Interaction of HIV-1 reverse transcriptase ribonuclease H with an acylhydrazone inhibitor.
Gong, Qingguo; Menon, Lakshmi; Ilina, Tatiana; Miller, Lena G; Ahn, Jinwoo; Parniak, Michael A; Ishima, Rieko
2011-01-01
HIV-1 reverse transcriptase is a bifunctional enzyme, having both DNA polymerase (RNA- and DNA-dependent) and ribonuclease H activities. HIV-1 reverse transcriptase has been an exceptionally important target for antiretroviral therapeutic development, and nearly half of the current clinically used antiretrovirals target reverse transcriptase DNA polymerase. However, no inhibitors of reverse transcriptase ribonuclease H are on the market or in preclinical development. Several drug-like small molecule inhibitors of reverse transcriptase ribonuclease H have been described, but little structural information is available about the interactions between reverse transcriptase ribonuclease H and inhibitors that exhibit antiviral activity. In this report, we describe NMR studies of the interaction of a new ribonuclease H inhibitor, BHMP07, with a catalytically active HIV-1 reverse transcriptase ribonuclease H domain fragment. We carried out solution NMR experiments to identify the interaction interface of BHMP07 with the ribonuclease H domain fragment. Chemical shift changes of backbone amide signals at different BHMP07 concentrations clearly demonstrate that BHMP07 mainly recognizes the substrate handle region in the ribonuclease H fragment. Using ribonuclease H inhibition assays and reverse transcriptase mutants, the binding specificity of BHMP07 was compared with another inhibitor, dihydroxy benzoyl naphthyl hydrazone. Our results provide a structural characterization of the ribonuclease H inhibitor interaction and are likely to be useful for further improvements of the inhibitors. © 2010 John Wiley & Sons A/S.
2011-01-01
Background Acquired immunodeficiency syndrome (AIDS), which is caused by the human immunodeficiency virus (HIV), is an immunosuppressive disease that results in life-threatening opportunistic infections. The general problems in current therapy include the constant emergence of drug-resistant HIV strains, adverse side effects and the unavailability of treatments in developing countries. Natural products from herbs with the abilities to inhibit HIV-1 life cycle at different stages, have served as excellent sources of new anti-HIV-1 drugs. In this study, we aimed to investigate the anti-HIV-1 activity of aqueous dandelion extract. Methods The pseudotyped HIV-1 virus has been utilized to explore the anti-HIV-1 activity of dandelion, the level of HIV-1 replication was assessed by the percentage of GFP-positive cells. The inhibitory effect of the dandelion extract on reverse transcriptase activity was assessed by the reverse transcriptase assay kit. Results Compared to control values obtained from cells infected without treatment, the level of HIV-1 replication and reverse transcriptase activity were decreased in a dose-dependent manner. The data suggest that dandelion extract has a potent inhibitory activity against HIV-1 replication and reverse transcriptase activity. The identification of HIV-1 antiviral compounds from Taraxacum officinale should be pursued. Conclusions The dandelion extract showed strong activity against HIV-1 RT and inhibited both the HIV-1 vector and the hybrid-MoMuLV/MoMuSV retrovirus replication. These findings provide additional support for the potential therapeutic efficacy of Taraxacum officinale. Extracts from this plant may be regarded as another starting point for the development of an antiretroviral therapy with fewer side effects. PMID:22078030
Mizrahi, V; Usdin, M T; Harington, A; Dudding, L R
1990-01-01
Substitution of the conserved Asp-443 residue of HIV-1 reverse transcriptase by asparagine specifically suppressed the ribonuclease H activity of the enzyme without affecting the reverse transcriptase activity, suggesting involvement of this ionizable residue at the ribonuclease H active site. An analogous asparagine substitution of the Asp-498 residue yielded an unstable enzyme that was difficult to enzymatically characterize. However, the instability caused by the Asn-498 mutation was relieved by the introduction of a second distal Asn-443 substitution, yielding an enzyme with wild type reverse transcriptase activity, but lacking ribonuclease H activity. Images PMID:1699202
NASA Astrophysics Data System (ADS)
Ziółkowska, Natasza E.; Michejda, Christopher J.; Bujacz, Grzegorz D.
2010-01-01
The constant development of new drugs against HIV-1 is necessary due to global expansion of AIDS and HIV-1 drug resistance. Nonnucleoside reverse transcriptase inhibitors of HIV-1 (NNRTIs) are potentially effective and nontoxic drugs in AIDS therapy. The crystal structures of six nonnucleoside inhibitors of HIV-1 reverse transcriptase (RT) derivatives of N-benzyl-benzimidazole are reported here. The investigated compounds belong to the group of so called "butterfly like" inhibitors with characteristic two π-electron moieties with an angled orientation. The structural data show the influence of the substituents of the benzimidazole ring on the geometry of the molecule and correlation between the structure of the inhibitor and its biological activity.
(PCG) Protein Crystal Growth HIV Reverse Transcriptase
NASA Technical Reports Server (NTRS)
1992-01-01
HIV Reverse Transcriptase crystals grown during the USML-1 (STS-50) mission using Commercial Refrigerator/Incubator Module (CR/IM) at 4 degrees C and the Vapor Diffusion Apparatus (VDA). Reverse transcriptase is an enzyme responsible for copying the nucleic acid genome of the AIDS virus from RNA to DNA. Studies indicated that the space-grown crystals were larger and better ordered (beyond 4 angstroms) than were comparable Earth-grown crystals. Principal Investigators were Charles Bugg and Larry DeLucas.
Blanca, Giuseppina; Baldanti, Fausto; Paolucci, Stefania; Skoblov, Alexander Yu; Victorova, Lyubov; Hübscher, Ulrich; Gerna, Giuseppe; Spadari, Silvio; Maga, Giovanni
2003-05-02
Recombinant HIV-1 reverse transcriptase (RT) carrying non-nucleoside inhibitors (NNRTIs) resistance mutation at codon 181 showed reduced incorporation and high efficiency of phosphorolytic removal of stavudine, a nucleoside RT inhibitor. These results reveal a new mechanism for cross-resistance between different classes of HIV-1 RT inhibitors.
NASA Astrophysics Data System (ADS)
Ziółkowska, Natasza E.; Michejda, Christopher J.; Bujacz, Grzegorz D.
2009-07-01
HIV-1 nonnucleoside reverse transcriptase inhibitors are potentially specific and effective drugs in AIDS therapy. The presence of two aromatic systems with an angled orientation in the molecule of the inhibitor is crucial for interactions with HIV-1 RT. The inhibitor drives like a wedge into the cluster of aromatic residues of RT HIV-1 and restrains the enzyme in a conformation that blocks the chemical step of nucleotide incorporation. Structural studies provide useful information for designing new, more active inhibitors. The crystal structures of four NNRTIs are presented here. The investigated compounds are derivatives of N-benzyl-4-methyl-benzimidazole with various aliphatic and aromatic substituents at carbon 2 positions and a 2,6-dihalogeno-substituted N-benzyl moiety. Structural data reported here show that the conformation of the investigated compounds is relatively rigid. Such feature is important for the nonnucleoside inhibitor binding to HIV-1 reverse transcriptase.
NASA Astrophysics Data System (ADS)
Ziółkowska, Natasza E.; Michejda, Christopher J.; Bujacz, Grzegorz D.
2010-03-01
Over the past 10 years, several anti-viral drugs have become available to fight the HIV infection. Antiretroviral treatment reduces the mortality of AIDS. Nonnucleoside inhibitors of HIV-1 reverse transcriptase are specific and potentially nontoxic drugs against AIDS. The crystal structures of five nonnucleoside inhibitors of HIV-1 reverse transcriptase are presented here. The structural parameters, especially those describing the angular orientation of the π-electron systems and influencing biological activity, were determined for all of the investigated inhibitors. The chemical character and orientation of the substituent at C4 position of the benzimidazole moiety substantially influences the anti-viral activity. The structural data of the investigated inhibitors is a good basis for modeling enzyme-inhibitor interactions for structure-assisted drug design.
Anti-HIV drugs: 25 compounds approved within 25 years after the discovery of HIV.
De Clercq, Erik
2009-04-01
In 2008, 25 years after the human immunodeficiency virus (HIV) was discovered as the then tentative aetiological agent of acquired immune deficiency syndrome (AIDS), exactly 25 anti-HIV compounds have been formally approved for clinical use in the treatment of AIDS. These compounds fall into six categories: nucleoside reverse transcriptase inhibitors (NRTIs: zidovudine, didanosine, zalcitabine, stavudine, lamivudine, abacavir and emtricitabine); nucleotide reverse transcriptase inhibitors (NtRTIs: tenofovir); non-nucleoside reverse transcriptase inhibitors (NNRTIs: nevirapine, delavirdine, efavirenz and etravirine); protease inhibitors (PIs: saquinavir, ritonavir, indinavir, nelfinavir, amprenavir, lopinavir, atazanavir, fosamprenavir, tipranavir and darunavir); cell entry inhibitors [fusion inhibitors (FIs: enfuvirtide) and co-receptor inhibitors (CRIs: maraviroc)]; and integrase inhibitors (INIs: raltegravir). These compounds should be used in drug combination regimens to achieve the highest possible benefit, tolerability and compliance and to diminish the risk of resistance development.
HIV Resistance Prediction to Reverse Transcriptase Inhibitors: Focus on Open Data.
Tarasova, Olga; Poroikov, Vladimir
2018-04-19
Research and development of new antiretroviral agents are in great demand due to issues with safety and efficacy of the antiretroviral drugs. HIV reverse transcriptase (RT) is an important target for HIV treatment. RT inhibitors targeting early stages of the virus-host interaction are of great interest for researchers. There are a lot of clinical and biochemical data on relationships between the occurring of the single point mutations and their combinations in the pol gene of HIV and resistance of the particular variants of HIV to nucleoside and non-nucleoside reverse transcriptase inhibitors. The experimental data stored in the databases of HIV sequences can be used for development of methods that are able to predict HIV resistance based on amino acid or nucleotide sequences. The data on HIV sequences resistance can be further used for (1) development of new antiretroviral agents with high potential for HIV inhibition and elimination and (2) optimization of antiretroviral therapy. In our communication, we focus on the data on the RT sequences and HIV resistance, which are available on the Internet. The experimental methods, which are applied to produce the data on HIV-1 resistance, the known data on their concordance, are also discussed.
Combination nucleoside/nucleotide reverse transcriptase inhibitors for treatment of HIV infection.
Akanbi, Maxwell O; Scarsi, Kimberly K; Scarci, Kimberly; Taiwo, Babafemi; Murphy, Robert L
2012-01-01
The combination of two nucleoside/nucleotide reverse transcriptase inhibitors (N(t)RTIs) and a third agent from another antiretroviral class is currently recommended for initial antiretroviral therapy. In general, N(t)RTIs remain relevant in subsequent regimens. There are currently six nucleoside reverse transcriptase inhibitors and one nucleotide reverse transcriptase inhibitor drug entities available, and several formulations that include two or more N(t)RTIs in a fixed-dose combination. These entities have heterogeneous pharmacological and clinical properties. Accordingly, toxicity, pill burden, dosing frequency, potential drug-drug interaction, preexisting antiretroviral drug resistance and comorbid conditions should be considered when constructing a regimen. This approach is critical in order to optimize virologic efficacy and clinical outcomes. This article reviews N(t)RTI combinations used in the treatment of HIV-infected adults. The pharmacological properties of each N(t)RTI, and the clinical trials that have influenced treatment guidelines are discussed. It is likely that N(t)RTIs will continue to dominate the global landscape of HIV treatment and prevention, despite emerging interest in N(t)RTI-free combination therapy. Clinical domains where only few alternatives to N(t)RTIs exist include treatment of HIV/HBV coinfection and HIV-2. There is a need for novel N(t)RTIs with enhanced safety and resistance profiles compared with current N(t)RTIs.
Wainberg, Mark A.
2012-01-01
The use of highly active antiretroviral therapy (HAART) involves combinations of drugs to achieve maximal virological response and reduce the potential for the emergence of antiviral resistance. There are two broad classes of reverse transcriptase inhibitors, the nucleoside reverse transcriptase inhibitors (NRTIs) and nonnucleoside reverse transcriptase inhibitors (NNRTIs). Since the first classes of such compounds were developed, viral resistance against them has necessitated the continuous development of novel compounds within each class. This paper considers the NRTIs and NNRTIs currently in both preclinical and clinical development or approved for second line therapy and describes the patterns of resistance associated with their use, as well as the underlying mechanisms that have been described. Due to reasons of both affordability and availability, some reverse transcriptase inhibitors with low genetic barrier are more commonly used in resource-limited settings. Their use results to the emergence of specific patterns of antiviral resistance and so may require specific actions to preserve therapeutic options for patients in such settings. More recently, the advent of integrase strand transfer inhibitors represents another major step forward toward control of HIV infection, but these compounds are also susceptible to problems of HIV drug resistance. PMID:24278679
Wan, Zheng-Yong; Yao, Jin; Tao, Yuan; Mao, Tian-Qi; Wang, Xin-Long; Lu, Yi-Pei; Wang, Hai-Feng; Yin, Hong; Wu, Yan; Chen, Fen-Er; De Clercq, Erik; Daelemans, Dirk; Pannecouque, Christophe
2015-06-05
A novel series of piperidin-4-yl-aminopyrimidine derivatives were designed fusing the pharmacophore templates of etravirine-VRX-480773 hybrids our group previously described and piperidine-linked aminopyrimidines. Most compounds displayed significantly improved activity against wild-type HIV-1 with EC50 values in single-digit nanomolar concentrations compared to etravirine-VRX-480773 hybrids. Selected compounds were also evaluated for activity against reverse transcriptase, and had lower IC50 values than that of nevirapine. The improved potency observed in this in vitro model of HIV RNA replication partly validates the mechanism by which this class of allosteric pyrimidine derivatives inhibits reverse transcriptase, and represents a remarkable step forward in the development of AIDS therapeutics. Copyright © 2015 Elsevier Masson SAS. All rights reserved.
Murine Leukemia Virus Reverse Transcriptase: Structural Comparison with HIV-1 Reverse Transcriptase
Coté, Marie L.; Roth, Monica J.
2008-01-01
Recent X-ray crystal structure determinations of Moloney murine leukemia virus reverse transcriptase (MoMLV RT) have allowed for more accurate structure/function comparisons to HIV-1 RT than were formerly possible. Previous biochemical studies of MoMLV RT in conjunction with knowledge of sequence homologies to HIV-1 RT and overall fold similarities to RTs in general, provided a foundation upon which to build. In addition, numerous crystal structures of the MoMLV RT fingers/palm subdomain had also shed light on one of the critical functions of the enzyme, specifically polymerization. Now in the advent of new structural information, more intricate examination of MoMLV RT in its entirety can be realized, and thus the comparisons with HIV-1 RT may be more critically elucidated. Here, we will review the similarities and differences between MoMLV RT and HIV-1 RT via structural analysis, and propose working models for the MoMLV RT based upon that information. PMID:18294720
Deshpande, Alaka; Jauvin, Valerie; Pinson, Patricia; Jeannot, Anne Cecile; Fleury, Herve J
2009-06-01
Analysis of reverse transcriptase (RT) sequences of 382 HIV-1 isolates from untreated and treated patients recruited in JJ Hospital (Mumbai, India) between 2002 and 2008 shows that subtype C is largely predominant (98%) and that non-C sequences cluster with A1, B, CRF01_AE, and CRF06_cpx.
Martin-Odoom, Alexander; Adiku, Theophilus; Delgado, Elena; Lartey, Margaret; Ampofo, William K
2017-03-01
Access to antiretroviral therapy in Ghana has been scaled up across the country over the last decade. This study sought to determine the occurrence of transmitted HIV-1 drug resistance in pregnant HIV-1 positive women yet to initiate antiretroviral therapy at selected HIV Care Centres in Ghana. Plasma specimens from twenty-six (26) HIV seropositive pregnant women who were less than 28weeks pregnant with their first pregnancy and ART naïve were collected from selected HIV care centres in three (3) regions in Ghana. Genotypic testing was done for the reverse transcriptase gene and the sequences generated were analyzed for HIV-1 drug resistance mutations using the Stanford University HIV Drug Resistance Database. Resistance mutations associated with the reverse transcriptase gene were detected in 4 (15.4%) of the participants. At least one major drug resistance mutation in the reverse transcriptase gene was found in 3 (11.5%) of the women. The detection of transmitted HIV-1 drug resistance in this drug-naïve group in two regional HIV care sites is an indication of the need for renewed action in monitoring the emergence of transmitted HIV-1 drug resistance in Ghana. None declared.
Borchani, Hanen; Bielza, Concha; Toro, Carlos; Larrañaga, Pedro
2013-03-01
Our aim is to use multi-dimensional Bayesian network classifiers in order to predict the human immunodeficiency virus type 1 (HIV-1) reverse transcriptase and protease inhibitors given an input set of respective resistance mutations that an HIV patient carries. Multi-dimensional Bayesian network classifiers (MBCs) are probabilistic graphical models especially designed to solve multi-dimensional classification problems, where each input instance in the data set has to be assigned simultaneously to multiple output class variables that are not necessarily binary. In this paper, we introduce a new method, named MB-MBC, for learning MBCs from data by determining the Markov blanket around each class variable using the HITON algorithm. Our method is applied to both reverse transcriptase and protease data sets obtained from the Stanford HIV-1 database. Regarding the prediction of antiretroviral combination therapies, the experimental study shows promising results in terms of classification accuracy compared with state-of-the-art MBC learning algorithms. For reverse transcriptase inhibitors, we get 71% and 11% in mean and global accuracy, respectively; while for protease inhibitors, we get more than 84% and 31% in mean and global accuracy, respectively. In addition, the analysis of MBC graphical structures lets us gain insight into both known and novel interactions between reverse transcriptase and protease inhibitors and their respective resistance mutations. MB-MBC algorithm is a valuable tool to analyze the HIV-1 reverse transcriptase and protease inhibitors prediction problem and to discover interactions within and between these two classes of inhibitors. Copyright © 2012 Elsevier B.V. All rights reserved.
HIV type 1 genotypic variation in an antiretroviral treatment-naive population in southern India.
Balakrishnan, Pachamuthu; Kumarasamy, Nagalingeswaran; Kantor, Rami; Solomon, Suniti; Vidya, Sundararajan; Mayer, Kenneth H; Newstein, Michael; Thyagarajan, Sadras P; Katzenstein, David; Ramratnam, Bharat
2005-04-01
Most studies of HIV-1 drug resistance have examined subtype B viruses; fewer data are available from developing countries, where non-B subtypes predominate. We determined the prevalence of mutations at protease and reverse transcriptase drug resistance positions in antiretroviral drug-naive individuals in southern India. The pol region of the genome was amplified from plasma HIV-1 RNA in 50 patients. All sequences clustered with HIV-1 subtype C. All patients had at least one protease and/or RT mutation at a known subtype B drug resistance position. Twenty percent of patients had mutations at major protease inhibitor resistance positions and 100% had mutations at minor protease inhibitor resistance positions. Six percent and 14% of patients had mutations at nucleoside reverse transcriptase inhibitor and/or nonnucleoside reverse transcriptase inhibitor resistance positions, respectively. Larger scale studies need to be undertaken to better define the genotypic variation of circulating Indian subtype C viruses and their potential impact on drug susceptibility and clinical outcome in treated individuals.
Bellucci, Luca; Angeli, Lucilla; Tafi, Andrea; Radi, Marco; Botta, Maurizio
2013-12-23
Targeted molecular dynamics (TMD) simulations allowed for identifying the chemical/structural features of the nucleotide-competitive HIV-1 inhibitor DAVP-1, which is responsible for the disruption of the T-shape motif between Try183 and Trp229 of the reverse transcriptase (RT). DAVP-1 promoted the opening of a connection "gate" between allosteric and catalytic sites of HIV-1 RT, thus explaining its peculiar mechanism of action and providing useful insights to develop novel nucleotide-competitive RT inhibitors.
Van Herrewege, Yven; Michiels, Jo; Van Roey, Jens; Fransen, Katrien; Kestens, Luc; Balzarini, Jan; Lewi, Paul; Vanham, Guido; Janssen, Paul
2004-01-01
The nonnucleoside reverse transcriptase inhibitors UC-781 and TMC120-R147681 (Dapivirine) effectively prevented human immunodeficiency virus (HIV) infection in cocultures of monocyte-derived dendritic cells and T cells, representing primary targets in sexual transmission. Both drugs had a favorable therapeutic index. A 24-h treatment with 1,000 nM UC-781 or 100 nM TMC120-R147681 prevented cell-free HIV infection, whereas 10-fold-higher concentrations blocked cell-associated HIV. PMID:14693562
Yang, S S; Fliakas-Boltz, V; Bader, J P; Buckheit, R W
1995-10-01
Current thrust in controlling the Acquired Immune Deficiency Syndrome (AIDS) focuses on antiviral drug development targeting the infection and replication of the human immunodeficiency virus (HIV), the causative agent of AIDS. To date, treatment of AIDS has relied on nucleoside reverse transcriptase inhibitors such as AZT, ddI, and ddC, which eventually become ineffective upon the emergence of resistant mutants bearing specific nucleotide substitutions. The Anti-AIDS Drug Screening Program of the NCI conducts and coordinates a high-capacity semi-robotic in vitro screening of synthetic or natural compounds submitted by academic, research and pharmaceutical institutions world-wide. About 10,000 synthetic compounds are screened annually for anti-HIV activity. Confirmed active agents are subjected to in-depth studies on range and mechanism of action. Emerging from this intense screening activity were a number of potentially promising categories of nonnucleoside reverse transcriptase inhibitors (NNRTI) with structural diversity but strong and reproducible anti-HIV activity. Over 2500 active compounds were evaluated for their inhibitory activity against a panel of both laboratory and clinical virus isolates in the appropriate established cell line or fresh human peripheral blood leukocyte and macrophage preparations. Out of these, 40 agents could be placed structurally in nine categories with an additional 16 unique compounds that share the characteristics of NNRTI. These NNRTIs were shown to inhibit reverse transcriptase enzymatically using homopolymeric or ribosomal RNA as templates. NNRTIs demonstrated similarity in their inhibitory pattern against the HIV-1 laboratory strains IIIB and RF, and an AZT-resistant strain; all were inactive against HIV-2. These compounds were further tested against NNRTI-resistant HIV-1 isolates. NNRTI-resistant HIV-1 isolates were selected and characterized with respect to the change(s) in the viral reverse transcriptase nucleotide sequence. Also, differential cross-resistance or sensitivity patterns to NNRTIs were studied in detail among NNRTI-resistant mutants. When tested in combination with AZT, all of the NNRTI's uniformly exhibited synergistic inhibition of HIV-1, suggesting that combination antiviral therapy of NNRTIs with AZT may be therapeutically promising for AIDS treatment.
Gupta, Kavita M; Pearce, Serena M; Poursaid, Azadeh E; Aliyar, Hyder A; Tresco, Patrick A; Mitchnik, Mark A; Kiser, Patrick F
2008-10-01
Women-controlled methods for prevention of male-to-female sexual transmission of HIV-1 are urgently needed. Providing inhibitory concentrations of HIV-1 reverse transcriptase inhibitors to impede the replication of the virus in the female genital tissue offers a mechanism for prophylaxis of HIV-1. To this end, an intravaginal ring device that can provide long duration delivery of dapivirine, a nonnucleoside reverse transcriptase inhibitor of HIV-1, was developed utilizing a medical-grade polyether urethane. Monolithic intravaginal rings were fabricated and sustained release with cumulative flux linear with time was demonstrated under sink conditions for a period of 30 days. The release rate was directly proportional to the amount of drug loaded. Another release study conducted for a week utilizing liposome dispersions as sink conditions, to mimic the partitioning of dapivirine into vaginal tissue, also demonstrated release rates constant with time. These results qualify polyether urethanes for development of intravaginal rings for sustained delivery of microbicidal agents. (c) 2008 Wiley-Liss, Inc. and the American Pharmacists Association
The history of antiretrovirals: key discoveries over the past 25 years.
De Clercq, Erik
2009-09-01
Within 25 years after zidovudine (3'-azido-2',3'-dideoxythymidine, AZT) was first described as an inhibitor of HIV replication, 25 anti-HIV drugs have been formally approved for clinical use in the treatment of HIV infections: seven nucleoside reverse transcriptase inhibitors (NRTIs): zidovudine, didanosine, zalcitabine, stavudine, lamivudine, abacavir and emtricitabine; one nucleotide reverse transcriptase inhibitor (NtRTI): tenofovir [in its oral prodrug form: tenofovir disoproxil fumarate (TDF)]; four non-nucleoside reverse transcriptase inhibitors (NNRTIs): nevirapine, delavirdine, efavirenz and etravirine; ten protease inhibitors (PIs): saquinavir, ritonavir, indinavir, nelfinavir, amprenavir, lopinavir, atazanavir, fosamprenavir, tipranavir and darunavir; one fusion inhibitor (FI): enfuvirtide; one co-receptor inhibitor (CRI): maraviroc and one integrase inhibitor (INI): raltegravir. These compounds are used in various drug combination (some at fixed dose) regimens so as to achieve the highest possible benefit and tolerability, and to diminish the risk of virus-drug resistance development. (c) 2009 John Wiley & Sons, Ltd.
Aragão, Filipa; Vera, José; Vaz Pinto, Inês
2012-01-01
Introduction Current Portuguese HIV treatment guidelines recommend initiating antiretroviral therapy with a regimen composed of two Nucleoside Reverse Transcriptase Inhibitors plus one Non-nucleoside Reverse Transcriptase Inhibitor (2NRTI+NNRTI) or two Nucleoside Reverse Transcriptase Inhibitors plus one boosted protease inhibitor (2NRTI+PI/r). Given the lower daily cost of NNRTI as the third agent when compared to the average daily costs of PI/r, it is relevant to estimate the long term impact of each treatment option in the Portuguese context. Methods We developed a microsimulation discrete events model for cost-effectiveness analysis of HIV treatment, simulating individual paths from ART initiation to death. Four driving forces determine the course of events: CD4+ cell count, viral load, resistance and adherence. Distributions of time to event are conditional to individuals’ characteristics and past history. Time to event was modeled using parametric survival analysis using Stata 11®. Disease progression was structured according to therapy lines and the model was parameterized with cohort Portuguese observational data. All resources were valued at 2009 prices. The National Health Service’s perspective was assumed considering a lifetime horizon and a 5% annual discount rate. Results In this analysis, initiating therapy with two Nucleoside Reverse Transcriptase Inhibitors plus one Non-nucleoside Reverse Transcriptase Inhibitor reduces the average number of switches by 17%, saves 19.573€ per individual and increases life expectancy by 1.7 months showing to be a dominant strategy in 57% of the simulations when compared to two Nucleoside Reverse Transcriptase Inhibitors plus one boosted protease inhibitor. Conclusion This study suggests that, when clinically valid, initiating therapy with two Nucleoside Reverse Transcriptase Inhibitors plus one Non-nucleoside Reverse Transcriptase Inhibitor is a cost-saving strategy and equally effective when compared to two Nucleoside Reverse Transcriptase Inhibitors plus one boosted protease inhibitor as the first regimen. PMID:23028618
Lingappa, Jairam; Beck, Ingrid; Frenkel, Lisa M.; Pepper, Gregory; Celum, Connie; Wald, Anna; Fife, Kenneth H.; Were, Edwin; Mugo, Nelly; Sanchez, Jorge; Essex, Myron; Makhema, Joseph; Kiarie, James; Farquhar, Carey; Corey, Lawrence
2011-01-01
Recent in vitro studies suggest that acyclovir may directly inhibit HIV-1 replication and can select for a specific HIV-1 reverse transcriptase mutation (V75I) with concomitant loss of an anti-HIV-1 effect. We tested for HIV-1 genotypic resistance at reverse transcriptase codon 75 in plasma from 168 HIV-1–infected persons from Botswana, Kenya, Peru, and the United States taking daily acyclovir or valacyclovir for between 8 weeks and 24 months. No V75I cases were detected (95% confidence interval, 0%–2.2%). These prospective in vivo studies suggest that standard-dose acyclovir or valacyclovir does not select for HIV-1 resistance. PMID:21148504
Sudbeck, Elise A.; Mao, Chen; Vig, Rakesh; Venkatachalam, T. K.; Tuel-Ahlgren, Lisa; Uckun, Fatih M.
1998-01-01
Two highly potent dihydroalkoxybenzyloxopyrimidine (DABO) derivatives targeting the nonnucleoside inhibitor (NNI) binding site of human immunodeficiency virus (HIV) reverse transcriptase (RT) have been designed based on the structure of the NNI binding pocket and tested for anti-HIV activity. Our lead DABO derivative, 5-isopropyl-2-[(methylthiomethyl)thio]-6-(benzyl)-pyrimidin-4-(1H)-one, elicited potent inhibitory activity against purified recombinant HIV RT and abrogated HIV replication in peripheral blood mononuclear cells at nanomolar concentrations (50% inhibitory concentration, <1 nM) but showed no detectable cytotoxicity at concentrations as high as 100 μM. PMID:9835518
Bruzzone, Bianca; Saladini, Francesco; Sticchi, Laura; Mayinda Mboungou, Franc A; Barresi, Renata; Caligiuri, Patrizia; Calzi, Anna; Zazzi, Maurizio; Icardi, Giancarlo; Viscoli, Claudio; Bisio, Francesca
2015-08-01
The Kento-Mwana project was carried out in Pointe Noire, Republic of the Congo, to prevent mother-to-child HIV-1 transmission. To determine the prevalence of different subtypes and transmitted drug resistance-associated mutations, 95 plasma samples were collected at baseline from HIV-1-positive naive pregnant women enrolled in the project during the years 2005-2008. Full protease and partial reverse transcriptase sequencing was performed and 68/95 (71.6%) samples were successfully sequenced. Major mutations to nucleoside reverse transcriptase inhibitors, nonnucleoside reverse transcriptase inhibitors, and protease inhibitors were detected in 4/68 (5.9%), 3/68 (4.4%), and 2/68 (2.9%) samples, respectively. Phylogenetic analysis of HIV-1 isolates showed a high prevalence of unique recombinant forms (24/68, 35%), followed by CRF45_cpx (7/68, 10.3%) and subsubtype A3 and subtype G (6/68 each, 8.8%). Although the prevalence of transmitted drug resistance mutations appears to be currently limited, baseline HIV-1 genotyping is highly advisable in conjunction with antiretroviral therapy scale-up in resource-limited settings to optimize treatment and prevent perinatal transmission.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nakamura, Akiyoshi; Tamura, Noriko; Yasutake, Yoshiaki, E-mail: y-yasutake@aist.go.jp
The structure of the HIV-1 reverse transcriptase Q151M mutant was determined at a resolution of 2.6 Å in space group P321. Hepatitis B virus polymerase (HBV Pol) is an important target for anti-HBV drug development; however, its low solubility and stability in vitro has hindered detailed structural studies. Certain nucleotide reverse transcriptase (RT) inhibitors (NRTIs) such as tenofovir and lamivudine can inhibit both HBV Pol and Human immunodeficiency virus 1 (HIV-1) RT, leading to speculation on structural and mechanistic analogies between the deoxynucleotide triphosphate (dNTP)-binding sites of these enzymes. The Q151M mutation in HIV-1 RT, located at the dNTP-binding site,more » confers resistance to various NRTIs, while maintaining sensitivity to tenofovir and lamivudine. The residue corresponding to Gln151 is strictly conserved as a methionine in HBV Pol. Therefore, the structure of the dNTP-binding pocket of the HIV-1 RT Q151M mutant may reflect that of HBV Pol. Here, the crystal structure of HIV-1 RT Q151M, determined at 2.6 Å resolution, in a new crystal form with space group P321 is presented. Although the structure of HIV-1 RT Q151M superimposes well onto that of HIV-1 RT in a closed conformation, a slight movement of the β-strands (β2–β3) that partially create the dNTP-binding pocket was observed. This movement might be caused by the introduction of the bulky thioether group of Met151. The structure also highlighted the possibility that the hydrogen-bonding network among amino acids and NRTIs is rearranged by the Q151M mutation, leading to a difference in the affinity of NRTIs for HIV-1 RT and HBV Pol.« less
Gianella, Sara; Vazquez, Homero; Ignacio, Caroline; Zweig, Adam C.; Richman, Douglas D.; Smith, Davey M.
2014-01-01
Abstract We investigated the pol genotype in two phylogenetically and epidemiologically linked partners, who were both experiencing persistent low-level viremia during antiretroviral therapy. In one partner we identified a new residue insertion between codon 248 and 249 of the HIV-1 RNA reverse transcriptase (RT) coding region (HXB2 numbering). We then investigated the potential impact of identified mutations in RT and antiretroviral binding affinity using a novel computational approach. PMID:24020934
Lemay, Julie; Maidou-Peindara, Priscilla; Bader, Thomas; Ennifar, Eric; Rain, Jean-Christophe; Benarous, Richard; Liu, Lang Xia
2008-01-01
Reverse transcription of the genetic material of human immunodeficiency virus type 1 (HIV-1) is a critical step in the replication cycle of this virus. This process, catalyzed by reverse transcriptase (RT), is well characterized at the biochemical level. However, in infected cells, reverse transcription occurs in a multiprotein complex – the reverse transcription complex (RTC) – consisting of viral genomic RNA associated with viral proteins (including RT) and, presumably, as yet uncharacterized cellular proteins. Very little is known about the cellular proteins interacting with the RTC, and with reverse transcriptase in particular. We report here that HIV-1 reverse transcription is affected by the levels of a nucleocytoplasmic shuttling protein – the RNA-binding protein HuR. A direct protein-protein interaction between RT and HuR was observed in a yeast two-hybrid screen and confirmed in vitro by homogenous time-resolved fluorescence (HTRF). We mapped the domain interacting with HuR to the RNAse H domain of RT, and the binding domain for RT to the C-terminus of HuR, partially overlapping the third RRM RNA-binding domain of HuR. HuR silencing with specific siRNAs greatly impaired early and late steps of reverse transcription, significantly inhibiting HIV-1 infection. Moreover, by mutagenesis and immunoprecipitation studies, we could not detect the binding of HuR to the viral RNA. These results suggest that HuR may be involved in and may modulate the reverse transcription reaction of HIV-1, by an as yet unknown mechanism involving a protein-protein interaction with HIV-1 RT. PMID:18544151
Pandey, Rajan Kumar; Sharma, Drista; Ojha, Rupal; Bhatt, Tarun Kumar; Prajapati, Vijay Kumar
2018-05-09
The emergence of mutations leading to drug resistance is the main cause of therapeutic failure in the human HIV infection. Chemical system biology approach has drawn great attention to discover new antiretroviral hits with high efficacy and negligible toxicity, which can be used as a prerequisite for HIV drug resistance global action plan 2017-21. To discover potential hits, we docked 49 antiretroviral analogs (n = 6294) against HIV-1 reverse transcriptase Q151M mutant & its wild-type form and narrow downed their number in three sequential modes of docking using Schrödinger suite. Later on, 80 ligands having better docking score than reference ligands (tenofovir and lamivudine) were screened for ADME, toxicity prediction, and binding energy estimation. Simultaneously, the area under the curve (AUC) was estimated using receiver operating characteristics (ROC) curve analysis to validate docking protocols. Finally, single point energy and molecular dynamics simulation approaches were performed for best two ligands (L3 and L14). This study reveals the antiretroviral efficacy of obtained two best ligands and delivers the hits against HIV-1 reverse transcriptase Q151M mutant. Copyright © 2018 Elsevier B.V. All rights reserved.
Chemical crosslinking of the subunits of HIV-1 reverse transcriptase.
Debyser, Z.; De Clercq, E.
1996-01-01
The reverse transcriptase (RT) of the human immunodeficiency virus type 1 (HIV-1) is composed of two subunits of 66 and 51 kDa in a 1 to 1 ratio. Because dimerization is a prerequisite for enzymatic activity, interference with the dimerization process could constitute an alternative antiviral strategy for RT inhibition. Here we describe an in vitro assay for the study of the dimerization state of HIV-1 reverse transcriptase based on chemical crosslinking of the subunits with dimethylsuberimidate. Crosslinking results in the formation of covalent bonds between the subunits, so that the crosslinked species can be resolved by denaturing gel electrophoresis. Crosslinked RT species with molecular weight greater than that of the dimeric form accumulate during a 1-15-min time course. Initial evidence suggests that those high molecular weight species represent trimers and tetramers and may be the result of intramolecular crosslinking of the subunits of a higher-order RT oligomer. A peptide that corresponds to part of the tryptophan repeat motif in the connection domain of HIV-1 RT inhibits crosslink formation as well as enzymatic activity. The crosslinking assay thus allows the investigation of the effect of inhibitors on the dimerization of HIV-1 RT. PMID:8745406
Herzig, Eytan; Voronin, Nickolay; Kucherenko, Nataly; Hizi, Amnon
2015-08-01
The process of reverse transcription (RTN) in retroviruses is essential to the viral life cycle. This key process is catalyzed exclusively by the viral reverse transcriptase (RT) that copies the viral RNA into DNA by its DNA polymerase activity, while concomitantly removing the original RNA template by its RNase H activity. During RTN, the combination between DNA synthesis and RNA hydrolysis leads to strand transfers (or template switches) that are critical for the completion of RTN. The balance between these RT-driven activities was considered to be the sole reason for strand transfers. Nevertheless, we show here that a specific mutation in HIV-1 RT (L92P) that does not affect the DNA polymerase and RNase H activities abolishes strand transfer. There is also a good correlation between this complete loss of the RT's strand transfer to the loss of the DNA clamp activity of the RT, discovered recently by us. This finding indicates a mechanistic linkage between these two functions and that they are both direct and unique functions of the RT (apart from DNA synthesis and RNA degradation). Furthermore, when the RT's L92P mutant was introduced into an infectious HIV-1 clone, it lost viral replication, due to inefficient intracellular strand transfers during RTN, thus supporting the in vitro data. As far as we know, this is the first report on RT mutants that specifically and directly impair RT-associated strand transfers. Therefore, targeting residue Leu92 may be helpful in selectively blocking this RT activity and consequently HIV-1 infectivity and pathogenesis. Reverse transcription in retroviruses is essential for the viral life cycle. This multistep process is catalyzed by viral reverse transcriptase, which copies the viral RNA into DNA by its DNA polymerase activity (while concomitantly removing the RNA template by its RNase H activity). The combination and balance between synthesis and hydrolysis lead to strand transfers that are critical for reverse transcription completion. We show here for the first time that a single mutation in HIV-1 reverse transcriptase (L92P) selectively abolishes strand transfers without affecting the enzyme's DNA polymerase and RNase H functions. When this mutation was introduced into an infectious HIV-1 clone, viral replication was lost due to an impaired intracellular strand transfer, thus supporting the in vitro data. Therefore, finding novel drugs that target HIV-1 reverse transcriptase Leu92 may be beneficial for developing new potent and selective inhibitors of retroviral reverse transcription that will obstruct HIV-1 infectivity. Copyright © 2015, American Society for Microbiology. All Rights Reserved.
Reynolds, Chevonne; de Koning, Charles B; Pelly, Stephen C; van Otterlo, Willem A L; Bode, Moira L
2012-07-07
The human immunodeficiency virus (HIV) causes AIDS (acquired immune deficiency syndrome), a disease in which the immune system progressively deteriorates, making sufferers vulnerable to all manner of opportunistic infections. Currently, world-wide there are estimated to be 34 million people living with HIV, with the vast majority of these living in sub-Saharan Africa. Therefore, an important research focus is development of new drugs that can be used in the treatment of HIV/AIDS. This review gives an overview of the disease and addresses the drugs currently used for treatment, with specific emphasis on new developments within the class of allosteric non-nucleoside reverse transcriptase inhibitors (NNRTIs).
The role of the glycosyl moiety of myricetin derivatives in anti-HIV-1 activity in vitro.
Ortega, Joseph T; Suárez, Alirica I; Serrano, Maria L; Baptista, Jani; Pujol, Flor H; Rangel, Hector R
2017-10-12
Plant extracts are sources of valuable compounds with biological activity, especially for the anti-proliferative activity against pathogens or tumor cells. Myricetin is a flavonoid found in several plants that has been described as an inhibitor of Human immunodeficiency virus type 1 (HIV-1) through its action against the HIV reverse transcriptase, but myricetin derivatives have not been fully studied. The aim of this study was to evaluate the anti-HIV-1 activity of glycosylated metabolites obtained from Marcetia taxifolia and derived from myricetin: myricetin rhamnoside and myricetin 3-(6-rhamnosylgalactoside). Compounds were obtained from organic extracts by maceration of aerial parts of M. taxifolia. All biological assays were performed in the MT4 cell line. Antiviral activity was measured as inhibition of p24 and reverse transcriptase with a fluorescent assay. Both flavonoids have antiviral activity in vitro, with an EC50 of 120 µM for myricetin 3-rhamnoside (MR) and 45 µM for myricetin 3-(6-rhamnosylgalactoside) (MRG), both significantly lower than the EC50 of myricetin (230 µM). Although both compounds inhibited the reverse transcriptase activity, with an IC50 of 10.6 µM for MR and 13.8 µM for MRG, myricetin was the most potent, with an IC50 of 7.6 µM, and an inhibition greater than 80%. Molecular docking approach showed correlation between the free energy of binding with the assays of enzyme inhibition. The results suggest that glycosylated moiety might enhance the anti-HIV-1 activity of myricetin, probably by favoring the internalization of the flavonoid into the cell. The inhibition of the HIV-1 reverse transcriptase is likely responsible for the antiviral activity.
Lv, M; Xu, H
2010-01-01
According to World Health Organization (WHO)/Joint United Nations Programme on human immunodeficiency virus (HIV)/acquired immune deficiency syndrome (AIDS) (UNAIDS) Report in 2007, 33.2 million people are living with HIV, 2.5 million ones have been newly infected with HIV, and 2.1 million ones died from AIDS, including 330,000 children. Therefore, HIV/AIDS still remains a public health emergency and a leading cause of mortality worldwide. It is believed that reverse transcriptase (RT) is a crucial enzyme in the life cycle of HIV-1, and thereby RT has been the important drug target for antiretroviral (ARV) chemotherapy against AIDS. To our knowledge, dipyridodiazepinone analogs have been considered as one class of potential non-nucleoside reverse transcriptase inhibitors (NNRTIs), especially the structurally and chemically related nevirapine (Viramune(R)), which was the first NNRTI approved by the U. S. Food and Drug Administration (FDA) for the treatment of HIV-1 infection for adults in 1996 and for children in 1998. This review mainly highlights the progress of synthesis and structure-activity relationship (SAR) of dipyridodiazepinone analogs; in the meantime, the mechanism of action is also presented. It will pave the way for the design and development of novel dipyridodiazepinone analogs as NNRTIs in AIDS chemotherapy in the future.
Practical diagnostic testing for human immunodeficiency virus.
Jackson, J B; Balfour, H H
1988-01-01
Since the discovery of human immunodeficiency virus (HIV) as the causative agent of acquired immunodeficiency syndrome in 1983, there has been a proliferation of diagnostic tests. These assays can be used to detect the presence of HIV antibody, HIV antigen, HIV ribonucleic and deoxyribonucleic acids, and HIV reverse transcriptase. Enzyme-linked immunosorbent assays, Western blot, radioimmunoprecipitation assays, indirect immunofluorescence assays, reverse transcriptase assays, and several molecular hybridization techniques are currently available. Enzyme-linked immunosorbent, Western blot, and indirect immunofluorescence assays for HIV antibody are very sensitive, specific, and adaptable to most laboratories. An enzyme-linked immunosorbent assay for HIV antigen is also readily adaptable to most laboratories and will be commercially available soon. While the other assays are more tedious, they are valuable confirmatory tests and are suitable for reference laboratories. The biohazards of performing HIV testing can be minimized with proper biosafety measures. Images PMID:3060241
Virtual screening studies on HIV-1 reverse transcriptase inhibitors to design potent leads.
Vadivelan, S; Deeksha, T N; Arun, S; Machiraju, Pavan Kumar; Gundla, Rambabu; Sinha, Barij Nayan; Jagarlapudi, Sarma A R P
2011-03-01
The purpose of this study is to identify novel and potent inhibitors against HIV-1 reverse transcriptase (RT). The crystal structure of the most active ligand was converted into a feature-shaped query. This query was used to align molecules to generate statistically valid 3D-QSAR (r(2) = 0.873) and Pharmacophore models (HypoGen). The best HypoGen model consists of three Pharmacophore features (one hydrogen bond acceptor, one hydrophobic aliphatic and one ring aromatic) and further validated using known RT inhibitors. The designed novel inhibitors are further subjected to docking studies to reduce the number of false positives. We have identified and proposed some novel and potential lead molecules as reverse transcriptase inhibitors using analog and structure based studies. Copyright © 2011 Elsevier Masson SAS. All rights reserved.
Machado, Luiz Fernando Almeida; Costa, Iran Barros; Folha, Maria Nazaré; da Luz, Anderson Levy Bessa; Vallinoto, Antonio Carlos Rosário; Ishak, Ricardo; Ishak, Marluisa Oliveira Guimarães
2017-04-12
The present study aimed to describe the genetic diversity of HIV-1, as well as the resistance profile of the viruses identified in HIV-1 infected pregnant women under antiretroviral therapy in the state of Pará, Northern Brazil. Blood samples were collected from 45 HIV-1 infected pregnant to determine the virus subtypes according to the HIV-1 protease (PR) gene and part of the HIV-1 reverse transcriptase (RT) gene by sequencing the nucleotides of these regions. Drug resistance mutations and susceptibility to antiretroviral drugs were analyzed by the Stanford HIV Drug Resistance Database. Out of 45 samples, only 34 could be amplified for PR and 30 for RT. Regarding the PR gene, subtypes B (97.1%) and C (2.9%) were identified; for the RT gene, subtypes B (90.0%), F (6.7%), and C (3.3%) were detected. Resistance to protease inhibitors (PI) was identified in 5.8% of the pregnant, and mutations conferring resistance to nucleoside reverse transcriptase inhibitors were found in 3.3%, while mutations conferring resistance to non-nucleoside reverse transcriptase inhibitors were found in 3.3%. These results showed a low frequency of strains resistant to antiretroviral drugs, the prevalence of subtypes B and F, and the persistent low transmission of subtype C in pregnant of the state of Pará, Brazil.
Mackie, Nicola E; Dunn, David T; Dolling, David; Garvey, Lucy; Harrison, Linda; Fearnhill, Esther; Tilston, Peter; Sabin, Caroline; Geretti, Anna M
2013-09-10
HIV-1 genetic variability may influence antiretroviral therapy (ART) outcomes. The study aim was to determine the impact of polymorphisms in regions known to harbor major nonnucleoside reverse transcriptase inhibitor (NNRTI) resistance mutations (codons 90-108, 135-138, 179-190, 225-348) on virologic responses to first-line NNRTI-based ART. Reverse transcriptase sequences from ART-naive individuals who commenced efavirenz (EFV) or nevirapine (NVP) with at least two nucleos(t)ide reverse transcriptase inhibitors (NRTIs) without major drug resistance mutations were analyzed. The impact of polymorphisms on week 4 viral load decrease and time to virologic failure was measured over a median 97 weeks. Among 4528 patients, most were infected with HIV-1 subtype B (67%) and commenced EFV-based ART (84%). Overall, 2598 (57%) had at least one polymorphism, most frequently at codons 90, 98, 101, 103, 106, 135, 138, 179, and 238. Virologic failure rates were increased in patients with two (n = 597) or more than two (n = 72) polymorphisms [adjusted hazard ratio 1.43; 95% confidence interval (CI) 1.07-1.92; P = 0.016]. Polymorphisms associated with virologic failure occurred at codons 90 (mostly V90I), 98 (mostly A98S), and 103 (mostly K103R), with adjusted hazard ratios of 1.78 (1.15-2.73; P = 0.009), 1.55 (1.16-2.08; P = 0.003), and 1.75 (1.00-3.05: P = 0.049), respectively. Polymorphisms at codon 179, especially V179D/E/T, predicted reduced week 4 responses (P = 0.001) but not virologic failure. The occurrence of multiple polymorphisms, though uncommon, was associated with a small increase in the risk of NNRTI treatment failure; significant effects were seen with polymorphisms at codon 90, 98, and 103. The mechanisms underlying the slower suppression seen with V179D/E/T deserve further investigation.
Seniya, Chandrabhan; Yadav, Ajay; Uchadia, Kuldeep; Kumar, Sanjay; Sagar, Nitin; Shrivastava, Priyanka; Shrivastava, Shilpi; Wadhwa, Gulshan
2012-01-01
The study of Human immunodeficiency virus (HIV) in humans and animal models in last 31 years suggested that it is a causative agent of AIDS. This causes serious pandemic public health concern globally. It was reported that the HIV-1 reverse transcriptase (RT) played a critical role in the life cycle of HIV. Therefore, inhibition of HIV-1RT enzyme is one of the major and potential targets in the treatment of AIDS. The enzyme (HIV-1RT) was successfully targeted by non nucleotide reverse transcriptase inhibitors (NNRTIs). But frequent application of NNRTIs led drug resistance mutation on HIV infections. Therefore, there is a need to search new NNRTIs with appropriate pharmacophores. For the purpose, a virtually screened 3D model of unliganded HIV-1RT (1DLO) was explored. The unliganded HIV-1RT (1DLO) was docked with 4-thiazolidinone and its derivatives (ChemBank Database) by using AutoDock4. The best seven docking solutions complex were selected and analyzed by Ligplot. The analysis showed that derivative (5E)-3-(2- aminoethyl)-5-(2- thienylmethylene)-1, 3-thiazolidine-2, 4-dione (CID 3087795) has maximum potential against unliganded HIV-1RT (1DLO). The analysis was done on the basis of scoring and binding ability. The derivative (5E)-3-(2- aminoethyl)-5-(2- thienylmethylene)-1, 3-thiazolidine-2, 4-dione (CID 3087795) indicated minimum energy score and highest number of interactions with active site residue and could be a promising inhibitor for HIV-1 RT as Drug target.
Fogel, Jessica M; Clarke, William; Kulich, Michal; Piwowar-Manning, Estelle; Breaud, Autumn; Olson, Matthew T; Marzinke, Mark A; Laeyendecker, Oliver; Fiamma, Agnès; Donnell, Deborah; Mbwambo, Jessie K K; Richter, Linda; Gray, Glenda; Sweat, Michael; Coates, Thomas J; Eshleman, Susan H
2017-02-01
Antiretroviral (ARV) drug treatment benefits the treated individual and can prevent HIV transmission. We assessed ARV drug use in a community-randomized trial that evaluated the impact of behavioral interventions on HIV incidence. Samples were collected in a cross-sectional survey after a 3-year intervention period. ARV drug testing was performed using samples from HIV-infected adults at 4 study sites (Zimbabwe; Tanzania; KwaZulu-Natal and Soweto, South Africa; survey period 2009-2011) using an assay that detects 20 ARV drugs (6 nucleoside/nucleotide reverse transcriptase inhibitors, 3 nonnucleoside reverse transcriptase inhibitors, and 9 protease inhibitors; maraviroc; raltegravir). ARV drugs were detected in 2011 (27.4%) of 7347 samples; 88.1% had 1 nonnucleoside reverse transcriptase inhibitors ± 1-2 nucleoside/nucleotide reverse transcriptase inhibitors. ARV drug detection was associated with sex (women>men), pregnancy, older age (>24 years), and study site (P < 0.0001 for all 4 variables). ARV drugs were also more frequently detected in adults who were widowed (P = 0.006) or unemployed (P = 0.02). ARV drug use was more frequent in intervention versus control communities early in the survey (P = 0.01), with a significant increase in control (P = 0.004) but not in intervention communities during the survey period. In KwaZulu-Natal, a 1% increase in ARV drug use was associated with a 0.14% absolute decrease in HIV incidence (P = 0.018). This study used an objective, biomedical approach to assess ARV drug use on a population level. This analysis identified factors associated with ARV drug use and provided information on ARV drug use over time. ARV drug use was associated with lower HIV incidence at 1 study site.
Schultz, Sharon J; Zhang, Miaohua; Champoux, James J
2010-03-19
The RNase H activity of reverse transcriptase is required during retroviral replication and represents a potential target in antiviral drug therapies. Sequence features flanking a cleavage site influence the three types of retroviral RNase H activity: internal, DNA 3'-end-directed, and RNA 5'-end-directed. Using the reverse transcriptases of HIV-1 (human immunodeficiency virus type 1) and Moloney murine leukemia virus (M-MuLV), we evaluated how individual base preferences at a cleavage site direct retroviral RNase H specificity. Strong test cleavage sites (designated as between nucleotide positions -1 and +1) for the HIV-1 and M-MuLV enzymes were introduced into model hybrid substrates designed to assay internal or DNA 3'-end-directed cleavage, and base substitutions were tested at specific nucleotide positions. For internal cleavage, positions +1, -2, -4, -5, -10, and -14 for HIV-1 and positions +1, -2, -6, and -7 for M-MuLV significantly affected RNase H cleavage efficiency, while positions -7 and -12 for HIV-1 and positions -4, -9, and -11 for M-MuLV had more modest effects. DNA 3'-end-directed cleavage was influenced substantially by positions +1, -2, -4, and -5 for HIV-1 and positions +1, -2, -6, and -7 for M-MuLV. Cleavage-site distance from the recessed end did not affect sequence preferences for M-MuLV reverse transcriptase. Based on the identified sequence preferences, a cleavage site recognized by both HIV-1 and M-MuLV enzymes was introduced into a sequence that was otherwise resistant to RNase H. The isolated RNase H domain of M-MuLV reverse transcriptase retained sequence preferences at positions +1 and -2 despite prolific cleavage in the absence of the polymerase domain. The sequence preferences of retroviral RNase H likely reflect structural features in the substrate that favor cleavage and represent a novel specificity determinant to consider in drug design. Copyright (c) 2010 Elsevier Ltd. All rights reserved.
Sivan, Sree Kanth; Manga, Vijjulatha
2010-06-01
Nonnucleoside reverse transcriptase inhibitors (NNRTIs) are allosteric inhibitors of the HIV-1 reverse transcriptase. Recently a series of Triazolinone and Pyridazinone were reported as potent inhibitors of HIV-1 wild type reverse transcriptase. In the present study, docking and 3D quantitative structure activity relationship (3D QSAR) studies involving comparative molecular field analysis (CoMFA) and comparative molecular similarity indices analysis (CoMSIA) were performed on 31 molecules. Ligands were built and minimized using Tripos force field and applying Gasteiger-Hückel charges. These ligands were docked into protein active site using GLIDE 4.0. The docked poses were analyzed; the best docked poses were selected and aligned. CoMFA and CoMSIA fields were calculated using SYBYL6.9. The molecules were divided into training set and test set, a PLS analysis was performed and QSAR models were generated. The model showed good statistical reliability which is evident from the r2 nv, q2 loo and r2 pred values. The CoMFA model provides the most significant correlation of steric and electrostatic fields with biological activities. The CoMSIA model provides a correlation of steric, electrostatic, acceptor and hydrophobic fields with biological activities. The information rendered by 3D QSAR model initiated us to optimize the lead and design new potential inhibitors.
Bhakat, Soumendranath; Martin, Alberto J M; Soliman, Mahmoud E S
2014-08-01
The emergence of different drug resistant strains of HIV-1 reverse transcriptase (HIV RT) remains of prime interest in relation to viral pathogenesis as well as drug development. Amongst those mutations, M184V was found to cause a complete loss of ligand fitness. In this study, we report the first account of the molecular impact of M184V mutation on HIV RT resistance to 3TC (lamivudine) using an integrated computational approach. This involved molecular dynamics simulation, binding free energy analysis, principle component analysis (PCA) and residue interaction networks (RINs). Results clearly confirmed that M184V mutation leads to steric conflict between 3TC and the beta branched side chain of valine, decreases the ligand (3TC) binding affinity by ∼7 kcal mol(-1) when compared to the wild type, changes the overall conformational landscape of the protein and distorts the native enzyme residue-residue interaction network. The comprehensive molecular insight gained from this study should be of great importance in understanding drug resistance against HIV RT as well as assisting in the design of novel reverse transcriptase inhibitors with high ligand efficacy on resistant strains.
Pontikis, R; Dollé, V; Guillaumel, J; Dechaux, E; Note, R; Nguyen, C H; Legraverend, M; Bisagni, E; Aubertin, A M; Grierson, D S; Monneret, C
2000-05-18
To test the concept that HIV reverse transcriptase could be effectively inhibited by "mixed site inhibitors", a series of seven conjugates containing both a nucleoside analogue component (AZT 1, ddC 2) and a nonnucleoside type inhibitor (HEPT analogue 12, pyridinone 27) were synthesized and evaluated for their ability to block HIV replication. The (N-3 and C-5)AZT-HEPT conjugates 15, 22, and 23 displayed 2-5 microM anti-HIV activity, but they had no effect on the replication of HIV-2 or the HIV-1 strain with the Y181C mutation. The (C-5)AZT-pyridinone conjugates 34-37 were found to be inactive. In marked contrast, the ddC-HEPT molecule 26 displayed the same potency (EC(50) = 0.45 microM) against HIV-1 (wild type and the Y181C nevirapine-resistant strain) and HIV-2 in cell culture. No synergistic effect was observed for these bis-substrate inhibitors, suggesting that the two individual inhibitor components in these molecules do not bind simultaneously in their respective sites. Interestingly, however, the results indicate that the AZT-HEPT conjugates and the ddC-HEPT derivative 26 inhibit reverse transcriptase (RT) in an opposite manner. One explanation for this difference is that the former compounds interact preferentially with the hydrophobic pocket in RT, whereas 26 (after supposed triphosphorylation) inhibits RT through binding in the catalytic site.
The Discovery of Reverse Transcriptase.
Coffin, John M; Fan, Hung
2016-09-29
In 1970 the independent and simultaneous discovery of reverse transcriptase in retroviruses (then RNA tumor viruses) by David Baltimore and Howard Temin revolutionized molecular biology and laid the foundations for retrovirology and cancer biology. In this historical review we describe the formulation of the controversial provirus hypothesis by Temin, which ultimately was proven by his discovery of reverse transcriptase in Rous sarcoma virus virions. Baltimore arrived at the same discovery through his studies on replication of RNA-containing viruses, starting with poliovirus and then moving to vesicular stomatitis virus, where he discovered a virion RNA polymerase. Subsequent studies of reverse transcriptase led to the elucidation of the mechanism of retrovirus replication, the discovery of oncogenes, the advent of molecular cloning, the search for human cancer viruses, and the discovery and treatment of HIV/AIDS.
Azam, Mohd; Malik, Abida; Rizvi, Meher; Rai, Arvind
2014-04-01
A major cause of failure of antiretroviral therapy (ART) is the presence of drug-resistance-associated mutations in the polymerase gene of HIV-1. The paucity of data regarding potential drug resistance to reverse transcriptase inhibitors (RTIs) prompted us to carry out this study. This information will shed light on the extent of drug resistance already present in HIV strains and will give future directions in patient treatment and in drug design. Drug resistance genotyping of a partial reverse transcriptase gene was done in 103 HIV-1-infected patients, including the ART-naive and ART-experienced population. The drug resistance pattern was analyzed using the Stanford HIV-DR database, the IAS-USA mutation list and the REGA algorithm-v8.0. Subtyping was done using the REGA HIV-1 subtyping tool-v2.01. The majority of our sequences (96 %) were found to be subtype C, and four (3.8 %) were subtype A1. Significant prevalence of DR mutations (28 %) was observed in the RT gene. Major amino acid substitutions were seen at positions 41, 90, 98, 103, 106, 108, 138, 181, 184, 190, 215, and 219, which confer high/intermediate levels of resistance to most RTIs, independently or together. Our results show that there is an urgent need to tailor ART drug regimens to the individual to achieve optimum therapeutic outcome in North India.
Antiretroviral therapy for human immunodeficiency virus infection in 1997.
Katzenstein, D A
1997-01-01
It has become clear that the acquired immunodeficiency syndrome follows continuous replication of the human immunodeficiency virus (HIV) and a decrease in immune capability, most obviously a decline in the number of CD4 lymphocytes. An understanding of key elements in the infectious life cycle of HIV has led to the development of potent antiretroviral drugs selectively targeting unique reverse transcriptase and protease enzymes of the virus. Completed clinical trials have shown that antiretroviral therapy for HIV infection, begun early, reduces viral replication and reverses the decline in CD4 lymphocyte numbers. Recent studies of combination therapies have shown that decreases in plasma HIV viremia to low levels and sustained increases in CD4 cell numbers are associated with longer survival. Potent combination regimens including protease inhibitors and non-nucleoside reverse transcriptase inhibitors suppress detectable viral replication and have demonstrated clinical benefits in patients with advanced disease. Progress in antiretroviral therapy and methods to monitor responses to treatment are providing new hope in the treatment of HIV infection. PMID:9217434
Khalifa, Nagy M; Al-Omar, Mohamed A
2014-11-12
A series of new 5-allyl-6-benzylpyrimidin-4(3H)-ones bearing different substituents at the C-2 position of the pyrimidine core have been synthesized and evaluated for their in vitro activities against human immunodeficiency virus type 1 (HIV-1) in the human T-lymphotropic type (MT-4 cell cultures). The majority of the title compounds showed moderate to good activities against HIV-1. Amongst them, 5-allyl-6-benzyl-2-(3-hydroxypropylthio)pyrimidin-4(3H)-one analogue 11c exhibited the most potent anti-HIV-1 activity (IC50 0.32 µM). The biological testing results clearly indicated that the substitution at C-2 position of the pyrimidine ring could increase the anti-HIV-1 reverse transcriptase (RT) activity.
Khalifa, Nagy M.; Al-Omar, Mohamed A.
2014-01-01
A series of new 5-allyl-6-benzylpyrimidin-4(3H)-ones bearing different substituents at the C-2 position of the pyrimidine core have been synthesized and evaluated for their in vitro activities against human immunodeficiency virus type 1 (HIV-1) in the human T-lymphotropic type (MT-4 cell cultures). The majority of the title compounds showed moderate to good activities against HIV-1. Amongst them, 5-allyl-6-benzyl-2-(3-hydroxypropylthio)pyrimidin-4(3H)-one analogue 11c exhibited the most potent anti-HIV-1 activity (IC50 0.32 µM). The biological testing results clearly indicated that the substitution at C-2 position of the pyrimidine ring could increase the anti-HIV-1 reverse transcriptase (RT) activity. PMID:25397597
Famiglini, Valeria; La Regina, Giuseppe; Coluccia, Antonio; Pelliccia, Sveva; Brancale, Andrea; Maga, Giovanni; Crespan, Emmanuele; Badia, Roger; Riveira-Muñoz, Eva; Esté, José A; Ferretti, Rosella; Cirilli, Roberto; Zamperini, Claudio; Botta, Maurizio; Schols, Dominique; Limongelli, Vittorio; Agostino, Bruno; Novellino, Ettore; Silvestri, Romano
2014-12-11
We synthesized new indolylarylsulfone (IAS) derivatives carrying a heterocyclic tail at the indole-2-carboxamide nitrogen as potential anti-HIV/AIDS agents. Several new IASs yielded EC50 values <1.0 nM against HIV-1 WT and mutant strains in MT-4 cells. The (R)-11 enantiomer proved to be exceptionally potent against the whole viral panel; in the reverse transcriptase (RT) screening assay, it was remarkably superior to NVP and EFV and comparable to ETV. The binding poses were consistent with the one previously described for the IAS non-nucleoside reverse transcriptase inhibitors. Docking studies showed that the methyl group of (R)-11 points toward the cleft created by the K103N mutation, different from the corresponding group of (S)-11. By calculating the solvent-accessible surface, we observed that the exposed area of RT in complex with (S)-11 was larger than the area of the (R)-11 complex. Compounds 6 and 16 and enantiomer (R)-11 represent novel robust lead compounds of the IAS class.
Shulman, Nancy S; Delgado, Jamael; Bosch, Ronald J; Winters, Mark A; Johnston, Elizabeth; Shafer, Robert W; Katzenstein, David A; Merigan, Thomas C
2005-05-01
HIV-1 isolates harboring multiple nucleoside reverse transcriptase inhibitor (NRTI) resistance mutations are more susceptible ("hypersusceptible") to the nonnucleoside reverse transcriptase inhibitors (NNRTIs) than isolates lacking NRTI resistance mutations, but this has only been reported with a single-cycle replication phenotypic assay. In fact, there was a report that a commercial multicycle assay did not readily detect hypersusceptibility. To see whether NNRTI hypersusceptibility can be demonstrated in other types of phenotypic assays, including multicycle assays and enzyme inhibition assays. The susceptibility of HIV-1 clones derived from different patients in multicycle assays was tested in peripheral blood mononuclear cells (PBMCs) and in an established cell line. In addition, the reverse transcriptase (RT) of many of these clones was expressed and their susceptibility tested in an RT inhibition assay. Nevirapine and efavirenz susceptibilities were tested and compared with a control wild-type virus or RT. Hypersusceptibility to nevirapine and efavirenz was detected using each of the methods described above. R values correlating the other methods with single-cycle assay values were between 0.66 and 0.96. In addition to the high correlations, the different methods gave similar numeric results. NNRTI hypersusceptibility is readily seen in multicycle susceptibility assays and in enzyme inhibition assays.
Latham, Catherine F; La, Jennifer; Tinetti, Ricky N; Chalmers, David K; Tachedjian, Gilda
2016-01-01
Human immunodeficiency virus (HIV) remains a global health problem. While combined antiretroviral therapy has been successful in controlling the virus in patients, HIV can develop resistance to drugs used for treatment, rendering available drugs less effective and limiting treatment options. Initiatives to find novel drugs for HIV treatment are ongoing, although traditional drug design approaches often focus on known binding sites for inhibition of established drug targets like reverse transcriptase and integrase. These approaches tend towards generating more inhibitors in the same drug classes already used in the clinic. Lack of diversity in antiretroviral drug classes can result in limited treatment options, as cross-resistance can emerge to a whole drug class in patients treated with only one drug from that class. A fresh approach in the search for new HIV-1 drugs is fragment-based drug discovery (FBDD), a validated strategy for drug discovery based on using smaller libraries of low molecular weight molecules (<300 Da) screened using primarily biophysical assays. FBDD is aimed at not only finding novel drug scaffolds, but also probing the target protein to find new, often allosteric, inhibitory binding sites. Several fragment-based strategies have been successful in identifying novel inhibitory sites or scaffolds for two proven drug targets for HIV-1, reverse transcriptase and integrase. While any FBDD-generated HIV-1 drugs have yet to enter the clinic, recent FBDD initiatives against these two well-characterised HIV-1 targets have reinvigorated antiretroviral drug discovery and the search for novel classes of HIV-1 drugs.
Zhang, Wei; Hu, Minlu; Shi, Yuan; Gong, Tiantian; Dezzutti, Charlene S; Moncla, Bernard; Sarafianos, Stefan G; Parniak, Michael A; Rohan, Lisa C
2015-09-01
EFdA is a potent nucleoside reverse transcriptase inhibitor (NRTI) with activity against a wide spectrum of wild-type and drug resistant HIV-1 variants. CSIC is a tight-binding non-nucleoside reverse transcriptase inhibitor (NNRTI) with demonstrated anti-HIV properties important for use in topical prevention of HIV transmission. The objective of this study was to develop and characterize film-formulated EFdA and CSIC for use as a female-controlled vaginal microbicide to prevent sexual transmission of HIV. Assessments of EFdA- and CSIC-loaded films included physicochemical characteristics, in vitro cytotoxicity, epithelia integrity studies, compatibility with the normal vaginal Lactobacillus flora and anti-HIV bioactivity evaluations. No significant change in physicochemical properties or biological activity of the combination films were noted during 3 months storage. In vitro cytotoxicity and bioactivity testing showed that 50% cytotoxic concentration (CC50) of either EFdA or CSIC was several orders of magnitude higher than the 50% effective concentration (EC50) values. Film-formulated EFdA and CSIC combination showed additive inhibitory activity against wild type and drug-resistant variants of HIV. Epithelial integrity studies demonstrated that the combination vaginal film had a much lower toxicity to HEC-1A monolayers compared to that of VCF®, a commercial vaginal film product containing nonoxynol-9. Polarized ectocervical explants showed films with drug alone or in combination were effective at preventing HIV infection. Our data suggest that vaginal microbicide films containing a combination of the NRTI EFdA and the NNRTI CSIC have potential to prevent HIV-1 sexual transmission.
... few years. But today, there are many effective medicines to fight the infection, and people with HIV ... healthier lives. There are five major types of medicines: Reverse transcriptase (RT) inhibitors - interfere with a critical ...
Tenofovir-related nephrotoxicity: case report and review of the literature.
James, Christopher W; Steinhaus, Mary C; Szabo, Susan; Dressier, Robert M
2004-03-01
Tenofovir is a nucleotide reverse transcriptase inhibitor for treatment of human immunodeficiency virus (HIV) infection. Several cases of renal failure associated with tenofovir therapy recently have been reported. A 54-year-old man with HIV experienced decreasing renal function and Fanconi's syndrome secondary to tenofovir therapy. His condition gradually improved after discontinuation of the drug. The available medical literature for reported cases of tenofovir-related nephrotoxicity indicates that this complication is apparently rare. However, our case report and literature review underscore the importance of monitoring renal function when treating patients with any nucleotide reverse transcriptase inhibitor.
Nucleoside reverse transcriptase inhibitors possess intrinsic anti-inflammatory activity
Fowler, Benjamin J.; Gelfand, Bradley D.; Kim, Younghee; Kerur, Nagaraj; Tarallo, Valeria; Hirano, Yoshio; Amarnath, Shoba; Fowler, Daniel H.; Radwan, Marta; Young, Mark T.; Pittman, Keir; Kubes, Paul; Agarwal, Hitesh K.; Parang, Keykavous A.; Hinton, David R.; Bastos-Carvalho, Ana; Li, Shengjian; Yasuma, Tetsuhiro; Mizutani, Takeshi; Yasuma, Reo; Wright, Charles; Ambati, Jayakrishna
2014-01-01
Nucleoside reverse transcriptase inhibitors (NRTIs) are mainstay therapeutics for HIV that block retrovirus replication. Alu (an endogenous retroelement that also requires reverse transcriptase for its life cycle)-derived RNAs activate P2X7 and the NLRP3 inflammasome to cause cell death of the retinal pigment epithelium (RPE) in geographic atrophy, a type of age-related macular degeneration. We found that NRTIs inhibit P2X7-mediated NLRP3 inflammasome activation independent of reverse transcriptase inhibition. Multiple approved and clinically relevant NRTIs prevented caspase-1 activation, the effector of the NLRP3 inflammasome, induced by Alu RNA. NRTIs were efficacious in mouse models of geographic atrophy, choroidal neovascularization, graft-versus-host disease (GVHD), and sterile liver inflammation. Our findings suggest that NRTIs are ripe for drug repurposing in P2X7-driven diseases. PMID:25414314
Marino-Merlo, Francesca; Frezza, Caterina; Papaianni, Emanuela; Valletta, Elena; Mastino, Antonio; Macchi, Beatrice
2017-11-01
Assessing the actual efficacy of compounds to directly inhibit HIV reverse transcriptase (RT) activity is a main goal in preclinical antiretroviral studies. Our previous studies demonstrated that the effects of inhibitor compounds towards HIV-RT could be efficiently assessed through a simple cell-free assay based on conventional reverse transcription PCR. In the present study, we describe a modified variant of our assay, termed RT real-time quantitative PCR inhibitory assay (RT-qPCR-IA), in which the ability of compounds to restrict the complementary DNA (cDNA) generation by HIV-RT using a specific RNA template is performed by the real-time technique, in order to improve both accuracy and sensitivity of the method. As specific RNA template, RNA extracted from stable transfectants ectopically expressing the herpes simplex virus 1 glycoprotein D gene was utilized. HIV-RT, of both commercial or house-made viral lysate origin, was employed for the assay. To assess the reliability of RT-qPCR-IA, we performed a comparative, quantitative analysis of the dose-dependent effect exerted by known nucleotide and non-nucleotide reverse-transcriptase inhibitors, using the SYBR Green dye chemistry as detection system. The results obtained with RT-qPCR-IA were compared to that obtained using a one-step PicoGreen technology-based commercial kit. The outcome of our study indicates that the development of the novel RT-qPCR-IA will provide rapid and accurate evaluation of the inhibitory efficacy of compounds towards HIV-RT activity. This evaluation could be very useful for large-scale screening of potential new anti-HIV drugs.
Fragment Screening and HIV Therapeutics
Bauman, Joseph D.; Patel, Disha; Arnold, Eddy
2013-01-01
Fragment screening has proven to be a powerful alternative to traditional methods for drug discovery. Biophysical methods, such as X-ray crystallography, NMR spectroscopy, and surface plasmon resonance, are used to screen a diverse library of small molecule compounds. Although compounds identified via this approach have relatively weak affinity, they provide a good platform for lead development and are highly efficient binders with respect to their size. Fragment screening has been utilized for a wide-range of targets, including HIV-1 proteins. Here, we review the fragment screening studies targeting HIV-1 proteins using X-ray crystallography or surface plasmon resonance. These studies have successfully detected binding of novel fragments to either previously established or new sites on HIV-1 protease and reverse transcriptase. In addition, fragment screening against HIV-1 reverse transcriptase has been used as a tool to better understand the complex nature of ligand binding to a flexible target. PMID:21972022
Burliaeva, E V; Tarkhov, A E; Burliaev, V V; Iurkevich, A M; Shvets, V I
2002-01-01
Searching of new anti-HIV agents is still crucial now. In general, researches are looking for inhibitors of certain HIV's vital enzymes, especially for reverse transcriptase (RT) inhibitors. Modern generation of anti-HIV agents represents non-nucleoside reverse transcriptase inhibitors (NNRTIs). They are much less toxic than nucleoside analogues and more chemically stable, thus being slower metabolized and emitted from the human body. Thus, search of new NNRTIs is actual today. Synthesis and study of new anti-HIV drugs is very expensive. So employment of the activity prediction techniques for such a search is very beneficial. This technique allows predicting the activities for newly proposed structures. It is based on the property model built by investigation of a series of known compounds with measured activity. This paper presents an approach of activity prediction based on "structure-activity" models designed to form a hypothesis about probably activity interval estimate. This hypothesis formed is based on structure descriptor domains, calculated for all energetically allowed conformers for each compound in the studied sef. Tetrahydroimidazobenzodiazipenone (TIBO) derivatives and phenylethyltiazolyltiourea (PETT) derivatives illustrated the predictive power of this method. The results are consistent with experimental data and allow to predict inhibitory activity of compounds, which were not included into the training set.
Transmitted drug resistance in patients with acute/recent HIV infection in Brazil.
Ferreira, Ana Cristina G; Coelho, Lara E; Grinsztejn, Eduarda; Jesus, Carlos S de; Guimarães, Monick L; Veloso, Valdiléa G; Grinsztejn, Beatriz; Cardoso, Sandra W
The widespread use of antiretroviral therapy increased the transmission of antiretroviral resistant HIV strains. Antiretroviral therapy initiation during acute/recent HIV infection limits HIV reservoirs and improves immune response in HIV infected individuals. Transmitted drug resistance may jeopardize the early goals of early antiretroviral treatment among acute/recent HIV infected patients. Patients with acute/recent HIV infection who underwent resistance test before antiretroviral treatment initiation were included in this analysis. HIV-1 sequences were obtained using an in house protease/reverse transcriptase genotyping assay. Transmitted drug resistance was identified according to the Stanford HIV Database for Transmitted Drug Resistance Mutations, based on WHO 2009 surveillance list, and HIV-1 subtyping according to Rega HIV-1 subtyping tool. Comparison between patients with and without transmitted drug resistance was made using Kruskal-Wallis and Chi-square tests. Forty-three patients were included, 13 with acute HIV infection and 30 with recent HIV infection. The overall transmitted drug resistance prevalence was 16.3% (95% confidence interval [CI]: 8.1-30.0%). The highest prevalence of resistance (11.6%, 95% CI: 8.1-24.5) was against non-nucleoside reverse transcriptase inhibitors, and K103N was the most frequently identified mutation. The high prevalence of nonnucleoside reverse transcriptase inhibitors resistance indicates that efavirenz-based regimen without prior resistance testing is not ideal for acutely/recently HIV-infected individuals in our setting. In this context, the recent proposal of including integrase inhibitors as a first line regimen in Brazil could be an advantage for the treatment of newly HIV infected individuals. However, it also poses a new challenge, since integrase resistance test is not routinely performed for antiretroviral naive individuals. Further studies on transmitted drug resistance among acutely/recently HIV-infected are needed to inform the predictors of transmitted resistance and the antiretroviral therapy outcomes among these population. Copyright © 2017 Sociedade Brasileira de Infectologia. Published by Elsevier Editora Ltda. All rights reserved.
Suicide Inhibitors of Reverse Transcriptase in the Therapy of AIDS and Other Retroviruses
1990-07-01
I and 10 nanonolar) and compared to the E . Coli recombinant HIV-RT (Kindly donated by Dr. Steven Hughes Fort Detrick M.D.) and the wild type HIV-RT...Both the wild type and E . Coli HIV-RT’s were resistant to PFA showing essentially no inhibition at the lOnM level. Previous studies have shown that...10 nanomolar PFA. j, Sentivitv of Recombinant HIV-Reverse Transcriotase to Foscarnet. RECOMBINANT HIV RT ( E . COLI) + FOSCARNET 350001R 300000 PFA .001
Zhang, Wei; Hu, Minlu; Shi, Yuan; Gong, Tiantian; Dezzutti, Charlene S.; Moncla, Bernard; Sarafianos, Stefan G.; Parniak, Michael A.; Rohan, Lisa C.
2015-01-01
Purpose EFdA is a potent nucleoside reverse transcriptase inhibitor (NRTI) with activity against a wide spectrum of wild-type and drug resistant HIV-1 variants. CSIC is a tight-binding non-nucleoside reverse transcriptase inhibitor (NNRTI) with demonstrated anti-HIV properties important for use in topical prevention of HIV transmission. The objective of this study was to develop and characterize film-formulated EFdA and CSIC for use as a female-controlled vaginal microbicide to prevent sexual transmission of HIV. Methods Assessments of EFdA- and CSIC-loaded films included physicochemical characteristics, in vitro cytotoxicity, epithelia integrity studies, compatibility with the normal vaginal Lactobacillus flora and anti-HIV bioactivity evaluations. Results No significant change in physicochemical properties or biological activity of the combination films were noted during 3 months storage. In vitro cytotoxicity and bioactivity testing showed that 50% cytotoxic concentration (CC50) of either EFdA or CSIC was several orders of magnitude higher than the 50% effective concentration (EC50) values. Film-formulated EFdA and CSIC combination showed additive inhibitory activity against wild type and drug-resistant variants of HIV. Epithelial integrity studies demonstrated that the combination vaginal film had a much lower toxicity to HEC-1A monolayers compared to that of VCF®, a commercial vaginal film product containing nonoxynol-9. Polarized ectocervical explants showed films with drug alone or in combination were effective at preventing HIV infection. Conclusions Our data suggest that vaginal microbicide films containing a combination of the NRTI EFdA and the NNRTI CSIC have potential to prevent HIV-1 sexual transmission. PMID:25794967
Do non-nucleoside reverse transcriptase inhibitors contribute to lipodystrophy?
Nolan, David
2005-01-01
Lipodystrophy complications, including lipoatrophy (pathological fat loss) and metabolic complications, have emerged as important long-term toxicities associated with antiretroviral therapy in the current era. The wealth of data that has accumulated over the past 6 years has now clarified the contribution of specific antiretroviral drugs to the risk of these clinical endpoints, with evidence that lipoatrophy is strongly associated with the choice of nucleoside reverse transcriptase inhibitor therapy (specifically, stavudine and to a lesser extent zidovudine). The aetiological basis of metabolic complications of antiretroviral therapy has proven to be complex, in that the risk appears to be modulated by a number of lifestyle factors that have made the metabolic syndrome highly prevalent in the general population, with additional contributions from HIV disease status itself, as well as from individual drugs within the HIV protease inhibitor class. The currently licensed non-nucleoside reverse transcriptase inhibitor (NNRTI) drugs, efavirenz and nevirapine, have been proven to have a favourable safety profile in terms of lipodystrophy complications. However, it must be noted that NNRTI drugs also have individual toxicity profiles that must be accounted for when considering and/or monitoring their use in the treatment of HIV infection.
The future of pre-exposure prophylaxis (PrEP) for human immunodeficiency virus (HIV) infection.
Özdener, Ayşe Elif; Park, Tae Eun; Kalabalik, Julie; Gupta, Rachna
2017-05-01
People at high risk for HIV acquisition should be offered pre-exposure prophylaxis (PrEP). Tenofovir disoproxil fumarate (TDF)/emtricitabine (FTC) is currently the only medication recommended for pre-exposure prophylaxis (PrEP) by the Centers for Disease Control and Prevention (CDC) in people at high risk for HIV acquisition. This article will review medications currently under investigation and the future landscape of PrEP therapy. Areas covered: This article will review clinical trials that have investigated nontraditional regimens of TDF/FTC, antiretroviral agents from different drug classes such as integrase strand transfer inhibitors (INSTI), nucleoside reverse transcriptase inhibitors (NRTI), and non-nucleoside reverse transcriptase inhibitors (NNRTI) as potential PrEP therapies. Expert commentary: Currently, there are several investigational drugs in the pipeline for PrEP against HIV infection. Increased utilization of PrEP therapy depends on provider identification of people at high risk for HIV transmission. Advances in PrEP development will expand options and access for people and reduce the risk of HIV acquisition.
High Levels of Transmitted HIV Drug Resistance in a Study in Papua New Guinea.
Lavu, Evelyn; Kave, Ellan; Mosoro, Euodia; Markby, Jessica; Aleksic, Eman; Gare, Janet; Elsum, Imogen A; Nano, Gideon; Kaima, Petronia; Dala, Nick; Gurung, Anup; Bertagnolio, Silvia; Crowe, Suzanne M; Myatt, Mark; Hearps, Anna C; Jordan, Michael R
2017-01-01
Papua New Guinea is a Pacific Island nation of 7.3 million people with an estimated HIV prevalence of 0.8%. ART initiation and monitoring are guided by clinical staging and CD4 cell counts, when available. Little is known about levels of transmitted HIV drug resistance in recently infected individuals in Papua New Guinea. Surveillance of transmitted HIV drug resistance in a total of 123 individuals recently infected with HIV and aged less than 30 years was implemented in Port Moresby (n = 62) and Mount Hagen (n = 61) during the period May 2013-April 2014. HIV drug resistance testing was performed using dried blood spots. Transmitted HIV drug resistance was defined by the presence of one or more drug resistance mutations as defined by the World Health Organization surveillance drug resistance mutations list. The prevalence of non-nucleoside reverse transcriptase inhibitor transmitted HIV drug resistance was 16.1% (95% CI 8.8%-27.4%) and 8.2% (95% CI 3.2%-18.2%) in Port Moresby and Mount Hagen, respectively. The prevalence of nucleoside reverse transcriptase inhibitor transmitted HIV drug resistance was 3.2% (95% CI 0.2%-11.7%) and 3.3% (95% CI 0.2%-11.8%) in Port Moresby and Mount Hagen, respectively. No protease inhibitor transmitted HIV drug resistance was observed. The level of non-nucleoside reverse transcriptase inhibitor drug resistance in antiretroviral drug naïve individuals recently infected with HIV in Port Moresby is amongst the highest reported globally. This alarming level of transmitted HIV drug resistance in a young sexually active population threatens to limit the on-going effective use of NNRTIs as a component of first-line ART in Papua New Guinea. To support the choice of nationally recommended first-line antiretroviral therapy, representative surveillance of HIV drug resistance among antiretroviral therapy initiators in Papua New Guinea should be urgently implemented.
Eshleman, Susan H.; Laeyendecker, Oliver; Parkin, Neil; Huang, Wei; Chappey, Colombe; Paquet, Agnes C.; Serwadda, David; Reynolds, Steven J.; Kiwanuka, Noah; Quinn, Thomas C.; Gray, Ronald; Wawer, Maria
2009-01-01
Objective To analyze antiretroviral drug susceptibility in HIV from recently infected adults in Rakai, Uganda, prior to the availability of antiretroviral drug treatment. Methods Samples obtained at the time of HIV seroconversion (1998–2003) were analyzed using the GeneSeq HIV and PhenoSense HIV assays (Monogram Biosciences, Inc., South San Francisco, California, USA). Results Test results were obtained for 104 samples (subtypes: 26A, 1C, 66D, 9A/D, 1C/D, 1 intersubtype recombinant). Mutations used for genotypic surveillance of transmitted antiretroviral drug resistance were identified in six samples: three had nucleoside reverse transcriptase inhibitor (NRTI) surveillance mutations (two had M41L, one had K219R), and three had protease inhibitor surveillance mutations (I47V, F53L, N88D); none had nonnucleoside reverse transcriptase inhibitor (NNRTI) surveillance mutations. Other resistance-associated mutations were identified in some samples. However, none of the samples had a sufficient number of mutations to predict reduced antiretroviral drug susceptibility. Ten (9.6%) of the samples had reduced phenotypic susceptibility to at least one drug (one had partial susceptibility to didanosine, one had nevirapine resistance, and eight had resistance or partial susceptibility to at least one protease inhibitor). Fifty-three (51%) of the samples had hypersusceptibility to at least one drug (seven had zidovudine hypersusceptibility, 28 had NNRTI hypersusceptibility, 34 had protease inhibitor hypersusceptibility). Delavirdine hyper-susceptibility was more frequent in subtype A than D. In subtype D, efavirenz hypersusceptibility was associated with substitutions at codon 11 in HIV-reverse transcriptase. Conclusion Phenotyping detected reduced antiretroviral drug susceptibility and hypersusceptibility in HIV from some antiretroviral-naive Ugandan adults that was not predicted by genotyping. Phenotyping may complement genotyping for analysis of antiretroviral drug susceptibility in populations with nonsubtype B HIV infection. PMID:19276794
Eshleman, Susan H; Laeyendecker, Oliver; Parkin, Neil; Huang, Wei; Chappey, Colombe; Paquet, Agnes C; Serwadda, David; Reynolds, Steven J; Kiwanuka, Noah; Quinn, Thomas C; Gray, Ronald; Wawer, Maria
2009-04-27
To analyze antiretroviral drug susceptibility in HIV from recently infected adults in Rakai, Uganda, prior to the availability of antiretroviral drug treatment. Samples obtained at the time of HIV seroconversion (1998-2003) were analyzed using the GeneSeq HIV and PhenoSense HIV assays (Monogram Biosciences, Inc., South San Francisco, California, USA). Test results were obtained for 104 samples (subtypes: 26A, 1C, 66D, 9A/D, 1C/D, 1 intersubtype recombinant). Mutations used for genotypic surveillance of transmitted antiretroviral drug resistance were identified in six samples: three had nucleoside reverse transcriptase inhibitor (NRTI) surveillance mutations (two had M41L, one had K219R), and three had protease inhibitor surveillance mutations (I47V, F53L, N88D); none had nonnucleoside reverse transcriptase inhibitor (NNRTI) surveillance mutations. Other resistance-associated mutations were identified in some samples. However, none of the samples had a sufficient number of mutations to predict reduced antiretroviral drug susceptibility. Ten (9.6%) of the samples had reduced phenotypic susceptibility to at least one drug (one had partial susceptibility to didanosine, one had nevirapine resistance, and eight had resistance or partial susceptibility to at least one protease inhibitor). Fifty-three (51%) of the samples had hypersusceptibility to at least one drug (seven had zidovudine hypersusceptibility, 28 had NNRTI hypersusceptibility, 34 had protease inhibitor hypersusceptibility). Delavirdine hypersusceptibility was more frequent in subtype A than D. In subtype D, efavirenz hypersusceptibility was associated with substitutions at codon 11 in HIV-reverse transcriptase. Phenotyping detected reduced antiretroviral drug susceptibility and hypersusceptibility in HIV from some antiretroviral-naive Ugandan adults that was not predicted by genotyping. Phenotyping may complement genotyping for analysis of antiretroviral drug susceptibility in populations with nonsubtype B HIV infection.
Didierlaurent, Ludovic; Houzet, Laurent; Morichaud, Zakia; Darlix, Jean-Luc; Mougel, Marylène
2008-01-01
Reverse transcription of the genomic RNA by reverse transcriptase occurs soon after HIV-1 infection of target cells. The viral nucleocapsid (NC) protein chaperones this process via its nucleic acid annealing activities and its interactions with the reverse transcriptase enzyme. To function, NC needs its two conserved zinc fingers and flanking basic residues. We recently reported a new role for NC, whereby it negatively controls reverse transcription in the course of virus formation. Indeed, deleting its zinc fingers causes reverse transcription activation in virus producer cells. To investigate this new NC function, we used viruses with subtle mutations in the conserved zinc fingers and its flanking domains. We monitored by quantitative PCR the HIV-1 DNA content in producer cells and in produced virions. Results showed that the two intact zinc-finger structures are required for the temporal control of reverse transcription by NC throughout the virus replication cycle. The N-terminal basic residues also contributed to this new role of NC, while Pro-31 residue between the zinc fingers and Lys-59 in the C-terminal region did not. These findings further highlight the importance of NC as a major target for anti-HIV-1 drugs. PMID:18641038
Towards novel therapeutics for HIV through fragment-based screening and drug design.
Tiefendbrunn, Theresa; Stout, C David
2014-01-01
Fragment-based drug discovery has been applied with varying levels of success to a number of proteins involved in the HIV (Human Immunodeficiency Virus) life cycle. Fragment-based approaches have led to the discovery of novel binding sites within protease, reverse transcriptase, integrase, and gp41. Novel compounds that bind to known pockets within CCR5 have also been identified via fragment screening, and a fragment-based approach to target the TAR-Tat interaction was explored. In the context of HIV-1 reverse transcriptase (RT), fragment-based approaches have yielded fragment hits with mid-μM activity in an in vitro activity assay, as well as fragment hits that are active against drug-resistant variants of RT. Fragment-based drug discovery is a powerful method to elucidate novel binding sites within proteins, and the method has had significant success in the context of HIV proteins.
An Intravaginal Ring That Releases the NNRTI MIV-150 Reduces SHIV Transmission in Macaques
Rodriguez, Aixa; Kizima, Larisa; Menon, Radhika; Goldman, Daniel; Kenney, Jessica; Aravantinou, Meropi; Seidor, Samantha; Gettie, Agegnehu; Blanchard, James; Piatak, Michael; Lifson, Jeffrey D.; Fernández-Romero, José A.; Robbiani, Melissa; Zydowsky, Thomas M.
2015-01-01
Microbicides may prevent HIV and sexually transmitted infections (STIs) in women; however, determining the optimal means of delivery of active pharmaceutical ingredients remains a major challenge. We previously demonstrated that a vaginal gel containing the non-nucleoside reverse transcriptase inhibitor MIV-150 partially protected macaques from SHIV-RT (simian/HIV reverse transcriptase) infection, and the addition of zinc acetate rendered the gel significantly protective. We test the activity of MIV-150 without the addition of zinc acetate when delivered from either ethylene vinyl acetate (EVA) or silicone intravaginal rings (IVRs). MIV-150 was successfully delivered, because it was detected in vaginal fluids and tissues by radioimmunoassay in pharmacokinetic studies. Moreover, EVA IVRs significantly protected macaques from SHIV-RT infection. Our results demonstrate that MIV-150–containing IVRs have the potential to prevent HIV infection and highlight the possible use of IVRs for delivering drugs that block HIV and other STIs. PMID:22956201
An intravaginal ring that releases the NNRTI MIV-150 reduces SHIV transmission in macaques.
Singer, Rachel; Mawson, Paul; Derby, Nina; Rodriguez, Aixa; Kizima, Larisa; Menon, Radhika; Goldman, Daniel; Kenney, Jessica; Aravantinou, Meropi; Seidor, Samantha; Gettie, Agegnehu; Blanchard, James; Piatak, Michael; Lifson, Jeffrey D; Fernández-Romero, José A; Robbiani, Melissa; Zydowsky, Thomas M
2012-09-05
Microbicides may prevent HIV and sexually transmitted infections (STIs) in women; however, determining the optimal means of delivery of active pharmaceutical ingredients remains a major challenge. We previously demonstrated that a vaginal gel containing the non-nucleoside reverse transcriptase inhibitor MIV-150 partially protected macaques from SHIV-RT (simian/HIV reverse transcriptase) infection, and the addition of zinc acetate rendered the gel significantly protective. We test the activity of MIV-150 without the addition of zinc acetate when delivered from either ethylene vinyl acetate (EVA) or silicone intravaginal rings (IVRs). MIV-150 was successfully delivered, because it was detected in vaginal fluids and tissues by radioimmunoassay in pharmacokinetic studies. Moreover, EVA IVRs significantly protected macaques from SHIV-RT infection. Our results demonstrate that MIV-150-containing IVRs have the potential to prevent HIV infection and highlight the possible use of IVRs for delivering drugs that block HIV and other STIs.
Tang, Jing; Vernekar, Sanjeev Kumar V; Chen, Yue-Lei; Miller, Lena; Huber, Andrew D; Myshakina, Nataliya; Sarafianos, Stefan G; Parniak, Michael A; Wang, Zhengqiang
2017-06-16
Human immunodeficiency virus (HIV) reverse transcriptase (RT) associated ribonuclease H (RNase H) remains the only virally encoded enzymatic function not clinically validated as an antiviral target. 2-Hydroxyisoquinoline-1,3-dione (HID) is known to confer active site directed inhibition of divalent metal-dependent enzymatic functions, such as HIV RNase H, integrase (IN) and hepatitis C virus (HCV) NS5B polymerase. We report herein the synthesis and biochemical evaluation of a few C-5, C-6 or C-7 substituted HID subtypes as HIV RNase H inhibitors. Our data indicate that while some of these subtypes inhibited both the RNase H and polymerase (pol) functions of RT, potent and selective RNase H inhibition was achieved with subtypes 8-9 as exemplified with compounds 8c and 9c. Copyright © 2017 Elsevier Masson SAS. All rights reserved.
Cachay, Edward R; Moini, Niousha; Kosakovsky Pond, Sergei L; Pesano, Rick; Lie, Yolanda S; Aiem, Heidi; Butler, David M; Letendre, Scott; Mathews, Wm Christopher; Smith, Davey M
2007-01-01
Frequent methamphetamine use among recently HIV infected individuals is associated with transmitted drug resistance (TDR) to non-nucleoside reverse transcriptase inhibitors (NNRTI); however, the reversion time of TDR to drug susceptible HIV may exceed 3 years. We assessed whether recreational substance use is associated with detectable TDR among individuals newly diagnosed with HIV infection of unknown duration. Cross-sectional analysis. Subjects were enrolled at the University California, San Diego Early Intervention Program. Demographic, clinical and substance use data were collected using structured interviews. Genotypic resistance testing was performed using GeneSeq, Monogram Biosciences. We analyzed the association between substance use and TDR using bivariate analyses and the corresponding transmission networks using phylogenetic models. Between April 2004 and July 2006, 115 individuals with genotype data were enrolled. The prevalence of alcohol, marijuana and methamphetamine use were 98%, 71% and 64% respectively. Only active methamphetamine use in the 30 days prior to HIV diagnosis was independently associated with TDR to NNRTI (OR: 6.6; p=0.002). Despite not knowing the duration of their HIV infection, individuals reporting active methamphetamine use in the 30 days prior to HIV diagnosis are at an increased risk of having HIV strains that are resistant to NNRTI.
Novel Structure of Ty3 Reverse Transcriptase | Center for Cancer Research
Retrotransposons are mobile genetic elements that self amplify via a single-stranded RNA intermediate, which is converted to double-stranded DNA by an encoded reverse transcriptase (RT) with both DNA polymerase (pol) and ribonuclease H (RNase) activities. Categorized by whether they contain flanking long terminal repeat (LTR) sequences, retrotransposons play a critical role in the architecture of eukaryotic genomes and are the evolutionary origin of retroviruses, including human immunodeficiency virus (HIV).
NASA Astrophysics Data System (ADS)
Ziółkowska, Natasza E.; Michejda, Christopher J.; Bujacz, Grzegorz D.
2009-11-01
Acquired immunodeficiency syndrome (AIDS) caused by the human immunodeficiency virus (HIV) is one of the most destructive epidemics in history. Inhibitors of HIV enzymes are the main targets to develop drugs against that disease. Nonnucleoside reverse transcriptase inhibitors of HIV-1 (NNRTIs) are potentially effective and nontoxic. Structural studies provide information necessary to design more active compounds. The crystal structures of four NNRTI derivatives of 2-aryl-substituted N-benzyl-benzimidazole are presented here. Analysis of the geometrical parameters shows that the structures of the investigated inhibitors are rigid. The important geometrical parameter is the dihedral angle between the planes of the π-electron systems of the benzymidazole and benzyl moieties. The values of these dihedral angles are in a narrow range for all investigated inhibitors. There is no significant difference between the structure of the free inhibitor and the inhibitor in the complex with RT HIV-1. X-ray structures of the investigated inhibitors are a good basis for modeling enzyme-inhibitor interactions in rational drug design.
