Science.gov

Sample records for hiv-1 non-nucleoside reverse

  1. Crystal structures of HIV-1 reverse transcriptase complexes with thiocarbamate non-nucleoside inhibitors.

    PubMed

    Spallarossa, Andrea; Cesarini, Sara; Ranise, Angelo; Ponassi, Marco; Unge, Torsten; Bolognesi, Martino

    2008-01-25

    O-Phthalimidoethyl-N-arylthiocarbamates (TCs) have been recently identified as a new class of potent HIV-1 reverse transcriptase (RT) non-nucleoside inhibitors (NNRTIs), by means of computer-aided drug design techniques [Ranise A. Spallarossa, S. Cesarini, F. Bondavalli, S. Schenone, O. Bruno, G. Menozzi, P. Fossa, L. Mosti, M. La Colla, et al., Structure-based design, parallel synthesis, structure-activity relationship, and molecular modeling studies of thiocarbamates, new potent non-nucleoside HIV-1 reverse transcriptase inhibitor isosteres of phenethylthiazolylthiourea derivatives, J. Med. Chem. 48 (2005) 3858-3873]. To elucidate the atomic details of RT/TC interaction and validate an earlier TC docking model, the structures of three RT/TC complexes were determined at 2.8-3.0A resolution by X-ray crystallography. The conformations adopted by the enzyme-bound TCs were analyzed and compared with those of bioisosterically related NNRTIs.

  2. Novel theoretically designed HIV-1 non-nucleoside reverse transcriptase inhibitors derived from nevirapine.

    PubMed

    Liu, Jinfeng; He, Xiao; Zhang, John Z H

    2014-10-01

    A common problem with non-nucleoside reverse transcriptase inhibitors (NNRTIs) of HIV-1 is the emergence of mutations in the HIV-1 RT, in particular Lys103 → Asn (K103N) and Tyr181 → Cys (Y181C), which lead to resistance to this entire class of inhibitors. In this study, we theoretically designed two new non-nucleoside HIV-1 RT inhibitors, Mnev-1 and Mnev-2, derived from nevirapine, in order to reduce the resistance caused by those HIV-1 RT mutations. The binding modes of Mnev-1 and Mnev-2 with the wild-type HIV-1 RT and its mutants (K103N and Y181C) were suggested by molecular docking followed by 20-ns molecular dynamics (MD) simulations in explicit water of those binding complexes (HIV-1 RTs with the new inhibitors). A molecular mechanics/generalized Born surface area (MM/GBSA) calculation was carried out for multiple snapshots extracted from the MD trajectory to estimate the binding free energy. The results of the calculations show that each of the new inhibitors forms a stable hydrogen bond with His235 during the MD simulations, leading to tighter binding of the new inhibitors with their targets. In addition, the repulsive interaction with Cys181 in the Y181C-nevirapine complex is not present in the novel inhibitors. The binding affinities predicted using the MM/GBSA calculations indicate that the new inhibitors could be effective at bypassing the drug resistance of these HIV-1 RT mutants.

  3. Diarylaniline Derivatives as a Distinct Class of HIV-1 Non-nucleoside Reverse Transcriptase Inhibitors

    PubMed Central

    Qin, Bingjie; Jiang, Xingkai; Lu, Hong; Tian, Xingtao; Barbault, Florent; Huang, Li; Qian, Keduo; Chen, Chin-Ho; Huang, Rong; Jiang, Shibo; Lee, Kuo-Hsiung; Xie, Lan

    2010-01-01

    By using structure-based drug design and isosteric replacement, diarylaniline and 1,5-diarylbenzene-1,2-diamine derivatives were synthesized and evaluated against wild type HIV-1 and drug-resistant viral strains, resulting in the discovery of diarylaniline derivatives as a distinct class of next-generation HIV-1 non-nucleoside reverse transcriptase inhibitor (NNRTI) agents. The most promising compound 37 showed significant EC50 values of 0.003-0.032 μM against HIV-1 wild-type strains and of 0.005-0.604 μM against several drug-resistant strains. Current results also revealed important structure-activity relationship (SAR) conclusions for diarylanilines and strongly support our hypothesis that an NH2 group on the central benzene ring ortho to the aniline moiety is crucial for interaction with K101 of the NNRTI binding site in HIV-1 RT, likely by forming H-bonds with K101. Furthermore, molecular modeling studies with molecular mechanism/general born surface area (MM/GBSA) technology demonstrated the rationality of our hypothesis. PMID:20527972

  4. Differential responses of human hepatocytes to the non-nucleoside HIV-1 reverse transcriptase inhibitor nevirapine.

    PubMed

    Fang, Jia-Long; Beland, Frederick A

    2013-01-01

    Nevirapine is a non-nucleoside reverse transcriptase (RT) inhibitor used for the treatment of AIDS and the prevention of mother-to-child transmission of HIV-1. Despite its therapeutic benefits, treatment with nevirapine has been associated with significant incidences of liver and dermal toxicity. The present study examined the effects of nevirapine on cell growth and death in human hepatocyte HepG2 cells and THLE2 cells and the possible pathways involved in these effects. The concentrations of nevirapine inhibiting 50% cell growth were similar for both cell lines. Nevirapine (0-250 µM) treatment caused a slight increase in the amount of lactate dehydrogenase released into the medium. Apoptotic cell death did not contribute to the decrease in viable cells. Exposing of HepG2 cells to nevirapine caused G2/M phase arrest, and the activity of senescence-associated β-galactosidase was not altered. In THLE2 cells, the percentage of cells in G1/G0 phase was increased and cellular senescence was induced in a concentration-dependent manner. Endogenous non-telomeric RT activity was not detected in either cell line. Western blot analysis indicated lower levels of p53 and phospho-p53 (ser15) in HepG2 cells as compared to THLE2 cells; no significant changes in p53 or phospho-p53 (ser15) were noted with nevirapine treatment. These data demonstrate that nevirapine inhibits cell growth, induces cell cycle arrest at different phases, and has different effects on cellular senescence in HepG2 cells and THLE2 cells. The differential responses appear to be related to differences in the basal levels of p53 in the HepG2 cells and THLE2 cells.

  5. Conformational analysis of nevirapine, a non-nucleoside HIV-1 reverse transcriptase inhibitor, based on quantum mechanical calculations

    NASA Astrophysics Data System (ADS)

    Hannongbua, Supa; Prasithichokekul, Sirikanok; Pungpo, Pornpan

    2001-11-01

    The structure and the conformational behavior of the HIV-1 reverse transcriptase inhibitor, 11-cyclopropyl-5,11-dihydro-4-methyl-6H-dipyrido[3,2-b2',3'-e][1,4]diazepin-6-one (nevirapine), is investigated by semiempirical (MNDO, AM1 and PM3) method, ab initio at the HF/3-21G and HF/6-31G** levels and density functional theory at the B3LYP/6-31G** level. The fully optimized structure and rotational potential of the nitrogen and carbon bond in the cyclopropyl ring were examined in detail. A similar geometrical minimum is obtained from all methods which shows an almost identical structure to the geometry of the molecule in the complex structure with HIV-1 reverse transcriptase. To get some information on the structure in solution, NMR chemical shift calculations were also performed by a density functional theory at the B3LYP/6-31G** level, using GIAO approximation. The calculated 1H-NMR and 13C-NMR spectra for the energy minimum geometry agree well with the experimental results, which indicated that the geometry of nevirapine in solution is very similar to that of the molecule in the inhibition complex. Furthermore, the obtained results are compared to the conformational studies of other non-nucleoside reverse transcriptase inhibitors and reveal a common agreement of the non-nucleoside reverse transcriptase inhibitors. The specific butterfly-like shape and conformational flexibility within the side chain of the non-nucleoside reverse transcriptase inhibitors play an important role inducing conformational change of HIV-1 reverse transcriptase structure and are essential for the association at the inhibition pocket.

  6. Design, Synthesis, and Evaluation of Diarylpyridines and Diarylanilines as Potent Non-nucleoside HIV-1 Reverse Transcriptase Inhibitors

    PubMed Central

    Tian, Xingtao; Qin, Bingjie; Wu, Zhiyuan; Wang, Xiaofeng; Lu, Hong; Morris-Natschke, Susan L.; Chen, Chin Ho; Jiang, Shibo; Lee, Kuo-Hsiung; Xie, Lan

    2010-01-01

    Based on the structures and activities of our previously identified non-nucleoside reverse transcriptase inhibitors (NNRTIs), we designed and synthesized two sets of derivatives, diarylpyridines (A) and diarylanilines (B), and tested their anti-HIV-1 activity against infection by HIV-1 NL4-3 and IIIB in TZM-bl and MT-2 cells, respectively. The results showed that most compounds exhibited potent anti-HIV-1 activity with low nanomolar EC50 values, and some of them, such as 13m, 14c, and 14e, displayed high potency with subnanomolar EC50 values, which were more potent than etravirine (TMC125, 1) in the same assays. Notably, these compounds were also highly effective against infection by multi-RTI-resistant strains, suggesting a high potential to further develop these compounds as a novel class of NNRTIs with improved antiviral efficacy and resistance profile. PMID:21049929

  7. Discovery of diarylpyridine derivatives as novel non-nucleoside HIV-1 reverse transcriptase inhibitors

    PubMed Central

    Tian, Xingtao; Qin, Bingjie; Lu, Hong; Lai, Weihong; Jiang, Shibo; Lee, Kuo-Hsiung; Ho Chen, Chin; Xie, Lan

    2009-01-01

    Two series (4 and 5) of diarylpyridine derivatives were designed, synthesized, and evaluated for anti-HIV-1 activity. The most promising compound, 5e, inhibited HIV-1 IIIB, NL4-3, and RTMDR1 with low nanomolar EC50 values and selectivity indexes of >10,000. The results of this study indicate that diarylpyridine can be used as a novel scaffold to derive a new class of potent NNRTIs, active against both wild-type and drug resistant HIV-1 strains. PMID:19666220

  8. Optimization of 2,4-Diarylanilines as Non-nucleoside HIV-1 Reverse Transcriptase Inhibitors

    PubMed Central

    Sun, Lian-Qi; Qin, Bingjie; Huang, Li; Qian, Keduo; Chen, Chin-Ho; Lee, Kuo-Hsiung; Xie, Lan

    2012-01-01

    The current optimization of 2,4-diarylaniline analogs (DAANs) on the central phenyl ring provided a series of new active DAAN derivatives 9a–9e, indicating an accessible modification approach that could improve anti-HIV potency against wild-type and resistant strains, aqueous solubility, and metabolic stability. A new compound 9e not only exhibited extremely high potency against wild-type virus (EC50 0.53 nM) and several resistant viral strains (EC50 0.36 – 3.9 nM), but also showed desirable aqueous solubility and metabolic stability, which were comparable or better than those of the anti-HIV-1 drug TMC278 (2). Thus, new compound 9e might be a potential drug candidate for further development of novel next-generation NNRTIs. PMID:22406117

  9. Molecular design, synthesis and biological evaluation of BP-O-DAPY and O-DAPY derivatives as non-nucleoside HIV-1 reverse transcriptase inhibitors.

    PubMed

    Yang, Shiqiong; Pannecouque, Christophe; Daelemans, Dirk; Ma, Xiao-Dong; Liu, Yang; Chen, Fen-Er; De Clercq, Erik

    2013-07-01

    This paper reports the synthesis and antiviral evaluation of a series of non-nucleoside reverse transcriptase inhibitors (NNRTIs) that combine the peculiar structural features of diarylpyrimidine derivatives (DAPYs) and benzophenone derivatives (BPs). The DAPY derivatives bearing benzoyl or alkoxyl substitutes on the A-ring showed the inhibitory activity against wild-type HIV-1 at the cellular level within the range of EC50 values from micromolar to nanomolar. Among these compounds, 1u exhibited the most potent anti-HIV-1 activity (EC50 = 0.06 ± 0.01 μM, SI > 6260), which were about 1.8-fold more active than nevirapine (NVP) and delavirdine (DLV). In addition, the binding modes with HIV-1 RT and the preliminary SAR studies of these derivatives were also considered for further investigation.

  10. Progress of bis(heteroaryl)piperazines (BHAPs) as non-nucleoside reverse transcriptase inhibitors (NNRTIs) against human immunodeficiency virus type 1 (HIV-1).

    PubMed

    Xu, Hui

    2010-01-01

    Since the first case of acquired immunodeficiency syndrome (AIDS) was reported in 1981, AIDS, as the global disease affecting 33.2 million people in 2007, has always been an unsolved problem worldwide. Reverse transcriptase (RT) is a crucial enzyme in the life cycle of human immunodeficiency virus type 1 (HIV-1), and thereby has been the prime drugs target for antiretroviral (ARV) therapy against AIDS. To date, two classes of RT inhibitors (RTIs), e.g., nucleoside reverse transcriptase inhibitors (NRTIs) and non-nucleoside reverse transcriptase inhibitors (NNRTIs), and a lot of compounds tested as RTIs have been described. To our knowledge, bis(heteroaryl)piperazines (BHAPs) have been considered as one class of promising NNRTIs, such as structurally and chemically related NNRTI delavirdine, which was approved by the U. S. Food and Drug Administration (FDA) for the treatment of HIV-1 infection in 1997. In this mini-review, we make attempts to report the progress of synthesis and structure-activity relationship (SAR) of BHAPs, in the meantime, the synergistic inhibition of HIV-1 replication by combining delavirdine with other HIV-1 inhibitors is also discussed. It will pave the way for the design and development of BHAPs as anti-HIV-1 agents in AIDS chemotherapy in the future.

  11. Synthesis, biological evaluation and molecular modeling of 4,6-diarylpyrimidines and diarylbenzenes as novel non-nucleosides HIV-1 reverse transcriptase inhibitors.

    PubMed

    Ribone, Sergio R; Leen, Volker; Madrid, Marcela; Dehaen, Wim; Daelemans, Dirk; Pannecouque, Christophe; Briñón, Margarita C

    2012-12-01

    A series of novel 4,6-diarylpyrimidines (4,6-DAPY) and diarylbenzenes (DABE) compounds were synthesized and evaluated as inhibitors of human immunodeficiency virus type-1 (HIV-1). Among them, the most potent HIV-1 inhibitors were 8b, 8d, 14b and 18 (EC(50) = 0.049, 0.381, 0.599 and 0.398 μM, respectively), with HIV-1 inhibitory activity improved or similar to nevirapine (NVP, EC(50) = 0.097 μM) and delavirdine (DEV, EC(50) = 0.55 μM). The other compounds displayed moderate activity (8c, EC(50) = 5.25 μM) or were inactive (8a and 14a) against HIV-1 replication. Molecular modeling studies were performed with the synthesized compounds in complex with the wild-type reverse transcriptase (RT). A correlation was found between the anti-HIV activity and the electrostatic energy of interaction with Lys101 residue. These findings enrich the SAR of these Non-Nucleoside Reverse Transcriptase Inhibitors (NNRTIs) families.

  12. Synthesis and biological evaluation of piperidine-substituted triazine derivatives as HIV-1 non-nucleoside reverse transcriptase inhibitors.

    PubMed

    Chen, Xuwang; Zhan, Peng; Pannecouque, Christophe; Balzarini, Jan; De Clercq, Erik; Liu, Xinyong

    2012-05-01

    A novel series of piperidine-substituted triazine derivatives have been synthesized and evaluated for anti-HIV activities in MT-4 cells. Most compounds displayed extremely promising activity against wild-type HIV-1 with EC(50) values in low nanomolar concentration, better than that of Nevirapine, Delavirdine, Zidovudine and Dideoxycitidine, and higher potency towards the resistant mutant strain K103N/Y181C than that of Nevirapine and Delavirdine. Selected compounds were also assayed against reverse transcriptase with lower IC(50) values than that of Nevirapine. The structure-activity relationship (SAR) of these novel structural congeners was also discussed.

  13. Synthesis and biological evaluation of imidazole thioacetanilides as novel non-nucleoside HIV-1 reverse transcriptase inhibitors.

    PubMed

    Zhan, Peng; Liu, Xinyong; Zhu, Junjie; Fang, Zengjun; Li, Zhenyu; Pannecouque, Christophe; Clercq, Erik De

    2009-08-15

    A series of 2-(1-aryl-1H-imidazol-2-ylthio)acetamide [imidazole thioacetanilide (ITA)] derivatives were synthesized and evaluated as potent inhibitors of human immunodeficiency virus type-1 (HIV-1). Among them, the most potent HIV-1 inhibitors were 4a5 (EC(50)=0.18microM), and 4a2 (EC(50)=0.20microM), which were more effective than the lead compound L1 (EC(50)=2.053microM) and the reference drugs nevirapine and delavirdine. The preliminary structure-activity relationship (SAR) of the newly synthesized congeners is discussed.

  14. Development and Characterization of a Vaginal Film Containing Dapivirine, a Non- nucleoside Reverse Transcriptase Inhibitor (NNRTI), for prevention of HIV-1 sexual transmission

    PubMed Central

    Akil, Ayman; Parniak, Michael A.; Dezzuitti, Charlene S.; Moncla, Bernard J.; Cost, Marilyn R.; Li, Mingguang; Rohan, Lisa Cencia

    2012-01-01

    Dapivirine, a non-nucleoside reverse transcriptase inhibitor, is a potent and promising anti-HIV molecule. It is currently being investigated for use as a vaginal microbicide in two dosage forms, a semi-solid gel and a silicone elastomer ring. Quick-dissolving films are promising and attractive dosage forms that may provide an alternative platform for the vaginal delivery of microbicide drug candidates. Vaginal films may provide advantages such as discreet use, no product leakage during use, lack of requirement for an applicator for insertion, rapid drug release and minimal packaging and reduced wastage. Within this study the in vitro bioactivity of dapivirine as compared to the NNRTI UC781 was further established and a quick dissolve film was developed for vaginal application of dapivirine for prevention of HIV infection. The developed film was characterized with respect to its physical and chemical attributes including water content, mechanical strength, drug release profile, permeability, compatibility with lactobacilli and bioactivity. The anti-HIV activity of the formulated dapivirine film was confirmed in in vitro and ex vivo models. Importantly the physical and chemical properties of the film as well as its bioactivity were maintained for a period of 18 months. In conclusion, a vaginal film containing dapivirine was developed and characterized. The film was shown to prevent HIV-1 infection in vitro and ex vivo and have acceptable characteristics which make this film a promising candidate for testing as vaginal microbicide. PMID:22708075

  15. Synthesis and Anti-HIV-1 Evaluation of Some Novel MC-1220 Analogs as Non-Nucleoside Reverse Transcriptase Inhibitors.

    PubMed

    Loksha, Yasser M; Pedersen, Erik B; Loddo, Roberta; La Colla, Paolo

    2016-05-01

    Some novel MC-1220 analogs were synthesized by condensation of 4,6-dichloro-N-methylpyrimidin-2-amine derivatives (1a,b and 15) and/or 4-chloro-6-methoxy-N,N,5-trimethylpyrimidin-2-amine (2a) with the sodium salt of 2,6-difluorophenylacetonitrile followed by treatment with aqueous sodium hydroxide in methanol, alkylation, reduction, halogenation, and/or acidic hydrolysis. All synthesized compounds were evaluated for their activity against HIV-1. The most active compound in this study was compound 7, which showed activity against HIV-1 comparable to that of MC-1220. The only difference in structure between compound 7 and MC-1220 is a fluoro atom instead of a CH3 group.

  16. Synthesis and biological evaluation of CHX-DAPYs as HIV-1 non-nucleoside reverse transcriptase inhibitors.

    PubMed

    Yan, Zi-Hong; Wu, Hai-Qiu; Chen, Wen-Xue; Wu, Yan; Piao, Hu-Ri; He, Qiu-Qin; Chen, Fen-Er; De Clercq, Erik; Pannecouque, Christophe

    2014-06-15

    A series of new diarylpyrimidines (DAPYs) characterized by a halogen atom on the methylene linker between wing I and the central pyrimidine ring was synthesized and evaluated for their anti-HIV activity in MT-4 cell cultures. The two most promising compounds 7f and 7g showed excellent activity against wild-type HIV-1 with low nanomolar EC50 values of 0.005 and 0.009 μM, respectively, which were comparable to or more potent than all the reference drugs zidovudine (AZT), lamivudine (3TC), nevirapine (NEV), efavirenz (EFV), delaviridine (DLV) and etravirine (ETV). In particular, 7g also displayed strong activity against the double mutant strain 103N + 181C with an EC50 value of 8.2 μM. The preliminary structure-activity relationship (SAR) and molecular docking analysis of this new series of CHX-DAPYs were also investigated.

  17. Search for Non-nucleoside Inhibitors of HIV-1 Reverse Transcriptase using Chemical Similarity, Molecular Docking, and MM-GB/SA Scoring

    PubMed Central

    Barreiro, Gabriela; Guimarães, Cristiano R. W.; Tubert-Brohman, Ivan; Lyons, Theresa M.; Tirado-Rives, Julian; Jorgensen, William L.

    2008-01-01

    A virtual screening protocol has been applied to seek non-nucleoside inhibitors of HIV-1 reverse transcriptase (NNRTIs) and its K103N mutant. First, a chemical similarity search on the Maybridge library was performed using known NNRTIs as reference structures. The top-ranked molecules obtained from this procedure plus 26 known NNRTIs were then docked into the binding sites of the wild-type reverse transcriptase (HIV-RT) and its K103N variant (K103N-RT) using Glide 3.5. The top-ranked 100 compounds from the docking for both proteins were post-scored with a procedure using molecular mechanics and continuum solvation (MM-GB/SA). The validity of the virtual screening protocol was supported by (i) testing of the MM-GB/SA procedure, (ii) agreement between predicted and crystallographic binding poses, (iii) recovery of known potent NNRTIs at the top of both rankings, and (iv) identification of top-scoring library compounds that are close in structure to recently reported NNRTI HTS-hits. However, purchase and assaying of selected top-scoring compounds from the library failed to yield active anti-HIV agents. Nevertheless, the highest-ranked database compound, S10087, was pursued as containing a potentially viable core. Subsequent synthesis and assaying of S10087 analogs proposed by further computational analysis yielded anti-HIV agents with EC50 values as low as 310 nM. Thus, with the aid of computational tools, it was possible to evolve a false positive into a true active. PMID:17949071

  18. From the traditional Chinese medicine plant Schisandra chinensis new scaffolds effective on HIV-1 reverse transcriptase resistant to non-nucleoside inhibitors.

    PubMed

    Xu, Lijia; Grandi, Nicole; Del Vecchio, Claudia; Mandas, Daniela; Corona, Angela; Piano, Dario; Esposito, Francesca; Parolin, Cristina; Tramontano, Enzo

    2015-04-01

    HIV-1 reverse transcriptase (RT) is still an extremely attractive pharmaceutical target for the identification of new inhibitors possibly active on drug resistant strains. Medicinal plants are a rich source of chemical diversity and can be used to identify novel scaffolds to be further developed by chemical modifications. We investigated the ability of the main lignans from Schisandra chinensis (Turcz.) Baill. fruits, commonly used in Traditional Chinese Medicine, to affect HIV-1 RT functions. We purified 6 lignans from Schisandra chinensis fruits and assayed their effects on HIV-1 RT and viral replication. Among the S. chinensis fruit lignans, Schisandrin B and Deoxyschizandrin selectively inhibited the HIV-1 RT-associated DNA polymerase activity. Structure activity relationship revealed the importance of cyclooctadiene ring substituents for efficacy. In addition, Schisandrin B was also able to impair HIV-1 RT drug resistant mutants and the early phases of viral replication. We identified Schisandrin B and Deoxyschizandrin as new scaffold for the further development of novel HIV-1 RT inhibitors.

  19. Design, Synthesis and Biological Evaluation of 1-[(2-benzyloxyl/alkoxyl) methyl]-5-halo-6-aryluracils as Potent HIV-1 Non-Nucleoside Reverse Transcriptase Inhibitors with Improved Drug Resistance Profile

    PubMed Central

    Wang, Xiaowei; Zhang, Jianfang; Huang, Yang; Wang, Ruiping; Zhang, Liang; Qiao, Kang; Li, Li; Liu, Chang; Ouyang, Yabo; Xu, Weisi; Zhang, Zhili; Zhang, Liangren; Shao, Yiming; Jiang, Shibo; Ma, Liying; Liu, Junyi

    2012-01-01

    Since the emergence of drug-resistant mutants has limited the efficacy of non-nucleoside reverse transcriptase inhibitors (NNRTIs), it is essential to develop new antivirals with better drug-resistance and pharmacokinetic profiles. Here we designed and synthesized a series of 1-[(2-benzyloxyl/alkoxyl)methyl]-5-halo-6-aryluracils, the HEPT analogues, and evaluated their biological activity using Nevirapine and 18 (TNK-651) as reference compounds. Most of these compounds, especially 6b, 7b, 9b, 11b and 7c, exhibited highly potent anti-HIV-1 activity against both wild-type and NNRTI-resistant HIV-1 strains. The compound 7b, that had the highest selectivity index (SI = 38,215), is more potent than Nevirapine and 18. These results suggest that introduction of halogen at the C-5 position may contribute to the effectiveness of these compounds against RTI-resistant variants. In addition, m-substituents on the C-6 aromatic moiety could significantly enhance activity against NNRTI-resistant HIV-1 strains. These compounds can be further developed as next-generation NNRTIs with improved antiviral efficacy and drug-resistance profile. PMID:22283377

  20. Structure-based virtual screening efforts against HIV-1 reverse transcriptase to introduce the new potent non-nucleoside reverse transcriptase inhibitor

    NASA Astrophysics Data System (ADS)

    Hosseini, Yaser; Mollica, Adriano; Mirzaie, Sako

    2016-12-01

    The human immunodeficiency virus (HIV) which is strictly related to the development of AIDS, is treated by a cocktail of drugs, but due its high propensity gain drug resistance, the rational development of new medicine is highly desired. Among the different mechanism of action we selected the reverse transcriptase (RT) inhibition, for our studies. With the aim to identify new chemical entities to be used for further rational drug design, a set of 3000 molecules from the Zinc Database have been screened by docking experiments using AutoDock Vina software. The best ranked compounds with respect of the crystallographic inhibitor MK-4965 resulted to be five compounds, and the best among them was further tested by molecular dynamics (MD) simulation. Our results indicate that comp1 has a stronger interaction with the subsite p66 of RT than MK-4965 and that both are able to stabilize specific conformational changes of the RT 3D structure, which may explain their activity as inhibitors. Therefore comp1 could be a good candidate for biological tests and further development.

  1. Hybrid chemistry. Part 4: Discovery of etravirine-VRX-480773 hybrids as potent HIV-1 non-nucleoside reverse transcriptase inhibitors.

    PubMed

    Wan, Zheng-Yong; Tao, Yuan; Wang, Ya-Feng; Mao, Tian-Qi; Yin, Hong; Chen, Fen-Er; Piao, Hu-Ri; De Clercq, Erik; Daelemans, Dirk; Pannecouque, Christophe

    2015-08-01

    A novel series of etravirine-VRX-480773 hybrids were designed using structure-guided molecular hybridization strategy and fusing the pharmacophore templates of etravirine and VRX-480773. The anti-HIV-1 activity and cytotoxicity was evaluated in MT-4 cell cultures. The most active hybrid compound in this series, N-(2-chlorophenyl)-2-((4-(4-cyano-2,6-dimethylphenoxy)pyrimidin-2-yl)thio)acetamide 3d (EC50=0.24 , SI>1225), was more potent than delavirdine (EC50=0.66 μM, SI>67) in the anti-HIV-1 in vitro cellular assay. Studies of structure-activity relationships established a correlation between anti-HIV activity and the substitution pattern of the acetanilide group.

  2. Diverse combinatorial design, synthesis and in vitro evaluation of new HEPT analogues as potential non-nucleoside HIV-1 reverse transcription inhibitors.

    PubMed

    Puig-de-la-Bellacasa, Raimon; Giménez, Laura; Pettersson, Sofia; Pascual, Rosalia; Gonzalo, Encarna; Esté, José A; Clotet, Bonaventura; Borrell, José I; Teixidó, Jordi

    2012-08-01

    New analogues of 1-[(2-hydroxyethoxy)methyl]-6-(phenylthio)thymine (HEPT) were synthesized and evaluated for their in vitro activities against HIV-1 in MT-4 cell cultures. Chemical diversity was introduced in 4 of the six positions of the core and the influence of each substituent was studied. This library was built on the basis of a rational diversity analysis with the objective of maximizing diversity and thus, the activity range with a minimum number of synthesized compounds. Among them, 2{1,2,3,1} and 2{1,2,3,4} exhibited the most potent anti-HIV-1 activities (EC(50)=0.015 μg/mL; 0.046 μM, SI >1667) and (EC(50)=0.025 μg/mL; 0.086 μM, SI >1000), respectively, which were about 71-fold and 38-fold more active than the reference compound HEPT (EC(50)=1.01 μg/mL; 3.27 μM, SI >25).

  3. Design, Synthesis, and Preclinical Evaluations of Novel 4-Substituted 1,5-Diarylanilines as Potent HIV-1 Non-Nucleoside Reverse Transcriptase Inhibitor (NNRTI) Drug Candidates

    PubMed Central

    Sun, Lian-Qi; Zhu, Lei; Qian, Keduo; Qin, Bingjie; Huang, Li; Chen, Chin Ho; Lee, Kuo-Hsiung; Xie, Lan

    2012-01-01

    Twenty-one new 4-substituted diarylaniline compounds (DAANs) (Scheme 2, series 13, 14, and 15) were designed, synthesized, and evaluated against wild-type and drug resistant HIV-1 viral strains. As a result, approximately a dozen new DAANs showed high potency with low nano- to sub-nanomolar EC50 values ranging from 0.2 to 10 nM. The three most promising compounds 14e, 14h, and 15h exhibited high potency against wild-type and drug-resistant viral strains with EC50 values at the sub-nanomolar level (0.29–0.87 nM), and were comparable to or more potent than the new NNRTI drug riplivirine (2) in the same assays. Drug-like physicochemical property assessments revealed that the most active DAANs (EC50 <10 nM) have better aqueous solubility (>1–90 μg/mL at pH 7.4 and pH 2) and metabolic stability in vitro than 2, as well as desirable log P values (<5) and polar surface area (PSA) (<140 Å2). These promising results warrant further development of this novel compound class as potential potent anti-AIDS clinical trial candidates. PMID:22856541

  4. A Phase III Comparative Study of the Efficacy and Tolerability of Three Non-Nucleoside Reverse Transcriptase Inhibitor-Sparing Antiretroviral Regimens for Treatment-Naïve HIV-1-Infected Volunteers: A Randomized, Controlled Trial

    PubMed Central

    Lennox, Jeffrey L.; Landovitz, Raphael J.; Ribaudo, Heather J.; Ofotokun, Ighovwerha; Na, Lumine H.; Godfrey, Catherine; Kuritzkes, Daniel R.; Sagar, Manish; Brown, Todd T.; Cohn, Susan E.; McComsey, Grace A.; Aweeka, Francesca; Fichtenbaum, Carl J.; Presti, Rachel M.; Koletar, Susan L.; Haas, David W.; Patterson, Kristine B.; Benson, Constance A.; Baugh, Bryan P.; Leavitt, Randi Y.; Rooney, James F.; Seekins, Daniel; Currier, Judith S.

    2015-01-01

    Background Non-nucleoside reverse transcriptase (NNRTI) inhibitor-based antiretroviral therapy is not suitable for all treatment-naïve HIV-infected persons. Objective Perform a rigorous evaluation of three NNRTI-sparing initial antiretroviral regimens to demonstrate equivalence for virologic efficacy and tolerability. Design Phase-III, 1:1:1 randomized, open label, >96 week study. Setting Fifty-seven sites in United States and Puerto Rico. Patients Treatment naïve, ≥18 years, HIV-1 RNA >1000 copies/mL, no nucleoside reverse transcriptase or protease inhibitor resistance. Intervention Atazanavir 300 mg with ritonavir 100 mg, daily; or raltegravir 400 mg twice daily; or darunavir 800 mg with ritonavir 100 mg, daily; plus emtricitabine 200 mg + tenofovir disoproxil fumarate 300 mg daily. Measurements Virologic failure defined as confirmed HIV-1 RNA >1000 copies/mL between 16 and 24 weeks, or >200 copies/mL at or after 24 weeks; tolerability failure defined as discontinuation of atazanavir, raltegravir or darunavir for toxicity. A secondary endpoint was a combination of virologic efficacy and tolerability. Results Among 1,809 participants all pairwise comparisons of incidence of virologic failure over 96-weeks demonstrated equivalence within ±10%. Raltegravir and ritonavir-boosted darunavir were equivalent for tolerability, whereas ritonavir-boosted atazanavir resulted in a 12.7% and a 9.2% higher incidence of tolerability discontinuation than raltegravir and ritonavir-boosted darunavir respectively, primarily due to hyperbilirubinemia. For combined virologic efficacy and tolerability ritonavir-boosted darunavir was superior to ritonavir-boosted atazanavir, and raltegravir was superior to both protease inhibitors. Antiretroviral resistance at time of virologic failure was rare but more likely with raltegravir. Limitations Open label; ritonavir not provided Conclusions Over 2 years all three regimens attain high and equivalent rates of virologic control. Regimens

  5. Crystal structure of tert-butyldimethylsilyl-spiroaminooxathioledioxide-thymine (TSAO-T) in complex with HIV-1 reverse transcriptase (RT) redefines the elastic limits of the non-nucleoside inhibitor-binding pocket

    PubMed Central

    Das, Kalyan; Bauman, Joseph D.; Rim, Angela S.; Dharia, Chhaya; Clark, Arthur D.; Camarasa, María-José; Balzarini, Jan; Arnold, Eddy

    2012-01-01

    Tert-butyldimethylsilyl-spiroaminooxathioledioxide (TSAO) compounds have an embedded thymidine-analog backbone; however, TSAO compounds invoke non-nucleoside RT inhibitor (NNRTI) resistance mutations. Our crystal structure of RT:7 (TSAO-T) complex shows that 7 binds inside the NNRTI-binding pocket assuming a “dragon” shape, and interacts extensively with almost all the pocket residues. The structure also explains the structure-activity relationships and resistance data for TSAO compounds. The binding of 7 causes hyper-expansion of the pocket and significant rearrangement of RT subdomains. This non-optimal complex formation is apparently responsible (1) for the lower stability of a RT (p66/p51) dimer and (2) for the lower potency of 7 despite of its extensive interactions with RT. However, the HIV-1 RT:7 structure reveals novel design features, such as (1) interactions with the conserved Tyr183 from the YMDD-motif and (2) a possible way for an NNRTI to reach the polymerase active site that may be exploited in designing new NNRTIs. PMID:21446702

  6. Docking and 3-D QSAR studies on indolyl aryl sulfones. Binding mode exploration at the HIV-1 reverse transcriptase non-nucleoside binding site and design of highly active N-(2-hydroxyethyl)carboxamide and N-(2-hydroxyethyl)carbohydrazide derivatives.

    PubMed

    Ragno, Rino; Artico, Marino; De Martino, Gabriella; La Regina, Giuseppe; Coluccia, Antonio; Di Pasquali, Alessandra; Silvestri, Romano

    2005-01-13

    Three-dimensional quantitative structure-activity relationship (3-D QSAR) studies and docking simulations were developed on indolyl aryl sulfones (IASs), a class of novel HIV-1 non-nucleoside reverse transcriptase (RT) inhibitors (Silvestri, et al. J. Med. Chem. 2003, 46, 2482-2493) highly active against wild type and some clinically relevant resistant strains (Y181C, the double mutant K103N-Y181C, and the K103R-V179D-P225H strain, highly resistant to efavirenz). Predictive 3-D QSAR models using the combination of GRID and GOLPE programs were obtained using a receptor-based alignment by means of docking IASs into the non-nucleoside binding site (NNBS) of RT. The derived 3-D QSAR models showed conventional correlation (r(2)) and cross-validated (q(2)) coefficients values ranging from 0.79 to 0.93 and from 0.59 to 0.84, respectively. All described models were validated by an external test set compiled from previously reported pyrryl aryl sulfones (Artico, et al. J. Med. Chem. 1996, 39, 522-530). The most predictive 3-D QSAR model was then used to predict the activity of novel untested IASs. The synthesis of six designed derivatives (prediction set) allowed disclosure of new IASs endowed with high anti-HIV-1 activities.

  7. Synthesis and biological evaluation of novel 5-alkyl-2-arylthio-6-((3,4-dihydroquinolin-1(2H)-yl)methyl)pyrimidin-4(3H)-ones as potent non-nucleoside HIV-1 reverse transcriptase inhibitors.

    PubMed

    Zhang, Jing; Zhan, Peng; Wu, Jingde; Li, Zhenyu; Jiang, Yan; Ge, Weiying; Pannecouque, Christophe; De Clercq, Erik; Liu, Xinyong

    2011-07-15

    A series of novel S-DABO analogues of 5-alkyl-2-arylthio-6-((3,4-dihydroquinolin-1(2H)-yl)methyl)pyrimidin-4(3H)-ones were synthesized and evaluated as inhibitors of human immunodeficiency virus type-1 (HIV-1). Among them, the most potent HIV-1 inhibitors were compounds 6c1,6c6, and 6b1 (EC(50)=0.24 ± 0.05, 0.38 ± 0.13, 0.39 ± 0.05 μM, respectively), which possess improved or similar HIV-1 inhibitory activity compared with nevirapine (NVP) (EC(50)=0.21 μM) and delavirdine (DLV) (EC(50)=0.32 μM). None of these compounds were active against HIV-2 replication. Furthermore, enzyme inhibitory assays were performed with selected derivatives against HIV-1 wtRT, confirming that the main target of these compounds is the HIV-1 RT and these new S-DABOs are acting as NNRTIs. The preliminary structure-activity relationship (SAR) of these new congeners is discussed briefly and rationalized by docking studies.

  8. Emergent HIV-1 Drug Resistance Mutations Were Not Present at Low-Frequency at Baseline in Non-Nucleoside Reverse Transcriptase Inhibitor-Treated Subjects in the STaR Study

    PubMed Central

    Porter, Danielle P.; Daeumer, Martin; Thielen, Alexander; Chang, Silvia; Martin, Ross; Cohen, Cal; Miller, Michael D.; White, Kirsten L.

    2015-01-01

    At Week 96 of the Single-Tablet Regimen (STaR) study, more treatment-naïve subjects that received rilpivirine/emtricitabine/tenofovir DF (RPV/FTC/TDF) developed resistance mutations compared to those treated with efavirenz (EFV)/FTC/TDF by population sequencing. Furthermore, more RPV/FTC/TDF-treated subjects with baseline HIV-1 RNA >100,000 copies/mL developed resistance compared to subjects with baseline HIV-1 RNA ≤100,000 copies/mL. Here, deep sequencing was utilized to assess the presence of pre-existing low-frequency variants in subjects with and without resistance development in the STaR study. Deep sequencing (Illumina MiSeq) was performed on baseline and virologic failure samples for all subjects analyzed for resistance by population sequencing during the clinical study (n = 33), as well as baseline samples from control subjects with virologic response (n = 118). Primary NRTI or NNRTI drug resistance mutations present at low frequency (≥2% to 20%) were detected in 6.6% of baseline samples by deep sequencing, all of which occurred in control subjects. Deep sequencing results were generally consistent with population sequencing but detected additional primary NNRTI and NRTI resistance mutations at virologic failure in seven samples. HIV-1 drug resistance mutations emerging while on RPV/FTC/TDF or EFV/FTC/TDF treatment were not present at low frequency at baseline in the STaR study. PMID:26690199

  9. Emergent HIV-1 Drug Resistance Mutations Were Not Present at Low-Frequency at Baseline in Non-Nucleoside Reverse Transcriptase Inhibitor-Treated Subjects in the STaR Study.

    PubMed

    Porter, Danielle P; Daeumer, Martin; Thielen, Alexander; Chang, Silvia; Martin, Ross; Cohen, Cal; Miller, Michael D; White, Kirsten L

    2015-12-07

    At Week 96 of the Single-Tablet Regimen (STaR) study, more treatment-naïve subjects that received rilpivirine/emtricitabine/tenofovir DF (RPV/FTC/TDF) developed resistance mutations compared to those treated with efavirenz (EFV)/FTC/TDF by population sequencing. Furthermore, more RPV/FTC/TDF-treated subjects with baseline HIV-1 RNA >100,000 copies/mL developed resistance compared to subjects with baseline HIV-1 RNA ≤100,000 copies/mL. Here, deep sequencing was utilized to assess the presence of pre-existing low-frequency variants in subjects with and without resistance development in the STaR study. Deep sequencing (Illumina MiSeq) was performed on baseline and virologic failure samples for all subjects analyzed for resistance by population sequencing during the clinical study (n = 33), as well as baseline samples from control subjects with virologic response (n = 118). Primary NRTI or NNRTI drug resistance mutations present at low frequency (≥2% to 20%) were detected in 6.6% of baseline samples by deep sequencing, all of which occurred in control subjects. Deep sequencing results were generally consistent with population sequencing but detected additional primary NNRTI and NRTI resistance mutations at virologic failure in seven samples. HIV-1 drug resistance mutations emerging while on RPV/FTC/TDF or EFV/FTC/TDF treatment were not present at low frequency at baseline in the STaR study.

  10. Novel indazole non-nucleoside reverse transcriptase inhibitors using molecular hybridization based on crystallographic overlays.

    PubMed

    Jones, Lyn H; Allan, Gill; Barba, Oscar; Burt, Catherine; Corbau, Romuald; Dupont, Thomas; Knöchel, Thorsten; Irving, Steve; Middleton, Donald S; Mowbray, Charles E; Perros, Manos; Ringrose, Heather; Swain, Nigel A; Webster, Robert; Westby, Mike; Phillips, Chris

    2009-02-26

    A major problem associated with non-nucleoside reverse transcriptase inhibitors (NNRTIs) for the treatment of HIV is their lack of resilience to mutations in the reverse transcriptase (RT) enzyme. Using structural overlays of the known inhibitors efavirenz and capravirine complexed in RT as a starting point, and structure-based drug design techniques, we have created a novel series of indazole NNRTIs that possess excellent metabolic stability and mutant resilience.

  11. Dipyridodiazepinone analogs as human immunodeficiency virus type 1-specific non-nucleoside reverse transcriptase inhibitors: an overview.

    PubMed

    Lv, M; Xu, H

    2010-01-01

    According to World Health Organization (WHO)/Joint United Nations Programme on human immunodeficiency virus (HIV)/acquired immune deficiency syndrome (AIDS) (UNAIDS) Report in 2007, 33.2 million people are living with HIV, 2.5 million ones have been newly infected with HIV, and 2.1 million ones died from AIDS, including 330,000 children. Therefore, HIV/AIDS still remains a public health emergency and a leading cause of mortality worldwide. It is believed that reverse transcriptase (RT) is a crucial enzyme in the life cycle of HIV-1, and thereby RT has been the important drug target for antiretroviral (ARV) chemotherapy against AIDS. To our knowledge, dipyridodiazepinone analogs have been considered as one class of potential non-nucleoside reverse transcriptase inhibitors (NNRTIs), especially the structurally and chemically related nevirapine (Viramune(R)), which was the first NNRTI approved by the U. S. Food and Drug Administration (FDA) for the treatment of HIV-1 infection for adults in 1996 and for children in 1998. This review mainly highlights the progress of synthesis and structure-activity relationship (SAR) of dipyridodiazepinone analogs; in the meantime, the mechanism of action is also presented. It will pave the way for the design and development of novel dipyridodiazepinone analogs as NNRTIs in AIDS chemotherapy in the future.

  12. Structure-based design of N-[2-(1-piperidinylethyl)]-N'-[2-(5-bromopyridyl)]-thiourea and N-[2-(1-piperazinylethyl)]-N'-[2-(5-bromopyridyl)]-thiourea as potent non-nucleoside inhibitors of HIV-1 reverse transcriptase.

    PubMed

    Mao, C; Vig, R; Venkatachalam, T K; Sudbeck, E A; Uckun, F M

    1998-08-18

    A novel computer model of the HIV reverse transcriptase (RT) non-nucleoside inhibitor (NNI) binding pocket, which was generated using high resolution crystal structure information from 9 individual RT/NNI complexes, revealed previously unrecognized ligand derivatization sites for phenethylthiazolylthiourea (PETT) derivatives. Spatial gaps surrounding the pyridyl ring of the active PETT derivative trovirdine were discovered during modeling procedures. Docking studies using the computer-generated model of the binding pocket (composite binding pocket) suggested that the replacement of the planar pyridyl ring of trovirdine with a nonplanar piperidinyl or piperazinyl ring, which occupy larger volumes, would better fill the spacious Wing 2 region of the butterfly-shaped NNI binding pocket. The anti-HIV activity of the synthesized heterocyclic compounds N-[2-(1-piperidinylethyl)]-N'-[2-(5-bromopyridyl)]-thiourea and N-[2-(1-piperazinylethyl)]-N'-[2-(5-bromopyridyl)]-thiourea was examined in HTLVIIIB-infected peripheral blood mononuclear cells. Both compounds were more potent than trovirdine and abrogated HIV replication at nanomolar concentrations without any evidence of cytotoxicity.

  13. Design and synthesis of a new series of modified CH-diarylpyrimidines as drug-resistant HIV non-nucleoside reverse transcriptase inhibitors.

    PubMed

    Meng, Ge; Liu, Yang; Zheng, Aqun; Chen, Fener; Chen, Wenxue; De Clercq, Erik; Pannecouque, Christophe; Balzarini, Jan

    2014-07-23

    This article reports the design, synthesis and antiviral evaluation of a new series of non-nucleoside reverse transcriptase inhibitors (NNRTIs). The basic skeleton of these target 18 molecules is diarylpyrimidine featuring a substituted amino group between the pyrimidine scaffold and the aryl wing. All of the new compounds have been characterized by spectra analysis. The entire target molecules were evaluated for their in vitro anti-HIV activity with controlling group of FDA approved drugs. Most of them showed good to potent activities against wild-type (WT) HIV-1 with IC50 values in the range of 0.0175-69.21 μM. 2-(4-Cyanophenylamino)-4-(2-cyanovinylphenylhydrazonomethyl)pyrimidine (1d) displayed potent anti-HIV-1 activity against WT HIV-1 with a selectivity index (SI) of 106367 and an IC50 value of 1.75 nM, which was 47 fold lower than that of AZT. Compound 1d also showed a broad-spectrum inhibitory activity, with an IC50 value of 5.33 μM and 5.05 μM against both HIV-1 double-mutated (K103N/Y181C) strain and HIV-2 strain, respectively. The preliminary structure-activity relationship (SAR) was also investigated. The binding modes with HIV-1 RT for both the wild type and mutant type have also been discussed.

  14. Non-nucleoside reverse transcriptase inhibitors: a review on pharmacokinetics, pharmacodynamics, safety and tolerability

    PubMed Central

    Usach, Iris; Melis, Virginia; Peris, José-Esteban

    2013-01-01

    Introduction Human immunodeficiency virus (HIV) type-1 non-nucleoside and nucleoside reverse transcriptase inhibitors (NNRTIs) are key drugs of highly active antiretroviral therapy (HAART) in the clinical management of acquired immune deficiency syndrome (AIDS)/HIV infection. Discussion First-generation NNRTIs, nevirapine (NVP), delavirdine (DLV) and efavirenz (EFV) are drugs with a low genetic barrier and poor resistance profile, which has led to the development of new generations of NNRTIs. Second-generation NNRTIs, etravirine (ETR) and rilpivirine (RPV) have been approved by the Food and Drug Administration and European Union, and the next generation of drugs is currently being clinically developed. This review describes recent clinical data, pharmacokinetics, metabolism, pharmacodynamics, safety and tolerability of commercialized NNRTIs, including the effects of sex, race and age differences on pharmacokinetics and safety. Moreover, it summarizes the characteristics of next-generation NNRTIs: lersivirine, GSK 2248761, RDEA806, BILR 355 BS, calanolide A, MK-4965, MK-1439 and MK-6186. Conclusions This review presents a wide description of NNRTIs, providing useful information for researchers interested in this field, both in clinical use and in research. PMID:24008177

  15. Hybrid Ty1/HIV-1 elements used to detect inhibitors and monitor the activity of HIV-1 reverse transcriptase

    PubMed Central

    Nissley, Dwight V.; Boyer, Paul L.; Garfinkel, David J.; Hughes, Stephen H.; Strathern, Jeffrey N.

    1998-01-01

    We previously demonstrated that hybrid retrotransposons composed of the yeast Ty1 element and the reverse transcriptase (RT) of HIV-1 are active in the yeast Saccharomyces cerevisiae. The RT activity of these hybrid Ty1/HIV-1 (his3AI/AIDS RT; HART) elements can be monitored by using a simple genetic assay. HART element reverse transcription depends on both the polymerase and RNase H domains of HIV-1 RT. Here we demonstrate that the HART assay is sensitive to inhibitors of HIV-1 RT. (−)-(S)-8-Chloro-4,5,6,7-tetrahydro-5-methyl-6-(3-methyl-2-butenyl)imidazo[4,5,1-jk][1,4]-benzodiazepin-2(1H)-thione monohydrochloride (8 Cl-TIBO), a well characterized non-nucleoside RT inhibitor (NNRTI) of HIV-1 RT, blocks propagation of HART elements. HART elements that express NNRTI-resistant RT variants of HIV-1 are insensitive to 8 Cl-TIBO, demonstrating the specificity of inhibition in this assay. HART elements carrying NNRTI-resistant variants of HIV-1 RT can be used to identify compounds that are active against drug-resistant viruses. PMID:9811899

  16. A novel mechanism for inhibition of HIV-1 reverse transcriptase.

    PubMed

    Skillman, A Geoffrey; Maurer, Karl W; Roe, Diana C; Stauber, Margaret J; Eargle, Dolan; Ewing, Todd J A; Muscate, Angelika; Davioud-Charvet, Elisabeth; Medaglia, Maxine V; Fisher, Robert J; Arnold, Edward; Gao, Hong Qiang; Buckheit, Robert; Boyer, Paul L; Hughes, Stephen H; Kuntz, Irwin D; Kenyon, George L

    2002-12-01

    The human immunodeficiency virus (HIV) epidemic is an important medical problem. Although combination drug regimens have produced dramatic decreases in viral load, current therapies do not provide a cure for HIV infection. We have used structure-based design and combinatorial medicinal chemistry to identify potent and selective HIV-1 reverse transcriptase (RT) inhibitors that may work by a mechanism distinct from that of current HIV drugs. The most potent of these compounds (compound 4, 2-naphthalenesulfonic acid, 4-hydroxy-7-[[[[5-hydroxy-6-[(4-cinnamylphenyl)azo]-7-sulfo-2-naphthalenyl]amino]carbonyl]amino]-3-[(4-cinnamylphenyl)azo], disodium salt) has an IC(50) of 90 nM for inhibition of polymerase chain extension, a K(d) of 40 nM for inhibition of DNA-RT binding, and an IC(50) of 25-100 nM for inhibition of RNaseH cleavage. The parent compound (1) was as effective against 10 nucleoside and non-nucleoside resistant HIV-1 RT mutants as it was against the wild-type enzyme. Compound 4 inhibited HIV-1 RT and murine leukemia virus (MLV) RT, but it did not inhibit T(4) DNA polymerase, T(7) DNA polymerase, or the Klenow fragment at concentrations up to 200 nM. Finally, compound 4 protected cells from HIV-1 infection at a concentration more than 40 times lower than the concentration at which it caused cellular toxicity.

  17. Hybrids of [TSAO-T]-[foscarnet]: The first conjugate of foscarnet with a non-nucleoside reverse transcriptase inhibitor through a labile covalent ester bond.

    PubMed

    Velázquez, Sonsoles; Lobatón, Esther; De Clercq, Erik; Koontz, Dianna L; Mellors, John W; Balzarini, Jan; Camarasa, María-José

    2004-06-17

    This paper describes the first example of combination of non-nucleoside reverse transcriptase inhibitors such as TSAO derivatives and foscarnet (PFA) in a single molecule through a labile covalent ester bond. The essential criteria in the design of these hybrids [TSAO-T]-[PFA] was to explore if the conjugation of foscarnet with the highly lipophilic TSAO derivative may facilitate the penetration of the conjugates through the cell membrane and if the hybrids escape extracellular hydrolysis and regenerate the parent inhibitors intracellulary. Several [TSAO-T]-[PFA] conjugates proved markedly inhibitory to HIV-1. Some of them also showed potent activity against PFA-resistant HIV-1 strains but fewer had detectable inhibitory activity against TSAO-resistant HIV-1 strains. These results indicated a pivotal role of the TSAO component of the hybrid but not the PFA component in the activity of the conjugates. Moreover, stability studies of the [TSAO-T]-[PFA] conjugates demonstrated that the compounds were stable in PBS whereas some of the conjugates regenerated the parent inhibitors in extracts from CEM cells.

  18. Conformational landscape of the human immunodeficiency virus type 1 reverse transcriptase non-nucleoside inhibitor binding pocket: lessons for inhibitor design from a cluster analysis of many crystal structures.

    PubMed

    Paris, Kristina A; Haq, Omar; Felts, Anthony K; Das, Kalyan; Arnold, Eddy; Levy, Ronald M

    2009-10-22

    Clustering of 99 available X-ray crystal structures of HIV-1 reverse transcriptase (RT) at the flexible non-nucleoside inhibitor binding pocket (NNIBP) provides information about features of the conformational landscape for binding non-nucleoside inhibitors (NNRTIs), including effects of mutation and crystal forms. The ensemble of NNIBP conformations is separated into eight discrete clusters based primarily on the position of the functionally important primer grip, the displacement of which is believed to be one of the mechanisms of inhibition of RT. Two of these clusters are populated by structures in which the primer grip exhibits novel conformations that differ from the predominant cluster by over 4 A and are induced by the unique inhibitors capravirine and rilpivirine/TMC278. This work identifies a new conformation of the NNIBP that may be used to design NNRTIs. It can also be used to guide more complete exploration of the NNIBP free energy landscape using advanced sampling techniques.

  19. Discovery and crystallography of bicyclic arylaminoazines as potent inhibitors of HIV-1 reverse transcriptase.

    PubMed

    Lee, Won-Gil; Frey, Kathleen M; Gallardo-Macias, Ricardo; Spasov, Krasimir A; Chan, Albert H; Anderson, Karen S; Jorgensen, William L

    2015-11-01

    Non-nucleoside inhibitors of HIV-1 reverse transcriptase (HIV-RT) are reported that incorporate a 7-indolizinylamino or 2-naphthylamino substituent on a pyrimidine or 1,3,5-triazine core. The most potent compounds show below 10 nanomolar activity towards wild-type HIV-1 and variants bearing Tyr181Cys and Lys103Asn/Tyr181Cys resistance mutations. The compounds also feature good aqueous solubility. Crystal structures for two complexes enhance the analysis of the structure-activity data.

  20. Structure-enhanced methods in the development of non-nucleoside inhibitors targeting HIV reverse transcriptase variants.

    PubMed

    Frey, Kathleen M

    2015-01-01

    Resistance continues to emerge as a leading cause for antiretroviral treatment failure. Several mutations in HIV reverse transcriptase (RT) confer resistance to non-nucleoside inhibitors (NNRTIs), vital components of antiretroviral combination therapies. Since the majority of mutations are located in the NNRTI binding pocket, crystal structures of RT variants in complex with NNRTIs have provided ideas for new drug design strategies. This article reviews the impact of RT crystal structures on the multidisciplinary design and development of new inhibitors with improved resistance profiles.

  1. A Randomized Trial of Raltegravir Replacement for Protease Inhibitor or Non-Nucleoside Reverse Transcriptase Inhibitor in HIV-Infected Women with Lipohypertrophy

    PubMed Central

    McComsey, Grace A.; Hulgan, Todd M.; Wanke, Christine A.; Mangili, Alexandra; Walmsley, Sharon L.; Boger, M. Sean; Turner, Ralph R.; McCreath, Heather E.; Currier, Judith S.

    2012-01-01

    Abstract Lipohypertrophy in HIV-infected patients is associated with metabolic abnormalities. Raltegravir (RAL) is not known to induce fat changes or severe metabolic perturbations. HIV-infected women with central adiposity and HIV-1 RNA less than 50 copies per milliliter on non-nucleoside reverse transcriptase inhibitor (NNRTI)- or protease inhibitor (PI)-based antiretroviral therapy (ART) continued their nucleoside reverse transcriptase inhibitor (NRTI) backbone and were randomized to switch to open label RAL immediately or after 24 weeks. The primary end point was 24-week between-group change in computed tomography (CT)-quantified visceral adipose tissue (AT) volume. Fasting lipids, glucose, C-reactive protein (CRP), anthropometric measurements, and patient-reported quality of life assessments were also measured. Thirty-six subjects provided 80% power to detect a 10% between-group difference in visceral AT over 24 weeks. Thirty-seven of 39 enrolled subjects completed week 24. At entry, subjects were 75% black or Hispanic, and on 62% PI-based and 38% NNRTI-based regimens. The median age was 43 years, CD4 count 558 cells per microliter, and body mass index (BMI) 32 kg/m2. After 24 weeks, no statistically significant changes in visceral or subcutaneous AT, anthropometrics, BMI, glucose, or CRP were observed. In subjects receiving RAL, significant improvements in total and LDL cholesterol (p=0.04), self-reported belly size (p=0.02) and composite body size (p=0.02) were observed. Body size changes correlated well with percent visceral AT change. No RAL-related adverse events occurred. Compared to continued PI or NNRTI, switch to RAL was associated with statistically significant 24-week improvements in total and LDL cholesterol but not AT volumes. Additional insights into AT and metabolic changes in women on RAL will be provided by 48-week follow-up of the immediate-switch arm. PMID:22823027

  2. Mechanistic Study of Common Non-Nucleoside Reverse Transcriptase Inhibitor-Resistant Mutations with K103N and Y181C Substitutions

    PubMed Central

    Lai, Ming-Tain; Munshi, Vandna; Lu, Meiqing; Feng, MeiZhen; Hrin-Solt, Renee; McKenna, Philip M.; Hazuda, Daria J.; Miller, Michael D.

    2016-01-01

    Non-nucleoside reverse transcriptase inhibitors (NNRTIs) are a mainstay of therapy for human immunodeficiency type 1 virus (HIV-1) infections. However, their effectiveness can be hampered by the emergence of resistant mutations. To aid in designing effective NNRTIs against the resistant mutants, it is important to understand the resistance mechanism of the mutations. Here, we investigate the mechanism of the two most prevalent NNRTI-associated mutations with K103N or Y181C substitution. Virus and reverse transcriptase (RT) with K103N/Y188F, K103A, or K103E substitutions and with Y181F, Y188F, or Y181F/Y188F substitutions were employed to study the resistance mechanism of the K103N and Y181C mutants, respectively. Results showed that the virus and RT with K103N/Y188F substitutions displayed similar resistance levels to the virus and RT with K103N substitution versus NNRTIs. Virus and RT containing Y181F, Y188F, or Y181F/Y188F substitution exhibited either enhanced or similar susceptibility to NNRTIs compared with the wild type (WT) virus. These results suggest that the hydrogen bond between N103 and Y188 may not play an important role in the resistance of the K103N variant to NNRTIs. Furthermore, the results from the studies with the Y181 or Y188 variant provide the direct evidence that aromatic π–π stacking plays a crucial role in the binding of NNRTIs to RT. PMID:27669286

  3. A randomized trial of Raltegravir replacement for protease inhibitor or non-nucleoside reverse transcriptase inhibitor in HIV-infected women with lipohypertrophy.

    PubMed

    Lake, Jordan E; McComsey, Grace A; Hulgan, Todd M; Wanke, Christine A; Mangili, Alexandra; Walmsley, Sharon L; Boger, M Sean; Turner, Ralph R; McCreath, Heather E; Currier, Judith S

    2012-09-01

    Lipohypertrophy in HIV-infected patients is associated with metabolic abnormalities. Raltegravir (RAL) is not known to induce fat changes or severe metabolic perturbations. HIV-infected women with central adiposity and HIV-1 RNA less than 50 copies per milliliter on non-nucleoside reverse transcriptase inhibitor (NNRTI)- or protease inhibitor (PI)-based antiretroviral therapy (ART) continued their nucleoside reverse transcriptase inhibitor (NRTI) backbone and were randomized to switch to open label RAL immediately or after 24 weeks. The primary end point was 24-week between-group change in computed tomography (CT)-quantified visceral adipose tissue (AT) volume. Fasting lipids, glucose, C-reactive protein (CRP), anthropometric measurements, and patient-reported quality of life assessments were also measured. Thirty-six subjects provided 80% power to detect a 10% between-group difference in visceral AT over 24 weeks. Thirty-seven of 39 enrolled subjects completed week 24. At entry, subjects were 75% black or Hispanic, and on 62% PI-based and 38% NNRTI-based regimens. The median age was 43 years, CD4 count 558 cells per microliter, and body mass index (BMI) 32 kg/m(2). After 24 weeks, no statistically significant changes in visceral or subcutaneous AT, anthropometrics, BMI, glucose, or CRP were observed. In subjects receiving RAL, significant improvements in total and LDL cholesterol (p=0.04), self-reported belly size (p=0.02) and composite body size (p=0.02) were observed. Body size changes correlated well with percent visceral AT change. No RAL-related adverse events occurred. Compared to continued PI or NNRTI, switch to RAL was associated with statistically significant 24-week improvements in total and LDL cholesterol but not AT volumes. Additional insights into AT and metabolic changes in women on RAL will be provided by 48-week follow-up of the immediate-switch arm.

