylurea monotherapy for people with type 2 diabetes and chronic kidney disease in Thailand.

    PubMed

    Permsuwan, Unchalee; Dilokthornsakul, Piyameth; Thavorn, Kednapa; Saokaew, Surasak; Chaiyakunapruk, Nathorn

    2017-02-01

    With a high prevalence of chronic kidney disease (CKD) in type 2 diabetes (T2DM) in Thailand, the appropriate treatment for the patients has become a major concern. This study aimed to evaluate long-term cost-effective of dipeptidyl peptidase-4 (DPP-4) inhibitor monothearpy vs sulfonylurea (SFU) monotherapy in people with T2DM and CKD. A validated IMS CORE Diabetes Model was used to estimate the long-term costs and outcomes. The efficacy parameters were identified and synthesized using a systematic review and meta-analysis. Baseline characteristics and cost parameters were obtained from published studies and hospital databases in Thailand. Costs were expressed in 2014 US Dollars. Outcomes were presented as an incremental cost-effectiveness ratio (ICER). One-way and probabilistic sensitivity analyses were performed to estimate parameter uncertainty. From a societal perspective, treatment with DPP-4 inhibitors yielded more quality-adjusted life years (QALYs) (0.024) at a higher cost (>66,000 Thai baht (THB) or >1,829.27 USD) per person than SFU, resulting in the ICER of >2.7 million THB/QALY (>74,833.70 USD/QALY). The cost-effectiveness results were mainly driven by differences in HbA1c reduction, hypoglycemic events, and drug acquisition cost of DPP-4 inhibitors. At the ceiling ratio of 160,000 THB/QALY (4,434.59 USD/QALY), the probability that DPP-4 inhibitors are cost-effective compared to SFU was less than 10%. Compared to SFU, DPP-4 inhibitor monotherapy is not a cost-effective treatment for people with T2DM and CKD in Thailand.

  13. Hemoglobin glycation index as a useful predictor of therapeutic responses to dipeptidyl peptidase-4 inhibitors in patients with type 2 diabetes

    PubMed Central

    Chen, Yu-Wei; Wang, Jun-Sing; Sheu, Wayne H-H; Lin, Shih-Yi; Lee, I-Te; Song, Yuh-Min; Fu, Chia-Po; Lee, Chia-Lin

    2017-01-01

    Introduction A high hemoglobin glycation index (HGI) and glycated hemoglobin (HbA1c) level are associated with greater inflammatory status, and dipeptidyl peptidase-4 (DPP-4) inhibitors can suppress inflammation. We aimed to evaluate the relationship between HGI and the therapeutic effect of DPP-4 inhibitors. Methods This retrospective cohort study followed 468 patients with type 2 diabetes receiving DPP-4 inhibitor treatment for 1 year. Estimated HbA1c was calculated using a linear regression equation derived from another 2969 randomly extracted patients with type 2 diabetes based on fasting plasma glucose (FPG) level. The subjects were divided into two groups based on HGI (HGI = observed HbA1c - estimated HbA1c). Mixed model repeated measures were used to compare the treatment efficacy after 1 year in patients with a low (HGI<0, n = 199) and high HGI (HGI≧0, n = 269). Results There were no significant group differences in mean changes of FPG after 1 year (-12.8 and -13.4 mg/dL in the low and high HGI groups, respectively). However, the patients with a high HGI had a significantly greater reduction in HbA1c from baseline compared to those with a low HGI (-1.9 versus -0.3% [-20.8 versus -3.3 mmol/mol]). Improvements in glycemic control were statistically significantly associated with the tested DPP-4 inhibitors in the high HGI group (-2.4, -1.4, -1.2 and -2.2% [-26.2, -15.3, -13.1 and -24.0 mmol/mol] for vildagliptin, linagliptin, saxagliptin and sitagliptin, respectively) but not in the low HGI group. Conclusions The HGI index derived from FPG and HbA1c may be able to identify who will have a better response to DPP-4 inhibitors. PMID:28182722

  14. An interaction between glucagon-like peptide-1 and adenosine contributes to cardioprotection of a dipeptidyl peptidase 4 inhibitor from myocardial ischemia-reperfusion injury.

    PubMed

    Ihara, Madoka; Asanuma, Hiroshi; Yamazaki, Satoru; Kato, Hisakazu; Asano, Yoshihiro; Shinozaki, Yoshihiro; Mori, Hidezo; Minamino, Tetsuo; Asakura, Masanori; Sugimachi, Masaru; Mochizuki, Naoki; Kitakaze, Masafumi

    2015-05-15

    Dipeptidyl peptidase 4 (DPP4) inhibitors suppress the metabolism of the potent antihyperglycemic hormone glucagon-like peptide-1 (GLP-1). DPP4 was recently shown to provide cardioprotection through a reduction of infarct size, but the mechanism for this remains elusive. Known interactions between DPP4 and adenosine deaminase (ADA) suggest an involvement of adenosine signaling in DPP4 inhibitor-mediated cardioprotection. We tested whether the protective mechanism of the DPP4 inhibitor alogliptin against myocardial ischemia-reperfusion injury involves GLP-1- and/or adenosine-dependent signaling in canine hearts. In anesthetized dogs, the coronary artery was occluded for 90 min followed by reperfusion for 6 h. A 4-day pretreatment with alogliptin reduced the infarct size from 43.1 ± 2.5% to 17.1 ± 5.0% without affecting collateral flow and hemodynamic parameters, indicating a potent antinecrotic effect. Alogliptin also suppressed apoptosis as demonstrated by the following analysis: 1) reduction in the Bax-to-Bcl2 ratio; 2) cytochrome c release, 3) an increase in Bad phosphorylation in the cytosolic fraction; and 4) terminal deoxynucleotidyl transferase dUTP nick end labeling assay. This DPP4 inhibitor did not affect blood ADA activity or adenosine concentrations. In contrast, the nonselective adenosine receptor blocker 8-(p-sulfophenyl)theophylline (8SPT) completely blunted the effect of alogliptin. Alogliptin did not affect Erk1/2 phosphorylation, but it did stimulate phosphorylation of Akt, glycogen synthase kinase-3β, and cAMP response element-binding protein (CREB). Only 8SPT prevented alogliptin-induced CREB phosphorylation. In conclusion, the DPP4 inhibitor alogliptin suppresses ischemia-reperfusion injury via adenosine receptor- and CREB-dependent signaling pathways.

  15. Effects of HIV aspartyl-proteinase inhibitors on Leishmania sp.

    PubMed

    Valdivieso, Elizabeth; Rangel, Ariadne; Moreno, Javier; Saugar, Jose María; Cañavate, Carmen; Alvar, Jorge; Dagger, Francehuli

    2010-12-01

    In this work, we have found an antiproliferative effect on Leishmania sp. promastigotes and axenic amastigotes by the human immunodeficiency virus (HIV) aspartyl-proteinase inhibitors, Ac-Leu-Val-Phenylalaninal, Saquinavir mesylate and Nelfinavir, the latter two being used as part of antiretroviral therapy. This effect appears to be the result of cell division blockage. In addition, these drugs induced in culture a decrease in the percentage of co-infected HIV/Leishmania monocytes and amastigotes of Leishmania per macrophage. The finding of a dose-dependent inhibition of Leishmania promastigotes aspartyl-proteinase activity by these drugs allows us to propose this activity as the drug parasite target. A direct action of these HIV aspartyl-proteinase inhibitors on the parasite, would be correlated with the effect that highly active antiretroviral therapy have had in the decrease of HIV/Leishmania coinfection, opening an interesting perspective for new drugs research development based on this novel parasite proteinase family.

  16. Noxious mechanical stimulation evokes the segmental release of opioid peptides that induce μ-opioid receptor internalization in the presence of peptidase inhibitors

    PubMed Central

    Lao, Lijun; Song, Bingbing; Chen, Wenling; Marvizón, Juan Carlos G.

    2008-01-01

    The internalization of μ-opioid receptors (MORs) provides an ideal way to locate areas of opioid peptide release. We used this method to study opioid release in the spinal cord evoked by noxious stimuli in anesthetized rats. Previous studies have shown that opioids released in the spinal cord produce MOR internalization only when they are protected from peptidase degradation. Accordingly, rats were implanted with chronic intrathecal catheters that were used to inject a mixture of peptidase inhibitors (amastatin, captopril and phosphoramidon) onto the lumbar spinal cord. Five minutes later, a noxious stimulus was delivered to the paw. Lumbar spinal segments were double-stained with antibodies against MORs and neurokinin 1 receptors (NK1Rs) using immunofluorescence. Mechanical stimulation of the hindpaw consisted of repeated 10 sec clamps with a hemostat for 10 min. In the ipsilateral dorsal horn, the stimulus produced abundant NK1R internalization in segments L3–L6, and a more modest but significant MOR internalization in segments L5 and L6. In the contralateral dorsal horn, NK1R was substantially lower and MOR internalization was negligible. The same mechanical stimulus applied to a forepaw did not produce NK1R or MOR internalization in the lumbar spinal cord. Thermal stimulation consisted of immersing a hindpaw in water at 52 °C for 2 min. It produced substantial NK1R internalization ipsilaterally in segment L6, but no MOR internalization. These results show that mechanical stimulation induces segmental opioid release, i.e., in the dorsal horn receiving the noxious signals and not in other spinal segments. PMID:18207137

  17. An updated systematic review and meta-analysis on the efficacy and tolerability of dipeptidyl peptidase-4 inhibitors in patients with type 2 diabetes with moderate to severe chronic kidney disease

    PubMed Central

    Singh-Franco, Devada; Harrington, Catherine; Tellez-Corrales, Eglis

    2016-01-01

    Objective: This updated meta-analysis determines the effect of dipeptidyl peptidase-4 inhibitors on glycemic and tolerability outcomes in patients with type 2 diabetes mellitus and chronic kidney disease with glomerular filtration rate of ⩽60 mL/min or on dialysis. Methods: In all, 14 citations were identified from multiple databases. Qualitative assessments and quantitative analyses were performed. Results: There were 2261 participants, 49–79 years of age, 49% men and 44% Caucasians. In seven placebo-comparator studies, reduction in hemoglobin A1c at weeks 12–24 was 0.55% (95% confidence interval: −0.68 to −0.43), P < 0.00001). In three sulfonylurea-comparator studies, dipeptidyl peptidase-4 inhibitors did not significantly reduce hemoglobin A1c at weeks 52–54 (−0.15% (95% confidence interval: −0.32 to 0.02)). In one sitagliptin versus albiglutide study, albiglutide significantly reduced hemoglobin A1c in patients with moderate renal impairment (−0.51%). A similar reduction in hemoglobin A1c was seen with sitagliptin versus vildagliptin (−0.56% vs −0.54%). Compared with placebo or sulfonylurea, dipeptidyl peptidase-4 inhibitors did not significantly reduce hemoglobin A1c after 12 and 54 weeks in patients on dialysis. Hypoglycemia was reported by ~30% of patients in both dipeptidyl peptidase-4 inhibitors and placebo groups over 24–52 weeks. While hypoglycemia was more common with a sulfonylurea at 52–54 weeks (risk ratio: 0.46 (95% confidence interval: 0.18 to 1.18)), there was significant heterogeneity (I2 = 87%). Limitations included high drop-out rate from most studies and small number of active-comparator studies. Conclusions: Dipeptidyl peptidase-4 inhibitors in patients with chronic kidney disease caused a modest reduction in hemoglobin A1c versus placebo, but not when compared with sulfonylureas or albiglutide, or when used in patients on dialysis. Additional active-comparator studies are needed to further

  18. Design of HIV Protease Inhibitors Based on Inorganic Polyhedral Metallacarboranes

    SciTech Connect

    Rezacova, Pavlina; Pokorna, Jana; Brynda, Ji; Kozisek, Milan; Cigler, Petr; Lesik, Martin; Fanfrlik, Jindrich; Rezac, Jan; Saskova, Klara Grantz; Sieglova, Irena; Plesek, Jaromir; Sicha, Vaclav; Gruner, Bohumir; Oberwinkler, Heike; Sedlacek, Juraj; Krausslich, Hans-Georg; Hobza, Pavel; Kral, Vladimir; Konvalinka, Jan

    2010-04-19

    HIV protease (HIV PR) is a primary target for anti-HIV drug design. We have previously identified and characterized substituted metallacarboranes as a new class of HIV protease inhibitors. In a structure-guided drug design effort, we connected the two cobalt bis(dicarbollide) clusters with a linker to substituted ammonium group and obtained a set of compounds based on a lead formula [H{sub 2}N-(8-(C{sub 2}H{sub 4}O){sub 2}-1,2-C{sub 2}B{sub 9}H{sub 10})(1',2'-C{sub 2}B{sub 9}H{sub 11})-3,3'-Co){sub 2}]Na. We explored inhibition properties of these compounds with various substitutions, determined the HIV PR:inhibitor crystal structure, and computationally explored the conformational space of the linker. Our results prove the capacity of linker-substituted dual-cage cobalt bis(dicarbollides) as lead compounds for design of more potent inhibitors of HIV PR.

  19. Antimalarial activity of HIV-1 protease inhibitor in chromone series.

    PubMed

    Lerdsirisuk, Pradith; Maicheen, Chirattikan; Ungwitayatorn, Jiraporn

    2014-12-01

    Increasing parasite resistance to nearly all available antimalarial drugs becomes a serious problem to human health and necessitates the need to continue the search for new effective drugs. Recent studies have shown that clinically utilized HIV-1 protease (HIV-1 PR) inhibitors can inhibit the in vitro and in vivo growth of Plasmodium falciparum. In this study, a series of chromone derivatives possessing HIV-1 PR inhibitory activity has been tested for antimalarial activity against P. falciparum (K1 multi-drug resistant strain). Chromone 15, the potent HIV-1 PR inhibitor (IC50=0.65μM), was found to be the most potent antimalarial compound with IC50=0.95μM while primaquine and tafenoquine showed IC50=2.41 and 1.95μM, respectively. Molecular docking study of chromone compounds against plasmepsin II, an aspartic protease enzyme important in hemoglobin degradation, revealed that chromone 15 exhibited the higher binding affinity (binding energy=-13.24kcal/mol) than the known PM II inhibitors. Thus, HIV-1 PR inhibitor in chromone series has the potential to be a new class of antimalarial agent. Copyright © 2014 Elsevier Inc. All rights reserved.

  20. HIV envelope: challenges and opportunities for development of entry inhibitors

    PubMed Central

    Caffrey, Michael

    2011-01-01

    The HIV envelope proteins gp120 and gp41 play critical roles in HIV entry and thus are of extreme interest for the development of novel therapeutics. Study by diverse methods, including structural biology and mutagenesis, has resulted in a detailed model for envelope-mediated entry, which consists of multiple conformations, each a potential target for therapeutic intervention. In this review we discuss the challenges, strategies and progress to date for developing novel entry inhibitors directed at disrupting HIV gp120 and gp41 function. PMID:21377881

  1. Comparative risk for cardiovascular diseases of dipeptidyl peptidase-4 inhibitors vs. sulfonylureas in combination with metformin: Results of a two-phase study.

    PubMed

    Enders, Dirk; Kollhorst, Bianca; Engel, Susanne; Linder, Roland; Verheyen, Frank; Pigeot, Iris

    2016-01-01

    The aim was to assess whether the use of additional data from the Disease Management Program (DMP) diabetes mellitus type 2 to minimize the potential for residual confounding will alter the estimated risk of either myocardial infarction, ischemic stroke or heart failure in patients with type 2 diabetes using sulfonylureas compared to dipeptidyl peptidase-4 (DPP-4) inhibitors in addition to metformin based on routine health care data. We conducted a nested two-phase case-control study using claims data of one German health insurance from 2004 to 2013 (phase 1) and data of the DMP from 2010 to 2013 (phase 2). Adjusted odds ratios (ORs) for the combined cardiovascular event myocardial infarction, ischemic stroke or heart failure were calculated using a two-phase logistic regression. Phase 1 comprised 3179 patients (289 cases; 2890 controls) and phase 2 comprised 1968 patients (168 cases; 1800 controls). We observed an adjusted OR of 0.83 for the combined cardiovascular event (95% CI: 0.61-1.13). We observed a non-significantly reduced risk for cardiovascular diseases in patients using DPP-4 inhibitors compared to sulfonylureas in addition to metformin. This finding was not altered by the inclusion of additional information of the DMP in the analysis. However, due to the low power of this study, further studies are needed to reproduce our findings. Copyright © 2016 Elsevier Inc. All rights reserved.

  2. Systematic analysis of a dipeptide library for inhibitor development using human dipeptidyl peptidase IV produced by a Saccharomyces cerevisiae expression system.

    PubMed

    Hikida, Aya; Ito, Keisuke; Motoyama, Takayasu; Kato, Ryuji; Kawarasaki, Yasuaki

    2013-01-25

    The inhibition of human dipeptidyl peptidase IV/CD26 (hDPPIV) is an accepted treatment for type 2 diabetes. In this study, an extracellular production system of hDPPIV using Saccharomyces cerevisiae was established to facilitate the screening of hDPPIV inhibitors. As dipeptides that mimic the hDPPIV substrate are candidate inhibitors of this protein, X-Ala or X-Pro dipeptides (in which X represents any amino acid) were tested systematically. Based on the results obtained in the first screening, a second screening was performed for Trp-X dipeptides. To elucidate the manner via which the physicochemical features at the P(1) and P(2) positions contributed to the hDPPIV inhibitory effect, correlations between the inhibitory activity of dipeptides and 13 amino acid indices were analyzed. The most effective inhibitory dipeptide was Trp-Pro (K(i)=0.04 mM). The mode of inhibition of hDPPIV by dipeptides was explained well by some amino acid indices and by the structure of the substrate-binding site of hDPPIV. The information obtained from the systematic analysis of a dipeptide library provides important clues for the development of hDPPIV targeting drugs and functional foods for type 2 diabetes.

  3. Susceptibility of Phytomonas serpens to calpain inhibitors in vitro: interference on the proliferation, ultrastructure, cysteine peptidase expression and interaction with the invertebrate host

    PubMed Central

    de Oliveira, Simone Santiago Carvalho; Gonçalves, Diego de Souza; Garcia-Gomes, Aline dos Santos; Gonçalves, Inês Correa; Seabra, Sergio Henrique; Menna-Barreto, Rubem Figueiredo; Lopes, Angela Hampshire de Carvalho Santos; D’Avila-Levy, Claudia Masini; dos Santos, André Luis Souza; Branquinha, Marta Helena

    2016-01-01

    A pleiotropic response to the calpain inhibitor MDL28170 was detected in the tomato parasite Phytomonas serpens. Ultrastructural studies revealed that MDL28170 caused mitochondrial swelling, shortening of flagellum and disruption of trans Golgi network. This effect was correlated to the inhibition in processing of cruzipain-like molecules, which presented an increase in expression paralleled by decreased proteolytic activity. Concomitantly, a calcium-dependent cysteine peptidase was detected in the parasite extract, the activity of which was repressed by pre-incubation of parasites with MDL28170. Flow cytometry and Western blotting analyses revealed the differential expression of calpain-like proteins (CALPs) in response to the pre-incubation of parasites with the MDL28170, and confocal fluorescence microscopy confirmed their surface location. The interaction of promastigotes with explanted salivary glands of the insect Oncopeltus fasciatus was reduced when parasites were pre-treated with MDL28170, which was correlated to reduced levels of surface cruzipain-like and gp63-like molecules. Treatment of parasites with anti-Drosophila melanogaster (Dm) calpain antibody also decreased the adhesion process. Additionally, parasites recovered from the interaction process presented higher levels of surface cruzipain-like and gp63-like molecules, with similar levels of CALPs cross-reactive to anti-Dm-calpain antibody. The results confirm the importance of exploring the use of calpain inhibitors in studying parasites’ physiology. PMID:27925020

  4. DA-1229, a dipeptidyl peptidase IV inhibitor, protects against renal injury by preventing podocyte damage in an animal model of progressive renal injury.

    PubMed

    Eun Lee, Jee; Kim, Jung Eun; Lee, Mi Hwa; Song, Hye Kyoung; Ghee, Jung Yeon; Kang, Young Sun; Min, Hye Sook; Kim, Hyun Wook; Cha, Jin Joo; Han, Jee Young; Han, Sang Youb; Cha, Dae Ryong

    2016-05-01

    Although dipeptidyl peptidase IV (DPPIV) inhibitors are known to have renoprotective effects, the mechanism underlying these effects has remained elusive. Here we investigated the effects of DA-1229, a novel DPPIV inhibitor, in two animal models of renal injury including db/db mice and the adriamycin nephropathy rodent model of chronic renal disease characterized by podocyte injury. For both models, DA-1229 was administered at 300 mg/kg/day. DPPIV activity in the kidney was significantly higher in diabetic mice compared with their nondiabetic controls. Although DA-1229 did not affect glycemic control or insulin resistance, DA-1229 did improve lipid profiles, albuminuria and renal fibrosis. Moreover, DA-1229 treatment resulted in decreased urinary excretion of nephrin, decreased circulating and kidney DPPIV activity, and decreased macrophage infiltration in the kidney. In adriamycin-treated mice, DPPIV activity in the kidney and urinary nephrin loss were both increased, whereas glucagon-like peptide-1 concentrations were unchanged. Moreover, DA-1229 treatment significantly improved proteinuria, renal fibrosis and inflammation associated with decreased urinary nephrin loss, and kidney DPP4 activity. In cultured podocytes, DA-1229 restored the high glucose/angiotensin II-induced increase of DPPIV activity and preserved the nephrin levels in podocytes. These findings suggest that activation of DPPIV in the kidney has a role in the progression of renal disease, and that DA-1229 may exert its renoprotective effects by preventing podocyte injury.

  5. Susceptibility of Phytomonas serpens to calpain inhibitors in vitro: interference on the proliferation, ultrastructure, cysteine peptidase expression and interaction with the invertebrate host.

    PubMed

    Oliveira, Simone Santiago Carvalho de; Gonçalves, Diego de Souza; Garcia-Gomes, Aline Dos Santos; Gonçalves, Inês Correa; Seabra, Sergio Henrique; Menna-Barreto, Rubem Figueiredo; Lopes, Angela Hampshire de Carvalho Santos; D'Avila-Levy, Claudia Masini; Santos, André Luis Souza Dos; Branquinha, Marta Helena

    2017-01-01

    A pleiotropic response to the calpain inhibitor MDL28170 was detected in the tomato parasite Phytomonas serpens. Ultrastructural studies revealed that MDL28170 caused mitochondrial swelling, shortening of flagellum and disruption of trans Golgi network. This effect was correlated to the inhibition in processing of cruzipain-like molecules, which presented an increase in expression paralleled by decreased proteolytic activity. Concomitantly, a calcium-dependent cysteine peptidase was detected in the parasite extract, the activity of which was repressed by pre-incubation of parasites with MDL28170. Flow cytometry and Western blotting analyses revealed the differential expression of calpain-like proteins (CALPs) in response to the pre-incubation of parasites with the MDL28170, and confocal fluorescence microscopy confirmed their surface location. The interaction of promastigotes with explanted salivary glands of the insect Oncopeltus fasciatus was reduced when parasites were pre-treated with MDL28170, which was correlated to reduced levels of surface cruzipain-like and gp63-like molecules. Treatment of parasites with anti-Drosophila melanogaster (Dm) calpain antibody also decreased the adhesion process. Additionally, parasites recovered from the interaction process presented higher levels of surface cruzipain-like and gp63-like molecules, with similar levels of CALPs cross-reactive to anti-Dm-calpain antibody. The results confirm the importance of exploring the use of calpain inhibitors in studying parasites' physiology.

  6. Developments of indoles as anti-HIV-1 inhibitors.

    PubMed

    Xu, Hui; Lv, Min

    2009-01-01

    Since the first case of acquired immunodeficiency syndrome (AIDS) was reported in 1981, AIDS has always been a global health threat and the leading cause of deaths due to the rapid emergence of drug-resistance and unwanted metabolic side effects. Every day in 2007 an estimated 6850 people were newly infected with human immunodeficiency virus (HIV). Over the past 28 years the rapid worldwide spread of AIDS has prompted an intense research effort to discover compounds that could effectively inhibit HIV. The development of new, selective and safe inhibitors for the treatment of HIV, therefore, still remains a high priority for medical research. To the best of our knowledge, the indole derivatives have been considered as one class of promising HIV-1 inhibitors, such as delavirdine approved by the Food and Drug Administration (FDA) in 1997 for use in combination with other antiretrovirals in adults with HIV infection. In this review we focus on the synthesis and anti-HIV-1 activity of indole derivatives, in the meantime, the structure-activity relationship (SAR) for some derivatives are also surveyed. It will pave the way for the design of indole derivatives as anti-HIV-1 drugs in the future.

  7. Efficacy of dipeptidyl-peptidase-4 inhibitors and impact on β-cell function in Asian and Caucasian type 2 diabetes mellitus patients: A meta-analysis.

    PubMed

    Cai, Xiaoling; Han, Xueyao; Luo, Yingying; Ji, Linong

    2015-05-01

    This work aimed to compare the efficacy of dipeptidyl peptidase-IV (DPP-4) inhibitors and their impact on β-cell function in Asian and Caucasian patients with type 2 diabetes mellitus. Databases were systematically searched and qualifying studies that compared DPP-4 inhibitors with other antidiabetic medications in type 2 diabetes were included. A total of 68 studies were included in the meta-analysis. Comparison of DPP-4 inhibitors with placebo in Asian patients showed a decrease in glycosylated hemoglobin (HbA1c ) favoring DPP-4 inhibitors (weighted mean difference [WMD], -0.81%; 95% confidence interval [CI], -0.95% to -0.68%; P < 0.001). Comparison of HbA1c changes between Asian and Caucasian patients showed a significant between-group difference of -0.18% (95% CI, -0.32% to -0.04%; P = 0.011) when compared with placebo. In Asian patients, the homeostatic model assessment for β-cell function (HOMA-β) was increased with DPP-4 inhibitors compared with placebo (WMD, 7.90; 95% CI, 4.29 to 11.51; P < 0.001), although to a lesser extent in Caucasian patients. Comparisons between Asian and Caucasian patients showed a significant between-group difference of -4.97 (95% CI, -9.86 to -0.09; P = 0.046) compared with placebo. Body weight increase with DPP-4 inhibitors compared with placebo was comparable in Asian and Caucasian studies (WMD, 0.37 kg and 0.45 kg and 95% CI, 0.04-0.69 and 0.27-0.62, respectively). The glucose-lowering efficacy of DPP-4 inhibitors was greater in Asian patients than in Caucasian patients, although the effect on β-cell function was inferior in Asian patients. The effect of DPP-4 inhibitors on insulin resistance and body weight in Asian patients was comparable with that observed in Caucasian patients. © 2014 Ruijin Hospital, Shanghai Jiaotong University School of Medicine and Wiley Publishing Asia Pty Ltd.

  8. Real-world evaluation of glycemic control among patients with type 2 diabetes mellitus treated with canagliflozin versus dipeptidyl peptidase-4 inhibitors.

    PubMed

    Thayer, Sarah; Chow, Wing; Korrer, Stephanie; Aguilar, Richard

    2016-06-01

    Objective To evaluate glycemic control among patients with type 2 diabetes mellitus (T2DM) treated with canagliflozin (CANA) vs. dipeptidyl peptidase-4 (DPP-4) inhibitors. Methods Using integrated claims and lab data from a US health plan of commercial and Medicare Advantage enrollees, this matched-control cohort study assessed adult T2DM patients receiving treatment with CANA or DPP-4 inhibitors (1 April 2013-31 December 2013). Cohorts were chosen hierarchically; the first pharmacy claim for CANA was identified as the index date; then the first pharmacy claim for a DPP-4 inhibitor was identified and index date set. Eligible patients had 6 months of continuous health plan enrollment before the index date (baseline) and 9 months after (follow-up) and no evidence of index drug in baseline. Patients were matched 1:1 using propensity score matching. Changes in glycated hemoglobin (HbA1c) and percentages of patients with HbA1c <8% and <7% during the follow-up were evaluated. Results The matched CANA and DPP-4 inhibitor cohorts (53.2% treated with sitagliptin) included 2766 patients each (mean age: 55.7 years). Among patients with baseline and follow-up HbA1c results, mean baseline HbA1c values were similar, 8.62% and 8.57% (p = 0.615) for the CANA (n = 729) and DPP-4 inhibitor (n = 710) cohorts, respectively. Change in HbA1c was greater among patients in the CANA cohort than for those in the DPP-4 inhibitor cohort (-0.92% vs. -0.63%, p < 0.001), and also among the subset of patients with baseline HbA1c ≥7% (-1.07% [n = 624] vs. -0.79% [n = 603], p = 0.004). During follow-up, greater percentages of the CANA cohort relative to the DPP-4 inhibitor cohort achieved HbA1c of <8% (66.0% vs. 58.6%, p = 0.004) and <7% (35.4% vs. 29.9%, p = 0.022). Limitations This study was observational and residual confounding remains a possibility. Conclusions In this real-world study of patients with T2DM, CANA use was associated with greater HbA1c

  9. HIV-1 Entry Inhibitors: Recent Development and Clinical Use

    PubMed Central

    Henrich, Timothy J.; Kuritzkes, Daniel R.

    2014-01-01

    Purpose of review This review provides an overview of HIV-1 entry inhibitors, with a focus on drugs in the later stages of clinical development. Recent findings Entry of HIV-1 into target cells involves viral attachment, co-receptor binding and fusion. Antiretroviral drugs that interact with each step in the entry process have been developed, but only two are currently approved for clinical use. The small molecule attachment inhibitor BMS-663068 has shown potent antiviral activity in early phase studies, and phase 2b trials are currently underway. The post-attachment inhibitor ibalizumab has shown antiviral activity in phase 1 and 2 trials; further studies, including subcutaneous delivery of drug to healthy individuals, are anticipated. The CCR5 antagonist maraviroc is approved for use in treatment-naïve and treatment-experienced patients. Cenicriviroc, a small-molecule CCR5 antagonist that also has activity as a CCR2 antagonist, has entered phase 2b studies. No CXCR4 antagonists are currently in clinical trials, but once daily, next-generation injectable peptide fusion inhibitors have entered human trials. Both maraviroc and ibalizumab are being studied for prevention of HIV-1 transmission and/or for use in nucleoside reverse transcriptase inhibitor-sparing antiretroviral regimens. Summary Inhibition of HIV-1 entry continues to be a promising target for antiretroviral drug development. PMID:23290628

  10. Structural Basis for Inhibitor-Induced Aggregation of HIV Integrase

    PubMed Central

    Sherrill-Mix, Scott; Hwang, Young; Eilers, Grant; McDanal, Charlene; Wang, Ping; Temelkoff, David

    2016-01-01

    The allosteric inhibitors of integrase (termed ALLINIs) interfere with HIV replication by binding to the viral-encoded integrase (IN) protein. Surprisingly, ALLINIs interfere not with DNA integration but with viral particle assembly late during HIV replication. To investigate the ALLINI inhibitory mechanism, we crystallized full-length HIV-1 IN bound to the ALLINI GSK1264 and determined the structure of the complex at 4.4 Å resolution. The structure shows GSK1264 buried between the IN C-terminal domain (CTD) and the catalytic core domain. In the crystal lattice, the interacting domains are contributed by two different dimers so that IN forms an open polymer mediated by inhibitor-bridged contacts; the N-terminal domains do not participate and are structurally disordered. Engineered amino acid substitutions at the inhibitor interface blocked ALLINI-induced multimerization. HIV escape mutants with reduced sensitivity to ALLINIs commonly altered amino acids at or near the inhibitor-bound interface, and these substitutions also diminished IN multimerization. We propose that ALLINIs inhibit particle assembly by stimulating inappropriate polymerization of IN via interactions between the catalytic core domain and the CTD and that understanding the interface involved offers new routes to inhibitor optimization. PMID:27935939

  11. Purification and characterization of tenerplasminin-1, a serine peptidase inhibitor with antiplasmin activity from the coral snake (Micrurus tener tener) venom

    PubMed Central

    Vivas, Jeilyn; Ibarra, Carlos; Salazar, Ana M.; Neves-Ferreira, Ana G.C.; Sánchez, Elda E.; Perales, Jonás; Rodríguez-Acosta, Alexis; Guerrero, Belsy

    2015-01-01

    A plasmin inhibitor, named tenerplasminin-1 (TP1), was isolated from Micrurus tener tener (Mtt) venom. It showed a molecular mass of 6542 Da, similarly to Kunitz-type serine peptidase inhibitors. The amidolytic activity of plasmin (0.5 nM) on synthetic substrate S-2251 was inhibited by 91% following the incubation with TP1 (1 nM). Aprotinin (2 nM) used as the positive control of inhibition, reduced the plasmin amidolytic activity by 71%. Plasmin fibrinolytic activity (0.05 nM) was inhibited by 67% following incubation with TP1 (0.1 nM). The degradation of fibrinogen chains induced by plasmin, trypsin or elastase was inhibited by TP1 at a 1:2, 1:4 and 1:20 enzyme:inhibitor ratio, respectively. On the other hand, the proteolytic activity of crude Mtt venom on fibrinogen chains, previously attributed to metallopeptidases, was not abolished by TP1. The tPA-clot lysis assay showed that TP1 (0.2 nM) acts like aprotinin (0.4 nM) inducing a delay in lysis time and lysis rate which may be associated with the inhibition of plasmin generated from the endogenous plasminogen activation. TP1 is the first serine protease plasmin-like inhibitor isolated from Mtt snake venom which has been characterized in relation to its mechanism of action, formation of a plasmin:TP1 complex and therapeutic potential as anti-fibrinolytic agent, a biological characteristic of great interest in the field of biomedical research. They could be used to regulate the fibrinolytic system in pathologies such as metastatic cancer, parasitic infections, hemophilia and other hemorrhagic syndromes, in which an intense fibrinolytic activity is observed. PMID:26419785

  12. Differential Cardiovascular Outcomes after Dipeptidyl Peptidase-4 Inhibitor, Sulfonylurea, and Pioglitazone Therapy, All in Combination with Metformin, for Type 2 Diabetes: A Population-Based Cohort Study

    PubMed Central

    Shin, Ju-Young; Chang, Yoosoo; Kim, Ye-Jee; Lee, Joongyub; Kim, Ju-Young; Park, Byung-Joo

    2015-01-01

    Background/Objectives Data on the comparative effectiveness of oral antidiabetics on cardiovascular outcomes in a clinical practice setting are limited. This study sought to determine whether a differential risk of cardiovascular disease (CVD) exists for the combination of a dipeptidyl peptidase-4 (DPP-4) inhibitor plus metformin versus a sulfonylurea derivative plus metformin or pioglitazone plus metformin. Methods We conducted a cohort study of 349,476 patients who received treatment with a DPP-4 inhibitor, sulfonylurea, or pioglitazone plus metformin for type 2 diabetes using the Korean national health insurance claims database. The incidence of total CVD and individual outcomes of myocardial infarction (MI), heart failure (HF), and ischemic stroke (IS) were assessed using the hazard ratios (HRs) estimated from a Cox proportional-hazards model weighted for a propensity score. Results During follow-up, 3,881 patients developed a CVD, including 428 MIs, 212 HFs, and 1,487 ISs. The adjusted HR with 95% confidence interval (CI) for a sulfonylurea derivative plus metformin compared with a DPP-4 inhibitor plus metformin was 1.20 (1.09-1.32) for total CVD; 1.14 (1.04-1.91) for MI; 1.07 (0.71-1.62) for HF; and 1.51 (1.28-1.79) for IS. The HRs with 95% CI for total CVD, MI, HF, and IS for pioglitazone plus metformin were 0.89 (0.81-0.99), 1.05 (0.76-1.46), 4.81 (3.53-6.56), and 0.81 (0.67-0.99), respectively. Conclusions Compared with a DPP-4 inhibitor plus metformin, treatment with a sulfonylurea drug plus metformin was associated with increased risks of total CVD, MI, and IS, whereas the use of pioglitazone plus metformin was associated with decreased total CVD and IS risks. PMID:25992614

  13. Selective Serotonin Reuptake Inhibitor Suppression of HIV Infectivity and Replication

    PubMed Central

    Benton, Tami; Lynch, Kevin; Dubé, Benoit; Gettes, David R.; Tustin, Nancy B.; Lai, Jian Ping; Metzger, David S.; Blume, Joshua; Douglas, Steven D.; Evans, Dwight L.

    2010-01-01

    Objective To test the hypothesis that the selective serotonin reuptake inhibitor (SSRI) citalopram would down regulate HIV infectivity and that the greatest effects would be seen in people with depression. Depression is a risk factor for morbidity and mortality in HIV/AIDS. Serotonin (5-HT) neurotransmission has been implicated in the pathobiology of depression, and pharmacologic therapies for depression target this system. The 5-HT transporter and 5-HT receptors are widely distributed throughout the central nervous and immune systems. Depression has been associated with suppression of natural killer cells (NK) cells and CD8+ lymphocytes, key regulators of HIV infection. Methods Ex-vivo models for acute and chronic HIV infection were used to study the effects of citalopram on HIV viral infection and replication, in 48 depressed and non-depressed women. For both the acute and chronic infection models, HIV reverse transcriptase (RT) activity was measured in the citalopram treatment condition and the control condition. Results The SSRI significantly downregulated the RT response in both the acute and chronic infection models. Specifically, citalopram significantly decreased the acute HIV infectivity of macrophages. Citalopram also significantly decreased HIV viral replication in the latently infected T-cell line and in the latently infected macrophage cell line. There was no difference in down-regulation by depression status. Conclusions These studies suggest that an SSRI enhances NK/CD8 non-cytolytic HIV suppression in HIV/AIDS and decreases HIV viral infectivity of macrophages, ex vivo, suggesting the need for in vivo studies to determine a potential role for agents targeting serotonin in the host defense against HIV. PMID:20947783

  14. Engineering chemokines to develop optimized HIV inhibitors.

    PubMed

    Hartley, Oliver; Offord, Robin E

    2005-06-01

    Since the discovery that to enter target cells HIV uses receptors for the class of proteins known as chemokines, attempts have been made to generate anti-HIV molecules based on the chemokine ligands. A significant level of knowledge of the structure-activity relationships of chemokines has been amassed since the beginning of the 1990s. This, together with work that has elucidated the mechanisms underlying the inhibitory activity of chemokines, has guided not only the rational design of anti-HIV chemokine analogues, but also strategies by which chemokine variants with potent anti-HIV activity can be isolated from large libraries by phage display. This review summarizes the current knowledge about the structure-activity relationships and receptor biology of chemokines that is relevant to the development of analogues with anti-HIV activity. We present specific examples of engineered chemokine analogues with potent anti-HIV activity and describe the challenges that will need to be faced if these molecules are to be further developed for clinical applications. Finally, we discuss how these challenges might be met through further engineering of the molecules.

  15. Epsilon substituted lysinol derivatives as HIV-1 protease inhibitors.

    PubMed

    Jones, Kristen L G; Holloway, M Katharine; Su, Hua-Poo; Carroll, Steven S; Burlein, Christine; Touch, Sinoeun; DiStefano, Daniel J; Sanchez, Rosa I; Williams, Theresa M; Vacca, Joseph P; Coburn, Craig A

    2010-07-15

    A series of HIV-1 protease inhibitors containing an epsilon substituted lysinol backbone was synthesized. Two novel synthetic routes using N-boc-L-glutamic acid alpha-benzyl ester and 2,6-diaminopimelic acid were developed. Incorporation of this epsilon substituent enabled access to the S2 pocket of the enzyme, affording high potency inhibitors. Modeling studies and synthetic efforts suggest the potency increase is due to both conformational bias and van der Waals interactions with the S2 pocket.

  16. Haloperidol-based irreversible inhibitors of the HIV-1 and HIV-2 proteases.

    PubMed

    De Voss, J J; Sui, Z; DeCamp, D L; Salto, R; Babé, L M; Craik, C S; Ortiz de Montellano, P R

    1994-03-04

    The proteases expressed by the HIV-1 and HIV-2 viruses process the polyproteins encoded by the viral genomes into the mature proteins required for virion replication and assembly. Eight analogs of haloperidol have been synthesized that cause time-dependent inactivation of the HIV-1 protease and, in six cases, HIV-2 protease. The IC50 values for the analogues are comparable to that of haloperidol itself. Enzyme inactivation is due to the presence of an epoxide in two of the analogues and carbonyl-conjugated double or triple bonds in the others. Irreversible inactivation is confirmed by the failure to recover activity when one of the inhibitors is removed from the medium. At pH 8.0, the agents inactivate the HIV-1 protease 4-80 times more rapidly than the HIV-2 protease. Faster inactivation of the HIV-1 protease is consistent with alkylation of cysteine residues because the HIV-1 protease has four such residues whereas the HIV-2 protease has none. Inactivation of the HIV-2 protease requires modification of non-cysteine residues. The similarities in the rates of inactivation of the HIV-2 protease by six agents that have intrinsically different reactivities toward nucleophiles suggest that the rate-limiting step in the inactivation process is not the alkylation reaction itself. At least five of the agents inhibit polyprotein processing in an ex vivo cell assay system, but they are also toxic to the cells.

  17. Synthesis of a new class of HIV-1 inhibitors.

    PubMed

    Farese-Di Giorgio, A; Pairot, S; Patino, N; Condom, R; Di Giorgio, C; Aumelas, A; Aubertin, A M; Guedj, R

    1999-02-01

    A new family of molecules potentially inhibitors of the HIV-1 Tat-TAR complex was prepared. These compounds are constituted by dinucleotide analogs (PNA dimer) bound, through a linker, to an arginine residue. In this series, several molecules inhibit viral development in cell culture with a micromolar IC50 and without cellular toxicity until 200 microM concentration.

  18. Excretion of the dipeptidyl peptidase-4 inhibitor linagliptin in rats is primarily by biliary excretion and P-gp-mediated efflux.

    PubMed

    Fuchs, Holger; Runge, Frank; Held, Heinz-Dieter

    2012-04-11

    Linagliptin is a selective, competitive dipeptidyl peptidase-4 (DPP-4) inhibitor, recently approved in the USA, Japan and Europe for the treatment of type 2 diabetes. It has non-linear pharmacokinetics and, unlike other DPP-4 inhibitors, a largely non-renal excretion route. It was hypothesised that P-glycoprotein (P-gp)-mediated intestinal transport could influence linagliptin bioavailability, and might contribute to its elimination. Two studies evaluated the role of P-gp-mediated transport in the bioavailability and intestinal secretion of linagliptin in rats. In the bioavailability study, male Wistar rats received single oral doses of linagliptin, 1 or 15 mg/kg, plus either the P-gp inhibitor, zosuquidar trihydrochloride, or vehicle. For the intestinal secretion study, rats underwent bile duct cannulation, and urine, faeces, and bile were collected. At the end of the study, gut content was sampled. Inhibition of intestinal P-gp increased the bioavailability of orally administered linagliptin, indicating that this transport system plays a role in limiting the uptake of linagliptin from the intestine. This effect was dependent on linagliptin dose, and could play a role in its non-linear pharmacokinetics after oral dosing. Systemically available linagliptin was mainly excreted unchanged via bile (49% of i.v. dose), but some (12%) was also excreted directly into the gut independently of biliary excretion. Thus, direct excretion of linagliptin into the gut may be an alternative excretion route in the presence of liver and renal impairment. The primarily non-renal route of excretion is likely to be of benefit to patients with type 2 diabetes, who have a high prevalence of renal insufficiency.

  19. CCR5 inhibitors: Emerging promising HIV therapeutic strategy.

    PubMed

    Rao, Padmasri Kutikuppala Surya

    2009-01-01

    Though potent anti-HIV therapy has spectacularly reduced the morbidity and mortality of human immunodeficiency virus (HIV)-1 infection in the advanced countries, it continues to be associated with substantial toxicity, drug-drug interactions, difficulties in adherence, and abnormal cost. As a result, better effective, safe antiretroviral drugs and treatment strategies keep on to be pursued. In this process, CCR5 (chemokine receptor 5) inhibitors are a new class of antiretroviral drug used in the treatment of HIV. They are designed to prevent HIV infection of CD4 T-cells by blocking the CCR5. When the CCR5 receptor is unavailable, 'R5-tropic' HIV (the variant of the virus that is common in earlier HIV infection) cannot engage with a CD4 T-cell to infect the cell. In August 2007, the FDA approved the first chemokine (C-C motif) CCR5 inhibitor, maraviroc, for treatment-experienced patients infected with R5-using virus. Studies from different cohort in regions, affected by clad B HIV-1, demonstrate that 81-88% of HIV-1 variants in treatment naïve patients are CCR5 tropic and that virtually all the remaining variants are dual/mixed tropic i.e., are able to utilize both CCR5 and CXCR4 coreceptors. In treatment experienced patients, 49-78% of the variants are purely CCR5 tropic, 22-48% are dual/mixed tropic, and 2-5% exclusively utilize CXCR4. A 32 bp deletion in the CCR5 gene, which results in a frame shift and truncation of the normal CCR5 protein, was identified in a few persons who had remained uninfected after exposure to CCR5 tropic HIV-1 virus. This allele is common in white of European origin, with prevalence near to 10%, but is absent among East Asian, American Indian, Tamil Indian, and African ethnic groups. HIV-infected individuals, who are heterozygous for CCR5 delta 32, have slower rates of disease progression. The currently available data supports the continuation of the development of CCR5 antagonists in different settings related to HIV-1 infection. If

  20. Beneficial Effects of Evogliptin, a Novel Dipeptidyl Peptidase 4 Inhibitor, on Adiposity with Increased Ppargc1a in White Adipose Tissue in Obese Mice

    PubMed Central

    Kim, Mi-Kyung; Shin, Chang-Yell; Jung, Il-Hoon; Sohn, Yong Sung; Son, Moon-Ho

    2015-01-01

    Although dipeptidyl peptidase 4 (DPP4) is an adipokine known to positively correlate with adiposity, the effects of pharmacological DPP4 inhibition on body composition have not been fully understood. This study was aimed to assess the effects of DPP4 inhibitors on adiposity for the first time in the established obese mice model. The weight loss effects of multiple DPP4 inhibitors were compared after a 4 week treatment in diet-induced obese mice. In addition, a 2 week study was performed to explore and compare the acute effects of evogliptin, a novel DPP4 inhibitor, and exenatide, a glucagon-like peptide-1 (GLP-1) analogue, on whole body composition, energy consumption, various plasma adipokines and gene expression in white adipose tissue (WAT). After the 4 week treatment, weight loss and blood glucose reductions were consistently observed with multiple DPP4 inhibitors. Moreover, after 2-week treatment, evogliptin dose-dependently reduced whole body fat mass while increasing the proportion of smaller adipocytes. However, insulin sensitivity or plasma lipid levels were not significantly altered. In addition to increased active GLP-1 levels by plasma DPP4 inhibition, evogliptin also enhanced basal metabolic rate without reduction in caloric intake, in contrast to exenatide; this finding suggested evogliptin's effects may be mediated by pathways other than via GLP-1. Evogliptin treatment also differentially increased Ppargc1a expression, a key metabolic regulator, in WAT, but not in skeletal muscle and brown adipose tissue. The increased expression of the downstream mitochondrial gene, Cox4i1, was also suggestive of the potential metabolic alteration in WAT by DPP4 inhibitors. We are the first to demonstrate that pharmacological DPP4 inhibition by evogliptin directly causes fat loss in established obese mice. In contradistinction to exenatide, the fat-loss effect of DPP4 inhibitor is partly attributed to enhanced energy expenditure along with metabolic changes in WAT

  1. Changes in glucose-induced plasma active glucagon-like peptide-1 levels by co-administration of sodium-glucose cotransporter inhibitors with dipeptidyl peptidase-4 inhibitors in rodents.

    PubMed

    Oguma, Takahiro; Kuriyama, Chiaki; Nakayama, Keiko; Matsushita, Yasuaki; Hikida, Kumiko; Tsuda-Tsukimoto, Minoru; Saito, Akira; Arakawa, Kenji; Ueta, Kiichiro; Minami, Masabumi; Shiotani, Masaharu

    2016-12-01

    We investigated whether structurally different sodium-glucose cotransporter (SGLT) 2 inhibitors, when co-administered with dipeptidyl peptidase-4 (DPP4) inhibitors, could enhance glucagon-like peptide-1 (GLP-1) secretion during oral glucose tolerance tests (OGTTs) in rodents. Three different SGLT inhibitors-1-(β-d-Glucopyranosyl)-4-chloro-3-[5-(6-fluoro-2-pyridyl)-2-thienylmethyl]benzene (GTB), TA-1887, and canagliflozin-were examined to assess the effect of chemical structure. Oral treatment with GTB plus a DPP4 inhibitor enhanced glucose-induced plasma active GLP-1 (aGLP-1) elevation and suppressed glucose excursions in both normal and diabetic rodents. In DPP4-deficient rats, GTB enhanced glucose-induced aGLP-1 elevation without affecting the basal level, whereas metformin, previously reported to enhance GLP-1 secretion, increased both the basal level and glucose-induced elevation. Oral treatment with canagliflozin and TA-1887 also enhanced glucose-induced aGLP-1 elevation when co-administered with either teneligliptin or sitagliptin. These data suggest that structurally different SGLT2 inhibitors enhance plasma aGLP-1 elevation and suppress glucose excursions during OGTT when co-administered with DPP4 inhibitors, regardless of the difference in chemical structure. Combination treatment with DPP4 inhibitors and SGLT2 inhibitors having moderate SGLT1 inhibitory activity may be a promising therapeutic option for improving glycemic control in patients with type 2 diabetes mellitus. Copyright © 2016 The Authors. Production and hosting by Elsevier B.V. All rights reserved.

  2. Association of dipeptidyl peptidase 4 inhibitors with risk of metastases in patients with type 2 diabetes and breast, prostate or digestive system cancer.

    PubMed

    Rathmann, Wolfgang; Kostev, Karel

    2017-04-01

    Experimental and animal studies have supported the hypothesis that dipeptidyl peptidase-4 inhibitors (DPP-4i) may accelerate tumor metastasis. The aim was to analyze the relationships between DPP-4i therapy with risk of metastases in type 2 diabetes patients with breast, prostate and digestive organ cancers. Type 2 diabetes patients with first diagnoses of breast, prostate or digestive organ cancer were selected in general and internal medicine practices (Disease Analyzer Germany: 01/2008-12/2014). Propensity score matching between DPP-4i users and non-users was carried out for age, sex, diabetes duration, and metformin use. Time-dependent Cox regression models were used to estimate hazard ratios (HR) for metastases further adjusting for HbA1c, body mass index, comorbidity and co-therapy with glucose-lowering drugs (3-4years follow-up). 668 patients with newly diagnosed breast cancer, 906 with prostate cancer and 908 with digestive organ cancer were analyzed. In Cox regression, use of DPP-4i was not associated with an increased risk of metastases in patients with breast (adjusted HR, 95%CI: 1.00, 0.49-2.02), prostate (0.98, 0.54-1.77) or digestive organ cancers (0.97, 0.57-1.66). This first observational study in patients with type 2 diabetes and breast, prostate or digestive organ cancer found no increased risk of metastases in DPP-4i users. Copyright © 2017 Elsevier Inc. All rights reserved.

  3. An update on the clinical pharmacology of the dipeptidyl peptidase 4 inhibitor alogliptin used for the treatment of type 2 diabetes mellitus.

    PubMed

    Chen, Xiao-Wu; He, Zhi-Xu; Zhou, Zhi-Wei; Yang, Tianxin; Zhang, Xueji; Yang, Yin-Xue; Duan, Wei; Zhou, Shu-Feng

    2015-12-01

    Alogliptin, a dipeptidyl peptidase-4 (DPP-4) inhibitor that is a class of relatively new oral hypoglycaemic drugs used in patients with type 2 diabetes (T2DM), can be used as monotherapy or in combination with other anti-diabetic agents, including metformin, pioglitazone, sulfonylureas and insulin with a considerable therapeutic effect. Alogliptin exhibits favorable pharmacokinetic and pharmacodynamic profiles in humans. Alogliptin is mainly metabolized by cytochrome P450 (CYP2D6) and CYP3A4. Dose reduction is recommended for patients with moderate or worse renal impairment. Side effects of alogliptin include nasopharyngitis, upper-respiratory tract infections and headache. Hypoglycaemia is seen in about 1.5% of the T2DM patients. Rare but severe adverse reactions such as acute pancreatitis, serious hypersensitivity including anaphylaxis, angioedema and severe cutaneous reactions such as Stevens-Johnson syndrome have been reported from post-marketing monitoring. Pharmacokinetic interactions have not been observed between alogliptin and other drugs including glyburide, metformin, pioglitazone, insulin and warfarin. The present review aimed to update the clinical information on pharmacodynamics, pharmacokinetics, adverse effects and drug interactions, and to discuss the future directions of alogliptin.

  4. The dipeptidyl peptidase-4 inhibitor linagliptin lowers postprandial glucose and improves measures of β-cell function in type 2 diabetes.

    PubMed

    Heise, T; Larbig, M; Patel, S; Seck, T; Hehnke, U; Woerle, H-J; Dugi, K

    2014-10-01

    Progressive deterioration of pancreatic β-cell function in patients with type 2 diabetes mellitus (T2DM) contributes to worsening of hyperglycaemia. To investigate the effects of the dipeptidyl peptidase-4 inhibitor linagliptin on β-cell function parameters, a pooled analysis of six randomized, 24-week, placebo-controlled, phase 3 trials of 5 mg of linagliptin daily was performed in 2701 patients with T2DM (linagliptin, n = 1905; placebo, n = 796). At week 24, observed improvements in HbA1c, fasting plasma glucose, and 2-h postprandial glucose were significantly greater for linagliptin than placebo (all p < 0.0001). Homeostasis model assessment (HOMA)-%β, as a surrogate marker of fasting β-cell function, was significantly improved with linagliptin, and did not change with placebo (placebo-adjusted mean ± s.e. change for linagliptin: 16.5 ± 4.6 (mU/l)/(mmol/l); p = 0.0003). Further study is required to determine if the significant improvement in HOMA-%β with linagliptin will translate into long-term improvements in β-cell function.

  5. Comparative activity of proline-containing dipeptide noopept and inhibitor of dipeptidyl peptidase-4 sitagliptin in a rat model of developing diabetes.

    PubMed

    Ostrovskaya, R U; Ozerova, I V; Gudascheva, T A; Kapitsa, I G; Ivanova, E A; Voronina, T A; Seredenin, S B

    2014-01-01

    Developing diabetes was modeled on adult male Wistar rats by repeated intraperitoneal injections of streptozotocin in a subdiabetogenic dose of 30 mg/kg for 3 days. Proline-containing dipeptide drug Noopept or a standard diabetic drug dipeptidyl peptidase-4 inhibitor sitagliptin was administered per os in a dose of 5 mg/kg before each injection of the toxin and then for 16 days after streptozotocin course. In active control group, spontaneously increase glucose level and reduced tolerance to glucose load (1000 mg/kg intraperitoneally) were observed on the next day after the third administration of toxin. Basal glucose level decreased by day 16, but glucose tolerance remained impaired. Noopept normalized the basal blood glucose level and tolerance to glucose load on the next day after administration of streptozotocin. The effect of Noopept persisted to the end of the experiment. At early terms of the experiment, sitagliptin was somewhat superior to Noopept by the effect on baseline glucose level, but was inferior by the influence on glucose tolerance.. By the end of the experiment, Noopept significantly (by 2 times) surpassed sitagliptin by its effect on glucose tolerance.

  6. The dipeptidyl peptidase-4 inhibitor teneligliptin improved endothelial dysfunction and insulin resistance in the SHR/NDmcr-cp rat model of metabolic syndrome.

    PubMed

    Nakagami, Hironori; Pang, Zhengda; Shimosato, Takashi; Moritani, Toshinori; Kurinami, Hitomi; Koriyama, Hiroshi; Tenma, Akiko; Shimamura, Munehisa; Morishita, Ryuichi

    2014-07-01

    Diabetes mellitus, hypertension and metabolic syndrome are major risk factors for the occurrence of cardiovascular events. In this study, we used spontaneous hypertensive rat (SHR)/NDmcr-cp (cp/cp) (SHRcp) rats as a model for metabolic syndrome to examine the effects of dipeptidyl peptidase (DPP)-4 inhibition on hypertension, glucose metabolism and endothelial dysfunction. First, we confirmed that SHRcp rats showed very severe obesity, hypertension and endothelial dysfunction phenotypes from 14 to 54 weeks of age. Next, we examined whether the DPP-4 inhibitor teneligliptin (10 mg kg(-1) per day per os for 12 weeks) could modify any of these phenotypes. Treatment with teneligliptin significantly improved hyperglycemia and insulin resistance, as evidenced by an oral glucose tolerance test and homeostasis model assessment for insulin resistance, respectively. Teneligliptin showed no effects on systolic blood pressure or heart rate. In regard to endothelial function, the vasodilator response to acetylcholine was significantly impaired in SHRcp rats when compared with WKY rats. Long-term treatment with teneligliptin significantly attenuated endothelial dysfunction through the upregulation of endothelium-derived nitric oxide synthase mRNA. These results demonstrate that long-term treatment with teneligliptin significantly improved endothelial dysfunction and glucose metabolism in a rat model of metabolic syndrome, suggesting that teneligliptin treatment might be beneficial for patients with hypertension and/or diabetes.