TOPICAL TENOFOVIR, A MICROBICIDE EFFECTIVE AGAINST HIV, INHIBITS HERPES SIMPLEX VIRUS-2 REPLICATION
Andrei, Graciela; Lisco, Andrea; Vanpouille, Christophe; Introini, Andrea; Balestra, Emanuela; van den Oord, Joost; Cihlar, Tomas; Perno, Carlo-Federico; Snoeck, Robert; Margolis, Leonid; Balzarini, Jan
2011-01-01
SUMMARY The HIV reverse transcriptase inhibitor tenofovir, was recently formulated into a vaginal gel for use as a microbicide. In human trials, a 1% tenofovir gel inhibited HIV sexual transmission by 39% and surprisingly herpes simplex virus-2 (HSV-2) transmission by 51%. We demonstrate that the concentration achieved intravaginally with a 1% tenofovir topical gel has direct anti-herpetic activity. Tenofovir inhibits the replication of HSV clinical isolates in human embryonic fibroblasts, keratinocytes, and organotypic epithelial 3D-rafts, decreases HSV replication in human lymphoid and cervical tissues ex vivo, and delays HSV-induced lesions and death of topically treated HSV-infected mice. The active tenofovir metabolite inhibits HSV DNA-polymerase and HIV reverse transcriptase. Tenofovir must be topically administered to achieve concentrations, which are higher than systemic levels after oral treatment, that exert these dual antiviral effects. These findings indicate that a single topical treatment, like tenofovir, can inhibit the transmission of HIV and its co-pathogens. PMID:22018238
Misbah, Mohammad; Roy, Gaurav; Shahid, Mudassar; Nag, Nalin; Kumar, Suresh; Husain, Mohammad
2016-05-01
Drug resistance mutations in the Pol gene of human immunodeficiency virus 1 (HIV-1) are one of the critical factors associated with antiretroviral therapy (ART) failure in HIV-1 patients. The issue of resistance to reverse transcriptase inhibitors (RTIs) in HIV infection has not been adequately addressed in the Indian subcontinent. We compared HIV-1 reverse transcriptase (RT) gene sequences to identify mutations present in HIV-1 patients who were ART non-responders, ART responders and drug naive. Genotypic drug resistance testing was performed by sequencing a 655-bp region of the RT gene from 102 HIV-1 patients, consisting of 30 ART-non-responding, 35 ART-responding and 37 drug-naive patients. The Stanford HIV Resistance Database (HIVDBv 6.2), IAS-USA mutation list, ANRS_09/2012 algorithm, and Rega v8.02 algorithm were used to interpret the pattern of drug resistance. The majority of the sequences (96 %) belonged to subtype C, and a few of them (3.9 %) to subtype A1. The frequency of drug resistance mutations observed in ART-non-responding, ART-responding and drug-naive patients was 40.1 %, 10.7 % and 20.58 %, respectively. It was observed that in non-responders, multiple mutations were present in the same patient, while in responders, a single mutation was found. Some of the drug-naive patients had more than one mutation. Thymidine analogue mutations (TAMs), however, were found in non-responders and naive patients but not in responders. Although drug resistance mutations were widely distributed among ART non-responders, the presence of resistance mutations in the viruses of drug-naive patients poses a big concern in the absence of a genotyping resistance test.
[Thyroid dysfunction in adults infected by human immunodeficiency virus].
Abelleira, Erika; De Cross, Graciela A; Pitoia, Fabián
2014-01-01
Patients infected with human immunodeficiency virus (HIV) have a higher prevalence of thyroid dysfunction when compared with the general population. The most frequently observed manifestations are euthyroid sick syndrome, Graves' disease and subclinical hypothyroidism. The relationship between the use of highly active antiretroviral therapy and the increased prevalence of thyroid dysfunction has been demonstrated in several series of patients. Grave's disease is recognized as a consequence of immune restitution syndrome. Besides, several studies have suggested an association between hypothyroidism and the use of nucleoside reverse transcriptase inhibitors, particularly stavudine and non-nucleoside reverse transcriptase inhibitors such as efavirenz. Further studies could provide additional evidence of the need for routine assessment of thyroid function in HIV-infected patients.
Giacobbi, Nicholas S.
2017-01-01
ABSTRACT Rilpivirine (RPV), dapivirine (DPV), and MIV-150 are in development as microbicides. It is not known whether they will block infection of circulating nonnucleoside reverse transcriptase inhibitor (NNRTI)-resistant human immunodeficiency virus type 1 (HIV-1) variants. Here, we demonstrate that the activity of DPV and MIV-150 is compromised by many resistant viruses containing single or double substitutions. High DPV genital tract concentrations from DPV ring use may block replication of resistant viruses. However, MIV-150 genital tract concentrations may be insufficient to inhibit many resistant viruses, including those harboring K103N or Y181C. PMID:28507107
Complete inactivation of HIV-1 using photo-labeled non-nucleoside reverse transcriptase inhibitors.
Rios, Adan; Quesada, Jorge; Anderson, Dallas; Goldstein, Allan; Fossum, Theresa; Colby-Germinario, Susan; Wainberg, Mark A
2011-01-01
We demonstrate that a photo-labeled derivative of the non-nucleoside reverse transcriptase inhibitor (NNRTI) dapivirine termed DAPY, when used together with exposure to ultraviolet light, was able to completely and irreversibly inactivate both HIV-1 RT activity as well as infectiousness in each of a T cell line and peripheral blood mononuclear cells. Control experiments using various concentrations of DAPY revealed that a combination of exposure to ultraviolet light together with use of the specific, high affinity photo-labeled compound was necessary for complete inactivation to occur. This method of HIV RT inactivation may have applicability toward preservation of an intact viral structure and warrants further investigation in regard to the potential of this approach to elicit a durable, broad protective immune response. Copyright © 2010 Elsevier B.V. All rights reserved.
Saravanan, Shanmugam; Kausalya, Bagavathi; Gomathi, Selvamurthi; Sivamalar, Sathasivam; Pachamuthu, Balakrishnan; Selvamuthu, Poongulali; Pradeep, Amrose; Sunil, Solomon; Mothi, Sarvode N; Smith, Davey M; Kantor, Rami
2017-06-01
We have analyzed reverse transcriptase (RT) region of HIV-1 pol gene from 97 HIV-infected children who were identified as failing first-line therapy that included first-generation non-nucleoside RT inhibitors (Nevirapine and Efavirenz) for at least 6 months. We found that 54% and 65% of the children had genotypically predicted resistance to second-generation non-nucleoside RT inhibitors drugs Etravirine (ETR) and Rilpivirine, respectively. These cross-resistance mutations may compromise future NNRTI-based regimens, especially in resource-limited settings. To complement these investigations, we also analyzed the sequences in Stanford database, Monogram weighted score, and DUET weighted score algorithms for ETR susceptibility and found almost perfect agreement between the three algorithms in predicting ETR susceptibility from genotypic data.
Paskaleva, Elena E; Lin, Xudong; Duus, Karen; McSharry, James J; Veille, Jean-Claude L; Thornber, Carol; Liu, Yanze; Lee, David Yu-Wei; Canki, Mario
2008-01-01
Sargassum fusiforme (Harvey) Setchell has been shown to be a highly effective inhibitor of HIV-1 infection. To identify its mechanism of action, we performed bioactivity-guided fractionation on Sargassum fusiforme mixture. Here, we report isolation of a bioactive fraction SP4-2 (S. fusiforme), which at 8 μg/ml inhibited HIV-1 infection by 86.9%, with IC50 value of 3.7 μg. That represents 230-fold enhancement of antiretroviral potency as compared to the whole extract. Inhibition was mediated against both CXCR4 (X4) and CCR5 (R5) tropic HIV-1. Specifically, 10 μg/ml SP4-2 blocked HIV-1 fusion and entry by 53%. This effect was reversed by interaction of SP4-2 with sCD4, suggesting that S. fusiforme inhibits HIV-1 infection by blocking CD4 receptor, which also explained observed inhibition of both X4 and R5-tropic HIV-1. SP4-2 also inhibited HIV-1 replication after virus entry, by directly inhibiting HIV-1 reverse transcriptase (RT) in a dose dependent manner by up to 79%. We conclude that the SP4-2 fraction contains at least two distinct and biologically active molecules, one that inhibits HIV-1 fusion by interacting with CD4 receptor, and another that directly inhibits HIV-1 RT. We propose that S. fusiforme is a lead candidate for anti-HIV-1 drug development. PMID:18197976
Cancio, Reynel; Silvestri, Romano; Ragno, Rino; Artico, Marino; De Martino, Gabriella; La Regina, Giuseppe; Crespan, Emmanuele; Zanoli, Samantha; Hübscher, Ulrich; Spadari, Silvio; Maga, Giovanni
2005-01-01
Indolyl aryl sulfone (IAS) nonnucleoside inhibitors have been shown to potently inhibit the growth of wild-type and drug-resistant human immunodeficiency virus type 1 (HIV-1), but their exact mechanism of action has not been elucidated yet. Here, we describe the mechanism of inhibition of HIV-1 reverse transcriptase (RT) by selected IAS derivatives. Our results showed that, depending on the substitutions introduced in the IAS common pharmacophore, these compounds can be made selective for different enzyme-substrate complexes. Moreover, we showed that the molecular basis for this selectivity was a different association rate of the drug to a particular enzymatic form along the reaction pathway. By comparing the activities of the different compounds against wild-type RT and the nonnucleoside reverse transcriptase inhibitor-resistant mutant Lys103Asn, it was possible to hypothesize, on the basis of their mechanism of action, a rationale for the design of drugs which could overcome the steric barrier imposed by the Lys103Asn mutation. PMID:16251294
Chung, Suhman; Himmel, Daniel M.; Jiang, Jian-Kang; Wojtak, Krzysztof; Bauman, Joseph D.; Rausch, Jason W.; Wilson, Jennifer A.; Beutler, John A.; Thomas, Craig J.; Arnold, Eddy; Le Grice, Stuart F.J.
2011-01-01
The α-hydroxytroplone, manicol (5,7-dihydroxy-2-isopropenyl-9-methyl-1,2,3,4-tetrahydro-benzocyclohepten-6-one) potently and specifically inhibits ribonuclease H (RNase H) activity of human immunodeficiency virus reverse transcriptase (HIV RT) in vitro. However, manicol was ineffective in reducing virus replication in culture. Ongoing efforts to improve the potency and specificity over the lead compound led us to synthesize 14 manicol derivatives that retain the divalent metal-chelating α-hydroxytropolone pharmacophore. These efforts were augmented by a high resolution structure of p66/p51 HIV-1 RT containing the nonnucleoside reverse transcriptase inhibitor (NNRTI), TMC278 and manicol in the DNA polymerase and RNase H active sites, respectively. We demonstrate here that several modified α-hydroxytropolones exhibit antiviral activity at non-cytotoxic concentrations. Inclusion of RNase H active site mutants indicated that manicol analogs can occupy an additional site in or around the DNA polymerase catalytic center. Collectively, our studies will promote future structure-based design of improved α-hydroxytropolones to complement the NRTI and NNRTI currently in clinical use. PMID:21568335
NASA Astrophysics Data System (ADS)
Hosseini, Yaser; Mollica, Adriano; Mirzaie, Sako
2016-12-01
The human immunodeficiency virus (HIV) which is strictly related to the development of AIDS, is treated by a cocktail of drugs, but due its high propensity gain drug resistance, the rational development of new medicine is highly desired. Among the different mechanism of action we selected the reverse transcriptase (RT) inhibition, for our studies. With the aim to identify new chemical entities to be used for further rational drug design, a set of 3000 molecules from the Zinc Database have been screened by docking experiments using AutoDock Vina software. The best ranked compounds with respect of the crystallographic inhibitor MK-4965 resulted to be five compounds, and the best among them was further tested by molecular dynamics (MD) simulation. Our results indicate that comp1 has a stronger interaction with the subsite p66 of RT than MK-4965 and that both are able to stabilize specific conformational changes of the RT 3D structure, which may explain their activity as inhibitors. Therefore comp1 could be a good candidate for biological tests and further development.
Antiviral Activity of MK-4965, a Novel Nonnucleoside Reverse Transcriptase Inhibitor▿
Lai, Ming-Tain; Munshi, Vandna; Touch, Sinoeun; Tynebor, Robert M.; Tucker, Thomas J.; McKenna, Philip M.; Williams, Theresa M.; DiStefano, Daniel J.; Hazuda, Daria J.; Miller, Michael D.
2009-01-01
Nonnucleoside reverse transcriptase inhibitors (NNRTIs) are the mainstays of therapy for the treatment of human immunodeficiency virus type 1 (HIV-1) infections. However, the effectiveness of NNRTIs can be hampered by the development of resistance mutations which confer cross-resistance to drugs in the same class. Extensive efforts have been made to identify new NNRTIs that can suppress the replication of the prevalent NNRTI-resistant viruses. MK-4965 is a novel NNRTI that possesses both diaryl ether and indazole moieties. The compound displays potency at subnanomolar concentrations against wild-type (WT), K103N, and Y181C reverse transcriptase (RT) in biochemical assays. MK-4965 is also highly potent against the WT virus and two most prevalent NNRTI-resistant viruses (viruses that harbor the K103N or the Y181C mutation), against which it had 95% effective concentrations (EC95s) of <30 nM in the presence of 10% fetal bovine serum. The antiviral EC95 of MK-4965 was reduced approximately four- to sixfold when it was tested in 50% human serum. Moreover, MK-4965 was evaluated with a panel of 15 viruses with NNRTI resistance-associated mutations and showed a superior mutant profile to that of efavirenz but not to that of etravirine. MK-4965 was similarly effective against various HIV-1 subtypes and viruses containing nucleoside reverse transcriptase inhibitor or protease inhibitor resistance-conferring mutations. A two-drug combination study showed that the antiviral activity of MK-4965 was nonantagonistic with each of the 18 FDA-licensed drugs tested vice versa in the present study. Taken together, these in vitro data show that MK-4965 possesses the desired properties for further development as a new NNRTI for the treatment of HIV-1 infection. PMID:19289522
Urdea, M S; Wilber, J C; Yeghiazarian, T; Todd, J A; Kern, D G; Fong, S J; Besemer, D; Hoo, B; Sheridan, P J; Kokka, R
1993-11-01
To determine the relative effect of sample matrix on the quantitation of HIV RNA in plasma. Two HIV-positive specimens were diluted into five and 10 different HIV-negative plasma samples, respectively. Branched DNA signal amplification technology and reverse-transcriptase polymerase chain reaction were used to measure the viral load. In one sample the viral load by polymerase chain reaction ranged from undetectable to 1.9 x 10(5) copies/ml, and the branched DNA results ranged from 2.6 x 10(4) to 4.2 x 10(4) HIV RNA equivalent/ml. In the other sample the corresponding figures were 6.3 x 10(4) to 5.5 x 10(5) copies/ml and 5.7 x 10(4) to 7.5 x 10(4) HIV RNA equivalents/ml. In contrast to reverse-transcriptase polymerase chain reaction the branched DNA signal amplification assay does not require a separate extraction step or enzymatic amplification of the target. Therefore this measurement is less affected by the sample matrix and the signal generated is directly proportional to the viral load.
Cost, Marilyn; Dezzutti, Charlene S.; Clark, Meredith R.; Friend, David R.; Akil, Ayman
2012-01-01
HIV continues to be a problem worldwide. Topical vaginal microbicides represent one option being evaluated to stop the spread of HIV. With drug candidates that have a specific action against HIV now being studied, it is important that, when appropriate and based on the mechanism of action, the drug permeates the tissue so that it can be delivered to specific targets which reside there. Novel formulations of the nucleotide reverse transcriptase inhibitor tenofovir (TFV) and the nonnucleoside reverse transcriptase inhibitor UC781 have been developed and evaluated here. Gels with three distinct rheological properties were prepared. The three gels released both UC781 and TFV under in vitro conditions at concentrations equal to or above the reported 50% effective concentrations (EC50s). The drug concentrations in ectocervical tissues were well in excess of the reported EC50s. The gels maintain ectocervical viability and prevent infection of ectocervical explants after a HIV-1 challenge. This study successfully demonstrates the feasibility of using this novel combination of antiretroviral agents in an aqueous gel as an HIV infection preventative. PMID:22430977
Cachay, Edward R; Moini, Niousha; Kosakovsky Pond, Sergei L; Pesano, Rick; Lie, Yolanda S; Aiem, Heidi; Butler, David M; Letendre, Scott; Mathews, Wm. Christopher; Smith, Davey M
2007-01-01
Background: Frequent methamphetamine use among recently HIV infected individuals is associated with transmitted drug resistance (TDR) to non-nucleoside reverse transcriptase inhibitors (NNRTI); however, the reversion time of TDR to drug susceptible HIV may exceed 3 years. We assessed whether recreational substance use is associated with detectable TDR among individuals newly diagnosed with HIV infection of unknown duration. Design: Cross-sectional analysis. Methods: Subjects were enrolled at the University California, San Diego Early Intervention Program. Demographic, clinical and substance use data were collected using structured interviews. Genotypic resistance testing was performed using GeneSeq™, Monogram Biosciences. We analyzed the association between substance use and TDR using bivariate analyses and the corresponding transmission networks using phylogenetic models. Results: Between April 2004 and July 2006, 115 individuals with genotype data were enrolled. The prevalence of alcohol, marijuana and methamphetamine use were 98%, 71% and 64% respectively. Only active methamphetamine use in the 30 days prior to HIV diagnosis was independently associated with TDR to NNRTI (OR: 6.6; p=0.002). Conclusion: Despite not knowing the duration of their HIV infection, individuals reporting active methamphetamine use in the 30 days prior to HIV diagnosis are at an increased risk of having HIV strains that are resistant to NNRTI. PMID:18923691
Nouchi, A; Nguyen, T; Valantin, M A; Simon, A; Sayon, S; Agher, R; Calvez, V; Katlama, C; Marcelin, A G; Soulie, C
2018-05-29
To investigate the dynamics of HIV-1 variants archived in cells harbouring drug resistance-associated mutations (DRAMs) to lamivudine/emtricitabine, etravirine and rilpivirine in patients under effective ART free from selective pressure on these DRAMs, in order to assess the possibility of recycling molecules with resistance history. We studied 25 patients with at least one DRAM to lamivudine/emtricitabine, etravirine and/or rilpivirine identified on an RNA sequence in their history and with virological control for at least 5 years under a regimen excluding all drugs from the resistant class. Longitudinal ultra-deep sequencing (UDS) and Sanger sequencing of the reverse transcriptase region were performed on cell-associated HIV-1 DNA samples taken over the 5 years of follow-up. Viral variants harbouring the analysed DRAMs were no longer detected by UDS over the 5 years in 72% of patients, with viruses susceptible to the molecules of interest found after 5 years in 80% of patients with UDS and in 88% of patients with Sanger. Residual viraemia with <50 copies/mL was detected in 52% of patients. The median HIV DNA level remained stable (2.4 at baseline versus 2.1 log10 copies/106 cells 5 years later). These results show a clear trend towards clearance of archived DRAMs to reverse transcriptase inhibitors in cell-associated HIV-1 DNA after a long period of virological control, free from therapeutic selective pressure on these DRAMs, reflecting probable residual replication in some reservoirs of the fittest viruses and leading to persistent evolution of the archived HIV-1 DNA resistance profile.
In Vitro Resistance Profile of the Candidate HIV-1 Microbicide Drug Dapivirine
Schader, Susan M.; Oliveira, Maureen; Ibanescu, Ruxandra-Ilinca; Moisi, Daniela; Colby-Germinario, Susan P.
2012-01-01
Antiretroviral-based microbicides may offer a means to reduce the sexual transmission of HIV-1. Suboptimal use of a microbicide may, however, lead to the development of drug resistance in users that are already, or become, infected with HIV-1. In such cases, the efficacy of treatments may be compromised since the same (or similar) antiretrovirals used in treatments are being developed as microbicides. To help predict which drug resistance mutations may develop in the context of suboptimal use, HIV-1 primary isolates of different subtypes and different baseline resistance profiles were used to infect primary cells in vitro in the presence of increasing suboptimal concentrations of the two candidate microbicide antiretrovirals dapivirine (DAP) and tenofovir (TFV) alone or in combination. Infections were ongoing for 25 weeks, after which reverse transcriptase genotypes were determined and scrutinized for the presence of any clinically recognized reverse transcriptase drug resistance mutations. Results indicated that suboptimal concentrations of DAP alone facilitated the emergence of common nonnucleoside reverse transcriptase inhibitor resistance mutations, while suboptimal concentrations of DAP plus TFV gave rise to fewer mutations. Suboptimal concentrations of TFV alone did not frequently result in the development of resistance mutations. Sensitivity evaluations for stavudine (d4T), nevirapine (NVP), and lamivudine (3TC) revealed that the selection of resistance as a consequence of suboptimal concentrations of DAP may compromise the potential for NVP to be used in treatment, a finding of potential relevance in developing countries. PMID:22123692
In vitro resistance profile of the candidate HIV-1 microbicide drug dapivirine.
Schader, Susan M; Oliveira, Maureen; Ibanescu, Ruxandra-Ilinca; Moisi, Daniela; Colby-Germinario, Susan P; Wainberg, Mark A
2012-02-01
Antiretroviral-based microbicides may offer a means to reduce the sexual transmission of HIV-1. Suboptimal use of a microbicide may, however, lead to the development of drug resistance in users that are already, or become, infected with HIV-1. In such cases, the efficacy of treatments may be compromised since the same (or similar) antiretrovirals used in treatments are being developed as microbicides. To help predict which drug resistance mutations may develop in the context of suboptimal use, HIV-1 primary isolates of different subtypes and different baseline resistance profiles were used to infect primary cells in vitro in the presence of increasing suboptimal concentrations of the two candidate microbicide antiretrovirals dapivirine (DAP) and tenofovir (TFV) alone or in combination. Infections were ongoing for 25 weeks, after which reverse transcriptase genotypes were determined and scrutinized for the presence of any clinically recognized reverse transcriptase drug resistance mutations. Results indicated that suboptimal concentrations of DAP alone facilitated the emergence of common nonnucleoside reverse transcriptase inhibitor resistance mutations, while suboptimal concentrations of DAP plus TFV gave rise to fewer mutations. Suboptimal concentrations of TFV alone did not frequently result in the development of resistance mutations. Sensitivity evaluations for stavudine (d4T), nevirapine (NVP), and lamivudine (3TC) revealed that the selection of resistance as a consequence of suboptimal concentrations of DAP may compromise the potential for NVP to be used in treatment, a finding of potential relevance in developing countries.
Muftuoglu, Yagmur; Sohl, Christal D; Mislak, Andrea C; Mitsuya, Hiroaki; Sarafianos, Stefan G; Anderson, Karen S
2014-06-01
The novel antiretroviral 4'-ethynyl-2-fluoro-2'-deoxyadenosine (EFdA) is a potent nucleoside HIV-1 reverse transcriptase (RT) inhibitor (NRTI). Unlike other FDA-approved NRTIs, EFdA contains a 3'-hydroxyl. Pre-steady-state kinetics showed RT preferred incorporating EFdA-TP over native dATP. Moreover, RT slowly inserted nucleotides past an EFdA-terminated primer, resulting in delayed chain termination with unaffected fidelity. This is distinct from KP1212, another 3'-hydroxyl-containing RT inhibitor considered to promote viral lethal mutagenesis. New mechanistic features of RT inhibition by EFdA are revealed. Copyright © 2014 Elsevier B.V. All rights reserved.
Muftuoglu, Yagmur; Sohl, Christal D.; Mislak, Andrea C.; Mitsuya, Hiroaki; Sarafianos, Stefan G.; Anderson, Karen S.
2014-01-01
The novel antiretroviral 4′-ethynyl-2-fluoro-2′-deoxyadenosine (EFdA) is a potent nucleoside HIV-1 reverse transcriptase (RT) inhibitor (NRTI). Unlike other FDA-approved NRTIs, EFdA contains a 3′-hydroxyl. Pre-steady-state kinetics showed RT preferred incorporating EFdA-TP over native dATP. Moreover, RT slowly inserted nucleotides past an EFdA-terminated primer, resulting in delayed chain termination with unaffected fidelity. This is distinct from KP1212, another 3′-hydroxyl-containing RT inhibitor considered to promote viral lethal mutagenesis. New mechanistic features of RT inhibition by EFdA are revealed. PMID:24632447
Giacobbi, Nicholas S; Sluis-Cremer, Nicolas
2017-07-01
Rilpivirine (RPV), dapivirine (DPV), and MIV-150 are in development as microbicides. It is not known whether they will block infection of circulating nonnucleoside reverse transcriptase inhibitor (NNRTI)-resistant human immunodeficiency virus type 1 (HIV-1) variants. Here, we demonstrate that the activity of DPV and MIV-150 is compromised by many resistant viruses containing single or double substitutions. High DPV genital tract concentrations from DPV ring use may block replication of resistant viruses. However, MIV-150 genital tract concentrations may be insufficient to inhibit many resistant viruses, including those harboring K103N or Y181C. Copyright © 2017 American Society for Microbiology.
Snapshot of the equilibrium dynamics of a drug bound to HIV-1 reverse transcriptase
NASA Astrophysics Data System (ADS)
Kuroda, Daniel G.; Bauman, Joseph D.; Challa, J. Reddy; Patel, Disha; Troxler, Thomas; Das, Kalyan; Arnold, Eddy; Hochstrasser, Robin M.
2013-03-01
The anti-AIDS drug rilpivirine undergoes conformational changes to bind HIV-1 reverse transcriptase (RT), which is an essential enzyme for the replication of HIV. These changes allow it to retain potency against mutations that otherwise would render the enzyme resistant. Here we report that water molecules play an essential role in this binding process. Femtosecond experiments and theory expose the molecular level dynamics of rilpivirine bound to HIV-1 RT. Two nitrile substituents, one on each arm of the drug, are used as vibrational probes of the structural dynamics within the binding pocket. Two-dimensional vibrational echo spectroscopy reveals that one nitrile group is unexpectedly hydrogen-bonded to a mobile water molecule, not identified in previous X-ray structures. Ultrafast nitrile-water dynamics are confirmed by simulations. A higher (1.51 Å) resolution X-ray structure also reveals a water-drug interaction network. Maintenance of a crucial anchoring hydrogen bond may help retain the potency of rilpivirine against pocket mutations despite the structural variations they cause.
Sanna, Cinzia; Rigano, Daniela; Corona, Angela; Piano, Dario; Formisano, Carmen; Farci, Domenica; Franzini, Genni; Ballero, Mauro; Chianese, Giuseppina; Tramontano, Enzo; Taglialatela-Scafati, Orazio; Esposito, Francesca
2018-02-04
During our search for potential templates of HIV-1 reverse transcriptase (RT) and integrase (IN) dual inhibitors, the methanolic extract obtained from aerial parts of Limonium morisianum was investigated. Repeated bioassay-guided chromatographic purifications led to the isolation of the following secondary metabolites: myricetin, myricetin 3-O-rutinoside, myricetin-3-O-(6″-O-galloyl)-β-d-galactopyranoside, (-)-epigallocatechin 3-O-gallate, tryptamine, ferulic and phloretic acids. The isolated compounds were tested on both HIV-1 RT-associated RNase H and IN activities. Interestingly, (-)-epigallocatechin-3-O-gallate and myricetin-3-O-(6″-O-galloyl)-β-d-galactopyranoside potently inhibited both enzyme activities with IC 50 values ranging from 0.21 to 10.9 μM. Differently, tryptamine and ferulic acid exhibited a significant inhibition only on the IN strand transfer reaction, showing a selectivity for this viral enzyme. Taken together these results strongly support the potential of this plant as a valuable anti HIV-1 drugs source worthy of further investigations.
HIV type 1 diversity in the Seychelles.
Razafindratsimandresy, Richter; Hollanda, Justina; Soares, Jean-Louis; Rousset, Dominique; Chetty, Agnes P; Reynes, Jean-Marc
2007-06-01
Subtype determination and drug resistance-associated mutations (DRM) detection were performed on 40 HIV-1 Western blot-positive sera detected, obtained from consecutive patients resident in the Seychelles and consulting the Communicable Disease Control Unit, HIV reference center, in Victoria Hospital (Mahe) from October 2005 to June 2006. Amplification and sequencing of at least two of the partial reverse transcriptase, protease, and partial envelope genes were successful for all strains. All three genes sequences were obtained for 39 strains. A high degree of subtype or circulating recombinant forms (CRF) was observed for these 39 strains: A-A1 (17 cases), C (10 cases), B (8 cases), CRF02_AG (2 cases), D (1 case) and CRF01_AE (1 case). According to the ANRS 2006 DRM list and algorithm, none of the 40 isolates was found to be resistant to any protease or reverse transcriptase inhibitors.
Viira, Birgit; Selyutina, Anastasia; García-Sosa, Alfonso T; Karonen, Maarit; Sinkkonen, Jari; Merits, Andres; Maran, Uko
2016-06-01
A set of top-ranked compounds from a multi-objective in silico screen was experimentally tested for toxicity and the ability to inhibit the activity of HIV-1 reverse transcriptase (RT) in cell-free assay and in cell-based assay using HIV-1 based virus-like particles. Detailed analysis of a commercial sample that indicated specific inhibition of HIV-1 reverse transcription revealed that a minor component that was structurally similar to that of the main compound was responsible for the strongest inhibition. As a result, novel s-triazine derivatives were proposed, modelled, discovered, and synthesised, and their antiviral activity and cellular toxicity were tested. Compounds 18a and 18b were found to be efficient HIV-1 RT inhibitors, with an IC50 of 5.6±1.1μM and 0.16±0.05μM in a cell-based assay using infectious HIV-1, respectively. Compound 18b also had no detectable toxicity for different human cell lines. Their binding mode and interactions with the RT suggest that there was strong and adaptable binding in a tight (NNRTI) hydrophobic pocket. In summary, this iterative study produced structural clues and led to a group of non-toxic, novel compounds to inhibit HIV-RT with up to nanomolar potency. Copyright © 2016 Elsevier Ltd. All rights reserved.
Okello, John B. A.; Rodriguez, Linda; Poinar, Debi; Bos, Kirsten; Okwi, Andrew L.; Bimenya, Gabriel S.; Sewankambo, Nelson K.; Henry, Kenneth R.; Kuch, Melanie; Poinar, Hendrik N.
2010-01-01
Background The in-vitro reverse transcription of RNA to its complementary DNA, catalyzed by the enzyme reverse transcriptase, is the most fundamental step in the quantitative RNA detection in genomic studies. As such, this step should be as analytically sensitive, efficient and reproducible as possible, especially when dealing with degraded or low copy RNA samples. While there are many reverse transcriptases in the market, all claiming to be highly sensitive, there is need for a systematic independent comparison of their applicability in quantification of rare RNA transcripts or low copy RNA, such as those obtained from archival tissues. Methodology/Principal Findings We performed RT-qPCR to assess the sensitivity and reproducibility of 11 commercially available reverse transcriptases in cDNA synthesis from low copy number RNA levels. As target RNA, we used a serially known number of Armored HIV RNA molecules, and observed that 9 enzymes we tested were consistently sensitive to ∼1,000 copies, seven of which were sensitive to ∼100 copies, while only 5 were sensitive to ∼10 RNA template copies across all replicates tested. Despite their demonstrated sensitivity, these five best performing enzymes (Accuscript, HIV-RT, M-MLV, Superscript III and Thermoscript) showed considerable variation in their reproducibility as well as their overall amplification efficiency. Accuscript and Superscript III were the most sensitive and consistent within runs, with Accuscript and Superscript II ranking as the most reproducible enzymes between assays. Conclusions/Significance We therefore recommend the use of Accuscript or Superscript III when dealing with low copy number RNA levels, and suggest purification of the RT reactions prior to downstream applications (eg qPCR) to augment detection. Although the results presented in this study were based on a viral RNA surrogate, and applied to nucleic acid lysates derived from archival formalin-fixed paraffin embedded tissue, their relative performance on RNA obtained from other tissue types may vary, and needs future evaluation. PMID:21085668
Khairunisa, Siti Qamariyah; Kotaki, Tomohiro; Witaningrum, Adiana Mutamsari; Yunifiar M, Muhammad Qushai; Sukartiningrum, Septhia Dwi; Nasronudin; Kameoka, Masanori
2015-02-01
Although HIV-1 drug resistance is a major obstacle in Indonesia, information on drug resistance is limited. In this study, the viral subtype and appearance of drug resistance mutations in the HIV-1 protease (PR) and reverse transcriptase (RT) genes were determined among drug-treated, HIV-1-infected patients in Surabaya. HIV-1 patients who received antiretroviral therapy (ART) more than 2 years were randomly recruited regardless of the viral load or ART failure. Fifty-eight HIV-1 PR genes and 53 RT genes were sequenced. CRF01_AE viruses were identified as the predominant strain. Major drug resistance mutations were not detected in the PR genes. In contrast, 37.7% (20/53) of the participants had one or more major drug resistance mutations in the RT genes, predominantly M184V (28.3%), K103N (11.3%), and thymidine analogue mutations (TAMs) (20.8%). The high prevalence of drug resistance mutations in RT genes indicated the necessity of monitoring the effectiveness of ART in Indonesia.
Zhang, Hao; Qin, Fang; Ye, Wei; Li, Zeng; Ma, Songyao; Xia, Yan; Jiang, Yi; Zhu, Jiayi; Li, Yixue; Zhang, Jian; Chen, Hai-Feng
2011-09-01
Diaryltriazine (DATA) and diarylpyrimidine (DAPY) were two category inhibitors with highly potent activity for wild type (wt) and four principal mutant types (L100I, K103N, Y181C and Y188L) of HIV-1 reverse transcriptase (RT). We had revealed the drug-resistant mechanism of DATA analogue inhibitors with molecular dynamics simulation and three-dimensional quantitative structure-activity relationship (3D-QSAR) methods. In this work, we investigated the drug-resistant mechanism of DAPY analogue inhibitors. It was found that DAPY analogue inhibitors form more hydrogen bonds and hydrophobic contacts with wild type and mutants of HIV-1 RT than DATA inhibitors. This could explain that DAPY analogue inhibitors are more potent than DATA for the wild type and mutants of HIV-1 RT. Then, 3D-QSAR models were constructed for these inhibitors of wild type and four principal mutant types HIV-1 RT and evaluated by test set compounds. These combined models can be used to design new chemical entities and make quantitative prediction of the bioactivities for HIV-1 RT inhibitors before resorting to in vitro and in vivo experiment. © 2011 John Wiley & Sons A/S.
Tamalet, Catherine; Tissot-Dupont, Hervé; Motte, Anne; Tourrès, Christian; Dhiver, Catherine; Ravaux, Isabelle; Poizot-Martin, Isabelle; Dieng, Thérèse; Tomei, Christelle; Bregigeon, Sylvie; Zaegel-Faucher, Olivia; Laroche, Hélène; Aherfi, Sarah; Mokhtari, Saadia; Chaudet, Hervé; Ménard, Amelie; Brouqui, Philippe; Stein, Andreas; Colson, Philippe
2018-05-24
Primary HIV-1 infections (PHI) with non-B subtypes are increasing in developed countries while transmission of HIV-1 harboring antiretroviral resistance-associated mutations (RAMs) remains a concern. This study assessed non-B HIV-1 subtypes and RAMs prevalence among patients with PHI in university hospitals of Marseille, Southeastern France, in 2005-2015 (11 years). HIV-1 sequences were obtained by in-house protocols from 115 patients with PHI, including 38 for the 2013-2015 period. On the basis of the phylogenetic analysis of the reverse transcriptase region, non-B subtypes were identified in 31% of these patients. They included 3 different subtypes (3A, 1C, 4F), 23 circulating recombinant forms (CRFs) (CRF02_AG, best BLAST hits being CRF 36_cpx and CRF30 in 7 and 1 cases, respectively), and 5 unclassified sequences (U). Non-B subtypes proportion increased significantly, particularly in 2011-2013 vs in 2005-2010 (P = .03). CRF02_AG viruses largely predominated in 2005-2013 whereas atypical strains more difficult to classify and undetermined recombinants emerged recently (2014-2015). The prevalence of protease, nucleos(t)ide reverse transcriptase, and first-generation nonnucleoside reverse transcriptase inhibitors-associated RAMs were 1.7% (World Health Organization [WHO] list, 2009/2.6% International AIDS Society [IAS] list, 2017), 5.2%/4.3%, and 5.2%/5.2%, respectively. Etravirine/rilpivirine-associated RAM (IAS) prevalence was 4.3%. Men who have sex with men (MSM) were more frequently infected with drug-resistant viruses than other patients (26% vs 7%; P = .011). The recent increase of these rare HIV-1 strains and the spread of drug-resistant HIV-1 among MSM in Southeastern France might be considered when implementing prevention strategies and starting therapies. © 2018 Wiley Periodicals, Inc.
Xu, Weisi; Zhao, Jianxiong; Sun, Jianping; Yin, Qianqian; Wang, Yan; Jiao, Yang; Liu, Junyi; Jiang, Shibo; Shao, Yiming; Wang, Xiaowei; Ma, Liying
2015-08-01
Nonnucleoside reverse transcriptase inhibitors (NNRTIs) are important components of the highly active antiretroviral therapy (HAART) used to treat human immunodeficiency type 1 virus (HIV-1). However, because of the emergence of drug resistance and the adverse effects of current anti-HIV drugs, it is essential to develop novel NNRTIs with an excellent safety profile, improved activity against NNRTI-resistant viruses, and enhanced activity against clinical isolates of different subtypes. Here, we have identified 1-[(benzyloxy)methyl]-6-(3,5-dimethylbenzyl)-5-iodopyrimidine-2,4(1H,3H)-dione (WPR-6), a novel NNRTI with a 50% effective concentration (EC50) of 2 to 4 nM against laboratory-adapted HIV-1 strain SF33 and an EC50 of 7 to 14 nM against nucleoside reverse transcriptase inhibitor-resistant HIV-1 strain 7391 with a therapeutic index of >1 × 10(4). A panel of five representative clinical virus isolates of different subtypes circulating predominantly in China was highly sensitive to WPR-6, with EC50s ranging from 1 to 6 nM. In addition, WPR-6 showed excellent antiviral potency against the most prevalent NNRTI-resistant viruses containing the K103N and Y181C mutations. To determine whether WPR-6 selects for novel resistant mutants, in vitro resistance selection was conducted with laboratory-adapted HIV-1 strain SF33 on MT-4 cells. The results demonstrated that V106I and Y188L were the two dominant NNRTI-associated resistance mutations detected in the breakthrough viruses. Taken together, these in vitro data indicate that WPR-6 has greater efficacy than the reference HEPT analogue TNK651 and the marketed drug nevirapine against HIV-1. However, to develop it as a new NNRTI, further improvement of its pharmacological properties is warranted. Copyright © 2015, American Society for Microbiology. All Rights Reserved.
Rojas Sánchez, P; de Mulder, M; Fernandez-Cooke, E; Prieto, L; Rojo, P; Jiménez de Ory, S; José Mellado, M; Navarro, M; Tomas Ramos, J; Holguín, Á
2015-06-01
Drug resistance mutations compromise the success of antiretroviral treatment in human immunodeficiency virus type 1 (HIV-1)-infected children. We report the virologic and clinical follow-up of the Madrid cohort of perinatally HIV-infected children and adolescents after the selection of triple-class drug-resistant mutations (TC-DRM). We identified patients from the cohort carrying HIV-1 variants with TC-DRM to nucleoside reverse transcriptase inhibitors, nonnucleoside reverse transcriptase inhibitors and protease inhibitors according to IAS-USA-2013. We recovered pol sequences or resistance profiles from 2000 to 2011 and clinical-immunologic-virologic data from the moment of TC-DRM detection until December 2013. Viruses harbouring TC-DRM were observed in 48 (9%) of the 534 children and adolescents from 2000 to 2011, rising to 24.4% among those 197 with resistance data. Among them, 95.8% were diagnosed before 2003, 91.7% were Spaniards, 89.6% carried HIV-1-subtype B and 75% received mono/dual therapy as first regimen. The most common TC-DRM present in ≥50% of them were D67NME, T215FVY, M41L and K103N (retrotranscriptase) and L90M (protease). The susceptibility to darunavir, tipranavir, etravirine and rilpivirine was 67.7%, 43.7%, 33.3% and 33.3%, respectively, and all reported high resistance to didanosine, abacavir and nelfinavir. Despite the presence of HIV-1 resistance mutations to the three main antiretroviral families in our paediatric cohort, some drugs maintained their susceptibility, mainly the new protease inhibitors (tipranavir and darunavir) and nonnucleoside reverse transcriptase inhibitors (etravirine and rilpivirine). These data will help to improve the clinical management of HIV-infected children with triple resistance in Spain. Copyright © 2015 European Society of Clinical Microbiology and Infectious Diseases. Published by Elsevier Ltd. All rights reserved.
Weber, Jan; Vazquez, Ana C.; Winner, Dane; Rose, Justine D.; Wylie, Doug; Rhea, Ariel M.; Henry, Kenneth; Pappas, Jennifer; Wright, Alison; Mohamed, Nizar; Gibson, Richard; Rodriguez, Benigno; Soriano, Vicente; King, Kevin; Arts, Eric J.; Olivo, Paul D.; Quiñones-Mateu, Miguel E.
2011-01-01
Twenty-six antiretroviral drugs (ARVs), targeting five different steps in the life cycle of the human immunodeficiency virus type 1 (HIV-1), have been approved for the treatment of HIV-1 infection. Accordingly, HIV-1 phenotypic assays based on common cloning technology currently employ three, or possibly four, different recombinant viruses. Here, we describe a system to assess HIV-1 resistance to all drugs targeting the three viral enzymes as well as viral assembly using a single patient-derived, chimeric virus. Patient-derived p2-INT (gag-p2/NCp7/p1/p6/pol-PR/RT/IN) products were PCR amplified as a single fragment (3,428 bp) or two overlapping fragments (1,657 bp and 2,002 bp) and then recombined into a vector containing a near-full-length HIV-1 genome with the Saccharomyces cerevisiae uracil biosynthesis gene (URA3) replacing the 3,428 bp p2-INT segment (Dudley et al., Biotechniques 46:458–467, 2009). P2-INT-recombinant viruses were employed in drug susceptibility assays to test the activity of protease (PI), nucleoside/nucleotide reverse transcriptase (NRTI), nonnucleoside reverse transcriptase (NNRTI), and integrase strand-transfer (INSTI) inhibitors. Using a single standardized test (ViralARTS HIV), this new technology permits the rapid and automated quantification of phenotypic resistance for all known and candidate antiretroviral drugs targeting all viral enzymes (PR, RT, including polymerase and RNase H activities, and IN), some of the current and potential assembly inhibitors, and any drug targeting Pol or Gag precursor cleavage sites (relevant for PI and maturation inhibitors) This novel assay may be instrumental (i) in the development and clinical assessment of novel ARV drugs and (ii) to monitor patients failing prior complex treatment regimens. PMID:21628544
Lu, Xueyi; Yang, Jiapei; Kang, Dongwei; Gao, Ping; Daelemans, Dirk; De Clercq, Erik; Pannecouque, Christophe; Zhan, Peng; Liu, Xinyong
2018-05-01
By means of structure-based molecular hybridization strategy, a series of novel diarylpyri(mi)dine derivatives targeting the entrance channel of HIV-1 reverse transcriptase (RT) were designed, synthesized and evaluated as potent non-nucleoside reverse transcriptase inhibitors (NNRTIs). Encouragingly, all the tested compounds showed good activities against wild-type (WT) HIV-1 (IIIB) with EC 50 in the range of 1.36 nM-29 nM, which is much better than those of nevirapine (NVP, EC 50 = 125.42 nM) and azidothymidine (AZT, EC 50 = 11.36 nM). Remarkably, these compounds also displayed effective activity against the most of the single and double-mutated HIV-1 strains with low EC 50 values, which is comparable to the control drugs. Besides, these compounds were also exhibited favorable enzymatic inhibitory activity. Moreover, preliminary structure-activity relationships (SARs) and molecular modeling study were investigated and discussed in detail. Unexpectedly, four diarylpyrimidines yielded moderate anti-HIV-2 activities. To our knowledge, this is rarely reported that diarylpyrimidine-based NNRTIs have potent activity against both HIV-1 and HIV-2 in cell culture. Copyright © 2018 Elsevier Ltd. All rights reserved.
Antiretroviral therapy in children: recent advances.
Lodha, Rakesh; Manglani, Mamta
2012-12-01
Availability and successful use of various antiretroviral drugs has transformed HIV/AIDS from an incurable to a treatable chronic condition. The antiretroviral therapy can successfully suppress viral replication and preserve the immune system for many years. The implementation of antiretroviral therapy program in resource limited settings using the 'public health approach' of the World Health Organization has had a dramatic impact on the lives of millions of HIV infected individuals. Antiretroviral therapy (ART) in children has many challenges: use of appropriate formulations, regular need for modification of doses as the child grows, adherence issues, etc. To reduce the high morbidity and mortality in HIV infected children, it is currently recommended that all HIV infected children less than 24 mo should receive ART; in older children the indications are based on clinical and/or immunological criteria. Highly active antiretroviral therapy regimens include at least 3 antiretroviral drugs. The first line therapy recommended for children is a combination of two nucleoside reverse transcriptase inhibitors and a non-nucleoside reverse transcriptase inhibitor. Infants who have had exposure to nevirapine should receive a combination of two nucleoside reverse transcriptase inhibitors and a protease inhibitor; the protease inhibitor of choice is ritonavir boosted lopinavir. The success of therapy is dependent on >95 % adherence. The second line regimen, used when the first line therapy fails, is based on a protease inhibitor. The ongoing research focuses on simplification of regimen, discovery of more potent drugs, availability of more pediatric formulations, treatment of drug resistant strains etc. The optimal indications for initiation of therapy in children, are also being studied.
Morningstar, Marshall L.; Roth, Thomas; Farnsworth, David W.; Smith, Marilyn Kroeger; Watson, Karen; Buckheit, Robert W.; Das, Kalyan; Zhang, Wanyi; Arnold, Eddy; Julias, John G.; Hughes, Stephen H.; Michejda, Christopher J.
2010-01-01
In an ongoing effort to develop novel and potent nonnucleoside HIV-1 reverse transcriptase (RT) inhibitors that are effective against the wild type (WT) virus and clinically observed mutants, 1,2-bis-substituted benzimidazoles were synthesized and tested. Optimization of the N1 and C2 positions of benzimidazole led to the development of 1-(2,6-difluorobenzyl)-2-(2,6-difluorophenyl)-4-methylbenzimidazole (1) (IC50 = 0.2 μM, EC50 = 0.44 μM, and TC50 ≥ 100 against WT). This paper describes how substitution on the benzimidazole ring profoundly affects activity. Substituents at the benzimidazole C4 dramatically enhanced potency, while at C5 or C6 substituents were generally detrimental or neutral to activity, respectively. A 7-methyl analogue did not inhibit HIV-1 RT. Determination of the crystal structure of 1 bound to RT provided the basis for accurate modeling of additional analogues, which were synthesized and tested. Several derivatives were nanomolar inhibitors of wild-type virus and were effective against clinically relevant HIV-1 mutants. PMID:17663538
Design, Conformation, and Crystallography of 2-Naphthyl Phenyl Ethers as Potent Anti-HIV Agents
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lee, Won-Gil; Chan, Albert H.; Spasov, Krasimir A.
Catechol diethers that incorporate a 7-cyano-2-naphthyl substituent are reported as non-nucleoside inhibitors of HIV-1 reverse transcriptase (NNRTIs). Many of the compounds have 1–10 nM potencies toward wild-type HIV-1. An interesting conformational effect allows two unique conformers for the naphthyl group in complexes with HIV-RT. X-ray crystal structures for 4a and 4f illustrate the alternatives.
Rodriguez Orengo, J F; Santana, J; Febo, I; Diaz, C; Rodriguez, J L; Garcia, R; Font, E; Rosario, O
2000-03-01
Nucleoside reverse transcriptase inhibitors (NRTIs) plasma concentrations do not correlate with clinical efficacy or toxicity. These agents need to be phosphorylated to become active against HIV-infection. Thus, the characterization of the NRTIs intracellular metabolite pharmacological parameters will provide a better understanding that could lead to the development of more rational dose regimens in the HIV-infected population. Furthermore, intracellular measurements of NRTIs may provide a better marker with respect to clinical efficacy and toxicity than plasma concentrations. Thus, in this article we review the latest information regarding the intracellular pharmacological parameters of zidovudine (ZDV) and lamivudine (3TC) active metabolites in HIV-infected patients including the results from our recent clinical studies. We will start the discussion with ZDV and 3TC clinical efficacy, followed by systemic pharmacokinetics studies. We will then discuss the in vitro and in vivo intracellular studies with particular emphasis in the method development to measure these metabolites and we will conclude with the most current data from our clinical trials.
Reverse transcriptase inhibitors as microbicides.
Lewi, Paul; Heeres, Jan; Ariën, Kevin; Venkatraj, Muthusamy; Joossens, Jurgen; Van der Veken, Pieter; Augustyns, Koen; Vanham, Guido
2012-01-01
The CAPRISA 004 study in South Africa has accelerated the development of vaginal and rectal microbicides containing antiretrovirals that target specific enzymes in the reproduction cycle of HIV, especially reverse transcriptase inhibitors (RTI). In this review we discuss the potential relevance of HIV-1 RTIs as microbicides, focusing in the nucleotide RTI tenofovir and six classes of nonnucleoside RTIs (including dapivirine, UC781, urea and thiourea PETTs, DABOs and a pyrimidinedione). Although tenofovir and dapivirine appear to be most advanced in clinical trials as potential microbicides, several issues remain unresolved, e.g., the importance of nonhuman primates as a "gatekeeper" for clinical trials, the emergence and spread of drug-resistant mutants, the combination of microbicides that target different phases of viral reproduction and the accessibility to microbicides in low-income countries. Thus, here we discuss the latest research on RTI as microbicides in the light of the continuing spread of the HIV pandemic from the point of view of medicinal chemistry, virological, and pharmaceutical studies.
Investigational Antiretroviral Drugs: What is Coming Down the Pipeline.
Gulick, Roy M
2018-04-01
Over the past 30 years, antiretroviral drug regimens for treating HIV infection have become more effective, safer, and more convenient. Despite 31 currently approved drugs, the pipeline of investigational HIV drugs remains full. Investigational antiretroviral drugs include the nucleoside analogue reverse transcriptase translocation inhibitor (NRTTI) MK-8591, a long-acting compound that could be dosed once weekly. Investigational nonnucleoside analogue reverse transcriptase inhibitors (NNRTIs) include doravirine, which is active in vitro against NNRTI-resistant HIV and was potent and well-tolerated when used in combination with a dual-nucleoside analogue RTI (nRTI) backbone in treatment-naive individuals.New integrase strand transfer inhibitors (InSTIs) include recently approved bictegravir, which is active against InSTI-resistant viral strains in vitro and was potent and well-tolerated in combination regimens in treatment-naive individuals, and investigational cabotegravir, which is being studied with monthly parenteral dosing for HIV maintenance treatment and with bimonthly dosing for HIV preexposure prophylaxis (PrEP). Investigational HIV entry inhibitors include the new CD4 attachment inhibitor fostemsavir, which targets HIV envelope glycoprotein 120, and recently approved ibalizumab, which binds the CD4 receptor. This article summarizes presentations by Roy M. Gulick, MD, MPH, at the IAS-USA continuing education program, Improving the Management of HIV Disease, held in Los Angeles, California, in April 2017, and at the 2017 Ryan White HIV/AIDS Program Clinical Conference, held in San Antonio, Texas, in August 2017.
Adipocytes impair efficacy of antiretroviral therapy.
Couturier, Jacob; Winchester, Lee C; Suliburk, James W; Wilkerson, Gregory K; Podany, Anthony T; Agarwal, Neeti; Xuan Chua, Corrine Ying; Nehete, Pramod N; Nehete, Bharti P; Grattoni, Alessandro; Sastry, K Jagannadha; Fletcher, Courtney V; Lake, Jordan E; Balasubramanyam, Ashok; Lewis, Dorothy E
2018-06-01
Adequate distribution of antiretroviral drugs to infected cells in HIV patients is critical for viral suppression. In humans and primates, HIV- and SIV-infected CD4 T cells in adipose tissues have recently been identified as reservoirs for infectious virus. To better characterize adipose tissue as a pharmacological sanctuary for HIV-infected cells, in vitro experiments were conducted to assess antiretroviral drug efficacy in the presence of adipocytes, and drug penetration in adipose tissue cells (stromal-vascular-fraction cells and mature adipocytes) was examined in treated humans and monkeys. Co-culture experiments between HIV-1-infected CD4 T cells and primary human adipocytes showed that adipocytes consistently reduced the antiviral efficacy of the nucleotide reverse transcriptase inhibitor tenofovir and its prodrug forms tenofovir disoproxil fumarate (TDF) and tenofovir alafenamide (TAF). In HIV-infected persons, LC-MS/MS analysis of intracellular lysates derived from adipose tissue stromal-vascular-fraction cells or mature adipocytes suggested that integrase inhibitors penetrate adipose tissue, whereas penetration of nucleoside/nucleotide reverse transcriptase inhibitors such as TDF, emtricitabine, abacavir, and lamivudine is restricted. The limited distribution and functions of key antiretroviral drugs within fat depots may contribute to viral persistence in adipose tissue. Copyright © 2018 Elsevier B.V. All rights reserved.
Pailee, Phanruethai; Kuhakarn, Chutima; Sangsuwan, Chanyapat; Hongthong, Sakchai; Piyachaturawat, Pawinee; Suksen, Kanoknetr; Jariyawat, Surawat; Akkarawongsapat, Radeekorn; Limthongkul, Jitra; Napaswad, Chanita; Kongsaeree, Palangpon; Prabpai, Samran; Jaipetch, Thaworn; Pohmakotr, Manat; Tuchinda, Patoomratana; Reutrakul, Vichai
2018-03-01
Eleven previously undescribed compounds, including four benzophenones (garciosones A-D), four xanthones (garciosones E-H) and three biphenyls (garciosines A-C), along with eighteen known compounds were isolated from the stems, leaves and twigs of Garcinia speciosa Wall. (Clusiaceae). Their structures were established by extensive spectroscopic analysis. For garciosines A-C, the structures were confirmed by single crystal X-ray diffraction analysis. Most of the isolated compounds were evaluated for their cytotoxic activity and anti-HIV-1 activity using the syncytium inhibition assay and HIV-1 reverse transcriptase (RT) assay. The known compounds, 4,6,3',4'-tetrahydroxy-2-methoxybenzophenone and macluraxanthone, displayed significant cytotoxic activity with the ED 50 in the range of 1.85-11.76 μM. 1,5-Dihydroxyxanthone exhibited the most potent anti-HIV activity against syncytium formation with EC 50 < 17.13 μM (SI > 25.28) and 2-(3,3-dimethylallyl)-1,3,7-trihydroxyxanthone was the most active compound in the HIV-1 reverse transcriptase assay with IC 50 value of 58.24 μM. Structure-activity relationship of some isolated compounds were also discussed. Copyright © 2017 Elsevier Ltd. All rights reserved.
Sluis-Cremer, Nicolas
2014-07-31
Nonnucleoside reverse transcriptase inhibitors (NNRTIs) are widely used to treat HIV-1-infected individuals; indeed most first-line antiretroviral therapies typically include one NNRTI in combination with two nucleoside analogs. In 2008, the next-generation NNRTI etravirine was approved for the treatment of HIV-infected antiretroviral therapy-experienced individuals, including those with prior NNRTI exposure. NNRTIs are also increasingly being included in strategies to prevent HIV-1 infection. For example: (1) nevirapine is used to prevent mother-to-child transmission; (2) the ASPIRE (MTN 020) study will test whether a vaginal ring containing dapivirine can prevent HIV-1 infection in women; (3) a microbicide gel formulation containing the urea-PETT derivative MIV-150 is in a phase I study to evaluate safety, pharmacokinetics, pharmacodynamics and acceptability; and (4) a long acting rilpivirine formulation is under-development for pre-exposure prophylaxis. Given their widespread use, particularly in resource-limited settings, as well as their low genetic barriers to resistance, there are concerns about overlapping resistance between the different NNRTIs. Consequently, a better understanding of the resistance and cross-resistance profiles among the NNRTI class is important for predicting response to treatment, and surveillance of transmitted drug-resistance.
Expression of an Mg2+-Dependent HIV-1 RNase H Construct for Drug Screening▿†
Farias, Richard V.; Vargas, Deborah A.; Castillo, Andres E.; Valenzuela, Beatriz; Coté, Marie L.; Roth, Monica J.; Leon, Oscar
2011-01-01
A single polypeptide of the HIV-1 reverse transcriptase that reconstituted Mg2+-dependent RNase H activity has been made. Using molecular modeling, the construct was designed to encode the p51 subunit joined by a linker to the thumb (T), connection (C), and RNase H (R) domains of p66. This p51-G-TCR construct was purified from the soluble fraction of an Escherichia coli strain, MIC2067(DE3), lacking endogenous RNase HI and HII. The p51-G-TCR RNase H construct displayed Mg2+-dependent activity using a fluorescent nonspecific assay and showed the same cleavage pattern as HIV-1 reverse transcriptase (RT) on substrates that mimic the tRNA removal required for second-strand transfer reactions. The mutant E706Q (E478Q in RT) was purified under similar conditions and was not active. The RNase H of the p51-G-TCR RNase H construct and wild type HIV-1 RT had similar Kms for an RNA-DNA hybrid substrate and showed similar inhibition kinetics to two known inhibitors of the HIV-1 RT RNase H. PMID:21768506
Masaoka, Takashi; Chung, Suhman; Caboni, Pierluigi; Rausch, Jason W.; Wilson, Jennifer A.; Taskent-Sezgin, Humeyra; Beutler, John A.; Tocco, Graziella; Le Grice, Stuart F. J.
2013-01-01
The thienopyrimidinone 5,6-dimethyl-2-(4-nitrophenyl)thieno[2,3-d]pyrimidin-4(3H)-one (DNTP) occupies the interface between the p66 ribonuclease H (RNase H) domain and p51 thumb of human immunodeficiency virus reverse transcriptase (HIV RT), thereby inducing a conformational change incompatible with catalysis. Here, we combined biochemical characterization of 39 DNTP derivatives with antiviral testing of selected compounds. In addition to wild-type HIV-1 RT, derivatives were evaluated with rationally-designed, p66/p51 heterodimers exhibiting high-level DNTP sensitivity or resistance. This strategy identified 3′,4′-dihydroxyphenyl (catechol)-substituted thienopyrimidinones with sub-micromolar in vitro activity against both wild type HIV-1 RT and drug-resistant variants. Thermal shift analysis indicates that, in contrast to active site RNase H inhibitors, these thienopyrimidinones destabilize the enzyme, in some instances reducing the Tm by 5°C. Importantly, catechol-containing thienopyrimidinones also inhibit HIV-1 replication in cells. Our data strengthens the case for allosteric inhibition of HIV RNase H activity, providing a platform for designing improved antagonists for use in combination antiviral therapy. PMID:23631411
Sluis-Cremer, Nicolas
2014-01-01
Nonnucleoside reverse transcriptase inhibitors (NNRTIs) are widely used to treat HIV-1-infected individuals; indeed most first-line antiretroviral therapies typically include one NNRTI in combination with two nucleoside analogs. In 2008, the next-generation NNRTI etravirine was approved for the treatment of HIV-infected antiretroviral therapy-experienced individuals, including those with prior NNRTI exposure. NNRTIs are also increasingly being included in strategies to prevent HIV-1 infection. For example: (1) nevirapine is used to prevent mother-to-child transmission; (2) the ASPIRE (MTN 020) study will test whether a vaginal ring containing dapivirine can prevent HIV-1 infection in women; (3) a microbicide gel formulation containing the urea-PETT derivative MIV-150 is in a phase I study to evaluate safety, pharmacokinetics, pharmacodynamics and acceptability; and (4) a long acting rilpivirine formulation is under-development for pre-exposure prophylaxis. Given their widespread use, particularly in resource-limited settings, as well as their low genetic barriers to resistance, there are concerns about overlapping resistance between the different NNRTIs. Consequently, a better understanding of the resistance and cross-resistance profiles among the NNRTI class is important for predicting response to treatment, and surveillance of transmitted drug-resistance. PMID:25089538
Adipocytes Impair Efficacy of Antiretroviral Therapy
Couturier, Jacob; Winchester, Lee C.; Suliburk, James W.; Wilkerson, Gregory K.; Podany, Anthony T.; Agarwal, Neeti; Chua, Corrine Ying Xuan; Nehete, Pramod N.; Nehete, Bharti P.; Grattoni, Alessandro; Sastry, K. Jagannadha; Fletcher, Courtney V.; Lake, Jordan E.; Balasubramanyan, Ashok; Lewis, Dorothy E.
2018-01-01
Adequate distribution of antiretroviral drugs to infected cells in HIV patients is critical for viral suppression. In humans and primates, HIV- and SIV-infected CD4 T cells in adipose tissues have recently been identified as reservoirs for infectious virus. To better characterize adipose tissue as a pharmacological sanctuary for HIV-infected cells, in vitro experiments were conducted to assess antiretroviral drug efficacy in the presence of adipocytes, and drug penetration in adipose tissue cells (stromal-vascular-fraction cells and mature adipocytes) was examined in treated humans and monkeys. Co-culture experiments between HIV-1-infected CD4 T cells and primary human adipocytes showed that adipocytes consistently reduced the antiviral efficacy of the nucleotide reverse transcriptase inhibitor tenofovir and its prodrug forms tenofovir disoproxil fumarate (TDF) and tenofovir alafenamide (TAF). In HIV-infected persons, LC-MS/MS analysis of intracellular lysates derived from adipose tissue stromal-vascular-fraction cells or mature adipocytes suggested that integrase inhibitors penetrate adipose tissue, whereas penetration of nucleoside/nucleotide reverse transcriptase inhibitors such as TDF, emtricitabine, abacavir, and lamivudine is restricted. The limited distribution and functions of key antiretroviral drugs within fat depots may contribute to viral persistence in adipose tissue. PMID:29630975
Kankanala, Jayakanth; Kirby, Karen A; Huber, Andrew D; Casey, Mary C; Wilson, Daniel J; Sarafianos, Stefan G; Wang, Zhengqiang
2017-12-01
Human immunodeficiency virus (HIV) reverse transcriptase (RT) associated ribonuclease H (RNase H) is the only HIV enzymatic function not targeted by current antiviral drugs. Although various chemotypes have been reported to inhibit HIV RNase H, few have shown significant antiviral activities. We report herein the design, synthesis and biological evaluation of a novel N-hydroxy thienopyrimidine-2,3-dione chemotype (11) which potently and selectively inhibited RNase H with considerable potency against HIV-1 in cell culture. Current structure-activity-relationship (SAR) identified analogue 11d as a nanomolar inhibitor of RNase H (IC 50 = 0.04 μM) with decent antiviral potency (EC 50 = 7.4 μM) and no cytotoxicity (CC 50 > 100 μM). In extended biochemical assays compound 11d did not inhibit RT polymerase (pol) while inhibiting integrase strand transfer (INST) with 53 fold lower potency (IC 50 = 2.1 μM) than RNase H inhibition. Crystallographic and molecular modeling studies confirmed the RNase H active site binding mode. Copyright © 2017 Elsevier Masson SAS. All rights reserved.
Baril, Jean-Guy; Lefebvre, Eric A; Lalonde, Richard G; Shafran, Stephen D; Conway, Brian
2003-01-01
OBJECTIVE: To assess the efficacy of nelfinavir mesylate (NFV) in combination with delavirdine mesylate (DLV) or efavirenz (EFV) and other antiretroviral agents following virological failure on other protease inhibitor (PI)-based regimens. DESIGN: Multicentre, retrospective chart review. METHODS: One hundred-one patients who were naive to both NFV and non-nucleoside reverse transcriptase inhibitors (NNRTIs) and who initiated NFV plus DLV or EFV-based salvage regimens were reviewed. Response to treatment was defined as a reduction in HIV ribonucleic acid (RNA) levels to unquantifiable levels (less than 50 copies/mL, less than 400 copies/mL, less than 500 copies/mL) on at least one occasion after the initiation of salvage therapy. Baseline correlates of response, including prior duration of HIV infection, prior number of regimens, viral load and CD4 cell counts were also evaluated. RESULTS: Patients had a mean duration of HIV infection of 10 years, a mean duration of prior therapy of four years, a median of four prior nucleoside reverse transcriptase inhibitors and a median of two prior PIs. At the time of review the mean duration of salvage therapy was 63.4 weeks. Virological suppression was achieved in 59 (58.4%) patients within a mean of eight weeks and maintained for a mean of 44.9 weeks (the mean follow-up was 78 weeks). Of the non-responders, 16 (38%) achieved a less than 1 log10 decrease in HIV RNA levels. Although there was no association between baseline correlates, response rate (75.7%) was significantly higher in patients with HIV RNA levels of 50,000 copies/mL or lower and CD4 counts greater than 200 cells/mm3. CONCLUSION: NFV/NNRTI-based highly active antiretroviral therapy regimens are an effective therapy in many patients who have experienced virological breakthroughs on at least one prior PI-based regimen. PMID:18159457
Moura, Maria Edileuza Soares; da Guarda Reis, Mônica Nogueira; Lima, Yanna Andressa Ramos; Eulálio, Kelsen Dantas; Cardoso, Ludimila Paula Vaz; Stefani, Mariane Martins Araújo
2015-05-01
HIV-1 transmitted-drug-resistance and genetic diversity are dynamic and may differ in distinct locations/risk groups. In Brazil, increased AIDS incidence and related mortality have been detected in the Northeast region, differently from the epicenter in the Southeast. This cross-sectional study describes transmitted-dru- resistance and HIV-1 subtypes in protease/PR and reverse transcriptase/RT regions among antiretroviral naïve patients from Piauí State, Northeast Brazil. Among 96 patients recruited 89 (92.7%) had HIV-1 PR/RT regions sequenced: 44 females and 45 males, 22 self-declared as men who have sex with men. Transmitted-drug-resistance was investigated by CPR tool (Stanford HIV-1 Drug Resistance/SDRM). HIV-1 subtypes were assigned by REGA and phylogenetic inference. Overall, transmitted-drug-resistance rate was 11.2% (10/89; CI 95%: 5.8-19.1%); 22.7% among men who have sex with men (5/22; CI 95%: 8.8-43.4%), 10% in heterosexual men (2/20; CI 95%: 1.7-29.3%) and 6.8% in women (3/44; CI 95%: 1.8-17.4%). Singleton mutations to protease-inhibitor/PI, nucleoside-reverse-transcriptase-inhibitor/NRTI or non-nucleoside-reverse-transcriptase-inhibitor/NNRTI predominated (8/10): PI mutations (M46L, V82F, L90M); NRTI mutations (M41L, D67N) and NNRTI mutations (K103N/S). Dual class resistance mutations to NRTI and NNRTI were observed: T215L (NRTI), Y188L (NNRTI) and T215N (NRTI), F227L (NNRTI). Subtype B prevailed (86.6%; 77/89), followed by subtype F1 (1.1%, 1/89) and subtype C (1.1%, 1/89). B/F1 and B/C intersubtype recombinants represented 11.2% (10/89). In Piauí State extensive testing of incidence and transmitted-drug-resistance in all populations with risk behaviors may help control AIDS epidemic locally. © 2015 Wiley Periodicals, Inc.
Monforte, Anna Maria; De Luca, Laura; Buemi, Maria Rosa; Agharbaoui, Fatima E; Pannecouque, Christophe; Ferro, Stefania
2018-02-01
Non-nucleoside reverse transcriptase inhibitors (NNRTIs) are recommended components of preferred combination antiretroviral therapies used for the treatment of human immunodeficiency virus (HIV) infection. These regimens are extremely effective in suppressing virus replication. Recently, our research group identified some N 1 -aryl-2-arylthioacetamido-benzimidazoles as a novel class of NNRTIs. In this research work we report the design, the synthesis and the structure-activity relationship studies of new compounds (20-34) in which some structural modifications have been introduced in order to investigate their effects on reverse transcriptase (RT) inhibition and to better define the features needed to increase the antiviral activity. Most of the new compounds proved to be highly effective in inhibiting both RT enzyme at nanomolar concentrations and HIV-1 replication in MT4 cells with minimal cytotoxicity. Among them, the most promising N 1 -aryl-2-arylthioacetamido-benzimidazoles and N 1 -aryl-2-aryloxyacetamido-benzimidazoles were also tested toward a panel of single- and double-mutants strain responsible for resistance to NNRTIs, showing in vitro antiviral activity toward single mutants L100I, K103N, Y181C, Y188L and E138K. The best results were observed for derivatives 29 and 33 active also against the double mutants F227L and V106A. Computational approaches were applied in order to rationalize the potency of the new synthesized inhibitors. Copyright © 2017 Elsevier Ltd. All rights reserved.
Poppe, Lisa K; Chunda-Liyoka, Catherine; Kwon, Eun H; Gondwe, Clement; West, John T; Kankasa, Chipepo; Ndongmo, Clement B; Wood, Charles
2017-08-24
The objectives of this study were to determine HIV drug resistance (HIVDR) prevalence in Zambian infants upon diagnosis, and to determine how changing prevention of mother-to-child transmission (PMTCT) drug regimens affect drug resistance. Dried blood spot (DBS) samples from infants in the Lusaka District of Zambia, obtained during routine diagnostic screening, were collected during four different years representing three different PMTCT drug treatment regimens. DNA extracted from dried blood spot samples was used to sequence a 1493 bp region of the reverse transcriptase gene. Sequences were analyzed via the Stanford HIVDRdatabase (http://hivdb.standford.edu) to screen for resistance mutations. HIVDR in infants increased from 21.5 in 2007/2009 to 40.2% in 2014. Nonnucleoside reverse transcriptase inhibitor resistance increased steadily over the sampling period, whereas nucleoside reverse transcriptase inhibitor resistance and dual class resistance both increased more than threefold in 2014. Analysis of drug resistance scores in each group revealed increasing strength of resistance over time. In 2014, children with reported PMTCT exposure, defined as infant prophylaxis and/or maternal treatment, showed a higher prevalence and strength of resistance compared to those with no reported exposure. HIVDR is on the rise in Zambia and presents a serious problem for the successful lifelong treatment of HIV-infected children. PMTCT affects both the prevalence and strength of resistance and further research is needed to determine how to mitigate its role leading to resistance.
Telwatte, Sushama; Hearps, Anna C.; Johnson, Adam; Latham, Catherine F.; Moore, Katie; Agius, Paul; Tachedjian, Mary; Sonza, Secondo; Sluis-Cremer, Nicolas; Harrigan, P. Richard; Tachedjian, Gilda
2015-01-01
Resistance to combined antiretroviral therapy (cART) in HIV-1-infected individuals is typically due to nonsynonymous mutations that change the protein sequence; however, the selection of synonymous or ‘silent’ mutations in the HIV-1 genome with cART has been reported. These silent K65K and K66K mutations in the HIV-1 reverse transcriptase (RT) occur in over 35% of drug-experienced individuals and are highly associated with the thymidine analog mutations D67N and K70R, which confer decreased susceptibility to most nucleoside and nucleotide RT inhibitors. However, the basis for selection of these silent mutations under selective drug pressure is unknown. Using Illumina next-generation sequencing, we demonstrate that the D67N/K70R substitutions in HIV-1 RT increase indel frequency by 100-fold at RT codons 65–67, consequently impairing viral fitness. Introduction of either K65K or K66K into HIV-1 containing D67N/K70R reversed the error-prone DNA synthesis at codons 65–67 in RT and improved viral replication fitness, but did not impact RT inhibitor drug susceptibility. These data provide new mechanistic insights into the role of silent mutations selected during antiretroviral therapy and have broader implications for the relevance of silent mutations in the evolution and fitness of RNA viruses. PMID:25765644
Côté, Hélène C. F.; Soudeyns, Hugo; Thorne, Anona; Alimenti, Ariane; Lamarre, Valérie; Maan, Evelyn J.; Sattha, Beheroze; Singer, Joel; Lapointe, Normand; Money, Deborah M.; Forbes, John
2012-01-01
Objectives Nucleoside reverse transcriptase inhibitors (NRTIs) used in HIV antiretroviral therapy can inhibit human telomerase reverse transcriptase. We therefore investigated whether in utero or childhood exposure to NRTIs affects leukocyte telomere length (LTL), a marker of cellular aging. Methods In this cross-sectional CARMA cohort study, we investigated factors associated with LTL in HIV -1-infected (HIV+) children (n = 94), HIV-1-exposed uninfected (HEU) children who were exposed to antiretroviral therapy (ART) perinatally (n = 177), and HIV-unexposed uninfected (HIV−) control children (n = 104) aged 0–19 years. Univariate followed by multivariate linear regression models were used to examine relationships of explanatory variables with LTL for: a) all subjects, b) HIV+/HEU children only, and c) HIV+ children only. Results After adjusting for age and gender, there was no difference in LTL between the 3 groups, when considering children of all ages together. In multivariate models, older age and male gender were associated with shorter LTL. For the HIV+ group alone, having a detectable HIV viral load was also strongly associated with shorter LTL (p = 0.007). Conclusions In this large study, group rates of LTL attrition were similar for HIV+, HEU and HIV− children. No associations between children’s LTL and their perinatal ART exposure or HIV status were seen in linear regression models. However, the association between having a detectable HIV viral load and shorter LTL suggests that uncontrolled HIV viremia rather than duration of ART exposure may be associated with acceleration of blood telomere attrition. PMID:22815702
Hosseinipour, Mina C.; van Oosterhout, Joep J.G.; Weigel, Ralf; Phiri, Sam; Kamwendo, Debbie; Parkin, Neil; Fiscus, Susan A.; Nelson, Julie A.E.; Eron, Joseph J.; Kumwenda, Johnstone
2010-01-01
Background Over 150 000 Malawians have started antiretroviral therapy (ART), in which first-line therapy is stavudine/lamivudine/nevirapine. We evaluated drug resistance patterns among patients failing first-line ART on the basis of clinical or immunological criteria in Lilongwe and Blantyre, Malawi. Methods Patients meeting the definition of ART failure (new or progressive stage 4 condition, CD4 cell count decline more than 30%, CD4 cell count less than that before treatment) from January 2006 to July 2007 were evaluated. Among those with HIV RNA of more than 1000 copies/ml, genotyping was performed. For complex genotype patterns, phenotyping was performed. Results Ninety-six confirmed ART failure patients were identified. Median (interquartile range) CD4 cell count, log10 HIV-1 RNA, and duration on ART were 68 cells/μl (23–174), 4.72 copies/ml (4.26–5.16), and 36.5 months (26.6–49.8), respectively. Ninety-three percent of samples had nonnucleoside reverse transcriptase inhibitor mutations, and 81% had the M184V mutation. The most frequent pattern included M184V and nonnucleoside reverse transcriptase inhibitor mutations along with at least one thymidine analog mutation (56%). Twenty-three percent of patients acquired the K70E or K65R mutations associated with tenofovir resistance; 17% of the patients had pan-nucleoside resistance that corresponded to K65R or K70E and additional resistance mutations, most commonly the 151 complex. Emergence of the K65R and K70E mutations was associated with CD4 cell count of less than 100 cells/μl (odds ratio 6.1) and inversely with the use of zidovudine (odds ratio 0.18). Phenotypic susceptibility data indicated that the nucleoside reverse transcriptase inhibitor backbone with the highest activity for subsequent therapy was zidovudine/lamivudine/tenofovir, followed by lamivudine/tenofovir, and then abacavir/didanosine. Conclusion When clinical and CD4 cell count criteria are used to monitor first-line ART failure, extensive nucleoside reverse transcriptase inhibitor and nonnucleoside reverse transcriptase inhibitor resistance emerges, with most patients having resistance profiles that markedly compromise the activity of second-line ART. PMID:19417582
Zhou, Ying; Lu, Jing; Wang, Jinge; Yan, Hongjing; Li, Jianjun; Xu, Xiaoqin; Zhang, Zhi; Qiu, Tao; Ding, Ping; Fu, Gengfeng; Huan, Xiping; Hu, Haiyang
2016-01-01
Antiretroviral therapy (ART) has been shown to improve survival of patients with Human Immunodeficiency Virus (HIV) infection and to reduce HIV-1 transmission. Therefore, the Chinese central government initiated a national program to provide ART free of charge to HIV-1 patients. We conducted a cross-sectional survey in Jiangsu province to determine the level of drug resistance (DR) in HIV-1 infected patients and the correlates of DR in virological failures in 2012. Approximately 10.4% of the HIV-1 patients in the study experienced virological failure after one year of ART and were divided into drug sensitive and drug resistant groups based on genotype determination. The viral loads (VLs) in the drug resistant group were significantly lower than the drug sensitive group. There were two independent predictors of virological failure: male gender and increasing duration of treatment. The primary mutations observed in the study were against nucleoside reverse transcriptase inhibitors (NRTIs) which were M184V (79.45%) and K103N (33.70%) in nonnucleoside reverse transcriptase inhibitors (NNRTIs). The overall rate of DR in Jiangsu province is still relatively low among treated patients. However, close monitoring of drug resistance in male patients in the early stages of treatment is vital to maintaining and increasing the benefits of HIV ART achieved to date.
Smith, Robert A; Gottlieb, Geoffrey S; Anderson, Donovan J; Pyrak, Crystal L; Preston, Bradley D
2008-01-01
Using an indicator cell assay that directly quantifies viral replication, we show that human immunodeficiency virus types 1 and 2 (HIV-1 and HIV-2, respectively) exhibit similar sensitivities to 3'-azido-3'-deoxythymidine (zidovudine) as well as other nucleoside analog inhibitors of reverse transcriptase. These data support the use of nucleoside analogs for antiviral therapy of HIV-2 infection.
Exploiting the anti-HIV 6-desfluoroquinolones to design multiple ligands.
Sancineto, Luca; Iraci, Nunzio; Barreca, Maria Letizia; Massari, Serena; Manfroni, Giuseppe; Corazza, Gianmarco; Cecchetti, Violetta; Marcello, Alessandro; Daelemans, Dirk; Pannecouque, Christophe; Tabarrini, Oriana
2014-09-01
It is getting clearer that many drugs effective in different therapeutic areas act on multiple rather than single targets. The application of polypharmacology concepts might have numerous advantages especially for disease such as HIV/AIDS, where the rapid emergence of resistance requires a complex combination of more than one drug. In this paper, we have designed three hybrid molecules combining WM5, a quinolone derivative we previously identified as HIV Tat-mediated transcription (TMT) inhibitor, with the tricyclic core of nevirapine and BILR 355BS (BILR) non-nucleoside reverse transcriptase inhibitors (NNRTIs) to investigate whether it could be possible to obtain molecules acting on both transcription steps of the HIV replicative cycle. One among the three designed multiple ligands, reached this goal. Indeed, compound 1 inhibited both TMT and reverse transcriptase (RT) activity. Unexpectedly, while the anti-TMT activity exerted by compound 1 resulted into a selective inhibition of HIV-1 reactivation from latently infected OM10.1 cells, the anti-RT properties shown by all of the synthesized compounds did not translate into an anti-HIV activity in acutely infected cells. Thus, we have herein produced the proof of concept that the design of dual TMT-RT inhibitors is indeed possible, but optimization efforts are needed to obtain more potent derivatives. Copyright © 2014 Elsevier Ltd. All rights reserved.
Poirier, Jean-Marie; Robidou, Pascal; Jaillon, Patrice
2005-04-01
Several studies suggest that therapeutic drug monitoring of protease inhibitors and nonnucleoside reverse transcriptase inhibitors may contribute to the clinical outcome of HIV-infected patients. Because of the growing number of antiretroviral drugs and of drug combinations than can be administered to these patients, an accurate high-performance liquid chromatographic (HPLC) method allowing the simultaneous determination of these drugs may be useful. To date, the authors present the first simultaneous HPLC determination of the new protease inhibitor atazanavir with all the others currently in use (M8 nelfinavir metabolite included) and the 2 widely used nonnucleoside reverse transcriptase inhibitors efavirenz and nevirapine. This simple HPLC method allows the analysis all these drugs at a single ultraviolet wavelength following a 1-step liquid-liquid extraction procedure. A 500-muL plasma sample was spiked with internal standard and subjected to liquid-liquid extraction using by diethyl ether at pH 10. HPLC was performed using a Symmetry Shield RP18 and gradient elution. All the drugs of interest and internal standard were detected with ultraviolet detection at 210 nm. Calibration curves were linear in the range 50-10,000 ng/mL. The observed concentrations of the quality controls at plasma concentrations ranging from 50 to 5000 ng/mL for these drugs showed that the overall accuracy varied from 92% to 104% and 92% to 106% for intraday and day-to-day analysis, respectively. No metabolites of the assayed compounds or other drugs commonly coadministered to HIV-positive patients were found to coelute with the drugs of interest or with the internal standard. This assay was developed for the purpose of therapeutic monitoring (TDM) in HIV-infected patients.
NASA Technical Reports Server (NTRS)
Setlik, R. F.; Meyer, D. J.; Shibata, M.; Roskwitalski, R.; Ornstein, R. L.; Rein, R.
1994-01-01
We present a full-coordinate model of residues 1-319 of the polymerase domain of HIV-I reverse transcriptase. This model was constructed from the x-ray crystallographic structure of Jacobo-Molina et al. (Jacobo-Molina et al., P.N.A.S. USA 90, 6320-6324 (1993)) which is currently available to the degree of C-coordinates. The backbone and side-chain atoms were constructed using the MAXSPROUT suite of programs (L. Holm and C. Sander, J. Mol. Biol. 218, 183-194 (1991)) and refined through molecular modeling. A seven base pair A-form dsDNA was positioned in the nucleic acid binding cleft to represent the template-primer complex. The orientation of the template-primer complex in the nucleic acid binding cleft was guided by the positions of phosphorus atoms in the crystal structure.
Crawford, Keith W; Njeru, Dorothy; Maswai, Jonah; Omondi, Milton; Apollo, Duncan; Kimetto, Jane; Gitonga, Lawrence; Munyao, James; Langat, Raphael; Aoko, Appolonia; Tarus, Jemutai; Khamadi, Samoel; Hamm, Tiffany E
2014-01-28
Resistance to efavirenz and nevirapine has not been associated with mutations at position 138 of reverse transcriptase. In an evaluation of virologic suppression rates in PEPFAR (President's Emergency Plan For AIDS Relief) clinics in Kenya among patients on first-line therapy (RV288), 63% (617/975) of randomly selected patients on antiretroviral therapy were suppressed (HIV RNA<400 copies/ml). Among those with non-nucleoside reverse transcriptase inhibitor resistance (n = 101), 14 (13.8%) had substitutions at 138 (A, G, K or Q), mutations selected only by etravirine and rilpivirine in subtype B viruses. All 14 patients received efavirenz or nevirapine, not etravirine or rilpivirine, and were predominantly subtype A1. This may be the first report of efavirenz and nevirapine selecting these mutations in these subtypes.
Selective serotonin reuptake inhibitor suppression of HIV infectivity and replication.
Benton, Tami; Lynch, Kevin; Dubé, Benoit; Gettes, David R; Tustin, Nancy B; Ping Lai, Jian; Metzger, David S; Blume, Joshua; Douglas, Steven D; Evans, Dwight L
2010-11-01
To test the hypothesis that the selective serotonin reuptake inhibitor (SSRI) citalopram would down-regulate human immunodeficiency virus (HIV) infectivity and that the greatest effects would be seen in people with depression. Depression is a risk factor for morbidity and mortality in HIV/acquired immune deficiency syndrome. Serotonin (5-HT) neurotransmission has been implicated in the pathobiology of depression, and pharmacologic therapies for depression target this system. The 5-HT transporter and 5-HT receptors are widely distributed throughout the central nervous and immune systems. Depression has been associated with suppression of natural killer cells and CD8(+) lymphocytes, key regulators of HIV infection. Ex vivo models for acute and chronic HIV infection were used to study the effects of citalopram on HIV viral infection and replication in 48 depressed and nondepressed women. For both the acute and chronic infection models, HIV reverse transcriptase activity was measured in the citalopram treatment condition and the control condition. The SSRI significantly down-regulated the reverse transcriptase response in both the acute and chronic infection models. Specifically, citalopram significantly decreased the acute HIV infectivity of macrophages. Citalopram also significantly decreased HIV viral replication in the latently infected T-cell line and in the latently infected macrophage cell line. There was no difference in down-regulation by depression status. These studies suggest that an SSRI enhances natural killer/CD8 noncytolytic HIV suppression in HIV/acquired immune deficiency syndrome and decreases HIV viral infectivity of macrophages, ex vivo, suggesting the need for in vivo studies to determine a potential role for agents targeting serotonin in the host defense against HIV.
Guo, Jinlei; Yan, Yong; Zhang, Jiafeng; Ji, Jimei; Ge, Zhijian; Ge, Rui; Zhang, Xiaofei; Wang, Henghui; Chen, Zhongwen; Luo, Jianyong
2017-03-14
The aim of this study was to characterize HIV-1 genotypes and antiretroviral resistance mutations among treatment-naive HIV-infected individuals in Jiaxing, China. The HIV-1 partial polymerase (pol) genes in 93 of the 99 plasma samples were successfully amplified and analyzed. Phylogenetic analysis revealed the existence of five HIV-1 genotypes, of which the most prevalent genotype was CRF01_AE (38.7%), followed by CRF07_BC (34.4%), CRF08_BC (16.1%), subtype B/B' (5.4%), and CRF55_01B (2.1%). Besides, three types of unique recombination forms (URFs) were also observed, including C/F2/A1, CRF01_AE/B, and CRF08_BC/CRF07_BC. Among 93 amplicons, 46.2% had drug resistance-associated mutations, including 23.7% for protease inhibitors (PIs) mutations, 1.1% for nucleoside reverse transcriptase inhibitors (NRTIs) mutations, and 20.4% for non-nucleoside reverse transcriptase inhibitors (NNRTIs) mutations. Six (6.5%) out of 93 treatment-naive subjects were identified to be resistant to one or more NNRTIs, while resistance to NRTIs or PIs was not observed. Our study showed the genetic diversity of HIV-1 strains circulating in Jiaxing and a relative high proportion of antiretroviral resistance mutations among treatment-naive patients, indicating a serious challenge for HIV prevention and treatment program.
Karchava, Marine; Pulver, Wendy; Smith, Lou; Philpott, Sean; Sullivan, Timothy J.; Wethers, Judith; Parker, Monica M.
2010-01-01
Summary Prevalence studies indicate that transmission of drug-resistant HIV has been rising in the adult population, but data from the perinatally infected pediatric population are limited. In this retrospective study, we sequenced the pol region of HIV from perinatally infected infants diagnosed in New York State in 2001–2002. Analyses of drug resistance, subtype diversity, and perinatal antiretroviral exposure were conducted, and the results were compared with those from a previous study of HIV-infected infants identified in 1998–1999. Eight of 42 infants (19.1%) had provirus carrying at least 1 drug-resistance mutation, an increase of 58% over the 1998–1999 results. Mutations conferring resistance to nucleoside reverse transcriptase inhibitors, nonnucleoside reverse transcriptase inhibitors, and protease inhibitors were detected in 7.1%, 11.9%, and 2.4% of specimens, respectively. Consistent with previous results, perinatal antiretroviral exposure was not associated with drug resistance (P = 0.70). Phylogenetic analysis indicated that 16.7% of infants were infected with a non–subtype B strain of HIV. It seems that drug-resistant and non–subtype B strains of HIV are becoming increasingly common in the perinatally infected population. Our results highlight the value of resistance testing for all HIV-infected infants upon diagnosis and the need to consider subtype diversity in diagnostic and treatment strategies. PMID:16868498
New Antiretroviral Therapies for Pediatric HIV Infection
Morris, Jennifer L.; Kraus, Donna M.
2005-01-01
Human immunodeficiency virus (HIV) infection and acquired immunodeficiency syndrome affect millions of children worldwide. The development of antiretroviral therapy has significantly improved the morbidity and mortality of pediatric patients infected with HIV. Currently, 4 classes of antiretroviral agents exist: nucleoside / nucleotide reverse transcriptase inhibitors, non-nucleoside reverse transcriptase inhibitors, protease inhibitors, and entry inhibitors. A total of 21 single-entity antiretroviral agents and 4 co-formulated antiretroviral products hold Food and Drug Administration (FDA) approval for treatment of HIV-1 infection. However, not all of these agents are indicated for use in patients less than 18 years of age. Since the year 2000, 7 new antiretroviral agents (atazanavir, emtricitabine, enfuvirtide, fosamprenavir, lopinavir/ritonavir, tenofovir, and tipranavir) have been approved by the FDA for use in adult patients as part of combination therapy for the treatment of HIV-1 infection. Although only 3 of these newer agents (emtricitabine, enfuvirtide, and lopinavir/ritonavir) are currently FDA approved for use in pediatric patients, pediatric clinical studies of the other 4 new agents are currently underway. The purpose of this article is to review these 7 new antiretroviral agents and describe their roles in the treatment of pediatric HIV infection. For each drug, the following information will be addressed: FDA-approved indication and age groups, clinical efficacy, pharmacokinetics, adverse drug reactions, clinically relevant drug interactions, pediatric and adult dosing, dosage forms, administration, and place in the treatment of pediatric HIV infection. PMID:23118639
Aulicino, Paula C; Rocco, Carlos A; Mecikovsky, Debora; Bologna, Rosa; Mangano, Andrea; Sen, Luisa
2010-01-01
Patterns and pathways of HIV type-1 (HIV-1) antiretroviral (ARV) drug resistance-associated mutations in clinical isolates are conditioned by ARV history and factors such as viral subtype and fitness. Our aim was to analyse the frequency and association of ARV drug resistance mutations in a group of long-term vertically infected patients from Argentina. Plasma samples from 71 patients (38 children and 33 adolescents) were collected for genotypic HIV-1 ARV resistance testing during the period between February 2006 and October 2008. Statistically significant pairwise associations between ARV resistance mutations in pol, as well as associations between mutations and drug exposure, were identified using Fisher's exact tests with Bonferroni and false discovery rate corrections. Phylogenetic analyses were performed for subtype assignment. In protease (PR), resistance-associated mutations M46I/L, I54M/L/V/A/S and V82A/F/T/S/M/I were associated with each other and with minor mutations at codons 10, 24 and 71. Mutations V82A/F/T/S/M/I were primarily selected by the administration of ritonavir (RTV) in an historical ARV regimen. In reverse transcriptase, thymidine analogue mutation (TAM)1 profile was more common than TAM2. The non-nucleoside K103N+L100I mutations were observed at high frequency (15.5%) and were significantly associated with the nucleoside mutation L74V in BF recombinants. Associations of mutations at PR sites reflect the frequent use of RTV at an early time in this group of patients and convergent resistance mechanisms driven by the high exposure to protease inhibitors, as well as local HIV-1 diversity. The results provide clinical evidence of a molecular interaction between K103N+L100I and L74V mutations at the reverse transcriptase gene in vivo, limiting the future use of second-generation non-nucleoside reverse transcriptase inhibitors such as etravirine.
Pala, Nicolino; Esposito, Francesca; Rogolino, Dominga; Carcelli, Mauro; Sanna, Vanna; Palomba, Michele; Naesens, Lieve; Corona, Angela; Grandi, Nicole; Tramontano, Enzo; Sechi, Mario
2016-01-01
The HIV-1 ribonuclease H (RNase H) function of the reverse transcriptase (RT) enzyme catalyzes the selective hydrolysis of the RNA strand of the RNA:DNA heteroduplex replication intermediate, and represents a suitable target for drug development. A particularly attractive approach is constituted by the interference with the RNase H metal-dependent catalytic activity, which resides in the active site located at the C-terminus p66 subunit of RT. Herein, we report results of an in-house screening campaign that allowed us to identify 4-[4-(aryl)-1H-1,2,3-triazol-1-yl]benzenesulfonamides, prepared by the “click chemistry” approach, as novel potential HIV-1 RNase H inhibitors. Three compounds (9d, 10c, and 10d) demonstrated a selective inhibitory activity against the HIV-1 RNase H enzyme at micromolar concentrations. Drug-likeness, predicted by the calculation of a panel of physicochemical and ADME properties, putative binding modes for the active compounds, assessed by computational molecular docking, as well as a mechanistic hypothesis for this novel chemotype are reported. PMID:27556447
Ariën, Kevin K; Venkatraj, Muthusamy; Michiels, Johan; Joossens, Jurgen; Vereecken, Katleen; Van der Veken, Pieter; Abdellati, Saïd; Cuylaerts, Vicky; Crucitti, Tania; Heyndrickx, Leo; Heeres, Jan; Augustyns, Koen; Lewi, Paul J; Vanham, Guido
2013-09-01
Pre-exposure prophylaxis and topical microbicides are important strategies in the prevention of sexual HIV transmission, especially since partial protection has been shown in proof-of-concept studies. In search of new candidate drugs with an improved toxicity profile and with activity against common non-nucleoside reverse transcriptase inhibitor (NNRTI)-resistant HIV, we have synthesized and investigated a library of 60 new diaryltriazine analogues. From this library, 15 compounds were evaluated in depth using a broad armamentarium of in vitro assays that are part of a preclinical testing algorithm for microbicide development. Antiviral activity was assessed in a cell line, and in primary human cells, against both subtype B and subtype C HIV-1 and against viruses resistant to therapeutic NNRTIs and the candidate NNRTI microbicide dapivirine. Toxicity towards primary blood-derived cells, cell lines originating from the female reproductive tract and female genital microflora was also studied. We identified several compounds with highly potent antiviral activity and toxicity profiles that are superior to that of dapivirine. In particular, compound UAMC01398 is an interesting new candidate that warrants further investigation because of its superior toxicity profile and potent activity against dapivirine-resistant viruses.
Emtricitabine: a once-daily nucleoside reverse transcriptase inhibitor.
Modrzejewski, Krysten A; Herman, Ronald A
2004-06-01
To review the pharmacology, virology, pharmacokinetics, safety, and efficacy of the nucleoside reverse transcriptase inhibitor (NRTI) emtricitabine. English-language reports were accessed using MEDLINE (1966-June 2003) and the Iowa Drug Information Service database (1966-June 2003) using emtricitabine and Coviracil as key words. (Coviracil was the proposed trade name for the product prior to approval.) The Internet was also searched using the terms HIV/AIDS conferences, then emtricitabine within the conference proceedings. Abstracts, posters, and oral presentations from scientific conferences, both published and unpublished, were included. Preference was given to published controlled trials. Studies providing a description of the pharmacology, virology, effectiveness, safety, or pharmacokinetics of emtricitabine were used in this review. Emtricitabine is an NRTI used to treat HIV-1 infection. Once-daily administration can decrease pill burden and potentially increase adherence to multidrug HIV therapy. Further, emtricitabine has shown equivalent or improved outcomes compared with lamivudine and stavudine. Emtricitabine is a safe and effective option for HIV-1 infection in adults as part of a multidrug regimen. It may be a better alternative than lamivudine for once-daily therapy because of its extended intracellular half-life and better than lamivudine and stavudine because of a possibly decreased potential for drug resistance.
Ngai, Patrick H K; Ng, T B
2003-11-14
From the fruiting bodies of the edible mushroom Lentinus edodes, a novel protein designated lentin with potent antifungal activity was isolated. Lentin was unadsorbed on DEAE-cellulose, and adsorbed on Affi-gel blue gel and Mono S. The N-terminal sequence of lentin manifested similarity to endoglucanase. Lentin, which had a molecular mass of 27.5 kDa, inhibited mycelial growth in a variety of fungal species including Physalospora piricola, Botrytis cinerea and Mycosphaerella arachidicola. Lentin also exerted an inhibitory activity on HIV-1 reverse transcriptase and proliferation of leukemia cells.
Samuele, Alberta; Facchini, Marcella; Rotili, Dante; Mai, Antonello; Artico, Marino; Armand-Ugón, Mercedes; Esté, José A; Maga, Giovanni
2008-09-01
We recently reported the synthesis and biological evaluation of a novel series of 5-alkyl-2-(N,N-disubstituted)amino-6-(2,6-difluorophenylalkyl)-3,4-dihydropyrimidin-4(3H)-ones (F(2)-N,N-DABOs). These compounds are highly active against both wild-type HIV-1 and the K103N, Y181C, and Y188L mutant strains. Herein we present novel 6-(2-chloro-6-fluorophenylalkyl)-N,N-DABO (2-Cl-6-F-N,N-DABO) derivatives and investigate the molecular basis for their high-affinity binding to HIV-1 reverse transcriptase (RT). Our results show that the new compounds display higher association rates than the difluoro derivatives toward wild-type HIV-1 RT or drug-resistant RT mutant forms. We also show that they preferentially associate to either the free enzyme or the enzyme-nucleic acid binary complex, and that this binding is stabilized upon formation of the ternary complex between HIV-1 RT and both the nucleic acid and nucleotide substrates. Interestingly, one compound showed dissociation rates from the ternary complex with RT mutants K103N and Y181I 10-20-fold slower than from the corresponding complex with wild-type RT.