  4. Efficacy of non-nucleoside reverse transcriptase inhibitor-based highly active antiretroviral therapy in Thai HIV-infected children aged two years or less.

    PubMed

    Puthanakit, Thanyawee; Aurpibul, Linda; Sirisanthana, Thira; Sirisanthana, Virat

    2009-03-01

    Twenty-six Thai HIV-infected children, aged 2 years or less were prospectively enrolled to receive non-nucleoside reverse transcription inhibitor-based highly active antiretroviral therapy (HAART). Twenty-two children (85%) had World Health Organization clinical stage 3 or 4. The median baseline CD4 cell percentage and plasma HIV RNA were 17% and 5.9 log 10 copies/mL, respectively. The median age at HAART initiation was 9.8 months (range, 1.5-24.0). One child died. The mean CD4 cell percentages at 24, 48, and 96 weeks of treatment were 26%, 31%, and 37%, respectively. The proportions of children with virologic suppression (<400 copies/mL) at week 24 and 48 were 14/26 (54%) and 19/26 (73%), respectively. Non-nucleoside reverse transcription inhibitor-based HAART is safe and effective in HIV-infected young children in a resource-limited setting.

  5. Tat is required for efficient HIV-1 reverse transcription.

    PubMed Central

    Harrich, D; Ulich, C; García-Martínez, L F; Gaynor, R B

    1997-01-01

    The ability of human immunodeficiency virus-1 (HIV-1) to undergo efficient reverse transcription is dependent on a number of parameters. These include the binding of the tRNA(3)(Lys) to the HIV-1 primer binding site and the subsequent interaction with the heterodimeric reverse transcriptase. Recently, we demonstrated that TAR RNA was also necessary for efficient HIV-1 reverse transcription. Given the fact that the Tat protein is involved in the activation of HIV-1 gene expression in conjunction with TAR, we wished to determine whether Tat might also be involved in the control of HIV-1 reverse transcription. HIV-1 virions deleted in the tat gene were unable to initiate reverse transcription efficiently upon infection of peripheral blood mononuclear cells (PBMCs). This defect was not due to decreased amounts of genomic RNA, reverse transcriptase or other HIV-1 proteins which were incorporated into the virion. Following transfection of wild-type but not mutant tat genes into cell lines producing HIV-1 lacking tat, the virions produced could be complemented for defects in reverse transcription upon subsequent infection of PBMCs. In contrast, the defect in reverse transcription seen with HIV-1 lacking the tat gene could not be complemented when the target cells rather than the producer cells contained tat. Viruses lacking tat were also defective in endogenous assays of reverse transcription, although these viruses contained similar levels of reverse transcriptase. These results indicate that the Tat protein, in addition to regulating the level of gene expression, is also important for efficient HIV-1 reverse transcription. PMID:9135139

  6. Identification of a 3-aminoimidazo[1,2-a]pyridine inhibitor of HIV-1 reverse transcriptase

    PubMed Central

    2012-01-01

    Background Despite the effectiveness of highly active antiretroviral therapy (HAART), there remains an urgent need to develop new human immunodeficiency virus type 1 (HIV-1) inhibitors with better pharmacokinetic properties that are well tolerated, and that block common drug resistant virus strains. Methods Here we screened an in-house small molecule library for novel inhibitors of HIV-1 replication. Results An active compound containing a 3-aminoimidazo[1,2-a]pyridine scaffold was identified and quantitatively characterized as a non-nucleoside reverse transcriptase inhibitor (NNRTI). Conclusions The potency of this compound coupled with its inexpensive chemical synthesis and tractability for downstream SAR analysis make this inhibitor a suitable lead candidate for further development as an antiviral drug. PMID:23231773

  7. HIV-1 Reverse Transcriptase Structure with RNase H Inhibitor dihydroxy benzoyl naphthyl Hydrazone Bound at a Novel Site

    SciTech Connect

    Himmel,D.; Sarafianos, S.; Dharmasena, S.; Hossain, M.; McCoy-Simandle, K.; Ilina, T.; Clark, A.; Knight, J.; Julias, J.; et al.

    2007-01-01

    The rapid emergence of drug-resistant variants of human immunodeficiency virus, type 1 (HIV-1), has limited the efficacy of anti-acquired immune deficiency syndrome (AIDS) treatments, and new lead compounds that target novel binding sites are needed. We have determined the 3.15 {angstrom} resolution crystal structure of HIV-1 reverse transcriptase (RT) complexed with dihydroxy benzoyl naphthyl hydrazone (DHBNH), an HIV-1 RT RNase H (RNH) inhibitor (RNHI). DHBNH is effective against a variety of drug-resistant HIV-1 RT mutants. While DHBNH has little effect on most aspects of RT-catalyzed DNA synthesis, at relatively high concentrations it does inhibit the initiation of RNA-primed DNA synthesis. Although primarily an RNHI, DHBNH binds >50 {angstrom} away from the RNH active site, at a novel site near both the polymerase active site and the non-nucleoside RT inhibitor (NNRTI) binding pocket. When DHBNH binds, both Tyr181 and Tyr188 remain in the conformations seen in unliganded HIV-1 RT. DHBNH interacts with conserved residues (Asp186, Trp229) and has substantial interactions with the backbones of several less well-conserved residues. On the basis of this structure, we designed substituted DHBNH derivatives that interact with the NNRTI-binding pocket. These compounds inhibit both the polymerase and RNH activities of RT.

  8. Design and synthesis of a new series of cyclopropylamino-linking diarylpyrimidines as HIV non-nucleoside reverse transcriptase inhibitors.

    PubMed

    Liu, Yang; Meng, Ge; Zheng, Aqun; Chen, Fener; Chen, Wenxue; De Clercq, Erik; Pannecouque, Christophe; Balzarini, Jan

    2014-10-01

    A new series of 29 diarylpyrimidine analogues featuring a cyclopropylamino group between the pyrimidine scaffold and the aryl wing have been synthesized. All of the new compounds have been characterized by spectra analysis. The target molecules were evaluated for their in vitro anti-HIV activity with FDA-approved drugs as references. Some of the compounds exhibited moderate to potent activities against wild-type HIV-1. The compound 4-((4-((cyclopropylamino)(2,5-difluorophenyl)methyl)pyrimidin-2-yl)amino)benzonitrile (1e) displayed potent anti-HIV-1 activity against WT HIV-1 with an IC50 of 0.099 μM and a selectivity index of 2302. The preliminary structure-activity relationship (SAR) of this new series of compounds was also investigated.

  9. Synthesis, structure-activity relationship and molecular docking of cyclohexenone based analogous as potent non-nucleoside reverse-transcriptase inhibitors

    NASA Astrophysics Data System (ADS)

    Nazar, Muhammad Faizan; Abdullah, Muhammad Imran; Badshah, Amir; Mahmood, Asif; Rana, Usman Ali; Khan, Salah Ud-Din

    2015-04-01

    The chalcones core in compounds is advantageously chosen effective synthons, which offer exciting perspectives in biological and pharmacological research. The present study reports the successful development of eight new cyclohexenone based anti-reverse transcriptase analogous using rational drug design synthesis principles. These new cyclohexenone derivatives (CDs) were synthesized by following a convenient route of Robinson annulation, and the molecular structure of these CDs were later confirmed by various analytical techniques such as 1H NMR, 13C NMR, FT-IR, UV-Vis spectroscopy and mass spectrometry. All the synthesized compounds were screened theoretically and experimentally against reverse transcriptase (RT) and found potentially active reverse transcriptase (RT) inhibitors. Of the compounds studied, the compound 2FC4 showed high interaction with RT at non-nucleoside binding site, contributing high free binding energy (ΔG -8.01 Kcal) and IC50 (0.207 μg/ml), respectively. Further results revealed that the compounds bearing more halogen groups, with additional hydrophobic character, offered superior anti-reverse transcriptase activity as compared to rest of compounds. It is anticipate that the present study would be very useful for the selection of potential reverse transcriptase inhibitors featuring inclusive pharmacological profiles.

  10. Physicochemical Property-Driven Optimization of Diarylaniline Compounds as Potent HIV-1 Non-Nucleoside Reverse Transcriptase Inhibitors

    PubMed Central

    Liu, Na; Qin, Bingjie; Sun, Lian-Qi; Yu, Fei; Lu, Lu; Jiang, Shibo; Lee, Kuo-Hsiung; Xie, Lan

    2014-01-01

    Using physicochemical property-driven optimization, twelve new diarylaniline compounds (DAANs) (7a–h, 11a–b and 12a–b) were designed and synthesized. Among them, compounds 12a–b not only showed high potency (EC50 0.96–4.92 nM) against both wild-type and drug-resistant viral strains with the lowest fold change (FC 0.91 and 5.13), but also displayed acceptable drug-like properties based on aqueous solubility and lipophilicity (LE > 0.3, LLE > 5, LELP < 10). The correlations between potency and physicochemical properties of these DAAN analogues are also described. Compounds 12a–b merit further development as potent clinical trial candidates against AIDS. PMID:25042339

  11. The prevalence of transmitted resistance to first-generation non-nucleoside reverse transcriptase inhibitors and its potential economic impact in HIV-infected patients.

    PubMed

    Snedecor, Sonya J; Khachatryan, Alexandra; Nedrow, Katherine; Chambers, Richard; Li, Congyu; Haider, Seema; Stephens, Jennifer

    2013-01-01

    Non-nucleoside reverse transcriptase inhibitor (NNRTI)-based highly active antiretroviral therapy (HAART) including efavirenz is recommended as a 1(st)-line treatment choice in international HIV guidelines, and it is one of the most common components of initial therapy. Resistance to 1(st)-generation NNRTIs is found among treated and untreated HIV-infected individuals creating a subpopulation of HIV-infected individuals in whom efavirenz is not fully effective. This analysis reviewed published articles and conference abstracts to examine the prevalence of 1(st)-generation NNRTI resistance in Europe, the United States (US), and Canada and to identify published evidence of the economic consequences of resistance. The reported prevalence of NNRTI resistance was generally higher in US/Canada than in Europe and increased in both regions from their introduction in the late 1990s until the early 2000s. The most recent time-based trends suggest that NNRTI-resistance prevalence may be stable or decreasing. These estimates of resistance may be understated as resistance estimates using ultra-sensitive genotypic testing methods, which identify low-frequency mutations undetected by standard testing methods, showed increased prevalence of resistance by more than two-fold. No studies were identified that explicitly investigated the costs of drug resistance. Rather, most studies reported costs of treatment change, failure, or disease progression. Among those studies, annual HIV medical costs of those infected with HIV increased 1) as CD4 cells decreased, driven in part by hospitalization at lower CD4 cell counts; 2) for treatment changes, and 3) for each virologic failure. The possible erosion of efficacy or of therapy choices through resistance transmission or selection, even when present with low frequency, may become a barrier to the use of 1(st)-generation NNRTIs and the increased costs associated with regimen failure and disease progression underlie the importance of

  12. Structure-based drug design of non-nucleoside inhibitors for wild-type and drug-resistant HIV reverse transcriptase.

    PubMed

    Mao, C; Sudbeck, E A; Venkatachalam, T K; Uckun, F M

    2000-11-01

    The generation of anti-HIV agents using structure-based drug design methods has yielded a number of promising non-nucleoside inhibitors (NNIs) of HIV reverse transcriptase (RT). Recent successes in identifying potent NNIs are reviewed with an emphasis on the recent trend of utilizing a computer model of HIV RT to identify space in the NNI binding pocket that can be exploited by carefully chosen functional groups predicted to interact favorably with binding pocket residues. The NNI binding pocket model was used to design potent NNIs against both wild-type RT and drug-resistant RT mutants. Molecular modeling and score functions were used to analyze how drug-resistant mutations would change the RT binding pocket shape, volume, and chemical make-up, and how these changes could affect inhibitor binding. Modeling studies revealed that for an NNI of HIV RT to be active against RT mutants such as the especially problematic Y181C RT mutant, the following features are required: (a) the inhibitor should be highly potent against wild-type RT and therefore capable of tolerating a considerable activity loss against RT mutants (i.e. a picomolar-level inhibitor against wild-type RT may still be effective against RT mutants at nanomolar concentrations), (b) the inhibitor should maximize the occupancy in the Wing 2 region of the NNI binding site of RT, and (c) the inhibitor should contain functional groups that provide favorable chemical interactions with Wing 2 residues of wild-type as well as mutant RT. Our rationally designed NNI compounds HI-236, HI-240, HI-244, HI-253, HI-443, and HI-445 combine these three features and outperform other anti-HIV agents examined.

  13. Introducing Catastrophe-QSAR. Application on Modeling Molecular Mechanisms of Pyridinone Derivative-Type HIV Non-Nucleoside Reverse Transcriptase Inhibitors

    PubMed Central

    Putz, Mihai V.; Lazea, Marius; Putz, Ana-Maria; Duda-Seiman, Corina

    2011-01-01

    The classical method of quantitative structure-activity relationships (QSAR) is enriched using non-linear models, as Thom’s polynomials allow either uni- or bi-variate structural parameters. In this context, catastrophe QSAR algorithms are applied to the anti-HIV-1 activity of pyridinone derivatives. This requires calculation of the so-called relative statistical power and of its minimum principle in various QSAR models. A new index, known as a statistical relative power, is constructed as an Euclidian measure for the combined ratio of the Pearson correlation to algebraic correlation, with normalized t-Student and the Fisher tests. First and second order inter-model paths are considered for mono-variate catastrophes, whereas for bi-variate catastrophes the direct minimum path is provided, allowing the QSAR models to be tested for predictive purposes. At this stage, the max-to-min hierarchies of the tested models allow the interaction mechanism to be identified using structural parameter succession and the typical catastrophes involved. Minimized differences between these catastrophe models in the common structurally influential domains that span both the trial and tested compounds identify the “optimal molecular structural domains” and the molecules with the best output with respect to the modeled activity, which in this case is human immunodeficiency virus type 1 HIV-1 inhibition. The best molecules are characterized by hydrophobic interactions with the HIV-1 p66 subunit protein, and they concur with those identified in other 3D-QSAR analyses. Moreover, the importance of aromatic ring stacking interactions for increasing the binding affinity of the inhibitor-reverse transcriptase ligand-substrate complex is highlighted. PMID:22272148

  14. Docking study of HIV-1 reverse transcriptase with phytochemicals

    PubMed Central

    Seal, Abhik; Aykkal, Riju; Babu, Rosana O; Ghosh, Mriganka

    2011-01-01

    Natural products are important sources of drug discovery. In this context groups of different set of phytochemicals were taken and docked into the different cavities of the Reverse transcriptase (PDB ID: 1REV) of Human immunodeficiency virus (HIV) and results were discussed. Natural compounds such as Curcumin, Geranin, Gallotannin, Tiliroside, Kaempferol-3-o-glucoside and Trachelogenin were found to very effective according to its binding energy and ligand efficiency score. Those compounds also were found to have no adverse effect as carcinogenicity and mutagenicity and favorable drug likeness score. Hence, considering the facts those compounds could use effectively for HIV-1 drug discovery. PMID:21423889

  15. Quantitative Structure activity Relationship Analysis of Pyridinone HIV-1 Reverse Transcriptase Inhibitors using the k Nearest Neighbor Method and QSAR-based Database Mining

    NASA Astrophysics Data System (ADS)

    Medina-Franco, Jose Luis; Golbraikh, Alexander; Oloff, Scott; Castillo, Rafael; Tropsha, Alexander

    2005-04-01

    We have developed quantitative structure-activity relationship (QSAR) models for 44 non-nucleoside HIV-1 reverse transcriptase inhibitors (NNRTIs) of the pyridinone derivative type. The k nearest neighbor ( kNN) variable selection approach was used. This method utilizes multiple descriptors such as molecular connectivity indices, which are derived from two-dimensional molecular topology. The modeling process entailed extensive validation including the randomization of the target property (Y-randomization) test and the division of the dataset into multiple training and test sets to establish the external predictive power of the training set models. QSAR models with high internal and external accuracy were generated, with leave-one-out cross-validated R 2 ( q 2) values ranging between 0.5 and 0.8 for the training sets and R 2 values exceeding 0.6 for the test sets. The best models with the highest internal and external predictive power were used to search the National Cancer Institute database. Derivatives of the pyrazolo[3,4- d]pyrimidine and phenothiazine type were identified as promising novel NNRTIs leads. Several candidates were docked into the binding pocket of nevirapine with the AutoDock (version 3.0) software. Docking results suggested that these types of compounds could be binding in the NNRTI binding site in a similar mode to a known non-nucleoside inhibitor nevirapine.

  16. Asymmetric conformational maturation of HIV-1 reverse transcriptase.

    PubMed

    Zheng, Xunhai; Perera, Lalith; Mueller, Geoffrey A; DeRose, Eugene F; London, Robert E

    2015-06-03

    HIV-1 reverse transcriptase utilizes a metamorphic polymerase domain that is able to adopt two alternate structures that fulfill catalytic and structural roles, thereby minimizing its coding requirements. This ambiguity introduces folding challenges that are met by a complex maturation process. We have investigated this conformational maturation using NMR studies of methyl-labeled RT for the slower processes in combination with molecular dynamics simulations for rapid processes. Starting from an inactive conformation, the p66 precursor undergoes a unimolecular isomerization to a structure similar to its active form, exposing a large hydrophobic surface that facilitates initial homodimer formation. The resulting p66/p66' homodimer exists as a conformational heterodimer, after which a series of conformational adjustments on different time scales can be observed. Formation of the inter-subunit RH:thumb' interface occurs at an early stage, while maturation of the connection' and unfolding of the RH' domains are linked and occur on a much slower time scale.

  17. Inhibition of HIV-1 Reverse Transcriptase Dimerization by Small Molecules.

    PubMed

    Tintori, Cristina; Corona, Angela; Esposito, Francesca; Brai, Annalaura; Grandi, Nicole; Ceresola, Elisa Rita; Clementi, Massimo; Canducci, Filippo; Tramontano, Enzo; Botta, Maurizio

    2016-04-15

    Because HIV-1 reverse transcriptase is an enzyme whose catalytic activity depends on its heterodimeric structure, this system could be a target for inhibitors that perturb the interactions between the protein subunits, p51 and p66. We previously demonstrated that the small molecule MAS0 reduced the association of the two RT subunits and simultaneously inhibited both the polymerase and ribonuclease H activities. In this study, some analogues of MAS0 were rationally selected by docking studies and evaluated in vitro for their ability to disrupt dimeric assembly. Two inhibitors were identified with improved activity compared to MAS0. This study lays the basis for the rational design of more potent inhibitors of RT dimerization.

  18. HIV-1 Protease, Reverse Transcriptase, and Integrase Variation

    PubMed Central

    Sankaran, Kris; Varghese, Vici; Winters, Mark A.; Hurt, Christopher B.; Eron, Joseph J.; Parkin, Neil; Holmes, Susan P.; Holodniy, Mark; Shafer, Robert W.

    2016-01-01

    ABSTRACT HIV-1 protease (PR), reverse transcriptase (RT), and integrase (IN) variability presents a challenge to laboratories performing genotypic resistance testing. This challenge will grow with increased sequencing of samples enriched for proviral DNA such as dried blood spots and increased use of next-generation sequencing (NGS) to detect low-abundance HIV-1 variants. We analyzed PR and RT sequences from >100,000 individuals and IN sequences from >10,000 individuals to characterize variation at each amino acid position, identify mutations indicating APOBEC-mediated G-to-A editing, and identify mutations resulting from selective drug pressure. Forty-seven percent of PR, 37% of RT, and 34% of IN positions had one or more amino acid variants with a prevalence of ≥1%. Seventy percent of PR, 60% of RT, and 60% of IN positions had one or more variants with a prevalence of ≥0.1%. Overall 201 PR, 636 RT, and 346 IN variants had a prevalence of ≥0.1%. The median intersubtype prevalence ratios were 2.9-, 2.1-, and 1.9-fold for these PR, RT, and IN variants, respectively. Only 5.0% of PR, 3.7% of RT, and 2.0% of IN variants had a median intersubtype prevalence ratio of ≥10-fold. Variants at lower prevalences were more likely to differ biochemically and to be part of an electrophoretic mixture compared to high-prevalence variants. There were 209 mutations indicative of APOBEC-mediated G-to-A editing and 326 mutations nonpolymorphic treatment selected. Identification of viruses with a high number of APOBEC-associated mutations will facilitate the quality control of dried blood spot sequencing. Identifying sequences with a high proportion of rare mutations will facilitate the quality control of NGS. IMPORTANCE Most antiretroviral drugs target three HIV-1 proteins: PR, RT, and IN. These proteins are highly variable: many different amino acids can be present at the same position in viruses from different individuals. Some of the amino acid variants cause drug

  19. Small Molecule Inhibitors of BAF; A Promising Family of Compounds in HIV-1 Latency Reversal.

    PubMed

    Stoszko, Mateusz; De Crignis, Elisa; Rokx, Casper; Khalid, Mir Mubashir; Lungu, Cynthia; Palstra, Robert-Jan; Kan, Tsung Wai; Boucher, Charles; Verbon, Annelies; Dykhuizen, Emily C; Mahmoudi, Tokameh

    2016-01-01

    Persistence of latently infected cells in presence of Anti-Retroviral Therapy presents the main obstacle to HIV-1 eradication. Much effort is thus placed on identification of compounds capable of HIV-1 latency reversal in order to render infected cells susceptible to viral cytopathic effects and immune clearance. We identified the BAF chromatin remodeling complex as a key player required for maintenance of HIV-1 latency, highlighting its potential as a molecular target for inhibition in latency reversal. Here, we screened a recently identified panel of small molecule inhibitors of BAF (BAFi's) for potential to activate latent HIV-1. Latency reversal was strongly induced by BAFi's Caffeic Acid Phenethyl Ester and Pyrimethamine, two molecules previously characterized for clinical application. BAFi's reversed HIV-1 latency in cell line based latency models, in two ex vivo infected primary cell models of latency, as well as in HIV-1 infected patient's CD4 + T cells, without inducing T cell proliferation or activation. BAFi-induced HIV-1 latency reversal was synergistically enhanced upon PKC pathway activation and HDAC-inhibition. Therefore BAFi's constitute a promising family of molecules for inclusion in therapeutic combinatorial HIV-1 latency reversal.

  20. Small Molecule Inhibitors of BAF; A Promising Family of Compounds in HIV-1 Latency Reversal

    PubMed Central

    Stoszko, Mateusz; De Crignis, Elisa; Rokx, Casper; Khalid, Mir Mubashir; Lungu, Cynthia; Palstra, Robert-Jan; Kan, Tsung Wai; Boucher, Charles; Verbon, Annelies; Dykhuizen, Emily C.; Mahmoudi, Tokameh

    2015-01-01

    Persistence of latently infected cells in presence of Anti-Retroviral Therapy presents the main obstacle to HIV-1 eradication. Much effort is thus placed on identification of compounds capable of HIV-1 latency reversal in order to render infected cells susceptible to viral cytopathic effects and immune clearance. We identified the BAF chromatin remodeling complex as a key player required for maintenance of HIV-1 latency, highlighting its potential as a molecular target for inhibition in latency reversal. Here, we screened a recently identified panel of small molecule inhibitors of BAF (BAFi's) for potential to activate latent HIV-1. Latency reversal was strongly induced by BAFi's Caffeic Acid Phenethyl Ester and Pyrimethamine, two molecules previously characterized for clinical application. BAFi's reversed HIV-1 latency in cell line based latency models, in two ex vivo infected primary cell models of latency, as well as in HIV-1 infected patient's CD4 + T cells, without inducing T cell proliferation or activation. BAFi-induced HIV-1 latency reversal was synergistically enhanced upon PKC pathway activation and HDAC-inhibition. Therefore BAFi's constitute a promising family of molecules for inclusion in therapeutic combinatorial HIV-1 latency reversal. PMID:26870822

  1. Docking, molecular dynamics and quantitative structure-activity relationship studies for HEPTs and DABOs as HIV-1 reverse transcriptase inhibitors.

    PubMed

    Mao, Yating; Li, Yan; Hao, Ming; Zhang, Shuwei; Ai, Chunzhi

    2012-05-01

    As a key component in combination therapy for acquired immunodeficiency syndrome (AIDS), non-nucleoside reverse transcriptase inhibitors (NNRTIs) have been proven to be an essential way in stopping HIV-1 replication. In the present work, in silico studies were conducted on a series of 119 NNRTIs, including 1-(2-hydroxyethoxymethyl)-6-(phenylthio)thymine (HEPT) and dihydroalkoxybenzyloxopyrimidine (DABO) derivatives by using the comparative molecular field analysis (CoMFA), comparative molecular similarity indices analysis (CoMSIA), docking simulations and molecular dynamics (MD). The statistical results of the optimal model, the ligand-based CoMSIA one (Q(2) = 0.48, R(ncv)(2) =0.847, R(pre)(2) = 0.745) validates its satisfactory predictive capacity both internally and externally. The contour maps, docking and MD results correlate well with each other, drawing conclusions as follows: 1) Compounds with bulky substituents in position-6 of ring A, hydrophobic groups around position- 1, 2, 6 are preferable to the biological activities; 2) Two hydrogen bonds between RT inhibitor and the Tyr 318, Lys 101 residues, respectively, and a π-π bond between the inhibitor and Trp 188 are formed and crucial to the orientation of the active conformation of the molecules; 3) The binding pocket is essentially hydrophobic, which are determined by residues such as Trp 229, Tyr 318, Val 179, Tyr 188 and Val 108, and hydrophobic substituents may bring an improvement to the biological activity; 4) DABO and HEPT derivatives have different structures but take a similar mechanism to inhibit RT. The potency difference between two isomers in HEPTs can be explained by the distinct locations of the 6-naphthylmethyl substituent and the reasons are explained in details. All these results could be employed to alter the structural scaffold in order to develop new HIV-1 RT inhibitors that have an improved biological property. To the best of our knowledge, this is the first report on 3D

  2. Reversal of Latency as Part of a Cure for HIV-1.

    PubMed

    Rasmussen, Thomas Aagaard; Tolstrup, Martin; Søgaard, Ole Schmeltz

    2016-02-01

    Here, the use of pharmacological agents to reverse HIV-1 latency will be explored as a therapeutic strategy towards a cure. However, while clinical trials of latency-reversing agents LRAs) have demonstrated their ability to increase production of latent HIV-1, such interventions have not had an effect on the size of the latent HIV-1 reservoir. Plausible explanations for this include insufficient host immune responses against virus-expressing cells, the presence of escape mutations in archived virus, or an insufficient scale of latency reversal. Importantly, these early studies of LRAs were primarily designed to investigate their ability to perturb the state of HIV-1 latency; using the absence of an impact on the size of the HIV-1 reservoir to discard their potential inclusion in curative strategies would be erroneous and premature.

  3. Inhibitory effect of aqueous dandelion extract on HIV-1 replication and reverse transcriptase activity

    PubMed Central

    2011-01-01

    Background Acquired immunodeficiency syndrome (AIDS), which is caused by the human immunodeficiency virus (HIV), is an immunosuppressive disease that results in life-threatening opportunistic infections. The general problems in current therapy include the constant emergence of drug-resistant HIV strains, adverse side effects and the unavailability of treatments in developing countries. Natural products from herbs with the abilities to inhibit HIV-1 life cycle at different stages, have served as excellent sources of new anti-HIV-1 drugs. In this study, we aimed to investigate the anti-HIV-1 activity of aqueous dandelion extract. Methods The pseudotyped HIV-1 virus has been utilized to explore the anti-HIV-1 activity of dandelion, the level of HIV-1 replication was assessed by the percentage of GFP-positive cells. The inhibitory effect of the dandelion extract on reverse transcriptase activity was assessed by the reverse transcriptase assay kit. Results Compared to control values obtained from cells infected without treatment, the level of HIV-1 replication and reverse transcriptase activity were decreased in a dose-dependent manner. The data suggest that dandelion extract has a potent inhibitory activity against HIV-1 replication and reverse transcriptase activity. The identification of HIV-1 antiviral compounds from Taraxacum officinale should be pursued. Conclusions The dandelion extract showed strong activity against HIV-1 RT and inhibited both the HIV-1 vector and the hybrid-MoMuLV/MoMuSV retrovirus replication. These findings provide additional support for the potential therapeutic efficacy of Taraxacum officinale. Extracts from this plant may be regarded as another starting point for the development of an antiretroviral therapy with fewer side effects. PMID:22078030

  4. High-performance liquid chromatographic method for the determination of HIV-1 non-nucleoside reverse transcriptase inhibitor efavirenz in plasma of patients during highly active antiretroviral therapy.

    PubMed

    Langmann, P; Schirmer, D; Väth, T; Zilly, M; Klinker, H

    2001-05-05

    A new high-performance liquid chromatographic method for the determination of efavirenz in human plasma is described. Quantitative recovery following liquid-liquid extraction with diethylether from 200 microl of human plasma was achieved. Subsequently, the assay was performed with 67 mM potassium dihydrogen phosphate-acetonitrile as a mobile phase, a XTerraRP 18 column protected with a Phenomenex C18 column and UV detection at 246 nm. Linear standard curves were obtained for concentrations ranging from 25 to 15,000 ng/ml. The calculated intra- and inter-day coefficients of variation were below 10%.

  5. 2D, 3D-QSAR and docking studies of 1,2,3-thiadiazole thioacetanilides analogues as potent HIV-1 non-nucleoside reverse transcriptase inhibitors

    PubMed Central

    2012-01-01

    Background The discovery of clinically relevant inhibitors of HIV-RT for antiviral therapy has proven to be a challenging task. To identify novel and potent HIV-RT inhibitors, the quantitative structure–activity relationship (QSAR) approach became very useful and largely widespread technique forligand-based drug design. Methods We perform the two- and three-dimensional (2D and 3D) QSAR studies of a series of 1,2,3-thiadiazole thioacetanilides analogues to elucidate the structural properties required for HIV-RT inhibitory activity. Results The 2D-QSAR studies were performed using multiple linear regression method, giving r2 = 0.97 and q2 = 0.94. The 3D-QSAR studies were performed using the stepwise variable selection k-nearest neighbor molecular field analysis approach; a leave-one-out cross-validated correlation coefficient q2 = 0.89 and a non-cross-validated correlation coefficient r2 = 0.97 were obtained. Docking analysis suggests that the new series have comparable binding affinity with the standard compounds. Conclusions This approach showed that hydrophobic and electrostatic effects dominantly determine binding affinities which will further useful for development of new NNRTIs. PMID:22691718

  6. Natural Plant Alkaloid (Emetine) Inhibits HIV-1 Replication by Interfering with Reverse Transcriptase Activity.

    PubMed

    Chaves Valadão, Ana Luiza; Abreu, Celina Monteiro; Dias, Juliana Zanatta; Arantes, Pablo; Verli, Hugo; Tanuri, Amilcar; de Aguiar, Renato Santana

    2015-06-22

    Ipecac alkaloids are secondary metabolites produced in the medicinal plant Psychotria ipecacuanha. Emetine is the main alkaloid of ipecac and one of the active compounds in syrup of Ipecac with emetic property. Here we evaluated emetine's potential as an antiviral agent against Human Immunodeficiency Virus. We performed in vitro Reverse Transcriptase (RT) Assay and Natural Endogenous Reverse Transcriptase Activity Assay (NERT) to evaluate HIV RT inhibition. Emetine molecular docking on HIV-1 RT was also analyzed. Phenotypic assays were performed in non-lymphocytic and in Peripheral Blood Mononuclear Cells (PBMC) with HIV-1 wild-type and HIV-harboring RT-resistant mutation to Nucleoside Reverse Transcriptase Inhibitors (M184V). Our results showed that HIV-1 RT was blocked in the presence of emetine in both models: in vitro reactions with isolated HIV-1 RT and intravirion, measured by NERT. Emetine revealed a strong potential of inhibiting HIV-1 replication in both cellular models, reaching 80% of reduction in HIV-1 infection, with low cytotoxic effect. Emetine also blocked HIV-1 infection of RT M184V mutant. These results suggest that emetine is able to penetrate in intact HIV particles, and bind and block reverse transcription reaction, suggesting that it can be used as anti-HIV microbicide. Taken together, our findings provide additional pharmacological information on the potential therapeutic effects of emetine.

  7. Conformation depends on 4D-QSAR analysis using EC-GA method: pharmacophore identification and bioactivity prediction of TIBOs as non-nucleoside reverse transcriptase inhibitors.

    PubMed

    Akyüz, Lalehan; Sarıpınar, Emin

    2013-08-01

    The electron conformational and genetic algorithm methods (EC-GA) were integrated for the identification of the pharmacophore group and predicting the anti HIV-1 activity of tetrahydroimidazo[4,5,1-jk][1,4]benzodiazepinone (TIBO) derivatives. To reveal the pharmacophore group, each conformation of all compounds was arranged by electron conformational matrices of congruity. Multiple comparisons of these matrices, within given tolerances for high active and low active TIBO derivatives, allow the identification of the pharmacophore group that refers to the electron conformational submatrix of activity. The effects of conformations, internal and external validation were investigated by four different models based on an ensemble of conformers and a single conformer, both with and without a test set. Model 1 using an ensemble of conformers for the training (39 compounds) and test sets (13 compounds), obtained by the optimum seven parameters, gave satisfactory results (R²(training) = 0.878, R²(test)= 0.910, q² = 0.840, q²(ext1) = 0.926 and q²(ext2) = 0.900).

  8. Polyurethane intravaginal ring for controlled delivery of dapivirine, a nonnucleoside reverse transcriptase inhibitor of HIV-1.

    PubMed

    Gupta, Kavita M; Pearce, Serena M; Poursaid, Azadeh E; Aliyar, Hyder A; Tresco, Patrick A; Mitchnik, Mark A; Kiser, Patrick F

    2008-10-01

    Women-controlled methods for prevention of male-to-female sexual transmission of HIV-1 are urgently needed. Providing inhibitory concentrations of HIV-1 reverse transcriptase inhibitors to impede the replication of the virus in the female genital tissue offers a mechanism for prophylaxis of HIV-1. To this end, an intravaginal ring device that can provide long duration delivery of dapivirine, a nonnucleoside reverse transcriptase inhibitor of HIV-1, was developed utilizing a medical-grade polyether urethane. Monolithic intravaginal rings were fabricated and sustained release with cumulative flux linear with time was demonstrated under sink conditions for a period of 30 days. The release rate was directly proportional to the amount of drug loaded. Another release study conducted for a week utilizing liposome dispersions as sink conditions, to mimic the partitioning of dapivirine into vaginal tissue, also demonstrated release rates constant with time. These results qualify polyether urethanes for development of intravaginal rings for sustained delivery of microbicidal agents.

  9. Crystal structures of HIV-1 nonnucleoside reverse transcriptase inhibitors: N-benzyl-4-methyl-benzimidazoles

    NASA Astrophysics Data System (ADS)

    Ziółkowska, Natasza E.; Michejda, Christopher J.; Bujacz, Grzegorz D.

    2009-07-01

    HIV-1 nonnucleoside reverse transcriptase inhibitors are potentially specific and effective drugs in AIDS therapy. The presence of two aromatic systems with an angled orientation in the molecule of the inhibitor is crucial for interactions with HIV-1 RT. The inhibitor drives like a wedge into the cluster of aromatic residues of RT HIV-1 and restrains the enzyme in a conformation that blocks the chemical step of nucleotide incorporation. Structural studies provide useful information for designing new, more active inhibitors. The crystal structures of four NNRTIs are presented here. The investigated compounds are derivatives of N-benzyl-4-methyl-benzimidazole with various aliphatic and aromatic substituents at carbon 2 positions and a 2,6-dihalogeno-substituted N-benzyl moiety. Structural data reported here show that the conformation of the investigated compounds is relatively rigid. Such feature is important for the nonnucleoside inhibitor binding to HIV-1 reverse transcriptase.

  10. Malaria in HIV-Infected Children Receiving HIV Protease-Inhibitor- Compared with Non-Nucleoside Reverse Transcriptase Inhibitor-Based Antiretroviral Therapy, IMPAACT P1068s, Substudy to P1060

    PubMed Central

    Hobbs, Charlotte V.; Gabriel, Erin E.; Kamthunzi, Portia; Tegha, Gerald; Tauzie, Jean; Petzold, Elizabeth; Barlow-Mosha, Linda; Chi, Benjamin H.; Li, Yonghua; Ilmet, Tiina; Kirmse, Brian; Neal, Jillian; Parikh, Sunil; Deygoo, Nagamah; Jean Philippe, Patrick; Mofenson, Lynne; Prescott, William; Chen, Jingyang; Musoke, Philippa; Palumbo, Paul; Duffy, Patrick E.; Borkowsky, William

    2016-01-01

    Background HIV and malaria geographically overlap. HIV protease inhibitors kill malaria parasites in vitro and in vivo, but further evaluation in clinical studies is needed. Methods Thirty-one children from Malawi aged 4–62 months were followed every 3 months and at intercurrent illness visits for ≤47 months (September 2009-December 2011). We compared malaria parasite carriage by blood smear microscopy (BS) and confirmed clinical malaria incidence (CCM, or positive BS with malaria symptoms) in children initiated on HIV antiretroviral therapy (ART) with zidovudine, lamivudine, and either nevirapine (NVP), a non-nucleoside reverse transcriptase inhibitor, or lopinavir-ritonavir (LPV-rtv), a protease inhibitor. Results We found an association between increased time to recurrent positive BS, but not CCM, when anti-malarial treatment and LPV-rtv based ART were used concurrently and when accounting for a LPV-rtv and antimalarial treatment interaction (adjusted HR 0.39; 95% CI (0.17,0.89); p = 0.03). Conclusions LPV-rtv in combination with malaria treatment was associated with lower risk of recurrent positive BS, but not CCM, in HIV-infected children. Larger, randomized studies are needed to confirm these findings which may permit ART optimization for malaria-endemic settings. Trial Registration ClinicalTrials.gov NCT00719602 PMID:27936233

  11. Crystallographic Study of a Novel Sub-Nanomolar Inhibitor Provides Insight on the Binding Interactions of Alkenyldiarylmethanes with Human Immunodeficiency Virus-1 (HIV-1) Reverse Transcriptase†

    PubMed Central

    Cullen, Matthew D.; Ho, William C.; Bauman, Joseph D.; Das, Kalyan; Arnold, Eddy; Hartman, Tracy L.; Watson, Karen M.; Buckheit, Robert W.; Pannecouque, Christophe; De Clercq, Erik; Cushman, Mark

    2009-01-01

    Two crystal structures have been solved for separate complexes of alkenyldiarylmethane (ADAM) non-nucleoside reverse transcriptase inhibitors (NNRTI) 3 and 4 with HIV-1 reverse transcriptase (RT). The structures reveal inhibitor binding is exclusively hydrophobic in nature and the shape of the inhibitor-bound NNRTI binding pocket is unique among other reported inhibitor-RT crystal structures. Primarily, ADAMs 3 and 4 protrude from a large gap in the backside of the binding pocket, placing portions of the inhibitors unusually close to the polymerase active site and allowing 3 to form a weak hydrogen bond with Lys223. The lack of additional stabilizing interactions, beyond the observed hydrophobic surface contacts, between 4 and RT is quite perplexing given the extreme potency of the compound (IC50 ≤ nM). ADAM 4 was designed to be hydrolytically stable in blood plasma, and an investigation of its hydrolysis in rat plasma demonstrated it has a significantly prolonged half-life in comparison to ADAM lead compounds 1 and 2. PMID:19775161

  12. Virion-incorporated alpha-enolase suppresses the early stage of HIV-1 reverse transcription.

    PubMed

    Kishimoto, Naoki; Iga, Nozomi; Yamamoto, Kengo; Takamune, Nobutoki; Misumi, Shogo

    2017-03-04

    Human immunodeficiency virus type-1 (HIV-1) particles contain not only viral-encoded but also host-encoded proteins. Interestingly, several studies showed that host proteins play a critical role in viral infectivity, replication and/or immunoreactivity in the next target cells. Here, we show that alpha-enolase (ENO1) is incorporated into HIV-1 virions and the virion-incorporated ENO1 prevents the early stage of HIV-1 reverse transcription. We found that viral particles contain two isoforms of ENO1 with different isoelectric points by two-dimensional electrophoresis. Suppression of ENO1 expression by RNA interference in the HIV-1 producer cells decreased ENO1 incorporation into virions without altering the packaging of viral structural proteins and viral production but increased viral infectivity. Although the low-level-ENO1-packaging virus maintained comparable levels of reverse transcriptase activity, viral genomic RNA and tRNA(Lys3) packaging to the control virus, its levels of early cDNA products of reverse transcription were higher than those of the control virus. In contrast, the high-level-ENO1-packaging virus, which was produced from ENO1-overexpressing cells, showed decreased infectivity and the levels of early cDNA products. Taken together, these findings reveal a novel function of ENO1 as a negative regulation factor targeting HIV-1 reverse transcription.

  13. A Minor Subset of Super Elongation Complexes Plays a Predominant Role in Reversing HIV-1 Latency.

    PubMed

    Li, Zichong; Lu, Huasong; Zhou, Qiang

    2016-02-01

    Promoter-proximal pausing by RNA polymerase II (Pol II) is a key rate-limiting step in HIV-1 transcription and latency reversal. The viral Tat protein recruits human super elongation complexes (SECs) to paused Pol II to overcome this restriction. Despite the recent progress in understanding the functions of different subsets of SECs in controlling cellular and Tat-activated HIV transcription, little is known about the SEC subtypes that help reverse viral latency in CD4(+) T cells. Here, we used the CRISPR-Cas9 genome-editing tool to knock out the gene encoding the SEC subunit ELL2, AFF1, or AFF4 in Jurkat/2D10 cells, a well-characterized HIV-1 latency model. Depletion of these proteins drastically reduced spontaneous and drug-induced latency reversal by suppressing HIV-1 transcriptional elongation. Surprisingly, a low-abundance subset of SECs containing ELL2 and AFF1 was found to play a predominant role in cooperating with Tat to reverse latency. By increasing the cellular level/activity of these Tat-friendly SECs, we could potently activate latent HIV-1 without using any drugs. These results implicate the ELL2/AFF1-SECs as an important target in the future design of a combinatorial therapeutic approach to purge latent HIV-1.

  14. A Minor Subset of Super Elongation Complexes Plays a Predominant Role in Reversing HIV-1 Latency

    PubMed Central

    Li, Zichong; Lu, Huasong

    2016-01-01

    Promoter-proximal pausing by RNA polymerase II (Pol II) is a key rate-limiting step in HIV-1 transcription and latency reversal. The viral Tat protein recruits human super elongation complexes (SECs) to paused Pol II to overcome this restriction. Despite the recent progress in understanding the functions of different subsets of SECs in controlling cellular and Tat-activated HIV transcription, little is known about the SEC subtypes that help reverse viral latency in CD4+ T cells. Here, we used the CRISPR-Cas9 genome-editing tool to knock out the gene encoding the SEC subunit ELL2, AFF1, or AFF4 in Jurkat/2D10 cells, a well-characterized HIV-1 latency model. Depletion of these proteins drastically reduced spontaneous and drug-induced latency reversal by suppressing HIV-1 transcriptional elongation. Surprisingly, a low-abundance subset of SECs containing ELL2 and AFF1 was found to play a predominant role in cooperating with Tat to reverse latency. By increasing the cellular level/activity of these Tat-friendly SECs, we could potently activate latent HIV-1 without using any drugs. These results implicate the ELL2/AFF1-SECs as an important target in the future design of a combinatorial therapeutic approach to purge latent HIV-1. PMID:26830226

  15. N348I in HIV-1 reverse transcriptase counteracts the synergy between zidovudine and nevirapine.

    PubMed

    Yap, Soo Huey; Herman, Brian D; Radzio, Jessica; Sluis-Cremer, Nicolas; Tachedjian, Gilda

    2012-10-01

    The efficacy of regimens that include both zidovudine and nevirapine can be explained by the synergistic interactions between these drugs. N348I in HIV-1 reverse transcriptase confers decreased susceptibility to zidovudine and nevirapine. Here, we demonstrate that N348I reverses the synergistic inhibition of HIV-1 by zidovudine and nevirapine. Also, the efficiency of zidovudine-monophosphate excision in the presence of nevirapine is greater for N348I HIV-1 reverse transcriptase compared with the wild-type enzyme. These data help explain the frequent selection of N348I in regimens that contain zidovudine and nevirapine, and suggest that the selection of N348I should be monitored in resource-limited settings where these drugs are routinely used.

  16. Vaginal microbicide film combinations of two reverse transcriptase inhibitors, EFdA and CSIC, for the prevention of HIV-1 sexual transmission

    PubMed Central

    Zhang, Wei; Hu, Minlu; Shi, Yuan; Gong, Tiantian; Dezzutti, Charlene S.; Moncla, Bernard; Sarafianos, Stefan G.; Parniak, Michael A.; Rohan, Lisa C.

    2015-01-01

    Purpose EFdA is a potent nucleoside reverse transcriptase inhibitor (NRTI) with activity against a wide spectrum of wild-type and drug resistant HIV-1 variants. CSIC is a tight-binding non-nucleoside reverse transcriptase inhibitor (NNRTI) with demonstrated anti-HIV properties important for use in topical prevention of HIV transmission. The objective of this study was to develop and characterize film-formulated EFdA and CSIC for use as a female-controlled vaginal microbicide to prevent sexual transmission of HIV. Methods Assessments of EFdA- and CSIC-loaded films included physicochemical characteristics, in vitro cytotoxicity, epithelia integrity studies, compatibility with the normal vaginal Lactobacillus flora and anti-HIV bioactivity evaluations. Results No significant change in physicochemical properties or biological activity of the combination films were noted during 3 months storage. In vitro cytotoxicity and bioactivity testing showed that 50% cytotoxic concentration (CC50) of either EFdA or CSIC was several orders of magnitude higher than the 50% effective concentration (EC50) values. Film-formulated EFdA and CSIC combination showed additive inhibitory activity against wild type and drug-resistant variants of HIV. Epithelial integrity studies demonstrated that the combination vaginal film had a much lower toxicity to HEC-1A monolayers compared to that of VCF®, a commercial vaginal film product containing nonoxynol-9. Polarized ectocervical explants showed films with drug alone or in combination were effective at preventing HIV infection. Conclusions Our data suggest that vaginal microbicide films containing a combination of the NRTI EFdA and the NNRTI CSIC have potential to prevent HIV-1 sexual transmission. PMID:25794967

  17. Single-molecule study of DNA polymerization activity of HIV-1 reverse transcriptase on DNA templates.

    PubMed

    Kim, Sangjin; Schroeder, Charles M; Xie, X Sunney

    2010-02-05

    HIV-1 RT (human immunodeficiency virus-1 reverse transcriptase) is a multifunctional polymerase responsible for reverse transcription of the HIV genome, including DNA replication on both RNA and DNA templates. During reverse transcription in vivo, HIV-1 RT replicates through various secondary structures on RNA and single-stranded DNA (ssDNA) templates without the need for a nucleic acid unwinding protein, such as a helicase. In order to understand the mechanism of polymerization through secondary structures, we investigated the DNA polymerization activity of HIV-1 RT on long ssDNA templates using a multiplexed single-molecule DNA flow-stretching assay. We observed that HIV-1 RT performs fast primer extension DNA synthesis on single-stranded regions of DNA (18.7 nt/s) and switches its activity to slow strand displacement synthesis at DNA hairpin locations (2.3 nt/s). Furthermore, we found that the rate of strand displacement synthesis is dependent on the GC content in hairpin stems and template stretching force. This indicates that the strand displacement synthesis occurs through a mechanism that is neither completely active nor passive: that is, the opening of the DNA hairpin is driven by a combination of free energy released during dNTP (deoxyribonucleotide triphosphate) hydrolysis and thermal fraying of base pairs. Our experimental observations provide new insight into the interchanging modes of DNA replication by HIV-1 RT on long ssDNA templates.

  18. SINGLE-MOLECULE STUDY OF DNA POLYMERIZATION ACTIVITY OF HIV-1 REVERSE TRANSCRIPTASE ON DNA TEMPLATES

    PubMed Central

    Kim, Sangjin; Schroeder, Charles M.; Xie, X. Sunney

    2009-01-01

    Human Immunodeficiency Virus-1 reverse transcriptase (HIV-1 RT) is a multifunctional polymerase responsible for reverse transcription of the HIV genome, including DNA replication on both RNA and DNA templates. During reverse transcription in vivo, HIV-1 RT replicates through various secondary structures on RNA and single-stranded DNA templates without the need for a nucleic acid unwinding protein, such as a helicase. In order to understand the mechanism of polymerization through secondary structures, we investigated the DNA polymerization activity of HIV-1 RT on long single-stranded DNA templates using a multiplexed single-molecule DNA flow-stretching assay. We observed that HIV-1 RT performs fast primer extension DNA synthesis on single-stranded regions of DNA (18.7 nt/s) and switches its activity to slow strand displacement synthesis at DNA hairpin locations (2.3 nt/s). Furthermore, we found that the rate of strand displacement synthesis is dependent on the GC content in hairpin stems and template stretching force. This indicates that the strand displacement synthesis occurs through a mechanism that is neither completely active nor passive, i.e. the opening of the DNA hairpin is driven by a combination of free energy released during dNTP hydrolysis and thermal fraying of base pairs. Our experimental observations provide new insight into the interchanging modes of DNA replication by HIV-1 RT on long single-stranded DNA templates. PMID:19968999

  19. Interaction of HIV-1 reverse transcriptase ribonuclease H with an acylhydrazone inhibitor.

    PubMed

    Gong, Qingguo; Menon, Lakshmi; Ilina, Tatiana; Miller, Lena G; Ahn, Jinwoo; Parniak, Michael A; Ishima, Rieko

    2011-01-01

    HIV-1 reverse transcriptase is a bifunctional enzyme, having both DNA polymerase (RNA- and DNA-dependent) and ribonuclease H activities. HIV-1 reverse transcriptase has been an exceptionally important target for antiretroviral therapeutic development, and nearly half of the current clinically used antiretrovirals target reverse transcriptase DNA polymerase. However, no inhibitors of reverse transcriptase ribonuclease H are on the market or in preclinical development. Several drug-like small molecule inhibitors of reverse transcriptase ribonuclease H have been described, but little structural information is available about the interactions between reverse transcriptase ribonuclease H and inhibitors that exhibit antiviral activity. In this report, we describe NMR studies of the interaction of a new ribonuclease H inhibitor, BHMP07, with a catalytically active HIV-1 reverse transcriptase ribonuclease H domain fragment. We carried out solution NMR experiments to identify the interaction interface of BHMP07 with the ribonuclease H domain fragment. Chemical shift changes of backbone amide signals at different BHMP07 concentrations clearly demonstrate that BHMP07 mainly recognizes the substrate handle region in the ribonuclease H fragment. Using ribonuclease H inhibition assays and reverse transcriptase mutants, the binding specificity of BHMP07 was compared with another inhibitor, dihydroxy benzoyl naphthyl hydrazone. Our results provide a structural characterization of the ribonuclease H inhibitor interaction and are likely to be useful for further improvements of the inhibitors.

  20. Cross-subtype detection of HIV-1 using reverse transcription and recombinase polymerase amplification.

    PubMed

    Lillis, Lorraine; Lehman, Dara A; Siverson, Joshua B; Weis, Julie; Cantera, Jason; Parker, Mathew; Piepenburg, Olaf; Overbaugh, Julie; Boyle, David S

    2016-04-01

    A low complexity diagnostic test that rapidly and reliably detects HIV infection in infants at the point of care could facilitate early treatment, improving outcomes. However, many infant HIV diagnostics can only be performed in laboratory settings. Recombinase polymerase amplification (RPA) is an isothermal amplification technology that can rapidly amplify proviral DNA from multiple subtypes of HIV-1 in under twenty minutes without complex equipment. In this study we added reverse transcription (RT) to RPA to allow detection of both HIV-1 RNA and DNA. We show that this RT-RPA HIV-1 assay has a limit of detection of 10-30 copies of an exact sequence matched DNA or RNA, respectively. In addition, at 100 copies of RNA or DNA, the assay detected 171 of 175 (97.7%) sequence variants that represent all the major subtypes and recombinant forms of HIV-1 Groups M and O. This data suggests that the application of RT-RPA for the combined detection of HIV-1 viral RNA and proviral DNA may prove a highly sensitive tool for rapid and accurate diagnosis of infant HIV.

  1. The p66 Immature Precursor of HIV-1 Reverse Transcriptase

    PubMed Central

    Sharaf, Naima G.; Poliner, Eric; Slack, Ryan L.; Christen, Martin T.; Byeon, In-Ja L.; Parniak, Michael A.; Gronenborn, Angela M.; Ishima, Rieko

    2015-01-01

    In contrast to the wealth of structural data available for the mature p66/p51 heterodimeric human immunodeficiency virus type 1 reverse transcriptase (RT), the structure of the homodimeric p66 precursor remains unknown. In all X-ray structures of mature RT, free or complexed, the processing site in the p66 subunit, for generating the p51 subunit, is sequestered into a β-strand within the folded ribonuclease H (RNH) domain and is not readily accessible to proteolysis, rendering it difficult to propose a simple and straightforward mechanism of the maturation step. Here, we investigated, by solution NMR, the conformation of the RT p66 homodimer. Our data demonstrate that the RNH and Thumb domains in the p66 homodimer are folded and possess conformations very similar to those in mature RT. This finding suggests that maturation models which invoke a complete or predominantly unfolded RNH domain are unlikely. The present study lays the foundation for further in-depth mechanistic investigations at the atomic level. PMID:24771554

  2. Potent and highly selective human immunodeficiency virus type 1 (HIV-1) inhibition by a series of alpha-anilinophenylacetamide derivatives targeted at HIV-1 reverse transcriptase.

    PubMed Central

    Pauwels, R; Andries, K; Debyser, Z; Van Daele, P; Schols, D; Stoffels, P; De Vreese, K; Woestenborghs, R; Vandamme, A M; Janssen, C G

    1993-01-01

    In vitro evaluation of a large chemical library of pharmacologically acceptable prototype compounds in a high-capacity, cellular-based screening system has led to the discovery of another family of human immunodeficiency virus type 1 (HIV-1) inhibitors. Through optimization of a lead compound, several alpha-anilinophenylacetamide (alpha-APA) derivatives have been identified that inhibit the replication of several HIV-1 strains (IIIB/LAI, RF, NDK, MN, HE) in a variety of host cell types at concentrations that are 10,000- to 100,000-fold lower than their cytotoxic concentrations. The IC50 of the alpha-APA derivative R 89439 for HIV-1 cytopathicity in MT-4 cells was 13 nM. The median 90% inhibitory concentration (IC90) in a variety of host cells was 50-100 nM. Although these alpha-APA derivatives are active against a tetrahydroimidazo [4,5,1-jk][1,4]benzodiazepin-2(1H)-thione-(TIBO)-resistant HIV-1 strain, they do not inhibit replication of HIV-2 (strains ROD and EHO) or simian immunodeficiency virus (strains Mac251, mndGB1, and agm3). An HIV-1 strain containing the Tyr181-->Cys mutation in the reverse transcriptase region displayed reduced sensitivity. alpha-APA derivative R 89439 inhibited virion and recombinant reverse transcriptase of HIV-1 but did not inhibit that of HIV-2. Reverse transcriptase inhibition depended upon the template/primer used. The relatively uncomplicated synthesis of R 89439, its potent anti-HIV-1 activity, and its favorable pharmacokinetic profile make R 89439 a good candidate for clinical studies. PMID:7680476

  3. Identification of mechanistically distinct inhibitors of HIV-1 reverse transcriptase through fragment screening

    PubMed Central

    La, Jennifer; Latham, Catherine F.; Tinetti, Ricky N.; Johnson, Adam; Tyssen, David; Huber, Kelly D.; Sluis-Cremer, Nicolas; Simpson, Jamie S.; Headey, Stephen J.; Chalmers, David K.; Tachedjian, Gilda

    2015-01-01

    Fragment-based screening methods can be used to discover novel active site or allosteric inhibitors for therapeutic intervention. Using saturation transfer difference (STD) NMR and in vitro activity assays, we have identified fragment-sized inhibitors of HIV-1 reverse transcriptase (RT) with distinct chemical scaffolds and mechanisms compared to nonnucleoside RT inhibitors (NNRTIs) and nucleoside/nucleotide RT inhibitors (NRTIs). Three compounds were found to inhibit RNA- and DNA-dependent DNA polymerase activity of HIV-1 RT in the micromolar range while retaining potency against RT variants carrying one of three major NNRTI resistance mutations: K103N, Y181C, or G190A. These compounds also inhibit Moloney murine leukemia virus RT but not the Klenow fragment of Escherichia coli DNA polymerase I. Steady-state kinetic analyses demonstrate that one of these fragments is a competitive inhibitor of HIV-1 RT with respect to deoxyribonucleoside triphosphate (dNTP) substrate, whereas a second compound is a competitive inhibitor of RT polymerase activity with respect to the DNA template/primer (T/P), and consequently also inhibits RNase H activity. The dNTP competing RT inhibitor retains activity against the NRTI-resistant mutants K65R and M184V, demonstrating a drug resistance profile distinct from the nucleotide competing RT inhibitors indolopyridone-1 (INDOPY-1) and 4-dimethylamino-6-vinylpyrimidine-1 (DAVP-1). In antiviral assays, the T/P competing compound inhibits HIV-1 replication at a step consistent with an RT inhibitor. Screening of additional structurally related compounds to the three fragments led to the discovery of molecules with improved potency against HIV-1 RT. These fragment inhibitors represent previously unidentified scaffolds for development of novel drugs for HIV-1 prevention or treatment. PMID:26038551

  4. HIV-1 Subtype Is an Independent Predictor of Reverse Transcriptase Mutation K65R in HIV-1 Patients Treated with Combination Antiretroviral Therapy Including Tenofovir

    PubMed Central

    Vercauteren, J.; Snoeck, J.; Zazzi, M.; Camacho, R. J.; Torti, C.; Schülter, E.; Clotet, B.; Sönnerborg, A.; De Luca, A.; Grossman, Z.; Struck, D.; Vandamme, A.-M.; Abecasis, A. B.

    2013-01-01

    Subtype-dependent selection of HIV-1 reverse transcriptase resistance mutation K65R was previously observed in cell culture and small clinical investigations. We compared K65R prevalence across subtypes A, B, C, F, G, and CRF02_AG separately in a cohort of 3,076 patients on combination therapy including tenofovir. K65R selection was significantly higher in HIV-1 subtype C. This could not be explained by clinical and demographic factors in multivariate analysis, suggesting subtype sequence-specific K65R pathways. PMID:23183438

  5. Structure-activity relationship studies on a novel family of specific HIV-1 reverse transcriptase inhibitors.

    PubMed

    Bonache, María-Cruz; Chamorro, Cristina; Lobatón, Esther; De Clercq, Erik; Balzarini, Jan; Velázquez, Sonsoles; Camarasa, María-José; San-Félix, Ana

    2003-09-01

    We have previously reported the discovery and preliminary structure-activity relationships of a new class of specific HIV-1 reverse transcriptase (RT) inhibitors whose prototype compound is the 1-[2',5'-bis-O-(tert-butyldimethylsilyl)-beta-D-ribofuranosyl]-3-N-[(carboxy) methyl]-thymine. In an attempt to increase the inhibitory efficacy against HIV-1 RT of this new class of nucleosides, and to further explore the structural features required for anti-HIV-1 activity, different types of modifications have been carried out on the prototype compound. These include substitution of the tert-butyldimethylsilyl groups by other liphophilic groups, replacement of the carboxy group at the N-3 position of the nucleobase by other functional groups, change in the length of the spacer between the thymine and the carboxylic acid residue and substitution of the thymine moiety by other pyrimidine (uracil, 5-ethyluracil) or purine (hypoxanthine) nucleobases. In addition, the most salient structural features of this new class of HIV-1-specific nucleosides have been incorporated into classical HIV RT nucleoside inhibitors such as ddl, AZT, d4T. Our studies demonstrate that both the carboxymethyl moiety at the nucleobase and tert-butyldimethylsilyl groups at the sugar are important structural components since deletion of either of them is detrimental to the antiviral activity.

  6. Establishment and Reversal of HIV-1 Latency in Naive and Central Memory CD4+ T Cells In Vitro

    PubMed Central

    Zerbato, Jennifer M.; Serrao, Erik; Lenzi, Gina; Kim, Baek; Ambrose, Zandrea; Watkins, Simon C.; Engelman, Alan N.