  7. A Dipeptidyl Peptidase-4 Inhibitor, Teneligliptin, Decreases Plasma Triglyceride-Rich Lipoprotein Remnants in Diabetic Patients with Chronic Kidney Disease Undergoing Hemodialysis.

    PubMed

    Homma, Koichiro; Yoshizawa, Joe; Shiina, Yutaka; Ozawa, Hideki; Igarashi, Muneki; Matsuoka, Tadashi; Sasaki, Junichi; Yoshizawa, Mamoru; Homma, Yasuhiko

    2017-06-02

    A high plasma level of remnant-like particle cholesterol (RLP-C), which is equivalent to triglyceride-rich lipoprotein remnant, is an important coronary risk marker. RLP-C level is high, independent of other plasma lipids, in patients with chronic kidney disease (CKD) undergoing hemodialysis. The effect of teneligliptin, a dipeptidyl peptidase (DPP)-4 inhibitor, on plasma levels of RLP-C in patients with diabetes mellitus and CKD under hemodialysis was studied. Teneligliptin 20 mg/day was administered to 15 patients with diabetes and CKD undergoing hemodialysis for 12 weeks. Ten patients with diabetes and CKD undergoing hemodialysis were allocated to the control group. Blood was sampled following a 12-h fast. Fasting plasma glucose (FPG), C-peptide, triglyceride, low-density lipoprotein (LDL)-cholesterol (C), high-density lipoprotein (HDL)-C, RLP-C, apolipoprotein (apo) B, oxidized LDL, lipoprotein lipase, and glycated hemoglobin (HbA1c) were measured. HbA1c decreased in the teneligliptin group but significantly increased in the control group. FPG and RLP-C significantly decreased in the teneligliptin group. Plasma lipoprotein-related parameters except RLP-C were not affected by teneligliptin treatment. Teneligliptin treatment significantly reduced plasma levels of RLP-C, FPG, and HbA1c in patients with diabetes with CKD who are undergoing hemodialysis.

  8. Protease inhibitor therapy in children with perinatally acquired HIV infection.

    PubMed

    Rutstein, R M; Feingold, A; Meislich, D; Word, B; Rudy, B

    1997-10-01

    To review the short-term response and safety of protease inhibitor therapy in HIV-infected children. Retrospective chart review of open-label protease inhibitor-containing combination therapy. Two urban pediatric HIV centers. Twenty-eight HIV-infected children were prescribed 30 protease inhibitor-containing antiretroviral therapy combinations. The median age at initiation of protease inhibitor antiretroviral therapy was 79 months. Patients had been on previous antiretroviral therapy for a mean of 45.5 months. Of the 28 children who completed at least 1 month of therapy, 26 experienced marked virologic and immunologic improvement (mean maximal decrease in viral load 1.90 log10 copies/ml; SD, 0.8; mean maximal rise in CD4+ lymphocytes of 279 x 10(6)/l; SD, 300 x 10(6)/l). Eleven patients achieved a viral nadir of < 400 copies/ml, and seven sustained this level of viral suppression for a mean of 6 months. Indinavir use was associated with a high incidence of renal side-effects, including two patients who developed interstitial nephritis. Two patients on ritonavir experienced a significant elevation of liver enzymes. Protease inhibitor therapy was associated with substantial short-term virologic and immunologic improvement in this primarily heavily pretreated cohort, with 25% maintaining a viral load of < 400 copies/ml after 6 months of therapy. There was a significant rate of adverse events. Pharmacokinetic and safety data are needed to guide aggressive antiretroviral therapy in HIV-infected children, and further treatment options are required for those failing or intolerant to the available protease inhibitors.

  9. Protective effects of dipeptidyl peptidase-4 (DPP-4) inhibitor against increased β cell apoptosis induced by dietary sucrose and linoleic acid in mice with diabetes.

    PubMed

    Shirakawa, Jun; Amo, Kikuko; Ohminami, Hirokazu; Orime, Kazuki; Togashi, Yu; Ito, Yuzuru; Tajima, Kazuki; Koganei, Megumi; Sasaki, Hajime; Takeda, Eiji; Terauchi, Yasuo

    2011-07-22

    Chronic exposure to high glucose and fatty acid levels caused by dietary sugar and fat intake induces β cell apoptosis, leading to the exacerbation of type 2 diabetes. Oleic acid and linoleic acid are two major dietary fatty acids, but their effects in diabetes are unclear. We challenged β cell-specific glucokinase haploinsufficient (Gck(+/-)) mice with a diet containing sucrose and oleic acid (SO) or sucrose and linoleic acid (SL) and analyzed β cell apoptosis. In Gck(+/-) but not wild-type mice, SL significantly decreased the β cell mass and β cell proportion in islet cells arising from increased apoptosis to a greater degree than did SO. The mRNA expression of SREBP-1c was significantly higher, and that of E-cadherin was significantly lower in the islets of Gck(+/-) mice fed SL compared with mice fed SO. We next evaluated monotherapy with desfluorositagliptin, a dipeptidyl peptidase-4 (DPP-4) inhibitor, in these mouse groups. DPP-4 inhibitor protected against β cell apoptosis, restored the β cell mass, and normalized islet morphology in Gck(+/-) mice fed SL. DPP-4 inhibition normalized the changes in the islet expression of SREBP-1c and E-cadherin mRNA induced by the SL diet. Furthermore, linoleic acid induced β cell apoptosis to a greater degree in the presence of high glucose levels than in the presence of low glucose levels in vitro in islets and MIN6 cells, whereas a GLP-1 receptor agonist prevented apoptosis. In conclusion, SL exacerbated β cell apoptosis in diabetic Gck(+/-) mice but not in euglycemic wild-type mice, and DPP-4 inhibition protected against these effects.

  10. Anti-atherogenic and anti-inflammatory properties of glucagon-like peptide-1, glucose-dependent insulinotropic polypepide, and dipeptidyl peptidase-4 inhibitors in experimental animals.

    PubMed

    Hirano, Tsutomu; Mori, Yusaku

    2016-04-01

    We reported that native incretins, liraglutide and dipeptidyl peptidase-4 inhibitors (DPP-4i) all confer an anti-atherosclerotic effect in apolipoprotein E-null (Apoe (-/-)) mice. We confirmed the anti-atherogenic property of incretin-related agents in the mouse wire injury model, in which the neointimal formation in the femoral artery is remarkably suppressed. Furthermore, we showed that DPP-4i substantially suppresses plaque formation in coronary arteries with a marked reduction in the accumulation of macrophages in cholesterol-fed rabbits. DPP-4i showed an anti-atherosclerotic effect in Apoe (-/-) mice mainly through the actions of glucagon-like peptide-1 and glucose-dependent insulinotropic polypepide. However, the dual incretin receptor antagonists partially attenuated the suppressive effect of DPP-4i on atherosclerosis in diabetic Apoe (-/-) mice, suggesting an incretin-independent mechanism. Exendin-4 and glucose-dependent insulinotropic polypepide elicited cyclic adenosine monophosphate generation, and suppressed the lipopolysaccharide-induced gene expression of inflammatory molecules, such as interleukin-1β, interleukin-6 and tumor necrosis factor-α, in U937 human monocytes. This suppressive effect, however, was attenuated by an inhibitor of adenylate cyclase and mimicked by 8-bromo-cyclic adenosine monophosphate or forskolin. DPP-4i substantially suppressed the lipopolysaccharide-induced expression of inflammatory cytokines without affecting cyclic adenosine monophosphate generation or cell proliferation. DPP-4i more strongly suppressed the lipopolysaccharide-induced gene expression of inflammatory molecules than incretins, most likely through inactivation of CD26. Glucagon-like peptide-1 and glucose-dependent insulinotropic polypepide suppressed oxidized low-density lipoprotein-induced macrophage foam cell formation in a receptor-dependent manner, which was associated with the downregulation of acyl-coenzyme A cholesterol acyltransferase-1 and CD36, as

  11. Dipeptidyl peptidase IV inhibitor lowers PPARγ agonist-induced body weight gain by affecting food intake, fat mass, and beige/brown fat but not fluid retention

    PubMed Central

    Masuda, Takahiro; Fu, Yiling; Eguchi, Akiko; Czogalla, Jan; Rose, Michael A.; Kuczkowski, Alexander; Gerasimova, Maria; Feldstein, Ariel E.; Scadeng, Miriam

    2013-01-01

    Peroxisome proliferator-activated receptor-γ (PPARγ) agonists like pioglitazone (PGZ) are effective antidiabetic drugs, but they induce fluid retention and body weight (BW) gain. Dipeptidyl peptidase IV (DPP IV) inhibitors are antidiabetic drugs that enhance renal Na+ and fluid excretion. Therefore, we examined whether the DPP IV inhibitor alogliptin (ALG) ameliorates PGZ-induced BW gain. Male Sv129 mice were treated with vehicle (repelleted diet), PGZ (220 mg/kg diet), ALG (300 mg/kg diet), or a combination of PGZ and ALG (PGZ + ALG) for 14 days. PGZ + ALG prevented the increase in BW observed with PGZ but did not attenuate the increase in body fluid content determined by bioimpedance spectroscopy (BIS). BIS revealed that ALG alone had no effect on fat mass (FM) but enhanced the FM-lowering effect of PGZ; MRI analysis confirmed the latter and showed reductions in visceral and inguinal subcutaneous (sc) white adipose tissue (WAT). ALG but not PGZ decreased food intake and plasma free fatty acid concentrations. Conversely, PGZ but not ALG increased mRNA expression of thermogenesis mediator uncoupling protein 1 in epididymal WAT. Adding ALG to PGZ treatment increased the abundance of multilocular cell islets in sc WAT, and PGZ + ALG increased the expression of brown-fat-like “beige” cell marker TMEM26 in sc WAT and interscapular brown adipose tissue and increased rectal temperature vs. vehicle. In summary, DPP IV inhibition did not attenuate PPARγ agonist-induced fluid retention but prevented BW gain by reducing FM. This involved ALG inhibition of food intake and was associated with food intake-independent synergistic effects of PPARγ agonism and DPP-IV inhibition on beige/brown fat cells and thermogenesis. PMID:24347054

  12. The Dose-Dependent Organ-Specific Effects of a Dipeptidyl Peptidase-4 Inhibitor on Cardiovascular Complications in a Model of Type 2 Diabetes

    PubMed Central

    Seo, Jung-Woo; Lee, Arah; Kim, Dong Jin; Kim, Yang-Gyun; Kim, Se-Yeun; Lee, Kyung Hye; Lim, Sung-Jig; Cheng, Xian Wu; Lee, Sang-Ho; Kim, Weon

    2016-01-01

    Objective Although dipeptidyl peptidase-4 (DPP-4) inhibitors have been suggested to have a non-glucoregulatory protective effect in various tissues, the effects of long-term inhibition of DPP-4 on the micro- and macro-vascular complications of type 2 diabetes remain uncertain. The aim of the present study was to investigate the organ-specific protective effects of DPP-4 inhibitor in rodent model of type 2 diabetes. Methods Eight-week-old diabetic and obese db/db mice and controls (db/m mice) received vehicle or one of two doses of gemigliptin (0.04 and 0.4%) daily for 12 weeks. Urine albumin excretion and echocardiography measured at 20 weeks of age. Heart and kidney tissue were subjected to molecular analysis and immunohistochemical evaluation. Results Gemigliptin effectively suppressed plasma DPP-4 activation in db/db mice in a dose-dependent manner. The HbA1c level was normalized in the 0.4% gemigliptin, but not in the 0.04% gemigliptin group. Gemigliptin showed a dose-dependent protective effect on podocytes, anti-apoptotic and anti-oxidant effects in the diabetic kidney. However, the dose-dependent effect of gemigliptin on diabetic cardiomyopathy was ambivalent. The lower dose significantly attenuated left ventricular (LV) dysfunction, apoptosis, and cardiac fibrosis, but the higher dose could not protect the LV dysfunction and cardiac fibrosis. Conclusion Gemigliptin exerted non-glucoregulatory protective effects on both diabetic nephropathy and cardiomyopathy. However, high-level inhibition of DPP-4 was associated with an organ-specific effect on cardiovascular complications in type 2 diabetes. PMID:26959365

  13. Dipeptidyl-peptidase IV (DPP-IV) inhibitor delays tolerance to anxiolytic effect of ethanol and withdrawal-induced anxiety in rats.

    PubMed

    Sharma, Ajaykumar N; Pise, Ashish; Sharma, Jay N; Shukla, Praveen

    2015-06-01

    Dipeptidyl-peptidase IV (DPP-IV) is an enzyme responsible for the metabolism of endogenous gut-derived hormone, glucagon-like peptide-1 (GLP-1). DPP-IV is known for its role in energy homeostasis and pharmacological blockade of this enzyme is a recently approved clinical strategy for the management of type II diabetes. Accumulating evidences suggest that enzyme DPP-IV can affect spectrum of central nervous system (CNS) functions. However, little is known about the role of this enzyme in ethanol-mediated neurobehavioral complications. The objective of the present study was to examine the impact of DPP-IV inhibitor, sitagliptin on the development of tolerance to anxiolytic effect of ethanol and anxiety associated with ethanol withdrawal in rats. A dose-response study revealed that sitaglitpin (20 mg/kg, p.o.) per se exhibit anxiolytic effect in the elevated plus maze (EPM) test in rats. Tolerance to anxiolytic effect of ethanol (2 g/kg, i.p.; 8 % w/v) was observed from 7(th) day of ethanol-diet (6 % v/v) consumption. In contrast, tolerance to anxiolytic effect of ethanol was delayed in rats that were treated daily with sitagliptin (20 mg/kg, p.o.) as tolerance was observed from 13(th)day since commencement of ethanol-diet consumption. Discontinuation of rats from ethanol-diet after 15-days of ethanol consumption resulted in withdrawal anxiety between 8 h and 12 h post-abstinence. However, rats on 15-day ethanol-diet with concomitant sitagliptin (20 mg/kg, p.o.) treatment exhibited delay in appearance (24 h post-withdrawal) of withdrawal anxiety. In summary, DPP-IV inhibitors may prove as an attractive research strategy against ethanol tolerance and dependence.

  14. Different effects of two dipeptidyl peptidase-4 inhibitors and glimepiride on β-cell function in a newly designed two-step hyperglycemic clamp.

    PubMed

    Zhang, Yifei; Chi, Jie; Wang, Weiqing; Hong, Jie; Gu, Weiqiong; Wang, Bokai; Ning, Guang

    2015-03-01

    Dipeptidyl peptidase (DPP)-4 inhibitors and sulfonylureas may have different effects on islet function. We designed a new two-step hyperglycemic clamp to further compare the effects of sitagliptin, saxagliptin, and glimepiride on β-cell function and the incretin effect. The present study was a four-way cross-over open label randomized study. Twelve healthy male subjects were administered a single dose of sitagliptin (100 mg), saxagliptin (5 mg), glimepiride (2 mg) or blank control 2 h before undergoing a two-step hyperglycemic clamp (Step 1: only intravenous glucose was administered; Step 2: i.v. glucose loading was combined with oral glucose consumption). Two-phase insulin secretion, glucagon secretion, and incretin levels were measured during the clamp. In Step 1, with i.v. glucose only, there were no differences between the effects of the three drugs on insulin secretion, except that saxagliptin increased second-phase insulin secretion more than glimepiride (P = 0.007). In Step 2, oral glucose consumption led to an approximate two fold increase in insulin secretion and both gliptins significantly increased first-phase insulin secretion compared with glimepiride (P = 0.003 for both). Saxagliptin further increased second-phase insulin secretion compared with glimepiride (P = 0.005) and sitagliptin (P < 0.001). Both gliptins significantly decreased glucagon secretion and increased active glucagon-like peptide-1 (GLP-1) compared with glimepiride, especially in Step 2. The two-step hyperglycemic clamp appears to be a precise method to assess β-cell function by taking the effect of incretins into consideration. The oral glucose consumption adds to the i.v. glucose infusion, amplifying the differences in the effects of DPP-4 inhibitors and glimepiride on insulin secretion. © 2014 Ruijin Hospital, Shanghai Jiaotong University School of Medicine and Wiley Publishing Asia Pty Ltd.

  15. The dipeptidyl peptidase inhibitor linagliptin and the angiotensin II receptor blocker telmisartan show renal benefit by different pathways in rats with 5/6 nephrectomy.

    PubMed

    Tsuprykov, Oleg; Ando, Ryotaro; Reichetzeder, Christoph; von Websky, Karoline; Antonenko, Viktoriia; Sharkovska, Yuliya; Chaykovska, Lyubov; Rahnenführer, Jan; Hasan, Ahmed A; Tammen, Harald; Alter, Markus; Klein, Thomas; Ueda, Seiji; Yamagishi, Sho-Ichi; Okuda, Seiya; Hocher, Berthold

    2016-05-01

    Dipeptidyl peptidase (DPP)-4 inhibitors delay chronic kidney disease (CKD) progression in experimental diabetic nephropathy in a glucose-independent manner. Here we compared the effects of the DPP-4 inhibitor linagliptin versus telmisartan in preventing CKD progression in non-diabetic rats with 5/6 nephrectomy. Animals were allocated to 1 of 4 groups: sham operated plus placebo; 5/6 nephrectomy plus placebo; 5/6 nephrectomy plus linagliptin; and 5/6 nephrectomy plus telmisartan. Interstitial fibrosis was significantly decreased by 48% with linagliptin but a non-significant 24% with telmisartan versus placebo. The urine albumin-to-creatinine ratio was significantly decreased by 66% with linagliptin and 92% with telmisartan versus placebo. Blood pressure was significantly lowered by telmisartan, but it was not affected by linagliptin. As shown by mass spectrometry, the number of altered peptide signals for linagliptin in plasma was 552 and 320 in the kidney. For telmisartan, there were 108 peptide changes in plasma and 363 in the kidney versus placebo. Linagliptin up-regulated peptides derived from collagen type I, apolipoprotein C1, and heterogeneous nuclear ribonucleoproteins A2/B1, a potential downstream target of atrial natriuretic peptide, whereas telmisartan up-regulated angiotensin II. A second study was conducted to confirm these findings in 5/6 nephrectomy wild-type and genetically deficient DPP-4 rats treated with linagliptin or placebo. Linagliptin therapy in wild-type rats was as effective as DPP-4 genetic deficiency in terms of albuminuria reduction. Thus, linagliptin showed comparable efficacy to telmisartan in preventing CKD progression in non-diabetic rats with 5/6 nephrectomy. However, the underlying pathways seem to be different. Copyright © 2016 International Society of Nephrology. Published by Elsevier Inc. All rights reserved.

  16. Ergotism associated with HIV antiviral protease inhibitor therapy.

    PubMed

    Baldwin, Zachary K; Ceraldi, Chris C

    2003-03-01

    Ergotism is a rare condition of acute vasospasm found classically in young and middle-aged women taking ergot alkaloid agents to treat migraine headache. We report the case of a young man with human immunodeficiency virus (HIV) positivity and describe the drug interaction between protease inhibitors and ergot alkaloid agents, which most likely predisposed to development of ergot toxicity. The HIV-positive population receiving antiviral therapy may be an under-recognized group at risk for ergotism through decreased hepatic metabolism of ergot preparations.

  17. Anagliptin, a dipeptidyl peptidase-4 inhibitor, decreases macrophage infiltration and suppresses atherosclerosis in aortic and coronary arteries in cholesterol-fed rabbits.

    PubMed

    Hirano, Tsutomu; Yamashita, Satoko; Takahashi, Masaki; Hashimoto, Hiroyuki; Mori, Yusaku; Goto, Moritaka

    2016-06-01

    Several studies have demonstrated suppression of aortic atherosclerosis by dipeptidyl peptidase-4 (DPP-4) inhibitors in hypercholesterolemic mice. However, it remains unknown whether DPP-4 inhibitors also exert anti-atherogenic effects in coronary arteries. We examined the effect of anagliptin, a DPP-4 inhibitor, on atherosclerosis development in the aorta and coronary arteries in a high-cholesterol diet-fed rabbits. Japanese white rabbits were fed either normal chow (n=8) or a diet containing 0.5% cholesterol (n=34) for 14weeks. Cholesterol-fed rabbits were given 0.3% anagliptin or not in drinking water (each n=16 and 18) for 12weeks. Dietary cholesterol intake markedly increased serum total cholesterol (TC) levels (1464±150mg/dL, mean±SE), and the most striking increase was observed among the major lipoproteins in very low-density lipoprotein (VLDL) as determined by high-performance liquid chromatography. No significant changes were observed in body weight, water intake, hemoglobin A1c, or glucose response to intravenous glucose loading following anagliptin administration. Anagliptin decreased TC and VLDL-cholesterol as well as cholesterol absorption markers sitosterol and campesterol slightly, although not significantly. Serum DPP-4 activity was suppressed by 82%, and active glucagon-like peptide-1 and glucose-dependent insulinotropic polypeptide levels were increased 2- to 3-fold by anagliptin treatment. Severe hypercholesterolemia resulted in the development of atherosclerosis in the aorta, and the ratio of atherosclerotic lesions to the total aortic surface area was 22±2%. Anagliptin suppressed the lesion ratio to 9±2% (p<0.001). Atherosclerotic lesions were clearly observed in the coronary arteries, where the mean intima-media area was enlarged, and intimal formation was developed. Anagliptin treatment attenuated the intima-media area and the intimal area by 43%. Alpha-smooth muscle actin-positive and macrophage-positive areas in the coronary arteries

  18. Longer term safety of dipeptidyl peptidase-4 inhibitors in patients with type 2 diabetes mellitus: systematic review and meta-analysis.

    PubMed

    Gooßen, K; Gräber, S

    2012-12-01

    Dipeptidyl peptidase-4 (DPP-4) inhibitors are oral antidiabetic agents that hold the potential of slowing the progress of type 2 diabetes mellitus. Their long-term safety is still a subject of debate. A systematic review of randomized, controlled trials was undertaken to comprehensively profile the safety of chronic treatment of type 2 diabetes mellitus with DPP-4 inhibitors. We searched data sources including MEDLINE, CENTRAL, publishers' and manufacturers' databases. Eligible trials were double-blind, randomized, placebo or active-controlled trials with ≥18 weeks duration in patients with type 2 diabetes reporting safety outcomes. Meta-analysis was performed separately for trials in which the control group received placebo (44 studies), another gliptin (3 studies) and any other antidiabetic drug (20 studies). Risk ratios with 95% confidence intervals were computed using a Mantel-Haenszel fixed-effect model for general safety outcomes, hypoglycaemia and adverse events by system organ class. Of 307 publications retrieved, 67 randomized, controlled trials met the eligibility criteria and were included in this review (4 alogliptin, 8 linagliptin, 8 saxagliptin, 20 sitagliptin, and 27 vildagliptin trials). Adverse events with gliptin treatment were at placebo level (relative risk (RR) 1.02 [0.99, 1.04]). No increased risk of infections was detectable (RR 0.98 [0.93, 1.05] compared to placebo and 1.02 [0.97, 1.07] compared to other antidiabetic drugs). Asthenia (RR 1.57 [1.09, 2.27]) as well as cardiac (RR 1.37 [1.00, 1.89]) and vascular disorders (RR 1.74 [1.05, 2.86] for linagliptin) emerged as adverse events associated with DPP-4 inhibitor treatment. The risk of hypoglycaemia was low with DPP-4 inhibitor treatment (RR 0.92 [0.74, 1.15] compared to placebo, RR 0.20 [0.17, 0.24] compared to sulphonylureas) in the absence of sulphonylurea or insulin co-therapy, but significantly elevated for combination therapy of sulphonylurea or insulin with sitagliptin or

  19. Development of Small-molecule HIV Entry Inhibitors Specifically Targeting gp120 or gp41.

    PubMed

    Lu, Lu; Yu, Fei; Cai, Lifeng; Debnath, Asim K; Jiang, Shibo

    2016-01-01

    Human immunodeficiency virus type 1 (HIV-1) envelope (Env) glycoprotein surface subunit gp120 and transmembrane subunit gp41 play important roles in HIV-1 entry, thus serving as key targets for the development of HIV-1 entry inhibitors. T20 peptide (enfuvirtide) is the first U.S. FDA-approved HIV entry inhibitor; however, its clinical application is limited by the lack of oral availability. Here, we have described the structure and function of the HIV-1 gp120 and gp41 subunits and reviewed advancements in the development of small-molecule HIV entry inhibitors specifically targeting these two Env glycoproteins. We then compared the advantages and disadvantages of different categories of HIV entry inhibitor candidates and further predicted the future trend of HIV entry inhibitor development.

  20. Development of Small-molecule HIV Entry Inhibitors Specifically Targeting gp120 or gp41

    PubMed Central

    Lu, Lu; Yu, Fei; Cai, Lifeng; Debnath, Asim K.; Jiang, Shibo

    2015-01-01

    Human immunodeficiency virus type 1 (HIV-1) envelope (Env) glycoprotein surface subunit gp120 and transmembrane subunit gp41 play important roles in HIV-1 entry, thus serving as key targets for the development of HIV-1 entry inhibitors. T20 peptide (enfuvirtide) is the first U.S. FDA-approved HIV entry inhibitor; however, its clinical application is limited by the lack of oral availability. Here, we have described the structure and function of the HIV-1 gp120 and gp41 subunits and reviewed advancements in the development of small-molecule HIV entry inhibitors specifically targeting these two Env glycoproteins. We then compared the advantages and disadvantages of different categories of HIV entry inhibitor candidates and further predicted the future trend of HIV entry inhibitor development. PMID:26324044

  1. Design of second generation HIV-1 integrase inhibitors.

    PubMed

    Deng, Jinxia; Dayam, Raveendra; Al-Mawsawi, Laith Q; Neamati, Nouri

    2007-01-01

    The prospect of HIV-1 integrase (IN) as a therapeutically viable retroviral drug target is on the verge of realization. The observed preclinical and clinical performance of beta-diketo containing and naphthyridine carboxamide compounds provides direct proof for the clinical application of IN inhibition. These validated lead compounds are useful in the design and development of second generation IN inhibitors. The results from preclinical and clinical studies on the first generation IN inhibitors reiterate a demand for novel second generation inhibitors with improved pharmacokinetic and metabolic properties. Pharmacophore-based drug design techniques facilitate the discovery of novel compounds on the basis of validated lead compounds specific for a drug target. In this article we have comprehensively reviewed the application of pharmacophore-based drug design methods in the field of IN inhibitor discovery.

  2. HIV inhibitor from Thai bitter gourd.

    PubMed

    Jiratchariyakul, W; Wiwat, C; Vongsakul, M; Somanabandhu, A; Leelamanit, W; Fujii, I; Suwannaroj, N; Ebizuka, Y

    2001-06-01

    Thai bitter gourd protein (MRK29) was isolated from Momordica charantia ripe fruit and seed. The purification was performed by ammonium sulfate fractionation and gel filtration chromatography. MRK29 possessed one isoelectric point of (pI) > or = 9, and the time of flight mass spectrum (TOFMS) indicated its molecular weight at 28.6 kD. The twenty amino acid sequence from the N-terminus was in the following order: 1Asp Val Asn Phe Arg Leu Ser Gly Ala 10Asp Pro Arg X Tyr Gly Met Phe Ile Glu 20Asp. MRK29 inhibited the HIV-1 reverse transcriptase with 50% IR at the concentration of 18 micrograms/ml. MRK29 was concentrated in the 30-60% salt precipitated fraction, at which the concentration of 0.175 microgram/ml exerted 82% reduction of viral core protein p24 expression in HIV-infected cells. MRK29 might have modulatory role on immune cells, because it increased 3-fold TNF activity.

  3. Cardiovascular considerations in patients treated with HIV protease inhibitors.

    PubMed

    Colagreco, Joseph P

    2004-01-01

    Highly active antiretroviral therapy (HAART) has dramatically reduced mortality from HIV infection, transforming it in many cases to a chronic condition. However, protease inhibitors (PIs), which are integral components of most HAART regimens, are commonly associated with a host of metabolic disturbances that may increase the risk of cardiovascular disease in patients with HIV infection, potentially counteracting some of the positive health effects of PIs. Dyslipidemia is of particular concern. The Adult AIDS Clinical Trials Group has established preliminary guidelines to evaluate and treat PI-associated dyslipidemia. A number of strategies exist for the management of PI-based dyslipidemia in HAART recipients; their advantages and disadvantages should be considered when treating patients with HIV infection.

  4. Novel Acylguanidine-Based Inhibitor of HIV-1

    PubMed Central

    Mwimanzi, Philip; Tietjen, Ian; Miller, Scott C.; Shahid, Aniqa; Cobarrubias, Kyle; Kinloch, Natalie N.; Baraki, Bemuluyigza; Richard, Jonathan; Finzi, Andrés; Fedida, David; Brumme, Zabrina L.

    2016-01-01

    ABSTRACT The emergence of transmissible HIV-1 strains with resistance to antiretroviral drugs highlights a continual need for new therapies. Here we describe a novel acylguanidine-containing compound, 1-(2-(azepan-1-yl)nicotinoyl)guanidine (or SM111), that inhibits in vitro replication of HIV-1, including strains resistant to licensed protease, reverse transcriptase, and integrase inhibitors, without major cellular toxicity. At inhibitory concentrations, intracellular p24Gag production was unaffected, but virion release (measured as extracellular p24Gag) was reduced and virion infectivity was substantially impaired, suggesting that SM111 acts at a late stage of viral replication. SM111-mediated inhibition of HIV-1 was partially overcome by a Vpu I17R mutation alone or a Vpu W22* truncation in combination with Env N136Y. These mutations enhanced virion infectivity and Env expression on the surface of infected cells in the absence and presence of SM111 but also impaired Vpu's ability to downregulate CD4 and BST2/tetherin. Taken together, our results support acylguanidines as a class of HIV-1 inhibitors with a distinct mechanism of action compared to that of licensed antiretrovirals. Further research on SM111 and similar compounds may help to elucidate knowledge gaps related to Vpu's role in promoting viral egress and infectivity. IMPORTANCE New inhibitors of HIV-1 replication may be useful as therapeutics to counteract drug resistance and as reagents to perform more detailed studies of viral pathogenesis. SM111 is a small molecule that blocks the replication of wild-type and drug-resistant HIV-1 strains by impairing viral release and substantially reducing virion infectivity, most likely through its ability to prevent Env expression at the infected cell surface. Partial resistance to SM111 is mediated by mutations in Vpu and/or Env, suggesting that the compound affects host/viral protein interactions that are important during viral egress. Further characterization of

  5. Dipeptidyl peptidase-IV inhibitors are efficient adjunct therapy in HNF1A maturity-onset diabetes of the young patients--report of two cases.

    PubMed

    Katra, Barbara; Klupa, Tomasz; Skupien, Jan; Szopa, Magdalena; Nowak, Natalia; Borowiec, Maciej; Kozek, Elzbieta; Malecki, Maciej T

    2010-04-01

    In HNF1A maturity-onset diabetes of the young (MODY), sulfonylurea (SU) is the first-line treatment. Over time, such therapy fails, and additional treatment is required. Dipeptidyl peptidase IV (DPP-IV) inhibitors are new agents that lower blood glucose by prolonging the activity of circulating incretins. We applied DPP-IV inhibitors in two HNF1A MODY patients whose earlier therapeutic regimen included SU. Case 1, a 39-year-old woman, a carrier of the ArgR171X HNF1A mutation, with a 7-year history of diabetes was on 160 mg of gliclazide and 2,000 mg of metformin. Her initial hemoglobin A1c (HbA1c) level was 7.2%, while the mean glucose level on the CGMS((R)) (Medtronic, Northridge, CA) record was 162 mg/dL. Sitagliptine, in a dose of 100 mg/day, was added to the previous treatment. Case 2, a 62-year-old woman, a carrier of the IVS7nt-6G>A mutation, with a 41-year history of diabetes was treated with 240 mg/day gliclazide and 6 IU of insulin/day. Her initial HbA1c was 8.8%, and average glycemia reached 172 mg/dL. In her case, we started the combined therapy with 50 mg of vildagliptine twice daily. Patients were reexamined after 3 months, and HbA1c fell to 6.3% in both subjects. Similarly, significant improvement in glycemic control on CGMS was observed as the average glycemia decreased to 114 mg/dL and 134 mg/dL in Case 1 and Case 2, respectively. No episodes of hypoglycemia or other side effects were recorded. As intravenous glucose tolerance tests (IVGTTs) were performed before and after DPP-IV implementation, we were able to assess their impact on insulin secretion under fasting conditions. We saw a substantial rise in insulin level increment during IVGTT (by 9.8 and13.4 mIU/L in Case 1 and Case 2, respectively). DPP-IV inhibitors may be an effective tool of combined therapy in HNF1A MODY, and they seem to improve beta-cell function under fasting conditions.

  6. Network meta-analysis of liraglutide versus dipeptidyl peptidase-4 inhibitors for the treatment of type 2 diabetes in Japanese patients.

    PubMed

    Ayers, Dieter; Kanters, Steve; Goldgrub, Rachel; Hughes, Monica; Kato, Ryo; Kragh, Nana

    2017-09-01

    To determine the comparative efficacy and safety of liraglutide and dipeptidyl peptidase-4 (DPP-4) inhibitors as antidiabetics for Japanese patients with uncontrolled type 2 diabetes (T2DM). We searched for randomized controlled trials (RCTs) evaluating outcomes among Japanese adults with uncontrolled T2DM and including liraglutide or DPP-4 inhibitors up to August 2016. We extracted data on trial and patient characteristics, and the following outcomes: HbA1c, weight, patients meeting HbA1c <7%, patients experiencing hypoglycemic events, microalbuminuria, estimated glomerular filtration rate (eGFR) and creatinine. We synthesized data using network meta-analyses (NMA) using a Bayesian framework. Continuous outcomes were modeled using normal likelihoods and an identity link, while dichotomous outcomes were modeled using a binomial likelihood and a logit link. The systematic literature review yielded 39 publications pertaining to 38 trials. A total of 27 trials (5032 patients) reported change in HbA1c at 12 weeks and at 24 weeks 9 trials (2091 patients). All treatments showed statistically significant reductions in HbA1c relative to placebo at 12 and 24 weeks. Liraglutide 0.9 mg was statistically superior to all DPP-4 interventions (vildagliptin, sitagliptin, linagliptin, alogliptin, teneligliptin, trelagliptin and omarigliptin) at 12 weeks and 24 weeks among those reporting. Treatments were not statistically differentiable with respect to weight change and risk of hypoglycemia. Finally, no comparisons of eGFR and microalbuminuria were conducted, as this data was reported in too few trials to conduct analyses. Some important outcomes were limited by poor reporting (eGFR and microalbuminuria) or low event rates (hypoglycemia). The follow-up time was relatively short. Clinically, the 24 week time point is more important as it demonstrates more sustained results. Our research suggests that liraglutide 0.9 mg offers a more efficacious treatment option for T2DM than the

  7. Dipeptidyl peptidase-4 inhibitor improved exercise capacity and mitochondrial biogenesis in mice with heart failure via activation of glucagon-like peptide-1 receptor signalling.

    PubMed

    Takada, Shingo; Masaki, Yoshihiro; Kinugawa, Shintaro; Matsumoto, Junichi; Furihata, Takaaki; Mizushima, Wataru; Kadoguchi, Tomoyasu; Fukushima, Arata; Homma, Tsuneaki; Takahashi, Masashige; Harashima, Shinichi; Matsushima, Shouji; Yokota, Takashi; Tanaka, Shinya; Okita, Koichi; Tsutsui, Hiroyuki

    2016-09-01

    Exercise capacity is reduced in heart failure (HF) patients, due mostly to skeletal muscle abnormalities including impaired energy metabolism, mitochondrial dysfunction, fibre type transition, and atrophy. Glucagon-like peptide-1 (GLP-1) has been shown to improve exercise capacity in HF patients. We investigated the effects of the administration of a dipeptidyl peptidase (DPP)-4 inhibitor on the exercise capacity and skeletal muscle abnormalities in an HF mouse model after myocardial infarction (MI). MI was created in male C57BL/6J mice by ligating the left coronary artery, and a sham operation was performed in other mice. The mice were then divided into two groups according to the treatment with or without a DPP-4 inhibitor, MK-0626 [1 mg/kg body weight (BW)/day] provided in the diet. Four weeks later, the exercise capacity evaluated by treadmill test was revealed to be limited in the MI mice, and it was ameliorated in the MI + MK-0626 group without affecting the infarct size or cardiac function. The citrate synthase activity, mitochondrial oxidative phosphorylation capacity, supercomplex formation, and their quantity were reduced in the skeletal muscle from the MI mice, and these decreases were normalized in the MI + MK-0626 group, in association with the improvement of mitochondrial biogenesis. Immunohistochemical staining also revealed that a shift toward the fast-twitch fibre type in the MI mice was also reversed by MK-0626. Favourable effects of MK-0626 were significantly inhibited by treatment of GLP-1 antagonist, Exendin-(9-39) (150 pmol/kg BW/min, subcutaneous osmotic pumps) in MI + MK-0626 mice. Similarly, exercise capacity and mitochondrial function were significantly improved by treatment of GLP-1 agonist, Exendin-4 (1 nmol/kg/BW/h, subcutaneous osmotic pumps). A DPP-4 inhibitor may be a novel therapeutic agent against the exercise intolerance seen in HF patients by improving the mitochondrial biogenesis in their skeletal muscle

  8. Multimodal mechanism of action of allosteric HIV-1 integrase inhibitors

    PubMed Central

    Jurado, Kellie Ann; Engelman, Alan

    2013-01-01

    Integrase (IN) is required for lentivirus replication and is a proven drug target for the prevention of AIDS in HIV-1 infected patients. While clinical strand transfer inhibitors disarm the IN active site, allosteric inhibition of enzyme activity through the disruption of IN-IN protein interfaces holds great therapeutic potential. A promising class of allosteric IN inhibitors (ALLINIs), 2-(quinolin-3-yl) acetic acid derivatives, engage the IN catalytic core domain dimerization interface at the binding site for the host integration co-factor LEDGF/p75. ALLINIs promote IN multimerization and, independent of LEDGF/p75 protein, block the formation of the active IN-DNA complex, as well as inhibit the IN-LEDGF/p75 interaction in vitro. Yet, rather unexpectedly, the full inhibitory effect of these compounds is exerted during the late phase of HIV-1 replication. ALLINIs impair particle core maturation as well as reverse transcription and integration during the subsequent round of virus infection. Recapitulating the pleiotropic phenotypes observed with numerous IN mutant viruses, ALLINIs provide insight into underlying aspects of IN biology that extend beyond its catalytic activity. Therefore, in addition to the potential to expand our repertoire of HIV-1 antiretrovirals, ALLINIs afford important structural probes to dissect the multifaceted nature of the IN protein throughout the course of HIV-1 replication. PMID:24274067

  9. Effect of a Dipeptidyl Peptidase-IV Inhibitor, Des-Fluoro-Sitagliptin, on Neointimal Formation after Balloon Injury in Rats

    PubMed Central

    Lim, Soo; Choi, Sung Hee; Shin, Hayley; Cho, Bong Jun; Park, Ho Seon; Ahn, Byung Yong; Kang, Seon Mee; Yoon, Ji Won; Jang, Hak Chul; Kim, Young-Bum; Park, Kyong Soo

    2012-01-01

    Background Recently, it has been suggested that enhancement of incretin effect improves cardiac function. We investigated the effect of a DPP-IV inhibitor, des-fluoro-sitagliptin, in reducing occurrence of restenosis in carotid artery in response to balloon injury and the related mechanisms. Methods and Findings Otsuka Long-Evans Tokushima Fatty rats were grouped into four: control (normal saline) and sitagliptin 100, 250 and 500 mg/kg per day (n = 10 per group). Sitagliptin or normal saline were given orally from 1 week before to 2 weeks after carotid injury. After 3 weeks of treatment, sitagliptin treatment caused a significant and dose-dependent reduction in intima-media ratio (IMR) in obese diabetic rats. This effect was accompanied by improved glucose homeostasis, decreased circulating levels of high-sensitivity C-reactive protein (hsCRP) and increased adiponectin level. Moreover, decreased IMR was correlated significantly with reduced hsCRP, tumor necrosis factor-α and monocyte chemoattractant protein-1 levels and plasminogen activator inhibitor-1 activity. In vitro evidence with vascular smooth muscle cells (VSMCs) demonstrated that proliferation and migration were decreased significantly after sitagliptin treatment. In addition, sitagliptin increased caspase-3 activity and decreased monocyte adhesion and NFκB activation in VSMCs. Conclusions Sitagliptin has protective properties against restenosis after carotid injury and therapeutic implications for treating macrovascular complications of diabetes. PMID:22493727

  10. Teneligliptin, a dipeptidyl peptidase-4 inhibitor, attenuated pro-inflammatory phenotype of perivascular adipose tissue and inhibited atherogenesis in normoglycemic apolipoprotein-E-deficient mice.

    PubMed

    Salim, Hotimah Masdan; Fukuda, Daiju; Higashikuni, Yasutomi; Tanaka, Kimie; Hirata, Yoichiro; Yagi, Shusuke; Soeki, Takeshi; Shimabukuro, Michio; Sata, Masataka

    2017-09-01

    Dipeptidyl peptidase-4 (DPP-4) inhibitors have various cellular effects that are associated with vascular protection. Here, we examined whether teneligliptin alters the pro-inflammatory phenotype of perivascular adipose tissue (PVAT) and inhibits atherogenesis. Teneligliptin (60mg/kg/day) was administered orally to apolipoprotein-E-deficient (ApoE(-/-)) mice for 20weeks. Teneligliptin significantly inhibited the development of atherosclerosis in the aortic arch compared with vehicle (P<0.05), without alteration of blood glucose level or blood pressure. Histological analyses demonstrated that teneligliptin decreased lipid deposition and MCP-1 expression (P<0.05, respectively), and tended to decrease macrophage accumulation in atherosclerotic plaques. The results of quantitative RT-PCR analysis demonstrated that teneligliptin reduced the expression of inflammatory molecules such as TNF-α and MCP-1 in the abdominal aorta. Furthermore, teneligliptin reduced the expression of a macrophage marker and Nox-4, a major NADPH oxidase subunit in adipocytes, in PVAT around the aortic arch. Administration of teneligliptin for 8weeks ameliorated endothelium-dependent vasodilation and reduced oxidative stress as determined by urinary 8-OHdG excretion (P<0.05) compared with vehicle. In vitro experiments demonstrated that exendin-4 (Ex-4), a GLP-1 analog, decreased the expression of inflammatory molecules in RAW264.7 cells. Also, Ex-4 decreased Nox4 expression in 3T3-L1 adipocytes. Teneligliptin inhibited atherogenesis with attenuation of the inflammatory phenotype in PVAT. A GLP-1 analog suppressed pro-inflammatory activation of macrophages and adipocytes. Suppression of the pro-inflammatory phenotype of PVAT might contribute, at least partially, to the cardioprotective effects of teneligliptin. Copyright © 2017 Elsevier Inc. All rights reserved.

  11. The effects of a TGR5 agonist and a dipeptidyl peptidase IV inhibitor on dextran sulfate sodium-induced colitis in mice

    PubMed Central

    Sakanaka, Taisuke; Inoue, Takuya; Yorifuji, Naoki; Iguchi, Munetaka; Fujiwara, Kaori; Narabayashi, Ken; Kakimoto, Kazuki; Nouda, Sadaharu; Okada, Toshihiko; Kuramoto, Takanori; Ishida, Kumi; Abe, Yosuke; Takeuchi, Toshihisa; Umegaki, Eiji; Akiba, Yasutada; Kaunitz, Jonathan D.; Higuchi, Kazuhide

    2016-01-01

    Background and Aim Luminal nutrients stimulate enteroendocrine L cells to release gut hormones, including intestinotrophic glucagon-like peptide-2 (GLP-2). Because L cells express the bile acid receptor TGR5 and dipeptidyl peptidase-IV (DPPIV) rapidly degrades GLPs, we hypothesized that luminal TGR5 activation may attenuate intestinal injury via GLP-2 release, which is enhanced by DPPIV inhibition. Methods Intestinal injury was induced in mice by administration of dextran sulfate sodium (DSS) in drinking water (free access to water containing 5% DSS for 7 days). The selective TGR5 agonist betulinic acid (BTA) and the DPPIV inhibitor sitagliptin phosphate monohydrate (STG) were administered orally for 7 days. Male C57BL/6 mice (6–7 weeks old) were divided into five groups: normal control group, disease control group, BTA low group (drinking water containing 15 mg/L BTA), BTA high group (50 mg/L BTA), and BTA high + STG (3 mg/kg, i.g.) group. Results The selective TGR5 agonist BTA dose-dependently suppressed disease activity index and mRNA expression of the pro-inflammatory cytokines interleukin (IL)-1β, IL-6, and tumor necrosis factor-α in the colon. Nevertheless, STG administration had little additive effect on BTA-induced protection. Fibroblast activation protein mRNA expression, but not expression of other DPP family members, was increased in the colon of DSS-treated mice with increased mucosal DPPIV. Co-administration of the selective GLP-2 antagonist GLP-2 (3–33) reversed the effect of BTA. Conclusion The selective TGR5 agonist BTA ameliorated DSS-induced colitis in mice via the GLP-2 pathway with no effect of DPPIV inhibition, suggesting that other DPP enzymatic activity is involved in GLP-2 degradation. PMID:25827806

  12. In vivo dual-delivery of glucagon like peptide-1 (GLP-1) and dipeptidyl peptidase-4 (DPP4) inhibitor through composites prepared by microfluidics for diabetes therapy

    NASA Astrophysics Data System (ADS)

    Araújo, F.; Shrestha, N.; Gomes, M. J.; Herranz-Blanco, B.; Liu, D.; Hirvonen, J. J.; Granja, P. L.; Santos, H. A.; Sarmento, B.

    2016-05-01

    Oral delivery of proteins is still a challenge in the pharmaceutical field. Nanoparticles are among the most promising carrier systems for the oral delivery of proteins by increasing their oral bioavailability. However, most of the existent data regarding nanosystems for oral protein delivery is from in vitro studies, lacking in vivo experiments to evaluate the efficacy of these systems. Herein, a multifunctional composite system, tailored by droplet microfluidics, was used for dual delivery of glucagon like peptide-1 (GLP-1) and dipeptidyl peptidase-4 inhibitor (iDPP4) in vivo. Oral delivery of GLP-1 with nano- or micro-systems has been studied before, but the simultaneous nanodelivery of GLP-1 with iDPP4 is a novel strategy presented here. The type 2 diabetes mellitus (T2DM) rat model, induced through the combined administration of streptozotocin and nicotinamide, a non-obese model of T2DM, was used. The combination of both drugs resulted in an increase in the hypoglycemic effects in a sustained, but prolonged manner, where the iDPP4 improved the therapeutic efficacy of GLP-1. Four hours after the oral administration of the system, blood glucose levels were decreased by 44%, and were constant for another 4 h, representing half of the glucose area under the curve when compared to the control. An enhancement of the plasmatic insulin levels was also observed 6 h after the oral administration of the dual-drug composite system and, although no statistically significant differences existed, the amount of pancreatic insulin was also higher. These are promising results for the oral delivery of GLP-1 to be pursued further in a chronic diabetic model study.

  13. Long-term treatment with Sitagliptin, a dipeptidyl peptidase-4 inhibitor, reduces colon carcinogenesis and reactive oxygen species in 1,2-dimethylhydrazine-induced rats.

    PubMed

    Femia, Angelo Pietro; Raimondi, Laura; Maglieri, Giulia; Lodovici, Maura; Mannucci, Edoardo; Caderni, Giovanna

    2013-11-15

    Type 2 diabetes mellitus (T2DM) and insulin resistance (IR) increase colon cancer risk. Antidiabetic drugs stabilizing incretin hormones, such as inhibitors of dipeptidyl peptidase-4 activity (DPP4i), may affect colon carcinogenesis; however, the data remain controversial. Therefore, the authors studied whether long-term administration of the DPP4i Sitagliptin (SITA) affects 1,2-dimethylhydrazine (DMH)-induced colon carcinogenesis. Male F344 rats fed a high-fat (HF) diet promoting colon carcinogenesis and IR, were induced with DMH (100 mg/kg × 2 times). One week later, the animals were allocated to two groups: one continuing with HF diet (controls; n = 8) and one receiving SITA (n = 8) mixed in the diet (260 ppm). Body weight, food consumption and glycemia were not affected by SITA. Fifteen weeks after DMH, the number of the precancerous lesions mucin-depleted foci (MDF) was significantly lower in rats treated with SITA [MDF/colon: 9.5 ± 0.9 and 6.4 ± 0.9 in controls (n = 8) and SITA groups (n = 8), respectively; means ± SE, p < 0.05]. Reactive oxygen species in the blood were also significantly lower in the SITA group [6.75 ± 0.69 and 5.63 ± 0.75 (H2 O2 in mM) in controls (n = 5) and SITA (n = 6), respectively; means ± SE, p < 0.05]. Rats treated with SITA had a lower DPP4 activity in the intestine but not in the plasma. Intestine growth morphometric parameters and colon proliferation, as proliferating cell nuclear antigen expression, were not affected by SITA. In conclusion, the results suggest a protective effect of DPP4i against colon carcinogenesis that could be exploited in chemoprevention trials.

  14. In vivo dual-delivery of glucagon like peptide-1 (GLP-1) and dipeptidyl peptidase-4 (DPP4) inhibitor through composites prepared by microfluidics for diabetes therapy

    PubMed Central

    Araújo, F.; Shrestha, N.; Gomes, M. J.; Herranz-Blanco, B.; Liu, D.; Hirvonen, J. J.; Granja, P. L.; Santos, H. A.

    2016-01-01

    Oral delivery of proteins is still a challenge in the pharmaceutical field. Nanoparticles are among the most promising carrier systems for the oral delivery of proteins by increasing their oral bioavailability. However, most of the existent data regarding nanosystems for oral protein delivery is from in vitro studies, lacking in vivo experiments to evaluate the efficacy of these systems. Herein, a multifunctional composite system, tailored by droplet microfluidics, was used for dual delivery of glucagon like peptide-1 (GLP-1) and dipeptidyl peptidase-4 inhibitor (iDPP4) in vivo. Oral delivery of GLP-1 with nano- or micro-systems has been studied before, but the simultaneous nanodelivery of GLP-1 with iDPP4 is a novel strategy presented here. The type 2 diabetes mellitus (T2DM) rat model, induced through the combined administration of streptozotocin and nicotinamide, a non-obese model of T2DM, was used. The combination of both drugs resulted in an increase in the hypoglycemic effects in a sustained, but prolonged manner, where the iDPP4 improved the therapeutic efficacy of GLP-1. Four hours after the oral administration of the system, blood glucose levels were decreased by 44%, and were constant for another 4 h, representing half of the glucose area under the curve when compared to the control. An enhancement of the plasmatic insulin levels was also observed 6 h after the oral administration of the dual-drug composite system and, although no statistically significant differences existed, the amount of pancreatic insulin was also higher. These are promising results for the oral delivery of GLP-1 to be pursued further in a chronic diabetic model study. PMID:27150301

  15. Sitagliptin, a dipeptidyl peptidase-4 inhibitor, improves recognition memory, oxidative stress and hippocampal neurogenesis and upregulates key genes involved in cognitive decline.

    PubMed

    Gault, V A; Lennox, R; Flatt, P R

    2015-04-01

    To examine whether prolonged dipeptidyl peptidase-4 (DPP-4) inhibition can reverse learning and memory impairment in high-fat-fed mice. High-fat-fed mice received oral sitagliptin (50 mg/kg body weight) once daily or saline vehicle over 21 days. An additional group of mice on standard chow received saline vehicle. Energy intake, body weight, glucose and insulin concentrations were measured at regular intervals. Glucose tolerance, insulin sensitivity, novel object recognition, DPP-4 activity, hormone analysis, hippocampal gene expression and histology were performed. Sitagliptin decreased circulating DPP-4 activity and improved glucose tolerance, glucose-stimulated insulin secretion and insulin sensitivity, and reduced plasma triglycerides and cholesterol levels. DPP-4 inhibition improved recognition memory (1.2-fold increase) without affecting hypermoteric activity or anxiety levels. Improvement in memory and learning was linked to reduced immunostaining for 8-oxoguanine and increased doublecortin staining in the hippocampus, which were indicative of reduced brain oxidative stress and increased hippocampal neurogenesis, respectively. These effects were associated with significant upregulation of hippocampal gene expression of glucagon-like peptide-1 (GLP-1) receptor, glucose-dependent insulinotropic polypeptide receptor, synaptophysin, sirtuin 1, glycogen synthase kinase 3β, superdioxide mutase 2, nuclear factor (erythroid-derived 2)-like 2 and vascular endothelial growth factor. Total plasma and brain GLP-1 concentrations were significantly increased after sitagliptin therapy, whereas DPP-4 activity in brain tissue was not altered. These studies show that sitagliptin can reverse memory impairment in high-fat-fed mice and is also associated with improved insulin sensitivity, enhanced hippocampal neurogenesis and reduced oxidative stress. DPP-4 inhibitors may therefore exhibit dual benefits by improving metabolic control and reducing the decline in cognitive

  16. Efficacy, safety and dose-response relationship of teneligliptin, a dipeptidyl peptidase-4 inhibitor, in Japanese patients with type 2 diabetes mellitus.

    PubMed

    Kadowaki, T; Kondo, K

    2013-09-01

    To assess the efficacy, safety and dose-response relationship of once-daily teneligliptin, a novel dipeptidyl peptidase-4 inhibitor, in Japanese patients with type 2 diabetes mellitus (T2DM) inadequately controlled with diet and exercise. In this randomized, double-blind, placebo-controlled, parallel-group study, patients (n = 324) were randomized to receive teneligliptin 10, 20 or 40 mg, or placebo, once daily before breakfast for 12 weeks. The primary endpoint was the change in haemoglobin (Hb)A1c from baseline to week 12. All teneligliptin-treated groups showed significantly greater reductions in HbA1c and fasting plasma glucose (FPG) than did the placebo group. The differences between the teneligliptin 10, 20 or 40 mg groups and the placebo group for the change in HbA1c were -0.9 [least-squares (LS) mean; 95% confidence interval: -1.0, -0.7], -0.9 (-1.1, -0.7) and -1.0 (-1.2, -0.9)%, respectively (all, p < 0.001). The respective LS means for FPG were -17.8 (-23.4, -12.1), -16.9 (-22.6, -11.2) and -20.0 (-25.7, -14.3) mg/dl (all, p < 0.001). There were no significant differences in HbA1c among the three doses of teneligliptin. The incidence of adverse events and adverse drug reactions was similar in each group. The incidence of hypoglycaemia was not significantly different among the four groups. Treatment with teneligliptin for 12 weeks provided significant and clinically meaningful reductions in HbA1c and FPG across the dose range studied and was generally well tolerated in Japanese patients with T2DM. © 2013 Blackwell Publishing Ltd.

  17. The dipeptidyl peptidase-4 inhibitor linagliptin exhibits time- and dose-dependent localization in kidney, liver, and intestine after intravenous dosing: results from high resolution autoradiography in rats.

    PubMed

    Greischel, Andreas; Binder, Rudolf; Baierl, Juergen

    2010-09-01

    Linagliptin is an orally active dipeptidyl peptidase-4 (DPP-4) inhibitor that is under development for the treatment of type 2 diabetes and shows dose-dependent pharmacokinetics in rats and humans. With microscopic autoradiography, the dose dependence of cellular distribution of [(3)H]linagliptin-related radioactivity was investigated in kidney at 3 h after intravenous injection of 7.4, 100, and 2000 microg/kg [(3)H]linagliptin. Furthermore, distribution of radioactivity in kidney, liver, and small intestine was investigated in relation to time (2 min, 3 h, and 192 h) after intravenous injection of 7.4 microg/kg [(3)H]linagliptin. The localization of radioactivity in the kidney at 3 h after administration of 7.4, 100, and 2000 microg/kg [(3)H]linagliptin changed with increasing dose from cortical glomeruli and parts of proximal tubule parts to parts of medullar proximal tubule. In addition, the compound distribution in the kidney shifted with time after administration of 7.4 microg/kg [(3)H]linagliptin from glomeruli (2 min) to the lower parts of proximal tubules (192 h). The radioactivity within proximal tubules was located primarily in the brush border. In the liver, the radioactivity persisted mainly around the portal triads and in the bile duct from 2 min to 192 h. In the small intestine, the radioactivity shifted from the lamina propria (2 min) to the surface of the villi and/or intestinal lumen (192 h). In conclusion, the cellular distribution pattern of [(3)H]linagliptin-related radioactivity reflected the known distribution of DPP-4. Together with the persistence of binding, this result supports the high relevance of DPP-4 binding of linagliptin for its pharmacokinetics and pharmacodynamics.

  18. The dipeptidyl peptidase IV inhibitor vildagliptin suppresses development of neuropathy in diabetic rodents: Effects on peripheral sensory nerve function, structure and molecular changes.