Hartman, Tracy L; Yang, Lu; Buckheit, Robert W
2011-12-01
Structure-activity relationship evaluation of seventy-four 2,4(1H,3H)-pyrimidinedione derivatives identified seven lead compounds based on anti-HIV-1 potency, extended range of action to include HIV-2, virus entry inhibition, reverse transcriptase inhibition, and lack of cytotoxicity to human cells. The selected pyrimidinedione congeners are highly active inhibitors of HIV-1 with EC(50) values ranging from 0.6 to 2 nM in CEM-SS cells infected with laboratory derived viruses, 11-20 nM in fresh human PBMCs infected with subtype B (HT/92/599) virus, and 2-7 nM in PBMCs infected with the clinical subtype C (ZA/97/003) virus. Combination antiviral assays were performed using the laboratory adapted RF strain of HIV-1 in CEM-SS cells and with a clade B and C low passage clinical isolate in fresh human peripheral mononuclear cells and the compound interactions were analyzed using MacSynergy II. The seven pyrimidinedione compounds resulted in additive to synergistic interactions in combination with entry and fusion inhibitors, nonnucleoside and nucleoside reverse transcriptase inhibitors, and the protease inhibitors. No evidence of antagonistic antiviral activity or synergistic cytotoxicity was detected with the combinations of compounds tested. The dual mechanism of action of the pyrimidinediones resulting in inhibition of both virus entry and reverse transcription suggests excellent potential of these lead pyrimidinediones as candidates for combination therapy with other approved HIV inhibitors of varying mechanism of action. Copyright © 2011. Published by Elsevier B.V.
Vaz, Sara Nunes; Giovanetti, Marta; Rego, Filipe Ferreira de Almeida; Oliveira, Tulio de; Danaviah, Siva; Gonçalves, Maria Luiza Freire; Alcantara, Luiz Carlos Junior; Brites, Carlos
2015-10-01
Approximately 35 million people worldwide are infected with human immunodeficiency virus (HIV) around 3.2 million of whom are children under 15 years. Mother-to-child-transmission (MTCT) of HIV-1 accounts for 90% of all infections in children. Despite great advances in the prevention of MTCT in Brazil, children are still becoming infected. Samples from 19 HIV-1-infected families were collected. DNA was extracted and fragments from gag, pol, and env were amplified and sequenced directly. Phylogenetic reconstruction was performed. Drug resistance analyses were performed in pol and env sequences. We found 82.1% of subtype B and 17.9% of BF recombinants. A prevalence of 43.9% drug resistance-associated mutations in pol sequences was identified. Of the drug-naive children 33.3% presented at least one mutation related to protease inhibitor/nucleoside reverse transcriptase inhibitor/nonnucleoside reverse transcriptase inhibitor (PI/NRTI/NNRTI) resistance. The prevalence of transmitted drug resistance mutations was 4.9%. On env we found a low prevalence of HR1 (4.9%) and HR2 (14.6%) mutations.
Fujihashi, T; Hara, H; Sakata, T; Mori, K; Higuchi, H; Tanaka, A; Kaji, H; Kaji, A
1995-09-01
Halogenated gomisin J (a derivative of lignan compound), represented by the bromine derivative 1506 [(6R, 7S, S-biar)-4,9-dibromo-3,10-dihydroxy-1,2,11,12-tetramethoxy-6, 7-dimethyl-5,6,7,8- tetrahydrodibenzo[a,c]cyclo-octene], was found to be a potent inhibitor of the cytopathic effects of human immunodeficiency virus type 1 (HIV-1) on MT-4 human T cells (50% effective dose, 0.1 to 0.5 microM). Gomisin J derivatives were active in preventing p24 production from acutely HIV-1-infected H9 cells. The selective indices (toxic dose/effective dose) of these compounds were as high as > 300 in some systems. 1506 was active against 3'-azido-3'-deoxythymidine-resistant HIV-1 and acted synergistically with AZT and 2',3'-ddC. 1506 inhibited HIV-1 reverse transcriptase (RT) in vitro but not HIV-1 protease. From the time-of-addition experiment, 1506 was found to inhibit the early phase of the HIV life cycle. A 1506-resistant HIV mutant was selected and shown to possess a mutation within the RT-coding region (at position 188 [Tyr to Leu]). The mutant RT expressed in Escherichia coli was resistant to 1506 in the in vitro RT assay. Some of the HIV strains resistant to other nonnucleoside HIV-1 RT inhibitors were also resistant to 1506. Comparison of various gomisin J derivatives with gomisin J showed that iodine, bromine, and chlorine in the fourth and ninth positions increased RT inhibitory activity as well as cytoprotective activity.
Altawalah, Haya; Al-Nakib, Widad
2014-01-01
In the early 1980s, the World Health Organization (WHO) designated the Virology Unit of the Faculty of Medicine, Health Sciences Centre, Kuwait University, Kuwait, a collaborating centre for AIDS for the Eastern Mediterranean Regional Office (EMRO), recognizing it to be in compliance with WHO guidelines. In this centre, research integral to the efforts of WHO to combat AIDS is conducted. In addition to annual workshops and symposia, the centre is constantly updating and renewing its facilities and capabilities in keeping with current and latest advances in virology. As an example of the activities of the centre, the HIV-1 RNA viral load in plasma samples of HIV-1 patients is determined by real-time PCR using the AmpliPrep TaqMan HIV-1 test v2.0. HIV-1 drug resistance is determined by sequencing the reverse transcriptase and protease regions on the HIV-1 pol gene, using the TRUGENE HIV-1 Genotyping Assay on the OpenGene® DNA Sequencing System. HIV-1 subtypes are determined by sequencing the reverse transcriptase and protease regions on the HIV-1 pol gene using the genotyping assays described above. A fundamental program of Kuwait's WHO AIDS collaboration centre is the national project on the surveillance of drug resistance in human deficiency virus in Kuwait, which illustrates how the centre and its activities in Kuwait can serve the EMRO region of WHO. © 2014 S. Karger AG, Basel.
Matamoros, Tania; Barrioluengo, Verónica; Abia, David; Menéndez-Arias, Luis
2013-12-23
At high temperatures, RNA denaturation can improve the efficiency and specificity of reverse transcription. Refined structures and molecular models of HIV-1 reverse transcriptases (RTs) from phylogenetically distant clades (i.e., group M subtype B and group O) revealed a major interaction between the template-primer and the Arg³⁵⁸-Gly³⁵⁹-Ala³⁶⁰ triad in the large subunit of HIV-1M/B RT. However, fewer contacts were predicted for the equivalent Lys³⁵⁸-Ala³⁵⁹-Ser³⁶⁰ triad of HIV-1O RT and the nucleic acid. An engineered HIV-1O K358R/A359G/S360A RT showed increased cDNA synthesis efficiency above 68 °C, as determined by qualitative and quantitative reverse transcription polymerase chain reactions. In comparison with wild-type HIV-1O RT, the mutant enzyme showed higher thermal stability but retained wild-type RNase H activity. Mutations that increased the accuracy of HIV-1M/B RTs were tested in combination with the K358R/A359G/S360A triple mutation. Some of them (e.g., F61A, K65R, K65R/V75I, and V148I) had a negative effect on reverse transcription efficiency above 65 °C. RTs with improved DNA binding affinities also showed higher cDNA synthesis efficiencies at elevated temperatures. Two of the most thermostable RTs (i.e., mutants T69SSG/K358R/A359G/S360A and K358R/A359G/S360A/E478Q) showed moderately increased fidelity in forward mutation assays. Our results demonstrate that the triad of Arg³⁵⁸, Gly³⁵⁹, and Ala³⁶⁰ in the major groove binding track of HIV-1 RT is a major target for RT stabilization, and most relevant for improving reverse transcription efficiency at high temperatures.
Bertine, Mélanie; Charpentier, Charlotte; Visseaux, Benoit; Storto, Alexandre; Collin, Gilles; Larrouy, Lucile; Damond, Florence; Matheron, Sophie; Brun-Vézinet, Françoise; Descamps, Diane
2015-04-24
In HIV-1, hypermutation introduced by APOBEC3F/3G cytidine deaminase activity leads to defective viruses. In-vivo impact of APOBEC3F/3G editing on HIV-2 sequences remains unknown. The objective of this study was to assess the level of APOBEC3F/3G editing in HIV-2-infected antiretroviral-naive patients. Direct sequencing of vif and pol regions was performed on HIV-2 proviral DNA from antiretroviral-naive patients included in the French Agence Nationale de Recherches sur le SIDA et les hépatites virales CO5 HIV-2 cohort. Hypermutated sequences were identified using Hypermut2.0 program. HIV-1 proviral sequences from Genbank were also assessed. Among 82 antiretroviral-naive HIV-2-infected patients assessed, 15 (28.8%) and five (16.7%) displayed Vif proviral defective sequences in HIV-2 groups A and B, respectively. A lower proportion of defective sequences was observed in protease-reverse transcriptase region. A higher median number of G-to-A mutations was observed in HIV-2 group B than in group A, both in Vif and protease-reverse transcriptase regions (P = 0.02 and P = 0.006, respectively). Compared with HIV-1 Vif sequences, a higher number of Vif defective sequences was observed in HIV-2 group A (P = 0.00001) and group B sequences (P = 0.013). We showed for the first time a high level of APOBEC3F/3G editing in HIV-2 sequences from antiretroviral-naive patients. Our study reported a group effect with a significantly higher level of APOBEC3F/3G editing in HIV-2 group B than in group A sequences.
Re, Maria Carla; Schiavone, Pasqua; Bon, Isabella; Vitone, Francesca; De Crignis, Elisa; Biagetti, Carlo; Gibellini, Davide
2010-11-01
To evaluate the evolution of antibody avidity and Western blot reactivity in recently infected HIV-1 subjects and to study the impact of highly active antiretroviral therapy (HAART) on avidity maturation of HIV-1-specific immunoglobulin G (IgG) in patients with recent HIV-1 infection. Thirty-six HIV-1 seroconverters were enrolled in this study and followed longitudinally over 24 months to evaluate if the administration of antiretroviral therapy during primary infection affects Western blot reactivity and the evolution of antibody avidity. The patients were divided into two groups; group A consisted of 19 HIV-1-untreated patients who did not receive any drug treatment during our follow-up period; group B consisted of 17 subjects who were treated early with an association of two nucleoside reverse transcriptase inhibitors (NRTI) and one non-nucleoside reverse transcriptase inhibitor (NNRTI) within 3 months after seroconversion. At diagnosis, Western blot analysis and avidity index (mean value) were exactly matched in untreated and treated patients; subsequently, however, a significantly lower reactivity to HIV-1 pol and gag proteins and a lower avidity index (mean values) were observed in HAART-treated patients up until the end of the follow-up period. The impaired production and maturation of the humoral immunological response in antiretroviral-treated patients might be related to a rapid suppression of HIV replication, driven by HAART. These results could have important implications in understanding the complex mechanism of the immune response during HIV infection. Copyright © 2010 International Society for Infectious Diseases. Published by Elsevier Ltd. All rights reserved.
TNF α is involved in neuropathic pain induced by nucleoside reverse transcriptase inhibitor in rats
Zheng, Xuexing; Ouyang, Handong; Liu, Shue; Mata, Marina; Fink, David J.; Hao, Shuanglin
2011-01-01
In patients with HIV/AIDS, neuropathic pain is a common neurological complication. Infection with the HIV itself may lead to neuropathic pain, and painful symptoms are enhanced when patients are treated with nucleoside reverse transcriptase inhibitors (NRTI). The mechanisms by which NRTIs contribute to the development of neuropathic pain are not known. In the current studies, we tested the role of TNFα in antiretroviral drug-induced neuropathic pain. We administered 2′,3′-dideoxycytidine (ddC, one of the NRTIs) systemically to induce mechanical allodynia. We found that ddC induced overexpression of both mRNA and proteins of GFAP and TNFα in the spinal dorsal horn. TNFα was colocalized with GFAP in the spinal dorsal horn and with NeuN in the DRG. Knockdown of TNFα with siRNA blocked the mechanical allodynia induced by ddC. Intrathecal administration of glial inhibitor or recombinant TNF soluble receptor, reversed mechanical allodynia induced by ddC. These results suggest that TNFα is involved in NRTI-induced neuropathic pain. PMID:21741472
Cullen, Matthew D.; Ho, William C.; Bauman, Joseph D.; Das, Kalyan; Arnold, Eddy; Hartman, Tracy L.; Watson, Karen M.; Buckheit, Robert W.; Pannecouque, Christophe; De Clercq, Erik; Cushman, Mark
2009-01-01
Two crystal structures have been solved for separate complexes of alkenyldiarylmethane (ADAM) non-nucleoside reverse transcriptase inhibitors (NNRTI) 3 and 4 with HIV-1 reverse transcriptase (RT). The structures reveal inhibitor binding is exclusively hydrophobic in nature and the shape of the inhibitor-bound NNRTI binding pocket is unique among other reported inhibitor-RT crystal structures. Primarily, ADAMs 3 and 4 protrude from a large gap in the backside of the binding pocket, placing portions of the inhibitors unusually close to the polymerase active site and allowing 3 to form a weak hydrogen bond with Lys223. The lack of additional stabilizing interactions, beyond the observed hydrophobic surface contacts, between 4 and RT is quite perplexing given the extreme potency of the compound (IC50 ≤ nM). ADAM 4 was designed to be hydrolytically stable in blood plasma, and an investigation of its hydrolysis in rat plasma demonstrated it has a significantly prolonged half-life in comparison to ADAM lead compounds 1 and 2. PMID:19775161
Monforte, Anna-Maria; Ferro, Stefania; De Luca, Laura; Lo Surdo, Giuseppa; Morreale, Francesca; Pannecouque, Christophe; Balzarini, Jan; Chimirri, Alba
2014-02-15
A series of novel N1-aryl-2-arylthioacetamido-benzimidazoles were synthesized and evaluated as inhibitors of human immunodeficiency virus type-1 (HIV-1). Some of them proved to be effective in inhibiting HIV-1 replication at submicromolar and nanomolar concentration acting as HIV-1 non-nucleoside RT inhibitors (NNRTIs), with low cytotoxicity. The preliminary structure-activity relationship (SAR) of these new derivatives was discussed and rationalized by docking studies. Copyright © 2014 Elsevier Ltd. All rights reserved.
Avi, Radko; Huik, Kristi; Pauskar, Merit; Ustina, Valentina; Karki, Tõnis; Kallas, Eveli; Jõgeda, Ene-Ly; Krispin, Tõnu; Lutsar, Irja
2014-03-01
The presence of transmitted drug resistance (TDR) in treatment-naive HIV-1-positive subjects is of concern, especially in the countries of the former Soviet Union in which the number of subjects exposed to antiretrovirals (ARV) has exponentially increased during the past decade. We assessed the rate of TDR among newly diagnosed subjects in Estonia in 2010 and compared it to that in 2008. The study included 325 subjects (87% of all subjects tested HIV positive from January 1 to December 31, 2010). Of the 244 sequenced viral genomic RNA in the reverse transcriptase (RT) region 214 were CRF06_cpx, nine were subtype A1, three (one each) were subtype B and subtype C, CRF02_AG, and CRF03_AB; 15 viruses remained unclassified as putative recombinant forms between CRF06_cpx and subtype A1. HIV-1 TDR mutations in 2010 and 2008 (n=145) occurred at similar frequency in 4.5% (95% CI 2.45; 7.98) and 5.5% (95% CI 1.8; 9.24) of the patients, respectively. In 2010, 2.5% (6/244) of the sequences harbored nonnucleoside reverse transcriptase inhibitor (NNRTI) (K103N and K101E), 1.6% (4/244) nucleoside reverse transcriptase inhibitor (NRTI) (M41L, M184I, and K219E), and 0.4% (1/244) protease inhibitor (PI) (V82A) mutations. Our findings indicate that in spite of the increased consumption of ARVs the rate of TDR in Estonia has remained unchanged over the past 3 years. Similar stabilizing or even decreasing trends have been described in Western Europe and North America albeit at higher levels and in different socioeconomic backgrounds.
Paquet, Agnes C; Solberg, Owen D; Napolitano, Laura A; Volpe, Joseph M; Walworth, Charles; Whitcomb, Jeannette M; Petropoulos, Christos J; Haddad, Mojgan
2014-01-01
Drug resistance testing and co-receptor tropism determination are key components of the management of antiretroviral therapy for HIV-1-infected individuals. The purpose of this study was to examine trends of HIV-1 resistance and viral evolution in the past decade by surveying a large commercial patient testing database. Temporal trends of drug resistance, viral fitness and co-receptor usage among samples submitted for routine phenotypic and genotypic resistance testing to protease inhibitors (PIs), nucleoside reverse transcriptase inhibitors (NRTIs) and non-nucleoside reverse transcriptase inhibitors (NNRTIs), as well as for tropism determination were investigated. Within 62,397 resistant viruses reported from 2003 to 2012, we observed a decreasing trend in the prevalence of three-class resistance (from 25% to 9%) driven by decreased resistance to PIs (43% to 21%) and NRTIs (79% to 57%), while observing a slight increase in NNRTI resistance (68% to 75%). The prevalence of CXCR4-mediated entry among tropism testing samples (n=52,945) declined over time from 47% in 2007 to 40% in 2012. A higher proportion of CXCR4-tropic viruses was observed within samples with three-class resistance (50%) compared with the group with no resistance (36%). Decreased prevalence of three-class resistance and increased prevalence of one-class resistance was observed within samples reported between 2003 and 2012. The fraction of CXCR4-tropic viruses has decreased over time; however, CXCR4 usage was more prevalent among multi-class-resistant samples, which may be due to the more advanced disease stage of treatment-experienced patients. These trends have important implications for clinical practice and future drug discovery and development.
In Vitro Characterization of MK-1439, a Novel HIV-1 Nonnucleoside Reverse Transcriptase Inhibitor
Feng, Meizhen; Falgueyret, Jean-Pierre; Tawa, Paul; Witmer, Marc; DiStefano, Daniel; Li, Yuan; Burch, Jason; Sachs, Nancy; Lu, Meiqing; Cauchon, Elizabeth; Campeau, Louis-Charles; Grobler, Jay; Yan, Youwei; Ducharme, Yves; Côté, Bernard; Asante-Appiah, Ernest; Hazuda, Daria J.; Miller, Michael D.
2014-01-01
Nonnucleoside reverse transcriptase inhibitors (NNRTIs) are a mainstay of therapy for treating human immunodeficiency type 1 virus (HIV-1)-infected patients. MK-1439 is a novel NNRTI with a 50% inhibitory concentration (IC50) of 12, 9.7, and 9.7 nM against the wild type (WT) and K103N and Y181C reverse transcriptase (RT) mutants, respectively, in a biochemical assay. Selectivity and cytotoxicity studies confirmed that MK-1439 is a highly specific NNRTI with minimum off-target activities. In the presence of 50% normal human serum (NHS), MK-1439 showed excellent potency in suppressing the replication of WT virus, with a 95% effective concentration (EC95) of 20 nM, as well as K103N, Y181C, and K103N/Y181C mutant viruses with EC95 of 43, 27, and 55 nM, respectively. MK-1439 exhibited similar antiviral activities against 10 different HIV-1 subtype viruses (a total of 93 viruses). In addition, the susceptibility of a broader array of clinical NNRTI-associated mutant viruses (a total of 96 viruses) to MK-1439 and other benchmark NNRTIs was investigated. The results showed that the mutant profile of MK-1439 was superior overall to that of efavirenz (EFV) and comparable to that of etravirine (ETR) and rilpivirine (RPV). Furthermore, E138K, Y181C, and K101E mutant viruses that are associated with ETR and RPV were susceptible to MK-1439 with a fold change (FC) of <3. A two-drug in vitro combination study indicated that MK-1439 acts nonantagonistically in the antiviral activity with each of 18 FDA-licensed drugs for HIV infection. Taken together, these in vitro data suggest that MK-1439 possesses the desired properties for further development as a new antiviral agent. PMID:24379202
Crowell, Claudia S; Maiga, Almoustapha I; Sylla, Mariam; Taiwo, Babafemi; Kone, Niaboula; Oron, Assaf P; Murphy, Robert L; Marcelin, Anne-Geneviève; Traore, Ban; Fofana, Djeneba B; Peytavin, Gilles; Chadwick, Ellen G
2017-11-01
Limited data exist on drug resistance and antiretroviral treatment (ART) outcomes in HIV-1-infected children in West Africa. We determined the prevalence of baseline resistance and correlates of virologic failure (VF) in a cohort of ART-naive HIV-1-infected children <10 years of age initiating ART in Mali. Reverse transcriptase and protease genes were sequenced at baseline (before ART) and at 6 months. Resistance was defined according to the Stanford HIV Genotypic Resistance database. VF was defined as viral load ≥1000 copies/mL after 6 months of ART. Logistic regression was used to evaluate factors associated with VF or death >1 month after enrollment. Post hoc, antiretroviral concentrations were assayed on baseline samples of participants with baseline resistance. One-hundred twenty children with a median age 2.6 years (interquartile range: 1.6-5.0) were included. Eighty-eight percent reported no prevention of mother-to-child transmission exposure. At baseline, 27 (23%), 4 (3%) and none had non-nucleoside reverse transcriptase inhibitor (NNRTI), nucleoside reverse transcriptase inhibitor or protease inhibitor resistance, respectively. Thirty-nine (33%) developed VF and 4 died >1 month post-ART initiation. In multivariable analyses, poor adherence [odds ratio (OR): 6.1, P = 0.001], baseline NNRTI resistance among children receiving NNRTI-based ART (OR: 22.9, P < 0.001) and protease inhibitor-based ART initiation among children without baseline NNRTI resistance (OR: 5.8, P = 0.018) were significantly associated with VF/death. Ten (38%) with baseline resistance had detectable levels of nevirapine or efavirenz at baseline; 7 were currently breastfeeding, but only 2 reported maternal antiretroviral use. Baseline NNRTI resistance was common in children without reported NNRTI exposure and was associated with increased risk of treatment failure. Detectable NNRTI concentrations were present despite few reports of maternal/infant antiretroviral use.
Verweij-van Wissen, C P W G M; Aarnoutse, R E; Burger, D M
2005-02-25
A reversed phase high performance liquid chromatography method was developed for the simultaneous quantitative determination of the nucleoside reverse transcriptase inhibitors (NRTIs) lamivudine, didanosine, stavudine, zidovudine and abacavir in plasma. The method involved solid-phase extraction with Oasis MAX cartridges from plasma, followed by high performance liquid chromatography with a SymmetryShield RP 18 column and ultraviolet detection set at a wavelength of 260 nm. The assay was validated over the concentration range of 0.015-5 mg/l for all five NRTIs. The average accuracies for the assay were 92-102%, inter- and intra-day coefficients of variation (CV) were <2.5% and extraction recoveries were higher than 97%. This method proved to be simple, accurate and precise, and is currently in use in our laboratory for the quantitative analysis of NRTIs in plasma.
SJ-3366 Sam Jin Pharmaceutical.
Baba, Masanori
2002-08-01
Sam Jin is investigating SJ-3366, a non-nucleoside reverse transcriptase inhibitor (NNRTI), for the potential treatment of HIV infection [302450]. As well as acting as an NNRTI, SJ-3366 also interferes with HIV-1 entry via an intermediate target formed after virus-cell attachment [341146], [363900]. As of June 1998, Sam Jin had been awarded a patent for SJ-3366 in South Africa, with applications pending in 22 other countries [302450].
Deshpande, Alake; Karki, Surendra; Recordon-Pinson, Patricia; Fleury, Herve J
2011-12-01
More than 50 HIV-1-infected patients, naive of antiretroviral therapy (ART) but eligible for first line ART in JJ Hospital, Mumbai, India were investigated for surveillance drug resistance mutations (SDRMs); all but one virus belonged to subtype C; we could observe SDRMs to nonnucleoside reverse transcriptase inhibitors and protease inhibitors in 9.6% of the patients.
Shafer, Robert W.; Hertogs, Kurt; Zolopa, Andrew R.; Warford, Ann; Bloor, Stuart; Betts, Bradley J.; Merigan, Thomas C.; Harrigan, Richard; Larder, Brendon A.
2001-01-01
We assessed the reproducibility of human immunodeficiency virus type 1 (HIV-1) reverse transcriptase (RT) and protease sequencing using cryopreserved plasma aliquots obtained from 46 heavily treated HIV-1-infected individuals in two laboratories using dideoxynucleotide sequencing. The rates of complete sequence concordance between the two laboratories were 99.1% for the protease sequence and 99.0% for the RT sequence. Approximately 90% of the discordances were partial, defined as one laboratory detecting a mixture and the second laboratory detecting only one of the mixture's components. Only 0.1% of the nucleotides were completely discordant between the two laboratories, and these were significantly more likely to occur in plasma samples with lower plasma HIV-1 RNA levels. Nucleotide mixtures were detected at approximately 1% of the nucleotide positions, and in every case in which one laboratory detected a mixture, the second laboratory either detected the same mixture or detected one of the mixture's components. The high rate of concordance in detecting mixtures and the fact that most discordances between the two laboratories were partial suggest that most discordances were caused by variation in sampling of the HIV-1 quasispecies by PCR rather than by technical errors in the sequencing process itself. PMID:11283081
Markowitz, Martin; Sarafianos, Stefan G
2018-07-01
4'-Ethynyl-2-fluoro-2'-deoxyadenosine (EFdA) is a nucleoside reverse transcriptase inhibitor (NRTI) with a novel mechanism of action, unique structure, and amongst NRTIs, unparalleled anti-HIV-1 activity. We will summarize its structure and function, antiviral activity, resistance profile, and potential as an antiretroviral for use in the treatment and preexposure prophylaxis of HIV-1 infection. EFdA is active against wild-type (EC50 as low as 50 pmol/l) and most highly NRTI-resistant viruses. The active metabolite, EFdA-triphosphate, has been shown to have a prolonged intracellular half-life in human and rhesus (Rh) blood cells. As a result, single drug doses tested in simian immunodeficiency virus mac251-infected Rh macaques and HIV-1-infected individuals exhibited robust antiviral activity of 7-10 days duration. Preclinical studies of EFdA as preexposure prophylaxis in the Rh macaque/simian/human immunodeficiency virus low-dose intrarectal challenge model have shown complete protection when given in clinically relevant doses. EFdA is a novel antiretroviral with activity against both wild-type and NRTI-resistant viruses. As a result of the prolonged intracellular half-life of its active moiety, it is amenable to flexibility in dosing of at least daily to weekly and perhaps longer.
Low prevalence of primary HIV resistance in western Massachusetts.
Iarikov, Dmitri E; Irizarry-Acosta, Melina; Martorell, Claudia; Hoffman, Robert P; Skiest, Daniel J
2010-01-01
Most studies of primary antiretroviral (ARV) resistance have been conducted in large metropolitan areas with reported rates of 8% to 25%. We collected data on 99 HIV-1-infected antiretroviral-naive patients from several sites in Springfield, MA, who underwent genotypic resistance assay between 2004 and 2008. Only major resistance mutations per International AIDS Society-USA (IAS-USA) drug resistance mutations list were considered. The prevalence of resistance was 5% (5 of 99). Three patients had one nonnucleoside reverse transcriptase inhibitor (NNRTI) mutation: 103N, 103N, and 190A, 1 patient had a protease inhibitor (PI) mutation: 90M; and 1 patient had 3-class resistance with NNRTI: 181C, 190A, PI: 90M, and nucleoside analogue reverse transcriptase inhibitor (NRTI): 41L, 210W. Mean time from HIV diagnosis to resistance testing was shorter in patients with resistance versus those without: 9 (range 0.3-42 months) versus 27 (range 0.1-418 months), P = .11. There was a trend to lower mean CD4 count in those with resistance, 170 versus 318 cells/mm(3), P = .06. No differences were noted in gender, age, HIV risk category, or HIV RNA level. The low prevalence of primary resistance may be explained by differences in demographic and risk factors or may reflect the time from infection to resistance testing. Our findings emphasize the importance of continued resistance surveillance.
Kinloch, Natalie N.; Lapointe, Hope R.; Cobarrubias, Kyle D.; Foster, Byron A.; Jerene, Degu; Makonnen, Eyasu; Brumme, Zabrina L.
2018-01-01
Clinical monitoring of pediatric HIV treatment remains a major challenge in settings where drug resistance genotyping is not routinely available. As a result, our understanding of drug resistance, and its impact on subsequent therapeutic regimens available in these settings, remains limited. We investigate the prevalence and correlates of HIV-1 drug resistance among 94 participants of the Ethiopia Pediatric HIV Cohort failing first-line combination antiretroviral therapy (cART) using dried blood spot-based genotyping. Overall, 81% (73/90) of successfully genotyped participants harbored resistance mutations, including 69% (62/90) who harbored resistance to both Nucleoside Reverse Transcriptase Inhibitors (NRTIs) and Non-nucleoside Reverse Transcriptase Inhibitors (NNRTIs). Strikingly, 42% of resistant participants harbored resistance to all four NRTIs recommended for second-line use in this setting, meaning that there are effectively no remaining cART options for these children. Longer cART duration and prior regimen changes were significantly associated with detection of drug resistance mutations. Replicate genotyping increased the breadth of drug resistance detected in 34% of cases, and thus is recommended for consideration when typing from blood spots. Implementation of timely drug resistance testing and access to newer antiretrovirals and drug classes are urgently needed to guide clinical decision-making and improve outcomes for HIV-infected children on first-line cART in Ethiopia. PMID:29389912
Fang, Evandro Fei; Ng, Tzi Bun
2015-04-01
Nephelium lappaceum L., commonly known as "rambutan," is a typical tropical tree and is well known for its juicy and sweet fruit which has an exotic flavor. Chemical studies on rambutan have led to the identification of various components such as monoterpene lactones and volatile compounds. Here, a 22.5-kDa trypsin inhibitor (N . lappaceum trypsin inhibitor (NLTI)) was isolated from fresh rambutan seeds using liquid chromatographical techniques. NLTI reduced the proteolytic activities of both trypsin and α-chymotrypsin. Dithiothreitol reduced the trypsin inhibitory activity of NLTI at a concentration of 1 mM, indicating that an intact disulfide bond is essential to the activity. NLTI inhibited HIV-1 reverse transcriptase with an IC50 of 0.73 μM. In addition, NLTI manifested a time- and dose-dependent inhibitory effect on growth in many tumor cells. NLTI is one of the few trypsin inhibitors with nitric oxide-inducing activity and may find application in tumor therapy.
Corbett, J W; Ko, S S; Rodgers, J D; Jeffrey, S; Bacheler, L T; Klabe, R M; Diamond, S; Lai, C M; Rabel, S R; Saye, J A; Adams, S P; Trainor, G L; Anderson, P S; Erickson-Viitanen, S K
1999-12-01
A research program targeted toward the identification of expanded-spectrum nonnucleoside reverse transcriptase inhibitors which possess increased potency toward K103N-containing mutant human immunodeficiency virus (HIV) and which maintain pharmacokinetics consistent with once-a-day dosing has resulted in the identification of the 4-cyclopropylalkynyl-4-trifluoromethyl-3, 4-dihydro-2(1H)quinazolinones DPC 961 and DPC 963 and the 4-cyclopropylalkenyl-4-trifluoromethyl-3, 4-dihydro-2(1H)quinazolinones DPC 082 and DPC 083 for clinical development. DPC 961, DPC 963, DPC 082, and DPC 083 all exhibit low-nanomolar potency toward wild-type virus, K103N and L100I single-mutation variants, and many multiply amino acid-substituted HIV type 1 mutants. This high degree of potency is combined with a high degree of oral bioavailability, as demonstrated in rhesus monkeys and chimpanzees, and with plasma serum protein binding that can result in significant free levels of drug.
The impact of transmission clusters on primary drug resistance in newly diagnosed HIV-1 infection.
Yerly, Sabine; Junier, Thomas; Gayet-Ageron, Angèle; Amari, Emmanuelle Boffi El; von Wyl, Viktor; Günthard, Huldrych F; Hirschel, Bernard; Zdobnov, Evgeny; Kaiser, Laurent
2009-07-17
To monitor HIV-1 transmitted drug resistance (TDR) in a well defined urban area with large access to antiretroviral therapy and to assess the potential source of infection of newly diagnosed HIV individuals. All individuals resident in Geneva, Switzerland, with a newly diagnosed HIV infection between 2000 and 2008 were screened for HIV resistance. An infection was considered as recent when the positive test followed a negative screening test within less than 1 year. Phylogenetic analyses were performed by using the maximum likelihood method on pol sequences including 1058 individuals with chronic infection living in Geneva. Of 637 individuals with newly diagnosed HIV infection, 20% had a recent infection. Mutations associated with resistance to at least one drug class were detected in 8.5% [nucleoside reverse transcriptase inhibitors (NRTIs), 6.3%; non-nucleoside reverse transcriptase inhibitors (NNRTIs), 3.5%; protease inhibitors, 1.9%]. TDR (P-trend = 0.015) and, in particular, NNRTI resistance (P = 0.002) increased from 2000 to 2008. Phylogenetic analyses revealed that 34.9% of newly diagnosed individuals, and 52.7% of those with recent infection were linked to transmission clusters. Clusters were more frequent in individuals with TDR than in those with sensitive strains (59.3 vs. 32.6%, respectively; P < 0.0001). Moreover, 84% of newly diagnosed individuals with TDR were part of clusters composed of only newly diagnosed individuals. Reconstruction of the HIV transmission networks using phylogenetic analysis shows that newly diagnosed HIV infections are a significant source of onward transmission, particularly of resistant strains, thus suggesting an important self-fueling mechanism for TDR.
Bunupuradah, Torsak; Ananworanich, Jintanat; Chetchotisakd, Ploenchan; Kantipong, Pacharee; Jirajariyavej, Supunnee; Sirivichayakul, Sunee; Munsakul, Warangkana; Prasithsirikul, Wisit; Sungkanuparph, Somnuek; Bowonwattanuwong, Chureeratana; Klinbuayaem, Virat; Petoumenos, Kathy; Hirschel, Bernard; Bhakeecheep, Sorakij; Ruxrungtham, Kiat
2011-01-01
We studied prevalence of etravirine (ETR) and rilpivirine (RPV) resistance in HIV-1 subtype CRF01_AE infection with first-line non-nucleoside reverse transcriptase inhibitor (NNRTI) failure. A total of 225 adults failing two nucleoside reverse transcriptase inhibitors (NRTIs) plus 1 NNRTI in Thailand with HIV RNA>1,000 copies/ml were included. Genotypic resistance results and HIV-1 subtype were interpreted by Stanford DR database. ETR resistance was calculated by the new Monogram weighted score (Monogram WS; ≥ 4 indicating high-level ETR resistance) and by DUET weighted score (DUET WS; 2.5-3.5 and ≥ 4 resulted in intermediate and reduce ETR response, respectively). RPV resistance interpretation was based on previous reports. Median (IQR) age was 38 (34-42) years, 41% were female and CDC A:B:C were 22%:21%:57%. HIV subtypes were 96% CRF01_AE and 4% B. Antiretrovirals at failure were lamivudine (100%), stavudine (93%), nevirapine (90%) and efavirenz (10%) with a median (IQR) duration of 3.4 (1.8-4.5) years. Median (IQR) CD4(+) T-cell count and HIV RNA were 194 (121-280) cells/mm³ and 4.1 (3.6-4.6) log₁₀ copies/ml, respectively. The common NNRTI mutations were Y181C (41%), G190A (22%) and K103N (19%). The proportion of patients with Monogram WS score ≥ 4 was 61.3%. By DUET WS, 49.8% and 7.5% of patients were scored 2.5-3.5 and ≥4, respectively. Only HIV RNA ≥ 4 log₁₀ copies/ml at failure was associated with both Monogram WS ≥ 4 (OR 2.3, 95% CI 1.3-3.9; P=0.003) and DUET WS ≥ 2.5 (OR 1.9, 95% CI 1.1-3.3; P=0.02). The RVP resistance-associated mutations (RAMs) detected were K101P (1.8%), Y181I (2.7%) and Y181V (3.6%). All patients with RPV mutation had ETR resistance. No E138R/E138K mutations were detected. Approximately 60% of patients had high-level ETR resistance. The role of ETR in second-line therapy is limited in late NNRTI failure settings. RVP RAMs were uncommon, but cross-resistance between ETR and RVP was high.
First trimester maternal uterine artery Doppler examination in HIV-positive women.
Savvidou, M D; Samuel, M I; Akolekar, R; Poulton, M; Nicolaides, K H
2011-11-01
The aim of the current study was to assess the effect of maternal HIV infection, treated or untreated, on the degree of placental invasion, as assessed by the pulsatility index of the uterine arteries during a Doppler examination at 11(+0) -13(+6) weeks' gestation. This was a nested case-control study in which a uterine artery Doppler examination was performed in the first trimester in 76 HIV-positive women. Each woman was matched with 30 HIV-negative women. As the pulsatility index of the uterine arteries depends on a number of maternal and fetal characteristics, its values in each case and control were expressed as multiples of the median (MoM) of the unaffected group. Among the 76 HIV-positive women, 33 (43.4%) were on antiretroviral treatment at the time of the Doppler examination, including 14 women (42.4%) on nucleoside reverse transcriptase inhibitors (NRTIs) and a protease inhibitor, 18 women (54.5%) on NRTIs and a nonnucleoside reverse transcriptase inhibitor and one woman (3.1%) on monotherapy. Compared with the HIV-negative women, the HIV-positive women were more likely to be heavier (P<0.01), to be of African origin (P<0.01), to be nonsmokers (P=0.01) and to deliver smaller neonates earlier (P<0.01). The median adjusted pulsatility index of the uterine arteries was not statistically different between the cases and controls [1.07; interquartile range (IQR) 0.85-1.24 MoM vs. 0.99; IQR 0.81-1.20 MoM; P= 0.28] or, in HIV-positive women, between those receiving and not receiving antiretroviral treatment (P=0.12). HIV-positive women with uncomplicated pregnancies have normal placental perfusion in the first trimester of pregnancy. 2011 British HIV Association.
de Béthune, Marie-Pierre
2010-01-01
It is almost 20 years since NNRTIs were identified as a new class of antiretroviral drugs for the treatment of HIV-1 infection. Although they belong to different and diverse chemical families, they share a common and unique mechanism of action: their interaction with HIV-1 reverse transcriptase induces conformational changes that inhibit the catalytic activities of the enzyme. They are characterized by their specificity for HIV-1, which makes them very selective inhibitors of the virus. First generation NNRTIs nevirapine and efavirenz, in combination with other antiretroviral drugs, have become a cornerstone for the treatment of HIV-1 infection, in patients initiating antiretroviral therapy. Further research has led to the discovery and development of next generation NNRTIs with an increased genetic barrier to the development of resistance. Etravirine is the first NNRTI to show sustained virologic efficacy in patients with NNRTI resistant HIV-1. This review covers the NNRTI class of anti-HIV-1 drugs, from the initial discovery of the class in 1990 to the current compounds in clinical development, i.e. around 20 years of research and development efforts. It describes the characteristics of the NNRTIs, their mechanisms of action, HIV-1 resistance to the inhibitors, and the drugs that have been approved for the treatment of HIV-1 infection, or are currently in clinical development. The role of NNRTIs in prevention of HIV transmission is also addressed. This article forms part of a special issue of Antiviral Research marking the 25th anniversary of antiretroviral drug discovery and development, vol. 85, issue 1, 2010. Copyright 2009 Elsevier B.V. All rights reserved.
Vairo, Francesco; Nicastri, Emanuele; Liuzzi, Giuseppina; Chaula, Zainab; Nguhuni, Boniface; Bevilacqua, Nazario; Forbici, Federica; Amendola, Alessandra; Fabeni, Lavinia; De Nardo, Pasquale; Perno, Carlo Federico; Cannas, Angela; Sakhoo, Calistus; Capobianchi, Maria Rosaria; Ippolito, Giuseppe
2013-09-21
HIV resistance affects virological response to therapy and efficacy of prophylaxis in mother-to-child-transmission. The study aims to assess the prevalence of HIV primary resistance in pregnant women naïve to antiretrovirals. Cross sectional baseline analysis of a cohort of HIV + pregnant women (HPW) enrolled in the study entitled Antiretroviral Management of Antenatal and Natal HIV Infection (AMANI, peace in Kiswahili language). The AMANI study began in May 2010 in Dodoma, Tanzania. In this observational cohort, antiretroviral treatment was provided to all women from the 28th week of gestation until the end of the breastfeeding period. Baseline CD4 cell count, viral load and HIV drug-resistance genotype were collected. Drug-resistance analysis was performed on 97 naïve infected-mothers. The prevalence of all primary drug resistance and primary non-nucleoside reverse-transcriptase inhibitors resistance was 11.9% and 7.5%, respectively. K103S was found in two women with no M184V detection. HIV-1 subtype A was the most commonly identified, with a high prevalence of subtype A1, followed by C, D, C/D recombinant, A/C recombinant and A/D recombinant. HIV drug- resistance mutations were detected in A1 and C subtypes. Our study reports an 11.9% prevalence rate of primary drug resistance in naïve HIV-infected pregnant women from a remote area of Tanzania. Considering that the non-nucleoside reverse-transcriptase inhibitors are part of the first-line antiretroviral regimen in Tanzania and all of Africa, resistance surveys should be prioritized in settings where antiretroviral therapy programs are scaled up.
Xu, Hong-Tao; Colby-Germinario, Susan P.; Huang, Wei; Oliveira, Maureen; Han, Yingshan; Quan, Yudong; Petropoulos, Christos J.
2013-01-01
Resistance to the recently approved nonnucleoside reverse transcriptase inhibitor (NNRTI) rilpivirine (RPV) commonly involves substitutions at positions E138K and K101E in HIV-1 reverse transcriptase (RT), together with an M184I substitution that is associated with resistance to coutilized emtricitabine (FTC). Previous biochemical and virological studies have shown that compensatory interactions between substitutions E138K and M184I can restore enzyme processivity and the viral replication capacity. Structural modeling studies have also shown that disruption of the salt bridge between K101 and E138 can affect RPV binding. The current study was designed to investigate the impact of K101E, alone or in combination with E138K and/or M184I, on drug susceptibility, viral replication capacity, and enzyme function. We show here that K101E can be selected in cell culture by the NNRTIs etravirine (ETR), efavirenz (EFV), and dapivirine (DPV) as well as by RPV. Recombinant RT enzymes and viruses containing K101E, but not E138K, were highly resistant to nevirapine (NVP) and delavirdine (DLV) as well as ETR and RPV, but not EFV. The addition of K101E to E138K slightly enhanced ETR and RPV resistance compared to that obtained with E138K alone but restored susceptibility to NVP and DLV. The K101E substitution can compensate for deficits in viral replication capacity and enzyme processivity associated with M184I, while M184I can compensate for the diminished efficiency of DNA polymerization associated with K101E. The coexistence of K101E and E138K does not impair either viral replication or enzyme fitness. We conclude that K101E can play a significant role in resistance to RPV. PMID:24002090
Xu, Hong-Tao; Colby-Germinario, Susan P; Huang, Wei; Oliveira, Maureen; Han, Yingshan; Quan, Yudong; Petropoulos, Christos J; Wainberg, Mark A
2013-11-01
Resistance to the recently approved nonnucleoside reverse transcriptase inhibitor (NNRTI) rilpivirine (RPV) commonly involves substitutions at positions E138K and K101E in HIV-1 reverse transcriptase (RT), together with an M184I substitution that is associated with resistance to coutilized emtricitabine (FTC). Previous biochemical and virological studies have shown that compensatory interactions between substitutions E138K and M184I can restore enzyme processivity and the viral replication capacity. Structural modeling studies have also shown that disruption of the salt bridge between K101 and E138 can affect RPV binding. The current study was designed to investigate the impact of K101E, alone or in combination with E138K and/or M184I, on drug susceptibility, viral replication capacity, and enzyme function. We show here that K101E can be selected in cell culture by the NNRTIs etravirine (ETR), efavirenz (EFV), and dapivirine (DPV) as well as by RPV. Recombinant RT enzymes and viruses containing K101E, but not E138K, were highly resistant to nevirapine (NVP) and delavirdine (DLV) as well as ETR and RPV, but not EFV. The addition of K101E to E138K slightly enhanced ETR and RPV resistance compared to that obtained with E138K alone but restored susceptibility to NVP and DLV. The K101E substitution can compensate for deficits in viral replication capacity and enzyme processivity associated with M184I, while M184I can compensate for the diminished efficiency of DNA polymerization associated with K101E. The coexistence of K101E and E138K does not impair either viral replication or enzyme fitness. We conclude that K101E can play a significant role in resistance to RPV.
Parham, Leda; de Rivera, Ivette Lorenzana; Murillo, Wendy; Naver, Lars; Largaespada, Natalia; Albert, Jan; Karlsson, Annika C
2011-10-01
Antiretroviral therapy has had a great impact on the prevention of mother-to-child transmission (MTCT) of HIV-1. However, development of drug resistance, which could be subsequently transmitted to the child, is a major concern. In Honduras and Belize the prevalence of drug resistance among HIV-1-infected children remains unknown. A total of 95 dried blood spot samples was obtained from HIV-1-infected, untreated children in Honduras and Belize born during 2001 to 2004, when preventive antiretroviral therapy was often suboptimal and consisted of monotherapy with nevirapine or zidovudine. Partial HIV-1 pol gene sequences were successfully obtained from 66 children (Honduras n=55; Belize n=11). Mutations associated with drug resistance were detected in 13% of the Honduran and 27% of the Belizean children. Most of the mutations detected in Honduras (43%) and all mutations detected in Belize were associated with resistance to nonnucleoside reverse transcriptase inhibitors, which was expected from the wide use of nevirapine to prevent MTCT during the study period. In addition, although several mothers reported that they had not received antiretroviral therapy, mutations associated with resistance to nucleoside reverse transcriptase inhibitors and protease inhibitors were found in Honduras. This suggests prior and unreported use of these drugs, or that these women had been infected with resistant virus. The present study demonstrates, for the first time, the presence of drug resistance-associated mutations in HIV-1-infected Honduran and Belizean children.
Papp, Eszter; Mohammadi, Hakimeh; Loutfy, Mona R.; Yudin, Mark H.; Murphy, Kellie E.; Walmsley, Sharon L.; Shah, Rajiv; MacGillivray, Jay; Silverman, Michael; Serghides, Lena
2015-01-01
Background. Protease inhibitor (PI)–based combination antiretroviral therapy (cART) is administered during pregnancy to prevent perinatal human immunodeficiency virus (HIV) transmission. However, PI use has been associated with adverse birth outcomes, including preterm delivery and small-for-gestational-age (SGA) births. The mechanisms underlying these outcomes are unknown. We hypothesized that PIs contribute to these adverse events by altering progesterone levels. Methods. PI effects on trophoblast progesterone production were assessed in vitro. A mouse pregnancy model was used to assess the impact of PI-based cART on pregnancy outcomes and progesterone levels in vivo. Progesterone levels were assessed in plasma specimens from 27 HIV-infected and 17 HIV-uninfected pregnant women. Results. PIs (ritonavir, lopinavir, and atazanavir) but not nucleoside reverse transcriptase inhibitors (NRTIs) or nonnucleoside reverse transcriptase inhibitors reduced trophoblast progesterone production in vitro. In pregnant mice, PI-based cART but not dual-NRTI therapy was associated with significantly lower progesterone levels that directly correlated with fetal weight. Progesterone supplementation resulted in a significant improvement in fetal weight. We observed lower progesterone levels and smaller infants in HIV-infected women receiving PI-based cART, compared with the control group. In HIV-infected women, progesterone levels correlated significantly with birth weight percentile. Conclusions. Our data suggest that PI use in pregnancy may lead to lower progesterone levels that could contribute to adverse birth outcomes. PMID:25030058
Papp, Eszter; Mohammadi, Hakimeh; Loutfy, Mona R; Yudin, Mark H; Murphy, Kellie E; Walmsley, Sharon L; Shah, Rajiv; MacGillivray, Jay; Silverman, Michael; Serghides, Lena
2015-01-01
Protease inhibitor (PI)-based combination antiretroviral therapy (cART) is administered during pregnancy to prevent perinatal human immunodeficiency virus (HIV) transmission. However, PI use has been associated with adverse birth outcomes, including preterm delivery and small-for-gestational-age (SGA) births. The mechanisms underlying these outcomes are unknown. We hypothesized that PIs contribute to these adverse events by altering progesterone levels. PI effects on trophoblast progesterone production were assessed in vitro. A mouse pregnancy model was used to assess the impact of PI-based cART on pregnancy outcomes and progesterone levels in vivo. Progesterone levels were assessed in plasma specimens from 27 HIV-infected and 17 HIV-uninfected pregnant women. PIs (ritonavir, lopinavir, and atazanavir) but not nucleoside reverse transcriptase inhibitors (NRTIs) or nonnucleoside reverse transcriptase inhibitors reduced trophoblast progesterone production in vitro. In pregnant mice, PI-based cART but not dual-NRTI therapy was associated with significantly lower progesterone levels that directly correlated with fetal weight. Progesterone supplementation resulted in a significant improvement in fetal weight. We observed lower progesterone levels and smaller infants in HIV-infected women receiving PI-based cART, compared with the control group. In HIV-infected women, progesterone levels correlated significantly with birth weight percentile. Our data suggest that PI use in pregnancy may lead to lower progesterone levels that could contribute to adverse birth outcomes. © The Author 2014. Published by Oxford University Press on behalf of the Infectious Diseases Society of America.
Gnanasekaran, Ramachandran
2017-11-08
We calculate communication maps for HIV-1 Reverse Transcriptase (RT) to elucidate energy transfer pathways between deoxythymidine triphosphate (dTTP) and other parts of the protein. This approach locates energy transport channels from the dTTP to remote regions of the protein via residues and water molecules. We examine the water dynamics near the catalytic site of HIV-1 RT by molecular dynamics (MD) simulations. We find that, within the catalytic site, the relaxation of water molecules is similar to that of the hydration water molecules present in other proteins and the relaxation time scale is fast enough to transport energy and helps in communication between dTTP and other residues in the system. To quantify energy transfer, we also calculate the interaction energies of dTTP, 2Mg 2+ , doxy-guanosine nucleotide (DG22) with their surrounding residues by using the B3LYP-D3 method. The results, from classical vibrational energy diffusivity and QM interaction energy, are complementary to identify the important residues involved in the process of polymerization. The positive and negative interactions by dTTP with different types of residues in the catalytic region make the residues transfer energy through vibrational communication.
Berenguer, Juan; Polo, Rosa; Lozano, Fernando; López Aldeguer, José; Antela, Antonio; Arribas, José Ramón; Asensi, Víctor; Blanco, José Ramón; Clotet, Bonaventura; Domingo, Pere; Galindo, María José; Gatell, José María; González-García, Juan; Iribarren, José Antonio; Locutura, Jaime; López, Juan Carlos; Mallolas, Josep; Martínez, Esteban; Miralles, Celia; Miró, José M; Moreno, Santiago; Palacios, Rosario; Pérez Elías, María Jesús; Pineda, Juan Antonio; Podzamczer, Daniel; Portilla, Joaquín; Pulido, Federico; Ribera, Esteban; Riera, Melchor; Rubio, Rafael; Santos, Jesús; Sanz, Jesús; Tuset, Montserrat; Vidal, Francesc; Rivero, Antonio
2014-01-01
In this update, antiretroviral therapy (ART) is recommended for all patients infected by type 1 human immunodeficiency virus (HIV-1). The strength and grade of the recommendation varies with clinical circumstances, number of CD4 cells, comorbid conditions and prevention of transmission of HIV. The objective of ART is to achieve an undetectable plasma viral load. Initial ART should always comprise a combination of 3 drugs, including 2 nucleoside reverse transcriptase inhibitors and a third drug from a different family (non-nucleoside reverse transcriptase inhibitor, protease inhibitor, or integrase inhibitor). This update presents the causes and criteria for switching ART in patients with undetectable plasma viral load and in cases of virological failure. An update is also provided for the specific criteria for ART in special situations (acute infection, HIV-2 infection, and pregnancy) and with comorbid conditions (tuberculosis or other opportunistic infections, kidney disease, liver disease, and cancer). Copyright © 2014 Elsevier España, S.L.U. y Sociedad Española de Enfermedades Infecciosas y Microbiología Clínica. All rights reserved.
Reverse Transcriptase Inhibitors as Potential Colorectal Microbicides▿ †
Herrera, Carolina; Cranage, Martin; McGowan, Ian; Anton, Peter; Shattock, Robin J.
2009-01-01
We investigated whether reverse transcriptase (RT) inhibitors (RTI) can be combined to inhibit human immunodeficiency virus type 1 (HIV-1) infection of colorectal tissue ex vivo as part of a strategy to develop an effective rectal microbicide. The nucleotide RTI (NRTI) PMPA (tenofovir) and two nonnucleoside RTI (NNRTI), UC-781 and TMC120 (dapivirine), were evaluated. Each compound inhibited the replication of the HIV isolates tested in TZM-bl cells, peripheral blood mononuclear cells, and colorectal explants. Dual combinations of the three compounds, either NRTI-NNRTI or NNRTI-NNRTI combinations, were more active than any of the individual compounds in both cellular and tissue models. Combinations were key to inhibiting infection by NRTI- and NNRTI-resistant isolates in all models tested. Moreover, we found that the replication capacities of HIV-1 isolates in colorectal explants were affected by single point mutations in RT that confer resistance to RTI. These data demonstrate that colorectal explants can be used to screen compounds for potential efficacy as part of a combination microbicide and to determine the mucosal fitness of RTI-resistant isolates. These findings may have important implications for the rational design of effective rectal microbicides. PMID:19258271
Reverse transcriptase inhibitors as potential colorectal microbicides.
Herrera, Carolina; Cranage, Martin; McGowan, Ian; Anton, Peter; Shattock, Robin J
2009-05-01
We investigated whether reverse transcriptase (RT) inhibitors (RTI) can be combined to inhibit human immunodeficiency virus type 1 (HIV-1) infection of colorectal tissue ex vivo as part of a strategy to develop an effective rectal microbicide. The nucleotide RTI (NRTI) PMPA (tenofovir) and two nonnucleoside RTI (NNRTI), UC-781 and TMC120 (dapivirine), were evaluated. Each compound inhibited the replication of the HIV isolates tested in TZM-bl cells, peripheral blood mononuclear cells, and colorectal explants. Dual combinations of the three compounds, either NRTI-NNRTI or NNRTI-NNRTI combinations, were more active than any of the individual compounds in both cellular and tissue models. Combinations were key to inhibiting infection by NRTI- and NNRTI-resistant isolates in all models tested. Moreover, we found that the replication capacities of HIV-1 isolates in colorectal explants were affected by single point mutations in RT that confer resistance to RTI. These data demonstrate that colorectal explants can be used to screen compounds for potential efficacy as part of a combination microbicide and to determine the mucosal fitness of RTI-resistant isolates. These findings may have important implications for the rational design of effective rectal microbicides.
Hu, Yanmei; Zhang, Jiantao; Musharrafieh, Rami Ghassan; Ma, Chunlong; Hau, Raymond; Wang, Jun
2017-09-01
The emergence of multidrug-resistant influenza viruses poses a persistent threat to public health. The current prophylaxis and therapeutic interventions for influenza virus infection have limited efficacy due to the continuous antigenic drift and antigenic shift of influenza viruses. As part of our ongoing effort to develop the next generation of influenza antivirals with broad-spectrum antiviral activity and a high genetic barrier to drug resistance, in this study we report the discovery of dapivirine, an FDA-approved HIV nonnucleoside reverse transcriptase inhibitor, as a broad-spectrum antiviral against multiple strains of influenza A and B viruses with low micromolar efficacy. Mechanistic studies revealed that dapivirine inhibits the nuclear entry of viral ribonucleoproteins at the early stage of viral replication. As a result, viral RNA and protein synthesis were inhibited. Furthermore, dapivirine has a high in vitro genetic barrier to drug resistance, and its antiviral activity is synergistic with oseltamivir carboxylate. In summary, the in vitro antiviral results of dapivirine suggest it is a promising candidate for the development of the next generation of dual influenza and HIV antivirals. Copyright © 2017 Elsevier B.V. All rights reserved.
2012-01-01
Abstract In this study we report the prevalence of antiretroviral drug resistant HIV-1 genotypes of virus isolated from Djiboutian patients who failed first-line antiretroviral therapy (ART) and from ART naïve patients. Patients and methods A total of 35 blood samples from 16 patients who showed first-line ART failure (>1000 viral genome copies/ml) and 19 ART-naïve patients were collected in Djibouti from October 2009 to December 2009. Both the protease (PR) and reverse transcriptase (RT) genes were amplified and sequenced using National Agency for AIDS Research (ANRS) protocols. The Stanford HIV database algorithm was used for interpretation of resistance data and genotyping. Results Among the 16 patients with first-line ART failure, nine (56.2%) showed reverse transcriptase inhibitor-resistant HIV-1 strains: two (12.5%) were resistant to nucleoside (NRTI), one (6.25%) to non-nucleoside (NNRTI) reverse transcriptase inhibitors, and six (37.5%) to both. Analysis of the DNA sequencing data indicated that the most common mutations conferring drug resistance were M184V (38%) for NRTI and K103N (25%) for NNRTI. Only NRTI primary mutations K101Q, K103N and the PI minor mutation L10V were found in ART naïve individuals. No protease inhibitor resistant strains were detected. In our study, we found no detectable resistance in ∼ 44% of all patients who experienced therapeutic failure which was explained by low compliance, co-infection with tuberculosis and malnutrition. Genotyping revealed that 65.7% of samples were infected with subtype C, 20% with CRF02_AG, 8.5% with B, 2.9% with CRF02_AG/C and 2.9% with K/C. Conclusion The results of this first study about drug resistance mutations in first-line ART failures show the importance of performing drug resistance mutation test which guides the choice of a second-line regimen. This will improve the management of HIV-infected Djiboutian patients. Virtual slides The virtual slide(s) for this article can be found here: http://www.diagnosticpathology.diagnomx.eu/vs/2051206212753973 PMID:23044036
Elmi Abar, Aden; Jlizi, Asma; Darar, Houssein Youssouf; Kacem, Mohamed Ali Ben Hadj; Slim, Amine
2012-10-08
In this study we report the prevalence of antiretroviral drug resistant HIV-1 genotypes of virus isolated from Djiboutian patients who failed first-line antiretroviral therapy (ART) and from ART naïve patients. A total of 35 blood samples from 16 patients who showed first-line ART failure (>1000 viral genome copies/ml) and 19 ART-naïve patients were collected in Djibouti from October 2009 to December 2009. Both the protease (PR) and reverse transcriptase (RT) genes were amplified and sequenced using National Agency for AIDS Research (ANRS) protocols. The Stanford HIV database algorithm was used for interpretation of resistance data and genotyping. Among the 16 patients with first-line ART failure, nine (56.2%) showed reverse transcriptase inhibitor-resistant HIV-1 strains: two (12.5%) were resistant to nucleoside (NRTI), one (6.25%) to non-nucleoside (NNRTI) reverse transcriptase inhibitors, and six (37.5%) to both. Analysis of the DNA sequencing data indicated that the most common mutations conferring drug resistance were M184V (38%) for NRTI and K103N (25%) for NNRTI. Only NRTI primary mutations K101Q, K103N and the PI minor mutation L10V were found in ART naïve individuals. No protease inhibitor resistant strains were detected. In our study, we found no detectable resistance in ∼ 44% of all patients who experienced therapeutic failure which was explained by low compliance, co-infection with tuberculosis and malnutrition. Genotyping revealed that 65.7% of samples were infected with subtype C, 20% with CRF02_AG, 8.5% with B, 2.9% with CRF02_AG/C and 2.9% with K/C. The results of this first study about drug resistance mutations in first-line ART failures show the importance of performing drug resistance mutation test which guides the choice of a second-line regimen. This will improve the management of HIV-infected Djiboutian patients. The virtual slide(s) for this article can be found here: http://www.diagnosticpathology.diagnomx.eu/vs/2051206212753973.
Else, Laura J; Taylor, Stephen; Back, David J; Khoo, Saye H
2011-01-01
HIV resides within anatomical 'sanctuary sites', where local drug exposure and viral dynamics may differ significantly from the systemic compartment. Suboptimal antiretroviral concentrations in the genital tract may result in compartmentalized viral replication, selection of resistant mutations and possible re-entry of wild-type/resistant virus into the systemic circulation. Therefore, achieving adequate antiretroviral exposure in the genital tract has implications for the prevention of sexual and vertical transmission of HIV. Penetration of antiretrovirals in the genital tract is expressed by accumulation ratios derived from the measurement of drug concentrations in time-matched seminal plasma/cervicovaginal fluid and plasma samples. Penetration varies by gender and may be drug (as opposed to class) specific with high interindividual variability. Concentrations in seminal plasma are highest for nucleoside analogues and lowest for protease inhibitors and efavirenz. Seminal accumulation of newer agents, raltegravir and maraviroc, is moderate (rank order of accumulation is nucleoside/nucleotide reverse transcriptase inhibitors [lamivudine/zidovudine/tenofovir/didanosine > stavudine/abacavir] > raltegravir > indinavir/maraviroc/nevirapine > efavirenz/protease inhibitors [amprenavir/atazanavir/darunavir > lopinavir/ritonavir > saquinavir] > enfuvirtide). In the female genital tract, the nucleoside analogues exhibit high accumulation ratios, whereas protease inhibitors have limited penetration; however, substantial variability exists between individuals and study centres. Second generation non-nucleoside reverse transcriptase inhibitor etravirine, and maraviroc and raltegravir, demonstrate effective accumulation in cervicovaginal secretions (rank order of accumulation is nucleoside/nucleotide reverse transcriptase inhibitor [zidovudine/lamivudine/didanosine > emtricitabine/tenofovir] > indinavir > maraviroc/raltegravir/darunavir/etravirine > nevirapine/abacavir > protease inhibitors [amprenavir/atazanavir/ritonavir] > lopinavir/stavudine/efavirenz > saquinavir).
Salou, Mounerou; Dagnra, Anoumou Y; Butel, Christelle; Vidal, Nicole; Serrano, Laetitia; Takassi, Elom; Konou, Abla A; Houndenou, Spero; Dapam, Nina; Singo-Tokofaï, Assetina; Pitche, Palokinam; Atakouma, Yao; Prince-David, Mireille; Delaporte, Eric; Peeters, Martine
2016-01-01
Introduction Antiretroviral treatment (ART) has been scaled up over the last decade but compared to adults, children living with HIV are less likely to receive ART. Moreover, children and adolescents are more vulnerable than adults to virological failure (VF) and emergence of drug resistance. In this study we determined virological outcome in perinatally HIV-1-infected children and adolescents receiving ART in Togo. Methods HIV viral load (VL) testing was consecutively proposed to all children and adolescents who were on ART for at least 12 months when attending HIV healthcare services for their routine follow-up visit (June to September 2014). Plasma HIV-1 VL was measured using the m2000 RealTime HIV-1 assay (Abbott Molecular, Des Plaines, IL, USA). Genotypic drug resistance was done for all samples with VL>1000 copies/ml. Results and discussion Among 283 perinatally HIV-1-infected children and adolescents included, 167 (59%) were adolescents and 116 (41%) were children. The median duration on ART was 48 months (interquartile range: 28 to 68 months). For 228 (80.6%), the current ART combination consisted of two nucleoside reverse transcriptase inhibitors (NRTIs) (zidovudine and lamivudine) and one non-nucleoside reverse transcriptase inhibitor (NNRTI) (nevirapine or efavirenz). Only 28 (9.9%) were on a protease inhibitor (PI)-based regimen. VL was below the detection limit (i.e. 40 copies/ml) for 102 (36%), between 40 and 1000 copies/ml for 35 (12.4%) and above 1000 copies/ml for 146 (51.6%). Genotypic drug-resistance testing was successful for 125/146 (85.6%); 110/125 (88.0%) were resistant to both NRTIs and NNRTIs, 1/125 (0.8%) to NRTIs only, 4/125 (3.2%) to NNRTIs only and three harboured viruses resistant to reverse transcriptase and PIs. Overall, 86% (108/125) of children and adolescents experiencing VF and successfully genotyped, corresponding thus to at least 38% of the study population, had either no effective ART or had only a single effective drug in their current ART regimen. Conclusions Our study provided important information on virological outcome on lifelong ART in perinatally HIV-1-infected children and adolescents who were still on ART and continued to attend antiretroviral (ARV) clinics for follow-up visits. Actual conditions for scaling up and monitoring lifelong ART in children in resource-limited countries can have dramatic long-term outcomes and illustrate that paediatric ART receives inadequate attention. PMID:27125320
Selection and Characterization of Drug-Resistant Variants of Human Immunodeficiency Virus (AIDS).
1995-10-01
on Antiviral Reserach, Santa Fe, New Mexico , 1995. Page 18 APPENDIX Page 19 p - FACTFILE Mutations in HIV-1 Reverse Transcriptase and Protease...including herpes simplex viruses, varicella -zoster Resistance of clinical HIV-1 isolates to foscarnet has not virus, cytomegalovirus (CMV), hepatitis B...This effect of the Tyr-208 substitution was not ob- reported previously for herpes simplex viruses, varicella -zoster served in MT-2 cells, however. virus
Sanou, Missa P.; Roff, Shannon R.; Mennella, Antony; Sleasman, John W.; Rathore, Mobeen H.; Levy, Jay A.
2013-01-01
Anti-human immunodeficiency virus (HIV) cytotoxic T lymphocyte (CTL)-associated epitopes, evolutionarily conserved on both HIV type 1 (HIV-1) and feline immunodeficiency virus (FIV) reverse transcriptases (RT), were identified using gamma interferon (IFN-γ) enzyme-linked immunosorbent spot (ELISpot) and carboxyfluorescein diacetate succinimide ester (CFSE) proliferation assays followed by CTL-associated cytotoxin analysis. The peripheral blood mononuclear cells (PBMC) or T cells from HIV-1-seropositive (HIV+) subjects were stimulated with overlapping RT peptide pools. The PBMC from the HIV+ subjects had more robust IFN-γ responses to the HIV-1 peptide pools than to the FIV peptide pools, except for peptide-pool F3. In contrast, much higher and more frequent CD8+ T-cell proliferation responses were observed with the FIV peptide pools than with the HIV peptide pools. HIV-1-seronegative subjects had no proliferation or IFN-γ responses to the HIV and FIV peptide pools. A total of 24% (40 of 166) of the IFN-γ responses to HIV pools and 43% (23 of 53) of the CD8+ T-cell proliferation responses also correlated to responses to their counterpart FIV pools. Thus, more evolutionarily conserved functional epitopes were identified by T-cell proliferation than by IFN-γ responses. In the HIV+ subjects, peptide-pool F3, but not the HIV H3 counterpart, induced the most IFN-γ and proliferation responses. These reactions to peptide-pool F3 were highly reproducible and persisted over the 1 to 2 years of testing. All five individual peptides and epitopes of peptide-pool F3 induced IFN-γ and/or proliferation responses in addition to inducing CTL-associated cytotoxin responses (perforin, granzyme A, granzyme B). The epitopes inducing polyfunctional T-cell activities were highly conserved among human, simian, feline, and ungulate lentiviruses, which indicated that these epitopes are evolutionarily conserved. These results suggest that FIV peptides could be used in an HIV-1 vaccine. PMID:23824804
Twenty-Five Years of Lamivudine: Current and Future Use for the Treatment of HIV-1 Infection.
Quercia, Romina; Perno, Carlo-Federico; Koteff, Justin; Moore, Katy; McCoig, Cynthia; St Clair, Marty; Kuritzkes, Daniel
2018-06-01
Innovation in medicine is a dynamic, complex, and continuous process that cannot be isolated to a single moment in time. Anniversaries offer opportunities to commemorate crucial discoveries of modern medicine, such as penicillin (1928), polio vaccination (inactivated, 1955; oral, 1961), the surface antigen of the hepatitis B virus (1967), monoclonal antibodies (1975), and the first HIV antiretroviral drugs (zidovudine, 1987). The advent of antiretroviral drugs has had a profound effect on the progress of the epidemiology of HIV infection, transforming a terminal, irreversible disease that caused a global health crisis into a treatable but chronic disease. This result has been driven by the success of antiretroviral drug combinations that include nucleoside reverse transcriptase inhibitors such as lamivudine. Lamivudine, an L-enantiomeric analog of cytosine, potently affects HIV replication by inhibiting viral reverse transcriptase enzymes at concentrations without toxicity against human polymerases. Although lamivudine was approved more than 2 decades ago, it remains a key component of first-line therapy for HIV because of its virological efficacy and ability to be partnered with other antiretroviral agents in traditional and novel combination therapies. The prominence of lamivudine in HIV therapy is highlighted by its incorporation in recent innovative treatment strategies, such as single-tablet regimens that address challenges associated with regimen complexity and treatment adherence and 2-drug regimens being developed to mitigate cumulative drug exposure and toxicities. This review summarizes how the pharmacologic and virologic properties of lamivudine have solidified its role in contemporary HIV therapy and continue to support its use in emerging therapies.
Ross, Lisa; Lim, Michael L; Liao, Qiming; Wine, Brian; Rodriguez, Allan E; Weinberg, Winkler; Shaefer, Mark
2007-01-01
Transmission of drug-resistant HIV strains to antiretroviral therapy (ART)-naïve subjects can negatively impact therapy response. As treatment strategies and utilization of antiretroviral drugs evolve, patterns of transmitted mutations may shift. Paired genotypic and phenotypic susceptibility data were retrospectively analyzed for 317 ART-naïve, HIV-infected subjects from 40 small and major metropolitan cities in the Northeastern, Midwestern, Southern, Southwestern, and Northwestern United States during 2003. Using current (January 2007) PhenoSense cutoffs, HIV-from 8% of subjects had reduced susceptibility to > or = 1 drug. By class, < 1% had reduced susceptibility to protease inhibitors (PIs), and 1% had reduced susceptibility to nucleoside reverse transcriptase inhibitors (NRTIs); reduced susceptibility to > or = 1 non-nucleoside reverse transcriptase inhibitor (NNRTIs) was seen in 7% of subjects, with 4% of all subjects having reduced susceptibility to all NNRTIs. IAS-USA-defined NRTI, NNRTI, and/or major PI HIV-drug resistance-associated mutations were detected for 0% of the subjects. HIV risk factors included homosexual contact (74%), heterosexual contact (28%), and injectable drug use/transfusion/other (7%). Reduced susceptibility to > or = 1 drug was significantly higher (p = .034) for white subjects than African Americans and Hispanics/others. The high prevalence of drug resistance in these ART-naïve subjects suggests that transmitted resistance is occurring widely within the United States. HIV genotyping and/or phenotyping for antiretroviral-naïve patients seeking treatment should be considered, especially if the therapy will include an NNRTI.
Rotili, Dante; Tarantino, Domenico; Artico, Marino; Nawrozkij, Maxim B; Gonzalez-Ortega, Emmanuel; Clotet, Bonaventura; Samuele, Alberta; Esté, José A; Maga, Giovanni; Mai, Antonello
2011-04-28
Here, we describe a novel small series of non-nucleoside reverse transcriptase inhibitors (NNRTIs) that combine peculiar structural features of diarylpyrimidines (DAPYs) and dihydro-alkoxy-benzyl-oxopyrimidines (DABOs). These DAPY-DABO hybrids (1-4) showed a characteristic SAR profile and a nanomolar anti-HIV-1 activity at both enzymatic and cellular level. In particular, the two compounds 4d and 2d, with a (sub)nanomolar activity against wild-type and clinically relevant HIV-1 mutant strains, were selected as lead compounds for next optimization studies.
Evaluation and Management of Dyslipidemia in Patients with HIV Infection
Green, Michael L
2002-01-01
OBJECTIVE Persons with HIV infection develop metabolic abnormalities related to their antiretroviral therapy and HIV infection itself. The objective of this study was to summarize the emerging evidence for the incidence, etiology, health risks, and treatment of dyslipidemias in HIV disease. DESIGN Systematic review of original research with quantitative synthesis. MAIN RESULTS Dyslipidemia is common in persons with HIV infection on highly active antiretroviral therapy (HAART), but methodologic differences between studies preclude precise estimates of prevalence and incidence. The typical pattern includes elevated total cholesterol, low-density lipoprotein cholesterol, and triglycerides, which may be markedly elevated. The dyslipidemia may be associated with lipodystrophy, insulin resistance, and, rarely, frank diabetes mellitus. Exposure to protease inhibitors (PIs) is associated with this entire range of metabolic abnormalities. PI-naïve patients on nucleoside reverse transcriptase inhibitors (NRTIs) may develop lipodystrophy, insulin resistance, hypercholesterolemia, and possibly modest elevations in triglycerides but not severe hypertriglyceridemia, which appears to be linked to PIs alone. Most studies have not found an association between CD4 lymphocyte count or HIV viral load and lipid abnormalities. The pathogenesis is incompletely understood and appears to be multifactorial. There are insufficient data to definitively support an increased coronary heart disease risk in patients with HIV-related dyslipidemia. However, some of the same metabolic abnormalities remain firmly established risk factors in other populations. Patients on HAART with severe hypertriglyceridemia may develop pancreatitis or other manifestations of the chylomicronemia syndrome. Some of the metabolic derangements (particularly hypertriglyceridemia) may improve upon replacing a PI with a non-nucleoside reverse transcriptase inhibitor. The limited experience suggests that fibrates, pravastatin, and atorvastatin can safely treat lipid abnormalities in HIV-infected patients. CONCLUSIONS Patients with HIV infection on HAART should be screened for lipid disorders, given their incidence, potential for morbidity, and possible long-term cardiovascular risk. Treatment decisions are complex and must include assessments of cardiac risk, HIV infection status, reversibility of the dyslipidemia, and the effectiveness and toxicities of lipid-lowering medications. The multiple potential drug interactions with antiretroviral or other HIV-related medications should be considered in lipid-lowering drug selection and monitoring. PMID:12390557
Potent Inhibition of HIV-1 Replication in Resting CD4 T Cells by Resveratrol and Pterostilbene
Chan, Chi N.; Trinité, Benjamin
2017-01-01
ABSTRACT HIV-1 infection of resting CD4 T cells plays a crucial and numerically dominant role during virus transmission at mucosal sites and during subsequent acute replication and T cell depletion. Resveratrol and pterostilbene are plant stilbenoids associated with several health-promoting benefits. Resveratrol has been shown to inhibit the replication of several viruses, including herpes simplex viruses 1 and 2, papillomaviruses, severe acute respiratory syndrome virus, and influenza virus. Alone, resveratrol does not inhibit HIV-1 infection of activated T cells, but it does synergize with nucleoside reverse transcriptase inhibitors in these cells to inhibit reverse transcription. Here, we demonstrate that resveratrol and pterostilbene completely block HIV-1 infection at a low micromolar dose in resting CD4 T cells, primarily at the reverse transcription step. The anti-HIV effect was fully reversed by exogenous deoxynucleosides and Vpx, an HIV-1 and simian immunodeficiency virus protein that increases deoxynucleoside triphosphate (dNTP) levels. These findings are consistent with the reported ability of resveratrol to inhibit ribonucleotide reductase and to lower dNTP levels in cells. This study supports the potential use of resveratrol, pterostilbene, or related compounds as adjuvants in anti-HIV preexposure prophylaxis (PrEP) formulations. PMID:28652233
Potent Inhibition of HIV-1 Replication in Resting CD4 T Cells by Resveratrol and Pterostilbene.
Chan, Chi N; Trinité, Benjamin; Levy, David N
2017-09-01
HIV-1 infection of resting CD4 T cells plays a crucial and numerically dominant role during virus transmission at mucosal sites and during subsequent acute replication and T cell depletion. Resveratrol and pterostilbene are plant stilbenoids associated with several health-promoting benefits. Resveratrol has been shown to inhibit the replication of several viruses, including herpes simplex viruses 1 and 2, papillomaviruses, severe acute respiratory syndrome virus, and influenza virus. Alone, resveratrol does not inhibit HIV-1 infection of activated T cells, but it does synergize with nucleoside reverse transcriptase inhibitors in these cells to inhibit reverse transcription. Here, we demonstrate that resveratrol and pterostilbene completely block HIV-1 infection at a low micromolar dose in resting CD4 T cells, primarily at the reverse transcription step. The anti-HIV effect was fully reversed by exogenous deoxynucleosides and Vpx, an HIV-1 and simian immunodeficiency virus protein that increases deoxynucleoside triphosphate (dNTP) levels. These findings are consistent with the reported ability of resveratrol to inhibit ribonucleotide reductase and to lower dNTP levels in cells. This study supports the potential use of resveratrol, pterostilbene, or related compounds as adjuvants in anti-HIV preexposure prophylaxis (PrEP) formulations. Copyright © 2017 American Society for Microbiology.
Polymorphisms of HIV RT Gene Among the ART Naïve Native Drug Exposed Rural PLHA.
Krishnan, K Mohana; Amsavathani, Sk
2012-04-01
The number of people living with human immunodeficiency virus (HIV) is increasing day by day in India. The disease has now spread from urban areas to rural areas. The proof reading of the reverse transcriptase enzyme is poor, which may lead to genetic diversity within the HIV strains, which in turn leads to problems like failure or resistance in antiretroviral treatment. This study is designed to find out the polymorphisms of the reverse transcriptase gene of HIV, after the native drug pressure among antiretroviral therapy (ART) naïve rural people living with HIV/AIDS (RPLHA). A total of 207 HIV-Reactive patients were allowed to take native drugs from the local area and were advised to attend the center for HIV after six months for a follow-up. At the time of the follow-up visit, a second blood sample was taken from 20 reactive native-drug exposed ART-naïve patients. The plasma was separated and transported at 20°C to the YRG Care Center for genotyping. Among the 20 HIV-reactive samples processed for gene sequencing analysis to detect the genotypic variations, only one sample (5%) showed high-level mutational resistance variations and the predominant polymorphisms detected were V35T (100%), K122E (94.44%), and V60I (88.88%). The presence of drug-resistance mutations, although minimal, was important, as the drug-resistant strains could spread among the RPLHA and to their sexual partners. There was a definite need to generate a drug resistance database and the polymorphic pattern of Indian strains concern to the future clinical management of the disease, and a vaccine design to contain the disease.
Generation and Characterization of a Defective HIV-1 Virus as an Immunogen for a Therapeutic Vaccine
García-Pérez, Javier; García, Felipe; Blanco, Julia; Escribà-García, Laura; Gatell, Jose Maria; Alcamí, Jose; Plana, Montserrat; Sánchez-Palomino, Sonsoles
2012-01-01
Background The generation of new immunogens able to elicit strong specific immune responses remains a major challenge in the attempts to obtain a prophylactic or therapeutic vaccine against HIV/AIDS. We designed and constructed a defective recombinant virus based on the HIV-1 genome generating infective but non-replicative virions able to elicit broad and strong cellular immune responses in HIV-1 seropositive individuals. Results Viral particles were generated through transient transfection in producer cells (293-T) of a full length HIV-1 DNA carrying a deletion of 892 base pairs (bp) in the pol gene encompassing the sequence that codes for the reverse transcriptase (NL4-3/ΔRT clone). The viral particles generated were able to enter target cells, but due to the absence of reverse transcriptase no replication was detected. The immunogenic capacity of these particles was assessed by ELISPOT to determine γ-interferon production in a cohort of 69 chronic asymptomatic HIV-1 seropositive individuals. Surprisingly, defective particles produced from NL4-3/ΔRT triggered stronger cellular responses than wild-type HIV-1 viruses inactivated with Aldrithiol-2 (AT-2) and in a larger proportion of individuals (55% versus 23% seropositive individuals tested). Electron microscopy showed that NL4-3/ΔRT virions display immature morphology. Interestingly, wild-type viruses treated with Amprenavir (APV) to induce defective core maturation also induced stronger responses than the same viral particles generated in the absence of protease inhibitors. Conclusions We propose that immature HIV-1 virions generated from NL4-3/ΔRT viral clones may represent new prototypes of immunogens with a safer profile and stronger capacity to induce cellular immune responses than wild-type inactivated viral particles. PMID:23144996
Ngo-Malabo, Elodie Teclaire; Ngoupo, Paul Alain; Sadeuh-Mba, Serge Alain; Akongnwi, Emmanuel; Banaï, Robert; Ngono, Laure; Bilong-Bilong, Charles Felix; Kfutwah, Anfumbom; Njouom, Richard
2017-01-01
First line antiretroviral therapy in a resource-limited setting consists of nucleotide and non-nucleotide reverse transcriptase inhibitors. Protease inhibitors are the hub of second line therapy. The decision to change antiretroviral therapy for a patient is frequently presumptive because of the lack of genotypic resistance tests in routine follow-up. We describe here the resistance profiles observed in patients with varying terms of antiretroviral therapy in Cameroon after implementation of HIV genotypic resistance testing in routine practice. HIV genotypic resistance testing was carried out on consecutive samples received between August 2013 and November 2015. Protease (Prot) and reverse transcriptase (Rt) genes of the HIV genome were amplified, sequenced and analyzed for drug resistance mutations following the algorithm set up by the French National Agency for research on HIV/AIDS and viral hepatitis. Specimens from a total of 167 patients infected with non-B HIV subtypes were received during the study period. Overall 61.7% patients had viral loads of more than 3log copies/ml, suggesting treatment failure. Among the 72 patients on first line, 56 (77.8%) were resistant to Lamivudine, 57 (79.1%) to Efavirenz and 58 (80.6%) to Nevirapine. Overall, more patients (75.0%) on first line antiretroviral therapy harbored multi-drug resistance compared to their counterparts on second line (25.8%). This study revealed that a group of patients with antiretroviral therapy failure harbored multi-drug resistance mutations related to the majority of drugs in the first line regimen. Therefore, HIV resistance testing could be a useful tool to improve HIV care in resource limited settings like Cameroon where treatment options are limited. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.
Puthanakit, Thanyawee; Aurpibul, Linda; Sirisanthana, Thira; Sirisanthana, Virat
2009-03-01
Twenty-six Thai HIV-infected children, aged 2 years or less were prospectively enrolled to receive non-nucleoside reverse transcription inhibitor-based highly active antiretroviral therapy (HAART). Twenty-two children (85%) had World Health Organization clinical stage 3 or 4. The median baseline CD4 cell percentage and plasma HIV RNA were 17% and 5.9 log 10 copies/mL, respectively. The median age at HAART initiation was 9.8 months (range, 1.5-24.0). One child died. The mean CD4 cell percentages at 24, 48, and 96 weeks of treatment were 26%, 31%, and 37%, respectively. The proportions of children with virologic suppression (<400 copies/mL) at week 24 and 48 were 14/26 (54%) and 19/26 (73%), respectively. Non-nucleoside reverse transcription inhibitor-based HAART is safe and effective in HIV-infected young children in a resource-limited setting.
Amaral, Amanda Gm; Oliveira, Isabele B; Carneiro, Diego C; Alcantara, Luiz Cj; Monteiro-Cunha, Joana P
2017-06-01
The high mutation rate of the human immunodeficiency virus (HIV) has created a public health challenge because the use of antiretroviral drugs can generate selective pressure that drives resistance in these viruses. The aim of this work was to characterise the molecular and epidemiological profile of HIV in Bahia, Brazil. DNA sequences from regions of HIV gag, pol, and env genes were obtained from previous studies performed in this area between 2002 and 2012. Their genotype and drug-resistance mutations were identified using bioinformatics tools. Clinical and epidemiological data were analysed. Among 263 individuals (46.4% male), 97.5% were asymptomatic and 49.1% were receiving treatment. Most of the individuals were 31 to 40 years old (36.9%) and infected through heterosexual contact (40.7%). The predominant genotype was B (68.1%) followed by BF recombinants (18.6%). Among the individuals infected with either F or BF genotypes, 68.4% were women and 76.8% were infected through heterosexual transmission. The prevalence of associated mutations conferring antiretroviral resistance was 14.2%, with 3.8% of all mutations conferring resistance to protease inhibitors, 9.43% to nucleoside reverse transcriptase inhibitors, and 8.5% to non-nucleoside reverse transcriptase inhibitors. Drug resistance was higher in individuals receiving treatment (26.1%) than in the drug-naïve (4.3%) individuals. This study will contribute to the understanding and monitoring of HIV epidemic in this Brazilian region.
Akil, Ayman; Parniak, Michael A.; Dezzuitti, Charlene S.; Moncla, Bernard J.; Cost, Marilyn R.; Li, Mingguang; Rohan, Lisa Cencia
2012-01-01
Dapivirine, a non-nucleoside reverse transcriptase inhibitor, is a potent and promising anti-HIV molecule. It is currently being investigated for use as a vaginal microbicide in two dosage forms, a semi-solid gel and a silicone elastomer ring. Quick-dissolving films are promising and attractive dosage forms that may provide an alternative platform for the vaginal delivery of microbicide drug candidates. Vaginal films may provide advantages such as discreet use, no product leakage during use, lack of requirement for an applicator for insertion, rapid drug release and minimal packaging and reduced wastage. Within this study the in vitro bioactivity of dapivirine as compared to the NNRTI UC781 was further established and a quick dissolve film was developed for vaginal application of dapivirine for prevention of HIV infection. The developed film was characterized with respect to its physical and chemical attributes including water content, mechanical strength, drug release profile, permeability, compatibility with lactobacilli and bioactivity. The anti-HIV activity of the formulated dapivirine film was confirmed in in vitro and ex vivo models. Importantly the physical and chemical properties of the film as well as its bioactivity were maintained for a period of 18 months. In conclusion, a vaginal film containing dapivirine was developed and characterized. The film was shown to prevent HIV-1 infection in vitro and ex vivo and have acceptable characteristics which make this film a promising candidate for testing as vaginal microbicide. PMID:22708075
Akil, Ayman; Parniak, Michael A; Dezzuitti, Charlene S; Moncla, Bernard J; Cost, Marilyn R; Li, Mingguang; Rohan, Lisa Cencia
2011-06-01
Dapivirine, a non-nucleoside reverse transcriptase inhibitor, is a potent and promising anti-HIV molecule. It is currently being investigated for use as a vaginal microbicide in two dosage forms, a semi-solid gel and a silicone elastomer ring. Quick-dissolving films are promising and attractive dosage forms that may provide an alternative platform for the vaginal delivery of microbicide drug candidates. Vaginal films may provide advantages such as discreet use, no product leakage during use, lack of requirement for an applicator for insertion, rapid drug release and minimal packaging and reduced wastage. Within this study the in vitro bioactivity of dapivirine as compared to the NNRTI UC781 was further established and a quick dissolve film was developed for vaginal application of dapivirine for prevention of HIV infection. The developed film was characterized with respect to its physical and chemical attributes including water content, mechanical strength, drug release profile, permeability, compatibility with lactobacilli and bioactivity. The anti-HIV activity of the formulated dapivirine film was confirmed in in vitro and ex vivo models. Importantly the physical and chemical properties of the film as well as its bioactivity were maintained for a period of 18 months. In conclusion, a vaginal film containing dapivirine was developed and characterized. The film was shown to prevent HIV-1 infection in vitro and ex vivo and have acceptable characteristics which make this film a promising candidate for testing as vaginal microbicide.
Kantor, Rami; Katzenstein, David A; Efron, Brad; Carvalho, Ana Patricia; Wynhoven, Brian; Cane, Patricia; Clarke, John; Sirivichayakul, Sunee; Soares, Marcelo A; Snoeck, Joke; Pillay, Candice; Rudich, Hagit; Rodrigues, Rosangela; Holguin, Africa; Ariyoshi, Koya; Bouzas, Maria Belen; Cahn, Pedro; Sugiura, Wataru; Soriano, Vincent; Brigido, Luis F; Grossman, Zehava; Morris, Lynn; Vandamme, Anne-Mieke; Tanuri, Amilcar; Phanuphak, Praphan; Weber, Jonathan N; Pillay, Deenan; Harrigan, P Richard; Camacho, Ricardo; Schapiro, Jonathan M; Shafer, Robert W
2005-04-01
The genetic differences among HIV-1 subtypes may be critical to clinical management and drug resistance surveillance as antiretroviral treatment is expanded to regions of the world where diverse non-subtype-B viruses predominate. To assess the impact of HIV-1 subtype and antiretroviral treatment on the distribution of mutations in protease and reverse transcriptase, a binomial response model using subtype and treatment as explanatory variables was used to analyze a large compiled dataset of non-subtype-B HIV-1 sequences. Non-subtype-B sequences from 3,686 persons with well characterized antiretroviral treatment histories were analyzed in comparison to subtype B sequences from 4,769 persons. The non-subtype-B sequences included 461 with subtype A, 1,185 with C, 331 with D, 245 with F, 293 with G, 513 with CRF01_AE, and 618 with CRF02_AG. Each of the 55 known subtype B drug-resistance mutations occurred in at least one non-B isolate, and 44 (80%) of these mutations were significantly associated with antiretroviral treatment in at least one non-B subtype. Conversely, of 67 mutations found to be associated with antiretroviral therapy in at least one non-B subtype, 61 were also associated with antiretroviral therapy in subtype B isolates. Global surveillance and genotypic assessment of drug resistance should focus primarily on the known subtype B drug-resistance mutations.
NASA Astrophysics Data System (ADS)
Patel, Rikin D.; Kumar, Sivakumar Prasanth; Patel, Chirag N.; Shankar, Shetty Shilpa; Pandya, Himanshu A.; Solanki, Hitesh A.
2017-10-01
The traditional drug design strategy centrally focuses on optimizing binding affinity with the receptor target and evaluates pharmacokinetic properties at a later stage which causes high rate of attrition in clinical trials. Alternatively, parallel screening allows evaluation of these properties and affinity simultaneously. In a case study to identify leads from natural compounds with experimental HIV-1 reverse transcriptase (RT) inhibition, we integrated various computational approaches including Caco-2 cell permeability QSAR model with applicability domain (AD) to recognize drug-like natural compounds, molecular docking to study HIV-1 RT interactions and shape similarity analysis with known crystal inhibitors having characteristic butterfly-like model. Further, the lipophilic properties of the compounds refined from the process with best scores were examined using lipophilic ligand efficiency (LLE) index. Seven natural compound hits viz. baicalien, (+)-calanolide A, mniopetal F, fagaronine chloride, 3,5,8-trihydroxy-4-quinolone methyl ether derivative, nitidine chloride and palmatine, were prioritized based on LLE score which demonstrated Caco-2 well absorption labeling, encompassment in AD structural coverage, better receptor affinity, shape adaptation and permissible AlogP value. We showed that this integrative approach is successful in lead exploration of natural compounds targeted against HIV-1 RT enzyme.
Paraschiv, Simona; Otelea, Dan; Dinu, Magdalena; Maxim, Daniela; Tinischi, Mihaela
2007-03-01
To evaluate the prevalence of resistance mutations in the genome of HIV-1 F subtype strains isolated from Romanian antiretroviral (ARV) treatment-naïve patients and to assess the phylogenetic relatedness of these strains with other HIV-1 strains. Twenty-nine HIV-1 strains isolated from treatment-naïve adolescents (n=15) and adults (n=14) were included in this study. Resistance genotyping was performed by using Big Dye Terminator chemistry provided by the ViroSeq Genotyping System. The sequences of the protease and reverse transcriptase genes were aligned (ClustalW) and a phylogenetic tree was built (MEGA 3 software). For subtyping purposes, all the nucleotide sequences were submitted to the Stanford database. All the studied strains were found to harbor accessory mutations in the protease gene. The most frequent mutation was M36I (29 of 29 strains), followed by L63T, K20R, and L10V. The number of polymorphisms associated with protease inhibitor resistance was different for the two age groups. Intraphylogenetic divergence was greater for adults than for adolescents infected in childhood. All the strains were found to belong to the F1 subtype. The phylogenetic analysis revealed that Romanian strains clustered together, but distinctly from F1 HIV-1 strains isolated in other parts of the world (Brazil, Finland, and Belgium). Protease secondary mutations are present with high frequency in the HIV-1 F subtype strains isolated from Romanian ARV treatment-naïve patients, but no major resistance mutations were found.
Zhang, Zhijun; Walker, Michelle; Xu, Wen; Shim, Jae Hoon; Girardet, Jean-Luc; Hamatake, Robert K; Hong, Zhi
2006-08-01
Mutations in and around the catalytic site of the reverse transcriptase (RT) of human immunodeficiency virus type 1 (HIV-1) are associated with resistance to nucleoside RT inhibitors (NRTIs), whereas changes in the hydrophobic pocket of the RT are attributed to nonnucleoside RT inhibitor (NNRTI) resistance. In this study, we report a novel series of nonnucleoside inhibitors of HIV-1, exemplified by VRX-329747 and VRX-413638, which inhibit both NNRTI- and NRTI-resistant HIV-1 isolates. Enzymatic studies indicated that these compounds are HIV-1 RT inhibitors. Surprisingly, however, following prolonged (6 months) tissue culture selection, this series of nonnucleoside inhibitors did not select NNRTI-resistant mutations in HIV-1 RT. Rather, four mutations (M41L, A62T/V, V118I, and M184V) known to cause resistance to NRTIs and two additional novel mutations (S68N and G112S) adjacent to the catalytic site of the enzyme were selected. Although the M184V mutation appears to be the initial mutation to establish resistance, this mutation alone confers only a two- to fourfold decrease in susceptibility to VRX-329747 and VRX-413638. At least two additional mutations must accumulate for significant resistance. Moreover, while VRX-329747-selected viruses are resistant to lamivudine and emtricitabine due to the M184V mutation, they remain susceptible to zidovudine, stavudine, dideoxyinosine, abacavir, tenofovir, and efavirenz. These results directly demonstrate that VRX-329747 and VRX-413638 are novel nonnucleoside inhibitors of HIV-1 RT with the potential to augment current therapies.