    2016-01-01

    ABSTRACT The latent HIV-1 reservoir primarily resides in resting CD4+ T cells which are a heterogeneous population composed of both naive (TN) and memory cells. In HIV-1-infected individuals, viral DNA has been detected in both naive and memory CD4+ T cell subsets although the frequency of HIV-1 DNA is typically higher in memory cells, particularly in the central memory (TCM) cell subset. TN and TCM cells are distinct cell populations distinguished by many phenotypic and physiological differences. In this study, we used a primary cell model of HIV-1 latency that utilizes direct infection of highly purified TN and TCM cells to address differences in the establishment and reversal of HIV-1 latency. Consistent with what is seen in vivo, we found that HIV-1 infected TN cells less efficiently than TCM cells. However, when the infected TN cells were treated with latency-reversing agents, including anti-CD3/CD28 antibodies, phorbol myristate acetate/phytohemagglutinin, and prostratin, as much (if not more) extracellular virion-associated HIV-1 RNA was produced per infected TN cell as per infected TCM cell. There were no major differences in the genomic distribution of HIV-1 integration sites between TN and TCM cells that accounted for these observed differences. We observed decay of the latent HIV-1 cells in both T cell subsets after exposure to each of the latency-reversing agents. Collectively, these data highlight significant differences in the establishment and reversal of HIV-1 latency in TN and TCM CD4+ T cells and suggest that each subset should be independently studied in preclinical and clinical studies. IMPORTANCE The latent HIV-1 reservoir is frequently described as residing within resting memory CD4+ T cells. This is largely due to the consistent finding that memory CD4+ T cells, specifically the central (TCM) and transitional memory compartments, harbor the highest levels of HIV-1 DNA in individuals on suppressive therapy. This has yielded little research

  7. First-Line Antiretroviral Therapy With A Protease Inhibitor Versus Non-Nucleoside Reverse Transcriptase Inhibitor And Switch At Higher Versus Low Viral Load In Hiv-Infected Children: An Open-Label, Randomised Phase 2/3 Trial

    PubMed Central

    2011-01-01

    Background Randomised long-term comparisons between protease inhibitor(PI) and non-nucleoside reverse transcriptase inhibitor(NNRTI) first-line antiretroviral therapy(ART) and viral load(VL) switch criteria have never been undertaken in HIV-infected children. Methods PENPACT-1(ISRCTN73318385) assessed long-term effectiveness of ART-naïve children from Europe and North/South America initiating 2NRTIs+PI vs 2NRTIs+NNRTI, and switch to second-line at VL ≥1000c/ml vs ≥30000c/ml in a randomised open-label factorial design. The primary outcome was VL change between baseline and 4 years. Results 266 children were randomised(66 PI-1000, 65 PI-30000, 68 NNRTI-1000, 67 NNRTI-30000), and 263 analysed(3 NNRTI-30000 excluded); median age 6.5(IQR:2.8–12.9)years; mean(SD) CD4 18%(11); VL 5.1(0.8)log10c/ml. Median follow-up was 5.0(IQR:4.2–6.0)years; 188(71%) children were on first-line ART at trial end. For children starting second-line ART, median VLs at switch were 6720c/ml vs 35712c/ml in 1000 vs 30000; children in the 30000 group switched 41 weeks later, on average. At 4 years, mean VL reductions were −3.16 vs −3.31log10c/ml for PI vs NNRTI(difference −0.15log10c/ml,95%CI[−0.41,0.11];p=0.26), and −3.26 vs −3.20log10c/ml for 1000 vs 30000(difference 0.06log10c/ml,95%CI[−0.20,0.32];p=0.56); VL was <400c/ml in 82%PI vs 82%NNRTI, p=0.91 and 83%1000 vs 80%30000, p=0.42. Nine children with new CDC-C events, and 60 experiencing grade 3/4 adverse events were balanced across randomisations. PI resistance was uncommon and no increase in NRTI resistance occurred in PI-30000 compared to PI-1000. In contrast, NNRTI resistance was selected early (similar in 1000 and 30000), and ~10% more children accumulated NRTI mutations in NNRTI-30000 than NNRTI-1000. Conclusion There was no difference between initiating ART with PI or NNRTI-based regimens; both achieved good long-term virological outcomes. Delayed switching on NNRTI-based ART increases NRTI, but not NNRTI

  8. Long-term effectiveness of initiating non-nucleoside reverse transcriptase inhibitor- versus ritonavir-boosted protease inhibitor-based antiretroviral therapy: implications for first-line therapy choice in resource-limited settings

    PubMed Central

    Lima, Viviane D; Hull, Mark; McVea, David; Chau, William; Harrigan, P Richard; Montaner, Julio SG

    2016-01-01

    Introduction In many resource-limited settings, combination antiretroviral therapy (cART) failure is diagnosed clinically or immunologically. As such, there is a high likelihood that patients may stay on a virologically failing regimen for a substantial period of time. Here, we compared the long-term impact of initiating non-nucleoside reverse transcriptase inhibitor (NNRTI)- versus boosted protease inhibitor (bPI)-based cART in British Columbia (BC), Canada. Methods We followed prospectively 3925 ART-naïve patients who started NNRTIs (N=1963, 50%) or bPIs (N=1962; 50%) from 1 January 2000 until 30 June 2013 in BC. At six months, we assessed whether patients virologically failed therapy (a plasma viral load (pVL) >50 copies/mL), and we stratified them based on the pVL at the time of failure ≤500 versus >500 copies/mL. We then followed these patients for another six months and calculated their probability of achieving subsequent viral suppression (pVL <50 copies/mL twice consecutively) and of developing drug resistance. These probabilities were adjusted for fixed and time-varying factors, including cART adherence. Results At six months, virologic failure rates were 9.5 and 14.3 cases per 100 person-months for NNRTI and bPI initiators, respectively. NNRTI initiators who failed with a pVL ≤500 copies/mL had a 16% higher probability of achieving subsequent suppression at 12 months than bPI initiators (0.81 (25th–75th percentile 0.75–0.83) vs. 0.72 (0.61–0.75)). However, if failing NNRTI initiators had a pVL >500 copies/mL, they had a 20% lower probability of suppressing at 12 months than pVL-matched bPI initiators (0.37 (0.29–0.45) vs. 0.46 (0.38–0.54)). In terms of evolving HIV drug resistance, those who failed on NNRTI performed worse than bPI in all scenarios, especially if they failed with a viral load >500 copies/mL. Conclusions Our results show that patients who virologically failed at six months on NNRTI and continued on the same regimen had a

  9. Prevalence of transmitted nucleoside analogue-resistant HIV-1 strains and pre-existing mutations in pol reverse transcriptase and protease region: outcome after treatment in recently infected individuals.

    PubMed

    Balotta, C; Berlusconi, A; Pan, A; Violin, M; Riva, C; Colombo, M C; Gori, A; Papagno, L; Corvasce, S; Mazzucchelli, R; Facchi, G; Velleca, R; Saporetti, G; Galli, M; Rusconi, S; Moroni, M

    2000-03-01

    We retrospectively studied 38 Italian recently HIV-1-infected subjects who seroconverted from 1994 to 1997 to investigate: (i) the prevalence of nucleoside reverse transcriptase inhibitors (NRTI)-related mutations at primary infection; (ii) the proportion of naturally occurring mutations in reverse transcriptase (RT) and protease regions of patients naive for non-nucleoside RT inhibitors (NNRTIs) and protease inhibitors (PIs); (iii) the drug-susceptibility to NRTIs and PIs in subjects with NRTI- and/or PI-related mutations; and (iv) the outcome of seroconverters treated with various NRTIs or NRTI/PI regimens. Baseline HIV-1 plasma viraemia and absolute CD4 count at baseline could not be used to distinguish patients with NRTI- and/or PI-related pre-existing mutations from those with wild-type virus (P = 0.693 and P = 0.542, respectively). The frequency of zidovudine-related mutations was 21% in the study period. The response to treatment was not significantly different in subjects with or without genotypic zidovudine-related mutations at primary infection (P = 0.744 for HIV-1 RNA and P = 0.102 for CD4 cells). Some natural variation (2.6%) was present within regions 98-108 and 179-190 of RT involved in NNRTI resistance. The high natural polymorphism in the protease region present in our patients was similar to that reported by others. In our study some PI-associated substitutions, thought to be compensatory in protease enzymatic function, could confer intermediate to high PI-resistance. As discrepancies between genotypic and phenotypic results may exist in recent seroconverters, our data suggest that the role of transmitted NRTI- and PI-resistant variants remain to be fully elucidated in vivo.

  10. Crystal engineering of HIV-1 reverse transcriptase for structure-based drug design.

    PubMed

    Bauman, Joseph D; Das, Kalyan; Ho, William C; Baweja, Mukta; Himmel, Daniel M; Clark, Arthur D; Oren, Deena A; Boyer, Paul L; Hughes, Stephen H; Shatkin, Aaron J; Arnold, Eddy

    2008-09-01

    HIV-1 reverse transcriptase (RT) is a primary target for anti-AIDS drugs. Structures of HIV-1 RT, usually determined at approximately 2.5-3.0 A resolution, are important for understanding enzyme function and mechanisms of drug resistance in addition to being helpful in the design of RT inhibitors. Despite hundreds of attempts, it was not possible to obtain the structure of a complex of HIV-1 RT with TMC278, a nonnucleoside RT inhibitor (NNRTI) in advanced clinical trials. A systematic and iterative protein crystal engineering approach was developed to optimize RT for obtaining crystals in complexes with TMC278 and other NNRTIs that diffract X-rays to 1.8 A resolution. Another form of engineered RT was optimized to produce a high-resolution apo-RT crystal form, reported here at 1.85 A resolution, with a distinct RT conformation. Engineered RTs were mutagenized using a new, flexible and cost effective method called methylated overlap-extension ligation independent cloning. Our analysis suggests that reducing the solvent content, increasing lattice contacts, and stabilizing the internal low-energy conformations of RT are critical for the growth of crystals that diffract to high resolution. The new RTs enable rapid crystallization and yield high-resolution structures that are useful in designing/developing new anti-AIDS drugs.

  11. Crystal Engineering of HIV-1 Reverse Transcriptase for structure-Based Drug Design

    SciTech Connect

    Bauman,J.; Das, K.; Ho, W.; Baweja, M.; Himmel, D.; Clark, A.; Oren, D.; Shatkin, A.; Arnold, E.

    2008-01-01

    HIV-1 reverse transcriptase (RT) is a primary target for anti-AIDS drugs. Structures of HIV-1 RT, usually determined at {approx}2.5-3.0 Angstroms resolution, are important for understanding enzyme function and mechanisms of drug resistance in addition to being helpful in the design of RT inhibitors. Despite hundreds of attempts, it was not possible to obtain the structure of a complex of HIV-1 RT with TMC278, a nonnucleoside RT inhibitor (NNRTI) in advanced clinical trials. A systematic and iterative protein crystal engineering approach was developed to optimize RT for obtaining crystals in complexes with TMC278 and other NNRTIs that diffract X-rays to 1.8 Angstroms resolution. Another form of engineered RT was optimized to produce a high-resolution apo-RT crystal form, reported here at 1.85 Angstroms resolution, with a distinct RT conformation. Engineered RTs were mutagenized using a new, flexible and cost effective method called methylated overlap-extension ligation independent cloning. Our analysis suggests that reducing the solvent content, increasing lattice contacts, and stabilizing the internal low-energy conformations of RT are critical for the growth of crystals that diffract to high resolution. The new RTs enable rapid crystallization and yield high-resolution structures that are useful in designing/developing new anti-AIDS drugs.

  12. Establishment of a Functional Human Immunodeficiency Virus Type 1 (HIV-1) Reverse Transcription Complex Involves the Cytoskeleton

    PubMed Central

    Bukrinskaya, Alissa; Brichacek, Beda; Mann, Angela; Stevenson, Mario

    1998-01-01

    After interaction of human immunodeficiency virus type 1 (HIV-1) virions with cell surface receptors, a series of poorly characterized events results in establishment of a viral reverse transcription complex in the host cell cytoplasm. This process is coordinated in such a way that reverse transcription is initiated shortly after formation of the viral reverse transcription complex. However, the mechanism through which virus entry and initiation of reverse transcription are coordinated and how these events are compartmentalized in the infected cell are not known. In this study, we demonstrate that viral reverse transcription complexes associate rapidly with the host cell cytoskeleton during HIV-1 infection and that reverse transcription occurs almost entirely in the cytoskeletal compartment. Interruption of actin polymerization before virus infection reduced association of viral reverse transcription complexes with the cytoskeleton. In addition, efficient reverse transcription was dependent on intact actin microfilaments. The localization of reverse transcription to actin microfilaments was mediated by the interaction of a reverse transcription complex component (gag MA) with actin but not vimentin (intermediate filaments) or tubulin (microtubules). In addition, fusion, but not endocytosis-mediated HIV-1 infectivity, was impaired when actin depolymerizing agents were added to target cells before infection but not when added after infection. These results point to a previously unsuspected role for the host cell cytoskeleton in HIV-1 entry and suggest that components of the cytoskeleton promote establishment of the reverse transcription complex in the host cell and also the process of reverse transcription within this complex. PMID:9841925

  13. Circularization of the HIV-1 genome facilitates strand transfer during reverse transcription.

    PubMed

    Beerens, Nancy; Kjems, Jørgen

    2010-06-01

    Two obligatory DNA strand transfers take place during reverse transcription of a retroviral RNA genome. The first strand transfer involves a jump from the 5' to the 3' terminal repeat (R) region positioned at each end of the viral genome. The process depends on base pairing between the cDNA synthesized from the 5' R region and the 3' R RNA. The tertiary conformation of the viral RNA genome may facilitate strand transfer by juxtaposing the 5' R and 3' R sequences that are 9 kb apart in the linear sequence. In this study, RNA sequences involved in an interaction between the 5' and 3' ends of the HIV-1 genome were mapped by mutational analysis. This interaction appears to be mediated mainly by a sequence in the extreme 3' end of the viral genome and in the gag open reading frame. Mutation of 3' R sequences was found to inhibit the 5'-3' interaction, which could be restored by a complementary mutation in the 5' gag region. Furthermore, we find that circularization of the HIV-1 genome does not affect the initiation of reverse transcription, but stimulates the first strand transfer during reverse transcription in vitro, underscoring the functional importance of the interaction.

  14. Homodimerization of the p51 Subunit of HIV-1 Reverse Transcriptase

    SciTech Connect

    Zheng, X.; Mueller, G; Cuneo, M; DeRose, E; London, R

    2010-01-01

    The dimerization of HIV reverse transcriptase (RT), required to obtain the active form of the enzyme, is influenced by mutations, non-nucleoside reverse transcriptase inhibitors (NNRTIs), nucleotide substrates, Mg ions, temperature, and specifically designed dimerization inhibitors. In this study, we have utilized nuclear magnetic resonance (NMR) spectroscopy of the [methyl-{sup 13}C]methionine-labeled enzyme and small-angle X-ray scattering (SAXS) to investigate how several of these factors influence the dimerization behavior of the p51 subunit. The {sup 1}H-{sup 13}C HSQC spectrum of p51 obtained at micromolar concentrations indicates that a significant fraction of the p51 adopts a 'p66-like' conformation. SAXS data obtained for p51 samples were used to determine the fractions of monomer and dimer in the sample and to evaluate the conformation of the fingers/thumb subdomain. All of the p51 monomer observed was found to adopt the compact, 'p51C' conformation observed for the p51 subunit in the RT heterodimer. The NMR and SAXS data indicate that the p51 homodimer adopts a structure that is similar to the p66/p51 heterodimer, with one p51C subunit and a second p51 subunit in an extended, 'p51E' conformation that resembles the p66 subunit of the heterodimer. The fractional dimer concentration and the fingers/thumb orientation are found to depend strongly on the experimental conditions and exhibit a qualitative dependence on nevirapine and ionic strength (KCl) that is similar to the behavior reported for the heterodimer and the p66 homodimer. The L289K mutation interferes with p51 homodimer formation as it does with formation of the heterodimer, despite its location far from the dimer interface. This effect is readily interpreted in terms of a conformational selection model, in which p51{sub L289K} has a much greater preference for the compact, p51C conformation. A reduced level of dimer formation then results from the reduced ratio of the p51E{sub L289K} to p51C

  15. Energetics of mutation-induced changes in potency of lersivirine against HIV-1 reverse transcriptase.

    PubMed

    Kar, Parimal; Knecht, Volker

    2012-06-07

    Nonnucleoside reverse transcriptase inhibitors (NNRTIs) are key components of highly active antiretroviral therapy for the treatment of HIV-1. A common problem with the first generation NNRTIs is the emergence of mutations in the HIV-1 reverse transcriptase (RT), in particular, K103N and Y181C, which lead to resistance to the entire class of inhibitor. Here we have evaluated the relative affinity of the newly designed NNRTI lersivirine (LRV) against drug-resistant mutations in HIV-1 RT using the molecular mechanics generalized Born surface area (MM-GBSA) method. Eight single and one double mutant variants of RT are considered. Our results are in good agreement with experimental results and yield insights into the mechanisms underlying mutation-induced changes in the potency of LRV against RT. The strongest (54-fold) increase in the dissociation constant is found for the mutant F227C, originating from reduced electrostatic and van der Waals interactions between LRV and RT as well as a higher energetic penalty from the desolvation of polar groups. For the mutants K103N and Y181C only a moderate (2-fold) increase in the dissociation constant is found, due to a balance of opposite changes in the polar solvation as well as the electrostatic and van der Waals interactions between LRV and RT. The dissociation constant is decreased for the Y188C and G190A (2-fold), the M184V (5-fold), and the Y188C/Y188C mutant (10-fold), due to stronger electrostatic interactions between LRV and RT. Our results thus suggest that LRV is a highly potent and selective NNRTI, with excellent efficacy against NNRTI-resistant viruses, which is in agreement with experimental observations.

  16. Structure of HIV-1 nonnucleoside reverse transcriptase inhibitors derivatives of N-benzyl-benzimidazole with different substituents in position 4

    NASA Astrophysics Data System (ADS)

    Ziółkowska, Natasza E.; Michejda, Christopher J.; Bujacz, Grzegorz D.

    2010-01-01

    The constant development of new drugs against HIV-1 is necessary due to global expansion of AIDS and HIV-1 drug resistance. Nonnucleoside reverse transcriptase inhibitors of HIV-1 (NNRTIs) are potentially effective and nontoxic drugs in AIDS therapy. The crystal structures of six nonnucleoside inhibitors of HIV-1 reverse transcriptase (RT) derivatives of N-benzyl-benzimidazole are reported here. The investigated compounds belong to the group of so called "butterfly like" inhibitors with characteristic two π-electron moieties with an angled orientation. The structural data show the influence of the substituents of the benzimidazole ring on the geometry of the molecule and correlation between the structure of the inhibitor and its biological activity.

  17. Structure-Based Evaluation of C5 Derivatives in the Catechol Diether Series Targeting HIV-1 Reverse Transcriptase

    PubMed Central

    Frey, Kathleen M.; Gray, William T.; Spasov, Krasimir A.; Bollini, Mariela; Gallardo-Macias, Ricardo; Jorgensen, William L.; Anderson, Karen S.

    2014-01-01

    Using a computationally driven approach, a class of inhibitors with picomolar potency known as the catechol diethers were developed targeting the non-nucleoside binding pocket (NNBP) of HIV-1 RT. Computational studies suggested that halogen bonding interactions between the C5 substituent of the inhibitor and backbone carbonyl of conserved residue Pro95 might be important. While the recently reported crystal structures of the RT complexes confirmed the interactions with the NNBP, they revealed the lack of a halogen bonding interaction with Pro95. In order to understand the effects of substituents at the C5 position, we determined additional crystal structures with 5-Br and 5-H derivatives. Using comparative structural analysis, we identified several conformations of the ethoxy uracil dependent on the strength of a van der Waals interaction with the Cγ of Pro95 and the C5 substitution. The 5-Cl and 5-F derivatives position the ethoxy uracil to make more hydrogen bonds, while the larger 5-Br and smaller 5-H position the ethoxy uracil to make fewer hydrogen bonds. EC50 values correlate with the trends observed in the crystal structures. The influence of C5 substitutions on the ethoxy uracil conformation may have strategic value, as future derivatives can possibly be modulated in order to gain additional hydrogen bonding interactions with resistant variants of RT. PMID:24289305

  18. Structure of the HIV-1 reverse transcriptase Q151M mutant: insights into the inhibitor resistance of HIV-1 reverse transcriptase and the structure of the nucleotide-binding pocket of Hepatitis B virus polymerase

    SciTech Connect

    Nakamura, Akiyoshi; Tamura, Noriko; Yasutake, Yoshiaki

    2015-10-23

    The structure of the HIV-1 reverse transcriptase Q151M mutant was determined at a resolution of 2.6 Å in space group P321. Hepatitis B virus polymerase (HBV Pol) is an important target for anti-HBV drug development; however, its low solubility and stability in vitro has hindered detailed structural studies. Certain nucleotide reverse transcriptase (RT) inhibitors (NRTIs) such as tenofovir and lamivudine can inhibit both HBV Pol and Human immunodeficiency virus 1 (HIV-1) RT, leading to speculation on structural and mechanistic analogies between the deoxynucleotide triphosphate (dNTP)-binding sites of these enzymes. The Q151M mutation in HIV-1 RT, located at the dNTP-binding site, confers resistance to various NRTIs, while maintaining sensitivity to tenofovir and lamivudine. The residue corresponding to Gln151 is strictly conserved as a methionine in HBV Pol. Therefore, the structure of the dNTP-binding pocket of the HIV-1 RT Q151M mutant may reflect that of HBV Pol. Here, the crystal structure of HIV-1 RT Q151M, determined at 2.6 Å resolution, in a new crystal form with space group P321 is presented. Although the structure of HIV-1 RT Q151M superimposes well onto that of HIV-1 RT in a closed conformation, a slight movement of the β-strands (β2–β3) that partially create the dNTP-binding pocket was observed. This movement might be caused by the introduction of the bulky thioether group of Met151. The structure also highlighted the possibility that the hydrogen-bonding network among amino acids and NRTIs is rearranged by the Q151M mutation, leading to a difference in the affinity of NRTIs for HIV-1 RT and HBV Pol.

  19. Structural investigation of HIV-1 nonnucleoside reverse transcriptase inhibitors: 2-Aryl-substituted benzimidazoles

    NASA Astrophysics Data System (ADS)

    Ziółkowska, Natasza E.; Michejda, Christopher J.; Bujacz, Grzegorz D.

    2009-11-01

    Acquired immunodeficiency syndrome (AIDS) caused by the human immunodeficiency virus (HIV) is one of the most destructive epidemics in history. Inhibitors of HIV enzymes are the main targets to develop drugs against that disease. Nonnucleoside reverse transcriptase inhibitors of HIV-1 (NNRTIs) are potentially effective and nontoxic. Structural studies provide information necessary to design more active compounds. The crystal structures of four NNRTI derivatives of 2-aryl-substituted N-benzyl-benzimidazole are presented here. Analysis of the geometrical parameters shows that the structures of the investigated inhibitors are rigid. The important geometrical parameter is the dihedral angle between the planes of the π-electron systems of the benzymidazole and benzyl moieties. The values of these dihedral angles are in a narrow range for all investigated inhibitors. There is no significant difference between the structure of the free inhibitor and the inhibitor in the complex with RT HIV-1. X-ray structures of the investigated inhibitors are a good basis for modeling enzyme-inhibitor interactions in rational drug design.

  20. Snapshot of the equilibrium dynamics of a drug bound to HIV-1 reverse transcriptase

    NASA Astrophysics Data System (ADS)

    Kuroda, Daniel G.; Bauman, Joseph D.; Challa, J. Reddy; Patel, Disha; Troxler, Thomas; Das, Kalyan; Arnold, Eddy; Hochstrasser, Robin M.

    2013-03-01

    The anti-AIDS drug rilpivirine undergoes conformational changes to bind HIV-1 reverse transcriptase (RT), which is an essential enzyme for the replication of HIV. These changes allow it to retain potency against mutations that otherwise would render the enzyme resistant. Here we report that water molecules play an essential role in this binding process. Femtosecond experiments and theory expose the molecular level dynamics of rilpivirine bound to HIV-1 RT. Two nitrile substituents, one on each arm of the drug, are used as vibrational probes of the structural dynamics within the binding pocket. Two-dimensional vibrational echo spectroscopy reveals that one nitrile group is unexpectedly hydrogen-bonded to a mobile water molecule, not identified in previous X-ray structures. Ultrafast nitrile-water dynamics are confirmed by simulations. A higher (1.51 Å) resolution X-ray structure also reveals a water-drug interaction network. Maintenance of a crucial anchoring hydrogen bond may help retain the potency of rilpivirine against pocket mutations despite the structural variations they cause.

  1. Theoretical investigation on nevirapine and HIV-1 reverse transcriptase binding site interaction, based on ONIOM method

    NASA Astrophysics Data System (ADS)

    Kuno, Mayuso; Hannongbua, Supa; Morokuma, Keiji

    2003-10-01

    The ONIOM method was applied to the interaction of nevirapine with the HIV-1 reverse transcriptase binding site. The isolated complex of pyridine (part of nevirapine) and methyl phenol (part of Tyr181) was found at the MP2/6-31+G(d) level to have stacking interaction with 8.8 kcal/mol binding energy. Optimization of nevirapine and Tyr181 geometry in the pocket of 16 amino acid residues at the ONIOM3(MP2/6-31G(d):HF/3-21G:PM3) level gave the complex structure with weak hydrogen bonding but without stacking interaction. The binding energy of 8.9 kcal/mol comes almost entirely from the interaction of nevirapine with amino acid residues other than Tyr181.

  2. Molecular dynamics study of non-nucleoside reverse transcriptase inhibitor 4-[[4-[[4-[(E)-2-cyanoethenyl]-2,6-dimethylphenyl]amino]-2-pyrimidinyl]amino]benzonitrile (TMC278/rilpivirine) aggregates: correlation between amphiphilic properties of the drug and oral bioavailability

    PubMed Central

    Frenkel, Yulia Volovik; Gallicchio, Emilio; Das, Kalyan; Levy, Ronald M.; Arnold, Eddy

    2009-01-01

    The non-nucleoside reverse transcriptase inhibitor (NNRTI) TMC278/rilpivirine is an anti-AIDS therapeutic agent with high oral bioavailability despite its high hydrophobicity. Previous studies established a correlation between ability of the drug molecule to form stable, homogeneous populations of spherical nanoparticles (~100–120 nm in diameter) at low pH in surfactant-independent fashion, and good oral bioavailability. Here, we hypothesize that the drug is able to assume surfactant-like properties under physiologically relevant conditions, thus facilitating formation of nanostructuresin the absence of other surfactants. The results of all-atom molecular dynamics simulations indeed show that protonated drug molecules behave as surfactants at the water/aggregate interface while neutral drug molecules assist aggregate packing via conformational variability. Our simulation results suggest that amphiphilic behavior at low pH and intrinsic flexibility influence drug aggregation and are believed to play critical roles in the favorable oral bioavailability of hydrophobic drugs. PMID:19739675

  3. Kinetics of HIV-1 Latency Reversal Quantified on the Single-Cell Level Using a Novel Flow-Based Technique

    PubMed Central

    Martrus, G.; Niehrs, A.; Cornelis, R.; Rechtien, A.; García-Beltran, W.; Lütgehetmann, M.; Hoffmann, C.

    2016-01-01

    ABSTRACT HIV-1 establishes a pool of latently infected cells early following infection. New therapeutic approaches aiming at diminishing this persisting reservoir by reactivation of latently infected cells are currently being developed and tested. However, the reactivation kinetics of viral mRNA and viral protein production, and their respective consequences for phenotypical changes in infected cells that might enable immune recognition, remain poorly understood. We adapted a novel approach to assess the dynamics of HIV-1 mRNA and protein expression in latently and newly infected cells on the single-cell level by flow cytometry. This technique allowed the simultaneous detection of gagpol mRNA, intracellular p24 Gag protein, and cell surface markers. Following stimulation of latently HIV-1-infected J89 cells with human tumor necrosis factor alpha (hTNF-α)/romidepsin (RMD) or HIV-1 infection of primary CD4+ T cells, four cell populations were detected according to their expression levels of viral mRNA and protein. gagpol mRNA in J89 cells was quantifiable for the first time 3 h after stimulation with hTNF-α and 12 h after stimulation with RMD, while p24 Gag protein was detected for the first time after 18 h poststimulation. HIV-1-infected primary CD4+ T cells downregulated CD4, BST-2, and HLA class I expression at early stages of infection, proceeding Gag protein detection. In conclusion, here we describe a novel approach allowing quantification of the kinetics of HIV-1 mRNA and protein synthesis on the single-cell level and phenotypic characterization of HIV-1-infected cells at different stages of the viral life cycle. IMPORTANCE Early after infection, HIV-1 establishes a pool of latently infected cells, which hide from the immune system. Latency reversal and immune-mediated elimination of these latently infected cells are some of the goals of current HIV-1 cure approaches; however, little is known about the HIV-1 reactivation kinetics following stimulation with

  4. Vascular oxidative stress and nitric oxide depletion in HIV-1 transgenic rats are reversed by glutathione restoration

    PubMed Central

    Kline, Erik R.; Kleinhenz, Dean J.; Liang, Bill; Dikalov, Sergey; Guidot, David M.; Hart, C. Michael; Jones, Dean P.; Sutliff, Roy L.

    2008-01-01

    Human immunodeficiency virus (HIV)-infected patients have a higher incidence of oxidative stress, endothelial dysfunction, and cardiovascular disease than uninfected individuals. Recent reports have demonstrated that viral proteins upregulate reactive oxygen species, which may contribute to elevated cardiovascular risk in HIV-1 patients. In this study we employed an HIV-1 transgenic rat model to investigate the physiological effects of viral protein expression on the vasculature. Markers of oxidative stress in wild-type and HIV-1 transgenic rats were measured using electron spin resonance, fluorescence microscopy, and various molecular techniques. Relaxation studies were completed on isolated aortic rings, and mRNA and protein were collected to measure changes in expression of nitric oxide (NO) and superoxide sources. HIV-1 transgenic rats displayed significantly less NO-hemoglobin, serum nitrite, serum S-nitrosothiols, aortic tissue NO, and impaired endothelium-dependent vasorelaxation than wild-type rats. NO reduction was not attributed to differences in endothelial NO synthase (eNOS) protein expression, eNOS-Ser1177 phosphorylation, or tetrahydrobiopterin availability. Aortas from HIV-1 transgenic rats had higher levels of superoxide and 3-nitrotyrosine but did not differ in expression of superoxide-generating sources NADPH oxidase or xanthine oxidase. However, transgenic aortas displayed decreased superoxide dismutase and glutathione. Administering the glutathione precursor procysteine decreased superoxide, restored aortic NO levels and NO-hemoglobin, and improved endothelium-dependent relaxation in HIV-1 transgenic rats. These results show that HIV-1 protein expression decreases NO and causes endothelial dysfunction. Diminished antioxidant capacity increases vascular superoxide levels, which reduce NO bioavailability and promote peroxynitrite generation. Restoring glutathione levels reverses HIV-1 protein-mediated effects on superoxide, NO, and vasorelaxation

  5. Sequence and structure based models of HIV-1 protease and reverse transcriptase drug resistance

    PubMed Central

    2013-01-01

    Background Successful management of chronic human immunodeficiency virus type 1 (HIV-1) infection with a cocktail of antiretroviral medications can be negatively affected by the presence of drug resistant mutations in the viral targets. These targets include the HIV-1 protease (PR) and reverse transcriptase (RT) proteins, for which a number of inhibitors are available on the market and routinely prescribed. Protein mutational patterns are associated with varying degrees of resistance to their respective inhibitors, with extremes that can range from continued susceptibility to cross-resistance across all drugs. Results Here we implement statistical learning algorithms to develop structure- and sequence-based models for systematically predicting the effects of mutations in the PR and RT proteins on resistance to each of eight and eleven inhibitors, respectively. Employing a four-body statistical potential, mutant proteins are represented as feature vectors whose components quantify relative environmental perturbations at amino acid residue positions in the respective target structures upon mutation. Two approaches are implemented in developing sequence-based models, based on use of either relative frequencies or counts of n-grams, to generate vectors for representing mutant proteins. To the best of our knowledge, this is the first reported study on structure- and sequence-based predictive models of HIV-1 PR and RT drug resistance developed by implementing a four-body statistical potential and n-grams, respectively, to generate mutant attribute vectors. Performance of the learning methods is evaluated on the basis of tenfold cross-validation, using previously assayed and publicly available in vitro data relating mutational patterns in the targets to quantified inhibitor susceptibility changes. Conclusion Overall performance results are competitive with those of a previously published study utilizing a sequence-based strategy, while our structure- and sequence

  6. A uniquely prevalent nonnucleoside reverse transcriptase inhibitor resistance mutation in Russian subtype A HIV-1 viruses

    PubMed Central

    Kolomeets, Anna N.; Varghese, Vici; Lemey, Philippe; Bobkova, Marina R.; Shafer, Robert W.

    2015-01-01

    Background The subtype A variant in the Former Soviet Union (AFSU) causes most of Russia’s HIV-1 infections. However, the spectrum of drug-resistance mutations (DRMs) in antiretroviral experienced patients with this variant has not been studied. Methods Between 2010 and 2013, genotypic resistance testing was performed on plasma samples from 366 antiretroviral-experienced patients in Siberia. Results Three-hundred patients (82%) had subtype AFSU and 55 (15%) had CRF02_AG viruses. The pattern of DRMs was consistent with patient antiretroviral history with one exception. G190S was the most common nonnucleoside reverse transcriptase inhibitor (NNRTI) resistance mutation, occurring in 55 (33%) subtype AFSU viruses from 167 NNRTI-experienced patients compared with none of 37 CRF02_AG viruses from NNRTI-experienced patients (P < 0.001). The next most common subtype AFSU NNRTI-resistance mutation, K103N, occurred in 25 (15%) viruses. Wild-type glycine (G) at position 190 is encoded by GGC in more than 99% of published AFSU strains. By contrast, G190 is encoded by GGA or GGG in 97% of other subtypes and in subtype A strains outside of the FSU. Therefore, G190S results from a single G→A transition: G (GGC) → S (AGC) almost exclusively in subtype AFSU viruses. Conclusion The predisposition of subtype AFSU to G190S is concerning because G→A is the most common HIV-1 mutation and because G190S causes higher levels of nevirapine and efavirenz resistance than K103N. This study exemplifies the need for characterizing the genetic mechanisms of resistance in diverse populations and warrants studies to verify that NRTI/NNRTI regimens are as efficacious in treating subtype AFSU as viruses belonging to other subtypes. PMID:25259833

  7. [Research progress of dual inhibitors targeting HIV-1 reverse transcriptase and integrase].

    PubMed

    Liu, Hong; Zhan, Peng; Liu, Xin-Yong

    2013-04-01

    Both reverse transcriptase (RT) and integrase (IN) play crucial roles in the life cycle of HIV-1, which are also key targets in the area of anti-HIV drug research. Reverse transcriptase inhibitors are involved in the most employed drugs used to treat AIDS patients and HIV-infected people, while one of the integrase inhibitors has already been approved by US FDA to appear on the market. Great achievement has been made in the research on both, separately. Recently, much more attention of medicinal chemistry researchers has been attracted to the strategies of multi-target drugs. Compounds with excellent potency against both HIV RT and IN, evidently defined as dual inhibitors targeting both enzymes, have been obtained through considerable significant exploration, which can be classified into two categories according to different strategies. Combinatorial chemistry approach together with high throughput screening methods and multi-target-based virtual screening strategy have been useful tools for identifying selective anti-HIV compounds for long times; Rational drug design based on pharmacophore combination has also led to remarkable results. In this paper, latest progress of both categories in the discovery and structural modification will be covered, with a view to contribute to the career of anti-HIV research.

  8. Multicenter study of skin rashes and hepatotoxicity in antiretroviral-naïve HIV-positive patients receiving non-nucleoside reverse-transcriptase inhibitor plus nucleoside reverse-transcriptase inhibitors in Taiwan

    PubMed Central

    Wu, Pei-Ying; Cheng, Chien-Yu; Liu, Chun-Eng; Lee, Yi-Chien; Yang, Chia-Jui; Tsai, Mao-Song; Cheng, Shu-Hsing; Lin, Shih-Ping; Lin, De-Yu; Wang, Ning-Chi; Lee, Yi-Chieh; Sun, Hsin-Yun; Tang, Hung-Jen; Hung, Chien-Ching

    2017-01-01

    Objectives Two nucleos(t)ide reverse-transcriptase inhibitors (NRTIs) plus 1 non-NRTI (nNRTI) remain the preferred or alternative combination antiretroviral therapy (cART) for antiretroviral-naive HIV-positive patients in Taiwan. The three most commonly used nNRTIs are nevirapine (NVP), efavirenz (EFV) and rilpivirine (RPV). This study aimed to determine the incidences of hepatotoxicity and skin rashes within 4 weeks of initiation of cART containing 1 nNRTI plus 2 NRTIs. Methods Between June, 2012 and November, 2015, all antiretroviral-naive HIV-positive adult patients initiating nNRTI-containing cART at 8 designated hospitals for HIV care were included in this retrospective observational study. According to the national HIV treatment guidelines, patients were assessed at baseline, 2 and 4 weeks of cART initiation, and subsequently every 8 to 12 weeks. Plasma HIV RNA load, CD4 cell count and aminotransferases were determined. The toxicity grading scale of the Division of AIDS (DAIDS) 2014 was used for reporting clinical and laboratory adverse events. Results During the 3.5-year study period, 2,341 patients initiated nNRTI-containing cART: NVP in 629 patients, EFV 1,363 patients, and RPV 349 patients. Rash of any grade occurred in 14.1% (n = 331) of the patients. In multiple logistic regression analysis, baseline CD4 cell counts (per 100-cell/μl increase, adjusted odds ratio [AOR], 1.125; 95% confidence interval [95% CI], 1.031–1.228) and use of NVP (AOR, 2.443; 95% CI, 1.816–3.286) (compared with efavirenz) were independently associated with the development of skin rashes. Among the 1,455 patients (62.2%) with aminotransferase data both at baseline and week 4, 72 (4.9%) developed grade 2 or greater hepatotoxicity. In multiple logistic regression analysis, presence of antibody for hepatitis C virus (HCV) (AOR, 2.865; 95% CI, 1.439–5.704) or hepatitis B surface antigen (AOR, 2.397; 95% CI, 1.150–4.997), and development of skin rashes (AOR, 2.811; 95% CI, 1

  9. Structure-activity relationship of pyrrolyl diketo acid derivatives as dual inhibitors of HIV-1 integrase and reverse transcriptase ribonuclease H domain.

    PubMed

    Cuzzucoli Crucitti, Giuliana; Métifiot, Mathieu; Pescatori, Luca; Messore, Antonella; Madia, Valentina Noemi; Pupo, Giovanni; Saccoliti, Francesco; Scipione, Luigi; Tortorella, Silvano; Esposito, Francesca; Corona, Angela; Cadeddu, Marta; Marchand, Christophe; Pommier, Yves; Tramontano, Enzo; Costi, Roberta; Di Santo, Roberto

    2015-02-26

    The development of HIV-1 dual inhibitors is a highly innovative approach aimed at reducing drug toxic side effects as well as therapeutic costs. HIV-1 integrase (IN) and reverse transcriptase-associated ribonuclease H (RNase H) are both selective targets for HIV-1 chemotherapy, and the identification of dual IN/RNase H inhibitors is an attractive strategy for new drug development. We newly synthesized pyrrolyl derivatives that exhibited good potency against IN and a moderate inhibition of the RNase H function of RT, confirming the possibility of developing dual HIV-1 IN/RNase H inhibitors and obtaining new information for the further development of more effective dual HIV-1 inhibitors.

  10. Variable selection based QSAR modeling on Bisphenylbenzimidazole as Inhibitor of HIV-1 reverse transcriptase.

    PubMed

    Kumar, Surendra; Tiwari, Meena

    2013-11-01

    The emergence of mutant virus in drug therapy for HIV-1 infection has steadily risen in the last decade. Inhibition of reverse transcriptase enzyme has emerged as a novel target for the treatment of HIV infection. The aim to decipher the structural features that interact with receptor, we report a quantitative structure activity relationship (QSAR) study on a dataset of thirty seven compounds belonging to bisphenylbenzimidazoles (BPBIs) as reverse transcriptase inhibitors using enhanced replacement method (ERM), stepwise multiple linear regression (Stepwise-MLR) and genetic function approximation (GFA) method for selecting a subset of relevant descriptors, developing the best multiple linear regression model and defining the QSAR model applicability domain boundaries. The enhanced replacement method was found to give better results r²=0.8542, Q²(loo) = 0.7917, r²pred = 0.7812) at five variables as compared to stepwise MLR and GFA method, evidenced by internal and external validation parameters. The modified r² (r²m) of the training set, test set and whole data set were calculated and are in agreement with the enhanced replacement method. The results of QSAR study rationalize the structural requirement for optimum binding of ligands. The developed QSAR model shows that hydrophobicity, flexibility, three dimensional surface area, volume and shape of molecule are important parameters to be considered for designing new compounds and to decipher reverse transcriptase enzyme inhibition activity of these compounds at molecular level. The applicability domain was defined to find the similar analogs with better prediction power.

  11. Coevolutionary Analysis Identifies Protein–Protein Interaction Sites between HIV-1 Reverse Transcriptase and Integrase

    PubMed Central

    Hetti Arachchilage, Madara; Piontkivska, Helen

    2016-01-01

    The replication of human immunodeficiency virus-1 (HIV-1) requires reverse transcription of the viral RNA genome and integration of newly synthesized pro-viral DNA into the host genome. This is mediated by the viral proteins reverse transcriptase (RT) and integrase (IN). The formation and stabilization of the pre-integration complex (PIC), which is an essential step for reverse transcription, nuclear import, chromatin targeting, and subsequent integration, involves direct and indirect modes of interaction between RT and IN proteins. While epitope-based treatments targeting IN–viral DNA and IN–RT complexes appear to be a promising combination for an anti-HIV treatment, the mechanisms of IN-RT interactions within the PIC are not well understood due to the transient nature of the protein complex and the intrinsic flexibility of its components. Here, we identify potentially interacting regions between the IN and RT proteins within the PIC through the coevolutionary analysis of amino acid sequences of the two proteins. Our results show that specific regions in the two proteins have strong coevolutionary signatures, suggesting that these regions either experience direct and prolonged interactions between them that require high affinity and/or specificity or that the regions are involved in interactions mediated by dynamic conformational changes and, hence, may involve both direct and indirect interactions. Other regions were found to exhibit weak, but positive correlations, implying interactions that are likely transient and/or have low affinity. We identified a series of specific regions of potential interactions between the IN and RT proteins (e.g., specific peptide regions within the C-terminal domain of IN were identified as potentially interacting with the Connection domain of RT). Coevolutionary analysis can serve as an important step in predicting potential interactions, thus informing experimental studies. These studies can be integrated with structural data

  12. Abasic Phosphorothioate Oligomers Inhibit HIV-1 Reverse Transcription and Block Virus Transmission across Polarized Ectocervical Organ Cultures

    PubMed Central

    Fraietta, Joseph A.; Mueller, Yvonne M.; Lozenski, Karissa L.; Ratner, Deena; Boesteanu, Alina C.; Hancock, Aidan S.; Lackman-Smith, Carol; Zentner, Isaac J.; Chaiken, Irwin M.; Chung, Suhman; LeGrice, Stuart F. J.; Snyder, Beth A.; Mankowski, Marie K.; Jones, Natalie M.; Hope, Jennifer L.; Gupta, Phalguni; Anderson, Sharon H.; Wigdahl, Brian

    2014-01-01

    In the absence of universally available antiretroviral (ARV) drugs or a vaccine against HIV-1, microbicides may offer the most immediate hope for controlling the AIDS pandemic. The most advanced and clinically effective microbicides are based on ARV agents that interfere with the earliest stages of HIV-1 replication. Our objective was to identify and characterize novel ARV-like inhibitors, as well as demonstrate their efficacy at blocking HIV-1 transmission. Abasic phosphorothioate 2′ deoxyribose backbone (PDB) oligomers were evaluated in a variety of mechanistic assays and for their ability to inhibit HIV-1 infection and virus transmission through primary human cervical mucosa. Cellular and biochemical assays were used to elucidate the antiviral mechanisms of action of PDB oligomers against both lab-adapted and primary CCR5- and CXCR4-utilizing HIV-1 strains, including a multidrug-resistant isolate. A polarized cervical organ culture was used to test the ability of PDB compounds to block HIV-1 transmission to primary immune cell populations across ectocervical tissue. The antiviral activity and mechanisms of action of PDB-based compounds were dependent on oligomer size, with smaller molecules preventing reverse transcription and larger oligomers blocking viral entry. Importantly, irrespective of molecular size, PDBs potently inhibited virus infection and transmission within genital tissue samples. Furthermore, the PDB inhibitors exhibited excellent toxicity and stability profiles and were found to be safe for vaginal application in vivo. These results, coupled with the previously reported intrinsic anti-inflammatory properties of PDBs, support further investigations in the development of PDB-based topical microbicides for preventing the global spread of HIV-1. PMID:25224013

  13. The 'helix clamp' in HIV-1 reverse transcriptase: a new nucleic acid binding motif common in nucleic acid polymerases.

    PubMed Central

    Hermann, T; Meier, T; Götte, M; Heumann, H

    1994-01-01

    Amino acid sequences homologous to 259KLVGKL (X)16KLLR284 of human immunodeficiency virus type 1 reverse transcriptase (HIV-1 RT) are conserved in several nucleotide polymerizing enzymes. This amino acid motif has been identified in the crystal structure model as an element of the enzyme's nucleic acid binding apparatus. It is part of the helix-turn-helix structure, alpha H-turn-alpha I, within the 'thumb' region of HIV-1 RT. The motif grasps the complexed nucleic acid at one side. Molecular modeling studies on HIV-1 RT in complex with a nucleic acid fragment suggest that the motif has binding function in the p66 subunit as well as in the p51 subunit, acting as a kind of 'helix clamp'. Given its wide distribution within the nucleic acid polymerases, the helix clamp motif is assumed to be a structure of general significance for nucleic acid binding. Images PMID:7527138

  14. Inhibition of HIV-1 reverse transcriptase, toxicological and chemical profile of Calophyllum brasiliense extracts from Chiapas, Mexico.

    PubMed

    César, García-Zebadúa Julio; Alfonso, Magos-Guerrero Gil; Marius, Mumbrú-Massip; Elizabeth, Estrada-Muñoz; Angel, Contreras-Barrios Miguel; Maira, Huerta-Reyes; Guadalupe, Campos-Lara María; Manuel, Jiménez-Estrada; Ricardo, Reyes-Chilpa

    2011-10-01

    Calophyllum species are sources of calanolides, which inhibit human immunodeficiency virus type 1 reverse transcriptase (HIV-1 RT). The hexane extract of the leaves from C. brasiliense collected in Soconusco, State of Chiapas, Mexico, analyzed by HPLC showed to contain apetalic acid, calanolides B, and C. It showed potent anti-HIV-1 RT inhibition (IC(50)=20.2 μg/ml), but was not toxic in mice (LD(50)=1.99 g/kg). The histological study of the mice treated at the highest dose revealed no alteration on hepatocytes, and an increase in the number of spleen megakaryocytes. These results suggest this extract is suitable to continue studies for developing a phytodrug against HIV-1.

  15. RNA dependent DNA replication fidelity of HIV-1 reverse transcriptase: evidence of discrimination between DNA and RNA substrates.

    PubMed

    Kerr, S G; Anderson, K S

    1997-11-18

    The RNA dependent DNA replication fidelity of HIV-1 reverse transcriptase has been investigated using pre-steady-state kinetics under single turnover conditions. In contrast to previous estimates of low replication fidelity of HIV-1 reverse transcriptase, the present study finds the enzyme to be more highly discriminating when an RNA/DNA template-primer is employed as compared with the corresponding DNA/DNA template-primer. The basis of this selectivity is due to extremely slow polymerization kinetics for incorporation of an incorrect deoxynucleotide. The maximum rates for misincorporation (kpol) of dGTP, dCTP, and dTTP opposite a template uridine were 0.2, 0.03, and 0.003 s-1, respectively. The equilibrium dissociation constants (Kd) for the incorrect nucleotide opposite a template uridine were 1.0, 1.1, and 0.7 mM for dGTP, dCTP, and dTTP, respectively. These kinetic values provide fidelity estimates of 26 000 for discrimination against dGTP, 176 000 for dCTP, and 1 x 10(6) for dTTP misincorporation at this position. Similar observations were obtained when incorrect nucleotide misincorporation was examined opposite a template adenine. Thus in a direct comparison of RNA/DNA and DNA/DNA template-primer substrates, HIV-1 RT exhibits approximately a 10-60-fold increase in fidelity. This study augments our current understanding of the similarities and differences of catalytic activity of HIV-1 reverse transcriptase using RNA and DNA substrates. Moreover, these studies lend further support for a model for nucleotide incorporation by HIV-1 reverse transcriptase involving a two-step binding mechanism governed by a rate-limiting conformational change for correct incorporation.

  16. Structural Basis of the Allosteric Inhibitor Interaction on the HIV-1 Reverse Transcriptase RNase H domain

    PubMed Central

    Christen, Martin T.; Menon, Lakshmi; Myshakina, Nataliya A.; Ahn, Jinwoo; Parniak, Michael A.; Ishima, Rieko

    2012-01-01

    HIV-1 reverse transcriptase (RT) has been an attractive target for the development of antiretroviral agents. Although this enzyme is bi-functional, having both DNA polymerase and ribonuclease H (RNH) activities, there is no clinically approved inhibitor of the RNH activity. Here, we characterize the structural basis and molecular interaction of an allosteric site inhibitor, BHMP07, with the wild type (WT) RNH fragment. Solution NMR experiments for inhibitor titration on WT RNH showed relatively wide chemical shift perturbations, suggesting a long-range conformational effect on the inhibitor interaction. Comparisons of the inhibitor-induced NMR chemical-shift changes of RNH with those of RNH dimer, in the presence and absence of Mg2+, were performed to determine and verify the interaction site. The NMR results, with assistance of molecular docking, indicate that BHMP07 preferentially binds to a site that is located between the RNH active site and the region encompassing helices B and D (the “substrate-handle region”). The interaction site is consistent with the previous proposed site, identified using a chimeric RNH (p15-EC) [Gong, el (2011) Chem. Biol. Drug Des. 77, 39-47], but with slight differences that reflect the characteristics of the amino acid sequences in p15-EC compared to the WT RNH. PMID:22846652

  17. Structural Maturation of HIV-1 Reverse Transcriptase—A Metamorphic Solution to Genomic Instability

    PubMed Central

    London, Robert E.

    2016-01-01

    Human immunodeficiency virus 1 (HIV-1) reverse transcriptase (RT)—a critical enzyme of the viral life cycle—undergoes a complex maturation process, required so that a pair of p66 precursor proteins can develop conformationally along different pathways, one evolving to form active polymerase and ribonuclease H (RH) domains, while the second forms a non-functional polymerase and a proteolyzed RH domain. These parallel maturation pathways rely on the structural ambiguity of a metamorphic polymerase domain, for which the sequence–structure relationship is not unique. Recent nuclear magnetic resonance (NMR) studies utilizing selective labeling techniques, and structural characterization of the p66 monomer precursor have provided important insights into the details of this maturation pathway, revealing many aspects of the three major steps involved: (1) domain rearrangement; (2) dimerization; and (3) subunit-selective RH domain proteolysis. This review summarizes the major structural changes that occur during the maturation process. We also highlight how mutations, often viewed within the context of the mature RT heterodimer, can exert a major influence on maturation and dimerization. It is further suggested that several steps in the RT maturation pathway may provide attractive targets for drug development. PMID:27690082

  18. Targeted HIV-1 Latency Reversal Using CRISPR/Cas9-Derived Transcriptional Activator Systems.

    PubMed

    Bialek, Julia K; Dunay, Gábor A; Voges, Maike; Schäfer, Carola; Spohn, Michael; Stucka, Rolf; Hauber, Joachim; Lange, Ulrike C

    2016-01-01

    CRISPR/Cas9 technology is currently considered the most advanced tool for targeted genome engineering. Its sequence-dependent specificity has been explored for locus-directed transcriptional modulation. Such modulation, in particular transcriptional activation, has been proposed as key approach to overcome silencing of dormant HIV provirus in latently infected cellular reservoirs. Currently available agents for provirus activation, so-called latency reversing agents (LRAs), act indirectly through cellular pathways to induce viral transcription. However, their clinical performance remains suboptimal, possibly because reservoirs have diverse cellular identities and/or proviral DNA is intractable to the induced pathways. We have explored two CRISPR/Cas9-derived activator systems as targeted approaches to induce dormant HIV-1 proviral DNA. These systems recruit multiple transcriptional activation domains to the HIV 5' long terminal repeat (LTR), for which we have identified an optimal target region within the LTR U3 sequence. Using this target region, we demonstrate transcriptional activation of proviral genomes via the synergistic activation mediator complex in various in culture model systems for HIV latency. Observed levels of induction are comparable or indeed higher than treatment with established LRAs. Importantly, activation is complete, leading to production of infective viral particles. Our data demonstrate that CRISPR/Cas9-derived technologies can be applied to counteract HIV latency and may therefore represent promising novel approaches in the quest for HIV elimination.

  19. Structural Maturation of HIV-1 Reverse Transcriptase-A Metamorphic Solution to Genomic Instability.

    PubMed

    London, Robert E

    2016-09-27

    Human immunodeficiency virus 1 (HIV-1) reverse transcriptase (RT)-a critical enzyme of the viral life cycle-undergoes a complex maturation process, required so that a pair of p66 precursor proteins can develop conformationally along different pathways, one evolving to form active polymerase and ribonuclease H (RH) domains, while the second forms a non-functional polymerase and a proteolyzed RH domain. These parallel maturation pathways rely on the structural ambiguity of a metamorphic polymerase domain, for which the sequence-structure relationship is not unique. Recent nuclear magnetic resonance (NMR) studies utilizing selective labeling techniques, and structural characterization of the p66 monomer precursor have provided important insights into the details of this maturation pathway, revealing many aspects of the three major steps involved: (1) domain rearrangement; (2) dimerization; and (3) subunit-selective RH domain proteolysis. This review summarizes the major structural changes that occur during the maturation process. We also highlight how mutations, often viewed within the context of the mature RT heterodimer, can exert a major influence on maturation and dimerization. It is further suggested that several steps in the RT maturation pathway may provide attractive targets for drug development.

  20. Comprehensive model of wild-type and mutant HIV-1 reverse transciptases

    NASA Astrophysics Data System (ADS)

    Ballante, Flavio; Musmuca, Ira; Marshall, Garland R.; Ragno, Rino

    2012-08-01

    An enhanced version of COMBINE that uses both ligand-based and structure-based alignment of ligands has been used to build a comprehensive 3-D QSAR model of wild-type HIV-1 reverse transcriptase and drug-resistant mutants. The COMBINEr model focused on 7 different RT enzymes complexed with just two HIV-RT inhibitors, niverapine (NVP) and efavirenz (EFV); therefore, 14 inhibitor/enzyme complexes comprised the training set. An external test set of chiral 2-(alkyl/aryl)amino-6-benzylpyrimidin-4(3H)-ones (DABOs) was used to test predictability. The COMBINEr model MC4, although developed using only two inhibitors, predicted the experimental activities of the test set with an acceptable average absolute error of prediction (0.89 p K i). Most notably, the model was able to correctly predict the right eudismic ratio for two R/ S pairs of DABO derivatives. The enhanced COMBINEr approach was developed using only software freely available to academics.

  1. 3-Phosphono-L-alanine as pyrophosphate mimic for DNA synthesis using HIV-1 reverse transcriptase.

    PubMed

    Yang, Shiqiong; Froeyen, Mathy; Lescrinier, Eveline; Marlière, Philippe; Herdewijn, Piet

    2011-01-07

    A series of sulf(on)ate and phosph(on)ate amino acid phosphoramidate analogues of deoxynucleotides were synthesized as potential substrates for HIV-1 reverse transcriptase. Taurine, L-cysteic acid, 3-phosphono-L-alanine, O-sulfonato-L-serine, and O-phospho-L-serine were investigated as leaving groups in an enzyme catalyzed DNA synthesis protocol. Among these analogues, the phosphonate congener performed best and 3-phosphono-L-alanine can be considered as an excellent mimic of the pyrophosphate (PPi) moiety of deoxyadenosine triphosphate, to be used in enzymatic synthesis of nucleic acids. During a single nucleotide incorporation assay the use of 3-phosphono-L-Ala-dAMP as substrate resulted in 95% conversion to a P + 1 strand in 60 min at 50 μM (a concentration 10 times less than found for L-Asp-dAMP) and with improved incorporation kinetics and less stalling. For the sequences investigated, the efficiency of the incorporation is base dependent and decreases in the order (A ≥ T = G > C). In all cases, the incorporation follows Watson-Crick rules.

  2. A novel ribonuclease with potent HIV-1 reverse transcriptase inhibitory activity from cultured mushroom Schizophyllum commune.

    PubMed

    Zhao, Yong-Chang; Zhang, Guo-Qing; Ng, Tzi-Bun; Wang, He-Xiang

    2011-10-01

    A 20-kDa ribonuclease (RNase) was purified from fresh fruiting bodies of cultured Schizophyllum commune mushrooms. The RNase was not adsorbed on Affi-gel blue gel but adsorbed on DEAE-cellulose and CM-cellulose. It exhibited maximal RNase activity at pH 6.0 and 70°C. It demonstrated the highest ribonucleolytic activity toward poly (U) (379.5 μ/mg), the second highest activity toward poly (C) (244.7 μ/mg), less activity toward poly (A) (167.4 μ/mg), and much weaker activity toward poly (G) (114.5 μ/mg). The RNase inhibited HIV-1 reverse transcriptase with an IC(50) of 65 μM. No effect on [(3)H-methyl]-thymidine uptake by lymphoma MBL2 cells and leukemia L1210 cells was observed at 100 μM concentration of the RNase. A comparison of RNases from S. commune and Volvariella volvacea revealed that they demonstrated some similarities in N-terminal amino acid sequence, optimum pH and polyhomoribonucleotide specificity. However, some differences in chromatographic behavior and molecular mass were observed.

  3. Targeted HIV-1 Latency Reversal Using CRISPR/Cas9-Derived Transcriptional Activator Systems

    PubMed Central

    Bialek, Julia K.; Dunay, Gábor A.; Voges, Maike; Schäfer, Carola; Spohn, Michael; Stucka, Rolf; Hauber, Joachim; Lange, Ulrike C.

    2016-01-01

    CRISPR/Cas9 technology is currently considered the most advanced tool for targeted genome engineering. Its sequence-dependent specificity has been explored for locus-directed transcriptional modulation. Such modulation, in particular transcriptional activation, has been proposed as key approach to overcome silencing of dormant HIV provirus in latently infected cellular reservoirs. Currently available agents for provirus activation, so-called latency reversing agents (LRAs), act indirectly through cellular pathways to induce viral transcription. However, their clinical performance remains suboptimal, possibly because reservoirs have diverse cellular identities and/or proviral DNA is intractable to the induced pathways. We have explored two CRISPR/Cas9-derived activator systems as targeted approaches to induce dormant HIV-1 proviral DNA. These systems recruit multiple transcriptional activation domains to the HIV 5’ long terminal repeat (LTR), for which we have identified an optimal target region within the LTR U3 sequence. Using this target region, we demonstrate transcriptional activation of proviral genomes via the synergistic activation mediator complex in various in culture model systems for HIV latency. Observed levels of induction are comparable or indeed higher than treatment with established LRAs. Importantly, activation is complete, leading to production of infective viral particles. Our data demonstrate that CRISPR/Cas9-derived technologies can be applied to counteract HIV latency and may therefore represent promising novel approaches in the quest for HIV elimination. PMID:27341108

  4. SYBR Green II Dye-Based Real-Time Assay for Measuring Inhibitor Activity Against HIV-1 Reverse Transcriptase.

    PubMed

    Kokkula, Chakradhar; Palanisamy, Navaneethan; Ericstam, Malin; Lennerstrand, Johan

    2016-10-01

    There are arrays of in vitro assays to quantify the activity of HIV-1 reverse transcriptase (HIV-1 RT). These assays utilize either chemically customized/labelled nucleotides, or TaqMan probes, or radiolabeled nucleotides/primers. Although several real-time PCR assays exist commercially for measuring the RT activity, which are usually used for quantifying the viral titres, these assays are not optimized for measuring the inhibitory concentrations (IC50) of HIV-1 RT inhibitors. Moreover, a recently established inorganic pyrophosphate-coupled enzyme assay cannot be employed for studying nonphosphorylated nucleoside reverse transcriptase inhibitors (NRTIs). In the present study, we have developed a novel one-step assay with native nucleotide substrates and SYBR Green II dye to determine IC50 values of triphosphorylated NRTIs against HIV-1 RT. Using exact batches of wild-type and mutant RT, and triphosphorylated NRTIs, we showed that our method gave IC50 values for inhibitors similar to that of an earlier published colorimetric assay with BrdUTP substrate (CABS). Our assay should be suitable for high-throughput screening of antiretroviral drugs and could also be suitable for studying drug resistance profiles. Additionally, we also used our assay to study inhibition by AZT in its nonphosphorylated form by supplementing the reaction mixture with necessary kinases and ATP.