    PubMed

    Tsuboi, Kentaro; Mizukami, Hiroki; Inaba, Wataru; Baba, Masayuki; Yagihashi, Soroku

    2015-11-25

    Incretin-related therapy was found to be beneficial for experimental diabetic neuropathy, but its mechanism is obscure. The purpose of this study is to explore the mechanism through which dipeptidyl peptidase IV inhibitor, vildagliptin (VG), influences neuropathy in diabetic rodents. To this end, non-obese type 2 diabetic Goto-Kakizaki rats (GK) and streptozotocin (STZ)-induced diabetic mice were treated with VG orally. Neuropathy was evaluated by nerve conduction velocity (NCV) in both GK and STZ-diabetic mice, whereas calcitonin-gene-related peptide (CGRP) expressions, neuronal cell size of dorsal root ganglion (DRG) and intraepidermal nerve fiber density (IENFD) were examined in GK. DRG from GK and STZ-diabetic mice served for analyses of GLP-1 and insulin signaling. As results, VG-treatment improved glucose intolerance and increased serum insulin and GLP-1 in GK accompanied by the amelioration of delayed NCV and neuronal atrophy, reduced CGRP expressions and IENFD. Diet restriction alone did not significantly influence these measures. Impaired GLP-1 signals such as CREB, PKB/Akt and S6RP in DRG of GK were restored in VG-treated group, but the effect was equivocal in diet-treated GK. Concurrently, decreased phosphorylation of insulin receptor substrate-2 (IRS2) in GK was corrected by VG-treatment. Consistent with the effect on GK, VG-treatment improved NCV in diabetic mice without influence on hyperglycemia. DRG of VG-treated diabetic mice were characterized by correction of GLP-1 signals and IRS2 phosphorylation without effects on insulin receptor-β expression. The results suggest close association of neuropathy development with impaired signaling of insulin and GLP-1 in diabetic rodents. This article is protected by copyright. All rights reserved.

  19. Reversal of new-onset diabetes through modulating inflammation and stimulating beta-cell replication in nonobese diabetic mice by a dipeptidyl peptidase IV inhibitor.

    PubMed

    Tian, Lei; Gao, Jie; Hao, Jianqiang; Zhang, Yu; Yi, Huimin; O'Brien, Timothy D; Sorenson, Robert; Luo, Jian; Guo, Zhiguang

    2010-07-01

    Inhibition of dipeptidyl peptidase IV (DPP-IV) activity by NVP-DPP728, a DPP-IV inhibitor, improves the therapeutic efficacy of glucagon-like peptide-1 (GLP-1). CD26 is a membrane-associated glycoprotein with DPP-IV activity and is expressed on lymphocytes. We investigated the effect of NVP-DPP728 on reversing new-onset diabetes in nonobese diabetic (NOD) mice and modulating the inflammatory response and stimulating beta-cell regeneration. New-onset diabetic NOD mice were treated with NVP-DPP728 for 2, 4, and 6 wk. Blood glucose level was monitored. Regulatory T cells in thymus and secondary lymph nodes, TGF-beta1 and GLP-1 in plasma, and the insulin content in the pancreas were measured. Immunostaining for insulin and bromodeoxyuridine (BrdU) were performed. The correlation of beta-cell replication with inflammation was determined. In NVP-DPP728-treated NOD mice, diabetes could be reversed in 57, 74, and 73% of mice after 2, 4, and 6 wk treatment, respectively. Insulitis was reduced and the percentage of CD4(+)CD25(+)FoxP3(+) regulatory T cells was increased in treated NOD mice with remission. Plasma TGF-beta1 and GLP-1, the insulin content, and both insulin(+) and BrdU(+) beta-cells in pancreas were also significantly increased. No significant correlations were found between numbers of both insulin(+) and BrdU(+) beta-cells in islets and beta-cell area or islets with different insulitis score in NOD mice with remission of diabetes. In conclusion, NVP-DPP728 treatment can reverse new-onset diabetes in NOD mice by reducing insulitis, increasing CD4(+)CD25(+)FoxP3(+) regulatory T cells, and stimulating beta-cell replication. beta-Cell replication is not associated with the degree of inflammation in NVP-DPP728-treated NOD mice.

  20. Dipeptidyl peptidase-4 inhibitor anagliptin ameliorates diabetes in mice with haploinsufficiency of glucokinase on a high-fat diet.

    PubMed

    Nakaya, Keizo; Kubota, Naoto; Takamoto, Iseki; Kubota, Tetsuya; Katsuyama, Hisayuki; Sato, Hiroyuki; Tokuyama, Kumpei; Hashimoto, Shinji; Goto, Moritaka; Jomori, Takahito; Ueki, Kohjiro; Kadowaki, Takashi

    2013-07-01

    Type 2 diabetes is a chronic metabolic disorder characterized by hyperglycemia with insulin resistance and impaired insulin secretion. DPP-4 inhibitors have attracted attention as a new class of anti-diabetic agents for the treatment of type 2 diabetes. We investigated the effects of anagliptin, a highly selective DPP-4 inhibitor, on insulin secretion and insulin resistance in high-fat diet-fed mice with haploinsufficiency of glucokinase (GckKO) as animal models of type 2 diabetes. Wild-type and GckKO mice were administered two doses of anagliptin by dietary admixture (0.05% and 0.3%) for 10weeks. Both doses of anagliptin significantly inhibited the plasma DPP-4 activity and increased the plasma active GLP-1 levels in both the wild-type and GckKO mice to a similar degree. After 10weeks of treatment with 0.3% anagliptin, body weight gain and food intake were significantly suppressed in both wild-type and GckKO mice. In addition, 0.3% anagliptin ameliorated insulin resistance and glucose intolerance in both genotypes of mice. On the other hand, treatment with 0.05% anagliptin was not associated with any significant change of the body weight, food intake or insulin sensitivity in either genotype of mice, but it did improve the glucose tolerance by enhancing insulin secretion and increasing the β-cell mass in both genotypes of mice. High-dose anagliptin treatment improved glucose tolerance by suppression of body weight gain and amelioration of insulin resistance, whereas low-dose anagliptin treatment improved glucose tolerance by enhancing insulin secretion. Copyright © 2013 Elsevier Inc. All rights reserved.

  1. Dipeptidyl peptidase-4 inhibitors and risk of heart failure in type 2 diabetes: systematic review and meta-analysis of randomised and observational studies

    PubMed Central

    Li, Ling; Li, Sheyu; Deng, Ke; Liu, Jiali; Vandvik, Per Olav; Zhao, Pujing; Zhang, Longhao; Shen, Jiantong; Bala, Malgorzata M; Sohani, Zahra N; Wong, Evelyn; Busse, Jason W; Ebrahim, Shanil; Malaga, German; Rios, Lorena P; Wang, Yingqiang; Chen, Qunfei; Guyatt, Gordon H

    2016-01-01

    Objectives To examine the association between dipeptidyl peptidase-4 (DPP-4) inhibitors and the risk of heart failure or hospital admission for heart failure in patients with type 2 diabetes. Design Systematic review and meta-analysis of randomised and observational studies. Data sources Medline, Embase, Cochrane Central Register of Controlled Trials, and ClinicalTrials.gov searched up to 25 June 2015, and communication with experts. Eligibility criteria Randomised controlled trials, non-randomised controlled trials, cohort studies, and case-control studies that compared DPP-4 inhibitors against placebo, lifestyle modification, or active antidiabetic drugs in adults with type 2 diabetes, and explicitly reported the outcome of heart failure or hospital admission for heart failure. Data collection and analysis Teams of paired reviewers independently screened for eligible studies, assessed risk of bias, and extracted data using standardised, pilot tested forms. Data from trials and observational studies were pooled separately; quality of evidence was assessed by the GRADE approach. Results Eligible studies included 43 trials (n=68 775) and 12 observational studies (nine cohort studies, three nested case-control studies; n=1 777 358). Pooling of 38 trials reporting heart failure provided low quality evidence for a possible similar risk of heart failure between DPP-4 inhibitor use versus control (42/15 701 v 33/12 591; odds ratio 0.97 (95% confidence interval 0.61 to 1.56); risk difference 2 fewer (19 fewer to 28 more) events per 1000 patients with type 2 diabetes over five years). The observational studies provided effect estimates generally consistent with trial findings, but with very low quality evidence. Pooling of the five trials reporting admission for heart failure provided moderate quality evidence for an increased risk in patients treated with DPP-4 inhibitors versus control (622/18 554 v 552/18 474; 1.13 (1.00 to 1.26); 8 more (0 more to

  2. Prediction of HIV-1 protease inhibitor resistance using a protein-inhibitor flexible docking approach.

    PubMed

    Jenwitheesuk, Ekachai; Samudrala, Ram

    2005-01-01

    Emergence of drug resistance remains one of the most challenging issues in the treatment of HIV-1 infection. Here we focus on resistance to HIV-1 protease inhibitors (PIs) at a molecular level, which can be analysed genotypically or phenotypically. Genotypic assays are based on the analysis of mutations associated with reduced drug susceptibility, but are problematic because of the numerous mutations and mutational patterns that confer drug resistance. Phenotypic resistance or susceptibility can be experimentally evaluated by measuring the amount of free drug bound to HIV-1 protease molecules, but this procedure is expensive and time-consuming. To overcome these problems, we have developed a docking protocol that takes protein-inhibitor flexibility into account to predict phenotypic drug resistance. For six FDA-approved Pls and a total of 1792 HIV-1 protease sequence mutants, we used a combination of inhibitor flexible docking and molecular dynamics (MD) simulations to calculate protein-inhibitor binding energies. Prediction results were expressed as fold changes of the calculated inhibitory constant (Ki), and the samples predicted to have fold-increase in calculated Ki above the fixed cut-off were defined as drug resistant. Our combined docking and MD protocol achieved accuracies ranging from 72-83% in predicting resistance/susceptibility for five of the six drugs evaluated. Evaluating the method only on samples where our predictions concurred with established knowledge-based methods resulted in increased accuracies of 83-94% for the six drugs. The results suggest that a physics-based approach, which is readily applicable to any novel PI and/or mutant, can be used judiciously with knowledge-based approaches that require experimental training data to devise accurate models of HIV-1 Pl resistance prediction.

  3. HIV Structural Database using Chem BLAST for all classes of AIDS inhibitors

    National Institute of Standards and Technology Data Gateway

    SRD 155 HIV Structural Database using Chem BLAST for all classes of AIDS inhibitors (Web, free access)   The HIV structural database (HIVSDB) is a comprehensive collection of the structures of HIV protease, both of unliganded enzyme and of its inhibitor complexes. It contains abstracts and crystallographic data such as inhibitor and protein coordinates for 248 data sets, of which only 141 are from the Protein Data Bank (PDB).

  4. EASY-HIT: HIV full-replication technology for broad discovery of multiple classes of HIV inhibitors.

    PubMed

    Kremb, Stephan; Helfer, Markus; Heller, Werner; Hoffmann, Dieter; Wolff, Horst; Kleinschmidt, Andrea; Cepok, Sabine; Hemmer, Bernhard; Durner, Jörg; Brack-Werner, Ruth

    2010-12-01

    HIV replication assays are important tools for HIV drug discovery efforts. Here, we present a full HIV replication system (EASY-HIT) for the identification and analysis of HIV inhibitors. This technology is based on adherently growing HIV-susceptible cells, with a stable fluorescent reporter gene activated by HIV Tat and Rev. A fluorescence-based assay was designed that measures HIV infection by two parameters relating to the early and the late phases of HIV replication, respectively. Validation of the assay with a panel of nine reference inhibitors yielded effective inhibitory concentrations consistent with published data and allowed discrimination between inhibitors of early and late phases of HIV replication. Finer resolution of the effects of reference drugs on different steps of HIV replication was achieved in secondary time-of-addition assays. The EASY-HIT assay yielded high Z' scores (>0.9) and signal stabilities, confirming its robustness. Screening of the LOPAC(1280) library identified 10 compounds (0.8%), of which eight were known to inhibit HIV, validating the suitability of this assay for screening applications. Studies evaluating anti-HIV activities of natural products with the EASY-HIT technology led to the identification of three novel inhibitory compounds that apparently act at different steps of HIV-1 replication. Furthermore, we demonstrate successful evaluation of plant extracts for HIV-inhibitory activities, suggesting application of this technology for the surveillance of biological extracts with anti-HIV activities. We conclude that the EASY-HIT technology is a versatile tool for the discovery and characterization of HIV inhibitors.

  5. Dipeptidyl peptidase IV inhibitor sitagliptin reduces local inflammation in adipose tissue and in pancreatic islets of obese mice.

    PubMed

    Dobrian, A D; Ma, Q; Lindsay, J W; Leone, K A; Ma, K; Coben, J; Galkina, E V; Nadler, J L

    2011-02-01

    Adipose tissue inflammation and reduced pancreatic β-cell function are key issues in the development of cardiovascular disease and progressive metabolic dysfunction in type 2 diabetes mellitus. The aim of this study was to determine the effect of the DPP IV inhibitor sitagliptin on adipose tissue and pancreatic islet inflammation in a diet-induced obesity model. C57Bl/6J mice were placed on a high-fat (60% kcal fat) diet for 12 wk, with or without sitagliptin (4 g/kg) as a food admix. Sitagliptin significantly reduced fasting blood glucose by 21% as well as insulin by ∼25%. Sitagliptin treatment reduced body weight without changes in overall body mass index or in the epididymal and retroperitoneal fat mass. However, sitagliptin treatment led to triple the number of small adipocytes despite reducing the number of the very large adipocytes. Sitagliptin significantly reduced inflammation in the adipose tissue and pancreatic islet. Macrophage infiltration in adipose tissue evaluated by immunostaining for Mac2 was reduced by sitagliptin (P < 0.01), as was the percentage of CD11b+/F4/80+ cells in the stromal vascular fraction (P < 0.02). Sitagliptin also reduced adipocyte mRNA expression of inflammatory genes, including IL-6, TNFα, IL-12(p35), and IL-12(p40), 2.5- to fivefold as well as 12-lipoxygenase protein expression. Pancreatic islets were isolated from animals after treatments. Sitagliptin significantly reduced mRNA expression of the following inflammatory cytokines: MCP-1 (3.3-fold), IL-6 (2-fold), IL-12(p40) (2.2-fold), IL-12(p35) (5-fold, P < 0.01), and IP-10 (2-fold). Collectively, the results indicate that sitagliptin has anti-inflammatory effects in adipose tissue and in pancreatic islets that accompany the insulinotropic effect.

  6. Quality measure and weight loss assessment in patients with type 2 diabetes mellitus treated with canagliflozin or dipeptidyl peptidase-4 inhibitors.

    PubMed

    Wysham, Carol H; Lefebvre, Patrick; Pilon, Dominic; Ingham, Mike; Lafeuille, Marie-Hélène; Emond, Bruno; Kamstra, Rhiannon; Chow, Wing; Pfeifer, Michael; Duh, Mei Sheng

    2017-06-08

    Achieving control of glycated hemoglobin (HbA1c), blood pressure (BP), and body weight (BW) remains a challenge for most patients with type 2 diabetes mellitus (T2DM). In clinical trials, canagliflozin (CANA), an inhibitor of sodium-glucose co-transporter 2, has shown significant improvement compared to some dipeptidyl peptidase-4 (DPP-4) inhibitors in the achievement of such quality measures. This study used recent electronic medical records (EMR) data to assess quality measure achievement of HbA1C, BP, and BW loss in patients treated with CANA versus DPP-4 inhibitors. Adult patients with ≥1 T2DM diagnosis and ≥12 months of clinical activity (baseline) before first CANA or DPP-4 prescription (index) were identified in the QuintilesIMS Health Real-World Data EMRs-US database (03/29/2012-10/30/2015). Patients were observed from the index to last encounter. Inverse probability of treatment weighting (IPTW) was used to adjust for observed baseline confounders between groups. Kaplan-Meier (KM) rates and Cox proportional hazard models were used to compare achievement of HbA1c < 7% (among patients <65 years old), HbA1c < 8%, systolic BP < 140 mmHg, diastolic BP < 90 mmHg, and BW loss ≥ 5% among patients not meeting these respective targets at baseline. A total of 10,702 CANA and 17,679 DPP-4 patients were selected. IPTW resulted in balanced baseline demographic, comorbidity, and disease characteristics (CANA: N = 13,793, mean age: 59.0 years; DPP-4: N = 14,588, mean age: 58.9 years). Up until 24 months post-index, CANA patients were more likely to reach an HbA1c < 7% (hazard ratio [HR] = 1.10, P = 0.007, KM rates: 42.8% vs. 40.3%), an HbA1c < 8% (HR = 1.16, P < 0.001, KM rates: 63.7% vs. 60.0%), and a BW loss ≥ 5% (HR = 1.46, P < 0.001, KM rates: 55.2% vs. 46.2%), compared to DPP-4 patients. Up until 12 months post-index, CANA patients were more likely to reach a systolic BP < 140

  7. Albumin-conjugated C34 Peptide HIV-1 Fusion Inhibitor

    PubMed Central

    Stoddart, Cheryl A.; Nault, Geneviève; Galkina, Sofiya A.; Thibaudeau, Karen; Bakis, Peter; Bousquet-Gagnon, Nathalie; Robitaille, Martin; Bellomo, Maryanne; Paradis, Véronique; Liscourt, Patricia; Lobach, Alexandra; Rivard, Marie-Ève; Ptak, Roger G.; Mankowski, Marie K.; Bridon, Dominique; Quraishi, Omar

    2008-01-01

    Entry inhibitors of human immunodeficiency virus, type 1 (HIV-1) have been the focus of much recent research. C34, a potent fusion inhibitor derived from the HR2 region of gp41, was engineered into a 1:1 human serum albumin conjugate through stable covalent attachment of a maleimido-C34 analog onto cysteine 34 of albumin. This bioconjugate, PC-1505, was designed to require less frequent dosing and less peptide than T-20 and was assessed for its antifusogenic activity both in vitro and in vivo in the SCID-hu Thy/Liv mouse model. PC-1505 was essentially equipotent to the original C34 peptide and to T-20 in vitro. In HIV-1-infected SCID-hu Thy/Liv mice, T-20 lost activity with infrequent dosing, whereas the antiviral potency of PC-1505 was sustained, and PC-1505 was active against T-20-resistant (“DIV”) virus with a G36D substitution in gp41. The in vivo results are the direct result of a significantly improved pharmacokinetic profile for the C34 peptide following albumin conjugation. Contrary to previous reports that the gp41 NHR trimer is poorly accessible to C34 fused to protein cargoes of increasing size (Hamburger, A. E., Kim, S., Welch, B. D., and Kay, M. S. (2005) J. Biol. Chem. 280, 12567–12572), these results are the first demonstration of the capacity for a large, endogenous serum protein to gain unobstructed access to the transient gp41 intermediates that exist during the HIV fusion process, and it supports further development of albumin conjugation as a promising approach to inhibit HIV-1 entry. PMID:18809675

  8. Dipeptidyl peptidase-4 inhibitors in type 2 diabetes may reduce the risk of autoimmune diseases: a population-based cohort study

    PubMed Central

    Kim, Seoyoung C.; Schneeweiss, Sebastian; Glynn, Robert J.; Doherty, Michael; Goldfine, Allison B.; Solomon, Daniel H.

    2014-01-01

    Objective Dipeptidyl peptidase-4 (DPP4), also known as CD26, is a transmembrane glycoprotein which has a co-stimulatory function in the immune response. DPP4 inhibitors (DPP4i) are oral glucose-lowering drugs for type 2 diabetes mellitus (T2DM). This study evaluated the risk of incident rheumatoid arthritis (RA) and other autoimmune diseases (AD) such as systemic lupus erythematosus, psoriasis, multiple sclerosis, and inflammatory bowel disease, associated with DPP4i in patients with T2DM. Methods Using U.S. insurance claims data (2005–2012), we conducted a population-based cohort study that included initiators of combination therapy with DPP4i (DPP4i plus metformin) and non-DPP4i (non-DPP4i plus metformin). RA and other AD were identified with ≥2 diagnoses and ≥1 dispensing for AD-specific immunomodulating drugs or steroids. Composite AD includes RA or other AD. Propensity score (PS)-stratified Cox proportional hazards models compared the risk of AD in DPP4i initiators vs. non-DPP4i, controlling for potential confounders. Results After asymmetric trimming on the PS, 73,928 patients with T2DM starting DPP4i combination therapy and 163,062 starting non-DPP4i combination therapy were selected. Risks of incident RA and composite AD were lower in the DPP4i group vs. non-DPP4i with the PS-stratified hazard ratio of 0.66 (95% CI 0.44–0.99) for RA, 0.73 (0.51–1.03) for other AD, and 0.68 (95% CI 0.52–0.89) for composite AD. Conclusions In this large cohort of diabetic patients, those initiating DPP4i combination therapy appear to have a decreased risk of incident AD including RA compared to those initiating non-DPP4i combination therapy. These results may suggest possible pharmacologic pathways for prevention or treatment of AD. PMID:24919467

  9. Convenient cell fusion assay for rapid screening for HIV entry inhibitors

    NASA Astrophysics Data System (ADS)

    Jiang, Shibo; Radigan, Lin; Zhang, Li

    2000-03-01

    Human immunodeficiency viruses (HIV)-induced cell fusion is a critical pathway of HIV spread from infected cells to uninfected cells. A rapid and simple assay was established to measure HIV-induce cell fusion. This study is particularly useful to rapid screen for HIV inhibitors that block HIV cell-to-cell transmission. Present study demonstrated that coculture of HIV-infected cells with uninfected cells at 37 degree(s)C for 2 hours resulted in the highest cell fusion rate. Using this cell fusion assay, we have identified several potent HIV inhibitors targeted to the HIV gp41 core. These antiviral agents can be potentially developed as antiviral drugs for chemotherapy and prophylaxis of HIV infection and AIDS.

  10. Chicoric acid analogues as HIV-1 integrase inhibitors.

    PubMed

    Lin, Z; Neamati, N; Zhao, H; Kiryu, Y; Turpin, J A; Aberham, C; Strebel, K; Kohn, K; Witvrouw, M; Pannecouque, C; Debyser, Z; De Clercq, E; Rice, W G; Pommier, Y; Burke, T R

    1999-04-22

    The present study was undertaken to examine structural features of L-chicoric acid (3) which are important for potency against purified HIV-1 integrase and for reported cytoprotective effects in cell-based systems. Through a progressive series of analogues, it was shown that enantiomeric D-chicoric acid (4) retains inhibitory potency against purified integrase equal to its L-counterpart and further that removal of either one or both carboxylic functionalities results in essentially no loss of inhibitory potency. Additionally, while two caffeoyl moieties are required, attachment of caffeoyl groups to the central linking structure can be achieved via amide or mixed amide/ester linkages. More remarkable is the finding that blockage of the catechol functionality through conversion to tetraacetate esters results in almost no loss of potency, contingent on the presence of at least one carboxyl group on the central linker. Taken as a whole, the work has resulted in the identification of new integrase inhibitors which may be regarded as bis-caffeoyl derivatives of glycidic acid and amino acids such as serine and beta-aminoalanine. The present study also examined the reported ability of chicoric acid to exert cytoprotective effects in HIV-infected cells. It was demonstrated in target and cell-based assays that the chicoric acids do not significantly inhibit other targets associated with HIV-1 replication, including reverse transcription, protease function, NCp7 zinc finger function, or replication of virus from latently infected cells. In CEM cells, for both the parent chicoric acid and selected analogues, antiviral activity was observable under specific assay conditions and with high dependence on the multiplicity of viral infection. However, against HIV-1- and HIV-2-infected MT-4 cells, the chicoric acids and their tetraacetylated esters exhibited antiviral activity (50% effective concentration (EC50) ranging from 1.7 to 20 microM and 50% inhibitory concentration (IC50

  11. Escape from Human Immunodeficiency Virus Type 1 (HIV-1) Entry Inhibitors

    PubMed Central

    De Feo, Christopher J.; Weiss, Carol D.

    2012-01-01

    The human immunodeficiency virus (HIV) enters cells through a series of molecular interactions between the HIV envelope protein and cellular receptors, thus providing many opportunities to block infection. Entry inhibitors are currently being used in the clinic, and many more are under development. Unfortunately, as is the case for other classes of antiretroviral drugs that target later steps in the viral life cycle, HIV can become resistant to entry inhibitors. In contrast to inhibitors that block viral enzymes in intracellular compartments, entry inhibitors interfere with the function of the highly variable envelope glycoprotein as it continuously adapts to changing immune pressure and available target cells in the extracellular environment. Consequently, pathways and mechanisms of resistance for entry inhibitors are varied and often involve mutations across the envelope gene. This review provides a broad overview of entry inhibitor resistance mechanisms that inform our understanding of HIV entry and the design of new inhibitors and vaccines. PMID:23342377

  12. Design and Elaboration of a Tractable Tricyclic Scaffold To Synthesize Druglike Inhibitors of Dipeptidyl Peptidase-4 (DPP-4), Antagonists of the C-C Chemokine Receptor Type 5 (CCR5), and Highly Potent and Selective Phosphoinositol-3 Kinase δ (PI3Kδ) Inhibitors.

    PubMed

    Schwehm, Carolin; Kellam, Barrie; Garces, Aimie E; Hill, Stephen J; Kindon, Nicholas D; Bradshaw, Tracey D; Li, Jin; Macdonald, Simon J F; Rowedder, James E; Stoddart, Leigh A; Stocks, Michael J

    2017-02-23

    A novel molecular scaffold has been synthesized, and its incorporation into new analogues of biologically active molecules across multiple target classes will be discussed. In these studies, we have shown use of the tricyclic scaffold to synthesize potent inhibitors of the serine peptidase DPP-4, antagonists of the CCR5 receptor, and highly potent and selective PI3K δ isoform inhibitors. We also describe the predicted physicochemical properties of the resulting inhibitors and conclude that the tractable molecular scaffold could have potential application in future drug discovery programs.

  13. Antiviral activity of a Rac GEF inhibitor characterized with a sensitive HIV/SIV fusion assay

    SciTech Connect

    Pontow, Suzanne; Harmon, Brooke; Campbell, Nancy; Ratner, Lee

    2007-11-10

    A virus-dependent fusion assay was utilized to examine the activity of a panel of HIV-1, -2, and SIV isolates of distinct coreceptor phenotypes. This assay allowed identification of entry inhibitors, and characterization of an antagonist of a Rac guanine nucleotide exchange factor, as an inhibitor of HIV-mediated fusion.

  14. Discovery of MK-8718, an HIV Protease Inhibitor Containing a Novel Morpholine Aspartate Binding Group.

    PubMed

    Bungard, Christopher J; Williams, Peter D; Ballard, Jeanine E; Bennett, David J; Beaulieu, Christian; Bahnck-Teets, Carolyn; Carroll, Steve S; Chang, Ronald K; Dubost, David C; Fay, John F; Diamond, Tracy L; Greshock, Thomas J; Hao, Li; Holloway, M Katharine; Felock, Peter J; Gesell, Jennifer J; Su, Hua-Poo; Manikowski, Jesse J; McKay, Daniel J; Miller, Mike; Min, Xu; Molinaro, Carmela; Moradei, Oscar M; Nantermet, Philippe G; Nadeau, Christian; Sanchez, Rosa I; Satyanarayana, Tummanapalli; Shipe, William D; Singh, Sanjay K; Truong, Vouy Linh; Vijayasaradhi, Sivalenka; Wiscount, Catherine M; Vacca, Joseph P; Crane, Sheldon N; McCauley, John A

    2016-07-14

    A novel HIV protease inhibitor was designed using a morpholine core as the aspartate binding group. Analysis of the crystal structure of the initial lead bound to HIV protease enabled optimization of enzyme potency and antiviral activity. This afforded a series of potent orally bioavailable inhibitors of which MK-8718 was identified as a compound with a favorable overall profile.

  15. Targeting the AKT pathway: Repositioning HIV protease inhibitors as radiosensitizers.

    PubMed

    Goda, Jayant S; Pachpor, Tejaswini; Basu, Trinanjan; Chopra, Supriya; Gota, Vikram

    2016-02-01

    Cellular resistance in tumour cells to different therapeutic approaches has been a limiting factor in the curative treatment of cancer. Resistance to therapeutic radiation is a common phenomenon which significantly reduces treatment options and impacts survival. One of the mechanisms of acquiring resistance to ionizing radiation is the overexpression or activation of various oncogenes like the EGFR (epidermal growth factor receptor), RAS (rat sarcoma) oncogene or loss of PTEN (phosphatase and tensin homologue) which in turn activates the phosphatidyl inositol 3-kinase/protein kinase B (PI3-K)/AKT pathway responsible for radiation resistance in various tumours. Blocking the pathway enhances the radiation response both in vitro and in vivo. Due to the differential activation of this pathway (constitutively activated in tumour cells and not in the normal host cells), it is an excellent candidate target for molecular targeted therapy to enhance radiation sensitivity. In this regard, HIV protease inhibitors (HPIs) known to interfere with PI3-K/AKT signaling in tumour cells, have been shown to sensitize various tumour cells to radiation both in vitro and in vivo. As a result, HPIs are now being investigated as possible radiosensitizers along with various chemotherapeutic drugs. This review describes the mechanisms by which PI3-K/AKT pathway causes radioresistance and the role of HIV protease inhibitors especially nelfinavir as a potential candidate drug to target the AKT pathway for overcoming radioresistance and its use in various clinical trials for different malignancies.

  16. Targeting the AKT pathway: Repositioning HIV protease inhibitors as radiosensitizers

    PubMed Central

    Goda, Jayant S.; Pachpor, Tejaswini; Basu, Trinanjan; Chopra, Supriya; Gota, Vikram

    2016-01-01

    Cellular resistance in tumour cells to different therapeutic approaches has been a limiting factor in the curative treatment of cancer. Resistance to therapeutic radiation is a common phenomenon which significantly reduces treatment options and impacts survival. One of the mechanisms of acquiring resistance to ionizing radiation is the overexpression or activation of various oncogenes like the EGFR (epidermal growth factor receptor), RAS (rat sarcoma) oncogene or loss of PTEN (phosphatase and tensin homologue) which in turn activates the phosphatidyl inositol 3-kinase/protein kinase B (PI3-K)/AKT pathway responsible for radiation resistance in various tumours. Blocking the pathway enhances the radiation response both in vitro and in vivo. Due to the differential activation of this pathway (constitutively activated in tumour cells and not in the normal host cells), it is an excellent candidate target for molecular targeted therapy to enhance radiation sensitivity. In this regard, HIV protease inhibitors (HPIs) known to interfere with PI3-K/AKT signaling in tumour cells, have been shown to sensitize various tumour cells to radiation both in vitro and in vivo. As a result, HPIs are now being investigated as possible radiosensitizers along with various chemotherapeutic drugs. This review describes the mechanisms by which PI3-K/AKT pathway causes radioresistance and the role of HIV protease inhibitors especially nelfinavir as a potential candidate drug to target the AKT pathway for overcoming radioresistance and its use in various clinical trials for different malignancies. PMID:27121513

  17. Potent D-Peptide Inhibitors of HIV-1 Entry

    SciTech Connect

    Welch,B.; VanDemark, A.; Heroux, A.; Hill, C.; Kay, M.

    2007-01-01

    During HIV-1 entry, the highly conserved gp41 N-trimer pocket region becomes transiently exposed and vulnerable to inhibition. Using mirror-image phage display and structure-assisted design, we have discovered protease-resistant D-amino acid peptides (D-peptides) that bind the N-trimer pocket with high affinity and potently inhibit viral entry. We also report high-resolution crystal structures of two of these D-peptides in complex with a pocket mimic that suggest sources of their high potency. A trimeric version of one of these peptides is the most potent pocket-specific entry inhibitor yet reported by three orders of magnitude (IC50 = 250 pM). These results are the first demonstration that D-peptides can form specific and high-affinity interactions with natural protein targets and strengthen their promise as therapeutic agents. The D-peptides described here address limitations associated with current L-peptide entry inhibitors and are promising leads for the prevention and treatment of HIV/AIDS.

  18. L-chicoric acid, an inhibitor of human immunodeficiency virus type 1 (HIV-1) integrase, improves on the in vitro anti-HIV-1 effect of Zidovudine plus a protease inhibitor (AG1350).

    PubMed

    Robinson, W E

    1998-08-01

    Combinations of anti-human immunodeficiency virus (HIV) drugs, including reverse transcriptase inhibitors and protease inhibitors, have proven immensely potent in the therapy of acquired immune deficiency syndrome (AIDS). To determine whether HIV integrase is a suitable target for combination therapy, the ability of an HIV integrase inhibitor, L-chicoric acid, to work in combination with a protease inhibitor and Zidovudine was tested in vitro. The addition of L-chicoric acid to either Zidovudine or protease inhibitor improved upon the observed anti-HIV activity of either compound alone. When all three drugs were combined, the anti-HIV activity was substantially better than either of the three compounds alone or any combination of two inhibitors. Doses of both Zidovudine and protease inhibitor could be reduced by more than 33% for an equivalent anti-HIV effect if L-chicoric acid was added. The improved anti-HIV activity was observed with a tissue culture adapted strain of HIV (HIV(LAI)) and with limited passage clinical isolates of HIV (HIV(R19) and HIV(R45)). These data demonstrate that a first generation HIV integrase inhibitor, L-chicoric acid, is at least additive in combination with existing multi-drug regimens and suggest that HIV integrase will be an excellent target for combination therapy of HIV infection.

  19. Hypoglycemia hospitalization frequency in patients with type 2 diabetes mellitus: a comparison of dipeptidyl peptidase 4 inhibitors and insulin secretagogues using the French health insurance database.

    PubMed

    Detournay, Bruno; Halimi, Serge; Robert, Julien; Deschaseaux, Céline; Dejager, Sylvie

    2015-01-01

    We aimed to compare the frequency of severe hypoglycemia leading to hospitalization (HH) and emergency visits (EV) for any cause in patients with type 2 diabetes mellitus exposed to dipeptidyl peptidase 4 (DPP4) inhibitors (DPP4-i) versus those exposed to insulin secretagogues (IS; sulfonylureas or glinides). Data were extracted from the EGB (Echantillon Généraliste des Bénéficiaires) database, comprising a representative sample of ~1% of patients registered in the French National Health Insurance System (~600,000 patients). Type 2 diabetes mellitus patients exposed to regimens containing either a DPP4-i (excluding treatment with IS, insulin, or glucagon-like peptide 1 analog) or IS (excluding treatment with insulin and any incretin therapy) between 2009 and 2012 were selected. HH and EV during the exposure periods were identified in both cohorts. A similar analysis was conducted considering vildagliptin alone versus IS. Comparative analyses adjusting for covariates within the model (subjects matched for key characteristics) and using multinomial regression models were performed. Overall, 7,152 patients exposed to any DPP4-i and 1,440 patients exposed to vildagliptin were compared to 10,019 patients exposed to IS. Eight patients (0.11%) from the DPP4-i cohort and none from the vildagliptin cohort (0.0%) were hospitalized for hypoglycemia versus 130 patients (1.30%) from the IS cohort (138 hospitalizations) (P=0.02 and P<0.0001, respectively). Crude rates of HH/1,000 patient-years were 1.4 (95% CI: 0.7; 2.4) in the DPP4-i cohort, 0.0 in the vildagliptin cohort (95% CI: 0.0; 4.0), versus 5.6 (95% CI, 4.7; 6.6) in the IS cohort (P<0.0001). After adjustments, rates per 1,000 patient-years of HH were 1.4 (95% CI: 0.7; 2.4) with DPP4-i versus 7.5 (95% CI: 6.0; 9.2) with IS (P<0.0001), and 0.0 (95% CI: 0.0; 4.0) with vildagliptin versus 13.6 (95% CI: 10.4; 17.5) with IS (P<0.0001). Adjusted EV rates were also significantly lower with all DPP4-i or with vildagliptin

  20. Progress in HIV-1 Integrase Inhibitors: A Review of their Chemical Structure Diversity

    PubMed Central

    Hajimahdi, Zahra; Zarghi, Afshin

    2016-01-01

    HIV-1 integrase (IN) enzyme, one of the three main enzymes of HIV-1, catalyzed the insertion of the viral DNA into the genome of host cells. Because of the lack of its homologue in human cells and its essential role in HIV-1 replication, IN inhibition represents an attractive therapeutic target for HIV-1 treatment. Since identification of IN as a promising therapeutic target, a major progress has been made, which has facilitated and led to the approval of three drugs. This review focused on the structural features of the most important IN inhibitors and categorized them structurally in 10 scaffolds. We also briefly discussed the structural and functional properties of HIV-1 IN and binding modes of IN inhibitors. The SAR analysis of the known IN inhibitors provides some useful clues to the possible future discovery of novel IN inhibitors. PMID:28243261

  1. Antiviral Breadth and Combination Potential of Peptide Triazole HIV-1 Entry Inhibitors

    PubMed Central

    McFadden, Karyn; Fletcher, Patricia; Rossi, Fiorella; Kantharaju; Umashankara, Muddagowda; Pirrone, Vanessa; Rajagopal, Srivats; Gopi, Hosahudya; Krebs, Fred C.; Martin-Garcia, Julio; Shattock, Robin J.

    2012-01-01

    The first stage of human immunodeficiency virus type 1 (HIV-1) infection involves the fusion of viral and host cellular membranes mediated by viral envelope glycoprotein gp120. Inhibitors that specifically target gp120 are gaining increased attention as therapeutics or preventatives to prevent the spread of HIV-1. One promising new group of inhibitors is the peptide triazoles, which bind to gp120 and simultaneously block its interaction with both CD4 and the coreceptor. In this study, we assessed the most potent peptide triazole, HNG-156, for inhibitory breadth, cytotoxicity, and efficacy, both alone and in combination with other antiviral compounds, against HIV-1. HNG-156 inhibited a panel of 16 subtype B and C isolates of HIV-1 in a single-round infection assay. Inhibition of cell infection by replication-competent clinical isolates of HIV-1 was also observed with HNG-156. We found that HNG-156 had a greater than predicted effect when combined with several other entry inhibitors or the reverse transcriptase inhibitor tenofovir. Overall, we find that HNG-156 is noncytotoxic, has a broad inhibition profile, and provides a positive combination with several inhibitors of the HIV-1 life cycle. These results support the pursuit of efficacy and toxicity analyses in more advanced cell and animal models to develop peptide triazole family inhibitors of HIV-1 into antagonists of HIV-1 infection. PMID:22083481

  2. 3-Hydroxypyrimidine-2,4-diones as an Inhibitor Scaffold of HIV Integrase

    PubMed Central

    Tang, Jing; Maddali, Kasthuraiah; Sham, Yuk Y.; Vince, Robert; Pommier, Yves; Wang, Zhengqiang

    2011-01-01

    Integrase (IN) represents a clinically validated target for the development of antivirals against human immunodeficiency virus (HIV). Inhibitors with a novel structure core are essential for combating resistance associated with known IN inhibitors (INIs). We have previously disclosed a novel dual inhibitor scaffold of HIV IN and reverse transcriptase (RT). Here we report the complete structure-activity relationship (SAR), molecular modeling and resistance profile of this inhibitor type on IN inhibition. These studies support an antiviral mechanism of dual inhibition against both IN and RT and validate 3-hydroxypyrimidine-2,4-diones as an IN inhibitor scaffold. PMID:21381765

  3. Approaches for identification of HIV-1 entry inhibitors targeting gp41 pocket.

    PubMed

    Yu, Fei; Lu, Lu; Du, Lanying; Zhu, Xiaojie; Debnath, Asim K; Jiang, Shibo

    2013-01-11

    The hydrophobic pocket in the HIV-1 gp41 N-terminal heptad repeat (NHR) domain plays an important role in viral fusion and entry into the host cell, and serves as an attractive target for development of HIV-1 fusion/entry inhibitors. The peptide anti-HIV drug targeting gp41 NHR, T-20 (generic name: enfuvirtide; brand name: Fuzeon), was approved by the U.S. FDA in 2003 as the first HIV fusion/entry inhibitor for treatment of HIV/AIDS patients who fail to respond to the current antiretroviral drugs. However, because T20 lacks the pocket-binding domain (PBD), it exhibits low anti-HIV-1 activity and short half-life. Therefore, several next-generation HIV fusion inhibitory peptides with PBD have been developed. They possess longer half-life and more potent antiviral activity against a broad spectrum of HIV-1 strains, including the T-20-resistant variants. Nonetheless, the clinical application of these peptides is still limited by the lack of oral availability and the high cost of production. Thus, development of small molecule compounds targeting the gp41 pocket with oral availability has been promoted. This review describes the main approaches for identification of HIV fusion/entry inhibitors targeting the gp41 pocket and summarizes the latest progress in developing these inhibitors as a new class of anti-HIV drugs.

  4. A novel enzyme-linked immunosorbent assay for screening HIV-1 fusion inhibitors targeting HIV-1 Gp41 core structure.

    PubMed

    Pang, Wei; Wang, Rui-Rui; Gao, Yue-Dong; Yang, Liu-Meng; Sun, Yi; Huang, Jing-Fei; Tien, Po; Zheng, Yong-Tang

    2011-02-01

    The gp41 subunit of the human immunodeficiency virus type 1 (HIV-1) envelope glycoprotein mediates the fusion of viral and host cell membranes. As the HIV-1 enters the host cells, the 2 helical regions, HR1 and HR2, in the ectodomain of gp41 can form a 6-helix bundle, which brings the viral and target cell membranes to close proximity and serves as an attractive target for developing HIV-1 fusion inhibitors. Now, there are several cell- and molecule-based assays to identify potential HIV-1 fusion inhibitors targeting gp41. However, these assays cannot be used universally because they are time-consuming, inconvenient, and expensive. In the present study, the authors expressed and purified GST-HR121 and C43-30a proteins that were derived from the HIV-1 gp41 ectodomain region. GST-HR121 has a function similar to the HR1 peptide of gp41, whereas C43-30a is an HR2-derived peptide that added 50 amino acid residues (aa) in the N-terminal of C43. Further research found they could interact with each other, and a potential HIV-1 fusion inhibitor could inhibit this interaction. On the basis of this fact, a novel, rapid, and economic enzyme-linked immunosorbent assay was established, which can be developed for high-throughput screening of HIV-1 fusion inhibitors.

  5. HIV/HCV-coinfection: which role can new antiretrovirals such as integrase inhibitors play?

    PubMed Central

    2009-01-01

    End-stage liver disease has become one of the most frequent causes of death in HIV/HCV-coinfected patients. The role of new antiretrovirals in the progression of liver fibrosis has yet to be defined. However with significant toxicities and drug-to-drug interactions of nucleoside reverse transcriptase inhibitors in combination with ribavirin, with drug to drug interaction of HIV protease inhibitors with HCV protease inhibitors and calcineurin-inhibitors, new antiretrovirals lacking these interactions represent attractive alternatives in the setting of anti-HCV therapy or post liver transplantation. In the following review we want to focus on the new class of HIV integrase inhibitors and discuss present data with regard to special issues of HIV and HCV co-infection. PMID:19959415

  6. Crystal structures of HIV-1 nonnucleoside reverse transcriptase inhibitors: N-benzyl-4-methyl-benzimidazoles

    NASA Astrophysics Data System (ADS)

    Ziółkowska, Natasza E.; Michejda, Christopher J.; Bujacz, Grzegorz D.

    2009-07-01

    HIV-1 nonnucleoside reverse transcriptase inhibitors are potentially specific and effective drugs in AIDS therapy. The presence of two aromatic systems with an angled orientation in the molecule of the inhibitor is crucial for interactions with HIV-1 RT. The inhibitor drives like a wedge into the cluster of aromatic residues of RT HIV-1 and restrains the enzyme in a conformation that blocks the chemical step of nucleotide incorporation. Structural studies provide useful information for designing new, more active inhibitors. The crystal structures of four NNRTIs are presented here. The investigated compounds are derivatives of N-benzyl-4-methyl-benzimidazole with various aliphatic and aromatic substituents at carbon 2 positions and a 2,6-dihalogeno-substituted N-benzyl moiety. Structural data reported here show that the conformation of the investigated compounds is relatively rigid. Such feature is important for the nonnucleoside inhibitor binding to HIV-1 reverse transcriptase.

  7. Synthesis, anti-HIV activity, and metabolic stability of new alkenyldiarylmethane HIV-1 non-nucleoside reverse transcriptase inhibitors.

    PubMed

    Deng, Bo-Liang; Hartman, Tracy L; Buckheit, Robert W; Pannecouque, Christophe; De Clercq, Erik; Fanwick, Phillip E; Cushman, Mark

    2005-09-22

    Non-nucleoside inhibitors of HIV-1 reverse transcriptase (NNRTIs) are part of the combination therapy currently used to treat HIV infection. Based on analogy with known HIV-1 NNRT inhibitors, 18 novel alkenyldiarylmethanes (ADAMs) containing 5-chloro-2-methoxyphenyl, 3-cyanophenyl, or 3-fluoro-5-trifluoromethylphenyl groups were synthesized and evaluated as HIV inhibitors. Their stabilities in rat plasma have also been investigated. Although introducing 5-chloro-2-methoxyphenyl or 3-fluoro-5-trifluoromethylphenyl groups into alkenyldiarylmethanes does not maintain the antiviral potency, the structural modification of alkenyldiarylmethanes with a 3-cyanophenyl substituent can be made without a large decrease in activity. The oxazolidinonyl group was introduced into the alkenyldiarylmethane framework and found to confer enhanced metabolic stability in rat plasma.

  8. Design of HIV Protease Inhibitors Targeting Protein Backbone: An Effective Strategy for Combating Drug Resistance

    SciTech Connect

    Ghosh, Arun K.; Chapsal, Bruno D.; Weber, Irene T.; Mitsuya, Hiroaki

    2008-06-03

    The discovery of human immunodeficiency virus (HIV) protease inhibitors (PIs) and their utilization in highly active antiretroviral therapy (HAART) have been a major turning point in the management of HIV/acquired immune-deficiency syndrome (AIDS). However, despite the successes in disease management and the decrease of HIV/AIDS-related mortality, several drawbacks continue to hamper first-generation protease inhibitor therapies. The rapid emergence of drug resistance has become the most urgent concern because it renders current treatments ineffective and therefore compels the scientific community to continue efforts in the design of inhibitors that can efficiently combat drug resistance.

  9. Insights into the activity of maturation inhibitor PF-46396 on HIV-1 clade C

    PubMed Central

    Ghimire, Dibya; Timilsina, Uddhav; Srivastava, Tryambak Pratap; Gaur, Ritu

    2017-01-01

    HIV maturation inhibitors are an emerging class of anti-retroviral compounds that inhibit the viral protease-mediated cleavage of the Gag, CA-SP1 (capsid-spacer peptide 1) peptide to mature CA. The first-in-class maturation inhibitor bevirimat (BVM) displayed potent activity against HIV-1 clade B but was ineffective against other HIV-1 clades including clade C. Another pyridone-based maturation inhibitor, PF-46396 displayed potent activity against HIV-1 clade B. In this study, we aimed at determining the activity of PF-46396 against HIV-1 clade C. We employed various biochemical and virological assays to demonstrate that PF-46396 is effective against HIV-1 clade C. We observed a dose dependent accumulation of CA-SP1 intermediate in presence of the compound. We carried out mutagenesis in the CA- SP1 region of HIV-1 clade C Gag and observed that the mutations conferred resistance against the compound. Many mutations inhibited Gag processing thereby reducing virus release in the absence of the compound. However, presence of PF-46396 rescued these defects and enhanced virus release, replication capacity and infectivity of HIV-1 clade C. These results put together identify PF-46396 as a broadly active maturation inhibitor against HIV-1 clade B and C and help in rational designing of novel analogs with reduced toxicity and increased efficacy for its potential use in clinics. PMID:28252110

  10. Biocatalytic ammonolysis of (5S)-4,5-dihydro-1H-pyrrole-1,5-dicarboxylic acid, 1-(1,1-dimethylethyl)-5-ethyl ester: preparation of an intermediate to the dipeptidyl peptidase IV inhibitor Saxagliptin.

    PubMed

    Gill, Iqbal; Patel, Ramesh

    2006-02-01

    An efficient biocatalytic method has been developed for the conversion of (5S)-4,5-dihydro-1H-pyrrole-1,5-dicarboxylic acid, 1-(1,1-dimethylethyl)-5-ethyl ester (1) into the corresponding amide (5S)-5-aminocarbonyl-4,5-dihydro-1H-pyrrole-1-carboxylic acid, 1-(1,1-dimethylethyl)ester (2), which is a critical intermediate in the synthesis of the dipeptidyl peptidase IV (DPP4) inhibitor Saxagliptin (3). Candida antartica lipase B mediates ammonolysis of the ester with ammonium carbamate as ammonia donor to yield up to 71% of the amide. The inclusion of Ascarite and calcium chloride as adsorbents for carbon dioxide and ethanol byproducts, respectively, increases the yield to 98%, thereby offering an efficient and practical alternative to chemical routes which yield 57-64%.

  11. Impact of Stereochemistry on Ligand Binding: X-ray Crystallographic Analysis of an Epoxide-Based HIV Protease Inhibitor.

    PubMed

    Benedetti, Fabio; Berti, Federico; Campaner, Pietro; Fanfoni, Lidia; Demitri, Nicola; Olajuyigbe, Folasade M; De March, Matteo; Geremia, Silvano

    2014-09-11

    A new pseudopeptide epoxide inhibitor, designed for irreversible binding to HIV protease (HIV-PR), has been synthesized and characterized in solution and in the solid state. However, the crystal structure of the complex obtained by inhibitor-enzyme cocrystallization revealed that a minor isomer, with inverted configuration of the epoxide carbons, has been selected by HIV-PR during crystallization. The structural characterization of the well-ordered pseudopeptide, inserted in the catalytic channel with its epoxide group intact, provides deeper insights into inhibitor binding and HIV-PR stereoselectivity, which aids development of future epoxide-based HIV inhibitors.

  12. Novel indole-3-sulfonamides as potent HIV non-nucleoside reverse transcriptase inhibitors (NNRTIs)

    SciTech Connect

    Zhao, Zhijian; Wolkenberg, Scott E.; Lu, Meiqing; Munshi, Vandna; Moyer, Gregory; Feng, Meizhen; Carella, Anthony V.; Ecto, Linda T.; Gabryelski, Lori J.; Lai, Ming-Tain; Prasad, Sridar G.; Yan, Youwei; McGaughey, Georgia B.; Miller, Michael D.; Lindsley, Craig W.; Hartman, George D.; Vacca, Joseph P.; Williams, Theresa M.

    2008-09-29

    This Letter describes the design, synthesis, and biological evaluation of novel 3-indole sulfonamides as potent non-nucleoside reverse transcriptase inhibitors (NNRTIs) with balanced profiles against common HIV RT mutants K103N and Y181C.

  13. Design of dimerization inhibitors of HIV-1 aspartic proteinase: A computer-based combinatorial approach

    NASA Astrophysics Data System (ADS)

    Caflisch, Amedeo; Schramm, Hans J.; Karplus, Martin

    2000-02-01

    Inhibition of dimerization to the active form of the HIV-1 aspartic proteinase (HIV-1 PR) may be a way to decrease the probability of escape mutations for this viral protein. The Multiple Copy Simultaneous Search (MCSS) methodology was used to generate functionality maps for the dimerization interface of HIV-1 PR. The positions of the MCSS minima of 19 organic fragments, once postprocessed to take into account solvation effects, are in good agreement with experimental data on peptides that bind to the interface. The MCSS minima combined with an approach for computational combinatorial ligand design yielded a set of modified HIV-1 PR C-terminal peptides that are similar to known nanomolar inhibitors of HIV-1 PR dimerization. A number of N-substituted 2,5-diketopiperazines are predicted to be potential dimerization inhibitors of HIV-1 PR.

  14. Structural Evidence for Effectiveness of Darunavir and Two Related Antiviral Inhibitors against HIV-2 Protease

    SciTech Connect

    Kovalevsky, Andrey Y.; Louis, John M.; Aniana, Annie; Ghosh, Arun K.; Weber, Irene T.

    2008-12-08

    No drug has been targeted specifically for HIV-2 (human immunodeficiency virus type 2) infection despite its increasing prevalence worldwide. The antiviral HIV-1 (human immunodeficiency virus type 1) protease (PR) inhibitor darunavir and the chemically related GRL98065 and GRL06579A were designed with the same chemical scaffold and different substituents at P2 and P2' to optimize polar interactions for HIV-1 PR (PR1). These inhibitors are also effective antiviral agents for HIV-2-infected cells. Therefore, crystal structures of HIV-2 PR (PR2) complexes with the three inhibitors have been solved at 1.2-{angstrom} resolution to analyze the molecular basis for their antiviral potency. Unusually, the crystals were grown in imidazole and zinc acetate buffer, which formed interactions with the PR2 and the inhibitors. Overall, the structures were very similar to the corresponding inhibitor complexes of PR1 with an RMSD of 1.1 {angstrom} on main-chain atoms. Most hydrogen-bond and weaker C-H...O interactions with inhibitors were conserved in the PR2 and PR1 complexes, except for small changes in interactions with water or disordered side chains. Small differences were observed in the hydrophobic contacts for the darunavir complexes, in agreement with relative inhibition of the two PRs. These near-atomic-resolution crystal structures verify the inhibitor potency for PR1 and PR2 and will provide the basis for the development of antiviral inhibitors targeting PR2.

  15. Critical differences in HIV-1 and HIV-2 protease specificity for clinical inhibitors

    SciTech Connect

    Tie, Yunfeng; Wang, Yuan-Fang; Boross, Peter I.; Chiu, Ting-Yi; Ghosh, Arun K.; Tozser, Jozsef; Louis, John M.; Harrison, Robert W.; Weber, Irene T.

    2012-03-15

    Clinical inhibitor amprenavir (APV) is less effective on HIV-2 protease (PR{sub 2}) than on HIV-1 protease (PR{sub 1}). We solved the crystal structure of PR{sub 2} with APV at 1.5 {angstrom} resolution to identify structural changes associated with the lowered inhibition. Furthermore, we analyzed the PR{sub 1} mutant (PR{sub 1M}) with substitutions V32I, I47V, and V82I that mimic the inhibitor binding site of PR{sub 2}. PR{sub 1M} more closely resembled PR{sub 2} than PR{sub 1} in catalytic efficiency on four substrate peptides and inhibition by APV, whereas few differences were seen for two other substrates and inhibition by saquinavir (SQV) and darunavir (DRV). High resolution crystal structures of PR{sub 1M} with APV, DRV, and SQV were compared with available PR{sub 1} and PR{sub 2} complexes. Val/Ile32 and Ile/Val47 showed compensating interactions with SQV in PR{sub 1M} and PR{sub 1}, however, Ile82 interacted with a second SQV bound in an extension of the active site cavity of PR{sub 1M}. Residues 32 and 82 maintained similar interactions with DRV and APV in all the enzymes, whereas Val47 and Ile47 had opposing effects in the two subunits. Significantly diminished interactions were seen for the aniline of APV bound in PR{sub 1M} and PR{sub 2} relative to the strong hydrogen bonds observed in PR{sub 1}, consistent with 15- and 19-fold weaker inhibition, respectively. Overall, PR{sub 1M} partially replicates the specificity of PR{sub 2} and gives insight into drug resistant mutations at residues 32, 47, and 82. Moreover, this analysis provides a structural explanation for the weaker antiviral effects of APV on HIV-2.

  16. Critical differences in HIV-1 and HIV-2 protease specificity for clinical inhibitors.

    PubMed

    Tie, Yunfeng; Wang, Yuan-Fang; Boross, Peter I; Chiu, Ting-Yi; Ghosh, Arun K; Tozser, Jozsef; Louis, John M; Harrison, Robert W; Weber, Irene T

    2012-03-01

    Clinical inhibitor amprenavir (APV) is less effective on HIV-2 protease (PR₂) than on HIV-1 protease (PR₁). We solved the crystal structure of PR₂ with APV at 1.5 Å resolution to identify structural changes associated with the lowered inhibition. Furthermore, we analyzed the PR₁ mutant (PR(1M) ) with substitutions V32I, I47V, and V82I that mimic the inhibitor binding site of PR₂. PR(1M) more closely resembled PR₂ than PR₁ in catalytic efficiency on four substrate peptides and inhibition by APV, whereas few differences were seen for two other substrates and inhibition by saquinavir (SQV) and darunavir (DRV). High resolution crystal structures of PR(1M) with APV, DRV, and SQV were compared with available PR₁ and PR₂ complexes. Val/Ile32 and Ile/Val47 showed compensating interactions with SQV in PR(1M) and PR₁, however, Ile82 interacted with a second SQV bound in an extension of the active site cavity of PR(1M). Residues 32 and 82 maintained similar interactions with DRV and APV in all the enzymes, whereas Val47 and Ile47 had opposing effects in the two subunits. Significantly diminished interactions were seen for the aniline of APV bound in PR₁ (M) and PR₂ relative to the strong hydrogen bonds observed in PR₁, consistent with 15- and 19-fold weaker inhibition, respectively. Overall, PR(1M) partially replicates the specificity of PR₂ and gives insight into drug resistant mutations at residues 32, 47, and 82. Moreover, this analysis provides a structural explanation for the weaker antiviral effects of APV on HIV-2. Copyright © 2012 The Protein Society.