Zhang, Zhijun; Walker, Michelle; Xu, Wen; Shim, Jae Hoon; Girardet, Jean-Luc; Hamatake, Robert K.; Hong, Zhi
2006-01-01
Mutations in and around the catalytic site of the reverse transcriptase (RT) of human immunodeficiency virus type 1 (HIV-1) are associated with resistance to nucleoside RT inhibitors (NRTIs), whereas changes in the hydrophobic pocket of the RT are attributed to nonnucleoside RT inhibitor (NNRTI) resistance. In this study, we report a novel series of nonnucleoside inhibitors of HIV-1, exemplified by VRX-329747 and VRX-413638, which inhibit both NNRTI- and NRTI-resistant HIV-1 isolates. Enzymatic studies indicated that these compounds are HIV-1 RT inhibitors. Surprisingly, however, following prolonged (6 months) tissue culture selection, this series of nonnucleoside inhibitors did not select NNRTI-resistant mutations in HIV-1 RT. Rather, four mutations (M41L, A62T/V, V118I, and M184V) known to cause resistance to NRTIs and two additional novel mutations (S68N and G112S) adjacent to the catalytic site of the enzyme were selected. Although the M184V mutation appears to be the initial mutation to establish resistance, this mutation alone confers only a two- to fourfold decrease in susceptibility to VRX-329747 and VRX-413638. At least two additional mutations must accumulate for significant resistance. Moreover, while VRX-329747-selected viruses are resistant to lamivudine and emtricitabine due to the M184V mutation, they remain susceptible to zidovudine, stavudine, dideoxyinosine, abacavir, tenofovir, and efavirenz. These results directly demonstrate that VRX-329747 and VRX-413638 are novel nonnucleoside inhibitors of HIV-1 RT with the potential to augment current therapies. PMID:16870771
Gupta, Soham; Palchaudhuri, Riya; Neogi, Ujjwal; Srinivasa, Hiresave; Ashorn, Per; De Costa, Ayesha; Källander, Clas; Shet, Anita
2016-01-27
To evaluate the performance and cost of an HIV reverse transcriptase-enzyme activity (HIV-RT) assay in comparison to an HIV-1 RNA assay for routine viral load monitoring in resource limited settings. A cohort-based longitudinal study. Two antiretroviral therapy (ART) centres in Karnataka state, South India, providing treatment under the Indian AIDS control programme. A cohort of 327 HIV-1-infected Indian adult patients initiating first-line ART. Performance and cost of an HIV-RT assay (ExaVir Load V3) in comparison to a gold standard HIV-1 RNA assay (Abbott m2000rt) in a cohort of 327 Indian patients before (WK00) and 4 weeks (WK04) after initiation of first-line therapy. Plasma viral load was determined by an HIV-1 RNA assay and an HIV-RT assay in 629 samples (302 paired samples and 25 single time point samples at WK00) obtained from 327 patients. Overall, a strong correlation of r=0.96 was observed, with good correlation at WK00 (r=0.84) and at WK04 (r=0.77). Bland-Altman analysis of all samples showed a good level of agreement with a mean difference (bias) of 0.22 log10copies/mL. The performance of ExaVir Load V3 was not negatively affected by a nevirapine/efavirenz based antiretroviral regimen. The per test cost of measuring plasma viral load by the Abbott m2000rt and ExaVir Load V3 assays in a basic lab setting was $36.4 and $16.8, respectively. The strong correlation between the HIV-RT and HIV-1 RNA assays suggests that the HIV-RT assay can be an affordable alternative option for monitoring patients on antiretroviral therapy in resource-limited settings. ISRCTN79261738. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://www.bmj.com/company/products-services/rights-and-licensing/
Xu, LiJing; Wang, HeXiang; Ng, TziBun
2012-01-01
A 59 kDa laccase with inhibitory activity against HIV-1 reverse transcriptase (IC50 = 2.4 μM) was isolated from the broth of mycelial culture of the mushroom Lentinus tigrinus. The isolation procedure involved ion exchange chromatography on DEAE-cellulose and CM-cellulose, and gel filtration by fast protein liquid chromatography on Superdex 75. The laccase was adsorbed on both types of ion exchangers. About 95-fold purification was achieved with a 25.9% yield of the enzyme. The procedure resulted in a specific enzyme activity of 76.6 U/mg. Its N-terminal amino acid sequence was GIPDLHDLTV, which showed little similarity to other mushroom laccase and other Lentinus tigrinus strain laccase. Its characteristics were different from previously reported laccase of other Lentinus tigrinus strain. Maximal laccase activity was observed at a pH of 4 and at a temperature of 60°C, respectively. This study yielded the information about the potentially exploitable activities of Lentinus tigrinus laccase. PMID:22536022
Advances in Developing HIV-1 Viral Load Assays for Resource-Limited Settings
Wang, ShuQi; Xu, Feng; Demirci, Utkan
2010-01-01
Commercial HIV-1 RNA viral load assays have been routinely used in developed countries to monitor antiretroviral treatment (ART). However, these assays require expensive equipment and reagents, well-trained operators, and established laboratory infrastructure. These requirements restrict their use in resource-limited settings where people are most afflicted with the HIV-1 epidemic. Inexpensive alternatives such as the Ultrasensitive p24 assay, the Reverse Transcriptase (RT) assay and in-house reverse transcription quantitative polymerase chain reaction (RT-qPCR) have been developed. However, they are still time-consuming, technologically complex and inappropriate for decentralized laboratories as point-of-care (POC) tests. Recent advances in microfluidics and nanotechnology offer new strategies to develop low-cost, rapid, robust and simple HIV-1 viral load monitoring systems. We review state-of-the-art technologies used for HIV-1 viral load monitoring in both developed and developing settings. Emerging approaches based on microfluidics and nanotechnology, which have potential to be integrated into POC HIV-1 viral load assays, are also discussed. PMID:20600784
Wan, Zheng-Yong; Yao, Jin; Mao, Tian-Qi; Wang, Xin-Long; Wang, Hai-Feng; Chen, Wen-Xue; Yin, Hong; Chen, Fen-Er; De Clercq, Erik; Daelemans, Dirk; Pannecouque, Christophe
2015-09-18
Based on molecular simulation, the etravirine-VRX-480773 hybrids previously disclosed by our group were optimized to yield novel pyrimidine sulfonylacetanilides 8 with improved activity against a panel of seven clinically relevant single and double mutant strains of HIV-1. The improvement in potency in this in vitro model of HIV RNA replication partly validates the mechanism by which this class of allosteric pyrimidine derivatives inhibits the reverse transcriptase (RT), and represents a remarkable step forward in the development of anti-HIV drugs. Copyright © 2015 Elsevier Masson SAS. All rights reserved.
Sakakibara, Norikazu; Baba, Masanori; Okamoto, Mika; Toyama, Masaaki; Demizu, Yosuke; Misawa, Takashi; Kurihara, Masaaki; Irie, Kohji; Kato, Yoshihisa; Maruyama, Tokumi
2015-02-01
A new series of 1-aromatic methyl-substituted 3-(3,5-dimethylbenzyl)uracil and N-3,5-dimethylbenzyl-substituted urea derivatives were synthesized and evaluated as non-nucleoside HIV-1 reverse transcriptase inhibitors. A series of new 6-azido and 6-amino derivatives of 1-substituted-3-(3,5-dimethylbenzyl)uracils were synthesized using our previously reported method, and three acyclic derivatives were synthesized from urea. The anti-HIV-1 activities of these compounds were determined based on the inhibition of virus-induced cytopathogenicity in MT-4 cells. The cytotoxicities of the compounds were evaluated using the viability of mock-infected cells. Some of these compounds showed good-to-moderate activities against HIV-1 with half maximal effective concentration (EC50) values in the submicromolar or subnanomolar range. Compared with emivirine, compound 6-amino-3-(3,5-dimethylbenzyl)-1-(4-aminobenzyl)uracil showed significant anti-HIV-1 activity with an EC50 value of 10 nM and a high selectivity index of 1923. Preliminary structure-activity relationship studies and molecular modeling analyses were carried out to explore the major interactions between HIV-1 reverse transcriptase and the potent inhibitor 6-amino-3-(3,5-dimethylbenzyl)-1-(4-aminobenzyl)uracil; these results may be important for further development of this class of compounds as anti-HIV-1 agents. The excellent activity of 6-amino-3-(3,5-dimethylbenzyl)-1-(4-aminobenzyl)uracil (EC50: 0.010 ± 0.006 µM, SI: >1923) may serve as the basis for conducting further investigations on the behavior of this class of compounds against drug-resistant mutants. © The Author(s) 2015 Reprints and permissions: sagepub.co.uk/journalsPermissions.nav.
Sakakibara, Norikazu; Baba, Masanori; Okamoto, Mika; Toyama, Masaaki; Demizu, Yosuke; Misawa, Takashi; Kurihara, Masaaki; Irie, Kohji; Kato, Yoshihisa; Maruyama, Tokumi
2015-01-01
Background A new series of 1-aromatic methyl-substituted 3-(3,5-dimethylbenzyl)uracil and N-3,5-dimethylbenzyl-substituted urea derivatives were synthesized and evaluated as non-nucleoside HIV-1 reverse transcriptase inhibitors. Methods A series of new 6-azido and 6-amino derivatives of 1-substituted-3-(3,5-dimethylbenzyl)uracils were synthesized using our previously reported method, and three acyclic derivatives were synthesized from urea. The anti-HIV-1 activities of these compounds were determined based on the inhibition of virus-induced cytopathogenicity in MT-4 cells. The cytotoxicities of the compounds were evaluated using the viability of mock-infected cells. Results Some of these compounds showed good-to-moderate activities against HIV-1 with half maximal effective concentration (EC50) values in the submicromolar or subnanomolar range. Compared with emivirine, compound 6-amino-3-(3,5-dimethylbenzyl)-1-(4-aminobenzyl)uracil showed significant anti-HIV-1 activity with an EC50 value of 10 nM and a high selectivity index of 1923. Preliminary structure–activity relationship studies and molecular modeling analyses were carried out to explore the major interactions between HIV-1 reverse transcriptase and the potent inhibitor 6-amino-3-(3,5-dimethylbenzyl)-1-(4-aminobenzyl)uracil; these results may be important for further development of this class of compounds as anti-HIV-1 agents. Conclusion The excellent activity of 6-amino-3-(3,5-dimethylbenzyl)-1-(4-aminobenzyl)uracil (EC50: 0.010 ± 0.006 µM, SI: >1923) may serve as the basis for conducting further investigations on the behavior of this class of compounds against drug-resistant mutants. PMID:26149262
Murillo, Wendy; de Rivera, I L; Parham, L; Jovel, E; Palou, E; Karlsson, A C; Albert, J
2010-02-01
The Honduran HIV/AIDS Program began to scale up access to HIV therapy in 2002. Up to May 2008, more than 6000 patients received combination antiretroviral therapy (cART). As HIV drug resistance is the major obstacle for effective treatment, the purpose of this study was to assess the prevalence of antiretroviral drug resistance in Honduran HIV-1-infected individuals. We collected samples from 138 individuals (97 adults and 41 children) on cART with virological, immunological or clinical signs of treatment failure. HIV-1 pol sequences were obtained using an in-house method. Resistance mutations were identified according to the 2007 International AIDS Society (IAS)-USA list and predicted susceptibility to cART was scored using the ANRS algorithm. Resistance mutations were detected in 112 patients (81%), 74% in adults and 98% in children. Triple-, dual- and single-class drug resistance was documented in 27%, 43% and 11% of the study subjects, respectively. Multiple logistic regression showed that resistance was independently associated with type of treatment failure [virological failure (odds ratio (OR) = 1) vs. immunological failure (OR = 0.11; 95% confidence interval (CI) 0.030-0.43) vs. clinical failure (OR = 0.037; 95% CI 0.0063-0.22)], route of transmission (OR = 42.8; 95% CI 3.73-491), and years on therapy (OR = 1.81; 95% CI 1.11-2.93). The prevalence of antiretroviral resistance was high in Honduran HIV-infected patients with signs of treatment failure. A majority of study subjects showed dual- or triple-class resistance to nucleoside reverse transcriptase inhibitors, nonnucleoside reverse transcriptase inhibitors and protease inhibitors. Virologically defined treatment failure was a strong predictor of resistance, indicating that viral load testing is needed to correctly identify patients with treatment failure attributable to resistance.
Sohl, Christal D.; Kasiviswanathan, Rajesh; Kim, Jiae; Pradere, Ugo; Schinazi, Raymond F.; Copeland, William C.; Mitsuya, Hiroaki; Baba, Masanori
2012-01-01
Two novel thymidine analogs, 3′-fluoro-3′-deoxythymidine (FLT) and 2′,3′-didehydro-3′-deoxy-4′-ethynylthymidine (Ed4T), have been investigated as nucleoside reverse transcriptase inhibitors (NRTIs) for treatment of HIV infection. Ed4T seems very promising in phase II clinical trials, whereas toxicity halted FLT development during this phase. To understand these different molecular mechanisms of toxicity, pre–steady-state kinetic studies were used to examine the interactions of FLT and Ed4T with wild-type (WT) human mitochondrial DNA polymerase γ (pol γ), which is often associated with NRTI toxicity, as well as the viral target protein, WT HIV-1 reverse transcriptase (RT). We report that Ed4T-triphosphate (TP) is the first analog to be preferred over native nucleotides by RT but to experience negligible incorporation by WT pol γ, with an ideal balance between high antiretroviral efficacy and minimal host toxicity. WT pol γ could discriminate Ed4T-TP from dTTP 12,000-fold better than RT, with only an 8.3-fold difference in discrimination being seen for FLT-TP. A structurally related NRTI, 2′,3′-didehydro-2′,3′-dideoxythymidine, is the only other analog favored by RT over native nucleotides, but it exhibits only a 13-fold difference (compared with 12,000-fold for Ed4T) in discrimination between the two enzymes. We propose that the 4′-ethynyl group of Ed4T serves as an enzyme selectivity moiety, critical for discernment between RT and WT pol γ. We also show that the pol γ mutation R964C, which predisposes patients to mitochondrial toxicity when receiving 2′,3′-didehydro-2′,3′-dideoxythymidine to treat HIV, produced some loss of discrimination for FLT-TP and Ed4T-TP. These molecular mechanisms of analog incorporation, which are critical for understanding pol γ-related toxicity, shed light on the unique toxicity profiles observed during clinical trials. PMID:22513406
Mao, Yating; Li, Yan; Hao, Ming; Zhang, Shuwei; Ai, Chunzhi
2012-05-01
As a key component in combination therapy for acquired immunodeficiency syndrome (AIDS), non-nucleoside reverse transcriptase inhibitors (NNRTIs) have been proven to be an essential way in stopping HIV-1 replication. In the present work, in silico studies were conducted on a series of 119 NNRTIs, including 1-(2-hydroxyethoxymethyl)-6-(phenylthio)thymine (HEPT) and dihydroalkoxybenzyloxopyrimidine (DABO) derivatives by using the comparative molecular field analysis (CoMFA), comparative molecular similarity indices analysis (CoMSIA), docking simulations and molecular dynamics (MD). The statistical results of the optimal model, the ligand-based CoMSIA one (Q(2) = 0.48, R(ncv)(2) =0.847, R(pre)(2) = 0.745) validates its satisfactory predictive capacity both internally and externally. The contour maps, docking and MD results correlate well with each other, drawing conclusions as follows: 1) Compounds with bulky substituents in position-6 of ring A, hydrophobic groups around position- 1, 2, 6 are preferable to the biological activities; 2) Two hydrogen bonds between RT inhibitor and the Tyr 318, Lys 101 residues, respectively, and a π-π bond between the inhibitor and Trp 188 are formed and crucial to the orientation of the active conformation of the molecules; 3) The binding pocket is essentially hydrophobic, which are determined by residues such as Trp 229, Tyr 318, Val 179, Tyr 188 and Val 108, and hydrophobic substituents may bring an improvement to the biological activity; 4) DABO and HEPT derivatives have different structures but take a similar mechanism to inhibit RT. The potency difference between two isomers in HEPTs can be explained by the distinct locations of the 6-naphthylmethyl substituent and the reasons are explained in details. All these results could be employed to alter the structural scaffold in order to develop new HIV-1 RT inhibitors that have an improved biological property. To the best of our knowledge, this is the first report on 3D-QSAR modeling of this series of HEPT and DABO NNRTs. The QSAR model and the information derived, we hope, will be of great help in presenting clear guidelines and accurate activity predictions for newly designed HIV-1 reverse transcriptase (RT) inhibitor.
Basic science and pathogenesis of ageing with HIV: potential mechanisms and biomarkers.
Lagathu, Claire; Cossarizza, Andrea; Béréziat, Véronique; Nasi, Milena; Capeau, Jacqueline; Pinti, Marcello
2017-06-01
: The increased prevalence of age-related comorbidities and mortality is worrisome in ageing HIV-infected patients. Here, we aim to analyse the different ageing mechanisms with regard to HIV infection. Ageing results from the time-dependent accumulation of random cellular damage. Epigenetic modifications and mitochondrial DNA haplogroups modulate ageing. In antiretroviral treatment-controlled patients, epigenetic clock appears to be advanced, and some haplogroups are associated with HIV infection severity. Telomere shortening is enhanced in HIV-infected patients because of HIV and some nucleoside analogue reverse transcriptase inhibitors. Mitochondria-related oxidative stress and mitochondrial DNA mutations are increased during ageing and also by some nucleoside analogue reverse transcriptase inhibitors. Overall, increased inflammation or 'inflammageing' is a major driver of ageing and could result from cell senescence with secreted proinflammatory mediators, altered gut microbiota, and coinfections. In HIV-infected patients, the level of inflammation and innate immunity activation is enhanced and related to most comorbidities and to mortality. This status could result, in addition to age, from the virus itself or viral protein released from reservoirs, from HIV-enhanced gut permeability and dysbiosis, from antiretroviral treatment, from frequent cytomegalovirus and hepatitis C virus coinfections, and also from personal and environmental factors, as central fat accumulation or smoking. Adaptive immune activation and immunosenescence are associated with comorbidities and mortality in the general population but are less predictive in HIV-infected patients. Biomarkers to evaluate ageing in HIV-infected patients are required. Numerous systemic or cellular inflammatory, immune activation, oxidative stress, or senescence markers can be tested in serum or peripheral blood mononuclear cells. The novel European Study to Establish Biomarkers of Human Ageing MARK-AGE algorithm, evaluating the biological age, is currently assessed in HIV-infected patients and reveals an advanced biological age. Some enhanced inflammatory or innate immune activation markers are interesting but still not validated for the patient's follow-up. To be able to assess patients' biological age is an important objective to improve their healthspan.
Pozniak, Anton L; Morales-Ramirez, Javier; Katabira, Elly; Steyn, Dewald; Lupo, Sergio H; Santoscoy, Mario; Grinsztejn, Beatriz; Ruxrungtham, Kiat; Rimsky, Laurence T; Vanveggel, Simon; Boven, Katia
2010-01-02
TMC278 is a next-generation nonnucleoside reverse transcriptase inhibitor highly active against wild-type and nonnucleoside reverse transcriptase inhibitor-resistant HIV-1 in vitro. The week 96 analysis of TMC278-C204, a large dose-ranging study of TMC278 in treatment-naive HIV-1-infected patients, is presented. Phase IIb randomized trial. Three hundred sixty-eight patients were randomized and treated with three blinded once-daily TMC278 doses 25, 75 or 150 mg, or an open-label, active control, efavirenz 600 mg once daily, all with two nucleoside reverse transcriptase inhibitors. The primary analysis was at week 48. No TMC278 dose-response relationship for efficacy and safety was observed. TMC278 demonstrated potent antiviral efficacy comparable with efavirenz over 48 weeks that was sustained to week 96 (76.9-80.0% and 71.4-76.3% of TMC278-treated patients with confirmed viral load <50 copies/ml, respectively; time-to-loss of virological-response algorithm). Median increases from baseline in CD4 cell count with TMC278 at week 96 (138.0-149.0 cells/microl) were higher than at week 48 (108.0-123.0 cells/microl). All TMC278 doses were well tolerated. The incidences of the most commonly reported grade 2-4 adverse events at least possibly related to study medication, including nausea, dizziness, abnormal dreams/nightmare, dyspepsia, asthenia, rash, somnolence and vertigo, were low and lower with TMC278 than with efavirenz. Incidences of serious adverse events, grade 3 or 4 adverse events and discontinuations due to adverse events were similar among groups. All TMC278 doses demonstrated potent and sustained efficacy comparable with efavirenz in treatment-naive patients over 96 weeks. TMC278 was well tolerated with lower incidences of neurological and psychiatric adverse events, rash and lower lipid elevations than those with efavirenz. TMC278 25 mg once daily was selected for further clinical development.
Van Eygen, Veerle; Thys, Kim; Van Hove, Carl; Rimsky, Laurence T; De Meyer, Sandra; Aerssens, Jeroen; Picchio, Gaston; Vingerhoets, Johan
2016-05-01
Minority variants (1.0-25.0%) were evaluated by deep sequencing (DS) at baseline and virological failure (VF) in a selection of antiretroviral treatment-naïve, HIV-1-infected patients from the rilpivirine ECHO/THRIVE phase III studies. Linkage between frequently emerging resistance-associated mutations (RAMs) was determined. DS (llIumina®) and population sequencing (PS) results were available at baseline for 47 VFs and time of failure for 48 VFs; and at baseline for 49 responders matched for baseline characteristics. Minority mutations were accurately detected at frequencies down to 1.2% of the HIV-1 quasispecies. No baseline minority rilpivirine RAMs were detected in VFs; one responder carried 1.9% F227C. Baseline minority mutations associated with resistance to other non-nucleoside reverse transcriptase inhibitors (NNRTIs) were detected in 8/47 VFs (17.0%) and 7/49 responders (14.3%). Baseline minority nucleoside/nucleotide reverse transcriptase inhibitor (NRTI) RAMs M184V and L210W were each detected in one VF (none in responders). At failure, two patients without NNRTI RAMs by PS carried minority rilpivirine RAMs K101E and/or E138K; and five additional patients carried other minority NNRTI RAMs V90I, V106I, V179I, V189I, and Y188H. Overall at failure, minority NNRTI RAMs and NRTI RAMs were found in 29/48 (60.4%) and 16/48 VFs (33.3%), respectively. Linkage analysis showed that E138K and K101E were usually not observed on the same viral genome. In conclusion, baseline minority rilpivirine RAMs and other NNRTI/NRTI RAMs were uncommon in the rilpivirine arm of the ECHO and THRIVE studies. DS at failure showed emerging NNRTI resistant minority variants in seven rilpivirine VFs who had no detectable NNRTI RAMs by PS. © 2015 Wiley Periodicals, Inc.
2002-05-01
Antiretroviral research presented recently at the 9th Conference on Retroviruses and Opportunistic Infections demonstrates that investigators and pharmaceutical companies continue to strive for the next highly potent and easily tolerated anti-HIV drug. Among the new approaches are entry inhibitor drug and second-generation non-nucleoside reverse transcriptase inhibitors. New studies also looked into potency against multidrug-resistant virus and medication regimens that are simpler to take and have fewer side effects.
Efficacy and durability of nevirapine in antiretroviral drug näive patients.
Lange, Joep M A
2003-09-01
Nevirapine is a non-nucleoside reverse transcriptase inhibitor (NNRTI) that was first reported in the scientific literature in 1990. Varying doses of nevirapine (NVP) and a number of regimens containing this NNRTI have been studied in antiretroviral (ARV) näive patients. Four key studies have compared the efficacy and safety of triple drug regimens containing NVP in ARV näive, HIV-1 infected patients. The INCAS study was the first demonstration of how to use NVP in an effective and durable manner: as a component of a triple drug regimen. The COMBINE Study was a comparison of protease inhibitor (PI)-based and NVP-based triple regimens. The Atlantic Study is comparing the safety and efficacy of three triple drug regimens in ARV näive patients. In this study, treatment consists of a divergent drug regimen (PI and nucleoside reverse transcriptase inhibitors, NRTIs) targeting both HIV-1 protease and reverse transcriptase or a convergent regimen targeting reverse transcriptase alone (three NRTIs or two NRTIs plus a NNRTI). A clinical endpoint study (BI 1090) compared the efficacy and durability of multi-drug regimens in ARV näive patients with high baseline plasma HIV-1 RNA levels (pVLs) and low peripheral blood CD4+ lymphocyte counts. Data from these studies confirm that triple regimens containing NVP suppressed viral replication for up to one year, even when the ARV näive patients had low CD4+ cell counts at baseline. Nevirapine-containing regimens suppressed pVLs to < 50 copies/ mL in approximately 50% of patients in the studies discussed (Intent to Treat analyses). Data from 96 weeks of follow up in the Atlantic Study demonstrates that the regimens containing didanosine and stavudine plus indinavir or NVP were significantly more successful in suppressing pVLs to < 50 copies/mL during this period than a regimen composed of these NRTIs and lamivudine (p < or = 0.001). As with other ARV drugs, NVP should always be used as part of a fully suppressive ARV regimen. When used in this way, it is an effective ARV drug, which contributes to durable virological and immunological responses in approximately half of all treated patients. Nevirapine-containing regimens are effective in patients with advanced HIV-1 infection, i.e., low CD4+ cell counts. Data will soon be available from the 2NN Study that compares the efficacy and safety of four different regimens using NVP once daily, NVP twice daily, efavirenz once daily or a combination of NVP and efavirenz. All four arms of the study include a backbone of stavudine and lamivudine.
Pulido, Federico; Arribas, José R; Hill, Andrew; Van Delft, Yvon; Moecklinghoff, Christiane
2011-01-01
When patients have HIV RNA suppressed to <50 copies/ml on current treatment, switching to darunavir (DRV)/ritonavir (DRV/r) monotherapy could prevent the development of resistance to other drug classes. In the MONET trial, 256 patients with HIV RNA<50 copies/ml on current highly active antiretroviral therapy (57% with protease inhibitors [PIs] and 43% with non-nucleoside reverse transcriptase inhibitors) and no history of virological failure were randomized to DRV/r 800/100 mg once daily, either as monotherapy (monotherapy arm) or with two nucleoside reverse transcriptase inhibitors (NRTIs; triple therapy arm). All samples with HIV RNA ≥ 50 copies/ml were genotyped, and a virtual phenotype was calculated (VircoType HIV-1 assays; Virco BVBA, Mechelen, Belgium). A total of 63 patients had ≥ 1 HIV RNA result ≥ 50 copies/ml, of whom 38 were successfully genotyped. Most HIV RNA increases were transient and in the range of 50-200 copies/ml. Overall, 36 of the 38 (95%) successfully genotyped patients showed no International AIDS Society-USA major PI mutations, DRV mutations or NRTI mutations. Two patients showed some evidence of PI resistance during transient HIV RNA elevations: one patient in the monotherapy arm had a single DRV mutation (L33F) when HIV RNA was 63 copies/ml (the virus was phenotypically sensitive to DRV [fold change 0.8]) and one PI pretreated patient taking tenofovir disoproxil fumarate/emtricitabine/DRV/r had re-emergence of pre-existing NRTI (M184V) and PI (V82I and L90M) mutations after a short treatment interruption (this virus remained phenotypically sensitive to DRV/r). Both patients showed sustained HIV RNA suppression to week 48 remaining with the same treatment. Emergence of drug resistance after changing a suppressive triple antiretroviral therapy to DRV/r with or without nucleoside analogues is uncommon.
Pan, Pinliang; Tao, Xiaoxia; Zhang, Qi; Xing, Wenge; Sun, Xianguang; Pei, Lijian; Jiang, Yan
2007-12-01
To investigate the correlation between three viral load assays for circulating recombinant form (CRF)_BC. Recent studies in HIV-1 molecular epidemiology, reveals that CRF_BC is the dominant subtype of HIV-1 virus in mainland China, representing over 45% of the HIV-1 infected population. The performances of nucleic acid sequence-based amplification (NASBA), branched DNA (bDNA) and reverse transcriptase polymerase chain reaction (RT-PCR) were compared for the HIV-1 viral load detection and quantitation of CRF_BC in China. Sixteen HIV-1 positive and three HIV-1 negative samples were collected. Sequencing of the positive samples in the gp41 region was conducted. The HIV-1 viral load values were determined using bDNA, RT-PCR and NASBA assays. Deming regression analysis with SPSS 12.0 (SPS Inc., Chicago, Illinois, USA) was performed for data analysis. Sequencing and phylogenetic analysis of env gene (gp41) region of the 16 HIV-1 positive clinical specimens from Guizhou Province in southwest China revealed the dominance of the subtype CRF_BC in that region. A good correlation of their viral load values was observed among three assays. Pearson's correlation between RT-PCR and bDNA is 0.969, Lg(VL)RT-PCR = 0.969 * Lg(VL)bDNA + 0.55; Pearson's correlation between RT-PCR and NASBA is 0.968, Lg(VL)RT-PCR = 0.968 * Lg(VL)NASBA + 0.937; Pearson's correlation between NASBA and bDNA is 0.980, Lg(VL)NASBA = 0.980 * Lg(VL)bDNA - 0.318. When testing with 3 different assays, RT-PCR, bDNA and NASBA, the group of 16 HIV-1 positive samples showed the viral load value was highest for RT-PCR, followed by bDNA then NASBA, which is consistent with the former results in subtype B. The three viral load assays are highly correlative for CRF_BC in China.
Rojas Sánchez, Patricia; Domínguez, Sara; Jiménez De Ory, Santiago; Prieto, Luis; Rojo, Pablo; Mellado, Pepa; Navarro, Marisa; Delgado, Rafael; Ramos, José Tomas; Holguín, África
2018-03-01
The expanded use of long-term antiretroviral treatments in infected children may exacerbate the problem of drug resistance mutations selection, which can compromise treatment efficiency. We describe the temporal trends of HIV drug resistance mutations and the HIV-1 variants during 23 years (1993 to March 2016) in the Madrid cohort of HIV-infected children and adolescents. We selected patients with at least one available HIV-1 pol sequence/genotypic resistance profile, establishing different groups according to the sampling year of first resistance data. We determined the prevalence of transmitted drug resistance mutations or acquired drug resistance mutations (DRM), the drug susceptibility among resistant viruses and HIV-1 variants characterized by phylogeny across time. A total of 245 pediatric patients were selected, being mainly female, Spanish native, perinatally infected and carrying HIV-1 subtype B. At first sampling, most pediatric patients were on antiretroviral therapy and heavily pretreated. During 1993 to 2016, transmitted drug resistance mutations was found in 13 (26%) of 50 naive children [non-nucleoside reverse transcriptase inhibitors (NNRTI), 14.6%; nucleoside reverse transcriptase inhibitors (NRTI), 10.4%; protease inhibitors, 8.7%]. DRM appeared in 139 (73.2%) of 190 pretreated patients (NRTI, 64.5%; NNRTI, 36%; protease inhibitors, 35.1%). DRM to NNRTI was higher in last 5 years. Non-B variants infected 14.5% of children and adolescents of the Madrid Cohort, being mainly intersubtype recombinants (76.5%), including complex unique recombinant strains. They caused 3.4% infections before 2000, rising to 85.7% during 2011 to 2016. Periodic surveillance resistance and molecular epidemiology studies in long-term pretreated HIV-infected pediatric populations are required to optimize treatment regimens. Results will permit a better understanding of long-time dynamics of viral resistance and HIV-1 variants in Spain.
Yang, Fengyuan; Zheng, Guoxun; Fu, Tingting; Li, Xiaofeng; Tu, Gao; Li, Ying Hong; Yao, Xiaojun; Xue, Weiwei; Zhu, Feng
2018-06-27
The rapid emergence of drug-resistant variants is one of the most common causes of highly active antiretroviral therapeutic (HAART) failure in patients infected with HIV-1. Compared with the existing HAART, the recently developed pyrrolyl diketo acid scaffold targeting both HIV-1 integrase (IN) and reverse transcriptase-associated ribonuclease H (RNase H) is an efficient approach to counteract the failure of anti-HIV treatment due to drug resistance. However, the binding mode and potential resistance profile of these inhibitors with important mechanistic principles remain poorly understood. To address this issue, an integrated computational method was employed to investigate the binding mode of inhibitor JMC6F with HIV-1 IN and RNase H. By using per-residue binding free energy decomposition analysis, the following residues: Asp64, Thr66, Leu68, Asp116, Tyr143, Gln148 and Glu152 in IN, Asp443, Glu478, Trp536, Lys541 and Asp549 in RNase H were identified as key residues for JMC6F binding. And then computational alanine scanning was carried to further verify the key residues. Moreover, the resistance profile of the currently known major mutations in HIV-1 IN and 2 mutations in RNase H against JMC6F was predicted by in silico mutagenesis studies. The results demonstrated that only three mutations in HIV-1 IN (Y143C, Q148R and N155H) and two mutations in HIV-1 RNase H (Y501R and Y501W) resulted in a reduction of JMC6F potency, thus indicating their potential role in providing resistance to JMC6F. These data provided important insights into the binding mode and resistance profile of the inhibitors with a pyrrolyl diketo acid scaffold in HIV-1 IN and RNase H, which would be helpful for the development of more effective dual HIV-1 IN and RNase H inhibitors.
1-Benzyl-2-(1H-indol-3-yl)-5-oxo-pyrrolidine-2-carbonitrile.
Tamazyan, Rafael; Armen, Ayvazyan; Ashot, Martirosyan; Sahak, Gasparyan; Schinazi, Raymond
2008-01-04
In the title compound, C(20)H(17)N(3)O, a potential anti-human immunodeficiency virus type 1 (HIV-1) non-nucleoside reverse-transcriptase inhibitor, the pyrrolidine ring has an envelope conformation. In the crystal structure, adjacent mol-ecules are connected into infinite chains via an N-H⋯O hydrogen bond.
Liu, Genyan; Wang, Wenjie; Wan, Youlan; Ju, Xiulian; Gu, Shuangxi
2018-05-11
Diarylpyrimidines (DAPYs), acting as HIV-1 nonnucleoside reverse transcriptase inhibitors (NNRTIs), have been considered to be one of the most potent drug families in the fight against acquired immunodeficiency syndrome (AIDS). To better understand the structural requirements of HIV-1 NNRTIs, three-dimensional quantitative structure⁻activity relationship (3D-QSAR), pharmacophore, and molecular docking studies were performed on 52 DAPY analogues that were synthesized in our previous studies. The internal and external validation parameters indicated that the generated 3D-QSAR models, including comparative molecular field analysis (CoMFA, q 2 = 0.679, R 2 = 0.983, and r pred 2 = 0.884) and comparative molecular similarity indices analysis (CoMSIA, q 2 = 0.734, R 2 = 0.985, and r pred 2 = 0.891), exhibited good predictive abilities and significant statistical reliability. The docking results demonstrated that the phenyl ring at the C₄-position of the pyrimidine ring was better than the cycloalkanes for the activity, as the phenyl group was able to participate in π⁻π stacking interactions with the aromatic residues of the binding site, whereas the cycloalkanes were not. The pharmacophore model and 3D-QSAR contour maps provided significant insights into the key structural features of DAPYs that were responsible for the activity. On the basis of the obtained information, a series of novel DAPY analogues of HIV-1 NNRTIs with potentially higher predicted activity was designed. This work might provide useful information for guiding the rational design of potential HIV-1 NNRTI DAPYs.
Anti-adenoviral effect of anti-HIV agents in vitro in serotypes inducing keratoconjunctivitis.
Uchio, Eiichi; Fuchigami, Aki; Kadonosono, Kazuaki; Hayashi, Akio; Ishiko, Hiroaki; Aoki, Koki; Ohno, Shigeaki
2007-09-01
Around one million people are affected by adenoviral keratoconjunctivitis a year in Japan, and it is recognized as one of the major pathogens of ophthalmological nosocomial infection worldwide. Although cidofovir can be used systemically for immunocompromised patients with disseminated adenoviral infection, no specific anti-adenoviral agent has been established for the treatment of adenoviral infection. We evaluated the anti-adenoviral effect of anti-HIV (human immunodeficiency virus) agents in this study. Five anti-HIV agents (zalcitabine, stavudine, nevirapine, indinavir and amprenavir) were subjected to in vitro evaluation. A549 cells were used for viral cell culture, and adenovirus serotypes 3, 4, 8, 19 and 37 were used. After calculating CC(50) (50% cytotoxic concentration) of each agent by MTS (3-(4,5-dimethylthiazol-2-yl)-5-(3-carboxymethoxyphenyl)-2-(4-sulfophenyl)-2H-tetrazolium) method, we cultured adenovirus with the agents for seven days and quantitatively measured extracted adenoviral DNA by real-time PCR. Among the anti-HIV drugs, zalcitabine and stavudine, both nucleoside reverse transcriptase inhibitors, showed significant anti-adenoviral activity. In contrast, nevirapine, a non-nucleoside reverse transcriptase inhibitor, and indinavir and amprenavir, which are both protease inhibitors, were ineffective against adenovirus. These results indicate that zalcitabine and stavudine are possible candidates for the local and systemic treatment of adenoviral infection, and the anti-adenoviral effect might depend on the pharmacological properties of anti-HIV agents. The chemical properties on the clinical safety for systemic and local application need to be determined in order to for these drugs to be accepted for the treatment of adenovirus in clinical settings.
De Luca, Andrea; Hamers, Raphael L; Schapiro, Jonathan M
2013-06-15
Antiretroviral treatment (ART) is expanding to human immunodeficiency virus type 1 (HIV-1)-infected persons in low-middle income countries, thanks to a public health approach. With 3 available drug classes, 2 ART sequencing lines are programmatically foreseen. The emergence and transmission of viral drug resistance represents a challenge to the efficacy of ART. Knowledge of HIV-1 drug resistance selection associated with specific drugs and regimens and the consequent activity of residual drug options are essential in programming ART sequencing options aimed at preserving ART efficacy for as long as possible. This article determines optimal ART sequencing options for overcoming HIV-1 drug resistance in resource-limited settings, using currently available drugs and treatment monitoring opportunities. From the perspective of drug resistance and on the basis of limited virologic monitoring data, optimal sequencing seems to involve use of a tenofovir-containing nonnucleoside reverse-transcriptase inhibitor-based first-line regimen, followed by a zidovudine-containing, protease inhibitor (PI)-based second-line regimen. Other options and their consequences are explored by considering within-class and between-class sequencing opportunities, including boosted PI monotherapies and future options with integrase inhibitors. Nucleoside reverse-transcriptase inhibitor resistance pathways in HIV-1 subtype C suggest an additional reason for accelerating stavudine phase out. Viral load monitoring avoids the accumulation of resistance mutations that significantly reduce the activity of next-line options. Rational use of resources, including broader access to viral load monitoring, will help ensure 3 lines of fully active treatment options, thereby increasing the duration of ART success.
Current and future management of treatment failure in low- and middle-income countries.
Boyd, Mark A
2010-01-01
Access to second-line therapy in low- and middle-income countries has been limited to date. The WHO predicts that between 500 000 and 800 000 HIV-infected people on first-line combination antiretroviral therapy will require switch to second-line therapy by 2010. This paper aims to describe and review access to second-line therapy in low- and middle-income countries at present and examine future possibilities. The majority of HIV-infected patients failing first-line combination antiretroviral therapy is identified by way of routine monitoring of clinical and immunological status as a surrogate for virological monitoring. Evidence suggests that immunological and clinical monitoring lack both sensitivity and specificity for virological failure. Consequently, at treatment failure, patients have often selected a degree of resistance within the nucleoside/nucleotide reverse transcriptase inhibitor class that questions the efficacy of using nucleoside/nucleotide reverse transcriptase inhibitors in a second-line regimen. There is a paucity of good-quality evidence on which to base guidelines and policy. Optimally, a second-line regimen would be simple, potent, tolerable and lend itself to provision according to the successful 'public health' approach. Provision of second-line therapy to HIV-infected individuals failing first-line therapy is a major challenge to the ongoing success of access to HIV care programmes in low- and middle-income countries. The optimal second-line combination antiretroviral therapies are unknown. Research trials to help define best practice are in advanced stages of development and implementation.
Kantor, Rami; Katzenstein, David A; Efron, Brad; Carvalho, Ana Patricia; Wynhoven, Brian; Cane, Patricia; Clarke, John; Sirivichayakul, Sunee; Soares, Marcelo A; Snoeck, Joke; Pillay, Candice; Rudich, Hagit; Rodrigues, Rosangela; Holguin, Africa; Ariyoshi, Koya; Bouzas, Maria Belen; Cahn, Pedro; Sugiura, Wataru; Soriano, Vincent; Brigido, Luis F; Grossman, Zehava; Morris, Lynn; Vandamme, Anne-Mieke; Tanuri, Amilcar; Phanuphak, Praphan; Weber, Jonathan N; Pillay, Deenan; Harrigan, P. Richard; Camacho, Ricardo; Schapiro, Jonathan M; Shafer, Robert W
2005-01-01
Background The genetic differences among HIV-1 subtypes may be critical to clinical management and drug resistance surveillance as antiretroviral treatment is expanded to regions of the world where diverse non-subtype-B viruses predominate. Methods and Findings To assess the impact of HIV-1 subtype and antiretroviral treatment on the distribution of mutations in protease and reverse transcriptase, a binomial response model using subtype and treatment as explanatory variables was used to analyze a large compiled dataset of non-subtype-B HIV-1 sequences. Non-subtype-B sequences from 3,686 persons with well characterized antiretroviral treatment histories were analyzed in comparison to subtype B sequences from 4,769 persons. The non-subtype-B sequences included 461 with subtype A, 1,185 with C, 331 with D, 245 with F, 293 with G, 513 with CRF01_AE, and 618 with CRF02_AG. Each of the 55 known subtype B drug-resistance mutations occurred in at least one non-B isolate, and 44 (80%) of these mutations were significantly associated with antiretroviral treatment in at least one non-B subtype. Conversely, of 67 mutations found to be associated with antiretroviral therapy in at least one non-B subtype, 61 were also associated with antiretroviral therapy in subtype B isolates. Conclusion Global surveillance and genotypic assessment of drug resistance should focus primarily on the known subtype B drug-resistance mutations. PMID:15839752
Derby, Nina; Aravantinou, Meropi; Kenney, Jessica; Ugaonkar, Shweta R; Wesenberg, Asa; Wilk, Jolanta; Kizima, Larisa; Rodriguez, Aixa; Zhang, Shimin; Mizenina, Olga; Levendosky, Keith; Cooney, Michael L; Seidor, Samantha; Gettie, Agegnehu; Grasperge, Brooke; Blanchard, James; Piatak, Michael; Lifson, Jeffrey D; Fernández-Romero, José; Zydowsky, Thomas M; Robbiani, Melissa
2017-12-01
Women globally need access to multipurpose prevention technologies (MPTs) that prevent human immunodeficiency virus (HIV), sexually transmitted infections that increase HIV acquisition/transmission risk, and unintended pregnancy. Seeking an MPT with activity against HIV, herpes simplex virus-2 (HSV-2), and human papillomavirus (HPV), we developed a prototype intravaginal ring (IVR), the MZCL IVR, which released the antiviral agents MIV-150, zinc acetate, and carrageenan (MZC for short) and the contraceptive levonorgestrel (LNG). Previously, we showed that an MZC gel has potent activity against immunodeficiency viruses, HSV-2, and HPV and that the MZCL (MZC with LNG) IVR releases all four components in macaques in vivo at levels associated with efficacy. Vaginal fluid from treated macaques has in vitro activity against HIV, HSV-2, and HPV. Herein, we assessed the ability of the MZCL IVR to protect macaques against repeated co-challenge with HSV-2 and SHIV-RT (simian immunodeficiency virus [SIV] containing the reverse transcriptase gene from HIV) and prevent hormonal cycling. We evaluated in vivo drug release in co-challenged macaques by measuring drug levels in blood and vaginal fluid and residual drug levels in used IVRs. The MZCL IVR significantly prevented SHIV-RT infection, reduced HSV-2 vaginal shedding, and prevented cycling. No non-nucleoside HIV reverse transcriptase inhibitor (NNRTI)-resistant SHIV was detected in macaques that became infected after continuous exposure to MZC from the IVR. Macaques wearing the MZCL IVR also had carrageenan levels in vaginal fluid expected to protect from HPV (extrapolated from mice) and LNG levels in blood associated with contraceptive efficacy. The MZCL IVR is a promising MPT candidate that warrants further development.
Acuña, Maribel; Gazzo, Cecilia; Salinas, Gabriela; Cárdenas, Fanny; Valverde, Ada; Romero, Soledad
2012-01-01
Abstract HIV-1 subtype B is the most frequent strain in Peru. However, there is no available data about the genetic diversity of HIV-infected patients receiving highly active antiretroviral therapy (HAART) here. A group of 267 patients in the Peruvian National Treatment Program with virologic failure were tested for genotypic evidence of HIV drug resistance at the Instituto Nacional de Salud (INS) of Peru between March 2008 and December 2010. Viral RNA was extracted from plasma and the segments of the protease (PR) and reverse transcriptase (RT) genes were amplified by reverse transcriptase polymerase chain reaction (RT-PCR), purified, and fully sequenced. Consensus sequences were submitted to the HIVdb Genotypic Resistance Interpretation Algorithm Database from Stanford University, and then aligned using Clustal X v.2.0 to generate a phylogenetic tree using the maximum likelihood method. Intrasubtype and intersubtype recombination analyses were performed using the SCUEAL program (Subtype Classification by Evolutionary ALgo-rithms). A total of 245 samples (91%) were successfully genotyped. The analysis obtained from the HIVdb program showed 81.5% resistance cases (n=198). The phylogenetic analysis revealed that subtype B was predominant in the population (98.8%), except for new cases of A, C, and H subtypes (n=4). Of these cases, only subtype C was imported. Likewise, recombination analysis revealed nine intersubtype and 20 intrasubtype recombinant cases. This is the first report of the presence of HIV-1 subtypes C and H in Peru. The introduction of new subtypes and circulating recombinants forms can make it difficult to distinguish resistance profiles in patients and consequently affect future treatment strategies against HIV in this country. PMID:22559065
Yabar, Carlos Augusto; Acuña, Maribel; Gazzo, Cecilia; Salinas, Gabriela; Cárdenas, Fanny; Valverde, Ada; Romero, Soledad
2012-12-01
HIV-1 subtype B is the most frequent strain in Peru. However, there is no available data about the genetic diversity of HIV-infected patients receiving highly active antiretroviral therapy (HAART) here. A group of 267 patients in the Peruvian National Treatment Program with virologic failure were tested for genotypic evidence of HIV drug resistance at the Instituto Nacional de Salud (INS) of Peru between March 2008 and December 2010. Viral RNA was extracted from plasma and the segments of the protease (PR) and reverse transcriptase (RT) genes were amplified by reverse transcriptase polymerase chain reaction (RT-PCR), purified, and fully sequenced. Consensus sequences were submitted to the HIVdb Genotypic Resistance Interpretation Algorithm Database from Stanford University, and then aligned using Clustal X v.2.0 to generate a phylogenetic tree using the maximum likelihood method. Intrasubtype and intersubtype recombination analyses were performed using the SCUEAL program (Subtype Classification by Evolutionary ALgo-rithms). A total of 245 samples (91%) were successfully genotyped. The analysis obtained from the HIVdb program showed 81.5% resistance cases (n=198). The phylogenetic analysis revealed that subtype B was predominant in the population (98.8%), except for new cases of A, C, and H subtypes (n=4). Of these cases, only subtype C was imported. Likewise, recombination analysis revealed nine intersubtype and 20 intrasubtype recombinant cases. This is the first report of the presence of HIV-1 subtypes C and H in Peru. The introduction of new subtypes and circulating recombinants forms can make it difficult to distinguish resistance profiles in patients and consequently affect future treatment strategies against HIV in this country.
Sun, Lin; Gao, Ping; Dong, Guanyu; Zhang, Xujie; Cheng, Xiqiang; Ding, Xiao; Wang, Xueshun; Daelemans, Dirk; De Clercq, Erik; Pannecouque, Christophe; Menéndez-Arias, Luis; Zhan, Peng; Liu, Xinyong
2018-06-18
We reported herein the design, synthesis and biological evaluation of a series of 5-hydroxypyrido[2,3-b]pyrazin-6(5H)-one derivatives as HIV-1 reverse transcriptase (RT) ribonuclease H (RNase H) inhibitors using a privileged structure-guided scaffold refining strategy. In view of the similarities between the pharmacophore model of RNase H and integrase (IN) inhibitors as well as their catalytic sites, we also performed IN inhibition assays. Notably, the majority of these derivatives inhibited RNase H and IN at micromolar concentrations. Among them, compound 7a exhibited similar inhibitory activity against RNase H and IN (IC 50 RNase H = 1.77 μM, IC 50 IN = 1.18 μM, ratio = 1.50). To the best of our knowledge, this is the first reported dual HIV-1 RNase H-IN inhibitor based on a 5-hydroxypyrido[2,3-b]pyrazin-6(5H)-one structure. Molecular modeling has been used to predict the binding mode of 7a in complex with the catalytic cores of HIV-1 RNase H and IN. Taken together these results strongly support the feasibility of developing HIV-1 dual inhibitors from analog-based optimization of divalent metal ion chelators. Recently, the identification of dual inhibitors proved to be a highly effective strategy for novel antivirals discovery. Therefore, these compounds appear to be useful leads that can be further modified to develop more valuable anti-HIV-1 molecules with suitable drug profiles. Copyright © 2018 Elsevier Masson SAS. All rights reserved.
Herman, Brian D.; Schinazi, Raymond F.; Zhang, Hong-wang; Nettles, James H.; Stanton, Richard; Detorio, Mervi; Obikhod, Aleksandr; Pradère, Ugo; Coats, Steven J.; Mellors, John W.; Sluis-Cremer, Nicolas
2012-01-01
β-D-3′-Azido-2′,3′-dideoxyguanosine (3′-azido-ddG) is a potent inhibitor of HIV-1 replication with a superior resistance profile to zidovudine. Recently, we identified five novel 6-modified-3′-azido-ddG analogs that exhibit similar or superior anti-HIV-1 activity compared to 3′-azido-ddG in primary cells. To gain insight into their structure–activity–resistance relationships, we synthesized their triphosphate (TP) forms and assessed their ability to inhibit HIV-1 reverse transcriptase (RT). Steady-state and pre-steady-state kinetic experiments show that the 6-modified-3′-azido-ddGTP analogs act as adenosine rather than guanosine mimetics in DNA synthesis reactions. The order of potency of the TP analogs against wild-type RT was: 3′-azido-2,6-diaminopurine >3′-azido-6-chloropurine; 3′-azido-6-N-allylaminopurine > 2-amino-6-N,N-dimethylaminopurine; 2-amino-6-methoxypurine. Molecular modeling studies reveal unique hydrogen-bonding interactions between the nucleotide analogs and the template thymine base in the active site of RT. Surprisingly, the structure–activity relationship of the analogs differed in HIV-1 RT ATP-mediated excision assays of their monophosphate forms, suggesting that it may be possible to rationally design a modified base analog that is efficiently incorporated by RT but serves as a poor substrate for ATP-mediated excision reactions. Overall, these studies identify a promising strategy to design novel nucleoside analogs that exert profound antiviral activity against both WT and drug-resistant HIV-1. PMID:21914723
Darlix, J L; Vincent, A; Gabus, C; de Rocquigny, H; Roques, B
1993-08-01
Two DNA strand transfer reactions take place during reverse transcription of the retroviral genome. The first transfer, that of the minus-strand strong stop DNA from the 5' end of the viral RNA to the 3' end, has been studied in vitro with two RNAs mimicking the 5' and 3' regions of the HIV1 genome and with nucleocapsid protein, NCp7, and reverse transcriptase. The results show that NCp7 strongly activates the 5' to 3' DNA strand transfer during reverse transcription while a basic peptide resembling NCp7 is inactive. Activation of the first transfer by several NCp7 derived peptides and the influence of the terminal redundancies (R) present at the 5' and 3' ends of HIV1 RNA were also examined. The first transfer is optimal in the presence of intact NCp7 and necessitates R on both the 5' and 3' RNAs. Sequencing of full length viral DNA products reveals approximately 40% misincorporations at the first nucleotide beyond the transfer point. If such base misincorporations occur during proviral DNA synthesis with possible homologous recombinations it may well contribute to the high level of genetic variability of HIV.
Jayappa, Kallesh Danappa; Ao, Zhujun; Wang, Xiaoxia; Mouland, Andrew J.; Shekhar, Sudhanshu; Yang, Xi
2015-01-01
ABSTRACT In this study, we examined the requirement for host dynein adapter proteins such as dynein light chain 1 (DYNLL1), dynein light chain Tctex-type 1 (DYNLT1), and p150Glued in early steps of human immunodeficiency virus type 1 (HIV-1) replication. We found that the knockdown (KD) of DYNLL1, but not DYNLT1 or p150Glued, resulted in significantly lower levels of HIV-1 reverse transcription in cells. Following an attempt to determine how DYNLL1 could impact HIV-1 reverse transcription, we detected the DYNLL1 interaction with HIV-1 integrase (IN) but not with capsid (CA), matrix (MA), or reverse transcriptase (RT) protein. Furthermore, by mutational analysis of putative DYNLL1 interaction motifs in IN, we identified the motifs 52GQVD and 250VIQD in IN as essential for DYNLL1 interaction. The DYNLL1 interaction-defective IN mutant HIV-1 (HIV-1INQ53A/Q252A) exhibited impaired reverse transcription. Through further investigations, we have also detected relatively smaller amounts of particulate CA in DYNLL1-KD cells or in infections with HIV-1INQ53A/Q252A mutant virus. Overall, our study demonstrates the novel interaction between HIV-1 IN and cellular DYNLL1 proteins and suggests the requirement of this virus-cell interaction for proper uncoating and efficient reverse transcription of HIV-1. IMPORTANCE Host cellular DYNLL1, DYNLT1, and p150Glued proteins have been implicated in the replication of several viruses. However, their roles in HIV-1 replication have not been investigated. For the first time, we demonstrated that during viral infection, HIV-1 IN interacts with DYNLL1, and their interaction was found to have a role in proper uncoating and efficient reverse transcription of HIV-1. Thus, interaction of IN and DYNLL1 may be a potential target for future anti-HIV therapy. Moreover, while our study has evaluated the involvement of IN in HIV-1 uncoating and reverse transcription, it also predicts a possible mechanism by which IN contributes to these early viral replication steps. PMID:25568209
Grigorov, Boyan; Bocquin, Anne; Gabus, Caroline; Avilov, Sergey; Mély, Yves; Agopian, Audrey; Divita, Gilles; Gottikh, Marina; Witvrouw, Myriam; Darlix, Jean-Luc
2011-07-01
Upon HIV-1 infection of a target cell, the viral reverse transcriptase (RT) copies the genomic RNA to synthesize the viral DNA. The genomic RNA is within the incoming HIV-1 core where it is coated by molecules of nucleocapsid (NC) protein that chaperones the reverse transcription process. Indeed, the RT chaperoning properties of NC extend from the initiation of cDNA synthesis to completion of the viral DNA. New and effective drugs against HIV-1 continue to be required, which prompted us to search for compounds aimed at inhibiting NC protein. Here, we report that the NC chaperoning activity is extensively inhibited in vitro by small methylated oligoribonucleotides (mODN). These mODNs were delivered intracellularly using a cell-penetrating-peptide and found to impede HIV-1 replication in primary human cells at nanomolar concentrations. Extensive analysis showed that viral cDNA synthesis was severely impaired by mODNs. Partially resistant viruses with mutations in NC and RT emerged after months of passaging in cell culture. A HIV-1 molecular clone (NL4.3) bearing these mutations was found to replicate at high concentrations of mODN, albeit with a reduced fitness. Small, methylated ODNs such as mODN-11 appear to be a new type of highly potent inhibitor of HIV-1.
Grigorov, Boyan; Bocquin, Anne; Gabus, Caroline; Avilov, Sergey; Mély, Yves; Agopian, Audrey; Divita, Gilles; Gottikh, Marina; Witvrouw, Myriam; Darlix, Jean-Luc
2011-01-01
Upon HIV-1 infection of a target cell, the viral reverse transcriptase (RT) copies the genomic RNA to synthesize the viral DNA. The genomic RNA is within the incoming HIV-1 core where it is coated by molecules of nucleocapsid (NC) protein that chaperones the reverse transcription process. Indeed, the RT chaperoning properties of NC extend from the initiation of cDNA synthesis to completion of the viral DNA. New and effective drugs against HIV-1 continue to be required, which prompted us to search for compounds aimed at inhibiting NC protein. Here, we report that the NC chaperoning activity is extensively inhibited in vitro by small methylated oligoribonucleotides (mODN). These mODNs were delivered intracellularly using a cell-penetrating-peptide and found to impede HIV-1 replication in primary human cells at nanomolar concentrations. Extensive analysis showed that viral cDNA synthesis was severely impaired by mODNs. Partially resistant viruses with mutations in NC and RT emerged after months of passaging in cell culture. A HIV-1 molecular clone (NL4.3) bearing these mutations was found to replicate at high concentrations of mODN, albeit with a reduced fitness. Small, methylated ODNs such as mODN-11 appear to be a new type of highly potent inhibitor of HIV-1. PMID:21447560
Gupta, Amita; Saple, Dattaray G; Nadkarni, Girish; Shah, Bijal; Vaidya, Satish; Hingankar, Nitin; Chaturbhuj, Devidas; Deshmukh, Praveen; Walshe, Louise; Hudelson, Sarah E; James, Maria; Paranjape, Ramesh S; Eshleman, Susan H; Tripathy, Srikanth
2010-01-01
HIV-infected patients receiving antiretroviral (ARV) therapy (ART) in India are not all adequately virally suppressed. We analyzed ARV drug resistance in adults receiving ART in three private clinics in Mumbai, India. HIV viral load was measured in 200 patients with the Roche AMPLICOR HIV-1 Monitor Test, v1.5. HIV genotyping was performed with the ViroSeq HIV-1 Genotyping System for 61 participants who had HIV-1 RNA >1000 copies/ml. Genotyping results were obtained for 51 samples. The participants with resistance results were on ART for a median of 24 months and were on their current regimen for a median of 12 months (median CD4 cell count: 217 cells/mm(3); median HIV viral load: 28,200 copies/ml). ARV regimens included nonnucleoside reverse transcriptase inhibitor (NNRTI)-based regimens (n = 27), dual nucleoside reverse transcriptase inhibitors (NRTIs, n = 19), protease inhibitor (PI)-based regimens (n = 3), and other regimens (n = 2). Twenty-six participants (51.0%) were on their first ARV regimen and 24 (47%) reported >95% adherence. Forty-nine participants (96.1%) had resistance to at least one ARV drug; 47 (92.2%) had NRTI resistance, 32 (62.7%) had NNRTI resistance, and four (7.8%) had PI resistance. Thirty (58.8%) had two-class resistance and three (5.9%) had three-class resistance. Four (8%) had three or more resistance mutations associated with etravirine resistance and two (4%) had two mutations associated with reduced darunavir susceptibility. Almost all patients with HIV-1 RNA >1000 copies/ml had NRTI resistance and nearly two-thirds had NNRTI resistance; PI resistance was uncommon. Nearly 60% and 6% had two- and three-class resistance, respectively. This emphasizes the need for greater viral load and resistance monitoring, use of optimal ART combinations, and increased availability of second- and third-line agents for patients with ARV resistance.
Transmitted HIV Drug Resistance Is High and Longstanding in Metropolitan Washington, DC
Kassaye, Seble G.; Grossman, Zehava; Balamane, Maya; Johnston-White, Betsy; Liu, Chenglong; Kumar, Princy; Young, Mary; Sneller, Michael C.; Sereti, Irini; Dewar, Robin; Rehm, Catherine; Meyer, William; Shafer, Robert; Katzenstein, David; Maldarelli, Frank
2016-01-01
Background. Washington, DC, has 2.5% human immunodeficiency virus (HIV) prevalence, 3.9% among African Americans. Antiretrovirals (ARTs) are the cornerstone for treatment and prevention. Monitoring changes in transmitted drug resistance (TDR) is critical for effective HIV care. Methods. HIV genotype data for individuals enrolled in research studies in metropolitan Washington, D.C., were used to identify TDR using the World Health Organization mutation list [Bennett DE, Camacho RJ, Otelea D, et al. Drug resistance mutations for surveillance of transmitted HIV-1 drug-resistance: 2009 update. PloS One 2009; 4:e4724]. HIV phylogenies were reconstructed using maximum likelihood and Bayesian methods. HIV transmission clusters were supported by 1000 bootstrap values >0.70 and posterior probability >0.95 of having a common ancestor. Results. Among 710 individuals enrolled in 1994–2013, the median age was 38.6 years, 46.2% were female, and 53.3% were African-American. TDR was 22.5% among 566 treatment-naive individuals; 15.8% had nucleoside/nucleotide reverse transcriptase inhibitor (NRTI) resistance, 9.8% had nonnucleoside reverse-transcriptase inhibitor (NNRTI) resistance, and 4.2% had protease inhibitor (PI) resistance. Single class TDR was 10.0%, 5.1%, and 1.6% to NRTIs, NNRTIs, and PIs. Dual TDR to PI and NRTI was seen in 1.6%, NRTI and NNRTI in 3.4%, and triple class TDR in 0.9%. TDR frequency decreased from 1994–2006 (27.1%) to 2007–2013 (19.4%; P = .02). Only 6/79 (7.6%) individuals within transmission clusters had evidence of TDR. Discussions. We identified high prevalence of TDR among HIV-infected individuals in metropolitan Washington, DC, regardless of gender. Active surveillance for TDR is needed to guide ART usage and analyses of risk group contributions to HIV transmission and resistance. PMID:27307507
Viral Activity | Center for Cancer Research
In the last four decades, HIV has gone from being an unknown killer to the cause of a manageable chronic disease. Stephen Hughes, Ph.D., Chief of CCR’s Retroviral Replication Laboratory, began his study of retroviruses before HIV was identified, but quickly made the virus the main focus of his research career. Hughes is internationally recognized for his work on two of the three essential enzymes in the HIV life cycle: reverse transcriptase (RT) and integrase (IN). His work has shed light on the emergence of drug resistance and, more recently, the nature of reservoirs of HIV that persist despite combination antiretroviral therapy. He has also used engineered host proteins that redirect HIV integration as tools for understanding eukaryotic chromatin organization.
Duc, Nguyen Bui; Hien, Bui Thu; Wagar, Nick; Tram, Tran Hong; Giang, Le Truong; Yang, Chunfu; Wolfe, Mitchell I; Hien, Nguyen Tran; Tuan, Nguyen Anh
2012-05-01
During 2007-2008, surveillance of transmitted human immunodeficiency virus (HIV) drug resistance (TDR) was performed following World Health Organization guidance among clients with newly diagnosed HIV infection attending voluntary counseling and testing (VCT) sites in Ho Chi Minh City (HCMC), Vietnam. Moderate (5%-15%) TDR to nonnucleoside reverse-transcriptase inhibitors (NNRTIs) was observed among VCT clients aged 18-21 years. Follow-up surveillance of TDR in HCMC and other geographic regions of Vietnam is warranted. Data generated will guide the national HIV drug resistance surveillance strategy and support selection of current and future first-line antiretroviral therapy and HIV prevention programs.
2009-01-01
Ninety percent of HIV-1-infected people worldwide harbour non-subtype B variants of HIV-1. Yet knowledge of resistance mutations in non-B HIV-1 and their clinical relevance is limited. Although a few reviews, editorials and perspectives have been published alluding to this lack of data among non-B subtypes, no systematic review has been performed to date. With this in mind, we conducted a systematic review (1996–2008) of all published studies performed on the basis of non-subtype B HIV-1 infections treated with antiretroviral drugs that reported genotype resistance tests. Using an established search string, 50 studies were deemed relevant for this review. These studies reported genotyping data from non-B HIV-1 infections that had been treated with either reverse transcriptase inhibitors or protease inhibitors. While most major resistance mutations in subtype B were also found in non-B subtypes, a few novel mutations in non-B subtypes were recognized. The main differences are reflected in the discoveries that: (i) the non-nucleoside reverse transcriptase inhibitor resistance mutation, V106M, has been seen in subtype C and CRF01_AE, but not in subtype B, (ii) the protease inhibitor mutations L89I/V have been reported in C, F and G subtypes, but not in B, (iii) a nelfinavir selected non-D30N containing pathway predominated in CRF01_AE and CRF02_AG, while the emergence of D30N is favoured in subtypes B and D, (iv) studies on thymidine analog-treated subtype C infections from South Africa, Botswana and Malawi have reported a higher frequency of the K65R resistance mutation than that typically seen with subtype B. Additionally, some substitutions that seem to impact non-B viruses differentially are: reverse transcriptase mutations G196E, A98G/S, and V75M; and protease mutations M89I/V and I93L. Polymorphisms that were common in non-B subtypes and that may contribute to resistance tended to persist or become more frequent after drug exposure. Some, but not all, are recognized as minor resistance mutations in B subtypes. These observed differences in resistance pathways may impact cross-resistance and the selection of second-line regimens with protease inhibitors. Attention to newer drug combinations, as well as baseline genotyping of non-B isolates, in well-designed longitudinal studies with long duration of follow up are needed. PMID:19566959
Trivedi, Vinod; Von Lindern, Jana; Montes-Walters, Miguel; Rojo, Daniel R; Shell, Elisabeth J; Parkin, Neil; O'Brien, William A; Ferguson, Monique R
2008-10-01
The role specific reverse transcriptase (RT) drug resistance mutations play in influencing phenotypic susceptibility to RT inhibitors in virus strains with complex resistance interaction patterns was assessed using recombinant viruses that consisted of RT-PCR-amplified pol fragments derived from plasma HIV-1 RNA from two treatment-experienced patients. Specific modifications of key RT amino acids were performed by site-directed mutagenesis. A panel of viruses with defined genotypic resistance mutations was assessed for phenotypic drug resistance. Introduction of M184V into several different clones expressing various RT resistance mutations uniformly decreased susceptibility to abacavir, lamivudine, and didanosine, and increased susceptibility to zidovudine, stavudine, and tenofovir; replication capacity was decreased. The L74V mutation had similar but slightly different effects, contributing to decreased susceptibility to abacavir, lamivudine, and didanosine and increased susceptibility to zidovudine and tenofovir, but in contrast to M184V, L74V contributed to decreased susceptibility to stavudine. In virus strains with the nonnucleoside reverse transcriptase inhibitor (NNRTI) mutations K101E and G190S, the L74V mutation increased replication capacity, consistent with published observations, but replication capacity was decreased in strains without NNRTI resistance mutations. K101E and G190S together tend to decrease susceptibility to all nucleoside RT inhibitors, but the K103N mutation had little effect on nucleoside RT inhibitor susceptibility. Mutational interactions can have a substantial impact on drug resistance phenotype and replication capacity, and this has been exploited in clinical practice with the development of fixed-dose combination pills. However, we are the first to report these mutational interactions using molecularly cloned recombinant strains derived from viruses that occur naturally in HIV-infected individuals.
Trivedi, Vinod; Von Lindern, Jana; Montes-Walters, Miguel; Rojo, Daniel R.; Shell, Elisabeth J.; Parkin, Neil; O'Brien, William A.
2008-01-01
Abstract The role specific reverse transcriptase (RT) drug resistance mutations play in influencing phenotypic susceptibility to RT inhibitors in virus strains with complex resistance interaction patterns was assessed using recombinant viruses that consisted of RT-PCR-amplified pol fragments derived from plasma HIV-1 RNA from two treatment-experienced patients. Specific modifications of key RT amino acids were performed by site-directed mutagenesis. A panel of viruses with defined genotypic resistance mutations was assessed for phenotypic drug resistance. Introduction of M184V into several different clones expressing various RT resistance mutations uniformly decreased susceptibility to abacavir, lamivudine, and didanosine, and increased susceptibility to zidovudine, stavudine, and tenofovir; replication capacity was decreased. The L74V mutation had similar but slightly different effects, contributing to decreased susceptibility to abacavir, lamivudine, and didanosine and increased susceptibility to zidovudine and tenofovir, but in contrast to M184V, L74V contributed to decreased susceptibility to stavudine. In virus strains with the nonnucleoside reverse transcriptase inhibitor (NNRTI) mutations K101E and G190S, the L74V mutation increased replication capacity, consistent with published observations, but replication capacity was decreased in strains without NNRTI resistance mutations. K101E and G190S together tend to decrease susceptibility to all nucleoside RT inhibitors, but the K103N mutation had little effect on nucleoside RT inhibitor susceptibility. Mutational interactions can have a substantial impact on drug resistance phenotype and replication capacity, and this has been exploited in clinical practice with the development of fixed-dose combination pills. However, we are the first to report these mutational interactions using molecularly cloned recombinant strains derived from viruses that occur naturally in HIV-infected individuals. PMID:18844463
Potent NLRP3 Inflammasome Activation by the HIV Reverse Transcriptase Inhibitor Abacavir.
Toksoy, Atiye; Sennefelder, Helga; Adam, Christian; Hofmann, Sonja; Trautmann, Axel; Goebeler, Matthias; Schmidt, Marc
2017-02-17
There is experimental and clinical evidence that some exanthematous allergic drug hypersensitivity reactions are mediated by drug-specific T cells. We hypothesized that the capacity of certain drugs to directly stimulate the innate immune system may contribute to generate drug-specific T cells. Here we analyzed whether abacavir, an HIV-1 reverse transcriptase inhibitor often inducing severe delayed-type drug hypersensitivity, can trigger innate immune activation that may contribute to its allergic potential. We show that abacavir fails to generate direct innate immune activation in human monocytes but potently triggers IL-1β release upon pro-inflammatory priming with phorbol ester or Toll-like receptor stimulation. IL-1β processing and secretion were sensitive to Caspase-1 inhibition, NLRP3 knockdown, and K + efflux inhibition and were not observed with other non-allergenic nucleoside reverse transcriptase inhibitors, identifying abacavir as a specific inflammasome activator. It further correlated with dose-dependent mitochondrial reactive oxygen species production and cytotoxicity, indicating that inflammasome activation resulted from mitochondrial damage. However, both NLRP3 depletion and inhibition of K + efflux mitigated abacavir-induced mitochondrial reactive oxygen species production and cytotoxicity, suggesting that these processes were secondary to NLRP3 activation. Instead, depletion of cardiolipin synthase 1 abolished abacavir-induced IL-1β secretion, suggesting that mitochondrial cardiolipin release may trigger abacavir-induced inflammasome activation. Our data identify abacavir as a novel inflammasome-stimulating drug allergen. They implicate a potential contribution of innate immune activation to medication-induced delayed-type hypersensitivity, which may stimulate new concepts for treatment and prevention of drug allergies. © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.
Drug Susceptibility and Resistance Mutations After First-Line Failure in Resource Limited Settings
Wallis, Carole L.; Aga, Evgenia; Ribaudo, Heather; Saravanan, Shanmugam; Norton, Michael; Stevens, Wendy; Kumarasamy, Nagalingeswaran; Bartlett, John; Katzenstein, David
2014-01-01
Background. The development of drug resistance to nucleoside reverse transcriptase inhibitors (NRTIs) and nonnucleoside reverse transcriptase inhibitors (NNRTIs) has been associated with baseline human immunodeficiency virus (HIV)-1 RNA level (VL), CD4 cell counts (CD4), subtype, and treatment failure duration. This study describes drug resistance and levels of susceptibility after first-line virologic failure in individuals from Thailand, South Africa, India, Malawi, Tanzania. Methods. CD4 and VL were captured at AIDs Clinical Trial Group (ACTG) A5230 study entry, a study of lopinavir/ritonavir (LPV/r) monotherapy after first-line virologic failure on an NNRTI regimen. HIV drug-resistance mutation associations with subtype, site, study entry VL, and CD4 were evaluated using Fisher exact and Kruskall–Wallis tests. Results. Of the 207 individuals who were screened for A5230, sequence data were available for 148 individuals. Subtypes observed: subtype C (n = 97, 66%) AE (n = 27, 18%), A1 (n = 12, 8%), and D (n = 10, 7%). Of the 148 individuals, 93% (n = 138) and 96% (n = 142) had at least 1 reverse transcriptase (RT) mutation associated with NRTI and NNRTI resistance, respectively. The number of NRTI mutations was significantly associated with a higher study screening VL and lower study screening CD4 (P < .001). Differences in drug-resistance patterns in both NRTI and NNRTI were observed by site. Conclusions. The degree of NNRTI and NRTI resistance after first-line virologic failure was associated with higher VL at study entry. Thirty-two percent of individuals remained fully susceptible to etravirine and rilpivirine, protease inhibitor resistance was rare. Some level of susceptibility to NRTI remained; however, VL monitoring and earlier virologic failure detection may result in lower NRTI resistance. PMID:24795328
Li, Zhufang; Terry, Brian; Olds, William; Protack, Tricia; Deminie, Carol; Minassian, Beatrice; Nowicka-Sans, Beata; Sun, Yongnian; Dicker, Ira; Hwang, Carey; Lataillade, Max; Hanna, George J; Krystal, Mark
2013-11-01
BMS-986001 is a novel HIV nucleoside reverse transcriptase inhibitor (NRTI). To date, little is known about its resistance profile. In order to examine the cross-resistance profile of BMS-986001 to NRTI mutations, a replicating virus system was used to examine specific amino acid mutations known to confer resistance to various NRTIs. In addition, reverse transcriptases from 19 clinical isolates with various NRTI mutations were examined in the Monogram PhenoSense HIV assay. In the site-directed mutagenesis studies, a virus containing a K65R substitution exhibited a 0.4-fold change in 50% effective concentration (EC50) versus the wild type, while the majority of viruses with the Q151M constellation (without M184V) exhibited changes in EC50 versus wild type of 0.23- to 0.48-fold. Susceptibility to BMS-986001 was also maintained in an L74V-containing virus (0.7-fold change), while an M184V-only-containing virus induced a 2- to 3-fold decrease in susceptibility. Increasing numbers of thymidine analog mutation pattern 1 (TAM-1) pathway mutations correlated with decreases in susceptibility to BMS-986001, while viruses with TAM-2 pathway mutations exhibited a 5- to 8-fold decrease in susceptibility, regardless of the number of TAMs. A 22-fold decrease in susceptibility to BMS-986001 was observed in a site-directed mutant containing the T69 insertion complex. Common non-NRTI (NNRTI) mutations had little impact on susceptibility to BMS-986001. The results from the site-directed mutants correlated well with the more complicated genotypes found in NRTI-resistant clinical isolates. Data from clinical studies are needed to determine the clinically relevant resistance cutoff values for BMS-986001.
Azeem, Syeda Maryam; Muwonge, Alecia N; Thakkar, Nehaben; Lam, Kristina W; Frey, Kathleen M
2018-01-01
Resistance to non-nucleoside reverse transcriptase inhibitors (NNRTIs) is a leading cause of HIV treatment failure. Often included in antiviral therapy, NNRTIs are chemically diverse compounds that bind an allosteric pocket of enzyme target reverse transcriptase (RT). Several new NNRTIs incorporate flexibility in order to compensate for lost interactions with amino acid conferring mutations in RT. Unfortunately, even successful inhibitors such as diarylpyrimidine (DAPY) inhibitor rilpivirine are affected by mutations in RT that confer resistance. In order to aid drug design efforts, it would be efficient and cost effective to pre-evaluate NNRTI compounds in development using a structure-based computational approach. As proof of concept, we applied a residue scan and molecular dynamics strategy using RT crystal structures to predict mutations that confer resistance to DAPYs rilpivirine, etravirine, and investigational microbicide dapivirine. Our predictive values, changes in affinity and stability, are correlative with fold-resistance data for several RT mutants. Consistent with previous studies, mutation K101P is predicted to confer high-level resistance to DAPYs. These findings were further validated using structural analysis, molecular dynamics, and an enzymatic reverse transcription assay. Our results confirm that changes in affinity and stability for mutant complexes are predictive parameters of resistance as validated by experimental and clinical data. In future work, we believe that this computational approach may be useful to predict resistance mutations for inhibitors in development. Published by Elsevier Inc.
Pérez-Parra, Santiago; Chueca-Porcuna, Natalia; Álvarez-Estevez, Marta; Pasquau, Juan; Omar, Mohamed; Collado, Antonio; Vinuesa, David; Lozano, Ana Belen; García-García, Federico
2015-11-01
Protease and reverse transcriptase HIV-1 sequences provide useful information for patient clinical management, as well as information on resistance to antiretrovirals. The aim of this study is to evaluate transmission events, transmitted drug resistance, and to georeference subtypes among newly diagnosed patients referred to our center. A study was conducted on 693 patients diagnosed between 2005 and 2012 in Southern Spain. Protease and reverse transcriptase sequences were obtained for resistance to cART analysis with Trugene(®) HIV Genotyping Kit (Siemens, NAD). MEGA 5.2, Neighbor-Joining, ArcGIS and REGA were used for subsequent analysis. The results showed 298 patients clustered into 77 different transmission events. Most of the clusters were formed by pairs (n=49), of men having sex with men (n=26), Spanish (n=37), and below 45 years of age (73.5%). Urban areas from Granada, and the coastal areas of Almeria and Granada showed the greatest subtype heterogeneity. Five clusters were formed by more than 10 patients, and 15 clusters had transmitted drug resistance. The study data demonstrate how the phylogenetic characterization of transmission clusters is a powerful tool to monitor the spread of HIV, and may contribute to design correct preventive measures to minimize it. Copyright © 2015 Elsevier España, S.L.U. y Sociedad Española de Enfermedades Infecciosas y Microbiología Clínica. All rights reserved.
2016-01-01
In this update, antiretroviral therapy (ART) is recommended for all patients infected by type 1 human immunodeficiency virus (HIV-1). The objective of ART is to achieve an undetectable plasma viral load (PVL). Initial ART should comprise 3 drugs, namely, 2 nucleoside reverse transcriptase inhibitors (NRTI), and 1 drug from another family. Four of the recommended regimens, all of which have an integrase strand transfer inhibitor (INSTI) as the third drug, are considered a preferred regimen; a further 6 regimens, which are based on an INSTI, a non-nucleoside reverse transcriptase inhibitor (NNRTI), or a protease inhibitor boosted with cobicistat or ritonavir (PI/COBI, PI/r), are considered alternatives. The reasons and criteria for switching ART are presented both for patients with an undetectable PVL and for patients who experience virological failure, in which case the rescue regimen should include 3 (or at least 2) drugs that are fully active against HIV. The specific criteria for ART in special situations (acute infection, HIV-2 infection, pregnancy) and comorbid conditions (tuberculosis and other opportunistic infections, kidney disease, liver disease, and cancer) are updated. Copyright © 2016 Elsevier España, S.L.U. and Sociedad Española de Enfermedades Infecciosas y Microbiología Clínica. All rights reserved.
Policicchio, Benjamin Bruno; Sette, Paola; Xu, Cuiling; ...
2018-02-21
Two SIVmac251-infected rhesus macaques received tenofovir/emtricitabine with raltegravir intensification. Viral rebound occurred during treatment and sequencing of reverse transcriptase and integrase genes identified multiple resistance mutations. Similar to HIV infection, antiretroviral-resistance mutations may occur in SIV-infected nonhuman primates receiving nonsuppressive ART. As ART administration to nonhuman primates is currently dramatically expanding, fueled by both cure research and the study of HIV-related comorbidities, viral resistance should be factored in the study design and data interpretation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Policicchio, Benjamin Bruno; Sette, Paola; Xu, Cuiling
Two SIVmac251-infected rhesus macaques received tenofovir/emtricitabine with raltegravir intensification. Viral rebound occurred during treatment and sequencing of reverse transcriptase and integrase genes identified multiple resistance mutations. Similar to HIV infection, antiretroviral-resistance mutations may occur in SIV-infected nonhuman primates receiving nonsuppressive ART. As ART administration to nonhuman primates is currently dramatically expanding, fueled by both cure research and the study of HIV-related comorbidities, viral resistance should be factored in the study design and data interpretation
Volpe, Joseph M; Ward, Douglas J; Napolitano, Laura; Phung, Pham; Toma, Jonathan; Solberg, Owen; Petropoulos, Christos J; Walworth, Charles M
2015-01-01
Transmitted HIV-1 exhibiting reduced susceptibility to protease and reverse transcriptase inhibitors is well documented but limited for integrase inhibitors and enfuvirtide. We describe here a case of transmitted 5 drug class-resistance in an antiretroviral (ARV)-naïve patient who was successfully treated based on the optimized selection of an active ARV drug regimen. The value of baseline resistance testing to determine an optimal ARV treatment regimen is highlighted in this case report. © The Author(s) 2015.
1-Benzyl-2-(1H-indol-3-yl)-5-oxopyrrolidine-2-carbonitrile
Tamazyan, Rafael; Armen, Ayvazyan; Ashot, Martirosyan; Sahak, Gasparyan; Schinazi, Raymond
2008-01-01
In the title compound, C20H17N3O, a potential anti-human immunodeficiency virus type 1 (HIV-1) non-nucleoside reverse-transcriptase inhibitor, the pyrrolidine ring has an envelope conformation. In the crystal structure, adjacent molecules are connected into infinite chains via an N—H⋯O hydrogen bond. PMID:21201400
Sun, Jian; Chen, Qing-Jun; Cao, Qing-Qin; Wu, Ying-Ying; Xu, Li-Jing; Zhu, Meng-Juan; Ng, Tzi-Bun; Wang, He-Xiang; Zhang, Guo-Qing
2012-01-01
A novel 68 kDa laccase was purified from the mycorrhizal fungus Agaricus placomyces by utilizing a procedure that comprised three successive steps of ion exchange chromatography and gel filtration as the final step. The monomeric enzyme exhibited the N-terminal amino acid sequence of DVIGPQAQVTLANQD, which showed only a low extent of homology to sequences of other fungal laccases. The optimal temperature for A. placomyces laccase was 30°C, and optimal pH values for laccase activity towards the substrates 2,7′-azinobis[3-ethylbenzothiazolone-6-sulfonic acid] diammonium salt (ABTS) and hydroquinone were 5.2 and 6.8, respectively. The laccase displayed, at 30°C and pH 5.2, Km values of 0.392 mM towards hydroquinone and 0.775 mM towards ABTS. It potently suppressed proliferation of MCF 7 human breast cancer cells and Hep G2 hepatoma cells and inhibited human immunodeficiency virus type 1 (HIV-1) reverse transcriptase (RT) activity with an IC50 of 1.8 μM, 1.7 μM, and 1.25 μM, respectively, signifying that it is an antipathogenic protein. PMID:23093860
Chen, Wenmin; Zhan, Peng; Wu, Jingde; Li, Zhenyu; Liu, Xinyong
2012-01-01
1-[(2-hydroxyethoxy)methyl]-6-(phenylthio)thymine (HEPT) was discovered as the first HIV-1 non-nucleoside reverse transcriptase inhibitors (NNRTIs) in 1989. The research on HEPT derivatives (HEPTs) has been lasted for more than 20 years and HEPT family is probably the most investigated NNRTI. Extensive molecular modifications on HEPT have led to many highly potent compounds with broad-resistance spectrum and optimal pharmacokinetic profiles. Moreover, X-crystallographic studies of HEPTs/RT complexes revealed the binding mode of HEPTs and the action mechanism of NNRTI, which has greatly facilitated the design of novel NNRTIs. Recently, the development of HEPTs was accelerated by the application of the "follow-on"-based chemical evolution strategies, such as designed multiple ligands (DMLs) and molecular hybridization (MH). Herein, this article will provide an insight into the development of HEPTs, including structural modifications, crystal structure of RT complexed with HEPTs and its structure-activity relationship (SAR). Additionally, this review also covers the emerging HEPT related dual inhibitors and HEPT-pyridinone hybrids, as well as the contributions of HEPTs to the development of dihydro-alkoxy-benzyl-oxopyrimidine (DABO) family, thus highlighting the importance of HEPTs on the development of NNRTIs.
Pirhadi, Somayeh; Ghasemi, Jahan B
2012-12-01
Non-nucleoside reverse transcriptase inhibitors (NNRTIs) have gained a definitive place due to their unique antiviral potency, high specificity and low toxicity in antiretroviral combination therapies used to treat HIV. In this study, chemical feature based pharmacophore models of different classes of NNRT inhibitors of HIV-1 have been developed. The best HypoRefine pharmacophore model, Hypo 1, which has the best correlation coefficient (0.95) and the lowest RMS (0.97), contains two hydrogen bond acceptors, one hydrophobic and one ring aromatic feature, as well as four excluded volumes. Hypo 1 was further validated by test set and Fischer validation method. The best pharmacophore model was then utilized as a 3D search query to perform a virtual screening to retrieve potential inhibitors. The hit compounds were subsequently subjected to filtering by Lipinski's rule of five and docking studies by Libdock and Gold methods to refine the retrieved hits. Finally, 7 top ranked compounds based on Gold score fitness function were subjected to in silico ADME studies to investigate for compliance with the standard ranges. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Moonsamy, Suri; Bhakat, Soumendranath; Walker, Ross C; Soliman, Mahmoud E S
2016-03-01
Molecular dynamics simulations, binding free energy calculations, principle component analysis (PCA), and residue interaction network analysis were employed in order to investigate the molecular mechanism of M184I single mutation which played pivotal role in making the HIV-1 reverse transcriptase (RT) totally resistant to lamivudine. Results showed that single mutations at residue 184 of RT caused (1) distortion of the orientation of lamivudine in the active site due to the steric conflict between the oxathiolane ring of lamivudine and the side chain of beta-branched amino acids Ile at position 184 which, in turn, perturbs inhibitor binding, (2) decrease in the binding affinity by (~8 kcal/mol) when compared to the wild-type, (3) variation in the overall enzyme motion as evident from the PCA for both systems, and (4) distortion of the hydrogen bonding network and atomic interactions with the inhibitor. The comprehensive analysis presented in this report can provide useful information for understanding the drug resistance mechanism against lamivudine. The results can also provide some potential clues for further design of novel inhibitors that are less susceptible to drug resistance.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tucker, Thomas J.; Sisko, John T.; Tynebor, Robert M.
2009-07-10
Non-nucleoside reverse transcriptase inhibitors (NNRTIs) have been shown to be a key component of highly active antiretroviral therapy (HAART). The use of NNRTIs has become part of standard combination antiviral therapies producing clinical outcomes with efficacy comparable to other antiviral regimens. There is, however, a critical issue with the emergence of clinical resistance, and a need has arisen for novel NNRTIs with a broad spectrum of activity against key HIV-1 RT mutations. Using a combination of traditional medicinal chemistry/SAR analyses, crystallography, and molecular modeling, we have designed and synthesized a series of novel, highly potent NNRTIs that possess broad spectrummore » antiviral activity and good pharmacokinetic profiles. Further refinement of key compounds in this series to optimize physical properties and pharmacokinetics has resulted in the identification of 8e (MK-4965), which has high levels of potency against wild-type and key mutant viruses, excellent oral bioavailability and overall pharmacokinetics, and a clean ancillary profile.« less
Li, Yanrui; Zhang, Guoqing; Ng, Tzi Bun; Wang, Hexiang
2010-01-01
A lectin designated as Hericium erinaceum agglutinin (HEA) was isolated from dried fruiting bodies of the mushroom Hericium erinaceum with a chromatographic procedure which entailed DEAE-cellulose, CM-cellulose, Q-Sepharose, and FPLC Superdex 75. Its molecular mass was estimated to be 51 kDa and its N-terminal amino acid sequences was distinctly different from those of other isolated mushroom lectins. The hemagglutinating activity of HEA was inhibited at the minimum concentration of 12.5 mM by inulin. The lectin was stable at pH 1.9–12.1 and at temperatures up to 70°C, but was inhibited by Hg2+, Cu2+, and Fe3+ ions. The lectin exhibited potent mitogenic activity toward mouse splenocytes, and demonstrated antiproliferative activity toward hepatoma (HepG2) and breast cancer (MCF7) cells with an IC50 of 56.1 μM and 76.5 μM, respectively. It manifested HIV-1 reverse transcriptase inhibitory activity with an IC50 of 31.7 μM. The lectin exhibited potent mitogenic activity toward murine splenocytes but was devoid of antifungal activity. PMID:20625408
Benard, Antoine; van Sighem, Ard; Taieb, Audrey; Valadas, Emilia; Ruelle, Jean; Soriano, Vicente; Calmy, Alexandra; Balotta, Claudia; Damond, Florence; Brun-Vezinet, Françoise; Chene, Geneviève; Matheron, Sophie
2011-05-01
Triple nucleoside reverse-transcriptase inhibitors (NRTIs) are recommended by the World Health Organization as first-line regimen in treatment-naïve HIV-2-infected patients. However, ritonavir-boosted protease inhibitor (PI/r)-containing regimens are frequently prescribed. In the absence of previous randomized trials, we retrospectively compared these regimens in observational cohorts. HIV-2-infected patients from 7 European cohorts who started triple NRTI or PI/r since January 1998 were included. Piecewise linear models were used to estimate CD4 cell count and plasma HIV-2 RNA level slopes, differentiating an early phase (until end of month 3) and a second phase (months 4-12). On-treatment analyses censored data at major treatment modification and systematically at month 12. Forty-four patients started triple NRTI therapy and 126 started PI/r therapy. Overall, the median CD4 cell count was 191 cells/mm(3) and the median plasma HIV-2 RNA level was ≥2.7 log(10) copies/ml in 61% of the patients at combination antiretroviral therapy (cART) initiation; the median duration of the first cART was 20 months, not differing between groups. PI/r regimens were associated with better CD4 cell count and HIV-2 RNA level outcomes, compared with NRTI regimens. Estimated CD4 cell count slopes were +6 and +12 cells/mm(3)/month during the early phase (P = .22), and -60 cells/mm(3)/year versus +76 cells/mm(3)/year during the second phase (P = .002), for triple NRTI and PI/r, respectively. Estimated mean HIV-2 RNA levels at month 12 in patients with detectable viremia at cART initiation were 4.0 and 2.2 log(10) copies/ml, respectively (P = .005). In this observational study, PI/r-containing regimens showed superior efficacy over triple NRTI regimens as first-line therapy in HIV-2-infected patients.
Alteration of Substrate and Inhibitor Specificity of Feline Immunodeficiency Virus Protease
Lin, Ying-Chuan; Beck, Zachary; Lee, Taekyu; Le, Van-Duc; Morris, Garrett M.; Olson, Arthur J.; Wong, Chi-Huey; Elder, John H.
2000-01-01
Feline immunodeficiency virus (FIV) protease is structurally very similar to human immunodeficiency virus (HIV) protease but exhibits distinct substrate and inhibitor specificities. We performed mutagenesis of subsite residues of FIV protease in order to define interactions that dictate this specificity. The I37V, N55M, M56I, V59I, and Q99V mutants yielded full activity. The I37V, N55M, V59I, and Q99V mutants showed a significant increase in activity against the HIV-1 reverse transcriptase/integrase and P2/nucleocapsid junction peptides compared with wild-type (wt) FIV protease. The I37V, V59I, and Q99V mutants also showed an increase in activity against two rapidly cleaved peptides selected by cleavage of a phage display library with HIV-1 protease. Mutations at Q54K, I98P, and L101I dramatically reduced activity. Mutants containing a I35D or I57G substitution showed no activity against either FIV or HIV substrates. FIV proteases all failed to cut HIV-1 matrix/capsid, P1/P6, P6/protease, and protease/reverse transcriptase junctions, indicating that none of the substitutions were sufficient to change the specificity completely. The I37V, N55M, M56I, V59I, and Q99V mutants, compared with wt FIV protease, all showed inhibitor specificity more similar to that of HIV-1 protease. The data also suggest that FIV protease prefers a hydrophobic P2/P2′ residue like Val over Asn or Glu, which are utilized by HIV-1 protease, and that S2/S2′ might play a critical role in distinguishing FIV and HIV-1 protease by specificity. The findings extend our observations regarding the interactions involved in substrate binding and aid in the development of broad-based inhibitors. PMID:10775609
Terrazas-Aranda, Katty; Van Herrewege, Yven; Hazuda, Daria; Lewi, Paul; Costi, Roberta; Di Santo, Roberto; Cara, Andrea; Vanham, Guido
2008-01-01
Conceptually, blocking human immunodeficiency virus type 1 (HIV-1) integration is the last possibility for preventing irreversible cellular infection. Using cocultures of monocyte-derived dendritic cells and CD4+ T cells, which represent primary targets in sexual transmission, we demonstrated that blocking integration with integrase strand transfer inhibitors (InSTIs), particularly L-870812, could consistently block cell-free and cell-associated HIV-1 infection. In a pretreatment setting in which the compound was present before and during infection and was afterwards gradually diluted during the culture period, the naphthyridine carboxamide L-870812 blocked infection with the cell-free and cell-associated HIV-1 Ba-L strain at concentrations of, respectively, 1,000 and 10,000 nM. The potency of L-870812 was similar to that of the nucleotide reverse transcriptase inhibitor R-9-(2-phosphonylmethoxypropyl) adenine (PMPA) but one or two orders of magnitude lower than those of the nonnucleoside reverse transcriptase inhibitors UC781 and TMC120. In contrast, the diketo acid RDS derivative InSTIs showed clear-cut but weaker antiviral activity than L-870812. Moreover, L-870812 completely blocked subtype C and CRFO2_AG primary isolates, which are prevalent in the African heterosexual epidemic. Furthermore, the addition of micromolar concentrations of L-870812 even 24 h after infection could still block both cell-free and cell-associated Ba-L, opening the prospect of postexposure prophylaxis. Finally, an evaluation of the combined activity of L-870812 with either T20, zidovudine, PMPA, UC781, or TMC120 against replication-deficient HIV-1 Ba-L (env) pseudovirus suggested synergistic activity for all combinations. Importantly, compounds selected for the study by using the coculture model were devoid of acute or delayed cytotoxic effects at HIV-blocking concentrations. Therefore, these findings provide evidence supporting consideration of HIV-1 integration as a target for microbicide development. PMID:18474579
Penrose, Kerri J; Wallis, Carole L; Brumme, Chanson J; Hamanishi, Kristen A; Gordon, Kelley C; Viana, Raquel V; Harrigan, P Richard; Mellors, John W; Parikh, Urvi M
2017-02-01
A vaginal ring containing dapivirine (DPV) has shown moderate protective efficacy against HIV-1 acquisition, but the activity of DPV against efavirenz (EFV)- and nevirapine (NVP)-resistant viruses that could be transmitted is not well defined. We investigated DPV cross-resistance of subtype C HIV-1 from individuals on failing NVP- or EFV-containing antiretroviral therapy (ART) in South Africa. Plasma samples were obtained from individuals with >10,000 copies of HIV RNA/ml and with HIV-1 containing at least one non-nucleoside reverse transcriptase (NNRTI) mutation. Susceptibility to NVP, EFV, and DPV in TZM-bl cells was determined for recombinant HIV-1 LAI containing bulk-amplified, plasma-derived, full-length reverse transcriptase sequences. Fold change (FC) values were calculated compared with a composite 50% inhibitory concentration (IC 50 ) from 12 recombinant subtype C HIV-1 LAI plasma-derived viruses from treatment-naive individuals in South Africa. A total of 25/100 (25%) samples showed >500-FCs to DPV compared to treatment-naive samples with IC 50 s exceeding the maximum DPV concentration tested (132 ng/ml). A total of 66/100 (66%) samples displayed 3- to 306-FCs, with a median IC 50 of 17.6 ng/ml. Only 9/100 (9%) samples were susceptible to DPV (FC < 3). Mutations L100I and K103N were significantly more frequent in samples with >500-fold resistance to DPV compared to samples with a ≤500-fold resistance. A total of 91% of samples with NNRTI-resistant HIV-1 from individuals on failing first-line ART in South Africa exhibited ≥3-fold cross-resistance to DPV. This level of resistance exceeds expected plasma concentrations, but very high genital tract DPV concentrations from DPV ring use could block viral replication. It is critically important to assess the frequency of transmitted and selected DPV resistance in individuals using the DPV ring. Copyright © 2017 American Society for Microbiology.
Penrose, Kerri J.; Wallis, Carole L.; Brumme, Chanson J.; Hamanishi, Kristen A.; Gordon, Kelley C.; Viana, Raquel V.; Harrigan, P. Richard; Mellors, John W.
2016-01-01
ABSTRACT A vaginal ring containing dapivirine (DPV) has shown moderate protective efficacy against HIV-1 acquisition, but the activity of DPV against efavirenz (EFV)- and nevirapine (NVP)-resistant viruses that could be transmitted is not well defined. We investigated DPV cross-resistance of subtype C HIV-1 from individuals on failing NVP- or EFV-containing antiretroviral therapy (ART) in South Africa. Plasma samples were obtained from individuals with >10,000 copies of HIV RNA/ml and with HIV-1 containing at least one non-nucleoside reverse transcriptase (NNRTI) mutation. Susceptibility to NVP, EFV, and DPV in TZM-bl cells was determined for recombinant HIV-1LAI containing bulk-amplified, plasma-derived, full-length reverse transcriptase sequences. Fold change (FC) values were calculated compared with a composite 50% inhibitory concentration (IC50) from 12 recombinant subtype C HIV-1LAI plasma-derived viruses from treatment-naive individuals in South Africa. A total of 25/100 (25%) samples showed >500-FCs to DPV compared to treatment-naive samples with IC50s exceeding the maximum DPV concentration tested (132 ng/ml). A total of 66/100 (66%) samples displayed 3- to 306-FCs, with a median IC50 of 17.6 ng/ml. Only 9/100 (9%) samples were susceptible to DPV (FC < 3). Mutations L100I and K103N were significantly more frequent in samples with >500-fold resistance to DPV compared to samples with a ≤500-fold resistance. A total of 91% of samples with NNRTI-resistant HIV-1 from individuals on failing first-line ART in South Africa exhibited ≥3-fold cross-resistance to DPV. This level of resistance exceeds expected plasma concentrations, but very high genital tract DPV concentrations from DPV ring use could block viral replication. It is critically important to assess the frequency of transmitted and selected DPV resistance in individuals using the DPV ring. PMID:27895013
Adebiyi, Oluwafeyisetan O.; Adebiyi, Olubunmi A.; Owira, Peter M. O.
2015-01-01
Nucleoside Reverse Transcriptase Inhibitors (NRTIs) have not only improved therapeutic outcomes in the treatment of HIV infection but have also led to an increase in associated metabolic complications of NRTIs. Naringin’s effects in mitigating NRTI-induced complications were investigated in this study. Wistar rats, randomly allotted into seven groups (n = 7) were orally treated daily for 56 days with 100 mg/kg zidovudine (AZT) (groups I, II III), 50 mg/kg stavudine (d4T) (groups IV, V, VI) and 3 mL/kg of distilled water (group VII). Additionally, rats in groups II and V were similarly treated with 50 mg/kg naringin, while groups III and VI were treated with 45 mg/kg vitamin E. AZT or d4T treatment significantly reduced body weight and plasma high density lipoprotein concentrations but increased liver weights, plasma triglycerides and total cholesterol compared to controls, respectively. Furthermore, AZT or d4T treatment significantly increased oxidative stress, adiposity index and expression of Bax protein, but reduced Bcl-2 protein expression compared to controls, respectively. However, either naringin or vitamin E significantly mitigated AZT- or d4T-induced weight loss, dyslipidemia, oxidative stress and hepatocyte apoptosis compared to AZT- or d4T-only treated rats. Our results suggest that naringin reverses metabolic complications associated with NRTIs by ameliorating oxidative stress and apoptosis. This implies that naringin supplements could mitigate lipodystrophy and dyslipidemia associated with NRTI therapy. PMID:26690471
Promises and pitfalls of Illumina sequencing for HIV resistance genotyping.
Brumme, Chanson J; Poon, Art F Y
2017-07-15
Genetic sequencing ("genotyping") plays a critical role in the modern clinical management of HIV infection. This virus evolves rapidly within patients because of its error-prone reverse transcriptase and short generation time. Consequently, HIV variants with mutations that confer resistance to one or more antiretroviral drugs can emerge during sub-optimal treatment. There are now multiple HIV drug resistance interpretation algorithms that take the region of the HIV genome encoding the major drug targets as inputs; expert use of these algorithms can significantly improve to clinical outcomes in HIV treatment. Next-generation sequencing has the potential to revolutionize HIV resistance genotyping by lowering the threshold that rare but clinically significant HIV variants can be detected reproducibly, and by conferring improved cost-effectiveness in high-throughput scenarios. In this review, we discuss the relative merits and challenges of deploying the Illumina MiSeq instrument for clinical HIV genotyping. Copyright © 2016 Elsevier B.V. All rights reserved.