  5. QSAR Modeling Using Large-Scale Databases: Case Study for HIV-1 Reverse Transcriptase Inhibitors.

    PubMed

    Tarasova, Olga A; Urusova, Aleksandra F; Filimonov, Dmitry A; Nicklaus, Marc C; Zakharov, Alexey V; Poroikov, Vladimir V

    2015-07-27

    Large-scale databases are important sources of training sets for various QSAR modeling approaches. Generally, these databases contain information extracted from different sources. This variety of sources can produce inconsistency in the data, defined as sometimes widely diverging activity results for the same compound against the same target. Because such inconsistency can reduce the accuracy of predictive models built from these data, we are addressing the question of how best to use data from publicly and commercially accessible databases to create accurate and predictive QSAR models. We investigate the suitability of commercially and publicly available databases to QSAR modeling of antiviral activity (HIV-1 reverse transcriptase (RT) inhibition). We present several methods for the creation of modeling (i.e., training and test) sets from two, either commercially or freely available, databases: Thomson Reuters Integrity and ChEMBL. We found that the typical predictivities of QSAR models obtained using these different modeling set compilation methods differ significantly from each other. The best results were obtained using training sets compiled for compounds tested using only one method and material (i.e., a specific type of biological assay). Compound sets aggregated by target only typically yielded poorly predictive models. We discuss the possibility of "mix-and-matching" assay data across aggregating databases such as ChEMBL and Integrity and their current severe limitations for this purpose. One of them is the general lack of complete and semantic/computer-parsable descriptions of assay methodology carried by these databases that would allow one to determine mix-and-matchability of result sets at the assay level.

  6. Substrate mimicry: HIV-1 reverse transcriptase recognizes 6-modified-3'-azido-2',3'-dideoxyguanosine-5'-triphosphates as adenosine analogs.

    PubMed

    Herman, Brian D; Schinazi, Raymond F; Zhang, Hong-wang; Nettles, James H; Stanton, Richard; Detorio, Mervi; Obikhod, Aleksandr; Pradère, Ugo; Coats, Steven J; Mellors, John W; Sluis-Cremer, Nicolas

    2012-01-01

    β-D-3'-Azido-2',3'-dideoxyguanosine (3'-azido-ddG) is a potent inhibitor of HIV-1 replication with a superior resistance profile to zidovudine. Recently, we identified five novel 6-modified-3'-azido-ddG analogs that exhibit similar or superior anti-HIV-1 activity compared to 3'-azido-ddG in primary cells. To gain insight into their structure-activity-resistance relationships, we synthesized their triphosphate (TP) forms and assessed their ability to inhibit HIV-1 reverse transcriptase (RT). Steady-state and pre-steady-state kinetic experiments show that the 6-modified-3'-azido-ddGTP analogs act as adenosine rather than guanosine mimetics in DNA synthesis reactions. The order of potency of the TP analogs against wild-type RT was: 3'-azido-2,6-diaminopurine >3'-azido-6-chloropurine; 3'-azido-6-N-allylaminopurine > 2-amino-6-N,N-dimethylaminopurine; 2-amino-6-methoxypurine. Molecular modeling studies reveal unique hydrogen-bonding interactions between the nucleotide analogs and the template thymine base in the active site of RT. Surprisingly, the structure-activity relationship of the analogs differed in HIV-1 RT ATP-mediated excision assays of their monophosphate forms, suggesting that it may be possible to rationally design a modified base analog that is efficiently incorporated by RT but serves as a poor substrate for ATP-mediated excision reactions. Overall, these studies identify a promising strategy to design novel nucleoside analogs that exert profound antiviral activity against both WT and drug-resistant HIV-1.

  7. Antiretroviral drugs do not interfere with bryostatin-mediated HIV-1 latency reversal.

    PubMed

    Martínez-Bonet, Marta; Clemente, Maria Isabel; Álvarez, Susana; Díaz, Laura; García-Alonso, Dolores; Muñoz, Eduardo; Moreno, Santiago; Muñoz-Fernández, Maria Ángeles

    2015-11-01

    Although an effective combination of antiretroviral therapy (cART) controls HIV-1 viraemia in infected patients, viral latency established soon after infection hinders HIV-1 eradication. It has been shown that bryostatin-1 (BRY) inhibits HIV-infection in vitro and reactivates the latent virus through the protein kinase C-NF-κB pathway. We determined the in vitro potential effect of BRY in combination with currently used antiretroviral drugs. BRY alone or in combination with maraviroc (MVC)/Atripla (ATP) was tested for its capacity to reactivate latent virus and inhibit new infections. JLTRG-R5 cells and two latent HIV-1-infected cell lines, J89GFP and THP89GFP, were used as latency models. To quantify HIV infection, the reporter cell line TZM-bl was used. We found that BRY reactivates HIV-1 even in combination with MVC or ATP. Antiretroviral combinations with BRY do not interfere with BRY activity (i.e., the reactivation of latently infected cells) or with the antiviral activity of antiretroviral drugs. In addition, BRY-mediated down-modulation of surface CD4 and CXCR4 was not affected when it was used in combination with other antiretrovirals, and no hyperactivation or high-proliferation effects were observed in primary T cells. Moreover, the BRY treatment was able to reactivate HIV-1 in CD4+ T cells from HIV-1-infected patients under cART. Thus, we propose the use of BRY to purge the viral reservoir and recommend its combination with current antiretroviral treatments.

  8. Requirements for nucleocapsid-mediated regulation of reverse transcription during the late steps of HIV-1 assembly

    PubMed Central

    Racine, Pierre-Jean; Chamontin, Célia; de Rocquigny, Hugues; Bernacchi, Serena; Paillart, Jean-Christophe; Mougel, Marylène

    2016-01-01

    HIV-1 is a retrovirus replicating within cells by reverse transcribing its genomic RNA (gRNA) into DNA. Within cells, virus assembly requires the structural Gag proteins with few accessory proteins, notably the viral infectivity factor (Vif) and two copies of gRNA as well as cellular factors to converge to the plasma membrane. In this process, the nucleocapsid (NC) domain of Gag binds to the packaging signal of gRNA which consists of a series of stem-loops (SL1-SL3) ensuring gRNA selection and packaging into virions. Interestingly, mutating NC activates a late-occurring reverse transcription (RT) step in producer cells, leading to the release of DNA-containing HIV-1 particles. In order to decipher the molecular mechanism regulating this late RT, we explored the role of several key partners of NC, such as Vif, gRNA and the cellular cytidine deaminase APOBEC3G that restricts HIV-1 infection by targeting the RT. By studying combinations of deletions of these putative players, we revealed that NC, SL1-SL3 and in lesser extent Vif, but not APOBEC3G, interplay regulates the late RT. PMID:27273064

  9. The differential short- and long-term effects of HIV-1 latency-reversing agents on T cell function

    PubMed Central

    Clutton, G.; Xu, Y.; Baldoni, P. L.; Mollan, K. R.; Kirchherr, J.; Newhard, W.; Cox, Kara; Kuruc, J. D.; Kashuba, A.; Barnard, R.; Archin, N.; Gay, C. L.; Hudgens, M. G.; Margolis, D. M.; Goonetilleke, N.

    2016-01-01

    Despite the extraordinary success of HIV-1 antiretroviral therapy in prolonging life, infected individuals face lifelong therapy because of a reservoir of latently-infected cells that harbor replication competent virus. Recently, compounds have been identified that can reverse HIV-1 latency in vivo. These latency- reversing agents (LRAs) could make latently-infected cells vulnerable to clearance by immune cells, including cytolytic CD8+ T cells. We investigated the effects of two leading LRA classes on CD8+ T cell phenotype and function: the histone deacetylase inhibitors (HDACis) and protein kinase C modulators (PKCms). We observed that relative to HDACis, the PKCms induced much stronger T cell activation coupled with non-specific cytokine production and T cell proliferation. When examining antigen-specific CD8+ T cell function, all the LRAs except the HDACi Vorinostat reduced, but did not abolish, one or more measurements of CD8+ T cell function. Importantly, the extent and timing of these effects differed between LRAs. Panobinostat had detrimental effects within 10 hours of drug treatment, whereas the effects of the other LRAs were observed between 48 hours and 5 days. These observations suggest that scheduling of LRA and CD8+ T cell immunotherapy regimens may be critical for optimal clearance of the HIV-1 reservoir. PMID:27480951

  10. Identification of a putative binding site for [2',5'-bis-O-(tert-butyldimethylsilyl)-beta-D-ribofuranosyl]-3'-spiro-5''-(4''-amino-1'',2''-oxathiole-2'',2''-dioxide)thymine (TSAO) derivatives at the p51-p66 interface of HIV-1 reverse transcriptase.

    PubMed

    Rodríguez-Barrios, F; Pérez, C; Lobatón, E; Velázquez, S; Chamorro, C; San-Félix, A; Pérez-Pérez, M J; Camarasa, M J; Pelemans, H; Balzarini, J; Gago, F

    2001-06-07

    A binding site for TSAO-m(3)T at the interface between the p66 and p51 subunits of HIV-1 reverse transcriptase (RT) and distinct from that of "classical" HIV-1 non-nucleoside inhibitors is proposed. The feasibility of the binding mode was assessed by carrying out nanosecond molecular dynamics simulations for the complexes of TSAO-m(3)T with reduced models of both the wild-type enzyme and a more sensitive R172A mutant. The molecular model is in agreement with a previous proposal, with known structure-activity and mutagenesis data for this unique class of inhibitors, and also with recent biochemical evidence indicating that TSAO analogues can affect enzyme dimerization. The relative importance of residues involved in dimer formation and TSAO-RT complex stabilization was assessed by a combination of surface area accessibility, molecular mechanics, and continuum electrostatics calculations. A structure-based modification introduced into the lead compound yielded a new derivative with improved antiviral activity.

  11. In Vitro Selection of HIV-1 CRF08_BC Variants Resistant to Reverse Transcriptase Inhibitors

    PubMed Central

    Wu, Hao; Zhang, Xiao-Min; Zhang, Hao-Jie; Zhang, Qiwei; Chen, Zhiwei; Huang, Jian-Dong

    2015-01-01

    Abstract Human immunodeficiency virus type 1 (HIV-1) circulating recombinant form 08_BC (CRF08_BC), carrying the recombinant reverse transcriptase (RT) gene from subtypes B and C, has recently become highly prevalent in Southern China. As the number of patients increases, it is important to characterize the drug resistance mutations of CRF08_BC, especially against widely used antiretrovirals. In this study, clinically isolated virus (2007CNGX-HK), confirmed to be CRF08_BC with its sequence deposited in GenBank (KF312642), was propagated in human peripheral blood mononuclear cells (PBMCs) with increasing concentrations of nevirapine (NVP), efavirenz (EFV), or lamivudine (3TC). Three different resistance patterns led by initial mutations of Y181C, E138G, and Y188C were detected after the selection with NVP. Initial mutations, in combination with other previously reported substitutions (K20R, D67N, V90I, K101R/E, V106I/A, V108I, F116L, E138R, A139V, V189I, G190A, D218E, E203K, H221Y, F227L, N348I, and T369I) or novel mutations (V8I, S134N, C162Y, L228I, Y232H, E396G, and D404N), developed during NVP selection. EFV-associated variations contained two initial mutations (L100I and Y188C) and three other mutations (V106L, F116Y, and A139V). Phenotypic analyses showed that E138R, Y181C, and G190A contributed high-level resistance to NVP, while L100I and V106L significantly reduced virus susceptibility to EFV. Y188C was 20-fold less sensitive to both NVP and EFV. As expected, M184I alone, or with V90I or D67N, decreased 3TC susceptibility by over 1,000-fold. Although the mutation profile obtained in culture may be different from the patients, these results may still provide useful information to monitor and optimize the antiretroviral regimens. PMID:25482475

  12. Structure of HIV-1 Reverse Transcriptase with the Inhibitor β-thujaplicinol Bound at the RNase H Active Site

    PubMed Central

    Himmel, Daniel M.; Maegley, Karen A.; Pauly, Tom A.; Bauman, Joseph D.; Das, Kalyan; Dharia, Chhaya; Clark, Arthur D.; Ryan, Kevin; Hickey, Michael J.; Love, Robert A.; Hughes, Stephen H.; Bergqvist, Simon; Arnold, Eddy

    2012-01-01

    Summary Novel inhibitors are needed to counteract the rapid emergence of drug-resistant HIV variants. HIV-1 reverse transcriptase (RT) has both DNA polymerase and RNase H (RNH) enzymatic activities, but approved drugs that inhibit RT target the polymerase. Inhibitors that act against new targets, like RNH, would be effective against all of the current drug-resistant variants. Here, we present 2.80 Å and 2.04 Å resolution crystal structures of an RNH inhibitor, β-thujaplicinol, bound at the RNH active site of both HIV-1 RT and an isolated RNH domain. β-thujaplicinol chelates two divalent metal ions at the RNH active site. We provide biochemical evidence that β-thujaplicinol is a slow-binding RNH inhibitor with non-competitive kinetics and suggest that it forms a tropylium ion that interacts favorably with RT and the RNA:DNA substrate. PMID:20004166

  13. Ribonuclease H/DNA Polymerase HIV-1 Reverse Transcriptase Dual Inhibitor: Mechanistic Studies on the Allosteric Mode of Action of Isatin-Based Compound RMNC6

    PubMed Central

    Corona, Angela; Meleddu, Rita; Esposito, Francesca; Distinto, Simona; Bianco, Giulia; Masaoka, Takashi; Maccioni, Elias; Menéndez-Arias, Luis; Alcaro, Stefano; Le Grice, Stuart F. J.; Tramontano, Enzo

    2016-01-01

    The DNA polymerase and ribonuclease H (RNase H) activities of human immunodeficiency virus type 1 (HIV-1) are needed for the replication of the viral genome and are validated drug targets. However, there are no approved drugs inhibiting RNase H and the efficiency of DNA polymerase inhibitors can be diminished by the presence of drug resistance mutations. In this context, drugs inhibiting both activities could represent a significant advance towards better anti-HIV therapies. We report on the mechanisms of allosteric inhibition of a newly synthesized isatin-based compound designated as RMNC6 that showed IC50 values of 1.4 and 9.8 μM on HIV-1 RT-associated RNase H and polymerase activities, respectively. Blind docking studies predict that RMNC6 could bind two different pockets in the RT: one in the DNA polymerase domain (partially overlapping the non-nucleoside RT inhibitor [NNRTI] binding pocket), and a second one close to the RNase H active site. Enzymatic studies showed that RMNC6 interferes with efavirenz (an approved NNRTI) in its binding to the RT polymerase domain, although NNRTI resistance-associated mutations such as K103N, Y181C and Y188L had a minor impact on RT susceptibility to RMNC6. In addition, despite being naturally resistant to NNRTIs, the polymerase activity of HIV-1 group O RT was efficiently inhibited by RMNC6. The compound was also an inhibitor of the RNase H activity of wild-type HIV-1 group O RT, although we observed a 6.5-fold increase in the IC50 in comparison with the prototypic HIV-1 group M subtype B enzyme. Mutagenesis studies showed that RT RNase H domain residues Asn474 and Tyr501, and in a lesser extent Ala502 and Ala508, are critical for RMNC6 inhibition of the endonuclease activity of the RT, without affecting its DNA polymerization activity. Our results show that RMNC6 acts as a dual inhibitor with allosteric sites in the DNA polymerase and the RNase H domains of HIV-1 RT. PMID:26800261

  14. Ribonuclease H/DNA Polymerase HIV-1 Reverse Transcriptase Dual Inhibitor: Mechanistic Studies on the Allosteric Mode of Action of Isatin-Based Compound RMNC6.

    PubMed

    Corona, Angela; Meleddu, Rita; Esposito, Francesca; Distinto, Simona; Bianco, Giulia; Masaoka, Takashi; Maccioni, Elias; Menéndez-Arias, Luis; Alcaro, Stefano; Le Grice, Stuart F J; Tramontano, Enzo

    2016-01-01

    The DNA polymerase and ribonuclease H (RNase H) activities of human immunodeficiency virus type 1 (HIV-1) are needed for the replication of the viral genome and are validated drug targets. However, there are no approved drugs inhibiting RNase H and the efficiency of DNA polymerase inhibitors can be diminished by the presence of drug resistance mutations. In this context, drugs inhibiting both activities could represent a significant advance towards better anti-HIV therapies. We report on the mechanisms of allosteric inhibition of a newly synthesized isatin-based compound designated as RMNC6 that showed IC50 values of 1.4 and 9.8 μM on HIV-1 RT-associated RNase H and polymerase activities, respectively. Blind docking studies predict that RMNC6 could bind two different pockets in the RT: one in the DNA polymerase domain (partially overlapping the non-nucleoside RT inhibitor [NNRTI] binding pocket), and a second one close to the RNase H active site. Enzymatic studies showed that RMNC6 interferes with efavirenz (an approved NNRTI) in its binding to the RT polymerase domain, although NNRTI resistance-associated mutations such as K103N, Y181C and Y188L had a minor impact on RT susceptibility to RMNC6. In addition, despite being naturally resistant to NNRTIs, the polymerase activity of HIV-1 group O RT was efficiently inhibited by RMNC6. The compound was also an inhibitor of the RNase H activity of wild-type HIV-1 group O RT, although we observed a 6.5-fold increase in the IC50 in comparison with the prototypic HIV-1 group M subtype B enzyme. Mutagenesis studies showed that RT RNase H domain residues Asn474 and Tyr501, and in a lesser extent Ala502 and Ala508, are critical for RMNC6 inhibition of the endonuclease activity of the RT, without affecting its DNA polymerization activity. Our results show that RMNC6 acts as a dual inhibitor with allosteric sites in the DNA polymerase and the RNase H domains of HIV-1 RT.

  15. Identification of a novel family of nucleosides that specifically inhibit HIV-1 reverse transcriptase.

    PubMed

    Chamorro, C; Lobatón, E; Bonache, M C; De Clercq, E; Balzarini, J; Velázquez, S; San-Félix, A; Camarasa, M J

    2001-12-03

    N-3-Benzyloxycarbonylmethyl- and N-3-carboxymethyl-TBDMS-substituted nucleosides were synthesized and evaluated for activity against HIV replication. It was found that the N-3-carboxymethyl-TBDMS-substituted nucleosides were specific inhibitors of HIV-1 replication. They should be considered as members of a novel and original class of NNRTIs.

  16. Ab initio molecular dynamics studies on HIV-1 reverse transcriptase triphosphate binding site: implications for nucleoside-analog drug resistance.

    PubMed Central

    Alber, F.; Carloni, P.

    2000-01-01

    Quantum-chemical methods are used to shed light on the functional role of residues involved in the resistance of HIV-1 reverse transcriptase against nucleoside-analog drugs. Ab initio molecular dynamics simulations are carried out for models representing the adduct between the triphosphate substrate and the nucleoside binding site. The triphosphate is considered either deprotonated or protonated at the gamma-position. Although the protonated form already experiences large rearrangements in the ps time scale, the fully deprotonated state exhibits a previously unrecognized low-barrier hydrogen bond between Lys65 and gamma-phosphate. Absence of this interaction in Lys65-->Arg HIV-1 RT might play a prominent role in the resistance of this mutant for nucleoside analogs (Gu Z et al., 1994b, Antimicrob Agents Chemother 38:275-281; Zhang D et al., 1994, Antimicrob Agents Chemother 38:282-287). Water molecules present in the active site, not detected in the X-ray structure, form a complex H-bond network. Among these waters, one may be crucial for substrate recognition as it bridges Gln151 and Arg72 with the beta-phosphate. Absence of this stabilizing interaction in Gln151-->Met HIV-1 RT mutant may be a key factor for the known drug resistance of this mutant toward dideoxy-type drugs and AZT (Shirasaka T et al., 1995, Proc Natl Acad Sci USA 92:2398-2402: Iversen AK et al., 1996, J Virol 70:1086-1090). PMID:11206075

  17. Molecular Docking Studies of Marine Diterpenes as Inhibitors of Wild-Type and Mutants HIV-1 Reverse Transcriptase

    PubMed Central

    Miceli, Leonardo A.; Teixeira, Valéria L.; Castro, Helena C.; Rodrigues, Carlos R.; Mello, Juliana F. R.; Albuquerque, Magaly G.; Cabral, Lucio M.; de Brito, Monique A.; de Souza, Alessandra M. T.

    2013-01-01

    AIDS is a pandemic responsible for more than 35 million deaths. The emergence of resistant mutations due to drug use is the biggest cause of treatment failure. Marine organisms are sources of different molecules, some of which offer promising HIV-1 reverse transcriptase (RT) inhibitory activity, such as the diterpenes dolabelladienotriol (THD, IC50 = 16.5 µM), (6R)-6-hydroxydichotoma-3,14-diene-1,17-dial (HDD, IC50 = 10 µM) and (6R)-6-acetoxydichotoma-3,14-diene-1,17-dial (ADD, IC50 = 35 µM), isolated from a brown algae of the genus Dictyota, showing low toxicity. In this work, we evaluated the structure-activity relationship (SAR) of THD, HDD and ADD as anti HIV-1 RT, using a molecular modeling approach. The analyses of stereoelectronic parameters revealed a direct relationship between activity and HOMO (Highest Occupied Molecular Orbital)-LUMO (Lowest Unoccupied Molecular Orbital) gap (ELUMO–EHOMO), where antiviral profile increases with larger HOMO-LUMO gap values. We also performed molecular docking studies of THD into HIV-1 RT wild-type and 12 different mutants, which showed a seahorse conformation, hydrophobic interactions and hydrogen bonds with important residues of the binding pocket. Based on in vitro experiments and docking studies, we demonstrated that mutations have little influence in positioning and interactions of THD. Following a rational drug design, we suggest a modification of THD to improve its biological activity. PMID:24172210

  18. Mechanisms associated with HIV-1 resistance to acyclovir by the V75I mutation in reverse transcriptase.

    PubMed

    Tchesnokov, Egor P; Obikhod, Aleksandr; Massud, Ivana; Lisco, Andrea; Vanpouille, Christophe; Brichacek, Beda; Balzarini, Jan; McGuigan, Christopher; Derudas, Marco; Margolis, Leonid; Schinazi, Raymond F; Götte, Matthias

    2009-08-07

    It has recently been demonstrated that the anti-herpetic drug acyclovir (ACV) also displays antiviral activity against the human immunodeficiency virus type 1 (HIV-1). The triphosphate form of ACV is accepted by HIV-1 reverse transcriptase (RT), and subsequent incorporation leads to classical chain termination. Like all approved nucleoside analogue RT inhibitors (NRTIs), the selective pressure of ACV is associated with the emergence of resistance. The V75I mutation in HIV-1 RT appears to be dominant in this regard. By itself, this mutation is usually not associated with resistance to currently approved NRTIs. Here we studied the underlying biochemical mechanism. We demonstrate that V75I is also selected under the selective pressure of a monophosphorylated prodrug that was designed to bypass the bottleneck in drug activation to the triphosphate form (ACV-TP). Pre-steady-state kinetics reveal that V75I discriminates against the inhibitor at the level of catalysis, whereas binding of the inhibitor remains largely unaffected. The incorporated ACV-monophosphate (ACV-MP) is vulnerable to excision in the presence of the pyrophosphate donor ATP. V75I compromises binding of the next nucleotide that can otherwise provide a certain degree of protection from excision. Collectively, the results of this study suggest that ACV is sensitive to two different resistance pathways, which warrants further investigation regarding the detailed resistance profile of ACV. Such studies will be crucial in assessing the potential clinical utility of ACV and its derivatives in combination with established NRTIs.

  19. Fidelity of classwide-resistant HIV-2 reverse transcriptase and differential contribution of K65R to the accuracy of HIV-1 and HIV-2 reverse transcriptases.

    PubMed

    Álvarez, Mar; Sebastián-Martín, Alba; García-Marquina, Guillermo; Menéndez-Arias, Luis

    2017-03-23

    Nucleoside reverse transcriptase (RT) inhibitors constitute the backbone of current therapies against human immunodeficiency virus type 1 and type 2 (HIV-1 and HIV-2, respectively). However, mutational pathways leading to the development of nucleoside analogue resistance are different in both types of HIV. In HIV-2, resistance to all approved nucleoside analogues is conferred by the combination of RT substitutions K65R, Q151M and M184V. Nucleotide incorporation kinetic analyses of mutant and wild-type (WT) HIV-2 RTs show that the triple-mutant has decreased catalytic efficiency due to the presence of M184V. Although similar effects were previously reported for equivalent mutations in HIV-1 RT, the HIV-2 enzymes were catalytically less efficient. Interestingly, in highly divergent HIV-1 RTs, K65R confers several-fold increased accuracy of DNA synthesis. We have determined the intrinsic fidelity of DNA synthesis of WT HIV-2 RT and mutants K65R and K65R/Q151M/M184V. Our results show that those changes in HIV-2 RT have a relatively small impact on nucleotide selectivity. Furthermore, we found that there were less than two-fold differences in error rates obtained with forward mutation assays using mutant and WT HIV-2 RTs. A different conformation of the β3-β4 hairpin loop in HIV-1 and HIV-2 RTs could probably explain the differential effects of K65R.

  20. Fidelity of classwide-resistant HIV-2 reverse transcriptase and differential contribution of K65R to the accuracy of HIV-1 and HIV-2 reverse transcriptases

    PubMed Central

    Álvarez, Mar; Sebastián-Martín, Alba; García-Marquina, Guillermo; Menéndez-Arias, Luis

    2017-01-01

    Nucleoside reverse transcriptase (RT) inhibitors constitute the backbone of current therapies against human immunodeficiency virus type 1 and type 2 (HIV-1 and HIV-2, respectively). However, mutational pathways leading to the development of nucleoside analogue resistance are different in both types of HIV. In HIV-2, resistance to all approved nucleoside analogues is conferred by the combination of RT substitutions K65R, Q151M and M184V. Nucleotide incorporation kinetic analyses of mutant and wild-type (WT) HIV-2 RTs show that the triple-mutant has decreased catalytic efficiency due to the presence of M184V. Although similar effects were previously reported for equivalent mutations in HIV-1 RT, the HIV-2 enzymes were catalytically less efficient. Interestingly, in highly divergent HIV-1 RTs, K65R confers several-fold increased accuracy of DNA synthesis. We have determined the intrinsic fidelity of DNA synthesis of WT HIV-2 RT and mutants K65R and K65R/Q151M/M184V. Our results show that those changes in HIV-2 RT have a relatively small impact on nucleotide selectivity. Furthermore, we found that there were less than two-fold differences in error rates obtained with forward mutation assays using mutant and WT HIV-2 RTs. A different conformation of the β3-β4 hairpin loop in HIV-1 and HIV-2 RTs could probably explain the differential effects of K65R. PMID:28333133

  1. Nanogel-Conjugated Reverse Transcriptase Inhibitors and Their Combinations as Novel Antiviral Agents with Increased Efficacy against HIV-1 Infection.

    PubMed

    Senanayake, T H; Gorantla, S; Makarov, E; Lu, Y; Warren, G; Vinogradov, S V

    2015-12-07

    Nucleoside reverse transcriptase inhibitors (NRTIs) are an integral part of the current antiretroviral therapy (ART), which dramatically reduced the mortality from AIDS and turned the disease from lethal to chronic. The further steps in curing the HIV-1 infection must include more effective targeting of infected cells and virus sanctuaries inside the body and modification of drugs and treatment schedules to reduce common complications of the long-term treatment and increase patient compliancy. Here, we describe novel NRTI prodrugs synthesized from cholesteryl-ε-polylysine (CEPL) nanogels by conjugation with NRTI 5'-succinate derivatives (sNRTI). Biodegradability, small particle size, and high NRTI loading (30% by weight) of these conjugates; extended drug release, which would allow a weekly administration schedule; high therapeutic index (>1000) with a lower toxicity compared to NRTIs; and efficient accumulation in macrophages known as carriers for HIV-1 infection are among the most attractive properties of new nanodrugs. Nanogel conjugates of zidovudine (AZT), lamivudine (3TC), and abacavir (ABC) have been investigated individually and in formulations similar to clinical NRTI cocktails. Nanodrug formulations demonstrated 10-fold suppression of reverse transcriptase activity (EC90) in HIV-infected macrophages at 2-10, 2-4, and 1-2 μM drug levels, respectively, for single nanodrugs and dual and triple nanodrug cocktails. Nanogel conjugate of lamivudine was the most effective single nanodrug (EC90 2 μM). Nanodrugs showed a more favorable pharmacokinetics compared to free NRTIs. Infrequent iv injections of PEGylated CEPL-sAZT alone could efficiently suppress HIV-1 RT activity to background level in humanized mouse (hu-PBL) HIV model.

  2. Substituted tetrahydroquinolines as potent allosteric inhibitors of reverse transcriptase and its key mutants

    SciTech Connect

    Su, Dai-Shi; Lim, John J.; Tinney, Elizabeth; Wan, Bang-Lin; Young, Mary Beth; Anderson, Kenneth D.; Rudd, Deanne; Munshi, Vandna; Bahnck, Carolyn; Felock, Peter J.; Lu, Meiqing; Lai, Ming-Tain; Touch, Sinoeun; Moyer, Gregory; DiStefano, Daniel J.; Flynn, Jessica A.; Liang, Yuexia; Sanchez, Rosa; Prasad, Sridhar; Yan, Youwei; Perlow-Poehnelt, Rebecca; Torrent, Maricel; Miller, Mike; Vacca, Joe P.; Williams, Theresa M.; Anthony, Neville J.; Merck

    2010-09-27

    Non-nucleoside reverse transcriptase inhibitors (NNRTIs) are key elements of multidrug regimens, called HAART (Highly Active Antiretroviral Therapy), that are used to treat HIV-1 infections. Elucidation of the structure-activity relationships of the thiocarbamate moiety of the previous published lead compound 2 provided a series of novel tetrahydroquinoline derivatives as potent inhibitors of HIV-1 RT with nanomolar intrinsic activity on the WT and key mutant enzymes and potent antiviral activity in infected cells. The SAR optimization, mutation profiles, preparation of compounds, and pharmacokinetic profile of compounds are described.

  3. National survey of the prevalence and conditions of selection of HIV-1 reverse transcriptase K70E mutation.

    PubMed

    Delaugerre, C; Flandre, P; Marcelin, A G; Descamps, D; Tamalet, C; Cottalorda, J; Schneider, V; Yerly, S; LeGoff, J; Morand-Joubert, L; Chaix, M L; Costagliola, D; Calvez, V

    2008-05-01

    Tenofovir disoproxil fumarate (TDF) has become an important component of HIV combination therapy because of its potency and once-daily dosing. Key mutation associated with resistance to TDF is a K65R in the reverse transcriptase (RT) gene. According to occurrence of K70E mutation after failure to TDF regimen, this mutation was recently reported as a mutation associated with TDF resistance in most resistance genotypic algorithms. The aim of this study was to analyze, retrospectively, the prevalence and conditions of selection of HIV-1 RT K70E mutation from a national clinical survey. Absence of selection of K70E in 850 HIV-1-infected naive patients suggests its role in NRTI drug resistance. Prevalence of K70E RT was low (99/41601, 0.24%) in patients treated between 1999 and 2005. Conversely with K65R mutation, thymidine analog mutations (TAMs) can be concomitantly observed with K70E mutation but its frequency decreased as the number of TAM increases. Concomitant association of K65R and K70E was possible but infrequent (11%). At the time of K70E selection, 60% of patients had received or received TDF-containing regimen and one-third received exclusive NRTI regimen. In conclusion, the K70E mutation could be an alternative pathway of TDF resistance, but as the K65R mutation, other NRTI as ABC, ddI, and 3TC could be also associated with the K70E selection.

  4. Structure of HIV-1 reverse transcriptase bound to a novel 38-mer hairpin template-primer DNA aptamer.

    PubMed

    Miller, Matthew T; Tuske, Steve; Das, Kalyan; DeStefano, Jeffrey J; Arnold, Eddy

    2016-01-01

    The development of a modified DNA aptamer that binds HIV-1 reverse transcriptase (RT) with ultra-high affinity has enabled the X-ray structure determination of an HIV-1 RT-DNA complex to 2.3 Å resolution without the need for an antibody Fab fragment or RT-DNA cross-linking. The 38-mer hairpin-DNA aptamer has a 15 base-pair duplex, a three-deoxythymidine hairpin loop, and a five-nucleotide 5'-overhang. The aptamer binds RT in a template-primer configuration with the 3'-end positioned at the polymerase active site and has 2'-O-methyl modifications at the second and fourth duplex template nucleotides that interact with the p66 fingers and palm subdomains. This structure represents the highest resolution RT-nucleic acid structure to date. The RT-aptamer complex is catalytically active and can serve as a platform for studying fundamental RT mechanisms and for development of anti-HIV inhibitors through fragment screening and other approaches. Additionally, the structure allows for a detailed look at a unique aptamer design and provides the molecular basis for its remarkably high affinity for RT.

  5. Combinations of reverse transcriptase, protease, and integrase inhibitors can be synergistic in vitro against drug-sensitive and RT inhibitor-resistant molecular clones of HIV-1.

    PubMed

    Beale, K K; Robinson, W E

    2000-06-01

    Combinations of anti-HIV agents including one or two reverse transcriptase inhibitors with a protease inhibitor are potent and effective. However, toxicities, costs and the emergence of drug-resistant organisms have compromised their long-term efficacy in people. A next, likely, target for anti-HIV therapy is HIV-1 integrase. Viral integration, catalyzed by integrase, is absolutely required for HIV replication. L-chicoric acid is a potent and selective inhibitor of HIV-1 integrase that also inhibits HIV-1 replication in cell culture. As a first step in understanding the potential role for integrase inhibitors in clinical medicine, the activities of L-chicoric acid alone and in combination with 2', 3'-dideoxycytidine, zidovudine, and a protease inhibitor, nelfinavir, were tested in vitro against molecular clones of HIV-1 resistant to reverse transcriptase inhibitors. L-chicoric acid was equally effective against a wild-type clone of HIV-1, HIV(NL4-3), or against HIV-1 resistant to either zidovudine or dideoxycytidine. L-chicoric acid was largely synergistic with zidovudine and synergistic with both dideoxycytidine and nelfinavir.

  6. Ex Vivo Bioactivity and HIV-1 Latency Reversal by Ingenol Dibenzoate and Panobinostat in Resting CD4+ T Cells from Aviremic Patients

    PubMed Central

    Spivak, Adam M.; Bosque, Alberto; Balch, Alfred H.; Smyth, David; Martins, Laura

    2015-01-01

    The human immunodeficiency virus type 1 (HIV-1) latent reservoir in resting CD4+ T cells represents a major barrier to viral eradication. Small compounds capable of latency reversal have not demonstrated uniform responses across in vitro HIV-1 latency cell models. Characterizing compounds that demonstrate latency-reversing activity in resting CD4+ T cells from aviremic patients ex vivo will help inform pilot clinical trials aimed at HIV-1 eradication. We have optimized a rapid ex vivo assay using resting CD4+ T cells from aviremic HIV-1+ patients to evaluate both the bioactivity and latency-reversing potential of candidate latency-reversing agents (LRAs). Using this assay, we characterize the properties of two candidate compounds from promising LRA classes, ingenol 3,20-dibenzoate (a protein kinase C agonist) and panobinostat (a histone deacetylase inhibitor), in cells from HIV-1+ antiretroviral therapy (ART)-treated aviremic participants, including the effects on cellular activation and cytotoxicity. Ingenol induced viral release at levels similar to those of the positive control (CD3/28 receptor stimulation) in cells from a majority of participants and represents an exciting LRA candidate, as it combines a robust viral reactivation potential with a low toxicity profile. At concentrations that blocked histone deacetylation, panobinostat displayed a wide range of potency among participant samples and consistently induced significant levels of apoptosis. The protein kinase C agonist ingenol 3,20-dibenzoate demonstrated significant promise in a rapid ex vivo assay using resting CD4+ T cells from treated HIV-1-positive patients to measure latent HIV-1 reactivation. PMID:26169416

  7. Ex Vivo Bioactivity and HIV-1 Latency Reversal by Ingenol Dibenzoate and Panobinostat in Resting CD4(+) T Cells from Aviremic Patients.

    PubMed

    Spivak, Adam M; Bosque, Alberto; Balch, Alfred H; Smyth, David; Martins, Laura; Planelles, Vicente

    2015-10-01

    The human immunodeficiency virus type 1 (HIV-1) latent reservoir in resting CD4(+) T cells represents a major barrier to viral eradication. Small compounds capable of latency reversal have not demonstrated uniform responses across in vitro HIV-1 latency cell models. Characterizing compounds that demonstrate latency-reversing activity in resting CD4(+) T cells from aviremic patients ex vivo will help inform pilot clinical trials aimed at HIV-1 eradication. We have optimized a rapid ex vivo assay using resting CD4(+) T cells from aviremic HIV-1(+) patients to evaluate both the bioactivity and latency-reversing potential of candidate latency-reversing agents (LRAs). Using this assay, we characterize the properties of two candidate compounds from promising LRA classes, ingenol 3,20-dibenzoate (a protein kinase C agonist) and panobinostat (a histone deacetylase inhibitor), in cells from HIV-1(+) antiretroviral therapy (ART)-treated aviremic participants, including the effects on cellular activation and cytotoxicity. Ingenol induced viral release at levels similar to those of the positive control (CD3/28 receptor stimulation) in cells from a majority of participants and represents an exciting LRA candidate, as it combines a robust viral reactivation potential with a low toxicity profile. At concentrations that blocked histone deacetylation, panobinostat displayed a wide range of potency among participant samples and consistently induced significant levels of apoptosis. The protein kinase C agonist ingenol 3,20-dibenzoate demonstrated significant promise in a rapid ex vivo assay using resting CD4(+) T cells from treated HIV-1-positive patients to measure latent HIV-1 reactivation.

  8. Impact of HIV-1 genetic diversity on plasma HIV-1 RNA Quantification: usefulness of the Agence Nationale de Recherches sur le SIDA second-generation long terminal repeat-based real-time reverse transcriptase polymerase chain reaction test.

    PubMed

    Rouet, François; Chaix, Marie-Laure; Nerrienet, Eric; Ngo-Giang-Huong, Nicole; Plantier, Jean-Christophe; Burgard, Marianne; Peeters, Martine; Damond, Florence; Ekouevi, Didier Koumavi; Msellati, Philippe; Ferradini, Laurent; Rukobo, Sandra; Maréchal, Valérie; Schvachsa, Nilda; Wakrim, Lahcen; Rafalimanana, Christian; Rakotoambinina, Benjamin; Viard, Jean-Paul; Seigneurin, Jean-Marie; Rouzioux, Christine

    2007-08-01

    The high genetic diversity of HIV-1 has a major impact on the quantification of plasma HIV-1 RNA, representing an increasingly difficult challenge. A total of 898 plasma specimens positive for HIV-1 RNA by commercial assays (Amplicor v1.5; Roche Diagnostic Systems, Alameda, CA or Versant v3.0; Bayer Diagnostics, Emeryville, CA) were tested using the Agence Nationale de Recherches sur le SIDA second-generation (G2) real-time reverse transcriptase polymerase chain reaction (RT-PCR) test: 518 samples containing HIV-1 of known subtype, including 88 from 2 subtype panels and 430 harboring B (n = 266) and non-B (n = 164) group M HIV-1 subtypes from patients followed up in 2002 through 2005 at Necker Hospital (Paris, France), and 380 samples from 10 different countries (Argentina, Cambodia, Cameroon, Central African Republic, France, Ivory Coast, Madagascar, Morocco, Thailand, and Zimbabwe). HIV-1 RNA values obtained by G2 real-time PCR were highly correlated with those obtained by the Amplicor v1.5 for B and non-B subtypes (R = 0.892 and 0.892, respectively) and for samples from diverse countries (R = 0.867 and 0.893 for real-time PCR vs. Amplicor v1.5 and real-time PCR vs. Versant v3.0, respectively). Approximately 30% of specimens harboring non-B subtypes were underquantified by at least -0.51 log10 in Amplicor v1.5 versus 5% underquantified in G2 real-time PCR. Discrepant results were also obtained with subtype B samples (14% underquantified by Amplicor v1.5 vs. 7% by G2 real-time PCR). Similar percentages were observed when comparing results obtained with the G2 real-time PCR assay with those obtained using the Versant assay. Addressing HIV-1 diversity, continual monitoring of HIV-1 RNA assays, together with molecular epidemiology studies, is required to improve the accuracy of all HIV RNA assays.

  9. Fate of HIV-1 cDNA intermediates during reverse transcription is dictated by transcription initiation site of virus genomic RNA

    PubMed Central

    Masuda, Takao; Sato, Yoko; Huang, Yu-Lun; Koi, Satoshi; Takahata, Tatsuro; Hasegawa, Atsuhiko; Kawai, Gota; Kannagi, Mari

    2015-01-01

    Retroviral reverse transcription is accomplished by sequential strand-transfers of partial cDNA intermediates copied from viral genomic RNA. Here, we revealed an unprecedented role of 5′-end guanosine (G) of HIV-1 genomic RNA for reverse transcription. Based on current consensus for HIV-1 transcription initiation site, HIV-1 transcripts possess a single G at 5′-ends (G1-form). However, we found that HIV-1 transcripts with additional Gs at 5′-ends (G2- and G3-forms) were abundantly expressed in infected cells by using alternative transcription initiation sites. The G2- and G3-forms were also detected in the virus particle, although the G1-form predominated. To address biological impact of the 5′-G number, we generated HIV clone DNA to express the G1-form exclusively by deleting the alternative initiation sites. Virus produced from the clone showed significantly higher strand-transfer of minus strong-stop cDNA (-sscDNA). The in vitro assay using synthetic HIV-1 RNAs revealed that the abortive forms of -sscDNA were abundantly generated from the G3-form RNA, but dramatically reduced from the G1-form. Moreover, the strand-transfer of -sscDNA from the G1-form was prominently stimulated by HIV-1 nucleocapsid. Taken together, our results demonstrated that the 5′-G number that corresponds to HIV-1 transcription initiation site was critical for successful strand-transfer of -sscDNA during reverse transcription. PMID:26631448

  10. Hydroxytyrosol: a new class of microbicide displaying broad anti-HIV-1 activity

    PubMed Central

    Bedoya, Luis M.; Beltrán, Manuela; Obregón-Calderón, Patricia; García-Pérez, Javier; de la Torre, Humberto E.; González, Nuria; Pérez-Olmeda, Mayte; Auñón, David; Capa, Laura; Gómez-Acebo, Eduardo; Alcamí, José

    2016-01-01

    Objective: To investigate the toxicity and activity against HIV of 5-hydroxytyrosol as a potential microbicide. Design: The anti-HIV-1 activity of 5-hydroxytyrosol, a polyphenolic compound, was tested against wild-type HIV-1 and viral clones resistant to nucleoside reverse transcriptase inhibitors (NRTIs), non-nucleoside reverse transcriptase inhibitors (NNRTIs), protease inhibitors and integrase inhibitors. In addition to its activity against founder viruses, different viral subtypes and potential synergy with tenofovir disoproxil fumarate, lamivudine and emtricitabine was also tested. 5-Hydroxytyrosol toxicity was evaluated in vivo in rabbit vaginal mucosa. Methods: We have cloned pol gene from drug-resistant HIV-1 isolated from infected patients and env gene from Fiebeg III/IV patients or A, C, D, E, F and G subtypes in the NL4.3-Ren backbone. 5-Hydroxytyrosol anti-HIV-1 activity was evaluated in infections of MT-2, U87-CCR5 or peripheral blood mononuclear cells preactivated with phytohemagglutinin + interleukin-2 with viruses obtained through 293T transfections. Inhibitory concentration 50% and cytotoxic concentration 50% were calculated. Synergy was analysed according to Chou and Talalay method. In-vivo toxicity was evaluated for 14 days in rabbit vaginal mucosa. Results: 5-Hydroxytyrosol inhibited HIV-1 infections of recombinant or wild-type viruses in all the target cells tested. Moreover, 5-hydroxytyrosol showed similar inhibitory concentration 50% values for infections with NRTIs, NNRTIs, protease inhibitors and INIs resistant viruses; founder viruses and all the subtypes tested. Combination of 5-hydroxytyrosol with tenofovir was found to be synergistic, whereas it was additive with lamivudine and emtricitabine. In-vivo toxicity of 5-hydroxytyrosol was very low even at the highest tested doses. Conclusion: 5-Hydroxytyrosol displayed a broad anti-HIV-1 activity in different cells systems in the absent of in-vivo toxicity, therefore supporting its

  11. Specific Interaction between eEF1A and HIV RT Is Critical for HIV-1 Reverse Transcription and a Potential Anti-HIV Target

    PubMed Central

    Rawle, Daniel J.; Qin, Fangyun; Wang, Rui; Soares, Dinesh C.; Jin, Hongping; Sivakumaran, Haran; Lin, Min-Hsuan; Spann, Kirsten; Abbott, Catherine M.; Harrich, David

    2015-01-01

    Reverse transcription is the central defining feature of HIV-1 replication. We previously reported that the cellular eukaryotic elongation factor 1 (eEF1) complex associates with the HIV-1 reverse transcription complex (RTC) and the association is important for late steps of reverse transcription. Here we show that association between the eEF1 and RTC complexes occurs by a strong and direct interaction between the subunit eEF1A and reverse transcriptase (RT). Using biolayer interferometry and co-immunoprecipitation (co-IP) assays, we show that association between the eEF1 and RTC complexes occurs by a strong (KD ~3–4 nM) and direct interaction between eEF1A and reverse transcriptase (RT). Biolayer interferometry analysis of cell lysates with titrated levels of eEF1A indicates it is a predominant cellular RT binding protein. Both the RT thumb and connection domains are required for interaction with eEF1A. A single amino acid mutation, W252A, within the thumb domain impaired co-IP between eEF1A and RT, and also significantly reduced the efficiency of late reverse transcription and virus replication when incorporated into infectious HIV-1. Molecular modeling analysis indicated that interaction between W252 and L303 are important for RT structure, and their mutation to alanine did not impair heterodimerisation, but negatively impacted interaction with eEF1A. Didemnin B, which specifically binds eEF1A, potently inhibited HIV-1 reverse transcription by greater than 2 logs at subnanomolar concentrations, especially affecting reverse transcription late DNA synthesis. Analysis showed reduced levels of RTCs from HIV-1-infected HEK293T treated with didemnin B compared to untreated cells. Interestingly, HIV-1 with a W252A RT mutation was resistant to didemnin B negative effects showing that didemnin B affects HIV-1 by targeting the RT-eEF1A interaction. The combined evidence indicates a direct interaction between eEF1A and RT is crucial for HIV reverse transcription and

  12. Lipid metabolism and lipodystrophy in HIV-1-infected patients: the role played by nonnucleoside reverse transcriptase inhibitors.

    PubMed

    Sension, Michael; Deckx, Henri

    2015-01-01

    Dyslipidemia and lipodystrophy represent significant healthcare concerns in HIV-infected patients due to their association with diabetes mellitus and increased cardiovascular disease risk. Since the lipid effects of the nonnucleoside reverse transcriptase inhibitors are not well characterized, we systematically summarized the effects of nonnucleoside reverse transcriptase inhibitor treatment on dyslipidemia and lipodystrophy in HIV-1 infection. As with other classes of antiretroviral agents, the nonnucleoside reverse transcriptase inhibitors are associated with lipid changes, although individual agents exhibit differing effects on lipid profiles. Comparative trials have shown that the risk for hypertriglyceridemia is lower with efavirenz than with the use of ritonavir-boosted lopinavir, but there is a greater likelihood of hypercholesterolemia compared to ritonavir-boosted atazanavir. Data also suggest that efavirenz results in greater increases in plasma lipid levels than integrase inhibitors and CC-chemokine-receptor-5 antagonists. Lipid disturbances are less frequent with the newer nonnucleoside reverse transcriptase inhibitors than with efavirenz. However, in most cases, no change in the total:high-density lipoprotein-cholesterol ratio was seen between the efavirenz and comparator groups. Switching from efavirenz to etravirine or rilpivirine, or the integrase inhibitors raltegravir or elvitegravir, resulted in significant reductions in lipid levels. There appears to be minimal potential for efavirenz or rilpivirine to result in development of lipodystrophy. Overall, nonnucleoside reverse transcriptase inhibitors have a smaller impact on plasma lipids than ritonavir-boosted protease inhibitors, with the newer agents exhibiting more favorable lipid profiles than efavirenz. When considering antiretroviral regimens, awareness of the different lipid effect profiles of the third agent is important, without forgetting the critical contribution of the background

  13. Keeping your armour intact: how HIV-1 evades detection by the innate immune system: HIV-1 capsid controls detection of reverse transcription products by the cytosolic DNA sensor cGAS.

    PubMed

    Maelfait, Jonathan; Seiradake, Elena; Rehwinkel, Jan

    2014-07-01

    HIV-1 infects dendritic cells (DCs) without triggering an effective innate antiviral immune response. As a consequence, the induction of adaptive immune responses controlling virus spread is limited. In a recent issue of Immunity, Lahaye and colleagues show that intricate interactions of HIV capsid with the cellular cofactor cyclophilin A (CypA) control infection and innate immune activation in DCs. Manipulation of HIV-1 capsid to increase its affinity for CypA results in reduced virus infectivity and facilitates access of the cytosolic DNA sensor cGAS to reverse transcribed DNA. This in turn induces a strong host response. Here, we discuss these findings in the context of recent developments in innate immunity and consider the implications for disease control and vaccine design.

  14. Identification of a novel resistance (E40F) and compensatory (K43E) substitution in HIV-1 reverse transcriptase

    PubMed Central

    Huigen, Marleen CDG; van Ham, Petronella M; de Graaf, Loek; Kagan, Ron M; Boucher, Charles AB; Nijhuis, Monique

    2008-01-01

    Background HIV-1 nucleoside reverse transcriptase inhibitors (NRTIs) have been used in the clinic for over twenty years. Interestingly, the complete resistance pattern to this class has not been fully elucidated. Novel mutations in RT appearing during treatment failure are still being identified. To unravel the role of two of these newly identified changes, E40F and K43E, we investigated their effect on viral drug susceptibility and replicative capacity. Results A large database (Quest Diagnostics database) was analysed to determine the associations of the E40F and K43E changes with known resistance mutations. Both amino acid changes are strongly associated with the well known NRTI-resistance mutations M41L, L210W and T215Y. In addition, a strong positive association between these changes themselves was observed. A panel of recombinant viruses was generated by site-directed mutagenesis and phenotypically analysed. To determine the effect on replication capacity, competition and in vitro evolution experiments were performed. Introduction of E40F results in an increase in Zidovudine resistance ranging from nine to fourteen fold depending on the RT background and at the same time confers a decrease in viral replication capacity. The K43E change does not decrease the susceptibility to Zidovudine but increases viral replication capacity, when combined with E40F, demonstrating a compensatory role for this codon change. Conclusion In conclusion, we have identified a novel resistance (E40F) and compensatory (K43E) change in HIV-1 RT. Further research is indicated to analyse the clinical importance of these changes. PMID:18271957

  15. Broad-spectrum non-nucleoside inhibitors of human herpesviruses

    PubMed Central

    McClain, Lora; Zhi, Yun; Cheng, Hoyee; Ghosh, Ayantika; Piazza, Paolo; Yee, Michael B.; Kumar, Santosh; Milosevic, Jadranka; Bloom, David C.; Arav-Boger, Ravit; Kinchington, Paul R.; Yolken, Robert; Nimgaonkar, Vishwajit; D’Aiuto, Leonardo

    2015-01-01

    Herpesvirus infections cause considerable morbidity and mortality through lifelong recurrent cycles of lytic and latent infection in several tissues, including the human nervous system. Acyclovir (ACV) and its prodrug, the current antivirals of choice for herpes simplex virus (HSV) and, to some extent, varicella zoster virus (VZV) infections are nucleoside analogues that inhibit viral DNA replication. Rising viral resistance and the need for more effective second-line drugs have motivated searches for additional antiviral agents, particularly non-nucleoside based agents. We evaluated the antiviral activity of five compounds with predicted lysosomotropic activity using conventional and human induced pluripotent stem cell-derived neuronal (iPSC-neurons) cultures. Their potency and toxicity were compared with ACV and the lysosomotropic agents chloroquine and bafilomycin A1. Out of five compounds tested, micromolar concentrations of 30N12, 16F19, and 4F17 showed antiviral activity comparable to ACV (50μM) during lytic herpes simplex virus type 1 (HSV-1) infections, reduced viral DNA copy number, and reduced selected HSV-1 protein levels. These compounds also inhibited the reactivation of ‘quiescent’ HSV-1 infection established in iPSC-neurons, but did not inhibit viral entry into host cells. The same compounds had greater potency than ACV against lytic VZV infection; they also inhibited replication of human cytomegalovirus. The anti-herpetic effects of these non-nucleoside agents merit further evaluation in vivo. PMID:26079681

  16. Premature strand transfer by the HIV-1 reverse transcriptase during strong-stop DNA synthesis.

    PubMed Central

    Klaver, B; Berkhout, B

    1994-01-01

    Reverse transcription of retroviral genomes starts near the 5' end of the viral RNA by use of an associated tRNA primer. According to the current model of reverse transcription, the initial cDNA product, termed minus-strand strong-stop DNA, 'jumps' to a repeated sequence (R region) at the 3' end of the RNA template. The human retroviruses have relatively long R regions (97-247 nucleotides) when compared to murine and avian viruses (16-68 nucleotides). This suggests that the full complement of the R region is not required for strand transfer and that partial cDNA copies of the 5' R can prematurely jump to the 3' R. To test this hypothesis, we generated mutants of the human immunodeficiency virus with R region changes and analyzed whether 5' or 3' R sequences were inherited by the progeny. We found that in most cases, 5' R-encoded sequences are dominant, which is consistent with the model of reverse transcription. Using a selection protocol, however, we were also able to identify progeny viruses with R sequences derived from the original 3' R element. These results suggest that partial strong stop cDNAs can be transferred with R region homologies much shorter than 97 nucleotides. Images PMID:7510065

  17. Ultrasensitive HIV-1 p24 Assay Detects Single Infected Cells and Differences in Reservoir Induction by Latency Reversal Agents.

    PubMed

    Passaes, Caroline Pereira Bittencourt; Bruel, Timothée; Decalf, Jérémie; David, Annie; Angin, Mathieu; Monceaux, Valerie; Muller-Trutwin, Michaela; Noel, Nicolas; Bourdic, Katia; Lambotte, Olivier; Albert, Matthew L; Duffy, Darragh; Schwartz, Olivier; Sáez-Cirión, Asier

    2017-03-15

    The existence of HIV reservoirs in infected individuals under combined antiretroviral therapy (cART) represents a major obstacle toward cure. Viral reservoirs are assessed by quantification of HIV nucleic acids, a method which does not discriminate between infectious and defective viruses, or by viral outgrowth assays, which require large numbers of cells and long-term cultures. Here, we used an ultrasensitive p24 digital assay, which we report to be 1,000-fold more sensitive than classical enzyme-linked immunosorbent assays (ELISAs) in the quantification of HIV-1 Gag p24 production in samples from HIV-infected individuals. Results from ultrasensitive p24 assays were compared to those from conventional viral RNA reverse transcription-quantitative PCR (RT-qPCR)-based assays and from outgrowth assay readout by flow cytometry. Using serial dilutions and flow-based single-cell sorting, we show that viral proteins produced by a single infected cell can be detected by the ultrasensitive p24 assay. This unique sensitivity allowed the early (as soon as day 1 in 43% of cases) and more efficient detection and quantification of p24 in phytohemagglutinin-L (PHA)-stimulated CD4(+) T cells from individuals under effective cART. When seven different classes of latency reversal agents (LRA) in resting CD4(+) T cells from HIV-infected individuals were tested, the ultrasensitive p24 assay revealed differences in the extent of HIV reactivation. Of note, HIV RNA production was infrequently accompanied by p24 protein production (19%). Among the drugs tested, prostratin showed a superior capacity in inducing viral protein production. In summary, the ultrasensitive p24 assay allows the detection and quantification of p24 produced by single infected CD4(+) T cells and provides a unique tool to assess early reactivation of infectious virus from reservoirs in HIV-infected individuals.IMPORTANCE The persistence of HIV reservoirs in infected individuals under effective antiretroviral

  18. Toxicity and in vitro activity of HIV-1 latency-reversing agents in primary CNS cells.

    PubMed

    Gray, Lachlan R; On, Hung; Roberts, Emma; Lu, Hao K; Moso, Michael A; Raison, Jacqueline A; Papaioannou, Catherine; Cheng, Wan-Jung; Ellett, Anne M; Jacobson, Jonathan C; Purcell, Damian F J; Wesselingh, Steve L; Gorry, Paul R; Lewin, Sharon R; Churchill, Melissa J

    2016-08-01

    Despite the success of combination antiretroviral therapy (cART), HIV persists in long lived latently infected cells in the blood and tissue, and treatment is required lifelong. Recent clinical studies have trialed latency-reversing agents (LRA) as a method to eliminate latently infected cells; however, the effects of LRA on the central nervous system (CNS), a well-known site of virus persistence on cART, are unknown. In this study, we evaluated the toxicity and potency of a panel of commonly used and well-known LRA (panobinostat, romidepsin, vorinostat, chaetocin, disulfiram, hexamethylene bisacetamide [HMBA], and JQ-1) in primary fetal astrocytes (PFA) as well as monocyte-derived macrophages as a cellular model for brain perivascular macrophages. We show that most LRA are non-toxic in these cells at therapeutic concentrations. Additionally, romidepsin, JQ-1, and panobinostat were the most potent at inducing viral transcription, with greater magnitude observed in PFA. In contrast, vorinostat, chaetocin, disulfiram, and HMBA all demonstrated little or no induction of viral transcription. Together, these data suggest that some LRA could potentially activate transcription in latently infected cells in the CNS. We recommend that future trials of LRA also examine the effects of these agents on the CNS via examination of cerebrospinal fluid.

  19. A novel lectin with highly potent antiproliferative and HIV-1 reverse transcriptase inhibitory activities from cicada (Cicada flammata).

    PubMed

    Ye, Xiu Juan; Ng, Tzi Bun

    2010-05-01

    A dimeric lectin with a molecular weight of 60 kDa and high hemagglutinating activity was isolated from dried cicadas. It was adsorbed on Q-Sepharose and unadsorbed on Affi-Gel Blue gel. Its hemagglutinating activity was stable up to 55 degrees C and between pH 2 and 13. The activity was inhibited by glucuronic acid and raffinose, K(+) ions, and Mg(2+) ions. Cicada lectin potently inhibited proliferation of HepG2 hepatoma and MCF 7 breast cancer cells, with an IC(50) value of 0.76 and 0.49 microM, respectively. It potently inhibited HIV-1 reverse transcriptase activity with an IC(50) of 0.36 microM but was devoid of mitogenic activity on spleen cells. Its N-terminal sequence exhibited slight similarity to a conserved hypothetical protein from Culex quinquefasciatus and a gene product from transcript GH19834-RA of Drosophila grimshawi, but there was no resemblance to lectins from other insects, including Drosophila, Sarcophaga, Glossina, and Aedes species.

  20. Natural product-inspired esters and amides of ferulic and caffeic acid as dual inhibitors of HIV-1 reverse transcriptase.

    PubMed

    Sonar, Vijay P; Corona, Angela; Distinto, Simona; Maccioni, Elias; Meleddu, Rita; Fois, Benedetta; Floris, Costantino; Malpure, Nilesh V; Alcaro, Stefano; Tramontano, Enzo; Cottiglia, Filippo

    2017-04-21

    Using an HIV-1 Reverse Transcriptase (RT)-associated RNase H inhibition assay as lead, bioguided fractionation of the dichloromethane extract of the Ocimum sanctum leaves led to the isolation of five triterpenes (1-5) along with three 3-methoxy-4-hydroxy phenyl derivatives (6-8). The structure of this isolates were determined by 1D and 2D NMR experiments as well as ESI-MS. Tetradecyl ferulate (8) showed an interesting RNase H IC50 value of 12.4 μM and due to the synthetic accessibility of this secondary metabolite, a structure-activity relationship study was carried out. A series of esters and amides of ferulic and caffeic acids were synthesized and, among all, the most active was N-oleylcaffeamide displaying a strong inhibitory activity towards both RT-associated functions, ribonuclease H and DNA polymerase. Molecular modeling studies together with Yonetani-Theorell analysis, demonstrated that N-oleylcaffeamide is able to bind both two allosteric site located one close to the NNRTI binding pocket and the other close to RNase H catalytic site.

  1. Unfolding the HIV-1 reverse transcriptase RNase H domain – how to lose a molecular tug-of-war

    PubMed Central

    Zheng, Xunhai; Pedersen, Lars C.; Gabel, Scott A.; Mueller, Geoffrey A.; DeRose, Eugene F.; London, Robert E.