  17. Integrase Inhibitor Prodrugs: Approaches to Enhancing the Anti-HIV Activity of β-Diketo Acids.

    PubMed

    Nair, Vasu; Okello, Maurice

    2015-07-13

    HIV integrase, encoded at the 3'-end of the HIV pol gene, is essential for HIV replication. This enzyme catalyzes the incorporation of HIV DNA into human DNA, which represents the point of "no-return" in HIV infection. Integrase is a significant target in anti-HIV drug discovery. This review article focuses largely on the design of integrase inhibitors that are β-diketo acids constructed on pyridinone scaffolds. Methodologies for synthesis of these compounds are discussed. Integrase inhibition data for the strand transfer (ST) step are compared with in vitro anti-HIV data. The review also examines the issue of the lack of correlation between the ST enzymology data and anti-HIV assay results. Because this disconnect appeared to be a problem associated with permeability, prodrugs of these inhibitors were designed and synthesized. Prodrugs dramatically improved the anti-HIV activity data. For example, for compound, 96, the anti-HIV activity (EC50) improved from 500 nM for this diketo acid to 9 nM for its prodrug 116. In addition, there was excellent correlation between the IC50 and IC90 ST enzymology data for 96 (6 nM and 97 nM, respectively) and the EC50 and EC90 anti-HIV data for its prodrug 116 (9 nM and 94 nM, respectively). Finally, it was confirmed that the prodrug 116 was rapidly hydrolyzed in cells to the active compound 96.

  18. Structure-Activity Relationships of Synthetic Coumarins as HIV-1 Inhibitors

    PubMed Central

    Kostova, I.; Raleva, S.; Genova, P.; Argirova, R.

    2006-01-01

    HIV/AIDS pandemics is a serious threat to health and development of mankind, and searching for effective anti-HIV agents remains actual. Considerable progress has been made in recent years in the field of drug development against HIV. A lot of structurally different coumarins were found to display potent anti-HIV activity. The current review demonstrates the variety of synthetic coumarins having unique mechanism of action referring to the different stages of HIV replication. Recent studies based on the account of various synthetic coumarins seem to indicate that some of them serve as potent non-nucleoside RT-inhibitors, another as inhibitors of HIV-integrase or HIV-protease. The merits of selecting potential anti-HIV agents to be used in rational combination drugs design and structure-activity relationships are discussed.The scientific community is looking actively for new drugs and combinations for treatment of HIV infection effective for first-line treatment, as well as against resistant mutants. The investigation on chemical anti-HIV agents gives hope and optimism about it. This review article describes recent progress in the discovery, structure modification, and structure-activity relationship studies of potent anti-HIV coumarin derivatives. PMID:17497014

  19. Serious infection from Staphylococcus aureus in 2 HIV-infected patients receiving fusion inhibitor therapy.

    PubMed

    Gaughan, Elizabeth M; Ritter, Michelle L; Kumar, Princy N; Timpone, Joseph G

    2008-05-01

    Fusion inhibitors are novel antiretroviral agents, administered as subcutaneous injections, approved for use in treatment-experienced HIV-infected patients. HIV-infected patients are at increased risk for Staphylococcus aureus colonization, specifically with methicillin-resistant S aureus (MRSA), and subsequent systemic infection. We present the cases of 2 patients without a history of MRSA infection in whom a series of severe S aureus infections developed after fusion inhibitor therapy.

  20. Sulfated polysaccharides (chondroitin sulfate and carrageenan) plus glucosamine sulfate are potent inhibitors of HIV.

    PubMed

    Konlee, M

    1998-01-01

    Chondroitin sulfate, a fusion inhibitor found in human milk, appears to work by blocking the ability of a virus, such as HIV, to infect a cell. There are questions about whether cow or goat milk can offer the same fusion-inhibiting benefits. One sulfated monosaccharide, glucosamine 6-sulfate, appears to have significant anti-HIV activity. Carrageenan, a seaweed derivative, shows promise as a vaginal microbicide, and should be tested further to determine its effectiveness against HIV transmission.

  1. Metabolic Disorders in HIV-Infected Adolescents Receiving Protease Inhibitors

    PubMed Central

    Santiprabhob, Jeerunda; Tanchaweng, Surapong; Maturapat, Sirinoot; Lermankul, Watcharee; Sricharoenchai, Sirintip; Wittawatmongkol, Orasri; Lapphra, Keswadee; Phongsamart, Wanatpreeya

    2017-01-01

    Protease inhibitor (PI) may cause abnormal glucose metabolism, abnormal lipid metabolism, and metabolic syndrome in HIV-infected adults but less well studied in Asian adolescents. This cross-sectional study evaluated anthropometric factors, oral glucose tolerance test, and lipid profiles of perinatally HIV-infected Thai adolescents who had received PI-based antiretroviral therapy for at least 6 months. Eighty adolescents were enrolled [median (IQR) age 16.7 (14.6–18.0) years, 42 males]. Metabolic syndrome, prediabetes, and type 2 diabetes mellitus (T2DM) were found in 8 (10%), 17 (22.1%), and 3 (3.8%) adolescents, respectively. Dyslipidemia was found in 56 (70%) adolescents, with hypertriglyceridemia being the most common type. In multivariate analysis, presence of lipohypertrophy (OR: 25.7, 95% CI: 3.2–202.8; p = 0.002) and longer duration of PI use (OR: 1.04, 95% CI: 1.00–1.08; p = 0.023) were associated with metabolic syndrome. Obesity (OR: 7.71, 95% CI: 1.36–43.7; p = 0.021), presence of lipohypertrophy (OR: 62.9, 95% CI: 4.97–795.6; p = 0.001), and exposure to stavudine for ≥6 months (OR: 8.18, 95% CI: 1.37–48.7; p = 0.021) were associated with prediabetes/T2DM, while exposure to tenofovir for ≥6 months reduced the risk (OR: 0.17, 95% CI: 0.04–0.78; p = 0.022). Metabolic disorders were commonly found in adolescents receiving PI. Careful monitoring and early intervention to modify cardiovascular risk should be systematically implemented in this population particularly those with exposure to stavudine. PMID:28293638

  2. Changes in levels of the tripeptide Tyr-Gly-Gly as an index of enkephalin release in the spinal cord: effects of noxious stimuli and parenterally-active peptidase inhibitors.

    PubMed

    Llorens-Cortes, C; Gros, C; Schwartz, J C; Clot, A M; Le Bars, D

    1989-01-01

    The tripeptide Tyr-Gly-Gly (YGG), representing the product of enkephalin hydrolysis by enkephalinase (EC 3.4.24.11), was characterized and its levels measured in spinal cord perfusates of halothane-anaesthetized rats. During noxious pinching of the muzzle, which is known to trigger enkephalin release, YGG levels were enhanced more markedly and for longer than were those of [Met5]enkephalin (YGGFM), in the same samples. By contrast, neither YGG nor YGGFM levels were affected by pinching the tail. Treatment with carbaphethiol, a parenterally-active aminopeptidase inhibitor, markedly increased YGG levels and lengthened the duration of the increase produced by pinching the muzzle. Treatment with acetorphan, a parenterally-active enkephalinase inhibitor, given alone or in combination with carbaphethiol, completely prevented the rise in YGG triggered by noxious stimulation. By contrast, [Met5]enkephalin levels in the perfusates were increased by the combined administration of the two peptidase inhibitors but these levels were not further enhanced by noxious stimulation. Thus, spinal cord YGG appears to be formed under the influence of enkephalinase and to constitute a sensitive index of enkephalin release.

  3. From nonpeptide toward noncarbon protease inhibitors: Metallacarboranes as specific and potent inhibitors of HIV protease

    PubMed Central

    Cígler, Petr; Kožíšek, Milan; Řezáčová, Pavlína; Brynda, Jíří; Otwinowski, Zbyszek; Pokorná, Jana; Plešek, Jaromír; Grüner, Bohumír; Dolečková-Marešová, Lucie; Máša, Martin; Sedláček, Juraj; Bodem, Jochen; Kräusslich, Hans-Georg; Král, Vladimír; Konvalinka, Jan

    2005-01-01

    HIV protease (PR) represents a prime target for rational drug design, and protease inhibitors (PI) are powerful antiviral drugs. Most of the current PIs are pseudopeptide compounds with limited bioavailability and stability, and their use is compromised by high costs, side effects, and development of resistant strains. In our search for novel PI structures, we have identified a group of inorganic compounds, icosahedral metallacarboranes, as candidates for a novel class of nonpeptidic PIs. Here, we report the potent, specific, and selective competitive inhibition of HIV PR by substituted metallacarboranes. The most active compound, sodium hydrogen butylimino bis-8,8-[5-(3-oxa-pentoxy)-3-cobalt bis(1,2-dicarbollide)]di-ate, exhibited a Ki value of 2.2 nM and a submicromolar EC50 in antiviral tests, showed no toxicity in tissue culture, weakly inhibited human cathepsin D and pepsin, and was inactive against trypsin, papain, and amylase. The structure of the parent cobalt bis(1,2-dicarbollide) in complex with HIV PR was determined at 2.15 Å resolution by protein crystallography and represents the first carborane-protein complex structure determined. It shows the following mode of PR inhibition: two molecules of the parent compound bind to the hydrophobic pockets in the flap-proximal region of the S3 and S3′ subsites of PR. We suggest, therefore, that these compounds block flap closure in addition to filling the corresponding binding pockets as conventional PIs. This type of binding and inhibition, chemical and biological stability, low toxicity, and the possibility to introduce various modifications make boron clusters attractive pharmacophores for potent and specific enzyme inhibition. PMID:16227435

  4. Identification of mechanistically distinct inhibitors of HIV-1 reverse transcriptase through fragment screening

    PubMed Central

    La, Jennifer; Latham, Catherine F.; Tinetti, Ricky N.; Johnson, Adam; Tyssen, David; Huber, Kelly D.; Sluis-Cremer, Nicolas; Simpson, Jamie S.; Headey, Stephen J.; Chalmers, David K.; Tachedjian, Gilda

    2015-01-01

    Fragment-based screening methods can be used to discover novel active site or allosteric inhibitors for therapeutic intervention. Using saturation transfer difference (STD) NMR and in vitro activity assays, we have identified fragment-sized inhibitors of HIV-1 reverse transcriptase (RT) with distinct chemical scaffolds and mechanisms compared to nonnucleoside RT inhibitors (NNRTIs) and nucleoside/nucleotide RT inhibitors (NRTIs). Three compounds were found to inhibit RNA- and DNA-dependent DNA polymerase activity of HIV-1 RT in the micromolar range while retaining potency against RT variants carrying one of three major NNRTI resistance mutations: K103N, Y181C, or G190A. These compounds also inhibit Moloney murine leukemia virus RT but not the Klenow fragment of Escherichia coli DNA polymerase I. Steady-state kinetic analyses demonstrate that one of these fragments is a competitive inhibitor of HIV-1 RT with respect to deoxyribonucleoside triphosphate (dNTP) substrate, whereas a second compound is a competitive inhibitor of RT polymerase activity with respect to the DNA template/primer (T/P), and consequently also inhibits RNase H activity. The dNTP competing RT inhibitor retains activity against the NRTI-resistant mutants K65R and M184V, demonstrating a drug resistance profile distinct from the nucleotide competing RT inhibitors indolopyridone-1 (INDOPY-1) and 4-dimethylamino-6-vinylpyrimidine-1 (DAVP-1). In antiviral assays, the T/P competing compound inhibits HIV-1 replication at a step consistent with an RT inhibitor. Screening of additional structurally related compounds to the three fragments led to the discovery of molecules with improved potency against HIV-1 RT. These fragment inhibitors represent previously unidentified scaffolds for development of novel drugs for HIV-1 prevention or treatment. PMID:26038551

  5. Discovery of a Potent HIV Integrase Inhibitor That Leads to a Prodrug with Significant anti-HIV Activity

    PubMed Central

    2011-01-01

    Worldwide research efforts in drug discovery involving HIV integrase have produced only one compound, raltegravir, that has been approved for clinical use in HIV/AIDS. As resistance, toxicity, and drug–drug interactions are recurring issues with all classes of anti-HIV drugs, the discovery of novel integrase inhibitors remains a significant scientific challenge. We have designed a lead HIV-1 strand transfer (ST) inhibitor (IC50 70 nM), strategically assembled on a pyridinone scaffold. A focused structure–activity investigation of this parent compound led to a significantly more potent ST inhibitor, 2 (IC50 6 ± 3 nM). Compound 2 exhibits good stability in pooled human liver microsomes. It also displays a notably favorable profile with respect to key human cytochrome P450 (CYP) isozymes and human UDP glucuronosyl transferases (UGTs). The prodrug of inhibitor 2, i.e., compound 10, was found to possess remarkable anti-HIV-1 activity in cell culture (EC50 9 ± 4 nM, CC50 135 ± 7 μM, therapeutic index = 15 000). PMID:22328963

  6. Novel theoretically designed HIV-1 non-nucleoside reverse transcriptase inhibitors derived from nevirapine.

    PubMed

    Liu, Jinfeng; He, Xiao; Zhang, John Z H

    2014-10-01

    A common problem with non-nucleoside reverse transcriptase inhibitors (NNRTIs) of HIV-1 is the emergence of mutations in the HIV-1 RT, in particular Lys103 → Asn (K103N) and Tyr181 → Cys (Y181C), which lead to resistance to this entire class of inhibitors. In this study, we theoretically designed two new non-nucleoside HIV-1 RT inhibitors, Mnev-1 and Mnev-2, derived from nevirapine, in order to reduce the resistance caused by those HIV-1 RT mutations. The binding modes of Mnev-1 and Mnev-2 with the wild-type HIV-1 RT and its mutants (K103N and Y181C) were suggested by molecular docking followed by 20-ns molecular dynamics (MD) simulations in explicit water of those binding complexes (HIV-1 RTs with the new inhibitors). A molecular mechanics/generalized Born surface area (MM/GBSA) calculation was carried out for multiple snapshots extracted from the MD trajectory to estimate the binding free energy. The results of the calculations show that each of the new inhibitors forms a stable hydrogen bond with His235 during the MD simulations, leading to tighter binding of the new inhibitors with their targets. In addition, the repulsive interaction with Cys181 in the Y181C-nevirapine complex is not present in the novel inhibitors. The binding affinities predicted using the MM/GBSA calculations indicate that the new inhibitors could be effective at bypassing the drug resistance of these HIV-1 RT mutants.

  7. Hybrid Ty1/HIV-1 elements used to detect inhibitors and monitor the activity of HIV-1 reverse transcriptase

    PubMed Central

    Nissley, Dwight V.; Boyer, Paul L.; Garfinkel, David J.; Hughes, Stephen H.; Strathern, Jeffrey N.

    1998-01-01

    We previously demonstrated that hybrid retrotransposons composed of the yeast Ty1 element and the reverse transcriptase (RT) of HIV-1 are active in the yeast Saccharomyces cerevisiae. The RT activity of these hybrid Ty1/HIV-1 (his3AI/AIDS RT; HART) elements can be monitored by using a simple genetic assay. HART element reverse transcription depends on both the polymerase and RNase H domains of HIV-1 RT. Here we demonstrate that the HART assay is sensitive to inhibitors of HIV-1 RT. (−)-(S)-8-Chloro-4,5,6,7-tetrahydro-5-methyl-6-(3-methyl-2-butenyl)imidazo[4,5,1-jk][1,4]-benzodiazepin-2(1H)-thione monohydrochloride (8 Cl-TIBO), a well characterized non-nucleoside RT inhibitor (NNRTI) of HIV-1 RT, blocks propagation of HART elements. HART elements that express NNRTI-resistant RT variants of HIV-1 are insensitive to 8 Cl-TIBO, demonstrating the specificity of inhibition in this assay. HART elements carrying NNRTI-resistant variants of HIV-1 RT can be used to identify compounds that are active against drug-resistant viruses. PMID:9811899

  8. Combinations of reverse transcriptase, protease, and integrase inhibitors can be synergistic in vitro against drug-sensitive and RT inhibitor-resistant molecular clones of HIV-1.

    PubMed

    Beale, K K; Robinson, W E

    2000-06-01

    Combinations of anti-HIV agents including one or two reverse transcriptase inhibitors with a protease inhibitor are potent and effective. However, toxicities, costs and the emergence of drug-resistant organisms have compromised their long-term efficacy in people. A next, likely, target for anti-HIV therapy is HIV-1 integrase. Viral integration, catalyzed by integrase, is absolutely required for HIV replication. L-chicoric acid is a potent and selective inhibitor of HIV-1 integrase that also inhibits HIV-1 replication in cell culture. As a first step in understanding the potential role for integrase inhibitors in clinical medicine, the activities of L-chicoric acid alone and in combination with 2', 3'-dideoxycytidine, zidovudine, and a protease inhibitor, nelfinavir, were tested in vitro against molecular clones of HIV-1 resistant to reverse transcriptase inhibitors. L-chicoric acid was equally effective against a wild-type clone of HIV-1, HIV(NL4-3), or against HIV-1 resistant to either zidovudine or dideoxycytidine. L-chicoric acid was largely synergistic with zidovudine and synergistic with both dideoxycytidine and nelfinavir.

  9. Structural investigation of HIV-1 nonnucleoside reverse transcriptase inhibitors: 2-Aryl-substituted benzimidazoles

    NASA Astrophysics Data System (ADS)

    Ziółkowska, Natasza E.; Michejda, Christopher J.; Bujacz, Grzegorz D.

    2009-11-01

    Acquired immunodeficiency syndrome (AIDS) caused by the human immunodeficiency virus (HIV) is one of the most destructive epidemics in history. Inhibitors of HIV enzymes are the main targets to develop drugs against that disease. Nonnucleoside reverse transcriptase inhibitors of HIV-1 (NNRTIs) are potentially effective and nontoxic. Structural studies provide information necessary to design more active compounds. The crystal structures of four NNRTI derivatives of 2-aryl-substituted N-benzyl-benzimidazole are presented here. Analysis of the geometrical parameters shows that the structures of the investigated inhibitors are rigid. The important geometrical parameter is the dihedral angle between the planes of the π-electron systems of the benzymidazole and benzyl moieties. The values of these dihedral angles are in a narrow range for all investigated inhibitors. There is no significant difference between the structure of the free inhibitor and the inhibitor in the complex with RT HIV-1. X-ray structures of the investigated inhibitors are a good basis for modeling enzyme-inhibitor interactions in rational drug design.

  10. Catechol-substituted L-chicoric acid analogues as HIV integrase inhibitors.

    PubMed

    Lee, Jae Yeol; Yoon, Kwon Joong; Lee, Yong Sup

    2003-12-15

    HIV integrase catalyzes the integration of HIV DNA copy into the host cell DNA, which is essential for the production of progeny viruses. L-Chicoric acid and dicaffeoylquinic acids, isolated from plants, are well known potent inhibitors of HIV integrase. The common structural features of these inhibitors are caffeic acid derivatives connected to tartaric acid or quinic acid through ester bonds. In the present study, we have synthesized and tested the inhibitory activities of a new type of HIV IN inhibitors, which has catechol groups in place of caffeoyl groups in the structure of L-chicoric acid. Upon substitution of catechol groups at succinic acid, pyrrole-dicarboxylic acid, maleimide or maleic anhydride, the inhibitory activities (IC(50)=3.8-23.6 microM) were retained or remarkably increased when compared to parent compound L-chicoric acid (IC(50)=13.7 microM).

  11. Safety and effectiveness of dipeptidyl peptidase-4 inhibitors versus intermediate-acting insulin or placebo for patients with type 2 diabetes failing two oral antihyperglycaemic agents: a systematic review and network meta-analysis

    PubMed Central

    Tricco, Andrea C; Antony, Jesmin; Khan, Paul A; Ghassemi, Marco; Hamid, Jemila S; Ashoor, Huda; Blondal, Erik; Soobiah, Charlene; Yu, Catherine H; Hutton, Brian; Hemmelgarn, Brenda R; Moher, David; Majumdar, Sumit R; Straus, Sharon E

    2014-01-01

    Objective To evaluate the effectiveness and safety of dipeptidyl peptidase-4 (DPP-4) inhibitors versus intermediate-acting insulin for adults with type 2 diabetes mellitus (T2DM) and poor glycaemic control despite treatment with two oral agents. Setting Studies were multicentre and multinational. Participants Ten studies including 2967 patients with T2DM. Interventions Studies that examined DPP-4 inhibitors compared with each other, intermediate-acting insulin, no treatment or placebo in patients with T2DM. Primary and secondary outcome measures Primary outcome was glycosylated haemoglobin (HbA1c). Secondary outcomes were healthcare utilisation, body weight, fractures, quality of life, microvascular complications, macrovascular complications, all-cause mortality, harms, cost and cost-effectiveness. Results 10 randomised clinical trials with 2967 patients were included after screening 5831 titles and abstracts, and 180 full-text articles. DPP-4 inhibitors significantly reduced HbA1c versus placebo in network meta-analysis (NMA; mean difference (MD) −0.62%, 95% CI −0.93% to −0.33%) and meta-analysis (MD −0.61%, 95% CI −0.81% to −0.41%), respectively. Significant differences in HbA1c were not observed for neutral protamine Hagedorn (NPH) insulin versus placebo and DPP-4 inhibitors versus NPH insulin in NMA. In meta-analysis, no significant differences were observed between DPP-4 inhibitors and placebo for severe hypoglycaemia, weight gain, cardiovascular disease, overall harms, treatment-related harms and mortality, although patients receiving DPP-4 inhibitors experienced less infections (relative risk 0.72, 95% CI 0.57 to 0.91). Conclusions DPP-4 inhibitors were superior to placebo in reducing HbA1c levels in adults with T2DM taking at least two oral agents. Compared with placebo, no safety signals were detected with DPP-4 inhibitors and there was a reduced risk of infection. There was no significant difference in HbA1c observed between NPH and placebo or

  12. HIV-1 evolution under pressure of protease inhibitors: climbing the stairs of viral fitness.

    PubMed

    Berkhout, B

    1999-01-01

    The human immunodeficiency virus (HIV-1) has evolved into a viral quasispecies with a high replication capacity or fitness. Antiretroviral drugs potently inhibit replication of the wild-type virus, but HIV-1 responds by selection of drug-resistant variants. Here we review, in brief, the evolution of resistance to protease inhibitors that is characterized by severe fitness losses and an abundance of subsequent repair strategies. The possibility to restrict HIV-1 fitness is discussed in relation to the control of HIV-1 pathogenesis.

  13. Basic quinolinonyl diketo acid derivatives as inhibitors of HIV integrase and their activity against RNase H function of reverse transcriptase.

    PubMed

    Costi, Roberta; Métifiot, Mathieu; Chung, Suhman; Cuzzucoli Crucitti, Giuliana; Maddali, Kasthuraiah; Pescatori, Luca; Messore, Antonella; Madia, Valentina Noemi; Pupo, Giovanni; Scipione, Luigi; Tortorella, Silvano; Di Leva, Francesco Saverio; Cosconati, Sandro; Marinelli, Luciana; Novellino, Ettore; Le Grice, Stuart F J; Corona, Angela; Pommier, Yves; Marchand, Christophe; Di Santo, Roberto

    2014-04-24

    A series of antiviral basic quinolinonyl diketo acid derivatives were developed as inhibitors of HIV-1 IN. Compounds 12d,f,i inhibited HIV-1 IN with IC50 values below 100 nM for strand transfer and showed a 2 order of magnitude selectivity over 3'-processing. These strand transfer selective inhibitors also inhibited HIV-1 RNase H with low micromolar potencies. Molecular modeling studies based on both the HIV-1 IN and RNase H catalytic core domains provided new structural insights for the future development of these compounds as dual HIV-1 IN and RNase H inhibitors.

  14. Soybean-derived Bowman-Birk Inhibitor (BBI) Inhibits HIV Replication in Macrophages

    PubMed Central

    Ma, Tong-Cui; Zhou, Run-Hong; Wang, Xu; Li, Jie-Liang; Sang, Ming; Zhou, Li; Zhuang, Ke; Hou, Wei; Guo, De-Yin; Ho, Wen-Zhe

    2016-01-01

    The Bowman-Birk inhibitor (BBI), a soybean-derived protease inhibitor, is known to have anti-inflammatory effect in both in vitro and in vivo systems. Macrophages play a key role in inflammation and immune activation, which is implicated in HIV disease progression. Here, we investigated the effect of BBI on HIV infection of peripheral blood monocyte-derived macrophages. We demonstrated that BBI could potently inhibit HIV replication in macrophages without cytotoxicity. Investigation of the mechanism(s) of BBI action on HIV showed that BBI induced the expression of IFN-β and multiple IFN stimulated genes (ISGs), including Myxovirus resistance protein 2 (Mx2), 2′,5′-oligoadenylate synthetase (OAS-1), Virus inhibitory protein (viperin), ISG15 and ISG56. BBI treatment of macrophages also increased the expression of several known HIV restriction factors, including APOBEC3F, APOBEC3G and tetherin. Furthermore, BBI enhanced the phosphorylation of IRF3, a key regulator of IFN-β. The inhibition of IFN-β pathway by the neutralization antibody to type I IFN receptor (Anti-IFNAR) abolished BBI-mediated induction of the anti-HIV factors and inhibition of HIV in macrophages. These findings that BBI could activate IFN-β-mediated signaling pathway, initialize the intracellular innate immunity in macrophages and potently inhibit HIV at multiple steps of viral replication cycle indicate the necessity to further investigate BBI as an alternative and cost-effective anti-HIV natural product. PMID:27734899

  15. Pyrroloaryls and pyrroloheteroaryls: Inhibitors of the HIV fusion/attachment, reverse transcriptase and integrase.

    PubMed

    Patel, Rahul V; Park, Se Won

    2015-09-01

    Heterocyclic compounds execute a very important role in drug design and discovery. This article provides the basic milestones of the research for pyrroloaryl and pyrroloheteroaryl based components targeting HIV viral replication cycle. Anti-HIV activity is elaborated for several classes of pyrrolo-compounds as pyrrolopyridines, pyrrolopyrimidines, pyrrolopyridazines, pyrrolobenzodiazepinones, pyrrolobenzothiazepines, pyrrolobenzoxazepinones, pyrrolophenanthridines, pyrroloquinoxalines, pyrrolotriazines, pyrroloquinolines, pyrrolopyrazinones, pyrrolothiatriazines, arylthiopyrroles and pyrrolopyrazolones targeting two essential HIV enzymes, reverse transcriptase and integrase as well as attachment/fusion of HIV virons to the host CD-4 cell. Such attempts were resulted in a discovery of highly potent anti-HIV agents suitable for clinical trials, for example, BMS-378806, BMS-585248, BMS-626529, BMS-663068, BMS-488043 and BMS-663749, etc. as anti-HIV attachment agents, triciribine, QX432, BI-1 and BI-2 as HIV RT inhibitors which are in preclinical or clinical development. Mechanism of action of compounds presented in this article towards the suppression of HIV attachment/fusion as well as against the activities of HIV enzymes reverse transcriptase and integrase has been discussed. Relationships of new compounds' molecular framework and HIV viral target has been overviewed in order to facilitate further construction of promising anti-HIV agents in future drug discovery process.

  16. Sargassum fusiforme fraction is a potent and specific inhibitor of HIV-1 fusion and reverse transcriptase.

    PubMed

    Paskaleva, Elena E; Lin, Xudong; Duus, Karen; McSharry, James J; Veille, Jean-Claude L; Thornber, Carol; Liu, Yanze; Lee, David Yu-Wei; Canki, Mario

    2008-01-15

    Sargassum fusiforme (Harvey) Setchell has been shown to be a highly effective inhibitor of HIV-1 infection. To identify its mechanism of action, we performed bioactivity-guided fractionation on Sargassum fusiforme mixture. Here, we report isolation of a bioactive fraction SP4-2 (S. fusiforme), which at 8 mug/ml inhibited HIV-1 infection by 86.9%, with IC50 value of 3.7 mug. That represents 230-fold enhancement of antiretroviral potency as compared to the whole extract. Inhibition was mediated against both CXCR4 (X4) and CCR5 (R5) tropic HIV-1. Specifically, 10 mug/ml SP4-2 blocked HIV-1 fusion and entry by 53%. This effect was reversed by interaction of SP4-2 with sCD4, suggesting that S. fusiforme inhibits HIV-1 infection by blocking CD4 receptor, which also explained observed inhibition of both X4 and R5-tropic HIV-1. SP4-2 also inhibited HIV-1 replication after virus entry, by directly inhibiting HIV-1 reverse transcriptase (RT) in a dose dependent manner by up to 79%. We conclude that the SP4-2 fraction contains at least two distinct and biologically active molecules, one that inhibits HIV-1 fusion by interacting with CD4 receptor, and another that directly inhibits HIV-1 RT. We propose that S. fusiforme is a lead candidate for anti-HIV-1 drug development.

  17. Sargassum fusiforme fraction is a potent and specific inhibitor of HIV-1 fusion and reverse transcriptase

    PubMed Central

    Paskaleva, Elena E; Lin, Xudong; Duus, Karen; McSharry, James J; Veille, Jean-Claude L; Thornber, Carol; Liu, Yanze; Lee, David Yu-Wei; Canki, Mario

    2008-01-01

    Sargassum fusiforme (Harvey) Setchell has been shown to be a highly effective inhibitor of HIV-1 infection. To identify its mechanism of action, we performed bioactivity-guided fractionation on Sargassum fusiforme mixture. Here, we report isolation of a bioactive fraction SP4-2 (S. fusiforme), which at 8 μg/ml inhibited HIV-1 infection by 86.9%, with IC50 value of 3.7 μg. That represents 230-fold enhancement of antiretroviral potency as compared to the whole extract. Inhibition was mediated against both CXCR4 (X4) and CCR5 (R5) tropic HIV-1. Specifically, 10 μg/ml SP4-2 blocked HIV-1 fusion and entry by 53%. This effect was reversed by interaction of SP4-2 with sCD4, suggesting that S. fusiforme inhibits HIV-1 infection by blocking CD4 receptor, which also explained observed inhibition of both X4 and R5-tropic HIV-1. SP4-2 also inhibited HIV-1 replication after virus entry, by directly inhibiting HIV-1 reverse transcriptase (RT) in a dose dependent manner by up to 79%. We conclude that the SP4-2 fraction contains at least two distinct and biologically active molecules, one that inhibits HIV-1 fusion by interacting with CD4 receptor, and another that directly inhibits HIV-1 RT. We propose that S. fusiforme is a lead candidate for anti-HIV-1 drug development. PMID:18197976

  18. Bryostatin-1 synergizes with histone deacetylase inhibitors to reactivate HIV-1 from latency.

    PubMed

    Pérez, Moisés; de Vinuesa, Amaya García; Sanchez-Duffhues, Gonzalo; Marquez, Nieves; Bellido, M Luz; Muñoz-Fernandez, M Angeles; Moreno, Santiago; Castor, Trevor P; Calzado, Marco A; Muñoz, Eduardo

    2010-09-01

    The persistence of latent HIV-infected cellular reservoirs represents the major hurdle to virus eradication on patients treated with HAART. It has been suggested that successful depletion of such latent reservoirs will require a combination of therapeutic agents that can specifically and efficiently act on cells harboring latent HIV-1 provirus. Using Jurkat-LAT-GFP cells, a tractable model of HIV-1 latency, we have found that bryostatin -1 reactivates HIV-1 through a classical PKC-dependent pathway. Bryostatin-1 also activates MAPKs and NF-κB pathways and synergizes with HDAC inhibitors to reactivate HIV-1 from latency. Bryostatin-1 downregulates the expression of the HIV-1 co-receptors CD4 and CXCR4 and prevented de novo HIV-1 infection in susceptible cells. We applied proteomic methods to investigate major changes in protein expression in Jurkat-LAT-GFP under latency and reactivation conditions. We identified up-regulation of proteins that may be involved in the innate anti-HIV-1 response (NKEF-A and MHD2) and in different cell functions (i.e. cofilin-1 and transgelin-2) of the host cells. PKC agonists may represent a valuable pharmacological approach to purge latent HIV from cellular reservoirs and at the moment, the only clinically available PKC agonist is bryostatin-1. This drug has been tested in numerous clinical trials and its pharmacokinetics and toxicity in humans is well known. Moreover, bryostatin-1 potently synergizes with other HDAC inhibitors commonly used in the medical practice such as valproic acid. Therefore, bryostatin-1, alone or in combination with HDAC inhibitors, could be used in HAART treated patients to validate the hypothesis that reactivating HIV-1 from latency could purge HIV-1 reservoirs.

  19. Efficacy and safety of once-weekly oral trelagliptin switched from once-daily dipeptidyl peptidase-4 inhibitor in patients with type 2 diabetes mellitus: an open-label, phase 3 exploratory study.

    PubMed

    Inagaki, Nobuya; Sano, Hiroki; Seki, Yoshifumi; Kuroda, Shingo; Kaku, Kohei

    2017-08-24

    Trelagliptin, a novel once-weekly oral dipeptidyl peptidase-4 (DPP-4) inhibitor, has shown favorable efficacy and safety in type 2 diabetes mellitus (T2DM) patients. Trelagliptin was launched in Japan and is expected to be initially used for switchover from a daily DPP-4 inhibitor in the clinical setting. Thus, this study was planned to explore the efficacy and safety of trelagliptin after a daily DPP-4 inhibitor was switched to it. This was an open-label phase 3 exploratory study to evaluate the efficacy and safety of trelagliptin in Japanese T2DM patients who had stable glycemic control on once-daily sitagliptin therapy. Eligible patients received trelagliptin 100 mg orally before breakfast once a week for 12 weeks. The primary endpoint was blood glucose by the meal tolerance test, and additional endpoints were glycemic control (efficacy) and safety. Altogether 14 patients received the study drug. The blood glucose did not markedly change from baseline at major assessment points in the meal tolerance test, and a decrease in blood glucose was observed at several other assessment points. Adverse events (AEs) were reported in 42.9% (6/14) of patients, but all AEs were mild or moderate in severity and most were not related to the study drug. No cases of death, serious AEs, or hypoglycemia were reported. It is considered possible to switch a once-daily DPP-4 inhibitor to trelagliptin in T2DM patients with stable glycemic control in combination with diet and exercise therapy without any major influences on glycemic control or safety. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.

  20. Dipeptidyl peptidase 4 - An important digestive peptidase in Tenebrio molitor larvae.

    PubMed

    Tereshchenkova, Valeriia F; Goptar, Irina A; Kulemzina, Irina A; Zhuzhikov, Dmitry P; Serebryakova, Marina V; Belozersky, Mikhail A; Dunaevsky, Yakov E; Oppert, Brenda; Filippova, Irina Yu; Elpidina, Elena N

    2016-09-01

    Dipeptidyl peptidase 4 (DPP 4) is a proline specific serine peptidase that plays an important role in different regulatory processes in mammals. In this report, we isolated and characterized a unique secreted digestive DPP 4 from the anterior midgut of a stored product pest, Tenebrio molitor larvae (TmDPP 4), with a biological function different than that of the well-studied mammalian DPP 4. The sequence of the purified enzyme was confirmed by mass-spectrometry, and was identical to the translated RNA sequence found in a gut EST database. The purified peptidase was characterized according to its localization in the midgut, and substrate specificity and inhibitor sensitivity were compared with those of human recombinant DPP 4 (rhDPP 4). The T. molitor enzyme was localized mainly in the anterior midgut of the larvae, and 81% of the activity was found in the fraction of soluble gut contents, while human DPP 4 is a membrane enzyme. TmDPP 4 was stable in the pH range 5.0-9.0, with an optimum activity at pH 7.9, similar to human DPP 4. Only specific inhibitors of serine peptidases, diisopropyl fluorophosphate and phenylmethylsulfonyl fluoride, suppressed TmDPP 4 activity, and the specific dipeptidyl peptidase inhibitor vildagliptin was most potent. The highest rate of TmDPP 4 hydrolysis was found for the synthetic substrate Arg-Pro-pNA, while Ala-Pro-pNA was a better substrate for rhDPP 4. Related to its function in the insect midgut, TmDPP 4 efficiently hydrolyzed the wheat storage proteins gliadins, which are major dietary proteins of T. molitor. Published by Elsevier Ltd.

  1. In vitro anti-human immunodeficiency virus (HIV) activities of transition state mimetic HIV protease inhibitors containing allophenylnorstatine.

    PubMed Central

    Kageyama, S; Mimoto, T; Murakawa, Y; Nomizu, M; Ford, H; Shirasaka, T; Gulnik, S; Erickson, J; Takada, K; Hayashi, H

    1993-01-01

    Transition state mimetic tripeptide human immunodeficiency virus (HIV) protease inhibitors containing allophenylnorstatine [(2S,3S)-3-amino-2-hydroxy-4-phenylbutyric acid] were synthesized and tested for activity against HIV in vitro. Two compounds, KNI-227 and KNI-272, which were highly potent against HIV protease with little inhibition of other aspartic proteases, showed the most potent activity against the infectivity and cytopathic effect of a wide spectrum of HIV strains. As tested in target CD4+ ATH8 cells, the 50% inhibitory concentrations of KNI-227 against HIV type 1 LAI (HIV-1LAI), HIV-1RF, HIV-1MN, and HIV-2ROD were 0.1, 0.02, 0.03, and 0.1 microM, respectively, while those of KNI-272 were 0.1, 0.02, 0.04, and 0.1 microM, respectively. Both agents completely blocked the replication of 3'-azido-2',3'-dideoxythymidine-sensitive and -insensitive clinical HIV-1 isolates at 0.08 microM as tested in target phytohemagglutinin-activated peripheral blood mononuclear cells. The ratios of 50% cytotoxic concentrations to 50% inhibitory concentrations for KNI-227 and KNI-272 were approximately 2,500 and > 4,000, respectively, as assessed in peripheral blood mononuclear cells. Both compounds blocked the posttranslational cleavage of the p55 precursor protein to generate the mature p24 Gag protein in stably HIV-1-infected cells. The n-octanol-water partition coefficients of KNI-227 and KNI-272 were high, with log Po/w values of 3.79 and 3.56, respectively. Degradation of KNI-227 and KNI-272 in the presence of pepsin (1 mg/ml, pH 2.2) at 37 degrees C for 24 h was negligible. Current data warrant further careful investigations toward possible clinical application of these two novel compounds. Images PMID:8494379

  2. Topical application of entry inhibitors as "virustats" to prevent sexual transmission of HIV infection

    PubMed Central

    Lederman, Michael M; Jump, Robin; Pilch-Cooper, Heather A; Root, Michael; Sieg, Scott F

    2008-01-01

    With the continuing march of the AIDS epidemic and little hope for an effective vaccine in the near future, work to develop a topical strategy to prevent HIV infection is increasingly important. This stated, the track record of large scale "microbicide" trials has been disappointing with nonspecific inhibitors either failing to protect women from infection or even increasing HIV acquisition. Newer strategies that target directly the elements needed for viral entry into cells have shown promise in non-human primate models of HIV transmission and as these agents have not yet been broadly introduced in regions of highest HIV prevalence, they are particularly attractive for prophylaxis. We review here the agents that can block HIV cellular entry and that show promise as topical strategies or "virustats" to prevent mucosal transmission of HIV infection PMID:19094217

  3. HIV-protease inhibitors for the treatment of cancer: Repositioning HIV protease inhibitors while developing more potent NO-hybridized derivatives?

    PubMed

    Maksimovic-Ivanic, Danijela; Fagone, Paolo; McCubrey, James; Bendtzen, Klaus; Mijatovic, Sanja; Nicoletti, Ferdinando

    2017-04-15

    The possible use of HIV protease inhibitors (HIV-PI) as new therapeutic option for the treatment of cancer primarily originated from their success in treating HIV-related Kaposi's sarcoma (KS). While these findings were initially attributed to immune reconstitution and better control of oncogenic viral infections, the number of reports on solid tumors, KS, lymphoma, fibrosarcoma, multiple myeloma and prostate cancer suggest other mechanisms for the anti-neoplastic activity of PIs. However, a major drawback for the possible adoption of HIV-PIs in the therapy of cancer relies on their relatively weak anticancer potency and important side effects. This has propelled several groups to generate derivatives of HIV-PIs for anticancer use, through modifications such as attachment of different moieties, ligands and transporters, including saquinavir-loaded folic acid conjugated nanoparticles and nitric oxide (NO) derivatives of HIV-PIs. In this article, we discuss the current preclinical and clinical evidences for the potential use of HIV-PIs, and of novel derivatives, such as saquinavir-NO in the treatment of cancer. © 2016 UICC.

  4. Inhibition Profiling of Retroviral Protease Inhibitors Using an HIV-2 Modular System

    PubMed Central

    Mahdi, Mohamed; Szojka, Zsófia; Mótyán, János András; Tőzsér, József

    2015-01-01

    Retroviral protease inhibitors (PIs) are fundamental pillars in the treatment of HIV infection and acquired immunodeficiency syndrome (AIDS). Currently used PIs are designed against HIV-1, and their effect on HIV-2 is understudied. Using a modular HIV-2 protease cassette system, inhibition profiling assays were carried out for protease inhibitors both in enzymatic and cell culture assays. Moreover, the treatment-associated resistance mutations (I54M, L90M) were introduced into the modular system, and comparative inhibition assays were performed to determine their effect on the susceptibility of the protease. Our results indicate that darunavir, saquinavir, indinavir and lopinavir were very effective HIV-2 protease inhibitors, while tipranavir, nelfinavir and amprenavir showed a decreased efficacy. I54M, L90M double mutation resulted in a significant reduction in the susceptibility to most of the inhibitors with the exception of tipranavir. To our knowledge, this modular system constitutes a novel approach in the field of HIV-2 protease characterization and susceptibility testing. PMID:26633459

  5. [Integrase inhibitors - new challenges for the treatment of HIV-1 infections].

    PubMed

    Stock, Ingo

    2013-12-01

    Integrase inhibitors are a promising new group of antiretroviral drugs that suppress the integrase yielded by human immunodeficiency viruses (HIV) via inhibiting the ,,integration" of the viral deoxyribonucleic acid (DNA) into the hosts' DNA genome. In 2007, raltegravir was the first integrase inhibitor that has been approved for the treatment of HIV-1 infections in antiretroviral-pretreated (-experienced) and antiretroviral-naive patients. Recently, elvitegravir, as a fixed coformulation with cobicistat, tenofovir und emtricitabine, has been approved for the treatment of HIV-1-infected antiretroviral-naive patients. InAugust of 2013, dolutegravir, a third integrase inhibitor, has been approved by the US Food and Drug Adiministation (FDA) for the treatment of HIV-1 infections in adults and children aged 12 years and older. Raltegravir has to be applied twice daily without a boosting agent. Elvitegravir and dolutegravir are applied once daily in the presence of a booster (elvitegravir) or unboosted (dolutegravir). In contrast to raltegravir and elvitegravir, dolutegravir shows a high genetic barrier to resistance, and is also applicable for the treatment of several HIV-1 infections with raltegravir and elvitegravir-resistant HIV variants. During the last years, raltegravir, elvitegravir and dolutegravir have been proven and established in the antiretroviral treatment of HIV-1 infections as effective, safe and well-tolerated agents. However, reliable statement forecasts of long-term toxicity of these substances can not yet be made.

  6. Examining structural analogs of elvitegravir as potential inhibitors of HIV-1 integrase.

    PubMed

    Shah, Kavita; Gupta, Saumya; Mishra, Hirdyesh; Sharma, Prashant K; Jayaswal, Amit

    2014-08-01

    Acquired immunodeficiency syndrome (AIDS) is a major health problem in many parts of the world. The human immunodeficiency virus-1 integrase (HIV-1 IN) enzyme has been targeted in HIV patients for therapy. Several integrase inhibitors have been reported, but only elvitegravir (EVG), a new-generation drug, is clinically approved for HIV treatment. In the present work, we investigated two structural analogs of EVG as potential inhibitors of the target molecule, HIV-1 IN. The ligand binding site on HIV-1 IN was identified using Q-SiteFinder, and the HIV-1 IN protein was docked with ligand (EVG and/or analogs) using AutoDock 4. The results suggest that Lys173, Thr125, and His171 are involved in enzyme-substrate binding through hydrogen bonds. Single mutations carried out at Lys173, viz. Lys173Leu (polar > nonpolar) and Lys173Gln (polar > polar), in chain B using PyMOL showed the mutants to have lower binding energy when docked with analog 2, suggesting it to be more stable than analog 1. In conclusion, the mutant HIV-1 IN can bind EVG and its analogs. The physicochemical and pharmacokinetic parameters also show analog 2 to be a promising molecule that can be developed as an alternative to EVG to help overcome the problem of drug resistance by HIV to this inhibitor. Analog 2 may be used as an HIV-1 IN inhibitor with similar potential to that of EVG. Further validation through wet-lab studies, however, is required for future applications.

  7. MX2 is an interferon-induced inhibitor of HIV-1 infection.

    PubMed

    Kane, Melissa; Yadav, Shalini S; Bitzegeio, Julia; Kutluay, Sebla B; Zang, Trinity; Wilson, Sam J; Schoggins, John W; Rice, Charles M; Yamashita, Masahiro; Hatziioannou, Theodora; Bieniasz, Paul D

    2013-10-24

    HIV-1 replication can be inhibited by type I interferon (IFN), and the expression of a number of gene products with anti-HIV-1 activity is induced by type I IFN. However, none of the known antiretroviral proteins can account for the ability of type I IFN to inhibit early, preintegration phases of the HIV-1 replication cycle in human cells. Here, by comparing gene expression profiles in cell lines that differ in their ability to support the inhibitory action of IFN-α at early steps of the HIV-1 replication cycle, we identify myxovirus resistance 2 (MX2) as an interferon-induced inhibitor of HIV-1 infection. Expression of MX2 reduces permissiveness to a variety of lentiviruses, whereas depletion of MX2 using RNA interference reduces the anti-HIV-1 potency of IFN-α. HIV-1 reverse transcription proceeds normally in MX2-expressing cells, but 2-long terminal repeat circular forms of HIV-1 DNA are less abundant, suggesting that MX2 inhibits HIV-1 nuclear import, or destabilizes nuclear HIV-1 DNA. Consistent with this notion, mutations in the HIV-1 capsid protein that are known, or suspected, to alter the nuclear import pathways used by HIV-1 confer resistance to MX2, whereas preventing cell division increases MX2 potency. Overall, these findings indicate that MX2 is an effector of the anti-HIV-1 activity of type-I IFN, and suggest that MX2 inhibits HIV-1 infection by inhibiting capsid-dependent nuclear import of subviral complexes.

  8. (2R)-4-Oxo-4[3-(Trifluoromethyl)-5,6-diihydro:1,2,4}triazolo[4,3-a}pyrazin-7(8H)-y1]-1-(2,4,5-trifluorophenyl)butan-2-amine: A Potent, Orally Active Dipeptidyl Peptidase IV Inhibitor for the Treatment of Type 2 Diabetes

    SciTech Connect

    Kim, D.; Wang, L.; Beconi, M.; Eiermann, G.; Fisher, M.; He, H.; Hickey, G.; Kowalchick, Jennifer; Leiting, Barbara; Lyons, K.; Marsilio, F.; McCann, F.; Patel, R.; Petrov, A.; Scapin, G.; Patel, S.; Roy, R.; Wu, J.; Wyvratt, M.; Zhang, B.; Zhu, L.; Thornberry, N.; Weber, A.

    2010-11-10

    A novel series of {beta}-amino amides incorporating fused heterocycles, i.e., triazolopiperazines, were synthesized and evaluated as inhibitors of dipeptidyl peptidase IV (DPP-IV) for the treatment of type 2 diabetes. (2R)-4-Oxo-4-[3-(trifluoromethyl)-5,6-dihydro[1,2,4]triazolo[4,3-a]pyrazin-7(8H)-yl]-1-(2,4,5-trifluorophenyl)butan-2-amine (1) is a potent, orally active DPP-IV inhibitor (IC{sub 50} = 18 nM) with excellent selectivity over other proline-selective peptidases, oral bioavailability in preclinical species, and in vivo efficacy in animal models. MK-0431, the phosphate salt of compound 1, was selected for development as a potential new treatment for type 2 diabetes.

  9. Potent Inhibitor of Drug-Resistant HIV-1 Strains Identified from the Medicinal Plant Justicia gendarussa.

    PubMed

    Zhang, Hong-Jie; Rumschlag-Booms, Emily; Guan, Yi-Fu; Wang, Dong-Ying; Liu, Kang-Lun; Li, Wan-Fei; Nguyen, Van H; Cuong, Nguyen M; Soejarto, Djaja D; Fong, Harry H S; Rong, Lijun

    2017-06-23

    Justicia gendarussa, a medicinal plant collected in Vietnam, was identified as a potent anti-HIV-1 active lead from the evaluation of over 4500 plant extracts. Bioassay-guided separation of the extracts of the stems and roots of this plant led to the isolation of an anti-HIV arylnaphthalene lignan (ANL) glycoside, patentiflorin A (1). Evaluation of the compound against both the M- and T-tropic HIV-1 isolates showed it to possess a significantly higher inhibition effect than the clinically used anti-HIV drug AZT. Patentiflorin A and two congeners were synthesized, de novo, as an efficient strategy for resupply as well as for further structural modification of the anti-HIV ANL glycosides in the search for drug leads. Subsequently, it was determined that the presence of a quinovopyranosyloxy group in the structure is likely essential to retain the high degree of anti-HIV activity of this type of compounds. Patentiflorin A was further investigated against the HIV-1 gene expression of the R/U5 and U5/gag transcripts, and the data showed that the compound acts as a potential inhibitor of HIV-1 reverse transcription. Importantly, the compound displayed potent inhibitory activity against drug-resistant HIV-1 isolates of both the nucleotide analogue (AZT) and non-nucleotide analogue (nevaripine). Thus, the ANL glycosides have the potential to be developed as novel anti-HIV drugs.

  10. Acipimox, an inhibitor of lipolysis, attenuates atherogenesis in LDLR-null mice treated with HIV protease inhibitor ritonavir.

    PubMed

    Guo, Wen; Wong, Siu; Pudney, Jeffrey; Jasuja, Ravi; Hua, Ning; Jiang, Lan; Miller, Andrew; Hruz, Paul W; Hamilton, James A; Bhasin, Shalender

    2009-12-01

    The advent of HIV protease inhibitors has greatly extended the life span of AIDS patients. With an aging HIV(+) population, the cardiometabolic side effects of these drugs are becoming increasingly important clinical concerns. The purpose of this study was to test the hypothesis that inhibition of adipose lipolysis will retard atherogenic lesion development induced by the antiviral protease inhibitors. LDLR-null mice receiving ritonavir were compared with those receiving ritonavir plus lipolysis inhibitor acipimox or vehicle alone to determine how acipimox would affect ritonavir-induced atherogenesis. Intermittent high-fat high-cholesterol diet was used to facilitate optimal atheromatous lesion development. Drug effects were assessed as changes in aortic lesion score, plasma lipid and lipoprotein profile, body fat mass, and insulin-induced suppression of plasma fatty acid concentrations. Ritonavir increased aortic lesions, in association with decreased body fat mass, impaired antilipolysis action of insulin, and increased proatherogenic plasma lipoproteins. All these adverse effects were attenuated by cotreatment with acipimox. Our results provide the first direct evidence that supports the hypothesis that dysregulation of adipose lipolysis is an important contributor to the proatherogenic role of selected HIV protease inhibitors.

  11. Combination therapy of metformin plus dipeptidyl peptidase-4 inhibitor versus metformin plus sulfonylurea and their association with a decreased risk of cardiovascular disease in type 2 diabetes mellitus patients.

    PubMed

    Wang, Fei; He, Yuan; Zhang, Rong; Zeng, Qiang; Zhao, Xiaolan

    2017-09-01

    Clinical trials assessing the combination therapy of metformin plus dipeptidyl peptidase-4 inhibitors versus metformin plus Sulfonylureas on risk of cardiovascular disease, cardiovascular mortality and/or all-cause mortality in type 2 diabetes have shown conflicting results. We therefore evaluated the combination therapy on the risk of cardiovascular disease, cardiovascular mortality and/or all-cause mortality in type 2 diabetes. A systematic search of Medline/PubMed (from 2000 to September 2015), EMBASE (from 2000 to September 2015), and Web of Knowledge (from 2000 to September 2015) for research articles published in English was carried out to examine how combination therapy affects the risk of CVD mortality and/or all-cause mortality in T2DM patients. In addition, the risks of cardiovascular events, CVD mortality, and/or all-cause mortality as well as the adjusted relative risk (RR) or equivalent (hazard ratio or odds ratio) and the corresponding variance or equivalent are reported. The accumulative RRs (95% confidence intervals) for T2DM patients treated with the combination therapy of metformin plus DPP-4 inhibitor versus metformin plus sulfonylurea were 0.71 (0.56-0.90) for nonfatal cardiovascular events, 1.001 (0.85-1.18) for fatal cardiovascular events, 0.58 (0.41-0.82) for CVD mortality, and 0.72 (0.59-0.87) for all-cause mortality. The combination therapy of metformin plus DPP-4 inhibitor significantly decreased the RR of nonfatal cardiovascular events, CVD mortality, and all-cause mortality, compared with the combination therapy of metformin plus sulfonylurea. However, the number fatal cardiovascular events (e.g., heart failure) was not significantly different between the 2 groups.

  12. Design of potent dipeptidyl peptidase IV (DPP-4) inhibitors by employing a strategy to form a salt bridge with Lys554.

    PubMed

    Maezaki, Hironobu; Tawada, Michiko; Yamashita, Tohru; Banno, Yoshihiro; Miyamoto, Yasufumi; Yamamoto, Yoshio; Ikedo, Koji; Kosaka, Takuo; Tsubotani, Shigetoshi; Tani, Akiyoshi; Asakawa, Tomoko; Suzuki, Nobuhiro; Oi, Satoru

    2017-08-01

    We report a design strategy to obtain potent DPP-4 inhibitors by incorporating salt bridge formation with Lys554 in the S1' pocket. By applying the strategy to the previously identified templates, quinoline 4 and pyridines 16a, 16b, and 17 have been identified as subnanomolar or nanomolar inhibitors of human DPP-4. Docking studies suggested that a hydrophobic interaction with Tyr547 as well as the salt bridge interaction is important for the extremely high potency. The design strategy would be useful to explore a novel design for DPP-4 inhibitors having a distinct structure with a unique binding mode. Copyright © 2017 Elsevier Ltd. All rights reserved.

  13. Polyurethane intravaginal ring for controlled delivery of dapivirine, a nonnucleoside reverse transcriptase inhibitor of HIV-1.

    PubMed

    Gupta, Kavita M; Pearce, Serena M; Poursaid, Azadeh E; Aliyar, Hyder A; Tresco, Patrick A; Mitchnik, Mark A; Kiser, Patrick F

    2008-10-01

    Women-controlled methods for prevention of male-to-female sexual transmission of HIV-1 are urgently needed. Providing inhibitory concentrations of HIV-1 reverse transcriptase inhibitors to impede the replication of the virus in the female genital tissue offers a mechanism for prophylaxis of HIV-1. To this end, an intravaginal ring device that can provide long duration delivery of dapivirine, a nonnucleoside reverse transcriptase inhibitor of HIV-1, was developed utilizing a medical-grade polyether urethane. Monolithic intravaginal rings were fabricated and sustained release with cumulative flux linear with time was demonstrated under sink conditions for a period of 30 days. The release rate was directly proportional to the amount of drug loaded. Another release study conducted for a week utilizing liposome dispersions as sink conditions, to mimic the partitioning of dapivirine into vaginal tissue, also demonstrated release rates constant with time. These results qualify polyether urethanes for development of intravaginal rings for sustained delivery of microbicidal agents.

  14. 2-Aminothiazolones as Anti-HIV Agents That Act as gp120-CD4 Inhibitors

    PubMed Central

    Tiberi, Marika; Tintori, Cristina; Ceresola, Elisa Rita; Fazi, Roberta; Zamperini, Claudio; Calandro, Pierpaolo; Franchi, Luigi; Selvaraj, Manikandan; Botta, Lorenzo; Sampaolo, Michela; Saita, Diego; Ferrarese, Roberto; Clementi, Massimo

    2014-01-01

    We report here the synthesis of 2-aminothiazolones along with their biological properties as novel anti-HIV agents. Such compounds have proven to act through the inhibition of the gp120-CD4 protein-protein interaction that occurs at the very early stage of the HIV-1 entry process. No cytotoxicity was found for these compounds, and broad antiviral activities against laboratory strains and pseudotyped viruses were documented. Docking simulations have also been applied to predict the mechanism, at the molecular level, by which the inhibitors were able to interact within the Phe43 cavity of HIV-1 gp120. Furthermore, a preliminary absorption, distribution, metabolism, and excretion (ADME) evaluation was performed. Overall, this study led the basis for the development of more potent HIV entry inhibitors. PMID:24614386

  15. Design of cell-permeable stapled peptides as HIV-1 integrase inhibitors.

    PubMed

    Long, Ya-Qiu; Huang, Shao-Xu; Zawahir, Zahrah; Xu, Zhong-Liang; Li, Huiyuan; Sanchez, Tino W; Zhi, Ying; De Houwer, Stephanie; Christ, Frauke; Debyser, Zeger; Neamati, Nouri

    2013-07-11

    HIV-1 integrase (IN) catalyzes the integration of viral DNA into the host genome, involving several interactions with the viral and cellular proteins. We have previously identified peptide IN inhibitors derived from the α-helical regions along the dimeric interface of HIV-1 IN. Herein, we show that appropriate hydrocarbon stapling of these peptides to stabilize their helical structure remarkably improves the cell permeability, thus allowing inhibition of the HIV-1 replication in cell culture. Furthermore, the stabilized peptides inhibit the interaction of IN with the cellular cofactor LEDGF/p75. Cellular uptake of the stapled peptide was confirmed in four different cell lines using a fluorescein-labeled analogue. Given their enhanced potency and cell permeability, these stapled peptides can serve as not only lead IN inhibitors but also prototypical biochemical probes or "nanoneedles" for the elucidation of HIV-1 IN dimerization and host cofactor interactions within their native cellular environment.