Mbuagbaw, Lawrence Ce; Irlam, James H; Spaulding, Alicen; Rutherford, George W; Siegfried, Nandi
2010-12-08
The advent of highly active antiretroviral therapy (HAART) has reduced the morbidity and mortality due to HIV. The World Health Organisation (WHO) antiretroviral treatment (ART) guidelines focus on three classes of antiretroviral drugs, namely: nucleoside/nucleotide reverse transcriptase inhibitors (NRTI), non-nucleoside reverse transcriptase inhibitors (NNRTI) and protease inhibitors (PI). Two of the most common medications given in first-line treatment are the NNRTIs, efavirenz (EFV) and nevirapine (NVP). It is unclear which NNRTI is more efficacious for initial therapy. To determine which NNRTI, EFV or NVP, is more efficacious when given in combination with two NRTIs as part of initial ART for HIV infection in adults and children. We used a comprehensive and exhaustive strategy in an attempt to identify all relevant studies, regardless of language or publication status, in electronic databases and conference proceedings from 1996 to 2009. All randomised controlled trials comparing EFV to NVP in HIV-infected individuals without prior exposure to ART, irrespective of the dosage or NRTI backbone.The primary outcome of interest was virologic response to ART. Other primary outcomes included mortality, clinical progression, severe adverse events, and discontinuation of therapy for any reason. Secondary outcomes were immunologic response to ART, treatment failure, development of ART drug resistance, and prevention of sexual transmission of HIV. Two authors assessed each reference for inclusion and exclusion criteria established a priori. Data were abstracted independently using a standardised abstraction form. Data were analysed on an intention-to-treat basis and reported as per dosage of NVP. We identified seven randomised controlled trials that met our inclusion criteria.The trials were pooled as per dosage of NVP. None of these trials included children.The seven trials enrolled 1,688 participants and found no critical differences between EFV and NVP, except for different toxicity profiles. EFV is more likely to cause central nervous system side-effects, while NVP is more likely to result in raised transaminases and neutropoenia. There was a higher mortality rate in the NVP 400mg once daily arm.The quality of literature to support these conclusions is moderate to high. Drug resistance was slightly less common with EFV than NVP, but the quality of this literature is low since only one of the seven studies reported on this outcome. No studies reported on sexual transmission of HIV. The length of follow-up time, study settings, and NRTI backbone varied greatly. Both drugs have equivalent efficacies in initial treatment of HIV infection when combined with two NRTIs, but different side effects.
Nadler, Jeffrey P; Berger, Daniel S; Blick, Gary; Cimoch, Paul J; Cohen, Calvin J; Greenberg, Richard N; Hicks, Charles B; Hoetelmans, Richard M W; Iveson, Kathy J; Jayaweera, Dushyantha S; Mills, Anthony M; Peeters, Monika P; Ruane, Peter J; Shalit, Peter; Schrader, Shannon R; Smith, Stephen M; Steinhart, Corklin R; Thompson, Melanie; Vingerhoets, Johan H; Voorspoels, Ellen; Ward, Douglas; Woodfall, Brian
2007-03-30
TMC125-C223 is an open-label, partially blinded, randomized clinical trial to evaluate the efficacy and safety of two dosages of etravirine (TMC125), a non-nucleoside reverse transcriptase inhibitor (NNRTI) with activity against wild-type and NNRTI-resistant HIV-1. A total of 199 patients were randomly assigned 2: 2: 1 to twice-daily etravirine 400 mg, 800 mg and control groups, respectively. The primary endpoint was a change in viral load from baseline at week 24 in the intention-to-treat population. Patients had HIV-1 with genotypic resistance to approved NNRTIs and at least three primary protease inhibitor (PI) mutations. Etravirine groups received an optimized background of at least two approved antiretroviral agents [nucleoside reverse transcriptase inhibitors (NRTI) and/or lopinavir/ritonavir and/or enfuvirtide]. Control patients received optimized regimens of at least three antiretroviral agents (NRTIs or PIs and/or enfuvirtide). The mean change from baseline in HIV-1 RNA at week 24 was -1.04, -1.18 and -0.19 log10 copies/ml for etravirine 400 mg twice a day, 800 mg twice a day and the control group, respectively (P < 0.05 for both etravirine groups versus control). Etravirine showed no dose-related effects on safety and tolerability. No consistent pattern of neuropsychiatric symptoms was observed. There were few hepatic adverse events, and rashes were predominantly early onset and mild to moderate in severity. Etravirine plus an optimized background significantly reduced HIV-1-RNA levels from baseline after 24 weeks in patients with substantial NNRTI and PI resistance, and demonstrated a favorable safety profile compared with control.
Arribas, Jose R; Horban, Andrzej; Gerstoft, Jan; Fätkenheuer, Gerdt; Nelson, Mark; Clumeck, Nathan; Pulido, Federico; Hill, Andrew; van Delft, Yvon; Stark, Thomas; Moecklinghoff, Christiane
2010-01-16
In virologically suppressed patients, darunavir-ritonavir (DRV/r) monotherapy could maintain virological suppression similarly to DRV/r and two nucleosides. Two hundred and fifty-six patients with HIV RNA less than 50 copies/ml for over 24 weeks on current antiretrovirals [non-nucleoside reverse transcriptase inhibitor (NNRTI)-based (43%), or protease inhibitor-based (57%)], switched to DRV/r 800/100 mg once daily, either as monotherapy (n = 127) or with two nucleoside reverse transcriptase inhibitors (NRTIs) (n = 129). Treatment failure was defined as two consecutive HIV RNA levels above 50 copies/ml (TLOVR) by week 48, or switches off study treatment. The trial had 80% power to show noninferiority for the monotherapy arm (delta = -12%). Patients were 81% male and 91% Caucasian, with mean age 44 years, and CD4 cell count of 574 cells/microl. In the primary efficacy analysis, HIV RNA less than 50 copies/ml by week 48 (per protocol) was 86.2 versus 87.8% in the monotherapy and triple therapy arms; by intent-to-treat switch equals failure, efficacy was 84.3 versus 85.3%; by a switch-included analysis, efficacy was 93.5 versus 95.1%: all three comparisons showed noninferior efficacy for DRV/r monotherapy. CD4 cell counts remained stable during the trial in both arms. One patient per arm showed at least one protease inhibitor mutation, and one patient in the triple therapy arm showed an NRTI mutation. Nine patients per arm discontinued randomized treatment for either adverse events or other reasons. No new or unexpected safety signals were detected. In this study for patients with HIV RNA less than 50 copies/ml on other antiretrovirals at baseline, switching to DRV/r monotherapy showed noninferior efficacy versus triple antiretroviral therapy.
Fogel, Jessica M.; Clarke, William; Kulich, Michal; Piwowar-Manning, Estelle; Breaud, Autumn; Olson, Matthew T.; Marzinke, Mark A.; Laeyendecker, Oliver; Fiamma, Agnès; Donnell, Deborah; Mbwambo, Jessie K. K.; Richter, Linda; Gray, Glenda; Sweat, Michael; Coates, Thomas J.; Eshleman, Susan H.
2016-01-01
Background Antiretroviral (ARV) drug treatment benefits the treated individual and can prevent HIV transmission. We assessed ARV drug use in a community-randomized trial that evaluated the impact of behavioral interventions on HIV incidence. Methods Samples were collected in a cross-sectional survey after a 3-year intervention period. ARV drug testing was performed using samples from HIV-infected adults at four study sites (Zimbabwe; Tanzania; KwaZulu-Natal and Soweto, South Africa; survey period 2009–2011), using an assay that detects 20 ARV drugs (6 nucleoside/nucleotide reverse transcriptase inhibitors [NRTIs]; 3 non-nucleoside reverse transcriptase inhibitors [NNRTIs]; 9 protease inhibitors; maraviroc; raltegravir). Results ARV drugs were detected in 2,011 (27.4%) of 7,347 samples; 88.1% had 1 NNRTI +/− 1–2 NRTIs. ARV drug detection was associated with sex (women>men), pregnancy, older age (>24 years), and study site (p<0.0001 for all four variables). ARV drugs were also more frequently detected in adults who were widowed (p=0.006) or unemployed (p=0.02). ARV drug use was more frequent in intervention versus control communities early in the survey (p=0.01), with a significant increase in control (p=0.004) but not in intervention communities during the survey period. In KwaZulu-Natal, a 1% increase in ARV drug use was associated with a 0.14% absolute decrease in HIV incidence (p=0.018). Conclusions This study used an objective, biomedical approach to assess ARV drug use on a population level. This analysis identified factors associated with ARV drug use and provided information on ARV drug use over time. ARV drug use was associated with lower HIV incidence at one study site. PMID:27828875
Fofana, Djeneba Bocar; Maiga, Aichatou Chehy; Diallo, Fodie; Ait-Arkoub, Zaina; Daou, Fatoumata; Cisse, Mamadou; Sarro, Yaya dit Sadio; Oumar, Aboubacar Alassane; Sylla, Aliou; Katlama, Christine; Taiwo, Babafemi; Murphy, Robert; Tounkara, Anatole; Marcelin, Anne-Genevieve; Calvez, Vincent
2013-01-01
Abstract The WHO recommends regular surveillance for transmitted antiretroviral drug-resistant viruses in HIV antiretroviral treatment (ART)-naive patients in resource-limited settings. This study aimed to assess the prevalence of mutations associated with resistance in ART-naive patients newly diagnosed with HIV in Bamako and Ségou in Mali. HIV-positive patients who never received ART were recruited in Bamako and Ségou, Mali. The reverse transcriptase (RT) and protease (PR) genes of these patients were sequenced by the “ViroSeq” method. Analysis and interpretation of the resistance were made according to the WHO 2009 list of drug resistance mutations. In all, 51/54 (94.4%) sample patients were sequenced. The median age (IQR) of our patients was 24 (22–27) years and the median CD4 count was 380 (340–456) cells/mm3. The predominant subtype was recombinant HIV-1 CRF02_AG (66.7%) followed by CRF06_cpx (12%) and CRF09_cpx (4%). Four patients had mutations associated with resistance, giving an overall prevalence of resistance estimated at 7.9%. There were two (4%) patients with nucleoside reverse transcriptase inhibitor (NRTI) mutations (one M184V and one T215Y), two (4%) with non-NRTI mutations (two K103N), and one (2%) with a protease inhibitor mutation (one I54V). The prevalence of primary resistance in newly infected patients in Mali is moderate (7.9%). This indicates that the standard NNRTI-based first-line regimen used in Mali is suboptimal for some patients. This study should be done regularly to inform clinical practice. PMID:22823755
Prevalence and patterns of HIV transmitted drug resistance in Guatemala.
Avila-Ríos, Santiago; Mejía-Villatoro, Carlos R; García-Morales, Claudia; Soto-Nava, Maribel; Escobar, Ingrid; Mendizabal, Ricardo; Girón, Amalia; García, Leticia; Reyes-Terán, Gustavo
2011-12-01
To assess human immunodeficiency virus (HIV) diversity and the prevalence of transmitted drug resistance (TDR) in Guatemala. One hundred forty-five antiretroviral treatment-naïve patients referred to the Roosevelt Hospital in Guatemala City were enrolled from October 2010 to March 2011. Plasma HIV pol sequences were obtained and TDR was assessed with the Stanford algorithm and the World Health Organization (WHO) TDR surveillance mutation list. HIV subtype B was highly prevalent in Guatemala (96.6%, 140/145), and a 2.8% (4/145) prevalence of BF1 recombinants and 0.7% (1/145) prevalence of subtype C viruses were found. TDR prevalence for the study period was 8.3% (12/145) with the Stanford database algorithm (score > 15) and the WHO TDR surveillance mutation list. Most TDR cases were associated with non-nucleoside reverse transcriptase inhibitors (NNRTIs) (83.3%, 10/12); a low prevalence of nucleoside reverse transcriptase inhibitors and protease inhibitors was observed in the cohort (< 1% for both families). Low selection of antiretroviral drug resistance mutations was found, except for NNRTI-associated mutations. Major NNRTI mutations such as K101E, K103N, and E138K showed higher frequencies than expected in ART-naïve populations. Higher literacy was associated with a greater risk of TDR (odds ratio 4.14, P = 0.0264). This study represents one of the first efforts to describe HIV diversity and TDR prevalence and trends in Guatemala. TDR prevalence in Guatemala was at the intermediate level. Most TDR cases were associated with NNRTIs. Further and continuous TDR surveillance is necessary to gain more indepth knowledge about TDR spread and trends in Guatemala and to optimize treatment outcomes in the country.
Etiebet, Mary-Ann A; Shepherd, James; Nowak, Rebecca G; Charurat, Man; Chang, Harry; Ajayi, Samuel; Elegba, Olufunmilayo; Ndembi, Nicaise; Abimiku, Alashle; Carr, Jean K; Eyzaguirre, Lindsay M; Blattner, William A
2013-02-20
In resource-limited settings, HIV-1 drug resistance testing to guide antiretroviral therapy (ART) selection is unavailable. We retrospectively conducted genotypic analysis on archived samples from Nigerian patients who received targeted viral load testing to confirm treatment failure and report their drug resistance mutation patterns. Stored plasma from 349 adult patients on non-nucleoside reverse transcriptase inhibitor (NNRTI) regimens was assayed for HIV-1 RNA viral load, and samples with more than 1000 copies/ml were sequenced in the pol gene. Analysis for resistance mutations utilized the IAS-US 2011 Drug Resistance Mutation list. One hundred and seventy-five samples were genotyped; the majority of the subtypes were G (42.9%) and CRF02_AG (33.7%). Patients were on ART for a median of 27 months. 90% had the M184V/I mutation, 62% had at least one thymidine analog mutation, and 14% had the K65R mutation. 97% had an NNRTI resistance mutation and 47% had at least two etravirine-associated mutations. In multivariate analysis tenofovir-based regimens were less likely to have at least three nucleoside reverse transcriptase inhibitor (NRTI) mutations after adjusting for subtype, previous ART, CD4, and HIV viral load [P < 0.001, odds ratio (OR) 0.04]. 70% of patients on tenofovir-based regimens had at least two susceptible NRTIs to include in a second-line regimen compared with 40% on zidovudine-based regimens (P = 0.04, OR = 3.4). At recognition of treatment failure, patients on tenofovir-based first-line regimens had fewer NRTI drug-resistant mutations and more active NRTI drugs available for second-line regimens. These findings can inform strategies for ART regimen sequencing to optimize long-term HIV treatment outcomes in low-resource settings.
Tashima, Karen T; Smeaton, Laura M; Fichtenbaum, Carl J; Andrade, Adriana; Eron, Joseph J; Gandhi, Rajesh T; Johnson, Victoria A; Klingman, Karin L; Ritz, Justin; Hodder, Sally; Santana, Jorge L; Wilkin, Timothy; Haubrich, Richard H
2015-12-15
Nucleoside reverse transcriptase inhibitors (NRTIs) are often included in antiretroviral regimens in treatment-experienced patients in the absence of data from randomized trials. To compare treatment success between participants who omit versus those who add NRTIs to an optimized antiretroviral regimen of 3 or more agents. Multicenter, randomized, controlled trial. (ClinicalTrials.gov: NCT00537394). Outpatient HIV clinics. Treatment-experienced patients with HIV infection and viral resistance. Open-label optimized regimens (not including NRTIs) were selected on the basis of treatment history and susceptibility testing. Participants were randomly assigned to omit or add NRTIs. The primary efficacy outcome was regimen failure through 48 weeks using a noninferiority margin of 15%. The primary safety outcome was time to initial episode of a severe sign, symptom, or laboratory abnormality before discontinuation of NRTI assignment. 360 participants were randomly assigned, and 93% completed a 48-week visit. The cumulative probability of regimen failure was 29.8% in the omit-NRTIs group versus 25.9% in the add-NRTIs group (difference, 3.2 percentage points [95% CI, -6.1 to 12.5 percentage points]). No significant between-group differences were found in the primary safety end points or the proportion of participants with HIV RNA level less than 50 copies/mL. No deaths occurred in the omit-NRTIs group compared with 7 deaths in the add-NRTIs group. Unblinded study design, and the study may not be applicable to resource-poor settings. Treatment-experienced patients with HIV infection starting a new optimized regimen can safely omit NRTIs without compromising virologic efficacy. Omitting NRTIs will reduce pill burden, cost, and toxicity in this patient population. National Institute of Allergy and Infectious Diseases, Boehringer Ingelheim, Janssen, Merck, ViiV Healthcare, Roche, and Monogram Biosciences (LabCorp).
HIV salvage therapy does not require nucleoside reverse transcriptase inhibitors: a randomized trial
Tashima, Karen T; Smeaton, Laura M; Fichtenbaum, Carl J; Andrade, Adriana; Eron, Joseph J; Gandhi, Rajesh T; Johnson, Victoria A; Klingman, Karin L; Ritz, Justin; Hodder, Sally; Santana, Jorge L; Wilkin, Timothy; Haubrich, Richard H
2015-01-01
Background Nucleoside reverse transcriptase inhibitors (NRTIs) are often included in antiretroviral (ARV) regimens in treatment-experienced patients in the absence of data from randomized trials. Objective To compare treatment success between participants who omit versus Add NRTIs to an optimized ARV regimen of three or more agents. Design Multisite, randomized, controlled trial. Setting Outpatient HIV clinics. Participants HIV-infected patients with three-class ARV experience and/or viral resistance. Intervention Open-label optimized regimens (not including NRTIs) were selected based upon treatment history and susceptibility testing. Participants were randomized to Omit or Add NRTIs. Measurements The primary efficacy outcome was regimen failure through week 48, using a non-inferiority margin of 15%. The primary safety outcome was time to initial episode of severe sign/symptom or laboratory abnormality prior to discontinuation of NRTI assignment. Results 360 participants were randomized and 93% completed a week 48 visit. The cumulative probability of regimen failure was 29.8% in the Omit NRTI arm versus 25.9% in the Add NRTI arm (difference= 3.2%: 95% CI, −6.1 to 12.5). There were no significant differences in the primary safety endpoints or the proportion of participants with HIV RNA <50 copies/mL between arms. No deaths occurred in the Omit NRTIs arm, compared with 7 deaths in the Add NRTIs arm. Limitations Non-blinded study design and may not be applicable to resource poor settings. Conclusion HIV-infected treatment-experienced patients starting a new optimized regimen can safely omit NRTIs without compromising virologic efficacy. Omitting NRTIs will reduce pill burden, cost, and toxicity in this patient population. PMID:26595748
Update on HIV-1 acquired and transmitted drug resistance in Africa.
Ssemwanga, Deogratius; Lihana, Raphael W; Ugoji, Chinenye; Abimiku, Alash'le; Nkengasong, John; Dakum, Patrick; Ndembi, Nicaise
2015-01-01
The last ten years have witnessed a significant scale-up and access to antiretroviral therapy in Africa, which has improved patient quality of life and survival. One major challenge associated with increased access to antiretroviral therapy is the development of antiretroviral resistance due to inconsistent drug supply and/or poor patient adherence. We review the current state of both acquired and transmitted drug resistance in Africa over the past ten years (2001-2011) to identify drug resistance associated with the different drug regimens used on the continent and to help guide affordable strategies for drug resistance surveillance. A total of 161 references (153 articles, six reports and two conference abstracts) were reviewed. Antiretroviral resistance data was available for 40 of 53 African countries. A total of 5,541 adult patients from 99 studies in Africa were included in this analysis. The pooled prevalence of drug resistance mutations in Africa was 10.6%, and Central Africa had the highest prevalence of 54.9%. The highest prevalence of nucleoside reverse transcriptase inhibitor mutations was in the west (55.3%) and central (54.8%) areas; nonnucleoside reverse transcriptase inhibitor mutations were highest in East Africa (57.0%) and protease inhibitors mutations highest in Southern Africa (16.3%). The major nucleoside reverse transcriptase inhibitor mutation in all four African regions was M184V. Major nonnucleoside reverse transcriptase inhibitor as well as protease inhibitor mutations varied by region. The prevalence of drug resistance has remained low in several African countries although the emergence of drug resistance mutations varied across countries. Continued surveillance of antiretroviral therapy resistance remains crucial in gauging the effectiveness of country antiretroviral therapy programs and strategizing on effective and affordable strategies for successful treatment.
Mitochondrial DNA replication, nucleoside reverse-transcriptase inhibitors, and AIDS cardiomyopathy.
Lewis, William
2003-01-01
Nucleoside reverse-transcriptase inhibitors (NRTIs) in combination with other antiretrovirals (HAART) are the cornerstones of current AIDS therapy, but extensive use brought mitochondrial side effects to light. Clinical experience, pharmacological, cell, and molecular biological evidence links altered mitochondrial (mt-) DNA replication to the toxicity of NRTIs in many tissues, and conversely, mtDNA replication defects and mtDNA depletion in target tissues are observed. Organ-specific pathological changes or diverse systemic effects result from and are frequently attributed to HAART in which NRTIs are included. The shared features of mtDNA depletion and energy depletion became key observations and related the clinical and in vivo experimental findings to inhibition of mtDNA replication by NRTI triphosphates in vitro. Subsequent to those findings, other observations suggested that mitochondrial energy deprivation is concomitant with or the result of mitochondrial oxidative stress in AIDS (from HIV, for example) or from NRTI therapy itself. Copyright 2003, Elsevier Science (USA)
Li, Zhenyu; Cao, Yuan; Zhan, Peng; Pannecouque, Christophe; Balzarini, Jan; Clercq, Erik De; Shen, Yuemao; Liu, Xinyong
2013-11-01
A series of novel 1,2,4-triazole thioacetanilide derivatives has been designed, synthesized and evaluated for their anti-HIV activities in MT-4 cells. Half of these compounds showed moderate to potent activities against wild-type HIV-1 with an EC50 ranging from 38.0 μM to 4.08 µM. Among them, 2-(4-(2-fluorobenzyl)-5-isopropyl-4H-1,2,4-triazol- 3-ylthio)-N-(2-nitrophenyl)acetamide 7d was identified as the most promising compound (EC50 = 4.26 µM, SI = 49). However, no compound was active against HIV-2. The preliminary structure-activity relationships among the newly synthesized congeners are discussed.
Van Maele, Bénédicte; De Rijck, Jan; De Clercq, Erik; Debyser, Zeger
2003-01-01
Lentiviral vectors derived from human immunodeficiency virus type 1 (HIV-1) show great promise as gene carriers for future gene therapy. Insertion of a fragment containing the central polypurine tract (cPPT) in HIV-1 vector constructs is known to enhance transduction efficiency drastically, reportedly by facilitating the nuclear import of HIV-1 cDNA through a central DNA flap. We have studied the impact of the cPPT on the kinetics of HIV-1 vector transduction by real-time PCR. The kinetics of total HIV-1 DNA, two-long-terminal-repeat (2-LTR) circles, and, by an Alu-PCR, integrated proviral DNA were monitored. About 6 to 12 h after transduction, the total HIV-1 DNA reached a maximum level, followed by a steep decrease. The 2-LTR circles peaked after 24 to 48 h and were diluted upon cell division. Integration of HIV-1 DNA was first detected at 12 h postinfection. When HIV-1 vectors that contained the cPPT were used, DNA synthesis was similar but a threefold higher amount of 2-LTR circles was detected, confirming the impact on nuclear import. Moreover, a 10-fold increase in the amount of integrated DNA was observed in the presence of the cPPT. Only in the absence of the cPPT was a saturation in 2-LTR circle formation seen at a high multiplicity of infection, suggesting a role for the cPPT in overcoming a barrier to the nuclear import of HIV-1 DNA. A major effect of the central DNA flap on the juxtaposition of both LTRs is unlikely, since transduction with HIV-1 vectors containing ectopic cPPT fragments resulted in increased amounts of 2-LTR circles as well as integrated DNA. Inhibitors of transduction by cPPT-containing HIV vectors were also studied by real-time PCR. The reverse transcriptase inhibitor azidothymidine (AZT) and the nonnucleoside reverse transcriptase inhibitor α-APA clearly inhibited viral DNA synthesis, whereas integrase inhibitors such as the diketo acid L-708,906 and the pyranodipyrimidine V-165 specifically inhibited integration. PMID:12663775
Ugaonkar, Shweta R; Clark, Justin T; English, Lexie B; Johnson, Todd J; Buckheit, Karen W; Bahde, Robert J; Appella, Daniel H; Buckheit, Robert W; Kiser, Patrick F
2015-10-01
Nucleocapsid 7 (NCp7) inhibitors have been investigated extensively for their role in impeding the function of HIV-1 replication machinery and their ability to directly inactivate the virus. A class of NCp7 zinc finger inhibitors, S-acyl-2-mercaptobenzamide thioesters (SAMTs), was investigated for topical drug delivery. SAMTs are inherently unstable because of their hydrolytically labile thioester bond, thus requiring formulation approaches that can lend stability. We describe the delivery of N-[2-(3,4,5-trimethoxybenzoylthio)benzoyl]-β-alaninamide (SAMT-10), as a single agent antiretroviral (ARV) therapeutic and in combination with the HIV-1 reverse-transcriptase inhibitor pyrimidinedione IQP-0528, from a hydrophobic polyether urethane (PEU) intravaginal ring (IVR) for a month. The physicochemical stability of the ARV-loaded IVRs was confirmed after 3 months at 40°C/75% relative humidity. In vitro, 25 ± 3 mg/IVR of SAMT-10 and 86 ± 13 mg/IVR of IQP-0528 were released. No degradation of the hydrolytically labile SAMT-10 was observed within the matrix. The combination of ARVs had synergistic antiviral activity when tested in in vitro cell-based assays. Toxicological evaluations performed on an organotypic EpiVaginal(™) tissue model demonstrated a lack of formulation toxicity. Overall, SAMT-10 and IQP-0528 were formulated in a stable PEU IVR for sustained release. Our findings support the need for further preclinical evaluation. © 2015 Wiley Periodicals, Inc. and the American Pharmacists Association J Pharm Sci 104:3426-3439, 2015. © 2015 Wiley Periodicals, Inc. and the American Pharmacists Association.
Figueroa, Dominique B; Madeen, Erin P; Tillotson, Joseph; Richardson, Paul; Cottle, Leslie; McCauley, Marybeth; Landovitz, Raphael J; Andrade, Adriana; Hendrix, Craig W; Mayer, Kenneth H; Wilkin, Timothy; Gulick, Roy M; Bumpus, Namandjé N
2018-05-01
Tenofovir (TFV) disoproxil fumarate and emtricitabine (FTC) are used in combination for HIV treatment and pre-exposure prophylaxis (PrEP). TFV disoproxil fumarate is a prodrug that undergoes diester hydrolysis to TFV. FTC and TFV are nucleoside/nucleotide reverse transcriptase inhibitors that upon phosphorylation to nucleotide triphosphate analogs competitively inhibit HIV reverse transcriptase. We previously demonstrated that adenylate kinase 2, pyruvate kinase, muscle and pyruvate kinase, liver and red blood cell phosphorylate TFV in peripheral blood mononuclear cells (PBMC). To identify the kinases that phosphorylate FTC in PBMC, siRNAs targeted toward kinases that phosphorylate compounds structurally similar to FTC were delivered to PBMC, followed by incubation with FTC and the application of a matrix-assisted laser desorption ionization-mass spectrometry method and ultra high performance liquid chromatography-UV to detect the formation of FTC phosphates. Knockdown of deoxycytidine kinase decreased the formation of FTC-monophosphate, while siRNA targeted toward thymidine kinase 1 decreased the abundance of FTC-diphosphate. Knockdown of either cytidine monophosphate kinase 1 or phosphoglycerate kinase 1 decreased the abundance of FTC-triphosphate. Next-generation sequencing of genomic DNA isolated from 498 HIV-uninfected participants in the HIV Prevention Trials Network 069/AIDS Clinical Trials Group A5305 clinical study, revealed 17 previously unreported genetic variants of TFV or FTC phosphorylating kinases. Of note, four individuals were identified as simultaneous carriers of variants of both TFV and FTC activating kinases. These results identify the specific kinases that activate FTC in PBMC, while also providing further insight into the potential for genetic variation to impact TFV and FTC activation.
Berenguer, Juan; Polo, Rosa; Aldeguer, José López; Lozano, Fernando; Aguirrebengoa, Koldo; Arribas, José Ramón; Blanco, José Ramón; Boix, Vicente; Casado, José Luis; Clotet, Bonaventura; Crespo, Manuel; Domingo, Pere; Estrada, Vicente; García, Federico; Gatell, José María; González-García, Juan; Gutiérrez, Félix; Iribarren, José Antonio; Knobel, Hernando; Llibre, Josep María; Locutura, Jaime; López, Juan Carlos; Miró, José M; Moreno, Santiago; Podzamczer, Daniel; Portilla, Joaquín; Pulido, Federico; Ribera, Esteban; Riera, Melchor; Rubio, Rafael; Santos, Jesús; Sanz-Moreno, José; Sanz, Jesús; Téllez, María Jesús; Tuset, Montserrat; Rivero, Antonio
2015-10-01
In this update, antiretroviral therapy (ART) is recommended for all patients infected by type 1 human immunodeficiency virus (HIV-1). The strength and grade of the recommendation vary depending on the CD4+ T-lymphocyte count, the presence of opportunistic infections or comorbid conditions, age, and the efforts to prevent the transmission of HIV. The objective of ART is to achieve an undetectable plasma viral load (PVL). Initial ART should comprise three drugs, namely, two nucleoside reverse transcriptase inhibitors (NRTI) and one drug from another family. Three of the recommended regimens, all of which have an integrase strand transfer inhibitor (INSTI) as the third drug, are considered a preferred regimen; a further seven regimens, which are based on an INSTI, an non-nucleoside reverse transcriptase inhibitor (NNRTI), or a protease inhibitor boosted with ritonavir (PI/r), are considered alternatives. The reasons and criteria for switching ART are presented both for patients with an undetectable PVL and for patients who experience virological failure, in which case the rescue regimen should include three (or at least two) drugs that are fully active against HIV. The specific criteria for ART in special situations (acute infection, HIV-2 infection, pregnancy) and comorbid conditions (tuberculosis and other opportunistic infections, kidney disease, liver disease, and cancer) are updated. Copyright © 2015 Elsevier España, S.L.U. y Sociedad Española de Enfermedades Infecciosas y Microbiología Clínica. All rights reserved.
Wang, Zheng; Zhang, Junli; Li, Fan; Ji, Xiaolin; Liao, Lingjie; Ma, Liying; Xing, Hui; Feng, Yi; Li, Dan; Shao, Yiming
2017-04-02
Fitness is a key parameter in the measurement of transmission capacity of individual drug-resistant HIV. Drug-resistance related mutations (DRMs) T369V/I and A371V in the connection subdomain (CN) of reverse transcriptase (RT) occur at higher frequencies in the individuals experiencing antiretroviral therapy failure. Here, we evaluated the effects of T369V/I and A371V on viral fitness, in the presence or in the absence of thymidine analogue resistance-associated mutations (TAMs) and assessed the effect of potential RT structure-related mechanism on change in viral fitness. Mutations T369V/I, A371V, alone or in combination with TAMs were introduced into a modified HIV-1 infectious clone AT1 by site-directed mutagenesis. Then, experiments on mutant and wild-type virus AT2 were performed separately using a growth-competition assay, and then the relative fitness was calculated. Structural analysis of RT was conducted using Pymol software. Results showed that T369V/I severely impaired the relative virus fitness, and A371V compensated for the viral fitness reduction caused by TAMs. Structural modeling of RT suggests that T369V/I substitutions disrupt powerful hydrogen bonds formed by T369 and V365 in p51 and p66. This study indicates that the secondary DRMs within CN might efficiently damage viral fitness, and provides valuable information for clinical surveillance and prevention of HIV-1 strains carrying these DRMs. Copyright © 2017 Elsevier B.V. All rights reserved.
Henao-Mejia, Jorge; Góez, Yenny; Patiño, Pablo; Rugeles, Maria T
2006-06-01
Since the human immunodeficiency virus was identified as etiological agent of the acquired immunodeficiency syndrome, great advances have been accomplished in the therapeutic field leading to reduced morbidity and mortality among infected patients. However, the high mutation rate of the viral genome generates strains resistant to multiple drugs, pointing to the importance of finding new therapeutic targets. Among the HIV structural genes, the POL gene codes for three essential enzymes: reverse transcriptase, protease, and integrase; nineteen of the twenty drugs currently approved by the Food and Drug Administration to treat this viral infection, inhibit the reverse transcriptase and the protease. Although intense research has been carried out in this area during the last 10 years, HIV integrase inhibitors are not yet approved for clinical use; however the fact that presence of this enzyme is a sine qua non for a productive HIV life cycle joined to its unique properties makes it a promissory target for anti-HIV therapy. Many compounds have been claimed to inhibit integrase in vitro; however, few of them have proven to have antiviral activity and low cytotoxicity in cell systems. Diketoacid derivatives are the most promising integrase inhibitors so far reported. Initially discovered independently by Shionogi & Co. and the Merck Research Laboratories, these compounds are highly specific for the integrase with potent antiviral activity in vitro and in vivo, and low cytotoxicity in cell cultures. Some of these compounds have recently entered clinical trials. Due to the high relevance of integrase inhibitors, and specifically of diketoacid derivatives, we review the latest findings and patents in this important field of research.
Entin-Meer, Michal; Sevilya, Ziv; Hizi, Amnon
2002-10-15
Phe-119 in the reverse transcriptase (RT) of mouse mammary tumour virus (MMTV) is homologous with Tyr-115 in HIV type 1 (HIV-1) RT and to Phe-155 in murine leukaemia virus (MLV) RT. By mutating these residues in HIV-1 and MLV RTs (which are strict DNA polymerases) the enzymes were shown to function also as RNA polymerases. Owing to the uniqueness of MMTV as a type B retrovirus, we have generated a Phe-119-Val mutant of MMTV RT to study the involvement of this residue in affecting the catalytic features of this RT. The data presented here show that the mutant MMTV RT can incorporate both deoxyribonucleosides and ribonucleosides while copying either RNA or DNA. In addition, this mutant RT shows resistance to nucleoside analogues and an enhanced fidelity of DNA synthesis; all relative to the wild-type enzyme. The Phe-119-Val mutant is also different from the wild-type enzyme in its preference for most template primers tested and in its ability to synthesize DNA under non-processive and processive conditions. Overall, it is likely that the aromatic side chain of Phe-119 is located at the dNTP-binding site of MMTV RT and thus might be part of a putative "steric gate" that prevents the incorporation of nucleoside triphosphates. Since the only three-dimensional structures of RTs published so far are those of HIV-1 and MLV, it is likely that MMTV RT folds quite similarly to these RTs.
Melikian, George L; Rhee, Soo-Yon; Taylor, Jonathan; Fessel, W Jeffrey; Kaufman, David; Towner, William; Troia-Cancio, Paolo V; Zolopa, Andrew; Robbins, Gregory K; Kagan, Ron; Israelski, Dennis; Shafer, Robert W
2012-05-01
Determining the phenotypic impacts of reverse transcriptase (RT) mutations on individual nucleoside RT inhibitors (NRTIs) has remained a statistical challenge because clinical NRTI-resistant HIV-1 isolates usually contain multiple mutations, often in complex patterns, complicating the task of determining the relative contribution of each mutation to HIV drug resistance. Furthermore, the NRTIs have highly variable dynamic susceptibility ranges, making it difficult to determine the relative effect of an RT mutation on susceptibility to different NRTIs. In this study, we analyzed 1,273 genotyped HIV-1 isolates for which phenotypic results were obtained using the PhenoSense assay (Monogram, South San Francisco, CA). We used a parsimonious feature selection algorithm, LASSO, to assess the possible contributions of 177 mutations that occurred in 10 or more isolates in our data set. We then used least-squares regression to quantify the impact of each LASSO-selected mutation on each NRTI. Our study provides a comprehensive view of the most common NRTI resistance mutations. Because our results were standardized, the study provides the first analysis that quantifies the relative phenotypic effects of NRTI resistance mutations on each of the NRTIs. In addition, the study contains new findings on the relative impacts of thymidine analog mutations (TAMs) on susceptibility to abacavir and tenofovir; the impacts of several known but incompletely characterized mutations, including E40F, V75T, Y115F, and K219R; and a tentative role in reduced NRTI susceptibility for K64H, a novel NRTI resistance mutation.
Current lead natural products for the chemotherapy of human immunodeficiency virus (HIV) infection.
De Clercq, E
2000-09-01
A large variety of natural products have been described as anti-HIV agents, and for a portion thereof the target of interaction has been identified. Cyanovirin-N, a 11-kDa protein from Cyanobacterium (blue-green alga) irreversibly inactivates HIV and also aborts cell-to-cell fusion and transmission of HIV, due to its high-affinity interaction with gp120. Various sulfated polysaccharides extracted from seaweeds (i.e., Nothogenia fastigiata, Aghardhiella tenera) inhibit the virus adsorption process. Ingenol derivatives may inhibit virus adsorption at least in part through down-regulation of CD4 molecules on the host cells. Inhibition of virus adsorption by flavanoids such as (-)epicatechin and its 3-O-gallate has been attributed to an irreversible interaction with gp120 (although these compounds are also known as reverse transcriptase inhibitors). For the triterpene glycyrrhizin (extracted from the licorice root Glycyrrhiza radix) the mode of anti-HIV action may at least in part be attributed to interference with virus-cell binding. The mannose-specific plant lectins from Galanthus, Hippeastrum, Narcissus, Epipac tis helleborine, and Listera ovata, and the N-acetylgl ucosamine-specific lectin from Urtica dioica would primarily be targeted at the virus-cell fusion process. Various other natural products seem to qualify as HIV-cell fusion inhibitors: the siamycins [siamycin I (BMY-29304), siamycin II (RP 71955, BMY 29303), and NP-06 (FR901724)] which are tricyclic 21-amino-acid peptides isolated from Streptomyces spp that differ from one another only at position 4 or 17 (valine or isoleucine in each case); the betulinic acid derivative RPR 103611, and the peptides tachyplesin and polyphemusin which are highly abundant in hemocyte debris of the horseshoe crabs Tachypleus tridentatus and Limulus polyphemus, i.e., the 18-amino-acid peptide T22 from which T134 has been derived. Both T22 and T134 have been shown to block T-tropic X4 HIV-1 strains through a specific antagonism with the HIV corecept or CXCR4. A number of natural products have been reported to interact with the reverse transcriptase, i.e., baicalin, avarol, avarone, psychotrine, phloroglucinol derivatives, and, in particular, calanolides (from the tropical rainforest tree, Calophyllum lanigerum) and inophyllums (from the Malaysian tree, Calophyllum inophyllum). The natural marine substance illimaquinone would be targeted at the RNase H function of the reverse transcriptase. Curcumin (diferuloylmethane, from turmeric, the roots/rhizomes of Curcuma spp), dicaffeoylquinic and dicaffeoylt artaric acids, L-chicoric acid, and a number of fungal metabolites (equisetin, phomasetin, oteromycin, and integric acid) have all been proposed as HIV-1 integrase inhibitors. Yet, we have recently shown that L-c hicoric acid owes its anti-HIV activity to a specific interaction with the viral envelope gp120 rather than integrase. A number of compounds would be able to inhibit HIV-1 gene expression at the transcription level: the flavonoid chrysin (through inhibition of casein kinase II, the antibacter ial peptides melittin (from bee venom) and cecropin, and EM2487, a novel substance produced by Streptomyces. (ABSTRACT TRUNCATED)
Dolling, David; Sabin, Caroline; Delpech, Valerie; Smit, Erasmus; Pozniak, Anton; Asboe, David; Brown, Andrew Leigh; Churchill, Duncan; Williams, Ian; Geretti, Anna Maria; Phillips, Andrew; Mackie, Nicola; Murphy, Gary; Castro, Hannah; Pillay, Deenan; Cane, Patricia; Dunn, David; Dolling, David
2012-08-21
To evaluate whether the prevalence of HIV-1 transmitted drug resistance has continued to decline in infections probably acquired within the United Kingdom. Multicentre observational study. All UK public laboratories conducting tests for genotypic HIV resistance as a part of routine care. 14,584 patients infected with HIV-1 subtype B virus, who were first tested for resistance before receiving antiretroviral therapy between January 2002 and December 2009. Prevalence of transmitted drug resistance, defined as one or more resistance mutations from the surveillance list recommended by the World Health Organization. 1654 (11.3%, 95% confidence interval 10.8% to 11.9%) patients had one or more mutations associated with transmitted HIV-1 drug resistance; prevalence was found to decline from 15.5% in 2002 to 9.6% in 2007, followed by a slight increase to 10.9% in 2009 (P=0.21). This later rise was mainly a result of increases in resistance to nucleos(t)ide reverse transcriptase inhibitors (from 5.4% in 2007 to 6.6% in 2009, P=0.24) and protease inhibitors (1.5% to 2.1%, P=0.12). Thymidine analogue mutations, including T215 revertants, remained the most frequent mutations associated with nucleos(t)ide reverse transcriptase inhibitors, despite a considerable fall in stavudine and zidovudine use between 2002 and 2009 (from 29.4% of drug regimens in 2002 to 0.8% in 2009, from 47.9% to 8.8%, respectively). The previously observed decline in the prevalence of transmitted drug resistance in HIV-1 infections probably acquired in the UK seems to have stabilised. The continued high prevalence of thymidine analogue mutations suggests that the source of this resistance may be increasingly from patients who have not undergone antiretroviral therapy and who harbour resistant viruses. Testing of all newly diagnosed HIV-1 positive people should be continued.
Hamorsky, Krystal Teasley; Grooms-Williams, Tiffany W.; Husk, Adam S.; Bennett, Lauren J.; Palmer, Kenneth E.
2013-01-01
Broadly neutralizing monoclonal antibodies (bnMAbs) may offer powerful tools for HIV-1 preexposure prophylaxis, such as topical microbicides. However, this option is hampered due to expensive MAb biomanufacturing based on mammalian cell culture. To address this issue, we developed a new production system for bnMAb VRC01 in Nicotiana benthamiana plants using a tobamovirus replicon vector. Unlike conventional two-vector-based expression, this system was designed to overexpress full-length IgG1 from a single polypeptide by means of kex2p-like enzyme recognition sites introduced between the heavy and light chains. An enzyme-linked immunosorbent assay (ELISA) revealed that gp120-binding VRC01 IgG1 was maximally accumulated on 5 to 7 days following vector inoculation, yielding ∼150 mg of the bnMAb per kg of fresh leaf material. The plant-made VRC01 (VRC01p) was efficiently purified by protein A affinity followed by hydrophobic-interaction chromatography. ELISA, surface plasmon resonance, and an HIV-1 neutralization assay demonstrated that VRC01p has gp120-binding affinity and HIV-1-neutralization capacity virtually identical to the human-cell-produced counterpart. To advance VRC01p's use in topical microbicides, we analyzed combinations of the bnMAb with other microbicide candidates holding distinct antiviral mechanisms in an HIV-1 neutralization assay. VRC01p exhibited clear synergy with the antiviral lectin griffithsin, the CCR5 antagonist maraviroc, and the reverse transcriptase inhibitor tenofovir in multiple CCR5-tropic HIV-1 strains from clades A, B, and C. In summary, VRC01p is amenable to robust, rapid, and large-scale production and may be developed as an active component in combination microbicides with other anti-HIV agents such as antiviral lectins, CCR5 antagonists, and reverse transcriptase inhibitors. PMID:23403432
Thao, Vu P; Le, Thuy; Török, Estee M; Yen, Nguyen T B; Chau, Tran T H; Jurriaans, Suzanne; van Doorn, H Rogier; van Doorn, Rogier H; de Jong, Menno D; Farrar, Jeremy J; Dunstan, Sarah J
2012-01-01
Access to antiretroviral therapy (ART) for HIV-infected individuals in Vietnam is rapidly expanding, but there are limited data on HIV drug resistance (HIVDR) to guide ART strategies. We retrospectively conducted HIVDR testing in 220 ART-naive individuals recruited to a randomized controlled trial of immediate versus deferred ART in individuals with HIV-associated tuberculous meningitis in Ho Chi Minh City (HCMC) from 2005-2008. HIVDR mutations were identified by population sequencing of the HIV pol gene and were defined based on 2009 WHO surveillance drug resistance mutations (SDRMs). We successfully sequenced 219/220 plasma samples of subjects prior to ART; 218 were subtype CRF01_AE and 1 was subtype B. SDRMs were identified in 14/219 (6.4%) subjects; 8/14 were resistant to nucleoside/nucleotide reverse transcriptase inhibitors (NRTIs; T69D, L74V, V75M, M184V/I and K219R), 5/14 to non-nucleoside reverse transcriptase inhibitors (NNRTIs; K103N, V106M, Y181C, Y188C and G190A), 1/14 to both NRTIs and NNRTIs (D67N and Y181C) and none to protease inhibitors. After 6 months of ART, eight subjects developed protocol-defined virological failure. HIVDR mutations were identified in 5/8 subjects. All five had mutations with high-level resistance to NNRTIs and three had mutations with high-level resistance to NRTIs. Due to a high early mortality rate (58%), the effect of pre-existing HIVDR mutations on treatment outcome could not be accurately assessed. The prevalence of WHO SDRMs in ART-naive individuals with HIV-associated tuberculous meningitis in HCMC from 2005-2008 is 6.4%. The SDRMs identified conferred resistance to NRTIs and/or NNRTIs, reflecting the standard first-line ART regimens in Vietnam.
Metzner, Karin J; Scherrer, Alexandra U; von Wyl, Viktor; Böni, Jürg; Yerly, Sabine; Klimkait, Thomas; Aubert, Vincent; Furrer, Hansjakob; Hirsch, Hans H; Vernazza, Pietro L; Cavassini, Matthias; Calmy, Alexandra; Bernasconi, Enos; Weber, Rainer; Günthard, Huldrych F
2014-09-24
The presence of minority nonnucleoside reverse transcriptase inhibitor (NNRTI)-resistant HIV-1 variants prior to antiretroviral therapy (ART) has been linked to virologic failure in treatment-naive patients. We performed a large retrospective study to determine the number of treatment failures that could have been prevented by implementing minority drug-resistant HIV-1 variant analyses in ART-naïve patients in whom no NNRTI resistance mutations were detected by routine resistance testing. Of 1608 patients in the Swiss HIV Cohort Study, who have initiated first-line ART with two nucleoside reverse transcriptase inhibitors (NRTIs) and one NNRTI before July 2008, 519 patients were eligible by means of HIV-1 subtype, viral load and sample availability. Key NNRTI drug resistance mutations K103N and Y181C were measured by allele-specific PCR in 208 of 519 randomly chosen patients. Minority K103N and Y181C drug resistance mutations were detected in five out of 190 (2.6%) and 10 out of 201 (5%) patients, respectively. Focusing on 183 patients for whom virologic success or failure could be examined, virologic failure occurred in seven out of 183 (3.8%) patients; minority K103N and/or Y181C variants were present prior to ART initiation in only two of those patients. The NNRTI-containing, first-line ART was effective in 10 patients with preexisting minority NNRTI-resistant HIV-1 variant. As revealed in settings of case-control studies, minority NNRTI-resistant HIV-1 variants can have an impact on ART. However, the implementation of minority NNRTI-resistant HIV-1 variant analysis in addition to genotypic resistance testing (GRT) cannot be recommended in routine clinical settings. Additional associated risk factors need to be discovered.
Rutherford, George W; Horvath, Hacsi
2016-01-01
Dolutegravir (DTG) is a once-daily unboosted second-generation integrase-inhibitor that along with two nucleoside reverse transcriptase inhibitors is one of several regimens recommended by the United States, United Kingdom and European Union for first-line antiretroviral treatment of people with HIV infection. Our objective was to review the evidence for the efficacy and safety of DTG-based first-line regimens compared to efavirenz (EFV)-based regimens. We conducted a systematic review. We comprehensively searched a range of databases as well as conference abstracts and a trials registry. We used Cochrane methods in screening and data collection and assessed each study's risk of bias with the Cochrane tool. We meta-analyzed data using a fixed-effects model. We used GRADE to assess evidence quality. From 492 search results, we identified two randomized controlled trials, reported in five peer-reviewed articles and one conference abstract. One trial tested two DTG-based regimens (DTG + abacavir (ABC) + lamivudine (3TC) or DTG + tenofovir + emtricitabine) against an EFV-based regimen (EFV+ ABC+3TC). The other trial tested DTG+ABC+3TC against EFV+ABC+3TC. In meta-analysis, DTG-containing regimens were superior to EFV-containing regimens at 48 weeks and at 96 weeks (RR = 1.10, 95% CI 1.04-1.16; and RR = 1.12, 95% CI 1.04-1.21, respectively). In one trial, the DTG-containing regimen was superior at 144 weeks (RR = 1.13, 95% CI 1.02-1.24). DTG-containing regimens were superior in reducing treatment discontinuation compared to those containing EFV at 96 weeks and at 144 weeks (RR = 0.27, 95% CI 0.15-0.50; and RR = 0.28, 95% CI 0.16-0.48, respectively). Risk of serious adverse events was similar in each regimen at 96 weeks (RR = 1.15, 95% CI 0.80-1.63) and 144 weeks (RR = 0.93, 95% CI 0.68-1.29). Risk of bias was moderate overall, as was GRADE evidence quality. DTG-based regimens should be considered in future World Health Organization guidelines for initial HIV treatment.
Bronze, Michelle; Wallis, Carole L.; Stuyver, Lieven; Steegen, Kim; Balinda, Sheila; Kityo, Cissy; Stevens, Wendy; Rinke de Wit, Tobias F.; Schuurman, Rob
2013-01-01
In resource-limited settings (RLS), reverse transcriptase (RT) inhibitors form the backbone of first-line treatment regimens. We have developed a simplified HIV-1 drug resistance genotyping assay targeting the region of RT harboring all major RT inhibitor resistance mutation positions, thus providing all relevant susceptibility data for first-line failures, coupled with minimal cost and labor. The assay comprises a one-step RT-PCR amplification reaction, followed by sequencing using one forward and one reverse primer, generating double-stranded coverage of RT amino acids (aa) 41 to 238. The assay was optimized for all major HIV-1 group M subtypes in plasma and dried blood spot (DBS) samples using a panel of reference viruses for HIV-1 subtypes A to D, F to H, and circulating recombinant form 01_AE (CRF01_AE) and applied to 212 clinical plasma samples and 25 DBS samples from HIV-1-infected individuals from Africa and Europe. The assay was subsequently transferred to Uganda and applied locally on clinical plasma samples. All major HIV-1 subtypes could be detected with an analytical sensitivity of 5.00E+3 RNA copies/ml for plasma and DBS. Application of the assay on 212 clinical samples from African subjects comprising subtypes A to D, F to H (rare), CRF01_AE, and CRF02_AG at a viral load (VL) range of 6.71E+2 to 1.00E+7 (median, 1.48E+5) RNA copies/ml was 94.8% (n = 201) successful. Application on clinical samples in Uganda demonstrated a comparable success rate. Genotyping of clinical DBS samples, all subtype C with a VL range of 1.02E+3 to 4.49E+5 (median, 1.42E+4) RNA copies/ml, was 84.0% successful. The described assay greatly reduces hands-on time and the costs required for genotyping and is ideal for use in RLS, as demonstrated in a reference laboratory in Uganda and its successful application on DBS samples. PMID:23536405
Gibson, Richard M.; Meyer, Ashley M.; Winner, Dane; Archer, John; Feyertag, Felix; Ruiz-Mateos, Ezequiel; Leal, Manuel; Robertson, David L.; Schmotzer, Christine L.
2014-01-01
With 29 individual antiretroviral drugs available from six classes that are approved for the treatment of HIV-1 infection, a combination of different phenotypic and genotypic tests is currently needed to monitor HIV-infected individuals. In this study, we developed a novel HIV-1 genotypic assay based on deep sequencing (DeepGen HIV) to simultaneously assess HIV-1 susceptibilities to all drugs targeting the three viral enzymes and to predict HIV-1 coreceptor tropism. Patient-derived gag-p2/NCp7/p1/p6/pol-PR/RT/IN- and env-C2V3 PCR products were sequenced using the Ion Torrent Personal Genome Machine. Reads spanning the 3′ end of the Gag, protease (PR), reverse transcriptase (RT), integrase (IN), and V3 regions were extracted, truncated, translated, and assembled for genotype and HIV-1 coreceptor tropism determination. DeepGen HIV consistently detected both minority drug-resistant viruses and non-R5 HIV-1 variants from clinical specimens with viral loads of ≥1,000 copies/ml and from B and non-B subtypes. Additional mutations associated with resistance to PR, RT, and IN inhibitors, previously undetected by standard (Sanger) population sequencing, were reliably identified at frequencies as low as 1%. DeepGen HIV results correlated with phenotypic (original Trofile, 92%; enhanced-sensitivity Trofile assay [ESTA], 80%; TROCAI, 81%; and VeriTrop, 80%) and genotypic (population sequencing/Geno2Pheno with a 10% false-positive rate [FPR], 84%) HIV-1 tropism test results. DeepGen HIV (83%) and Trofile (85%) showed similar concordances with the clinical response following an 8-day course of maraviroc monotherapy (MCT). In summary, this novel all-inclusive HIV-1 genotypic and coreceptor tropism assay, based on deep sequencing of the PR, RT, IN, and V3 regions, permits simultaneous multiplex detection of low-level drug-resistant and/or non-R5 viruses in up to 96 clinical samples. This comprehensive test, the first of its class, will be instrumental in the development of new antiretroviral drugs and, more importantly, will aid in the treatment and management of HIV-infected individuals. PMID:24468782
Antiretroviral Therapy for HIV-2 Infection: Recommendations for Management in Low-Resource Settings
Peterson, Kevin; Jallow, Sabelle; Rowland-Jones, Sarah L.; de Silva, Thushan I.
2011-01-01
HIV-2 contributes approximately a third to the prevalence of HIV in West Africa and is present in significant amounts in several low-income countries outside of West Africa with historical ties to Portugal. It complicates HIV diagnosis, requiring more expensive and technically demanding testing algorithms. Natural polymorphisms and patterns in the development of resistance to antiretrovirals are reviewed, along with their implications for antiretroviral therapy. Nonnucleoside reverse transcriptase inhibitors, crucial in standard first-line regimens for HIV-1 in many low-income settings, have no effect on HIV-2. Nucleoside analogues alone are not sufficiently potent enough to achieve durable virologic control. Some protease inhibitors, in particular those without ritonavir boosting, are not sufficiently effective against HIV-2. Following review of the available evidence and taking the structure and challenges of antiretroviral care in West Africa into consideration, the authors make recommendations and highlight the needs of special populations. PMID:21490779
Bystander CD4+ T lymphocytes survive in HIV-infected human lymphoid tissue
NASA Technical Reports Server (NTRS)
Grivel, Jean-Charles; Biancotto, Angelique; Ito, Yoshinori; Lima, Rosangela G.; Margolis, Leonid B.
2003-01-01
HIV infection is associated with depletion of CD4(+) T cells. The mechanisms of this phenomenon remain to be understood. In particular, it remains controversial whether and to what extent uninfected ("bystander") CD4(+) T cells die in HIV-infected individuals. We address this question using a system of human lymphoid tissue ex vivo. Tissue blocks were inoculated with HIV-1. After productive infection was established, they were treated with the reverse transcriptase inhibitor nevirapine to protect from infection those CD4(+) T cells that had not yet been infected. These CD4(+) T cells residing in HIV-infected tissue are by definition bystanders. Our results demonstrate that after nevirapine application the number of bystander CD4(+) T cells is conserved. Thus, in the context of HIV-infected human lymphoid tissue, productive HIV infection kills infected cells but is not sufficient to cause the death of a significant number of uninfected CD4(+) T cells.
Priya, R; Sumitha, Rajendrarao; Doss, C George Priya; Rajasekaran, C; Babu, S; Seenivasan, R; Siva, R
2015-10-01
Acquired immunodeficiency syndrome caused by human immunodeficiency virus (HIV) is an immunosuppressive disease. Over the past decades, it has plagued human health due to the grave consequences in its harness. For this reason, anti-HIV agents are imperative, and the search for the same from natural resources would assure the safety. In this investigation we have performed molecular docking, molecular property prediction, drug-likeness score, and molecular dynamics (MD) simulation to develop a novel anti-HIV drug. We have screened 12 alkaloids from a medicinal plant Toddalia asiatica for its probabilistic binding with the active site of the HIV-1-reverse transcriptase (HIV-1-RT) domain (the major contributor to the onset of the disease). The docking results were evaluated based on free energies of binding (ΔG), and the results suggested toddanol, toddanone, and toddalenone to be potent inhibitors of HIV-1-RT. In addition, the alkaloids were subjected to molecular property prediction analysis. Toddanol and toddanone with more rotatable bonds were found to have a drug-likeness score of 0.23 and 0.11, respectively. These scores were comparable with the standard anti-HIV drug zidovudine with a model score 0.28. Finally, two characteristic protein-ligand complexes were exposed to MD simulation to determine the stability of the predicted conformations. The toddanol-RT complex showed higher stability and stronger H-bonds than toddanone-RT complex. Based on these observations, we firmly believe that the alkaloid toddanol could aid in efficient HIV-1 drug discovery. In the present study, the molecular docking and MD simulations are performed to explore the possible binding mode of HIV 1 RT with 12 alkaloids of T. asiatica. Molecular docking by AutoDock4 revealed three alkaloids toddanol, toddanone, and toddalenone with highest binding affinity towards HIV 1 RT. The drug likeness model score revealed a positive score for toddanol and toddanone which is comparable to the drug likeness score of the standard anti HIV drug zidovudine. Results from simulation analysis revealed that toddanol RT complex is more stable than toddanone RT complex inferring toddanol as a potential anti HIV drug molecule. Abbreviations used: HIV: Human immunodeficiency virus, HIV 1 RT: HIV 1 reverse transcriptase, RNase H: Ribonuclease H, MD: Molecular dynamics, PDB: Protein databank, RMSD: Root mean square deviation, RMSF: Root mean square fluctuation.
Kim, Jiae; Roberts, Anne; Yuan, Hua; Xiong, Yong; Anderson, Karen S.
2012-01-01
Human immunodeficiency virus type-1 (HIV-1) requires reverse transcriptase (RT) and HIV-1 nucleocapsid protein (NCp7) for proper viral replication. HIV-1 NCp7 has been shown to enhance various steps in reverse transcription including tRNA initiation and strand transfer which may be mediated through interactions with RT as well as RNA and DNA oligonucleotides. With the use of DNA oligonucleotides, we have examined the interaction of NCp7 with RT and the kinetics of reverse transcription during (+)-strand synthesis with an NCp7-facilitated annealed primer-template. Using a pre-steady state kinetics approach, the NCp7-annealed primer-template has a substantial increase (3-7 fold) in the rate of incorporation (kpol) by RT as compared to heat annealed primer-template with single nucleotide incorporation. There was also a 2-fold increase in the binding affinity constant (Kd) of the nucleotide. These differences in kpol and Kd were not through direct interactions between HIV-1 RT and NCp7. When examining extension by RT, the data suggests that the NCp7-annealed primer-template facilitates the formation of a longer product more quickly compared to the heat annealed primer-template. This enhancement in rate is mediated through interactions with NCp7’s zinc fingers and N-terminal domain and nucleic acids. The NCp7-annealed primer-template also enhances the fidelity of RT (3-fold) by slowing the rate of incorporation of an incorrect nucleotide. Taken together, this study elucidates a new role of NCp7 by facilitating DNA-directed DNA synthesis during reverse transcription by HIV-1 RT that may translate into enhanced viral fitness and offers an avenue to exploit for targeted therapeutic intervention against HIV. PMID:22210155
Rotili, Dante; Samuele, Alberta; Tarantino, Domenico; Ragno, Rino; Musmuca, Ira; Ballante, Flavio; Botta, Giorgia; Morera, Ludovica; Pierini, Marco; Cirilli, Roberto; Nawrozkij, Maxim B; Gonzalez, Emmanuel; Clotet, Bonaventura; Artico, Marino; Esté, José A; Maga, Giovanni; Mai, Antonello
2012-04-12
The single enantiomers of two pyrimidine-based HIV-1 non-nucleoside reverse transcriptase inhibitors, 1 (MC1501) and 2 (MC2082), were tested in both cellular and enzyme assays. In general, the R forms were more potent than their S counterparts and racemates and (R)-2 was more efficient than (R)-1 and the reference compounds, with some exceptions. Interestingly, (R)-2 displayed a faster binding to K103N RT with respect to WT RT, while (R)-1 showed the opposite behavior. © 2012 American Chemical Society
Current concepts of metabolic abnormalities in HIV patients: focus on lipodystrophy.
Kolter, Donald P
2003-12-01
HIV infection is associated with a number of metabolic abnormalities, including lipodystrophy, a difficult-to-define disorder whose characteristics include hyperlipidemia, insulin resistance, and fat redistribution. Current data suggest that lipodystrophy is caused by multiple factors. Dual-nucleoside reverse transcriptase inhibitor therapy combined with protease inhibitor therapy has been shown to increase the risk of metabolic abnormalities, but susceptibility independent of drug effects has also been shown. While many of the treatments for the broad range of signs and symptoms of lipodystrophy bring about improvements in patient status, none have been demonstrated to bring about a return to baseline levels.
Ragno, Rino; Artico, Marino; De Martino, Gabriella; La Regina, Giuseppe; Coluccia, Antonio; Di Pasquali, Alessandra; Silvestri, Romano
2005-01-13
Three-dimensional quantitative structure-activity relationship (3-D QSAR) studies and docking simulations were developed on indolyl aryl sulfones (IASs), a class of novel HIV-1 non-nucleoside reverse transcriptase (RT) inhibitors (Silvestri, et al. J. Med. Chem. 2003, 46, 2482-2493) highly active against wild type and some clinically relevant resistant strains (Y181C, the double mutant K103N-Y181C, and the K103R-V179D-P225H strain, highly resistant to efavirenz). Predictive 3-D QSAR models using the combination of GRID and GOLPE programs were obtained using a receptor-based alignment by means of docking IASs into the non-nucleoside binding site (NNBS) of RT. The derived 3-D QSAR models showed conventional correlation (r(2)) and cross-validated (q(2)) coefficients values ranging from 0.79 to 0.93 and from 0.59 to 0.84, respectively. All described models were validated by an external test set compiled from previously reported pyrryl aryl sulfones (Artico, et al. J. Med. Chem. 1996, 39, 522-530). The most predictive 3-D QSAR model was then used to predict the activity of novel untested IASs. The synthesis of six designed derivatives (prediction set) allowed disclosure of new IASs endowed with high anti-HIV-1 activities.
Kierczak, Marcin; Dramiński, Michał; Koronacki, Jacek; Komorowski, Jan
2010-01-01
Motivation Despite more than two decades of research, HIV resistance to drugs remains a serious obstacle in developing efficient AIDS treatments. Several computational methods have been developed to predict resistance level from the sequence of viral proteins such as reverse transcriptase (RT) or protease. These methods, while powerful and accurate, give very little insight into the molecular interactions that underly acquisition of drug resistance/hypersusceptibility. Here, we attempt at filling this gap by using our Monte Carlo feature selection and interdependency discovery method (MCFS-ID) to elucidate molecular interaction networks that characterize viral strains with altered drug resistance levels. Results We analyzed a number of HIV-1 RT sequences annotated with drug resistance level using the MCFS-ID method. This let us expound interdependency networks that characterize change of drug resistance to six selected RT inhibitors: Abacavir, Lamivudine, Stavudine, Zidovudine, Tenofovir and Nevirapine. The networks consider interdependencies at the level of physicochemical properties of mutating amino acids, eg,: polarity. We mapped each network on the 3D structure of RT in attempt to understand the molecular meaning of interacting pairs. The discovered interactions describe several known drug resistance mechanisms and, importantly, some previously unidentified ones. Our approach can be easily applied to a whole range of problems from the domain of protein engineering. Availability A portable Java implementation of our MCFS-ID method is freely available for academic users and can be obtained at: http://www.ipipan.eu/staff/m.draminski/software.htm. PMID:21234299
Sequence quality analysis tool for HIV type 1 protease and reverse transcriptase.
Delong, Allison K; Wu, Mingham; Bennett, Diane; Parkin, Neil; Wu, Zhijin; Hogan, Joseph W; Kantor, Rami
2012-08-01
Access to antiretroviral therapy is increasing globally and drug resistance evolution is anticipated. Currently, protease (PR) and reverse transcriptase (RT) sequence generation is increasing, including the use of in-house sequencing assays, and quality assessment prior to sequence analysis is essential. We created a computational HIV PR/RT Sequence Quality Analysis Tool (SQUAT) that runs in the R statistical environment. Sequence quality thresholds are calculated from a large dataset (46,802 PR and 44,432 RT sequences) from the published literature ( http://hivdb.Stanford.edu ). Nucleic acid sequences are read into SQUAT, identified, aligned, and translated. Nucleic acid sequences are flagged if with >five 1-2-base insertions; >one 3-base insertion; >one deletion; >six PR or >18 RT ambiguous bases; >three consecutive PR or >four RT nucleic acid mutations; >zero stop codons; >three PR or >six RT ambiguous amino acids; >three consecutive PR or >four RT amino acid mutations; >zero unique amino acids; or <0.5% or >15% genetic distance from another submitted sequence. Thresholds are user modifiable. SQUAT output includes a summary report with detailed comments for troubleshooting of flagged sequences, histograms of pairwise genetic distances, neighbor joining phylogenetic trees, and aligned nucleic and amino acid sequences. SQUAT is a stand-alone, free, web-independent tool to ensure use of high-quality HIV PR/RT sequences in interpretation and reporting of drug resistance, while increasing awareness and expertise and facilitating troubleshooting of potentially problematic sequences.
Kierczak, Marcin; Dramiński, Michał; Koronacki, Jacek; Komorowski, Jan
2010-12-12
Despite more than two decades of research, HIV resistance to drugs remains a serious obstacle in developing efficient AIDS treatments. Several computational methods have been developed to predict resistance level from the sequence of viral proteins such as reverse transcriptase (RT) or protease. These methods, while powerful and accurate, give very little insight into the molecular interactions that underly acquisition of drug resistance/hypersusceptibility. Here, we attempt at filling this gap by using our Monte Carlo feature selection and interdependency discovery method (MCFS-ID) to elucidate molecular interaction networks that characterize viral strains with altered drug resistance levels. We analyzed a number of HIV-1 RT sequences annotated with drug resistance level using the MCFS-ID method. This let us expound interdependency networks that characterize change of drug resistance to six selected RT inhibitors: Abacavir, Lamivudine, Stavudine, Zidovudine, Tenofovir and Nevirapine. The networks consider interdependencies at the level of physicochemical properties of mutating amino acids, eg,: polarity. We mapped each network on the 3D structure of RT in attempt to understand the molecular meaning of interacting pairs. The discovered interactions describe several known drug resistance mechanisms and, importantly, some previously unidentified ones. Our approach can be easily applied to a whole range of problems from the domain of protein engineering. A portable Java implementation of our MCFS-ID method is freely available for academic users and can be obtained at: http://www.ipipan.eu/staff/m.draminski/software.htm.
Ngcapu, Sinaye; Theys, Kristof; Libin, Pieter; Marconi, Vincent C; Sunpath, Henry; Ndung'u, Thumbi; Gordon, Michelle L
2017-11-08
The South African national treatment programme includes nucleoside reverse transcriptase inhibitors (NRTIs) in both first and second line highly active antiretroviral therapy regimens. Mutations in the RNase H domain have been associated with resistance to NRTIs but primarily in HIV-1 subtype B studies. Here, we investigated the prevalence and association of RNase H mutations with NRTI resistance in sequences from HIV-1 subtype C infected individuals. RNase H sequences from 112 NRTI treated but virologically failing individuals and 28 antiretroviral therapy (ART)-naive individuals were generated and analysed. In addition, sequences from 359 subtype C ART-naive sequences were downloaded from Los Alamos database to give a total of 387 sequences from ART-naive individuals for the analysis. Fisher's exact test was used to identify mutations and Bayesian network learning was applied to identify novel NRTI resistance mutation pathways in RNase H domain. The mutations A435L, S468A, T470S, L484I, A508S, Q509L, L517I, Q524E and E529D were more prevalent in sequences from treatment-experienced compared to antiretroviral treatment naive individuals, however, only the E529D mutation remained significant after correction for multiple comparison. Our findings suggest a potential interaction between E529D and NRTI-treatment; however, site-directed mutagenesis is needed to understand the impact of this RNase H mutation.
Laurence, J; Kulkosky, J; Friedman, S M; Posnett, D N; Ts'o, P O
1987-01-01
Two alloreactive human CD4+ T cell clones, recognizing HLA-DR2 and HLA-DR1 determinants, lost their specific proliferative capacity after infection with HIV. This system was used to explore the effect of polyI.polyC12U on HIV replication and immune suppression. The mismatched double-stranded RNA blocked HIV-associated particulate reverse transcriptase activity and viral-mediated cytopathic effects. Also, polyI.polyC12U preserved the alloreactivity of T cell clones after exposure to HIV.PolyI.polyC12U appeared to act at a level subsequent to host cell infection and reverse transcription. It had no effect on the enhancement of gene expression by the HIV transcription unit tatIII. These findings indicate that early in the course of infection of CD4+ T lymphocytes, HIV can directly abrogate proliferation to specific allodeterminants, and that this function is preserved in the presence of polyI.polyC12U. They also provide insight into the mechanism of antiviral action of a class of agent with potential clinical utility in AIDS. Images PMID:2960696
Ambrosioni, Juan; Sued, Omar; Nicolas, David; Parera, Marta; López-Diéguez, María; Romero, Anabel; Agüero, Fernando; Marcos, María Ángeles; Manzardo, Christian; Zamora, Laura; Gómez-Carrillo, Manuel; Gatell, José María; Pumarola, Tomás; Miró, José María
2015-01-01
To evaluate the prevalence of transmitted drug resistance (TDR) and non-B subtypes in patients with acute/recent HIV-1 infection in Barcelona during the period 1997-2012. Patients from the "Hospital Clínic Primary HIV-1 Infection Cohort" with a genotyping test performed within 180 days of infection were included. The 2009 WHO List of Mutations for Surveillance of Transmitted HIV-1 Drug Resistance was used for estimating the prevalence of TDR and phylogenetic analysis for subtype determination. 189 patients with acute/recent HIV-1 infection were analyzed in 4 time periods (1997-2000, n=28; 2001-4, n=42; 2005-8, n=55 and 2009-12, n=64). The proportion of patients with acute/recent HIV-1 infection with respect to the total of newly HIV-diagnosed patients in our center increased over the time and was 2.18%, 3.82%, 4.15% and 4.55% for the 4 periods, respectively (p=0.005). The global prevalence of TDR was 9%, or 17.9%, 9.5%, 3.6% and 9.4% by study period (p=0.2). The increase in the last period was driven by protease-inhibitor and nucleoside-reverse-transcriptase-inhibitor resistance mutations while non-nucleoside-reverse-transcriptase inhibitor TDR and TDR of more than one family decreased. The overall prevalence of non-B subtypes was 11.1%, or 0%, 4.8%, 9.1% and 20.3 by study period (p=0.01). B/F recombinants, B/G recombinants and subtype F emerged in the last period. We also noticed an increase in the number of immigrant patients (p=0.052). The proportion of men-who-have-sex-with-men (MSM) among patients with acute/recent HIV-1 infection increased over the time (p=0.04). The overall prevalence of TDR in patients with acute/recent HIV-1 infection in Barcelona was 9%, and it has stayed relatively stable in recent years. Non-B subtypes and immigrants proportions progressively increased.
Wan, Zheng-Yong; Tao, Yuan; Wang, Ya-Feng; Mao, Tian-Qi; Yin, Hong; Chen, Fen-Er; Piao, Hu-Ri; De Clercq, Erik; Daelemans, Dirk; Pannecouque, Christophe
2015-08-01
A novel series of etravirine-VRX-480773 hybrids were designed using structure-guided molecular hybridization strategy and fusing the pharmacophore templates of etravirine and VRX-480773. The anti-HIV-1 activity and cytotoxicity was evaluated in MT-4 cell cultures. The most active hybrid compound in this series, N-(2-chlorophenyl)-2-((4-(4-cyano-2,6-dimethylphenoxy)pyrimidin-2-yl)thio)acetamide 3d (EC50=0.24 , SI>1225), was more potent than delavirdine (EC50=0.66 μM, SI>67) in the anti-HIV-1 in vitro cellular assay. Studies of structure-activity relationships established a correlation between anti-HIV activity and the substitution pattern of the acetanilide group. Copyright © 2015 Elsevier Ltd. All rights reserved.
Jensen, Brigid K; Monnerie, Hubert; Mannell, Maggie V; Gannon, Patrick J; Espinoza, Cagla Akay; Erickson, Michelle A; Bruce-Keller, Annadora J; Gelman, Benjamin B; Briand, Lisa A; Pierce, R Christopher; Jordan-Sciutto, Kelly L; Grinspan, Judith B
2015-11-01
Despite effective viral suppression through combined antiretroviral therapy (cART), approximately half of HIV-positive individuals have HIV-associated neurocognitive disorders (HAND). Studies of antiretroviral-treated patients have revealed persistent white matter abnormalities including diffuse myelin pallor, diminished white matter tracts, and decreased myelin protein mRNAs. Loss of myelin can contribute to neurocognitive dysfunction because the myelin membrane generated by oligodendrocytes is essential for rapid signal transduction and axonal maintenance. We hypothesized that myelin changes in HAND are partly due to effects of antiretroviral drugs on oligodendrocyte survival and/or maturation. We showed that primary mouse oligodendrocyte precursor cell cultures treated with therapeutic concentrations of HIV protease inhibitors ritonavir or lopinavir displayed dose-dependent decreases in oligodendrocyte maturation; however, this effect was rapidly reversed after drug removal. Conversely, nucleoside reverse transcriptase inhibitor zidovudine had no effect. Furthermore, in vivo ritonavir administration to adult mice reduced frontal cortex myelin protein levels. Finally, prefrontal cortex tissue from HIV-positive individuals with HAND on cART showed a significant decrease in myelin basic protein compared with untreated HIV-positive individuals with HAND or HIV-negative controls. These findings demonstrate that antiretrovirals can impact myelin integrity and have implications for myelination in juvenile HIV patients and myelin maintenance in adults on lifelong therapy.
Smith, Robert A; Anderson, Donovan J; Preston, Bradley D
2006-07-01
Human immunodeficiency virus type 1 (HIV-1) reverse transcriptase (RT) contains four structural motifs (A, B, C, and D) that are conserved in polymerases from diverse organisms. Motif B interacts with the incoming nucleotide, the template strand, and key active-site residues from other motifs, suggesting that motif B is an important determinant of substrate specificity. To examine the functional role of this region, we performed "random scanning mutagenesis" of 11 motif B residues and screened replication-competent mutants for altered substrate analog sensitivity in culture. Single amino acid replacements throughout the targeted region conferred resistance to lamivudine and/or hypersusceptibility to zidovudine (AZT). Substitutions at residue Q151 increased the sensitivity of HIV-1 to multiple nucleoside analogs, and a subset of these Q151 variants was also hypersusceptible to the pyrophosphate analog phosphonoformic acid (PFA). Other AZT-hypersusceptible mutants were resistant to PFA and are therefore phenotypically similar to PFA-resistant variants selected in vitro and in infected patients. Collectively, these data show that specific amino acid replacements in motif B confer broad-spectrum hypersusceptibility to substrate analog inhibitors. Our results suggest that motif B influences RT-deoxynucleoside triphosphate interactions at multiple steps in the catalytic cycle of polymerization.
Zhao, Shuang; Rong, Cheng-Bo; Kong, Chang; Liu, Yu; Xu, Feng; Miao, Qian-Jiang; Wang, Shou-Xian; Wang, He-Xiang
2014-01-01
A novel laccase was isolated and purified from fermentation mycelia of mushroom Coprinus comatus with an isolation procedure including three ion-exchange chromatography steps on DEAE-cellulose, CM-cellulose, and Q-Sepharose and one gel-filtration step by fast protein liquid chromatography on Superdex 75. The purified enzyme was a monomeric protein with a molecular weight of 64 kDa. It possessed a unique N-terminal amino acid sequence of AIGPVADLKV, which has considerably high sequence similarity with that of other fungal laccases, but is different from that of C. comatus laccases reported. The enzyme manifested an optimal pH value of 2.0 and an optimal temperature of 60°C using 2,2′-azinobis(3-ethylbenzothiazolone-6-sulfonic acid) diammonium salt (ABTS) as the substrate. The laccase displayed, at pH 2.0 and 37°C, K m values of 1.59 mM towards ABTS. It potently suppressed proliferation of tumor cell lines HepG2 and MCF7, and inhibited human immunodeficiency virus type 1 (HIV-1) reverse transcriptase (RT) with an IC50 value of 3.46 μM, 4.95 μM, and 5.85 μM, respectively, signifying that it is an antipathogenic protein. PMID:25540778
Fletcher, P.; Harman, S.; Azijn, H.; Armanasco, N.; Manlow, P.; Perumal, D.; de Bethune, M.-P.; Nuttall, J.; Romano, J.; Shattock, R.
2009-01-01
Heterosexual transmission of human immunodeficiency virus (HIV) remains the major route of infection worldwide; thus, there is an urgent need for additional prevention strategies, particularly strategies that could be controlled by women, such as topical microbicides. Potential microbicide candidates must be both safe and effective. Using cellular and tissue explant models, we have evaluated the activity of the nonnucleoside reverse transcriptase inhibitor (NNRTI) dapivirine as a vaginal microbicide. In tissue compatibility studies, dapivirine was well tolerated by epithelial cells, T cells, macrophages, and cervical tissue explants. Dapivirine demonstrated potent dose-dependent inhibitory effects against a broad panel of HIV type 1 isolates from different clades. Furthermore, dapivirine demonstrated potent activity against a wide range of NNRTI-resistant isolates. In human cervical explant cultures, dapivirine was able not only to inhibit direct infection of mucosal tissue but also to prevent the dissemination of the virus by migratory cells. Activity was retained in the presence of semen or a cervical mucus simulant. Furthermore, dapivirine demonstrated prolonged inhibitory effects: it was able to prevent both localized and disseminated infection for as long as 6 days posttreatment. The prolonged protection observed following pretreatment of genital tissue and the lack of observable toxicity suggest that dapivirine has considerable promise as a potential microbicide candidate. PMID:19029331
Fletcher, P; Harman, S; Azijn, H; Armanasco, N; Manlow, P; Perumal, D; de Bethune, M-P; Nuttall, J; Romano, J; Shattock, R
2009-02-01
Heterosexual transmission of human immunodeficiency virus (HIV) remains the major route of infection worldwide; thus, there is an urgent need for additional prevention strategies, particularly strategies that could be controlled by women, such as topical microbicides. Potential microbicide candidates must be both safe and effective. Using cellular and tissue explant models, we have evaluated the activity of the nonnucleoside reverse transcriptase inhibitor (NNRTI) dapivirine as a vaginal microbicide. In tissue compatibility studies, dapivirine was well tolerated by epithelial cells, T cells, macrophages, and cervical tissue explants. Dapivirine demonstrated potent dose-dependent inhibitory effects against a broad panel of HIV type 1 isolates from different clades. Furthermore, dapivirine demonstrated potent activity against a wide range of NNRTI-resistant isolates. In human cervical explant cultures, dapivirine was able not only to inhibit direct infection of mucosal tissue but also to prevent the dissemination of the virus by migratory cells. Activity was retained in the presence of semen or a cervical mucus simulant. Furthermore, dapivirine demonstrated prolonged inhibitory effects: it was able to prevent both localized and disseminated infection for as long as 6 days posttreatment. The prolonged protection observed following pretreatment of genital tissue and the lack of observable toxicity suggest that dapivirine has considerable promise as a potential microbicide candidate.
Yebra, Gonzalo; de Mulder, Miguel; Pérez-Elías, María Jesús; Pérez-Molina, José Antonio; Galán, Juan Carlos; Llenas-García, Jara; Moreno, Santiago; Holguín, África
2011-01-01
Background The prevalence of transmitted HIV drug resistance (TDR) is stabilizing or decreasing in developed countries. However, this trend is not specifically evaluated among immigrants from regions without well-implemented antiretroviral strategies. Methods TDR trends during 1996–2010 were analyzed among naïve HIV-infected patients in Spain, considering their origin and other factors. TDR mutations were defined according to the World Health Organization list. Results Pol sequence was available for 732 HIV-infected patients: 292 native Spanish, 226 sub-Saharan Africans (SSA), 114 Central-South Americans (CSA) and 100 from other regions. Global TDR prevalence was 9.7% (10.6% for Spanish, 8.4% for SSA and 7.9% for CSA). The highest prevalences were found for protease inhibitors (PI) in Spanish (3.1%), for non-nucleoside reverse transcriptase inhibitors (NNRTI) in SSA (6.5%) and for nucleoside reverse transcriptase inhibitors (NRTI) in both Spanish and SSA (6.5%). The global TDR rate decreased from 11.3% in 2004–2006 to 8.4% in 2007–2010. Characteristics related to a decreasing TDR trend in 2007-10 were Spanish and CSA origin, NRTI- and NNRTI-resistance, HIV-1 subtype B, male sex and infection through injection drug use. TDR remained stable for PI-resistance, in patients infected through sexual intercourse and in those carrying non-B variants. However, TDR increased among SSA and females. K103N was the predominant mutation in all groups and periods. Conclusion TDR prevalence tended to decrease among HIV-infected native Spanish and Central-South Americans, but it increased up to 13% in sub-Saharan immigrants in 2007–2010. These results highlight the importance of a specific TDR surveillance among immigrants to prevent future therapeutic failures, especially when administering NNRTIs. PMID:22046345
Oz-Gleenberg, Iris; Herzig, Eytan; Hizi, Amnon
2012-01-01
Reverse transcriptases (RTs) possess a non-templated addition (NTA) activity while synthesizing DNA with blunt-ended DNA primer/templates. Interestingly, the RT of the long terminal repeat retrotransposon Tf1 has an NTA activity that is substantially higher than that of HIV-1 or murine leukemia virus RTs. By performing steady state kinetics, we found that the differences between the NTA activities of Tf1 and HIV-1 RTs can be explained by the substantially lower K(M) value for the incoming dNTP of Tf1 RT (while the differences between the apparent k(cat) values of these two RTs are relatively small). Furthermore, the K(M) values, calculated for both RTs with the same dNTP, are much lower for the template-dependent synthesis (TDS) than those of NTA. However, TDS of HIV-1 RT is higher than that of Tf1 RT. The overall relative order of the apparent k(cat)/K(M) values for dATP is: HIV-1 RT (TDS) > Tf1 RT (TDS) > Tf1 RT (NTA) > HIV-1 RT (NTA). Under the employed conditions, Tf1 RT can add up to seven nucleotides to the blunt-ended substrate, while the other RTs add mostly a single nucleotide. The NTA activity of Tf1 RT is restricted to DNA primers. Furthermore, the NTA activity of Tf1 and HIV-1 RTs is suppressed by ATP, as it competes with the incoming dATP (although ATP is not incorporated by the NTA activity of the RTs). The unusually high NTA activity of Tf1 RT can explain why, after completing cDNA synthesis, the in vivo generated Tf1 cDNA has relatively long extra sequences beyond the highly conserved CA at its 3'-ends. © 2011 The Authors Journal compilation © 2011 FEBS.
HIV-1 transmission networks across Cyprus (2010-2012).
Kostrikis, Leondios G; Hezka, Johana; Stylianou, Dora C; Kostaki, Evangelia; Andreou, Maria; Kousiappa, Ioanna; Paraskevis, Dimitrios; Demetriades, Ioannis
2018-01-01
A molecular epidemiology study of HIV-1 infection was conducted in one hundred diagnosed and untreated HIV-1-infected patients in Cyprus between 2010 and 2012, representing 65.4% of all the reported HIV-1 infections in Cyprus in this three-year period, using a previously defined enrolment strategy. Eighty-two patients were newly diagnosed (genotypic drug resistance testing within six months from diagnosis), and eighteen patients were HIV-1 diagnosed for a longer period or the diagnosis date was unknown. Phylogenetic trees of the pol sequences obtained in this study with reference sequences indicated that subtypes B and A1 were the most common subtypes present and accounted for 41.0 and 19.0% respectively, followed by subtype C (7.0%), F1 (8.0%), CRF02_AG (4.0%), A2 (2.0%), other circulating recombinant forms (CRFs) (7.0%) and unknown recombinant forms (URFs) (12%). Most of the newly-diagnosed study subjects were Cypriots (63%), males (78%) with median age 39 (Interquartile Range, IQR 33-48) reporting having sex with other men (MSM) (51%). A high rate of clustered transmission of subtype B drug-sensitive strains to reverse transcriptase and protease inhibitors was observed among MSM, twenty-eight out of forty-one MSM study subjects (68.0%) infected were implicated in five transmission clusters, two of which are sub-subtype A1 and three of which are subtype B strains. The two largest MSM subtype B clusters included nine and eight Cypriot men, respectively, living in all major cities in Cyprus. There were only three newly diagnosed patients with transmitted drug resistant HIV-1 strains, one study subject from the United Kingdom infected with subtype B strain and one from Romania with sub-subtype A2 strain, both with PI drug resistance mutation M46L and one from Greece with sub-subtype A1 with non-nucleoside reverse transcriptase inhibitors (NNRTI) drug resistance mutation K103N.
The mechano-chemistry of a monomeric reverse transcriptase
Malik, Omri; Khamis, Hadeel; Rudnizky, Sergei
2017-01-01
Abstract Retroviral reverse transcriptase catalyses the synthesis of an integration-competent dsDNA molecule, using as a substrate the viral RNA. Using optical tweezers, we follow the Murine Leukemia Virus reverse transcriptase as it performs strand-displacement polymerization on a template under mechanical force. Our results indicate that reverse transcriptase functions as a Brownian ratchet, with dNTP binding as the rectifying reaction of the ratchet. We also found that reverse transcriptase is a relatively passive enzyme, able to polymerize on structured templates by exploiting their thermal breathing. Finally, our results indicate that the enzyme enters the recently characterized backtracking state from the pre-translocation complex. PMID:29165701
Transmitted drug resistance and type of infection in newly diagnosed HIV-1 individuals in Honduras.
Murillo, Wendy; Paz-Bailey, Gabriela; Morales, Sonia; Monterroso, Edgar; Paredes, Mayte; Dobbs, Trudy; Parekh, Bharat S; Albert, Jan; Rivera, Ivette Lorenzana de
2010-12-01
Transmitted drug resistance (TDR) reduces the efficacy of antiretroviral treatment and is a public health concern. To gain insight in the epidemiology of TDR in Honduras by evaluating the amount of TDR in a representative sample of newly diagnosed individuals and by determining whether these are recent or established infections. Two hundred treatment-naïve, newly diagnosed HIV-positive individuals representing different population groups (general population, Garifunas ethnic group, female sex workers and men who have sex with men) and different geographic regions were enrolled during April 2004-April 2007. The HIV-1 pol gene was sequenced to identify drug-resistant mutations and TDR was scored as recommended by the WHO. Specimens were classified as recent or established infections using the BED assay. Among 200 samples analyzed from Honduran patients the prevalence of TDR was 7% (95% CI: 3.9-11.5%), 5% for non-nucleoside reverse transcriptase inhibitors (NNRTIs), 3% for nucleoside reverse transcriptase inhibitors (NRTIs) and 0.5% for protease inhibitors (PIs). Testing of these samples with the BED assay revealed that 12% of the specimens were associated with recent infections. TDR was significantly more common in specimens with recent infection (21%) than established infection (5%) (p=0.016). The prevalence of TDR in Honduras was moderate (7%). The percentage of specimens who were recently infected was low (12%), suggesting that late HIV diagnosis is common. The TDR prevalence was higher in recent than in established infections, which may indicate that TDR is increasing over time. The higher prevalence of NNRTI and NRTI mutations as compared to PI mutations is probably due to a broader and longer use of these drugs in Honduras. Copyright © 2010 Elsevier B.V. All rights reserved.
Krikke, M; Klomberg, R C W; van der Veer, E; Tesselaar, K; Verhaar, H J J; Hoepelman, A I M; Arends, J E
2017-05-01
A higher risk of developing osteopenia/ osteoporosis has been seen in HIV-infected patients. We compared HIV-infected patients, all treated with combination antiretroviral therapy (cART), with a low bone mineral density (BMD) (T-score < -1) to those with a normal BMD (T-score > -1), examining the relation with T-cell activation and bone turnover markers (c-terminal telopeptide (CTX) and procollagen type 1 amino-terminal propeptide (P1NP)). In this single visit pilot study, bone turnover markers, T-cell activation (CD38 + HLA - DR +) and senescence (CD57+) of T cells were measured in patients who had previously undergone dual energy X-ray absorptiometry scanning. All study participants (n = 16) were male, on cART, with a median age of 61 years (IQR 56-66). Nine patients had osteopenia/osteoporosis. When comparing the patients with osteopenia/osteoporosis with those with a normal BMD, no differences in activation and senescence were found. A relation was seen between higher bone formation (P1NP) and patients who were on cART for longer. The median length of cART use was 5.5 years (IQR 4.5-7.8), with all patients on nucleoside reverse transcriptase inhibitors, 88% on tenofovir, 63% on non-nucleoside reverse transcriptase inhibitors (NNRTIs) and 38% on protease inhibitors. Osteopenia/osteoporosis was seen in 100% of the patients on protease inhibitors versus 30% of those on NNRTIs. This study did not find an association between activated T cells and BMD, thus did not explain the higher prevalence of osteopenia/osteoporosis in HIV-infected patients. Interestingly, this small pilot showed that cART might influence BMD, with a possible negative effect for protease inhibitors and a possible protective effect for NNRTIs. These results warrant further investigation.
Ray, Adrian S; Schinazi, Raymond F; Murakami, Eisuke; Basavapathruni, Aravind; Shi, Junxing; Zorca, Suzana M; Chu, Chung K; Anderson, Karen S
2003-05-01
Beta-D and beta-L-enantiomers of 2',3'-dideoxycytidine analogues are potent chain-terminators and antimetabolites for viral and cellular replication. Seemingly small modifications markedly alter their antiviral and toxicity patterns. This review discusses previously published and recently obtained data on the effects of 5- and 2'-fluorine substitution on the pre-steady state incorporation of 2'-deoxycytidine-5'-monophosphate analogues by HIV-1 reverse transcriptase (RT) in light of their biological activity. The addition of fluorine at the 5-position of the pyrimidine ring altered the kinetic parameters for all nucleotides tested. Only the 5-fluorine substitution of the clinically relevant nucleosides (-)-beta-L-2',3'-dideoxy-3'-thia-5-fluorocytidine (L-FTC, Emtriva), and (+)-beta-D-2',3'-didehydro-2',3'-dideoxy-5-fluorocytidine (D-D4FC, Reverset), caused a higher overall efficiency of nucleotide incorporation during both DNA- and RNA-directed synthesis. Enhanced incorporation by RT may in part explain the potency of these nucleosides against HIV-1. In other cases, a lack of correlation between RT incorporation in enzymatic assays and antiviral activity in cell culture illustrates the importance of other cellular factors in defining antiviral potency. The substitution of fluorine at the 2' position of the deoxyribose ring negatively affects incorporation by RT indicating the steric gate of RT can detect electrostatic perturbations. Intriguing results pertaining to drug resistance have led to a better understanding of HIV-1 RT resistance mechanisms. These insights serve as a basis for understanding the mechanism of action for nucleoside analogues and, coupled with studies on other key enzymes, may lead to the more effective use of fluorine to enhance the potency and selectivity of antiviral agents.
Franks, Tamera; Kiser, Rebecca; Coalter, Vicky; Smedley, Jeremy; Piatak, Michael; Mellors, John W.; Lifson, Jeffrey D.; Ambrose, Zandrea
2013-01-01
Although antiretroviral therapy (ART) can suppress HIV-1 replication sufficiently to eliminate measurable plasma viremia, infected cells remain and ensure viral recrudescence after discontinuation of ART. We used a macaque model of HIV-1/AIDS to evaluate the location of infected cells during ART. Twelve macaques were infected with RT-SHIVmne, a SIV containing HIV-1 reverse transcriptase, conferring sensitivity to non-nucleoside reverse transcriptase inhibitors (NNRTIs). Ten to fourteen weeks post-infection, 6 animals were treated with 3 or 4 antiretroviral drugs for 17-20 weeks; 6 control animals remained untreated. Viral DNA (vDNA) and RNA (vRNA) were measured in peripheral blood mononuclear cells (PBMC) and at necropsy in multiple tissues by quantitative PCR and RT-PCR. The majority of virally infected cells were located in lymphoid tissues with variable levels in the gastrointestinal tract of both treated and untreated animals. Tissue viral DNA levels correlated with week 1 plasma viremia, suggesting that tissues that harbor proviral DNA are established within the first week of infection. PBMC vDNA levels did not correlate with plasma viremia or tissue levels of vDNA. vRNA levels were high in lymphoid and gastrointestinal tissues of the untreated animals; animals on ART had little vRNA expressed in tissues and virus could not be cultured from lymph node resting CD4+ cells after 17-20 weeks on ART, indicating little or no ongoing viral replication. Strategies for eradication of HIV-1 will need to target residual virus in ART suppressed individuals, which may not be accurately reflected by frequencies of infected cells in blood. PMID:24367650
Patick, A K; Boritzki, T J; Bloom, L A
1997-10-01
Nelfinavir mesylate (formerly AG1343) is a potent and selective, nonpeptidic inhibitor of human immunodeficiency virus type 1 (HIV-1) protease that was discovered by protein structure-based design methodologies. We evaluated the antiviral and cytotoxic effects of two-drug combinations of nelfinavir with the clinically approved antiretroviral therapeutics zidovudine (ZDV), lamivudine (3TC), dideoxycytidine (ddC; zalcitabine), stavudine (d4T), didanosine (ddI), indinavir, saquinavir, and ritonavir and a three-drug combination of nelfinavir with ZDV and 3TC against an acute HIV-1 strain RF infection of CEM-SS cells in vitro. Quantitative assessment of drug interaction was evaluated by a universal response surface approach (W. R. Greco, G. Bravo, and J. C. Parsons, Pharm. Rev. 47:331-385, 1995) and by the method of M. N. Prichard and C. Shipman (Antiviral Res. 14:181-206, 1990). Both analytical methods yielded similar results and showed that the two-drug combinations of nelfinavir with the reverse transcriptase inhibitors ZDV, 3TC, ddI, d4T, and ddC and the three-drug combination with ZDV and 3TC resulted in additive to statistically significant synergistic interactions. In a similar manner, the combination of nelfinavir with the three protease inhibitors resulted in additive (ritonavir and saquinavir) to slightly antagonistic (indinavir) interactions. In all combinations, minimal cellular cytotoxicity was observed with any drug alone and in combination. These results suggest that administration of combinations of the appropriate doses of nelfinavir with other currently approved antiretroviral therapeutic agents in vivo may result in enhanced antiviral activity with no associated increase in cellular cytotoxicity.
Patick, A K; Boritzki, T J; Bloom, L A
1997-01-01
Nelfinavir mesylate (formerly AG1343) is a potent and selective, nonpeptidic inhibitor of human immunodeficiency virus type 1 (HIV-1) protease that was discovered by protein structure-based design methodologies. We evaluated the antiviral and cytotoxic effects of two-drug combinations of nelfinavir with the clinically approved antiretroviral therapeutics zidovudine (ZDV), lamivudine (3TC), dideoxycytidine (ddC; zalcitabine), stavudine (d4T), didanosine (ddI), indinavir, saquinavir, and ritonavir and a three-drug combination of nelfinavir with ZDV and 3TC against an acute HIV-1 strain RF infection of CEM-SS cells in vitro. Quantitative assessment of drug interaction was evaluated by a universal response surface approach (W. R. Greco, G. Bravo, and J. C. Parsons, Pharm. Rev. 47:331-385, 1995) and by the method of M. N. Prichard and C. Shipman (Antiviral Res. 14:181-206, 1990). Both analytical methods yielded similar results and showed that the two-drug combinations of nelfinavir with the reverse transcriptase inhibitors ZDV, 3TC, ddI, d4T, and ddC and the three-drug combination with ZDV and 3TC resulted in additive to statistically significant synergistic interactions. In a similar manner, the combination of nelfinavir with the three protease inhibitors resulted in additive (ritonavir and saquinavir) to slightly antagonistic (indinavir) interactions. In all combinations, minimal cellular cytotoxicity was observed with any drug alone and in combination. These results suggest that administration of combinations of the appropriate doses of nelfinavir with other currently approved antiretroviral therapeutic agents in vivo may result in enhanced antiviral activity with no associated increase in cellular cytotoxicity. PMID:9333041
Cruchaga, Carlos; Anso, Elena; Font, María; Martino, Virginia S.; Rouzaut, Ana; Martinez-Irujo, Juan J.