    2016-01-01

    Formation of the mature HIV-1 reverse transcriptase (RT) p66/p51 heterodimer requires subunit-specific processing of the p66/p66′ homodimer precursor. Since the ribonuclease H (RH) domain contains an occult cleavage site located near its center, cleavage must occur either prior to folding or subsequent to unfolding. Recent NMR studies have identified a slow, subunit-specific RH domain unfolding process proposed to result from a residue tug-of-war between the polymerase and RH domains on the functionally inactive, p66′ subunit. Here, we describe a structural comparison of the isolated RH domain with a domain swapped RH dimer that reveals several intrinsically destabilizing characteristics of the isolated domain that facilitate excursions of Tyr427 from its binding pocket and separation of helices B and D. These studies provide independent support for the subunit-selective RH domain unfolding pathway in which instability of the Tyr427 binding pocket facilitates its release followed by domain transfer, acting as a trigger for further RH domain destabilization and subsequent unfolding. As further support for this pathway, NMR studies demonstrate that addition of an RH active site-directed isoquinolone ligand retards the subunit-selective RH′ domain unfolding behavior of the p66/p66′ homodimer. This study demonstrates the feasibility of directly targeting RT maturation with therapeutics. PMID:26773054

  2. A protein with antiproliferative, antifungal and HIV-1 reverse transcriptase inhibitory activities from caper (Capparis spinosa) seeds.

    PubMed

    Lam, Sze-Kwan; Ng, Tzi-Bun

    2009-05-01

    A protein exhibiting an N-terminal amino acid sequence with some similarity to imidazoleglycerol phosphate synthase was purified from fresh Capparis spinosa melon seeds. The purification protocol entailed anion exchange chromatography on DEAE-cellulose, cation exchange chromatography on SP-Sepharose, and finally gel filtration by fast protein liquid chromatography on Superdex 75. The protein was adsorbed using 20 mM Tris-HCl buffer (pH 7.4) and desorbed using 1 M NaCl in the starting buffer from the DEAE-cellulose column and SP-Sepharose column. The protein demonstrated a molecular mass of 38 kDa in gel filtration and sodium dodecyl sulfate-polyacrylamide gel electrophoresis, indicating that it was monomeric. The protein inhibited proliferation of hepatoma HepG2 cells, colon cancer HT29 cells and breast cancer MCF-7 cells with an IC(50) of about 1, 40 and 60 microM, respectively. It inhibited HIV-1 reverse transcriptase with IC(50) of 0.23 microM. It inhibited mycelial growth in the fungus, Valsa mali. It did not exhibit hemagglutinating, ribonuclease, mitogenic or protease inhibitory activities.

  3. A Novel Laccase with Potent Antiproliferative and HIV-1 Reverse Transcriptase Inhibitory Activities from Mycelia of Mushroom Coprinus comatus

    PubMed Central

    Zhao, Shuang; Rong, Cheng-Bo; Kong, Chang; Liu, Yu; Xu, Feng; Miao, Qian-Jiang; Wang, Shou-Xian; Wang, He-Xiang

    2014-01-01

    A novel laccase was isolated and purified from fermentation mycelia of mushroom Coprinus comatus with an isolation procedure including three ion-exchange chromatography steps on DEAE-cellulose, CM-cellulose, and Q-Sepharose and one gel-filtration step by fast protein liquid chromatography on Superdex 75. The purified enzyme was a monomeric protein with a molecular weight of 64 kDa. It possessed a unique N-terminal amino acid sequence of AIGPVADLKV, which has considerably high sequence similarity with that of other fungal laccases, but is different from that of C. comatus laccases reported. The enzyme manifested an optimal pH value of 2.0 and an optimal temperature of 60°C using 2,2′-azinobis(3-ethylbenzothiazolone-6-sulfonic acid) diammonium salt (ABTS) as the substrate. The laccase displayed, at pH 2.0 and 37°C, Km values of 1.59 mM towards ABTS. It potently suppressed proliferation of tumor cell lines HepG2 and MCF7, and inhibited human immunodeficiency virus type 1 (HIV-1) reverse transcriptase (RT) with an IC50 value of 3.46 μM, 4.95 μM, and 5.85 μM, respectively, signifying that it is an antipathogenic protein. PMID:25540778

  4. Unfolding the HIV-1 reverse transcriptase RNase H domain – how to lose a molecular tug-of-war

    SciTech Connect

    Zheng, Xunhai; Pedersen, Lars C.; Gabel, Scott A.; Mueller, Geoffrey A.; DeRose, Eugene F.; London, Robert E.

    2016-01-14

    Formation of the mature HIV-1 reverse transcriptase (RT) p66/p51 heterodimer requires subunit-specific processing of the p66/p66' homodimer precursor. Since the ribonuclease H (RH) domain contains an occult cleavage site located near its center, cleavage must occur either prior to folding or subsequent to unfolding. Recent NMR studies have identified a slow, subunit-specific RH domain unfolding process proposed to result from a residue tug-of-war between the polymerase and RH domains on the functionally inactive, p66' subunit. Here, we describe a structural comparison of the isolated RH domain with a domain swapped RH dimer that reveals several intrinsically destabilizing characteristics of the isolated domain that facilitate excursions of Tyr427 from its binding pocket and separation of helices B and D. These studies provide independent support for the subunit-selective RH domain unfolding pathway in which instability of the Tyr427 binding pocket facilitates its release followed by domain transfer, acting as a trigger for further RH domain destabilization and subsequent unfolding. As further support for this pathway, NMR studies demonstrate that addition of an RH active site-directed isoquinolone ligand retards the subunit-selective RH' domain unfolding behavior of the p66/p66' homodimer. As a result, this study demonstrates the feasibility of directly targeting RT maturation with therapeutics.

  5. Unfolding the HIV-1 reverse transcriptase RNase H domain – how to lose a molecular tug-of-war

    DOE PAGES

    Zheng, Xunhai; Pedersen, Lars C.; Gabel, Scott A.; ...

    2016-01-14

    Formation of the mature HIV-1 reverse transcriptase (RT) p66/p51 heterodimer requires subunit-specific processing of the p66/p66' homodimer precursor. Since the ribonuclease H (RH) domain contains an occult cleavage site located near its center, cleavage must occur either prior to folding or subsequent to unfolding. Recent NMR studies have identified a slow, subunit-specific RH domain unfolding process proposed to result from a residue tug-of-war between the polymerase and RH domains on the functionally inactive, p66' subunit. Here, we describe a structural comparison of the isolated RH domain with a domain swapped RH dimer that reveals several intrinsically destabilizing characteristics of themore » isolated domain that facilitate excursions of Tyr427 from its binding pocket and separation of helices B and D. These studies provide independent support for the subunit-selective RH domain unfolding pathway in which instability of the Tyr427 binding pocket facilitates its release followed by domain transfer, acting as a trigger for further RH domain destabilization and subsequent unfolding. As further support for this pathway, NMR studies demonstrate that addition of an RH active site-directed isoquinolone ligand retards the subunit-selective RH' domain unfolding behavior of the p66/p66' homodimer. As a result, this study demonstrates the feasibility of directly targeting RT maturation with therapeutics.« less

  6. Synthesis of the (5Z)-5-Pentacosenoic and 5-Pentacosynoic Acids as Novel HIV-1 Reverse Transcriptase Inhibitors

    PubMed Central

    Moreira, Lizabeth Giménez; Orellano, Elsie A.; Rosado, Karolyna; Guido, Rafael V. C.; Andricopulo, Adriano D.; Soto, Gabriela O.; Rodríguez, José W.; Sanabria-Ríos, David J.; Carballeira, Néstor M.

    2016-01-01

    The natural fatty acids (5Z)-5-pentacosenoic and (9Z)-9-pentacosenoic acids were synthesized for the first time in eight steps starting from either 4-bromo-1-butanol or 8-bromo-1-butanol and in 20-58% overall yields, while the novel fatty acids 5-pentacosynoic and 9-pentacosynoic acids were also synthesized in six steps and in 34-43% overall yields. The Δ5 acids displayed the best IC50’s (24-38 µM) against the HIV-1 reverse transcriptase (RT) enzyme, comparable to nervonic acid (IC50 = 12 µM). The Δ9 acids were not as effective towards HIV-RT with the (9Z)-9-pentacosenoic acid displaying an IC50 = 54 µM. Fatty acid chain length and position of the unsaturation was critical for the observed inhibition. Molecular modeling studies indicated the structural determinants underlying the biological activity of the most potent compounds. These results provide new insights into the structural requirements that must be present in fatty acids so as to enhance their inhibitory potential towards HIV-RT. PMID:26345647

  7. Structural Integrity of the Ribonuclease H domain in HIV-1 Reverse Transcriptase

    PubMed Central

    Slack, Ryan L.; Spiriti, Justin; Ahn, Jinwoo; Parniak, Michael A.; Zuckerman, Daniel M.; Ishima, Rieko

    2015-01-01

    The mature form of reverse transcriptase (RT) is a heterodimer comprising the intact 66-kDa subunit (p66) and a smaller 51-kDa subunit (p51) that is generated by removal of most of the RNase H (RNH) domain from a p66 subunit by proteolytic cleavage between residues 440/441. Viral infectivity is eliminated by mutations such as F440A and E438N in the proteolytic cleavage sequence, while normal processing and virus infectivity are restored by a compensatory mutation, T477A, that is located more than 10 Å away from the processing site. The molecular basis for this compensatory effect has remained unclear. We therefore investigated structural characteristics of RNH mutants using computational and experimental approaches. Our Nuclear Magnetic Resonance and Differential Scanning Fluorimetry results show that both F440A and E438N mutations disrupt RNH folding. Addition of the T477A mutation restores correct folding of the RNH domain despite the presence of the F440A or E438N mutations. Molecular dynamics simulations suggest that the T477A mutation affects the processing site by altering relative orientations of secondary structure elements. Predictions of sequence tolerance suggest that phenylalanine and tyrosine are structurally preferred at residues 440 and 441, respectively, which are the P1 and P1’ substrate residues known to require bulky side chains for substrate specificity. Interestingly, our study demonstrates that the processing site residues, which are critical for protease substrate specificity and must be exposed to the solvent for efficient processing, also function to maintain proper RNH folding in the p66/p51 heterodimer. PMID:26061827

  8. Antimycobacterial and HIV-1 Reverse Transcriptase Activity of Julianaceae and Clusiaceae Plant Species from Mexico

    PubMed Central

    Gómez-Cansino, Rocio; Espitia-Pinzón, Clara Inés; Campos-Lara, María Guadalupe; Guzmán-Gutiérrez, Silvia Laura; Segura-Salinas, Erika; Echeverría-Valencia, Gabriela; Torras-Claveria, Laura; Cuevas-Figueroa, Xochitl Marisol; Reyes-Chilpa, Ricardo

    2015-01-01

    The extracts of 14 Julianaceae and 5 Clusiaceae species growing in Mexico were tested in vitro (50 µg/mL) against Mycobacterium tuberculosis H37Rv and HIV reverse transcriptase (HIV-RT). The Julianaceae bark and leaf extracts inhibited M. tuberculosis (>84.67%) and HIV-RT (<49.89%). The Clusiaceae leaves extracts also inhibited both targets (>58.3% and >67.6%), respectively. The IC50 values for six selected extracts and their cytotoxicity (50 µg/mL) to human macrophages were then determined. Amphipterygium glaucum, A. molle, and A. simplicifolium fairly inhibited M. tuberculosis with IC50 of 1.87–2.35 µg/mL; but their IC50 against HIV-RT was 59.25–97.83 µg/mL. Calophyllum brasiliense, Vismia baccifera, and Vismia mexicana effect on M. tuberculosis was noteworthy (IC50 3.02–3.64 µg/mL) and also inhibited RT-HIV (IC50 26.24–35.17 µg/mL). These 6 extracts (50 µg/mL) presented low toxicity to macrophages (<23.8%). The HPLC profiles of A. glaucum, A. molle, and A. simplicifolium indicated that their antimycobacterial activity cannot be related to masticadienonic, 3α, or 3β-hydromasticadienonic acids, suggesting that other compounds may be responsible for the observed activity or this might be a synergy result. The anti-HIV-RT and antimycobacterial activities induced by C. brasiliense can be attributed to the content of calanolides A, B, as well as soulatrolide. PMID:25983849

  9. Use of a Vaginal Ring Containing Dapivirine for HIV-1 Prevention in Women.

    PubMed

    Baeten, Jared M; Palanee-Phillips, Thesla; Brown, Elizabeth R; Schwartz, Katie; Soto-Torres, Lydia E; Govender, Vaneshree; Mgodi, Nyaradzo M; Matovu Kiweewa, Flavia; Nair, Gonasagrie; Mhlanga, Felix; Siva, Samantha; Bekker, Linda-Gail; Jeenarain, Nitesha; Gaffoor, Zakir; Martinson, Francis; Makanani, Bonus; Pather, Arendevi; Naidoo, Logashvari; Husnik, Marla; Richardson, Barbra A; Parikh, Urvi M; Mellors, John W; Marzinke, Mark A; Hendrix, Craig W; van der Straten, Ariane; Ramjee, Gita; Chirenje, Zvavahera M; Nakabiito, Clemensia; Taha, Taha E; Jones, Judith; Mayo, Ashley; Scheckter, Rachel; Berthiaume, Jennifer; Livant, Edward; Jacobson, Cindy; Ndase, Patrick; White, Rhonda; Patterson, Karen; Germuga, Donna; Galaska, Beth; Bunge, Katherine; Singh, Devika; Szydlo, Daniel W; Montgomery, Elizabeth T; Mensch, Barbara S; Torjesen, Kristine; Grossman, Cynthia I; Chakhtoura, Nahida; Nel, Annalene; Rosenberg, Zeda; McGowan, Ian; Hillier, Sharon

    2016-12-01

    Background Antiretroviral medications that are used as prophylaxis can prevent acquisition of human immunodeficiency virus type 1 (HIV-1) infection. However, in clinical trials among African women, the incidence of HIV-1 infection was not reduced, probably because of low adherence. Longer-acting methods of drug delivery, such as vaginal rings, may simplify use of antiretroviral medications and provide HIV-1 protection. Methods We conducted a phase 3, randomized, double-blind, placebo-controlled trial of a monthly vaginal ring containing dapivirine, a non-nucleoside HIV-1 reverse-transcriptase inhibitor, involving women between the ages of 18 and 45 years in Malawi, South Africa, Uganda, and Zimbabwe. Results Among the 2629 women who were enrolled, 168 HIV-1 infections occurred: 71 in the dapivirine group and 97 in the placebo group (incidence, 3.3 and 4.5 per 100 person-years, respectively). The incidence of HIV-1 infection in the dapivirine group was lower by 27% (95% confidence interval [CI], 1 to 46; P=0.046) than that in the placebo group. In an analysis that excluded data from two sites that had reduced rates of retention and adherence, the incidence of HIV-1 infection in the dapivirine group was lower by 37% (95% CI, 12 to 56; P=0.007) than that in the placebo group. In a post hoc analysis, higher rates of HIV-1 protection were observed among women over the age of 21 years (56%; 95% CI, 31 to 71; P<0.001) but not among those 21 years of age or younger (-27%; 95% CI, -133 to 31; P=0.45), a difference that was correlated with reduced adherence. The rates of adverse medical events and antiretroviral resistance among women who acquired HIV-1 infection were similar in the two groups. Conclusions A monthly vaginal ring containing dapivirine reduced the risk of HIV-1 infection among African women, with increased efficacy in subgroups with evidence of increased adherence. (Funded by the National Institutes of Health; ClinicalTrials.gov number, NCT01617096 .).

  10. Characteristics of Women Enrolled into a Randomized Clinical Trial of Dapivirine Vaginal Ring for HIV-1 Prevention

    PubMed Central

    Palanee-Phillips, Thesla; Schwartz, Katie; Brown, Elizabeth R.; Govender, Vaneshree; Mgodi, Nyaradzo; Kiweewa, Flavia Matovu; Nair, Gonasagrie; Mhlanga, Felix; Siva, Samantha; Bekker, Linda-Gail; Jeenarain, Nitesha; Gaffoor, Zakir; Martinson, Francis; Makanani, Bonus; Naidoo, Sarita; Pather, Arendevi; Phillip, Jessica; Husnik, Marla J.; van der Straten, Ariane; Soto-Torres, Lydia; Baeten, Jared

    2015-01-01

    Introduction Women in sub-Saharan Africa are a priority population for evaluation of new biomedical HIV-1 prevention strategies. Antiretroviral pre-exposure prophylaxis is a promising prevention approach; however, clinical trials among young women using daily or coitally-dependent products have found low adherence. Antiretroviral-containing vaginal microbicide rings, which release medication over a month or longer, may reduce these adherence challenges. Methods ASPIRE (A Study to Prevent Infection with a Ring for Extended Use) is a phase III, randomized, double-blind, placebo-controlled trial testing the safety and effectiveness of a vaginal ring containing the non-nucleoside reverse transcriptase inhibitor dapivirine for prevention of HIV-1 infection. We describe the baseline characteristics of African women enrolled in the ASPIRE trial. Results Between August 2012 and June 2014, 5516 women were screened and 2629 HIV-1 seronegative women between 18–45 years of age were enrolled from 15 research sites in Malawi, South Africa, Uganda, and Zimbabwe. The median age was 26 years (IQR 22–31) and the majority (59%) were unmarried. Nearly 100% of participants reported having a primary sex partner in the prior three months but 43% did not know the HIV-1 status of their primary partner; 17% reported additional concurrent partners. Nearly two-thirds (64%) reported having disclosed to primary partners about planned vaginal ring use in the trial. Sexually transmitted infections were prevalent: 12% had Chlamydia trachomatis, 7% Trichomonas vaginalis, 4% Neisseria gonorrhoeae, and 1% syphilis. Conclusions African HIV-1 seronegative women at risk of HIV -1 infection were successfully enrolled into a phase III trial of dapivirine vaginal ring for HIV-1 prevention. PMID:26061040

  11. Structural studies of series HIV-1 nonnucleoside reverse transcriptase inhibitors 1-(2,6-difluorobenzyl)-2-(2,6-difluorophenyl)-benzimidazoles with different 4-substituents

    NASA Astrophysics Data System (ADS)

    Ziółkowska, Natasza E.; Michejda, Christopher J.; Bujacz, Grzegorz D.

    2010-03-01

    Over the past 10 years, several anti-viral drugs have become available to fight the HIV infection. Antiretroviral treatment reduces the mortality of AIDS. Nonnucleoside inhibitors of HIV-1 reverse transcriptase are specific and potentially nontoxic drugs against AIDS. The crystal structures of five nonnucleoside inhibitors of HIV-1 reverse transcriptase are presented here. The structural parameters, especially those describing the angular orientation of the π-electron systems and influencing biological activity, were determined for all of the investigated inhibitors. The chemical character and orientation of the substituent at C4 position of the benzimidazole moiety substantially influences the anti-viral activity. The structural data of the investigated inhibitors is a good basis for modeling enzyme-inhibitor interactions for structure-assisted drug design.

  12. Inhibition of the ribonuclease H activity of HIV-1 reverse transcriptase by GSK5750 correlates with slow enzyme-inhibitor dissociation.

    PubMed

    Beilhartz, Greg L; Ngure, Marianne; Johns, Brian A; DeAnda, Felix; Gerondelis, Peter; Götte, Matthias

    2014-06-06

    Compounds that efficiently inhibit the ribonuclease (RNase) H activity of the human immunodeficiency virus type 1 (HIV-1) reverse transcriptase (RT) have yet to be developed. Here, we demonstrate that GSK5750, a 1-hydroxy-pyridopyrimidinone analog, binds to the enzyme with an equilibrium dissociation constant (K(d)) of ~400 nM. Inhibition of HIV-1 RNase H is specific, as DNA synthesis is not affected. Moreover, GSK5750 does not inhibit the activity of Escherichia coli RNase H. Order-of-addition experiments show that GSK5750 binds to the free enzyme in an Mg(2+)-dependent fashion. However, as reported for other active site inhibitors, binding of GSK5750 to a preformed enzyme-substrate complex is severely compromised. The bound nucleic acid prevents access to the RNase H active site, which represents a possible biochemical hurdle in the development of potent RNase H inhibitors. Previous studies suggested that formation of a complex with the prototypic RNase H inhibitor β-thujaplicinol is slow, and, once formed, it dissociates rapidly. This unfavorable kinetic behavior can limit the potency of RNase H active site inhibitors. Although the association kinetics of GSK5750 remains slow, our data show that this compound forms a long lasting complex with HIV-1 RT. We conclude that slow dissociation of the inhibitor and HIV-1 RT improves RNase H active site inhibitors and may circumvent the obstacle posed by the inability of these compounds to bind to a preformed enzyme-substrate complex.

  13. The performance of reverse transcriptase assay for the estimation of the plasma viral load in HIV-1 and HIV-2 infections.

    PubMed

    Padaki, Priyadarshini A; Sachithanandham, Jaiprasath; Isaac, Rita; Ramalingam, Veena V; Abraham, Ooriapadickal C; Pulimood, Susanne A; Kannangai, Rajesh

    2016-01-01

    Viral load testing for human immunodeficiency virus 1 (HIV-1) in resource-poor settings continues to be a challenge. Although antiretroviral therapy (ART) is being made available in developing countries, monitoring of viral load is not being done on a regular basis. The purpose of this study was to assess the utility of Cavidi version 3.0, which measures the plasma reverse transcriptase (RT) activity and compare its performance with molecular HIV viral load assays. In all, 125 HIV-1 and 13 HIV-2 positive samples were analyzed. The overall sensitivity of the assay was 86.8% and 94.1% for viral load >1000 copies/ml measured by Qiagen Artus HIV-1 RG RT PCR and Abbott RealTime HIV-1 PCR assays, respectively. Compared with the routine molecular viral load assays, Cavidi version 3.0 is inexpensive, user-friendly, the expenditure on infrastructure is minimal, and it can be used for monitoring of both HIV types.

  14. A protein ballet around the viral genome orchestrated by HIV-1 reverse transcriptase leads to an architectural switch: from nucleocapsid-condensed RNA to Vpr-bridged DNA.

    PubMed

    Lyonnais, Sébastien; Gorelick, Robert J; Heniche-Boukhalfa, Fatima; Bouaziz, Serge; Parissi, Vincent; Mouscadet, Jean-François; Restle, Tobias; Gatell, Jose Maria; Le Cam, Eric; Mirambeau, Gilles

    2013-02-01

    HIV-1 reverse transcription is achieved in the newly infected cell before viral DNA (vDNA) nuclear import. Reverse transcriptase (RT) has previously been shown to function as a molecular motor, dismantling the nucleocapsid complex that binds the viral genome as soon as plus-strand DNA synthesis initiates. We first propose a detailed model of this dismantling in close relationship with the sequential conversion from RNA to double-stranded (ds) DNA, focusing on the nucleocapsid protein (NCp7). The HIV-1 DNA-containing pre-integration complex (PIC) resulting from completion of reverse transcription is translocated through the nuclear pore. The PIC nucleoprotein architecture is poorly understood but contains at least two HIV-1 proteins initially from the virion core, namely integrase (IN) and the viral protein r (Vpr). We next present a set of electron micrographs supporting that Vpr behaves as a DNA architectural protein, initiating multiple DNA bridges over more than 500 base pairs (bp). These complexes are shown to interact with NCp7 bound to single-stranded nucleic acid regions that are thought to maintain IN binding during dsDNA synthesis, concurrently with nucleocapsid complex dismantling. This unexpected binding of Vpr conveniently leads to a compacted but filamentous folding of the vDNA that should favor its nuclear import. Finally, nucleocapsid-like aggregates engaged in dsDNA synthesis appear to efficiently bind to F-actin filaments, a property that may be involved in targeting complexes to the nuclear envelope. More generally, this article highlights unique possibilities offered by in vitro reconstitution approaches combined with macromolecular imaging to gain insights into the mechanisms that alter the nucleoprotein architecture of the HIV-1 genome, ultimately enabling its insertion into the nuclear chromatin.

  15. Development of a series of 3-hydroxyquinolin-2(1H)-ones as selective inhibitors of HIV-1 reverse transcriptase associated RNase H activity.

    PubMed

    Suchaud, Virginie; Bailly, Fabrice; Lion, Cédric; Tramontano, Enzo; Esposito, Francesca; Corona, Angela; Christ, Frauke; Debyser, Zeger; Cotelle, Philippe

    2012-06-15

    We report herein the synthesis of a series of 3-hydroxyquinolin-2(1H)-one derivatives. Esters and amide groups were introduced at position 4 of the basis scaffold and some modulations of the benzenic moiety were performed. Most compounds presented selective inhibitory properties in the 10-20 μM range against HIV-1 reverse transcriptase associated ribonuclease H activity, without affecting the integrase and reverse transcriptase DNA polymerase activities. Unfortunately all tested compounds exhibited high cellular cytotoxicity in cell culture which limited their applications as antiviral agents.

  16. Analysis of the Zidovudine Resistance Mutations T215Y, M41L, and L210W in HIV-1 Reverse Transcriptase.

    PubMed

    Boyer, Paul L; Das, Kalyan; Arnold, Eddy; Hughes, Stephen H

    2015-12-01

    Although anti-human immunodeficiency virus type 1 (HIV-1) therapies have become more sophisticated and more effective, drug resistance continues to be a major problem. Zidovudine (azidothymidine; AZT) was the first nucleoside reverse transcriptase (RT) inhibitor (NRTI) approved for the treatment of HIV-1 infections and is still being used, particularly in the developing world. This drug targets the conversion of single-stranded RNA to double-stranded DNA by HIV-1 RT. However, resistance to the drug quickly appeared both in viruses replicating in cells in culture and in patients undergoing AZT monotherapy. The primary resistance pathway selects for mutations of T215 that change the threonine to either a tyrosine or a phenylalanine (T215Y/F); this resistance pathway involves an ATP-dependent excision mechanism. The pseudo-sugar ring of AZT lacks a 3' OH; RT incorporates AZT monophosphate (AZTMP), which blocks the end of the viral DNA primer. AZT-resistant forms of HIV-1 RT use ATP in an excision reaction to unblock the 3' end of the primer strand, allowing its extension by RT. The T215Y AZT resistance mutation is often accompanied by two other mutations, M41L and L210W. In this study, the roles of these mutations, in combination with T215Y, were examined to determine whether they affect polymerization and excision by HIV-1 RT. The M41L mutation appears to help restore the DNA polymerization activity of RT containing the T215Y mutation and also enhances AZTMP excision. The L210W mutation plays a similar role, but it enhances excision by RTs that carry the T215Y mutation when ATP is present at a low concentration.

  17. Development, Validation and Clinical Evaluation of a Low Cost In-House HIV-1 Drug Resistance Genotyping Assay for Indian Patients

    PubMed Central

    Acharya, Arpan; Vaniawala, Salil; Shah, Parth; Misra, Rabindra Nath; Wani, Minal; Mukhopadhyaya, Pratap N.

    2014-01-01

    Human Immunodeficiency Virus-1 (HIV-1) drug resistance genotyping assay is a part of clinical management of HIV-1 positive individuals under treatment with highly active antiretroviral therapy (HAART). Routine monitoring of drug resistance mutations in resource limited settings like India is not possible due to high cost of commercial drug resistance assays. In this study we developed an in-house, cost effective HIV-1 drug resistance genotyping assay for Indian patients and validated it against the US-FDA-approved ViroSeq HIV-1 drug resistance testing system. A reference panel of 20 clinical samples was used to develop and validate the assay against ViroSeq HIV-1 drug resistance testing system which was subsequently used to genotype a clinical panel of 225 samples. The Stanford HIV database was used to identify drug resistant mutations. The analytical sensitivity of the assay was 1000 HIV-1 RNA copies/ml of plasma sample while precision and reproducibility was 99.68±0.16% and 99.76±0.18% respectively. One hundred and one drug resistant mutations were detected by the in-house assay compared to 104 by ViroSeq system in the reference panel. The assay had 91.55% success rate in genotyping the clinical panel samples and was able to detect drug resistant mutations related to nucleoside reverse transcriptase inhibitor (NRTI), non-nucleoside reverse-transcriptase inhibitor (NNRTI) as well as protease inhibitor (PI) classes of antiretroviral drugs. It was found to be around 71.9% more cost effective compared to ViroSeq genotyping system. This evaluation of the assay on the clinical panel demonstrates its potential for monitoring clinical HIV-1 drug resistance mutations and population-based surveillance in resource limited settings like India. PMID:25157501

  18. Role of the "helix clamp" in HIV-1 reverse transcriptase catalytic cycling as revealed by alanine-scanning mutagenesis.

    PubMed

    Beard, W A; Minnick, D T; Wade, C L; Prasad, R; Won, R L; Kumar, A; Kunkel, T A; Wilson, S H

    1996-05-24

    Residues 259-284 of HIV-1 reverse transcriptase exhibit sequence homology with other nucleic acid polymerases and have been termed the "helix clamp" (Hermann, T., Meier, T., Gotte, M., and Heumann, H. (1994) Nucleic Acids Res. 22, 4625-4633), since crystallographic evidence indicates these residues are part of two alpha-helices (alpha H and alpha I) that interact with DNA. Alanine-scanning mutagenesis has previously demonstrated that several residues in alpha H make important interactions with nucleic acid and influence frameshift fidelity. To define the role of alpha I (residues 278-286) during catalytic cycling, we performed systematic site-directed mutagenesis from position 277 through position 287 by changing each residue, one by one, to alanine. Each mutant protein was expressed and, except for L283A and T286A, was soluble. The soluble mutant enzymes were purified and characterized. In contrast to alanine mutants of alpha H, alanine substitution in alpha I did not have a significant effect on template.primer (T.P) binding as revealed by a lack of an effect on Km, T.P, Ki for 3'-azido-2',3'-dideoxythymidine 5'-triphosphate, koff, T.P and processivity. Consistent with these observations, the fidelity of the mutant enzymes was not influenced. However, alanine mutagenesis of alpha I lowered the apparent activity of every mutant relative to wild-type enzyme. Titration of two mutants exhibiting the lowest activity with T.P (L282A and R284A) demonstrated that these mutant enzymes could bind T.P stoichiometrically and tightly. In contrast, active site concentrations determined from "burst" experiments suggest that the lower activity is due to a smaller populations of enzyme bound productively to T.P. The putative electrostatic interactions between the basic side chains of the helix clamp and the DNA backbone are either very weak or kinetically silent. In contrast, interactions between several residues of alpha H and the DNA minor groove, 3-5 nucleotides from the 3

  19. Screening of the Pan-African natural product library identifies ixoratannin A-2 and boldine as novel HIV-1 inhibitors.

    PubMed

    Tietjen, Ian; Ntie-Kang, Fidele; Mwimanzi, Philip; Onguéné, Pascal Amoa; Scull, Margaret A; Idowu, Thomas Oyebode; Ogundaini, Abiodun Oguntuga; Meva'a, Luc Mbaze; Abegaz, Berhanu M; Rice, Charles M; Andrae-Marobela, Kerstin; Brockman, Mark A; Brumme, Zabrina L; Fedida, David

    2015-01-01

    The continued burden of HIV in resource-limited regions such as parts of sub-Saharan Africa, combined with adverse effects and potential risks of resistance to existing antiretroviral therapies, emphasize the need to identify new HIV inhibitors. Here we performed a virtual screen of molecules from the pan-African Natural Product Library, the largest collection of medicinal plant-derived pure compounds on the African continent. We identified eight molecules with structural similarity to reported interactors of Vpu, an HIV-1 accessory protein with reported ion channel activity. Using in vitro HIV-1 replication assays with a CD4+ T cell line and peripheral blood mononuclear cells, we confirmed antiviral activity and minimal cytotoxicity for two compounds, ixoratannin A-2 and boldine. Notably, ixoratannin A-2 retained inhibitory activity against recombinant HIV-1 strains encoding patient-derived mutations that confer resistance to protease, non-nucleoside reverse transcriptase, or integrase inhibitors. Moreover, ixoratannin A-2 was less effective at inhibiting replication of HIV-1 lacking Vpu, supporting this protein as a possible direct or indirect target. In contrast, boldine was less effective against a protease inhibitor-resistant HIV-1 strain. Both ixoratannin A-2 and boldine also inhibited in vitro replication of hepatitis C virus (HCV). However, BIT-225, a previously-reported Vpu inhibitor, demonstrated antiviral activity but also cytotoxicity in HIV-1 and HCV replication assays. Our work identifies pure compounds derived from African plants with potential novel activities against viruses that disproportionately afflict resource-limited regions of the world.

  20. Screening of the Pan-African Natural Product Library Identifies Ixoratannin A-2 and Boldine as Novel HIV-1 Inhibitors

    PubMed Central

    Tietjen, Ian; Ntie-Kang, Fidele; Mwimanzi, Philip; Onguéné, Pascal Amoa; Scull, Margaret A.; Idowu, Thomas Oyebode; Ogundaini, Abiodun Oguntuga; Meva’a, Luc Mbaze; Abegaz, Berhanu M.; Rice, Charles M.; Andrae-Marobela, Kerstin; Brockman, Mark A.; Brumme, Zabrina L.; Fedida, David

    2015-01-01

    The continued burden of HIV in resource-limited regions such as parts of sub-Saharan Africa, combined with adverse effects and potential risks of resistance to existing antiretroviral therapies, emphasize the need to identify new HIV inhibitors. Here we performed a virtual screen of molecules from the pan-African Natural Product Library, the largest collection of medicinal plant-derived pure compounds on the African continent. We identified eight molecules with structural similarity to reported interactors of Vpu, an HIV-1 accessory protein with reported ion channel activity. Using in vitro HIV-1 replication assays with a CD4+ T cell line and peripheral blood mononuclear cells, we confirmed antiviral activity and minimal cytotoxicity for two compounds, ixoratannin A-2 and boldine. Notably, ixoratannin A-2 retained inhibitory activity against recombinant HIV-1 strains encoding patient-derived mutations that confer resistance to protease, non-nucleoside reverse transcriptase, or integrase inhibitors. Moreover, ixoratannin A-2 was less effective at inhibiting replication of HIV-1 lacking Vpu, supporting this protein as a possible direct or indirect target. In contrast, boldine was less effective against a protease inhibitor-resistant HIV-1 strain. Both ixoratannin A-2 and boldine also inhibited in vitro replication of hepatitis C virus (HCV). However, BIT-225, a previously-reported Vpu inhibitor, demonstrated antiviral activity but also cytotoxicity in HIV-1 and HCV replication assays. Our work identifies pure compounds derived from African plants with potential novel activities against viruses that disproportionately afflict resource-limited regions of the world. PMID:25830320

  1. Identification of HIV-1 reverse transcriptase dual inhibitors by a combined shape-, 2D-fingerprint- and pharmacophore-based virtual screening approach.

    PubMed

    Distinto, Simona; Esposito, Francesca; Kirchmair, Johannes; Cardia, M Cristina; Gaspari, Marco; Maccioni, Elias; Alcaro, Stefano; Markt, Patrick; Wolber, Gerhard; Zinzula, Luca; Tramontano, Enzo

    2012-04-01

    We report the first application of ligand-based virtual screening (VS) methods for discovering new compounds able to inhibit both human immunodeficiency virus type 1 (HIV-1) reverse transcriptase (RT)-associated functions, DNA polymerase and ribonuclease H (RNase H) activities. The overall VS campaign consisted of two consecutive screening processes. In the first, the VS platform Rapid Overlay of Chemical Structures (ROCS) was used to perform in silico shape-based similarity screening on the NCI compounds database in which a hydrazone derivative, previously shown to inhibit the HIV-1 RT, was chosen. As a result, 34 hit molecules were selected and assayed on both RT-associated functions. In the second, the 4 most potent RT inhibitors identified were selected as queries for parallel VS performed by combining shape-based, 2D-fingerprint and 3D-pharmacophore VS methods. Overall, a set of molecules characterized by new different scaffolds were identified as novel inhibitors of both HIV-1 RT-associated activities in the low micromolar range.

  2. Interlaboratory concordance of DNA sequence analysis to detect reverse transcriptase mutations in HIV-1 proviral DNA. ACTG Sequencing Working Group. AIDS Clinical Trials Group.

    PubMed

    Demeter, L M; D'Aquila, R; Weislow, O; Lorenzo, E; Erice, A; Fitzgibbon, J; Shafer, R; Richman, D; Howard, T M; Zhao, Y; Fisher, E; Huang, D; Mayers, D; Sylvester, S; Arens, M; Sannerud, K; Rasheed, S; Johnson, V; Kuritzkes, D; Reichelderfer, P; Japour, A

    1998-11-01

    Thirteen laboratories evaluated the reproducibility of sequencing methods to detect drug resistance mutations in HIV-1 reverse transcriptase (RT). Blinded, cultured peripheral blood mononuclear cell pellets were distributed to each laboratory. Each laboratory used its preferred method for sequencing proviral DNA. Differences in protocols included: DNA purification; number of PCR amplifications; PCR product purification; sequence/location of PCR/sequencing primers; sequencing template; sequencing reaction label; sequencing polymerase; and use of manual versus automated methods to resolve sequencing reaction products. Five unknowns were evaluated. Thirteen laboratories submitted 39043 nucleotide assignments spanning codons 10-256 of HIV-1 RT. A consensus nucleotide assignment (defined as agreement among > or = 75% of laboratories) could be made in over 99% of nucleotide positions, and was more frequent in the three laboratory isolates. The overall rate of discrepant nucleotide assignments was 0.29%. A consensus nucleotide assignment could not be made at RT codon 41 in the clinical isolate tested. Clonal analysis revealed that this was due to the presence of a mixture of wild-type and mutant genotypes. These observations suggest that sequencing methodologies currently in use in ACTG laboratories to sequence HIV-1 RT yield highly concordant results for laboratory strains; however, more discrepancies among laboratories may occur when clinical isolates are tested.

  3. CNS-specific regulatory elements in brain-derived HIV-1 strains affect responses to latency-reversing agents with implications for cure strategies

    PubMed Central

    Gray, L R; Cowley, D; Welsh, C; Lu, H K; Brew, B J; Lewin, S R; Wesselingh, S L; Gorry, P R; Churchill, M J

    2016-01-01

    Latency-reversing agents (LRAs), including histone deacetylase inhibitors (HDACi), are being investigated as a strategy to eliminate latency in HIV-infected patients on suppressive antiretroviral therapy. The effectiveness of LRAs in activating latent infection in HIV strains derived from the central nervous system (CNS) is unknown. Here we show that CNS-derived HIV-1 strains possess polymorphisms within and surrounding the Sp transcription factor motifs in the long terminal repeat (LTR). These polymorphisms result in decreased ability of the transcription factor specificity protein 1 to bind CNS-derived LTRs, reducing the transcriptional activity of CNS-derived viruses. These mutations result in CNS-derived viruses being less responsive to activation by the HDACi panobinostat and romidepsin compared with lymphoid-derived viruses from the same subjects. Our findings suggest that HIV-1 strains residing in the CNS have unique transcriptional regulatory mechanisms, which impact the regulation of latency, the consideration of which is essential for the development of HIV-1 eradication strategies. PMID:26303660

  4. Synthesis, Biological Activity, and Crystal Structure of Potent Nonnucleoside Inhibitors of HIV-1 Reverse Transcriptase That Retain Activity against Mutant Forms of the Enzyme†

    PubMed Central

    Morningstar, Marshall L.; Roth, Thomas; Farnsworth, David W.; Smith, Marilyn Kroeger; Watson, Karen; Buckheit, Robert W.; Das, Kalyan; Zhang, Wanyi; Arnold, Eddy; Julias, John G.; Hughes, Stephen H.; Michejda, Christopher J.

    2010-01-01

    In an ongoing effort to develop novel and potent nonnucleoside HIV-1 reverse transcriptase (RT) inhibitors that are effective against the wild type (WT) virus and clinically observed mutants, 1,2-bis-substituted benzimidazoles were synthesized and tested. Optimization of the N1 and C2 positions of benzimidazole led to the development of 1-(2,6-difluorobenzyl)-2-(2,6-difluorophenyl)-4-methylbenzimidazole (1) (IC50 = 0.2 μM, EC50 = 0.44 μM, and TC50 ≥ 100 against WT). This paper describes how substitution on the benzimidazole ring profoundly affects activity. Substituents at the benzimidazole C4 dramatically enhanced potency, while at C5 or C6 substituents were generally detrimental or neutral to activity, respectively. A 7-methyl analogue did not inhibit HIV-1 RT. Determination of the crystal structure of 1 bound to RT provided the basis for accurate modeling of additional analogues, which were synthesized and tested. Several derivatives were nanomolar inhibitors of wild-type virus and were effective against clinically relevant HIV-1 mutants. PMID:17663538

  5. Prevalence of Transmitted Drug-Resistance Mutations and Polymorphisms in HIV-1 Reverse Transcriptase, Protease, and gp41 Sequences Among Recent Seroconverters in Southern Poland

    PubMed Central

    Smoleń-Dzirba, Joanna; Rosińska, Magdalena; Kruszyński, Piotr; Bratosiewicz-Wąsik, Jolanta; Wojtyczka, Robert; Janiec, Janusz; Szetela, Bartosz; Beniowski, Marek; Bociąga-Jasik, Monika; Jabłonowska, Elżbieta; Wąsik, Tomasz J.

    2017-01-01

    Background Monitoring of drug resistance-related mutations among patients with recent HIV-1 infection offers an opportunity to describe current patterns of transmitted drug resistance (TDR) mutations. Material/Methods Of 298 individuals newly diagnosed from March 2008 to February 2014 in southern Poland, 47 were deemed to have recent HIV-1 infection by the limiting antigen avidity immunoassay. Proviral DNA was amplified and sequenced in the reverse transcriptase, protease, and gp41 coding regions. Mutations were interpreted according to the Stanford Database algorithm and/or the International Antiviral Society USA guidelines. TDR mutations were defined according to the WHO surveillance list. Results Among 47 patients with recent HIV-1 infection only 1 (2%) had evidence of TDR mutation. No major resistance mutations were found, but the frequency of strains with ≥1 accessory resistance-associated mutations was high, at 98%. Accessory mutations were present in 11% of reverse transcriptase, 96% of protease, and 27% of gp41 sequences. Mean number of accessory resistance mutations in the reverse transcriptase and protease sequences was higher in viruses with no compensatory mutations in the gp41 HR2 domain than in strains with such mutations (p=0.031). Conclusions Despite the low prevalence of strains with TDR mutations, the frequency of accessory mutations was considerable, which may reflect the history of drug pressure among transmitters or natural viral genetic diversity, and may be relevant for future clinical outcomes. The accumulation of the accessory resistance mutations within the pol gene may restrict the occurrence of compensatory mutations related to enfuvirtide resistance or vice versa. PMID:28167814

  6. Prevalence of Transmitted Drug-Resistance Mutations and Polymorphisms in HIV-1 Reverse Transcriptase, Protease, and gp41 Sequences Among Recent Seroconverters in Southern Poland.

    PubMed

    Smoleń-Dzirba, Joanna; Rosińska, Magdalena; Kruszyński, Piotr; Bratosiewicz-Wąsik, Jolanta; Wojtyczka, Robert; Janiec, Janusz; Szetela, Bartosz; Beniowski, Marek; Bociąga-Jasik, Monika; Jabłonowska, Elżbieta; Wąsik, Tomasz J; The Cascade Collaboration In EuroCoord, And

    2017-02-07

    BACKGROUND Monitoring of drug resistance-related mutations among patients with recent HIV-1 infection offers an opportunity to describe current patterns of transmitted drug resistance (TDR) mutations. MATERIAL AND METHODS Of 298 individuals newly diagnosed from March 2008 to February 2014 in southern Poland, 47 were deemed to have recent HIV-1 infection by the limiting antigen avidity immunoassay. Proviral DNA was amplified and sequenced in the reverse transcriptase, protease, and gp41 coding regions. Mutations were interpreted according to the Stanford Database algorithm and/or the International Antiviral Society USA guidelines. TDR mutations were defined according to the WHO surveillance list. RESULTS Among 47 patients with recent HIV-1 infection only 1 (2%) had evidence of TDR mutation. No major resistance mutations were found, but the frequency of strains with ≥1 accessory resistance-associated mutations was high, at 98%. Accessory mutations were present in 11% of reverse transcriptase, 96% of protease, and 27% of gp41 sequences. Mean number of accessory resistance mutations in the reverse transcriptase and protease sequences was higher in viruses with no compensatory mutations in the gp41 HR2 domain than in strains with such mutations (p=0.031). CONCLUSIONS Despite the low prevalence of strains with TDR mutations, the frequency of accessory mutations was considerable, which may reflect the history of drug pressure among transmitters or natural viral genetic diversity, and may be relevant for future clinical outcomes. The accumulation of the accessory resistance mutations within the pol gene may restrict the occurrence of compensatory mutations related to enfuvirtide resistance or vice versa.

  7. A novel mutation, D404N, in the connection subdomain of reverse transcriptase of HIV-1 CRF08_BC subtype confers cross-resistance to NNRTIs

    PubMed Central

    Zhang, Xiao-Min; Wu, Hao; Zhang, Qiwei; Lau, Terrence Chi-Kong; Chu, Hin; Chen, Zhi-Wei; Jin, Dong-Yan; Zheng, Bo-Jian

    2015-01-01

    Objectives Growing evidence suggests that mutations in the connection domain of the HIV-1 reverse transcriptase (RT) can contribute to viral resistance to RT inhibitors. This work was designed to determine the effects of a novel mutation, D404N, in the connection subdomain of RT of HIV-1 CRF08_BC subtype on drug resistance, viral replication capacity (RC) and RT activity. Methods Mutation D404N, alone or together with the other reported mutations, was introduced into an HIV-1 CRF08_BC subtype infectious clone by site-directed mutagenesis. Viral susceptibility to nine RT inhibitors, viral RC and the DNA polymerase activity of viral RT of the constructed virus mutants were investigated. A modelling study using the server SWISS-MODEL was conducted to explore the possible structure-related drug resistance mechanism of the mutation D404N. Results Single mutations D404N and H221Y conferred low-level resistance to nevirapine, efavirenz, rilpivirine and zidovudine. Double mutations Y181C/D404N and Y181C/H221Y significantly reduced susceptibility to NNRTIs. The most pronounced resistance to NNRTIs was observed with the triple mutation Y181C/D404N/H221Y. Virus containing D404N as the only mutation displayed ∼50% RC compared with the WT virus. The modelling study suggested that the D404N mutation might abolish the hydrogen bonds between residues 404 and K30 in p51 or K431 in p66, leading to impaired RT subunit structure and enhanced drug resistance. Conclusions These results indicate that D404N is a novel NNRTI-associated mutation in the HIV-1 subtype CRF08_BC and provides information valuable for the monitoring of clinical RTI resistance. PMID:25637519

  8. Probing the molecular mechanism of action of the HIV-1 reverse transcriptase inhibitor 4'-ethynyl-2-fluoro-2'-deoxyadenosine (EFdA) using pre-steady-state kinetics.

    PubMed

    Muftuoglu, Yagmur; Sohl, Christal D; Mislak, Andrea C; Mitsuya, Hiroaki; Sarafianos, Stefan G; Anderson, Karen S

    2014-06-01

    The novel antiretroviral 4'-ethynyl-2-fluoro-2'-deoxyadenosine (EFdA) is a potent nucleoside HIV-1 reverse transcriptase (RT) inhibitor (NRTI). Unlike other FDA-approved NRTIs, EFdA contains a 3'-hydroxyl. Pre-steady-state kinetics showed RT preferred incorporating EFdA-TP over native dATP. Moreover, RT slowly inserted nucleotides past an EFdA-terminated primer, resulting in delayed chain termination with unaffected fidelity. This is distinct from KP1212, another 3'-hydroxyl-containing RT inhibitor considered to promote viral lethal mutagenesis. New mechanistic features of RT inhibition by EFdA are revealed.

  9. Minority HIV-1 resistant variants in recent infection and in patients who failed first-line antiretroviral therapy with no detectable resistance-associated mutations in Thailand.

    PubMed

    Le Nguyen, Hai; Pitakpolrat, Patrawadee; Sirivichayakul, Sunee; Delaugerre, Constance; Ruxrungtham, Kiat

    2012-05-01

    Through the Thai National AIDS Program, approximately 200,000 patients infected with HIV are on antiretroviral (ARV) therapy. Although studies have shown low prevalence of primary HIV-1 resistance transmission in Thailand and in Southeast Asia where subtype CRF01_AE is predominant, minority HIV-1 drug resistance has not been studied. Two groups of patients, whose conventional genotyping results showed no drug resistance-associated mutations, were investigated: 104 homosexual men recently infected with HIV-1, naïve to ARV treatment and 22 first-line non-nucleoside reverse transcriptase inhibitor (NNRTI)-based failure patients. Pyrosequencing (PSQ) assay was developed to detect and quantify minority Y181C and M184V variants from the patients' plasma samples. The sensitivity of PSQ to detect minority Y181C and M184V variants was approximately 1%. 1/104 (0.5%) and 3/101 (3%) samples were found harboring Y181C and M184V in the group of homosexual men recently infected with HIV-1. In patients with first-line treatment failure, one had a minority M184V mutation (4.5%). The prevalence of Y181C and M184V minority variants in homosexual men recently infected and naïve to treatment was low in Thailand. Systematic monitoring of primary resistance transmission in Thailand and this region is essential to guide whether genotypic resistance test is required prior to commencing the first-line highly active antiretroviral therapy (HAART).

  10. ONIOM-BSSE scheme for H⋯π system and applications on HIV-1 reverse transcriptase

    NASA Astrophysics Data System (ADS)

    Kuno, Mayuso; Hongkrengkai, Rattapon; Hannongbua, Supa

    2006-06-01

    Intermolecular interactions between ethanol and ethylene forming H⋯π complex systems were investigated using B3LYP, MP2 and ONIOM methods with a 6-31G(d,p) basis set. All binding energies were corrected using the counterpoise method of Boys-Bernardi approach. The ONIOM-BSSE scheme was used for the binding energy calculations on the H⋯π systems of ethanol-ethylene and HIV-1 RT/nevirapine complexes. The ONIOM results derived from this study suggest that the ONIOM-BSSE scheme provides reasonable results for investigating the H⋯π systems.

  11. HIV-1 genetic diversity and transmitted drug resistance frequency among Iranian treatment-naive, sexually infected individuals.

    PubMed

    Vahabpour, Rouhollah; Bokharaei-Salim, Farah; Kalantari, Saeed; Garshasbi, Saba; Monavari, Seyed Hamidreza; Esghaei, Maryam; Memarnejadian, Arash; Fakhim, Atousa; Keyvani, Hossein

    2017-02-08

    In recent years, the patterns of human immunodeficiency virus 1 (HIV-1) transmission in Iran have been changing gradually from drug injection to unprotected sexual contact. This study sought to investigate the phylogenetic trends and characteristics of transmitted drug resistance (TDR) mutations of HIV-1 in a population that is mainly infected through homo/heterosexual contacts. Sixty newly diagnosed antiretroviral-naive individuals with HIV infection living in Tehran were recruited to this survey, and among them, 42 subjects were established to be infected through sexual intercourse. Following amplification and sequencing of the main part of the HIV-1 pol region, phylogenetic and drug-resistance mutation (DRM) analysis was successfully performed on these 42 patients. Phylogenetic analysis showed that the majority of the subjects were infected with subtype CRF35_AD (88%), followed by subtype B, with 7.1%, and subtype CRF01_AE, with 4.7%. A total of 7.1% of the subjects were found to be infected with HIV-1 variants with surveillance drug-resistant mutations (SDRMs) according to the last world health organisation (WHO) algorithm. All of the identified SDRMs belonged to the non-nucleoside reverse transcriptase inhibitors (NNRTIs) class, including K103 N and V106A, which were found in three patients. Two minor HIV protease-inhibitor-related mutations (L10I and G73S) were detected in two patients, but these mutations are not included in the WHO SDRMs list. The dominance of HIV-1 subtype CRF35_AD was observed among subjects of this study who were infected through sexual contact. The moderate prevalence of SDRMs (7.1%) in this population emphasises the fact that the risk of treatment failure in HIV-infected individuals might increase in the future, and preventive measures should be considered by health authorities.

  12. Neutralizing antibody and anti-retroviral drug sensitivities of HIV-1 isolates resistant to small molecule CCR5 inhibitors

    SciTech Connect

    Pugach, Pavel; Ketas, Thomas J.; Michael, Elizabeth; Moore, John P.

    2008-08-01

    The small molecule CCR5 inhibitors are a new class of drugs for treating infection by human immunodeficiency virus type 1 (HIV-1). They act by binding to the CCR5 co-receptor and preventing its use during HIV-1-cell fusion. Escape mutants can be raised against CCR5 inhibitors in vitro and will arise when these drugs are used clinically. Here, we have assessed the responses of CCR5 inhibitor-resistant viruses to other anti-retroviral drugs that act by different mechanisms, and their sensitivities to neutralizing antibodies (NAbs). The rationale for the latter study is that the resistance pathway for CCR5 inhibitors involves changes in the HIV-1 envelope glycoproteins (Env), which are also targets for NAbs. The escape mutants CC101.19 and D1/85.16 were selected for resistance to AD101 and vicriviroc (VVC), respectively, from the primary R5 HIV-1 isolate CC1/85. Each escape mutant was cross-resistant to other small molecule CCR5 inhibitors (aplaviroc, maraviroc, VVC, AD101 and CMPD 167), but sensitive to protein ligands of CCR5: the modified chemokine PSC-RANTES and the humanized MAb PRO-140. The resistant viruses also retained wild-type sensitivity to the nucleoside reverse transcriptase inhibitor (RTI) zidovudine, the non-nucleoside RTI nevirapine, the protease inhibitor atazanavir and other attachment and fusion inhibitors that act independently of CCR5 (BMS-806, PRO-542 and enfuvirtide). Of note is that the escape mutants were more sensitive than the parental CC1/85 isolate to a subset of neutralizing monoclonal antibodies and to some sera from HIV-1-infected people, implying that sequence changes in Env that confer resistance to CCR5 inhibitors can increase the accessibility of some NAb epitopes. The need to preserve NAb resistance may therefore be a constraint upon how escape from CCR5 inhibitors occurs in vivo.

  13. Neutralizing antibody and anti-retroviral drug sensitivities of HIV-1 isolates resistant to small molecule CCR5 inhibitors

    PubMed Central

    Pugach, Pavel; Ketas, Thomas J.; Michael, Elizabeth; Moore, John P.

    2008-01-01

    The small molecule CCR5 inhibitors are a new class of drugs for treating infection by human immunodeficiency virus type 1 (HIV-1). They act by binding to the CCR5 co-receptor and preventing its use during HIV-1-cell fusion. Escape mutants can be raised against CCR5 inhibitors in vitro and will arise when these drugs are used clinically. Here, we have assessed the responses of CCR5 inhibitor-resistant viruses to other anti-retroviral drugs that act by different mechanisms, and their sensitivities to neutralizing antibodies (NAbs). The rationale for the latter study is that the resistance pathway for CCR5 inhibitors involves changes in the HIV-1 envelope glycoproteins (Env), which are also targets for NAbs. The escape mutants CC101.19 and D1/85.16 were selected for resistance to AD101 and vicriviroc (VVC), respectively, from the primary R5 HIV-1 isolate CC1/85. Each escape mutant was cross resistant to other small molecule CCR5 inhibitors (aplaviroc, maraviroc, VVC, AD101 and CMPD 167), but sensitive to protein ligands of CCR5: the modified chemokine PSC-RANTES and the humanized MAb PRO 140. The resistant viruses also retained wild-type sensitivity to the nucleoside reverse transcriptase inhibitor (RTI) zidovudine, the non-nucleoside RTI nevirapine, the protease inhibitor atazanavir and other attachment and fusion inhibitors that act independently of CCR5 (BMS-806, PRO-542 and enfuvirtide). Of note is that the escape mutants were more sensitive than the parental CC1/85 isolate to a subset of neutralizing monoclonal antibodies and to some sera from HIV-1-infected people, implying that sequence changes in Env that confer resistance to CCR5 inhibitors can increase the accessibility of some NAb epitopes. The need to preserve NAb resistance may therefore be a constraint upon how escape from CCR5 inhibitors occurs in vivo. PMID:18519143

  14. Yeast tRNA(Phe) expressed in human cells can be selected by HIV-1 for use as a reverse transcription primer.

    PubMed

    Kelly, Nathan J; Morrow, Casey D

    2003-09-01

    All naturally occurring human immune deficiency viruses (HIV-1) select and use tRNA(Lys,3) as the primer for reverse transcription. Studies to elucidate the mechanism of tRNA selection from the intracellular milieu have been hampered due to the difficulties in manipulating the endogenous levels of tRNA(Lys,3). We have previously described a mutant HIV-1 with a primer binding site (PBS) complementary to yeast tRNA(Phe) (psHIV-Phe) that relies on transfection of yeast tRNA(Phe) for infectivity. To more accurately recapitulate the selection process, a cDNA was designed for the intracellular expression of the yeast tRNA(Phe). Increasing amounts of the plasmid encoding tRNA(Phe) resulted in a corresponding increase in levels of yeast tRNA(Phe) in the cell. The yeast tRNA(Phe) isolated from cells transfected with the cDNA for yeast tRNA(Phe), or in the cell lines expressing yeast tRNA(Phe), were aminoacylated, indicating that the expressed yeast tRNA(Phe) was incorporated into tRNA biogenesis pathways and translation. Increasing the cytoplasmic levels of tRNA(Phe) resulted in increased encapsidation of tRNA(Phe) in viruses with a PBS complementary to tRNA(Phe) (psHIV-Phe) or tRNA(Lys,3) (wild-type HIV-1). Production of infectious psHIV-Phe was dependent on the amount of cotransfected tRNA(Phe) cDNA. Increasing amounts of plasmids encoding yeast tRNA(Phe) produced an increase of infectious psHIV-Phe that plateaued at a level lower than that from the transfection of the wild-type genome, which uses tRNA(Lys,3) as the primer for reverse transcription. Cell lines were generated that expressed yeast tRNA(Phe) at levels approximately 0.1% of that for tRNA(Lys,3). Even with this reduced level of yeast tRNA(Phe), the cell lines complemented psHIV-Phe over background levels. The results of these studies demonstrate that intracellular levels of primer tRNA can have a direct effect on HIV-1 infectivity and further support the role for PBS-tRNA complementarity in the primer

  15. Perinatal acquisition of drug-resistant HIV-1 infection: mechanisms and long-term outcome

    PubMed Central

    Delaugerre, Constance; Chaix, Marie-Laure; Blanche, Stephane; Warszawski, Josiane; Cornet, Dorine; Dollfus, Catherine; Schneider, Veronique; Burgard, Marianne; Faye, Albert; Mandelbrot, Laurent; Tubiana, Roland; Rouzioux, Christine

    2009-01-01

    Background Primary-HIV-1-infection in newborns that occurs under antiretroviral prophylaxis that is a high risk of drug-resistance acquisition. We examine the frequency and the mechanisms of resistance acquisition at the time of infection in newborns. Patients and Methods We studied HIV-1-infected infants born between 01 January 1997 and 31 December 2004 and enrolled in the ANRS-EPF cohort. HIV-1-RNA and HIV-1-DNA samples obtained perinatally from the newborn and mother were subjected to population-based and clonal analyses of drug resistance. If positive, serial samples were obtained from the child for resistance testing. Results Ninety-two HIV-1-infected infants were born during the study period. Samples were obtained from 32 mother-child pairs and from another 28 newborns. Drug resistance was detected in 12 newborns (20%): drug resistance to nucleoside reverse transcriptase inhibitors was seen in 10 cases, non-nucleoside reverse transcriptase inhibitors in two cases, and protease inhibitors in one case. For 9 children, the detection of the same resistance mutations in mothers' samples (6 among 10 available) and in newborn lymphocytes (6/8) suggests that the newborn was initially infected by a drug-resistant strain. Resistance variants were either transmitted from mother-to-child or selected during subsequent temporal exposure under suboptimal perinatal prophylaxis. Follow-up studies of the infants showed that the resistance pattern remained stable over time, regardless of antiretroviral therapy, suggesting the early cellular archiving of resistant viruses. The absence of resistance in the mother of the other three children (3/10) and neonatal lymphocytes (2/8) suggests that the newborns were infected by a wild-type strain without long-term persistence of resistance when suboptimal prophylaxis was stopped. Conclusion This study confirms the importance of early resistance genotyping of HIV-1-infected newborns. In most cases (75%), drug resistance was archived in

  16. Surveillance of HIV-1 pol transmitted drug resistance in acutely and recently infected antiretroviral drug-naïve persons in rural western Kenya

    PubMed Central

    Maman, David; Auma, Erick; Were, Kennedy; Fredrick, Harrison; Owiti, Prestone; Opollo, Valarie; Etard, Jean-François; Mukui, Irene; Kim, Andrea A.; Zeh, Clement

    2017-01-01

    HIV-1 transmitted drug resistance (TDR) is of increasing public health concern in sub-Saharan Africa with the rollout of antiretroviral (ARV) therapy. Such data are, however, limited in Kenya, where HIV-1 drug resistance testing is not routinely performed. From a population-based household survey conducted between September and November 2012 in rural western Kenya, we retrospectively assessed HIV-1 TDR baseline rates, its determinants, and genetic diversity among drug-naïve persons aged 15–59 years with acute HIV-1 infections (AHI) and recent HIV-1 infections (RHI) as determined by nucleic acid amplification test and both Limiting Antigen and BioRad avidity immunoassays, respectively. HIV-1 pol sequences were scored for drug resistance mutations using Stanford HIVdb and WHO 2009 mutation guidelines. HIV-1 subtyping was computed in MEGA6. Eighty seven (93.5%) of the eligible samples were successfully sequenced. Of these, 8 had at least one TDR mutation, resulting in a TDR prevalence of 9.2% (95% CI 4.7–17.1). No TDR was observed among persons with AHI (n = 7). TDR prevalence was 4.6% (95% CI 1.8–11.2) for nucleoside reverse transcriptase inhibitors (NRTIs), 6.9% (95% CI 3.2–14.2) for non- nucleoside reverse transcriptase inhibitors (NNRTIs), and 1.2% (95% CI 0.2–6.2) for protease inhibitors. Three (3.4% 95% CI 0.8–10.1) persons had dual-class NRTI/NNRTI resistance. Predominant TDR mutations in the reverse transcriptase included K103N/S (4.6%) and M184V (2.3%); only M46I/L (1.1%) occurred in the protease. All the eight persons were predicted to have different grades of resistance to the ARV regimens, ranging from potential low-level to high-level resistance. HIV-1 subtype distribution was heterogeneous: A (57.5%), C (6.9%), D (21.8%), G (2.3%), and circulating recombinant forms (11.5%). Only low CD4 count was associated with TDR (p = 0.0145). Our findings warrant the need for enhanced HIV-1 TDR monitoring in order to inform on population

  17. HIV-1 Latency-Reversing Agents Prostratin and Bryostatin-1 Induce Blood-Brain Barrier Disruption/Inflammation and Modulate Leukocyte Adhesion/Transmigration.