  16. Limited HIV-1 Reactivation in Resting CD4+ T cells from Aviremic Patients under Protease Inhibitors

    PubMed Central

    Kumar, Amit; Abbas, Wasim; Bouchat, Sophie; Gatot, Jean-Stéphane; Pasquereau, Sébastien; Kabeya, Kabamba; Clumeck, Nathan; De Wit, Stéphane; Van Lint, Carine; Herbein, Georges

    2016-01-01

    A latent viral reservoir that resides in resting CD4+ T cells represents a major barrier for eradication of HIV infection. We test here the impact of HIV protease inhibitor (PI) based combination anti-retroviral therapy (cART) over nonnucleoside reverse transcriptase inhibitor (NNRTI)-based cART on HIV-1 reactivation and integration in resting CD4+ T cells. This is a prospective cohort study of patients with chronic HIV-1 infection treated with conventional cART with an undetectable viremia. We performed a seven-year study of 47 patients with chronic HIV-infection treated with cART regimens and with undetectable plasma HIV-1 RNA levels for at least 1 year. Of these 47 patients treated with cART, 24 were treated with a PI-based regimen and 23 with a NNRTI-based regimen as their most recent treatment for more than one year. We evaluated the HIV-1 reservoir using reactivation assay and integrated HIV-1 DNA, respectively, in resting CD4+ T cells. Resting CD4+ T cells isolated from PI-treated patients compared to NNRTI-treated patients showed a limited HIV-1 reactivation upon T-cell stimulation (p = 0·024) and a lower level of HIV-1 integration (p = 0·024). Our study indicates that PI-based cART could be more efficient than NNRTI-based cART for limiting HIV-1 reactivation in aviremic chronically infected patients. PMID:27922055

  17. In Vitro Reactivation of Replication-Competent and Infectious HIV-1 by Histone Deacetylase Inhibitors

    PubMed Central

    Banga, Riddhima; Procopio, Francesco Andrea; Cavassini, Matthias

    2015-01-01

    ABSTRACT The existence of long-lived HIV-1-infected resting memory CD4 T cells is thought to be the primary obstacle to HIV-1 eradication. In the search for novel therapeutic approaches that may reverse HIV-1 latency, inhibitors of histone deacetylases (HDACis) have been tested to reactivate HIV-1 replication with the objective of rendering HIV-1-infected cells susceptible to elimination either by HIV-specific CD8 T cells or through virus-mediated cytopathicity. In the present study, we evaluated the efficiency of HDACis to reactivate HIV-1 replication from resting memory CD4 T cells isolated from aviremic long-term-treated HIV-1-infected subjects. We demonstrate that following prolonged/repeated treatment of resting memory CD4 T cells with HDACis, HIV-1 replication may be induced from primary resting memory CD4 T cells isolated from aviremic long-term-treated HIV-1-infected subjects. More importantly, we demonstrate that HIV-1 reactivated in the cell cultures was not only replication competent but also infectious. Interestingly, givinostat, an HDACi that has not been investigated in clinical trials, was more efficient than vorinostat, panobinostat, and romidepsin in reversing HIV-1 latency in vitro. Taken together, these results support further evaluation of givinostat as a latency-reversing agent (LRA) in aviremic long-term-treated HIV-1-infected subjects. IMPORTANCE The major barrier to HIV cure is the existence of long-lived latently HIV-1-infected resting memory CD4 T cells. Latently HIV-1-infected CD4 T cells are transcriptionally silent and are therefore not targeted by conventional antiretroviral therapy (ART) or the immune system. In this context, one strategy to target latently infected cells is based on pharmacological molecules that may force the virus to replicate and would therefore render HIV-1-infected cells susceptible to elimination either by HIV-specific CD8 T cells or through virus-mediated cytopathicity. In this context, we developed an

  18. Nonneutralizing Antibodies Induced by the HIV-1 gp41 NHR Domain Gain Neutralizing Activity in the Presence of the HIV Fusion Inhibitor Enfuvirtide: a Potential Therapeutic Vaccine Strategy.

    PubMed

    Wang, Qian; Bi, Wenwen; Zhu, Xiaojie; Li, Haoyang; Qi, Qianqian; Yu, Fei; Lu, Lu; Jiang, Shibo

    2015-07-01

    A key barrier against developing preventive and therapeutic human immunodeficiency virus (HIV) vaccines is the inability of viral envelope glycoproteins to elicit broad and potent neutralizing antibodies. However, in the presence of fusion inhibitor enfuvirtide, we show that the nonneutralizing antibodies induced by the HIV type 1 (HIV-1) gp41 N-terminal heptad repeat (NHR) domain (N63) exhibit potent and broad neutralizing activity against laboratory-adapted HIV-1 strains, including the drug-resistant variants, and primary HIV-1 isolates with different subtypes, suggesting the potential of developing gp41-targeted HIV therapeutic vaccines.

  19. Computer tools in the discovery of HIV-I integrase inhibitors

    PubMed Central

    Liao, Chenzhong; Nicklaus, Marc C

    2010-01-01

    Computer-aided drug design (CADD) methodologies have made great advances and contributed significantly to the discovery and/or optimization of many clinically used drugs in recent years. CADD tools have likewise been applied to the discovery of inhibitors of HIV-I integrase, a difficult and worthwhile target for the development of efficient anti-HIV drugs. This article reviews the application of CADD tools, including pharmacophore search, quantitative structure–activity relationships, model building of integrase complexed with viral DNA and quantum-chemical studies in the discovery of HIV-I integrase inhibitors. Different structurally diverse integrase inhibitors have been identified by, or with significant help from, various CADD tools. PMID:21426160

  20. 6,7-Dihydroxy-1-oxoisoindoline-4-sulfonamide-containing HIV-1 Integrase Inhibitors

    PubMed Central

    Zhao, Xue Zhi; Maddali, Kasthuraiah; Smith, Steven J.; Métifiot, Mathieu; Johnson, Barry C.; Marchand, Christophe; Hughes, Stephen H.; Pommier, Yves; Burke, Terrence R.

    2012-01-01

    Although an extensive body of scientific and patent literature exists describing the development of HIV-1 integrase (IN) inhibitors, Merck’s raltegravir and Gilead’s elvitegravir remain the only IN inhibitors FDA-approved for the treatment of AIDS. The emergence of raltegravir-resistant strains of HIV-1 containing mutated forms of IN underlies the need for continued efforts to enhance the efficacy of IN inhibitors against resistant mutants. We have previously described bicyclic 6,7-dihydroxyoxoisoindolin-1-ones that show good IN inhibitory potency. This report describes the effects of introducing substituents into the 4- and 5- positions of the parent 6,7-dihydroxyoxoisoindolin-1-one platform. We have developed several sulfonamide-containing analogs that enhance potency in cell-based HIV assays by more than two orders-of-magnitude and we describe several compounds that are more potent than raltegravir against the clinically relevant Y143R IN mutant. PMID:23149229

  1. Effect of vitamin E and human placenta cysteine peptidase inhibitor on expression of cathepsins B and L in implanted hepatoma Morris 5123 tumor model in Wistar rats

    PubMed Central

    Sebzda, Tadeusz; Hanczyc, Piotr; Saleh, Yousif; Akinpelumi, Bernice F; Siewinski, Maciej; Rudnicki, Jerzy

    2005-01-01

    AIM: To examine the effectiveness of human placental inhibitors, by injecting vitamin E to rats with transplanted Morris-5123 hepatoma, on the expression of cathepsins B and L in tumor, liver, lung and blood sera after transplantation of Morris 5123 hepatoma. METHODS: Animals were divided into 10 groups receiving three different concentrations of vitamin E and inhibitors along or in combination and compared with negative control (healthy rats) and positive control (tumor rats). Effectiveness of treatment was evaluated with regard to survival time, tumor response and determination of the activities of proteolytic enzymes and their inhibitors using flurogenic substrates. RESULTS: Cathepsins B and L activities were elevated by 16-fold in comparison with negative control tissues, and their endogenous inhibitor activity decreased by 1.2-fold before treatment. In several cases, tumors completely disappeared following vitamin E plus human placental cyteine protease inhibitor (CPI) compared with controls. The number of complete tumor responses was higher when 20 m/kg vitamin E plus 400 μg of CPI was used, i.e., 7/10 rats survived more than two mo. Cathepsins B and L were expressed significantly in tumor, liver, lung tissues and sera in parallel to the increasing of the endogenous inhibitor activity compared with the controls after treatment (P<0.0001). CONCLUSION: The data indicate formation of metastasis significantly reduced in treated rats, which might provide a therapeutic basis for anti-cancer therapy. PMID:15641152

  2. Discovery of Novel Small-Molecule Inhibitors of LIM Domain Kinase for Inhibiting HIV-1

    PubMed Central

    Yi, Fei; Guo, Jia; Dabbagh, Deemah; Spear, Mark; He, Sijia; Kehn-Hall, Kylene; Fontenot, Jacque; Yin, Yan; Bibian, Mathieu; Park, Chul Min; Zheng, Ke; Park, Ha Jeung; Soloveva, Veronica; Gharaibeh, Dima; Retterer, Cary; Zamani, Rouzbeh; Pitt, Margaret L.; Naughton, John; Jiang, Yongjun; Shang, Hong; Hakami, Ramin M.; Ling, Binhua; Young, John A. T.; Bavari, Sina; Xu, Xuehua

    2017-01-01

    ABSTRACT A dynamic actin cytoskeleton is necessary for viral entry, intracellular migration, and virion release. For HIV-1 infection, during entry, the virus triggers early actin activity by hijacking chemokine coreceptor signaling, which activates a host dependency factor, cofilin, and its kinase, the LIM domain kinase (LIMK). Although knockdown of human LIM domain kinase 1 (LIMK1) with short hairpin RNA (shRNA) inhibits HIV infection, no specific small-molecule inhibitor of LIMK has been available. Here, we describe the design and discovery of novel classes of small-molecule inhibitors of LIMK for inhibiting HIV infection. We identified R10015 as a lead compound that blocks LIMK activity by binding to the ATP-binding pocket. R10015 specifically blocks viral DNA synthesis, nuclear migration, and virion release. In addition, R10015 inhibits multiple viruses, including Zaire ebolavirus (EBOV), Rift Valley fever virus (RVFV), Venezuelan equine encephalitis virus (VEEV), and herpes simplex virus 1 (HSV-1), suggesting that LIMK inhibitors could be developed as a new class of broad-spectrum antiviral drugs. IMPORTANCE The actin cytoskeleton is a structure that gives the cell shape and the ability to migrate. Viruses frequently rely on actin dynamics for entry and intracellular migration. In cells, actin dynamics are regulated by kinases, such as the LIM domain kinase (LIMK), which regulates actin activity through phosphorylation of cofilin, an actin-depolymerizing factor. Recent studies have found that LIMK/cofilin are targeted by viruses such as HIV-1 for propelling viral intracellular migration. Although inhibiting LIMK1 expression blocks HIV-1 infection, no highly specific LIMK inhibitor is available. This study describes the design, medicinal synthesis, and discovery of small-molecule LIMK inhibitors for blocking HIV-1 and several other viruses and emphasizes the feasibility of developing LIMK inhibitors as broad-spectrum antiviral drugs. PMID:28381571

  3. Discovery of Novel Small-Molecule Inhibitors of LIM Domain Kinase for Inhibiting HIV-1.

    PubMed

    Yi, Fei; Guo, Jia; Dabbagh, Deemah; Spear, Mark; He, Sijia; Kehn-Hall, Kylene; Fontenot, Jacque; Yin, Yan; Bibian, Mathieu; Park, Chul Min; Zheng, Ke; Park, Ha Jeung; Soloveva, Veronica; Gharaibeh, Dima; Retterer, Cary; Zamani, Rouzbeh; Pitt, Margaret L; Naughton, John; Jiang, Yongjun; Shang, Hong; Hakami, Ramin M; Ling, Binhua; Young, John A T; Bavari, Sina; Xu, Xuehua; Feng, Yangbo; Wu, Yuntao

    2017-07-01

    A dynamic actin cytoskeleton is necessary for viral entry, intracellular migration, and virion release. For HIV-1 infection, during entry, the virus triggers early actin activity by hijacking chemokine coreceptor signaling, which activates a host dependency factor, cofilin, and its kinase, the LIM domain kinase (LIMK). Although knockdown of human LIM domain kinase 1 (LIMK1) with short hairpin RNA (shRNA) inhibits HIV infection, no specific small-molecule inhibitor of LIMK has been available. Here, we describe the design and discovery of novel classes of small-molecule inhibitors of LIMK for inhibiting HIV infection. We identified R10015 as a lead compound that blocks LIMK activity by binding to the ATP-binding pocket. R10015 specifically blocks viral DNA synthesis, nuclear migration, and virion release. In addition, R10015 inhibits multiple viruses, including Zaire ebolavirus (EBOV), Rift Valley fever virus (RVFV), Venezuelan equine encephalitis virus (VEEV), and herpes simplex virus 1 (HSV-1), suggesting that LIMK inhibitors could be developed as a new class of broad-spectrum antiviral drugs.IMPORTANCE The actin cytoskeleton is a structure that gives the cell shape and the ability to migrate. Viruses frequently rely on actin dynamics for entry and intracellular migration. In cells, actin dynamics are regulated by kinases, such as the LIM domain kinase (LIMK), which regulates actin activity through phosphorylation of cofilin, an actin-depolymerizing factor. Recent studies have found that LIMK/cofilin are targeted by viruses such as HIV-1 for propelling viral intracellular migration. Although inhibiting LIMK1 expression blocks HIV-1 infection, no highly specific LIMK inhibitor is available. This study describes the design, medicinal synthesis, and discovery of small-molecule LIMK inhibitors for blocking HIV-1 and several other viruses and emphasizes the feasibility of developing LIMK inhibitors as broad-spectrum antiviral drugs. Copyright © 2017 Yi et al.

  4. Ebselen, a Small-Molecule Capsid Inhibitor of HIV-1 Replication

    PubMed Central

    Thenin-Houssier, Suzie; de Vera, Ian Mitchelle S.; Pedro-Rosa, Laura; Brady, Angela; Richard, Audrey; Konnick, Briana; Opp, Silvana; Buffone, Cindy; Fuhrmann, Jakob; Kota, Smitha; Billack, Blase; Pietka-Ottlik, Magdalena; Tellinghuisen, Timothy; Choe, Hyeryun; Spicer, Timothy; Scampavia, Louis; Diaz-Griffero, Felipe; Kojetin, Douglas J.

    2016-01-01

    The human immunodeficiency virus type 1 (HIV-1) capsid plays crucial roles in HIV-1 replication and thus represents an excellent drug target. We developed a high-throughput screening method based on a time-resolved fluorescence resonance energy transfer (HTS-TR-FRET) assay, using the C-terminal domain (CTD) of HIV-1 capsid to identify inhibitors of capsid dimerization. This assay was used to screen a library of pharmacologically active compounds, composed of 1,280 in vivo-active drugs, and identified ebselen [2-phenyl-1,2-benzisoselenazol-3(2H)-one], an organoselenium compound, as an inhibitor of HIV-1 capsid CTD dimerization. Nuclear magnetic resonance (NMR) spectroscopic analysis confirmed the direct interaction of ebselen with the HIV-1 capsid CTD and dimer dissociation when ebselen is in 2-fold molar excess. Electrospray ionization mass spectrometry revealed that ebselen covalently binds the HIV-1 capsid CTD, likely via a selenylsulfide linkage with Cys198 and Cys218. This compound presents anti-HIV activity in single and multiple rounds of infection in permissive cell lines as well as in primary peripheral blood mononuclear cells. Ebselen inhibits early viral postentry events of the HIV-1 life cycle by impairing the incoming capsid uncoating process. This compound also blocks infection of other retroviruses, such as Moloney murine leukemia virus and simian immunodeficiency virus, but displays no inhibitory activity against hepatitis C and influenza viruses. This study reports the use of TR-FRET screening to successfully identify a novel capsid inhibitor, ebselen, validating HIV-1 capsid as a promising target for drug development. PMID:26810656

  5. HIV-1 Integrase Strand Transfer Inhibitors with Reduced Susceptibility to Drug Resistant Mutant Integrases | Center for Cancer Research

    Cancer.gov

    Mutant forms of HIV-1 IN reduce the therapeutic effectiveness of integrase strand transfer inhibitors (INSTIs). The cover figure shows the IN of prototype foamy virus complexed to a novel INSTI (gold) that retains potency against resistant mutants of HIV-1 IN. Overlain are the host and viral DNA substrates (blue and green, respectively), showing substrate mimicry by the inhibitor.

  6. [Research progress of dual inhibitors targeting HIV-1 reverse transcriptase and integrase].

    PubMed

    Liu, Hong; Zhan, Peng; Liu, Xin-Yong

    2013-04-01

    Both reverse transcriptase (RT) and integrase (IN) play crucial roles in the life cycle of HIV-1, which are also key targets in the area of anti-HIV drug research. Reverse transcriptase inhibitors are involved in the most employed drugs used to treat AIDS patients and HIV-infected people, while one of the integrase inhibitors has already been approved by US FDA to appear on the market. Great achievement has been made in the research on both, separately. Recently, much more attention of medicinal chemistry researchers has been attracted to the strategies of multi-target drugs. Compounds with excellent potency against both HIV RT and IN, evidently defined as dual inhibitors targeting both enzymes, have been obtained through considerable significant exploration, which can be classified into two categories according to different strategies. Combinatorial chemistry approach together with high throughput screening methods and multi-target-based virtual screening strategy have been useful tools for identifying selective anti-HIV compounds for long times; Rational drug design based on pharmacophore combination has also led to remarkable results. In this paper, latest progress of both categories in the discovery and structural modification will be covered, with a view to contribute to the career of anti-HIV research.

  7. Interaction of HIV-1 reverse transcriptase ribonuclease H with an acylhydrazone inhibitor.

    PubMed

    Gong, Qingguo; Menon, Lakshmi; Ilina, Tatiana; Miller, Lena G; Ahn, Jinwoo; Parniak, Michael A; Ishima, Rieko

    2011-01-01

    HIV-1 reverse transcriptase is a bifunctional enzyme, having both DNA polymerase (RNA- and DNA-dependent) and ribonuclease H activities. HIV-1 reverse transcriptase has been an exceptionally important target for antiretroviral therapeutic development, and nearly half of the current clinically used antiretrovirals target reverse transcriptase DNA polymerase. However, no inhibitors of reverse transcriptase ribonuclease H are on the market or in preclinical development. Several drug-like small molecule inhibitors of reverse transcriptase ribonuclease H have been described, but little structural information is available about the interactions between reverse transcriptase ribonuclease H and inhibitors that exhibit antiviral activity. In this report, we describe NMR studies of the interaction of a new ribonuclease H inhibitor, BHMP07, with a catalytically active HIV-1 reverse transcriptase ribonuclease H domain fragment. We carried out solution NMR experiments to identify the interaction interface of BHMP07 with the ribonuclease H domain fragment. Chemical shift changes of backbone amide signals at different BHMP07 concentrations clearly demonstrate that BHMP07 mainly recognizes the substrate handle region in the ribonuclease H fragment. Using ribonuclease H inhibition assays and reverse transcriptase mutants, the binding specificity of BHMP07 was compared with another inhibitor, dihydroxy benzoyl naphthyl hydrazone. Our results provide a structural characterization of the ribonuclease H inhibitor interaction and are likely to be useful for further improvements of the inhibitors.

  8. Role of semen in HIV-1 transmission: inhibitor or facilitator?

    PubMed

    Doncel, Gustavo F; Joseph, Theresa; Thurman, Andrea R

    2011-03-01

    Sexual transmission of human immunodeficiency virus type 1 (HIV-1) accounts for 60-90% of new infections, especially in developing countries. During male-to-female transmission, the virus is typically deposited in the vagina as cell-free and cell-associated virions carried by semen. But semen is more than just a carrier for HIV-1. Evidence from in vitro and in vivo studies supports both inhibitory and enhancing effects. Intrinsic antiviral activity mediated by cationic antimicrobial peptides, cytotoxicity, and blockage of HIV-dendritic cell interactions are seminal plasma properties that inhibit HIV-1 infection. On the contrary, neutralization of vaginal acidic pH, enhanced virus-target cell attachment by seminal amyloid fibrils, opsonization by complement fragments, and electrostatic interactions are factors that facilitate HIV-1 infection. The end result, i.e., inhibition or enhancement of HIV mucosal infection, in vivo, likely depends on the summation of all these biological effects. More research is needed, especially in animal models, to dissect the role of these factors and establish their relevance in HIV-1 transmission. © 2010 John Wiley & Sons A/S.

  9. Recent patents and emerging therapeutics for HIV infections: a focus on protease inhibitors.

    PubMed

    Patel, Mitesh; Mandava, Nanda K; Vadlapatla, Ramya Krishna; Mitra, Ashim K

    2013-07-01

    The inclusion of protease inhibitors (PIs) in highly active antiretroviral therapy has significantly improved clinical outcomes in HIV-1-infected patients. To date, PIs are considered to be the most important therapeutic agents for the treatment of HIV infections. Despite high anti-HIV-1 potency, poor oral bioavailability of PIs has been a major concern. For achieving therapeutic concentrations, large doses of PIs are administered, which results in unacceptable systemic toxicities. Such severe and long-term toxicities necessitate the development of safer and potentially promising PIs. Recently, considerable attention has been paid to the development of newer compounds capable of inhibiting wild-type and resistant HIV-1 protease. Some of these PIs have displayed potent HIV-1 protease inhibitory activity. In this review, we have made an attempt to provide an overview on clinically approved and newly developing PIs, and related recent patents in the development of novel PIs.

  10. Design, synthesis and biological activity of aromatic diketone derivatives as HIV-1 integrase inhibitors.

    PubMed

    Hu, Liming; Li, Zhipeng; Wang, Zhanyang; Liu, Gengxin; He, Xianzhuo; Wang, Xiaoli; Zeng, Chengchu

    2015-01-01

    A series of aromatic diketone derivatives were designed and synthesized as potential HIV-1 integrase (IN) inhibitors and evaluated to determine their ability to inhibit the strand transfer process of HIV-1 integrase. The results indicate that (Z)-1-(3-acetyl-2-hydroxy-4,6-dimethoxyphenyl)-3-hydroxy-3-(substituted)phenylprop-2-en-1-one (5a-5d) can moderately inhibit HIV-1 integrase. The cyclization and condensation products (6a-6c and 7e-7f) of compounds 5a-5d show poor inhibitory activity against HIV-1 integrase. The molecular docking results indicate that the different types of compounds act on HIV-1 integrase in different ways, and these results can explain the differences in the inhibitory activities.

  11. Combined treatment with dipeptidyl peptidase 4 (DPP4) inhibitor sitagliptin and elemental diets reduced indomethacin-induced intestinal injury in rats via the increase of mucosal glucagon-like peptide-2 concentration

    PubMed Central

    Fujiwara, Kaori; Inoue, Takuya; Yorifuji, Naoki; Iguchi, Munetaka; Sakanaka, Taisuke; Narabayashi, Ken; Kakimoto, Kazuki; Nouda, Sadaharu; Okada, Toshihiko; Ishida, Kumi; Abe, Yosuke; Masuda, Daisuke; Takeuchi, Toshihisa; Fukunishi, Shinya; Umegaki, Eiji; Akiba, Yasutada; Kaunitz, Jonathan D.; Higuchi, Kazuhide

    2015-01-01

    The gut incretin glucagon-like peptide-1 (GLP-1) and the intestinotropic hormone GLP-2 are released from enteroendocrine L cells in response to ingested nutrients. Treatment with an exogenous GLP-2 analogue increases intestinal villous mass and prevents intestinal injury. Since GLP-2 is rapidly degraded by dipeptidyl peptidase 4 (DPP4), DPP4 inhibition may be an effective treatment for intestinal ulcers. We measured mRNA expression and DPP enzymatic activity in intestinal segments. Mucosal DPP activity and GLP concentrations were measured after administration of the DPP4 inhibitor sitagliptin (STG). Small intestinal ulcers were induced by indomethacin (IM) injection. STG was given before IM treatment, or orally administered after IM treatment with or without an elemental diet (ED). DPP4 mRNA expression and enzymatic activity were high in the jejunum and ileum. STG dose-dependently suppressed ileal mucosal enzyme activity. Treatment with STG prior to IM reduced small intestinal ulcer scores. Combined treatment with STG and ED accelerated intestinal ulcer healing, accompanied by increased mucosal GLP-2 concentrations. The reduction of ulcers by ED and STG was reversed by co-administration of the GLP-2 receptor antagonist. DPP4 inhibition combined with luminal nutrients, which up-regulate mucosal concentrations of GLP-2, may be an effective therapy for the treatment of small intestinal ulcers. PMID:25759522

  12. Liraglutide, a long-acting glucagon-like peptide-1 analog, reduces body weight and food intake in obese candy-fed rats, whereas a dipeptidyl peptidase-IV inhibitor, vildagliptin, does not.

    PubMed

    Raun, Kirsten; von Voss, Pia; Gotfredsen, Carsten F; Golozoubova, Valeria; Rolin, Bidda; Knudsen, Lotte Bjerre

    2007-01-01

    Metabolic effects of the glucagon-like peptide-1 analog liraglutide and the dipeptidyl peptidase-IV inhibitor vildagliptin were compared in rats made obese by supplementary candy feeding. Female Sprague-Dawley rats were randomized to 12-week diets of chow or chow plus candy. The latter were randomized for 12 further weeks to continue their diet while receiving 0.2 mg/kg liraglutide twice daily subcutaneously, 10 mg/kg vildagliptin twice daily orally, or vehicle or to revert to chow-only diet. Energy expenditure was measured, and oral glucose tolerance tests (OGTTs) were performed. Body composition was determined by dual-energy X-ray absorptiometry scanning, and pancreatic beta-cell mass was determined by histology. Candy feeding increased weight, fat mass, and feeding-associated energy expenditure. Liraglutide or reversal to chow diet fully reversed weight and fat gains. Liraglutide was associated with decreased calorie intake and shifted food preference (increased chow/decreased candy consumption). Despite weight loss, liraglutide-treated rats did not decrease energy expenditure compared with candy-fed controls. Vildagliptin affected neither weight, food intake, nor energy expenditure. OGTTs, histology, and blood analyses indirectly suggested that both drugs increased insulin sensitivity. Liraglutide and vildagliptin inhibited obesity-associated increases in beta-cell mass. This was associated with weight and fat mass normalization with liraglutide, but not vildagliptin, where the ratio of beta-cell to body mass was low.

  13. Is the Inhibition of Dipeptidyl Peptidase-4 (DDP-4) Enzyme Route Dependent and/or Driven by High Peak Concentration?- Seeking Answers with ZYDPLA1, a Novel Long Acting DPP-4 Inhibitor, in a Rodent Model.

    PubMed

    Patel, Harilal; Joharapurkar, Amit A; Bahekar, Rajesh; Patel, Prakash; Kshirsagar, Samadhan G; Modi, Nirav; Ghoghari, Ashok; Patel, Vishal J; Jain, Mukul R; Srinivas, Nuggehally R; Patel, Pankaj R; Desai, Ranjit C

    2017-04-01

    ZYDPLA1 is a long acting enzyme dipeptidyl peptidase-4 (DPP-4) inhibitor. The comparative effect of DPP-4 inhibition after intravenous (IV) and oral administration of ZYDPLA1 in a rat model was evaluated to answer the question of route dependency and/or the need of high plasma levels of ZYDPLA1. The study was conducted using parallel design in male Wistar rats for IV/oral route (n=9 and 6, for IV and oral respectively). A single 30 mg/kg dose of ZYDPLA1 was administered. Plasma samples were analysed for ZYDPLA1 concentration and DPP-4 inhibition. Pharmacokinetic analysis was carried out to assess peak concentration, area under the concentration-time curve, total body clearance, elimination half-life, and mean residence time. The PK/PD correlation was performed using standard sigmoidal Emax modelling to derive; maximum effect (Emax) and concentration to exert 50% Emax effect (EC50). ZYDPLA1 showed rapid absorption, high volume of distribution, low clearance, and complete oral bioavailability. The Emax derived after both routes and corresponding PK/PD profile showed comparable DDP-4 inhibition. The EC50 for IV (0.021 µg/mL) was comparable to the oral route (0.019 µg/mL). ZYDPLA1 showed full DPP-4 inhibition without regard to the route of administration. Higher systemic peak levels showed no bearing on the DDP-4 inhibition. © Georg Thieme Verlag KG Stuttgart · New York.

  14. Efficacy and safety of teneligliptin, a novel dipeptidyl peptidase-4 inhibitor, in Korean patients with type 2 diabetes mellitus: a 24-week multicentre, randomized, double-blind, placebo-controlled phase III trial.

    PubMed

    Hong, S; Park, C-Y; Han, K A; Chung, C H; Ku, B J; Jang, H C; Ahn, C W; Lee, M-K; Moon, M K; Son, H S; Lee, C B; Cho, Y-W; Park, S-W

    2016-05-01

    We assessed the 24-week efficacy and safety of teneligliptin, a novel dipeptidyl peptidase-4 inhibitor, in Korean patients with type 2 diabetes mellitus (T2DM) that was inadequately controlled with diet and exercise. The present study was designed as a multicentre, randomized, double-blind, placebo-controlled, parallel-group, phase III study. Patients (n = 142) were randomized 2 : 1 into two different treatment groups as follows: 99 received teneligliptin (20 mg) and 43 received placebo. The primary endpoint was change in glycated haemoglobin (HbA1c) level from baseline to week 24. Teneligliptin significantly reduced the HbA1c level from baseline compared with placebo after 24 weeks. At week 24, the differences between changes in HbA1c and fasting plasma glucose (FBG) in the teneligliptin and placebo groups were -0.94% [least-squares (LS) mean -1.22, -0.65] and -1.21 mmol/l (-1.72, -0.70), respectively (all p < 0.001). The incidence of hypoglycaemia and adverse events were not significantly different between the two groups. This phase III, randomized, placebo-controlled study provides evidence of the safety and efficacy of 24 weeks of treatment with teneligliptin as a monotherapy in Korean patients with T2DM.

  15. Discovery and crystallography of bicyclic arylaminoazines as potent inhibitors of HIV-1 reverse transcriptase.

    PubMed

    Lee, Won-Gil; Frey, Kathleen M; Gallardo-Macias, Ricardo; Spasov, Krasimir A; Chan, Albert H; Anderson, Karen S; Jorgensen, William L

    2015-11-01

    Non-nucleoside inhibitors of HIV-1 reverse transcriptase (HIV-RT) are reported that incorporate a 7-indolizinylamino or 2-naphthylamino substituent on a pyrimidine or 1,3,5-triazine core. The most potent compounds show below 10 nanomolar activity towards wild-type HIV-1 and variants bearing Tyr181Cys and Lys103Asn/Tyr181Cys resistance mutations. The compounds also feature good aqueous solubility. Crystal structures for two complexes enhance the analysis of the structure-activity data.

  16. SAMHD1 Has Differential Impact on the Efficacies of HIV Nucleoside Reverse Transcriptase Inhibitors

    PubMed Central

    Huber, Andrew D.; Michailidis, Eleftherios; Schultz, Megan L.; Ong, Yee T.; Bloch, Nicolin; Puray-Chavez, Maritza N.; Leslie, Maxwell D.; Ji, Juan; Lucas, Anthony D.; Kirby, Karen A.; Landau, Nathaniel R.

    2014-01-01

    Sterile alpha motif- and histidine/aspartic acid domain-containing protein 1 (SAMHD1) limits HIV-1 replication by hydrolyzing deoxynucleoside triphosphates (dNTPs) necessary for reverse transcription. Nucleoside reverse transcriptase inhibitors (NRTIs) are components of anti-HIV therapies. We report here that SAMHD1 cleaves NRTI triphosphates (TPs) at significantly lower rates than dNTPs and that SAMHD1 depletion from monocytic cells affects the susceptibility of HIV-1 infections to NRTIs in complex ways that depend not only on the relative changes in dNTP and NRTI-TP concentrations but also on the NRTI activation pathways. PMID:24867973

  17. Structure-based design of HIV protease inhibitors: 5,6-dihydro-4-hydroxy-2-pyrones as effective, nonpeptidic inhibitors.

    PubMed

    Thaisrivongs, S; Romero, D L; Tommasi, R A; Janakiraman, M N; Strohbach, J W; Turner, S R; Biles, C; Morge, R R; Johnson, P D; Aristoff, P A; Tomich, P K; Lynn, J C; Horng, M M; Chong, K T; Hinshaw, R R; Howe, W J; Finzel, B C; Watenpaugh, K D

    1996-11-08

    From a broad screening program, the 4-hydroxycoumarin phenprocoumon (I) was previously identified as a lead template with HIV protease inhibitory activity. The crystal structure of phenprocoumon/HIV protease complex initiated a structure-based design effort that initially identified the 4-hydroxy-2-pyrone U-96988 (II) as a first-generation clinical candidate for the potential treatment of HIV infection. Based upon the crystal structure of the 4-hydroxy-2-pyrone III/HIV protease complex, a series of analogues incorporating a 5,6-dihydro-4-hydroxy-2-pyrone template were studied. It was recognized that in addition to having the required pharmacophore (the 4-hydroxy group with hydrogen-bonding interaction with the two catalytic aspartic acid residues and the lactone moiety replacing the ubiquitous water molecule in the active site), these 5,6-dihydro-4-hydroxy-2-pyrones incorporated side chains at the C-6 position that appropriately extended into the S1' and S2' subsites of the enzyme active site. The crystal structures of a number of representative 5,6-dihydro-4-hydroxy-2-pyrones complexed with the HIV protease were also determined to provide better understanding of the interaction between the enzyme and these inhibitors to aid the structure-based drug design effort. The crystal structures of the ligands in the enzyme active site did not always agree with the conformations expected from experience with previous pyrone inhibitors. This is likely due to the increased flexibility of the dihydropyrone ring. From this study, compound XIX exhibited reasonably high enzyme inhibitory activity (Ki = 15 nM) and showed antiviral activity (IC50 = 5 microM) in the cell-culture assay. This result provided a research direction which led to the discovery of active 5,6-dihydro-4-hydroxy-2-pyrones as potential agents for the treatment of HIV infection.

  18. HIV proteinase inhibitors target the Ddi1-like protein of Leishmania parasites

    PubMed Central

    White, Rhian E.; Powell, David J.; Berry, Colin

    2011-01-01

    HIV proteinase inhibitors reduce the levels of Leishmania parasites in vivo and in vitro, but their biochemical target is unknown. We have identified an ortholog of the yeast Ddi1 protein as the only member of the aspartic proteinase family in Leishmania parasites, and in this study we investigate this protein as a potential target for the drugs. To date, no enzyme assay has been developed for the Ddi1 proteins, but Saccharomyces cerevisiae lacking the DDI1 gene secrete high levels of protein into the medium. We developed an assay in which these knockout yeast were functionally complemented to low secretion by introduction of genes encoding Ddi1 orthologs from Leishmania major or humans. Plasmid alone controls gave no complementation. Treatment of the Ddi1 transformants with HIV proteinase inhibitors showed differential effects dependent on the origin of the Ddi1. Dose responses allowed calculation of IC50 values; e.g., for nelfinavir, of 3.4 μM (human Ddi1) and 0.44 μM (Leishmania Ddi1). IC50 values with Leishmania constructs mirror the potency of inhibitors against parasites. Our results show that Ddi1 proteins are targets of HIV proteinase inhibitors and indicates the Leishmania Ddi1 as the likely target for these drugs and a potential target for antiparasitic therapy.—White, R. E., Powell, D. J., Berry, C. HIV proteinase inhibitors target the Ddi1-Like protein of Leishmania parasites. PMID:21266539

  19. Biologically-validated HIV integrase inhibitors with nucleobase scaffolds: structure, synthesis, chemical biology, molecular modeling, and antiviral activity.

    PubMed

    Nair, Vasu; Uchil, Vinod; Chi, Guochen; Dams, Iwona; Cox, Arthur; Seo, Byung

    2007-01-01

    Integrase, an enzyme of the pol gene of HIV, is a significant viral target for the discovery of anti-HIV agents. In this presentation, we report on the continuation of our work on the discovery of diketo acids, constructed on nucleobase scaffolds, that are inhibitors of HIV integrase. An example of our synthetic approach to inhibitors with purine nucleobase scaffolds is given. Comparison is made between integrase inhibition data arising from compounds with pyrimidine versus purine nucleobase scaffold. Antiviral results are cited.

  20. 3-Phenylcoumarins as inhibitors of HIV-1 replication.

    PubMed

    Olmedo, Dionisio; Sancho, Rocío; Bedoya, Luis M; López-Pérez, José L; Del Olmo, Esther; Muñoz, Eduardo; Alcamí, José; Gupta, Mahabir P; San Feliciano, Arturo

    2012-08-02

    We have synthesized fourteen 3-phenylcoumarin derivatives and evaluated their anti-HIV activity. Antiviral activity was assessed on MT-2 cells infected with viral clones carrying the luciferase gene as reporter. Inhibition of HIV transcription and Tat function were tested on cells stably transfected with the HIV-LTR and Tat protein. Six compounds displayed NF-κB inhibition, four resulted Tat antagonists and three of them showed both activities. Three compounds inhibited HIV replication with IC₅₀ values < 25 µM. The antiviral effect of the 4-hydroxycoumarin derivative 19 correlates with its specific inhibition of Tat functions, while compound 8, 3-(2-chlorophenyl)coumarin, seems to act through a mechanism unrelated to the molecular targets considered in this research.

  1. Optimization of unique, uncharged thioesters as inhibitors of HIV replication.

    PubMed

    Srivastava, Pratibha; Schito, Marco; Fattah, Rasem J; Hara, Toshiaki; Hartman, Tracy; Buckheit, Robert W; Turpin, Jim A; Inman, John K; Appella, Ettore

    2004-12-15

    A combinatorial chemistry approach was employed to prepare a restricted library of N-substituted S-acyl-2-mercaptobenzamide thioesters. It was shown that many members of this chemotype display anti-HIV activity via their ability to interact with HIV-1, HIV-2, SIV-infected cells, cell-free virus, and chronically and latently infected cells in a manner consistent with targeting of the highly conserved HIV-1 NCp7 zinc fingers. Compounds were initially screened using two different in vitro antiviral assays and evaluated for stability in neutral buffer containing 10% pooled human serum using a spectrophotometric assay. These data revealed that there was no significant correlation between thioester stability and antiviral activity, however, a slight inverse correlation between serum stability and virucidal activity was noted. Based on the virucidal capability and the ability to select lead compounds to inhibit virus expression from latently infected TNFalpha-induced U1 cells, we next determined if these compounds could prevent HIV cell-to-cell transmission. Several thioesters demonstrated potent inhibition of HIV cell-to-cell transmission with EC50 values in the 80-100 nM range. Thus, we have optimized a series of restricted thioesters and provided evidence that serum stability is not required for antiviral activity. Moreover, selected compounds show potential for development as topical microbicides.

  2. In vitro activity of dolutegravir against wild-type and integrase inhibitor-resistant HIV-2.

    PubMed

    Smith, Robert A; Raugi, Dana N; Pan, Charlotte; Sow, Papa Salif; Seydi, Moussa; Mullins, James I; Gottlieb, Geoffrey S

    2015-02-05

    Dolutegravir recently became the third integrase strand transfer inhibitor (INSTI) approved for use in HIV-1-infected individuals. In contrast to the extensive dataset for HIV-1, in vitro studies and clinical reports of dolutegravir for HIV-2 are limited. To evaluate the potential role of dolutegravir in HIV-2 treatment, we compared the susceptibilities of wild-type and INSTI-resistant HIV-1 and HIV-2 strains to the drug using single-cycle assays, spreading infections of immortalized T cells, and site-directed mutagenesis. HIV-2 group A, HIV-2 group B, and HIV-1 isolates from INSTI-naïve individuals were comparably sensitive to dolutegravir in the single-cycle assay (mean EC50 values = 1.9, 2.6, and 1.3 nM, respectively). Integrase substitutions E92Q, Y143C, E92Q + Y143C, and Q148R conferred relatively low levels of resistance to dolutegravir in HIV-2ROD9 (2- to 6-fold), but Q148K, E92Q + N155H, T97A + N155H and G140S + Q148R resulted in moderate resistance (10- to 46-fold), and the combination of T97A + Y143C in HIV-2ROD9 conferred high-level resistance (>5000-fold). In contrast, HIV-1NL4-3 mutants E92Q + N155H, G140S + Q148R, and T97A + Y143C showed 2-fold, 4-fold, and no increase in EC50, respectively, relative to the parental strain. The resistance phenotypes for E92Q + N155H, and G140S + Q148R HIV-2ROD9 were also confirmed in spreading infections of CEM-ss cells. Our data support the use of dolutegravir in INSTI-naïve HIV-2 patients but suggest that, relative to HIV-1, a broader array of replacements in HIV-2 integrase may enable cross-resistance between dolutegravir and other INSTI. Clinical studies are needed to evaluate the efficacy of dolutegravir in HIV-2-infected individuals, including patients previously treated with raltegravir or elvitegravir.

  3. HIV protease inhibitors elicit volume-sensitive Cl− current in cardiac myocytes via mitochondrial ROS

    PubMed Central

    Deng, Wu; Baki, Lia; Yin, Jun; Zhou, Huiping; Baumgarten, Clive M.

    2010-01-01

    HIV protease inhibitors (HIV PI) reduce morbidity and mortality of HIV infection but cause multiple untoward effects. Because certain HIV PI evoke production of reactive oxygen species (ROS) and volume-sensitive Cl− current (ICl,swell) is activated by ROS, we tested whether HIV PI stimulate ICl,swell in ventricular myocytes. Ritonavir and lopinavir elicited outwardly-rectifying Cl− currents under isosmotic conditions that were abolished by the selective ICl,swell-blocker DCPIB. In contrast, amprenavir, nelfinavir, and raltegravir, an integrase inhibitor, did not modulate ICl,swell acutely. Ritonavir also reduced action potential duration, but amprenavir did not. ICl,swell activation was attributed to ROS because ebselen, an H2O2, scavenger, suppressed ritonavir- and lopinavir-induced ICl,swell. Major ROS sources in cardiomyocytes are sarcolemmal NADPH oxidase and mitochondria. The specific NADPH oxidase inhibitor apocynin failed to block ritonavir- or lopinavir-induced currents, although it blocks ICl,swell elicited by osmotic swelling or stretch. In contrast, rotenone, a mitochondrial e− transport inhibitor, suppressed both ritonavir- and lopinavir-induced ICl,swell. ROS production was measured in HL-1 cardiomyocytes with C-H2DCFDA-AM and mitochondrial membrane potential (ΔΨm) with JC-1. Flow cytometry confirmed that ritonavir and lopinavir but not amprenavir, nelfinavir, or raltegravir augmented ROS production, and HIV PI-induced ROS production was suppressed by rotenone but not NADPH oxidase blockade. Moreover, ritonavir, but not amprenavir, depolarized ΔΨm. These data suggest ritonavir and lopinavir activated ICl,swell via mitochondrial ROS production that was independent of NADPH oxidase. ROS-dependent modulation of ICl,swell and other ion channels by HIV PI may contribute to some of their actions in heart and perhaps other tissues. PMID:20736017

  4. Crystal Structures of HIV-1 Reverse Transcriptase with Picomolar Inhibitors Reveal Key Interactions for Drug Design

    PubMed Central

    Frey, Kathleen M.; Bollini, Mariela; Mislak, Andrea C.; Cisneros, José A.; Gallardo-Macias, Ricardo; Jorgensen, William L.; Anderson, Karen S.

    2012-01-01

    X-ray crystal structures at 2.9 Å resolution are reported for complexes of catechol diethers 1 and 2 with HIV-1 reverse transcriptase. The results help elucidate the structural origins of the extreme antiviral activity of the compounds. The possibility of halogen bonding between the inhibitors and Pro95 is addressed. Structural analysis reveals key interactions with conserved residues P95 and W229 of importance for design of inhibitors with high potency and favorable resistance profiles. PMID:23163887

  5. Design of a series of bicyclic HIV-1 integrase inhibitors. Part 2: azoles: effective metal chelators.

    PubMed

    Le, Giang; Vandegraaff, Nick; Rhodes, David I; Jones, Eric D; Coates, Jonathan A V; Thienthong, Neeranat; Winfield, Lisa J; Lu, Long; Li, Xinming; Yu, Changjiang; Feng, Xiao; Deadman, John J

    2010-10-01

    Synthesis of a diverse set of azoles and their utilizations as an amide isostere in the design of HIV integrase inhibitors is described. The Letter identified thiazole, oxazole, and imidazole as the most promising heterocycles. Initial SAR studies indicated that these novel series of integrase inhibitors are amenable to lead optimization. Several compounds with low nanomolar inhibitory potency are reported. Copyright © 2010 Elsevier Ltd. All rights reserved.

  6. HIV-1 IN Inhibitors: 2010 Update and Perspectives

    PubMed Central

    Marchand, Christophe; Maddali, Kasthuraiah; Metifiot, Mathieu; Pommier, Yves

    2010-01-01

    Integrase (IN) is the newest validated target against AIDS and retroviral infections. The remarkable activity of raltegravir (Isentress®) led to its rapid approval by the FDA in 2007 as the first IN inhibitor. Several other IN strand transfer inhibitors (STIs) are in development with the primary goal to overcome resistance due to the rapid occurrence of IN mutations in raltegravir-treated patients. Thus, many scientists and drug companies are actively pursuing clinically useful IN inhibitors. The objective of this review is to provide an update on the IN inhibitors reported in the last two years, including second generation strand transfer inhibitors (STI), recently developed hydroxylated aromatics, natural products, peptide, antibody and oligonucleotide inhibitors. Additionally, the targeting of IN cofactors such as LEDGF and Vpr will be discussed as novel strategies for the treatment of AIDS. PMID:19747122

  7. Coevolutionary analysis of resistance-evading peptidomimetic inhibitors of HIV-1 protease.

    PubMed

    Rosin, C D; Belew, R K; Morris, G M; Olson, A J; Goodsell, D S

    1999-02-16

    We have developed a coevolutionary method for the computational design of HIV-1 protease inhibitors selected for their ability to retain efficacy in the face of protease mutation. For HIV-1 protease, typical drug design techniques are shown to be ineffective for the design of resistance-evading inhibitors: An inhibitor that is a direct analogue of one of the natural substrates will be susceptible to resistance mutation, as will inhibitors designed to fill the active site of the wild-type or a mutant enzyme. Two design principles are demonstrated: (i) For enzymes with broad substrate specificity, such as HIV-1 protease, resistance-evading inhibitors are best designed against the immutable properties of the active site-the properties that must be conserved in any mutant protease to retain the ability to bind and cleave all of the native substrates. (ii) Robust resistance-evading inhibitors can be designed by optimizing activity simultaneously against a large set of mutant enzymes, incorporating as much of the mutational space as possible.

  8. Coevolutionary analysis of resistance-evading peptidomimetic inhibitors of HIV-1 protease

    PubMed Central

    Rosin, Christopher D.; Belew, Richard K.; Morris, Garrett M.; Olson, Arthur J.; Goodsell, David S.

    1999-01-01

    We have developed a coevolutionary method for the computational design of HIV-1 protease inhibitors selected for their ability to retain efficacy in the face of protease mutation. For HIV-1 protease, typical drug design techniques are shown to be ineffective for the design of resistance-evading inhibitors: An inhibitor that is a direct analogue of one of the natural substrates will be susceptible to resistance mutation, as will inhibitors designed to fill the active site of the wild-type or a mutant enzyme. Two design principles are demonstrated: (i) For enzymes with broad substrate specificity, such as HIV-1 protease, resistance-evading inhibitors are best designed against the immutable properties of the active site—the properties that must be conserved in any mutant protease to retain the ability to bind and cleave all of the native substrates. (ii) Robust resistance-evading inhibitors can be designed by optimizing activity simultaneously against a large set of mutant enzymes, incorporating as much of the mutational space as possible. PMID:9990030

  9. HIV Protease Inhibitor-Induced Cathepsin Modulation Alters Antigen Processing and Cross-Presentation.

    PubMed

    Kourjian, Georgio; Rucevic, Marijana; Berberich, Matthew J; Dinter, Jens; Wambua, Daniel; Boucau, Julie; Le Gall, Sylvie

    2016-05-01

    Immune recognition by T cells relies on the presentation of pathogen-derived peptides by infected cells, but the persistence of chronic infections calls for new approaches to modulate immune recognition. Ag cross-presentation, the process by which pathogen Ags are internalized, degraded, and presented by MHC class I, is crucial to prime CD8 T cell responses. The original degradation of Ags is performed by pH-dependent endolysosomal cathepsins. In this article, we show that HIV protease inhibitors (PIs) prescribed to HIV-infected persons variably modulate cathepsin activities in human APCs, dendritic cells and macrophages, and CD4 T cells, three cell subsets infected by HIV. Two HIV PIs acted in two complementary ways on cathepsin hydrolytic activities: directly on cathepsins and indirectly on their regulators by inhibiting Akt kinase activities, reducing NADPH oxidase 2 activation, and lowering phagolysosomal reactive oxygen species production and pH, which led to enhanced cathepsin activities. HIV PIs modified endolysosomal degradation and epitope production of proteins from HIV and other pathogens in a sequence-dependent manner. They altered cross-presentation of Ags by dendritic cells to epitope-specific T cells and T cell-mediated killing. HIV PI-induced modulation of Ag processing partly changed the MHC self-peptidome displayed by primary human cells. This first identification, to our knowledge, of prescription drugs modifying the regulation of cathepsin activities and the MHC-peptidome may provide an alternate therapeutic approach to modulate immune recognition in immune disease beyond HIV.

  10. Small Molecule Inhibitors of BAF; A Promising Family of Compounds in HIV-1 Latency Reversal

    PubMed Central

    Stoszko, Mateusz; De Crignis, Elisa; Rokx, Casper; Khalid, Mir Mubashir; Lungu, Cynthia; Palstra, Robert-Jan; Kan, Tsung Wai; Boucher, Charles; Verbon, Annelies; Dykhuizen, Emily C.; Mahmoudi, Tokameh

    2015-01-01

    Persistence of latently infected cells in presence of Anti-Retroviral Therapy presents the main obstacle to HIV-1 eradication. Much effort is thus placed on identification of compounds capable of HIV-1 latency reversal in order to render infected cells susceptible to viral cytopathic effects and immune clearance. We identified the BAF chromatin remodeling complex as a key player required for maintenance of HIV-1 latency, highlighting its potential as a molecular target for inhibition in latency reversal. Here, we screened a recently identified panel of small molecule inhibitors of BAF (BAFi's) for potential to activate latent HIV-1. Latency reversal was strongly induced by BAFi's Caffeic Acid Phenethyl Ester and Pyrimethamine, two molecules previously characterized for clinical application. BAFi's reversed HIV-1 latency in cell line based latency models, in two ex vivo infected primary cell models of latency, as well as in HIV-1 infected patient's CD4 + T cells, without inducing T cell proliferation or activation. BAFi-induced HIV-1 latency reversal was synergistically enhanced upon PKC pathway activation and HDAC-inhibition. Therefore BAFi's constitute a promising family of molecules for inclusion in therapeutic combinatorial HIV-1 latency reversal. PMID:26870822

  11. Small Molecule Inhibitors of BAF; A Promising Family of Compounds in HIV-1 Latency Reversal.

    PubMed

    Stoszko, Mateusz; De Crignis, Elisa; Rokx, Casper; Khalid, Mir Mubashir; Lungu, Cynthia; Palstra, Robert-Jan; Kan, Tsung Wai; Boucher, Charles; Verbon, Annelies; Dykhuizen, Emily C; Mahmoudi, Tokameh

    2016-01-01

    Persistence of latently infected cells in presence of Anti-Retroviral Therapy presents the main obstacle to HIV-1 eradication. Much effort is thus placed on identification of compounds capable of HIV-1 latency reversal in order to render infected cells susceptible to viral cytopathic effects and immune clearance. We identified the BAF chromatin remodeling complex as a key player required for maintenance of HIV-1 latency, highlighting its potential as a molecular target for inhibition in latency reversal. Here, we screened a recently identified panel of small molecule inhibitors of BAF (BAFi's) for potential to activate latent HIV-1. Latency reversal was strongly induced by BAFi's Caffeic Acid Phenethyl Ester and Pyrimethamine, two molecules previously characterized for clinical application. BAFi's reversed HIV-1 latency in cell line based latency models, in two ex vivo infected primary cell models of latency, as well as in HIV-1 infected patient's CD4 + T cells, without inducing T cell proliferation or activation. BAFi-induced HIV-1 latency reversal was synergistically enhanced upon PKC pathway activation and HDAC-inhibition. Therefore BAFi's constitute a promising family of molecules for inclusion in therapeutic combinatorial HIV-1 latency reversal.

  12. Integrated Activity and Genetic Profiling of Secreted Peptidases in Cryptococcus neoformans Reveals an Aspartyl Peptidase Required for Low pH Survival and Virulence

    PubMed Central

    Clarke, Starlynn C.; Dumesic, Phillip A.; Homer, Christina M.; O’Donoghue, Anthony J.; La Greca, Florencia; Pallova, Lenka; Majer, Pavel; Madhani, Hiten D.; Craik, Charles S.

    2016-01-01

    The opportunistic fungal pathogen Cryptococcus neoformans is a major cause of mortality in immunocompromised individuals, resulting in more than 600,000 deaths per year. Many human fungal pathogens secrete peptidases that influence virulence, but in most cases the substrate specificity and regulation of these enzymes remains poorly understood. The paucity of such information is a roadblock to our understanding of the biological functions of peptidases and whether or not these enzymes are viable therapeutic targets. We report here an unbiased analysis of secreted peptidase activity and specificity in C. neoformans using a mass spectrometry-based substrate profiling strategy and subsequent functional investigations. Our initial studies revealed that global peptidase activity and specificity are dramatically altered by environmental conditions. To uncover the substrate preferences of individual enzymes and interrogate their biological functions, we constructed and profiled a ten-member gene deletion collection of candidate secreted peptidases. Through this deletion approach, we characterized the substrate specificity of three peptidases within the context of the C. neoformans secretome, including an enzyme known to be important for fungal entry into the brain. We selected a previously uncharacterized peptidase, which we term Major aspartyl peptidase 1 (May1), for detailed study due to its substantial contribution to extracellular proteolytic activity. Based on the preference of May1 for proteolysis between hydrophobic amino acids, we screened a focused library of aspartyl peptidase inhibitors and identified four high-affinity antagonists. Finally, we tested may1Δ strains in a mouse model of C. neoformans infection and found that strains lacking this enzyme are significantly attenuated for virulence. Our study reveals the secreted peptidase activity and specificity of an important human fungal pathogen, identifies responsible enzymes through genetic tests of their

  13. HIV integrase inhibitors: from diketoacids to heterocyclic templates: a history of HIV integrase medicinal chemistry at Merck West Point and Merck Rome (IRBM).

    PubMed

    Egbertson, Melissa S

    2007-01-01

    Replication of the human immunodeficiency virus (HIV) is dependent upon the enzyme HIV integrase (IN), one of three essential enzymes encoded in the viral genome. HIV-1 IN catalyzes the insertion of the proviral DNA into the host genome (strand transfer). HIV-1 IN therefore presents an attractive chemotherapeutic target for the treatment of HIV infection and AIDS that could provide patients and physicians with an additional option for treatment. Assays were developed to identify inhibitors of IN strand transfer. Diketoacid lead compounds were explored and developed into a variety of heterocyclic templates that are potent inhibitors of integrase strand transfer with suitable medicinal chemical properties for treating HIV infection and AIDS. The 1,6-naphthyridine L-870810 (Antiviral activity in cells IC(95) NHS = 102 nM, n=237), was shown to be efficacious in reducing viral RNA by 1.7 log units after doses of 400mg BID to HIV infected patients. Optimization of physical properties led to L-900564, an inhibitor of HIV IN that has excellent cell potency in the presence of protein (Antiviral activity in cells IC(95) NHS = 16 nM, n=15), excellent activity against mutants raised to HIV integrase inhibitors, and a very good pharmacokinetic profile.

  14. In silico approaches to predict the potential of milk protein-derived peptides as dipeptidyl peptidase IV (DPP-IV) inhibitors.