2007-01-01
Inhibitors of the excision reaction catalysed by HIV-1 RT (reverse transcriptase) represent a promising approach in the fight against HIV, because these molecules would interfere with the main mechanism of resistance of this enzyme towards chain-terminating nucleotides. Only a limited number of compounds have been demonstrated to inhibit this reaction to date, including NNRTIs (non-nucleoside RT inhibitors) and certain pyrophosphate analogues. We have found previously that 2GP (2-O-galloylpunicalin), an antiviral compound extracted from the leaves of Terminalia triflora, was able to inhibit both the RT and the RNase H activities of HIV-1 RT without affecting cell proliferation or viability. In the present study, we show that 2GP also inhibited the ATP- and PPi-dependent phosphorolysis catalysed by wild-type and AZT (3′-azido-3′-deoxythymidine)-resistant enzymes at sub-micromolar concentrations. Kinetic and direct-binding analysis showed that 2GP was a non-competitive inhibitor against the nucleotide substrate, whereas it competed with the binding of RT to the template–primer (Kd=85 nM). As expected from its mechanism of action, 2GP was active against mutations conferring resistance to NNRTIs and AZT. The combination of AZT with 2GP was highly synergistic when tested in the presence of pyrophosphate, indicating that the inhibition of RT-catalysed phosphorolysis was responsible for the synergy found. Although other RT inhibitors that compete with the template–primer have been described, this is the first demonstration that these compounds can be used to block the excision of chain terminating nucleotides, providing a rationale for their combination with nucleoside analogues. PMID:17355225
Cruchaga, Carlos; Anso, Elena; Font, María; Martino, Virginia S; Rouzaut, Ana; Martinez-Irujo, Juan J
2007-07-01
Inhibitors of the excision reaction catalysed by HIV-1 RT (reverse transcriptase) represent a promising approach in the fight against HIV, because these molecules would interfere with the main mechanism of resistance of this enzyme towards chain-terminating nucleotides. Only a limited number of compounds have been demonstrated to inhibit this reaction to date, including NNRTIs (non-nucleoside RT inhibitors) and certain pyrophosphate analogues. We have found previously that 2GP (2-O-galloylpunicalin), an antiviral compound extracted from the leaves of Terminalia triflora, was able to inhibit both the RT and the RNase H activities of HIV-1 RT without affecting cell proliferation or viability. In the present study, we show that 2GP also inhibited the ATP- and PP(i)-dependent phosphorolysis catalysed by wild-type and AZT (3'-azido-3'-deoxythymidine)-resistant enzymes at sub-micromolar concentrations. Kinetic and direct-binding analysis showed that 2GP was a non-competitive inhibitor against the nucleotide substrate, whereas it competed with the binding of RT to the template-primer (K(d)=85 nM). As expected from its mechanism of action, 2GP was active against mutations conferring resistance to NNRTIs and AZT. The combination of AZT with 2GP was highly synergistic when tested in the presence of pyrophosphate, indicating that the inhibition of RT-catalysed phosphorolysis was responsible for the synergy found. Although other RT inhibitors that compete with the template-primer have been described, this is the first demonstration that these compounds can be used to block the excision of chain terminating nucleotides, providing a rationale for their combination with nucleoside analogues.
Almeda, Jesús; Casabona, Jordi; Allepuz, Alejandro; García-Alcaide, Felipe; del Romero, Jorge; Tural, Cristina; Colm, Joan; Bolao, Ferrán; Campins, Magda; Domínguez, Angela; Force, Lluís; Giménez, Albert; Guerra-Romero, Luis
2002-10-01
Evidence is lacking on the possible efficacy and effectiveness of non-occupational postexposure prophylaxis (PEP). However, because of its biological plausibility, the use of antiretroviral (ARV) drugs to prevent the development of infection in certain cases of accidental or sporadic exposure has begun to be considered as common clinical practice. Previous studies performed in Spain have demonstrated both the demand and the prescription of ARV as PEP and especially the diversity and inconsistency in the criteria used. In this context, in April of 2000 the Centre for Epidemiological Studies on AIDS of Catalonia (CEESCAT) (Department of Health and Social Security of the Autonomous Government of Catalonia), in collaboration with the National AIDS Plan and the AIDS Study Group (GESIDA), promoted the creation of a working group for the drafting of recommendations for PEP against HIV outside the occupational health context. The recommendations have been made bearing in mind the exceptional character of the exposure, the time elapsed since exposure, as well as evaluation of the risk of infection according to the type of exposure and the information available on the source of infection. In addition, the recommendations include the immediate measures necessary, as well as the preventive measures and clinical follow-up required both for HIV and for other infectious agents. All PEP regimens should be started within 72 hours of exposure and appropriate daily doses of two nucleoside reverse transcriptase inhibitors (NRTIs) and a protease inhibitor (PI), or two NRTIs and a non-nucleoside reverse transcriptase inhibitor (NNRTIs), should be administered for four weeks, bearing in mind the pharmacological and clinical situation of the source person. These recommendations should be updated periodically.
Corona, Angela; Onnis, Valentina; Deplano, Alessandro; Bianco, Giulia; Demurtas, Monica; Distinto, Simona; Cheng, Yung-Chi; Alcaro, Stefano; Esposito, Francesca; Tramontano, Enzo
2017-08-31
In the continuous effort to identify new HIV-1 inhibitors endowed with innovative mechanisms, the dual inhibition of different viral functions would provide a significant advantage against drug-resistant variants. The HIV-1 reverse transcriptase (RT)-associated ribonuclease H (RNase H) is the only viral-encoded enzymatic activity that still lacks an efficient inhibitor. We synthesized a library of 3,5-diamino-N-aryl-1H-pyrazole-4-carbothioamide and 4-amino-5-benzoyl-N-phenyl-2-(substituted-amino)-1H-pyrrole-3-carbothioamide derivatives and tested them against RNase H activity. We identified the pyrazolecarbothioamide derivative A15, able to inhibit viral replication and both RNase H and RNA-dependent DNA polymerase (RDDP) RT-associated activities in the low micromolar range. Docking simulations hypothesized its binding to two RT pockets. Site-directed mutagenesis experiments showed that, with respect to wt RT, V108A substitution strongly reduced A15 IC50 values (12.6-fold for RNase H inhibition and 4.7-fold for RDDP), while substitution A502F caused a 9.0-fold increase in its IC50 value for RNase H, not affecting the RDDP inhibition, reinforcing the hypothesis of a dual-site inhibition. Moreover, A15 retained good inhibition potency against three non-nucleoside RT inhibitor (NNRTI)-resistant enzymes, confirming a mode of action unrelated to NNRTIs and suggesting its potential as a lead compound for development of new HIV-1 RT dual inhibitors active against drug-resistant viruses. © FEMS 2017. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.
Protein-mediated antagonism between HIV reverse transcriptase ligands nevirapine and MgATP.
Zheng, Xunhai; Mueller, Geoffrey A; DeRose, Eugene F; London, Robert E
2013-06-18
Nonnucleoside reverse transcriptase inhibitors (NNRTIs) play a central role in the treatment of AIDS, but their mechanisms of action are incompletely understood. The interaction of the NNRTI nevirapine (NVP) with HIV-1 reverse transcriptase (RT) is characterized by a preference for the open conformation of the fingers/thumb subdomains, and a reported variation of three orders of magnitude between the binding affinity of NVP for RT in the presence or absence of primer/template DNA. To investigate the relationship between conformation and ligand binding, we evaluated the use of methionine NMR probes positioned near the tip of the fingers or thumb subdomains. Such probes would be expected to be sensitive to changes in the local environment depending on the fractions of open and closed RT. Comparisons of the NMR spectra of three conservative mutations, I63M, L74M, and L289M, indicated that M63 showed the greatest shift sensitivity to the addition of NVP. The exchange kinetics of the M63 resonance are fast on the chemical shift timescale, but become slow in the presence of NVP due to the slow binding of RT with the inhibitor. The simplest model consistent with this behavior involves a rapid open/closed equilibrium coupled with a slow interaction of the inhibitor with the open conformation. Studies of RT in the presence of both NVP and MgATP indicate a strong negative cooperativity. Binding of MgATP reduces the fraction of RT bound to NVP, as indicated by the intensity of the NVP-perturbed M230 resonance, and enhances the dissociation rate constant of the NVP, resulting in an increase of the open/closed interconversion rate, so that the M63 resonance moves into the fast/intermediate-exchange regime. Protein-mediated interactions appear to explain most of the affinity variation of NVP for RT. Copyright © 2013 Biophysical Society. Published by Elsevier Inc. All rights reserved.
Torriani, Francesca J.; Komarow, Lauren; Parker, Robert A.; Cotter, Bruno R.; Currier, Judith S.; Dubé, Michael P.; Fichtenbaum, Carl J.; Gerschenson, Mariana; Mitchell, Carol K.C.; Murphy, Robert L.; Squires, Kathleen; Stein, James H.
2008-01-01
Objectives This study evaluated the effects of three class-sparing antiretroviral therapy (ART) regimens on endothelial function in HIV-infected subjects participating in a randomized trial. Background Endothelial dysfunction has been observed in patients receiving ART for human immunodeficiency virus (HIV) infection. Methods This was a prospective, multicenter study of treatment-naïve subjects who were randomly assigned to receive a protease inhibitor-sparing regimen of nucleoside reverse transcriptase inhibitors (NRTIs) + efavirenz, a non-nucleoside reverse transcriptase inhibitor-sparing regimen of NRTIs + lopinavir/ritonavir, or a NRTI-sparing regimen of efavirenz + lopinavir/ritonavir. NRTIs were lamivudine + stavudine, zidovudine, or tenofovir. Brachial artery flow-mediated dilation (FMD) was determined by B-mode ultrasound before starting on ART, then after 4 and 24 weeks. Results There were 82 subjects (median age 35 years, 91% men, 54% white). Baseline CD4 cell counts and plasma HIV RNA values were 245 cells/mm3 and 4.8 log10 copies/ml, respectively. At baseline, FMD was 3.68% (interquartile range 1.98 – 5.51%). After 4 and 24 weeks of ART, plasma HIV RNA decreased by 2.1 and 3.0 log10 copies/mL, respectively. FMD increased by 0.74% (−0.62 – +2.74, p=0.003) and 1.48% (−0.20 – +4.30%, p< 0.001), respectively, with similar changes in each arm (pKW>0.600). The decrease in plasma HIV RNA at 24 weeks was associated with greater FMD (rs=− 0.30, p=0.017). Conclusions Among treatment-naïve individuals with HIV, three different ART regimens rapidly improved endothelial function. Benefits were similar for all ART regimens, appeared quickly, and persisted at 24 weeks. Condensed Abstract Among 82 treatment-naïve HIV-infected subjects participating in a prospective, multicenter study of three class-sparing antiretroviral therapy regimens, flow-mediated dilation of the brachial artery improved after 4 (+0.74%, p=0.003) and 24 weeks (+1.48%, p< 0.001), with similar changes in each arm (pKW>0.600). PMID:18687253
de Mulder, M; York, V A; Wiznia, A A; Michaud, H A; Nixon, D F; Holguin, A; Rosenberg, M G
2014-03-01
With the advent of combined antiretroviral therapy (cART), perinatally HIV-infected children are surviving into adolescence and beyond. However, drug resistance mutations (DRMs) compromise viral control, affecting the long-term effectiveness of ART. The aims of this study were to detect and identify DRMs in a HIV-1 infected paediatric cohort. Paired plasma and dried blood spots (DBSs) specimens were obtained from HIV-1 perinatally infected patients attending the Jacobi Medical Center, New York, USA. Clinical, virological and immunological data for these patients were analysed. HIV-1 pol sequences were generated from samples to identify DRMs according to the International AIDS Society (IAS) 2011 list. Forty-seven perinatally infected patients were selected, with a median age of 17.7 years, of whom 97.4% were carrying subtype B. They had a mean viral load of 3143 HIV-1 RNA copies/mL and a mean CD4 count of 486 cells/μL at the time of sampling. Nineteen patients (40.4%) had achieved undetectable viraemia (< 50 copies/mL) and 40.5% had a CD4 count of > 500 cells/μL. Most of the patients (97.9%) had received cART, including protease inhibitor (PI)-based regimens in 59.6% of cases. The DRM prevalence was 54.1, 27.6 and 27.0% for nucleoside reverse transcriptase inhibitors (NRTIs), PIs and nonnucleoside reverse transcriptase inhibitors (NNRTIs), respectively. Almost two-thirds (64.9%) of the patients harboured DRMs to at least one drug class and 5.4% were triple resistant. The mean nucleotide similarity between plasma and DBS sequences was 97.9%. Identical DRM profiles were present in 60% of plasma-DBS paired sequences. A total of 30 DRMs were detected in plasma and 26 in DBSs, with 23 present in both. Although more perinatally HIV-1-infected children are reaching adulthood as a result of advances in cART, our study cohort presented a high prevalence of resistant viruses, especially viruses resistant to NRTIs. DBS specimens can be used for DRM detection. © 2013 British HIV Association.
Frasco, Melissa A; Karim, Roksana; Van Den Berg, David; Watanabe, Richard M; Anastos, Kathryn; Cohen, Mardge; Gange, Stephen J; Gustafson, Deborah R; Liu, Chenglong; Tien, Phyllis C; Mack, Wendy J; Pearce, Celeste L
2014-07-31
Type 2 diabetes mellitus incidence is increased in HIV-infected persons. We examined the associations of diabetes mellitus with known diabetes mellitus-risk alleles from the general population in the context of HIV infection, and explored effect modification by combination antiretroviral therapy (cART). The Women's Interagency HIV Study is a prospective cohort of HIV-infected women. Seventeen European-derived diabetes mellitus-risk polymorphisms were genotyped in the eligible participants of the Women's Interagency HIV Study. Analyses were run separately for non-African Americans (Whites, Hispanics, Asians, and other; n = 378, 49 with incident diabetes mellitus) and African Americans (n = 591, 49 with incident diabetes mellitus). Cox proportional-hazards models were fit to estimate hazard ratios for diabetes mellitus overall and within strata of cART. In non-African Americans, heterogeneity across cART regimen was observed for nine of the 14 polymorphisms (phet < 0.05). One polymorphism was statistically significantly inversely associated with diabetes mellitus risk among women taking two nucleotide reverse transcriptase inhibitors (NRTIs) + non-nucleotide reverse transcriptase inhibitor (NNRTI). Five polymorphisms were statistically significantly associated with diabetes mellitus among women treated with at least two NRTIs + at least one protease inhibitor and one polymorphism was associated with diabetes mellitus among those treated with at least three NRTIs ± NNRTI. The hazard ratio per risk allele for IGF2BP2 rs1470579 was 2.67 (95% confidence interval 1.67-4.31) for women taking cART with at least two NRTIs + at least one protease inhibitor and 2.45 (95% confidence interval 1.08-5.53) in women taking at least three NRTIs ± NNRTI (phet = 2.50 × 10⁻³). No such associations were observed in the African Americans. Genetic susceptibility to diabetes mellitus, based on the variants studied, is substantially elevated among HIV-infected women using cART containing three or more NRTI/protease inhibitor components. A personalized medicine approach to cART selection may be indicated for HIV-infected persons carrying these diabetes mellitus-risk variants.
Long-term persistence of primary genotypic resistance after HIV-1 seroconversion.
Pao, David; Andrady, Ushan; Clarke, Janette; Dean, Gillian; Drake, Susan; Fisher, Martin; Green, Tanya; Kumar, Siva; Murphy, Maurice; Tang, Alan; Taylor, Stephen; White, David; Underhill, Gillian; Pillay, Deenan; Cane, Patricia
2004-12-15
Primary infection with drug-resistant HIV-1 is well documented. We have followed up patients infected with such viruses to determine the stability of resistance-associated mutations. Fourteen patients who experienced primary infection with genotypic evidence of resistance were followed for up to 3 years. Drug resistance-associated mutations persisted over time in most patients studied. In particular, M41L, T69N, K103N, and T215 variants within reverse transcriptase (RT) and multidrug resistance demonstrated little reversion to wild-type virus. By contrast, Y181C and K219Q in RT, occurring alone, disappeared within 25 and 9 months, respectively. Multidrug resistance in 2 patients was found to be stable for up to 18 months, the maximum period studied. We conclude that certain resistance-associated mutations are highly stable and these data support the recommendation that all new HIV diagnoses in areas where primary resistance may occur should undergo genotyping irrespective of whether the date of seroconversion is known.
Li, Xiao; Lu, Xueyi; Chen, Wenmin; Liu, Huiqing; Zhan, Peng; Pannecouque, Christophe; Balzarini, Jan; De Clercq, Erik; Liu, Xinyong
2014-10-01
A series of novel pyrimidinylthioacetanilides were designed, synthesized, and evaluated for their biological activity as potent HIV-1 non-nucleoside reverse transcriptase inhibitors (NNRTIs). Most of the tested compounds were proved to be effective in inhibiting HIV-1 (IIIB) replication with EC50 ranging from 0.15 μM to 24.2 μM, thereinto compound 15 was the most active lead with favorable inhibitory activity against HIV-1 (IIIB) (EC50=0.15 μM, SI=684). Besides, compound 6 displayed moderate inhibition against the double-mutated HIV-1 strain (K103N/Y181C) (EC50=3.9 μM). Preliminary structure-activity relationships (SARs), structure-cytotoxicity relationships (SCRs) data, and molecular modeling studies were discussed as well, which may provide valuable insights for further optimizations. Copyright © 2014 Elsevier Ltd. All rights reserved.
HIV-1 isolation from infected peripheral blood mononuclear cells.
Dispinseri, Stefania; Saba, Elisa; Vicenzi, Elisa; Kootstra, Neeltje A; Schuitemaker, Hanneke; Scarlatti, Gabriella
2014-01-01
Human immunodeficiency virus 1 (HIV-1) isolation from peripheral blood mononuclear cells (PBMCs) allows retrieval of replication-competent viral variants. In order to impose the smallest possible selective pressure on the viral isolates, isolation must be carried out in primary cultures of cells and not in tumor derived cell lines. The procedure involves culture of PBMCs from an infected patient with phytohemagglutinin (PHA)-stimulated PBMC from seronegative donors, which provide susceptible target cells for HIV replication. HIV can be isolated from the bulk population of PBMCs or after cloning of the cells to obtain viral biological clones. Viral production is determined with p24 antigen (Ag) detection assays or with reverse transcriptase (RT) activity assay. Once isolated, HIV-1 can be propagated by infecting PHA-stimulated PBMCs from healthy donors. Aliquots from culture with a high production of virus are stored for later use.
Breast-milk shedding of drug-resistant HIV-1 subtype C in women exposed to single-dose nevirapine.
Lee, Esther J; Kantor, Rami; Zijenah, Lynn; Sheldon, Wayne; Emel, Lynda; Mateta, Patrick; Johnston, Elizabeth; Wells, Jennifer; Shetty, Avinash K; Coovadia, Hoosen; Maldonado, Yvonne; Jones, Samuel Adeniyi; Mofenson, Lynne M; Contag, Christopher H; Bassett, Mary; Katzenstein, David A
2005-10-01
Single-dose nevirapine reduces intrapartum human immunodeficiency virus 1 type (HIV-1) transmission but may also select for nonnucleoside reverse-transcriptase inhibitor (NNRTI) resistance in breast milk (BM) and plasma. Among 32 Zimbabwean women, median 8-week postpartum plasma and BM HIV-1 RNA levels were 4.57 and 2.13 log(10) copies/mL, respectively. BM samples from women with laboratory-diagnosed mastitis (defined as elevated BM Na(+) levels) were 5.4-fold more likely to have HIV-1 RNA levels above the median. BM RT sequences were not obtained for 12 women with BM HIV-1 RNA levels below the lower limit of detection of the assay used. In 20 paired BM and plasma samples, 65% of BM and 50% of plasma RT sequences had NNRTI-resistance mutations, with divergent mutation patterns.
To, Elaine E.; Hendrix, Craig W.; Bumpus, Namandjé N.
2013-01-01
Attempts to prevent HIV infection through pre-exposure prophylaxis (PrEP) include topical application of anti-HIV drugs to the mucosal sites of infection; however, a potential role for local drug metabolizing enzymes in modulating the exposure of the mucosal tissues to these drugs has yet to be explored. Here we present the first report that enzymes belonging to the cytochrome P450 (CYP) and UDP-glucuronosyltransferase (UGT) families of drug metabolizing enzymes are expressed and active in vaginal and colorectal tissue using biopsies collected from healthy volunteers. In doing so, we discovered that dapivirine and maraviroc, a non-nucleoside reverse transcriptase inhibitor and an entry inhibitor currently in development as microbicides for HIV PrEP, are differentially metabolized in colorectal tissue and vaginal tissue. Taken together, these data should help to guide the optimization of small molecules being developed for HIV PrEP. PMID:23965226
Chen, Iris; Clarke, William; Ou, San-San; Marzinke, Mark A; Breaud, Autumn; Emel, Lynda M; Wang, Jing; Hughes, James P; Richardson, Paul; Haley, Danielle F; Lucas, Jonathan; Rompalo, Anne; Justman, Jessica E; Hodder, Sally L; Eshleman, Susan H
2015-01-01
Antiretroviral (ARV) drug use was analyzed in HIV-uninfected women in an observational cohort study conducted in 10 urban and periurban communities in the United States with high rates of poverty and HIV infection. Plasma samples collected in 2009-2010 were tested for the presence of 16 ARV drugs. ARV drugs were detected in samples from 39 (2%) of 1,806 participants: 27/181 (15%) in Baltimore, MD and 12/179 (7%) in Bronx, NY. The ARV drugs detected included different combinations of non-nucleoside reverse transcriptase inhibitors and protease inhibitors (1-4 drugs/sample). These data were analyzed in the context of self-reported data on ARV drug use. None of the 39 women who had ARV drugs detected reported ARV drug use at any study visit. Further research is needed to evaluate ARV drug use by HIV-uninfected individuals.
Chen, Iris; Clarke, William; Ou, San-San; Marzinke, Mark A.; Breaud, Autumn; Emel, Lynda M.; Wang, Jing; Hughes, James P.; Richardson, Paul; Haley, Danielle F.; Lucas, Jonathan; Rompalo, Anne; Justman, Jessica E.; Hodder, Sally L.; Eshleman, Susan H.
2015-01-01
Antiretroviral (ARV) drug use was analyzed in HIV-uninfected women in an observational cohort study conducted in 10 urban and periurban communities in the United States with high rates of poverty and HIV infection. Plasma samples collected in 2009–2010 were tested for the presence of 16 ARV drugs. ARV drugs were detected in samples from 39 (2%) of 1,806 participants: 27/181 (15%) in Baltimore, MD and 12/179 (7%) in Bronx, NY. The ARV drugs detected included different combinations of non-nucleoside reverse transcriptase inhibitors and protease inhibitors (1–4 drugs/sample). These data were analyzed in the context of self-reported data on ARV drug use. None of the 39 women who had ARV drugs detected reported ARV drug use at any study visit. Further research is needed to evaluate ARV drug use by HIV-uninfected individuals. PMID:26445283
Penazzato, Martina; Jordan, Michael R.; Persaud, Deborah; Mofenson, Lynne M.; Bennett, Diane E.
2012-01-01
Increased use of nonnucleoside reverse transcriptase inhibitors (NNRTIs) in pregnant and breastfeeding women will result in fewer children infected with human immunodeficiency virus (HIV). However, among children infected despite prevention of mother-to-child transmission (PMTCT), a substantial proportion will acquire NNRTI-resistant HIV, potentially compromising response to NNRTI-based antiretroviral therapy (ART). In countries scaling up PMTCT and pediatric ART programs, it is crucial to assess the proportion of young children with drug-resistant HIV to improve health outcomes and support national and global decision making on optimal selection of pediatric first-line ART. This article summarizes a new World Health Organization surveillance protocol to assess resistance using remnant dried blood spot specimens from a representative sample of children aged <18 months being tested for early infant diagnosis. PMID:22544184
Cai, Yi; Liu, Hao; Chen, Haifeng
2018-03-01
The human immunodeficiency virus (HIV) is a retrovirus which infects T lymphocyte of human body and causes immunodeficiency. Reverse transcriptase inhibitors (RTIs) can inhibit some functions of RT, preventing virus synthesis (double-stranded DNA), so that HIV virus replication can be reduced. Experimental results indicate a series of benzimidazole-based inhibitors which target HIV RT-associated RNase to inhibit the reverse transcription of HIV virus. However, the allosteric mechanism is still unclear. Here, molecular dynamics simulations and dynamics fluctuation network analysis were used to reveal the binding mode between the inhibitors and RT-associated RNase. The most active molecule has more hydrophobic and electrostatic interactions than the less active inhibitor. Dynamics correlation network analysis indicates that the most active inhibitor perturbs the network of RT-associated RNase and decreases the correlation of nodes. 3D-QSAR model suggests that two robust and reliable models were constructed and validated by independent test set. 3D-QSAR model also shows that bulky negatively charged or hydrophilic substituent is favorable to bioactivity. These results reveal the allosteric mechanism of quinoline inhibitors and help to improve the bioactivity. © 2017 John Wiley & Sons A/S.
Pett, Sarah Lilian; Amin, Janaki; Horban, Andrejz; Andrade-Villanueva, Jaime; Losso, Marcelo; Porteiro, Norma; Sierra Madero, Juan; Belloso, Waldo; Tu, Elise; Silk, David; Kelleher, Anthony; Harrigan, Richard; Clark, Andrew; Sugiura, Wataru; Wolff, Marcelo; Gill, John; Gatell, Jose; Fisher, Martin; Clarke, Amanda; Ruxrungtham, Kiat; Prazuck, Thierry; Kaiser, Rolf; Woolley, Ian; Arnaiz, Juan Alberto; Cooper, David; Rockstroh, Jürgen K.; Mallon, Patrick; Emery, Sean; Kelleher, Anthony; Merlin, Kate; Yeung, Julie; Fsadni, Bertha; Marks, Kat; Suzuki, Kazuo; Rismanto, Nick; Salomon, Horacio; Rubio, Andrea E.; Chibo, Doris; Birch, Chris; Harrigan, Richard; Swenson, Luke; Chan, Dennison; Berg, Thomas; Obermeier, Martin; Kaiser, Rolf; Schuelter, Eugen; Sierra Aragon, Saleta; Luebke, Nadine; Coughlan, Suzie; Dean, Jonathan; Sugiura, Wataru; Iwatani, Yasumasa; Reyes Teran, Gustavo; Avila, Santiago; Ruxrungtham, Kiat; Sirivichayakul, Sunee; Naphassanant, May; Ubolyam, Sasiwimol; Kaye, Steve; Land, Sally; Walker, Sarah; Haubrich, Richard; DeJesus, Edwin; Emery, Sean; Pett, Sarah L.; Tu, Elise; Silk, David; Berthon-Jones, Nisha; Amin, Janaki; Espinosa, Natalie; Courtney-Vega, Kymme; Absar, Noorul; Haskelberg, Hila; Robson, Rose; Donaldson, Anna; Losso, Marcelo; Belloso, Waldo; Guelman, Daniel; Gambardella, Luciana; Valdovinos, Mariana; Gatell, Jose; Arnaiz, Juan; Beleta, Helena; Ramos, Nuria; Targa, Marta; Rockstroh, Jurgen; Späth, Brigitta; Boesecke, Christoph; Engelhardt, Angelika; Fisher, Martin; Perry, Nicky; Clarke, Amanda; Gill, John; Beckthold, Brenda; Clark, Andrew; Drummond, Fraser; Lefevre, Eric; Corr, Sharon; Grant, Carol; Lupo, Sergio; Peroni, Luciana; Italiano, Hospital; Sanchez, Marisa; De Paz Sierra, Mariana; Mejia, Ramos; Losso, Marcelo; Viloria, Guillermo; Parlante, Angel; Bissio, Emiliano; Luchetti, Pablo; Warley, Eduardo; Vieni, Ines; Porteiro, Norma; Vilas, Cecilia; Zarate, Abel; Mayer, Gabriela; Elliot, Julian; Hagenauer, Michelle; Kelley, Mark; Rowling, Diane; Gibson, Abby; Latch, Ngaire; Tabrett, Chantal; Warzywoda, Elizabeth; Cooper, David; Pett, Sarah; MacRae, Karen; Sinclair, Brett; Sinn, Kate; Bloch, Mark; Franic, Teo; Vincent, Trina; Stewart, Natasha; Jayewardene, Avindra; Dwyer, Dominic; Kok, Jennifer; Assam, Delene; Taylor, Janette; King, Patricia; Orth, David; Youds, David; Sowden, David; Johnston, Colleen; Murray, Suzanne; Hehir, Jennifer; Wadham, Samantha; Donohue, William; Thompson, Jill; Garsia, Roger; Turnham, Geoffrey; Madden, Tracey; Woolley, Ian; Gillies, Ainsley; Bryant, Mellissa; Gill, John; Beckthold, Brenda; Walmsley, Sharon; Chan, Warmond; LeBlanc, Roger; Lanteigne, Francois; Mouawad, Rima; Rahal, Ines; Guber, Sergio; Ozturk, Sefika; Smith, Graham; Halpenny, Roberta; Reko, Tatjana; Robinette Hills, Jennifer; Wolff, Marcelo; Prazuck, Thierry; Laurent Hocqueloux, Francois; Wolfgang, Johann; Stephan, Christoph; Ebeling, Franziska; Rockstroh, Juergen; Boesecke, Christoph; Spath, Brigitta; Engelhardt, Angelika; Ole Jensen, Bjorn-Erik; Feind, Cecilie; Meyer-Olson, Dirk; Stoll, Matthias; Hoeper, Kirsten; Beider, Renata; Faetkenheur, Gerd; Thomas Baumgarten, Ellen; Baumgarten, Axel; Ingiliz, Patrick; Wienbreyer, Andreas; Behrendt, Daniela; Nienkarken, Tanja; Stein, Jessen; Jessen, Heiko; Zedlack, Carmen; Mallon, Paddy; Simelane, Sibongile; Assmann, Jennifer; Ghavami-Kia, Bijan; Sugiura, Wataru; Imahashi, Mayumi; Tanabe, Kazue; Yokomaku, Yoshiyuki; Imamura, Junji; Andrade-Villanueva, Jaime; Montes de Oca, Melva; Gonzalez, Lucero; Ponce, David; Mendoza, Andrea; Sierra-Madero, Juan; Sanchez Hernandez, Jesus Eduardo; Jaime Ruiz Ballesteros, Eduardo; del Moral Ponce, Sergio; Mosqueda, Luis; Lopez, Monica; Horban, Andrzej; Ignatowska, Anna; Bakowska, Elzbieta; Pulik, Piotr; Sanz-Moreno, Jose; Paredes, Roger; Puig, Jordi; Domingo, Pere; Gutierrez, Mar; Gatell, Jose; González-Cordón, Ana; Callau, Pili; Lopez Aldeguer, Jose; Cuellar Tovar, Sandra; Leal Noval, Manuel; Rivas, Inmaculada; Delgado-Fernandez, Marcial; Ramon Arribas, Jose; Miguel Castro, Juan; Ruxrungtham, Kiat; Avihingsanon, Anchalee; Maek-a-nantawat, Wirach; Intasan, Jintana; Charoenporn, Walairat; Cuprasitrut, Thidarat; Jaisomkom, Pachuen; Pruksakaew, Kanchana; Winston, Alan; Mullaney, Scott; Fisher, Martin; Clarke, Amanda; Barbour, Lisa; Perry, Nicky; Richardson, Celia; Fox, Julie; Murray, Tammy; Leen, Clifford; Morris, Shelia; Satyajit, Das; Sandhu, Rumun; Tucker, James
2016-01-01
Abstract Background. Alternative combination antiretroviral therapies in virologically suppressed human immunodeficiency virus (HIV)–infected patients experiencing side effects and/or at ongoing risk of important comorbidities from current therapy are needed. Maraviroc (MVC), a chemokine receptor 5 antagonist, is a potential alternative component of therapy in those with R5-tropic virus. Methods. The Maraviroc Switch Study is a randomized, multicenter, 96-week, open-label switch study in HIV type 1–infected adults with R5-tropic virus, virologically suppressed on a ritonavir-boosted protease inhibitor (PI/r) plus double nucleoside/nucleotide reverse transcriptase inhibitor (2 N(t)RTI) backbone. Participants were randomized 1:2:2 to current combination antiretroviral therapy (control), or replacing the protease inhibitor (MVC + 2 N(t)RTI arm) or the nucleoside reverse transcriptase inhibitor backbone (MVC + PI/r arm) with twice-daily MVC. The primary endpoint was the difference (switch minus control) in proportion with plasma viral load (VL) <200 copies/mL at 48 weeks. The switch arms were judged noninferior if the lower limit of the 95% confidence interval (CI) for the difference in the primary endpoint was < −12% in the intention-to-treat (ITT) population. Results. The ITT population comprised 395 participants (control, n = 82; MVC + 2 N(t)RTI, n = 156; MVC + PI/r, n = 157). Baseline characteristics were well matched. At week 48, noninferior rates of virological suppression were observed in those switching away from a PI/r (93.6% [95% CI, −9.0% to 2.2%] and 91.7% [95% CI, −9.6% to 3.8%] with VL <200 and <50 copies/mL, respectively) compared to the control arm (97.6% and 95.1% with VL <200 and <50 copies/mL, respectively). In contrast, MVC + PI/r did not meet noninferiority bounds and was significantly inferior (84.1% [95% CI, −19.8% to −5.8%] and 77.7% [95% CI, −24.9% to −8.4%] with VL <200 and <50 copies/mL, respectively) to the control arm in the ITT analysis. Conclusions. These data support MVC as a switch option for ritonavir-boosted PIs when partnered with a 2-N(t)RTI backbone, but not as part of N(t)RTI-sparing regimens comprising MVC with PI/r. Clinical Trials Registration. NCT01384682. PMID:27048747
Li, Wenxin; Li, Xiao; De Clercq, Erik; Zhan, Peng; Liu, Xinyong
2015-09-18
The poor pharmacokinetics, side effects and particularly the rapid emergence of drug resistance compromise the efficiency of the clinically used anti-HIV drugs. Therefore, the discovery of novel and effective NNRTIs is still an extremely primary mission. Arylthioacetanilide family is one of the highly active HIV-1 NNRTIs against wide-type (WT) HIV-1 and a wide range of drug-resistant mutant strains. Especially, VRX-480773 and RDEA806 have been chosen as candidates for further clinical studies. In this article, we review the discovery and development of the arylthioacetanilides, and, especially, pay much attention to the structural modifications, SARs conclusions and molecular modeling. Moreover, several medicinal chemistry strategies to overcome drug resistance involved in the optimization process of arylthioacetanilides are highlighted, providing valuable clues for further investigations. Copyright © 2015 Elsevier Masson SAS. All rights reserved.
Zhang, Zhijun; Xu, Wen; Koh, Yung-Hyo; Shim, Jae Hoon; Girardet, Jean-Luc; Yeh, Li-Tain; Hamatake, Robert K.; Hong, Zhi
2007-01-01
Nonnucleoside reverse transcriptase (RT) inhibitors (NNRTIs) are important components of current combination therapies for human immunodeficiency virus type 1 (HIV-1) infection. However, their low genetic barriers against resistance development, cross-resistance, and serious side effects can compromise the benefits of the two current drugs in this class (efavirenz and nevirapine). In this study, we report a novel and potent NNRTI, VRX-480773, that inhibits viruses from efavirenz-resistant molecular clones and most NNRTI-resistant clinical HIV-1 isolates tested. In vitro mutation selection experiments revealed that longer times were required for viruses to develop resistance to VRX-480773 than to efavirenz. RT mutations selected by VRX-480773 after 3 months of cell culture in the presence of 1 nM VRX-480773 carried the Y181C mutation, resulting in a less-than-twofold increase in resistance to the compound. A virus containing the double mutation V106I-Y181C emerged after 4 months, causing a sixfold increase in resistance. Viruses containing additional mutations of D123G, F227L, and T369I emerged when the cultures were incubated with increasing concentrations of VRX-480773. Most of the resistant viruses selected by VRX-480773 are susceptible to efavirenz. Oral administration of VRX-480773 to dogs resulted in plasma concentrations that were significantly higher than those required for the inhibition of wild-type and mutant viruses. These results warrant further clinical development of VRX-480773 for the treatment of HIV infection in both NNRTI-naive and -experienced patients. PMID:17116677
Zhang, Zhijun; Xu, Wen; Koh, Yung-Hyo; Shim, Jae Hoon; Girardet, Jean-Luc; Yeh, Li-Tain; Hamatake, Robert K; Hong, Zhi
2007-02-01
Nonnucleoside reverse transcriptase (RT) inhibitors (NNRTIs) are important components of current combination therapies for human immunodeficiency virus type 1 (HIV-1) infection. However, their low genetic barriers against resistance development, cross-resistance, and serious side effects can compromise the benefits of the two current drugs in this class (efavirenz and nevirapine). In this study, we report a novel and potent NNRTI, VRX-480773, that inhibits viruses from efavirenz-resistant molecular clones and most NNRTI-resistant clinical HIV-1 isolates tested. In vitro mutation selection experiments revealed that longer times were required for viruses to develop resistance to VRX-480773 than to efavirenz. RT mutations selected by VRX-480773 after 3 months of cell culture in the presence of 1 nM VRX-480773 carried the Y181C mutation, resulting in a less-than-twofold increase in resistance to the compound. A virus containing the double mutation V106I-Y181C emerged after 4 months, causing a sixfold increase in resistance. Viruses containing additional mutations of D123G, F227L, and T369I emerged when the cultures were incubated with increasing concentrations of VRX-480773. Most of the resistant viruses selected by VRX-480773 are susceptible to efavirenz. Oral administration of VRX-480773 to dogs resulted in plasma concentrations that were significantly higher than those required for the inhibition of wild-type and mutant viruses. These results warrant further clinical development of VRX-480773 for the treatment of HIV infection in both NNRTI-naive and -experienced patients.
NASA Astrophysics Data System (ADS)
Zhang, Zhenshan; Zheng, Mingyue; Du, Li; Shen, Jianhua; Luo, Xiaomin; Zhu, Weiliang; Jiang, Hualiang
2006-05-01
To find useful information for discovering dual functional inhibitors against both wild type (WT) and K103N mutant reverse transcriptases (RTs) of HIV-1, molecular docking and 3D-QSAR approaches were applied to a set of twenty-five 4,1-benzoxazepinone analogues of efavirenz (SUSTIVA®), some of them are active against the two RTs. 3D-QSAR models were constructed, based on their binding conformations determined by molecular docking, with r 2 cv values ranging from 0.656 to 0.834 for CoMFA and CoMSIA, respectively. The models were then validated to be highly predictive and extrapolative by inhibitors in two test sets with different molecular skeletons. Furthermore, CoMFA models were found to be well matched with the binding sites of both WT and K103N RTs. Finally, a reasonable pharmacophore model of 4,1-benzoxazepinones were established. The application of the model not only successfully differentiated the experimentally determined inhibitors from non-inhibitors, but also discovered two potent inhibitors from the compound database SPECS. On the basis of both the 3D-QSAR and pharmacophore models, new clues for discovering and designing potent dual functional drug leads against HIV-1 were proposed: (i) adopting positively charged aliphatic group at the cis-substituent of C3; (ii) reducing the electronic density at the position of O4; (iii) positioning a small branched aliphatic group at position of C5; (iv) using the negatively charged bulky substituents at position of C7.
McCormack, Shelley A; Best, Brookie M
2014-11-01
Maternal-to-fetal transfer of antiretroviral drugs contributes to prevention of vertical transmission of HIV. This systematic review discusses published studies containing data pertaining to the pharmacokinetics of placental transfer of antiretrovirals in humans, including paired cord and maternal plasma samples collected at the time of delivery as well as ex vivo placental perfusion models. Articles pertaining to placental transfer of antiretrovirals were identified from PubMed, from references of included articles, and from US Department of Health and Human Services Panel on Treatment of HIV-infected Pregnant Women and Prevention of Perinatal Transmission guidelines. Articles from non-human animal models or that had no original maternal-to-fetal transfer data were excluded. PRISMA guidelines were followed. A total of 103 published studies were identified. Data across studies appeared relatively consistent for the nucleoside reverse transcriptase inhibitors (NRTIs) and the non-nucleotide reverse transcriptase inhibitors (NNRTIs), with cord to maternal ratios approaching 1 for many of these agents. The protease inhibitors atazanavir and lopinavir exhibited consistent maternal-to-fetal transfer across studies, although the transfer may be influenced by variations in drug-binding proteins. The protease inhibitors indinavir, nelfinavir, and saquinavir exhibited unreliable placental transport, with cord blood concentrations that were frequently undetectable. Limited data, primarily from case reports, indicate that darunavir and raltegravir provide detectable placental transfer. These findings appear consistent with current guidelines of using two NRTIs plus an NNRTI, atazanavir/ritonavir, or lopinavir/ritonavir to maximize placental transfer as well as to optimally suppress maternal viral load. Darunavir/ritonavir and raltegravir may reasonably serve as second-line agents.
Panichsillapakit, Theppharit; Smith, Davey M; Wertheim, Joel O; Richman, Douglas D; Little, Susan J; Mehta, Sanjay R
2016-02-01
Transmitted drug resistance (TDR) remains an important concern when initiating antiretroviral therapy (ART). Here, we describe the prevalence and phylogenetic relationships of TDR among ART-naive, HIV-infected individuals in San Diego from 1996 to 2013. Data were analyzed from 496 participants of the San Diego Primary Infection Cohort who underwent genotypic resistance testing before initiating therapy. Mutations associated with drug resistance were identified according to the WHO-2009 surveillance list. Network and phylogenetic analyses of the HIV-1 pol sequences were used to evaluate the relationships of TDR within the context of the entire cohort. The overall prevalence of TDR was 13.5% (67/496), with an increasing trend over the study period (P = 0.005). TDR was predominantly toward nonnucleoside reverse transcriptase inhibitors (NNRTIs) [8.5% (42/496)], also increasing over the study period (P = 0.005). By contrast, TDR to protease inhibitors and nucleos(t)ide reverse transcriptase inhibitors were 4.4% (22/496) and 3.8% (19/496), respectively, and did not vary with time. TDR prevalence did not differ by age, gender, race/ethnicity, or risk factors. Using phylogenetic analysis, we identified 52 transmission clusters, including 8 with at least 2 individuals sharing the same mutation, accounting for 23.8% (16/67) of the individuals with TDR. Between 1996 and 2013, the prevalence of TDR significantly increased among recently infected ART-naive individuals in San Diego. Around one-fourth of TDR occurred within clusters of recently infected individuals. These findings highlight the importance of baseline resistance testing to guide selection of ART and for public health monitoring.
Recent trends and patterns in HIV-1 transmitted drug resistance in the United Kingdom.
Tostevin, A; White, E; Dunn, D; Croxford, S; Delpech, V; Williams, I; Asboe, D; Pozniak, A; Churchill, D; Geretti, A M; Pillay, D; Sabin, C; Leigh-Brown, A; Smit, E
2017-03-01
Transmission of drug-resistant HIV-1 has decreased in the UK since the early 2000s. This analysis reports recent trends and characteristics of transmitted drug resistance (TDR) in the UK from 2010 to 2013. Resistance tests conducted in antiretroviral treatment (ART)-naïve individuals between 2010 and 2013 were analysed for the presence of transmitted drug resistance mutations (TDRMs), defined as any mutations from a modified 2009 World Health Organization surveillance list, or a modified 2013 International Antiviral Society-USA list for integrase tests. Logistic regression was used to examine associations between demographics and the prevalence of TDRMs. TDRMs were observed in 1223 (7.5%) of 16 425 individuals; prevalence declined from 8.1% in 2010 to 6.6% in 2013 (P = 0.02). The prevalence of TDRMs was higher among men who have sex with men (MSM) compared with heterosexual men and women (8.7% versus 6.4%, respectively) with a trend for decreasing TDRMs among MSM (P = 0.008) driven by a reduction in nucleoside reverse transcriptase inhibitor (NRTI)-related mutations. The most frequently detected TDRMs were K103N (2.2%), T215 revertants (1.6%), M41L (0.9%) and L90M (0.7%). Predicted phenotypic resistance to first-line ART was highest to the nonnucleoside reverse transcriptase inhibitors (NNRTIs) rilpivirine and efavirenz (6.2% and 3.4%, respectively) but minimal to NRTIs, including tenofovir, and protease inhibitors (PIs). No major integrase TDRMs were detected among 101 individuals tested while ART-naïve. We observed a decrease in TDRMs in recent years. However, this was confined to the MSM population and rates remained stable in those with heterosexually acquired HIV infection. Resistance to currently recommended first-line ART, including integrase inhibitors, remained reassuringly low. © 2016 The Authors. HIV Medicine published by John Wiley & Sons Ltd on behalf of British HIV Association.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kudalkar, Shalley N.; Beloor, Jagadish; Chan, Albert H.
The clinical benefits of HIV-1 non-nucleoside reverse transcriptase (RT) inhibitors (NNRTIs) are hindered by their unsatisfactory pharmacokinetic (PK) properties along with the rapid development of drug-resistant variants. However, the clinical efficacy of these inhibitors can be improved by developing compounds with enhanced pharmacological profiles and heightened antiviral activity. We used computational and structure-guided design to develop two next-generation NNRTI drug candidates, compounds I and II, which are members of a class of catechol diethers. We evaluated the preclinical potential of these compounds in BALB/c mice because of their high solubility (510 µg/ml for compound I and 82.9 µg/ml for compoundmore » II), low cytotoxicity, and enhanced antiviral activity against wild-type (WT) HIV-1 RT and resistant variants. Additionally, crystal structures of compounds I and II with WT RT suggested an optimal binding to the NNRTI binding pocket favoring the high anti-viral potency. A single intraperitoneal dose of compounds I and II exhibited a prolonged serum residence time of 48 hours and concentration maximum (Cmax) of 4000- to 15,000-fold higher than their therapeutic/effective concentrations. These Cmax values were 4- to 15-fold lower than their cytotoxic concentrations observed in MT-2 cells. Compound II showed an enhanced area under the curve (0–last) and decreased plasma clearance over compound I and efavirenz, the standard of care NNRTI. Hence, the overall (PK) profile of compound II was excellent compared with that of compound I and efavirenz. Furthermore, both compounds were very well tolerated in BALB/c mice without any detectable acute toxicity. Taken together, these data suggest that compounds I and II possess improved anti-HIV-1 potency, remarkable in vivo safety, and prolonged in vivo circulation time, suggesting strong potential for further development as new NNRTIs for the potential treatment of HIV infection.« less
Priya, R.; Sumitha, Rajendrarao; Doss, C. George Priya; Rajasekaran, C.; Babu, S.; Seenivasan, R.; Siva, R.
2015-01-01
Background: Acquired immunodeficiency syndrome caused by human immunodeficiency virus (HIV) is an immunosuppressive disease. Over the past decades, it has plagued human health due to the grave consequences in its harness. Objective: For this reason, anti-HIV agents are imperative, and the search for the same from natural resources would assure the safety. Materials and Methods: In this investigation we have performed molecular docking, molecular property prediction, drug-likeness score, and molecular dynamics (MD) simulation to develop a novel anti-HIV drug. We have screened 12 alkaloids from a medicinal plant Toddalia asiatica for its probabilistic binding with the active site of the HIV-1-reverse transcriptase (HIV-1-RT) domain (the major contributor to the onset of the disease). Results: The docking results were evaluated based on free energies of binding (ΔG), and the results suggested toddanol, toddanone, and toddalenone to be potent inhibitors of HIV-1-RT. In addition, the alkaloids were subjected to molecular property prediction analysis. Toddanol and toddanone with more rotatable bonds were found to have a drug-likeness score of 0.23 and 0.11, respectively. These scores were comparable with the standard anti-HIV drug zidovudine with a model score 0.28. Finally, two characteristic protein-ligand complexes were exposed to MD simulation to determine the stability of the predicted conformations. Conclusion: The toddanol-RT complex showed higher stability and stronger H-bonds than toddanone-RT complex. Based on these observations, we firmly believe that the alkaloid toddanol could aid in efficient HIV-1 drug discovery. SUMMARY In the present study, the molecular docking and MD simulations are performed to explore the possible binding mode of HIV 1 RT with 12 alkaloids of T. asiatica. Molecular docking by AutoDock4 revealed three alkaloids toddanol, toddanone, and toddalenone with highest binding affinity towards HIV 1 RT. The drug likeness model score revealed a positive score for toddanol and toddanone which is comparable to the drug likeness score of the standard anti HIV drug zidovudine. Results from simulation analysis revealed that toddanol RT complex is more stable than toddanone RT complex inferring toddanol as a potential anti HIV drug molecule. Abbreviations used: HIV: Human immunodeficiency virus, HIV 1 RT: HIV 1 reverse transcriptase, RNase H: Ribonuclease H, MD: Molecular dynamics, PDB: Protein databank, RMSD: Root mean square deviation, RMSF: Root mean square fluctuation. PMID:26929575
Abacavir–Lamivudine versus Tenofovir–Emtricitabine for Initial HIV-1 Therapy
Sax, Paul E.; Tierney, Camlin; Collier, Ann C.; Fischl, Margaret A.; Mollan, Katie; Peeples, Lynne; Godfrey, Catherine; Jahed, Nasreen C.; Myers, Laurie; Katzenstein, David; Farajallah, Awny; Rooney, James F.; Ha, Belinda; Woodward, William C.; Koletar, Susan L.; Johnson, Victoria A.; Geiseler, P. Jan; Daar, Eric S.
2009-01-01
BACKGROUND The use of fixed-dose combination nucleoside reverse-transcriptase inhibitors (NRTIs) with a nonnucleoside reverse-transcriptase inhibitor or a ritonavir-boosted protease inhibitor is recommended as initial therapy in patients with human immunodeficiency virus type 1 (HIV-1) infection, but which NRTI combination has greater efficacy and safety is not known. METHODS In a randomized, blinded equivalence study involving 1858 eligible patients, we compared four once-daily anti retroviral regimens as initial therapy for HIV-1 infection: abacavir–lamivudine or tenofovir disoproxil fumarate (DF)–emtricitabine plus efavirenz or ritonavir-boosted atazanavir. The primary efficacy end point was the time from randomization to virologic failure (defined as a confirmed HIV-1 RNA level ≥1000 copies per milliliter at or after 16 weeks and before 24 weeks, or ≥200 copies per milliliter at or after 24 weeks). RESULTS A scheduled interim review by an independent data and safety monitoring board showed significant differences in virologic efficacy, according to the NRTI combination, among patients with screening HIV-1 RNA levels of 100,000 copies per milliliter or more. At a median follow-up of 60 weeks, among the 797 patients with screening HIV-1 RNA levels of 100,000 copies per milliliter or more, the time to virologic failure was significantly shorter in the abacavir–lamivudine group than in the tenofovir DF–emtricitabine group (hazard ratio, 2.33; 95% confidence interval, 1.46 to 3.72; P<0.001), with 57 virologic failures (14%) in the abacavir–lamivudine group versus 26 (7%) in the tenofovir DF–emtricitabine group. The time to the first adverse event was also shorter in the abacavir–lamivudine group (P<0.001). There was no significant difference between the study groups in the change from the baseline CD4 cell count at week 48. CONCLUSIONS In patients with screening HIV-1 RNA levels of 100,000 copies per milliliter or more, the times to virologic failure and the first adverse event were both significantly shorter in patients randomly assigned to abacavir–lamivudine than in those assigned to tenofovir DF–emtricitabine. (ClinicalTrials.gov number, NCT00118898.) PMID:19952143
Perinatal acquisition of drug-resistant HIV-1 infection: mechanisms and long-term outcome
Delaugerre, Constance; Chaix, Marie-Laure; Blanche, Stephane; Warszawski, Josiane; Cornet, Dorine; Dollfus, Catherine; Schneider, Veronique; Burgard, Marianne; Faye, Albert; Mandelbrot, Laurent; Tubiana, Roland; Rouzioux, Christine
2009-01-01
Background Primary-HIV-1-infection in newborns that occurs under antiretroviral prophylaxis that is a high risk of drug-resistance acquisition. We examine the frequency and the mechanisms of resistance acquisition at the time of infection in newborns. Patients and Methods We studied HIV-1-infected infants born between 01 January 1997 and 31 December 2004 and enrolled in the ANRS-EPF cohort. HIV-1-RNA and HIV-1-DNA samples obtained perinatally from the newborn and mother were subjected to population-based and clonal analyses of drug resistance. If positive, serial samples were obtained from the child for resistance testing. Results Ninety-two HIV-1-infected infants were born during the study period. Samples were obtained from 32 mother-child pairs and from another 28 newborns. Drug resistance was detected in 12 newborns (20%): drug resistance to nucleoside reverse transcriptase inhibitors was seen in 10 cases, non-nucleoside reverse transcriptase inhibitors in two cases, and protease inhibitors in one case. For 9 children, the detection of the same resistance mutations in mothers' samples (6 among 10 available) and in newborn lymphocytes (6/8) suggests that the newborn was initially infected by a drug-resistant strain. Resistance variants were either transmitted from mother-to-child or selected during subsequent temporal exposure under suboptimal perinatal prophylaxis. Follow-up studies of the infants showed that the resistance pattern remained stable over time, regardless of antiretroviral therapy, suggesting the early cellular archiving of resistant viruses. The absence of resistance in the mother of the other three children (3/10) and neonatal lymphocytes (2/8) suggests that the newborns were infected by a wild-type strain without long-term persistence of resistance when suboptimal prophylaxis was stopped. Conclusion This study confirms the importance of early resistance genotyping of HIV-1-infected newborns. In most cases (75%), drug resistance was archived in the cellular reservoir and persisted during infancy, with or without antiretroviral treatment. This finding stresses the need for effective antiretroviral treatment of pregnant women. PMID:19765313
Cristofari, G; Gabus, C; Ficheux, D; Bona, M; Le Grice, S F; Darlix, J L
1999-12-17
Human immunodeficiency virus (HIV) and the distantly related yeast Ty3 retrotransposon encode reverse transcriptase (RT) and a nucleic acid-binding protein designated nucleocapsid protein (NCp) with either one or two zinc fingers, required for HIV-1 replication and Ty3 transposition, respectively. In vitro binding of HIV-1 NCp7 to viral 5' RNA and primer tRNA(3)(Lys) catalyzes formation of nucleoprotein complexes resembling the virion nucleocapsid. Nucleocapsid complex formation functions in viral RNA dimerization and tRNA annealing to the primer binding site (PBS). RT is recruited in these nucleoprotein complexes and synthesizes minus-strand cDNA initiated at the PBS. Recent results on yeast Ty3 have shown that the homologous NCp9 promotes annealing of primer tRNA(i)(Met) to a 5'-3' bipartite PBS, allowing RNA:tRNA dimer formation and initiation of cDNA synthesis at the 5' PBS (). To compare specific cDNA synthesis in a retrotransposon and HIV-1, we have established a Ty3 model system comprising Ty3 RNA with the 5'-3' PBS, primer tRNA(i)(Met), NCp9, and for the first time, highly purified Ty3 RT. Here we report that Ty3 RT is as active as retroviral HIV-1 or murine leukemia virus RT using a synthetic template-primer system. Moreover, and in contrast to what was found with retroviral RTs, retrotransposon Ty3 RT was unable to direct cDNA synthesis by self-priming. We also show that Ty3 nucleoprotein complexes were formed in vitro and that the N terminus of NCp9, but not the zinc finger, is required for complex formation, tRNA annealing to the PBS, RNA dimerization, and primer tRNA-directed cDNA synthesis by Ty3 RT. These results indicate that NCp9 chaperones bona fide cDNA synthesis by RT in the yeast Ty3 retrotransposon, as illustrated for NCp7 in HIV-1, reinforcing the notion that Ty3 NCp9 is an ancestor of HIV-1 NCp7.
Guo, Wei; Zhuang, Daomin; Li, Lin; Liu, Yongjian; Bao, Zuoyi; Liu, Siyang; Wang, Xiaolin; Li, Tianyi; Yang, Shaomin; Li, Jingyun
2013-01-01
Background Assessing the prevalence of HIV-1 drug-resistance and the mutation patterns associated with resistance in the geographical regions implementing free antiretroviral therapy (ART) in China is necessary for preventing the spread of resistant strains and designing the regimens for the subsequent therapies with limited resources. Methods Plasma samples in different cities/prefectures were collected at Yunnan Provincial Hospital of Infectious Disease from January 2010 to December 2011. Genotyping of drug-resistant individuals was conducted using an in-house assay on plasma samples. Viral load, CD4 T cell counts and demographic data were obtained from medical records and an administered questionnaire. Results A total of 609 pol sequences (515 ART-failure and 94 therapy-naïve individuals) derived from 664 samples were obtained. The prevalence of drug-resistance was 45.1% in the ART-failure individuals. Of these, 26.8% harbored HIV strains dually resistant to nucleoside reverse transcriptase inhibitors and non-nucleoside reverse transcriptase inhibitors, and 14.8% harbored HIV strains resistant to only one drug category. Mutations such as M184V/I, K103N, V106A, Y181C and G190A were common among the ART-failure individuals, and the frequencies of M184V/I, K103N and V106A were 28.2%, 19.2%, and 22.1%, respectively. The percentages of individuals exhibiting intermediate or high-level resistance to 3TC, FTC, EFV and NVP drugs were 28.4%, 28.2%, 37.3%, and 37.5%, respectively. Factors such as ethnicity, transmission route, CD4 counts, viral load and the duration of ART were significantly correlated with development of drug resistance in the ART-failure individuals. Conclusions The high prevalence of HIV drug-resistance observed among the ART-failure individuals from 2010 to 2011 in Yunnan province should be of increasing concern in regions where the implementation of ART is widespread. Education about the risk factors associated with HIV drug resistance is important for preventing and controlling the spread of HIV drug-resistant strains. PMID:24009694
HIV-1 replication in cell lines harboring INI1/hSNF5 mutations.
Sorin, Masha; Yung, Eric; Wu, Xuhong; Kalpana, Ganjam V
2006-08-31
INI1/hSNF5 is a cellular protein that directly interacts with HIV-1 integrase (IN). It is specifically incorporated into HIV-1 virions. A dominant negative mutant derived from INI1 inhibits HIV-1 replication. Recent studies indicate that INI1 is associated with pre-integration and reverse transcription complexes that are formed upon viral entry into the target cells. INI1 also is a tumor suppressor, biallelically deleted/mutated in malignant rhabdoid tumors. We have utilized cell lines derived from the rhabdoid tumors, MON and STA-WT1, that harbor either null or truncating mutations of INI1 respectively, to assess the effect of INI1 on HIV-1 replication. We found that while HIV-1 virions produced in 293T cells efficiently transduced MON and STA-WT1 cells, HIV-1 particle production was severely reduced in both of these cells. Reintroduction of INI1 into MON and STA-WT1 significantly enhanced the particle production in both cell lines. HIV-1 particles produced in MON cells were reduced for infectivity, while those produced in STA-WT1 were not. Further analysis indicated the presence of INI1 in those virions produced from STA-WT1 but not from those produced from MON cells. HIV-1 produced in MON cells were defective for synthesis of early and late reverse transcription products in the target cells. Furthermore, virions produced in MON cells were defective for exogenous reverse transcriptase activity carried out using exogenous template, primer and substrate. Our results suggest that INI1-deficient cells exhibit reduced particle production that can be partly enhanced by re-introduction of INI1. Infectivity of HIV-1 produced in some but not all INI1 defective cells, is affected and this defect may correlate to the lack of INI1 and/or some other proteins in these virions. The block in early events of virion produced from MON cells appears to be at the stage of reverse transcription. These studies suggest that presence of INI1 or some other host factor in virions and reverse transcription complexes may be important for early events of HIV-1 replication.
Judd, A; Lodwick, R; Noguera-Julian, A; Gibb, D M; Butler, K; Costagliola, D; Sabin, C; van Sighem, A; Ledergerber, B; Torti, C; Mocroft, A; Podzamczer, D; Dorrucci, M; De Wit, S; Obel, N; Dabis, F; Cozzi-Lepri, A; García, F; Brockmeyer, N H; Warszawski, J; Gonzalez-Tome, M I; Mussini, C; Touloumi, G; Zangerle, R; Ghosn, J; Castagna, A; Fätkenheuer, G; Stephan, C; Meyer, L; Campbell, M A; Chene, G; Phillips, A
2017-03-01
The aim of the study was to determine the time to, and risk factors for, triple-class virological failure (TCVF) across age groups for children and adolescents with perinatally acquired HIV infection and older adolescents and adults with heterosexually acquired HIV infection. We analysed individual patient data from cohorts in the Collaboration of Observational HIV Epidemiological Research Europe (COHERE). A total of 5972 participants starting antiretroviral therapy (ART) from 1998, aged < 20 years at the start of ART for those with perinatal infection and 15-29 years for those with heterosexual infection, with ART containing at least two nucleoside reverse transcriptase inhibitors (NRTIs) and a nonnucleoside reverse transcriptase inhibitor (NNRTI) or a boosted protease inhibitor (bPI), were followed from ART initiation until the most recent viral load (VL) measurement. Virological failure of a drug was defined as VL > 500 HIV-1 RNA copies/mL despite ≥ 4 months of use. TCVF was defined as cumulative failure of two NRTIs, an NNRTI and a bPI. The median number of weeks between diagnosis and the start of ART was higher in participants with perinatal HIV infection compared with participants with heterosexually acquired HIV infection overall [17 (interquartile range (IQR) 4-111) vs. 8 (IQR 2-38) weeks, respectively], and highest in perinatally infected participants aged 10-14 years [49 (IQR 9-267) weeks]. The cumulative proportion with TCVF 5 years after starting ART was 9.6% [95% confidence interval (CI) 7.0-12.3%] in participants with perinatally acquired infection and 4.7% (95% CI 3.9-5.5%) in participants with heterosexually acquired infection, and highest in perinatally infected participants aged 10-14 years when starting ART (27.7%; 95% CI 13.2-42.1%). Across all participants, significant predictors of TCVF were those with perinatal HIV aged 10-14 years, African origin, pre-ART AIDS, NNRTI-based initial regimens, higher pre-ART viral load and lower pre-ART CD4. The results suggest a beneficial effect of starting ART before adolescence, and starting young people on boosted PIs, to maximize treatment response during this transitional stage of development. © 2016 The Authors. HIV Medicine published by John Wiley & Sons Ltd on behalf of British HIV Association.
van Bel, Nikki; van der Velden, Yme; Bonnard, Damien; Le Rouzic, Erwann; Das, Atze T; Benarous, Richard; Berkhout, Ben
2014-01-01
The viral integrase (IN) is an essential protein for HIV-1 replication. IN inserts the viral dsDNA into the host chromosome, thereby aided by the cellular co-factor LEDGF/p75. Recently a new class of integrase inhibitors was described: allosteric IN inhibitors (ALLINIs). Although designed to interfere with the IN-LEDGF/p75 interaction to block HIV DNA integration during the early phase of HIV-1 replication, the major impact was surprisingly found on the process of virus maturation during the late phase, causing a reverse transcription defect upon infection of target cells. Virus particles produced in the presence of an ALLINI are misformed with the ribonucleoprotein located outside the virus core. Virus assembly and maturation are highly orchestrated and regulated processes in which several viral proteins and RNA molecules closely interact. It is therefore of interest to study whether ALLINIs have unpredicted pleiotropic effects on these RNA-related processes. We confirm that the ALLINI BI-D inhibits virus replication and that the produced virus is non-infectious. Furthermore, we show that the wild-type level of HIV-1 genomic RNA is packaged in virions and these genomes are in a dimeric state. The tRNAlys3 primer for reverse transcription was properly placed on this genomic RNA and could be extended ex vivo. In addition, the packaged reverse transcriptase enzyme was fully active when extracted from virions. As the RNA and enzyme components for reverse transcription are properly present in virions produced in the presence of BI-D, the inhibition of reverse transcription is likely to reflect the mislocalization of the components in the aberrant virus particle.
Artico, M; Silvestri, R; Pagnozzi, E; Bruno, B; Novellino, E; Greco, G; Massa, S; Ettorre, A; Loi, A G; Scintu, F; La Colla, P
2000-05-04
Pyrrolyl aryl sulfones (PASs) have been recently reported as a new class of human immunodeficiency virus type 1 (HIV-1) reverse transcriptase (RT) inhibitors acting at the non-nucleoside binding site of this enzyme (Artico, M.; et al. J. Med. Chem. 1996, 39, 522-530). Compound 3, the most potent inhibitor within the series (EC(50) = 0.14 microM, IC(50) = 0.4 microM, and SI > 1429), was then selected as a lead compound for a synthetic project based on molecular modeling studies. Using the three-dimensional structure of RT cocrystallized with the alpha-APA derivative R95845, we derived a model of the RT/3 complex by taking into account previously developed structure-activity relationships. Inspection of this model and docking calculations on virtual compounds prompted the design of novel PAS derivatives and related analogues. Our computational approach proved to be effective in making qualitative predictions, that is in discriminating active versus inactive compounds. Among the compounds synthesized and tested, 20 was the most active one, with EC(50) = 0.045 microM, IC(50) = 0.05 microM, and SI = 5333. Compared with the lead 3, these values represent a 3- and 8-fold improvement in the cell-based and enzyme assays, respectively, together with the highest selectivity achieved so far in the PAS series.
Purification and Characterization of a Lectin from Green Split Peas (Pisum sativum).
Ng, Tzi Bun; Chan, Yau Sang; Ng, Charlene Cheuk Wing; Wong, Jack Ho
2015-11-01
Lectins have captured the attention of a large number of researchers on account of their various exploitable activities, including antitumor, immunomodulatory, antifungal, as well as HIV reverse transcriptase inhibitory activities. A mannose/glucose-specific lectin was isolated from green split peas (a variety of Pisum sativum) and characterized. The purification step involved anion-exchange chromatography on a DEAE-cellulose column, cation-exchange chromatography on an SP-Sepharose column, and gel filtration by fast protein liquid chromatography (FPLC) on Superdex 200. The purified lectin had a native molecular mass of around 50 kDa as determined by size exclusion chromatography. It appeared as a heterotetramer, composed of two distinct polypeptide bands with a molecular mass of 6 and 19 kDa, respectively, in sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE). The N-terminal sequence of green split pea lectin shows some degree of homology compared to lectins from other legume species. Its hemagglutinating activity was inhibited by glucose, mannose, and sucrose, and attenuated at pH values higher than 12 or lower than 3. Hemagglutinating activity was preserved at temperatures lower than 80 °C. The lectin did not show antifungal activity toward fungi including Fusarium oxysporum, Botrytis cinerea, and Mycosphaerella arachidicola. Green split pea lectin showed a mitogenic effect toward murine splenocytes and could inhibit the activity of HIV-1 reverse transcriptase.
Wang, Xiaowei; Lou, Qinghua; Guo, Ying; Xu, Yang; Zhang, Zhili; Liu, Junyi
2006-09-07
Novel compounds, which can be considered as conformationally restricted analogues of MKC-442, have been synthesized and tested as inhibitors of the reverse transcriptase of human immunodeficiency virus type-1 (HIV-1). Reaction of urea with a beta-ketoester furnished 6,7,8,9-tetrahydro-9-phenyl-1H-cyclohepta[d]pyrimidine-2,4-(3H,5H)-dione (6a) and 6,7,8,9-tetrahydro-9-p-tolyl-1H-cyclohepta[d]pyrimidine-2,4-(3H,5H)-dione (6b) which were then alkylated at the N-1 position with chloromethyl ether, allyl bromide and benzyl bromide to afford the target compounds 7a-b, 8a-b, 9 and 10, respectively. The seven-membered, annelated compounds have a relatively rigid structures and can lock the orientation of the aromatic ring. Chemical modification at N-1 of the pyrinidine ring and the 9-phenyl ring was attempted, with the aim of improving the antiretroviral activity. In particular, replacement of the aliphatic group with the phenyl moiety at the terminus of N-1 side chain can enhance the activity. The most active compounds showed activity in the low micromolar range with IC50 values comparable to that of nevirapine. The biological activity results are in accordance with the docking results.
Unfolding the HIV-1 reverse transcriptase RNase H domain – how to lose a molecular tug-of-war
Zheng, Xunhai; Pedersen, Lars C.; Gabel, Scott A.; ...
2016-01-14
Formation of the mature HIV-1 reverse transcriptase (RT) p66/p51 heterodimer requires subunit-specific processing of the p66/p66' homodimer precursor. Since the ribonuclease H (RH) domain contains an occult cleavage site located near its center, cleavage must occur either prior to folding or subsequent to unfolding. Recent NMR studies have identified a slow, subunit-specific RH domain unfolding process proposed to result from a residue tug-of-war between the polymerase and RH domains on the functionally inactive, p66' subunit. Here, we describe a structural comparison of the isolated RH domain with a domain swapped RH dimer that reveals several intrinsically destabilizing characteristics of themore » isolated domain that facilitate excursions of Tyr427 from its binding pocket and separation of helices B and D. These studies provide independent support for the subunit-selective RH domain unfolding pathway in which instability of the Tyr427 binding pocket facilitates its release followed by domain transfer, acting as a trigger for further RH domain destabilization and subsequent unfolding. As further support for this pathway, NMR studies demonstrate that addition of an RH active site-directed isoquinolone ligand retards the subunit-selective RH' domain unfolding behavior of the p66/p66' homodimer. As a result, this study demonstrates the feasibility of directly targeting RT maturation with therapeutics.« less
Unfolding the HIV-1 reverse transcriptase RNase H domain – how to lose a molecular tug-of-war
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zheng, Xunhai; Pedersen, Lars C.; Gabel, Scott A.
Formation of the mature HIV-1 reverse transcriptase (RT) p66/p51 heterodimer requires subunit-specific processing of the p66/p66' homodimer precursor. Since the ribonuclease H (RH) domain contains an occult cleavage site located near its center, cleavage must occur either prior to folding or subsequent to unfolding. Recent NMR studies have identified a slow, subunit-specific RH domain unfolding process proposed to result from a residue tug-of-war between the polymerase and RH domains on the functionally inactive, p66' subunit. Here, we describe a structural comparison of the isolated RH domain with a domain swapped RH dimer that reveals several intrinsically destabilizing characteristics of themore » isolated domain that facilitate excursions of Tyr427 from its binding pocket and separation of helices B and D. These studies provide independent support for the subunit-selective RH domain unfolding pathway in which instability of the Tyr427 binding pocket facilitates its release followed by domain transfer, acting as a trigger for further RH domain destabilization and subsequent unfolding. As further support for this pathway, NMR studies demonstrate that addition of an RH active site-directed isoquinolone ligand retards the subunit-selective RH' domain unfolding behavior of the p66/p66' homodimer. As a result, this study demonstrates the feasibility of directly targeting RT maturation with therapeutics.« less
Mechanisms and Factors that Influence High Frequency Retroviral Recombination
Delviks-Frankenberry, Krista; Galli, Andrea; Nikolaitchik, Olga; Mens, Helene; Pathak, Vinay K.; Hu, Wei-Shau
2011-01-01
With constantly changing environmental selection pressures, retroviruses rely upon recombination to reassort polymorphisms in their genomes and increase genetic diversity, which improves the chances for the survival of their population. Recombination occurs during DNA synthesis, whereby reverse transcriptase undergoes template switching events between the two copackaged RNAs, resulting in a viral recombinant with portions of the genetic information from each parental RNA. This review summarizes our current understanding of the factors and mechanisms influencing retroviral recombination, fidelity of the recombination process, and evaluates the subsequent viral diversity and fitness of the progeny recombinant. Specifically, the high mutation rates and high recombination frequencies of HIV-1 will be analyzed for their roles in influencing HIV-1 global diversity, as well as HIV-1 diagnosis, drug treatment, and vaccine development. PMID:21994801
Takahata, Tatsuro; Takeda, Eri; Tobiume, Minoru; Tokunaga, Kenzo; Yokoyama, Masaru; Huang, Yu-Lun; Hasegawa, Atsuhiko; Shioda, Tatsuo; Sato, Hironori; Kannagi, Mari; Masuda, Takao
2017-01-01
Nonenzymatic roles for HIV-1 integrase (IN) at steps prior to the enzymatic integration step have been reported. To obtain structural and functional insights into the nonenzymatic roles of IN, we performed genetic analyses of HIV-1 IN, focusing on a highly conserved Tyr15 in the N-terminal domain (NTD), which has previously been shown to regulate an equilibrium state between two NTD dimer conformations. Replacement of Tyr15 with alanine, histidine, or tryptophan prevented HIV-1 infection and caused severe impairment of reverse transcription without apparent defects in reverse transcriptase (RT) or in capsid disassembly kinetics after entry into cells. Cross-link analyses of recombinant IN proteins demonstrated that lethal mutations of Tyr15 severely impaired IN structure for assembly. Notably, replacement of Tyr15 with phenylalanine was tolerated for all IN functions, demonstrating that a benzene ring of the aromatic side chain is a key moiety for IN assembly and functions. Additional mutagenic analyses based on previously proposed tetramer models for IN assembly suggested a key role of Tyr15 in facilitating the hydrophobic interaction among IN subunits, together with other proximal residues within the subunit interface. A rescue experiment with a mutated HIV-1 with RT and IN deleted (ΔRT ΔIN) and IN and RT supplied in trans revealed that the nonenzymatic IN function might be exerted through the IN precursor conjugated with RT (RT-IN). Importantly, the lethal mutations of Tyr15 significantly reduced the RT-IN function and assembly. Taken together, Tyr15 seems to play a key role in facilitating the proper assembly of IN and RT on viral RNA through the RT-IN precursor form. Inhibitors of the IN enzymatic strand transfer function (INSTI) have been applied in combination antiretroviral therapies to treat HIV-1-infected patients. Recently, allosteric IN inhibitors (ALLINIs) that interact with HIV-1 IN residues, the locations of which are distinct from the catalytic sites targeted by INSTI, have been discovered. Importantly, ALLINIs affect the nonenzymatic role(s) of HIV-1 IN, providing a rationale for the development of next-generation IN inhibitors with a mechanism that is distinct from that of INSTI. Here, we demonstrate that Tyr15 in the HIV-1 IN NTD plays a critical role during IN assembly by facilitating the hydrophobic interaction of the NTD with the other domains of IN. Importantly, we found that the functional assembly of IN through its fusion form with RT is critical for IN to exert its nonenzymatic function. Our results provide a novel mechanistic insight into the nonenzymatic function of HIV-1 IN and its prevention. Copyright © 2016 American Society for Microbiology.
Mezei, Mária; Ay, Eva; Koroknai, Anita; Tóth, Renáta; Balázs, Andrea; Bakos, Agnes; Gyori, Zoltán; Bánáti, Ferenc; Marschalkó, Márta; Kárpáti, Sarolta; Minárovits, János
2011-11-01
The aim of our study was to monitor the diversity of HIV-1 strains circulating in Hungary and investigate the prevalence of resistance-associated mutations to reverse transcriptase (RT) and protease (PR) inhibitors in newly diagnosed, drug-naive patients. A total of 30 HIV-1-infected patients without prior antiretroviral treatment diagnosed during the period 2008-2010 were included into this study. Viral subtypes and the presence of RT, PR resistance-associated mutations were established by sequencing. Classification of HIV-1 strains showed that 29 (96.6%) patients were infected with subtype B viruses and one patient (3.3%) with subtype A virus. The prevalence of HIV-1 strains with transmitted drug resistance mutations in newly diagnosed individuals was 16.6% (5/30). This study showed that HIV-1 subtype B is still highly predominant in Hungary and documented a relatively high transmission rate of drug resistance in our country.
Figueras, Antoni; Miralles-Llumà, Rosa; Flores, Ramon; Rustullet, Albert; Busqué, Félix; Figueredo, Marta; Font, Josep; Alibés, Ramon; Maréchal, Jean-Didier
2012-06-01
The present work describes some recent approaches to novel 3-oxabicyclo[3.2.0]heptane-type nucleosides structurally similar to the potent anti-HIV agent stavudine (d4T). To gain knowledge at the molecular level relevant for further synthetic designs, the lack of activity of these compounds was investigated by computational approaches accounting for three main physiological requirements of anti-HIV nucleosides: their drug-likeness, their activation process, and their subsequent interaction with HIV reverse transcriptase (HIV-RT). Our results show that the inclusion of the fused cyclobutane at the 2'- and 3'-positions of the sugar portion provides drug-like compounds. Nonetheless, the presence of this cyclobutane moiety prevents binding orientations consistent with the catalytic activation for at least one of the enzymes known to activate d4T. To the best of our knowledge, this is the first study to explicitly consider the simulation of the entire activation process to rationalize anti-HIV activities. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Arribas, J R; Clumeck, N; Nelson, M; Hill, A; van Delft, Y; Moecklinghoff, C
2012-08-01
In the MONotherapy in Europe with Tmc114 (MONET) trial, darunavir/ritonavir (DRV/r) monotherapy showed noninferior efficacy vs. two nucleoside reverse transcriptase inhibitors (NRTIs) plus DRV/r at the primary 48-week analysis. The trial was continued to week 144 to assess the durability of the results. A total of 256 patients with viral load < 50 HIV-1 RNA copies/mL on current highly active antiretroviral therapy (HAART) for at least 6 months switched to DRV/r 800/100 mg once daily, either as monotherapy (n=127) or with two NRTIs (n=129). Treatment failure was defined as two consecutive HIV RNA levels above 50 copies/mL [time to loss of virological response (TLOVR)] by week 144, or discontinuation of study drugs. Eighty-one per cent of patients were male and 91% were Caucasian, and they had a median baseline CD4 count of 575 cells/uL. More patients in the DRV/r monotherapy arm had hepatitis C virus coinfection at baseline than in the control arm (18% vs. 12%, respectively). By week 144, the percentage of patients with HIV RNA < 50 copies/mL [intent to treat (ITT), TLOVR, switch=failure method] was 69% vs. 75% in the DRV/r monotherapy and triple therapy arms [difference= -5.9%; 95% confidence interval (CI) -16.9%, +5.1%]; by a strict ITT analysis (switches not considered failures), the percentage of patients with HIV RNA < 50 copies/mL was 84% vs. 83.5%, respectively (difference= +0.5%; 95% CI -8.7%, +9.7%). Twenty-one and 13 patients had two consecutive HIV RNA results above 50 copies/mL in the DRV/r monotherapy arm and triple therapy arm, respectively, of whom 18 of 21 (86%) and 10 of 13 (77%) had HIV RNA < 50 copies/mL at week 144. In this study, for patients with HIV RNA < 50 copies/mL at baseline, switching to DRV/r monotherapy showed noninferior efficacy to DRV/r plus two NRTIs in a strict ITT (switches not considered failures) analysis, but not in a TLOVR switch equals failure analysis. © 2012 British HIV Association.
Jochmans, Dirk; Anders, Maria; Keuleers, Inge; Smeulders, Liesbeth; Kräusslich, Hans-Georg; Kraus, Günter; Müller, Barbara
2010-10-15
Current antiretroviral therapy against human immunodeficiency virus (HIV-1) reduces viral load and thereby prevents viral spread, but it cannot eradicate proviral genomes from infected cells. Cells in immunological sanctuaries as well as cells producing low levels of virus apparently contribute to a reservoir that maintains HIV persistence in the presence of highly active antiretroviral therapy. Thus, accelerated elimination of virus producing cells may represent a complementary strategy to control HIV infection. Here we sought to exploit HIV protease (PR) related cytotoxicity in order to develop a strategy for drug induced killing of HIV producing cells. PR processes the viral Gag and Gag-Pol polyproteins during virus maturation, but is also implicated in killing of virus producing cells through off-target cleavage of host proteins. It has been observed previously that micromolar concentrations of certain non-nucleoside reverse transcriptase inhibitors (NNRTIs) can stimulate intracellular PR activity, presumably by enhancing Gag-Pol dimerization. Using a newly developed cell-based assay we compared the degree of PR activation displayed by various NNRTIs. We identified inhibitors showing higher potency with respect to PR activation than previously described for NNRTIs, with the most potent compounds resulting in ~2-fold increase of the Gag processing signal at 250 nM. The degree of enhancement of intracellular Gag processing correlated with the compound's ability to enhance RT dimerization in a mammalian two-hybrid assay. Compounds were analyzed for their potential to mediate specific killing of chronically infected MT-4 cells. Levels of cytotoxicity on HIV infected cells determined for the different NNRTIs corresponded to the relative degree of drug induced intracellular PR activation, with CC50 values ranging from ~0.3 μM to above the tested concentration range (10 μM). Specific cytotoxicity was reverted by addition of PR inhibitors. Two of the most active compounds, VRX-480773 and GW-678248, were also tested in primary human cells and mediated cytotoxicity on HIV-1 infected peripheral blood mononuclear cells. These data present proof of concept for targeted drug induced elimination of HIV producing cells. While NNRTIs themselves may not be sufficiently potent for therapeutic application, the results provide a basis for the development of drugs exploiting this mechanism of action.
2010-01-01
Background Current antiretroviral therapy against human immunodeficiency virus (HIV-1) reduces viral load and thereby prevents viral spread, but it cannot eradicate proviral genomes from infected cells. Cells in immunological sanctuaries as well as cells producing low levels of virus apparently contribute to a reservoir that maintains HIV persistence in the presence of highly active antiretroviral therapy. Thus, accelerated elimination of virus producing cells may represent a complementary strategy to control HIV infection. Here we sought to exploit HIV protease (PR) related cytotoxicity in order to develop a strategy for drug induced killing of HIV producing cells. PR processes the viral Gag and Gag-Pol polyproteins during virus maturation, but is also implicated in killing of virus producing cells through off-target cleavage of host proteins. It has been observed previously that micromolar concentrations of certain non-nucleoside reverse transcriptase inhibitors (NNRTIs) can stimulate intracellular PR activity, presumably by enhancing Gag-Pol dimerization. Results Using a newly developed cell-based assay we compared the degree of PR activation displayed by various NNRTIs. We identified inhibitors showing higher potency with respect to PR activation than previously described for NNRTIs, with the most potent compounds resulting in ~2-fold increase of the Gag processing signal at 250 nM. The degree of enhancement of intracellular Gag processing correlated with the compound's ability to enhance RT dimerization in a mammalian two-hybrid assay. Compounds were analyzed for their potential to mediate specific killing of chronically infected MT-4 cells. Levels of cytotoxicity on HIV infected cells determined for the different NNRTIs corresponded to the relative degree of drug induced intracellular PR activation, with CC50 values ranging from ~0.3 μM to above the tested concentration range (10 μM). Specific cytotoxicity was reverted by addition of PR inhibitors. Two of the most active compounds, VRX-480773 and GW-678248, were also tested in primary human cells and mediated cytotoxicity on HIV-1 infected peripheral blood mononuclear cells. Conclusion These data present proof of concept for targeted drug induced elimination of HIV producing cells. While NNRTIs themselves may not be sufficiently potent for therapeutic application, the results provide a basis for the development of drugs exploiting this mechanism of action. PMID:20950436
zu Knyphausen, Fabia; Scheufele, Ramona; Kücherer, Claudia; Jansen, Klaus; Somogyi, Sybille; Dupke, Stephan; Jessen, Heiko; Schürmann, Dirk; Hamouda, Osamah; Meixenberger, Karolin; Bartmeyer, Barbara
2014-01-01
Background Transmission of drug-resistant HIV-1 (TDR) can impair the virologic response to antiretroviral combination therapy. Aim of the study was to assess the impact of TDR on treatment success of resistance test-guided first-line therapy in the German HIV-1 Seroconverter Cohort for patients infected with HIV between 1996 and 2010. An update of the prevalence of TDR and trend over time was performed. Methods Data of 1,667 HIV-infected individuals who seroconverted between 1996 and 2010 were analysed. The WHO drug resistance mutations list was used to identify resistance-associated HIV mutations in drug-naïve patients for epidemiological analysis. For treatment success analysis the Stanford algorithm was used to classify a subset of 323 drug-naïve genotyped patients who received a first-line cART into three resistance groups: patients without TDR, patients with TDR and fully active cART and patients with TDR and non-fully active cART. The frequency of virologic failure 5 to 12 months after treatment initiation was determined. Results Prevalence of TDR was stable at a high mean level of 11.9% (198/1,667) in the HIV-1 Seroconverter Cohort without significant trend over time. Nucleotide reverse transcriptase inhibitor resistance was predominant (6.0%) and decreased significantly over time (OR = 0.92, CI = 0.87–0.98, p = 0.01). Non-nucleoside reverse transcriptase inhibitor (2.4%; OR = 1.00, CI = 0.92–1.09, p = 0.96) and protease inhibitor resistance (2.0%; OR = 0.94, CI = 0.861.03, p = 0.17) remained stable. Virologic failure was observed in 6.5% of patients with TDR receiving fully active cART, 5,6% of patients with TDR receiving non-fully active cART and 3.2% of patients without TDR. The difference between the three groups was not significant (p = 0.41). Conclusion Overall prevalence of TDR remained stable at a rather high level. No significant differences in the frequency of virologic failure were identified during first-line cART between patients with TDR and fully-active cART, patients with TDR and non-fully active cART and patients without TDR. PMID:24788613
Günthard, Huldrych F; Saag, Michael S; Benson, Constance A; del Rio, Carlos; Eron, Joseph J; Gallant, Joel E; Hoy, Jennifer F; Mugavero, Michael J; Sax, Paul E; Thompson, Melanie A; Gandhi, Rajesh T; Landovitz, Raphael J; Smith, Davey M; Jacobsen, Donna M; Volberding, Paul A
2016-07-12
New data and therapeutic options warrant updated recommendations for the use of antiretroviral drugs (ARVs) to treat or to prevent HIV infection in adults. To provide updated recommendations for the use of antiretroviral therapy in adults (aged ≥18 years) with established HIV infection, including when to start treatment, initial regimens, and changing regimens, along with recommendations for using ARVs for preventing HIV among those at risk, including preexposure and postexposure prophylaxis. A panel of experts in HIV research and patient care convened by the International Antiviral Society-USA reviewed data published in peer-reviewed journals, presented by regulatory agencies, or presented as conference abstracts at peer-reviewed scientific conferences since the 2014 report, for new data or evidence that would change previous recommendations or their ratings. Comprehensive literature searches were conducted in the PubMed and EMBASE databases through April 2016. Recommendations were by consensus, and each recommendation was rated by strength and quality of the evidence. Newer data support the widely accepted recommendation that antiretroviral therapy should be started in all individuals with HIV infection with detectable viremia regardless of CD4 cell count. Recommended optimal initial regimens for most patients are 2 nucleoside reverse transcriptase inhibitors (NRTIs) plus an integrase strand transfer inhibitor (InSTI). Other effective regimens include nonnucleoside reverse transcriptase inhibitors or boosted protease inhibitors with 2 NRTIs. Recommendations for special populations and in the settings of opportunistic infections and concomitant conditions are provided. Reasons for switching therapy include convenience, tolerability, simplification, anticipation of potential new drug interactions, pregnancy or plans for pregnancy, elimination of food restrictions, virologic failure, or drug toxicities. Laboratory assessments are recommended before treatment, and monitoring during treatment is recommended to assess response, adverse effects, and adherence. Approaches are recommended to improve linkage to and retention in care are provided. Daily tenofovir disoproxil fumarate/emtricitabine is recommended for use as preexposure prophylaxis to prevent HIV infection in persons at high risk. When indicated, postexposure prophylaxis should be started as soon as possible after exposure. Antiretroviral agents remain the cornerstone of HIV treatment and prevention. All HIV-infected individuals with detectable plasma virus should receive treatment with recommended initial regimens consisting of an InSTI plus 2 NRTIs. Preexposure prophylaxis should be considered as part of an HIV prevention strategy for at-risk individuals. When used effectively, currently available ARVs can sustain HIV suppression and can prevent new HIV infection. With these treatment regimens, survival rates among HIV-infected adults who are retained in care can approach those of uninfected adults.
La Regina, Giuseppe; Coluccia, Antonio; Brancale, Andrea; Piscitelli, Francesco; Gatti, Valerio; Maga, Giovanni; Samuele, Alberta; Pannecouque, Christophe; Schols, Dominique; Balzarini, Jan; Novellino, Ettore; Silvestri, Romano
2011-03-24
New indolylarylsulfone derivatives bearing cyclic substituents at indole-2-carboxamide linked through a methylene/ethylene spacer were potent inhibitors of the WT HIV-1 replication in CEM and PBMC cells with inhibitory concentrations in the low nanomolar range. Against the mutant L100I and K103N RT HIV-1 strains in MT-4 cells, compounds 20, 24-26, 36, and 40 showed antiviral potency superior to that of NVP and EFV. Against these mutant strains, derivatives 20, 24-26, and 40 were equipotent to ETV. Molecular docking experiments on this novel series of IAS analogues have also suggested that the H-bond interaction between the nitrogen atom in the carboxamide chain of IAS and Glu138:B is important in the binding of these compounds. These results are in accordance with the experimental data obtained on the WT and on the mutant HIV-1 strains tested.
The effect of transmitted HIV-1 drug resistance on pre-therapy viral load.
Harrison, Linda; Castro, Hannah; Cane, Patricia; Pillay, Deenan; Booth, Clare; Phillips, Andrew; Geretti, Anna Maria; Dunn, David
2010-07-31
Reduced replication capacity of viruses expressing drug resistant mutations implies that patients with transmitted drug resistance (TDR) could have lower HIV RNA viral load than those infected with wild-type virus. We performed analysis using data from the UK HIV Drug Resistance Database and the UK CHIC study. Eligible patients had a resistance test performed between 1997 and 2007 while naive to antiretroviral therapy, were 16 years or older, and had a viral load and CD4 cell count measurement within 6 months of this test. Models were adjusted for CD4 cell count, viral subtype, ethnicity, risk group, sex, age, calendar year, clinical centre, and viral load assay. Of a total of 7994 patients included, 709 (9%) had TDR: 604 (85%) had resistance to one drug class only [350 nucleos(t)ide reverse transcriptase inhibitors (NRTIs), 164 non-nucleos(t)ide reverse transcriptase inhibitors (NNRTIs), 90 protease inhibitors (PIs)], 77 (11%) to two classes (42 NRTIs/NNRTIs, 31 NRTIs/PIs, 4 NNRTIs/PIs), and 28 (4%) had resistance to all three classes. The overall mean (SD) viral load at the time of resistance testing was 4.60 (0.82) log(10) copies/ml, and did not differ by class of TDR. However, patients harbouring M184V/I (n = 61) had a significantly lower viral load [adjusted mean difference -0.33 log10 copies/ml (95% CI -0.54 to -0.11), 53% lower (95% CI 22 to 71%), P = 0.002] compared to wild-type virus. Our study provides clear evidence of an in-vivo fitness cost associated with the M184V/I mutation independent of drug effects which select for this mutation. This was not observed for any other mutation, but true effects may have been obscured by reversion of initially resistant viruses to wild-type.
Regina, Giuseppe La; Coluccia, Antonio; Piscitelli, Francesco; Bergamini, Alberto; Sinistro, Anna; Cavazza, Antonella; Maga, Giovanni; Samuele, Alberta; Zanoli, Samantha; Novellino, Ettore; Artico, Marino; Silvestri, Romano
2007-10-04
Indolyl aryl sulfones bearing the 4,5-difluoro (10) or 5-chloro-4-fluoro (16) substitution pattern at the indole ring were potent inhibitors of HIV-1 WT and the NNRTI-resistant strains Y181C and K103N-Y181C. These compounds were highly effective against the 112 and the AB1 strains in lymphocytes and inhibited at nanomolar concentration the multiplication of the IIIBBa-L strain in macrophages. Compound 16 was exceptionally potent against RT WT and RTs carrying the K103N, Y181I, and L100I mutations.
Calcagno, A; Pinnetti, C; De Nicolò, A; Scarvaglieri, E; Gisslen, M; Tempestilli, M; D'Avolio, A; Fedele, V; Di Perri, G; Antinori, A; Bonora, S
2018-06-01
Abacavir is a widely used nucleotide reverse transcriptase inhibitor, for which cerebrospinal fluid (CSF) exposure has been previously assessed in twice-daily recipients. We studied abacavir CSF concentrations in 61 and nine HIV-positive patients taking abacavir once daily and twice daily, respectively. Patients on once-daily abacavir had higher plasma and CSF concentrations (96 vs. 22 ng ml -1 , P = 0.038 and 123 vs. 49 ng ml -1 , P = 0.038) but similar CSF-to-plasma ratios (0.8 vs. 0.5, P = 0.500). CSF abacavir concentrations were adequate in patients receiving once-daily treatment. © 2018 The British Pharmacological Society.
Liang, Y H; Chen, F E
2007-08-01
Theoretical investigations of the interaction between dapivirine and the HIV-1 RT binding site have been performed by the ONIOM2 (B3LYP/6-31G (d,p): PM3) and B3LYP/6-31G (d,p) methods. The results derived from this study indicate that this inhibitor dapivirine forms two hydrogen bonds with Lys101 and exhibits strong π-π stacking or H…π interaction with Tyr181 and Tyr188. These interactions play a vital role in stabilizing the NNIBP/dapivirine complex. Additionally, the predicted binding energy of the BBF optimized structure for this complex system is -18.20 kcal/mol.
Harakeh, S; Jariwalla, R J
1991-12-01
To elucidate the action of vitamin C on pathogenic human retroviruses, we investigated and compared the effects of noncytoxic concentrations of ascorbic acid (AA), its calcium salt (Ca-ascorbate), and two thiol-based reducing agents [glutathione (GSH) and N-acetyl-L-cysteine (NAC)] against human immunodeficiency virus (HIV)-1 replication in chronically infected T lymphocytes. Ca-ascorbate reduced extracellular HIV reverse transcriptase (RT) activity by about the same magnitude as the equivalent dose of AA. Long-term experiments showed that continuous presence of ascorbate was necessary for HIV suppression. NAC (10 mmol/L) caused less than twofold inhibition of HIV RT and conferred a synergistic effect (approximately eightfold inhibition) when tested simultaneously with AA (0.426 mmol/L). In contrast, nonesterified GSH (less than or equal to 1.838 mmol/L) had no effect on RT concentrations and did not potentiate the anti-HIV effect of AA. These results further support the potent antiviral activity of ascorbate and suggest its therapeutic value in controlling HIV infection in combination with thiols.
Poveda, E; Hernández-Quero, J; Pérez-Elías, M J; Ribas, M A; Martínez-Madrid, O J; Flores, J; Navarro, J; Gutiérrez, F; García-Deltoro, M; Imaz, A; Ocampo, A; Artero, A; Blanco, F; Bernal, E; Pasquau, J; Mínguez-Gallego, C; Pérez, N; Aiestaran, A; García, F; Paredes, R
2017-08-01
Maraviroc (MVC) is a suitable drug for aviraemic subjects on antiretroviral treatment (ART) developing toxicity. Its prescription requires prior tropism testing. It is unknown if proviral DNA genotypic tropism testing is reliable for guiding MVC initiation in aviraemic subjects, so this study was carried out to address this issue. PROTEST was a phase 4, prospective, single-arm clinical trial carried out in 24 HIV care centres in Spain. MVC-naïve HIV-1-infected patients with HIV-1 RNA < 50 copies/mL on stable ART during the previous 6 months who required an ART change because of toxicity and who had R5 HIV, as determined by proviral DNA genotypic tropism testing, initiated MVC with two nucleoside reverse transcriptase inhibitors (NRTIs) and were followed for 48 weeks. Virological failure was defined as two consecutive viral load measurements > 50 copies/mL. Tropism results were available for 141 of 175 (80.6%) subjects screened: 60% had R5 and 85% of these (n = 74) were finally included in the study. Previous ART included protease inhibitors (PIs) in 62% of subjects, nonnucleoside reverse transcriptase inhibitors (NNRTIs) in 36%, and integrase inhibitors (INIs) in 2%. Main reasons for treatment change were dyslipidaemia (42%), gastrointestinal symptoms (22%) and liver toxicity (15%). MVC was given alongside tenofovir (TDF)/emtricitabine (FTC) (54%) and abacavir (ABC)/lamivudine (3TC) (40%) in most patients. Eighty-four per cent of patients maintained a viral load < 50 copies/mL to week 48, whereas 16% discontinued treatment: two withdrew informed consent, one had an R5 to X4 shift between screening and baseline, one was lost to follow-up, one developed an adverse event (rash), two died from non-study-related causes, and five developed protocol-defined virological failure. Initiation of MVC plus two NRTIs in aviraemic subjects based on genotypic tropism testing of proviral HIV-1 DNA is associated with low rates of virological failure for up to 1 year. © 2016 British HIV Association.
Formation of stable and functional HIV-1 nucleoprotein complexes in vitro.