    PubMed

    Dental, Clélia; Proust, Alizé; Ouellet, Michel; Barat, Corinne; Tremblay, Michel J

    2017-02-01

    A shock-and-kill approach involving the simultaneous treatment of HIV-1-infected patients with latency-reversing agents (LRAs) and combination antiretroviral therapy was proposed as a means to eradicate viral reservoirs. Currently available LRAs cannot discriminate between HIV-1-infected and uninfected cells. Therefore, the risks and benefits of using broad-spectrum LRAs need to be carefully evaluated, particularly in the CNS, where inflammation and leukocyte transmigration must be tightly regulated. We used a real-time impedance-sensing system to dynamically record the impact of different classes of LRAs on the integrity of tight monolayers of the immortalized human cerebral microvascular endothelial cell line hCMEC/D3. Results show that prostratin and bryostatin-1 can significantly damage the integrity of an endothelial monolayer. Moreover, prostratin and bryostatin-1 induce secretion of some proinflammatory cytokines and an increase of ICAM-1 expression. Additional studies demonstrated that prostratin and bryostatin-1 also affect adhesion and transmigration of CD4(+) and CD8(+) T cells as well as monocytes in an in vitro human blood-brain barrier (BBB) model. Prostratin and bryostatin-1 could thus be considered as potent regulators of BBB permeability and inflammation that influence leukocyte transport across the BBB. Altogether, these findings contribute to a better understanding of the potential risks and benefits of using a shock-and-kill approach with LRAs on the normal physiological functions of the BBB.

  18. Chelation Motifs Affecting Metal-dependent Viral Enzymes: N′-acylhydrazone Ligands as Dual Target Inhibitors of HIV-1 Integrase and Reverse Transcriptase Ribonuclease H Domain

    PubMed Central

    Carcelli, Mauro; Rogolino, Dominga; Gatti, Anna; Pala, Nicolino; Corona, Angela; Caredda, Alessia; Tramontano, Enzo; Pannecouque, Christophe; Naesens, Lieve; Esposito, Francesca

    2017-01-01

    Human immunodeficiency virus type 1 (HIV-1) infection, still represent a serious global health emergency. The chronic toxicity derived from the current anti-retroviral therapy limits the prolonged use of several antiretroviral agents, continuously requiring the discovery of new antiviral agents with innovative strategies of action. In particular, the development of single molecules targeting two proteins (dual inhibitors) is one of the current main goals in drug discovery. In this contest, metal-chelating molecules have been extensively explored as potential inhibitors of viral metal-dependent enzymes, resulting in some important classes of antiviral agents. Inhibition of HIV Integrase (IN) is, in this sense, paradigmatic. HIV-1 IN and Reverse Transcriptase-associated Ribonuclease H (RNase H) active sites show structural homologies, with the presence of two Mg(II) cofactors, hence it seems possible to inhibit both enzymes by means of chelating ligands with analogous structural features. Here we present a series of N′-acylhydrazone ligands with groups able to chelate the Mg(II) hard Lewis acid ions in the active sites of both the enzymes, resulting in dual inhibitors with micromolar and even nanomolar activities. The most interesting identified N′-acylhydrazone analog, compound 18, shows dual RNase H-IN inhibition and it is also able to inhibit viral replication in cell-based antiviral assays in the low micromolar range. Computational modeling studies were also conducted to explore the binding attitudes of some model ligands within the active site of both the enzymes. PMID:28373864

  19. HIV-1 Reverse Transcriptase Still Remains a New Drug Target: Structure, Function, Classical Inhibitors, and New Inhibitors with Innovative Mechanisms of Actions

    PubMed Central

    Esposito, Francesca; Corona, Angela; Tramontano, Enzo

    2012-01-01

    During the retrotranscription process, characteristic of all retroviruses, the viral ssRNA genome is converted into integration-competent dsDNA. This process is accomplished by the virus-coded reverse transcriptase (RT) protein, which is a primary target in the current treatments for HIV-1 infection. In particular, in the approved therapeutic regimens two classes of drugs target RT, namely, nucleoside RT inhibitors (NRTIs) and nonnucleoside RT inhibitors (NNRTIs). Both classes inhibit the RT-associated polymerase activity: the NRTIs compete with the natural dNTP substrate and act as chain terminators, while the NNRTIs bind to an allosteric pocket and inhibit polymerization noncompetitively. In addition to these two classes, other RT inhibitors (RTIs) that target RT by distinct mechanisms have been identified and are currently under development. These include translocation-defective RTIs, delayed chain terminators RTIs, lethal mutagenesis RTIs, dinucleotide tetraphosphates, nucleotide-competing RTIs, pyrophosphate analogs, RT-associated RNase H function inhibitors, and dual activities inhibitors. This paper describes the HIV-1 RT function and molecular structure, illustrates the currently approved RTIs, and focuses on the mechanisms of action of the newer classes of RTIs. PMID:22778958

  20. An intravaginal ring for the simultaneous delivery of an HIV-1 maturation inhibitor and reverse transcriptase inhibitor for prophylaxis of HIV transmission

    PubMed Central

    Ugaonkar, Shweta R.; Clark, Justin T.; English, Lexie B.; Johnson, Todd J.; Buckheit, Karen W.; Bahde, Robert J.; Appella, Daniel H.; Buckheit, Robert W.; Kiser, Patrick F.

    2016-01-01

    Nucleocapsid 7 (NCp7) inhibitors have been investigated extensively for their role in impeding the function of HIV-1 replication machinery and their ability to directly inactivate the virus. A class of NCp7 zinc finger inhibitors, S-acyl-2-mercaptobenzamide thioesters (SAMTs), was investigated for topical drug delivery. SAMTs are inherently unstable due to their hydrolytically labile thioester bond thus requiring formulation approaches that can lend stability. We describe the delivery of N-[2-(3,4,5-trimethoxybenzoylthio)benzoyl]-β-alanine amide (SAMT-10), as a single agent antiretroviral (ARV) therapeutic and in combination with the HIV-1 reverse transcriptase inhibitor pyrimidinedione IQP-0528, from a hydrophobic polyether urethane (PEU) intravaginal ring (IVR) for a month. The physicochemical stability of the ARV-loaded IVRs was confirmed after 3 months at 40°C/75% relative humidity (RH). In vitro, 25 ± 3 mg/IVR of SAMT-10 and 86 ± 13 mg/IVR of IQP-0528 were released. No degradation of the hydrolytically labile SAMT-10 was observed within the matrix. The combination of ARVs had synergistic antiviral activity when tested in in vitro cell based assays. Toxicological evaluations performed on an organotypic EpiVaginal™ tissue model demonstrated a lack of formulation toxicity. Overall, SAMT-10 and IQP-0528 were formulated in a stable PEU IVR for sustained release. Our findings support the need for further preclinical evaluation. PMID:26149293

  1. Drug resistance-related mutations T369V/I in the connection subdomain of HIV-1 reverse transcriptase severely impair viral fitness.

    PubMed

    Wang, Zheng; Zhang, Junli; Li, Fan; Ji, Xiaolin; Liao, Lingjie; Ma, Liying; Xing, Hui; Feng, Yi; Li, Dan; Shao, Yiming

    2017-03-06

    Fitness is a key parameter in the measurement of transmission capacity of individual drug-resistant HIV. Drug-resistance related mutations (DRMs) T369V/I and A371V in the connection subdomain (CN) of reverse transcriptase (RT) occur at higher frequencies in the individuals experiencing antiretroviral therapy failure. Here, we evaluated the effects of T369V/I and A371V on viral fitness, in the presence or in the absence of thymidine analogue resistance-associated mutations (TAMs) and assessed the effect of potential RT structure-related mechanism on change in viral fitness. Mutations T369V/I, A371V, alone or in combination with TAMs were introduced into a modified HIV-1 infectious clone AT1 by site-directed mutagenesis. Then, experiments on mutant and wild-type virus AT2 were performed separately using a growth-competition assay, and then the relative fitness was calculated. Structural analysis of RT was conducted using Pymol software. Results showed that T369V/I severely impaired the relative virus fitness, and A371V compensated for the viral fitness reduction caused by TAMs. Structural modeling of RT suggests that T369V/I substitutions disrupt powerful hydrogen bonds formed by T369 and V365 in p51 and p66. This study indicates that the secondary DRMs within CN might efficiently damage viral fitness, and provides valuable information for clinical surveillance and prevention of HIV-1 strains carrying these DRMs.

  2. Cell-dependent gag mutants of HIV-1 are crucially defective at the stage of uncoating/reverse transcription in non-permissive cells.

    PubMed

    Koh, K; Miyaura, M; Yoshida, A; Sakurai, A; Fujita, M; Adachi, A

    2000-10-01

    We have previously shown that some of the human immunodeficiency virus type 1 (HIV-1) gag matrix (MA), capsid (CA), and nucleocapsid (NC) mutants display host-cell-dependent replication potential, and that they are defective at the early phase of the virus replication cycle in non-permissive cells. To determine the defective replication stage of the cell-dependent mutants precisely, the processes of virus entry into cells and virus DNA synthesis were monitored by the highly sensitive enzyme-linked immunosorbent assay and polymerase chain reaction amplification analysis. The results obtained indicated that all the cell-dependent MA, CA and NC mutants are defective at the stage of uncoating/reverse transcription, and that a cellular factor(s) is involved in this process.

  3. Hyperthermia Stimulates HIV-1 Replication

    PubMed Central

    Roesch, Ferdinand; Meziane, Oussama; Kula, Anna; Nisole, Sébastien; Porrot, Françoise; Anderson, Ian; Mammano, Fabrizio; Fassati, Ariberto; Marcello, Alessandro; Benkirane, Monsef; Schwartz, Olivier

    2012-01-01

    HIV-infected individuals may experience fever episodes. Fever is an elevation of the body temperature accompanied by inflammation. It is usually beneficial for the host through enhancement of immunological defenses. In cultures, transient non-physiological heat shock (42–45°C) and Heat Shock Proteins (HSPs) modulate HIV-1 replication, through poorly defined mechanisms. The effect of physiological hyperthermia (38–40°C) on HIV-1 infection has not been extensively investigated. Here, we show that culturing primary CD4+ T lymphocytes and cell lines at a fever-like temperature (39.5°C) increased the efficiency of HIV-1 replication by 2 to 7 fold. Hyperthermia did not facilitate viral entry nor reverse transcription, but increased Tat transactivation of the LTR viral promoter. Hyperthermia also boosted HIV-1 reactivation in a model of latently-infected cells. By imaging HIV-1 transcription, we further show that Hsp90 co-localized with actively transcribing provirus, and this phenomenon was enhanced at 39.5°C. The Hsp90 inhibitor 17-AAG abrogated the increase of HIV-1 replication in hyperthermic cells. Altogether, our results indicate that fever may directly stimulate HIV-1 replication, in a process involving Hsp90 and facilitation of Tat-mediated LTR activity. PMID:22807676

  4. Biochemical characterization of a multi-drug resistant HIV-1 subtype AG reverse transcriptase: antagonism of AZT discrimination and excision pathways and sensitivity to RNase H inhibitors

    PubMed Central

    Schneider, Anna; Corona, Angela; Spöring, Imke; Jordan, Mareike; Buchholz, Bernd; Maccioni, Elias; Di Santo, Roberto; Bodem, Jochen; Tramontano, Enzo; Wöhrl, Birgitta M.

    2016-01-01

    We analyzed a multi-drug resistant (MR) HIV-1 reverse transcriptase (RT), subcloned from a patient-derived subtype CRF02_AG, harboring 45 amino acid exchanges, amongst them four thymidine analog mutations (TAMs) relevant for high-level AZT (azidothymidine) resistance by AZTMP excision (M41L, D67N, T215Y, K219E) as well as four substitutions of the AZTTP discrimination pathway (A62V, V75I, F116Y and Q151M). In addition, K65R, known to antagonize AZTMP excision in HIV-1 subtype B was present. Although MR-RT harbored the most significant amino acid exchanges T215Y and Q151M of each pathway, it exclusively used AZTTP discrimination, indicating that the two mechanisms are mutually exclusive and that the Q151M pathway is obviously preferred since it confers resistance to most nucleoside inhibitors. A derivative was created, additionally harboring the TAM K70R and the reversions M151Q as well as R65K since K65R antagonizes excision. MR-R65K-K70R-M151Q was competent of AZTMP excision, whereas other combinations thereof with only one or two exchanges still promoted discrimination. To tackle the multi-drug resistance problem, we tested if the MR-RTs could still be inhibited by RNase H inhibitors. All MR-RTs exhibited similar sensitivity toward RNase H inhibitors belonging to different inhibitor classes, indicating the importance of developing RNase H inhibitors further as anti-HIV drugs. PMID:26850643

  5. Non-nucleoside structures retain full anti-HCMV potency of the dideoxy furanopyrimidine family.

    PubMed

    Bidet, Olivier; McGuigan, Christopher; Snoeck, Robert; Andrei, Graciela; De Clercq, Erik; Balzarini, Jan

    2004-11-01

    We have recently reported that 2',3'dideoxy analogues of our exquisitely potent anti-VZV furanopyrimidine deoxynucleosides are shifted to selective anti-HCMV agents. We now find that the fully deoxygenated 2',3',5'-trideoxy analogue is fully antivirally active. This is taken as proof that these agents act by a novel non-nucleoside mechanism of action.

  6. Nevirapine and Efavirenz Elicit Different Changes in Lipid Profiles in Antiretroviral- Therapy-Naive Patients Infected with HIV-1

    PubMed Central

    2004-01-01

    ABSTRACT Background Patients infected with HIV-1 initiating antiretroviral therapy (ART) containing a non-nucleoside reverse transcriptase inhibitor (NNRTI) show presumably fewer atherogenic lipid changes than those initiating most ARTs containing a protease inhibitor. We analysed whether lipid changes differed between the two most commonly used NNRTIs, nevirapine (NVP) and efavirenz (EFV). Methods and Findings Prospective analysis of lipids and lipoproteins was performed in patients enrolled in the NVP and EFV treatment groups of the 2NN study who remained on allocated treatment during 48 wk of follow-up. Patients were allocated to NVP (n = 417), or EFV (n = 289) in combination with stavudine and lamivudine. The primary endpoint was percentage change over 48 wk in high-density lipoprotein cholesterol (HDL-c), total cholesterol (TC), TC:HDL-c ratio, non-HDL-c, low-density lipoprotein cholesterol, and triglycerides. The increase of HDL-c was significantly larger for patients receiving NVP (42.5%) than for patients receiving EFV (33.7%; p = 0.036), while the increase in TC was lower (26.9% and 31.1%, respectively; p = 0.073), resulting in a decrease of the TC:HDL-c ratio for patients receiving NVP (−4.1%) and an increase for patients receiving EFV (+5.9%; p < 0.001). The increase of non-HDL-c was smaller for patients receiving NVP (24.7%) than for patients receiving EFV (33.6%; p = 0.007), as were the increases of triglycerides (20.1% and 49.0%, respectively; p < 0.001) and low-density lipoprotein cholesterol (35.0% and 40.0%, respectively; p = 0.378). These differences remained, or even increased, after adjusting for changes in HIV-1 RNA and CD4+ cell levels, indicating an effect of the drugs on lipids over and above that which may be explained by suppression of HIV-1 infection. The increases in HDL-c were of the same order of magnitude as those seen with the use of the investigational HDL-c-increasing drugs. Conclusion NVP-containing ART shows larger increases in

  7. Inhibition of HIV-1 and M-MLV reverse transcriptases by a major polyphenol (3,4,5 tri-O-galloylquinic acid) present in the leaves of the South African resurrection plant, Myrothamnus flabellifolia.

    PubMed

    Kamng'ona, Arox; Moore, John P; Lindsey, George; Brandt, Wolf

    2011-12-01

    A polyphenol-rich extract of the medicinal resurrection plant Myrothamnus flabellifolia was shown to inhibit viral (M-MLV and HIV-1) reverse transcriptases. Fractionation and purification of this extract yielded the major polyphenol, 3,4,5 tri-O-galloylquinic acid, as the main active compound. A sensitive, ethidium bromide based fluorescent assay, was developed and used to monitor the kinetics of M-MLV and HIV-1 reverse transcriptases in the presence and absence of 3,4,5 tri-O-galloylquinic acid. Kinetic monitoring of these enzymes in the presence of 3,4,5 tri-O-galloylquinic acid revealed non-competitive inhibition with IC(50) values of 5 μM and 34 μM for the M-MLV and HIV-1 enzymes, respectively. We propose that 3,4,5 tri-O-galloylquinic acid and related polymers have potential as indigenous drugs for anti-viral therapy.

  8. Biochemical, inhibition and inhibitor resistance studies of xenotropic murine leukemia virus-related virus reverse transcriptase

    PubMed Central

    Ndongwe, Tanyaradzwa P.; Adedeji, Adeyemi O.; Michailidis, Eleftherios; Ong, Yee Tsuey; Hachiya, Atsuko; Marchand, Bruno; Ryan, Emily M.; Rai, Devendra K.; Kirby, Karen A.; Whatley, Angela S.; Burke, Donald H.; Johnson, Marc; Ding, Shilei; Zheng, Yi-Min; Liu, Shan-Lu; Kodama, Ei-Ichi; Delviks-Frankenberry, Krista A.; Pathak, Vinay K.; Mitsuya, Hiroaki; Parniak, Michael A.; Singh, Kamalendra; Sarafianos, Stefan G.

    2012-01-01

    We report key mechanistic differences between the reverse transcriptases (RT) of human immunodeficiency virus type-1 (HIV-1) and of xenotropic murine leukemia virus-related virus (XMRV), a gammaretrovirus that can infect human cells. Steady and pre-steady state kinetics demonstrated that XMRV RT is significantly less efficient in DNA synthesis and in unblocking chain-terminated primers. Surface plasmon resonance experiments showed that the gammaretroviral enzyme has a remarkably higher dissociation rate (koff) from DNA, which also results in lower processivity than HIV-1 RT. Transient kinetics of mismatch incorporation revealed that XMRV RT has higher fidelity than HIV-1 RT. We identified RNA aptamers that potently inhibit XMRV, but not HIV-1 RT. XMRV RT is highly susceptible to some nucleoside RT inhibitors, including Translocation Deficient RT inhibitors, but not to non-nucleoside RT inhibitors. We demonstrated that XMRV RT mutants K103R and Q190M, which are equivalent to HIV-1 mutants that are resistant to tenofovir (K65R) and AZT (Q151M), are also resistant to the respective drugs, suggesting that XMRV can acquire resistance to these compounds through the decreased incorporation mechanism reported in HIV-1. PMID:21908397

  9. Purification and characterization of a novel antifungal protein with antiproliferation and anti-HIV-1 reverse transcriptase activities from Peganum harmala seeds.

    PubMed

    Ma, Xiaojin; Liu, Dongliang; Tang, Haishu; Wang, Yan; Wu, Ting; Li, Yang; Yang, Jie; Yang, Jianhua; Sun, Surong; Zhang, Fuchun

    2013-02-01

    A novel antifungal protein, designated as PHP, was isolated from the seeds of Peganum harmala, by cationic exchange chromatography on Resource S column and gel filtration on Sephadex 75 10/300 GL column. PHP was found to form a homodimer of about 16 kDa. Isoelectric focusing polyacrylamide gel electrophoresis analysis showed that the isoelectric point of PHP was ∼8.4. The N-terminal 20-amino acid sequence of PHP, ITCPQVTQSLAPCVPYLISG, resembles the non-specific lipid transfer proteins in certain plants. PHP exhibited lipid-binding activity. Furthermore, PHP exerted antifungal activity against Alternaria alternate, Penicillium degitatum, Rhizopus stuolonifer, and Magnaporthe grisea, and its antifungal activity was stable in the temperature range 4-60°C, and in the pH range 4-10. It inhibited the mycelial growth in A. alternate, P. degitatum, R. stuolonifer, and M. grisea with 50% inhibitory concentration (IC(50)) of 1.5, 37.5, 8.44, and 12.19 μM, respectively. PHP was also able to inhibit the proliferation of esophagus carcinoma (Eca-109), cervical carcinoma (HeLa), gastric carcinoma (MGC-7), and melanoma (B16) cells with IC(50) of 0.7, 2.74, 3.13, and 1.47 μM, respectively. Moreover, PHP significantly inhibited HIV-1 reverse transcriptase (RT) with an IC(50) of 1.26 μM. It did not have hemagglutinating and antibacterial activities. In conclusion, a novel antifungal protein with antiproliferation and anti-HIV-1 RT activities was obtained from P. harmala seeds.

  10. Subunit-selective mutational analysis and tissue culture evaluations of the interactions of the E138K and M184I mutations in HIV-1 reverse transcriptase.

    PubMed

    Xu, Hong-Tao; Oliveira, Maureen; Quashie, Peter K; McCallum, Matthew; Han, Yingshan; Quan, Yudong; Brenner, Bluma G; Wainberg, Mark A

    2012-08-01

    The emergence of HIV-1 drug resistance remains a major obstacle in antiviral therapy. M184I/V and E138K are signature mutations of clinical relevance in HIV-1 reverse transcriptase (RT) for the nucleoside reverse transcriptase inhibitors (NRTIs) lamivudine (3TC) and emtricitabine (FTC) and the second-generation (new) nonnucleoside reverse transcriptase inhibitor (NNRTI) rilpivirine (RPV), respectively, and the E138K mutation has also been shown to be selected by etravirine in cell culture. The E138K mutation was recently shown to compensate for the low enzyme processivity and viral fitness associated with the M184I/V mutations through enhanced deoxynucleoside triphosphate (dNTP) usage, while the M184I/V mutations compensated for defects in polymerization rates associated with the E138K mutations under conditions of high dNTP concentrations. The M184I mutation was also shown to enhance resistance to RPV and ETR when present together with the E138K mutation. These mutual compensatory effects might also enhance transmission rates of viruses containing these two mutations. Therefore, we performed tissue culture studies to investigate the evolutionary dynamics of these viruses. Through experiments in which E138K-containing viruses were selected with 3TC-FTC and in which M184I/V viruses were selected with ETR, we demonstrated that ETR was able to select for the E138K mutation in viruses containing the M184I/V mutations and that the M184I/V mutations consistently emerged when E138K viruses were selected with 3TC-FTC. We also performed biochemical subunit-selective mutational analyses to investigate the impact of the E138K mutation on RT function and interactions with the M184I mutation. We now show that the E138K mutation decreased rates of polymerization, impaired RNase H activity, and conferred ETR resistance through the p51 subunit of RT, while an enhancement of dNTP usage as a result of the simultaneous presence of both mutations E138K and M184I occurred via both

  11. Biological activity of sporolides A and B from Salinispora tropica: in silico target prediction using ligand-based pharmacophore mapping and in vitro activity validation on HIV-1 reverse transcriptase.

    PubMed

    Dineshkumar, Kesavan; Aparna, Vasudevan; Madhuri, Kantilal Z; Hopper, Waheeta

    2014-03-01

    Sporolides A and B are novel polycyclic macrolides from the obligate marine actinomycetes, Salinispora tropica. The unique and novel structure of sporolides makes them interesting candidates for targeting diverse biological activities. Biological target prediction of sporolides was carried out using ligand-based pharmacophore screening against known inhibitors and drugs. Validation of pharmacophore screening was carried out for the identified hits. New biological targets predicted for sporolides using this method were HIV-1 reverse transcriptase, adenosine A3 receptor, endothelin receptor ET-A, oxytocin receptor, voltage-gated L-type calcium channel α-1C subunit/calcium channel α/Δ subunit 1. Drug-likeness properties were predicted for the selected compounds using QikProp module. Sporolides A and B showed maximum docking score with HIV-1 reverse transcriptase. Structural interaction fingerprints analysis indicated similar binding pattern of the sporolides with the HIV-1 reverse transcriptase. Sporolide B exhibited good inhibitory activity against HIV-1 reverse transcriptase in in vitro fluorescent assay.

  12. Free Energy-Based Virtual Screening and Optimization of RNase H Inhibitors of HIV-1 Reverse Transcriptase

    PubMed Central

    2016-01-01

    We report the results of a binding free energy-based virtual screening campaign of a library of 77 α-hydroxytropolone derivatives against the challenging RNase H active site of the reverse transcriptase (RT) enzyme of human immunodeficiency virus-1. Multiple protonation states, rotamer states, and binding modalities of each compound were individually evaluated. The work involved more than 300 individual absolute alchemical binding free energy parallel molecular dynamics calculations and over 1 million CPU hours on national computing clusters and a local campus computational grid. The thermodynamic and structural measures obtained in this work rationalize a series of characteristics of this system useful for guiding future synthetic and biochemical efforts. The free energy model identified key ligand-dependent entropic and conformational reorganization processes difficult to capture using standard docking and scoring approaches. Binding free energy-based optimization of the lead compounds emerging from the virtual screen has yielded four compounds with very favorable binding properties, which will be the subject of further experimental investigations. This work is one of the few reported applications of advanced-binding free energy models to large-scale virtual screening and optimization projects. It further demonstrates that, with suitable algorithms and automation, advanced-binding free energy models can have a useful role in early-stage drug-discovery programs. PMID:27713931

  13. Free Energy-Based Virtual Screening and Optimization of RNase H Inhibitors of HIV-1 Reverse Transcriptase.

    PubMed

    Zhang, Baofeng; D'Erasmo, Michael P; Murelli, Ryan P; Gallicchio, Emilio

    2016-09-30

    We report the results of a binding free energy-based virtual screening campaign of a library of 77 α-hydroxytropolone derivatives against the challenging RNase H active site of the reverse transcriptase (RT) enzyme of human immunodeficiency virus-1. Multiple protonation states, rotamer states, and binding modalities of each compound were individually evaluated. The work involved more than 300 individual absolute alchemical binding free energy parallel molecular dynamics calculations and over 1 million CPU hours on national computing clusters and a local campus computational grid. The thermodynamic and structural measures obtained in this work rationalize a series of characteristics of this system useful for guiding future synthetic and biochemical efforts. The free energy model identified key ligand-dependent entropic and conformational reorganization processes difficult to capture using standard docking and scoring approaches. Binding free energy-based optimization of the lead compounds emerging from the virtual screen has yielded four compounds with very favorable binding properties, which will be the subject of further experimental investigations. This work is one of the few reported applications of advanced-binding free energy models to large-scale virtual screening and optimization projects. It further demonstrates that, with suitable algorithms and automation, advanced-binding free energy models can have a useful role in early-stage drug-discovery programs.

  14. 4'-Thio-oligo-beta-D-ribonucleotides: synthesis of beta-4'-thio-oligouridylates, nuclease resistance, base pairing properties, and interaction with HIV-1 reverse transcriptase.

    PubMed Central

    Bellon, L; Barascut, J L; Maury, G; Divita, G; Goody, R; Imbach, J L

    1993-01-01

    We present the synthesis and the study of properties of a new series of modified oligonucleotides, namely 4'-thio-oligo-beta-D-ribonucleotides (4'-S-RNA). Homo-oligonucleotides of this class (4'-SU6 and 4'-SU12) were prepared from the previously known thionucleosides using the phosphoramidite methodology. The comparison of the substrate properties of 4'-SU6 and its natural analog U6 with respect to four nucleases indicates that the former is much more resistant than the latter. Such resistance to nucleases in addition to relatively high Tm values for 4'-SU12 hybridized with Poly(A) show that these new 4'-S-RNA are good candidates for potential antisense effects. The oligonucleotides 4'-SU6 and 4'-SU12 have been also evaluated as non sequence specific inhibitors of HIV-1 reverse transcriptase. All available evidences, based primarily on fluorescence measurements, are consistent with the binding of 4'-SU6 and 4'-SU12 to RT at a site which is different from the polymerase site of the enzyme. PMID:7683133

  15. Novel galactonic acid-binding hexameric lectin from Hibiscus mutabilis seeds with antiproliferative and potent HIV-1 reverse transcriptase inhibitory activities.

    PubMed

    Lam, Sze Kwan; Ng, Tzi Bun

    2009-01-01

    A hexameric 150-kDa lectin was isolated from dried Hibiscus mutabilis seeds using a chromatographic protocol that involved ion exchange chromatography on SP-Sepharose, and gel filtration on Superdex 75 and Superdex 200. The lectin was not adsorbed on SP-Sepharose and was eluted from the Superdex 75 column in the void volume. It was eluted in the first peak from Superdex 200. It was strongly adsorbed on DEAE-cellulose and Q-Sepharose and could not be easily desorbed. The hemagglutinating activity of the lectin, which was stable at pH 4-7 and up to 50 degrees C, could be inhibited by 25 mM galactonic acid. This is the first report of a galactonic acid-binding lectin. It potently inhibited HIV-1 reverse transcriptase with an IC(50) of 0.2 microM. It exhibited weak antiproliferative activity towards both hepatoma HepG2 cells (40% inhibition) and breast cancer MCF-7 cells (50% inhibition) at 100 microM concentration of the lectin. It did not inhibit mycelial growth of a number of fungi tested.

  16. Purification and Characterization of a White Laccase with Pronounced Dye Decolorizing Ability and HIV-1 Reverse Transcriptase Inhibitory Activity from Lepista nuda.

    PubMed

    Zhu, Mengjuan; Zhang, Guoqing; Meng, Li; Wang, Hexiang; Gao, Kexiang; Ng, Tb

    2016-03-26

    A strain LN07 with high laccase yield was identified as basidiomycete fungus Lepista nuda from which a white laccase without type I copper was purified and characterized. The laccase was a monomeric protein with a molecular mass of 56 kDa. Its N-terminal amino acid sequence was AIGPAADLHIVNKDISPDGF. Besides, eight inner peptide sequences were determined and lac4, lac5 and lac6 sequences were in the Cu(2+) combination and conservation zones of laccases. HIV-1 reverse transcriptase was inhibited by the laccase with a half-inhibitory concentration of 0.65 μM. Cu(2+) ions (1.5 mM) enhanced the laccase production and the optimal pH and temperature of the laccase were pH 3.0 and 50 °C, respectively. The Km and Vmax of the laccase using ABTS as substrate were respectively 0.19 mM and 195 μM. Several dyes including laboratory dyes and textile dyes used in this study, such as Methyl red, Coomassie brilliant blue, Reactive brilliant blue and so on, were decolorized in different degrees by the purified laccase. By LC-MS analysis, Methyl red was structurally degraded by the laccase. Moreover, the laccase affected the absorbance at the maximum wavelength of many pesticides. Thus, the white laccase had potential commercial value for textile finishing and wastewater treatment.

  17. A novel ribonuclease with antiproliferative activity toward leukemia and lymphoma cells and HIV-1 reverse transcriptase inhibitory activity from the mushroom, Hohenbuehelia serotina.

    PubMed

    Zhang, Rui; Zhao, Liyan; Wang, Hexiang; Ng, Tzi Bun

    2014-01-01

    In this study, a 27-kDa ribonuclease (RNase) was purified from the dried fruiting bodies of the mushroom, Hohenbuehelia serotina. The isolation protocol involved anion exchange chromatography, affinity chromatography, cation exchange chromatography and gel filtration in succession. The RNase was unadsorbed on DEAE-cellulose, but was adsorbed on Affi-gel blue gel and CM-cellulose. The N-terminal amino acid sequence was TVGGSLAEKGN which showed homology to other fungal RNases to a certain degree. The RNase exhibited maximal RNase activity at pH 5 and 80˚C. It demonstrated the highest ribonucleolytic activity toward poly(C), a relatively high activity toward poly(U), and a considerably weaker activity toward poly(A) and (G). The RNase inhibited human immunodeficiency virus type 1 (HIV-1) reverse transcriptase with an IC50 of 50 µM and reduced [3H-methyl]-thymidine uptake by L1210 leukemia cells and MBL2 lymphoma cells with an IC50 of 25 µM and 40 µM, respectively.

  18. Purification and characterization of a protein with antifungal, antiproliferative, and HIV-1 reverse transcriptase inhibitory activities from small brown-eyed cowpea seeds.

    PubMed

    Tian, Guo-Ting; Zhu, Meng Juan; Wu, Ying Ying; Liu, Qin; Wang, He Xiang; Ng, Tzi Bun

    2013-01-01

    A 36-kDa protein, with an N-terminal sequence highly homologous to polygalacturonase (PG) inhibiting proteins, was isolated from small brown-eyed cowpea seeds. The protein was unadsorbed on diethylaminoethyl cellulose but adsorbed on both Affi-gel blue gel and SP-sepharose. It inhibited mycelial growth in the fungus Mycosphaerella arachidicola with an half-maximal (50%) inhibitory concentration (IC50 ) of 3.3 µM. It reduced [methyl-(3) H] thymidine incorporation into MBL2 lymphoma and L1210 leukemia cells with an IC50 of 7.4 and 5.4 µM, respectively. It inhibited human immunodeficiency virus type 1 (HIV-1) reverse transcriptase with an IC50 of 12.9 µM. However, it did not inhibit PG. The potent antifungal and antitumor activities of the protein suggest that it can be developed into an antifungal agent for combating M. arachidicola invasion in crops and an agent for cancer therapy in humans.

  19. A comparison of the ability of rilpivirine (TMC278) and selected analogues to inhibit clinically relevant HIV-1 reverse transcriptase mutants

    PubMed Central

    2012-01-01

    Background The recently approved anti-AIDS drug rilpivirine (TMC278, Edurant) is a nonnucleoside inhibitor (NNRTI) that binds to reverse transcriptase (RT) and allosterically blocks the chemical step of DNA synthesis. In contrast to earlier NNRTIs, rilpivirine retains potency against well-characterized, clinically relevant RT mutants. Many structural analogues of rilpivirine are described in the patent literature, but detailed analyses of their antiviral activities have not been published. This work addresses the ability of several of these analogues to inhibit the replication of wild-type (WT) and drug-resistant HIV-1. Results We used a combination of structure activity relationships and X-ray crystallography to examine NNRTIs that are structurally related to rilpivirine to determine their ability to inhibit WT RT and several clinically relevant RT mutants. Several analogues showed broad activity with only modest losses of potency when challenged with drug-resistant viruses. Structural analyses (crystallography or modeling) of several analogues whose potencies were reduced by RT mutations provide insight into why these compounds were less effective. Conclusions Subtle variations between compounds can lead to profound differences in their activities and resistance profiles. Compounds with larger substitutions replacing the pyrimidine and benzonitrile groups of rilpivirine, which reorient pocket residues, tend to lose more activity against the mutants we tested. These results provide a deeper understanding of how rilpivirine and related compounds interact with the NNRTI binding pocket and should facilitate development of novel inhibitors. PMID:23217210

  20. Transmission dynamics of HIV-1 subtype B in the Basque Country, Spain.

    PubMed

    Patiño-Galindo, J A; Thomson, Michael M; Pérez-Álvarez, Lucía; Delgado, Elena; Cuevas, María Teresa; Fernández-García, Aurora; Nájera, Rafael; Iribarren, José A; Cilla, Gustavo; López-Soria, Leyre; Lezaun, María J; Cisterna, Ramón; González-Candelas, F

    2016-06-01

    This work was aimed to study the HIV-1 subtype B epidemics in the Basque Country, Spain. 1727 HIV-1 subtype B sequences comprising protease and reverse transcriptase (PR/RT) coding regions, sampled between 2001 and 2008, were analyzed. 156 transmission clusters were detected by means of phylogenetic analyses. Most of them comprised less than 4 individuals and, in total, they included 441 patients. Six clusters comprised 10 or more patients and were further analyzed in order to study their origin and diversification. Four clusters included men who had unprotected homosexual sex (MSM), one group was formed by intravenous drug users (IDUs), and another included both IDUs and people infected through unprotected heterosexual sex (HTs). Most of these clusters originated from the mid-1980s to the mid-1990s. Only one cluster, formed by MSM, originated after 2000. The time between infections was significantly lower in MSM groups than in those containing IDUs (P-value <0.0001). Nucleoside RT and non-nucleoside RT inhibitor (NRTI and NNRTI)-resistance mutations to antiretroviral treatment were found in these six clusters except the most recent MSM group, but only the IDU clusters presented protease inhibitor (PI)-resistance mutations. The most prevalent mutations for each inhibitor class were PI L90M, NRTI T215D/Y/F, and NNRTI K103N, which were also among the most prevalent resistant variants in the whole dataset. In conclusion, while most infections occur as isolated introductions into the population, the number of infections found to be epidemiologically related within the Basque Country is significant. Public health control measures should be reinforced to prevent the further expansion of transmission clusters and resistant mutations occurring within them.

  1. Tolerability of central nervous system symptoms among HIV-1 infected efavirenz users: analysis of patient electronic medical record data.

    PubMed

    Rosenblatt, Lisa; Broder, Michael S; Bentley, Tanya G K; Chang, Eunice; Reddy, Sheila R; Papoyan, Elya; Myers, Joel

    2017-02-01

    Efavirenz (EFV) is a non-nucleoside reverse transcriptase inhibitor indicated for treatment of HIV-1 infection. Despite concern over EFV tolerability in clinical trials and practice, particularly related to central nervous system (CNS) adverse events, some observational studies have shown high rates of EFV continuation at one year and low rates of CNS-related EFV substitution. The objective of this study was to further examine the real-world rate of CNS-related EFV discontinuation in antiretroviral therapy naïve HIV-1 patients. This retrospective cohort study used a nationally representative electronic medical records database to identify HIV-1 patients ≥12 years old, treated with a 1st-line EFV-based regimen (single or combination antiretroviral tablet) from 1 January 2009 to 30 June 2013. Patients without prior record of EFV use during 6-month baseline (i.e., antiretroviral therapy naïve) were followed 12 months post-medication initiation. CNS-related EFV discontinuation was defined as evidence of a switch to a replacement antiretroviral coupled with record of a CNS symptom within 30 days prior, absent lab evidence of virologic failure. We identified 1742 1st-line EFV patients. Mean age was 48 years, 22.7% were female, and 8.1% had a prior report of CNS symptoms. The first year, overall discontinuation rate among new users of EFV was 16.2%. Ten percent of patients (n = 174) reported a CNS symptom and 1.1% (n = 19) discontinued EFV due to CNS symptoms: insomnia (n = 12), headache (n = 5), impaired concentration (n = 1), and somnolence (n = 1). The frequency of CNS symptoms was similar for patients who discontinued EFV compared to those who did not (10.3 vs. 9.9%; P = .86). Our study found that EFV discontinuation due to CNS symptoms was low, consistent with prior reports.

  2. Fused heterocycles bearing bridgehead nitrogen as potent HIV-1 NNRTIs. Part 4: design, synthesis and biological evaluation of novel imidazo[1,2-a]pyrazines.

    PubMed

    Huang, Boshi; Liang, Xin; Li, Cuicui; Chen, Wenmin; Liu, Tao; Li, Xiao; Sun, Yueyue; Fu, Lu; Liu, Huiqing; De Clercq, Erik; Pannecouque, Christophe; Zhan, Peng; Liu, Xinyong

    2015-03-26

    Through a structure-guided core-refining approach, a series of novel imidazo[1,2-a]pyrazine derivatives were designed, synthesized and evaluated as HIV-1 non-nucleoside reverse transcriptase inhibitors (NNRTIs). Biological results of antiviral assay in MT-4 cell cultures showed that 12 target compounds displayed moderate activities against wild-type (wt) HIV-1 strain (IIIB) with EC50 values ranging from 0.26 μM to 19 μM. Among them, 4a and 5a were found to be the two most active analogues possessing EC50 values of 0.26 μM and 0.32 μM respectively, comparable to delavirdine (DLV, EC50 = 0.54 μM) and nevirapine (NVP, EC50 = 0.31 μM) in a cell-based assay. Additionally, 9 compounds showed RT inhibitory activity superior to that of NVP. Moreover, some predicted drug-like properties of representative compounds 4a and 5a, as well as the structure-activity relationship (SAR) analysis were discussed in detail. The binding mode of compound 4a was investigated by molecular simulation studies.

  3. HIV-1 replication.

    PubMed

    Freed, E O

    2001-11-01

    In general terms, the replication cycle of lentiviruses, including HIV-1, closely resembles that of other retroviruses. There are, however, a number of unique aspects of HIV replication; for example, the HIVs and SIVs target receptors and coreceptors distinct from those used by other retroviruses. Lentiviruses encode a number of regulatory and accessory proteins not encoded by the genomes of the prototypical "simple" retroviruses. Of particular interest from the gene therapy perspective, lentiviruses possess the ability to productively infect some types of non-dividing cells. This chapter, while reiterating certain points discussed in Chapter 1, will attempt to focus on issues unique to HIV-1 replication. The HIV-1 genome encodes the major structural and non-structural proteins common to all replication-competent retroviruses (Fig. 1, and Chapter 1). From the 5'- to 3'-ends of the genome are found the gag (for group-specific antigen), pol (for polymerase), and env (for envelope glycoprotein) genes. The gag gene encodes a polyprotein precursor whose name, Pr55Gag, is based on its molecular weight. Pr55Gag is cleaved by the viral protease (PR) to the mature Gag proteins matrix (also known as MA or p17), capsid (CA or p24), nucleocapsid (NC or p7), and p6. Two spacer peptides, p2 and p1, are also generated upon Pr55Gag processing. The pol-encoded enzymes are initially synthesized as part of a large polyprotein precursor, Pr160GagPol, whose synthesis results from a rare frameshifting event during Pr55Gag translation. The individual pol-encoded enzymes, PR, reverse transcriptase (RT), and integrase (IN), are cleaved from Pr160GagPol by the viral PR. The envelope (Env) glycoproteins are also synthesized as a polyprotein precursor (Fig. 1). Unlike the Gag and Pol precursors, which are cleaved by the viral PR, the Env precursor, known as gp160, is processed by a cellular protease during Env trafficking to the cell surface, gp160 processing results in the generation of the

  4. Analysis of transmitted drug resistance in Spain in the years 2007-2010 documents a decline in mutations to the non-nucleoside drug class.

    PubMed

    Monge, S; Guillot, V; Alvarez, M; Peña, A; Viciana, P; García-Bujalance, S; Pérez Elias, M J; Iribarren, J A; Gutiérrez, F; Itziar Casado, M; Garcia, F

    2012-11-01

    We have studied transmitted drug resistance (TDR) in 1.864 antiretroviral-naïve patients entering CoRIS (Spain) during 2007-2010. An overall 8.58% TDR was observed (3.92%, nucleoside reverse transcriptase inhibitors (NRTIs); 3.86%, non-nucleoside reverse transcriptase inhibitors (NNRTIs); 2.31%, protease inhibitors), with a significant decreasing trend over time for NNRTIs (5.53%, 2007; 2.45%, 2010; p for trend = 0.044). Non-B subtype prevalence was 15.93%, with a significant increase (11.95%, 2007; 18.14%, 2010; p for trend = 0.018), mainly related to immigration. Having no formal education increased the risk of TDR to NNRTIs (OR, 7.26), and carrying a non-B subtype reduced the risk of TDR to NRTIs (OR, 0.27). These findings may have important implications for treatment guidelines and laboratory testing recommendations.

  5. Decreasing population selection rates of resistance mutation K65R over time in HIV-1 patients receiving combination therapy including tenofovir

    PubMed Central

    Theys, K.; Snoeck, J.; Vercauteren, J.; Abecasis, A. B.; Vandamme, A.-M.; Camacho, R. J.

    2013-01-01

    Objectives The use of tenofovir is highly associated with the emergence of mutation K65R, which confers broad resistance to nucleoside/nucleotide analogue reverse transcriptase inhibitors (NRTIs), especially when tenofovir is combined with other NRTIs also selecting for K65R. Although recent HIV-1 treatment guidelines discouraging these combinations resulted in reduced K65R selection with tenofovir, updated information on the impact of currently recommended regimens on the population selection rate of K65R is presently lacking. Methods In this study, we evaluated changes over time in the selection rate of resistance mutation K65R in a large population of 2736 HIV-1-infected patients failing combination antiretroviral treatment between 2002 and 2010. Results The K65R resistance mutation was detected in 144 patients, a prevalence of 5.3%. A large majority of observed K65R cases were explained by the use of tenofovir, reflecting its wide use in clinical practice. However, changing patterns over time in NRTIs accompanying tenofovir resulted in a persistent decreasing probability of K65R selection by tenofovir-based therapy. The currently recommended NRTI combination tenofovir/emtricitabine was associated with a low probability of K65R emergence. For any given dual NRTI combination including tenofovir, higher selection rates of K65R were consistently observed with a non-nucleoside reverse transcriptase inhibitor than with a protease inhibitor as the third agent. Discussion Our finding of a stable time trend of K65R despite elevated use of tenofovir illustrates increased potency of current HIV-1 therapy including tenofovir. PMID:23027713

  6. Design and synthesis of conformationally constrained inhibitors of non-nucleoside reverse transcriptase.

    PubMed

    Gomez, Robert; Jolly, Samson J; Williams, Theresa; Vacca, Joseph P; Torrent, Maricel; McGaughey, Georgia; Lai, Ming-Tain; Felock, Peter; Munshi, Vandna; Distefano, Daniel; Flynn, Jessica; Miller, Mike; Yan, Youwei; Reid, John; Sanchez, Rosa; Liang, Yuexia; Paton, Brenda; Wan, Bang-Lin; Anthony, Neville

    2011-11-24

    Highly active antiretroviral therapy (HAART) significantly reduces human immunodeficiency virus (HIV) viral load and has led to a dramatic decrease in acquired immunodeficiency syndrome (AIDS) related mortality. Despite this success, there remains a critical need for new HIV therapies to address the emergence of drug resistant viral strains. Next generation NNRTIs are sought that are effective against these mutant forms of the HIV virus. The bound conformations of our lead inhibitors, MK-1107 (1) and MK-4965 (2), were divergent about the oxymethylene linker, and each of these conformations was rigidified using two isomeric cyclic constraints. The constraint derived from the bioactive conformation of 2provided novel, highly potent NNRTIs that possess broad spectrum antiviral activity and good pharmacokinetic profiles. Systematic SAR led to the identification of indazole as the optimal conformational constraint to provide MK-6186 (3) and MK-7445 (6). Despite their reduced flexibility, these compounds had potency comparable to that of the corresponding acyclic ethers in both recombinant enzyme and cell based assays against both the wild-type and the clinically relevant mutant strains.

  7. Prevalence of drug resistance mutations in HAART patients infected with HIV-1 CRF06_cpx in Estonia.

    PubMed

    Avi, Radko; Pauskar, Merit; Karki, Tõnis; Kallas, Eveli; Jõgeda, Ene-Ly; Margus, Tõnu; Huik, Kristi; Lutsar, Irja

    2016-03-01

    HIV-1 drug resistance mutations (DRMs) and substitutions were assessed after the failure of the first line non-nucleoside reverse transcriptase inhibitors (NNRTIs) + 2 nucleoside/nucleotide reverse transcriptase inhibitors (NRTIs) treatment regimens (efavirenz [EFV] + lamivudine[3TC] + zidovudine [ZDV] vs. EFV + 3TC + ddI) among the HIV-1 CRF06_cpx infected subjects in Estonia. HIV-1 genomic RNA was sequenced; DRMs and amino acid substitutions were compared in 44 treatment naïve and 45 first-line NNRTI + 2 NRTI treatment failed patients consisting of EFV + 3TC + ZDV (n = 17) and EFV + 3TC + didanosine[ddI] (n = 21) therapy failed sub-populations. At least one DRM was found in 78% of treatment experienced patients. The most common NRTI mutations were M184V (80%), L74V (31%), L74I (17%), K219E (9%), and M184I (9%), NNRTI mutations were K103N (83%), P225H (14%), L100I (11%), and Y188L (11%), reflecting generally the similar pattern of DRMs to that seen in treatment failed subtype B viruses. Sub-population analysis revealed that EFV + 3TC + ddI failed patients had more DRMs compared to EFV + 3TC + ZDV failed patients, especially the ddI DRM L74IV and several additional NNRTI DRMs. Additionally, CRF06_cpx specific mutation E179V and substitutions R32K, K122E, and V200AE were also detected in treatment experienced population. After the failure of the first-line EFV + 3TC + ddI therapy HIV-1 CRF06_cpx viruses develop additional NRTI and NNRTI mutations compared to EFV + 3TC + ZDV regimen. Therefore the usage of EFV + 3TC + ddI in this subtype decreases the options for next regimens containing abacavir, and NNRTI class agents.

  8. Psychoneuroimmunology and HIV-1.

    ERIC Educational Resources Information Center

    Antoni, Michael H.; And Others

    1990-01-01

    Presents evidence describing benefits of behavioral interventions such as aerobic exercise training on both psychological and immunological functioning among high risk human immunodeficiency virus-Type 1 (HIV-1) seronegative and very early stage seropositive homosexual men. HIV-1 infection is cast as chronic disease for which early…

  9. High rates of virological failure and drug resistance in perinatally HIV-1-infected children and adolescents receiving lifelong antiretroviral therapy in routine clinics in Togo

    PubMed Central

    Salou, Mounerou; Dagnra, Anoumou Y; Butel, Christelle; Vidal, Nicole; Serrano, Laetitia; Takassi, Elom; Konou, Abla A; Houndenou, Spero; Dapam, Nina; Singo-Tokofaï, Assetina; Pitche, Palokinam; Atakouma, Yao; Prince-David, Mireille; Delaporte, Eric; Peeters, Martine

    2016-01-01

    Introduction Antiretroviral treatment (ART) has been scaled up over the last decade but compared to adults, children living with HIV are less likely to receive ART. Moreover, children and adolescents are more vulnerable than adults to virological failure (VF) and emergence of drug resistance. In this study we determined virological outcome in perinatally HIV-1-infected children and adolescents receiving ART in Togo. Methods HIV viral load (VL) testing was consecutively proposed to all children and adolescents who were on ART for at least 12 months when attending HIV healthcare services for their routine follow-up visit (June to September 2014). Plasma HIV-1 VL was measured using the m2000 RealTime HIV-1 assay (Abbott Molecular, Des Plaines, IL, USA). Genotypic drug resistance was done for all samples with VL>1000 copies/ml. Results and discussion Among 283 perinatally HIV-1-infected children and adolescents included, 167 (59%) were adolescents and 116 (41%) were children. The median duration on ART was 48 months (interquartile range: 28 to 68 months). For 228 (80.6%), the current ART combination consisted of two nucleoside reverse transcriptase inhibitors (NRTIs) (zidovudine and lamivudine) and one non-nucleoside reverse transcriptase inhibitor (NNRTI) (nevirapine or efavirenz). Only 28 (9.9%) were on a protease inhibitor (PI)-based regimen. VL was below the detection limit (i.e. 40 copies/ml) for 102 (36%), between 40 and 1000 copies/ml for 35 (12.4%) and above 1000 copies/ml for 146 (51.6%). Genotypic drug-resistance testing was successful for 125/146 (85.6%); 110/125 (88.0%) were resistant to both NRTIs and NNRTIs, 1/125 (0.8%) to NRTIs only, 4/125 (3.2%) to NNRTIs only and three harboured viruses resistant to reverse transcriptase and PIs. Overall, 86% (108/125) of children and adolescents experiencing VF and successfully genotyped, corresponding thus to at least 38% of the study population, had either no effective ART or had only a single effective drug in

  10. Structural Basis for the Inhibition of RNase H Activity of HIV-1 Reverse Transcriptase by RNase H Active Site-Directed Inhibitors

    SciTech Connect

    Su, Hua-Poo; Yan, Youwei; Prasad, G. Sridhar; Smith, Robert F.; Daniels, Christopher L.; Abeywickrema, Pravien D.; Reid, John C.; Loughran, H. Marie; Kornienko, Maria; Sharma, Sujata; Grobler, Jay A.; Xu, Bei; Sardana, Vinod; Allison, Timothy J.; Williams, Peter D.; Darke, Paul L.; Hazuda, Daria J.; Munshi, Sanjeev

    2010-09-02

    HIV/AIDS continues to be a menace to public health. Several drugs currently on the market have successfully improved the ability to manage the viral burden in infected patients. However, new drugs are needed to combat the rapid emergence of mutated forms of the virus that are resistant to existing therapies. Currently, approved drugs target three of the four major enzyme activities encoded by the virus that are critical to the HIV life cycle. Although a number of inhibitors of HIV RNase H activity have been reported, few inhibit by directly engaging the RNase H active site. Here, we describe structures of naphthyridinone-containing inhibitors bound to the RNase H active site. This class of compounds binds to the active site via two metal ions that are coordinated by catalytic site residues, D443, E478, D498, and D549. The directionality of the naphthyridinone pharmacophore is restricted by the ordering of D549 and H539 in the RNase H domain. In addition, one of the naphthyridinone-based compounds was found to bind at a second site close to the polymerase active site and non-nucleoside/nucleotide inhibitor sites in a metal-independent manner. Further characterization, using fluorescence-based thermal denaturation and a crystal structure of the isolated RNase H domain reveals that this compound can also bind the RNase H site and retains the metal-dependent binding mode of this class of molecules. These structures provide a means for structurally guided design of novel RNase H inhibitors.

  11. An In-Depth Comparison of Latency-Reversing Agent Combinations in Various In Vitro and Ex Vivo HIV-1 Latency Models Identified Bryostatin-1+JQ1 and Ingenol-B+JQ1 to Potently Reactivate Viral Gene Expression

    PubMed Central

    Bouchat, Sophie; Fujinaga, Koh; Corazza, Francis; Ait-Ammar, Amina; Delacourt, Nadège; Melard, Adeline; Kabeya, Kabamba; Vanhulle, Caroline; Van Driessche, Benoit; Gatot, Jean-Stéphane; Cherrier, Thomas; Pianowski, Luiz F.; Gama, Lucio; Schwartz, Christian; Vila, Jorge; Burny, Arsène; Clumeck, Nathan; Moutschen, Michel; De Wit, Stéphane; Peterlin, B. Matija; Rouzioux, Christine; Rohr, Olivier; Van Lint, Carine

    2015-01-01

    The persistence of latently infected cells in patients under combinatory antiretroviral therapy (cART) is a major hurdle to HIV-1 eradication. Strategies to purge these reservoirs are needed and activation of viral gene expression in latently infected cells is one promising strategy. Bromodomain and Extraterminal (BET) bromodomain inhibitors (BETi) are compounds able to reactivate latent proviruses in a positive transcription elongation factor b (P-TEFb)-dependent manner. In this study, we tested the reactivation potential of protein kinase C (PKC) agonists (prostratin, bryostatin-1 and ingenol-B), which are known to activate NF-κB signaling pathway as well as P-TEFb, used alone or in combination with P-TEFb-releasing agents (HMBA and BETi (JQ1, I-BET, I-BET151)). Using in vitro HIV-1 post-integration latency model cell lines of T-lymphoid and myeloid lineages, we demonstrated that PKC agonists and P-TEFb-releasing agents alone acted as potent latency-reversing agents (LRAs) and that their combinations led to synergistic activation of HIV-1 expression at the viral mRNA and protein levels. Mechanistically, combined treatments led to higher activations of P-TEFb and NF-κB than the corresponding individual drug treatments. Importantly, we observed in ex vivo cultures of CD8+-depleted PBMCs from 35 cART-treated HIV-1+ aviremic patients that the percentage of reactivated cultures following combinatory bryostatin-1+JQ1 treatment was identical to the percentage observed with anti-CD3+anti-CD28 antibodies positive control stimulation. Remarkably, in ex vivo cultures of resting CD4+ T cells isolated from 15 HIV-1+ cART-treated aviremic patients, the combinations bryostatin-1+JQ1 and ingenol-B+JQ1 released infectious viruses to levels similar to that obtained with the positive control stimulation. The potent effects of these two combination treatments were already detected 24 hours post-stimulation. These results constitute the first demonstration of LRA combinations

  12. An In-Depth Comparison of Latency-Reversing Agent Combinations in Various In Vitro and Ex Vivo HIV-1 Latency Models Identified Bryostatin-1+JQ1 and Ingenol-B+JQ1 to Potently Reactivate Viral Gene Expression.

    PubMed

    Darcis, Gilles; Kula, Anna; Bouchat, Sophie; Fujinaga, Koh; Corazza, Francis; Ait-Ammar, Amina; Delacourt, Nadège; Melard, Adeline; Kabeya, Kabamba; Vanhulle, Caroline; Van Driessche, Benoit; Gatot, Jean-Stéphane; Cherrier, Thomas; Pianowski, Luiz F; Gama, Lucio; Schwartz, Christian; Vila, Jorge; Burny, Arsène; Clumeck, Nathan; Moutschen, Michel; De Wit, Stéphane; Peterlin, B Matija; Rouzioux, Christine; Rohr, Olivier; Van Lint, Carine

    2015-07-01

    The persistence of latently infected cells in patients under combinatory antiretroviral therapy (cART) is a major hurdle to HIV-1 eradication. Strategies to purge these reservoirs are needed and activation of viral gene expression in latently infected cells is one promising strategy. Bromodomain and Extraterminal (BET) bromodomain inhibitors (BETi) are compounds able to reactivate latent proviruses in a positive transcription elongation factor b (P-TEFb)-dependent manner. In this study, we tested the reactivation potential of protein kinase C (PKC) agonists (prostratin, bryostatin-1 and ingenol-B), which are known to activate NF-κB signaling pathway as well as P-TEFb, used alone or in combination with P-TEFb-releasing agents (HMBA and BETi (JQ1, I-BET, I-BET151)). Using in vitro HIV-1 post-integration latency model cell lines of T-lymphoid and myeloid lineages, we demonstrated that PKC agonists and P-TEFb-releasing agents alone acted as potent latency-reversing agents (LRAs) and that their combinations led to synergistic activation of HIV-1 expression at the viral mRNA and protein levels. Mechanistically, combined treatments led to higher activations of P-TEFb and NF-κB than the corresponding individual drug treatments. Importantly, we observed in ex vivo cultures of CD8+-depleted PBMCs from 35 cART-treated HIV-1+ aviremic patients that the percentage of reactivated cultures following combinatory bryostatin-1+JQ1 treatment was identical to the percentage observed with anti-CD3+anti-CD28 antibodies positive control stimulation. Remarkably, in ex vivo cultures of resting CD4+ T cells isolated from 15 HIV-1+ cART-treated aviremic patients, the combinations bryostatin-1+JQ1 and ingenol-B+JQ1 released infectious viruses to levels similar to that obtained with the positive control stimulation. The potent effects of these two combination treatments were already detected 24 hours post-stimulation. These results constitute the first demonstration of LRA combinations

  13. HIV-1 Eradication: Early Trials (and Tribulations).

    PubMed

    Spivak, Adam M; Planelles, Vicente

    2016-01-01

    Antiretroviral therapy (ART) has rendered HIV-1 infection a manageable illness for those with access to treatment. However, ART does not lead to viral eradication owing to the persistence of replication-competent, unexpressed proviruses in long-lived cellular reservoirs. The potential for long-term drug toxicities and the lack of access to ART for most people living with HIV-1 infection have fueled scientific interest in understanding the nature of this latent reservoir. Exploration of HIV-1 persistence at the cellular and molecular level in resting memory CD4(+) T cells, the predominant viral reservoir in patients on ART, has uncovered potential strategies to reverse latency. We review recent advances in pharmacologically based 'shock and kill' HIV-1 eradication strategies, including comparative analysis of early clinical trials.