    PubMed

    Nongonierma, Alice B; Mooney, Catherine; Shields, Denis C; FitzGerald, Richard J

    2014-07-01

    Molecular docking of a library of all 8000 possible tripeptides to the active site of DPP-IV was used to determine their binding potential. A number of tripeptides were selected for experimental testing, however, there was no direct correlation between the Vina score and their in vitro DPP-IV inhibitory properties. While Trp-Trp-Trp, the peptide with the best docking score, was a moderate DPP-IV inhibitor (IC50 216μM), Lineweaver and Burk analysis revealed its action to be non-competitive. This suggested that it may not bind to the active site of DPP-IV as assumed in the docking prediction. Furthermore, there was no significant link between DPP-IV inhibition and the physicochemical properties of the peptides (molecular mass, hydrophobicity, hydrophobic moment (μH), isoelectric point (pI) and charge). LIGPLOTs indicated that competitive inhibitory peptides were predicted to have both hydrophobic and hydrogen bond interactions with the active site of DPP-IV. DPP-IV inhibitory peptides generally had a hydrophobic or aromatic amino acid at the N-terminus, preferentially a Trp for non-competitive inhibitors and a broader range of residues for competitive inhibitors (Ile, Leu, Val, Phe, Trp or Tyr). Two of the potent DPP-IV inhibitors, Ile-Pro-Ile and Trp-Pro (IC50 values of 3.5 and 44.2μM, respectively), were predicted to be gastrointestinally/intestinally stable. This work highlights the needs to test the assumptions (i.e. competitive binding) of any integrated strategy of computational and experimental screening, in optimizing screening. Future strategies targeting allosteric mechanisms may need to rely more on structure-activity relationship modeling, rather than on docking, in computationally selecting peptides for screening.

  15. Structures of HIV Protease Guide Inhibitor Design to Overcome Drug Resistance

    SciTech Connect

    Weber, Irene T.; Kovalevsky, Andrey Y.; Harrison, Robert W.

    2008-06-03

    The HIV/AIDS infection continues to be a major epidemic worldwide despite the initial promise of antiviral drugs. Current therapy includes a combination of drugs that inhibit two of the virally-encoded enzymes, the reverse transcriptase and the protease. The first generation of HIV protease inhibitors that have been in clinical use for treatment of AIDS since 1995 was developed with the aid of structural analysis of protease-inhibitor complexes. These drugs were successful in improving the life span of HIV-infected people. Subsequently, the rapid emergence of drug resistance has necessitated the design of new inhibitors that target mutant proteases. This second generation of antiviral protease inhibitors has been developed with the aid of data from medicinal chemistry, kinetics, and X-ray crystallographic analysis. Traditional computational methods such as molecular mechanics and dynamics can be supplemented with intelligent data mining approaches. One approach, based on similarities to the protease interactions with substrates, is to incorporate additional interactions with main chain atoms that cannot easily be eliminated by mutations. Our structural and inhibition data for darunavir have helped to understand its antiviral activity and effectiveness on drug resistant HIV and demonstrate the success of this approach.

  16. HIV-1 Gag as an Antiviral Target: Development of Assembly and Maturation Inhibitors

    PubMed Central

    Spearman, Paul

    2016-01-01

    HIV-1 Gag is the master orchestrator of particle assembly. The central role of Gag at multiple stages of the HIV lifecycle has led to efforts to develop drugs that directly target Gag and prevent the formation and release of infectious particles. Until recently, however, only the catalytic site protease inhibitors have been available to inhibit late stages of HIV replication. This review summarizes the current state of development of antivirals that target Gag or disrupt late events in the retrovirus lifecycle such as maturation of the viral capsid. Maturation inhibitors represent an exciting new series of antiviral compounds, including those that specifically target CA-SP1 cleavage and the allosteric integrase inhibitors that inhibit maturation by a completely different mechanism. Numerous small molecules and peptides targeting CA have been studied in attempts to disrupt steps in assembly. Efforts to target CA have recently gained have considerable momentum from the development of small molecules that bind CA and alter capsid stability at the post-entry stage of the lifecycle. Efforts to develop antivirals that inhibit incorporation of genomic RNA or to inhibit late budding events remain in preliminary stages of development. Overall, the development of novel antivirals targeting Gag and the late stages in HIV replication appears much closer to success than ever, with the new maturation inhibitors leading the way. PMID:26329615

  17. Structural Basis of Potent and Broad HIV-1 Fusion Inhibitor CP32M*

    PubMed Central

    Yao, Xue; Chong, Huihui; Zhang, Chao; Qiu, Zonglin; Qin, Bo; Han, Ruiyun; Waltersperger, Sandro; Wang, Meitian; He, Yuxian; Cui, Sheng

    2012-01-01

    CP32M is a newly designed peptide fusion inhibitor possessing potent anti-HIV activity, especially against T20-resistant HIV-1 strains. In this study, we show that CP32M can efficiently inhibit a large panel of diverse HIV-1 variants, including subtype B′, CRF07_BC, and CRF01_AE recombinants and naturally occurring or induced T20-resistant viruses. To elucidate its mechanism of action, we determined the crystal structure of CP32M complexed with its target sequence. Differing from its parental peptide, CP621-652, the 621VEWNEMT627 motif of CP32M folds into two α-helix turns at the N terminus of the pocket-binding domain, forming a novel layer in the six-helix bundle structure. Prominently, the residue Asn-624 of the 621VEWNEMT627 motif is engaged in the polar interaction with a hydrophilic ridge that borders the hydrophobic pocket on the N-terminal coiled coil. The original inhibitor design of CP32M provides several intra- and salt bridge/hydrogen bond interactions favoring the stability of the helical conformation of CP32M and its interactions with N-terminal heptad repeat (NHR) targets. We identified a novel salt bridge between Arg-557 on the NHR and Glu-648 of CP32M that is critical for the binding of CP32M and resistance against the inhibitor. Therefore, our data present important information for developing novel HIV-1 fusion inhibitors for clinical use. PMID:22679024

  18. Synthesis and evaluation of novel quinolinones as HIV-1 reverse transcriptase inhibitors.

    PubMed

    Patel, M; McHugh, R J; Cordova, B C; Klabe, R M; Bacheler, L T; Erickson-Viitanen, S; Rodgers, J D

    2001-07-23

    A series of 4,4-disubstituted quinolinones was prepared and evaluated as HIV-1 reverse transcriptase inhibitors. The C-3 substituted compound 9h displayed improved antiviral activity against clinically significant single (K103N) and double (K103N/L100I) mutant viruses.

  19. Inhibition of Tat-mediated HIV-1 replication and neurotoxicity by novel GSK3-beta inhibitors.

    PubMed

    Kehn-Hall, Kylene; Guendel, Irene; Carpio, Lawrence; Skaltsounis, Leandros; Meijer, Laurent; Al-Harthi, Lena; Steiner, Joseph P; Nath, Avindra; Kutsch, Olaf; Kashanchi, Fatah

    2011-06-20

    The HIV-1 protein Tat is a critical regulator of viral transcription and has also been implicated as a mediator of HIV-1 induced neurotoxicity. Here using a high throughput screening assay, we identified the GSK-3 inhibitor 6BIO, as a Tat-dependent HIV-1 transcriptional inhibitor. Its ability to inhibit HIV-1 transcription was confirmed in TZM-bl cells, with an IC(50) of 40nM. Through screening 6BIO derivatives, we identified 6BIOder, which has a lower IC(50) of 4nM in primary macrophages and 0.5nM in astrocytes infected with HIV-1. 6BIOder displayed an IC(50) value of 0.03nM through in vitro GSK-3β kinase inhibition assays. Finally, we demonstrated 6BIO and 6BIOder have neuroprotective effects on Tat induced cell death in rat mixed hippocampal cultures. Therefore 6BIO and its derivatives are unique compounds which, due to their complex mechanisms of action, are able to inhibit HIV-1 transcription as well as to protect against Tat induced neurotoxicity. Copyright © 2011 Elsevier Inc. All rights reserved.

  20. Inhibition of Tat-mediated HIV-1 replication and neurotoxicity by novel GSK3-beta inhibitors

    PubMed Central

    Kehn-Hall, Kylene; Guendel, Irene; Carpio, Lawrence; Skaltsounis, Leandros; Meijer, Laurent; Al-Harthi, Lena; Steiner, Joseph P.; Nath, Avindra; Kutsch, Olaf; Kashanchi, Fatah

    2013-01-01

    The HIV-1 protein Tat is a critical regulator of viral transcription and has also been implicated as a mediator of HIV-1 induced neurotoxicity. Here using a high throughput screening assay, we identified the GSK-3 inhibitor 6BIO, as a Tat-dependent HIV-1 transcriptional inhibitor. Its ability to inhibit HIV-1 transcription was confirmed in TZM-bl cells, with an IC50 of 40 nM. Through screening 6BIO derivatives, we identified 6BIOder, which has a lower IC50 of 4 nM in primary macrophages and 0.5 nM in astrocytes infected with HIV-1. 6BIOder displayed an IC50 value of 0.03 nM through in vitro GSK-3β kinase inhibition assays. Finally, we demonstrated 6BIO and 6BIOder have neuroprotective effects on Tat induced cell death in rat mixed hippocampal cultures. Therefore 6BIO and its derivatives are unique compounds which, due to their complex mechanisms of action, are able to inhibit HIV-1 transcription as well as to protect against Tat induced neurotoxicity. PMID:21514616

  1. Raltegravir, elvitegravir, and metoogravir: the birth of "me-too" HIV-1 integrase inhibitors

    PubMed Central

    Serrao, Erik; Odde, Srinivas; Ramkumar, Kavya; Neamati, Nouri

    2009-01-01

    Merck's MK-0518, known as raltegravir, has recently become the first FDA-approved HIV-1 integrase (IN) inhibitor and has since risen to blockbuster drug status. Much research has in turn been conducted over the last few years aimed at recreating but optimizing the compound's interactions with the protein. Resulting me-too drugs have shown favorable pharmacokinetic properties and appear drug-like but, as expected, most have a highly similar interaction with IN to that of raltegravir. We propose that, based upon conclusions drawn from our docking studies illustrated herein, most of these me-too MK-0518 analogues may experience a low success rate against raltegravir-resistant HIV strains. As HIV has a very high mutational competence, the development of drugs with new mechanisms of inhibitory action and/or new active substituents may be a more successful route to take in the development of second- and third-generation IN inhibitors. PMID:19265512

  2. Tetrahydrofuran, tetrahydropyran, triazoles and related heterocyclic derivatives as HIV protease inhibitors

    PubMed Central

    Ghosh, Arun K; Anderson, David D

    2011-01-01

    HIV/AIDS remains a formidable disease with millions of individuals inflicted worldwide. Although treatment regimens have improved considerably, drug resistance brought on by viral mutation continues to erode their effectiveness. Intense research efforts are currently underway in search of new and improved therapies. This review is concerned with the design of novel HIV-1 protease inhibitors that incorporate heterocyclic scaffolds and which have been reported within the recent literature (2005–2010). Various examples in this review showcase the essential role heterocycles play as scaffolds and bioisosteres in HIV-1 protease inhibitor drug development. This review will hopefully stimulate the widespread application of these heterocycles in the design of other therapeutic agents. PMID:21806380

  3. [Virtual screening of small molecular HIV-1 entry inhibitor NC-2 targeting gp120 and its action mechanism].

    PubMed

    Duan, Heng; Wang, Yuqin; Song, Deshou; Chen, Zhipeng; Qiu, Jiayin; Lu, Lu; Jiang, Shibo; Liu, Shuwen; Tan, Suiyi

    2013-06-01

    To screen the HIV-1 entry inhibitors targeting HIV-1 gp120 from the IBS natural product database by virtual screening based on the binding mode of the neutralizing antibody VRC01 with HIV-1 gp120 and investigate the anti-viral activities of the inhibitors and their action mechanisms. The binding interaction of the candidate molecules binding gp120 and changes of the binding free energy were analyzed by MM-PBSA calculation. The anti-HIV-1 activities of the tested compounds were detected by HIV-1 pseudotyped virus, laboratory-adapted HIV-1 and a cell-cell fusion assay. The cytotoxicity of the studied molecules was examined by XTT colorimetric assay. The mechanisms of the anti-viral activities of the candidate molecules were analyzed using enzyme-linked immunosorbent assay. A total of 19 molecules with distinct reduction of the binding free energy after binding with gp120 were screened from 40000 molecules. Among them, NC-2 showed anti-HIV-1 activities against HIV-1 pseudotyped virus and laboratory-adapted HIV-1, and was capable of blocking HIV-1 envelope-mediated cell-cell fusion. The IC50 of NC-2 for inhibiting HIV-1IIIB and pseudotyped HIV-1JRFL infection were 1.95∓0.44 µmol/L and 10.58∓0.13 µmol/L, respectively. The results of ELISA suggested that NC-2 could inhibit the binding of HIV-1 gp120 to CD4 without blocking the formation of gp41 six-helix bundle in vitro. This computer-based virtual screening method can be used to screen HIV-1 entry inhibitors targeting gp120. Using this virtual screening approach combined with anti-viral activity screening, we obtained a potent HIV-1 entry inhibitor NC-2 with novel structure.

  4. Protonation state and free energy calculation of HIV-1 protease-inhibitor complex based on electrostatic polarisation effect

    NASA Astrophysics Data System (ADS)

    Yang, Maoyou; Jiang, Xiaonan; Jiang, Ning

    2014-06-01

    The protonation states of catalytic Asp25/25‧ residues remarkably affect the binding mechanism of the HIV-1 protease-inhibitor complex. Here we report a molecular dynamics simulation study, which includes electrostatic polarisation effect, to investigate the influence of Asp25/25‧ protonation states upon the binding free energy of the HIV-1 protease and a C2-symmetric inhibitor. Good agreements are obtained on inhibitor structure, hydrogen bond network, and binding free energy between our theoretical calculations and the experimental data. The calculations show that the Asp25 residue is deprotonated, and the Asp25‧ residue is protonated. Our results reveal that the Asp25/25‧ residues can have different protonation states when binding to different inhibitors although the protease and the inhibitors have the same symmetry. This study offers some insights into understanding the protonation state of HIV-1 protease-inhibitor complex, which could be helpful in designing new inhibitor molecules.

  5. HIV Type 1 genetic diversity and naturally occurring polymorphisms in HIV type 1 Kenyan isolates: implications for integrase inhibitors.

    PubMed

    Nyamache, Anthony Kebira; Muigai, Anne W T; Nganga, Zipporah; Khamadi, Samoel A

    2012-08-01

    Little is known about the extent and predictors of polymorphisms potentially influencing susceptibility to HIV integrase inhibitors. HIV-1 genetic diversity and drug resistance are major challenges in patient management globally. To evaluate HIV genetic diversity and drug resistance-associated mutations within a Nairobi cohort, genetic analysis of the HIV-1 pol-integrase gene regions was performed on samples collected from 42 subjects and 113 Kenyan intergrase sequences deposited in the Los Alamos HIV database. From the partial pol-integrase sequences analyzed phylogenetically, it was shown that 26 (61.9%) were subtype A1, 9 (21.4%) were subtype D, 5 (11.9%) were subtype C, 1 (2.4%) was subtype A2 and 1 (2.4%) was subtype CRF. Integrase-associated mutations were found in 12 patients, and in all 113 sequences already deposited in GenBank. One sample from this study and five from previous Kenyan integrase sequences had mutations at T97A, which is associated with reduced susceptibility to raltegravir.

  6. Blocking HIV-1 entry by a gp120 surface binding inhibitor

    PubMed Central

    Tsou, Lun K.; Chen, Chin-Ho; Dutschman, Ginger E.

    2012-01-01

    We report the mode of action of a proteomimetic compound that binds to the exterior surface of gp120 and blocks HIV-1 entry into cells. Using a one cycle time-of-addition study and antibody competition binding studies, we have determined that the compound blocks HIV-1 entry through modulation of key protein-protein interactions mediated by gp120. The compound exhibits anti-HIV-1 replication activities against several pseudotype viruses derived from primary isolates and the resistant strains isolated from existing drug candidates with equal potency. Together, these data provide evidence that the proteomimetic compound represents a novel class of HIV-1 viral entry inhibitor that functions through protein surface recognition in analogy to an antibody. PMID:22487177

  7. Virtual Screening of Indonesian Herbal Database as HIV-1 Protease Inhibitor

    PubMed Central

    Yanuar, Arry; Suhartanto, Heru; Mun׳im, Abdul; Anugraha, Bram Hik; Syahdi, Rezi Riadhi

    2014-01-01

    HIV-1 (Human immunodeficiency virus type 1)׳s infection is considered as one of most harmful disease known by human, the survivability rate of the host reduced significantly when it developed into AIDS. HIV drug resistance is one of the main problems of its treatment and several drug designs have been done to find new leads compound as the cure. In this study, in silico virtual screening approach was used to find lead molecules from the library or database of natural compounds as HIV-1 protease inhibitor. Virtual screening against Indonesian Herbal Database with AutoDock was performed on HIV-1 protease. From the virtual screening, top ten compounds obtained were 8-Hydroxyapigenin 8-(2",4"-disulfatoglucuronide), Isoscutellarein 4'-methyl ether, Amaranthin, Torvanol A, Ursonic acid, 5-Carboxypyranocyanidin 3-O-(6"-O-malonyl-beta-glucopyranoside), Oleoside, Jacoumaric acid, Platanic acid and 5-Carboxypyranocyanidin 3-O-beta-glucopyranoside. PMID:24616554

  8. Molecular dynamics study of carbon nanotube as a potential dual-functional inhibitor of HIV-1 integrase.

    PubMed

    Zhang, Zhishun; Wang, Bingqiang; Wan, Bo; Yu, Long; Huang, Qiang

    2013-07-12

    HIV-1 integrase (IN) plays an important role in integrating viral DNA into human genome, which has been considered as the drug target for anti-AIDS therapy. The appearance of drug-resistance mutants urgently requires novel inhibitors that act on non-active site of HIV-1 IN. Nanoparticles have such unique geometrical and chemical properties, which inspires us that nanoparticles like nanotubes may serve as better HIV-1 IN inhibitors than the conventional inhibitors. To test this hypothesis, we performed molecular dynamics (MD) simulation to study the binding of a carbon nanotube (CNT) to a full-length HIV-1 IN. The results showed that the CNT could stably bind to the C-terminal domain (CTD) of HIV-1 IN. The CNT also induced a domain-shift which disrupted the binding channel for viral DNA. Further MD simulation showed that a HIV-1 IN inhibitor, 5ClTEP was successfully sealed inside the uncapped CNT. These results indicate that the CNT may serve as a potential dual-functional HIV-1 IN inhibitor, not only inducing conformation change as an allosteric inhibitor but also carrying small-molecular inhibitors as a drug delivery system. Copyright © 2013 Elsevier Inc. All rights reserved.

  9. Design of Annulated Pyrazoles As Inhibitors of HIV-1 Reverse Transcriptase

    SciTech Connect

    Sweeney, Z.K.; Harris, S.F.; Arora, N.; Javanbakht, H.; Li, Y.; Fretland, J.; Davidson, J.P.; Billedeau, J.R.; Gleason, S.; Hirschfeld, D.; Kennedy-Smith, J.J.; Mirzadegan, T.; Roetz, R.; Smith, M.; Sperry, S.; Suh, J.M.; Wu, J.; Tsing, S.; Villasenor, A.G.; Paul, A.; Su, G.

    2009-05-26

    Non-nucleoside reverse transcriptase inhibitors (NNRTIs) are recommended components of preferred combination antiretroviral therapies used for the treatment of HIV. These regimens are extremely effective in suppressing virus replication. Structure-based optimization of diaryl ether inhibitors led to the discovery of a new series of pyrazolo[3,4-c]pyridazine NNRTIs that bind the reverse transcriptase enzyme of human immunodeficiency virus-1 (HIV-RT) in an expanded volume relative to most other inhibitors in this class. The binding mode maintains the {beta}13 and {beta}14 strands bearing Pro236 in a position similar to that in the unliganded reverse transcriptase structure, and the distribution of interactions creates the opportunity for substantial resilience to single point mutations. Several pyrazolopyridazine NNRTIs were found to be highly effective against wild-type and NNRTI-resistant viral strains in cell culture.

  10. Synthesis of a Vpr-Binding Derivative for Use as a Novel HIV-1 Inhibitor.

    PubMed

    Hagiwara, Kyoji; Ishii, Hideki; Murakami, Tomoyuki; Takeshima, Shin-nosuke; Chutiwitoonchai, Nopporn; Kodama, Eiichi N; Kawaji, Kumi; Kondoh, Yasumitsu; Honda, Kaori; Osada, Hiroyuki; Tsunetsugu-Yokota, Yasuko; Suzuki, Masaaki; Aida, Yoko

    2015-01-01

    The emergence of multidrug-resistant viruses compromises the efficacy of anti-human immunodeficiency virus type 1 (HIV-1) therapy and limits treatment options. Therefore, new targets that can be used to develop novel antiviral agents need to be identified. We previously identified a potential parent compound, hematoxylin, which suppresses the nuclear import of HIV-1 via the Vpr-importin α interaction and inhibits HIV-1 replication in a Vpr-dependent manner by blocking nuclear import of the pre-integration complex. However, it was unstable. Here, we synthesized a stable derivative of hematoxylin that bound specifically and stably to Vpr and inhibited HIV-1 replication in macrophages. Furthermore, like hematoxylin, the derivative inhibited nuclear import of Vpr in an in vitro nuclear import assay, but had no effect on Vpr-induced G2/M phase cell cycle arrest or caspase activity. Interestingly, this derivative bound strongly to amino acid residues 54-74 within the C-terminal α-helical domain (αH3) of Vpr. These residues are highly conserved among different HIV strains, indicating that this region is a potential target for drug-resistant HIV-1 infection. Thus, we succeeded in developing a stable hematoxylin derivative that bound directly to Vpr, suggesting that specific inhibitors of the interaction between cells and viral accessory proteins may provide a new strategy for the treatment of HIV-1 infection.

  11. Novel therapeutics for type 2 diabetes: incretin hormone mimetics (glucagon-like peptide-1 receptor agonists) and dipeptidyl peptidase-4 inhibitors.

    PubMed

    Verspohl, E J

    2009-10-01

    Known treatments of type 2 diabetes mellitus have limitations such as weight gain, and hypoglycaemias. A new perspective is the use of incretin hormones and incretin enhancers. Incretins are defined as being responsible for the higher insulin release after an oral glucose load compared to an intravenous glucose load. The delicate balance of glucose homeostasis, in which incretin hormones are involved, is disturbed in type 2 diabetes mellitus. The incretin GLP-1 helps to maintain glucose homeostasis through stimulation of insulin secretion and inhibition of glucagon release in a glucose-dependent manner. This is associated with reductions in body weight, and no risk of hypoglycaemias. When classical oral agents have failed to maintain adequate glycaemic control, incretin mimetics may be of particular value for obese patients and those who have little control over meal sizes. Exenatide was marketed as a GLP-1 analogue and longer acting incretin mimetics such as liraglutide, albiglutide and others have the same pharmacological profile. In addition to incretin mimetics incretin enhancers which inhibit/delay degradation of incretins were developed: so-called DPP-4 inhibitors such as sitagliptin and vildagliptin are approved in Europe. Their differences from incretin mimetics include: oral bioavailability, less side effects with overdose, no direct CNS effects (nausea and vomiting) and no effect on weight. In rodent models of diabetes, but not yet in humans, GLP-1 receptor agonists and DPP-4 inhibitors increase islet mass and preserve beta-cell function. Incretin mimetics and enhancers expand type 2 diabetes treatment, are still not first line therapy and it is discussed if they are to be prophylactically used.

  12. An intravaginal ring for the simultaneous delivery of an HIV-1 maturation inhibitor and reverse transcriptase inhibitor for prophylaxis of HIV transmission

    PubMed Central

    Ugaonkar, Shweta R.; Clark, Justin T.; English, Lexie B.; Johnson, Todd J.; Buckheit, Karen W.; Bahde, Robert J.; Appella, Daniel H.; Buckheit, Robert W.; Kiser, Patrick F.

    2016-01-01

    Nucleocapsid 7 (NCp7) inhibitors have been investigated extensively for their role in impeding the function of HIV-1 replication machinery and their ability to directly inactivate the virus. A class of NCp7 zinc finger inhibitors, S-acyl-2-mercaptobenzamide thioesters (SAMTs), was investigated for topical drug delivery. SAMTs are inherently unstable due to their hydrolytically labile thioester bond thus requiring formulation approaches that can lend stability. We describe the delivery of N-[2-(3,4,5-trimethoxybenzoylthio)benzoyl]-β-alanine amide (SAMT-10), as a single agent antiretroviral (ARV) therapeutic and in combination with the HIV-1 reverse transcriptase inhibitor pyrimidinedione IQP-0528, from a hydrophobic polyether urethane (PEU) intravaginal ring (IVR) for a month. The physicochemical stability of the ARV-loaded IVRs was confirmed after 3 months at 40°C/75% relative humidity (RH). In vitro, 25 ± 3 mg/IVR of SAMT-10 and 86 ± 13 mg/IVR of IQP-0528 were released. No degradation of the hydrolytically labile SAMT-10 was observed within the matrix. The combination of ARVs had synergistic antiviral activity when tested in in vitro cell based assays. Toxicological evaluations performed on an organotypic EpiVaginal™ tissue model demonstrated a lack of formulation toxicity. Overall, SAMT-10 and IQP-0528 were formulated in a stable PEU IVR for sustained release. Our findings support the need for further preclinical evaluation. PMID:26149293

  13. Identification of novel HIV-1 integrase inhibitors using shape-based screening, QSAR, and docking approach.

    PubMed

    Gupta, Pawan; Garg, Prabha; Roy, Nilanjan

    2012-05-01

    The objective of this study is to identify novel HIV-1 integrase (IN) inhibitors. Here, shape-based screening and QSAR have been successfully implemented to identify the novel inhibitors for HIV-1 IN, and in silico validation is performed by docking studies. The 2D QSAR model of benzodithiazine derivatives was built using genetic function approximation (GFA) method with good internal (cross-validated r(2)  = 0.852) and external prediction (). Best docking pose of highly active molecule of the benzodithiazine derivatives was used as a template for shape-based screening of ZINC database. Toxicity prediction was also performed using Deductive Estimation of Risk from Existing Knowledge (DEREK) program to filter non-toxic molecules. Inhibitory activities of screened non-toxic molecules were predicted using derived QSAR models. Active, non-toxic screened molecules were also docked into the active site of HIV-1 IN using AutoDock and dock program. Some molecules docked similarly as highly active molecule of the benzodithiazine derivatives. These molecules also followed the same docking interactions in both the programs. Finally, four benzodithiazine derivatives were identified as novel HIV-1 integrase inhibitors based on QSAR predictions and docking interactions. ADME properties of these molecules were also computed using Discovery Studio. © 2012 John Wiley & Sons A/S.

  14. The use of hairpin DNA duplexes as HIV-1 fusion inhibitors: synthesis, characterization, and activity evaluation.

    PubMed

    Xu, Liang; Jiang, Xifeng; Xu, Xiaoyu; Zheng, Baohua; Chen, Xueliang; Zhang, Tao; Gao, Fang; Cai, Lifeng; Cheng, Maosheng; Keliang Liu

    2014-07-23

    Discovery of new drugs for the treatment of AIDS that possess unique structures associated with novel mechanisms of action are of great importance due the rapidity with which drug-resistant HIV-1 strains evolve. Recently we reported on a novel class of DNA duplex-based HIV-1 fusion inhibitors modified with hydrophobic groups. The present study describes a new category of hairpin fusion inhibitor DNA duplexes bearing a 3 nucleotide loop located at either the hydrophobic or hydrophilic end. The new loop structures were designed to link 2 separate duplex-forming oligodeoxynucleotides (ODNs) to make helix-assembly easier and more thermally stable resulting in a more compact form of DNA duplex based HIV-1 fusion inhibitors. A series of new hairpin duplexes were tested for anti-HIV-1 cell-cell membrane fusion activity. In addition, Tm, CD, fluorescent resonance energy transfer assays, and molecular modeling analyses were carried out to define their structural activity relationships and possible mechanisms of action. Copyright © 2014 Elsevier Masson SAS. All rights reserved.

  15. A high throughput Cre–lox activated viral membrane fusion assay identifies pharmacological inhibitors of HIV entry

    SciTech Connect

    Esposito, Anthony M.; Cheung, Pamela; Swartz, Talia H.; Li, Hongru; Tsibane, Tshidi; Durham, Natasha D.; Basler, Christopher F.; Felsenfeld, Dan P.; Chen, Benjamin K.

    2016-03-15

    Enveloped virus entry occurs when viral and cellular membranes fuse releasing particle contents into the target cell. Human immunodeficiency virus (HIV) entry occurs by cell-free virus or virus transferred between infected and uninfected cells through structures called virological synapses. We developed a high-throughput cell-based assay to identify small molecule inhibitors of cell-free or virological synapse-mediated entry. An HIV clone carrying Cre recombinase as a Gag-internal gene fusion releases active Cre into cells upon viral entry activating a recombinatorial gene switch changing dsRed to GFP-expression. A screen of a 1998 known-biological profile small molecule library identified pharmacological HIV entry inhibitors that block both cell-free and cell-to-cell infection. Many top hits were noted as HIV inhibitors in prior studies, but not previously recognized as entry antagonists. Modest therapeutic indices for simvastatin and nigericin were observed in confirmatory HIV infection assays. This robust assay is adaptable to study HIV and heterologous viral pseudotypes. - Highlights: • Cre recombinase viral fusion assay screens cell-free or cell–cell entry inhibitors. • This Gag-iCre based assay is specific for the entry step of HIV replication. • Screened a library of known pharmacologic compounds for HIV fusion antagonists. • Many top hits were previously noted as HIV inhibitors, but here are classified as entry antagonists. Many top hits were previously noted as HIV inhibitors, but not as entry antagonists. • The assay is compatible with pseudotyping with HIV and heterologous viruses.

  16. The Tat Inhibitor Didehydro-Cortistatin A Prevents HIV-1 Reactivation from Latency

    PubMed Central

    Mousseau, Guillaume; Kessing, Cari F.; Fromentin, Rémi; Trautmann, Lydie; Chomont, Nicolas

    2015-01-01

    ABSTRACT Antiretroviral therapy (ART) inhibits HIV-1 replication, but the virus persists in latently infected resting memory CD4+ T cells susceptible to viral reactivation. The virus-encoded early gene product Tat activates transcription of the viral genome and promotes exponential viral production. Here we show that the Tat inhibitor didehydro-cortistatin A (dCA), unlike other antiretrovirals, reduces residual levels of viral transcription in several models of HIV latency, breaks the Tat-mediated transcriptional feedback loop, and establishes a nearly permanent state of latency, which greatly diminishes the capacity for virus reactivation. Importantly, treatment with dCA induces inactivation of viral transcription even after its removal, suggesting that the HIV promoter is epigenetically repressed. Critically, dCA inhibits viral reactivation upon CD3/CD28 or prostratin stimulation of latently infected CD4+ T cells from HIV-infected subjects receiving suppressive ART. Our results suggest that inclusion of a Tat inhibitor in current ART regimens may contribute to a functional HIV-1 cure by reducing low-level viremia and preventing viral reactivation from latent reservoirs. PMID:26152583

  17. Design, synthesis and activity evaluation of novel peptide fusion inhibitors targeting HIV-1 gp41.

    PubMed

    Tan, Jianjun; Su, Min; Zeng, Yi; Wang, Cunxin

    2016-01-15

    Human immunodeficiency virus type 1 (HIV-1), the pathogen of acquired immunodeficiency syndrome (AIDS), causes about 2 million people to death every year. Fusion inhibitors targeted the envelope protein (gp41) represent a novel and alternative approach for anti-AIDS therapy, which terminates the HIV-1 life cycle at an early stage. Using CP621-652 as a template, a series of peptides were designed, synthesized and evaluated in vitro assays. An interesting phenomenon was found that the substitution of hydrophobic residues at solvent accessible sites could increase the anti-HIV activity when the C-terminal sequence was extended with an enough numbers of amino acids. After the active peptides was synthesized and evaluated, peptide 8 showed the best anti-HIV-1 IIIB whole cell activity (MAGI IC50=53.02 nM). Further study indicated that peptide 8 bound with the gp41 NHR helix, and then blocked the conformation of 6-helix, thus inhibited virus-cell membrane fusion. The results would be helpful for the design of peptide fusion inhibitors against HIV-1 infection.

  18. Identification of a D-amino acid decapeptide HIV-1 entry inhibitor

    SciTech Connect

    Boggiano, Cesar; Jiang Shibo; Lu Hong; Zhao Qian; Liu Shuwen; Binley, James; Blondelle, Sylvie E. . E-mail: sylvieb@burnham.org

    2006-09-08

    Entry of human immunodeficiency virus type 1 (HIV-1) virion into host cells involves three major steps, each being a potential target for the development of entry inhibitors: gp120 binding to CD4, gp120-CD4 complex interacting with a coreceptor, and gp41 refolding to form a six-helix bundle. Using a D-amino acid decapeptide combinatorial library, we identified peptide DC13 as having potent HIV-1 fusion inhibitory activity, and effectively inhibiting infection by several laboratory-adapted and primary HIV-1 strains. While DC13 did not block binding of gp120 to CD4, nor disrupt the gp41 six-helix bundle formation, it effectively blocked the binding of an anti-CXCR4 monoclonal antibody and chemokine SDF-1{alpha} to CXCR4-expressing cells. However, because R5-using primary viruses were also neutralized, the antiviral activity of DC13 implies additional mode(s) of action. These results suggest that DC13 is a useful HIV-1 coreceptor antagonist for CXCR4 and, due to its biostability and simplicity, may be of value for developing a new class of HIV-1 entry inhibitors.

  19. Structure-activity relationship studies on a novel family of specific HIV-1 reverse transcriptase inhibitors.

    PubMed

    Bonache, María-Cruz; Chamorro, Cristina; Lobatón, Esther; De Clercq, Erik; Balzarini, Jan; Velázquez, Sonsoles; Camarasa, María-José; San-Félix, Ana

    2003-09-01

    We have previously reported the discovery and preliminary structure-activity relationships of a new class of specific HIV-1 reverse transcriptase (RT) inhibitors whose prototype compound is the 1-[2',5'-bis-O-(tert-butyldimethylsilyl)-beta-D-ribofuranosyl]-3-N-[(carboxy) methyl]-thymine. In an attempt to increase the inhibitory efficacy against HIV-1 RT of this new class of nucleosides, and to further explore the structural features required for anti-HIV-1 activity, different types of modifications have been carried out on the prototype compound. These include substitution of the tert-butyldimethylsilyl groups by other liphophilic groups, replacement of the carboxy group at the N-3 position of the nucleobase by other functional groups, change in the length of the spacer between the thymine and the carboxylic acid residue and substitution of the thymine moiety by other pyrimidine (uracil, 5-ethyluracil) or purine (hypoxanthine) nucleobases. In addition, the most salient structural features of this new class of HIV-1-specific nucleosides have been incorporated into classical HIV RT nucleoside inhibitors such as ddl, AZT, d4T. Our studies demonstrate that both the carboxymethyl moiety at the nucleobase and tert-butyldimethylsilyl groups at the sugar are important structural components since deletion of either of them is detrimental to the antiviral activity.

  20. Guanidine alkaloid analogs as inhibitors of HIV-1 Nef interactions with p53, actin, and p56lck.

    PubMed

    Olszewski, Allison; Sato, Ken; Aron, Zachary D; Cohen, Frederick; Harris, Aleishia; McDougall, Brenda R; Robinson, W Edward; Overman, Larry E; Weiss, Gregory A

    2004-09-28

    With current anti-HIV treatments targeting only 4 of the 15 HIV proteins, many potential viral vulnerabilities remain unexploited. We report small-molecule inhibitors of the HIV-1 protein Nef. In addition to expanding the anti-HIV arsenal, small-molecule inhibitors against untargeted HIV proteins could be used to dissect key events in the HIV lifecycle. Numerous incompletely characterized interactions between Nef and cellular ligands, for example, present a challenge to understanding molecular events during HIV progression to AIDS. Assays with phage-displayed Nef from HIV(NL4-3) were used to identify a series of guanidine alkaloid-based inhibitors of Nef interactions with p53, actin, and p56(lck). The guanidines, synthetic analogs of batzellidine and crambescidin natural products, inhibit the Nef-ligand interactions with IC(50) values in the low micromolar range. In addition, sensitive in vivo assays for Nef inhibition are reported. Although compounds that are effective in vitro proved to be too cytotoxic for cellular assays, the reported Nef inhibitors provide proof-of-concept for disrupting a new HIV target and offer useful leads for drug development.

  1. Multimerized HIV-gp41-derived peptides as fusion inhibitors and vaccines.

    PubMed

    Nomura, Wataru; Mizuguchi, Takaaki; Tamamura, Hirokazu

    2016-11-04

    To date, several antigens based on the amino-terminal leucine/isoleucine heptad repeat (NHR) region of an HIV-1 envelope protein gp41 and fusion inhibitors based on the carboxy-terminal leucine/isoleucine heptad repeat (CHR) region of gp41 have been reported. We have developed a synthetic antigen targeting the membrane-fusion mechanism of HIV-1. This uses a template designed with C3-symmetric linkers and mimics the trimeric form of the NHR-derived peptide N36. The antiserum obtained by immunization of the N36 trimeric antigen binds preferentially to the N36 trimer and blocks HIV-1 infection effectively, compared with the antiserum obtained by immunization of the N36 monomer. Using another template designed with different C3-symmetric linkers, we have also developed a synthetic peptide mimicking the trimeric form of the CHR-derived peptide C34, with ∼100 times the inhibitory activity against the HIV-1 fusion mechanism than that of the monomer C34 peptide. A dimeric derivative of C34 has potent inhibitory activity at almost the same levels as this C34 trimer mimic, suggesting that presence of a dimeric form of C34 is structurally critical for fusion inhibitors. As examples of rising mid-size drugs, this review describes an effective strategy for the design of HIV vaccines and fusion inhibitors based on a relationship with the native structure of proteins involved in HIV fusion mechanisms. © 2015 Wiley Periodicals, Inc. Biopolymers (Pept Sci) 106: 622-628, 2016.

  2. In Vivo Patterns of Resistance to the HIV Attachment Inhibitor BMS-488043▿ †

    PubMed Central

    Zhou, Nannan; Nowicka-Sans, Beata; Zhang, Sharon; Fan, Li; Fang, Jie; Fang, Hua; Gong, Yi-Fei; Eggers, Betsy; Langley, David R.; Wang, Tao; Kadow, John; Grasela, Dennis; Hanna, George J.; Alexander, Louis; Colonno, Richard; Krystal, Mark; Lin, Pin-Fang

    2011-01-01

    Attachment inhibitors (AI) are a novel class of HIV-1 antivirals, with little information available on clinical resistance. BMS-488043 is an orally bioavailable AI that binds to gp120 of HIV-1 and abrogates its binding to CD4+ lymphocytes. A clinical proof-of-concept study of the AI BMS-488043, administered as monotherapy for 8 days, demonstrated significant viral load reductions. In order to examine the effects of AI monotherapy on HIV-1 sensitivity, phenotypic sensitivity assessment of baseline and postdosing (day 8) samples was performed. These analyses revealed that four subjects had emergent phenotypic resistance (a 50% effective concentration [EC50] >10-fold greater than the baseline value) and four had high baseline EC50s (>200 nM). Population sequencing and sequence determination of cloned envelope genes uncovered five gp120 mutations at four loci (V68A, L116I, S375I/N, and M426L) associated with BMS-488043 resistance. Substitution at the 375 locus, located near the CD4 binding pocket, was the most common (maintained in 5/8 subjects at day 8). The five substitutions were evaluated for their effects on AI sensitivity through reverse genetics in functional envelopes, confirming their role in decreasing sensitivity to the drug. Additional analyses revealed that these substitutions did not alter sensitivity to other HIV-1 entry inhibitors. Thus, our studies demonstrate that although the majority of the subjects' viruses maintained sensitivity to BMS-488043, substitutions can be selected that decrease HIV-1 susceptibility to the AI. Most importantly, the substitutions described here are not associated with resistance to other approved antiretrovirals, and therefore, attachment inhibitors could complement the current arsenal of anti-HIV agents. PMID:21078948

  3. A pièce de resistance: how HIV-1 escapes small molecule CCR5 inhibitors

    PubMed Central

    Moore, John P.; Kuritzkes, Daniel R.

    2009-01-01

    Purpose of review Small molecule inhibitors targeting the CCR5 coreceptor represent a new class of drugs for treating HIV-1 infection. Maraviroc has received regulatory approvals, and vicriviroc is in phase 3 trials. Understanding how resistance to these drugs develops and is diagnosed is essential to guide clinical practice. We review what has been learned from in vitro resistance studies, and how this relates to what is being seen, or can be anticipated, in clinical studies. Recent findings The principal resistance pathway in vitro involves continued use of CCR5 in an inhibitor-insensitive manner; the resistant viruses recognize the inhibitor-CCR5 complex, as well as free CCR5. Switching to use the CXCR4 coreceptor is rare. The principal genetic pathway involves accumulating 2–4 sequence changes in the gp120 V3 region, but a non-V3 pathway is also known. The limited information available from clinical studies suggests that a similar escape process is followed in vivo. However, the most common change associated with virologic failure involves expansion of pre-existing, CXCR4-using viruses that are insensitive to CCR5 inhibitors. Summary HIV-1 escapes small molecule CCR5 inhibitors by continuing to use CCR5 in an inhibitor-insensitive manner, or evades them by expanding naturally insensitive, CXCR4-using variants. PMID:19339950

  4. Development of a phenotypic susceptibility assay for HIV-1 integrase inhibitors.

    PubMed

    Heger, Eva; Theis, Alexandra Andrée; Remmel, Klaus; Walter, Hauke; Pironti, Alejandro; Knops, Elena; Di Cristanziano, Veronica; Jensen, Björn; Esser, Stefan; Kaiser, Rolf; Lübke, Nadine

    2016-12-01

    Phenotypic resistance analysis is an indispensable method for determination of HIV-1 resistance and cross-resistance to novel drug compounds. Since integrase inhibitors are essential components of recent antiretroviral combination therapies, phenotypic resistance data, in conjunction with the corresponding genotypes, are needed for improving rules-based and data-driven tools for resistance prediction, such as HIV-Grade and geno2pheno[integrase]. For generation of phenotypic resistance data to recent integrase inhibitors, a recombinant phenotypic integrase susceptibility assay was established. For validation purposes, the phenotypic resistance to raltegravir, elvitegravir and dolutegravir of nine subtype-B virus strains, isolated from integrase inhibitor-naïve and raltegravir-treated patients was determined. Genotypic resistance analysis identified four virus strains harbouring RAL resistance-associated mutations. Phenotypic resistance analysis was performed as follows. The HIV-1 integrase genes were cloned into a modified pNL4-3 vector and transfected into 293T cells for the generation of recombinant virus. The integrase-inhibitor susceptibility of the recombinant viruses was determined via an indicator cell line. While raltegravir resistance profiles presented a high cross-resistance to elvitegravir, dolutegravir maintained in-vitro activity in spite of the Y143R and N155H mutations, confirming the strong activity of dolutegravir against raltegravir-resistant viruses. Solely a Q148H+G140S variant presented reduced susceptibility to dolutegravir. In conclusion, our phenotypic susceptibility assay permits resistance analysis of the integrase gene of patient-derived viruses for integrase inhibitors by replication-competent recombinants. Thus, this assay can be used to analyze phenotypic drug resistance of integrase inhibitors in vitro. It provides the possibility to determine the impact of newly appearing mutational patterns to drug resistance of recent integrase

  5. Plasmodia express two threonine-peptidase complexes during asexual development.

    PubMed

    Mordmüller, Benjamin; Fendel, Rolf; Kreidenweiss, Andrea; Gille, Christoph; Hurwitz, Robert; Metzger, Wolfram G; Kun, Jürgen F J; Lamkemeyer, Tobias; Nordheim, Alfred; Kremsner, Peter G

    2006-07-01

    Threonine-peptidases of the T1-family are multi-subunit complexes with broad substrate specificity. In eukaryotes, at least 14 genes encode subunits of the prototypic T1 threonine-peptidase, the proteasome. The proteasome determines the turnover of most proteins and thereby plays a fundamental role in diverse processes such as protein quality control, signal transduction, and cell cycle regulation. While eukaryotes and archaea possess a proteasome, bacteria generally express a second member of the T1-family, the proteasomal predecessor ClpQ/hslV that has a similar structure but is encoded by only one gene. The plasmodial genome is an exception because it encodes proteasomal subunits as well as a ClpQ/hslV-orthologe (Plasmodium falciparum-hslV; PfhslV). Structure, expression, and function of both types of peptidase-complex in P. falciparum are presently unknown. Our aim was to analyze both the coding sequences and derived proteins of both peptidase-complexes because highly specific and potent inhibitors can be designed against this class of enzymes. The proteasome was found expressed throughout the cell cycle, whereas PfhslV was detectable in schizonts and merozoites only. Treatment of P. falciparum with the threonine-peptidase inhibitor epoxomicin blocked two of three catalytically active proteasome subunits. This led to the accumulation of ubiquitinated proteins and, finally, to parasite death. In conclusion, we provide the first functional analysis of plasmodial threonine-peptidase-complexes and identify a lead compound for the development of a novel class of antimalarial drugs.

  6. Short Communication: Preferential Killing of HIV Latently Infected CD4(+) T Cells by MALT1 Inhibitor.

    PubMed

    Li, Hongmei; He, Hui; Gong, Leyi; Fu, Mingui; Wang, Tony T

    2016-02-01

    We report that the addition of an host paracaspase MALT1 inhibitor, MI-2, to HIV latently infected ACH-2, Jurkat E4, and J-LAT cells accelerated cell death in the presence of cell stimuli or the protein kinase C agonist, bryostatin 1. MI-2-mediated cell death correlated with the induction of the cellular RNase MCPIP1 and requires the presence of viral component(s). Altogether, the combination of MI-2 and bryostatin 1 displays selective killing of HIV latently infected CD4(+) T cells.

  7. Short Communication: Preferential Killing of HIV Latently Infected CD4+ T Cells by MALT1 Inhibitor

    PubMed Central

    Li, Hongmei; He, Hui; Gong, Leyi; Fu, Mingui

    2016-01-01

    Abstract We report that the addition of an host paracaspase MALT1 inhibitor, MI-2, to HIV latently infected ACH-2, Jurkat E4, and J-LAT cells accelerated cell death in the presence of cell stimuli or the protein kinase C agonist, bryostatin 1. MI-2-mediated cell death correlated with the induction of the cellular RNase MCPIP1 and requires the presence of viral component(s). Altogether, the combination of MI-2 and bryostatin 1 displays selective killing of HIV latently infected CD4+ T cells. PMID:26728103

  8. Microwave assisted organic synthesis (MAOS) of small molecules as potential HIV-1 integrase inhibitors.

    PubMed

    Ferro, Stefania; Grazia, Sara De; De Luca, Laura; Gitto, Rosaria; Faliti, Caterina Elisa; Debyzer, Zeger; Chimirri, Alba

    2011-08-11

    Integrase (IN) represents a clinically validated target for the development of antivirals against human immunodeficiency virus (HIV). In recent years our research group has been engaged in the stucture-function study of this enzyme and in the development of some three-dimensional pharmacophore models which have led to the identification of a large series of potent HIV-1 integrase strand-transfer inhibitors (INSTIs) bearing an indole core. To gain a better understanding of the structure-activity relationships (SARs), herein we report the design and microwave-assisted synthesis of a novel series of 1-H-benzylindole derivatives.

  9. Potent Synergistic Anti-Human Immunodeficiency Virus (HIV) Effects Using Combinations of the CCR5 Inhibitor Aplaviroc with Other Anti-HIV Drugs▿

    PubMed Central

    Nakata, Hirotomo; Steinberg, Seth M.; Koh, Yasuhiro; Maeda, Kenji; Takaoka, Yoshikazu; Tamamura, Hirokazu; Fujii, Nobutaka; Mitsuya, Hiroaki

    2008-01-01

    Aplaviroc (AVC), an experimental CCR5 inhibitor, potently blocks in vitro the infection of R5-tropic human immunodeficiency virus type 1 (R5-HIV-1) at subnanomolar 50% inhibitory concentrations. Although maraviroc is presently clinically available, further studies are required to determine the role of CCR5 inhibitors in combinations with other drugs. Here we determined anti-HIV-1 activity using combinations of AVC with various anti-HIV-1 agents, including four U.S. Food and Drug Administration-approved drugs, two CCR5 inhibitors (TAK779 and SCH-C) and two CXCR4 inhibitors (AMD3100 and TE14011). Combination effects were defined as synergistic or antagonistic when the activity of drug A combined with B was statistically greater or less, respectively, than the additive effects of drugs A and A combined and drugs B and B combined by using the Combo method, described in this paper, which provides (i) a flexible choice of interaction models and (ii) the use of nonparametric statistical methods. Synergistic effects against R5-HIV-1Ba-L and a 50:50 mixture of R5-HIV-1Ba-L and X4-HIV-1ERS104pre (HIV-1Ba-L/104pre) were seen when AVC was combined with zidovudine, nevirapine, indinavir, or enfuvirtide. Mild synergism and additivity were observed when AVC was combined with TAK779 and SCH-C, respectively. We also observed more potent synergism against HIV-1Ba-L/104pre when AVC was combined with AMD3100 or TE14011. The data demonstrate a tendency toward greater synergism with AVC plus either of the two CXCR4 inhibitors compared to the synergism obtained with combinations of AVC and other drugs, suggesting that the development of effective CXCR4 inhibitors may be important for increasing the efficacies of CCR5 inhibitors. PMID:18378711

  10. Enhanced antibody-mediated neutralization of HIV-1 variants that are resistant to fusion inhibitors.

    PubMed

    Alam, Muntasir; Kuwata, Takeo; Shimura, Kazuya; Yokoyama, Masaru; Ramirez Valdez, Kristel Paola; Tanaka, Kazuki; Maruta, Yasuhiro; Oishi, Shinya; Fujii, Nobutaka; Sato, Hironori; Matsuoka, Masao; Matsushita, Shuzo

    2016-09-27

    HIV-1 typically develops resistance to any single antiretroviral agent. Combined anti-retroviral therapy to reduce drug-resistance development is necessary to control HIV-1 infection. Here, to assess the utility of a combination of antibody and fusion inhibitor treatments, we investigated the potency of monoclonal antibodies at neutralizing HIV-1 variants that are resistant to fusion inhibitors. Mutations that confer resistance to four fusion inhibitors, enfuvirtide, C34, SC34, and SC34EK, were introduced into the envelope of HIV-1JR-FL, a CCR5-tropic tier 2 strain. Pseudoviruses with these mutations were prepared and used for the assessment of neutralization sensitivity to an array of antibodies. The resulting neutralization data indicate that the potencies of some antibodies, especially of those against the CD4 binding site, V3 loop, and membrane-proximal external region epitopes, were increased by the mutations in gp41 that conferred resistance to the fusion inhibitors. C34-, SC34-, and SC34EK-resistant mutants showed more sensitivity to monoclonal antibodies than enfuvirtide-resistant mutants. An analysis of C34-resistant mutations revealed that the I37K mutation in gp41 HR1 is a key mutation for C34 resistance, low infectivity, neutralization sensitivity, epitope exposure, and slow fusion kinetics. The N126K mutation in the gp41 HR2 domain contributed to C34 resistance and neutralization sensitivity to anti-CD4 binding site antibodies. In the absence of L204I, the effect of N126K was antagonistic to that of I37K. The results of a molecular dynamic simulation of the envelope trimer confirmation suggest that an I37K mutation induces the augmentation of structural fluctuations prominently in the interface between gp41 and gp120. Our observations indicate that the "conformational unmasking" of envelope glycoprotein by an I37K mutation is one of the mechanisms of neutralization sensitivity enhancement. Furthermore, the enhanced neutralization of C34-resistant

  11. Comparative Effectiveness of Dipeptidyl Peptidase-4 (DPP-4) Inhibitors and Human Glucagon-Like Peptide-1 (GLP-1) Analogue as Add-On Therapies to Sulphonylurea among Diabetes Patients in the Asia-Pacific Region: A Systematic Review

    PubMed Central

    Wong, Martin C. S.; Wang, Harry H. X.; Kwan, Mandy W. M.; Zhang, Daisy D. X.; Liu, Kirin Q. L.; Chan, Sky W. M.; Fan, Carmen K. M.; Fong, Brian C. Y.; Li, Shannon T. S.; Griffiths, Sian M.

    2014-01-01

    The prevalence of diabetes mellitus is rising globally, and it induces a substantial public health burden to the healthcare systems. Its optimal control is one of the most significant challenges faced by physicians and policy-makers. Whereas some of the established oral hypoglycaemic drug classes like biguanide, sulphonylureas, thiazolidinediones have been extensively used, the newer agents like dipeptidyl peptidase-4 (DPP-4) inhibitors and the human glucagon-like peptide-1 (GLP-1) analogues have recently emerged as suitable options due to their similar efficacy and favorable side effect profiles. These agents are widely recognized alternatives to the traditional oral hypoglycaemic agents or insulin, especially in conditions where they are contraindicated or unacceptable to patients. Many studies which evaluated their clinical effects, either alone or as add-on agents, were conducted in Western countries. There exist few reviews on their effectiveness in the Asia-Pacific region. The purpose of this systematic review is to address the comparative effectiveness of these new classes of medications as add-on therapies to sulphonylurea drugs among diabetic patients in the Asia-Pacific countries. We conducted a thorough literature search of the MEDLINE and EMBASE from the inception of these databases to August 2013, supplemented by an additional manual search using reference lists from research studies, meta-analyses and review articles as retrieved by the electronic databases. A total of nine randomized controlled trials were identified and described in this article. It was found that DPP-4 inhibitors and GLP-1 analogues were in general effective as add-on therapies to existing sulphonylurea therapies, achieving HbA1c reductions by a magnitude of 0.59–0.90% and 0.77–1.62%, respectively. Few adverse events including hypoglycaemic attacks were reported. Therefore, these two new drug classes represent novel therapies with great potential to be major therapeutic options

  12. The current status and challenges in the development of fusion inhibitors as therapeutics for HIV-1 infection.

    PubMed

    Tan, Jian Jun; Ma, Xue Ting; Liu, Chang; Zhang, Xiao Yi; Wang, Cun Xin

    2013-01-01

    HIV-1 membrane fusion as a part of the process of viral entry in the target cells is facilitated by gp41 and gp120, which are encoded by Env gene of HIV-1. Based on the structure and the mechanism researches, new treatment options targeting HIV-1 entry process have been proposed. Enfuvirtide, which mimics amino acid sequences of viral envelope glycoprotein gp41, is the first HIV-1 fusion inhibitor approved by FDA. Although it fulfills vital functions by binding to gp41 and abolishing the membrane fusion reaction when used in combination, it could induce drug resistant virus variants. Currently, a number of design and modification schemes have been presented, a large number of prospective fusion peptides have emerged. For these fusion inhibitors, multiple mutations in gp41 have been associated with the loss of susceptibility to agents. This review reported the current developments and innovative designs of HIV-1 membrane fusion inhibitors.

  13. In vitro selection and characterization of human immunodeficiency virus type 1 (HIV-1) isolates with reduced sensitivity to hydroxyethylamino sulfonamide inhibitors of HIV-1 aspartyl protease.

    PubMed

    Partaledis, J A; Yamaguchi, K; Tisdale, M; Blair, E E; Falcione, C; Maschera, B; Myers, R E; Pazhanisamy, S; Futer, O; Cullinan, A B

    1995-09-01

    Human immunodeficiency virus type 1 (HIV-1) variants with reduced sensitivity to the hydroxyethylamino sulfonamide protease inhibitors VB-11,328 and VX-478 have been selected in vitro by two independent serial passage protocols with HIV-1 in CEM-SS and MT-4 cell lines. Virus populations with greater than 100-fold-increased resistance to both inhibitors compared with the parental virus have been obtained. DNA sequence analyses of the protease genes from VB-11,328- and VX-478-resistant variants reveal a sequential accumulation of point mutations, with similar resistance patterns occurring for the two inhibitors. The deduced amino acid substitutions in the resistant protease are Leu-10-->Phe, Met-46-->Ile, Ile-47-->Val, and Ile-50-->Val. This is the first observation in HIV protease resistance studies of an Ile-50-->Val mutation, a mutation that appears to arise uniquely against the sulfonamide inhibitor class. When the substitutions observed were introduced as single mutations into an HIV-1 infectious clone (HXB2), only the Ile-50-->Val mutant showed reduced sensitivity (two- to threefold) to VB-11,328 and VX-478. A triple protease mutant infectious clone carrying the mutations Met-46-->Ile, Ile-47-->Val, and Ile-50-->Val, however, showed much greater reduction in sensitivity (14- to 20-fold) to VB-11,328 and VX-478. The same mutations were studied in recombinant HIV protease. The mutant protease Ile-50-->Val displays a much lower affinity for the inhibitors than the parent enzyme (< or = 80-fold). The protease triply mutated at Met-46-->Ile, Ile-47-->Val, and Ile-50-->Val shows an even greater decrease in inhibitor binding (< or = 270-fold). The sulfonamide-resistant HIV protease variants remain sensitive to inhibitors from other chemical classes (Ro 31-8959 and L-735,524), suggesting possibilities for clinical use of HIV protease inhibitors in combination or serially.

  14. In vitro selection and characterization of human immunodeficiency virus type 1 (HIV-1) isolates with reduced sensitivity to hydroxyethylamino sulfonamide inhibitors of HIV-1 aspartyl protease.