Tanchou, V; Gabus, C; Rogemond, V; Darlix, J L
1995-10-06
HIV genomic RNA resides within the nucleocapsid, in the interior of the virus, which serves to protect the RNA against nuclease degradation and to promote its reverse transcription. To investigate the role of nucleocapsid protein (NCp7) in the stability and replication of genomic RNA within the nucleocapsid, we used NCp7, reverse transcriptase (RT) and RNAs representing the 5' and 3' regions of the genome to reconstitute functional HIV-1 nucleocapsids. The nucleoprotein complexes generated in vitro were found to be stable, which, according to biochemical and genetic data, probably results from the tight binding of NCp7 molecules to the RNA and strong NCp7/NCp7 interactions. The nucleoprotein complexes efficiently protected viral RNA against RNase degradation and, at the same time, promoted viral DNA synthesis by RT. DNA strand transfer from the 5' to the 3' RNA template was very efficient in nucleoprotein complexes formed in the presence of both RNAs, but not when the RNAs were in separate complexes. These results indicate that the in vitro reconstituted HIV-1 nucleoprotein complexes function like virion nucleocapsids and thus provide a way to study at the molecular level this viral substructure and the synthesis of proviral DNA, and to search for new anti-HIV agents.
Stein, James H.; Komarow, Lauren; Cotter, Bruno R.; Currier, Judith S.; Dubé, Michael P.; Fichtenbaum, Carl J.; Gerschenson, Mariana; Mitchell, Carol K.C.; Murphy, Robert L.; Squires, Kathleen; Parker, Robert A.; Torriani, Francesca J.
2008-01-01
Background Dyslipidemia is a frequent complication of antiretroviral therapy (ART) for patients with human immunodeficiency virus infection (HIV). The effects of ART on lipoproteins are less well-understood, and have not been investigated in a prospective study where assignment to ART is randomized. Objective To evaluate the effects of three class-sparing ART regimens on lipids and lipoproteins. Methods This was a substudy of a prospective, multicenter study treatment-naïve HIV-infected individuals randomly assigned to receive a regimen of nucleoside reverse transcriptase inhibitors (NRTIs) + the non-nucleoside reverse transcriptase inhibitor efavirenz, NRTIs + the protease inhibitor lopinavir/ritonavir, or a NRTI-sparing regimen of efavirenz + lopinavir/ritonavir. Lipoproteins were measured by nuclear magnetic resonance spectroscopy. Results Among the 82 participants, total and small low-density lipoprotein concentrations increased (median, interquartile range) by 152 (-49 - +407, p<0.01) and 130 (-98 - +417, p<0.01) nmol/L, respectively, especially in the arms containing lopinavir/ritonavir (pKW<0.04). Very low-density lipoproteins also increased (p<0.01), with a larger increase in the arms that contained lopinavir/ritonavir (p=0.022). High-density lipoproteins increased by 6.0 nmol/L (2.8 - 10.4, p<0.01), but differences between arms were not significant (pKW=0.069). Changes were not related to changes in markers of insulin/glucose metabolism. Conclusions Total and small low-density lipoprotein concentrations increased, especially in the arms containing lopinavir/ritonavir, as did increases in total very low-density lipoproteins. Adverse changes were especially prominent in the arm with efavirenz + lopinavir/ritonavir. PMID:19956354
Prosperi, Mattia C F; Mackie, Nicola; Di Giambenedetto, Simona; Zazzi, Maurizio; Camacho, Ricardo; Fanti, Iuri; Torti, Carlo; Sönnerborg, Anders; Kaiser, Rolf; Codoñer, Francisco M; Van Laethem, Kristel; Bansi, Loveleen; van de Vijver, David A M C; Geretti, Anna Maria; De Luca, Andrea
2011-08-01
Guidelines indicate a plasma HIV-1 RNA load of 500-1000 copies/mL as the minimal threshold for antiretroviral drug resistance testing. Resistance testing at lower viral load levels may be useful to guide timely treatment switches, although data on the clinical utility of this remain limited. We report here the influence of viral load levels on the probability of detecting drug resistance mutations (DRMs) and other mutations by routine genotypic testing in a large multicentre European cohort, with a focus on tests performed at a viral load <1000 copies/mL. A total of 16 511 HIV-1 reverse transcriptase and protease sequences from 11 492 treatment-experienced patients were identified, and linked to clinical data on viral load, CD4 T cell counts and antiretroviral treatment history. Test results from 3162 treatment-naive patients served as controls. Multivariable analysis was employed to identify predictors of reverse transcriptase and protease DRMs. Overall, 2500/16 511 (15.14%) test results were obtained at a viral load <1000 copies/mL. Individuals with viral load levels of 1000-10000 copies/mL showed the highest probability of drug resistance to any drug class. Independently from other measurable confounders, treatment-experienced patients showed a trend for DRMs and other mutations to decrease at viral load levels <500 copies/mL. Genotypic testing at low viral load may identify emerging antiretroviral drug resistance at an early stage, and thus might be successfully employed in guiding prompt management strategies that may reduce the accumulation of resistance and cross-resistance, viral adaptive changes, and larger viral load increases.
Sinha, S; Shekhar, R C; Ahmad, H; Kumar, N; Samantaray, J C; Sreenivas, V; Khan, N H; Mitsuyasu, R T
2012-09-01
There is limited information available about the prevalence and pattern of human immunodeficiency virus (HIV) drug resistance mutations (DRMs) among antiretroviral therapy (ART) experienced patients from northern India. Results of genotypic drug resistance testing were obtained from plasma samples of 128 patients, who had presented with clinical or immunological failure to treatment after at least six months of ART. Major DRMs associated with any of the three classes of antiretroviral (ARV) drugs, nucleoside reverse transcriptase inhibitors (NRTI), non-nucleoside reverse transcriptase inhibitors (NNRTI) and protease inhibitors (PI), were seen in 120 out of 128 patients (93.8% prevalence). NRTI and NNRTI DRMs were each seen in 115/128 (89.8%) patients, with M184V, M41L, D67N and T215Y being the most frequent among NRTI associated mutations, and K103N, G190A, Y181C and A98G among NNRTI associated ones. PI DRMs were observed in 14/128 (10.9%) patients, with L10I, V82A and L89V being the commonest. These results present a high prevalence of DRMs among ART experienced patients from northern India with clinical or immunological failure of therapy. It emphasizes the need for regular testing of plasma samples of such patients for DRMs in order to detect and replace a failing regimen early, and also the use of HIV drug resistance genotyping of ART naive individuals prior to initiating first line ART for possible transmitted resistance. It is very important to enhance the access of patients to ARV drugs so that their compliance could be improved and hence development of DRMs be minimized.
Raymond, Stéphanie; Nicot, Florence; Pallier, Coralie; Bellecave, Pantxika; Maillard, Anne; Trabaud, Mary Anne; Morand-Joubert, Laurence; Rodallec, Audrey; Amiel, Corinne; Mourez, Thomas; Bocket, Laurence; Beby-Defaux, Agnès; Bouvier-Alias, Magali; Lambert-Niclot, Sidonie; Charpentier, Charlotte; Malve, Brice; Mirand, Audrey; Dina, Julia; Le Guillou-Guillemette, Hélène; Marque-Juillet, Stéphanie; Signori-Schmuck, Anne; Barin, Francis; Si-Mohamed, Ali; Avettand Fenoel, Véronique; Roussel, Catherine; Calvez, Vincent; Saune, Karine; Marcelin, Anne Geneviève; Rodriguez, Christophe; Descamps, Diane; Izopet, Jacques
2018-05-02
Minority resistant variants of human immunodeficiency virus type 1 (HIV-1) could influence the virological response to treatment based on nonnucleoside reverse transcriptase inhibitors (NNRTIs). Data on minority rilpivirine-resistant variants are scarce. This study used next-generation sequencing (NGS) to identify patients harboring minority resistant variants to nucleos(t)ide reverse transcriptase inhibitors and NNRTIs and to assess their influence on the virological response (VR). All the subjects, 541 HIV-1-infected patients started a first-line regimen containing rilpivirine. VR was defined as a HIV-1 RNA load <50 copies/mL at month 6 with continued suppression at month 12. NGS was performed at baseline (retrospectively) on the 454 GS-FLX platform (Roche). NGS revealed resistance-associated mutations accounting for 1% to <5% of variants in 17.2% of samples, for 5%-20% in 5.7% of samples, and for >20% in 29% of samples. We identified 43 (8.8%) and 36 (7.4%) patients who harbored rilpivirine-resistant variants with a 1% sensitivity threshold according to the French National Agency for Research on AIDS and Viral Hepatitis and Stanford algorithms, respectively. The VR was 96.9% at month 12. Detection of minority rilpivirine resistant variants was not associated with virological failure (VF). Multivariate analysis indicated that VF at month 12 was associated with a CD4 count <250 cells/µL at baseline, a slower decrease in viral load at month 3, and rilpivirine resistance at baseline using the Stanford algorithm with a 20% threshold. Minority resistant variants had no impact on the VR of treatment-naive patients to a rilpivirine-based regimen.
Sörstedt, Erik; Carlander, Christina; Flamholc, Leo; Hejdeman, Bo; Svedhem, Veronica; Sönnerborg, Anders; Gisslén, Magnus; Yilmaz, Aylin
2018-05-01
Until the introduction of dolutegravir (DTG), people living with HIV (PLWH) who have developed nucleoside reverse transcriptase inhibitor (NRTI) mutations have had few other treatment options outside of regimens based on ritonavir-boosted protease inhibitors (PI/r). Here we report treatment results among PLWH in Sweden with pre-existing NRTI mutations on antiretroviral treatment (ART) with DTG and one to two NRTIs. All PLWH on ART with DTG and one to two NRTIs with pre-existing NRTI mutations were retrospectively identified from the National InfCare HIV database. As controls, PLWH on PI/r and one to two NRTIs, matched according to Genotypic Susceptibility Score and observation time, were included. Data were collected as long as the study population was on treatment with DTG; controls were monitored for the same interval. Outcome was classified as either treatment success or failure. In total, 244 participants (122 individuals treated with DTG and 122 individuals treated with PI/r) were included. Median observation time was 78 weeks (interquartile range 50-98 weeks) for participants on DTG and 75 weeks (50-101 weeks) for individuals on PI/r. Viral failure was detected in four individuals treated with DTG and three individuals treated with PI/r, resulting in similar success rates of 96.7% and 97.5%, respectively. No new mutations were found among participants with treatment failure. DTG in combination with one to two NRTIs was as efficient as PI/r in individuals with pre-existing NRTI mutations in this setting. It may be considered an alternative to PI/r-based ART even in the presence of NRTI resistance. Copyright © 2018 Elsevier B.V. and International Society of Chemotherapy. All rights reserved.
Commers, Tessa; Swindells, Susan; Sayles, Harlan; Gross, Alan E; Devetten, Marcel; Sandkovsky, Uriel
2014-01-01
Errors in prescribing antiretroviral therapy (ART) often occur with the hospitalization of HIV-infected patients. The rapid identification and prevention of errors may reduce patient harm and healthcare-associated costs. A retrospective review of hospitalized HIV-infected patients was carried out between 1 January 2009 and 31 December 2011. Errors were documented as omission, underdose, overdose, duplicate therapy, incorrect scheduling and/or incorrect therapy. The time to error correction was recorded. Relative risks (RRs) were computed to evaluate patient characteristics and error rates. A total of 289 medication errors were identified in 146/416 admissions (35%). The most common was drug omission (69%). At an error rate of 31%, nucleoside reverse transcriptase inhibitors were associated with an increased risk of error when compared with protease inhibitors (RR 1.32; 95% CI 1.04-1.69) and co-formulated drugs (RR 1.59; 95% CI 1.19-2.09). Of the errors, 31% were corrected within the first 24 h, but over half (55%) were never remedied. Admissions with an omission error were 7.4 times more likely to have all errors corrected within 24 h than were admissions without an omission. Drug interactions with ART were detected on 51 occasions. For the study population (n = 177), an increased risk of admission error was observed for black (43%) compared with white (28%) individuals (RR 1.53; 95% CI 1.16-2.03) but no significant differences were observed between white patients and other minorities or between men and women. Errors in inpatient ART were common, and the majority were never detected. The most common errors involved omission of medication, and nucleoside reverse transcriptase inhibitors had the highest rate of prescribing error. Interventions to prevent and correct errors are urgently needed.
Smith, R A; Remington, K M; Lloyd, R M; Schinazi, R F; North, T W
1997-01-01
Variants of feline immunodeficiency virus (FIV) that possess a unique methionine-to-threonine mutation within the YMDD motif of reverse transcriptase (RT) were selected by culturing virus in the presence of inhibitory concentrations of (-)-beta-L-2',3'-dideoxy-5-fluoro-3'-thiacytidine [(-)-FTC]. The mutants were resistant to (-)-FTC and (-)-beta-L-2',3'-dideoxy-3'-thiacytidine (3TC) and additionally exhibited low-level resistance to 2',3'-dideoxycytidine (ddC). DNA sequence analysis of the RT-encoding region of the pol gene amplified from resistant viruses consistently identified a Met-to-Thr mutation in the YMDD motif. Purified RT from the mutants was also resistant to the 5'-triphosphate forms of 3TC, (-)-FTC, and ddC. Site-directed mutants of FIV were engineered which contain either the novel Met-to-Thr mutation or the Met-to-Val mutation seen in oxathiolane nucleoside-resistant HIV-1. Both site-directed mutants displayed resistance to 3TC, thus confirming the role of these mutations in the resistance of FIV to beta-L-3'-thianucleosides. PMID:9032372
NASA Astrophysics Data System (ADS)
Nazar, Muhammad Faizan; Abdullah, Muhammad Imran; Badshah, Amir; Mahmood, Asif; Rana, Usman Ali; Khan, Salah Ud-Din
2015-04-01
The chalcones core in compounds is advantageously chosen effective synthons, which offer exciting perspectives in biological and pharmacological research. The present study reports the successful development of eight new cyclohexenone based anti-reverse transcriptase analogous using rational drug design synthesis principles. These new cyclohexenone derivatives (CDs) were synthesized by following a convenient route of Robinson annulation, and the molecular structure of these CDs were later confirmed by various analytical techniques such as 1H NMR, 13C NMR, FT-IR, UV-Vis spectroscopy and mass spectrometry. All the synthesized compounds were screened theoretically and experimentally against reverse transcriptase (RT) and found potentially active reverse transcriptase (RT) inhibitors. Of the compounds studied, the compound 2FC4 showed high interaction with RT at non-nucleoside binding site, contributing high free binding energy (ΔG -8.01 Kcal) and IC50 (0.207 μg/ml), respectively. Further results revealed that the compounds bearing more halogen groups, with additional hydrophobic character, offered superior anti-reverse transcriptase activity as compared to rest of compounds. It is anticipate that the present study would be very useful for the selection of potential reverse transcriptase inhibitors featuring inclusive pharmacological profiles.
Peripheral neuropathy in HIV: an analysis of evidence-based approaches.
Nicholas, Patrice K; Corless, Inge B; Evans, Linda A
2014-01-01
Peripheral neuropathy is a common and vexing symptom for people living with HIV infection (PLWH). Neuropathy occurs in several different syndromes and is identified in the literature as distal sensory polyneuropathy or distal sensory peripheral neuropathy. More recently, the HIV literature has focused on the syndrome as painful HIV-associated sensory neuropathy, addressing the symptom rather than the underlying pathophysiology. Assessment of neuropathy in PLWH is critical and must be incorporated into nursing practice for each visit. Neuropathy has been attributed to the direct effects of HIV, exposure to antiretroviral medications (particularly the nucleoside reverse transcriptase inhibitors), advanced immune suppression, and comorbid tuberculosis infection and exposure to antituberculosis medications. Evidence supports the importance of addressing neuropathy in PLWH with pharmacologic treatment regimens and complementary/alternative approaches. This paper examines the pathophysiology, evidence, and approaches to managing peripheral neuropathy. A case study has been included to illustrate a patient's experience with neuropathy symptoms. Copyright © 2014 Association of Nurses in AIDS Care. Published by Elsevier Inc. All rights reserved.
Fosamprenavir calcium plus ritonavir for HIV infection.
Torres, Harrys A; Arduino, Roberto C
2007-06-01
Fosamprenavir is a protease inhibitor (PI) approved for the treatment of HIV-1 infection. Fosamprenavir is a prodrug of amprenavir developed to reduce the pill burden yet maintain the unique resistance pattern and efficacy associated with amprenavir. In a head-to-head, noninferiority trial in antiretroviral treatment-naive HIV-infected patients, the antiviral efficacy and tolerability of ritonavir-boosted fosamprenavir was not inferior to ritonavir-boosted lopinavir, when the PIs were combined with two other nucleoside reverse transcriptase inhibitors. There are fewer studies published about fosamprenavir use in antiretroviral treatment-experienced HIV-infected patients. The high genetic barrier to the development of resistance to fosamprenavir and the low level of cross-resistance between ritonavir-boosted fosamprenavir and other PI regimens are notable. As with amprenavir, gastrointestinal disturbance and rash are the most frequent short-term treatment-limiting events with fosamprenavir. Treatment with ritonavir-boosted fosamprenavir can produce a durable response. To date, fosamprenavir is one of the recommended preferred PI components for the treatment of antiretroviral-naive HIV-infected patients.
To, Elaine E; Hendrix, Craig W; Bumpus, Namandjé N
2013-10-01
Attempts to prevent HIV infection through pre-exposure prophylaxis (PrEP) include topical application of anti-HIV drugs to the mucosal sites of infection; however, a potential role for local drug metabolizing enzymes in modulating the exposure of the mucosal tissues to these drugs has yet to be explored. Here we present the first report that enzymes belonging to the cytochrome P450 (CYP) and UDP-glucuronosyltransferase (UGT) families of drug metabolizing enzymes are expressed and active in vaginal and colorectal tissue using biopsies collected from healthy volunteers. In doing so, we discovered that dapivirine and maraviroc, a non-nucleoside reverse transcriptase inhibitor and an entry inhibitor currently in development as microbicides for HIV PrEP, are differentially metabolized in colorectal tissue and vaginal tissue. Taken together, these data should help to guide the optimization of small molecules being developed for HIV PrEP. Copyright © 2013 Elsevier Inc. All rights reserved.
2012-01-01
Background Host proteins are incorporated inside human immunodeficiency virus type 1 (HIV-1) virions during assembly and can either positively or negatively regulate HIV-1 infection. Although the identification efficiency of host proteins is improved by mass spectrometry, how those host proteins affect HIV-1 replication has not yet been fully clarified. Results In this study, we show that virion-associated glyceraldehyde 3-phosphate dehydrogenase (GAPDH) does not allosterically inactivate HIV-1 reverse transcriptase (RT) but decreases the efficiency of reverse transcription reactions by decreasing the packaging efficiency of lysyl-tRNA synthetase (LysRS) and tRNALys3 into HIV-1 virions. Two-dimensional (2D) gel electrophoresis demonstrated that some isozymes of GAPDH with different isoelectric points were expressed in HIV-1-producing CEM/LAV-1 cells, and a proportion of GAPDH was selectively incorporated into the virions. Suppression of GAPDH expression by RNA interference in CEM/LAV-1 cells resulted in decreased GAPDH packaging inside the virions, and the GAPDH-packaging-defective virus maintained at least control levels of viral production but increased the infectivity. Quantitative analysis of reverse transcription products indicated that the levels of early cDNA products of the GAPDH-packaging-defective virus were higher than those of the control virus owing to the higher packaging efficiencies of LysRS and tRNALys3 into the virions rather than the GAPDH-dependent negative allosteric modulation for RT. Furthermore, immunoprecipitation assay using an anti-GAPDH antibody showed that GAPDH directly interacted with Pr55gag and p160gag-pol and the overexpression of LysRS in HIV-1-producing cells resulted in a decrease in the efficiency of GAPDH packaging in HIV particles. In contrast, the viruses produced from cells expressing a high level of GAPDH showed decreased infectivity in TZM-bl cells and reverse transcription efficiency in TZM-bl cells and peripheral blood mononuclear cells (PBMCs). Conclusions These findings indicate that GAPDH negatively regulates HIV-1 infection and provide insights into a novel function of GAPDH in the HIV-1 life cycle and a new host defense mechanism against HIV-1 infection. PMID:23237566
Homodimerization of the p51 Subunit of HIV-1 Reverse Transcriptase
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zheng, X.; Mueller, G; Cuneo, M
2010-01-01
The dimerization of HIV reverse transcriptase (RT), required to obtain the active form of the enzyme, is influenced by mutations, non-nucleoside reverse transcriptase inhibitors (NNRTIs), nucleotide substrates, Mg ions, temperature, and specifically designed dimerization inhibitors. In this study, we have utilized nuclear magnetic resonance (NMR) spectroscopy of the [methyl-{sup 13}C]methionine-labeled enzyme and small-angle X-ray scattering (SAXS) to investigate how several of these factors influence the dimerization behavior of the p51 subunit. The {sup 1}H-{sup 13}C HSQC spectrum of p51 obtained at micromolar concentrations indicates that a significant fraction of the p51 adopts a 'p66-like' conformation. SAXS data obtained for p51more » samples were used to determine the fractions of monomer and dimer in the sample and to evaluate the conformation of the fingers/thumb subdomain. All of the p51 monomer observed was found to adopt the compact, 'p51C' conformation observed for the p51 subunit in the RT heterodimer. The NMR and SAXS data indicate that the p51 homodimer adopts a structure that is similar to the p66/p51 heterodimer, with one p51C subunit and a second p51 subunit in an extended, 'p51E' conformation that resembles the p66 subunit of the heterodimer. The fractional dimer concentration and the fingers/thumb orientation are found to depend strongly on the experimental conditions and exhibit a qualitative dependence on nevirapine and ionic strength (KCl) that is similar to the behavior reported for the heterodimer and the p66 homodimer. The L289K mutation interferes with p51 homodimer formation as it does with formation of the heterodimer, despite its location far from the dimer interface. This effect is readily interpreted in terms of a conformational selection model, in which p51{sub L289K} has a much greater preference for the compact, p51C conformation. A reduced level of dimer formation then results from the reduced ratio of the p51E{sub L289K} to p51C{sub L289K} monomers.« less
Alexander, Christopher S; Montessori, Valentina; Wynhoven, Brian; Dong, Winnie; Chan, Keith; O'Shaughnessy, Michael V; Mo, Theresa; Piaseczny, Magda; Montaner, Julio S G; Harrigan, P Richard
2002-03-01
In North America, the B subtype of the major group (M) of HIV-1 predominates. Phylogenetic analysis of HIV reverse transcriptase and protease sequences isolated from 479 therapy-naive patients, first seeking treatment in British Columbia between June 1997 and August 1998, revealed a prevalence of 4.4% non-B virus. A range of different subtypes was identified, including one subtype A, 11 C, two D, five CRF01_AE, and one sample that could not be reliably subtyped. Baseline CD4 courts were significantly lower in individuals harbouring the non-B subtypes (P = 0.02), but baseline viral loads were similar (P = 0.80). In this study, individuals infected with non-B variants did not have a significantly different virological response to therapy after up to 18 months.
Raffi, François; Orkin, Chloe; Clarke, Amanda; Slama, Laurence; Gallant, Joel; Daar, Eric; Henry, Keith; Santana-Bagur, Jorge; Stein, David K.; Bellos, Nicholaos; Scarsella, Anthony; Yan, Mingjin; Abram, Michael E.; Cheng, Andrew
2017-01-01
Abstract: In a double-blind, phase 3 trial, 663 HIV-infected, virologically suppressed adults were randomized to switch to tenofovir alafenamide (TAF; n = 333) vs. remain on tenofovir disoproxil fumarate (TDF; n = 330), each coformulated with emtricitabine (FTC), while continuing their third agent (boosted protease inhibitor or unboosted third agent). At week 96, 88.6% on FTC/TAF and 89.1% on FTC/TDF had HIV-1 RNA <50 copies per milliliter [adjusted difference −0.5% (95% confidence interval: −5.3 to 4.4%)]. Proteinuria, albuminuria, proximal renal tubular function, and bone mineral density improved after switching to TAF- from TDF-containing regimens. These longer-term data support FTC/TAF as a safe, well-tolerated, and durable nucleotide reverse transcriptase inhibitor backbone. PMID:28272164
Di Santo, Roberto; Costi, Roberta; Roux, Alessandra; Artico, Marino; Lavecchia, Antonio; Marinelli, Luciana; Novellino, Ettore; Palmisano, Lucia; Andreotti, Mauro; Amici, Roberta; Galluzzo, Clementina Maria; Nencioni, Lucia; Palamara, Anna Teresa; Pommier, Yves; Marchand, Christophe
2008-01-01
The virally encoded integrase protein is an essential enzyme in the life cycle of the HIV-1 virus and represents an attractive and validated target in the development of therapeutics against HIV infection. Drugs that selectively inhibit this enzyme, when used in combination with inhibitors of reverse transcriptase and protease, are believed to be highly effective in suppressing the viral replication. Among the HIV-1 integrase inhibitors, the β-diketo acids (DKAs) represent a major lead for anti-HIV-1drug development. In this study, novel bifunctional quinolonyl diketo acid derivatives were designed, synthesized and tested for their inhibitory ability against HIV-1 integrase. The compounds are potent inhibitors of integrase activity. Particularly, derivative 8 is a potent IN inhibitor for both steps of the reaction (3′-processing and strand transfer) and exhibits both high antiviral activity against HIV-1 infected cells and low cytotoxicity. Molecular modeling studies provide a plausible mechanism of action, which is consistent with ligand SARs and enzyme photo-crosslinking experiments. PMID:16539381
2004: which HIV-1 drug resistance mutations are common in clinical practice?
Cheung, Peter K; Wynhoven, Brian; Harrigan, P Richard
2004-01-01
The emergence of drug resistance remains a major problem for the treatment of HIV-infected patients. However, the variety of mutational patterns that evolve in clinical practice have made the application of resistance data to clinical decision-making challenging. Despite (or because of) an abundance of drug-resistance data from disparate sources, there is only limited information available describing the patterns of drug resistance which usually appear in the clinic. Here we attempt to address this issue by reviewing HIV drug resistance in the population of patients failing antiretroviral therapy in British Columbia, Canada from June 1996 to December 2003 as an example. Our findings suggest that, although hundreds of mutations have been associated with resistance, relatively few key mutations occur at a high frequency. For example, only the nucleoside reverse transcriptase inhibitor (NRTI) mutations M184V, M41L T215Y, D67N, K70R and L210W, non-nucleoside reverse transcriptase inhibitor (NNRTI) mutations K103N and Y181C, and protease inhibitor (PI) mutation L90M, occur in more than 10% of samples tested for resistance in this population. The introduction of new drugs allows for the selection of new mutations. Trends in the prevalence of resistance-associated mutations have generally followed trends in drug usage, but have not always mirrored them. The phenomenon of cross-resistance can play an important role in the efficacy of new antiretroviral agents, even before they become available. The extent of this cross-resistance depends in part on the prevalence of specific mutations in the population of individuals who have previously received antiretroviral therapy. Hence there is a need to determine which mutations are prevalent in the treated population. The tremendous capacity of HIV to adapt means that common resistance pathways are likely to change over time, and new pathways to resistance are likely to continue to be discovered in the future.
Sevinsky, Heather; Zaru, Luna; Wang, Reena; Xu, Xiaohui; Pikora, Cheryl; Correll, Todd A; Eley, Timothy
2018-06-01
Two clinical studies (PRINCE-1 and -2) in HIV-1-infected children assessed the safety, efficacy and pharmacokinetics of dual nucleos(t)ide reverse transcriptase inhibitor background therapy plus once-daily atazanavir (ATV) powder formulation boosted with ritonavir (ATV + RTV). Here, we present a combined analysis of ATV pharmacokinetics and pharmacodynamics across these studies. Intensive 24-hour pharmacokinetic profiles at steady state compared ATV exposures (area under the concentration-time curve in one dosing interval) in 5 ATV + RTV baseline weight-band dosing categories, with historic data in adults receiving ATV + RTV 300/100 mg capsules. Repeated ATV Ctrough measurements over 48 weeks explored relationships between ATV composite Ctrough quartiles (CCQs) with virologic efficacy and key safety parameters. Of 146 children included in this combined analysis, 49.3% were male, 56.8% were Black/African American and 62.3% were antiretroviral experienced. Proportions with HIV-1 RNA <50 copies/mL at week 48 were 13/32, 24/32, 19/32 and 13/28 in the lowest through highest ATV CCQs, respectively. Mean changes from baseline in total bilirubin at week 48 were +0.3, +0.5, +0.6 and +1.0 mg/dL in the lowest through highest ATV CCQs, respectively. Corresponding proportions with adverse events of hyperbilirubinemia by week 48 were 1/36, 4/36, 5/36 and 13/35, respectively. Changes from baseline in total amylase or electrocardiogram parameters and adverse events of diarrhea did not vary by ATV CCQs. Weight-band dosing of ATV + RTV plus optimized dual nucleos(t)ide reverse transcriptase inhibitors in young HIV-1-infected children achieved similar ATV exposure to that in adults; no unexpected safety findings occurred, and with the exception of lower virologic suppression in the lowest ATV CCQ, there was no apparent trend in virologic suppression across ATV CCQs.
St-Jean, M; Harrigan, P R; Sereda, P; Montaner, Jsg; Lima, V D
2017-05-01
The World Health Organization (WHO)'s HIV drug resistance (HIVDR) early warning indicators (EWIs) measure antiretroviral therapy (ART)-site factors associated with HIVDR prevention, without HIVDR laboratory testing. We assessed the relationship between EWIs and HIVDR acquisition using data from British Columbia, Canada. Eligible patients were ART-naïve, were ≥ 19 years old, had initiated ART between 1 January 2000 and 31 December 2012, had ≥ 15 months of follow-up, and were without transmitted HIVDR. Patients were followed for acquired HIVDR until 31 March 2014, the last contact date, or death. We built logistic regression models to assess the associations and predictive ability of individual indicators and of the EWI Score (the number of indicators for which a patient did not meet the criteria) on HIVDR acquisition (to any class of HIVDR, lamivudine (3TC)/emtricitabine (FTC), nonnucleoside reverse transcriptase inhibitors (NNRTIs), nucleoside reverse transcriptase inhibitors (NRTIs) or protease inhibitors (PIs)]). All explored EWIs were associated with at least one class of HIVDR, with the exception of 'ART prescribing practices'. We observed a dose-response relationship between acquiring HIVDR to any antiretroviral class and an increasing EWI score in our predictive logistic regression model. The area under the curve was 0.848 (excellent discrimination). The adjusted odds ratios for acquiring any class of HIVDR for an EWI score of 1, 2 and ≥ 3 versus 0 were 2.30 [95% confidence Interval (CI) 1.21-4.38], 3.35 (95% CI: 1.86-6.03) and 7.26 (95% CI: 4.18-12.61), respectively. Several EWIs were associated with and predictive of HIVDR, supporting the WHO EWIs as a component of the HIVDR prevention method in settings where HIVDR testing is not routinely or widely available. © 2016 British HIV Association.
Pett, Sarah Lilian; Amin, Janaki; Horban, Andrejz; Andrade-Villanueva, Jaime; Losso, Marcelo; Porteiro, Norma; Sierra Madero, Juan; Belloso, Waldo; Tu, Elise; Silk, David; Kelleher, Anthony; Harrigan, Richard; Clark, Andrew; Sugiura, Wataru; Wolff, Marcelo; Gill, John; Gatell, Jose; Fisher, Martin; Clarke, Amanda; Ruxrungtham, Kiat; Prazuck, Thierry; Kaiser, Rolf; Woolley, Ian; Arnaiz, Juan Alberto; Cooper, David; Rockstroh, Jürgen K; Mallon, Patrick; Emery, Sean
2016-07-01
Alternative combination antiretroviral therapies in virologically suppressed human immunodeficiency virus (HIV)-infected patients experiencing side effects and/or at ongoing risk of important comorbidities from current therapy are needed. Maraviroc (MVC), a chemokine receptor 5 antagonist, is a potential alternative component of therapy in those with R5-tropic virus. The Maraviroc Switch Study is a randomized, multicenter, 96-week, open-label switch study in HIV type 1-infected adults with R5-tropic virus, virologically suppressed on a ritonavir-boosted protease inhibitor (PI/r) plus double nucleoside/nucleotide reverse transcriptase inhibitor (2 N(t)RTI) backbone. Participants were randomized 1:2:2 to current combination antiretroviral therapy (control), or replacing the protease inhibitor (MVC + 2 N(t)RTI arm) or the nucleoside reverse transcriptase inhibitor backbone (MVC + PI/r arm) with twice-daily MVC. The primary endpoint was the difference (switch minus control) in proportion with plasma viral load (VL) <200 copies/mL at 48 weeks. The switch arms were judged noninferior if the lower limit of the 95% confidence interval (CI) for the difference in the primary endpoint was < -12% in the intention-to-treat (ITT) population. The ITT population comprised 395 participants (control, n = 82; MVC + 2 N(t)RTI, n = 156; MVC + PI/r, n = 157). Baseline characteristics were well matched. At week 48, noninferior rates of virological suppression were observed in those switching away from a PI/r (93.6% [95% CI, -9.0% to 2.2%] and 91.7% [95% CI, -9.6% to 3.8%] with VL <200 and <50 copies/mL, respectively) compared to the control arm (97.6% and 95.1% with VL <200 and <50 copies/mL, respectively). In contrast, MVC + PI/r did not meet noninferiority bounds and was significantly inferior (84.1% [95% CI, -19.8% to -5.8%] and 77.7% [95% CI, -24.9% to -8.4%] with VL <200 and <50 copies/mL, respectively) to the control arm in the ITT analysis. These data support MVC as a switch option for ritonavir-boosted PIs when partnered with a 2-N(t)RTI backbone, but not as part of N(t)RTI-sparing regimens comprising MVC with PI/r. NCT01384682. © The Author 2016. Published by Oxford University Press for the Infectious Diseases Society of America. All rights reserved. For permissions, e-mail journals.permissions@oup.com.
Satchell, Claudette S; O'Halloran, Jane A; Cotter, Aoife G; Peace, Aaron J; O'Connor, Eileen F; Tedesco, Anthony F; Feeney, Eoin R; Lambert, John S; Sheehan, Gerard J; Kenny, Dermot; Mallon, Patrick W G
2011-10-15
Current or recent use of abacavir for treating human immunodeficiency virus type 1 (HIV-1) infection has been associated with increased rates of myocardial infarction (MI). Given the role of platelet aggregation in thrombus formation in MI and the reversible nature of the abacavir association, we hypothesized that patients treated with abacavir would have increased platelet reactivity. In a prospective study in adult HIV-infected patients, we determined associations between antiretrovirals (ARVs), and in particular the nucleoside reverse transcriptase inhibitor abacavir, and platelet reactivity by measuring time-dependent platelet aggregation in response to agonists: adenosine diphosphate (ADP), thrombin receptor-activating peptide (TRAP), collagen, and epinephrine. Of 120 subjects, 40 were ARV-naive and 80 ARV-treated, 40 of whom were receiving abacavir. No consistent differences in platelet reactivity were observed between the ARV-naive and ARV-treated groups. In contrast, within the ARV-treated group, abacavir-treated subjects had consistently higher percentages of platelet aggregation upon exposure to ADP, collagen, and epinephrine (P = .037, P = .022, and P = .032, respectively) and had platelets that were more sensitive to aggregation upon exposure to TRAP (P = .025). The consistent increases in platelet reactivity observed in response to a range of agonists provides a plausible underlying mechanism to explain the reversible increased rates of MI observed in abacavir-treated patients.
Lectins: production and practical applications
2010-01-01
Lectins are proteins found in a diversity of organisms. They possess the ability to agglutinate erythrocytes with known carbohydrate specificity since they have at least one non-catalytic domain that binds reversibly to specific monosaccharides or oligosaccharides. This articles aims to review the production and practical applications of lectins. Lectins are isolated from their natural sources by chromatographic procedures or produced by recombinant DNA technology. The yields of animal lectins are usually low compared with the yields of plant lectins such as legume lectins. Lectins manifest a diversity of activities including antitumor, immunomodulatory, antifungal, HIV-1 reverse transcriptase inhibitory, and anti-insect activities, which may find practical applications. A small number of lectins demonstrate antibacterial and anti-nematode activities. PMID:20890754
Störmer, Elke; von Moltke, Lisa L; Perloff, Michael D; Greenblatt, David J
2002-07-01
This study investigated the effects of the non-nucleoside HIV-1 reverse transcriptase inhibitors (NNRTI) nevirapine (NVR), efavirenz (EFV), and delavirdine (DLV) on P-glycoprotein (P-gp) activity and expression to anticipate P-gp related drug-drug interactions associated with combination therapy. NNRTIs were evaluated as P-gp substrates by measuring differential transport across Caco-2 cell monolayers. Inhibition of P-gp mediated rhodaminel23 (Rh123) transport in Caco-2 cells was used to assess P-gp inhibition by NNRTIs. Induction of P-gp expression and activity in LS180V cells following 3-day exposure to NNRTIs was measured by western blot analysis and cellular Rh123 uptake, respectively. The NNRTIs showed no differential transport between the basolateral to apical and apical to basolateral direction. NNRTI transport in either direction was not affected by the P-gp inhibitor verapamil. DLV inhibited Rh123 transport, causing a reduction to 15% of control at 100 microM (IC50 = 30 microM). NVR caused a concentration-dependent induction of P-gp expression in LS180V cells resulting in a 3.5-fold increase in immunoreactive P-gp at 100 microM NVR. Induction attributable to EFV and DLV was quantitatively smaller. NVR significantly reduced cellular uptake of Rh123 into LS180V cells, indicating increased drug efflux due to induced P-gp activity; effects of EFV and DLV were smaller. Acute DLV treatment of LS180V cells previously induced with NVR or ritonavir did not reverse the decreased Rh123 cell accumulation. NNRTIs show differential effects on P-gp activity and expression in vitro. Clinical studies are required to elucidate the clinical importance of potential drug interactions.
Gallicchio, Emilio
2012-01-01
The results of computer simulations of the binding of etravirine (TMC125) and rilpivirine (TMC278) to HIV reverse transcriptase are reported. It is confirmed that consistent binding free energy estimates are obtained with or without the application of torsional restraints when the free energies of imposing the restraints are taken into account. The restraints have a smaller influence on the thermodynamics and apparent kinetics of binding of TMC125 compared to the more flexible TMC278 inhibitor. The concept of the reorganization free energy of binding is useful to understand and categorize these effects. Contrary to expectations, the use of conformational restraints did not consistently enhance convergence of binding free energy estimates due to suppression of binding/unbinding pathways and due to the influence of rotational degrees of freedom not directly controlled by the restraints. Physical insights concerning the thermodynamic driving forces for binding and the role of “jiggling” and “wiggling” motion of the ligands are discussed. Based on these insights we conclude that an ideal inhibitor, if chemically realizable, would possess the electrostatic charge distribution of TMC125, so as to form strong interactions with the receptor, and the larger and more flexible substituents of TMC278, so as to minimize reorganization free energy penalties and the effects of resistance mutations, suitably modified, as in TMC125, so as to disfavor the formation of non-binding competent extended conformations when free in solution. PMID:22708073
Sohl, Christal D.; Szymanski, Michal R.; Mislak, Andrea C.; Shumate, Christie K.; Amiralaei, Sheida; Schinazi, Raymond F.; Anderson, Karen S.; Yin, Y. Whitney
2015-01-01
Nucleoside analog reverse transcriptase inhibitors (NRTIs) are the essential components of highly active antiretroviral (HAART) therapy targeting HIV reverse transcriptase (RT). NRTI triphosphates (NRTI-TP), the biologically active forms, act as chain terminators of viral DNA synthesis. Unfortunately, NRTIs also inhibit human mitochondrial DNA polymerase (Pol γ), causing unwanted mitochondrial toxicity. Understanding the structural and mechanistic differences between Pol γ and RT in response to NRTIs will provide invaluable insight to aid in designing more effective drugs with lower toxicity. The NRTIs emtricitabine [(-)-2,3′-dideoxy-5-fluoro-3′-thiacytidine, (-)-FTC] and lamivudine, [(-)-2,3′-dideoxy-3′-thiacytidine, (-)-3TC] are both potent RT inhibitors, but Pol γ discriminates against (-)-FTC-TP by two orders of magnitude better than (-)-3TC-TP. Furthermore, although (-)-FTC-TP is only slightly more potent against HIV RT than its enantiomer (+)-FTC-TP, it is discriminated by human Pol γ four orders of magnitude more efficiently than (+)-FTC-TP. As a result, (-)-FTC is a much less toxic NRTI. Here, we present the structural and kinetic basis for this striking difference by identifying the discriminator residues of drug selectivity in both viral and human enzymes responsible for substrate selection and inhibitor specificity. For the first time, to our knowledge, this work illuminates the mechanism of (-)-FTC-TP differential selectivity and provides a structural scaffold for development of novel NRTIs with lower toxicity. PMID:26124101
Kirstein, L M; Mellors, J W; Rinaldo, C R; Margolick, J B; Giorgi, J V; Phair, J P; Dietz, E; Gupta, P; Sherlock, C H; Hogg, R; Montaner, J S; Muñoz, A
1999-08-01
We conducted two studies to determine the potential influence of delays in blood processing, type of anticoagulant, and assay method on human immunodeficiency virus type 1 (HIV-1) RNA levels in plasma. The first was an experimental study in which heparin- and EDTA-anticoagulated blood samples were collected from 101 HIV-positive individuals and processed to plasma after delays of 2, 6, and 18 h. HIV-1 RNA levels in each sample were then measured by both branched-DNA (bDNA) and reverse transcriptase PCR (RT-PCR) assays. Compared to samples processed within 2 h, the loss (decay) of HIV-1 RNA in heparinized blood was significant (P < 0.05) but small after 6 h (bDNA assay, -0.12 log(10) copies/ml; RT-PCR, -0.05 log(10) copies/ml) and after 18 h (bDNA assay, -0.27 log(10) copies/ml; RT-PCR, -0.15 log(10) copies/ml). Decay in EDTA-anticoagulated blood was not significant after 6 h (bDNA assay, -0.002 log(10) copies/ml; RT-PCR, -0.02 log(10) copies/ml), but it was after 18 h (bDNA assay, -0.09 log(10) copies/ml; RT-PCR, -0.09 log(10) copies/ml). Only 4% of samples processed after 6 h lost more than 50% (>/=0.3 log(10) copies/ml) of the HIV-1 RNA, regardless of the anticoagulant or the assay that was used. The second study compared HIV-1 RNA levels in samples from the Multicenter AIDS Cohort Study (MACS; samples were collected in heparin-containing tubes in 1985, had a 6-h average processing delay, and were assayed by bDNA assay) and the British Columbia Drug Treatment Program (BCDTP) (collected in EDTA- or acid citrate dextrose-containing tubes in 1996 and 1997, had a 2-h maximum processing delay, and were assayed by RT-PCR). HIV-1 RNA levels in samples from the two cohorts were not significantly different after adjusting for CD4(+)-cell count and converting bDNA assay values to those corresponding to the RT-PCR results. In summary, the decay of HIV-1 RNA measured in heparinized blood after 6 h was small (-0.05 to -0.12 log(10) copies/ml), and the minor impact of this decay on HIV-1 RNA concentrations in archived plasma samples of the MACS was confirmed by the similarity of CD4(+)-cell counts and assay-adjusted HIV-1 RNA concentrations in the MACS and BCDTP.
Yerly, S; Rakik, A; Kinloch-de-Loes, S; Erb, P; Vernazza, P; Hirschel, B; Perrin, L
1996-10-26
Zidovudine (ZDV) was the most widely used anti-HIV drug between 1987 and 1995, and, as already reported, transmission of ZDV-resistant viruses occurs. Several mutations of the reverse transcriptase gene have been identified; one of them affects the 215 codon and is associated with a high degree of resistance. We have determined, using selective PCR, the prevalence of transmission of 215 mutant isolates in 134 patients with primary HIV infection (PHI) and have identified 8 patients with 215 mutant virus between 1989 and 1995 in Switzerland. Mutant resistant viruses have been isolated from patients treated with most antiviral drugs. A systematic search for mutant viruses may provide useful information for the adaptation of treatment strategies.
Witaningrum, Adiana Mutamsari; Kotaki, Tomohiro; Khairunisa, Siti Qamariyah; Yunifiar M, Muhammad Qushai; Indriati, Dwi Wahyu; Bramanthi, Rendra; Nasronudin; Kameoka, Masanori
2016-08-01
Papua and West Papua provinces have the highest prevalence rate of human immunodeficiency virus type 1 (HIV-1) infection in Indonesia; however, data on the molecular epidemiology of HIV-1 are limited. We conducted a genotypic study on HIV-1 genes derived from antiretroviral therapy-naive individuals residing in Sorong, West Papua. HIV-1 genomic fragments were amplified from 43 peripheral blood samples, and sequencing analysis of the genes was carried out. Of the 43 samples, 41 protease (PR), 31 reverse transcriptase (RT), 26 gag, and 25 env genes were sequenced. HIV-1 subtyping revealed that CRF01_AE (48.8%, 21/43) and subtype B (41.9%, 18/43) were the major subtypes prevalent in the region, whereas other recombinant forms were also detected. Major drug resistance-associated mutations for PR inhibitors were not detected; however, mutations for the RT inhibitors, A62V and E138A, appeared in a few samples, indicating the possible emergence of transmitted HIV-1 drug resistance in Sorong, West Papua.
Negi, Bharat Singh; Kotaki, Tomohiro; Joshi, Sunil Kumar; Bastola, Anup; Nakazawa, Minato; Kameoka, Masanori
2017-09-01
Molecular epidemiological data on human immunodeficiency virus type 1 (HIV-1) are limited in Nepal and have not been available in areas affected by the April 2015 earthquake. Therefore, we conducted a genotypic study on HIV-1 genes derived from individuals on antiretroviral therapy residing in 14 districts in Nepal highly affected by the earthquake. HIV-1 genomic fragments were amplified from 40 blood samples of HIV treatment-failure individuals, and a sequencing analysis was performed on these genes. In the 40 samples, 29 protease, 32 reverse transcriptase, 25 gag, and 21 env genes were sequenced. HIV-1 subtyping revealed that subtype C (84.2%, 32/38) was the major subtype prevalent in the region, while CRF01_AE (7.9%, 3/38) and other recombinant forms (7.9%, 3/38) were also detected. In addition, major drug resistance mutations were identified in 21.9% (7/32) of samples, indicating the possible emergence of HIV-1 drug resistance in earthquake-affected areas in Nepal.
Delatorre, Edson; Silva-de-Jesus, Carlos; Couto-Fernandez, José Carlos; Pilotto, Jose H; Morgado, Mariza G
2017-01-01
Antiretroviral (ARV) resistance mutations in human immunodeficiency virus type 1 (HIV-1) infection may reduce the efficacy of prophylactic therapy to prevent mother-to-child transmission (PMTCT) and future treatment options. This study evaluated the diversity and the prevalence of transmitted drug resistance (TDR) in protease (PR) and reverse transcriptase (RT) regions of HIV-1 pol gene among 87 ARV-naive HIV-1-infected pregnant women from Rio de Janeiro, Brazil, between 2012 and 2015. The viral diversity comprised HIV-1 subtypes B (67.8%), F1 (17.2%), and C (4.6%); the circulating recombinant forms 12_BF (2.3%), 28/29_BF, 39_BF, 02_AG (1.1% each) and unique recombinants forms (4.5%). The overall prevalence of any TDR was 17.2%, of which 5.7% for nucleoside RT inhibitors, 5.7% for non-nucleoside RT inhibitors, and 8% for PR inhibitors. The TDR prevalence found in this population may affect the virological outcome of the standard PMTCT ARV-regimens, reinforcing the importance of continuous monitoring.
Computational challenges of structure-based approaches applied to HIV.
Forli, Stefano; Olson, Arthur J
2015-01-01
Here, we review some of the opportunities and challenges that we face in computational modeling of HIV therapeutic targets and structural biology, both in terms of methodology development and structure-based drug design (SBDD). Computational methods have provided fundamental support to HIV research since the initial structural studies, helping to unravel details of HIV biology. Computational models have proved to be a powerful tool to analyze and understand the impact of mutations and to overcome their structural and functional influence in drug resistance. With the availability of structural data, in silico experiments have been instrumental in exploiting and improving interactions between drugs and viral targets, such as HIV protease, reverse transcriptase, and integrase. Issues such as viral target dynamics and mutational variability, as well as the role of water and estimates of binding free energy in characterizing ligand interactions, are areas of active computational research. Ever-increasing computational resources and theoretical and algorithmic advances have played a significant role in progress to date, and we envision a continually expanding role for computational methods in our understanding of HIV biology and SBDD in the future.
Mutation covariation of HIV-1 CRF07_BC reverse transcriptase during antiretroviral therapy.
Li, Zhenpeng; Huang, Yang; Ouyang, Yabo; Xing, Hui; Liao, Lingjie; Jiang, Shibo; Shao, Yiming; Ma, Liying
2013-11-01
To understand the effect of HIV-1 drug resistance mutations in the context of antiretroviral therapy (ART), we compared the prevalence of protease (PR) and reverse transcriptase (RT) mutations in HIV-1 CRF07_BC sequences from blood samples of treatment-naive and ART-treated patients. Mutation covariation in the RT and PR of HIV-1 CRF07_BC viruses from 542 treatment-naive patients and 261 patients treated with lamivudine/zidovudine/nevirapine or lamivudine/zidovudine/efavirenz was analysed. Stratified networks were used to display the mutation covariation. Based on the comparison between treatment-naive and ART-treated patients, three types of featured mutations for RT and PR were initially identified: treatment-associated mutations, treatment-agonistic mutations and overlapping polymorphisms. Twelve significant covariation pairs were found between five treatment-associated mutations (K103N, M184V, Q197K, G190A and Y181C) and nine overlapping polymorphisms (A36E, D39N, Y121H, D123E, R135I, T200A, R277K, L283I and D291E). Meanwhile, three covariation pairs between three treatment-associated mutations (I132L and M184V for RT and I15V for PR) and three overlapping polymorphisms (L10I, L36M and A71V) for PR were also detected. Finally, the overlapping polymorphisms for RT and PR were both found to have significant correlations with treatment-associated mutations, indicating a possible association between polymorphisms and drug resistance. When compared with HIV-1 subtype B under the same regimens as CRF07_BC, the mutation covariations of CRF07_BC showed a distinct pattern of RT and PR mutation covariation. The role of polymorphisms in the development of drug resistance has been widely reported. Here, we found a significant correlation between overlapping polymorphisms for RT and PR and treatment-associated mutations, indicating that polymorphisms exert a global influence on treatment-associated mutations. Polymorphism mutations might therefore be considered before initiating ART to improve the efficacy of drug combinations.
Antiretroviral Drugs for Treatment and Prevention of HIV Infection in Adults
Günthard, Huldrych F.; Saag, Michael S.; Benson, Constance A.; del Rio, Carlos; Eron, Joseph J.; Gallant, Joel E.; Hoy, Jennifer F.; Mugavero, Michael J.; Sax, Paul E.; Thompson, Melanie A.; Gandhi, Rajesh T.; Landovitz, Raphael J.; Smith, Davey M.; Jacobsen, Donna M.; Volberding, Paul A.
2016-01-01
IMPORTANCE New data and therapeutic options warrant updated recommendations for the use of antiretroviral drugs (ARVs) to treat or to prevent HIV infection in adults. OBJECTIVE To provide updated recommendations for the use of antiretroviral therapy in adults (aged ≥18 years) with established HIV infection, including when to start treatment, initial regimens, and changing regimens, along with recommendations for using ARVs for preventing HIV among those at risk, including preexposure and postexposure prophylaxis. EVIDENCE REVIEW A panel of experts in HIV research and patient care convened by the International Antiviral Society-USA reviewed data published in peer-reviewed journals, presented by regulatory agencies, or presented as conference abstracts at peer-reviewed scientific conferences since the 2014 report, for new data or evidence that would change previous recommendations or their ratings. Comprehensive literature searches were conducted in the PubMed and EMBASE databases through April 2016. Recommendations were by consensus, and each recommendation was rated by strength and quality of the evidence. FINDINGS Newer data support the widely accepted recommendation that antiretroviral therapy should be started in all individuals with HIV infection with detectable viremia regardless of CD4 cell count. Recommended optimal initial regimens for most patients are 2 nucleoside reverse transcriptase inhibitors (NRTIs) plus an integrase strand transfer inhibitor (InSTI). Other effective regimens include nonnucleoside reverse transcriptase inhibitors or boosted protease inhibitors with 2 NRTIs. Recommendations for special populations and in the settings of opportunistic infections and concomitant conditions are provided. Reasons for switching therapy include convenience, tolerability, simplification, anticipation of potential new drug interactions, pregnancy or plans for pregnancy, elimination of food restrictions, virologic failure, or drug toxicities. Laboratory assessments are recommended before treatment, and monitoring during treatment is recommended to assess response, adverse effects, and adherence. Approaches are recommended to improve linkage to and retention in care are provided. Daily tenofovir disoproxil fumarate/emtricitabine is recommended for use as preexposure prophylaxis to prevent HIV infection in persons at high risk. When indicated, postexposure prophylaxis should be started as soon as possible after exposure. CONCLUSIONS AND RELEVANCE Antiretroviral agents remain the cornerstone of HIV treatment and prevention. All HIV-infected individuals with detectable plasma virus should receive treatment with recommended initial regimens consisting of an InSTI plus 2 NRTIs. Preexposure prophylaxis should be considered as part of an HIV prevention strategy for at-risk individuals. When used effectively, currently available ARVs can sustain HIV suppression and can prevent new HIV infection. With these treatment regimens, survival rates among HIV-infected adults who are retained in care can approach those of uninfected adults. PMID:27404187
HIV-1 reverse transcriptase and antiviral drug resistance. Part 2.
Das, Kalyan; Arnold, Eddy
2013-04-01
Structures of RT and its complexes combined with biochemical and clinical data help in illuminating the molecular mechanisms of different drug-resistance mutations. The NRTI drugs that are used in combinations have different primary mutation sites. RT mutations that confer resistance to one drug can be hypersensitive to another RT drug. Structure of an RT-DNA-nevirapine complex revealed how NNRTI binding forbids RT from forming a polymerase competent complex. Collective knowledge about various mechanisms of drug resistance by RT has broader implications for understanding and targeting drug resistance in general. In Part 1, we discussed the role of RT in developing HIV-1 drug resistance, structural and functional states of RT, and the nucleoside/nucleotide analog (NRTI) and non-nucleoside (NNRTI) drugs used in treating HIV-1 infections. In this part, we discuss structural understanding of various mechanisms by which RT confers antiviral drug resistance. Copyright © 2013 Elsevier B.V. All rights reserved.
Drug Interactions and Antiretroviral Drug Monitoring
Foy, Matthew; Sperati, C. John; Lucas, Gregory M.
2014-01-01
Due to the improved longevity afforded by combination antiretroviral therapy (cART), HIV-infected individuals are developing several non-AIDS related comorbid conditions. Consequently, medical management of the HIV-infected population is increasingly complex, with a growing list of potential drug-drug interactions (DDIs). This article reviews some of the most relevant and emerging potential interactions between antiretroviral medications and other agents. The most common DDIs are those involving protease inhibitors or non-nucleoside reverse transcriptase inhibitors which alter the cytochrome P450 enzyme system and/or drug transporters such as p-glycoprotein. Of note are the new agents for the treatment of chronic hepatitis C virus infection. These new classes of drugs and others drugs which are increasingly used in this patient population represent a significant challenge with regard to achieving the goals of effective HIV suppression and minimization of drug-related toxicities. Awareness of DDIs and a multidisciplinary approach are imperative in reaching these goals. PMID:24950731
Scaffold hopping: exploration of acetanilide-containing uracil analogues as potential NNRTIs.
Babkov, Denis A; Valuev-Elliston, Vladimir T; Paramonova, Maria P; Ozerov, Alexander A; Ivanov, Alexander V; Chizhov, Alexander O; Khandazhinskaya, Anastasia L; Kochetkov, Sergey N; Balzarini, Jan; Daelemans, Dirk; Pannecouque, Christophe; Seley-Radtke, Katherine L; Novikov, Mikhail S
2015-03-01
In order to identify novel nonnucleoside inhibitors of HIV-1 reverse transcriptase two series of amide-containing uracil derivatives were designed as hybrids of two scaffolds of previously reported inhibitors. Subsequent biological evaluation confirmed acetamide uracil derivatives 15a-k as selective micromolar NNRTIs with a first generation-like resistance profile. Molecular modeling of the most active compounds 15c and 15i was employed to provide insight on their inhibitory properties and direct future design efforts. Copyright © 2015 Elsevier Ltd. All rights reserved.
3-Hydroxypyrimidine-2,4-dione-5-N-benzylcarboxamides potently inhibit HIV-1 integrase and RNase H
Wu, Bulan; Tang, Jing; Wilson, Daniel J.; Huber, Andrew D.; Casey, Mary C.; Ji, Juan; Kankanala, Jayakanth; Xie, Jiashu; Sarafianos, Stefan G.; Wang, Zhengqiang
2016-01-01
Resistance selection by human immunodeficiency virus (HIV) towards known drug regimens necessitates the discovery of structurally novel antivirals with a distinct resistance profile. Based on our previously reported 3-hydroxypyrimidine-2,4-dione (HPD) core we have designed and synthesized a new integrase strand transfer (INST) inhibitor type featuring a 5-N-benzylcarboxamide moiety. Significantly, the 6-alkylamino variant of this new chemotype consistently conferred low nanomolar inhibitory activity against HIV-1. Extended antiviral testing against a few raltegravir-resistant HIV-1 clones revealed a resistance profile similar to that of the second generation INST inhibitor (INSTIs) dolutegravir. Although biochemical testing and molecular modeling also strongly corroborate the inhibition of INST as the antiviral mechanism of action, selected antiviral analogues also potently inhibited reverse transcriptase (RT) associated RNase H, implying potential dual target inhibition. In vitro ADME assays demonstrated that this novel chemotype possesses largely favorable physicochemical properties suitable for further development. PMID:27283261
HIV genotype resistance testing in antiretroviral (ART) exposed Indian children--a need of the hour.
Shah, Ira; Parikh, Shefali
2013-04-01
Development of drug resistance in HIV infected children with treatment failure is a major impediment to selection of appropriate therapy. HIV genotype resistance assays predict drug resistance on the basis of mutations in the viral genome. However, their clinical utility, especially in a resource limited setting is still a subject of debate. The authors report two cases in which both the children suffered from treatment failure of various antiretroviral therapy regimes. In both the cases, Genotype Resistance Testing (GRT) prompted a radical change from proposed failure therapy as per existing guidelines. GRT was specifically important for the selection of a new dual Nucleoside reverse transcriptase inhibitors (NRTI) component of failure regimen by identifying TAMS and M184V mutations in the HIV genome. These case reports highlight the importance of GRT in children failing multiple antiretroviral regimes; and emphasizes the need to recognize situations where GRT is absolutely essential to guide appropriate therapy, even in a resource limited setting.
Martin, John C; Hitchcock, Michael J M; De Clercq, Erik; Prusoff, William H
2010-01-01
The occasion of this 25th anniversary issue encouraged us to reminisce about the important history of the discovery of the dideoxynucleoside analogues for the treatment of HIV/AIDS and to chronicle our thoughts about a particular exciting and rewarding period of our scientific careers. Following the identification of the anti-HIV activity of zidovudine (AZT), we participated in the urgent quest to discover optimal treatments of HIV infection and AIDS. A number of previously synthesized nucleoside analogues were comparatively evaluated, and stavudine (D4T) emerged as a promising candidate for development. Following clinical evaluation, D4T became a mainstay of the initial antiretroviral combination therapy, prolonging and saving numerous lives. It has only recently been supplanted by better-tolerated treatments. This article forms part of a special issue of Antiviral Research marking the 25th anniversary of antiretroviral drug discovery and development, vol. 85, issue 1, 2010. Copyright 2009 Elsevier B.V. All rights reserved.
Genetic Diversity of HIV-1 in Tunisia.
El Moussi, Awatef; Thomson, Michael M; Delgado, Elena; Cuevas, María Teresa; Nasr, Majda; Abid, Salma; Ben Hadj Kacem, Mohamed Ali; Benaissa Tiouiri, Hanene; Letaief, Amel; Chakroun, Mohamed; Ben Jemaa, Mounir; Hamdouni, Hayet; Tej Dellagi, Rafla; Kheireddine, Khaled; Boutiba, Ilhem; Pérez-Álvarez, Lucía; Slim, Amine
2017-01-01
In this study, the genetic diversity of HIV-1 in Tunisia was analyzed. For this, 193 samples were collected in different regions of Tunisia between 2012 and 2015. A protease and reverse transcriptase fragment were amplified and sequenced. Phylogenetic analyses were performed through maximum likelihood and recombination was analyzed by bootscanning. Six HIV-1 subtypes (B, A1, G, D, C, and F2), 5 circulating recombinant forms (CRF02_AG, CRF25_cpx, CRF43_02G, CRF06_cpx, and CRF19_cpx), and 11 unique recombinant forms were identified. Subtype B (46.4%) and CRF02_AG (39.4%) were the predominant genetic forms. A group of 44 CRF02_AG sequences formed a distinct Tunisian cluster, which also included four viruses from western Europe. Nine viruses were closely related to isolates collected in other African or in European countries. In conclusion, a high HIV-1 genetic diversity is observed in Tunisia and the local spread of CRF02_AG is first documented in this country.
The remarkable frequency of human immunodeficiency virus type 1 genetic recombination.
Onafuwa-Nuga, Adewunmi; Telesnitsky, Alice
2009-09-01
The genetic diversity of human immunodeficiency virus type 1 (HIV-1) results from a combination of point mutations and genetic recombination, and rates of both processes are unusually high. This review focuses on the mechanisms and outcomes of HIV-1 genetic recombination and on the parameters that make recombination so remarkably frequent. Experimental work has demonstrated that the process that leads to recombination--a copy choice mechanism involving the migration of reverse transcriptase between viral RNA templates--occurs several times on average during every round of HIV-1 DNA synthesis. Key biological factors that lead to high recombination rates for all retroviruses are the recombination-prone nature of their reverse transcription machinery and their pseudodiploid RNA genomes. However, HIV-1 genes recombine even more frequently than do those of many other retroviruses. This reflects the way in which HIV-1 selects genomic RNAs for coencapsidation as well as cell-to-cell transmission properties that lead to unusually frequent associations between distinct viral genotypes. HIV-1 faces strong and changeable selective conditions during replication within patients. The mode of HIV-1 persistence as integrated proviruses and strong selection for defective proviruses in vivo provide conditions for archiving alleles, which can be resuscitated years after initial provirus establishment. Recombination can facilitate drug resistance and may allow superinfecting HIV-1 strains to evade preexisting immune responses, thus adding to challenges in vaccine development. These properties converge to provide HIV-1 with the means, motive, and opportunity to recombine its genetic material at an unprecedented high rate and to allow genetic recombination to serve as one of the highest barriers to HIV-1 eradication.
Wu, Daxian; Tao, Shuhui; Liu, Shuiping; Zhou, Jiebin; Tan, Deming; Hou, Zhouhua
2017-07-28
To observe the sensitivity of transcription mediated amplification (TMA), and to compare its performance with real-time reverse transcription polymerase chain reaction (real-time RT-PCR) in detecting human immunodeficiency virus RNA (HIV RNA). Methods: TMA system was established with TaqMan probes, specific primers, moloney murine leukemia virus (MMLV) reverse transcriptase, T7 RNA polymerase, and reaction substrates. The sensitivity of TMA was evaluated by amplifying a group of 10-fold diluted HIV RNA standards which were transcribed in vitro. A total of 60 plasma of HIV infected patients were measured by TMA and Cobas Amplicor HIV-1 Monitor test to observe the positive rate. The correlation and concordance of the above two technologies were investigated by linear regression and Bland-Altman analysis. Results: TMA system was established successfully and HIV RNA transcribed standards at concentration of equal or more than 10 copies/mL could be detected by TMA technology. Among 60 samples of plasma from HIV infected patients, 46 were positively detected and 12 were negatively amplified by both TMA and Cobas reagents; 2 samples were positively tested by Cobas reagent but negatively tested by TMA system. The concordance rate of the two methods was 97.1% and the difference of positive detection rate between the two methods was not statistically significant (P>0.05). Linear regression was used for 46 samples which were positively detected by both TMA and Cobas reagents and showed an excellent correlation between the two reagents (r=0.997, P<0.001). Bland-Altma analysis revealed that the mean different value of HIV RNA levels for denary logarithm was 0.02. Forty-four samples were included in 95% of credibility interval of concordance. Conclusion: TMA system has the potential of high sensitivity. TMA and real-time RT-PCR keep an excellent correlation and consistency in detecting HIV RNA.
Collins, Kathleen; Nilsen, Timothy W
2013-08-01
Current investigation of RNA transcriptomes relies heavily on the use of retroviral reverse transcriptases. It is well known that these enzymes have many limitations because of their intrinsic properties. This commentary highlights the recent biochemical characterization of a new family of reverse transcriptases, those encoded by group II intron retrohoming elements. The novel properties of these enzymes endow them with the potential to revolutionize how we approach RNA analyses.
NASA Astrophysics Data System (ADS)
Eron, Joseph J.; Gorczyca, Paul; Kaplan, Joan C.; D'Aquila, Richard T.
1992-04-01
Polymerase chain reaction (PCR) DNA quantitation (PDQ) susceptibility testing rapidly and directly measures nucleoside sensitivity of human immunodeficiency virus type 1 (HIV-1) isolates. PCR is used to quantitate the amount of HIV-1 DNA synthesized after in vitro infection of peripheral blood mononuclear cells. The relative amounts of HIV-1 DNA in cell lysates from cultures maintained at different drug concentrations reflect drug inhibition of virus replication. The results of PDQ susceptibility testing of 2- or 3-day cultures are supported by assays measuring HIV-1 p24 antigen production in supernatants of 7- or 10-day cultures. DNA sequence analyses to identify mutations in the reverse transcriptase gene that cause resistance to 3'-azido-3'-deoxythymidine also support the PDQ results. With the PDQ method, both infectivity titration and susceptibility testing can be performed on supernatants from primary cultures of peripheral blood mononuclear cells. PDQ susceptibility testing should facilitate epidemiologic studies of the clinical significance of drug-resistant HIV-1 isolates.
Tai, Bui Huu; Nhut, Nguyen Duy; Nhiem, Nguyen Xuan; Tung, Nguyen Huu; Quang, Tran Hong; Luyen, Bui Thi Thuy; Huong, Tran Thu; Wilson, Jennifer; Beutler, John A.; Cuong, Nguyen Manh; Kim, Young Ho
2013-01-01
In research on anti-human immunodeficiency virus (HIV) agents from natural sources, thirty two extracts of Vietnamese plants and twenty five isolated compounds were screened for their inhibitory effect against the ribonuclease H (RNase H) activity of HIV-1 reverse transcriptase and the cytopathic effect of the HIV virus. At a concentration of 50 μg/mL, eleven plant extracts and five isolated compounds inhibited over 90 percent of RNase H enzymatic activity. Of these, the methanol extracts from the leaves of Phyllanthus reticulatus and Aglaia aphanamixis highly inhibited RNase H activity by 99% and 98%, respectively. Several fucoidans isolated from seaweeds Sargassum kuetzingii, Sargassum polycystum, and Gelidiella acerosa, as well as epigallocatechin-3-gallate isolated from Camellia chinensis also showed strong inhibitory effects over ninety percent. Sixteen plant extracts with inhibition of over seventy five percent in the RNase H assay were tested in a cellular model of HIV-1 cytopathicity; four extracts showed modest activity in protecting against the cytopathic effect of the HIV virus. PMID:21595586
Creation of a Long-Acting Nanoformulated 2′,3′-Dideoxy-3′-Thiacytidine
Guo, Dongwei; Zhou, Tian; Araínga, Mariluz; Palandri, Diana; Gautam, Nagsen; Bronich, Tatiana; Alnouti, Yazen; McMillan, JoEllyn; Edagwa, Benson
2017-01-01
Background: Antiretroviral drug discovery and formulation design will facilitate viral clearance in infectious reservoirs. Although progress has been realized for selected hydrophobic integrase and nonnucleoside reverse transcriptase inhibitors, limited success has been seen to date with hydrophilic nucleosides. To overcome these limitations, hydrophobic long-acting drug nanoparticles were created for the commonly used nucleoside reverse transcriptase inhibitor, lamivudine (2′,3′-dideoxy-3′-thiacytidine, 3TC). Methods: A 2-step synthesis created a slow-release long-acting hydrophobic 3TC. Conjugation of 3TC to a fatty acid created a myristoylated prodrug which was encased into a folate-decorated poloxamer 407. Both in vitro antiretroviral efficacy in human monocyte-derived macrophages and pharmacokinetic profiles in mice were evaluated for the decorated nanoformulated drug. Results: A stable drug formulation was produced by poloxamer encasement that improved monocyte–macrophage uptake, antiretroviral activities, and drug pharmacokinetic profiles over native drug formulations. Conclusions: Sustained release of long-acting antiretroviral therapy is a new therapeutic frontier for HIV/AIDS. 3TC depot formation in monocyte-derived macrophages can be facilitated through stable subcellular internalization and slow drug release. PMID:27559685
das Neves, José; Martins, João Pedro; Sarmento, Bruno
2016-08-01
Microbicides are being developed in order to prevent sexual transmission of HIV. Dapivirine, a non-nucleoside reverse transcriptase inhibitor, is one of the leading drug candidates in the field, currently being tested in various dosage forms, namely vaginal rings, gels, and films. In particular, a ring allowing sustained drug release for 1month is in an advanced stage of clinical testing. Two parallel phase III clinical trials are underway in sub-Saharan Africa and results are expected to be released in early 2016. This article overviews the development of dapivirine and its multiple products as potential microbicides, with particular emphasis being placed on clinical evaluation. Also, critical aspects regarding regulatory approval, manufacturing, distribution, and access are discussed. Copyright © 2015 Elsevier B.V. All rights reserved.
Off-Target Effects of Drugs that Disrupt Human Mitochondrial DNA Maintenance
Young, Matthew J.
2017-01-01
Nucleoside reverse transcriptase inhibitors (NRTIs) were the first drugs used to treat human immunodeficiency virus (HIV) the cause of acquired immunodeficiency syndrome. Development of severe mitochondrial toxicity has been well documented in patients infected with HIV and administered NRTIs. In vitro biochemical experiments have demonstrated that the replicative mitochondrial DNA (mtDNA) polymerase gamma, Polg, is a sensitive target for inhibition by metabolically active forms of NRTIs, nucleotide reverse transcriptase inhibitors (NtRTIs). Once incorporated into newly synthesized daughter strands NtRTIs block further DNA polymerization reactions. Human cell culture and animal studies have demonstrated that cell lines and mice exposed to NRTIs display mtDNA depletion. Further complicating NRTI off-target effects on mtDNA maintenance, two additional DNA polymerases, Pol beta and PrimPol, were recently reported to localize to mitochondria as well as the nucleus. Similar to Polg, in vitro work has demonstrated both Pol beta and PrimPol incorporate NtRTIs into nascent DNA. Cell culture and biochemical experiments have also demonstrated that antiviral ribonucleoside drugs developed to treat hepatitis C infection act as off-target substrates for POLRMT, the mitochondrial RNA polymerase and primase. Accompanying the above-mentioned topics, this review examines: (1) mtDNA maintenance in human health and disease, (2) reports of DNA polymerases theta and zeta (Rev3) localizing to mitochondria, and (3) additional drugs with off-target effects on mitochondrial function. Lastly, mtDNA damage may induce cell death; therefore, the possibility of utilizing compounds that disrupt mtDNA maintenance to kill cancer cells is discussed. PMID:29214156
QSAR Modeling Using Large-Scale Databases: Case Study for HIV-1 Reverse Transcriptase Inhibitors.
Tarasova, Olga A; Urusova, Aleksandra F; Filimonov, Dmitry A; Nicklaus, Marc C; Zakharov, Alexey V; Poroikov, Vladimir V
2015-07-27
Large-scale databases are important sources of training sets for various QSAR modeling approaches. Generally, these databases contain information extracted from different sources. This variety of sources can produce inconsistency in the data, defined as sometimes widely diverging activity results for the same compound against the same target. Because such inconsistency can reduce the accuracy of predictive models built from these data, we are addressing the question of how best to use data from publicly and commercially accessible databases to create accurate and predictive QSAR models. We investigate the suitability of commercially and publicly available databases to QSAR modeling of antiviral activity (HIV-1 reverse transcriptase (RT) inhibition). We present several methods for the creation of modeling (i.e., training and test) sets from two, either commercially or freely available, databases: Thomson Reuters Integrity and ChEMBL. We found that the typical predictivities of QSAR models obtained using these different modeling set compilation methods differ significantly from each other. The best results were obtained using training sets compiled for compounds tested using only one method and material (i.e., a specific type of biological assay). Compound sets aggregated by target only typically yielded poorly predictive models. We discuss the possibility of "mix-and-matching" assay data across aggregating databases such as ChEMBL and Integrity and their current severe limitations for this purpose. One of them is the general lack of complete and semantic/computer-parsable descriptions of assay methodology carried by these databases that would allow one to determine mix-and-matchability of result sets at the assay level.
de Brito, Monique Araújo; Rodrigues, Carlos Rangel; Cirino, José Jair Vianna; de Alencastro, Ricardo Bicca; Castro, Helena Carla; Albuquerque, Magaly Girão
2008-08-01
A series of 74 dihydroalkoxybenzyloxopyrimidines (DABOs), a class of highly potent non-nucleoside reverse transcriptase inhibitors (NNRTIs), was retrieved from the literature and studied by comparative molecular field analysis (CoMFA) in order to derive three-dimensional quantitative structure-activity relationship (3D-QSAR) models. The CoMFA study has been performed with a training set of 59 compounds, testing three alignments and four charge schemes (DFT, HF, AM1, and PM3) and using defaults probe atom (Csp (3), +1 charge), cutoffs (30 kcal.mol (-1) for both steric and electrostatic fields), and grid distance (2.0 A). The best model ( N = 59), derived from Alignment 1 and PM3 charges, shows q (2) = 0.691, SE cv = 0.475, optimum number of components = 6, r (2) = 0.930, SEE = 0.226, and F-value = 115.544. The steric and electrostatic contributions for the best model were 43.2% and 56.8%, respectively. The external predictive ability (r (2) pred = 0.918) of the resultant best model was evaluated using a test set of 15 compounds. In order to design more potent DABO analogues as anti-HIV/AIDS agents, attention should be taken in order to select a substituent for the 4-oxopyrimidine ring, since, as revealed by the best CoMFA model, there are a steric restriction at the C2-position, a electron-rich group restriction at the C6-position ( para-substituent of the 6-benzyl group), and a steric allowed region at the C5-position.
Himes, Sarah K; Scheidweiler, Karl B; Tassiopoulos, Katherine; Kacanek, Deborah; Hazra, Rohan; Rich, Kenneth; Huestis, Marilyn A
2013-02-05
A novel method for the simultaneous quantification of 16 antiretroviral (ARV) drugs and 4 metabolites in meconium was developed and validated. Quantification of 6 nucleoside/nucleotide reverse transcriptase inhibitors, 2 non-nucleoside reverse transcriptase inhibitors, 7 protease inhibitors, and 1 integrase inhibitor was achieved in 0.25 g of meconium. Specimen preparation included methanol homogenization and solid-phase extraction. Separate positive and negative polarity multiple reaction monitoring mode injections were required to achieve sufficient sensitivity. Linearity ranged from 10 to 75 ng/g up to 2500 ng/g for most analytes and 100-500 ng/g up to 25,000 ng/g for some; all correlation coefficients were ≥0.99. Extraction efficiencies from meconium were 32.8-119.5% with analytical recovery of 80.3-108.3% and total imprecision of 2.2-11.0% for all quantitative analytes. Two analytes with analytical recovery (70.0-138.5%) falling outside the 80-120% criteria range were considered semiquantitative. Matrix effects were -98.3-47.0% and -98.0-67.2% for analytes and internal standards, respectively. Analytes were stable (>75%) at room temperature for 24 h, 4 °C for 3 days, -20 °C for 3 freeze-thaw cycles over 3 days, and on the autosampler. Method applicability was demonstrated by analyzing meconium from HIV-uninfected infants born to HIV-positive mothers on ARV therapy. This method can be used as a tool to investigate the potential effects of in utero ARV exposure on childhood health and neurodevelopmental outcomes.
Zhang, Wei; Parniak, Michael A; Sarafianos, Stefan G; Empey, Philip E; Rohan, Lisa C
2014-06-05
4'-Ethynyl-2-fluoro-2'-deoxyadenosine (EFdA) is a novel nucleoside reverse transcriptase inhibitor with a unique mechanism of action and highly potent activity against both wild-type and clinically relevant drug resistant HIV-1 variants. Furthermore, in vivo efficacy and safety evaluations have shown EFdA to be a promising therapeutic candidate for use in the treatment of HIV infection. However, little is known about the pharmacokinetic and biopharmaceutical properties of EFdA. In this study, we evaluated cellular EFdA transport using Caco-2 and Madin-Darby Canine Kidney II (MDCKII) in vitro cell models. Studies using Caco-2 cell monolayers showed that EFdA efflux ratios were >2.0, suggesting that active drug transport mechanisms may play a role in EFdA flux. ABCB1 transporter (PGP1) inhibition was assessed using the acetomethoxy derivate of calcein (calcein-AM) as a fluorescent probe in both wild-type MDCKII and PGP1 overexpressing MDCKII cells. Nonetheless, our data showed that EFdA is not a substrate of PGP1. Additionally, comparative bidirectional flux of EFdA and Lucifer yellow (LY, a well-known paracellular marker) was studied over a range of EFdA concentrations. In MDCKII monolayers, EFdA had an apparent permeability coefficient (Papp) (a-b) of <1×10(-6)cm/s. The Papp values significantly increased in the presence of the paracellular permeability enhancer, indicating that EFdA primarily permeates via the paracellular route. Copyright © 2014 Elsevier B.V. All rights reserved.
Huang, Wan; Zheng, Wenwen; Ouyang, Handong; Yi, Hyun; Liu, Shue; Zeng, Weian; Levitt, Roy C; Candiotti, Keith A; Lubarsky, David A; Hao, Shuanglin
2014-03-01
In the human immunodeficiency virus (HIV)-associated sensory neuropathy, neuropathic pain associated with the use of nucleoside reverse transcriptase inhibitors (NRTIs) in patients with HIV/acquired immunodeficiency syndrome is clinically common. While evidence demonstrates that neuropathic pain is influenced by neuroinflammatory events that include the proinflammatory molecules, tumor necrosis factor-α (TNF-α), stromal cell-derived factor 1-α (SDF1-α), and C-X-C chemokine receptor type 4 (CXCR4), the detailed mechanisms by which NRTIs contribute to the development of neuropathic pain are not known. In this study, we investigated the role of these proinflammatory molecules in the dorsal root ganglion (DRG) and the spinal dorsal horn in NRTIs-mediated neuropathic pain state. Neuropathic pain was induced by intraperitoneal administration of 2',3'-dideoxycytidine (ddC, one of the NRTIs). Mechanical threshold was tested using von Frey filament fibers. Nonreplicating herpes simplex virus (HSV) vectors expressing p55 TNF soluble receptor (p55TNFSR) were inoculated into hindpaw of rats. The expression of TNF-α, SDF1-α, and CXCR4 in both the lumbar spinal cord and the L4/5 DRG was examined using Western blots. Intrathecal CXCR4 antagonist was administered. The present study demonstrated that (1) systemic ddC induced upregulation of TNF-α, SDF1-α, and CXCR4 in both the lumbar spinal cord and the L4/5 DRG; (2) p55TNFSR mediated by a nonreplicating HSV vector reversed mechanical allodynia induced by systemic ddC; (3) intrathecal administration of the CXCR4 antagonist AMD3100 increased mechanical threshold; and (4) HSV vector expressing p55TNFSR reversed upregulation of TNF-α, SDF1-α, and CXCR4 induced by ddC in the lumbar spinal dorsal horn and the DRG. Our studies demonstrate that TNF-α through the SDF1/CXCR4 system is involved in the NRTIs-related neuropathic pain state and that blocking the signaling of these proinflammatory molecules is able to reduce NRTIs-related neuropathic pain. These results provide a novel mechanism-based approach (gene therapy) to treating HIV-associated neuropathic pain.
Evidence for retrovirus infections in green turtles Chelonia mydas from the Hawaiian islands
Casey, R.N.; Quackenbush, S.L.; Work, Thierry M.; Balazs, G.H.; Bowser, P.R.; Casey, J.W.
1997-01-01
Apparently normal Hawaiian green turtles Chelonia mydas and those displaying fibropapillomas were analyzed for infection by retroviruses. Strikingly, all samples were positive for polymerase enhanced reverse transcriptase (PERT) with levels high enough to quantitate by the conventional reverse transcriptase (RT) assay. However, samples of skin, even from asymptomatic turtles, were RT positive, although the levels of enzyme activity in healthy turtles hatched and raised in captivity were much lower than those observed in asymptomatic free-ranging turtles. Turtles with fibropapillomas displayed a broad range of reverse transcriptase activity. Skin and eye fibropapillomas and a heart tumor were further analyzed and shown to have reverse transcriptase activity that banded in a sucrose gradient at 1.17 g ml-1. The reverse transcriptase activity purified from the heart tumor displayed a temperature optimum of 37??C and showed a preference for Mn2+ over Mg2+. Sucrose gradient fractions of this sample displaying elevated reverse transcriptase activity contained primarily retrovitalsized particles with prominent envelope spikes, when negatively stained and examined by electron microscopy. Sodium dodecylsulfate-polyacrylamide gel electrophoresis (SDS-PAGE) analysis of gradient-purified virions revealed a conserved profile among 4 independent tumors and showed 7 prominent proteins having molecular weights of 116, 83, 51, 43, 40, 20 and 14 kDa. The data suggest that retroviral infections are widespread in Hawaiian green turtles and a comprehensive investigation is warranted to address the possibility that these agents cause green turtle fibropapillomatosis (GTFP).
Kirstein, Lynn M.; Mellors, John W.; Rinaldo, Charles R.; Margolick, Joseph B.; Giorgi, Janis V.; Phair, John P.; Dietz, Edith; Gupta, Phalguni; Sherlock, Christopher H.; Hogg, Robert; Montaner, J. S. G.; Muñoz, Alvaro
1999-01-01
We conducted two studies to determine the potential influence of delays in blood processing, type of anticoagulant, and assay method on human immunodeficiency virus type 1 (HIV-1) RNA levels in plasma. The first was an experimental study in which heparin- and EDTA-anticoagulated blood samples were collected from 101 HIV-positive individuals and processed to plasma after delays of 2, 6, and 18 h. HIV-1 RNA levels in each sample were then measured by both branched-DNA (bDNA) and reverse transcriptase PCR (RT-PCR) assays. Compared to samples processed within 2 h, the loss (decay) of HIV-1 RNA in heparinized blood was significant (P < 0.05) but small after 6 h (bDNA assay, −0.12 log10 copies/ml; RT-PCR, −0.05 log10 copies/ml) and after 18 h (bDNA assay, −0.27 log10 copies/ml; RT-PCR, −0.15 log10 copies/ml). Decay in EDTA-anticoagulated blood was not significant after 6 h (bDNA assay, −0.002 log10 copies/ml; RT-PCR, −0.02 log10 copies/ml), but it was after 18 h (bDNA assay, −0.09 log10 copies/ml; RT-PCR, −0.09 log10 copies/ml). Only 4% of samples processed after 6 h lost more than 50% (≥0.3 log10 copies/ml) of the HIV-1 RNA, regardless of the anticoagulant or the assay that was used. The second study compared HIV-1 RNA levels in samples from the Multicenter AIDS Cohort Study (MACS; samples were collected in heparin-containing tubes in 1985, had a 6-h average processing delay, and were assayed by bDNA assay) and the British Columbia Drug Treatment Program (BCDTP) (collected in EDTA- or acid citrate dextrose-containing tubes in 1996 and 1997, had a 2-h maximum processing delay, and were assayed by RT-PCR). HIV-1 RNA levels in samples from the two cohorts were not significantly different after adjusting for CD4+-cell count and converting bDNA assay values to those corresponding to the RT-PCR results. In summary, the decay of HIV-1 RNA measured in heparinized blood after 6 h was small (−0.05 to −0.12 log10 copies/ml), and the minor impact of this decay on HIV-1 RNA concentrations in archived plasma samples of the MACS was confirmed by the similarity of CD4+-cell counts and assay-adjusted HIV-1 RNA concentrations in the MACS and BCDTP. PMID:10405379
García-Guerrero, Julio; Herrero, Agustín; Vera, Enrique; Almenara, José M; Araújo, Rosa; Saurí, Vicente V; Castellano, Juan C; Fernández-Clemente, Luis; Bedia, Miguel; Llorente, María I; González-Morán, Francisco
2002-03-02
Our purpose was to determine the prevalence of mutations of resistance to nucleoside inhibitors of reverse transcriptase (NIRT) and protease inhibitors (PI) in the HIV-1 genotype of naïve infected subjects in the prisons of the Autonomous Community of Valencia, Spain. Multicentric, descriptive, cross-sectional study of prevalence including a systematic stratified and randomised sampling by centres. Demographic, clinical, virological and immunological data were collected. The HIV gene of protease and transcriptase was studied in peripheral blood plasma samples by means of double PCR amplification and subsequent automatic sequence. Reference: wild strain HXB2. Plasma was obtained from 133 individuals (119 men and 14 women). 117 samples were selected and the rest did not have enough copies for transcription. With regard to NIRT, 7 samples (5.2% of total) showed some mutation of resistance: M41L, D67N, L210W and K219Q, all them secondary to and associated with resistance to zidovudine, abacavir as well as group B multinucleoside-resistance. With regard to PI, only one sample showed a primary mutation, M46I, which was associated with resistance to indinavir. Moreover, a further 41 samples were found to express some secondary mutation. In our series, there was a low number of primary mutations of resistance. These results allow us to exclude the systematic use of resistance tests before an initiation antiretroviral therapy.
Engineering RENTA, a DNA prime-MVA boost HIV vaccine tailored for Eastern and Central Africa.
Nkolola, J P; Wee, E G-T; Im, E-J; Jewell, C P; Chen, N; Xu, X-N; McMichael, A J; Hanke, T
2004-07-01
For the development of human immunodeficiency virus type 1 (HIV-1) vaccines, traditional approaches inducing virus-neutralizing antibodies have so far failed. Thus the effort is now focused on elicitation of cellular immunity. We are currently testing in clinical trials in the United Kingdom and East Africa a T-cell vaccine consisting of HIV-1 clade A Gag-derived immunogen HIVA delivered in a prime-boost regimen by a DNA plasmid and modified vaccinia virus Ankara (MVA). Here, we describe engineering and preclinical development of a second immunogen RENTA, which will be used in combination with the present vaccine in a four-component DNA/HIVA-RENTA prime-MVA/HIVA-RENTA boost formulation. RENTA is a fusion protein derived from consensus HIV clade A sequences of Tat, reverse transcriptase, Nef and gp41. We inactivated the natural biological activities of the HIV components and confirmed immunogenicities of the pTHr.RENTA and MVA.RENTA vaccines in mice. Furthermore, we demonstrated in mice and rhesus monkeys broadening of HIVA-elicited T-cell responses by a parallel induction of HIVA- and RENTA-specific responses recognizing multiple HIV epitopes.
Kenney, Jessica; Derby, Nina; Aravantinou, Meropi; Kleinbeck, Kyle; Frank, Ines; Gettie, Agegnehu; Grasperge, Brooke; Blanchard, James; Piatak, Michael; Lifson, Jeffrey D; Zydowsky, Thomas M; Robbiani, Melissa
2014-11-01
Epidemiological studies suggest that prevalent herpes simplex virus type 2 (HSV-2) infection increases the risk of HIV acquisition, underscoring the need to develop coinfection models to evaluate promising prevention strategies. We previously established a single high-dose vaginal coinfection model of simian human immunodeficiency virus (SHIV)/HSV-2 in Depo-Provera (DP)-treated macaques. However, this model does not appropriately mimic women's exposure. Repeated limiting dose SHIV challenge models are now used routinely to test prevention strategies, yet, at present, there are no reports of a repeated limiting dose cochallenge model in which to evaluate products targeting HIV and HSV-2. Herein, we show that 20 weekly cochallenges with 2-50 TCID50 simian human immunodeficiency virus reverse transcriptase (SHIV-RT) and 10(7) pfu HSV-2 results in infection with both viruses (4/6 SHIV-RT, 6/6 HSV-2). The frequency and level of vaginal HSV-2 shedding were significantly greater in the repeated exposure model compared to the single high-dose model (p<0.0001). We used this new model to test the Council's on-demand microbicide gel, MZC, which is active against SHIV-RT in DP-treated macaques and HSV-2 and human papillomavirus (HPV) in mice. While MZC reduced SHIV and HSV-2 infections in our repeated limiting dose model when cochallenging 8 h after each gel application, a barrier effect of carrageenan (CG) that was not seen in DP-treated animals precluded evaluation of the significance of the antiviral activity of MZC. Both MZC and CG significantly (p<0.0001) reduced the frequency and level of vaginal HSV-2 shedding compared to no gel treatment. This validates the use of this repeated limiting dose cochallenge model for testing products targeting HIV and HSV-2.
Oramasionwu, Christine U.; Brown, Carolyn M.; Lawson, Kenneth A.; Ryan, Laurajo; Skinner, Jeff; Frei, Christopher R.
2011-01-01
Objectives The benefit of improved health outcomes for blacks receiving highly active antiretroviral therapy (HAART) lags behind that of whites. This project therefore sought to determine whether the reason for this discrepancy in health outcomes could be attributed to disparities in use of antiretroviral therapy between black and white patients with HIV. Materials and Methods The 1996–2006 National Hospital Ambulatory Medical Care Surveys were used to identify hospital outpatient visits that documented antiretrovirals. Patients younger than 18 years, of nonblack or nonwhite race, and lacking documentation of antiretrovirals were excluded. A multivariable logistic regression model was constructed with race as the independent variable and use of HAART as the dependent variable. Results Approximately 3 million HIV/AIDS patient visits were evaluated. Blacks were less likely than whites to use HAART and protease inhibitors (odds ratio, 95% CI 0.81 [0.81–0.82] and 0.67 [0.67–0.68], respectively). More blacks than whites used non-nucleoside reverse transcriptase inhibitors (odds ratio, 95% CI 1.18 [1.17–1.18]). In 1996, the crude rates of HAART were relatively low for both black and white cohorts (5% vs 6%). The rise in HAART for blacks appeared to lag behind that of whites for several years, until 2002, when the proportion of blacks receiving HAART slightly exceeded the proportion of whites receiving HAART. In later years, the rates of HAART were similar for blacks and whites (81% vs 82% in 2006). Blacks appeared less likely than whites to use protease inhibitors and more likely than whites to use non-nucleoside reverse transcriptase inhibitors from 2000 to 2004. Conclusions Blacks experienced a lag in the use of antiretrovirals at the beginning of the study; this discrepancy dissipated in more recent years. PMID:22089356
Baroncelli, Silvia; Villani, Paola; Weimer, Liliana E; Ladisa, Nicoletta; Francisci, Daniela; Tommasi, Chiara; Vullo, Vincenzo; Preziosi, Roberta; Cicalini, Stefania; Cusato, Maria; Galluzzo, Clementina; Floridia, Marco; Regazzi, Mario
2010-05-01
Raltegravir and maraviroc represent new, important resources for HIV-infected patients with intolerance or resistance to other antiretroviral agents. The safety and efficacy of both drugs have been investigated, but there is no information on possible pharmacokinetic interactions between these 2 drugs in clinical practice. To evaluate raltegravir plasma concentrations in heavily treatment-experienced patients receiving salvage regimens and explore, in a preliminary assessment, the potential influence of maraviroc coadministration and other cofactors on raltegravir trough concentrations (C(trough)). Fifty-four HIV-infected patients with triple class (nucleoside reverse transcriptase inhibitor, nonnucleoside reverse transcriptase inhibitor, protease inhibitor) treatment experience starting raltegravir 400 mg twice daily, with (n = 11) or without (n = 43) concomitant maraviroc 300 mg twice daily, were evaluated. All regimens included at least 3 drugs of at least 2 different classes. Raltegravir plasma Ctrough, after at least 1 month of treatment, were analyzed to compare groups of patients taking raltegravir only and raltegravir plus maraviroc. Immunovirological (CD4, HIV-RNA) and clinical data after 6 months of treatment were also collected and described. Raltegravir plasma Ctrough showed a large variability (range <0.020-2.47 microg/mL). Median levels were similar in the 2 groups (raltegravir + maraviroc 0.104 microg/mL, range 0.025-0.826; raltegravir 0.090 microg/mL, range <0.020-2.47, p = 0.400). Detectable (>0.02 microg/mL) raltegravir concentrations were observed in all patients receiving raltegravir + maraviroc and in 74% of patients receiving raltegravir alone (p = 0.060). After 6 months of treatment, the 2 groups had similar clinical, virologic, and immunologic conditions. Coadministration of maraviroc does not seem to have any relevant effects on raltegravir plasma Ctrough in heavily treatment-experienced patients receiving salvage regimens. Further studies should evaluate the potential additional benefits of maraviroc coadministration in terms of virologic and immunologic response.
Santoro, Maria Mercedes; Di Carlo, Domenico; Armenia, Daniele; Zaccarelli, Mauro; Pinnetti, Carmela; Colafigli, Manuela; Prati, Francesca; Boschi, Andrea; Antoni, Anna Maria Degli; Lagi, Filippo; Sighinolfi, Laura; Gervasoni, Cristina; Andreoni, Massimo; Antinori, Andrea; Mussini, Cristina; Perno, Carlo Federico; Borghi, Vanni; Sterrantino, Gaetana
2017-09-22
Virological success (VS) and immunological reconstitution (IR) of antiretroviral-naive HIV-1-infected patients with pre-therapy viral load (VL) >500,000 copies/ml was assessed after 12 months of treatment according to initial drug-class regimens. An observational multicentre retrospective study was performed. VS was defined as the first VL <50 copies/ml from treatment start. IR was defined as an increase of at least 150 CD4 + T-lymphocytes from treatment start. Survival analysis was used to estimate the probability and predictors of VS and IR by 12 months of therapy. 428 HIV-1-infected patients were analysed. Patients were grouped according to the different first-line drug-classes used: a non-nucleoside reverse transcriptase inhibitor (NNRTI) plus two nucleoside reverse transcriptase inhibitors (NRTIs; NNRTI-group; n=105 [24.5%]); a protease inhibitor (PI) plus two NRTIs (PI-group; n=260 [60.8%]); a four-drug regimen containing a PI-regimen plus an integrase inhibitor (PI+INI-group; n=63 [14.7%]). Patients in the PI-group showed the lowest probability of VS (PI-group: 72.4%; NNRTI-group: 75.5%; PI+INI-group: 81.0%; P<0.0001). By Cox regression, patients in PI+INI and NNRTI-groups showed a higher adjusted hazard ratio (95% CI) of VS compared to those in the PI-group (PI+INI-group: 1.48 [1.08, 2.03]; P=0.014; NNRTI-group: 1.37 [1.06-1.78]; P=0.015). The probability of IR was 76.2%, and was similar among groups. Patients with AIDS showed a lower adjusted hazard ratio (95% CI) of IR compared to non-AIDS presenters (0.70 [0.54, 0.90]; P=0.005). In this multicentre retrospective study, patients with viraemia >500,000 copies/ml who start a first-line regimen containing PI+INI or NNRTI yield a better VS compared to those receiving a PI-based regimen.
Intravaginal ring delivery of the reverse transcriptase inhibitor TMC 120 as an HIV microbicide.
Woolfson, A David; Malcolm, R Karl; Morrow, Ryan J; Toner, Clare F; McCullagh, Stephen D
2006-11-15
TMC 120 (Dapivirine) is a potent non-nucleoside reverse transcriptase inhibitor that is presently being developed as a vaginal HIV microbicide. To date, most vaginal microbicides under clinical investigation have been formulated as single-dose semi-solid gels, designed for application to the vagina before each act of intercourse. However, a clear rationale exists for providing long-term, controlled release of vaginal microbicides in order to afford continuous protection against heterosexually transmitted HIV infection and to improve user compliance. In this study we report on the incorporation of various pharmaceutical excipients into TMC 120 silicone, reservoir-type intravaginal rings (IVRs) in order to modify the controlled release characteristics of the microbicide. The results demonstrate that TMC 120 is released in zero-order fashion from the rings over a 28-day period and that release parameters could be modified by the inclusion of release-modifying excipients in the IVR. The hydrophobic liquid excipient isopropyl myristate had little effect on steady-state daily release rates, but did increase the magnitude and duration of burst release in proportion to excipient loading in the IVR. By comparison, the hydrophobic liquid poly(dimethylsiloxane) had little effect on TMC 120 release parameters. A hydrophilic excipient, lactose, had the surprising effect of decreasing TMC 120 burst release while increasing the apparent steady-state daily release in a concentration-dependent manner. Based on previous cell culture data and vaginal physiology, TMC120 is released from the various ring formulations in amounts potentially capable of maintaining a protective vaginal concentration. It is further predicted that the observed release rates may be maintained for at least a period of 1 year from a single ring device. TMC 120 release profiles and the mechanical properties of rings could be modified by the physicochemical nature of hydrophobic and hydrophilic excipients incorporated into the IVRs.