  14. Transmitted Drug Resistance Mutations in Antiretroviral-Naïve Injection Drug Users with Chronic HIV-1 Infection in Iran

    PubMed Central

    Memarnejadian, Arash; Menbari, Shahoo; Vahabpour, Rouhollah; Aghasadeghi, Mohammad Reza; Mostafavi, Ehsan; Abdi, Mohammad

    2015-01-01

    The growing incidence and transmission of drug resistant HIV-1 strains due to widespread use of antiretroviral therapy (ART) can jeopardize the success of first-line ART. While there is a known moderate prevalence of transmitted drug resistance (TDR) among newly infected Iranians, no data exist about the rate of these primary resistance mutations among the ART-naïve, chronically infected individuals who are, in fact, the main candidates for ART initiation. To address this issue, we collected blood samples from 40 ART-naïve injection drug-users (IDUs) with chronic HIV-1 infection (seroconversion time ranging from 2 to 9 years) living in Sanandaj, Iran, followed by sequencing of the protease and reverse-transcriptase regions from their HIV-1 genome. Phylogenetic analyses of the sequenced regions revealed that all samples were CRF35_AD. Transmitted resistance mutations were interpreted as surveillance drug-resistant mutations (SDRMs) based on the world health organization (WHO) algorithm. The frequency of SDRMs to any class of antiretroviral drugs was 15%, which included mutations to nucleoside reverse transcriptase inhibitors (NRTIs, 10%), with M41L and M184V as the most common (5%), and non-nucleoside reverse transcriptase inhibitors (NNRTIs, 5%), with K103N as the only detected mutation (5%). Although not in the WHO SDRMs list, several minor protease inhibitor resistant mutations listed in the International Antiviral Society-USA panel were identified, of which M36I, H69K, L89M/V/I (each one 100%) and K20R/T (92.5%) can be considered as polymorphic signatures for CRF35_AD.The relatively high rate of TDR mutations in our study raises concerns about the risk of treatment failure in chronically infected IDUs of Sanandaj city. These results suggest that routine resistance testing should be considered before the therapy initiation in this area. Additional surveillance studies are required to generalize this deduction to other cities of Iran. PMID:25962088

  15. N6-methyladenosine of HIV-1 RNA regulates viral infection and HIV-1 Gag protein expression

    PubMed Central

    Tirumuru, Nagaraja; Zhao, Boxuan Simen; Lu, Wuxun; Lu, Zhike; He, Chuan; Wu, Li

    2016-01-01

    The internal N6-methyladenosine (m6A) methylation of eukaryotic nuclear RNA controls post-transcriptional gene expression, which is regulated by methyltransferases (writers), demethylases (erasers), and m6A-binding proteins (readers) in cells. The YTH domain family proteins (YTHDF1–3) bind to m6A-modified cellular RNAs and affect RNA metabolism and processing. Here, we show that YTHDF1–3 proteins recognize m6A-modified HIV-1 RNA and inhibit HIV-1 infection in cell lines and primary CD4+ T-cells. We further mapped the YTHDF1–3 binding sites in HIV-1 RNA from infected cells. We found that the overexpression of YTHDF proteins in cells inhibited HIV-1 infection mainly by decreasing HIV-1 reverse transcription, while knockdown of YTHDF1–3 in cells had the opposite effects. Moreover, silencing the m6A writers decreased HIV-1 Gag protein expression in virus-producing cells, while silencing the m6A erasers increased Gag expression. Our findings suggest an important role of m6A modification of HIV-1 RNA in viral infection and HIV-1 protein synthesis. DOI: http://dx.doi.org/10.7554/eLife.15528.001 PMID:27371828

  16. A Novel Aspartic Protease with HIV-1 Reverse Transcriptase Inhibitory Activity from Fresh Fruiting Bodies of the Wild Mushroom Xylaria hypoxylon

    PubMed Central

    Hu, Qing-Xiu; Zhang, Guo-Qing; Zhang, Rui-Ying; Hu, Dan-Dan; Wang, He-Xiang; Ng, Tzi Bun

    2012-01-01

    A novel aspartic protease with HIV-1 RT inhibitory activity was isolated and characterized from fruiting bodies of the wild mushroom Xylaria hypoxylon. The purification protocol comprised distilled water homogenization and extraction step, three ion exchange chromatographic steps (on DEAE-cellulose, Q-Sepharose, and CM-cellulose in succession), and final purification was by FPLC on Superdex 75. The protease was adsorbed on all the three ion exchangers. It was a monomeric protein with a molecular mass of 43 kDa as estimated by SDS-PAGE and FPLC. Its N-terminal amino acid sequence was HYTELLSQVV, which exhibited no sequence homology to other proteases reported. The activity of the protease was adversely affected by Pepstatin A, indicating that it is an aspartic protease. The protease activity was maximal or nearly so in the pH range 6–8 and in the temperature range 35–60°C. The purified enzyme exhibited HIV-1 RT inhibitory activity with an IC50 value of 8.3 μM, but was devoid of antifungal, ribonuclease, and hemagglutinating activities. PMID:22675256

  17. Clinical, virological and biochemical evidence supporting the association of HIV-1 reverse transcriptase polymorphism R284K and thymidine analogue resistance mutations M41L, L210W and T215Y in patients failing tenofovir/emtricitabine therapy

    PubMed Central

    2012-01-01

    Background Thymidine analogue resistance mutations (TAMs) selected under treatment with nucleoside analogues generate two distinct genotypic profiles in the HIV-1 reverse transcriptase (RT): (i) TAM1: M41L, L210W and T215Y, and (ii) TAM2: D67N, K70R and K219E/Q, and sometimes T215F. Secondary mutations, including thumb subdomain polymorphisms (e.g. R284K) have been identified in association with TAMs. We have identified mutational clusters associated with virological failure during salvage therapy with tenofovir/emtricitabine-based regimens. In this context, we have studied the role of R284K as a secondary mutation associated with mutations of the TAM1 complex. Results The cross-sectional study carried out with >200 HIV-1 genotypes showed that virological failure to tenofovir/emtricitabine was strongly associated with the presence of M184V (P < 10-10) and TAMs (P < 10-3), while K65R was relatively uncommon in previously-treated patients failing antiretroviral therapy. Clusters of mutations were identified, and among them, the TAM1 complex showed the highest correlation coefficients. Covariation of TAM1 mutations and V118I, V179I, M184V and R284K was observed. Virological studies showed that the combination of R284K with TAM1 mutations confers a fitness advantage in the presence of zidovudine or tenofovir. Studies with recombinant HIV-1 RTs showed that when associated with TAM1 mutations, R284K had a minimal impact on zidovudine or tenofovir inhibition, and in their ability to excise the inhibitors from blocked DNA primers. However, the mutant RT M41L/L210W/T215Y/R284K showed an increased catalytic rate for nucleotide incorporation and a higher RNase H activity in comparison with WT and mutant M41L/L210W/T215Y RTs. These effects were consistent with its enhanced chain-terminated primer rescue on DNA/DNA template-primers, but not on RNA/DNA complexes, and can explain the higher fitness of HIV-1 having TAM1/R284K mutations. Conclusions Our study shows the association

  18. Data mining using template-based molecular docking on tetrahydroimidazo-[4,5,1-jk][1,4]-benzodiazepinone (TIBO) derivatives as HIV-1RT inhibitors.

    PubMed

    Sapre, Nitin S; Gupta, Swagata; Pancholi, Nilanjana; Sapre, Neelima

    2008-11-01

    TIBO (Tetrahydroimidazo-[4,5,1-jk][1,4]-benzodiazepinone) compounds are potent non-nucleoside reverse transcriptase inhibitors (NNRTIs) that show a great promise for the treatment of AIDS. A structure-based molecular modeling approach based on template-based flexible docking simulation followed by 'Tabu clustering' was performed on a series of 46 TIBO derivatives considered as training set of HIV-1 NNRTIs. Four different templates of the highest active ligand (pIC(50) = 8.52) of the series were used. The results were reasonably satisfactory. A good correlation was observed between the biological activity and binding affinity of the compounds, which suggest that identified binding conformations of these inhibitors are reliable. Statistical modeling yielded satisfactory results (r(2) = 0.878). Our studies suggest that template-based docking followed by 'Tabu clustering' enhances the docking efficiency. Also, cross-validation with a test-set containing 16 compounds gave satisfactory results (r(2) = 0.836). Data mining of PubChem database yielded a total of 31 hits (25 novel TIBO like compounds, as well as, 6 novel scaffolds) with enhanced binding efficacy as hits. These hits may, be targeted toward potent lead-optimization and, help in designing and synthesizing novel compounds with enhanced therapeutic efficacy.

  19. Moderate Levels of Pre-Treatment HIV-1 Antiretroviral Drug Resistance Detected in the First South African National Survey

    PubMed Central

    Steegen, Kim; Carmona, Sergio; Bronze, Michelle; Papathanasopoulos, Maria A.; van Zyl, Gert; Goedhals, Dominique; MacLeod, William; Sanne, Ian; Stevens, Wendy S.

    2016-01-01

    Background In order to assess the level of transmitted and/or pre-treatment antiretroviral drug resistance to HIV-1, the World Health Organization (WHO) recommends that regular surveys are conducted. This study’s objective was to assess the frequency of HIV-1 antiretroviral drug resistance in patients initiating antiretroviral treatment (ART) in the public sector throughout South Africa. Methods A prospective cross-sectional survey was conducted using probability proportional to size sampling. This method ensured that samples from each province were proportionally collected, based on the number of patients receiving ART in each region. Samples were collected between March 2013 and October 2014. Pol sequences were obtained using RT-PCR and Sanger sequencing and submitted to the Stanford Calibrated Population Resistance tool v6.0. Results A total of 277 sequences were available for analysis. Most participants were female (58.8%) and the median age was 34 years (IQR: 29–42). The median baseline CD4-count was 149 cells/mm3 (IQR: 62–249) and, based on self-reporting, participants had been diagnosed as HIV-positive approximately 44 days prior to sample collection (IQR: 23–179). Subtyping revealed that 98.2% were infected with HIV-1 subtype C. Overall, 25 out of 277 patients presented with ≥1 surveillance drug resistance mutation (SDRM, 9.0%, 95% CI: 6.1–13.0%). Non-nucleoside reverse transcriptase inhibitor (NNRTI) mutations were the most numerous mutations detected (n = 23). Only two patients presented with a protease inhibitor (PI) mutation. In four patients ≥4 SDRMs were detected, which might indicate that these patients were not truly ART-naïve or were infected with a multi-resistant virus. Conclusions These results show that the level of antiretroviral drug resistance in ART-naïve South Africans has reached moderate levels, as per the WHO classification. Therefore, regular surveys of pre-treatment drug resistance levels in all regions of South Africa

  20. Broad activation of latent HIV-1 in vivo

    PubMed Central

    Barton, Kirston; Hiener, Bonnie; Winckelmann, Anni; Rasmussen, Thomas Aagaard; Shao, Wei; Byth, Karen; Lanfear, Robert; Solomon, Ajantha; McMahon, James; Harrington, Sean; Buzon, Maria; Lichterfeld, Mathias; Denton, Paul W.; Olesen, Rikke; Østergaard, Lars; Tolstrup, Martin; Lewin, Sharon R.; Søgaard, Ole Schmeltz; Palmer, Sarah

    2016-01-01

    The ‘shock and kill' approach to cure human immunodeficiency virus (HIV) includes transcriptional induction of latent HIV-1 proviruses using latency-reversing agents (LRAs) with targeted immunotherapy to purge infected cells. The administration of LRAs (panobinostat or vorinostat) to HIV-1-infected individuals on antiretroviral therapy induces a significant increase in cell-associated unspliced (CA-US) HIV-1 RNA from CD4+ T cells. However, it is important to discern whether the increases in CA-US HIV-1 RNA are due to limited or broad activation of HIV-1 proviruses. Here we use single-genome sequencing to find that the RNA transcripts observed following LRA administration are genetically diverse, indicating activation of transcription from an extensive range of proviruses. Defective sequences are more frequently found in CA HIV-1 RNA than in HIV-1 DNA, which has implications for developing an accurate measure of HIV-1 reservoir size. Our findings provide insights into the effects of panobinostat and vorinostat as LRAs for latent HIV-1. PMID:27605062

  1. Novel 1,5-diphenylpyrazole nonnucleoside HIV-1 reverse transcriptase inhibitors with enhanced activity versus the delavirdine-resistant P236L mutant: lead identification and SAR of 3- and 4-substituted derivatives.

    PubMed

    Genin, M J; Biles, C; Keiser, B J; Poppe, S M; Swaney, S M; Tarpley, W G; Yagi, Y; Romero, D L

    2000-03-09

    Through computationally directed broad screening, a novel 1, 5-diphenylpyrazole (DPP) class of HIV-1 nonnucleoside reverse transcriptase inhibitors (NNRTIs) has been discovered. Compound 2 (PNU-32945) was found to have good activity versus wild-type (IC(50) = 2.3 microM) and delavirdine-resistant P236L (IC(50) = 1.1 microM) reverse transcriptase (RT). Also, PNU-32945 has an ED(50) for inhibition of viral replication in cell cultures of 0.1 microM and was shown to be noncytotoxic with a CC(50) > 10 microM. Structure-activity relationship studies on the 3- and 4-positions of PNU-32945 led to interesting selectivity and activity within the class. In particular, the 3-hydroxyethyl-4-ethyl congener 29 is a potent inhibitor of the P236L mutant (IC(50) = 0.65 microM), whereas it is essentially inactive versus the wild-type enzyme (IC(50) > 50 microM). Furthermore, this compound was significantly more active versus the P236L mutant than delavirdine. The synthesis and RT inhibitory activity of various 3- and 4-substituted analogues are discussed.

  2. L-chicoric acid inhibits human immunodeficiency virus type 1 integration in vivo and is a noncompetitive but reversible inhibitor of HIV-1 integrase in vitro.

    PubMed

    Reinke, Ryan A; Lee, Deborah J; McDougall, Brenda R; King, Peter J; Victoria, Joseph; Mao, Yingqun; Lei, Xiangyang; Reinecke, Manfred G; Robinson, W Edward

    2004-09-01

    The human immunodeficiency virus (HIV) integrase (IN) must covalently join the viral cDNA into a host chromosome for productive HIV infection. l-Chicoric acid (l-CA) enters cells poorly but is a potent inhibitor of IN in vitro. Using quantitative real-time polymerase chain reaction (PCR), l-CA inhibits integration at concentrations from 500 nM to 10 microM but also inhibits entry at concentrations above 1 microM. Using recombinant HIV IN, steady-state kinetic analyses with l-CA were consistent with a noncompetitive or irreversible mechanism of inhibition. IN, in the presence or absence of l-CA, was successively washed. Inhibition of IN diminished, demonstrating that l-CA was reversibly bound to the protein. These data demonstrate that l-CA is a noncompetitive but reversible inhibitor of IN in vitro and of HIV integration in vivo. Thus, l-CA likely interacts with amino acids other than those which bind substrate.

  3. Single Genome Analysis for the Detection of Linked Multiclass Drug Resistance Mutations in HIV-1-Infected Children After Failure of Protease Inhibitor-Based First-Line Therapy.

    PubMed

    Lange, Camille Marie; Hué, Stéphane; Violari, Avy; Cotton, Mark; Gibb, Diana; Babiker, Abdel; Otwombe, Kennedy; Panchia, Ravindre; Dobbels, Els; Jean-Philippe, Patrick; McIntyre, James A; Pillay, Deenan; Gupta, Ravindra Kumar

    2015-06-01

    The WHO recommends protease inhibitor (PI)-based antiretroviral therapy (ART) for vertically infected children after failed nevirapine (NVP) prophylaxis. Emergence of PI resistance on the backdrop of preexisting non-nucleoside reverse transcriptase inhibitor (NNRTI) resistance could compromise long-term treatment options in such children. We characterized multiclass drug resistance using single genome sequencing (SGS) in children with viremia while receiving PI-based ART. We applied SGS of HIV-1 protease (PR) and reverse transcriptase to longitudinal samples from a cohort of the Children with HIV Early Antiretroviral Therapy trial with viral loads >1000 copies per milliliter after 40 weeks of early ART. Bulk sequencing revealed NVP-selected resistance in 50% of these children, whereas SGS revealed NVP-selected resistance in 70%. Two children had baseline NRTI and PI mutations, suggesting previous maternal ART. Linked multiclass drug resistance after PI-based ART was detected by SGS in 2 of 10 children. In one child, the majority species contained M184V in reverse transcriptase linked to L10F, M46I/L, I54V, and V82A in PR and a triple-class drug-resistant variant with these mutations linked to the NNRTI mutation V108I. In the second child, the majority species contained M184V and V82A linked within viral genomes. We conclude that when PI-based ART is initiated soon after birth after single dose-NVP prophylaxis, PI and NRTI resistance can occur in the majority species as expected and also be selected on the same genomes as preexisting NNRTI-resistant mutations. These observations highlight a future therapeutic challenge for vertically infected children where antiretroviral drug classes are limited.

  4. A full-coordinate model of the polymerase domain of HIV-1 reverse transcriptase and its interaction with a nucleic acid substrate

    NASA Technical Reports Server (NTRS)

    Setlik, R. F.; Meyer, D. J.; Shibata, M.; Roskwitalski, R.; Ornstein, R. L.; Rein, R.

    1994-01-01

    We present a full-coordinate model of residues 1-319 of the polymerase domain of HIV-I reverse transcriptase. This model was constructed from the x-ray crystallographic structure of Jacobo-Molina et al. (Jacobo-Molina et al., P.N.A.S. USA 90, 6320-6324 (1993)) which is currently available to the degree of C-coordinates. The backbone and side-chain atoms were constructed using the MAXSPROUT suite of programs (L. Holm and C. Sander, J. Mol. Biol. 218, 183-194 (1991)) and refined through molecular modeling. A seven base pair A-form dsDNA was positioned in the nucleic acid binding cleft to represent the template-primer complex. The orientation of the template-primer complex in the nucleic acid binding cleft was guided by the positions of phosphorus atoms in the crystal structure.

  5. Novel HIV-1 Therapeutics through Targeting Altered Host Cell Pathways

    PubMed Central

    Coley, William; Kehn-Hall, Kylene; Van Duyne, Rachel; Kashanchi, Fatah

    2009-01-01

    The emergence of drug-resistant human immunodeficiency virus type I (HIV-1) strains presents a challenge for the design of new drugs. Anti-HIV compounds currently in use are the subject of advanced clinical trials using either HIV-1 reverse-transcriptase, viral protease, or integrase inhibitors. Recent studies show an increase in the number of HIV-1 variants resistant to anti-retroviral agents in newly infected individuals. Targeting host cell factors involved in the regulation of HIV-1 replication might be one way to combat HIV-1 resistance to the currently available anti-viral agents. A specific inhibition of HIV-1 gene expression could be expected from the development of compounds targeting host cell factors that participate in the activation of the HIV-1 LTR promoter. Here we will discuss how targeting the host can be accomplished either by using small molecules to alter the function of the host’s proteins such as p53 or cdk9, or by utilizing new advances in siRNA therapies to knock down essential host factors such as CCR5 and CXCR4. Finally, we will discuss how the viral protein interactomes should be performed to better design therapeutics against HIV-1. PMID:19732026

  6. Antiviral Therapy by HIV-1 Broadly Neutralizing and Inhibitory Antibodies.

    PubMed

    Zhang, Zhiqing; Li, Shaowei; Gu, Ying; Xia, Ningshao

    2016-11-18

    Human immunodeficiency virus type 1 (HIV-1) infection causes acquired immune deficiency syndrome (AIDS), a global epidemic for more than three decades. HIV-1 replication is primarily controlled through antiretroviral therapy (ART) but this treatment does not cure HIV-1 infection. Furthermore, there is increasing viral resistance to ART, and side effects associated with long-term therapy. Consequently, there is a need of alternative candidates for HIV-1 prevention and therapy. Recent advances have discovered multiple broadly neutralizing antibodies against HIV-1. In this review, we describe the key epitopes on the HIV-1 Env protein and the reciprocal broadly neutralizing antibodies, and discuss the ongoing clinical trials of broadly neutralizing and inhibitory antibody therapy as well as antibody combinations, bispecific antibodies, and methods that improve therapeutic efficacy by combining broadly neutralizing antibodies (bNAbs) with latency reversing agents. Compared with ART, HIV-1 therapeutics that incorporate these broadly neutralizing and inhibitory antibodies offer the advantage of decreasing virus load and clearing infected cells, which is a promising prospect in HIV-1 prevention and treatment.

  7. Antiviral Therapy by HIV-1 Broadly Neutralizing and Inhibitory Antibodies

    PubMed Central

    Zhang, Zhiqing; Li, Shaowei; Gu, Ying; Xia, Ningshao

    2016-01-01

    Human immunodeficiency virus type 1 (HIV-1) infection causes acquired immune deficiency syndrome (AIDS), a global epidemic for more than three decades. HIV-1 replication is primarily controlled through antiretroviral therapy (ART) but this treatment does not cure HIV-1 infection. Furthermore, there is increasing viral resistance to ART, and side effects associated with long-term therapy. Consequently, there is a need of alternative candidates for HIV-1 prevention and therapy. Recent advances have discovered multiple broadly neutralizing antibodies against HIV-1. In this review, we describe the key epitopes on the HIV-1 Env protein and the reciprocal broadly neutralizing antibodies, and discuss the ongoing clinical trials of broadly neutralizing and inhibitory antibody therapy as well as antibody combinations, bispecific antibodies, and methods that improve therapeutic efficacy by combining broadly neutralizing antibodies (bNAbs) with latency reversing agents. Compared with ART, HIV-1 therapeutics that incorporate these broadly neutralizing and inhibitory antibodies offer the advantage of decreasing virus load and clearing infected cells, which is a promising prospect in HIV-1 prevention and treatment. PMID:27869733

  8. Smartphone-Imaged HIV-1 Reverse-Transcription Loop-Mediated Isothermal Amplification (RT-LAMP) on a Chip from Whole Blood

    PubMed Central

    Damhorst, Gregory L.; Duarte-Guevara, Carlos; Chen, Weili; Ghonge, Tanmay; Cunningham, Brian T.; Bashir, Rashid

    2015-01-01

    Viral load measurements are an essential tool for the long-term clinical care of hum an immunodeficiency virus (HIV)-positive individuals. The gold standards in viral load instrumentation, however, are still too limited by their size, cost, and sophisticated operation for these measurements to be ubiquitous in remote settings with poor healthcare infrastructure, including parts of the world that are disproportionately affected by HIV infection. The challenge of developing a point-of-care platform capable of making viral load more accessible has been frequently approached but no solution has yet emerged that meets the practical requirements of low cost, portability, and ease-of-use. In this paper, we perform reverse-transcription loop-mediated isothermal amplification (RT-LAMP) on minimally processed HIV-spiked whole blood samples with a microfluidic and silicon microchip platform, and perform fluorescence measurements with a consumer smartphone. Our integrated assay shows amplification from as few as three viruses in a ~ 60 nL RT-LAMP droplet, corresponding to a whole blood concentration of 670 viruses per µL of whole blood. The technology contains greater power in a digital RT-LAMP approach that could be scaled up for the determination of viral load from a finger prick of blood in the clinical care of HIV-positive individuals. We demonstrate that all aspects of this viral load approach, from a drop of blood to imaging the RT-LAMP reaction, are compatible with lab-on-a-chip components and mobile instrumentation. PMID:26705482

  9. Population genomics of intrapatient HIV-1 evolution

    PubMed Central

    Zanini, Fabio; Brodin, Johanna; Thebo, Lina; Lanz, Christa; Bratt, Göran; Albert, Jan; Neher, Richard A

    2015-01-01

    Many microbial populations rapidly adapt to changing environments with multiple variants competing for survival. To quantify such complex evolutionary dynamics in vivo, time resolved and genome wide data including rare variants are essential. We performed whole-genome deep sequencing of HIV-1 populations in 9 untreated patients, with 6-12 longitudinal samples per patient spanning 5-8 years of infection. The data can be accessed and explored via an interactive web application. We show that patterns of minor diversity are reproducible between patients and mirror global HIV-1 diversity, suggesting a universal landscape of fitness costs that control diversity. Reversions towards the ancestral HIV-1 sequence are observed throughout infection and account for almost one third of all sequence changes. Reversion rates depend strongly on conservation. Frequent recombination limits linkage disequilibrium to about 100bp in most of the genome, but strong hitch-hiking due to short range linkage limits diversity. DOI: http://dx.doi.org/10.7554/eLife.11282.001 PMID:26652000

  10. Host SAMHD1 Protein Promotes HIV-1 Recombination in Macrophages*

    PubMed Central

    Nguyen, Laura A.; Kim, Dong-Hyun; Daly, Michele B.; Allan, Kevin C.; Kim, Baek

    2014-01-01

    Template switching can occur during the reverse transcription of HIV-1. Deoxynucleotide triphosphate (dNTP) concentrations have been biochemically shown to impact HIV-1 reverse transcriptase (RT)-mediated strand transfer. Lowering the dNTP concentrations promotes RT pausing and RNA template degradation by RNase H activity of the RT, subsequently leading to strand transfer. Terminally differentiated/nondividing macrophages, which serve as a key HIV-1 reservoir, contain extremely low dNTP concentrations (20–50 nm), which results from the cellular dNTP hydrolyzing sterile α motif and histidine aspartic domain containing protein 1 (SAMHD1) protein, when compared with activated CD4+ T cells (2–5 μm). In this study, we first observed that HIV-1 template switching efficiency was nearly doubled in human primary macrophages when compared with activated CD4+ T cells. Second, SAMHD1 degradation by viral protein X (Vpx), which elevates cellular dNTP concentrations, decreased HIV-1 template switching efficiency in macrophages to the levels comparable with CD4+ T cells. Third, differentiated SAMHD1 shRNA THP-1 cells have a 2-fold increase in HIV-1 template switching efficiency. Fourth, SAMHD1 degradation by Vpx did not alter HIV-1 template switching efficiency in activated CD4+ T cells. Finally, the HIV-1 V148I RT mutant that is defective in dNTP binding and has DNA synthesis delay promoted RT stand transfer when compared with wild type RT, particularly at low dNTP concentrations. Here, we report that SAMHD1 regulation of the dNTP concentrations influences HIV-1 template switching efficiency, particularly in macrophages. PMID:24352659

  11. Therapeutics for HIV-1 reactivation from latency.

    PubMed

    Sgarbanti, Marco; Battistini, Angela

    2013-08-01

    Intensive combined antiretroviral therapy successfully suppresses HIV-1 replication and AIDS disease progression making infection manageable, but it is unable to eradicate the virus that persists in long-lived, drug-insensitive and immune system-insensitive reservoirs thus asking for life-long treatments with problems of compliance, resistance, toxicity and cost. These limitations and recent insights into latency mechanisms have fueled a renewed effort in finding a cure for HIV-1 infection. Proposed eradication strategies involve reactivation of the latent reservoir upon induction of viral transcription followed by the elimination of reactivated virus-producing cells by viral cytopathic effect or host immune response. Several molecules identified by mechanism-directed approaches or in large-scale screenings have been proposed as latency reversing agents. Some of them have already entered clinical testing in humans but with mixed or unsatisfactory results.

  12. HIV-1 drug resistance genotyping from antiretroviral therapy (ART) naïve and first-line treatment failures in Djiboutian patients

    PubMed Central

    2012-01-01

    Abstract In this study we report the prevalence of antiretroviral drug resistant HIV-1 genotypes of virus isolated from Djiboutian patients who failed first-line antiretroviral therapy (ART) and from ART naïve patients. Patients and methods A total of 35 blood samples from 16 patients who showed first-line ART failure (>1000 viral genome copies/ml) and 19 ART-naïve patients were collected in Djibouti from October 2009 to December 2009. Both the protease (PR) and reverse transcriptase (RT) genes were amplified and sequenced using National Agency for AIDS Research (ANRS) protocols. The Stanford HIV database algorithm was used for interpretation of resistance data and genotyping. Results Among the 16 patients with first-line ART failure, nine (56.2%) showed reverse transcriptase inhibitor-resistant HIV-1 strains: two (12.5%) were resistant to nucleoside (NRTI), one (6.25%) to non-nucleoside (NNRTI) reverse transcriptase inhibitors, and six (37.5%) to both. Analysis of the DNA sequencing data indicated that the most common mutations conferring drug resistance were M184V (38%) for NRTI and K103N (25%) for NNRTI. Only NRTI primary mutations K101Q, K103N and the PI minor mutation L10V were found in ART naïve individuals. No protease inhibitor resistant strains were detected. In our study, we found no detectable resistance in ∼ 44% of all patients who experienced therapeutic failure which was explained by low compliance, co-infection with tuberculosis and malnutrition. Genotyping revealed that 65.7% of samples were infected with subtype C, 20% with CRF02_AG, 8.5% with B, 2.9% with CRF02_AG/C and 2.9% with K/C. Conclusion The results of this first study about drug resistance mutations in first-line ART failures show the importance of performing drug resistance mutation test which guides the choice of a second-line regimen. This will improve the management of HIV-infected Djiboutian patients. Virtual slides The virtual slide(s) for this article can be found here

  13. Pyridones as NNRTIs against HIV-1 mutants: 3D-QSAR and protein informatics

    NASA Astrophysics Data System (ADS)

    Debnath, Utsab; Verma, Saroj; Jain, Surabhi; Katti, Setu B.; Prabhakar, Yenamandra S.

    2013-07-01

    CoMFA and CoMSIA based 3D-QSAR of HIV-1 RT wild and mutant (K103, Y181C, and Y188L) inhibitory activities of 4-benzyl/benzoyl pyridin-2-ones followed by protein informatics of corresponding non-nucleoside inhibitors' binding pockets from pdbs 2BAN, 3MED, 1JKH, and 2YNF were analysed to discover consensus features of the compounds for broad-spectrum activity. The CoMFA/CoMSIA models indicated that compounds with groups which lend steric-cum-electropositive fields in the vicinity of C5, hydrophobic field in the vicinity of C3 of pyridone region and steric field in aryl region produce broad-spectrum anti-HIV-1 RT activity. Also, a linker rendering electronegative field between pyridone and aryl moieties is common requirement for the activities. The protein informatics showed considerable alteration in residues 181 and 188 characteristics on mutation. Also, mutants' isoelectric points shifted in acidic direction. The study offered fresh avenues for broad-spectrum anti-HIV-1 agents through designing new molecules seeded with groups satisfying common molecular fields and concerns of mutating residues.

  14. HIV-1 subtypes in Yugoslavia.

    PubMed

    Stanojevic, Maja; Papa, Anna; Papadimitriou, Evagelia; Zerjav, Sonja; Jevtovic, Djordje; Salemovic, Dubravka; Jovanovic, Tanja; Antoniadis, Antonis

    2002-05-01

    To gain insight concerning the genetic diversity of HIV-1 viruses associated with the HIV-1 epidemic in Yugoslavia, 45 specimens from HIV-1-infected individuals were classified into subtypes by sequence-based phylogenetic analysis of the polymerase (pol) region of the viral genome. Forty-one of 45 specimens (91.2%) were identified as pol subtype B, 2 of 45 as subtype C (4.4%), 1 of 45 as CRF01_AE (2.2%), and 1 as CRF02_AG recombinant (2.2%). Nucleotide divergence among subtype B sequences was 4.8%. Results of this study show that among HIV-1-infected patients in Yugoslavia subtype B predominates (91.5%), whereas non-B subtypes are present at a low percentage, mostly related to travel abroad.

  15. Epidemiological Surveillance of HIV-1 Transmitted Drug Resistance in Spain in 2004-2012: Relevance of Transmission Clusters in the Propagation of Resistance Mutations

    PubMed Central

    Vega, Yolanda; Delgado, Elena; Fernández-García, Aurora; Cuevas, Maria Teresa; Thomson, Michael M.; Montero, Vanessa; Sánchez, Monica; Sánchez, Ana Maria; Pérez-Álvarez, Lucia

    2015-01-01

    Our objectives were to carry out an epidemiological surveillance study on transmitted drug resistance (TDR) among individuals newly diagnosed of HIV-1 infection during a nine year period in Spain and to assess the role of transmission clusters (TC) in the propagation of resistant strains. An overall of 1614 newly diagnosed individuals were included in the study from January 2004 through December 2012. Individuals come from two different Spanish regions: Galicia and the Basque Country. Resistance mutations to reverse transcriptase inhibitors (RTI) and protease inhibitors (PI) were analyzed according to mutations included in the surveillance drug-resistance mutations list updated in 2009. TC were defined as those comprising viruses from five or more individuals whose sequences clustered in maximum likelihood phylogenetic trees with a bootstrap value ≥90%. The overall prevalence of TDR to any drug was 9.9%: 4.9% to nucleoside RTIs (NRTIs), 3.6% to non-nucleoside RTIs (NNRTIs), and 2.7% to PIs. A significant decrease of TDR to NRTIs over time was observed [from 10% in 2004 to 2% in 2012 (p=0.01)]. Sixty eight (42.2%) of 161 sequences with TDR were included in 25 TC composed of 5 or more individuals. Of them, 9 clusters harbored TDR associated with high level resistance to antiretroviral drugs. T215D revertant mutation was transmitted in a large cluster comprising 25 individuals. The impact of epidemiological networks on TDR frequency may explain its persistence in newly diagnosed individuals. The knowledge of the populations involved in TC would facilitate the design of prevention programs and public health interventions. PMID:26010948

  16. Epidemiological Surveillance of HIV-1 Transmitted Drug Resistance in Spain in 2004-2012: Relevance of Transmission Clusters in the Propagation of Resistance Mutations.

    PubMed

    Vega, Yolanda; Delgado, Elena; Fernández-García, Aurora; Cuevas, Maria Teresa; Thomson, Michael M; Montero, Vanessa; Sánchez, Monica; Sánchez, Ana Maria; Pérez-Álvarez, Lucia

    2015-01-01

    Our objectives were to carry out an epidemiological surveillance study on transmitted drug resistance (TDR) among individuals newly diagnosed of HIV-1 infection during a nine year period in Spain and to assess the role of transmission clusters (TC) in the propagation of resistant strains. An overall of 1614 newly diagnosed individuals were included in the study from January 2004 through December 2012. Individuals come from two different Spanish regions: Galicia and the Basque Country. Resistance mutations to reverse transcriptase inhibitors (RTI) and protease inhibitors (PI) were analyzed according to mutations included in the surveillance drug-resistance mutations list updated in 2009. TC were defined as those comprising viruses from five or more individuals whose sequences clustered in maximum likelihood phylogenetic trees with a bootstrap value ≥90%. The overall prevalence of TDR to any drug was 9.9%: 4.9% to nucleoside RTIs (NRTIs), 3.6% to non-nucleoside RTIs (NNRTIs), and 2.7% to PIs. A significant decrease of TDR to NRTIs over time was observed [from 10% in 2004 to 2% in 2012 (p=0.01)]. Sixty eight (42.2%) of 161 sequences with TDR were included in 25 TC composed of 5 or more individuals. Of them, 9 clusters harbored TDR associated with high level resistance to antiretroviral drugs. T215D revertant mutation was transmitted in a large cluster comprising 25 individuals. The impact of epidemiological networks on TDR frequency may explain its persistence in newly diagnosed individuals. The knowledge of the populations involved in TC would facilitate the design of prevention programs and public health interventions.

  17. HIV-1 evades innate immune recognition through specific cofactor recruitment

    NASA Astrophysics Data System (ADS)

    Rasaiyaah, Jane; Tan, Choon Ping; Fletcher, Adam J.; Price, Amanda J.; Blondeau, Caroline; Hilditch, Laura; Jacques, David A.; Selwood, David L.; James, Leo C.; Noursadeghi, Mahdad; Towers, Greg J.

    2013-11-01

    Human immunodeficiency virus (HIV)-1 is able to replicate in primary human macrophages without stimulating innate immunity despite reverse transcription of genomic RNA into double-stranded DNA, an activity that might be expected to trigger innate pattern recognition receptors. We reasoned that if correctly orchestrated HIV-1 uncoating and nuclear entry is important for evasion of innate sensors then manipulation of specific interactions between HIV-1 capsid and host factors that putatively regulate these processes should trigger pattern recognition receptors and stimulate type 1 interferon (IFN) secretion. Here we show that HIV-1 capsid mutants N74D and P90A, which are impaired for interaction with cofactors cleavage and polyadenylation specificity factor subunit 6 (CPSF6) and cyclophilins (Nup358 and CypA), respectively, cannot replicate in primary human monocyte-derived macrophages because they trigger innate sensors leading to nuclear translocation of NF-κB and IRF3, the production of soluble type 1 IFN and induction of an antiviral state. Depletion of CPSF6 with short hairpin RNA expression allows wild-type virus to trigger innate sensors and IFN production. In each case, suppressed replication is rescued by IFN-receptor blockade, demonstrating a role for IFN in restriction. IFN production is dependent on viral reverse transcription but not integration, indicating that a viral reverse transcription product comprises the HIV-1 pathogen-associated molecular pattern. Finally, we show that we can pharmacologically induce wild-type HIV-1 infection to stimulate IFN secretion and an antiviral state using a non-immunosuppressive cyclosporine analogue. We conclude that HIV-1 has evolved to use CPSF6 and cyclophilins to cloak its replication, allowing evasion of innate immune sensors and induction of a cell-autonomous innate immune response in primary human macrophages.

  18. HIV-1 Antiretroviral Drug Resistance Mutations in Treatment Naïve and Experienced Panamanian Subjects: Impact on National Use of EFV-Based Schemes

    PubMed Central

    Mendoza, Yaxelis; Castillo Mewa, Juan; Martínez, Alexander A.; Zaldívar, Yamitzel; Sosa, Néstor; Arteaga, Griselda; Armién, Blas; Bautista, Christian T.; García-Morales, Claudia; Tapia-Trejo, Daniela; Ávila-Ríos, Santiago; Reyes-Terán, Gustavo; Bello, Gonzalo; Pascale, Juan M.

    2016-01-01

    The use of antiretroviral therapy in HIV infected subjects prevents AIDS-related illness and delayed occurrence of death. In Panama, rollout of ART started in 1999 and national coverage has reached 62.8% since then. The objective of this study was to determine the level and patterns of acquired drug resistance mutations of clinical relevance (ADR-CRM) and surveillance drug resistance mutations (SDRMs) from 717 HIV-1 pol gene sequences obtained from 467 ARV drug-experienced and 250 ARV drug-naïve HIV-1 subtypes B infected subjects during 2007–2013, respectively. The overall prevalence of SDRM and of ADR-CRM during the study period was 9.2% and 87.6%, respectively. The majority of subjects with ADR-CRM had a pattern of mutations that confer resistance to at least two classes of ARV inhibitors. The non-nucleoside reverse transcriptase inhibitor (NNRTI) mutations K103N and P225H were more prevalent in both ARV drug-naïve and ARV drug-experienced subjects. The nucleoside reverse transcriptase inhibitor (NRTI) mutation M184V was more frequent in ARV drug-experienced individuals, while T215YFrev and M41L were more frequent in ARV drug-naïve subjects. Prevalence of mutations associated to protease inhibitors (PI) was lower than 4.1% in both types of subjects. Therefore, there is a high level of resistance (>73%) to Efavirenz/Nevirapine, Lamivudine and Azidothymidine in ARV drug-experienced subjects, and an intermediate to high level of resistance (5–10%) to Efavirenz/Nevirapine in ARV drug-naïve subjects. During the study period, we observed an increasing trend in the prevalence of ADR-CRM in subjects under first-line schemes, but not significant changes in the prevalence of SDRM. These results reinforce the paramount importance of a national surveillance system of ADR-CRM and SDRM for national management policies of subjects living with HIV. PMID:27119150

  19. Therapeutic doses of irradiation activate viral transcription and induce apoptosis in HIV-1 infected cells.

    PubMed

    Iordanskiy, Sergey; Van Duyne, Rachel; Sampey, Gavin C; Woodson, Caitlin M; Fry, Kelsi; Saifuddin, Mohammed; Guo, Jia; Wu, Yuntao; Romerio, Fabio; Kashanchi, Fatah

    2015-11-01

    The highly active antiretroviral therapy reduces HIV-1 RNA in plasma to undetectable levels. However, the virus continues to persist in the long-lived resting CD4(+) T cells, macrophages and astrocytes which form a viral reservoir in infected individuals. Reactivation of viral transcription is critical since the host immune response in combination with antiretroviral therapy may eradicate the virus. Using the chronically HIV-1 infected T lymphoblastoid and monocytic cell lines, primary quiescent CD4(+) T cells and humanized mice infected with dual-tropic HIV-1 89.6, we examined the effect of various X-ray irradiation (IR) doses (used for HIV-related lymphoma treatment and lower doses) on HIV-1 transcription and viability of infected cells. Treatment of both T cells and monocytes with IR, a well-defined stress signal, led to increase of HIV-1 transcription, as evidenced by the presence of RNA polymerase II and reduction of HDAC1 and methyl transferase SUV39H1 on the HIV-1 promoter. This correlated with the increased GFP signal and elevated level of intracellular HIV-1 RNA in the IR-treated quiescent CD4(+) T cells infected with GFP-encoding HIV-1. Exposition of latently HIV-1infected monocytes treated with PKC agonist bryostatin 1 to IR enhanced transcription activation effect of this latency-reversing agent. Increased HIV-1 replication after IR correlated with higher cell death: the level of phosphorylated Ser46 in p53, responsible for apoptosis induction, was markedly higher in the HIV-1 infected cells following IR treatment. Exposure of HIV-1 infected humanized mice with undetectable viral RNA level to IR resulted in a significant increase of HIV-1 RNA in plasma, lung and brain tissues. Collectively, these data point to the use of low to moderate dose of IR alone or in combination with HIV-1 transcription activators as a potential application for the "Shock and Kill" strategy for latently HIV-1 infected cells.

  20. Toll-interacting protein inhibits HIV-1 infection and regulates viral latency.

    PubMed

    Li, Chuan; Kuang, Wen-Dong; Qu, Di; Wang, Jian-Hua

    2016-06-24

    HIV-1 latency is mainly characterized by a reversible silencing of long-terminal repeat (LTR)-driven transcription of provirus. The existing of repressive factors has been described to contribute to transcription silencing of HIV-1. Toll-interacting protein (Tollip) has been identified as a repressor of Toll like receptors (TLR)-mediated signaling. Our previous study has found that Tollip inhibited NF-κB-dependent HIV-1 promoter LTR-driven transcription, indicating the potential role of Tollip in governing viral latency. In this study, by using HIV-1 latently infected Jurkat T-cell and central memory CD4(+) T-cells, we demonstrate the role of Tollip in regulating HIV-1 latency, as the knock-down of Tollip promoted HIV-1 reactivation from both HIV-1 latently infected Jurkat CD4(+) T cells and primary central memory T cells (TCM). Moreover, we found that the activities of LTRs derived from multiple HIV-1 subtypes could be repressed by Tollip; Knock-down of Tollip promoted HIV-1 transcription and infection in CD4(+) T cells. Our data indicate a key role of Tollip in suppressing HIV-1 infection and regulating viral latency, which provides a potential host target for combating HIV-1 infection and latency.

  1. HIV-1 Epidemiology, Genetic Diversity, and Primary Drug Resistance in the Tyumen Oblast, Russia

    PubMed Central

    Astakhova, Ekaterina M.; Gashnikova, Mariya P.; Bocharov, Evgeniy F.; Petrova, Svetlana V.; Pun'ko, Olga A.; Popkov, Alexander V.; Totmenin, Aleksey V.

    2016-01-01

    Introduction. Specific molecular epidemic features of HIV infection in Tyumen Oblast (TO), Russia, were studied. Methods. The genome sequences encoding HIV-1 protease-reverse transcriptase, integrase, and major envelope protein were examined for 72 HIV-1 specimens isolated from the TO resident infected in 2000–2015. Results. The recorded prevalence of HIV-1 subtype A (A1) is 93.1%; HIV-1 subtype B continues to circulate in MSM risk group (1.4%). Solitary instances of HIV-1 recombinant forms, CRF63_02A1 (1.4%) and CRF03_AB (1.4%), were detected as well as two cases of HIV-1 URF63_A1 (2.8%). Phylogenetic analysis showed no HIV-1 clustering according to the duration of infection and risk groups but revealed different epidemic networks confirming that HIV infection spread within local epidemic foci. A high incidence of CXCR4-tropic HIV-1 variants and a higher rate of secondary mutations influencing the virus fitness (K20R, L10V, and I) are observed among the virus specimens isolated from newly infected individuals. Conclusions. The current HIV-1 epidemic in TO develops within the local epidemic networks. Similar to the previous period, HIV-1 subtype A is predominant in TO with sporadic cases of importation of HIV-1 recombinant forms circulating in adjacent areas. PMID:27957489

  2. HIV-1 Epidemiology, Genetic Diversity, and Primary Drug Resistance in the Tyumen Oblast, Russia.

    PubMed

    Gashnikova, Natalya M; Astakhova, Ekaterina M; Gashnikova, Mariya P; Bocharov, Evgeniy F; Petrova, Svetlana V; Pun'ko, Olga A; Popkov, Alexander V; Totmenin, Aleksey V

    2016-01-01

    Introduction. Specific molecular epidemic features of HIV infection in Tyumen Oblast (TO), Russia, were studied. Methods. The genome sequences encoding HIV-1 protease-reverse transcriptase, integrase, and major envelope protein were examined for 72 HIV-1 specimens isolated from the TO resident infected in 2000-2015. Results. The recorded prevalence of HIV-1 subtype A (A1) is 93.1%; HIV-1 subtype B continues to circulate in MSM risk group (1.4%). Solitary instances of HIV-1 recombinant forms, CRF63_02A1 (1.4%) and CRF03_AB (1.4%), were detected as well as two cases of HIV-1 URF63_A1 (2.8%). Phylogenetic analysis showed no HIV-1 clustering according to the duration of infection and risk groups but revealed different epidemic networks confirming that HIV infection spread within local epidemic foci. A high incidence of CXCR4-tropic HIV-1 variants and a higher rate of secondary mutations influencing the virus fitness (K20R, L10V, and I) are observed among the virus specimens isolated from newly infected individuals. Conclusions. The current HIV-1 epidemic in TO develops within the local epidemic networks. Similar to the previous period, HIV-1 subtype A is predominant in TO with sporadic cases of importation of HIV-1 recombinant forms circulating in adjacent areas.

  3. Comparing Peripheral Blood Mononuclear Cell DNA and Circulating Plasma viral RNA pol Genotypes of Subtype C HIV-1.

    PubMed

    Banks, Lauren; Gholamin, Sharareh; White, Elizabeth; Zijenah, Lynn; Katzenstein, David A

    2012-02-01

    INTRODUCTION: Drug resistance mutations (DRM) in viral RNA are important in defining to provide effective antiretroviral therapy (ART) in HIV-1 infected patients. Detection of DRM in peripheral blood mononuclear cell (PBMC) DNA is another source of information, although the clinical significance of DRMs in proviral DNA is less clear. MATERIALS AND METHODS: From 25 patients receiving ART at a center in Zimbabwe, 32 blood samples were collected. Dideoxy-sequencing of gag-pol identified subtype and resistance mutations from plasma viral RNA and proviral DNA. Drug resistance was estimated using the calibrated population resistance tool on www.hivdb.stanford.edu database. Numerical resistance scores were calculated for all antiretroviral drugs and for the subjects' reported regimen. Phylogenetic analysis as maximum likelihood was performed to determine the evolutionary distance between sequences. RESULTS: Of the 25 patients, 4 patients (2 of which had given 2 blood samples) were not known to be on ART (NA) and had exclusively wild-type virus, 17 had received Protease inhibitors (PI), 18, non-nucleoside reverse transcriptase inhibitors (NNRTI) and 19, two or more nucleoside reverse transcriptase inhibitors (NRTI). Of the 17 with history of PI, 10 had PI mutations, 5 had minor differences between mutations in RNA and DNA. Eighteen samples had NNRTI mutations, six of which demonstrated some discordance between DNA and RNA mutations. Although NRTI resistance mutations were frequently different between analyses, mutations resulted in very similar estimated phenotypes as measured by resistance scores. The numerical resistance scores from RNA and DNA for PIs differed between 2/10, for NNRTIs between 8/18, and for NRTIs between 17/32 pairs. When calculated resistance scores were collapsed, 3 pairs showed discordance between RNA and DNA for at least one PI, 6 were discordant for at least one NNRTI and 11 for at least one NRTI. Regarding phylogenetic evolutionary analysis, all

  4. Enrichment of intersubtype HIV-1 recombinants in a dual infection system using HIV-1 strain-specific siRNAs

    PubMed Central

    2011-01-01

    Background Intersubtype HIV-1 recombinants in the form of unique or stable circulating recombinants forms (CRFs) are responsible for over 20% of infections in the worldwide epidemic. Mechanisms controlling the generation, selection, and transmission of these intersubtype HIV-1 recombinants still require further investigation. All intersubtype HIV-1 recombinants are generated and evolve from initial dual infections, but are difficult to identify in the human population. In vitro studies provide the most practical system to study mechanisms, but the recombination rates are usually very low in dual infections with primary HIV-1 isolates. This study describes the use of HIV-1 isolate-specific siRNAs to enrich intersubtype HIV-1 recombinants and inhibit the parental HIV-1 isolates from a dual infection. Results Following a dual infection with subtype A and D primary HIV-1 isolates and two rounds of siRNA treatment, nearly 100% of replicative virus was resistant to a siRNA specific for an upstream target sequence in the subtype A envelope (env) gene as well as a siRNA specific for a downstream target sequence in the subtype D env gene. Only 20% (10/50) of the replicating virus had nucleotide substitutions in the siRNA-target sequence whereas the remaining 78% (39/50) harbored a recombination breakpoint that removed both siRNA target sequences, and rendered the intersubtype D/A recombinant virus resistant to the dual siRNA treatment. Since siRNAs target the newly transcribed HIV-1 mRNA, the siRNAs only enrich intersubtype env recombinants and do not influence the recombination process during reverse transcription. Using this system, a strong bias is selected for recombination breakpoints in the C2 region, whereas other HIV-1 env regions, most notably the hypervariable regions, were nearly devoid of intersubtype recombination breakpoints. Sequence conservation plays an important role in selecting for recombination breakpoints, but the lack of breakpoints in many conserved

  5. CRISPR-mediated Activation of Latent HIV-1 Expression.

    PubMed

    Limsirichai, Prajit; Gaj, Thomas; Schaffer, David V

    2016-03-01

    Complete eradication of HIV-1 infection is impeded by the existence of cells that harbor chromosomally integrated but transcriptionally inactive provirus. These cells can persist for years without producing viral progeny, rendering them refractory to immune surveillance and antiretroviral therapy and providing a permanent reservoir for the stochastic reactivation and reseeding of HIV-1. Strategies for purging this latent reservoir are thus needed to eradicate infection. Here, we show that engineered transcriptional activation systems based on CRISPR/Cas9 can be harnessed to activate viral gene expression in cell line models of HIV-1 latency. We further demonstrate that complementing Cas9 activators with latency-reversing compounds can enhance latent HIV-1 transcription and that epigenome modulation using CRISPR-based acetyltransferases can also promote viral gene activation. Collectively, these results demonstrate that CRISPR systems are potentially effective tools for inducing latent HIV-1 expression and that their use, in combination with antiretroviral therapy, could lead to improved therapies for HIV-1 infection.

  6. CRISPR-mediated Activation of Latent HIV-1 Expression

    PubMed Central

    Limsirichai, Prajit; Gaj, Thomas; Schaffer, David V

    2016-01-01

    Complete eradication of HIV-1 infection is impeded by the existence of cells that harbor chromosomally integrated but transcriptionally inactive provirus. These cells can persist for years without producing viral progeny, rendering them refractory to immune surveillance and antiretroviral therapy and providing a permanent reservoir for the stochastic reactivation and reseeding of HIV-1. Strategies for purging this latent reservoir are thus needed to eradicate infection. Here, we show that engineered transcriptional activation systems based on CRISPR/Cas9 can be harnessed to activate viral gene expression in cell line models of HIV-1 latency. We further demonstrate that complementing Cas9 activators with latency-reversing compounds can enhance latent HIV-1 transcription and that epigenome modulation using CRISPR-based acetyltransferases can also promote viral gene activation. Collectively, these results demonstrate that CRISPR systems are potentially effective tools for inducing latent HIV-1 expression and that their use, in combination with antiretroviral therapy, could lead to improved therapies for HIV-1 infection. PMID:26607397

  7. The changes in the T helper 1 (Th1) and T helper 2 (Th2) cytokine balance during HIV-1 infection are indicative of an allergic response to viral proteins that may be reversed by Th2 cytokine inhibitors and immune response modifiers--a review and hypothesis.

    PubMed

    Becker, Yechiel

    2004-01-01

    The HIV-1 infection in humans induces an early cellular immune response to react to the viral proteins with a cytotoxic T cell (CTL) response that fails to inhibit virus replication and the spread of the virus. It became evident that the progression of the disease causes chronic changes to the immune system of which a gradual increase in IgE antibodies is one of its features. When the HIV-1 epidemic began, the relation between the gradual increase in IgE content and AIDS was not understood, but later it became a marker for disease prognosis. The advances in the knowledge on T helper 1 (Th1) and T helper 2 (Th2) cells revealed that Th1 cells produce cytokines that stimulate the proliferation of CTLs. Th2 cells produce cytokines that are responsible for the activation of the humoral immune response in healthy people. Studies on both Th1 and Th2 cytokine synthesis revealed an aberration in HIV-1 infected people. Clerici and Shearer presented a hypothesis (1993) whereby Th1 cell activity declines and Th2 activity increases (the Th1 --> Th2 switch hypothesis) in HIV-1 infected people. In fact, experiments concerning this hypothesis ultimately supported the premise that the switch involves a critical change in the cytokine balance, which leads to the contraction of AIDS. However, the research community must still discern why such a Th1 --> Th2 switch takes place in infected people and how it can be reversed. The present review points to the fact that a similar Th1 --> Th2 switch constitutes the response of allergic people to environmental allergens. HIV-1 patients and allergic people that are exposed to allergens respond with an increased synthesis of Th2 cytokines and IgE, together with a decrease in Th1 cytokines. The studies on allergen-induced Th2 cells revealed that the Th2 cytokine IL-4 induces B cells to synthesize IgE, and cytokine IL-5 is the inducer of eosinophilia, just as in HIV-1 infection. The difference between the HIV-1 infection and allergies is the

  8. Therapeutic doses of irradiation activate viral transcription and induce apoptosis in HIV-1 infected cells

    SciTech Connect

    Iordanskiy, Sergey; Van Duyne, Rachel; Sampey, Gavin C; Woodson, Caitlin M; Fry, Kelsi; Saifuddin, Mohammed; Guo, Jia; Wu, Yuntao; Romerio, Fabio; Kashanchi, Fatah

    2015-11-15

    The highly active antiretroviral therapy reduces HIV-1 RNA in plasma to undetectable levels. However, the virus continues to persist in the long-lived resting CD4{sup +} T cells, macrophages and astrocytes which form a viral reservoir in infected individuals. Reactivation of viral transcription is critical since the host immune response in combination with antiretroviral therapy may eradicate the virus. Using the chronically HIV-1 infected T lymphoblastoid and monocytic cell lines, primary quiescent CD4{sup +} T cells and humanized mice infected with dual-tropic HIV-1 89.6, we examined the effect of various X-ray irradiation (IR) doses (used for HIV-related lymphoma treatment and lower doses) on HIV-1 transcription and viability of infected cells. Treatment of both T cells and monocytes with IR, a well-defined stress signal, led to increase of HIV-1 transcription, as evidenced by the presence of RNA polymerase II and reduction of HDAC1 and methyl transferase SUV39H1 on the HIV-1 promoter. This correlated with the increased GFP signal and elevated level of intracellular HIV-1 RNA in the IR-treated quiescent CD4{sup +} T cells infected with GFP-encoding HIV-1. Exposition of latently HIV-1infected monocytes treated with PKC agonist bryostatin 1 to IR enhanced transcription activation effect of this latency-reversing agent. Increased HIV-1 replication after IR correlated with higher cell death: the level of phosphorylated Ser46 in p53, responsible for apoptosis induction, was markedly higher in the HIV-1 infected cells following IR treatment. Exposure of HIV-1 infected humanized mice with undetectable viral RNA level to IR resulted in a significant increase of HIV-1 RNA in plasma, lung and brain tissues. Collectively, these data point to the use of low to moderate dose of IR alone or in combination with HIV-1 transcription activators as a potential application for the “Shock and Kill” strategy for latently HIV-1 infected cells. - Highlights: • X-ray irradiation

  9. Authentic HIV-1 integrase inhibitors

    PubMed Central

    Liao, Chenzhong; Marchand, Christophe; Burke, Terrence R; Pommier, Yves; Nicklaus, Marc C

    2010-01-01

    HIV-1 integrase (IN) is indispensable for HIV-1 replication and has become a validated target for developing anti-AIDS agents. In two decades of development of IN inhibition-based anti-HIV therapeutics, a significant number of compounds were identified as IN inhibitors, but only some of them showed antiviral activity. This article reviews a number of patented HIV-1 IN inhibitors, especially those that possess high selectivity for the strand transfer reaction. These compounds generally have a polar coplanar moiety, which is assumed to chelate two magnesium ions in the binding site. Resistance to those compounds, when given to patients, can develop as a result of IN mutations. We refer to those compounds as authentic IN inhibitors. Continued drug development has so far delivered one authentic IN inhibitor to the market (raltegravir in 2007). Current and future attention will be focused on the development of novel authentic IN inhibitors with the goal of overcoming viral resistance. PMID:21426159

  10. A Cinnamon-Derived Procyanidin Compound Displays Anti-HIV-1 Activity by Blocking Heparan Sulfate- and Co-Receptor- Binding Sites on gp120 and Reverses T Cell Exhaustion via Impeding Tim-3 and PD-1 Upregulation

    PubMed Central

    Connell, Bridgette Janine; Chang, Sui-Yuan; Prakash, Ekambaranellore; Yousfi, Rahima; Mohan, Viswaraman; Posch, Wilfried; Wilflingseder, Doris; Moog, Christiane; Kodama, Eiichi N.; Clayette, Pascal; Lortat-Jacob, Hugues

    2016-01-01

    Amongst the many strategies aiming at inhibiting HIV-1 infection, blocking viral entry has been recently recognized as a very promising approach. Using diverse in vitro models and a broad range of HIV-1 primary patient isolates, we report here that IND02, a type A procyanidin polyphenol extracted from cinnamon, that features trimeric and pentameric forms displays an anti-HIV-1 activity against CXCR4 and CCR5 viruses with 1–7 μM ED50 for the trimer. Competition experiments, using a surface plasmon resonance-based binding assay, revealed that IND02 inhibited envelope binding to CD4 and heparan sulphate (HS) as well as to an antibody (mAb 17b) directed against the gp120 co-receptor binding site with an IC50 in the low μM range. IND02 has thus the remarkable property of simultaneously blocking gp120 binding to its major host cell surface counterparts. Additionally, the IND02-trimer impeded up-regulation of the inhibitory receptors Tim-3 and PD-1 on CD4+ and CD8+ cells, thereby demonstrating its beneficial effect by limiting T cell exhaustion. Among naturally derived products significantly inhibiting HIV-1, the IND02-trimer is the first component demonstrating an entry inhibition property through binding to the viral envelope glycoprotein. These data suggest that cinnamon, a widely consumed spice, could represent a novel and promising candidate for a cost-effective, natural entry inhibitor for HIV-1 which can also down-modulate T cell exhaustion markers Tim-3 and PD-1. PMID:27788205

  11. Purification and Biochemical Characterisation of Rabbit Calicivirus RNA-Dependent RNA Polymerases and Identification of Non-Nucleoside Inhibitors

    PubMed Central

    Urakova, Nadya; Netzler, Natalie; Kelly, Andrew G.; Frese, Michael; White, Peter A.; Strive, Tanja

    2016-01-01

    Rabbit haemorrhagic disease virus (RHDV) is a calicivirus that causes acute infections in both domestic and wild European rabbits (Oryctolagus cuniculus). The virus causes significant economic losses in rabbit farming and reduces wild rabbit populations. The recent emergence of RHDV variants capable of overcoming immunity to other strains emphasises the need to develop universally effective antivirals to enable quick responses during outbreaks until new vaccines become available. The RNA-dependent RNA polymerase (RdRp) is a primary target for the development of such antiviral drugs. In this study, we used cell-free in vitro assays to examine the biochemical characteristics of two rabbit calicivirus RdRps and the effects of several antivirals that were previously identified as human norovirus RdRp inhibitors. The non-nucleoside inhibitor NIC02 was identified as a potential scaffold for further drug development against rabbit caliciviruses. Our experiments revealed an unusually high temperature optimum (between 40 and 45 °C) for RdRps derived from both a pathogenic and a non-pathogenic rabbit calicivirus, possibly demonstrating an adaptation to a host with a physiological body temperature of more than 38 °C. Interestingly, the in vitro polymerase activity of the non-pathogenic calicivirus RdRp was at least two times higher than that of the RdRp of the highly virulent RHDV. PMID:27089358

  12. Increased iron export by ferroportin induces restriction of HIV-1 infection in sickle cell disease

    PubMed Central

    Kumari, Namita; Ammosova, Tatiana; Diaz, Sharmin; Lin, Xionghao; Niu, Xiaomei; Ivanov, Andrey; Jerebtsova, Marina; Dhawan, Subhash; Oneal, Patricia; Nekhai, Sergei

    2017-01-01

    The low incidence of HIV-1 infection in patients with sickle cell disease (SCD) and inhibition of HIV-1 replication in vitro under the conditions of low intracellular iron or heme treatment suggests a potential restriction of HIV-1 infection in SCD. We investigated HIV-1 ex vivo infection of SCD peripheral blood mononuclear cells (PBMCs) and found that HIV-1 replication was inhibited at the level of reverse transcription (RT) and transcription. We observed increased expression of heme and iron-regulated genes, previously shown to inhibit HIV-1, including ferroportin, IKBα, HO-1, p21, and SAM domain and HD domain-containing protein 1 (SAMHD1). HIV-1 inhibition was less pronounced in hepcidin-treated SCD PBMCs and more pronounced in the iron or iron chelators treated, suggesting a key role of iron metabolism. In SCD PBMCs, labile iron levels were reduced and protein levels of ferroportin, HIF-1α, IKBα, and HO-1 were increased. Hemin treatment induced ferroportin expression and inhibited HIV-1 in THP-1 cells, mimicking the HIV-1 inhibition in SCD PBMCs, especially as hepcidin similarly prevented HIV-1 inhibition. In THP-1 cells with knocked down ferroportin, IKBα, or HO-1 genes but not HIF-1α or p21, HIV-1 was not inhibited by hemin. Activity of SAMHD1-regulatory CDK2 was decreased, and SAMHD1 phosphorylation was reduced in SCD PBMCs and hemin-treated THP-1 cells, suggesting SAMHD1-mediated HIV-1 restriction in SCD. Our findings point to ferroportin as a trigger of HIV-1 restriction in SCD settings, linking reduced intracellular iron levels to the inhibition of CDK2 activity, reduction of SAMHD1 phosphorylation, increased IKBα expression, and inhibition of HIV-1 RT and transcription. PMID:28203649

  13. In Vitro Reactivation of Replication-Competent and Infectious HIV-1 by Histone Deacetylase Inhibitors

    PubMed Central

    Banga, Riddhima; Procopio, Francesco Andrea; Cavassini, Matthias

    2015-01-01

    ABSTRACT The existence of long-lived HIV-1-infected resting memory CD4 T cells is thought to be the primary obstacle to HIV-1 eradication. In the search for novel therapeutic approaches that may reverse HIV-1 latency, inhibitors of histone deacetylases (HDACis) have been tested to reactivate HIV-1 replication with the objective of rendering HIV-1-infected cells susceptible to elimination either by HIV-specific CD8 T cells or through virus-mediated cytopathicity. In the present study, we evaluated the efficiency of HDACis to reactivate HIV-1 replication from resting memory CD4 T cells isolated from aviremic long-term-treated HIV-1-infected subjects. We demonstrate that following prolonged/repeated treatment of resting memory CD4 T cells with HDACis, HIV-1 replication may be induced from primary resting memory CD4 T cells isolated from aviremic long-term-treated HIV-1-infected subjects. More importantly, we demonstrate that HIV-1 reactivated in the cell cultures was not only replication competent but also infectious. Interestingly, givinostat, an HDACi that has not been investigated in clinical trials, was more efficient than vorinostat, panobinostat, and romidepsin in reversing HIV-1 latency in vitro. Taken together, these results support further evaluation of givinostat as a latency-reversing agent (LRA) in aviremic long-term-treated HIV-1-infected subjects. IMPORTANCE The major barrier to HIV cure is the existence of long-lived latently HIV-1-infected resting memory CD4 T cells. Latently HIV-1-infected CD4 T cells are transcriptionally silent and are therefore not targeted by conventional antiretroviral therapy (ART) or the immune system. In this context, one strategy to target latently infected cells is based on pharmacological molecules that may force the virus to replicate and would therefore render HIV-1-infected cells susceptible to elimination either by HIV-specific CD8 T cells or through virus-mediated cytopathicity. In this context, we developed an

  14. Naf1 Regulates HIV-1 Latency by Suppressing Viral Promoter-Driven Gene Expression in Primary CD4+ T Cells.

    PubMed

    Li, Chuan; Wang, Hai-Bo; Kuang, Wen-Dong; Ren, Xiao-Xin; Song, Shu-Ting; Zhu, Huan-Zhang; Li, Qiang; Xu, Li-Ran; Guo, Hui-Jun; Wu, Li; Wang, Jian-Hua

    2017-01-01

    HIV-1 latency is characterized by reversible silencing of viral transcription driven by the long terminal repeat (LTR) promoter of HIV-1. Cellular and viral factors regulating LTR activity contribute to HIV-1 latency, and certain repressive cellular factors modulate viral transcription silencing. Nef-associated factor 1 (Naf1) is a host nucleocytoplasmic shuttling protein that regulates multiple cellular signaling pathways and HIV-1 production. We recently reported that nuclear Naf1 promoted nuclear export of unspliced HIV-1 gag mRNA, leading to increased Gag production. Here we demonstrate new functions of Naf1 in regulating HIV-1 persistence. We found that Naf1 contributes to the maintenance of HIV-1 latency by inhibiting LTR-driven HIV-1 gene transcription in a nuclear factor kappa B-dependent manner. Interestingly, Naf1 knockdown significantly enhanced viral reactivation in both latently HIV-1-infected Jurkat T cells and primary central memory CD4(+) T cells. Furthermore, Naf1 knockdown in resting CD4(+) T cells from HIV-1-infected individuals treated with antiretroviral therapy significantly increased viral reactivation upon T-cell activation, suggesting an important role of Naf1 in modulating HIV-1 latency in vivo Our findings provide new insights for a better understanding of HIV-1 latency and suggest that inhibition of Naf1 activity to activate latently HIV-1-infected cells may be a potential therapeutic strategy.