    PubMed Central

    Partaledis, J A; Yamaguchi, K; Tisdale, M; Blair, E E; Falcione, C; Maschera, B; Myers, R E; Pazhanisamy, S; Futer, O; Cullinan, A B

    1995-01-01

    Human immunodeficiency virus type 1 (HIV-1) variants with reduced sensitivity to the hydroxyethylamino sulfonamide protease inhibitors VB-11,328 and VX-478 have been selected in vitro by two independent serial passage protocols with HIV-1 in CEM-SS and MT-4 cell lines. Virus populations with greater than 100-fold-increased resistance to both inhibitors compared with the parental virus have been obtained. DNA sequence analyses of the protease genes from VB-11,328- and VX-478-resistant variants reveal a sequential accumulation of point mutations, with similar resistance patterns occurring for the two inhibitors. The deduced amino acid substitutions in the resistant protease are Leu-10-->Phe, Met-46-->Ile, Ile-47-->Val, and Ile-50-->Val. This is the first observation in HIV protease resistance studies of an Ile-50-->Val mutation, a mutation that appears to arise uniquely against the sulfonamide inhibitor class. When the substitutions observed were introduced as single mutations into an HIV-1 infectious clone (HXB2), only the Ile-50-->Val mutant showed reduced sensitivity (two- to threefold) to VB-11,328 and VX-478. A triple protease mutant infectious clone carrying the mutations Met-46-->Ile, Ile-47-->Val, and Ile-50-->Val, however, showed much greater reduction in sensitivity (14- to 20-fold) to VB-11,328 and VX-478. The same mutations were studied in recombinant HIV protease. The mutant protease Ile-50-->Val displays a much lower affinity for the inhibitors than the parent enzyme (< or = 80-fold). The protease triply mutated at Met-46-->Ile, Ile-47-->Val, and Ile-50-->Val shows an even greater decrease in inhibitor binding (< or = 270-fold). The sulfonamide-resistant HIV protease variants remain sensitive to inhibitors from other chemical classes (Ro 31-8959 and L-735,524), suggesting possibilities for clinical use of HIV protease inhibitors in combination or serially. PMID:7636964

  15. Design, synthesis, and biological evaluation of chicoric acid analogs as inhibitors of HIV-1 integrase.

    PubMed

    Charvat, Trevor T; Lee, Deborah J; Robinson, W Edward; Chamberlin, A Richard

    2006-07-01

    A series of analogs of the potent HIV-1 integrase (HIV IN) inhibitor chicoric acid (CA) was designed with the intention of ameliorating some of the parent natural product's undesirable properties, in particular its toxicity, instability, and poor membrane permeability. More than 70 analogs were synthesized and assayed for three types of activity: (1) the ability to inhibit 3'-end processing and strand transfer reactions using recombinant HIV IN in vitro, (2) toxicity against the CD4+ lymphoblastoid cell line, MT2, and (3) anti-HIV activity against HIV(LAI). CA analogs lacking one of the carboxyl groups of CA and with 3,4,5-trihydroxycinnamoyl sidechains in place of the caffeoyl group of CA exhibited the most potent inhibition of HIV replication and end-processing activity. Galloyl-substituted derivatives also displayed very potent in vitro and in vivo activities, in most cases exceeding the inhibitory effects of CA itself. Conversely, analogous monocarboxy caffeoyl analogs exhibited only modest inhibition, while the corresponding 3,4-dihydroxybenzoyl-substituted compounds were devoid of activity.

  16. Structure-activity relationship of pyrrolyl diketo acid derivatives as dual inhibitors of HIV-1 integrase and reverse transcriptase ribonuclease H domain.

    PubMed

    Cuzzucoli Crucitti, Giuliana; Métifiot, Mathieu; Pescatori, Luca; Messore, Antonella; Madia, Valentina Noemi; Pupo, Giovanni; Saccoliti, Francesco; Scipione, Luigi; Tortorella, Silvano; Esposito, Francesca; Corona, Angela; Cadeddu, Marta; Marchand, Christophe; Pommier, Yves; Tramontano, Enzo; Costi, Roberta; Di Santo, Roberto

    2015-02-26

    The development of HIV-1 dual inhibitors is a highly innovative approach aimed at reducing drug toxic side effects as well as therapeutic costs. HIV-1 integrase (IN) and reverse transcriptase-associated ribonuclease H (RNase H) are both selective targets for HIV-1 chemotherapy, and the identification of dual IN/RNase H inhibitors is an attractive strategy for new drug development. We newly synthesized pyrrolyl derivatives that exhibited good potency against IN and a moderate inhibition of the RNase H function of RT, confirming the possibility of developing dual HIV-1 IN/RNase H inhibitors and obtaining new information for the further development of more effective dual HIV-1 inhibitors.

  17. The Dipeptidyl Peptidase-4 Inhibitor Linagliptin Preserves Endothelial Function in Mesenteric Arteries from Type 1 Diabetic Rats without Decreasing Plasma Glucose.

    PubMed

    Salheen, Salheen M; Panchapakesan, Usha; Pollock, Carol A; Woodman, Owen L

    2015-01-01

    The aim of the study was to investigate the effect of the DPP-4 inhibitor linagliptin on the mechanism(s) of endothelium-dependent relaxation in mesenteric arteries from STZ-induced diabetic rats. Both normal and diabetic animals received linagliptin (2 mg/kg) daily by oral gavage for a period of 4 weeks. To measure superoxide generation in mesenteric arteries, lucigenin-enhanced chemiluminescence was used. ACh-induced relaxation of mesenteric arteries was assessed using organ bath techniques and Western blotting was used to investigate protein expression. Pharmacological tools (1 μM TRAM-34, 1 μM apamin, 100 nM Ibtx, 100 μM L-NNA, 10 μM ODQ) were used to distinguish between NO and EDH-mediated relaxation. Linagliptin did not affect plasma glucose, but did decrease vascular superoxide levels. Diabetes reduced responses to ACh but did not affect endothelium-independent responses to SNP. Linagliptin improved endothelial function indicated by a significant increase in responses to ACh. Diabetes impaired the contribution of both nitric oxide (NO) and endothelium-dependent hyperpolarization (EDH) to endothelium-dependent relaxation and linagliptin treatment significantly enhanced the contribution of both relaxing factors. Western blotting demonstrated that diabetes also increased expression of Nox2 and decreased expression and dimerization of endothelial NO synthase, effects that were reversed by linagliptin. These findings demonstrate treatment of type 1 diabetic rats with linagliptin significantly reduced vascular superoxide levels and preserved both NO and EDH-mediated relaxation indicating that linagliptin can improve endothelial function in diabetes independently of any glucose lowering activity.

  18. Serine peptidase inhibitor Kazal type 1 (SPINK1) as novel downstream effector of the cadherin-17/β-catenin axis in hepatocellular carcinoma.

    PubMed

    Shek, Felix H; Luo, Ruibang; Lam, Brian Y H; Sung, Wing Kin; Lam, Tak-Wah; Luk, John M; Leung, Ming Sum; Chan, Kin Tak; Wang, Hector K; Chan, Chung Man; Poon, Ronnie T; Lee, Nikki P

    2017-06-19

    Hepatocellular carcinoma (HCC) is the most common type of liver cancer worldwide. Previously, we reported that cadherin-17 (CDH17) and its related CDH17/β-catenin axis may be responsible for inducing HCC in a subset of patients exhibiting CDH17 over-expression. Here we aimed at obtaining a better understanding of the CDH17-related HCC biology and to obtain further indications for the design of targeted therapies in CDH17 over-expressing HCC patients. We found that SPINK1 acts as a downstream effector of the CDH17/β-catenin axis in HCC. In addition, we found that SPINK1 expression exhibited a positive correlation with CDH17 expression in human HCCs and was over-expressed in up to 70% of the tumors. We identified SPINK1 as a downstream effector of the CDH17/β-catenin axis using a spectrum of in vitro assays, including gene expression modulation and inhibitor assays, bioinformatics analyses and luciferase reporter assays. These in vitro results were validated in primary human HCCs, including the observation that alteration in β-catenin expression (a core component of the CDH17/β-catenin axis) in tumors affects SPINK1 serum levels in HCC patients. Similar to CDH17, SPINK1 expression in HCC cells was found to be associated with specific tumor-related properties via activating the c-Raf/MEK/ERK pathway. Our current data substantiate our knowledge on the role of CDH17 in the biology of HCC and suggest that components of the CDH17/β-catenin axis may serve as therapeutic targets in CDH17 over-expressing HCC patients.

  19. Structure of HIV-1 nonnucleoside reverse transcriptase inhibitors derivatives of N-benzyl-benzimidazole with different substituents in position 4

    NASA Astrophysics Data System (ADS)

    Ziółkowska, Natasza E.; Michejda, Christopher J.; Bujacz, Grzegorz D.

    2010-01-01

    The constant development of new drugs against HIV-1 is necessary due to global expansion of AIDS and HIV-1 drug resistance. Nonnucleoside reverse transcriptase inhibitors of HIV-1 (NNRTIs) are potentially effective and nontoxic drugs in AIDS therapy. The crystal structures of six nonnucleoside inhibitors of HIV-1 reverse transcriptase (RT) derivatives of N-benzyl-benzimidazole are reported here. The investigated compounds belong to the group of so called "butterfly like" inhibitors with characteristic two π-electron moieties with an angled orientation. The structural data show the influence of the substituents of the benzimidazole ring on the geometry of the molecule and correlation between the structure of the inhibitor and its biological activity.

  20. Synthesis, Anti-HIV Activity, and Metabolic Stability of New Alkenyldiarylmethane (ADAM) HIV-1 Non-Nucleoside Reverse Transcriptase Inhibitors (NNRTIs)

    PubMed Central

    Deng, Bo-Liang; Hartman, Tracy L.; Buckheit, Robert W.; Pannecouque, Christophe; De Clercq, Erik; Fanwick, Phillip E.; Cushman, Mark

    2008-01-01

    Non-nucleoside inhibitors of HIV-1 reverse transcriptase (NNRTIs) are part of the combination therapy currently used to treat HIV infection. Based on analogy with known HIV-1 NNRT inhibitors, eighteen novel alkenyldiarylmethanes (ADAMs) containing 5-chloro-2-methoxyphenyl, 3-cyanophenyl or 3-fluoro-5-trifluoromethylphenyl groups were synthesized and evaluated as HIV inhibitors. Their stabilities in rat plasma have also been investigated. Although introducing 5-chloro-2-methoxyphenyl, or 3-fluoro-5-trifluoromethylphenyl groups into alkenyldiarylmethanes does not maintain the antiviral potency, the structural modification of alkenyldiarylmethanes with a 3-cyanophenyl substituent can be made without a large decrease in activity. The oxazolidinonyl group was introduced into the alkenyldiarylmethane framework and found to confer enhanced metabolic stability in rat plasma. PMID:16162014

  1. Potent and Selective Inhibition of Plasma Membrane Monoamine Transporter by HIV Protease Inhibitors

    PubMed Central

    Duan, Haichuan; Hu, Tao; Foti, Robert S.; Pan, Yongmei; Swaan, Peter W.

    2015-01-01

    Plasma membrane monoamine transporter (PMAT) is a major uptake-2 monoamine transporter that shares extensive substrate and inhibitor overlap with organic cation transporters 1–3 (OCT1–3). Currently, there are no PMAT-specific inhibitors available that can be used in in vitro and in vivo studies to differentiate between PMAT and OCT activities. In this study, we showed that IDT307 (4-(4-(dimethylamino)phenyl)-1-methylpyridinium iodide), a fluorescent analog of 1-methyl-4-phenylpyridinium (MPP+), is a transportable substrate for PMAT and that IDT307-based fluorescence assay can be used to rapidly identify and characterize PMAT inhibitors. Using the fluorescent substrate-based assays, we analyzed the interactions of eight human immunodeficiency virus (HIV) protease inhibitors (PIs) with human PMAT and OCT1–3 in human embryonic kidney 293 (HEK293) cells stably transfected with individual transporters. Our data revealed that PMAT and OCTs exhibit distinct sensitivity and inhibition patterns toward HIV PIs. PMAT is most sensitive to PI inhibition whereas OCT2 and OCT3 are resistant. OCT1 showed an intermediate sensitivity and a distinct inhibition profile from PMAT. Importantly, lopinavir is a potent PMAT inhibitor and exhibited >120 fold selectivity toward PMAT (IC50 = 1.4 ± 0.2 µM) over OCT1 (IC50 = 174 ± 40 µM). Lopinavir has no inhibitory effect on OCT2 or OCT3 at maximal tested concentrations. Lopinavir also exhibited no or much weaker interactions with uptake-1 monoamine transporters. Together, our results reveal that PMAT and OCTs have distinct specificity exemplified by their differential interaction with HIV PIs. Further, we demonstrate that lopinavir can be used as a selective PMAT inhibitor to differentiate PMAT-mediated monoamine and organic cation transport from those mediated by OCT1–3. PMID:26285765

  2. Excretion/secretion products from Schistosoma mansoni adults, eggs and schistosomula have unique peptidase specificity profiles.

    PubMed

    Dvořák, Jan; Fajtová, Pavla; Ulrychová, Lenka; Leontovyč, Adrian; Rojo-Arreola, Liliana; Suzuki, Brian M; Horn, Martin; Mareš, Michael; Craik, Charles S; Caffrey, Conor R; O'Donoghue, Anthony J

    2016-03-01

    Schistosomiasis is one of a number of chronic helminth diseases of poverty that severely impact personal and societal well-being and productivity. Peptidases (proteases) are vital to successful parasitism, and can modulate host physiology and immunology. Interference of peptidase action by specific drugs or vaccines can be therapeutically beneficial. To date, research on peptidases in the schistosome parasite has focused on either the functional characterization of individual peptidases or their annotation as part of global genome or transcriptome studies. We were interested in functionally characterizing the complexity of peptidase activity operating at the host-parasite interface, therefore the excretory-secretory products of key developmental stages of Schistosoma mansoni that parasitize the human were examined. Using class specific peptidase inhibitors in combination with a multiplex substrate profiling assay, a number of unique activities derived from endo- and exo-peptidases were revealed in the excretory-secretory products of schistosomula (larval migratory worms), adults and eggs. The data highlight the complexity of the functional degradome for each developmental stage of this parasite and facilitate further enquiry to establish peptidase identity, physiological and immunological function, and utility as drug or vaccine candidates.

  3. Excretion/secretion products from Schistosoma mansoni adults, eggs and schistosomula have unique peptidase specificity profiles

    PubMed Central

    Dvořák, Jan; Fajtová, Pavla; Ulrychová, Lenka; Leontovyč, Adrian; Rojo-Arreola, Liliana; Suzuki, Brian M.; Horn, Martin; Mareš, Michael; Craik, Charles S.; Caffrey, Conor R.; O’Donoghue, Anthony J.

    2015-01-01

    Schistosomiasis is one of a number of chronic helminth diseases of poverty that severely impact personal and societal well-being and productivity. Peptidases (proteases) are vital to successful parasitism, and can modulate host physiology and immunology. Interference of peptidase action by specific drugs or vaccines can be therapeutically beneficial. To date, research on peptidases in the schistosome parasite has focused on either the functional characterization of individual peptidases or their annotation as part of global genome or transcriptome studies. We were interested in functionally characterizing the complexity of peptidase activity operating at the host-parasite interface, therefore the excretory-secretory products of key developmental stages of Schistosoma mansoni that parasitize the human were examined. Using class specific peptidase inhibitors in combination with a multiplex substrate profiling assay, a number of unique activities derived from endo- and exo-peptidases were revealed in the excretory-secretory products of schistosomula (larval migratory worms), adults and eggs. The data highlight the complexity of the functional degradome for each developmental stage of this parasite and facilitate further enquiry to establish peptidase identity, physiological and immunological function, and utility as drug or vaccine candidates. PMID:26409899

  4. 2D-QSAR study of fullerene nanostructure derivatives as potent HIV-1 protease inhibitors

    NASA Astrophysics Data System (ADS)

    Barzegar, Abolfazl; Jafari Mousavi, Somaye; Hamidi, Hossein; Sadeghi, Mehdi

    2017-09-01

    The protease of human immunodeficiency virus1 (HIV-PR) is an essential enzyme for antiviral treatments. Carbon nanostructures of fullerene derivatives, have nanoscale dimension with a diameter comparable to the diameter of the active site of HIV-PR which would in turn inhibit HIV. In this research, two dimensional quantitative structure-activity relationships (2D-QSAR) of fullerene derivatives against HIV-PR activity were employed as a powerful tool for elucidation the relationships between structure and experimental observations. QSAR study of 49 fullerene derivatives was performed by employing stepwise-MLR, GAPLS-MLR, and PCA-MLR models for variable (descriptor) selection and model construction. QSAR models were obtained with higher ability to predict the activity of the fullerene derivatives against HIV-PR by a correlation coefficient (R2training) of 0.942, 0.89, and 0.87 as well as R2test values of 0.791, 0.67and 0.674 for stepwise-MLR, GAPLS-MLR, and PCA -MLR models, respectively. Leave-one-out cross-validated correlation coefficient (R2CV) and Y-randomization methods confirmed the models robustness. The descriptors indicated that the HIV-PR inhibition depends on the van der Waals volumes, polarizability, bond order between two atoms and electronegativities of fullerenes derivatives. 2D-QSAR simulation without needing receptor's active site geometry, resulted in useful descriptors mainly denoting ;C60 backbone-functional groups; and ;C60 functional groups; properties. Both properties in fullerene refer to the ligand fitness and improvement van der Waals interactions with HIV-PR active site. Therefore, the QSAR models can be used in the search for novel HIV-PR inhibitors based on fullerene derivatives.

  5. JAK-STAT Signaling Pathways and Inhibitors Affect Reversion of Envelope-Mutated HIV-1.

    PubMed

    Quan, Yudong; Xu, Hongtao; Han, Yingshan; Mesplède, Thibault; Wainberg, Mark A

    2017-05-01

    HIV can spread by both cell-free and cell-to-cell transmission. Here, we show that many of the amino acid changes in Env that are close to the CD4 binding pocket can affect HIV replication. We generated a number of mutant viruses that were unable to infect T cells as cell-free viruses but were nevertheless able to infect certain T cell lines as cell-associated viruses, which was followed by reversion to the wild type. However, the activation of JAK-STAT signaling pathways caused the inhibition of such cell-to-cell infection as well as the reversion of multiple HIV Env mutants that displayed differences in their abilities to bind to the CD4 receptor. Specifically, two T cell activators, interleukin-2 (IL-2) and phorbol 12-myristate 13-acetate (PMA), both capable of activation of JAK-STAT pathways, were able to inhibit cell-to-cell viral transmission. In contrast, but consistent with the above result, a number of JAK-STAT and mTOR inhibitors actually promoted HIV-1 transmission and reversion. Hence, JAK-STAT signaling pathways may differentially affect the replication of a variety of HIV Env mutants in ways that differ from the role that these pathways play in the replication of wild-type viruses.IMPORTANCE Specific alterations in HIV Env close to the CD4 binding site can differentially change the ability of HIV to mediate infection for cell-free and cell-associated viruses. However, such differences are dependent to some extent on the types of target cells used. JAK-STAT signaling pathways are able to play major roles in these processes. This work sheds new light on factors that can govern HIV infection of target cells. Copyright © 2017 American Society for Microbiology.

  6. Guanidine alkaloid analogs as inhibitors of HIV-1 Nef interactions with p53, actin, and p56lck

    PubMed Central

    Olszewski, Allison; Sato, Ken; Aron, Zachary D.; Cohen, Frederick; Harris, Aleishia; McDougall, Brenda R.; Robinson, W. Edward; Overman, Larry E.; Weiss, Gregory A.

    2004-01-01

    With current anti-HIV treatments targeting only 4 of the 15 HIV proteins, many potential viral vulnerabilities remain unexploited. We report small-molecule inhibitors of the HIV-1 protein Nef. In addition to expanding the anti-HIV arsenal, small-molecule inhibitors against untargeted HIV proteins could be used to dissect key events in the HIV lifecycle. Numerous incompletely characterized interactions between Nef and cellular ligands, for example, present a challenge to understanding molecular events during HIV progression to AIDS. Assays with phage-displayed Nef from HIVNL4-3 were used to identify a series of guanidine alkaloid-based inhibitors of Nef interactions with p53, actin, and p56lck. The guanidines, synthetic analogs of batzellidine and crambescidin natural products, inhibit the Nef–ligand interactions with IC50 values in the low micromolar range. In addition, sensitive in vivo assays for Nef inhibition are reported. Although compounds that are effective in vitro proved to be too cytotoxic for cellular assays, the reported Nef inhibitors provide proof-of-concept for disrupting a new HIV target and offer useful leads for drug development. PMID:15371598

  7. Novel, selective CDK9 inhibitors for the treatment of HIV infection.

    PubMed

    Németh, G; Varga, Z; Greff, Z; Bencze, G; Sipos, A; Szántai-Kis, C; Baska, F; Gyuris, A; Kelemenics, K; Szathmáry, Z; Minárovits, J; Kéri, G; Orfi, L

    2011-01-01

    Cyclin Dependent Kinases (CDKs) are important regulators of cell cycle and gene expression. Since an up-to-date review about the pharmacological inhibitors of CDK family (CDK1-10) is not available; therefore in the present paper we briefly summarize the most relevant inhibitors and point out the low number of selective inhibitors. Among CDKs, CDK9 is a validated pathological target in HIV infection, inflammation and cardiac hypertrophy; however selective CDK9 inhibitors are still not available. We present a selective inhibitor family of CDK9 based on the 4-phenylamino-6- phenylpyrimidine nucleus. We show a convenient synthetic method to prepare a useful intermediate and its derivatisation resulting in novel compounds. The CDK9 inhibitory activity of the derivatives was measured in specific kinase assay and the CDK inhibitory profile of the best ones (IC(50) < 100 nM) was determined. The most selective compounds had high selectivity over CDK1, 2, 3, 5, 6, 7 and showed at least one order of magnitude higher inhibitory activity over CDK4 inhibition. The most selective molecules were examined in cytotoxicity assays and their ability to inhibit HIV-1 replication was determined in cellular assays.

  8. Transmitted resistance to HIV integrase strand-transfer inhibitors: right on schedule.

    PubMed

    Hurt, Christopher B

    2011-01-01

    Transmitted drug resistance (TDR), the primary acquisition of an HIV variant already resistant to antiretrovirals, affects approximately 15% of all new infections in the United States. Historically, from the time initial agents in the reverse transcriptase, protease and entry inhibitor classes were introduced, it took 3-5 years before the first case reports of TDR appeared. With the description of the first two cases of transmitted integrase stand-transfer inhibitor resistance, it is only a matter of time before the prevalence of TDR affecting this newest antiretroviral class reaches a level warranting baseline resistance testing for all patients entering care.

  9. Synthesis of N-glyoxylyl peptides and their in vitro evaluation as HIV-1 protease inhibitors.

    PubMed

    Qasmi, D; de Rosny, E; René, L; Badet, B; Vergely, I; Boggetto, N; Reboud-Ravaux, M

    1997-04-01

    A series of novel synthetic peptides containing an N-terminal glyoxylyl function (CHOCO-) have been tested as inhibitors of HIV-1 protease. The N-glyoxylyl peptide CHOCO-Pro-Ile-Val-NH2, which fulfills the specificity requirements of the MA/CA protease cleavage site together with the criteria of transition state analogue of the catalyzed reaction, was found to be a moderate competitive inhibitor although favorable interactions were visualized between its hydrated form and the catalytic aspartates using molecular modeling. Increasing the length of the peptide sequence led to compounds acting only as substrates.

  10. A preference-based free-energy parameterization of enzyme-inhibitor binding. Applications to HIV-1-protease inhibitor design.

    PubMed Central

    Wallqvist, A.; Jernigan, R. L.; Covell, D. G.

    1995-01-01

    The interface between protein receptor-ligand complexes has been studied with respect to their binary interatomic interactions. Crystal structure data have been used to catalogue surfaces buried by atoms from each member of a bound complex and determine a statistical preference for pairs of amino-acid atoms. A simple free energy model of the receptor-ligand system is constructed from these atom-atom preferences and used to assess the energetic importance of interfacial interactions. The free energy approximation of binding strength in this model has a reliability of about +/- 1.5 kcal/mol, despite limited knowledge of the unbound states. The main utility of such a scheme lies in the identification of important stabilizing atomic interactions across the receptor-ligand interface. Thus, apart from an overall hydrophobic attraction (Young L, Jernigan RL, Covell DG, 1994, Protein Sci 3:717-729), a rich variety of specific interactions is observed. An analysis of 10 HIV-1 protease inhibitor complexes is presented that reveals a common binding motif comprised of energetically important contacts with a rather limited set of atoms. Design improvements to existing HIV-1 protease inhibitors are explored based on a detailed analysis of this binding motif. PMID:8528086

  11. Computational mutation scanning and drug resistance mechanisms of HIV-1 protease inhibitors.

    PubMed

    Hao, Ge-Fei; Yang, Guang-Fu; Zhan, Chang-Guo

    2010-07-29

    The drug resistance of various clinically available HIV-1 protease inhibitors has been studied using a new computational protocol, that is, computational mutation scanning (CMS), leading to valuable insights into the resistance mechanisms and structure-resistance correction of the HIV-1 protease inhibitors associated with a variety of active site and nonactive site mutations. By using the CMS method, the calculated mutation-caused shifts of the binding free energies linearly correlate very well with those derived from the corresponding experimental data, suggesting that the CMS protocol may be used as a generalized approach to predict drug resistance associated with amino acid mutations. Because it is essentially important for understanding the structure-resistance correlation and for structure-based drug design to develop an effective computational protocol for drug resistance prediction, the reasonable and computationally efficient CMS protocol for drug resistance prediction should be valuable for future structure-based design and discovery of antiresistance drugs in various therapeutic areas.

  12. Crystal structures of HIV-1 reverse transcriptase complexes with thiocarbamate non-nucleoside inhibitors.

    PubMed

    Spallarossa, Andrea; Cesarini, Sara; Ranise, Angelo; Ponassi, Marco; Unge, Torsten; Bolognesi, Martino

    2008-01-25

    O-Phthalimidoethyl-N-arylthiocarbamates (TCs) have been recently identified as a new class of potent HIV-1 reverse transcriptase (RT) non-nucleoside inhibitors (NNRTIs), by means of computer-aided drug design techniques [Ranise A. Spallarossa, S. Cesarini, F. Bondavalli, S. Schenone, O. Bruno, G. Menozzi, P. Fossa, L. Mosti, M. La Colla, et al., Structure-based design, parallel synthesis, structure-activity relationship, and molecular modeling studies of thiocarbamates, new potent non-nucleoside HIV-1 reverse transcriptase inhibitor isosteres of phenethylthiazolylthiourea derivatives, J. Med. Chem. 48 (2005) 3858-3873]. To elucidate the atomic details of RT/TC interaction and validate an earlier TC docking model, the structures of three RT/TC complexes were determined at 2.8-3.0A resolution by X-ray crystallography. The conformations adopted by the enzyme-bound TCs were analyzed and compared with those of bioisosterically related NNRTIs.

  13. Crystal structures of HIV-1 reverse transcriptase complexes with thiocarbamate non-nucleoside inhibitors

    SciTech Connect

    Spallarossa, Andrea Cesarini, Sara; Ranise, Angelo; Ponassi, Marco; Unge, Torsten; Bolognesi, Martino

    2008-01-25

    O-Phthalimidoethyl-N-arylthiocarbamates (TCs) have been recently identified as a new class of potent HIV-1 reverse transcriptase (RT) non-nucleoside inhibitors (NNRTIs), by means of computer-aided drug design techniques [Ranise A. Spallarossa, S. Cesarini, F. Bondavalli, S. Schenone, O. Bruno, G. Menozzi, P. Fossa, L. Mosti, M. La Colla, et al., Structure-based design, parallel synthesis, structure-activity relationship, and molecular modeling studies of thiocarbamates, new potent non-nucleoside HIV-1 reverse transcriptase inhibitor isosteres of phenethylthiazolylthiourea derivatives, J. Med. Chem. 48 (2005) 3858-3873]. To elucidate the atomic details of RT/TC interaction and validate an earlier TC docking model, the structures of three RT/TC complexes were determined at 2.8-3.0 A resolution by X-ray crystallography. The conformations adopted by the enzyme-bound TCs were analyzed and compared with those of bioisosterically related NNRTIs.

  14. Structure-based design of nonpeptidic HIV protease inhibitors: the sulfonamide-substituted cyclooctylpyramones.

    PubMed

    Skulnick, H I; Johnson, P D; Aristoff, P A; Morris, J K; Lovasz, K D; Howe, W J; Watenpaugh, K D; Janakiraman, M N; Anderson, D J; Reischer, R J; Schwartz, T M; Banitt, L S; Tomich, P K; Lynn, J C; Horng, M M; Chong, K T; Hinshaw, R R; Dolak, L A; Seest, E P; Schwende, F J; Rush, B D; Howard, G M; Toth, L N; Wilkinson, K R; Romines, K R

    1997-03-28

    Recently, cyclooctylpyranone derivatives with m-carboxamide substituents (e.g. 2c) were identified as potent, nonpeptidic HIV protease inhibitors, but these compounds lacked significant antiviral activity in cell culture. Substitution of a sulfonamide group at the meta position, however, produces compounds with excellent HIV protease binding affinity and antiviral activity. Guided by an iterative structure-based drug design process, we have prepared and evaluated a number of these derivatives, which are readily available via a seven-step synthesis. A few of the most potent compounds were further evaluated for such characteristics as pharmacokinetics and toxicity in rats and dogs. From this work, the p-cyanophenyl sulfonamide derivative 35k emerged as a promising inhibitor, was selected for further development, and entered phase I clinical trials.

  15. Development of a receptor model for efficient in silico screening of HIV-1 integrase inhibitors.

    PubMed

    Quevedo, Mario A; Ribone, Sergio R; Briñón, Margarita C; Dehaen, Wim

    2014-07-01

    Integrase (IN) is a key viral enzyme for the replication of the type-1 human immunodeficiency virus (HIV-1), and as such constitutes a relevant therapeutic target for the development of anti-HIV agents. However, the lack of crystallographic data of HIV IN complexed with the corresponding viral DNA has historically hindered the application of modern structure-based drug design techniques to the discovery of new potent IN inhibitors (INIs). Consequently, the development and validation of reliable HIV IN structural models that may be useful for the screening of large databases of chemical compounds is of particular interest. In this study, four HIV-1 IN homology models were evaluated respect to their capability to predict the inhibition potency of a training set comprising 36 previously reported INIs with IC50 values in the low nanomolar to the high micromolar range. Also, 9 inactive structurally related compounds were included in this training set. In addition, a crystallographic structure of the IN-DNA complex corresponding to the prototype foamy virus (PFV) was also evaluated as structural model for the screening of inhibitors. The applicability of high throughput screening techniques, such as blind and ligand-guided exhaustive rigid docking was assessed. The receptor models were also refined by molecular dynamics and clustering techniques to assess protein sidechain flexibility and solvent effect on inhibitor binding. Among the studied models, we conclude that the one derived from the X-ray structure of the PFV integrase exhibited the best performance to rank the potencies of the compounds in the training set, with the predictive power being further improved by explicitly modeling five water molecules within the catalytic side of IN. Also, accounting for protein sidechain flexibility enhanced the prediction of inhibition potencies among the studied compounds. Finally, an interaction fingerprint pattern was established for the fast identification of potent IN

  16. Fluorogenic Assay for Inhibitors of HIV-1 Protease with Sub-picomolar Affinity

    NASA Astrophysics Data System (ADS)

    Windsor, Ian W.; Raines, Ronald T.

    2015-08-01

    A fluorogenic substrate for HIV-1 protease was designed and used as the basis for a hypersensitive assay. The substrate exhibits a kcat of 7.4 s-1, KM of 15 μM, and an increase in fluorescence intensity of 104-fold upon cleavage, thus providing sensitivity that is unmatched in a continuous assay of HIV-1 protease. These properties enabled the enzyme concentration in an activity assay to be reduced to 25 pM, which is close to the Kd value of the protease dimer. By fitting inhibition data to Morrison’s equation, Ki values of amprenavir, darunavir, and tipranavir were determined to be 135, 10, and 82 pM, respectively. This assay, which is capable of measuring Ki values as low as 0.25 pM, is well-suited for characterizing the next generation of HIV-1 protease inhibitors.

  17. HIV-1 replication in central nervous system increases over time on only protease inhibitor therapy.

    PubMed

    Donath, Maximilian; Wolf, Timo; Stürmer, Martin; Herrmann, Eva; Bickel, Markus; Khaykin, Pavel; Göpel, Siri; Gute, Peter; Haberl, Annette; de Leuw, Philipp; Schüttfort, Gundolf; Berger, Annemarie; Stephan, Christoph

    2016-12-01

    There are concerns about central nervous system (CNS)-replication of HIV-1 in patients on boosted protease inhibitors. Purpose of this study was to compare HIV-1 viral loads (VLs) from patients treated with only boosted dual protease inhibitor (bdPI), versus combination antiretroviral therapy (cART group), containing two nucleoside analogue reverse transcriptase inhibitors (NRTI) and a third partner. All patients from a large German HIV-treatment cohort with available medication, clinical and demographic data, including results from simultaneous HIV-1 viral load (VL) assessments in cerebrospinal fluid (CSF) and blood plasma, were retrospectively evaluated as controlled cross-sectional study. CSF had been obtained from patients with variable neurological symptoms during 2005-2014. Statistical analysis comprised nonparametric tests, regression and correlation techniques accounting for undetectable quantifications. Statistical analysis comprised nonparametric tests, regression and correlation techniques accounting for undetectable quantifications. Overall, 155 patients were evaluable (bdPI: 24; cART: 131). At time of CSF-collection, both groups were comparable in age, gender, CD4-cell counts, or primary HIV-transmission risks, though bdPI patients were clinically more advanced. The proportion of patients with undetectable HIV-1 (<50 copies/ml) in CSF was lower for bdPI group (25 vs 49.6 %; p = 0.026), but similar in plasma (46 vs 41 %). Median CSF-VL was higher in bdPI group (600 vs 50 copies/ml; p = 0.027) and similar in plasma. Mean VL CSF/plasma ratio was 342.91 for bdPI- and 54.48 for cART patients (p < 0.001). Pearson's regression analysis revealed a trend for an elevated VL-ratio over time within bdPI group. HIV-1 replication was higher and more frequently detectable in CSF from bdPI patients, indicating a worse CNS penetration effectiveness of used boosted PI. Within bdPI group, measured CNS-viral replication was increasing over time, suggesting an over

  18. Concise and Practical Asymmetric Synthesis of a Challenging Atropisomeric HIV Integrase Inhibitor.

    PubMed

    Fandrick, Keith R; Li, Wenjie; Zhang, Yongda; Tang, Wenjun; Gao, Joe; Rodriguez, Sonia; Patel, Nitinchandra D; Reeves, Diana C; Wu, Jiang-Ping; Sanyal, Sanjit; Gonnella, Nina; Qu, Bo; Haddad, Nizar; Lorenz, Jon C; Sidhu, Kanwar; Wang, June; Ma, Shengli; Grinberg, Nelu; Lee, Heewon; Tsantrizos, Youla; Poupart, Marc-André; Busacca, Carl A; Yee, Nathan K; Lu, Bruce Z; Senanayake, Chris H

    2015-06-08

    A practical and efficient synthesis of a complex chiral atropisomeric HIV integrase inhibitor has been accomplished. The combination of a copper-catalyzed acylation along with the implementation of the BI-DIME ligands for a ligand-controlled Suzuki cross-coupling and an unprecedented bis(trifluoromethane)sulfonamide-catalyzed tert-butylation renders the synthesis of this complex molecule robust, safe, and economical. Furthermore, the overall synthesis was conducted in an asymmetric and diastereoselective fashion with respect to the imbedded atropisomer.

  19. Intermolecular interactions in the crystal structures of potential HIV-1 integrase inhibitors.

    PubMed

    Majerz-Maniecka, Katarzyna; Musiol, Robert; Nitek, Wojciech; Oleksyn, Barbara J; Mouscadet, Jean-Francois; Le Bret, Marc; Polanski, Jaroslaw

    2006-02-15

    2-[(2,5-dichloro-4-nitro-phenylamino)-methoxy-methyl]-8-hydroxy-quinoline 1 and 2-methyl-quinoline-5,8-dione-5-oxime 2 were obtained as potential HIV-1 integrase inhibitors and analyzed by X-ray crystallography. Semiempirical theoretical calculations of energy preferred conformations were also carried out. The crystal structures of both compounds are stabilized via hydrogen bonds and pi-pi stacking interactions. The planarity of compound 1 is caused by intramolecular hydrogen bonds.

  20. Peptidase E, a Peptidase Specific for N-Terminal Aspartic Dipeptides, Is a Serine Hydrolase

    PubMed Central

    Lassy, Rachel A. L.; Miller, Charles G.

    2000-01-01

    Salmonella enterica serovar Typhimurium peptidase E (PepE) is an N-terminal Asp-specific dipeptidase. PepE is not inhibited by any of the classical peptidase inhibitors, and its amino acid sequence does not place it in any of the known peptidase structural classes. A comparison of the amino acid sequence of PepE with a number of related sequences has allowed us to define the amino acid residues that are strongly conserved in this family. To ensure the validity of this comparison, we have expressed one of the most distantly related relatives (Xenopus) in Escherichia coli and have shown that it is indeed an Asp-specific dipeptidase with properties very similar to those of serovar Typhimurium PepE. The sequence comparison suggests that PepE is a serine hydrolase. We have used site-directed mutagenesis to change all of the conserved Ser, His, and Asp residues and have found that Ser120, His157, and Asp135 are all required for activity. Conversion of Ser120 to Cys leads to severely reduced (104-fold) but still detectable activity, and this activity but not that of the parent is inhibited by thiol reagents; these results confirm that this residue is likely to be the catalytic nucleophile. These results suggest that PepE is the prototype of a new family of serine peptidases. The phylogenetic distribution of the family is unusual, since representatives are found in eubacteria, an insect (Drosophila), and a vertebrate (Xenopus) but not in the Archaea or in any of the other eukaryotes for which genome sequences are available. PMID:10762256

  1. Computational and synthetic approaches for developing Lavendustin B derivatives as allosteric inhibitors of HIV-1 integrase

    PubMed Central

    Agharbaoui, Fatima E.; Hoyte, Ashley C.; Ferro, Stefania; Gitto, Rosaria; Buemi, Maria Rosa; Fuchs, James R.; Kvaratskhelia, Mamuka; De Luca, Laura

    2017-01-01

    Through structure-based virtual screening and subsequent activity assays of selected natural products, Lavendustin B was previously identified as an inhibitor of HIV-1 integrase (IN) interaction with its cognate cellular cofactor, lens epithelium-derived growth factor (LEDGF/p75). In order to improve the inhibitory potency we have employed in silico-based approaches. Particularly, a series of new analogues was designed and docked into the LEDGF/p75 binding pocket of HIV-1 IN. To identify promising leads we used the Molecular Mechanics energies combined with the Generalized Born and Surface Area continuum solvation (MM-GBSA) method, molecular dynamics simulations and analysis of hydrogen bond occupancies. On the basis of these studies, six analogues of Lavendustine B, containing the benzylamino-hydroxybenzoic scaffold, were selected for synthesis and structure activity-relationship (SAR) studies. Our results demonstrated a good correlation between computational and experimental data, and all six analogues displayed an improved potency for inhibiting IN binding to LEDGF/p75 in vitro to respect to the parent compound Lavendustin B. Additionally, these analogs show to inhibit weakly LEDGF/p75-independent IN catalytic activity suggesting a multimodal allosteric mechanism of action. Nevertheless, for the synthesized compounds similar profiles for HIV-1 inhibition and cytoxicity were highlighted. Taken together, our studies elucidated the mode of action of Lavendustin B analogs and provided a path for their further development as a new promising class of HIV-1 integrase inhibitors. PMID:27517812

  2. Computational and synthetic approaches for developing Lavendustin B derivatives as allosteric inhibitors of HIV-1 integrase.

    PubMed

    Agharbaoui, Fatima E; Hoyte, Ashley C; Ferro, Stefania; Gitto, Rosaria; Buemi, Maria Rosa; Fuchs, James R; Kvaratskhelia, Mamuka; De Luca, Laura

    2016-11-10

    Through structure-based virtual screening and subsequent activity assays of selected natural products, Lavendustin B was previously identified as an inhibitor of HIV-1 integrase (IN) interaction with its cognate cellular cofactor, lens epithelium-derived growth factor (LEDGF/p75). In order to improve the inhibitory potency we have employed in silico-based approaches. Particularly, a series of new analogues was designed and docked into the LEDGF/p75 binding pocket of HIV-1 IN. To identify promising leads we used the Molecular Mechanics energies combined with the Generalized Born and Surface Area continuum solvation (MM-GBSA) method, molecular dynamics simulations and analysis of hydrogen bond occupancies. On the basis of these studies, six analogues of Lavendustine B, containing the benzylamino-hydroxybenzoic scaffold, were selected for synthesis and structure activity-relationship (SAR) studies. Our results demonstrated a good correlation between computational and experimental data, and all six analogues displayed an improved potency for inhibiting IN binding to LEDGF/p75 in vitro to respect to the parent compound Lavendustin B. Additionally, these analogs show to inhibit weakly LEDGF/p75-independent IN catalytic activity suggesting a multimodal allosteric mechanism of action. Nevertheless, for the synthesized compounds similar profiles for HIV-1 inhibition and cytoxicity were highlighted. Taken together, our studies elucidated the mode of action of Lavendustin B analogs and provided a path for their further development as a new promising class of HIV-1 integrase inhibitors.

  3. Tyrosine kinase inhibitors: potential use and safety considerations in HIV-1 infection.

    PubMed

    Coiras, Mayte; Ambrosioni, Juan; Cervantes, Francisco; Miró, José M; Alcamí, José

    2017-05-01

    Infection caused by HIV-1 is nowadays a chronic disease due to a highly efficient antiretroviral treatment that is nevertheless, unable to eliminate the virus from the organism. New strategies are necessary in order to impede the formation of the viral reservoirs, responsible for the failure of the antiretroviral treatment to cure the infection. Areas covered: The purpose of this review is to discuss the possibility of using tyrosine kinase inhibitors (TKIs) for the treatment of HIV-1 infection. These inhibitors are successfully used in patients with distinct cancers such as chronic myeloid leukemia. The most relevant papers have been selected and commented. Expert opinion: The family of TKIs are directed against the activation of tyrosine kinases from the Src family. Some of these kinases are essential for the activation of CD4 + T cells, the major target of HIV-1. During acute or primary infection the CD4 + T cells are massively activated, which is mostly responsible for the generation of the reservoirs, the spread of the infection and the destruction of activated CD4 + T cells, infected or not. Consequently, we discuss the possibility of using TKIs as adjuvant of the antiretroviral treatment against HIV-1 infection mostly, but not exclusively, during the acute/recent phase.

  4. Gyrase B Inhibitor Impairs HIV-1 Replication by Targeting Hsp90 and the Capsid Protein*

    PubMed Central

    Vozzolo, Luciano; Loh, Belinda; Gane, Paul J.; Tribak, Maryame; Zhou, Lihong; Anderson, Ian; Nyakatura, Elisabeth; Jenner, Richard G.; Selwood, David; Fassati, Ariberto

    2010-01-01

    Chemical genetics is an emerging approach to investigate the biology of host-pathogen interactions. We screened several inhibitors of ATP-dependent DNA motors and detected the gyrase B inhibitor coumermycin A1 (C-A1) as a potent antiretroviral. C-A1 inhibited HIV-1 integration and gene expression from acutely infected cell, but the two activities mapped to distinct targets. Target discovery identified Hsp90 as the C-A1 target affecting viral gene expression. Chromatin immunoprecipitation revealed that Hsp90 associates with the viral promoter and may directly regulate gene expression. Molecular docking suggested that C-A1 binds to two novel pockets at the C terminal domain of Hsp90. C-A1 inhibited Hsp90 dimer formation, suggesting that it impairs viral gene expression by preventing Hsp90 dimerization at the C terminus. The inhibition of HIV-1 integration imposed by C-A1 was independent of Hsp90 and mapped to the capsid protein, and a point mutation at residue 105 made the virus resistant to this block. HIV-1 susceptibility to the integration block mediated by C-A1 was influenced by cyclophilin A. Our chemical genetic approach revealed an unexpected function of capsid in HIV-1 integration and provided evidence for a role of Hsp90 in regulating gene expression in mammalian cells. Both activities were amenable to inhibition by small molecules and represent novel antiretroviral drug targets. PMID:20937817

  5. Attachment and fusion inhibitors potently prevent dendritic cell-driven HIV infection

    PubMed Central

    Ines, Frank; Melissa, Robbiani

    2010-01-01

    Dendritic cells (DCs) efficiently transfer captured (trans) or de novo produced (cis) virus to CD4 T cells. Using monocyte-derived DCs we evaluated entry inhibitors targeting HIV envelope (BMS-C, T-1249) or CCR5 (CMPD167) for their potency to prevent DC-infection, DC-driven infection in T cells in trans and cis, and direct infection of DC-T cell mixtures. Immature DC-T cultures with distinct mechanisms of viral transfer yielded similar levels of infection, and produced more proviral DNA compared to matched mature DC-T cultures or infected immature DCs. Although all compounds completely blocked HIV replication, 16 times more of each inhibitor (250 vs 15.6nM) was required to prevent low-level infection of DCs compared to the productive DC-T cell cocultures. Across all cell systems tested, BMS-C blocked infection most potently. BMS-C was significantly more effective than CMPD167 at preventing DC infection. In fact, low doses of CMPD167 significantly enhanced DC-infection. Elevated levels of CCL4 were observed when immature DCs were cultured with CMPD167. Viral entry inhibitors did not interfere with Candida albicans-specific DC cytokine/chemokine responses. These findings indicate that an envelope-binding small molecule is a promising tool for topical microbicide design to prevent the infection of early targets needed to establish and disseminate HIV infection. PMID:21084994

  6. Design, Synthesis, Biological and Structural Evaluations of Novel HIV-1 Protease Inhibitors to Combat Drug Resistance

    PubMed Central

    Parai, Maloy Kumar; Huggins, David J.; Cao, Hong; Nalam, Madhavi N. L.; Ali, Akbar; Schiffer, Celia A.; Tidor, Bruce; Rana, Tariq M.

    2012-01-01

    A series of new HIV-1 protease inhibitors (PIs) were designed using a general strategy that combines computational structure-based design with substrate-envelope constraints. The PIs incorporate various alcohol-derived P2 carbamates with acyclic and cyclic heteroatomic functionalities into the (R)-hydroxyethylamine isostere. Most of the new PIs show potent binding affinities against wild-type HIV-1 protease and three multidrug resistant (MDR) variants, in particular inhibitors containing 2,2-dichloroacetamide, pyrrolidinone, imidazolidinone, and oxazolidinone moieties at P2 are the most potent with Ki values in the picomolar range. Several new PIs exhibit nanomolar antiviral potencies against patient-derived wild-type viruses from HIV-1 clades A, B, and C and two MDR variants. Crystal structure analyses of four potent inhibitors revealed that carbonyl groups of the new P2 moieties promote extensive hydrogen bond interactions with the invariant Asp-29 residue of the protease. These structure-activity relationship findings can be utilized to design new PIs with enhanced enzyme inhibitory and antiviral potencies. PMID:22708897

  7. Discovery of a small-molecule HIV-1 integrase inhibitor-binding site

    PubMed Central

    Al-Mawsawi, Laith Q.; Fikkert, Valery; Dayam, Raveendra; Witvrouw, Myriam; Burke, Terrence R.; Borchers, Christoph H.; Neamati, Nouri

    2006-01-01

    Herein, we report the identification of a unique HIV-1 integrase (IN) inhibitor-binding site using photoaffinity labeling and mass spectrometric analysis. We chemically incorporated a photo-activatable benzophenone moiety into a series of coumarin-containing IN inhibitors. A representative of this series was covalently photo-crosslinked with the IN core domain and subjected to HPLC purification. Fractions were subsequently analyzed by using MALDI-MS and electrospray ionization (ESI)-MS to identify photo-crosslinked products. In this fashion, a single binding site for an inhibitor located within the tryptic peptide 128AACWWAGIK136 was identified. Site-directed mutagenesis followed by in vitro inhibition assays resulted in the identification of two specific amino acid residues, C130 and W132, in which substitutions resulted in a marked resistance to the IN inhibitors. Docking studies suggested a specific disruption in functional oligomeric IN complex formation. The combined approach of photo-affinity labeling/MS analysis with site-directed mutagenesis/molecular modeling is a powerful approach for elucidating inhibitor-binding sites of proteins at the atomic level. This approach is especially important for the study of proteins that are not amenable to traditional x-ray crystallography and NMR techniques. This type of structural information can help illuminate processes of inhibitor resistance and thereby facilitate the design of more potent second-generation inhibitors. PMID:16785440

  8. Hemoglobin digestion in Blood-Feeding Ticks: Mapping a Multi-Peptidase Pathway by Functional Proteomics

    PubMed Central

    Horn, Martin; Nussbaumerová, Martina; Šanda, Miloslav; Kovářová, Zuzana; Srba, Jindřich; Franta, Zdeněk; Sojka, Daniel; Bogyo, Matthew; Caffrey, Conor R.; Kopáček, Petr; Mareš, Michael

    2009-01-01

    SUMMARY Hemoglobin digestion is an essential process for blood-feeding parasites. Using chemical tools, we deconvoluted the intracellular hemoglobinolytic cascade in the tick Ixodes ricinus, a vector of Lyme disease and tick-borne encephalitis. In tick gut tissue, a network of peptidases was demonstrated through imaging with specific activity-based probes and activity profiling with peptidic substrates/inhibitors. This peptidase network is induced upon blood feeding and degrades hemoglobin at acidic pH. Selective inhibitors were applied to dissect the roles of the individual peptidases and determine the peptidase-specific cleavage map of the hemoglobin molecule. The degradation pathway is initiated by endopeptidases of aspartic and cysteine class (cathepsin D supported by cathepsin L and legumain) and continued by cysteine amino- and carboxy-dipeptidases (cathepsins C and B). The identified enzymes are potential targets to developing novel anti-tick vaccines. PMID:19875079

  9. Sequential treatment with 5-aza-2'-deoxycytidine and deacetylase inhibitors reactivates HIV-1.

    PubMed

    Bouchat, Sophie; Delacourt, Nadège; Kula, Anna; Darcis, Gilles; Van Driessche, Benoit; Corazza, Francis; Gatot, Jean-Stéphane; Melard, Adeline; Vanhulle, Caroline; Kabeya, Kabamba; Pardons, Marion; Avettand-Fenoel, Véronique; Clumeck, Nathan; De Wit, Stéphane; Rohr, Olivier; Rouzioux, Christine; Van Lint, Carine

    2015-12-17

    Reactivation of HIV gene expression in latently infected cells together with an efficient cART has been proposed as an adjuvant therapy aimed at eliminating/decreasing the reservoir size. Results from HIV clinical trials using deacetylase inhibitors (HDACIs) question the efficiency of these latency-reversing agents (LRAs) used alone and underline the need to evaluate other LRAs in combination with HDACIs. Here, we evaluated the therapeutic potential of a demethylating agent (5-AzadC) in combination with clinically tolerable HDACIs in reactivating HIV-1 from latency first in vitro and next ex vivo. We showed that a sequential treatment with 5-AzadC and HDACIs was more effective than the corresponding simultaneous treatment both in vitro and ex vivo. Interestingly, only two of the sequential LRA combinatory treatments tested induced HIV-1 particle recovery in a higher manner than the drugs alone ex vivo and at concentrations lower than the human tolerable plasmatic concentrations. Taken together, our data reveal the benefit of using combinations of 5-AzadC with an HDACI and, for the first time, the importance of treatment time schedule for LRA combinations in order to reactivate HIV.

  10. Design and synthesis of HIV-1 protease inhibitors for a long-acting injectable drug application.

    PubMed

    Kesteleyn, Bart; Amssoms, Katie; Schepens, Wim; Hache, Geerwin; Verschueren, Wim; Van De Vreken, Wim; Rombauts, Klara; Meurs, Greet; Sterkens, Patrick; Stoops, Bart; Baert, Lieven; Austin, Nigel; Wegner, Jörg; Masungi, Chantal; Dierynck, Inge; Lundgren, Stina; Jönsson, Daniel; Parkes, Kevin; Kalayanov, Genadiy; Wallberg, Hans; Rosenquist, Asa; Samuelsson, Bertil; Van Emelen, Kristof; Thuring, Jan Willem

    2013-01-01

    The design and synthesis of novel HIV-1 protease inhibitors (PIs) (1-22), which display high potency against HIV-1 wild-type and multi-PI-resistant HIV-mutant clinical isolates, is described. Lead optimization was initiated from compound 1, a Phe-Phe hydroxyethylene peptidomimetic PI, and was directed towards the discovery of new PIs suitable for a long-acting (LA) injectable drug application. Introducing a heterocyclic 6-methoxy-3-pyridinyl or a 6-(dimethylamino)-3-pyridinyl moiety (R(3)) at the para-position of the P1' benzyl fragment generated compounds with antiviral potency in the low single digit nanomolar range. Halogenation or alkylation of the metabolic hot spots on the various aromatic rings resulted in PIs with high stability against degradation in human liver microsomes and low plasma clearance in rats. Replacing the chromanolamine moiety (R(1)) in the P2 protease binding site by a cyclopentanolamine or a cyclohexanolamine derivative provided a series of high clearance PIs (16-22) with EC(50)s on wild-type HIV-1 in the range of 0.8-1.8 nM. PIs 18 and 22, formulated as nanosuspensions, showed gradual but sustained and complete release from the injection site over two months in rats, and were therefore identified as interesting candidates for a LA injectable drug application for treating HIV/AIDS.

  11. An Intravaginal Ring for the Simultaneous Delivery of an HIV-1 Maturation Inhibitor and Reverse-Transcriptase Inhibitor for Prophylaxis of HIV Transmission.

    PubMed

    Ugaonkar, Shweta R; Clark, Justin T; English, Lexie B; Johnson, Todd J; Buckheit, Karen W; Bahde, Robert J; Appella, Daniel H; Buckheit, Robert W; Kiser, Patrick F

    2015-10-01

    Nucleocapsid 7 (NCp7) inhibitors have been investigated extensively for their role in impeding the function of HIV-1 replication machinery and their ability to directly inactivate the virus. A class of NCp7 zinc finger inhibitors, S-acyl-2-mercaptobenzamide thioesters (SAMTs), was investigated for topical drug delivery. SAMTs are inherently unstable because of their hydrolytically labile thioester bond, thus requiring formulation approaches that can lend stability. We describe the delivery of N-[2-(3,4,5-trimethoxybenzoylthio)benzoyl]-β-alaninamide (SAMT-10), as a single agent antiretroviral (ARV) therapeutic and in combination with the HIV-1 reverse-transcriptase inhibitor pyrimidinedione IQP-0528, from a hydrophobic polyether urethane (PEU) intravaginal ring (IVR) for a month. The physicochemical stability of the ARV-loaded IVRs was confirmed after 3 months at 40°C/75% relative humidity. In vitro, 25 ± 3 mg/IVR of SAMT-10 and 86 ± 13 mg/IVR of IQP-0528 were released. No degradation of the hydrolytically labile SAMT-10 was observed within the matrix. The combination of ARVs had synergistic antiviral activity when tested in in vitro cell-based assays. Toxicological evaluations performed on an organotypic EpiVaginal(™) tissue model demonstrated a lack of formulation toxicity. Overall, SAMT-10 and IQP-0528 were formulated in a stable PEU IVR for sustained release. Our findings support the need for further preclinical evaluation. © 2015 Wiley Periodicals, Inc. and the American Pharmacists Association J Pharm Sci 104:3426-3439, 2015. © 2015 Wiley Periodicals, Inc. and the American Pharmacists Association.

  12. Punica granatum (Pomegranate) juice provides an HIV-1 entry inhibitor and candidate topical microbicide

    PubMed Central

    Neurath, A Robert; Strick, Nathan; Li, Yun-Yao; Debnath, Asim K

    2004-01-01

    Background For ≈ 24 years the AIDS pandemic has claimed ≈ 30 million lives, causing ≈ 14,000 new HIV-1 infections daily worldwide in 2003. About 80% of infections occur by heterosexual transmission. In the absence of vaccines, topical microbicides, expected to block virus transmission, offer hope for controlling the pandemic. Antiretroviral chemotherapeutics have decreased AIDS mortality in industrialized countries, but only minimally in developing countries. To prevent an analogous dichotomy, microbicides should be: acceptable; accessible; affordable; and accelerative in transition from development to marketing. Already marketed pharmaceutical excipients or foods, with established safety records and adequate anti-HIV-1 activity, may provide this option. Methods Fruit juices were screened for inhibitory activity against HIV-1 IIIB using CD4 and CXCR4 as cell receptors. The best juice was tested for inhibition of: (1) infection by HIV-1 BaL, utilizing CCR5 as the cellular coreceptor; and (2) binding of gp120 IIIB and gp120 BaL, respectively, to CXCR4 and CCR5. To remove most colored juice components, the adsorption of the effective ingredient(s) to dispersible excipients and other foods was investigated. A selected complex was assayed for inhibition of infection by primary HIV-1 isolates. Results HIV-1 entry inhibitors from pomegranate juice adsorb onto corn starch. The resulting complex blocks virus binding to CD4 and CXCR4/CCR5 and inhibits infection by primary virus clades A to G and group O. Conclusion These results suggest the possibility of producing an anti-HIV-1 microbicide from inexpensive, widely available sources, whose safety has been established throughout centuries, provided that its quality is adequately standardized and monitored. PMID:15485580

  13. Mosapride, a selective serotonin 5-HT4 receptor agonist, and alogliptin, a selective dipeptidyl peptidase-4 inhibitor, exert synergic effects on plasma active GLP-1 levels and glucose tolerance in mice.