Rojas Sánchez, Patricia; Prieto, Luis; Jiménez De Ory, Santiago; Fernández Cooke, Elisa; Navarro, Maria Luisa; Ramos, José Tomas; Holguín, África
2017-01-01
The most-used protease-inhibitor in children is Lopinavir-ritonavir (LPV/r), which provides durable suppression of viral load and increases CD4+T-counts. This study describes the virological outcome of the HIV-1-infected paediatric population exposed to LPV/r during 15 years in Spain. Patients from the Madrid Cohort of HIV-1-infected-children and adolescents exposed to LPV/r as different line therapy during 2000-2014 were selected. The baseline epidemiological-clinical features, viral suppression, changes in CD4+T-CD8+T cell counts and drug susceptibility were recorded before and during LPV/r exposure. Drug resistance mutations (DRM) were identified in viruses from samples collected until 2011. We predicted drug susceptibility to 19 antiretrovirals among those carrying DRM using the Stanford's HIVdb Algorithm. A total of 199 (37.3%) of the 534 patients from the cohort were exposed to LPV/r during 2000-2014 in first (group 1), second (group 2) or more line-therapies (group 3). Patients were mainly Spaniards (81.9%), perinatally infected (96.5%) with subtype-B (65.3%) and HIV-diagnosed before year 2000 (67.8%). The mean age at first LPV/r exposure was 9.7 years. After protease-inhibitor exposure, viral suppression was higher in groups 1 and 2 than in group 3. Viral suppression occurred in 87.5%, 68.6% and 64.8% patients from groups 1, 2 and 3, respectively. Among the 64 patients with available resistance data during LPV/r treatment, 27(42.3%) carried DRM to protease-inhibitor, 28 (58.3%) to reverse-transcriptase-inhibitors and 21 (43.7%) to non-reverse-transcriptase-inhibitors. Darunavir/ritonavir, atazanavir-ritonavir and tipranavir/ritonavir presented the highest susceptibility and nelfinavir the lowest. A better lymphocyte recovering occurred when protease-inhibitor was taken as part of a first-line regimen and a higher number of patients reached viral suppression. The least compromised antiretrovirals for rescue antiretroviral regimens, according to DRM in the LPV/r-exposed-paediatric cohort, were mainly the new protease inhibitors.
Gu, Lijun; Kawana-Tachikawa, Ai; Shiino, Teiichiro; Nakamura, Hitomi; Koga, Michiko; Kikuchi, Tadashi; Adachi, Eisuke; Koibuchi, Tomohiko; Ishida, Takaomi; Gao, George F; Matsushita, Masaki; Sugiura, Wataru; Iwamoto, Aikichi; Hosoya, Noriaki
2014-01-01
Drug resistance (DR) of HIV-1 can be examined genotypically or phenotypically. Although sequencing is the gold standard of the genotypic resistance testing (GRT), high-throughput GRT targeted to the codons responsible for DR may be more appropriate for epidemiological studies and public health research. We used a Japanese database to design and synthesize sequence-specific oligonucleotide probes (SSOP) for the detection of wild-type sequences and 6 DR mutations in the clade B HIV-1 reverse transcriptase region. We coupled SSOP to microbeads of the Luminex 100 xMAP system and developed a GRT based on the polymerase chain reaction (PCR)-SSOP-Luminex method. Sixteen oligoprobes for discriminating DR mutations from wild-type sequences at 6 loci were designed and synthesized, and their sensitivity and specificity were confirmed using isogenic plasmids. The PCR-SSOP-Luminex DR assay was then compared to direct sequencing using 74 plasma specimens from treatment-naïve patients or those on failing treatment. In the majority of specimens, the results of the PCR-SSOP-Luminex DR assay were concordant with sequencing results: 62/74 (83.8%) for M41, 43/74 (58.1%) for K65, 70/74 (94.6%) for K70, 55/73 (75.3%) for K103, 63/73 (86.3%) for M184 and 68/73 (93.2%) for T215. There were a number of specimens without any positive signals, especially for K65. The nucleotide position of A2723G, A2747G and C2750T were frequent polymorphisms for the wild-type amino acids K65, K66 and D67, respectively, and 14 specimens had the D67N mutation encoded by G2748A. We synthesized 14 additional oligoprobes for K65, and the sensitivity for K65 loci improved from 43/74 (58.1%) to 68/74 (91.9%). We developed a rapid high-throughput assay for clade B HIV-1 DR mutations, which could be customized by synthesizing oligoprobes suitable for the circulating viruses. The assay could be a useful tool especially for public health research in both resource-rich and resource-limited settings.
Raffi, F; Esser, S; Nunnari, G; Pérez-Valero, I; Waters, L
2016-10-01
In an era when most individuals with treated HIV infection can expect to live into old age, clinicians should proactively review their patients' current and future treatment needs and challenges. Clinical guidelines acknowledge that, in the setting of virological suppression, treatment switch may yield benefits in terms of tolerability, regimen simplification, adherence, convenience and long-term health considerations, particularly in the context of ageing. In this paper, we review evidence from six key clinical studies on switching virologically suppressed patients to regimens based on integrase strand transfer inhibitors (INSTIs), the antiretroviral class increasingly preferred as initial therapy in clinical guidelines. We review these studies and focus on the virological efficacy, safety, and tolerability of switching to INSTI-based regimens in suppressed HIV-positive individuals. We review the early switch studies SWITCHMRK and SPIRAL [assessing a switch from a ritonavir-boosted protease inhibitor (PI/r) to raltegravir (RAL)-containing regimens], together with data from STRATEGY-PI [assessing a switch to elvitegravir (EVG)-containing regimens; EVG/cobicistat (COBI)/emtricitabine (FTC)/tenofovir disoproxil fumarate (TDF) vs. remaining on a PI/r-containing regimen], STRATEGY-NNRTI [assessing a switch to EVG/COBI/FTC/TDF vs. continuation of a nonnucleoside reverse transcriptase inhibitor (NNRTI) and two nucleoside reverse transcriptase inhibitors (NRTIs)], STRIIVING [assessing a switch to a dolutegravir (DTG)-containing regimen (abacavir (ABC)/lamivudine (3TC)/DTG) vs. staying on the background regimen], and GS study 109 [assessing a switch to EVG/COBI/FTC/tenofovir alafenamide fumarate (TAF) vs. continuation of FTC/TDF-based regimens]. Switching to INSTI-containing regimens has been shown to support good virological efficacy, with evidence from two studies demonstrating superior virological efficacy for a switch to EVG-containing regimens. In addition, switching to INSTI regimens was associated with improved tolerability and greater reported patient satisfaction and outcomes in some studies. INSTI-based regimens offer an important contemporary switch option that may be tailored to meet and optimize the needs of many patients. © 2016 British HIV Association.
Base modifications affecting RNA polymerase and reverse transcriptase fidelity.
Potapov, Vladimir; Fu, Xiaoqing; Dai, Nan; Corrêa, Ivan R; Tanner, Nathan A; Ong, Jennifer L
2018-06-20
Ribonucleic acid (RNA) is capable of hosting a variety of chemically diverse modifications, in both naturally-occurring post-transcriptional modifications and artificial chemical modifications used to expand the functionality of RNA. However, few studies have addressed how base modifications affect RNA polymerase and reverse transcriptase activity and fidelity. Here, we describe the fidelity of RNA synthesis and reverse transcription of modified ribonucleotides using an assay based on Pacific Biosciences Single Molecule Real-Time sequencing. Several modified bases, including methylated (m6A, m5C and m5U), hydroxymethylated (hm5U) and isomeric bases (pseudouridine), were examined. By comparing each modified base to the equivalent unmodified RNA base, we can determine how the modification affected cumulative RNA polymerase and reverse transcriptase fidelity. 5-hydroxymethyluridine and N6-methyladenosine both increased the combined error rate of T7 RNA polymerase and reverse transcriptases, while pseudouridine specifically increased the error rate of RNA synthesis by T7 RNA polymerase. In addition, we examined the frequency, mutational spectrum and sequence context of reverse transcription errors on DNA templates from an analysis of second strand DNA synthesis.
FDA approves efavirenz. Food and Drug Administration.
Highleyman, L
1998-10-01
The Food and Drug Administration (FDA) approved DuPont Pharma's new non-nucleoside reverse transcriptase inhibitor (NNRTI) efavirenz (Sustiva, DMP-266). Efavirenz has shown promise in trials with over 2000 participants for up to 24 weeks, and early data suggests it may be as effective as protease inhibitors when used in a combination regimen. It is the first anti-HIV drug approved for once-daily dosing. Efavirenz is well tolerated, and the main side effects reported are dizziness, insomnia, abnormal dreams, and skin rash. Efavirenz has been approved for adults and children, but should not be used by pregnant women. Contact information is provided.
Tenofovir-induced kidney injury.
Gitman, Michael D; Hirschwerk, David; Baskin, Cindy H; Singhal, Pravin C
2007-03-01
Tenofovir disoproxil fumarate is a nucleotide reverse transcriptase inhibitor with activity against both HIV and the hepatitis B virus. It has had minimal nephrotoxic effects in early clinical trials, but as clinical use has widened, case reports describing tenofovir-induced renal tubular damage, Fanconi's syndrome and diabetes insipidus have been described. The authors review the pharmacokinetics, mechanism of action and clinical uses of tenofovir disoproxil fumarate. The large clinical trials, as well as the case reports of tenofovir-induced kidney injury, are also reviewed. The potential mechanism of renal damage is discussed and recommendations for evaluation and treatment of tenofovir-induced kidney injury are given.
Effects of nutritional supplementation on children with HIV/AIDS in China.
Maggie, Zgambo; He, Guoping; Wang, Honghong
2012-03-01
The purpose of the review was to explore the effects of nutritional supplements in children with HIV/AIDS. Nutritional supplements were found to have both positive and negative effects in HIV/ AIDS children. It was found that selenium helps to boost immunity. Vitamin D supplementation was found to delay mother to child transmission (MTCT) of HIV and to reduce stunted growth associated with persistent diarrhea. Vitamins B, C, and E were found to delay HIV disease progression, reduce oxidative stress and HIV viral load. Multivitamin supplementation was found to be more effective in delaying HIV disease progression. Protein nutrition was found to improve cognitive and motor developments of children as well as helping HIV-positive children achieve 100% weight for height. Some nutrient supplements, however, were found to have negative effects on HIV/AIDS children. Vitamin A was found to double the risk of mortality of HIV/AIDS in infants exposed to HIV via breastfeeding. Zinc was found to have a positive effect on production of infectious virus through its action on reverse transcriptase. Some micronutrional interact with each other leading to harmful side effects such as diarrhea. Some nutritional supplements interact with antiretroviral drugs leading to treatment failure. It is important for children to be given right doses of nutritional supplements and that their immune system should be closely monitored.
Global asymptotic stability for HIV-1 dynamics with two distributed delays.
Wang, Jinliang; Huang, Gang; Takeuchi, Yasuhiro
2012-09-01
Based on the drugs treatment to control HIV-1 infection and viral replication, we express the intracellular eclipse phase of virions in host cell as distributed delays because of pharmacological actions. In present paper, we investigate a class of HIV-1 infection dynamical model with two distributed delays. One of them describes the period between the time that HIV virion enters (infects) target cell and the time that the infected cell starts to produce new viral particles. The other describes the time for the virion maturation process. They are both allowed to tend to be infinite because of drugs resistent strains. By the Lyapunov direct method of and utilizing the technology of constructing Lyapunov functionals, we identify the basic reproduction number R(0) as a threshold quantity for the stability of equilibria. More precisely, if R(0) ≤ 1, the infection-free equilibrium is globally asymptotically stable; on the contrary, if R(0) > 1, then an infected equilibrium appears which is globally asymptotically stable. The dynamical results indicate that time delays have effect on the global stability of two equilibria through threshold value R(0), which is a decreasing function of delays. The biological meanings imply that any drugs that can prolong the time of viral reproduction through slowing down the reverse transcription of HIV in host and virus maturation process may also help control the HIV-1 infection and virus loads. Another way to increase the efficacy of the protease inhibitor and the reverse transcriptase inhibitor (i.e. increasing n(p) and n(rt)) is also desirable treatment strategies.
NASA Astrophysics Data System (ADS)
Chaurasiya, Kathy R.; McCauley, Micah J.; Wang, Wei; Qualley, Dominic F.; Wu, Tiyun; Kitamura, Shingo; Geertsema, Hylkje; Chan, Denise S. B.; Hertz, Amber; Iwatani, Yasumasa; Levin, Judith G.; Musier-Forsyth, Karin; Rouzina, Ioulia; Williams, Mark C.
2014-01-01
The human APOBEC3 proteins are a family of DNA-editing enzymes that play an important role in the innate immune response against retroviruses and retrotransposons. APOBEC3G is a member of this family that inhibits HIV-1 replication in the absence of the viral infectivity factor Vif. Inhibition of HIV replication occurs by both deamination of viral single-stranded DNA and a deamination-independent mechanism. Efficient deamination requires rapid binding to and dissociation from ssDNA. However, a relatively slow dissociation rate is required for the proposed deaminase-independent roadblock mechanism in which APOBEC3G binds the viral template strand and blocks reverse transcriptase-catalysed DNA elongation. Here, we show that APOBEC3G initially binds ssDNA with rapid on-off rates and subsequently converts to a slowly dissociating mode. In contrast, an oligomerization-deficient APOBEC3G mutant did not exhibit a slow off rate. We propose that catalytically active monomers or dimers slowly oligomerize on the viral genome and inhibit reverse transcription.
Huang, Yang; Li, Zhenpeng; Xing, Hui; Jiao, Yang; Ouyang, Yabo; Liao, Lingjie; Jiang, Shibo; Armstrong, Rebecca; Shao, Yiming; Ma, Liying
2014-01-01
The polymorphisms involved in drug resistance to non-nucleoside reverse transcriptase inhibitors (NNRTIs) in HIV-1 CRF_BC, the most prevalent HIV-1 strain in China, have been poorly characterized. To reveal the drug resistance mutations, we compared the gene sequences of pol region of HIV-1 CRF_BC from 631 treatment-naïve and 363 treatment-experienced patients using the selection pressure-based method. We calculated an individual Ka/Ks value for each specific amino acid mutation. Result showed that eight polymorphic mutations (W88C, K101Q, I132L, R135L, T139K/R, H221Y and L228R) in RT for treatment-experienced patients were identified, while they, except for R135L, were completely absent in those from treatment-naïve patients. The I132L and T139K/R mutants exhibited high-level resistance to DLV and NVP and moderate resistance to TMC-125 and EFV, while the K101Q and H221Y mutants exhibited an increased resistance to all four NNRTIs tested. The W88C, R135L, and L228R may be RTI-induced adaptive mutations. Y181C+K101Q mutant showed a 2.5-, 4.4-, and 4.7-fold higher resistance to TMC-125, NVP and EFV, respectively, than Y181C alone mutant, while Y181C+H221Y or K103N+H221Y mutants had significantly higher resistance to all four NNRTIs than Y181C or K103N mutants. K103N+T139K and G190A+T139K mutant induce higher resistance (2.0∼14.2-fold and 1.5∼7.2-fold, respectively) to all four NNRTIs than K103N or G190A alone mutation. I132L and T139K/R are rare but critical mutations associated with NNRTI-resistance for some NNRTIs. K101Q, H221Y and T139K can enhance K103N/Y181C/G190A-assocated NNRTI-resistance. Monitoring these mutations will provide useful information for rational design of the NNRTI-based antiretroviral regimen for HIV-1 CRF_BC-infected patients.
Caragounis, E-C; Gisslén, M; Lindh, M; Nordborg, C; Westergren, S; Hagberg, L; Svennerholm, B
2008-02-01
HIV-1 infects the central nervous system (CNS) early in the course of infection. However, it is not known to what extent the virus evolves independently within the CNS and whether the HIV-RNA in cerebrospinal fluid (CSF) reflects the viral population replicating within the brain parenchyma or the systemic infection. The aim of this study was to investigate HIV-1 evolution in the CNS and the origin of HIV-1 in CSF. Longitudinally derived paired blood and CSF samples and post-mortem samples from CSF, brain and spleen were collected over a period of up to 63 months from three HIV-1 infected men receiving antiretroviral treatment and presenting with symptoms of AIDS dementia complex (ADC). Phylogenetic analyses of HIV-1 V3, reverse transcriptase (RT) and protease sequences from patient isolates suggest compartmentalization with distinct viral strains in blood, CSF and brain. We found a different pattern of RT and accessory protease mutations in the systemic infection compared to the CNS. We conclude that HIV-1 may to some extent evolve independently in the CNS and the viral population in CSF mainly reflects the infection in the brain parenchyma in patients with ADC. This is of importance in understanding HIV pathogenesis and can have implications on treatment of HIV-1 patients.
Caridha, Rozina; Ha, Tran Thi Thanh; Gaseitsiwe, Simani; Hung, Pham Viet; Anh, Nguyen Mai; Bao, Nguyen Huy; Khang, Dinh Duy; Hien, Nguyen Tran; Cam, Phung Dac; Chiodi, Francesca
2012-01-01
Abstract Characterization of HIV-1 strains is important for surveillance of the HIV-1 epidemic. In Vietnam HIV-1-infected pregnant women often fail to receive the care they are entitled to. Here, we analyzed phylogenetically HIV-1 env sequences from 37 HIV-1-infected pregnant women from Ha Noi (n=22) and Hai Phong (n=15), where they delivered in 2005–2007. All carried CRF01_AE in the gp120 V3 region. In 21 women CRF01_AE was also found in the reverse transcriptase gene. We compared their env gp120 V3 sequences phylogenetically in a maximum likelihood tree to those of 198 other CRF01_AE sequences in Vietnam and 229 from neighboring countries, predominantly Thailand, from the HIV-1 database. Altogether 464 sequences were analyzed. All but one of the maternal sequences colocalized with sequences from northern Vietnam. The maternal sequences had evolved the least when compared to sequences collected in Ha Noi in 2002, as shown by analysis of synonymous and nonsynonymous changes, than to other Vietnamese sequences collected earlier and/or elsewhere. Since the HIV-1 epidemic in women in Vietnam may still be underestimated, characterization of HIV-1 in pregnant women is important to observe how HIV-1 has evolved and follow its molecular epidemiology. PMID:21936713
Brewinski, Margaret; Megazzini, Karen; Freimanis Hance, Laura; Cruz, Miguel Cashat; Pavia-Ruz, Noris; Della Negra, Marinella; Ferreira, Flavia Gomes Faleiro; Marques, Heloisa
2011-01-01
In order to describe the prevalence of hypercholesterolemia and hypertriglyceridemia in a cohort of HIV-infected children and adolescents in Latin America and to determine associations with highly active antiretroviral therapy (HAART), we performed this cross-sectional analysis within the NICHD International Site Development Initiative pediatric cohort study. Eligible children had to be at least 2 years of age and be on HAART. Among the 477 eligible HIV-infected youth, 98 (20.5%) had hypercholesterolemia and 140 (29.4%) had hypertriglyceridemia. In multivariable analyses, children receiving protease inhibitor (PI)-containing HAART were at increased risk for hypercholesterolemia [adjusted odds ratio (AOR) = 2.7, 95% confidence interval (CI) 1.3–5.6] and hypertriglyceridemia (AOR = 3.5, 95% CI 1.9–6.4) compared with children receiving non-nucleoside reverse transcriptase inhibitor (NNRTI)-containing HAART. In conclusion, HIV-infected youth receiving PI-containing HAART in this Latin American cohort were at increased risk for hypercholesterolemia and hypertriglyceridemia compared with those receiving NNRTI-containing HAART. PMID:20889625
Soft shell clams Mya arenaria with disseminated neoplasia demonstrate reverse transcriptase activity
House, M.L.; Kim, C.H.; Reno, P.W.
1998-01-01
Disseminated neoplasia (DN), a proliferative cell disorder of the circulatory system of bivalves, was first reported in oysters in 1969. Since that time, the disease has been determined to be transmissible through water-borne exposure, but the etiological agent has not been unequivocally identified. In order to determine if a viral agent, possibly a retrovirus, could be the causative agent of DN, transmission experiments were performed, using both a cell-free filtrate and a sucrose gradient-purified preparation of a cell-free filtrate of DN positive materials. Additionally, a PCR-enhanced reverse transcriptase assay was used to determine if reverse transcriptase was present in tissues or hemolymph from DN positive soft shell clams Mya arenaria. DN was transmitted to healthy clams by injection with whole DN cells, but not with cell-free flitrates prepared from either tissues from DN positive clams, or DN cells. The cell-free preparations from DN-positive tissues and hemolymph having high levels of DN cells in circulation exhibited positive reactions in the PCR-enhanced reverse transcriptase assay. Cell-free preparations of hemolymph from clams having low levels of DN (<0.1% of cells abnormal), hemocytes from normal soft shell clams, and normal soft shell clam tissues did not produce a positive reaction in the PCR enhanced reverse transcriptase assay.
Urokinase–urokinase receptor interaction mediates an inhibitory signal for HIV-1 replication
Alfano, Massimo; Sidenius, Nicolai; Panzeri, Barbara; Blasi, Francesco; Poli, Guido
2002-01-01
Elevated levels of soluble urokinase-type plasminogen activator (uPA) receptor, CD87/u-PAR, predict survival in individuals infected with HIV-1. Here, we report that pro-uPA (or uPA) inhibits HIV-1 expression in U937-derived chronically infected promonocytic U1 cells stimulated with phorbol 12-myristate 13-acetate (PMA) or tumor necrosis factor-α (TNF-α). However, pro-uPA did not inhibit PMA or TNF-α-dependent activation of nuclear factor-kB or activation protein-1 in U1 cells. Cell-associated HIV protein synthesis also was not decreased by pro-uPA, although the release of virion-associated reverse transcriptase activity was substantially inhibited, suggesting a functional analogy between pro-uPA and the antiviral effects of IFNs. Indeed, cell disruption reversed the inhibitory effect of pro-uPA on activated U1 cells, and ultrastructural analysis confirmed that virions were preferentially retained within cell vacuoles in pro-uPA treated cells. Neither expression of endogenous IFNs nor activation of the IFN-inducible Janus kinase/signal transducer and activator of transcription pathway were induced by pro-uPA. Pro-uPA also inhibited acute HIV replication in monocyte-derived macrophages and activated peripheral blood mononuclear cells, although with great inter-donor variability. However, pro-uPA inhibited HIV replication in acutely infected promonocytic U937 cells and in ex vivo cultures of lymphoid tissue infected in vitro. Because these effects occurred at concentrations substantially lower than those affecting thrombolysis, pro-uPA may represent a previously uncharacterized class of antiviral agents mimicking IFNs in their inhibitory effects on HIV expression and replication. PMID:12084931
Theoretical benefits of mitogen applications for HIV-1 infections.
Wimer, B M; Morris, R E
1997-06-01
Ideal treatment of HIV-1 infections should include an agent that can reverse the capacity of the virus to evade destruction by hiding in sanctuaries and by frequently mutating the epitopes it displays. The rapid proliferation of virions during the years of symptomatic quiescence obligates rapid replacement of CD4+ lymphocytes that leads to a gradual attrition of the T lymphocytes needed to control infections. In vitro evidences suggest that, given systematically, certain mitogenic lectins would interfere with HIV-1 invasion of CD4+ cells by blocking gp120 molecules on the viral membrane before activating T lymphocytes subsequent to binding with their Ti/CD3 molecules. The nonspecific nature of antiviral effector cells generated by this activation should circumvent HIV-1 mutations at the same time it reconstitutes depleted T lymphocytes, stimulates myelopoiesis, and reinforces resistance to malignancies and infections prevalent with the immunodeficiency state. Properly coordinating these effects with appropriate combinations of reverse transcriptase and protease inhibitors could theoretically expedite complete elimination of HIV in a timely fashion that shorten the required treatment duration and excludes the detrimental effects of virus mutations. The proper sequence of this treatment should be maximum reduction of the HIV-1 load with drug combinations, control of complicating infection by other means to reduce mitogen-induced tissue necrosis, and addition of systemic PHA-L4 administration regulated to maintain a 5-10 micrograms/mL serum concentration. The antiviral regimen should be continued an undetermined time beyond when HIV-1 is no longer detectable, and systemic L4 administration until satisfactory immunologic and hematologic competences are re-established. Partially-matched mitogen-activated adoptive leukocyte therapy might be additionally helpful.
Finding Relational Associations in HIV Resistance Mutation Data
NASA Astrophysics Data System (ADS)
Richter, Lothar; Augustin, Regina; Kramer, Stefan
HIV therapy optimization is a hard task due to rapidly evolving mutations leading to drug resistance. Over the past five years, several machine learning approaches have been developed for decision support, mostly to predict therapy failure from the genotypic sequence of viral proteins and additional factors. In this paper, we define a relational representation for an important part of the data, namely the sequences of a viral protein (reverse transcriptase), their mutations, and the drug resistance(s) associated with those mutations. The data were retrieved from the Los Alamos National Laboratories' (LANL) HIV databases. In contrast to existing work in this area, we do not aim directly for predictive modeling, but take one step back and apply descriptive mining methods to develop a better understanding of the correlations and associations between mutations and resistances. In our particular application, we use the Warmr algorithm to detect non-trivial patterns connecting mutations and resistances. Our findings suggest that well-known facts can be rediscovered, but also hint at the potential of discovering yet unknown associations.
Alopecia areata associated with abacavir therapy.
Kim, Hee-Sung; Shin, Hyoung-Shik
2014-06-01
Abacavir is a nucleoside reverse-transcriptase inhibitor that has been approved for use in combination with other retroviral agents in the treatment of HIV infection. Common adverse reactions include headache, fatigue, nausea, and rash. A fatal hypersensitivity reaction may occur in 5% of patients receiving abacavir; therefore, screening for HLA-B5701 should be performed before starting abacavir. Alopecia areata (AA) is infrequently reported in HIV-infected patients. Certain underlying conditions have been associated with AA, including a decreased CD4:CD8 ratio related to the progression of HIV infection, some opportunistic infections, and syphilis. Several antiretroviral drugs, such as zidovudine, indinavir, indinavir/ritonavir, lopinavir/ritonavir, and atazanavir/ritonavir have been implicated in the development of AA. At present, the occurrence of AA has not been associated with abacavir use. We cannot exclude that the use of abacavir and the development of AA could be coincidental. Nevertheless, patients given abacavir should be monitored for hair loss and the drug discontinued promptly if such signs appear.
Tietjen, Ian; Gatonye, Teresia; Ngwenya, Barbara N; Namushe, Amos; Simonambanga, Sundana; Muzila, Mbaki; Mwimanzi, Philip; Xiao, Jianbo; Fedida, David; Brumme, Zabrina L; Brockman, Mark A; Andrae-Marobela, Kerstin
2016-09-15
Human Immunodeficiency Virus (HIV) strains resistant to licensed anti-retroviral drugs (ARVs) continue to emerge. On the African continent, uneven access to ARVs combined with occurrence of side-effects after prolonged ARV therapy have led to searches for traditional medicines as alternative or complementary remedies to conventional HIV/AIDS management. Here we characterize a specific three-step traditional HIV/AIDS treatment regimen consisting of Cassia sieberiana root, Vitex doniana root, and Croton megalobotrys bark by combining qualitative interviews of traditional medical knowledge users in Botswana with in vitro HIV replication studies. Crude extracts from a total of seven medicinal plants were tested for in vitro cytotoxicity and inhibition of wild-type (NL4.3) and ARV-resistant HIV-1 replication in an immortalized GFP-reporter CD4+ T-cell line. C. sieberiana root, V. doniana root, and C. megalobotrys bark extracts inhibited HIV-1NL4.3 replication with dose-dependence and without concomitant cytotoxicity. C. sieberiana and V. doniana extracts inhibited HIV-1 replication by 50% at 84.8µg/mL and at 25µg/mL, respectively, while C. megalobotrys extracts inhibited HIV-1 replication by a maximum of 45% at concentrations as low as 0.05µg/mL. Extracts did not interfere with antiviral activities of licensed ARVs when applied in combination and exhibited comparable efficacies against viruses harboring major resistance mutations to licensed protease, reverse-transcriptase, or integrase inhibitors. We report for the first time a three-step traditional HIV/AIDS regimen, used alone or in combination with standard ARV regimens, where each step exhibited more potent ability to inhibit HIV replication in vitro. Our observations support the "reverse pharmacology" model where documented clinical experiences are used to identify natural products of therapeutic value. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.
Yu, Donglei; Wild, Carl T; Martin, David E; Morris-Natschke, Susan L; Chen, Chin-Ho; Allaway, Graham P; Lee, Kuo-Hsiung
2005-06-01
Although HIV infection is now primarily treated with reverse transcriptase and protease inhibitors, HIV therapy must look toward new drugs with novel mechanism(s) of action to both improve efficacy and address the growing problem of drug resistance. Using natural products as a source of biologically active compounds, our drug discovery program has successfully optimised the natural product betulinic acid to the first-in-class maturation inhibitor 3-O-(3',3'-dimethylsuccinyl)-betulinic acid (DSB). DSB's unique viral target has been identified as a late step in Gag processing. Specifically, it inhibits the cleavage of the capsid precursor, CA-SP1, resulting in a block to the processing of mature capsid protein leading to a defect in viral core condensation. DSB represents a unique class of anti-HIV compounds that inhibit virus maturation and provide additional opportunities for anti-HIV therapy. In this review, the discovery of DSB and its mode of action are summarised. Anti-AIDS Agents part 64. For part 63 in the series, see YU D, LEE KH: Recent progress and prospects on plant-derived anti-HIV agents and analogs. In: Medicinal Chemistry of Bioactive Natural Products. XT Liang, WS Fang (Eds), Wiley, New York, USA (2005) (In Press).
Heipertz, Richard A; Sanders-Buell, Eric; Kijak, Gustavo; Howell, Shana; Lazzaro, Michelle; Jagodzinski, Linda L; Eggleston, John; Peel, Sheila; Malia, Jennifer; Armstrong, Adam; Michael, Nelson L; Kim, Jerome H; O'Connell, Robert J; Scott, Paul T; Brett-Major, David M; Tovanabutra, Sodsai
2013-10-01
The U.S. military represents a unique population within the human immunodeficiency virus 1 (HIV-1) pandemic. The last comprehensive study of HIV-1 in members of the U.S. Navy and Marine Corps (Sea Services) was completed in 2000, before large-scale combat operations were taking place. Here, we present molecular characterization of HIV-1 from 40 Sea Services personnel who were identified during their seroconversion window and initially classified as HIV-1 negative during screening. Protease/reverse transcriptase (pro/rt) and envelope (env) sequences were obtained from each member of the cohort. Phylogenetic analyses were carried out on these regions to determine relatedness within the cohort and calculate the most recent common ancestor for the related sequences. We identified 39 individuals infected with subtype B and one infected with CRF01_AE. Comparison of the pairwise genetic distance of Sea Service sequences and reference sequences in the env and pro/rt regions showed that five samples were part of molecular clusters, a group of two and a group of three, confirmed by single genome amplification. Real-time molecular monitoring of new HIV-1 acquisitions in the Sea Services may have a role in facilitating public health interventions at sites where related HIV-1 infections are identified.
Safety of Perinatal Exposure to Antiretroviral Medications: Developmental Outcomes in Infants
Sirois, Patricia A.; Huo, Yanling; Williams, Paige L.; Malee, Kathleen; Garvie, Patricia A.; Kammerer, Betsy; Rich, Kenneth; Van Dyke, Russell B.; Nozyce, Molly L.
2013-01-01
Background This study evaluated effects of perinatal exposure to antiretroviral (ARV) medications on neurodevelopment of HIV-exposed, uninfected infants. Methods HIV-exposed, uninfected infants (age 9-15 months) enrolled in SMARTT, a multisite prospective surveillance study, completed the Bayley Scales of Infant and Toddler Development—Third Edition (Bayley-III), assessing cognition, language, motor skills, social-emotional development, and adaptive behavior. Linear regression models were used to evaluate associations between Bayley-III outcomes in infants with and without perinatal and neonatal ARV exposure, by regimen (combination ARV [cARV] versus non-cARV), type of regimen (defined by drug class), and individual ARVs (for infants with cARV exposure), adjusting for maternal and infant health and demographic covariates. Results As of May 2010, 374 infants had valid Bayley-III evaluations. Median age at testing was 12.7 months; 49% male, 79% black, 16% Hispanic. Seventy-nine percent were exposed to regimens containing protease inhibitors (PIs; 9% of PI-containing regimens also included non-nucleoside reverse transcriptase inhibitors [NNRTIs]), 5% to regimens containing NNRTIs (without PI), and 14% to regimens containing only nucleoside reverse transcriptase inhibitors (NRTIs). Overall, 83% were exposed to cARV. No Bayley-III outcome was significantly associated with overall exposure to cARV, ARV regimen, or neonatal prophylaxis. For individual ARVs, following sensitivity analyses, the adjusted group mean on the Language domain was within age expectations but significantly lower for infants with perinatal exposure to atazanavir (p=0.01). Conclusions These results support the safety of perinatal ARV use. Continued monitoring for adverse neurodevelopmental outcomes in older children is warranted, and the safety of atazanavir merits further study. PMID:23340561
Acevedo-Sáenz, Liliana; Ochoa, Rodrigo; Rugeles, Maria Teresa; Olaya-García, Patricia; Velilla-Hernández, Paula Andrea; Diaz, Francisco J.
2015-01-01
One of the main characteristics of the human immunodeficiency virus is its genetic variability and rapid adaptation to changing environmental conditions. This variability, resulting from the lack of proofreading activity of the viral reverse transcriptase, generates mutations that could be fixed either by random genetic drift or by positive selection. Among the forces driving positive selection are antiretroviral therapy and CD8+ T-cells, the most important immune mechanism involved in viral control. Here, we describe mutations induced by these selective forces acting on the pol gene of HIV in a group of infected individuals. We used Maximum Likelihood analyses of the ratio of non-synonymous to synonymous mutations per site (dN/dS) to study the extent of positive selection in the protease and the reverse transcriptase, using 614 viral sequences from Colombian patients. We also performed computational approaches, docking and algorithmic analyses, to assess whether the positively selected mutations affected binding to the HLA molecules. We found 19 positively-selected codons in drug resistance-associated sites and 22 located within CD8+ T-cell epitopes. A high percentage of mutations in these epitopes has not been previously reported. According to the docking analyses only one of those mutations affected HLA binding. However, algorithmic methods predicted a decrease in the affinity for the HLA molecule in seven mutated peptides. The bioinformatics strategies described here are useful to identify putative positively selected mutations associated with immune escape but should be complemented with an experimental approach to define the impact of these mutations on the functional profile of the CD8+ T-cells. PMID:25803098
Rutvisuttinunt, Wiriya; Meyer, Peter R.; Scott, Walter A.
2008-01-01
Background Human immunodeficiency virus type 1 reverse transcriptase (HIV-1 RT) forms stable ternary complexes in which RT is bound tightly at fixed positions on the primer-template (P/T). We have probed downstream interactions between RT and the template strand in the complex containing the incoming dNTP (+1 dNTP•RT•P/T complex) and in the complex containing the pyrophosphate analog, foscarnet (foscarnet•RT•P/T complex). Methods and Results UV-induced cross-linking between RT and the DNA template strand was most efficient when a bromodeoxyuridine residue was placed in the +2 position (the first template position downstream from the incoming dNTP). Furthermore, formation of the +1 dNTP•RT•P/T complex on a biotin-containing template inhibited binding of streptavidin when biotin was in the +2 position on the template but not when the biotin was in the +3 position. Streptavidin pre-bound to a biotin residue in the template caused RT to stall two to three nucleotides upstream from the biotin residue. The downstream border of the complex formed by the stalled RT was mapped by digestion with exonuclease RecJF. UV-induced cross-linking of the complex formed by the pyrophosphate analog, foscarnet, with RT and P/T occurred preferentially with bromodeoxyuridine in the +1 position on the template in keeping with the location of RT one base upstream in the foscarnet•RT•P/T complex (i.e., in the pre-translocation position). Conclusions For +1 dNTP•RT•P/T and foscarnet•RT•P/T stable complexes, tight interactions were observed between RT and the first unpaired template nucleotide following the bound dNTP or the primer terminus, respectively. PMID:18974785
Curious discoveries in antiviral drug development: the role of serendipity.
De Clercq, Erik
2015-07-01
Antiviral drug development has often followed a curious meandrous route, guided by serendipity rather than rationality. This will be illustrated by ten examples. The polyanionic compounds (i) polyethylene alanine (PEA) and (ii) suramin were designed as an antiviral agent (PEA) or known as an antitrypanosomal agent (suramin), before they emerged as, respectively, a depilatory agent, or reverse transcriptase inhibitor. The 2',3'-dideoxynucleosides (ddNs analogues) (iii) have been (and are still) used in the "Sanger" DNA sequencing technique, although they are now commercialized as nucleoside reverse transcriptase inhibitors (NRTIs) in the treatment of HIV infections. (E)-5-(2-Bromovinyl)-2'-deoxyuridine (iv) was discovered as a selective anti-herpes simplex virus compound and is now primarily used for the treatment of varicella-zoster virus infections. The prototype of the acyclic nucleoside phosphonates (ANPs), (S)-9-(3-hydroxy-2-phosphonylmethoxypropyl)adenine [(S)-HPMPA], (v) was never commercialized, although it gave rise to several marketed products (cidofovir, adefovir, and tenofovir). 1-[2-(Hydroxyethoxy)methyl]-6-(phenylthio)thymine (vi) and TIBO (tetrahydroimidazo[4,5,1-jk][1,4-benzodiazepin-2(1H)]-one and -thione) (vii) paved the way to a number of compounds (i.e., nevirapine, delavirdine, etravirine, and rilpivirine), which are now collectively called non-NRTIs. The bicyclam AMD3100 (viii) was originally described as an anti-HIV agent before it became later marketed as a stem cell mobilizer. The S-adenosylhomocysteine hydrolase inhibitors (ix), while active against a broad range of (-)RNA viruses and poxviruses may be particularly effective against Ebola virus, and for (x) the O-ANP derivatives, the potential application range encompasses virtually all DNA viruses. © 2015 Wiley Periodicals, Inc.
Hofstra, L Marije; Sauvageot, Nicolas; Albert, Jan; Alexiev, Ivailo; Garcia, Federico; Struck, Daniel; Van de Vijver, David A M C; Åsjö, Birgitta; Beshkov, Danail; Coughlan, Suzie; Descamps, Diane; Griskevicius, Algirdas; Hamouda, Osamah; Horban, Andrzej; Van Kasteren, Marjo; Kolupajeva, Tatjana; Kostrikis, Leondios G; Liitsola, Kirsi; Linka, Marek; Mor, Orna; Nielsen, Claus; Otelea, Dan; Paraskevis, Dimitrios; Paredes, Roger; Poljak, Mario; Puchhammer-Stöckl, Elisabeth; Sönnerborg, Anders; Staneková, Danica; Stanojevic, Maja; Van Laethem, Kristel; Zazzi, Maurizio; Zidovec Lepej, Snjezana; Boucher, Charles A B; Schmit, Jean-Claude; Wensing, Annemarie M J; Puchhammer-Stockl, E; Sarcletti, M; Schmied, B; Geit, M; Balluch, G; Vandamme, A-M; Vercauteren, J; Derdelinckx, I; Sasse, A; Bogaert, M; Ceunen, H; De Roo, A; De Wit, S; Echahidi, F; Fransen, K; Goffard, J-C; Goubau, P; Goudeseune, E; Yombi, J-C; Lacor, P; Liesnard, C; Moutschen, M; Pierard, D; Rens, R; Schrooten, Y; Vaira, D; Vandekerckhove, L P R; Van den Heuvel, A; Van Der Gucht, B; Van Ranst, M; Van Wijngaerden, E; Vandercam, B; Vekemans, M; Verhofstede, C; Clumeck, N; Van Laethem, K; Beshkov, D; Alexiev, I; Lepej, S Zidovec; Begovac, J; Kostrikis, L; Demetriades, I; Kousiappa, I; Demetriou, V; Hezka, J; Linka, M; Maly, M; Machala, L; Nielsen, C; Jørgensen, L B; Gerstoft, J; Mathiesen, L; Pedersen, C; Nielsen, H; Laursen, A; Kvinesdal, B; Liitsola, K; Ristola, M; Suni, J; Sutinen, J; Descamps, D; Assoumou, L; Castor, G; Grude, M; Flandre, P; Storto, A; Hamouda, O; Kücherer, C; Berg, T; Braun, P; Poggensee, G; Däumer, M; Eberle, J; Heiken, H; Kaiser, R; Knechten, H; Korn, K; Müller, H; Neifer, S; Schmidt, B; Walter, H; Gunsenheimer-Bartmeyer, B; Harrer, T; Paraskevis, D; Hatzakis, A; Zavitsanou, A; Vassilakis, A; Lazanas, M; Chini, M; Lioni, A; Sakka, V; Kourkounti, S; Paparizos, V; Antoniadou, A; Papadopoulos, A; Poulakou, G; Katsarolis, I; Protopapas, K; Chryssos, G; Drimis, S; Gargalianos, P; Xylomenos, G; Lourida, G; Psichogiou, M; Daikos, G L; Sipsas, N V; Kontos, A; Gamaletsou, M N; Koratzanis, G; Sambatakou, H; Mariolis, H; Skoutelis, A; Papastamopoulos, V; Georgiou, O; Panagopoulos, P; Maltezos, E; Coughlan, S; De Gascun, C; Byrne, C; Duffy, M; Bergin, C; Reidy, D; Farrell, G; Lambert, J; O'Connor, E; Rochford, A; Low, J; Coakely, P; O'Dea, S; Hall, W; Mor, O; Levi, I; Chemtob, D; Grossman, Z; Zazzi, M; de Luca, A; Balotta, C; Riva, C; Mussini, C; Caramma, I; Capetti, A; Colombo, M C; Rossi, C; Prati, F; Tramuto, F; Vitale, F; Ciccozzi, M; Angarano, G; Rezza, G; Kolupajeva, T; Vasins, O; Griskevicius, A; Lipnickiene, V; Schmit, J C; Struck, D; Sauvageot, N; Hemmer, R; Arendt, V; Michaux, C; Staub, T; Sequin-Devaux, C; Wensing, A M J; Boucher, C A B; van de Vijver, D A M C; van Kessel, A; van Bentum, P H M; Brinkman, K; Connell, B J; van der Ende, M E; Hoepelman, I M; van Kasteren, M; Kuipers, M; Langebeek, N; Richter, C; Santegoets, R M W J; Schrijnders-Gudde, L; Schuurman, R; van de Ven, B J M; Åsjö, B; Kran, A-M Bakken; Ormaasen, V; Aavitsland, P; Horban, A; Stanczak, J J; Stanczak, G P; Firlag-Burkacka, E; Wiercinska-Drapalo, A; Jablonowska, E; Maolepsza, E; Leszczyszyn-Pynka, M; Szata, W; Camacho, R; Palma, C; Borges, F; Paixão, T; Duque, V; Araújo, F; Otelea, D; Paraschiv, S; Tudor, A M; Cernat, R; Chiriac, C; Dumitrescu, F; Prisecariu, L J; Stanojevic, M; Jevtovic, Dj; Salemovic, D; Stanekova, D; Habekova, M; Chabadová, Z; Drobkova, T; Bukovinova, P; Shunnar, A; Truska, P; Poljak, M; Lunar, M; Babic, D; Tomazic, J; Vidmar, L; Vovko, T; Karner, P; Garcia, F; Paredes, R; Monge, S; Moreno, S; Del Amo, J; Asensi, V; Sirvent, J L; de Mendoza, C; Delgado, R; Gutiérrez, F; Berenguer, J; Garcia-Bujalance, S; Stella, N; de Los Santos, I; Blanco, J R; Dalmau, D; Rivero, M; Segura, F; Elías, M J Pérez; Alvarez, M; Chueca, N; Rodríguez-Martín, C; Vidal, C; Palomares, J C; Viciana, I; Viciana, P; Cordoba, J; Aguilera, A; Domingo, P; Galindo, M J; Miralles, C; Del Pozo, M A; Ribera, E; Iribarren, J A; Ruiz, L; de la Torre, J; Vidal, F; Clotet, B; Albert, J; Heidarian, A; Aperia-Peipke, K; Axelsson, M; Mild, M; Karlsson, A; Sönnerborg, A; Thalme, A; Navér, L; Bratt, G; Karlsson, A; Blaxhult, A; Gisslén, M; Svennerholm, B; Bergbrant, I; Björkman, P; Säll, C; Mellgren, Å; Lindholm, A; Kuylenstierna, N; Montelius, R; Azimi, F; Johansson, B; Carlsson, M; Johansson, E; Ljungberg, B; Ekvall, H; Strand, A; Mäkitalo, S; Öberg, S; Holmblad, P; Höfer, M; Holmberg, H; Josefson, P; Ryding, U
2016-03-01
Numerous studies have shown that baseline drug resistance patterns may influence the outcome of antiretroviral therapy. Therefore, guidelines recommend drug resistance testing to guide the choice of initial regimen. In addition to optimizing individual patient management, these baseline resistance data enable transmitted drug resistance (TDR) to be surveyed for public health purposes. The SPREAD program systematically collects data to gain insight into TDR occurring in Europe since 2001. Demographic, clinical, and virological data from 4140 antiretroviral-naive human immunodeficiency virus (HIV)-infected individuals from 26 countries who were newly diagnosed between 2008 and 2010 were analyzed. Evidence of TDR was defined using the WHO list for surveillance of drug resistance mutations. Prevalence of TDR was assessed over time by comparing the results to SPREAD data from 2002 to 2007. Baseline susceptibility to antiretroviral drugs was predicted using the Stanford HIVdb program version 7.0. The overall prevalence of TDR did not change significantly over time and was 8.3% (95% confidence interval, 7.2%-9.5%) in 2008-2010. The most frequent indicators of TDR were nucleoside reverse transcriptase inhibitor (NRTI) mutations (4.5%), followed by nonnucleoside reverse transcriptase inhibitor (NNRTI) mutations (2.9%) and protease inhibitor mutations (2.0%). Baseline mutations were most predictive of reduced susceptibility to initial NNRTI-based regimens: 4.5% and 6.5% of patient isolates were predicted to have resistance to regimens containing efavirenz or rilpivirine, respectively, independent of current NRTI backbones. Although TDR was highest for NRTIs, the impact of baseline drug resistance patterns on susceptibility was largest for NNRTIs. The prevalence of TDR assessed by epidemiological surveys does not clearly indicate to what degree susceptibility to different drug classes is affected. © The Author 2015. Published by Oxford University Press for the Infectious Diseases Society of America.
Rodríguez-Barrios, Fátima; Balzarini, Jan; Gago, Federico
2005-05-25
A series of targeted molecular dynamics simulations have been carried out in an attempt to assess the effect that the common Lys103Asn mutation in HIV-1 reverse transcriptase (RT) has on the binding of three representative non-nucleoside RT inhibitors (NNRTI), nevirapine, efavirenz, and etravirine. We have shown previously that, in the absence of an incoming inhibitor, creation of the NNRTI binding pocket is hampered due to the existence of a hydrogen bond between the side chains of Asn103 and Tyr188 for which no equivalent exists in the wild-type enzyme. As an extension of this work, we now apply the same methodology to drive the enzyme's conformation from the unbound state to the drug-bound state in the presence of the NNRTI. The location of each drug outside the binding pocket was determined by an automated docking program, and steering into the binding pocket followed a route that is likely to represent the actual entrance pathway. The additional hurdle to inhibitor entry imposed by the extra Asn103-Tyr188 hydrogen bond is seen to affect each NNRTI differently, with the ability to disrupt this interaction increasing in the order etravirine > efavirenz > or = nevirapine, in good accord with the experimental findings. This coherent picture strongly suggests that attempts to overcome resistance through structure-based drug design may be considerably more successful if dynamic structural aspects of the type studied here are considered, particularly in cases where binding energy-based structure-activity relationship methods are unable to provide the required information.
Mitsuya, Yumi; Varghese, Vici; Wang, Chunlin; Liu, Tommy F.; Holmes, Susan P.; Jayakumar, Prerana; Gharizadeh, Baback; Ronaghi, Mostafa; Klein, Daniel; Fessel, W. Jeffrey; Shafer, Robert W.
2008-01-01
T215 revertant mutations such as T215C/D/E/S that evolve from the nucleoside reverse transcriptase (RT) inhibitor mutations T215Y/F have been found in about 3% of human immunodeficiency virus type 1 (HIV-1) isolates from newly diagnosed HIV-1-infected persons. We used a newly developed sequencing method—ultradeep pyrosequencing (UDPS; 454 Life Sciences)—to determine the frequency with which T215Y/F or other RT inhibitor resistance mutations could be detected as minority variants in samples from untreated persons that contain T215 revertants (“revertant” samples) compared with samples from untreated persons that lack such revertants (“control” samples). Among the 22 revertant and 29 control samples, UDPS detected a mean of 3.8 and 4.8 additional RT amino acid mutations, respectively. In 6 of 22 (27%) revertant samples and in 4 of 29 control samples (14%; P = 0.4), UDPS detected one or more RT inhibitor resistance mutations. T215Y or T215F was not detected in any of the revertant or control samples; however, 4 of 22 revertant samples had one or more T215 revertants that were detected by UDPS but not by direct PCR sequencing. The failure to detect viruses with T215Y/F in the 22 revertant samples in this study may result from the overwhelming replacement of transmitted T215Y variants by the more fit T215 revertants or from the primary transmission of a T215 revertant in a subset of persons with T215 revertants. PMID:18715933
Costi, Roberta; Métifiot, Mathieu; Esposito, Francesca; Cuzzucoli Crucitti, Giuliana; Pescatori, Luca; Messore, Antonella; Scipione, Luigi; Tortorella, Silvano; Zinzula, Luca; Novellino, Ettore; Pommier, Yves; Tramontano, Enzo; Marchand, Christophe; Di Santo, Roberto
2013-11-14
The increasing efficiency of HAART has helped to transform HIV/AIDS into a chronic disease. Still, resistance and drug-drug interactions warrant the development of new anti-HIV agents. We previously discovered hit 6, active against HIV-1 replication and targeting RNase H in vitro. Because of its diketo-acid moiety, we speculated that this chemotype could serve to develop dual inhibitors of both RNase H and integrase. Here, we describe a new series of 1-benzyl-pyrrolyl diketohexenoic derivatives, 7a-y and 8a-y, synthesized following a parallel solution-phase approach. Those 50 analogues have been tested on recombinant enzymes (RNase H and integrase) and in cell-based assays. Approximately half (22) exibited inhibition of HIV replication. Compounds 7b, 7u, and 8g were the most active against the RNase H activity of reverse-transcriptase, with IC50 values of 3, 3, and 2.5 μM, respectively. Compound 8g was also the most potent integrase inhibitor with an IC50 value of 26 nM.
Pagano, Nicholas; Teriete, Peter; Mattmann, Margrith E; Yang, Li; Snyder, Beth A; Cai, Zhaohui; Heil, Marintha L; Cosford, Nicholas D P
2017-12-01
Continuous flow (microfluidic) chemistry was employed to prepare a small focused library of dihydropyrimidinone (DHPM) derivatives. Compounds in this class have been reported to exhibit activity against the human immunodeficiency virus (HIV), but their molecular target had not been identified. We tested the initial set of DHPMs in phenotypic assays providing a hit (1i) that inhibited the replication of the human immunodeficiency virus HIV in cells. Flow chemistry-driven optimization of 1i led to the identification of HIV replication inhibitors such as 1l with cellular potency comparable with the clinical drug nevirapine (NVP). Mechanism of action (MOA) studies using cellular and biochemical assays coupled with 3D fingerprinting and in silico modeling demonstrated that these drug-like probe compounds exert their effects by inhibiting the viral reverse transcriptase polymerase (RT). This led to the design and synthesis of the novel DHPM 1at that inhibits the replication of drug resistant strains of HIV. Our work demonstrates that combining flow chemistry-driven analogue refinement with phenotypic assays, in silico modeling and MOA studies is a highly effective strategy for hit-to-lead optimization applicable to the discovery of future therapeutic agents. Copyright © 2017. Published by Elsevier Ltd.
Zhang, Baofeng; D'Erasmo, Michael P; Murelli, Ryan P; Gallicchio, Emilio
2016-09-30
We report the results of a binding free energy-based virtual screening campaign of a library of 77 α-hydroxytropolone derivatives against the challenging RNase H active site of the reverse transcriptase (RT) enzyme of human immunodeficiency virus-1. Multiple protonation states, rotamer states, and binding modalities of each compound were individually evaluated. The work involved more than 300 individual absolute alchemical binding free energy parallel molecular dynamics calculations and over 1 million CPU hours on national computing clusters and a local campus computational grid. The thermodynamic and structural measures obtained in this work rationalize a series of characteristics of this system useful for guiding future synthetic and biochemical efforts. The free energy model identified key ligand-dependent entropic and conformational reorganization processes difficult to capture using standard docking and scoring approaches. Binding free energy-based optimization of the lead compounds emerging from the virtual screen has yielded four compounds with very favorable binding properties, which will be the subject of further experimental investigations. This work is one of the few reported applications of advanced-binding free energy models to large-scale virtual screening and optimization projects. It further demonstrates that, with suitable algorithms and automation, advanced-binding free energy models can have a useful role in early-stage drug-discovery programs.
Approved Antiviral Drugs over the Past 50 Years
2016-01-01
SUMMARY Since the first antiviral drug, idoxuridine, was approved in 1963, 90 antiviral drugs categorized into 13 functional groups have been formally approved for the treatment of the following 9 human infectious diseases: (i) HIV infections (protease inhibitors, integrase inhibitors, entry inhibitors, nucleoside reverse transcriptase inhibitors, nonnucleoside reverse transcriptase inhibitors, and acyclic nucleoside phosphonate analogues), (ii) hepatitis B virus (HBV) infections (lamivudine, interferons, nucleoside analogues, and acyclic nucleoside phosphonate analogues), (iii) hepatitis C virus (HCV) infections (ribavirin, interferons, NS3/4A protease inhibitors, NS5A inhibitors, and NS5B polymerase inhibitors), (iv) herpesvirus infections (5-substituted 2′-deoxyuridine analogues, entry inhibitors, nucleoside analogues, pyrophosphate analogues, and acyclic guanosine analogues), (v) influenza virus infections (ribavirin, matrix 2 protein inhibitors, RNA polymerase inhibitors, and neuraminidase inhibitors), (vi) human cytomegalovirus infections (acyclic guanosine analogues, acyclic nucleoside phosphonate analogues, pyrophosphate analogues, and oligonucleotides), (vii) varicella-zoster virus infections (acyclic guanosine analogues, nucleoside analogues, 5-substituted 2′-deoxyuridine analogues, and antibodies), (viii) respiratory syncytial virus infections (ribavirin and antibodies), and (ix) external anogenital warts caused by human papillomavirus infections (imiquimod, sinecatechins, and podofilox). Here, we present for the first time a comprehensive overview of antiviral drugs approved over the past 50 years, shedding light on the development of effective antiviral treatments against current and emerging infectious diseases worldwide. PMID:27281742
HIV drug resistance tendencies in Latvia.
Kolupajeva, Tatjana; Aldins, Pauls; Guseva, Ludmila; Dusacka, Diana; Sondore, Valentina; Viksna, Ludmila; Rozentale, Baiba
2008-09-01
The treatment of HIV infection in Latvia by using highly active antiretroviral therapy (HAART) was started in 1996. The prevalence and tendencies of HIV drug resistance among treated and treatment-naive patients in Latvia in the years 2006-2007 were evaluated in this study. Data of HIV genotyping, performed in 132 HIV-1 infected during years 2006-2007 by TRUGENE HIV-1 genotyping assay (BayerHealthCare-diagnostics) are included in the study. Analysis of data showed that in the group of treatment-naive individuals majority carried wild type virus. Prevalence of resistance-associated mutations (RAMs) in the treatment-naive group according to IAS list was 28%. In most cases it was NRTI mutation A62V that is associated with multinucleoside resistance caused by Q151M, its effect in the absence of Q151M is not known. By many authors A62V is supposed to be a result of polymorphism in RT gene and is excluded from the list of resistance mutations. High prevalence of A62V is typical for HIV-1 subtype A. As majority of treatment-naive cases (89%) in this study were with HIV-1 subtypes A or AE, we excluded A62V mutation and estimated RAMs prevalence in group of treatment-naive HIV-infected individuals as 7%. Minor PI mutations were not included in analyses. In Europe published rates generally very between 5% and 15%. In the group of treatment-experienced HIV infected people 25/75 were with HIV-1 subtype B, the rest part--with non-B subtypes: A/AE (35/75), CRF-01AE (7/75), B/AE (4/75) and others. In treatment-experienced patients RAMs prevalence was estimated as 58.6%. Most frequently RAMs were found for nucleoside reverse transcriptase inhibitors (NRTI) (49.3%) followed by non-nucleoside reverse transcriptase inhibitors (NNRTI) (22.6%) and protease inhibitors (PI) (16%). In the group of NRTI mutations M184V (26/75; 34.6%), A62V (12/75; 16.0%) and T215Y (8/75; 10.6%), in NNRTI mutations K103N (10/75; 13.3%), G190S (6/75; 8.0%), in PI group mutations L90M (6/75; 8.0%) and M461/L (6/75; 8.0%) occurred most frequently. The following drug susceptibility was predicted according to the Trugen expert interpretations: in 33/75 (44%) patients no evidence of resistance, in 21/75 (28%) patients resistance to 1 drug class (NRTI--16/75, NNRTI--4/75, PI--1/75), in 17 patients (22.6%) resistance to 2 drug classes (NRTI+NNRTI--9/75, NRTI+PI--7/75, NNRTI+PI--1/75) and in 3/75 (4%) patients resistance to all 3 classes of drugs (NRTI+NNRTI+PI). We conclude, that prevalence of RAMs in treatment-naive HIV infected persons in Latvia is comparable with prevalence in Europe. The origin of predominated mutation A62V associated with NRTI at present is not clear. In more than half of treated HIV infected patients HIV resistance to at least one HAART class was predicted.
2016-01-01
Summary Background Antiretroviral therapy (ART) is crucial for controlling HIV-1 infection through wide-scale treatment as prevention and pre-exposure prophylaxis (PrEP). Potent tenofovir disoproxil fumarate-containing regimens are increasingly used to treat and prevent HIV, although few data exist for frequency and risk factors of acquired drug resistance in regions hardest hit by the HIV pandemic. We aimed to do a global assessment of drug resistance after virological failure with first-line tenofovir-containing ART. Methods The TenoRes collaboration comprises adult HIV treatment cohorts and clinical trials of HIV drug resistance testing in Europe, Latin and North America, sub-Saharan Africa, and Asia. We extracted and harmonised data for patients undergoing genotypic resistance testing after virological failure with a first-line regimen containing tenofovir plus a cytosine analogue (lamivudine or emtricitabine) plus a non-nucleotide reverse-transcriptase inhibitor (NNRTI; efavirenz or nevirapine). We used an individual participant-level meta-analysis and multiple logistic regression to identify covariates associated with drug resistance. Our primary outcome was tenofovir resistance, defined as presence of K65R/N or K70E/G/Q mutations in the reverse transcriptase (RT) gene. Findings We included 1926 patients from 36 countries with treatment failure between 1998 and 2015. Prevalence of tenofovir resistance was highest in sub-Saharan Africa (370/654 [57%]). Pre-ART CD4 cell count was the covariate most strongly associated with the development of tenofovir resistance (odds ratio [OR] 1·50, 95% CI 1·27–1·77 for CD4 cell count <100 cells per μL). Use of lamivudine versus emtricitabine increased the risk of tenofovir resistance across regions (OR 1·48, 95% CI 1·20–1·82). Of 700 individuals with tenofovir resistance, 578 (83%) had cytosine analogue resistance (M184V/I mutation), 543 (78%) had major NNRTI resistance, and 457 (65%) had both. The mean plasma viral load at virological failure was similar in individuals with and without tenofovir resistance (145 700 copies per mL [SE 12 480] versus 133 900 copies per mL [SE 16 650; p=0·626]). Interpretation We recorded drug resistance in a high proportion of patients after virological failure on a tenofovir-containing first-line regimen across low-income and middle-income regions. Effective surveillance for transmission of drug resistance is crucial. Funding The Wellcome Trust. PMID:26831472
Gupta, S B; Pujari, S N; Joshi, S R; Patel, A K
2006-01-01
With rational use of antiretroviral therapy (ART), human immunodeficiency virus (HIV) infection has been transformed into a chronic manageable illness like diabetes and hypertension. These guidelines provide information on state of art, evidence based approach for use of ART in Indian context. When to initiate ART? Antiretroviral therapy is indicated for all symptomatic HIV infected persons regardless of CD4 counts and plasma viral load (PVL) levels. In asymptomatic patients, ART should be offered when the CD4 counts < 200/mm3 and should be considered in patients with CD4 counts between 200-250/mm3. Therapy is not recommended for patients with CD4 count more than 350/ mm3. Involvement of patient in all treatment decisions and assessing readiness is critical before initiating ART. What to start with? A non-nucleoside reverse transcriptase inhibitor (NNRTI) based regimen is recommended for antiretroviral naïve patients. The choice between nevirapine and efavirenz is based on differences in adverse events profiles; cost and availability of convenient fixed dose combinations and need for concomitant use of rifampicin. A backbone of 2-nucleoside reverse transcriptase inhibitors (NRTIs) is combined with the NNRTI. Various combinations and ART strategies not to be used in clinical practice has been enlisted. How to follow up? Recommendations have been made for baseline evaluation and monitoring of patients on ART. These include guidelines on laboratory and clinical evaluation. A plasma viral load at 6 months after initiation of first-line ART is strongly recommended. Yearly estimation of lipid profile has been recommended. How to identify and manage ART failure? The guidelines recognize the issue of identifying ART failure late if only CD4 counts are used for monitoring. In the absence of resistance testing various second-line regimens have been enlisted. A boosted protease inhibitor based regimen is recommended in this situation to be combined with 2-NRTIs. Special situations Recommendations have been made for use of ART in HIV-TB, HIV-HBV, and HIV-HCV co-infected patients. In patients with active TB and a CD4 count < 200/mm3, initiation of ART is recommended as soon as the anti-TB treatment is tolerated. Efavirenz is the only ARV drug, which can be safely used with rifampicin. In pregnancy use of single dose nevirapine for reducing risk of mother to child transmission of HIV is not recommended, because of the risk of development of resistance. For post-exposure prophylaxis taking ART treatment history of the source patient is crucial in designing an effective regimen.
Waugh, Caryll; Cromer, Deborah; Grimm, Andrew; Chopra, Abha; Mallal, Simon; Davenport, Miles; Mak, Johnson
2015-04-09
Massive, parallel sequencing is a potent tool for dissecting the regulation of biological processes by revealing the dynamics of the cellular RNA profile under different conditions. Similarly, massive, parallel sequencing can be used to reveal the complexity of viral quasispecies that are often found in the RNA virus infected host. However, the production of cDNA libraries for next-generation sequencing (NGS) necessitates the reverse transcription of RNA into cDNA and the amplification of the cDNA template using PCR, which may introduce artefact in the form of phantom nucleic acids species that can bias the composition and interpretation of original RNA profiles. Using HIV as a model we have characterised the major sources of error during the conversion of viral RNA to cDNA, namely excess RNA template and the RNaseH activity of the polymerase enzyme, reverse transcriptase. In addition we have analysed the effect of PCR cycle on detection of recombinants and assessed the contribution of transfection of highly similar plasmid DNA to the formation of recombinant species during the production of our control viruses. We have identified RNA template concentrations, RNaseH activity of reverse transcriptase, and PCR conditions as key parameters that must be carefully optimised to minimise chimeric artefacts. Using our optimised RT-PCR conditions, in combination with our modified PCR amplification procedure, we have developed a reliable technique for accurate determination of RNA species using NGS technology.
Tavallaee, Mahkam; Steiner, David F; Zehnder, James L; Folkins, Ann K; Karam, Amer K
2018-04-03
Low-grade serous carcinomas only rarely coexist with or progress to high-grade tumors. We present a case of low-grade serous carcinoma with transformation to carcinosarcoma on recurrence in the lymph node. Identical BRAF V600E and telomerase reverse transcriptase promoter mutations were identified in both the original and recurrent tumor. Given that telomerase reverse transcriptase promotor mutations are thought to play a role in progression of other tumor types, the function of telomerase reverse transcriptase mutations in BRAF mutated low-grade serous carcinoma deserves investigation.
Hsu, Mayla; Aravantinou, Meropi; Menon, Radhika; Seidor, Samantha; Goldman, Daniel; Kenney, Jessica; Derby, Nina; Gettie, Agegnehu; Blanchard, James; Piatak, Michael; Lifson, Jeffrey D.; Fernández-Romero, Jose A.; Zydowsky, Thomas M.
2014-01-01
Abstract Herpes simplex virus-2 (HSV-2) infection increases HIV susceptibility. We previously established a rhesus macaque model of vaginal HSV-2 preexposure followed by cochallenge with HSV-2 and simian/human immunodeficiency virus-reverse transcriptase (SHIV-RT). Using this model, we showed that a gel containing the nonnucleoside reverse transcriptase inhibitor (NNRTI) MIV-150 in carrageenan (CG) reduced SHIV-RT infection. To evaluate the efficacy of new generation microbicides against both viruses, we first established dual infection after single vaginal cochallenge with SHIV-RT and HSV-2 in HSV-2-naive macaques. All animals (6/6) became HSV-2 infected, with 4/6 coinfected with SHIV-RT. In a control group cochallenged with SHIV-RT and UV-inactivated HSV-2, 2/4 became SHIV-RT infected, and none had detectable HSV-2. Low-level HSV-2-specific antibody and T cell responses were detected in some HSV-2-infected animals. To test a CG gel containing MIV-150 and zinc acetate (MZC), which provided naive animals full protection from SHIV-RT for at least 8 h, MZC (vs. CG) was applied daily for 14 days followed by cochallenge 8 h later. MZC prevented SHIV-RT infection (0/9 infected, p=0.04 vs. 3/6 in CG controls), but only reduced HSV-2 infection by 20% (6/9 infected vs. 5/6 in CG, p=0.6). In HSV-2-infected animals, none of the gel-treated animals seroconverted, and only the CG controls had measurable HSV-2-specific T cell responses. This study shows the promise of MZC to prevent immunodeficiency virus infection (even in the presence of HSV-2) and reduce HSV-2 infection after exposure to a high-dose inoculum. Additionally, it demonstrates the potential of a macaque coinfection model to evaluate broad-spectrum microbicides. PMID:24117013
Hsu, Mayla; Aravantinou, Meropi; Menon, Radhika; Seidor, Samantha; Goldman, Daniel; Kenney, Jessica; Derby, Nina; Gettie, Agegnehu; Blanchard, James; Piatak, Michael; Lifson, Jeffrey D; Fernández-Romero, Jose A; Zydowsky, Thomas M; Robbiani, Melissa
2014-02-01
Herpes simplex virus-2 (HSV-2) infection increases HIV susceptibility. We previously established a rhesus macaque model of vaginal HSV-2 preexposure followed by cochallenge with HSV-2 and simian/human immunodeficiency virus-reverse transcriptase (SHIV-RT). Using this model, we showed that a gel containing the nonnucleoside reverse transcriptase inhibitor (NNRTI) MIV-150 in carrageenan (CG) reduced SHIV-RT infection. To evaluate the efficacy of new generation microbicides against both viruses, we first established dual infection after single vaginal cochallenge with SHIV-RT and HSV-2 in HSV-2-naive macaques. All animals (6/6) became HSV-2 infected, with 4/6 coinfected with SHIV-RT. In a control group cochallenged with SHIV-RT and UV-inactivated HSV-2, 2/4 became SHIV-RT infected, and none had detectable HSV-2. Low-level HSV-2-specific antibody and T cell responses were detected in some HSV-2-infected animals. To test a CG gel containing MIV-150 and zinc acetate (MZC), which provided naive animals full protection from SHIV-RT for at least 8 h, MZC (vs. CG) was applied daily for 14 days followed by cochallenge 8 h later. MZC prevented SHIV-RT infection (0/9 infected, p=0.04 vs. 3/6 in CG controls), but only reduced HSV-2 infection by 20% (6/9 infected vs. 5/6 in CG, p=0.6). In HSV-2-infected animals, none of the gel-treated animals seroconverted, and only the CG controls had measurable HSV-2-specific T cell responses. This study shows the promise of MZC to prevent immunodeficiency virus infection (even in the presence of HSV-2) and reduce HSV-2 infection after exposure to a high-dose inoculum. Additionally, it demonstrates the potential of a macaque coinfection model to evaluate broad-spectrum microbicides.
BACKGROUND: Arsenic exposure is associated with human cancer. Telomerase containing the catalytic subunit, human telomerase reverse transcriptase (hTERT), can extend telomeres of chromosomes, delay senescence and promoting cell proliferation leading to tumorigenesis. OBJECTIVE:...
High prevalence of bevirimat resistance mutations in protease inhibitor-resistant HIV isolates.
Verheyen, Jens; Verhofstede, Chris; Knops, Elena; Vandekerckhove, Linos; Fun, Axel; Brunen, Diede; Dauwe, Kenny; Wensing, Annemarie M J; Pfister, Herbert; Kaiser, Rolf; Nijhuis, Monique
2010-03-13
Bevirimat is the first drug of a new class of antivirals that hamper the maturation of HIV. The objective of this study was to evaluate the sequence variability of the gag region targeted by bevirimat in HIV subtype-B isolates. Of 484 HIV subtype-B isolates, the gag region comprising amino acids 357-382 was sequenced. Of the patients included, 270 were treatment naive and 214 were treatment experienced. In the latter group, 48 HIV isolates harboured mutations associated with reverse transcriptase inhibitor resistance only, and 166 HIV isolates carried mutations associated with protease inhibitor resistance. In the treatment-naive patient population, approximately 30% harboured an HIV isolate with at least one mutation associated with a reduced susceptibility to bevirimat (H358Y, L363M, Q369H, V370A/M/del and T371del). In HIV isolates with protease inhibitor resistance, the prevalence of bevirimat resistance mutations increased to 45%. Accumulation of mutations at four positions in the bevirimat target region, S368C, Q369H, V370A and S373P, was significantly observed. Mutations associated with bevirimat resistance were detected more frequently in HIV isolates with three or more protease inhibitor resistance mutations than in those with less than three protease inhibitor mutations. Reduced bevirimat activity can be expected in one-third of treatment-naive HIV subtype-B isolates and significantly more in protease inhibitor-resistant HIV. These data indicate that screening for bevirimat resistance mutations before administration of the drug is essential.
Targets for inhibition of HIV replication: entry, enzyme action, release and maturation.
Sierra-Aragón, Saleta; Walter, Hauke
2012-01-01
Inhibition of HIV replication initially targeted viral enzymes, which are exclusively expressed by the virus and not present in the human cell. The development of reverse transcriptase (RT) inhibitors started with the discovery of antiretroviral activity of the nucleoside analog zidovudine in March 1987. Currently, six major classes of antiretroviral drugs are used for the treatment of HIV-infected patients: the RT inhibitors, nucleoside inhibitors and nonnucleoside inhibitors, the protease inhibitors, the integrase inhibitor raltegravir, the fusion inhibitor enfuvirtide (T-20), and the chemokine receptor 5 antagonist maraviroc. A seventh class, the maturation inhibitors, has not yet been approved as their effectiveness is impaired by HIV-1 polymorphisms naturally occurring in 30-40% of HIV-1 therapy-naive isolates. The use of antiretroviral combination therapy has proven to be effective in delaying progression to AIDS and to reconstitute the immune system of HIV-infected individuals. During the last 5 years, the introduction of the newest antiretrovirals has increased treatment efficacy tremendously. However, the development and accumulation of resistance to all antiretroviral drug classes are still a major problem. Additional targets will have to be defined to achieve the ultimate goal: the eradication of the virus from the infected human body. Copyright © 2012 S. Karger AG, Basel.
Patiño-Galindo, Juan Ángel; Torres-Puente, Manoli; Bracho, María Alma; Alastrué, Ignacio; Juan, Amparo; Navarro, David; Galindo, María José; Ocete, Dolores; Ortega, Enrique; Gimeno, Concepción; Belda, Josefina; Domínguez, Victoria; Moreno, Rosario; González-Candelas, Fernando
2017-09-14
HIV infections are still a very serious concern for public heath worldwide. We have applied molecular evolution methods to study the HIV-1 epidemics in the Comunidad Valenciana (CV, Spain) from a public health surveillance perspective. For this, we analysed 1804 HIV-1 sequences comprising protease and reverse transcriptase (PR/RT) coding regions, sampled between 2004 and 2014. These sequences were subtyped and subjected to phylogenetic analyses in order to detect transmission clusters. In addition, univariate and multinomial comparisons were performed to detect epidemiological differences between HIV-1 subtypes, and risk groups. The HIV epidemic in the CV is dominated by subtype B infections among local men who have sex with men (MSM). 270 transmission clusters were identified (>57% of the dataset), 12 of which included ≥10 patients; 11 of subtype B (9 affecting MSMs) and one (n = 21) of CRF14, affecting predominately intravenous drug users (IDUs). Dated phylogenies revealed these large clusters to have originated from the mid-80s to the early 00 s. Subtype B is more likely to form transmission clusters than non-B variants and MSMs to cluster than other risk groups. Multinomial analyses revealed an association between non-B variants, which are not established in the local population yet, and different foreign groups.
Seal, Paula S; Frontini, Maria; Jhita, Preya K; Deichmann, Paige C; Clark, Rebecca A
2016-06-01
The US city of New Orleans was ranked second in the nation for estimated HIV case rates in 2011. Opt-out testing was established at the Interim Louisiana Hospital in New Orleans in 2013. The majority of new diagnoses were referred to the HIV outpatient program. We conducted a retrospective chart review of newly referred antiretroviral-naïve patients establishing HIV care between January 2009 and June 2013 to characterise demographic and genotype profiles to assist in clinical management and needed services. Of the eligible 226 patients, 68% were men, and 88% were African American. Nearly half of the study patients were younger than 35 years of age. Forty-six percent had an initial CD4 count <200 cells/mm(3), and 39% had a HIV viral load >100,000 copies/mL. The antiretroviral class with the most common major mutation was the non-nucleoside reverse transcriptase inhibitors (NNRTIs) where K103N was the most common major NNRTI mutation at presentation. We observed that male patients showed more advanced disease with later presentation to care, confirming the need for earlier HIV diagnosis. When considering initial antiretroviral therapy, baseline genotype information is encouraged, particularly if considering a NNRTI-based regimen. © The Author(s) 2015.
Jespers, Vicky A; Van Roey, Jens M; Beets, Greet I; Buvé, Anne M
2007-02-01
To evaluate the short-term safety, tolerability, and systemic exposure of a vaginal microbicide gel containing the nonnucleoside reverse transcriptase inhibitor TMC120. Randomized, controlled, double-blind, phase 1 trial of a gel containing 3 different concentrations of TMC120 versus placebo. Of the 48 HIV-negative and 16 HIV-positive women enrolled, 52 women received active product. Participants applied the gel twice daily for 7 days and were assessed on 6 occasions. Colposcopic evaluation was performed before and after first gel application and on day 8. Laboratory safety assessments were carried out on all visits except day 7. Plasma levels of TMC120 were measured on days 1 and 7. All TMC120 concentrations were well tolerated, and there were no apparent differences in safety parameters. Four women (6%) had treatment-emergent mild cervical findings (petechiae in 3 women and erythema in 1 woman) of <5 mm. Plasma levels of TMC120 were quantifiable on day 1 in 7 (13%) participants and on day 7 in 39 (75%) participants using TMC120 gel. The TMC120 vaginal gel was well-tolerated in this short study by HIV-negative and HIV-positive women. The implications of the absorption of TMC120 should be studied further in expanded safety and effectiveness trials.
Tchurikov, Nickolai A; Fedoseeva, Daria M; Gashnikova, Natalya M; Sosin, Dmitri V; Gorbacheva, Maria A; Alembekov, Ildar R; Chechetkin, Vladimir R; Kravatsky, Yuri V; Kretova, Olga V
2016-05-25
Highly active antiretroviral therapy has greatly reduced the morbidity and mortality of AIDS. However, many of the antiretroviral drugs are toxic with long-term use, and all currently used anti-HIV agents generate drug-resistant mutants. Therefore, there is a great need for new approaches to AIDS therapy. RNAi is a powerful means of inhibiting HIV-1 production in human cells. We propose to use RNAi for gene therapy of HIV/AIDS. Previously we identified a number of new biologically active siRNAs targeting several moderately conserved regions in HIV-1 transcripts. Here we analyze the heterogeneity of nucleotide sequences in three RNAi targets in sequences encoding the reverse transcriptase and integrase domains of current isolates of HIV-1 subtype A in Russia. These data were used to generate genetic constructs expressing short hairpin RNAs 28-30-bp in length that could be processed in cells into siRNAs. After transfection of the constructs we observed siRNAs that efficiently attacked the selected targets. We expect that targeting several viral genes important for HIV-1 reproduction will help overcome the problem of viral adaptation and will prevent the appearance of RNAi escape mutants in current virus strains, an important feature of gene therapy of HIV/AIDS. Copyright © 2016 Elsevier B.V. All rights reserved.
HIV-1 Exploits a Dynamic Multi-aminoacyl-tRNA Synthetase Complex To Enhance Viral Replication.
Duchon, Alice A; St Gelais, Corine; Titkemeier, Nathan; Hatterschide, Joshua; Wu, Li; Musier-Forsyth, Karin
2017-11-01
A hallmark of retroviruses such as human immunodeficiency virus type 1 (HIV-1) is reverse transcription of genomic RNA to DNA, a process that is primed by cellular tRNAs. HIV-1 recruits human tRNA Lys3 to serve as the reverse transcription primer via an interaction between lysyl-tRNA synthetase (LysRS) and the HIV-1 Gag polyprotein. LysRS is normally sequestered in a multi-aminoacyl-tRNA synthetase complex (MSC). Previous studies demonstrated that components of the MSC can be mobilized in response to certain cellular stimuli, but how LysRS is redirected from the MSC to viral particles for packaging is unknown. Here, we show that upon HIV-1 infection, a free pool of non-MSC-associated LysRS is observed and partially relocalized to the nucleus. Heat inactivation of HIV-1 blocks nuclear localization of LysRS, but treatment with a reverse transcriptase inhibitor does not, suggesting that the trigger for relocalization occurs prior to reverse transcription. A reduction in HIV-1 infection is observed upon treatment with an inhibitor to mitogen-activated protein kinase that prevents phosphorylation of LysRS on Ser207, release of LysRS from the MSC, and nuclear localization. A phosphomimetic mutant of LysRS (S207D) that lacked the capability to aminoacylate tRNA Lys3 localized to the nucleus, rescued HIV-1 infectivity, and was packaged into virions. In contrast, a phosphoablative mutant (S207A) remained cytosolic and maintained full aminoacylation activity but failed to rescue infectivity and was not packaged. These findings suggest that HIV-1 takes advantage of the dynamic nature of the MSC to redirect and coopt cellular translation factors to enhance viral replication. IMPORTANCE Human tRNA Lys3 , the primer for reverse transcription, and LysRS are essential host factors packaged into HIV-1 virions. Previous studies found that tRNA Lys3 packaging depends on interactions between LysRS and HIV-1 Gag; however, many details regarding the mechanism of tRNA Lys3 and LysRS packaging remain unknown. LysRS is normally sequestered in a high-molecular-weight multi-aminoacyl-tRNA synthetase complex (MSC), restricting the pool of free LysRS-tRNA Lys Mounting evidence suggests that LysRS is released under a variety of stimuli to perform alternative functions within the cell. Here, we show that HIV-1 infection results in a free pool of LysRS that is relocalized to the nucleus of target cells. Blocking this pathway in HIV-1-producing cells resulted in less infectious progeny virions. Understanding the mechanism by which LysRS is recruited into the viral assembly pathway can be exploited for the development of specific and effective therapeutics targeting this nontranslational function. Copyright © 2017 American Society for Microbiology.
Knapp, David J H F; Brumme, Zabrina L; Huang, Sheng Yuan; Wynhoven, Brian; Dong, Winnie W Y; Mo, Theresa; Harrigan, P Richard; Brumme, Chanson J
2012-06-01
HLA class I-restricted cytotoxic T lymphocytes and highly active antiretroviral therapy (HAART) exert strong selective pressures on human immunodeficiency virus type 1 (HIV-1), leading to escape mutations compromising virologic control. Immune responses continue to shape HIV-1 evolution after HAART initiation, but the extent and rate at which this occurs remain incompletely quantified. Here, we characterize the incidence and clinical correlates of HLA-associated evolution in HIV-1 Pol after HAART initiation in a large, population-based observational cohort. British Columbia HAART Observational, Medical Evaluation and Research cohort participants with available HLA class I types and longitudinal posttherapy protease/reverse transcriptase sequences were studied (n = 619; median, 5 samples per patient and 5.2 years of follow-up). HLA-associated polymorphisms were defined according to published reference lists. Rates and correlates of immune-mediated HIV-1 evolution were investigated using multivariate Cox proportional hazard models incorporating baseline and time-dependent plasma viral load and CD4 response data. New HLA-associated escape events were observed in 269 (43%) patients during HAART and occurred at 49 of 63 (78%) investigated immune-associated sites in Pol. In time-dependent analyses adjusting for baseline factors, poorer virologic, but not immunologic, response to HAART was associated with increased risk of immune escape of 1.9-fold per log(10) viral load increment (P < .0001). Reversion of escape mutations following HAART initiation was extremely rare. HLA-associated HIV-1 evolution continues during HAART to an extent that is inversely related to the virologic success of therapy. Minimizing the degree of immune escape could represent a secondary benefit of effective HAART.
Measurement of In Vitro Integration Activity of HIV-1 Preintegration Complexes.
Balasubramaniam, Muthukumar; Davids, Benem; Addai, Amma B; Pandhare, Jui; Dash, Chandravanu
2017-02-22
HIV-1 envelope proteins engage cognate receptors on the target cell surface, which leads to viral-cell membrane fusion followed by the release of the viral capsid (CA) core into the cytoplasm. Subsequently, the viral Reverse Transcriptase (RT), as part of a namesake nucleoprotein complex termed the Reverse Transcription Complex (RTC), converts the viral single-stranded RNA genome into a double-stranded DNA copy (vDNA). This leads to the biogenesis of another nucleoprotein complex, termed the pre-integration complex (PIC), composed of the vDNA and associated virus proteins and host factors. The PIC-associated viral integrase (IN) orchestrates the integration of the vDNA into the host chromosomal DNA in a temporally and spatially regulated two-step process. First, the IN processes the 3' ends of the vDNA in the cytoplasm and, second, after the PIC traffics to the nucleus, it mediates integration of the processed vDNA into the chromosomal DNA. The PICs isolated from target cells acutely infected with HIV-1 are functional in vitro, as they are competent to integrate the associated vDNA into an exogenously added heterologous target DNA. Such PIC-based in vitro integration assays have significantly contributed to delineating the mechanistic details of retroviral integration and to discovering IN inhibitors. In this report, we elaborate upon an updated HIV-1 PIC assay that employs a nested real-time quantitative Polymerase Chain Reaction (qPCR)-based strategy for measuring the in vitro integration activity of isolated native PICs.
Suppression of APOBEC3-mediated restriction of HIV-1 by Vif
Feng, Yuqing; Baig, Tayyba T.; Love, Robin P.; Chelico, Linda
2014-01-01
The APOBEC3 restriction factors are a family of deoxycytidine deaminases that are able to suppress replication of viruses with a single-stranded DNA intermediate by inducing mutagenesis and functional inactivation of the virus. Of the seven human APOBEC3 enzymes, only APOBEC3-D, -F, -G, and -H appear relevant to restriction of HIV-1 in CD4+ T cells and will be the focus of this review. The restriction of HIV-1 occurs most potently in the absence of HIV-1 Vif that induces polyubiquitination and degradation of APOBEC3 enzymes through the proteasome pathway. To restrict HIV-1, APOBEC3 enzymes must be encapsidated into budding virions. Upon infection of the target cell during reverse transcription of the HIV-1 RNA into (-)DNA, APOBEC3 enzymes deaminate cytosines to form uracils in single-stranded (-)DNA regions. Upon replication of the (-)DNA to (+)DNA, the HIV-1 reverse transcriptase incorporates adenines opposite to the uracils thereby inducing C/G to T/A mutations that can functionally inactivate HIV-1. APOBEC3G is the most studied APOBEC3 enzyme and it is known that Vif attempts to thwart APOBEC3 function not only by inducing its proteasomal degradation but also by several degradation-independent mechanisms, such as inhibiting APOBEC3G virion encapsidation, mRNA translation, and for those APOBEC3G molecules that still become virion encapsidated, Vif can inhibit APOBEC3G mutagenic activity. Although most Vif variants can induce efficient degradation of APOBEC3-D, -F, and -G, there appears to be differential sensitivity to Vif-mediated degradation for APOBEC3H. This review examines APOBEC3-mediated HIV restriction mechanisms, how Vif acts as a substrate receptor for a Cullin5 ubiquitin ligase complex to induce degradation of APOBEC3s, and the determinants and functional consequences of the APOBEC3 and Vif interaction from a biological and biochemical perspective. PMID:25206352
Docking and multivariate methods to explore HIV-1 drug-resistance: a comparative analysis
NASA Astrophysics Data System (ADS)
Almerico, Anna Maria; Tutone, Marco; Lauria, Antonino
2008-05-01
In this paper we describe a comparative analysis between multivariate and docking methods in the study of the drug resistance to the reverse transcriptase and the protease inhibitors. In our early papers we developed a simple but efficient method to evaluate the features of compounds that are less likely to trigger resistance or are effective against mutant HIV strains, using the multivariate statistical procedures PCA and DA. In the attempt to create a more solid background for the prediction of susceptibility or resistance, we carried out a comparative analysis between our previous multivariate approach and molecular docking study. The intent of this paper is not only to find further support to the results obtained by the combined use of PCA and DA, but also to evidence the structural features, in terms of molecular descriptors, similarity, and energetic contributions, derived from docking, which can account for the arising of drug-resistance against mutant strains.
Maga, Giovanni; Radi, Marco; Gerard, Marie-Aline; Botta, Maurizio; Ennifar, Eric
2010-01-01
HIV-1 reverse transcriptase (RT) inhibitors currently used in antiretroviral therapy can be divided into two classes: (i) nucleoside analog RT inhibitors (NRTIs), which compete with natural nucleoside substrates and act as terminators of proviral DNA synthesis, and (ii) non-nucleoside RT inhibitors (NNRTIs), which bind to a hydrophobic pocket close to the RT active site. In spite of the efficiency of NRTIs and NNRTIs, the rapid emergence of multidrug-resistant mutations requires the development of new RT inhibitors with an alternative mechanism of action. Recently, several studies reported the discovery of novel non-nucleoside inhibitors with a distinct mechanism of action. Unlike classical NNRTIs, they compete with the nucleotide substrate, thus forming a new class of RT inhibitors: nucleotide-competing RT inhibitors (NcRTIs). In this review, we discuss current progress in the understanding of the peculiar behavior of these compounds. PMID:21994659
Rapid experimental SAD phasing and hot-spot identification with halogenated fragments
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bauman, Joseph D.; Harrison, Jerry Joe E. K.; Arnold, Eddy
2016-01-01
Through X-ray crystallographic fragment screening, 4-bromopyrazole was discovered to be a `magic bullet' that is capable of binding at many of the ligand `hot spots' found in HIV-1 reverse transcriptase (RT). The binding locations can be in pockets that are `hidden' in the unliganded crystal form, allowing rapid identification of these sites forin silicoscreening. In addition to hot-spot identification, this ubiquitous yet specific binding provides an avenue for X-ray crystallographic phase determination, which can be a significant bottleneck in the determination of the structures of novel proteins. The anomalous signal from 4-bromopyrazole or 4-iodopyrazole was sufficient to determine the structuresmore » of three proteins (HIV-1 RT, influenza A endonuclease and proteinase K) by single-wavelength anomalous dispersion (SAD) from single crystals. Both compounds are inexpensive, readily available, safe and very soluble in DMSO or water, allowing efficient soaking into crystals.« less
Mbuagbaw, Lawrence; Mursleen, Sara; Irlam, James H; Spaulding, Alicen B; Rutherford, George W; Siegfried, Nandi
2016-01-01
Background The advent of highly active antiretroviral therapy (ART) has reduced the morbidity and mortality due to HIV infection. The World Health Organization (WHO) ART guidelines focus on three classes of antiretroviral drugs, namely nucleoside or nucleotide reverse transcriptase inhibitors (NRTI), non-nucleoside reverse transcriptase inhibitors (NNRTI) and protease inhibitors. Two of the most common medications given as first-line treatment are the NNRTIs, efavirenz (EFV) and nevirapine (NVP). It is unclear which NNRTI is more efficacious for initial therapy. This systematic review was first published in 2010. Objectives To determine which non-nucleoside reverse transcriptase inhibitor, either EFV or NVP, is more effective in suppressing viral load when given in combination with two nucleoside reverse transcriptase inhibitors as part of initial antiretroviral therapy for HIV infection in adults and children. Search methods We attempted to identify all relevant studies, regardless of language or publication status, in electronic databases and conference proceedings up to 12 August 2016. We searched MEDLINE, Embase, the Cochrane Central Register of Controlled Trials (CENTRAL), the World Health Organization (WHO) International Clinical Trials Registry Platform (ICTRP) and ClinicalTrials.gov to 12 August 2016. We searched LILACS (Latin American and Caribbean Health Sciences Literature) and the Web of Science from 1996 to 12 August 2016. We checked the National Library of Medicine (NLM) Gateway from 1996 to 2009, as it was no longer available after 2009. Selection criteria We included all randomized controlled trials (RCTs) that compared EFV to NVP in people with HIV without prior exposure to ART, irrespective of the dosage or NRTI's given in combination. The primary outcome of interest was virological success. Other primary outcomes included mortality, clinical progression to AIDS, severe adverse events, and discontinuation of therapy for any reason. Secondary outcomes were change in CD4 count, treatment failure, development of ART drug resistance, and prevention of sexual transmission of HIV. Data collection and analysis Two review authors assessed each reference for inclusion using exclusion criteria that we had established a priori. Two review authors independently extracted data from each included trial using a standardized data extraction form. We analysed data on an intention-to-treat basis. We performed subgroup analyses for concurrent treatment for tuberculosis and dosage of NVP. We followed standard Cochrane methodological procedures. Main results Twelve RCTs, which included 3278 participants, met our inclusion criteria. None of these trials included children. The length of follow-up time, study settings, and NRTI combination drugs varied greatly. In five included trials, participants were receiving concurrent treatment for tuberculosis. There was little or no difference between EFV and NVP in virological success (RR 1.04, 95% CI 0.99 to 1.09; 10 trials, 2438 participants; high quality evidence), probably little or no difference in mortality (RR 0.84, 95% CI 0.59 to 1.19; 8 trials, 2317 participants; moderate quality evidence) and progression to AIDS (RR 1.23, 95% CI 0.72 to 2.11; 5 trials, 2005 participants; moderate quality evidence). We are uncertain whether there is a difference in all severe adverse events (RR 0.91, 95% CI 0.71 to 1.18; 8 trials, 2329 participants; very low quality evidence). There is probably little or no difference in discontinuation rate (RR 0.93, 95% CI 0.69 to 1.25; 9 trials, 2384 participants; moderate quality evidence) and change in CD4 count (MD −3.03; 95% CI −17.41 to 11.35; 9 trials, 1829 participants; moderate quality evidence). There may be little or no difference in treatment failure (RR 0.97, 95% CI 0.76 to 1.24; 5 trials, 737 participants; low quality evidence). Development of drug resistance is probably slightly less in the EFV arms (RR 0.76, 95% CI 0.60 to 0.95; 4 trials, 988 participants; moderate quality evidence). No studies were found that looked at sexual transmission of HIV. When we examined the adverse events individually, EFV probably is associated with more people with impaired mental function (7 per 1000) compared to NVP (2 per 1000; RR 4.46, 95% CI 1.65 to 12.03; 6 trials, 2049 participants; moderate quality evidence) but fewer people with elevated transaminases (RR 0.52, 95% CI 0.35 to 0.78; 3 trials, 1299 participants; high quality evidence), fewer people with neutropenia (RR 0.48, 95% CI 0.28 to 0.82; 3 trials, 1799 participants; high quality evidence), and probably fewer people withrash (229 per 100 with NVP versus 133 per 1000 with EFV; RR 0.58, 95% CI 0.34 to 1.00; 7 trials, 2277 participants; moderate quality evidence). We found that there may be little or no difference in gastrointestinal adverse events (RR 0.76, 95% CI 0.48 to 1.21; 6 trials, 2049 participants; low quality evidence), pyrexia (RR 0.65, 95% CI 0.15 to 2.73; 3 trials, 1799 participants; low quality evidence), raised alkaline phosphatase (RR 0.65, 95% CI 0.17 to 2.50; 1 trial, 1007 participants; low quality evidence), raised amylase (RR 1.40, 95% CI 0.72 to 2.73; 2 trials, 1071 participants; low quality evidence) and raised triglycerides (RR 1.10, 95% CI 0.39 to 3.13; 2 trials, 1071 participants; low quality evidence). There was probably little or no difference in serum glutamic oxaloacetic transaminase (SGOT; MD 3.3, 95% CI -2.06 to 8.66; 1 trial, 135 participants; moderate quality evidence), serum glutamic- pyruvic transaminase (SGPT; MD 5.7, 95% CI -4.23 to 15.63; 1 trial, 135 participants; moderate quality evidence) and raised cholesterol (RR 6.03, 95% CI 0.75 to 48.78; 1 trial, 64 participants; moderate quality evidence). Our subgroup analyses revealed that NVP slightly increases mortality when given once daily (RR 0.34, 95% CI 0.13 to 0.90; 3 trials, 678 participants; high quality evidence). There were little or no differences in the primary outcomes for patients who were concurrently receiving treatment for tuberculosis. Authors' conclusions Both drugs have similar benefits in initial treatment of HIV infection when combined with two NRTIs. The adverse events encountered affect different systems, with EFV more likely to cause central nervous system adverse events and NVP more likely to raise transaminases, cause neutropenia and rash. Effectiveness of EFV compared to NVP in the suppression of HIV infection when used as part of initial three-drug combination Research question For people living with HIV who have never received antiretroviral therapy (ART), which drug is more effective in suppressing HIV infection in combination with two nucleoside reverse transcriptase inhibitors (NRTI): efavirenz (EFV) or nevirapine (NVP)? Background The introduction of highly active ART as treatment for HIV infection has greatly reduced mortality and morbidity for adults and adolescents living with HIV around the world. The recommended initial treatments for HIV infection include two drugs from a class of drugs known as NRTI and one from a related class of drugs called non-nucleoside reverse transcriptase inhibitors (NNRTI). The two NNRTIs most commonly used are NVP and EFV. However, NVP can cause liver damage and severe rash, both of which can be fatal. EFV may also cause a rash, impair mental function, and cause foetal malformations. Main results Cochrane researchers examined the available literature up to 12 August 2016 and identified 12 randomized controlled trials, with a total of 3278 people, that met the inclusion criteria of this review. None of the included trials included children. Four trials included people who were also receiving treatment for tuberculosis. There was little or no difference in suppression of HIV infection (high quality evidence), probably little or no difference in mortality, progression to AIDS, stopping treatment early and changes in blood cells affected by HIV (moderate quality evidence). There may be little or no difference in treatment failure (low quality evidence). We are uncertain whether there is a difference in side-effects (very low quality evidence). No studies were found that looked at sexual transmission of HIV. Development of drug resistance is probably slightly less in the EFV group (moderate quality evidence). When the side effects were examined individually, EFV probably caused more impaired mental function (6% in the EFV group and 2% in the NVP group; moderate quality evidence), while NVP probably caused more people to have a rash (3% in the EFV group and 6% in the NVP group; moderate quality evidence), caused more people to have reduced white blood cells (2% in the EFV group and 5% in the NVP group; high quality evidence), and signs of liver damage (6% in the EFV group and 11% in the NVP group; high quality evidence). There was probably little or no difference in increases in liver enzymes and levels of cholesterol (moderate quality evidence). There may be little or no difference in digestive side-effects, fever, enzymes from the liver and pancreas, and fat in the blood (low quality evidence). People on NVP were probably more likely to die when given a once-daily regimen (2% in the EFV group and 4% in the NVP group; moderate quality evidence). In people who were taking treatment for tuberculosis compared to those who were not, there was probably little or no difference in suppression of HIV, deaths, progression to AIDS or stopping treatment early (moderate to high quality evidence). Conclusion EFV and NVP are similarly effective in viral suppression, preventing HIV progression and reducing mortality. EFV is more likely to affect mental function, while NVP is more likely to cause signs of liver damage, reduced white blood cells and rash. PMID:27943261