    PubMed

    Nonogaki, Katsunori; Kaji, Takao

    2015-12-01

    Pharmacologic stimulation of serotonin 5-HT4 receptors increased plasma active glucagon-like-peptide-1 (GLP-1) levels independent of feeding, and that pharmacologic stimulation of 5-HT4 receptors and pharmacologic inhibition of dipeptidyl peptidase-4 exerted synergic effects on plasma active GLP-1 levels and glucose tolerance in mice.

  14. Carotid artery intima–media thickness and HIV infection: traditional risk factors overshadow impact of protease inhibitor exposure

    PubMed Central

    Currier, Judith S.; Kendall, Michelle A.; Zackin, Robert; Henry, W. Keith; Alston-Smith, Beverly; Torriani, Francesca J.; Schouten, Jeff; Mickelberg, Keith; Li, Yanjie; Hodis, Howard N.

    2005-01-01

    Context The impact of HIV infection and exposure to antiretroviral therapy on the development of subclinical atherosclerosis is incompletely understood. Objective To compare intima–media thickness (IMT) of the carotid artery between HIV-infected subjects receiving protease inhibitor-containing regimens and subjects not receiving these regimens and to compare differences in the IMT of the carotid artery between HIV-infected subjects and HIV-uninfected subjects. Methods A prospective matched cohort study in university-based outpatient clinics. Groups of three individuals (triads) matched on the following characteristics were enrolled: age, sex, race/ethnicity, smoking status, blood pressure and menopausal status. Group 1, HIV-infected subjects with continuous use of protease inhibitor (PI) therapy for ≥ 2 years; group 2, HIV-infected subjects without prior PI use; and group 3: HIV-uninfected. Ultrasonographers at six sites sent standardized ultrasound images to a central reading site for carotid IMT measurements. Carotid IMT was compared within the HIV-infected groups (1 and 2) and between the HIV-infected and uninfected groups in a matched analysis. Results One hundred and thirty-four individuals were enrolled in 45 triads. The median IMT in groups 1, 2 and 3 was 0.690, 0.712 and 0.698 mm, respectively. There were no statistically significant differences in IMT between groups 1 and 2, or in the combined HIV groups compared with the HIV uninfected group. Significant predictors of carotid IMT in a multivariate model included high-density lipoprotein (HDL) cholesterol, the interaction of HDL cholesterol and triglycerides, age and body mass index. Conclusions We found no association between PI inhibitor exposure or HIV infection and carotid IMT. PMID:15905673

  15. In Vitro Selection and Characterization of HIV-1 Variants with Increased Resistance to Sifuvirtide, a Novel HIV-1 Fusion Inhibitor*

    PubMed Central

    Liu, Zhonghua; Shan, Mei; Li, Li; Lu, Lu; Meng, Shu; Chen, Cheng; He, Yuxian; Jiang, Shibo; Zhang, Linqi

    2011-01-01

    Sifuvirtide, a novel fusion inhibitor against human immunodeficiency virus type I (HIV-1), which is more potent than enfuvirtide (T20) in cell culture, is currently under clinical investigation for the treatment of HIV-1 infection. We now report that in vitro selection of HIV-1 variants resistant to sifuvirtide in the presence of increasing concentrations of sifuvirtide has led to several specific mutations in the gp41 region that had not been previously reported. Many of these substitutions were confined to the N-terminal heptad repeat region at positions 37, 38, 41, and 43, either singly or in combination. A downstream substitution at position 126 (N126K) in the C-terminal heptad repeat region was also found. Site-directed mutagenesis studies have further identified the critical amino acid substitutions and combinations thereof in conferring the resistant genotypes. Furthermore, the mutant viruses demonstrated variable degrees of cross-resistance to enfuvirtide, some of which are preferentially more resistant to sifuvirtide. Impaired infectivity was also found for many of the mutant viruses. Biophysical and structural analyses of the key substitutions have revealed several potential novel mechanisms against sifuvirtide. Our results may help to predict potential resistant patterns in vivo and facilitate the further clinical development and therapeutic utility of sifuvirtide. PMID:21098485

  16. Inhibition of DD-peptidases by a specific trifluoroketone: crystal structure of a complex with the Actinomadura R39 DD-peptidase.

    PubMed

    Dzhekieva, Liudmila; Adediran, S A; Herman, Raphael; Kerff, Frédéric; Duez, Colette; Charlier, Paulette; Sauvage, Eric; Pratt, R F

    2013-03-26

    Inhibitors of bacterial DD-peptidases represent potential antibiotics. In the search for alternatives to β-lactams, we have investigated a series of compounds designed to generate transition state analogue structures upon reaction with DD-peptidases. The compounds contain a combination of a peptidoglycan-mimetic specificity handle and a warhead capable of delivering a tetrahedral anion to the enzyme active site. The latter includes a boronic acid, two alcohols, an aldehyde, and a trifluoroketone. The compounds were tested against two low-molecular mass class C DD-peptidases. As expected from previous observations, the boronic acid was a potent inhibitor, but rather unexpectedly from precedent, the trifluoroketone [D-α-aminopimelyl(1,1,1-trifluoro-3-amino)butan-2-one] was also very effective. Taking into account competing hydration, we found the trifluoroketone was the strongest inhibitor of the Actinomadura R39 DD-peptidase, with a subnanomolar (free ketone) inhibition constant. A crystal structure of the complex between the trifluoroketone and the R39 enzyme showed that a tetrahedral adduct had indeed formed with the active site serine nucleophile. The trifluoroketone moiety, therefore, should be considered along with boronic acids and phosphonates as a warhead that can be incorporated into new and effective DD-peptidase inhibitors and therefore, perhaps, antibiotics.

  17. Discovery of a small-molecule HIV-1 integrase inhibitor-binding site | Center for Cancer Research

    Cancer.gov

    The lowest energy-binding conformation of an inhibitor bound to the dimeric interface of HIV-1 integrase core domain. The yellow region represents a unique allosteric binding site identified by affinity labeling and mass spectrometry and validated through mutagenesis. This site can provide a potential platform for the rational design of inhibitors selective for disruption of integrase multimerization.

  18. A structural basis for the acute effects of HIV protease inhibitors on GLUT4 intrinsic activity.

    PubMed

    Hertel, Johann; Struthers, Heidi; Horj, Christal Baird; Hruz, Paul W

    2004-12-31

    Human immunodeficiency virus (HIV) protease inhibitors (PIs) act as reversible noncompetitive inhibitors of GLUT4 with binding affinities in the low micromolar range and are known to contribute to alterations in glucose homeostasis during treatment of HIV infection. As aspartyl protease inhibitors, these compounds all possess a core peptidomimetic structure together with flanking hydrophobic moieties. To determine the molecular basis for GLUT4 inhibition, a family of related oligopeptides containing structural elements found in PIs was screened for their ability to inhibit 2-deoxyglucose transport in primary rat adipocytes. The peptide oxybenzylcarbonyl-His-Phe-Phe-O-ethyl ester (zHFFe) was identified as a potent inhibitor of zero-trans glucose flux with a K(i) of 26 mum. Similar to PIs, transport inhibition by this peptide was acute, noncompetitive, and reversible. Within a Xenopus oocyte expression system, zHFFe acutely and reversibly inhibited GLUT4-mediated glucose uptake, whereas GLUT1 activity was unaffected at concentrations as high as 1 mm. The related photoactivatable peptide zHFF-p-benzoylphenylalanine-[(125)I]Tyr-O-ethyl ester selectively labeled GLUT4 in rat adipocytes and indinavir effectively protected against photolabeling. Furthermore, GLUT4 bound to a peptide affinity column containing the zHFF sequence and was eluted by indinavir. These data establish a structural basis for PI effects on GLUT4 activity and support the direct binding of PIs to the transport protein as the mechanism for acute inhibition of insulin-stimulated glucose uptake.

  19. Integrase inhibitors in late pregnancy and rapid HIV viral load reduction.

    PubMed

    Rahangdale, Lisa; Cates, Jordan; Potter, JoNell; Badell, Martina L; Seidman, Dominika; Miller, Emilly S; Coleman, Jenell S; Lazenby, Gweneth B; Levison, Judy; Short, William R; Yawetz, Sigal; Ciaranello, Andrea; Livingston, Elizabeth; Duthely, Lunthita; Rimawi, Bassam H; Anderson, Jean R; Stringer, Elizabeth M

    2016-03-01

    Minimizing time to HIV viral suppression is critical in pregnancy. Integrase strand transfer inhibitors (INSTIs), like raltegravir, are known to rapidly suppress plasma HIV RNA in nonpregnant adults. There are limited data in pregnant women. We describe time to clinically relevant reduction in HIV RNA in pregnant women using INSTI-containing and non-INSTI-containing antiretroviral therapy (ART) options. We conducted a retrospective cohort study of pregnant HIV-infected women in the United States from 2009 through 2015. We included women who initiated ART, intensified their regimen, or switched to a new regimen due to detectable viremia (HIV RNA >40 copies/mL) at ≥20 weeks gestation. Among women with a baseline HIV RNA permitting 1-log reduction, we estimated time to 1-log RNA reduction using the Kaplan-Meier estimator comparing women starting/adding an INSTI in their regimen vs other ART. To compare groups with similar follow-up time, we also conducted a subgroup analysis limited to women with ≤14 days between baseline and follow-up RNA data. This study describes 101 HIV-infected pregnant women from 11 US clinics. In all, 75% (76/101) of women were not taking ART at baseline; 24 were taking non-INSTI containing ART, and 1 received zidovudine monotherapy. In all, 39% (39/101) of women started an INSTI-containing regimen or added an INSTI to their ART regimen. Among 90 women with a baseline HIV RNA permitting 1-log reduction, the median time to 1-log RNA reduction was 8 days (interquartile range [IQR], 7-14) in the INSTI group vs 35 days (IQR, 20-53) in the non-INSTI ART group (P < .01). In a subgroup of 39 women with first and last RNA measurements ≤14 days apart, median time to 1-log reduction was 7 days (IQR, 6-10) in the INSTI group vs 11 days (IQR, 10-14) in the non-INSTI group (P < .01). ART that includes INSTIs appears to induce more rapid viral suppression than other ART regimens in pregnancy. Inclusion of an INSTI may play a role in optimal reduction

  20. Notable Difference in anti-HIV Activity of Integrase Inhibitors as a Consequence of Geometric and Enantiomeric Configurations

    PubMed Central

    Okello, Maurice; Mishra, Sanjay; Nishonov, Malik; Nair, Vasu

    2013-01-01

    While some examples are known of integrase inhibitors that exhibit potent anti-HIV activity, there are very few cases reported of integrase inhibitors that show significant differences in anti-HIV activity that result from distinctions in cis-and trans-configurations as well as enantiomeric stereostructure. We describe here the design and synthesis of two enantiomeric trans-hydroxycyclopentyl carboxamides which exhibit notable difference in anti-HIV activity. This difference is explained through their binding interactions within the active site of the HIV-1 integrase intasome. The more active enantiomer 3 (EC50 25 nM) was relatively stable in human liver microsomes. Kinetic data revealed that its impact on key cytochrome P450 isozymes, as either an inhibitor or an activator, was minor, suggesting a favorable CYP profile. PMID:23746474

  1. Improved Pharmacological and Structural Properties of HIV Fusion Inhibitor AP3 over Enfuvirtide: Highlighting Advantages of Artificial Peptide Strategy

    DOE PAGES

    Zhu, Xiaojie; Zhu, Yun; Ye, Sheng; ...

    2015-08-19

    Enfuvirtide (T20), is the first HIV fusion inhibitor approved for treatment of HIV/AIDS patients who fail to respond to the current antiretroviral drugs. However, its clinical application is limited because of short half-life, drug resistance and cross-reactivity with the preexisting antibodies in HIV-infected patients. Using an artificial peptide strategy, we designed a peptide with non-native protein sequence, AP3, which exhibited potent antiviral activity against a broad spectrum of HIV-1 strains, including those resistant to T20, and had remarkably longer in vivo half-life than T20. While the preexisting antibodies in HIV-infected patients significantly suppressed T20’s antiviral activity, these antibodies neither recognizedmore » AP3, nor attenuated its anti-HIV-1 activity. Structurally different from T20, AP3 could fold into single-helix and interact with gp41 NHR. The two residues, Met and Thr, at the N-terminus of AP3 form a hook-like structure to stabilize interaction between AP3 and NHR helices. Therefore, AP3 has potential for further development as a new HIV fusion inhibitor with improved antiviral efficacy, resistance profile and pharmacological properties over enfuvirtide. Meanwhile, this study highlighted the advantages of artificially designed peptides, and confirmed that this strategy could be used in developing artificial peptide-based viral fusion inhibitors against HIV and other enveloped viruses.« less

  2. Activation of HIV-1 from latent infection via synergy of RUNX1 inhibitor Ro5-3335 and SAHA.

    PubMed

    Klase, Zachary; Yedavalli, Venkat S R K; Houzet, Laurent; Perkins, Molly; Maldarelli, Frank; Brenchley, Jason; Strebel, Klaus; Liu, Paul; Jeang, Kuan-Teh

    2014-03-01

    A major barrier to the elimination of HIV-1 infection is the presence of a pool of long-lived, latently infected CD4+ memory T-cells. The search for treatments to re-activate latent HIV to aid in clearance is hindered by the incomplete understanding of the mechanisms that lead to transcriptional silencing of viral gene expression in host cells. Here we identify a previously unknown role for RUNX1 in HIV-1 transcriptional latency. The RUNX proteins, in combination with the co-factor CBF-β, are critical transcriptional regulators in T-cells. RUNX1 strongly modulates CD4 expression and contributes to CD4+ T-cell function. We show that RUNX1 can bind DNA sequences within the HIV-1 LTR and that this binding represses transcription. Using patient samples we show a negative correlation between RUNX1 expression and viral load. Furthermore, we find that pharmacologic inhibition of RUNX1 by a small molecule inhibitor, Ro5-3335, synergizes with the histone deacetylase (HDAC) inhibitor SAHA (Vorinostat) to enhance the activation of latent HIV-1 in both cell lines and PBMCs from patients. Our findings indicate that RUNX1 and CBF-β cooperate in cells to modulate HIV-1 replication, identifying for the first time RUNX1 as a cellular factor involved in HIV-1 latency. This work highlights the therapeutic potential of inhibitors of RUNX1 to re-activate virus and aid in clearance of HIV-1.

  3. Trelagliptin (SYR-472, Zafatek), novel once-weekly treatment for type 2 diabetes, inhibits dipeptidyl peptidase-4 (DPP-4) via a non-covalent mechanism

    DOE PAGES

    Grimshaw, Charles E.; Jennings, Andy; Kamran, Ruhi; ...

    2016-06-21

    Trelagliptin (SYR-472), a novel dipeptidyl peptidase-4 inhibitor, shows sustained efficacy by once-weekly dosing in type 2 diabetes patients. In this study, we characterized in vitro properties of trelagliptin, which exhibited approximately 4-and 12-fold more potent inhibition against human dipeptidyl peptidase-4 than alogliptin and sitagliptin, respectively, and >10,000-fold selectivity over related proteases including dipeptidyl peptidase-8 and dipeptidyl peptidase-9. Kinetic analysis revealed reversible, competitive and slow-binding inhibition of dipeptidyl peptidase-4 by trelagliptin (t1/2 for dissociation ≈ 30 minutes). X-ray diffraction data indicated a non-covalent interaction between dipeptidyl peptidase and trelagliptin. Altogether, potent dipeptidyl peptidase inhibitionmay partially contribute to sustained efficacy of trelagliptin.

  4. Trelagliptin (SYR-472, Zafatek), novel once-weekly treatment for type 2 diabetes, inhibits dipeptidyl peptidase-4 (DPP-4) via a non-covalent mechanism

    SciTech Connect

    Grimshaw, Charles E.; Jennings, Andy; Kamran, Ruhi; Ueno, Hikaru; Nishigaki, Nobuhiro; Kosaka, Takuo; Tani, Akiyoshi; Sano, Hiroki; Kinugawa, Yoshinobu; Koumura, Emiko; Shi, Lihong; Takeuchi, Koji

    2016-06-21

    Trelagliptin (SYR-472), a novel dipeptidyl peptidase-4 inhibitor, shows sustained efficacy by once-weekly dosing in type 2 diabetes patients. In this study, we characterized in vitro properties of trelagliptin, which exhibited approximately 4-and 12-fold more potent inhibition against human dipeptidyl peptidase-4 than alogliptin and sitagliptin, respectively, and >10,000-fold selectivity over related proteases including dipeptidyl peptidase-8 and dipeptidyl peptidase-9. Kinetic analysis revealed reversible, competitive and slow-binding inhibition of dipeptidyl peptidase-4 by trelagliptin (t1/2 for dissociation ≈ 30 minutes). X-ray diffraction data indicated a non-covalent interaction between dipeptidyl peptidase and trelagliptin. Altogether, potent dipeptidyl peptidase inhibitionmay partially contribute to sustained efficacy of trelagliptin.

  5. d(GGGT)4 and r(GGGU)4 are both HIV-1 inhibitors and interleukin-6 receptor aptamers

    PubMed Central

    Magbanua, Eileen; Zivkovic, Tijana; Hansen, Björn; Beschorner, Niklas; Meyer, Cindy; Lorenzen, Inken; Grötzinger, Joachim; Hauber, Joachim; Torda, Andrew E.; Mayer, Günter; Rose-John, Stefan; Hahn, Ulrich

    2013-01-01

    Aptamers are oligonucleotides that bind targets with high specificity and affinity. They have become important tools for biosensing, target detection, drug delivery and therapy. We selected the quadruplex-forming 16-mer DNA aptamer AID-1 [d(GGGT)4] with affinity for the interleukin-6 receptor (IL-6R) and identified single nucleotide variants that showed no significant loss of binding ability. The RNA counterpart of AID-1 [r(GGGU)4] also bound IL-6R as quadruplex structure. AID-1 is identical to the well-known HIV inhibitor T30923, which inhibits both HIV infection and HIV-1 integrase. We also demonstrated that IL-6R specific RNA aptamers not only bind HIV-1 integrase and inhibit its 3′ processing activity in vitro, but also are capable of preventing HIV de novo infection with the same efficacy as the established inhibitor T30175. All these aptamer target interactions are highly dependent on formation of quadruplex structure. PMID:23235494

  6. Conjugation of a nonspecific antiviral sapogenin with a specific HIV fusion inhibitor: a promising strategy for discovering new antiviral therapeutics.

    PubMed

    Wang, Chao; Lu, Lu; Na, Heya; Li, Xiangpeng; Wang, Qian; Jiang, Xifeng; Xu, Xiaoyu; Yu, Fei; Zhang, Tianhong; Li, Jinglai; Zhang, Zhenqing; Zheng, Baohua; Liang, Guodong; Cai, Lifeng; Jiang, Shibo; Liu, Keliang

    2014-09-11

    Triterpene saponins are a major group of active components in natural products with nonspecific antiviral activities, while T20 peptide (enfuvirtide), which contains a helix zone-binding domain (HBD), is a gp41-specific HIV-1 fusion inhibitor. In this paper, we report the design, synthesis, and structure-activity relationship (SAR) of a group of hybrid molecules in which bioactive triterpene sapogenins were covalently attached to the HBD-containing peptides via click chemistry. We found that either the triterpenes or peptide part alone showed weak activity against HIV-1 Env-mediated cell-cell fusion, while the hybrids generated a strong cooperative effect. Among them, P26-BApc exhibited anti-HIV-1 activity against both T20-sensitive and -resistant HIV-1 strains and improved pharmacokinetic properties. These results suggest that this scaffold design is a promising strategy for developing new HIV-1 fusion inhibitors and possibly novel antiviral therapeutics against other viruses with class I fusion proteins.

  7. Caffeoylglycolic and caffeoylamino acid derivatives, halfmers of L-chicoric acid, as new HIV-1 integrase inhibitors.

    PubMed

    Lee, Seung Uk; Shin, Cha-Gyun; Lee, Chong-Kyo; Lee, Yong Sup

    2007-10-01

    Human immunodeficiency virus (HIV) integrase (IN) catalyzes the integration of HIV DNA copy into the host cell DNA. L-Chicoric acid (1) has been found to be one of the most potent HIV-1 integrase inhibitor. Caffeoylglycolic and caffeoylamino acid derivatives' halfmeric structures of L-chicoric acid 2 were synthesized for the purpose of simplifying the structure of L-chicoric acid. Among synthesized, compounds 2c and 3f showed HIV-1 IN inhibitory activities with IC(50) values of 10.5 and 12.0 microM, respectively, comparable to that of parent compound L-chicoric acid (IC(50)=15.7 microM).

  8. Use of a hexasubstituted benzene scaffold in the development of multivalent HIV-1 integrase inhibitors.

    PubMed

    Tupchiangmai, Wipa; Choksakulporn, Saowanaporn; Tewtrakul, Supinya; Pianwanit, Somsak; Sritana-anant, Yongsak

    2014-01-01

    The highly directional hexasubstituted benzene moiety was used as the central scaffold to create new human immunodeficiency virus (HIV)-1 integrase inhibitors through the attachment of multiple active groups. A series of potential inhibitors having substituted polyhydroxylated mono, bis and tris-cinnamoyl derivatives connected on the scaffold were prepared through Claisen-Schmidt condensations with substituted benzaldehydes, followed by partial demethylation to uncover the active phenolic groups required for the interactions with the integrase enzyme active sites. Using a multiplate integration assay method, four compounds carrying at least two sets of interacting moieties were found to be relatively potent integrase inhibitors with IC50 values in the low micromolar range. The results confirmed that multiple polyhydroxylated groups were required on the platform in order to effectively interact with the enzyme. The results from molecular docking studies consistently complemented the experimental results and revealed the nature of the potential key binding interactions responsible for the apparent activity of the active compounds.

  9. Relation between flexibility and positively selected HIV-1 protease mutants against inhibitors.

    PubMed

    Braz, Antônio S K; Tufanetto, Patrícia; Perahia, David; Scott, Luis P B

    2012-12-01

    The antiretroviral chemotherapy helps to reduce the mortality of HIVs infected patients. However, RNA dependant virus replication has a high mutation rate. Human immunodeficiency virus Type 1 protease plays an essential role in viral replication cycle. This protein is an important target for therapy with viral protein inhibitors. There are few works using normal mode analysis to investigate this problem from the structural changes viewpoint. The investigation of protein flexibility may be important for the study of processes associated with conformational changes and state transitions. The normal mode analysis allowed us to investigate structural changes in the protease (such as flexibility) in a straightforward way and try to associate these changes with the increase of fitness for each positively selected HIV-1 mutant protease of patients treated with several protease inhibitors (saquinavir, indinavir, ritonavir, nelfinavir, lopinavir, fosamprenavir, atazanavir, darunavir, and tripanavir) in combination or separately. These positively selected mutations introduce significant flexibility in important regions such as the active site cavity and flaps. These mutations were also able to cause changes in accessible solvent area. This study showed that the majority of HIV-1 protease mutants can be grouped into two main classes of protein flexibility behavior. We presented a new approach to study structural changes caused by positively selected mutations in a pathogen protein, for instance the HIV-1 protease and their relationship with their resistance mechanism against known inhibitors. The method can be applied to any pharmaceutically relevant pathogen proteins and could be very useful to understand the effects of positively selected mutations in the context of structural changes.

  10. HIV protease inhibitors disrupt astrocytic glutamate transporter function and neurobehavioral performance.

    PubMed

    Vivithanaporn, Pornpun; Asahchop, Eugene L; Acharjee, Shaona; Baker, Glen B; Power, Christopher

    2016-02-20

    The neurotoxic actions of the HIV protease inhibitors, amprenavir (APV) and lopinavir (LPV) were investigated. With combination antiretroviral therapy (cART), HIV-infected persons exhibit neurocognitive impairments, raising the possibility that cART might exert adverse central nervous system (CNS) effects. We examined the effects of LPV and APV using in-vitro and in-vivo assays of CNS function. Gene expression, cell viability and amino-acid levels were measured in human astrocytes, following exposure to APV or LPV. Neurobehavioral performance, amino-acid levels and neuropathology were examined in HIV-1 Vpr transgenic mice after treatment with APV or LPV. Excitatory amino-acid transporter-2 (EAAT2) expression was reduced in astrocytes treated with LPV or APV, especially LPV (P < 0.05), which was accompanied by reduced intracellular L-glutamate levels in LPV-treated cells (P < 0.05). Treatment of astrocytes with APV or LPV reduced the expression of proliferating cell nuclear antigen (PCNA) and Ki-67 (P < 0.05) although cell survival was unaffected. Exposure of LPV to astrocytes augmented glutamate-evoked transient rises in [Cai] (P < 0.05). Vpr mice treated with LPV showed lower concentrations of L-glutamate, L-aspartate and L-serine in cortex compared with vehicle-treated mice (P < 0.05). Total errors in T-maze assessment were increased in LPV and APV-treated animals (P < 0.05). EAAT2 expression was reduced in the brains of protease inhibitor-treated animals, which was associated with gliosis (P < 0.05). These results indicated that contemporary protease inhibitors disrupt astrocyte functions at therapeutic concentrations with enhanced sensitivity to glutamate, which can lead to neurobehavioral impairments. ART neurotoxicity should be considered in future therapeutic regimens for HIV/AIDS.

  11. A rodent model of HIV protease inhibitor indinavir induced peripheral neuropathy.

    PubMed

    Huang, Wenlong; Calvo, Margarita; Pheby, Tim; Bennett, David L H; Rice, Andrew S C

    2017-01-01

    HIV-associated sensory neuropathy (HIV-SN) is the most frequent manifestation of HIV disease. It often presents with significant neuropathic pain and is associated with previous exposure to neurotoxic nucleoside reverse transcriptase inhibitors. However, HIV-SN prevalence remains high even in resource-rich settings where these drugs are no longer used. Previous evidence suggests that exposure to indinavir, a protease inhibitor commonly used in antiretroviral therapy, may link to elevated HIV-SN risk. Here, we investigated whether indinavir treatment was associated with the development of a "dying back" axonal neuropathy and changes in pain-relevant limb withdrawal and thigmotactic behaviours. After 2 intravenous injections of indinavir (50 mg/kg, 4 days apart), adult rats developed hind paw mechanical hypersensitivity, which peaked around 2 weeks post first injection (44% reduction from baseline). At this time, animals also had (1) significantly changed thigmotactic behaviour (62% reduction in central zone entries) comparing with the controls and (2) a significant reduction (45%) in hind paw intraepidermal nerve fibre density. Treatment with gabapentin, but not amitriptyline, was associated with a complete attenuation of hind paw mechanical hypersensitivity observed with indinavir treatment. Furthermore, we found a small but significant increase in microglia with the effector morphology in the lumbar spinal dorsal horn in indinavir-treated animals, coupled with significantly increased expression of phospho-p38 in microglia. In summary, we have reported neuropathic pain-related sensory and behavioural changes accompanied by a significant loss of hind paw skin sensory innervation in a rat model of indinavir-induced peripheral neuropathy that is suitable for further pathophysiological investigation and preclinical evaluation of novel analgesics.

  12. HIV-1 Protease with 20 Mutations Exhibits Extreme Resistance to Clinical Inhibitors through Coordinated Structural Rearrangements

    SciTech Connect

    Agniswamy, Johnson; Shen, Chen-Hsiang; Aniana, Annie; Sayer, Jane M.; Louis, John M.; Weber, Irene T.

    2012-06-28

    The escape mutant of HIV-1 protease (PR) containing 20 mutations (PR20) undergoes efficient polyprotein processing even in the presence of clinical protease inhibitors (PIs). PR20 shows >3 orders of magnitude decreased affinity for PIs darunavir (DRV) and saquinavir (SQV) relative to PR. Crystal structures of PR20 crystallized with yttrium, substrate analogue p2-NC, DRV, and SQV reveal three distinct conformations of the flexible flaps and diminished interactions with inhibitors through the combination of multiple mutations. PR20 with yttrium at the active site exhibits widely separated flaps lacking the usual intersubunit contacts seen in other inhibitor-free dimers. Mutations of residues 35-37 in the hinge loop eliminate interactions and perturb the flap conformation. Crystals of PR20/p2-NC contain one uninhibited dimer with one very open flap and one closed flap and a second inhibitor-bound dimer in the closed form showing six fewer hydrogen bonds with the substrate analogue relative to wild-type PR. PR20 complexes with PIs exhibit expanded S2/S2' pockets and fewer PI interactions arising from coordinated effects of mutations throughout the structure, in agreement with the strikingly reduced affinity. In particular, insertion of the large aromatic side chains of L10F and L33F alters intersubunit interactions and widens the PI binding site through a network of hydrophobic contacts. The two very open conformations of PR20 as well as the expanded binding site of the inhibitor-bound closed form suggest possible approaches for modifying inhibitors to target extreme drug-resistant HIV.

  13. Factors associated with virological rebound in HIV-infected patients receiving protease inhibitor monotherapy.

    PubMed

    Stöhr, Wolfgang; Dunn, David T; Arenas-Pinto, Alejandro; Orkin, Chloe; Clarke, Amanda; Williams, Ian; Johnson, Margaret; Beeching, Nicholas J; Wilkins, Edmund; Sanders, Karen; Paton, Nicholas I

    2016-11-13

    The Protease Inhibitor Monotherapy Versus Ongoing Triple Therapy (PIVOT) trial found that protease inhibitor monotherapy as a simplification strategy is well tolerated in terms of drug resistance but less effective than combination therapy in suppressing HIV viral load. We sought to identify factors associated with the risk of viral load rebound in this trial. PIVOT was a randomized controlled trial in HIV-positive adults with suppressed viral load for at least 24 weeks on combination therapy comparing a strategy of physician-selected ritonavir-boosted protease inhibitor monotherapy versus ongoing triple therapy. In participants receiving monotherapy, we analysed time to confirmed viral load rebound and its predictors using flexible parametric survival models. Of 290 participants initiating protease inhibitor monotherapy (80% darunavir, 14% lopinavir, and 6% other), 93 developed viral load rebound on monotherapy. The risk of viral load rebound peaked at 9 months after starting monotherapy and then declined to approximately 5 per 100 person-years from 18 months onwards. Independent predictors of viral load rebound were duration of viral load suppression before starting monotherapy (hazard ratio 0.81 per additional year <50 copies/ml; P < 0.001), CD4 cell count (hazard ratio 0.73 per additional 100 cells/μl for CD4 nadir; P = 0.008); ethnicity (hazard ratio 1.87 for nonwhite versus white, P = 0.025) but not the protease inhibitor agent used (P = 0.27). Patients whose viral load was analysed with the Roche TaqMan-2 assay had a 1.87-fold risk for viral load rebound compared with Abbott RealTime assay (P = 0.012). A number of factors can identify patients at low risk of rebound with protease inhibitor monotherapy, and this may help to better target those who may benefit from this management strategy.

  14. Structure of HIV-1 Reverse Transcriptase with the Inhibitor β-thujaplicinol Bound at the RNase H Active Site

    PubMed Central

    Himmel, Daniel M.; Maegley, Karen A.; Pauly, Tom A.; Bauman, Joseph D.; Das, Kalyan; Dharia, Chhaya; Clark, Arthur D.; Ryan, Kevin; Hickey, Michael J.; Love, Robert A.; Hughes, Stephen H.; Bergqvist, Simon; Arnold, Eddy

    2012-01-01

    Summary Novel inhibitors are needed to counteract the rapid emergence of drug-resistant HIV variants. HIV-1 reverse transcriptase (RT) has both DNA polymerase and RNase H (RNH) enzymatic activities, but approved drugs that inhibit RT target the polymerase. Inhibitors that act against new targets, like RNH, would be effective against all of the current drug-resistant variants. Here, we present 2.80 Å and 2.04 Å resolution crystal structures of an RNH inhibitor, β-thujaplicinol, bound at the RNH active site of both HIV-1 RT and an isolated RNH domain. β-thujaplicinol chelates two divalent metal ions at the RNH active site. We provide biochemical evidence that β-thujaplicinol is a slow-binding RNH inhibitor with non-competitive kinetics and suggest that it forms a tropylium ion that interacts favorably with RT and the RNA:DNA substrate. PMID:20004166

  15. Neutralizing antibody and anti-retroviral drug sensitivities of HIV-1 isolates resistant to small molecule CCR5 inhibitors

    SciTech Connect

    Pugach, Pavel; Ketas, Thomas J.; Michael, Elizabeth; Moore, John P.

    2008-08-01

    The small molecule CCR5 inhibitors are a new class of drugs for treating infection by human immunodeficiency virus type 1 (HIV-1). They act by binding to the CCR5 co-receptor and preventing its use during HIV-1-cell fusion. Escape mutants can be raised against CCR5 inhibitors in vitro and will arise when these drugs are used clinically. Here, we have assessed the responses of CCR5 inhibitor-resistant viruses to other anti-retroviral drugs that act by different mechanisms, and their sensitivities to neutralizing antibodies (NAbs). The rationale for the latter study is that the resistance pathway for CCR5 inhibitors involves changes in the HIV-1 envelope glycoproteins (Env), which are also targets for NAbs. The escape mutants CC101.19 and D1/85.16 were selected for resistance to AD101 and vicriviroc (VVC), respectively, from the primary R5 HIV-1 isolate CC1/85. Each escape mutant was cross-resistant to other small molecule CCR5 inhibitors (aplaviroc, maraviroc, VVC, AD101 and CMPD 167), but sensitive to protein ligands of CCR5: the modified chemokine PSC-RANTES and the humanized MAb PRO-140. The resistant viruses also retained wild-type sensitivity to the nucleoside reverse transcriptase inhibitor (RTI) zidovudine, the non-nucleoside RTI nevirapine, the protease inhibitor atazanavir and other attachment and fusion inhibitors that act independently of CCR5 (BMS-806, PRO-542 and enfuvirtide). Of note is that the escape mutants were more sensitive than the parental CC1/85 isolate to a subset of neutralizing monoclonal antibodies and to some sera from HIV-1-infected people, implying that sequence changes in Env that confer resistance to CCR5 inhibitors can increase the accessibility of some NAb epitopes. The need to preserve NAb resistance may therefore be a constraint upon how escape from CCR5 inhibitors occurs in vivo.

  16. Neutralizing antibody and anti-retroviral drug sensitivities of HIV-1 isolates resistant to small molecule CCR5 inhibitors

    PubMed Central

    Pugach, Pavel; Ketas, Thomas J.; Michael, Elizabeth; Moore, John P.

    2008-01-01

    The small molecule CCR5 inhibitors are a new class of drugs for treating infection by human immunodeficiency virus type 1 (HIV-1). They act by binding to the CCR5 co-receptor and preventing its use during HIV-1-cell fusion. Escape mutants can be raised against CCR5 inhibitors in vitro and will arise when these drugs are used clinically. Here, we have assessed the responses of CCR5 inhibitor-resistant viruses to other anti-retroviral drugs that act by different mechanisms, and their sensitivities to neutralizing antibodies (NAbs). The rationale for the latter study is that the resistance pathway for CCR5 inhibitors involves changes in the HIV-1 envelope glycoproteins (Env), which are also targets for NAbs. The escape mutants CC101.19 and D1/85.16 were selected for resistance to AD101 and vicriviroc (VVC), respectively, from the primary R5 HIV-1 isolate CC1/85. Each escape mutant was cross resistant to other small molecule CCR5 inhibitors (aplaviroc, maraviroc, VVC, AD101 and CMPD 167), but sensitive to protein ligands of CCR5: the modified chemokine PSC-RANTES and the humanized MAb PRO 140. The resistant viruses also retained wild-type sensitivity to the nucleoside reverse transcriptase inhibitor (RTI) zidovudine, the non-nucleoside RTI nevirapine, the protease inhibitor atazanavir and other attachment and fusion inhibitors that act independently of CCR5 (BMS-806, PRO-542 and enfuvirtide). Of note is that the escape mutants were more sensitive than the parental CC1/85 isolate to a subset of neutralizing monoclonal antibodies and to some sera from HIV-1-infected people, implying that sequence changes in Env that confer resistance to CCR5 inhibitors can increase the accessibility of some NAb epitopes. The need to preserve NAb resistance may therefore be a constraint upon how escape from CCR5 inhibitors occurs in vivo. PMID:18519143

  17. Structure-Guided Optimization of HIV Integrase Strand Transfer Inhibitors.

    PubMed

    Zhao, Xue Zhi; Smith, Steven J; Maskell, Daniel P; Métifiot, Mathieu; Pye, Valerie E; Fesen, Katherine; Marchand, Christophe; Pommier, Yves; Cherepanov, Peter; Hughes, Stephen H; Burke, Terrence R

    2017-09-14

    Integrase mutations can reduce the effectiveness of the first-generation FDA-approved integrase strand transfer inhibitors (INSTIs), raltegravir (RAL) and elvitegravir (EVG). The second-generation agent, dolutegravir (DTG), has enjoyed considerable clinical success; however, resistance-causing mutations that diminish the efficacy of DTG have appeared. Our current findings support and extend the substrate envelope concept that broadly effective INSTIs can be designed by filling the envelope defined by the DNA substrates. Previously, we explored 1-hydroxy-2-oxo-1,2-dihydro-1,8-naphthyridine-3-carboxamides as an INSTI scaffold, making a limited set of derivatives, and concluded that broadly effective INSTIs can be developed using this scaffold. Herein, we report an extended investigation of 6-substituents as well the first examples of 7-substituted analogues of this scaffold. While 7-substituents are not well-tolerated, we have identified novel substituents at the 6-position that are highly effective, with the best compound (6p) retaining better efficacy against a broad panel of known INSTI resistant mutants than any analogues we have previously described.

  18. Interaction of small molecule inhibitors of HIV-1 entry with CCR5

    SciTech Connect

    Seibert, Christoph . E-mail: seiberc@mail.rockefeller.edu; Ying Weiwen; Gavrilov, Svetlana; Tsamis, Fotini; Kuhmann, Shawn E.; Palani, Anandan; Tagat, Jayaram R.; Clader, John W.; McCombie, Stuart W.; Baroudy, Bahige M.; Smith, Steven O.; Dragic, Tatjana; Moore, John P.; Sakmar, Thomas P.

    2006-05-25

    The CC-chemokine receptor 5 (CCR5) is the major coreceptor for macrophage-tropic (R5) HIV-1 strains. Several small molecule inhibitors of CCR5 that block chemokine binding and HIV-1 entry are being evaluated as drug candidates. Here we define how CCR5 antagonists TAK-779, AD101 (SCH-350581) and SCH-C (SCH-351125), which inhibit HIV-1 entry, interact with CCR5. Using a mutagenesis approach in combination with a viral entry assay to provide a direct functional read out, we tested predictions based on a homology model of CCR5 and analyzed the functions of more than 30 amino acid residues. We find that a key set of aromatic and aliphatic residues serves as a hydrophobic core for the ligand binding pocket, while E283 is critical for high affinity interaction, most likely by acting as the counterion for a positively charged nitrogen atom common to all three inhibitors. These results provide a structural basis for understanding how specific antagonists interact with CCR5, and may be useful for the rational design of new, improved CCR5 ligands.

  19. Alkyl Amine Bevirimat Derivatives Are Potent and Broadly Active HIV-1 Maturation Inhibitors

    PubMed Central

    Urano, Emiko; Ablan, Sherimay D.; Mandt, Rebecca; Pauly, Gary T.; Sigano, Dina M.; Schneider, Joel P.; Martin, David E.; Nitz, Theodore J.; Wild, Carl T.

    2015-01-01

    Concomitant with the release of human immunodeficiency virus type 1 (HIV-1) particles from the infected cell, the viral protease cleaves the Gag polyprotein precursor at a number of sites to trigger virus maturation. We previously reported that a betulinic acid-derived compound, bevirimat (BVM), blocks HIV-1 maturation by disrupting a late step in protease-mediated Gag processing: the cleavage of the capsid-spacer peptide 1 (CA-SP1) intermediate to mature CA. BVM was shown in multiple clinical trials to be safe and effective in reducing viral loads in HIV-1-infected patients. However, naturally occurring polymorphisms in the SP1 region of Gag (e.g., SP1-V7A) led to a variable response in some BVM-treated patients. The reduced susceptibility of SP1-polymorphic HIV-1 to BVM resulted in the discontinuation of its clinical development. To overcome the loss of BVM activity induced by polymorphisms in SP1, we carried out an extensive medicinal chemistry campaign to develop novel maturation inhibitors. In this study, we focused on alkyl amine derivatives modified at the C-28 position of the BVM scaffold. We identified a set of derivatives that are markedly more potent than BVM against an HIV-1 clade B clone (NL4-3) and show robust antiviral activity against a variant of NL4-3 containing the V7A polymorphism in SP1. One of the most potent of these compounds also strongly inhibited a multiclade panel of primary HIV-1 isolates. These data demonstrate that C-28 alkyl amine derivatives of BVM can, to a large extent, overcome the loss of susceptibility imposed by polymorphisms in SP1. PMID:26482309

  20. A phase I/II study of the protease inhibitor indinavir in children with HIV infection.

    PubMed

    Mueller, B U; Sleasman, J; Nelson, R P; Smith, S; Deutsch, P J; Ju, W; Steinberg, S M; Balis, F M; Jarosinski, P F; Brouwers, P; Mistry, G; Winchell, G; Zwerski, S; Sei, S; Wood, L V; Zeichner, S; Pizzo, P A

    1998-07-01

    Indinavir, an inhibitor of the human immunodeficiency virus type 1 (HIV-1) protease, is approved for the treatment of HIV infection in adults when antiretroviral therapy is indicated. We evaluated the safety and pharmacokinetic profile of the indinavir free-base liquid suspension and the sulfate salt dry-filled capsules in HIV-infected children, and studied its preliminary antiviral and clinical activity in this patient population. In addition, we evaluated the pharmacokinetic profile of a jet-milled suspension after a single dose. Previously untreated children or patients with progressive HIV disease despite antiretroviral therapy or with treatment-associated toxicity were eligible for this phase I/II study. Three dose levels (250 mg/m2, 350 mg/m2, and 500 mg/m2 per dose given orally every 8 h) were evaluated in 2 age groups (<12 years and >/=12 years). Indinavir was initially administered as monotherapy and then in combination with zidovudine and lamivudine after 16 weeks. Fifty-four HIV-infected children (ages 3.1 to 18.9 years) were enrolled. The indinavir free-base suspension was less bioavailable than the dry-filled capsule formulation, and therapy was changed to capsules in all children. Hematuria was the most common side effect, occurring in 7 (13%) children, and associated with nephrolithiasis in 1 patient. The combination of indinavir, lamivudine, and zidovudine was well tolerated. The median CD4 cell count increased after 2 weeks of indinavir monotherapy by 64 cells/mm3, and this was sustained at all dose levels. Plasma ribonucleic acid levels decreased rapidly in a dose-dependent way, but increased toward baseline after a few weeks of indinavir monotherapy. Indinavir dry-filled capsules are relatively well tolerated by children with HIV infection, although hematuria occurs at higher doses. Future studies need to evaluate the efficacy of indinavir when combined de novo with zidovudine and lamivudine.

  1. Structural and Functional Insights into the HIV-1 Maturation Inhibitor Binding Pocket

    PubMed Central

    Waki, Kayoko; Durell, Stewart R.; Soheilian, Ferri; Nagashima, Kunio; Butler, Scott L.; Freed, Eric O.

    2012-01-01

    Processing of the Gag precursor protein by the viral protease during particle release triggers virion maturation, an essential step in the virus replication cycle. The first-in-class HIV-1 maturation inhibitor dimethylsuccinyl betulinic acid [PA-457 or bevirimat (BVM)] blocks HIV-1 maturation by inhibiting the cleavage of the capsid-spacer peptide 1 (CA-SP1) intermediate to mature CA. A structurally distinct molecule, PF-46396, was recently reported to have a similar mode of action to that of BVM. Because of the structural dissimilarity between BVM and PF-46396, we hypothesized that the two compounds might interact differentially with the putative maturation inhibitor-binding pocket in Gag. To test this hypothesis, PF-46396 resistance was selected for in vitro. Resistance mutations were identified in three regions of Gag: around the CA-SP1 cleavage site where BVM resistance maps, at CA amino acid 201, and in the CA major homology region (MHR). The MHR mutants are profoundly PF-46396-dependent in Gag assembly and release and virus replication. The severe defect exhibited by the inhibitor-dependent MHR mutants in the absence of the compound is also corrected by a second-site compensatory change far downstream in SP1, suggesting structural and functional cross-talk between the HIV-1 CA MHR and SP1. When PF-46396 and BVM were both present in infected cells they exhibited mutually antagonistic behavior. Together, these results identify Gag residues that line the maturation inhibitor-binding pocket and suggest that BVM and PF-46396 interact differentially with this putative pocket. These findings provide novel insights into the structure-function relationship between the CA MHR and SP1, two domains of Gag that are critical to both assembly and maturation. The highly conserved nature of the MHR across all orthoretroviridae suggests that these findings will be broadly relevant to retroviral assembly. Finally, the results presented here provide a framework for increased

  2. Structural and functional insights into the HIV-1 maturation inhibitor binding pocket.

    PubMed

    Waki, Kayoko; Durell, Stewart R; Soheilian, Ferri; Nagashima, Kunio; Butler, Scott L; Freed, Eric O

    2012-01-01

    Processing of the Gag precursor protein by the viral protease during particle release triggers virion maturation, an essential step in the virus replication cycle. The first-in-class HIV-1 maturation inhibitor dimethylsuccinyl betulinic acid [PA-457 or bevirimat (BVM)] blocks HIV-1 maturation by inhibiting the cleavage of the capsid-spacer peptide 1 (CA-SP1) intermediate to mature CA. A structurally distinct molecule, PF-46396, was recently reported to have a similar mode of action to that of BVM. Because of the structural dissimilarity between BVM and PF-46396, we hypothesized that the two compounds might interact differentially with the putative maturation inhibitor-binding pocket in Gag. To test this hypothesis, PF-46396 resistance was selected for in vitro. Resistance mutations were identified in three regions of Gag: around the CA-SP1 cleavage site where BVM resistance maps, at CA amino acid 201, and in the CA major homology region (MHR). The MHR mutants are profoundly PF-46396-dependent in Gag assembly and release and virus replication. The severe defect exhibited by the inhibitor-dependent MHR mutants in the absence of the compound is also corrected by a second-site compensatory change far downstream in SP1, suggesting structural and functional cross-talk between the HIV-1 CA MHR and SP1. When PF-46396 and BVM were both present in infected cells they exhibited mutually antagonistic behavior. Together, these results identify Gag residues that line the maturation inhibitor-binding pocket and suggest that BVM and PF-46396 interact differentially with this putative pocket. These findings provide novel insights into the structure-function relationship between the CA MHR and SP1, two domains of Gag that are critical to both assembly and maturation. The highly conserved nature of the MHR across all orthoretroviridae suggests that these findings will be broadly relevant to retroviral assembly. Finally, the results presented here provide a framework for increased

  3. Dipeptidyl peptidase-4: A key player in chronic liver disease

    PubMed Central

    Itou, Minoru; Kawaguchi, Takumi; Taniguchi, Eitaro; Sata, Michio

    2013-01-01

    Dipeptidyl peptidase-4 (DPP-4) is a membrane-associated peptidase, also known as CD26. DPP-4 has widespread organ distribution throughout the body and exerts pleiotropic effects via its peptidase activity. A representative target peptide is glucagon-like peptide-1, and inactivation of glucagon-like peptide-1 results in the development of glucose intolerance/diabetes mellitus and hepatic steatosis. In addition to its peptidase activity, DPP-4 is known to be associated with immune stimulation, binding to and degradation of extracellular matrix, resistance to anti-cancer agents, and lipid accumulation. The liver expresses DPP-4 to a high degree, and recent accumulating data suggest that DPP-4 is involved in the development of various chronic liver diseases such as hepatitis C virus infection, non-alcoholic fatty liver disease, and hepatocellular carcinoma. Furthermore, DPP-4 occurs in hepatic stem cells and plays a crucial role in hepatic regeneration. In this review, we described the tissue distribution and various biological effects of DPP-4. Then, we discussed the impact of DPP-4 in chronic liver disease and the possible therapeutic effects of a DPP-4 inhibitor. PMID:23613622

  4. TET peptidases: A family of tetrahedral complexes conserved in prokaryotes.

    PubMed

    Appolaire, Alexandre; Colombo, Matteo; Basbous, Hind; Gabel, Frank; Girard, E; Franzetti, Bruno

    2016-03-01

    The TET peptidases are large polypeptide destruction machines present among prokaryotes. They form 12-subunits hollow tetrahedral particles, and belong to the family of M42 metallo-peptidases. Structural characterization of various archaeal and bacterial complexes has revealed a unique mechanism of internal compartmentalization and peptide trafficking that distinguishes them from the other oligomeric peptidases. Different versions of the TET complex often co-exist in the cytosol of microorganisms. In depth enzymatic studies have revealed that they are non-processive cobalt-activated aminopeptidases and display contrasting substrate specificities based on the properties of the catalytic chambers. Recent studies have shed light on the assembly mechanism of homo and hetero-dodecameric TET complexes and shown that the activity of TET aminopeptidase towards polypeptides is coupled with its assembly process. These findings suggested a functional regulation based on oligomerization control in vivo. This review describes a current knowledge on M42 TET peptidases biochemistry and discuss their possible physiological roles. This article is a part of the Special Issue entitled: «A potpourri of proteases and inhibitors: from molecular toolboxes to signalling scissors».

  5. Enzymatic triggered release of an HIV-1 entry inhibitor from prostate specific antigen degradable microparticles.

    PubMed

    Clark, Meredith R; Aliyar, Hyder A; Lee, Chang-won; Jay, Julie I; Gupta, Kavita M; Watson, Karen M; Stewart, Russell J; Buckheit, Robert W; Kiser, Patrick F

    2011-07-15

    This paper describes the design, construction and characterization of the first anti-HIV drug delivery system that is triggered to release its contents in the presence of human semen. Microgel particles were synthesized with a crosslinker containing a peptide substrate for the seminal serine protease prostate specific antigen (PSA) and were loaded with the HIV-1 entry inhibitor sodium poly(styrene-4-sulfonate) (pSS). The particles were composed of N-2-hydroxyproplymethacrylamide and bis-methacrylamide functionalized peptides based on the PSA substrates GISSFYSSK and GISSQYSSK. Exposure to human seminal plasma (HSP) degraded the microgel network and triggered the release of the entrapped antiviral polymer. Particles with the crosslinker composed of the substrate GISSFYSSK showed 17 times faster degradation in seminal plasma than that of the crosslinker composed of GISSQYSSK. The microgel particles containing 1 mol% GISSFYSSK peptide crosslinker showed complete degradation in 30 h in the presence of HSP at 37°C and pSS released from the microgels within 30 min reached a concentration of 10 μg/mL, equivalent to the published IC(90) for pSS. The released pSS inactivated HIV-1 in the presence of HSP. The solid phase synthesis of the crosslinkers, preparation of the particles by inverse microemulsion polymerization, HSP-triggered release of pSS and inactivation of HIV-1 studies are described. Copyright © 2011 Elsevier B.V. All rights reserved.

  6. Acetylcholine-esterase inhibitor pyridostigmine decreases T cell overactivation in patients infected by HIV.

    PubMed

    Valdés-Ferrer, Sergio Iván; Crispín, José C; Belaunzarán, Pablo Francisco; Cantú-Brito, Carlos G; Sierra-Madero, Juan; Alcocer-Varela, Jorge

    2009-08-01

    HIV infection is characterized by persistent immune activation, increased production of proinflammatory cytokines, and rapid T cell turnover. The autonomic nervous system exerts a regulatory effect on the inflammatory response mediated by acetylcholine. We investigated whether an acetylcholine esterase inhibitor would diminish the T cell overactive phenotype characteristic of chronically infected HIV patients. We carried out a proof-of-concept, placebo-controlled study involving 19 subjects chronically infected with HIV-1. Nine patient received pyridostigmine and 10 took a placebo. T cell activation measured by expression of CD69 (p = 0.025) diminished in those taking pyridostigmine. The drug also diminished in vitro T cell proliferation induced by PMA and ionomycin (p = 0.026). IFN-gamma release was diminished in the pyridostigmine group (p = 0.016) and expression of IL-4 (p = 0.010) and IL-10 (p = 0.015) increased. Here we showed that pyridostigmine is able to modify T cell overactivation and proliferation in patients chronically infected with HIV. Pyridostigmine led to an increase in the antiinflammatory cytokine IL-10 and a decrease in T cell proliferation and production of the proinflammatory cytokine IFN-gamma.

  7. A multivalent inhibitor of the DC-SIGN dependent uptake of HIV-1 and Dengue virus.

    PubMed

    Varga, Norbert; Sutkeviciute, Ieva; Ribeiro-Viana, Renato; Berzi, Angela; Ramdasi, Rasika; Daghetti, Anna; Vettoretti, Gerolamo; Amara, Ali; Clerici, Mario; Rojo, Javier; Fieschi, Franck; Bernardi, Anna

    2014-04-01

    DC-SIGN is a C-type lectin receptor on antigen presenting cells (dendritic cells) which has an important role in some viral infection, notably by HIV and Dengue virus (DV). Multivalent presentation of carbohydrates on dendrimeric scaffolds has been shown to inhibit DC-SIGN binding to HIV envelope glycoprotein gp120, thus blocking viral entry. This approach has interesting potential applications for infection prophylaxis. In an effort to develop high affinity inhibitors of DC-SIGN mediated viral entry, we have synthesized a group of glycodendrimers of different valency that bear different carbohydrates or glycomimetic DC-SIGN ligands and have studied their DC-SIGN binding activity and antiviral properties both in an HIV and a Dengue infection model. Surface Plasmon Resonance (SPR) competition studies have demonstrated that the materials obtained bind efficiently to DC-SIGN with IC50s in the μm range, which depend on the nature of the ligand and on the valency of the scaffold. In particular, a hexavalent presentation of the DC-SIGN selective antagonist 4 displayed high potency, as well as improved accessibility and chemical stability relative to previously reported dendrimers. At low μm concentration the material was shown to block both DC-SIGN mediated uptake of DV by Raji cells and HIV trans-infection of T cells. Copyright © 2014 Elsevier Ltd. All rights reserved.

  8. Nutritional status changes in HIV-infected children receiving combined antiretroviral therapy including protease inhibitors.

    PubMed

    Fiore, P; Donelli, E; Boni, S; Pontali, E; Tramalloni, R; Bassetti, D

    2000-11-01

    Maintaining linear growth and weight gain in HIV-infected children is often difficult. Nutritional evaluation and support are recognised as important factors to improve their quality of life. Combination antiretroviral therapy including protease inhibitors (HAART) reduces HIV-viral load and improves survival, quality of life and nutritional status. Our study aimed to determine changes in nutrional status based on body weight, height and nutritional habits, of HIV-infected children receiving HAART. Possible side effects of lipid metabolism were also studied. Twenty five children, 13 treated with HAART (group B) were followed up for 12 months. We did not observe statistically significant differences in nutritional status over that time or between groups A and B. Inadequate energy intake was more common in patients with advanced HIV-disease. Hyperlipidemia was found in 70% of children receiving ritonavir and in approximately 50% of children receiving nelfinavir. We observed an important although not statistically significative modification in the height of those in group B.

  9. Synergistic Activation of Latent HIV-1 Expression by Novel Histone Deacetylase Inhibitors and Bryostatin-1.

    PubMed

    Martínez-Bonet, Marta; Clemente, Maria Isabel; Serramía, Maria Jesús; Muñoz, Eduardo; Moreno, Santiago; Muñoz-Fernández, Maria Ángeles

    2015-11-13

    Viral reactivation from latently infected cells has become a promising therapeutic approach to eradicate HIV. Due to the complexity of the viral latency, combinations of efficient and available drugs targeting different pathways of latency are needed. In this work, we evaluated the effect of various combinations of bryostatin-1 (BRY) and novel histone deacetylase inhibitors (HDACIs) on HIV-reactivation and on cellular phenotype. The lymphocyte (J89GFP) or monocyte/macrophage (THP89GFP) latently infected cell lines were treated with BRY, panobinostat (PNB) and romidepsin (RMD) either alone or in combination. Thus, the effect on the viral reactivation was evaluated. We calculated the combination index for each drug combination; the BRY/HDACIs showed a synergistic HIV-reactivation profile in the majority of the combinations tested, whereas non-synergistic effects were observed when PNB was mixed with RMD. Indeed, the 75% effective concentrations of BRY, PNB and RMD were reduced in these combinations. Moreover, primary CD4 T cells treated with such drug combinations presented similar activation and proliferation profiles in comparison with single drug treated cells. Summing up, combinations between BRY, PNB and/or RMD presented a synergistic profile by inducing virus expression in HIV-latently infected cells, rendering these