  15. Site-directed Mutagenesis of Key Residues Unveiled a Novel Allosteric Site on Human Adenosine Kinase for Pyrrolobenzoxa(thia)zepinone Non-Nucleoside Inhibitors.

    PubMed

    Savi, Lida; Brindisi, Margherita; Alfano, Gloria; Butini, Stefania; La Pietra, Valeria; Novellino, Ettore; Marinelli, Luciana; Lossani, Andrea; Focher, Federico; Cavella, Caterina; Campiani, Giuseppe; Gemma, Sandra

    2016-01-01

    Most nucleoside kinases, besides the catalytic domain, feature an allosteric domain which modulates their activity. Generally, non-substrate analogs, interacting with allosteric sites, represent a major opportunity for developing more selective and safer therapeutics. We recently developed a series of non-nucleoside non-competitive inhibitors of human adenosine kinase (hAK), based on a pyrrolobenzoxa(thia)zepinone scaffold. Based on computational analysis, we hypothesized the existence of a novel allosteric site on hAK, topographically distinct from the catalytic site. In this study, we have adopted a multidisciplinary approach including molecular modeling, biochemical studies, and site-directed mutagenesis to validate our hypothesis. Based on a three-dimensional model of interaction between hAK and our molecules, we designed, cloned, and expressed specific, single and double point mutants of hAK (Q74A, Q78A, H107A, K341A, F338A, and Q74A-F338A). Kinetic characterization of recombinant enzymes indicated that these mutations did not affect enzyme functioning; conversely, mutated enzymes are endowed of reduced susceptibility to our non-nucleoside inhibitors, while maintaining comparable affinity for nucleoside inhibitors to the wild-type enzyme. This study represents the first characterization and validation of a novel allosteric site in hAK and may pave the way to the development of novel selective and potent non-nucleoside inhibitors of hAK endowed with therapeutic potential.

  16. HIV-1 Drug Resistance and Second-line Treatment in Children Randomized to Switch at Low versus Higher RNA Thresholds

    PubMed Central

    Harrison, Linda; Melvin, Ann; Fiscus, Susan; Saidi, Yacine; Nastouli, Eleni; Harper, Lynda; Compagnucci, Alexandra; Babiker, Abdel; McKinney, Ross; Gibb, Diana; Tudor-Williams, Gareth

    2015-01-01

    Background The PENPACT-1 trial compared virologic thresholds to determine when to switch to second-line antiretroviral therapy (ART). Using PENPACT-1 data, we aimed to describe HIV-1 drug resistance accumulation on first-line ART by virologic threshold. Methods PENPACT-1 had a 2x2 factorial design, randomizing HIV-infected children to start protease inhibitor (PI) versus non-nucleoside reverse transcriptase inhibitor (NNRTI) based ART, and switch at a 1000c/ml versus 30000c/ml threshold. Switch-criteria were: not achieving the threshold by week 24, confirmed rebound above the threshold thereafter, or CDC-C event. Resistance tests were performed on samples ≥1000c/ml before switch, re-suppression and at 4-year/trial-end. Results Sixty-seven children started PI-based ART and were randomized to switch at 1000c/ml (PI-1000), 64 PIs and 30000c/ml (PI-30000), 67 NNRTIs and 1000c/ml (NNRTI-1000), and 65 NNRTI and 30000c/ml (NNRTI-30000). Ninety-four (36%) children reached the 1000c/ml switch-criteria during 5 years follow-up. In 30000c/ml threshold arms, median time from 1000c/ml to 30000c/ml switch-criteria was 58 (PI) versus 80 (NNRTI) weeks (P=0.81). In NNRTI-30000 more NRTI resistance mutations accumulated than other groups. NNRTI mutations were selected before switching at 1000c/ml (23% NNRTI-1000, 27% NNRTI-30000). Sixty-two children started abacavir+lamivudine, 166 lamivudine+zidovudine or stavudine, and 35 other NRTIs. The abacavir+lamivudine group acquired fewest NRTI mutations. Of 60 switched to second-line, 79% PI-1000, 63% PI-30000, 64% NNRTI-1000 and 100% NNRTI-30000 were <400c/ml 24 weeks later. Conclusion Children on first-line NNRTI-based ART who were randomized to switch at a higher virologic threshold developed the most resistance, yet re-suppressed on second-line. An abacavir+lamivudine NRTI combination seemed protective against development of NRTI resistance. PMID:26322666

  17. High prevalence of HIV-1 drug resistance among patients on first-line antiretroviral treatment in Lomé, Togo

    PubMed Central

    2011-01-01

    Background With widespread use of antiretroviral (ARV) drugs in Africa, one of the major potential challenges is the risk of emergence of ARV drug-resistant HIV strains. Our objective is to evaluate the virological failure and genotypic drug-resistance mutations in patients receiving first-line highly active antiretroviral therapy (HAART) in routine clinics that use the World Health Organization public health approach to monitor antiretroviral treatment (ART) in Togo. Methods Patients on HAART for one year (10-14 months) were enrolled between April and October 2008 at three sites in Lomé, the capital city of Togo. Plasma viral load was measured with the NucliSENS EasyQ HIV-1 assay (Biomérieux, Lyon, France) and/or a Generic viral load assay (Biocentric, Bandol, France). Genotypic drug-resistance testing was performed with an inhouse assay on plasma samples from patients with viral loads of more than 1000 copies/ml. CD4 cell counts and demographic data were also obtained from medical records. Results A total of 188 patients receiving first-line antiretroviral treatment were enrolled, and 58 (30.8%) of them experienced virologic failure. Drug-resistance mutations were present in 46 patients, corresponding to 24.5% of all patients enrolled in the study. All 46 patients were resistant to non-nucleoside reverse-transcriptase inhibitors (NNRTIs): of these, 12 were resistant only to NNRTIs, 25 to NNRTIs and lamivudine/emtricitabine, and eight to all three drugs of their ARV regimes. Importantly, eight patients were already predicted to be resistant to etravirine, the new NNRTI, and three patients harboured the K65R mutation, inducing major resistance to tenofovir. Conclusions In Togo, efforts to provide access to ARV therapy for infected persons have increased since 2003, and scaling up of ART started in 2007. The high number of resistant strains observed in Togo shows clearly that the emergence of HIV drug resistance is of increasing concern in countries where ART is

  18. Nucleoprotein complex intermediates in HIV-1 integration

    PubMed Central

    Li, Min; Craigie, Robert

    2012-01-01

    Integration of retroviral DNA into the host genome is an essential step in the viral replication cycle. The viral DNA, made by reverse transcription in the cytoplasm, forms part of a large nucleoprotein complex called the preintegration complex (PIC). The viral integrase protein is the enzyme within the PIC that is responsible for integrating the viral DNA into the host genome. Integrase is tightly associated with the viral DNA within the PIC as demonstrated by functional assays. Integrase protein catalyzes the key DNA cutting and joining steps of integration in vitro with DNA substrates that mimic the ends of the viral DNA. Under most in vitro assay conditions the stringency of the reaction is relaxed; most products result from “half-site” integration in which only one viral DNA end is integrated into one strand of target DNA rather than concerted integration of pairs of DNA as occurs with PICs and in vivo. Under these relaxed conditions catalysis appears to occur without formation of the highly stable nucleoprotein complexes that is characteristic of the association of integrase with viral DNA in the PIC. Here we describe methods for the assembly of nucleoprotein complex intermediates in HIV-1 DNA integration from purified HIV-1 integrase and substrates that mimic the viral DNA ends. PMID:19232539

  19. Comparative evaluation of the Abbott HIV-1 RealTime™ assay with the Standard Roche COBAS® Amplicor™ HIV-1 Monitor® Test, v1.5 for determining HIV-1 RNA levels in plasma specimens from Pune, India.

    PubMed

    Khopkar, Priyanka; Mallav, Vikas; Chidrawar, Shweta; Kulkarni, Smita

    2013-07-01

    The implementation of cost effective HIV-1 viral load assays in resource-limited settings have been an impediment for monitoring HIV-1 therapy. A study involving the comparative analytical performance of two HIV-1 viral load assays - Standard Roche COBAS(®) Amplicor™ HIV-1 Monitor(®) Test, version 1.5 (Roche Diagnostics, Basel, Switzerland) and Abbott HIV-1 RealTime™ assay (Abbott Molecular, Wiesbaden, Germany) was performed using 125 specimens in Pune, India. A strong correlation was observed between the manual endpoint reverse transcriptase polymerase chain reaction assay and the recent real time polymerase chain reaction assay (r=0.989, p value<0.0001) and agreement was 94.4%. Results of the study indicate a higher sensitivity of the Abbott HIV-1 RealTime™ assay for HIV-1 Virology Quality Assurance copy controls as compared to the Standard Roche COBAS(®) Amplicor™ HIV-1 Monitor(®) Test, version 1.5. Furthermore, features of the Abbott m2000rt RealTime™ PCR assay platform such as higher analytical sensitivity, automated/manual extraction platforms for high/low sample throughputs and ability to quantify a variety of infectious agents (Hepatitis B virus, Hepatitis C virus, Human Papillomavirus and Neisseria gonorrhoeae/Chlamydia trachomatis) justify its suitability in resource-limited Indian settings. Besides, the study also highlights utility of the precise Virology Quality Assurance validation template in performance evaluation of various quantitative viral load assays.

  20. The non-nucleoside antiviral, BAY 38-4766, protects against cytomegalovirus (CMV) disease and mortality in immunocompromised guinea pigs

    PubMed Central

    Schleiss, Mark R.; Bernstein, David I.; McVoy, Michael A.; Stroup, Greg; Bravo, Fernando; Creasy, Blaine; McGregor, Alistair; Henninger, Kristin; Hallenberger, Sabine

    2008-01-01

    New antiviral drugs are needed for the treatment of cytomegalovirus (CMV) infections, particularly in immunocompromised patients. These studies evaluated the in vitro and in vivo activity of the non-nucleosidic CMV inhibitor, BAY 38-4766, against guinea pig cytomegalovirus (GPCMV). Plaque reduction assays indicated that BAY 38-4766 was active against GPCMV, with an IC50 of 0.5 μM. Yield reduction assays demonstrated an ED90 and ED99 of 0.4 and 0.6 μM, respectively, of BAY 38-4766 against GPCMV. Guinea pigs tolerated oral administration of 50 mg/kg/day of BAY 38-4766 without evidence of biochemical or hematologic toxicity. Plasma concentrations of BAY 38-4766 were high following oral dosing, with a mean peak level at 1-h post-dose of 26.7 mg/ml (n = 6; range, 17.8-35.4). Treatment with BAY 38-4766 reduced both viremia and DNAemia, as determined by a real-time PCR assay, following GPCMV infection of cyclophosphamide-immunosuppressed strain 2 guinea pigs (p < 0.05, Mann-Whitney test). BAY 38-4766 also reduced mortality following lethal GPCMV challenge in immunosuppressed Hartley guinea pigs, from 83% (20/24) in placebo-treated guinea pigs, to 17% (4/24) in BAY 38-4766-treated animals (p < 0.0001, Fisher’s exact test). Mortality differences were accompanied by reduction in DNAemia in Hartley guinea pigs. Based upon its favorable safety, pharmacokinetic, and therapeutic profiles, BAY 38-4766 warrants further investigation in the GPCMV model. PMID:15652969

  1. Curcumin derivatives as HIV-1 protease inhibitors

    SciTech Connect

    Sui, Z.; Li, J.; Craik, C.S.; Ortiz de Montellano, P.R.

    1993-12-31

    Curcumin, a non-toxic natural compound from Curcuma longa, has been found to be an HIV-1 protease inhibitor. Some of its derivatives were synthesized and their inhibitory activity against the HIV-1 protease was tested. Curcumin analogues containing boron enhanced the inhibitory activity. At least of the the synthesized compounds irreversibly inhibits the HIV-1 protease.

  2. Identifying Recombination Hot Spots in the HIV-1 Genome

    PubMed Central

    Smyth, Redmond P.; Schlub, Timothy E.; Grimm, Andrew J.; Waugh, Caryll; Ellenberg, Paula; Chopra, Abha; Mallal, Simon; Cromer, Deborah

    2014-01-01

    ABSTRACT HIV-1 infection is characterized by the rapid generation of genetic diversity that facilitates viral escape from immune selection and antiretroviral therapy. Despite recombination's crucial role in viral diversity and evolution, little is known about the genomic factors that influence recombination between highly similar genomes. In this study, we use a minimally modified full-length HIV-1 genome and high-throughput sequence analysis to study recombination in gag and pol in T cells. We find that recombination is favored at a number of recombination hot spots, where recombination occurs six times more frequently than at corresponding cold spots. Interestingly, these hot spots occur near important features of the HIV-1 genome but do not occur at sites immediately around protease inhibitor or reverse transcriptase inhibitor drug resistance mutations. We show that the recombination hot and cold spots are consistent across five blood donors and are independent of coreceptor-mediated entry. Finally, we check common experimental confounders and find that these are not driving the location of recombination hot spots. This is the first study to identify the location of recombination hot spots between two similar viral genomes with great statistical power and under conditions that closely reflect natural recombination events among HIV-1 quasispecies. IMPORTANCE The ability of HIV-1 to evade the immune system and antiretroviral therapy depends on genetic diversity within the viral quasispecies. Retroviral recombination is an important mechanism that helps to generate and maintain this genetic diversity, but little is known about how recombination rates vary within the HIV-1 genome. We measured recombination rates in gag and pol and identified recombination hot and cold spots, demonstrating that recombination is not random but depends on the underlying gene sequence. The strength and location of these recombination hot and cold spots can be used to improve models of

  3. Pyrimidine non-nucleoside analogs: A direct synthesis of a novel class of N-substituted amino and N-sulfonamide derivatives of pyrimidines.

    PubMed

    Elgemeie, Galal H; Salah, Ali M; Abbas, Nermeen S; Hussein, Hoda A; Mohamed, Reham A

    2017-03-04

    A convenient method for the regioselective synthesis of pyrimidine non-nucleoside analogs was developed. This study reports a novel and efficient method for the synthesis of a new type of N-substituted amino methylsulfanylpyrimidines and the corresponding pyrazolo[3,4-d]pyrimidines. This series of compounds was designed through the reaction of dimethyl N-cyanodithioiminocarbonate with 2-cyano-N'-(thiophen-2-yl-, furan-2-yl- and pyridin-4-ylmethylene)acetohydrazide and N'-(2-cyanoacetyl)arylsulfonohydrazides. The scope and limitation of the method are demonstrated. The antibacterial and antifungal activities of the synthesized compounds were also evaluated.

  4. Shutdown of HIV-1 Transcription in T Cells by Nullbasic, a Mutant Tat Protein

    PubMed Central

    Jin, Hongping; Li, Dongsheng; Sivakumaran, Haran; Lor, Mary; Rustanti, Lina; Cloonan, Nicole; Wani, Shivangi

    2016-01-01

    ABSTRACT Nullbasic is a derivative of the HIV-1 transactivator of transcription (Tat) protein that strongly inhibits HIV-1 replication in lymphocytes. Here we show that lentiviral vectors that constitutively express a Nullbasic-ZsGreen1 (NB-ZSG1) fusion protein by the eEF1α promoter led to robust long-term inhibition of HIV-1 replication in Jurkat cells. Although Jurkat-NB-ZSG1 cells were infected by HIV-1, no virus production could be detected and addition of phorbol ester 12-myristate 13-acetate (PMA) and JQ1 had no effect, while suberanilohydroxamic acid (SAHA) modestly stimulated virus production but at levels 300-fold lower than those seen in HIV-1-infected Jurkat-ZSG1 cells. Virus replication was not recovered by coculture of HIV-1-infected Jurkat-NB-ZSG1 cells with uninfected Jurkat cells. Latently infected Jurkat latent 6.3 and ACH2 cells treated with latency-reversing agents produced measurable viral capsid (CA), but little or none was made when they expressed NB-ZSG1. When Jurkat cells chronically infected with HIV-1 were transduced with lentiviral virus-like particles conveying NB-ZSG1, a >3-log reduction in CA production was observed. Addition of PMA increased virus CA production but at levels 500-fold lower than those seen in nontransduced Jurkat cells. Transcriptome sequencing analysis confirmed that HIV-1 mRNA was strongly inhibited by NB-ZSG1 but indicated that full-length viral mRNA was made. Analysis of HIV-1-infected Jurkat cells expressing NB-ZSG1 by chromatin immunoprecipitation assays indicated that recruitment of RNA polymerase II (RNAPII) and histone 3 lysine 9 acetylation were inhibited. The reduction of HIV-1 promoter-associated RNAPII and epigenetic changes in viral nucleosomes indicate that Nullbasic can inhibit HIV-1 replication by enforcing viral silencing in cells. PMID:27381288

  5. Pharmacotherapy of HIV-1 Infection: Focus on CCR5 Antagonist Maraviroc

    PubMed Central

    Latinovic, Olga; Kuruppu, Janaki; Davis, Charles; Le, Nhut; Heredia, Alonso

    2009-01-01

    Sustained inhibition of HIV-1, the goal of antiretroviral therapy, is often impeded by the emergence of viral drug resistance. For patients infected with HIV-1 resistant to conventional drugs from the viral reverse transcriptase and protease inhibitor classes, the recently approved entry and integration inhibitors effectively suppress HIV-1 and offer additional therapeutic options. Entry inhibitors are particularly attractive because, unlike conventional antiretrovirals, they target HIV-1 extracellularly, thereby sparing cells from both viral- and drug-induced toxicities. The fusion inhibitor enfuvirtide and the CCR5 antagonist maraviroc are the first entry inhibitors licensed for patients with drug-resistant HIV-1, with maraviroc restricted to those infected with CCR5-tropic HIV-1 (R5 HIV-1) only. Vicriviroc (another CCR5 antagonist) is in Phase III clinical trials, whereas the CCR5 antibodies PRO 140 and HGS 004 are in early stages of clinical development. Potent antiviral synergy between maraviroc and CCR5 antibodies, coupled with distinct patterns of resistance, suggest their combinations might be particularly effective in patients. In addition, given that oral administration of maraviroc achieves high drug levels in cervicovaginal fluid, combinations of maraviroc and other CCR5 inhibitors could be effective in preventing HIV-1 transmission. Moreover, since CCR5 antagonists prevent rejection of transplanted organs, maraviroc could both suppress HIV-1 and prolong organ survival for the growing number of HIV-1 patients with kidney or liver failure necessitating organ transplantation. Thus, maraviroc offers an important treatment option for patients with drug-resistant R5 HIV-1, who presently account for >50% of drug-resistance cases. PMID:19920876

  6. HIV-1 Vpr—a still “enigmatic multitasker”

    PubMed Central

    Guenzel, Carolin A.; Hérate, Cécile; Benichou, Serge

    2014-01-01

    Like other HIV-1 auxiliary proteins, Vpr is conserved within all the human (HIV-1, HIV-2) and simian (SIV) immunodeficiency viruses. However, Vpr and homologous HIV-2, and SIV Vpx are the only viral auxiliary proteins specifically incorporated into virus particles through direct interaction with the Gag precursor, indicating that this presence in the core of the mature virions is mainly required for optimal establishment of the early steps of the virus life cycle in the newly infected cell. In spite of its small size, a plethora of effects and functions have been attributed to Vpr, including induction of cell cycle arrest and apoptosis, modulation of the fidelity of reverse transcription, nuclear import of viral DNA in macrophages and other non-dividing cells, and transcriptional modulation of viral and host cell genes. Even if some more recent studies identified a few cellular targets that HIV-1 Vpr may utilize in order to perform its different tasks, the real role and functions of Vpr during the course of natural infection are still enigmatic. In this review, we will summarize the main reported functions of HIV-1 Vpr and their significance in the context of the viral life cycle. PMID:24744753

  7. Vpr-host interactions during HIV-1 viral life cycle.

    PubMed

    Zhao, Richard Y; Li, Ge; Bukrinsky, Michael I

    2011-06-01

    Human immunodeficiency virus type 1 (HIV-1) viral protein R (Vpr) is a multifunctional viral protein that plays important role at multiple stages of the HIV-1 viral life cycle. Although the molecular mechanisms underlying these activities are subject of ongoing investigations, overall, these activities have been linked to promotion of viral replication and impairment of anti-HIV immunity. Importantly, functional defects of Vpr have been correlated with slow disease progression of HIV-infected patients. Vpr is required for efficient viral replication in non-dividing cells such as macrophages, and it promotes, to some extent, viral replication in proliferating CD4+ T cells. The specific activities of Vpr include modulation of fidelity of viral reverse transcription, nuclear import of the HIV-1 pre-integration complex, transactivation of the HIV-1 LTR promoter, induction of cell cycle G2 arrest and cell death via apoptosis. In this review, we focus on description of the cellular proteins that specifically interact with Vpr and discuss their significance with regard to the known Vpr activities at each step of the viral life cycle in proliferating and non-proliferating cells.

  8. HIV-1 Entry Inhibitors: Recent Development and Clinical Use

    PubMed Central

    Henrich, Timothy J.; Kuritzkes, Daniel R.

    2014-01-01

    Purpose of review This review provides an overview of HIV-1 entry inhibitors, with a focus on drugs in the later stages of clinical development. Recent findings Entry of HIV-1 into target cells involves viral attachment, co-receptor binding and fusion. Antiretroviral drugs that interact with each step in the entry process have been developed, but only two are currently approved for clinical use. The small molecule attachment inhibitor BMS-663068 has shown potent antiviral activity in early phase studies, and phase 2b trials are currently underway. The post-attachment inhibitor ibalizumab has shown antiviral activity in phase 1 and 2 trials; further studies, including subcutaneous delivery of drug to healthy individuals, are anticipated. The CCR5 antagonist maraviroc is approved for use in treatment-naïve and treatment-experienced patients. Cenicriviroc, a small-molecule CCR5 antagonist that also has activity as a CCR2 antagonist, has entered phase 2b studies. No CXCR4 antagonists are currently in clinical trials, but once daily, next-generation injectable peptide fusion inhibitors have entered human trials. Both maraviroc and ibalizumab are being studied for prevention of HIV-1 transmission and/or for use in nucleoside reverse transcriptase inhibitor-sparing antiretroviral regimens. Summary Inhibition of HIV-1 entry continues to be a promising target for antiretroviral drug development. PMID:23290628

  9. Multimodal mechanism of action of allosteric HIV-1 integrase inhibitors

    PubMed Central

    Jurado, Kellie Ann; Engelman, Alan

    2013-01-01

    Integrase (IN) is required for lentivirus replication and is a proven drug target for the prevention of AIDS in HIV-1 infected patients. While clinical strand transfer inhibitors disarm the IN active site, allosteric inhibition of enzyme activity through the disruption of IN-IN protein interfaces holds great therapeutic potential. A promising class of allosteric IN inhibitors (ALLINIs), 2-(quinolin-3-yl) acetic acid derivatives, engage the IN catalytic core domain dimerization interface at the binding site for the host integration co-factor LEDGF/p75. ALLINIs promote IN multimerization and, independent of LEDGF/p75 protein, block the formation of the active IN-DNA complex, as well as inhibit the IN-LEDGF/p75 interaction in vitro. Yet, rather unexpectedly, the full inhibitory effect of these compounds is exerted during the late phase of HIV-1 replication. ALLINIs impair particle core maturation as well as reverse transcription and integration during the subsequent round of virus infection. Recapitulating the pleiotropic phenotypes observed with numerous IN mutant viruses, ALLINIs provide insight into underlying aspects of IN biology that extend beyond its catalytic activity. Therefore, in addition to the potential to expand our repertoire of HIV-1 antiretrovirals, ALLINIs afford important structural probes to dissect the multifaceted nature of the IN protein throughout the course of HIV-1 replication. PMID:24274067

  10. Macrophages and HIV-1: An Unhealthy Constellation.

    PubMed

    Sattentau, Quentin J; Stevenson, Mario

    2016-03-09

    Lentiviruses have a long-documented association with macrophages. Abundant evidence exists for in vitro and, in a tissue-specific manner, in vivo infection of macrophages by the primate lentiviruses HIV-1 and SIV. However, macrophage contribution to aspects of HIV-1 and SIV pathogenesis, and their role in viral persistence in individuals on suppressive antiretroviral therapy, remains unclear. Here we discuss recent evidence implicating macrophages in HIV-1-mediated disease and highlight directions for further investigation.

  11. Plasmacytoid dendritic cells promote HIV-1–induced group 3 innate lymphoid cell depletion

    PubMed Central

    Zhang, Zheng; Cheng, Liang; Zhao, Juanjuan; Li, Guangming; Zhang, Liguo; Chen, Weiwei; Nie, Weiming; Reszka-Blanco, Natalia J.; Wang, Fu-Sheng; Su, Lishan

    2015-01-01

    Group 3 innate lymphoid cells (ILC3s) have demonstrated roles in promoting antibacterial immunity, maintaining epithelial barrier function, and supporting tissue repair. ILC3 alterations are associated with chronic inflammation and inflammatory disease; however, the characteristics and relevant regulatory mechanisms of this cell population in HIV-1 infection are poorly understood due in part to a lack of a robust model. Here, we determined that functional human ILC3s develop in lymphoid organs of humanized mice and that persistent HIV-1 infection in this model depletes ILC3s, as observed in chronic HIV-1–infected patients. In HIV-1–infected mice, effective antiretroviral therapy reversed the loss of ILC3s. HIV-1–dependent reduction of ILC3s required plasmacytoid dendritic cells (pDCs), IFN-I, and the CD95/FasL pathway, as targeted depletion or blockade of these prevented HIV-1–induced ILC3 depletion in vivo and in vitro, respectively. Finally, we determined that HIV-1 infection induces CD95 expression on ILC3s via a pDC- and IFN-I–dependent mechanism that sensitizes ILC3s to undergo CD95/FasL-mediated apoptosis. We conclude that chronic HIV-1 infection depletes ILC3s through pDC activation, induction of IFN-I, and CD95-mediated apoptosis. PMID:26301812

  12. The HIV-1 epidemic in South Africa.

    PubMed

    Puren, A J

    2002-01-01

    The first reported cases of HIV-1 infection in South Africa occurred in 1982. Two distinct HIV-1 epidemic patterns were recognized. Initially the infection was prevalent in white males who had sex with males. The HIV-1 clade B was associated with this group. By 1989, the second epidemic was recognized primarily in the black population. Infections in this case were mainly heterosexual in origin. The HIV-1 clade involved was mainly C. The national HIV-1 sero-prevalence in antenatal attendees was less than 1% in 1990 and by 1994 this figure had risen to 7.5%. The most recent antenatal surveillance for HIV-1 sero-prevalence in 1999 revealed the following. The national prevalence rate for 1999 was 22.4% compared with the 1998 rate of 22.8%. The data highlighted the profound effect the epidemic had and will have on the disease burden in South Africa and by extension on the social and economic fronts. This view was emphasised by the impact HIV-1 infection had on tuberculosis. For example, sentinel surveys have attributed 44% of tuberculosis cases to HIV-1 infection. Moreover, the high prevalence of sexually transmitted infections will certainly exacerbate the HIV-1 epidemic.

  13. Phenotype of HIV-1 lacking a functional nuclear localization signal in matrix protein of gag and Vpr is comparable to wild-type HIV-1 in primary macrophages.

    PubMed

    Kootstra, N A; Schuitemaker, H

    1999-01-20

    Human immunodeficiency virus type 1 (HIV-1) is considered to infect nondividing cells because nuclear localization signals (NLS) in matrix (MA, p17(Gag)) and Vpr allow active nuclear transport of the preintegration complex. Previous studies demonstrated that HIV-1 reverse transcription is successful only in cells with proliferative potential, thus restricting HIV-1 replication to cycling cells. To sort out this apparent discrepancy we compared the phenotype of a chimeric HIV-1 variant lacking a functional Vpr and MA-NLS (R7. deltaVpr.deltaNLS), and previously described to lack replicative capacity in macrophages and growth-arrested cells, with a chimera lacking a functional Vpr (R7.deltaVpr). Both variants replicated efficiently in primary macrophages, with only minimal differences in the kinetics of reverse transcription, integration, or p24 production. In agreement with our previous observation, elongation of reverse transcription was restricted to the proliferating subpopulation of macrophages. Replication of R7.deltaVpr and R7.deltaVpr.deltaNLS could also be demonstrated in aphidicolin-treated macrophages, indicating efficient nuclear transport in G1/S phase-arrested cells. In conclusion, our results confirm the dependency of the process of HIV-1 reverse transcriptase on cell proliferation in primary macrophages and exclude an important role of MA-NLS and Vpr in macrophage infection.

  14. Therapeutic doses of irradiation activate viral transcription and induce apoptosis in HIV-1 infected cells

    PubMed Central

    Iordanskiy, Sergey; Van Duyne, Rachel; Sampey, Gavin C; Woodson, Caitlin M; Fry, Kelsi; Saifuddin, Mohammed; Guo, Jia; Wu, Yuntao; Romerio, Fabio; Kashanchi, Fatah

    2015-01-01

    The highly active antiretroviral therapy reduces HIV-1 RNA in plasma to undetectable levels. However, the virus continues to persist in the long-lived resting CD4+ T cells, macrophages and astrocytes which form a viral reservoir in infected individuals. Reactivation of viral transcription is critical since the host immune response in combination with antiretroviral therapy may eradicate the virus. Using the chronically HIV-1 infected T lymphoblastoid and monocytic cell lines, primary quiescent CD4+ T cells and humanized mice infected with dual-tropic HIV-1 89.6, we examined the effect of various X-ray irradiation (IR) doses (used for HIV-related lymphoma treatment and lower doses) on HIV-1 transcription and viability of infected cells. Treatment of both T cells and monocytes with IR, a well-defined stress signal, led to increase of HIV-1 transcription, as evidenced by the presence of RNA polymerase II and reduction of HDAC1 and methyl transferase SUV39H1 on the HIV-1 promoter. This correlated with the increased GFP signal and elevated level of intracellular HIV-1 RNA in the IR-treated quiescent CD4+ T cells infected with GFP-encoding HIV-1. Exposition of latently HIV-1infected monocytes treated with PKC agonist bryostatin 1 to IR enhanced transcription activation effect of this latency-reversing agent. Increased HIV-1 replication after IR correlated with higher cell death: the level of phosphorylated Ser46 in p53, responsible for apoptosis induction, was markedly higher in the HIV-1 infected cells following IR treatment. Exposure of HIV-1 infected humanized mice with undetectable viral RNA level to IR resulted in a significant increase of HIV-1 RNA in plasma, lung and brain tissues. Collectively, these data point to the use of low to moderate dose of IR alone or in combination with HIV-1 transcription activators as a potential application for the “Shock and Kill” strategy for latently HIV-1 infected cells. PMID:26184775

  15. Non-POU Domain-Containing Octamer-Binding Protein Negatively Regulates HIV-1 Infection in CD4(+) T Cells.

    PubMed

    St Gelais, Corine; Roger, Jonathan; Wu, Li

    2015-08-01

    HIV-1 interacts with numerous cellular proteins during viral replication. Identifying such host proteins and characterizing their roles in HIV-1 infection can deepen our understanding of the dynamic interplay between host and pathogen. We previously identified non-POU domain-containing octamer-binding protein (NonO or p54nrb) as one of host factors associated with catalytically active preintegration complexes (PIC) of HIV-1 in infected CD4(+) T cells. NonO is involved in nuclear processes including transcriptional regulation and RNA splicing. Although NonO has been identified as an HIV-1 interactant in several recent studies, its role in HIV-1 replication has not been characterized. We investigated the effect of NonO on the HIV-1 life cycle in CD4(+) T cell lines and primary CD4(+) T cells using single-cycle and replication-competent HIV-1 infection assays. We observed that short hairpin RNA (shRNA)-mediated stable NonO knockdown in a CD4(+) Jurkat T cell line and primary CD4(+) T cells did not affect cell viability or proliferation, but enhanced HIV-1 infection. The enhancement of HIV-1 infection in Jurkat T cells correlated with increased viral reverse transcription and gene expression. Knockdown of NonO expression in Jurkat T cells modestly enhanced HIV-1 gag mRNA expression and Gag protein synthesis, suggesting that viral gene expression and RNA regulation are the predominantly affected events causing enhanced HIV-1 replication in NonO knockdown (KD) cells. Furthermore, overexpression of NonO in Jurkat T cells reduced HIV-1 single-cycle infection by 41% compared to control cells. Our data suggest that NonO negatively regulates HIV-1 infection in CD4(+) T cells, albeit it has modest effects on early and late stages of the viral life cycle, highlighting the importance of host proteins associated with HIV-1 PIC in regulating viral replication.

  16. Fullerene Derivatives Strongly Inhibit HIV-1 Replication by Affecting Virus Maturation without Impairing Protease Activity

    PubMed Central

    Martinez, Zachary S.; Castro, Edison; Seong, Chang-Soo; Cerón, Maira R.

    2016-01-01

    Three compounds (1, 2, and 3) previously reported to inhibit HIV-1 replication and/or in vitro activity of reverse transcriptase were studied, but only fullerene derivatives 1 and 2 showed strong antiviral activity on the replication of HIV-1 in human CD4+ T cells. However, these compounds did not inhibit infection by single-round infection vesicular stomatitis virus glycoprotein G (VSV-G)-pseudotyped viruses, indicating no effect on the early steps of the viral life cycle. In contrast, analysis of single-round infection VSV-G-pseudotyped HIV-1 produced in the presence of compound 1 or 2 showed a complete lack of infectivity in human CD4+ T cells, suggesting that the late stages of the HIV-1 life cycle were affected. Quantification of virion-associated viral RNA and p24 indicates that RNA packaging and viral production were unremarkable in these viruses. However, Gag and Gag-Pol processing was affected, as evidenced by immunoblot analysis with an anti-p24 antibody and the measurement of virion-associated reverse transcriptase activity, ratifying the effect of the fullerene derivatives on virion maturation of the HIV-1 life cycle. Surprisingly, fullerenes 1 and 2 did not inhibit HIV-1 protease in an in vitro assay at the doses that potently blocked viral infectivity, suggesting a protease-independent mechanism of action. Highlighting the potential therapeutic relevance of fullerene derivatives, these compounds block infection by HIV-1 resistant to protease and maturation inhibitors. PMID:27431232

  17. Immunological and pharmacological strategies to reactivate HIV-1 from latently infected cells: a possibility for HIV-1 paediatric patients?

    PubMed

    Martínez-Bonet, M; Clemente, M I; Serramía, M J; Moreno, S; Muñoz, E; Muñoz-Fernández, M A

    2015-07-01

    The limitations to establishing a viral reservoir facilitated by early cART in children could play a critical role in achieving natural control of viral replication upon discontinuation of cART, which could be defined as 'functional cure'. Viral reservoirs could provide a persistent source of recrudescent viraemia after withdrawal of cART, despite temporary remission of HIV-1 infection, as observed in the 'Mississippi baby'. Intensification of cART has been proposed as a strategy to control residual replication and to diminish the reservoirs. The effects of cART intensification with maraviroc persisted after discontinuation of the drug in HIV-1-infected adults. However, in HIV-1-infected children, the emergence of CXCR4-using variants occurs very early, and the use of CCR5 antagonists in these children as intensification therapy may not be the best alternative. New treatments to eradicate HIV-1 are focused on the activation of viral production from latently infected cells to purge and clear HIV-1 reservoirs. This strategy involves the use of a wide range of small molecules called latency-reversing agents (LRAs). Histone deacetylase inhibitors (HDACi) such as givinostat, belinostat and panobinostat, and class I-selective HDACis that include oxamflatin, NCH-51 and romidepsin, are the most advanced in clinical testing for HIV-1 LRAs. Panobinostat and romidepsin show an efficient reactivation profile in J89GFP cells, a lymphocyte HIV-1 latently infected cell line considered a relevant model to study post-integration HIV-1 latency and reactivation. Clinical trials with panobinostat and romidepsin have been performed in children with other pathologies and it could be reasonable to design a clinical trial using these drugs in combination with cART in HIV-1-infected children.

  18. HIV-1 protease-induced apoptosis

    PubMed Central

    2014-01-01

    Background Apoptosis is one of the presumptive causes of CD4+ T cell depletion during HIV infection and progression to AIDS. However, the precise role of HIV-1 in this process remains unexplained. HIV-1 protease (PR) has been suggested as a possible factor, but a direct link between HIV-1 PR enzymatic activity and apoptosis has not been established. Results Here, we show that expression of active HIV-1 PR induces death in HeLa and HEK-293 cells via the mitochondrial apoptotic pathway. This conclusion is based on in vivo observations of the direct localization of HIV-1 PR in mitochondria, a key player in triggering apoptosis. Moreover, we observed an HIV-1 PR concentration-dependent decrease in mitochondrial membrane potential and the role of HIV-1 PR in activation of caspase 9, PARP cleavage and DNA fragmentation. In addition, in vitro data demonstrated that HIV-1 PR mediates cleavage of mitochondrial proteins Tom22, VDAC and ANT, leading to release of AIF and Hsp60 proteins. By using yeast two-hybrid screening, we also identified a new HIV-1 PR interaction partner, breast carcinoma-associated protein 3 (BCA3). We found that BCA3 accelerates p53 transcriptional activity on the bax promoter, thus elevating the cellular level of pro-apoptotic Bax protein. Conclusion In summary, our results describe the involvement of HIV-1 PR in apoptosis, which is caused either by a direct effect of HIV-1 PR on mitochondrial membrane integrity or by its interaction with cellular protein BCA3. PMID:24886575

  19. HIV-1-induced AIDS in monkeys.

    PubMed

    Hatziioannou, Theodora; Del Prete, Gregory Q; Keele, Brandon F; Estes, Jacob D; McNatt, Matthew W; Bitzegeio, Julia; Raymond, Alice; Rodriguez, Anthony; Schmidt, Fabian; Mac Trubey, C; Smedley, Jeremy; Piatak, Michael; KewalRamani, Vineet N; Lifson, Jeffrey D; Bieniasz, Paul D

    2014-06-20

    Primate lentiviruses exhibit narrow host tropism, reducing the occurrence of zoonoses but also impairing the development of optimal animal models of AIDS. To delineate the factors limiting cross-species HIV-1 transmission, we passaged a modified HIV-1 in pigtailed macaques that were transiently depleted of CD8(+) cells during acute infection. During adaptation over four passages in macaques, HIV-1 acquired the ability to antagonize the macaque restriction factor tetherin, replicated at progressively higher levels, and ultimately caused marked CD4(+) T cell depletion and AIDS-defining conditions. Transient treatment with an antibody to CD8 during acute HIV-1 infection caused rapid progression to AIDS, whereas untreated animals exhibited an elite controller phenotype. Thus, an adapted HIV-1 can cause AIDS in macaques, and stark differences in outcome can be determined by immunological perturbations during early infection.

  20. Elevated expression of IFN-gamma in the HIV-1 infected brain.

    PubMed

    Shapshak, Paul; Duncan, Robert; Minagar, Alireza; Rodriguez de la Vega, Pura; Stewart, Renée V; Goodkin, Karl

    2004-05-01

    We determined the extent of expression of three cytokines (IFN-gamma, IL-4, and TNF-alpha ) in brain tissue infected with human immunodeficiency virus-1 (HIV-1). The selections were IFN-gamma as a Th1 cytokine, IL- 4 as a Th2 cytokine, and TNF-alpha as a pro-inflammatory cytokine (and because of its prior implication in brain tissue damage due to HIV-1 infection). Based on current models for pathogenesis of HIV-1-associated dementia (HAD), in the periphery, Th1 cytokines are considered to be salutary, whereas Th2 cytokines are regarded as deleterious. However, we hypothesized that in the CNS these roles are reversed. Post-mortem temporal lobe tissue specimens from 16 HIV-1-seropositive patients and 11 HIV-1-seronegative controls were stained for IFN-gamma, IL-4, and TNF-alpha utilizing immunohistochemistry and alkaline phosphatase. HIV-1 infection causes alterations of brain cytokine expression that include increased IFN-gamma expression for HIV-1-seropositive vs. HIV-1-seronegative individuals. There was increased expression of IFN-gamma for HIV-1-seropositive individuals with or without HAD, with or without the broader category of neuropsychiatric impairment (NPI), and with or without opportunistic infections (OIs) compared to HIV-1-seronegatives. A significant inverse correlation between IFN-gamma vs. IL-4 in HIV-1-seropositives with HAD and in seronegative individuals was observed. There was an inverse correlation in seropositives between IFN-gamma vs. TNF-alpha, a positive trend with HAD, significant without HAD, significant with NPI and significant without OIs. Between IL-4 vs. TNF-alpha there was a correlation (trend) in seropositives, a trend with NPI, significant without NPI, and a trend without OI. Due to HIV-1 infection of the brain and neurological disease there is a prominent increased expression of IFN-gamma, an inverse expression of IFN-gamma vs. TNF-alpha, and TNF-alpha vs. IL-4. The inverse correlation between increased IFN-gamma and decreased IL-4

  1. The HIVdb system for HIV-1 genotypic resistance interpretation.

    PubMed

    Tang, Michele W; Liu, Tommy F; Shafer, Robert W

    2012-01-01

    The Stanford HIV Drug Resistance Database hosts a freely available online genotypic resistance interpretation system called HIVdb to help clinicians and laboratories interpret HIV-1 genotypic resistance tests. These tests are designed to assess susceptibility to nucleoside and nonnucleoside reverse transcriptase inhibitors (NRTI and NNRTI), protease inhibitors and integrase inhibitors. The HIVdb genotypic resistance interpretation system output consists of (1) a list of penalty scores for each antiretroviral (ARV) resistance mutation in a submitted sequence, (2) estimates of decreased NRTI, NNRTI, protease and integrase inhibitor susceptibility, and (3) comments about each ARV resistance mutation in the submitted sequence. The application's strengths are its convenience for submitting sequences, its quality control analysis, its transparency and its extensive comments. The Sierra Web service is an extension that enables laboratories analyzing many sequences to individualize the format of their results. The algorithm specification interface compiler makes it possible for HIVdb to provide results using a variety of different HIV-1 genotypic resistance interpretation algorithms.

  2. Quantitative Analysis of HIV-1 Preintegration Complexes

    PubMed Central

    Engelman, Alan; Oztop, Ilker; Vandegraaff, Nick; Raghavendra, Nidhanapati K.

    2009-01-01

    Retroviral replication proceeds through the formation of a provirus, an integrated DNA copy of the viral RNA genome. The linear cDNA product of reverse transcription is the integration substrate and two different integrase activities, 3′ processing and DNA strand transfer, are required for provirus formation. Integrase nicks the cDNA ends adjacent to phylogenetically-conserved CA dinucleotides during 3′ processing. After nuclear entry and locating a suitable chromatin acceptor site, integrase joins the recessed 3′-OHs to the 5′-phosphates of a double-stranded staggered cut in the DNA target. Integrase functions in the context of a large nucleoprotein complex, called the preintegration complex (PIC), and PICs are analyzed to determine levels of integrase 3′ processing and DNA strand transfer activities that occur during acute virus infection. Denatured cDNA end regions are monitored by indirect end-labeling to measure the extent of 3′ processing. Native PICs can efficiently integrate their viral cDNA into exogenously added target DNA in vitro, and Southern blotting or nested PCR assays are used to quantify the resultant DNA strand transfer activity. This study details HIV-1 infection, PIC extraction, partial purification, and quantitative analyses of integrase 3′ processing and DNA strand transfer activities. PMID:19233280

  3. GADD45 proteins inhibit HIV-1 replication through specific suppression of HIV-1 transcription.

    PubMed

    Liang, Zhibin; Liu, Ruikang; Zhang, Hui; Zhang, Suzhen; Hu, Xiaomei; Tan, Juan; Liang, Chen; Qiao, Wentao

    2016-06-01

    GADD45 proteins are a group of stress-induced proteins and participate in various cellular pathways including cell cycle regulation, cell survival and death, DNA repair and demethylation. It was recently shown that HIV-1 infection induces the expression of GADD45 proteins. However, the effect of GADD45 on HIV-1 replication has not been studied. Here, we report that overexpression of GADD45 proteins reduces HIV-1 production through suppressing transcription from the HIV-1 LTR promoter. This inhibitory effect is specific to HIV-1, since GADD45 proteins neither inhibit the LTR promoters from other retroviruses nor reduce the production of these viruses. Knockdown of endogenous GADD45 modestly activates HIV-1 in the J-Lat A72 latency cell line, which suggests GADD45 proteins might play a role in maintaining HIV-1 latency.

  4. Change in the Prevalence of HIV-1 and the Rate of Transmitted Drug-Resistant HIV-1 in Haiphong, Northern Vietnam.

    PubMed

    Pham, Hung Viet; Ishizaki, Azumi; Nguyen, Cuong Hung; Saina, Matilda Chelimo; Hoang, Huyen Thi Thanh; Tran, Vuong Thi; Bi, Xiuqiong; Pham, Thuc Van; Ichimura, Hiroshi

    2015-07-01

    We previously reported a significant decrease in HIV-1 prevalence, with no increase in drug-resistant HIV-1 among injecting drug users (IDU), female sex workers (FSW), and blood donors (BD), in Haiphong, Vietnam, from 2007 to 2009. In 2012, 388 IDU, 51 FSW, and 200 BD were recruited for further analysis. None had a history of antiretroviral treatment. From 2007 to 2012, HIV-1 prevalence was reduced from 35.9% to 18.6% (p<0.001), 23.1% to 9.8% (p<0.05), and 2.9% to 1% (p=0.29) in IDU, FSW, and BD, respectively. Of 79 anti-HIV-1 antibody-positive samples, 61 were successfully analyzed for the pol-reverse transcriptase (RT) region. All HIV-1 strains were CRF01_AE. Nonnucleoside RT inhibitor-resistant mutations, Y181C/I, were detected in three subjects; one had the nucleoside RT inhibitor-resistant mutations L74V and M184V and one had E138K. The prevalence of transmitted drug-resistant HIV-1 in Haiphong increased slightly from 1.8% in 2007 to 6.6% in 2012 (p=0.06).

  5. Are Viral-Encoded MicroRNAs Mediating Latent HIV-1 Infection?

    PubMed Central

    WEINBERG, MARC S.; MORRIS, KEVIN V.

    2010-01-01

    The Human Immunodeficiency Virus type 1 (HIV-1), a member of the lentivirus subfamily, infects both dividing and nondividing cells and, following reverse transcription of the viral RNA genome, integrates into the host chromatin where it enters into a latent state. Many of the factors governing viral latency remain unresolved and current antiviral treatment regimens are largely ineffective at eliminating cellular reservoirs of latent virus. The recent identification of microRNA (miRNA) encoding sequences embedded in the HIV-1 genome, and the discovery of functional virus-derived miRNAs, suggests a role for RNA Interference (RNAi) in the regulation of HIV-1 gene expression. Recently, the mammalian RNAi machinery was shown to regulate gene expression epigenetically by transcriptional modulation, providing a direct link between RNAi and a mechanism for inducing latency. Interestingly, both HIV-1 Tat, and the host TAR RNA-binding protein (TRBP), bind to the transactivating response (TAR) RNA of HIV-1 and affect the function of RNAi in human cells. Specifically, TRBP, a cofactor in Tat-TAR interactions, is a vital component of Dicer-mediated dsRNA processing. These novel observations support a central role for HIV-1 and associated host factors in regulating cellular RNAi and viral gene expression through RNA directed processes. Thus, HIV-1 may have evolved mechanisms to exploit the RNAi pathway at both the transcriptional and posttranscriptional level to affect and/or maintain a latent infection. PMID:16629595

  6. Host Double Strand Break Repair Generates HIV-1 Strains Resistant to CRISPR/Cas9.

    PubMed

    Yoder, Kristine E; Bundschuh, Ralf

    2016-07-12

    CRISPR/Cas9 genome editing has been proposed as a therapeutic treatment for HIV-1 infection. CRISPR/Cas9 induced double strand breaks (DSBs) targeted to the integrated viral genome have been shown to decrease production of progeny virus. Unfortunately HIV-1 evolves rapidly and may readily produce CRISPR/Cas9 resistant strains. Here we used next-generation sequencing to characterize HIV-1 strains that developed resistance to six different CRISPR/Cas9 guide RNAs (gRNAs). Reverse transcriptase (RT) derived base substitution mutations were commonly found at sites encoding unpaired bases of RNA stem-loop structures. In addition to RT mutations, insertion and/or deletion (indel) mutations were common. Indels localized to the CRISPR/Cas9 cleavage site were major contributors to CRISPR gRNA resistance. While most indels at non-coding regions were a single base pair, 3 base pair indels were observed when a coding region of HIV-1 was targeted. The DSB repair event may preserve the HIV-1 reading frame, while destroying CRISPR gRNA homology. HIV-1 may be successfully edited by CRISPR/Cas9, but the virus remains competent for replication and resistant to further CRISPR/Cas9 targeting at that site. These observations strongly suggest that host DSB repair at CRISPR/Cas9 cleavage sites is a novel and important pathway that may contribute to HIV-1 therapeutic resistance.

  7. Host Double Strand Break Repair Generates HIV-1 Strains Resistant to CRISPR/Cas9

    PubMed Central

    Yoder, Kristine E.; Bundschuh, Ralf

    2016-01-01

    CRISPR/Cas9 genome editing has been proposed as a therapeutic treatment for HIV-1 infection. CRISPR/Cas9 induced double strand breaks (DSBs) targeted to the integrated viral genome have been shown to decrease production of progeny virus. Unfortunately HIV-1 evolves rapidly and may readily produce CRISPR/Cas9 resistant strains. Here we used next-generation sequencing to characterize HIV-1 strains that developed resistance to six different CRISPR/Cas9 guide RNAs (gRNAs). Reverse transcriptase (RT) derived base substitution mutations were commonly found at sites encoding unpaired bases of RNA stem-loop structures. In addition to RT mutations, insertion and/or deletion (indel) mutations were common. Indels localized to the CRISPR/Cas9 cleavage site were major contributors to CRISPR gRNA resistance. While most indels at non-coding regions were a single base pair, 3 base pair indels were observed when a coding region of HIV-1 was targeted. The DSB repair event may preserve the HIV-1 reading frame, while destroying CRISPR gRNA homology. HIV-1 may be successfully edited by CRISPR/Cas9, but the virus remains competent for replication and resistant to further CRISPR/Cas9 targeting at that site. These observations strongly suggest that host DSB repair at CRISPR/Cas9 cleavage sites is a novel and important pathway that may contribute to HIV-1 therapeutic resistance. PMID:27404981

  8. A Novel Class of HIV-1 Antiviral Agents Targeting HIV via a SUMOylation-Dependent Mechanism

    PubMed Central

    Madu, Ikenna G.; Li, Shirley; Li, Baozong; Li, Haitang; Chang, Tammy; Li, Yi-Jia; Vega, Ramir; Rossi, John; Yee, Jiing-Kuan; Zaia, John; Chen, Yuan

    2015-01-01

    We have recently identified a chemotype of small ubiquitin-like modifier (SUMO)-specific protease (SENP) inhibitors. Prior to the discovery of their SENP inhibitory activity, these compounds were found to inhibit HIV replication, but with an unknown mechanism. In this study, we investigated the mechanism of how these compounds inhibit HIV-1. We found that they do not affect HIV-1 viral production, but significantly inhibited the infectivity of the virus. Interestingly, virions produced from cells treated with these compounds could gain entry and carry out reverse transcription, but could not efficiently integrate into the host genome. This phenotype is different from the virus produced from cells treated with the class of anti-HIV-1 agents that inhibit HIV protease. Upon removal of the SUMO modification sites in the HIV-1 integrase, the compound no longer alters viral infectivity, indicating that the effect is related to SUMOylation of the HIV integrase. This study identifies a novel mechanism for inhibiting HIV-1 integration and a new class of small molecules that inhibits HIV-1 via such mechanism that may contribute a new strategy for cure of HIV-1 by inhibiting the production of infectious virions upon activation from latency. PMID:26643614

  9. Adenoviral gene delivery for HIV-1 vaccination.

    PubMed

    Vanniasinkam, T; Ertl, H C J

    2005-04-01

    The AIDS epidemic continues to spread throughout nations of Africa and Asia and is by now threatening to undermine the already frail infrastructure of developing countries in Sub-Saharan Africa that are hit the hardest. The only option to stem this epidemic is through inexpensive and efficacious vaccines that prevent or at least blunt HIV-1 infections. Despite decades of pre-clinical and clinical research such vaccines remain elusive. Most anti-viral vaccines act by inducing protective levels of virus-neutralizing antibodies. The envelope protein of HIV-1, the sole target of neutralizing antibodies, is constantly changing due to mutations, B cell epitopes are masked by heavy glycosylation and the protein's structural unfolding upon binding to its CD4 receptor and chemokine co-receptors. Efforts to induce broadly cross-reactive virus-neutralizing antibodies able to induce sterilizing or near sterilizing immunity to HIV-1 have thus failed. Studies have indicated that cell-mediated immune responses and in particular CD8+ T cell responses to internal viral proteins may control HIV-1 infections without necessarily preventing them. Adenoviral vectors expressing antigens of HIV-1 are eminently suited to stimulate potent CD8+ T cell responses against transgene products, such as antigens of HIV-1. They performed well in pre-clinical studies in rodents and nonhuman primates and are currently in human clinical trials. This review summarizes the published literature on adenoviral vectors as vaccine carriers for HIV-1 and discusses advantages and disadvantages of this vaccine modality.

  10. Antiretroviral (HIV-1) activity of azulene derivatives.

    PubMed

    Peet, Julia; Selyutina, Anastasia; Bredihhin, Aleksei

    2016-04-15

    The antiretroviral activity of azulene derivatives was detected for the first time. A series of eighteen diversely substituted azulenes was synthesized and tested in vitro using HIV-1 based virus-like particles (VLPs) and infectious HIV-1 virus in U2OS and TZM-bl cell lines. Among the compounds tested, the 2-hydroxyazulenes demonstrated the most significant activity by inhibiting HIV-1 replication with IC50 of 2-10 and 8-20 μM for the VLPs and the infectious virus, respectively. These results indicate that azulene derivatives may be potentially useful candidates for the development of antiretroviral agents.

  11. A post-entry role for CD63 in early HIV-1 replication

    SciTech Connect

    Li Guangyu; Dziuba, Natallia; Friedrich, Brian; Murray, James L.; Ferguson, Monique R.

    2011-04-10

    Macrophages and CD4{sup +} lymphocytes are the major reservoirs for HIV-1 infection. CD63 is a tetraspanin transmembrane protein, which has been shown to play an essential role during HIV-1 replication in macrophages. In this study, we further confirm the requirement of CD63 in early HIV-1 replication events in both macrophages and a CD4{sup +} cell line. Further analysis revealed that viral attachment and cell-cell fusion were unaffected by CD63 silencing. However, CD63-depleted macrophages showed a significant decrease in the initiation and completion of HIV-1 reverse transcription, affecting subsequent events of the HIV-1 life cycle. Integration of HIV-1 cDNA as well as the formation of 2-LTR circles was notably reduced. Reporter assays showed that CD63 down regulation reduced production of the early HIV protein Tat. In agreement, CD63 silencing also inhibited production of the late protein p24. These findings suggest that CD63 plays an early post-entry role prior to or at the reverse transcription step.

  12. Anti-HIV-1 activity of propolis in CD4(+) lymphocyte and microglial cell cultures.

    PubMed

    Gekker, Genya; Hu, Shuxian; Spivak, Marla; Lokensgard, James R; Peterson, Phillip K

    2005-11-14

    An urgent need for additional agents to treat human immunodeficiency virus type 1 (HIV-1) infection led us to assess the anti-HIV-1 activity of the natural product propolis in CD4(+) lymphocytes and microglial cell cultures. Propolis inhibited viral expression in a concentration-dependent manner (maximal suppression of 85 and 98% was observed at 66.6 microg/ml propolis in CD4(+) and microglial cell cultures, respectively). Similar anti-HIV-1 activity was observed with propolis samples from several geographic regions. The mechanism of propolis antiviral property in CD4(+) lymphocytes appeared to involve, in part, inhibition of viral entry. While propolis had an additive antiviral effect on the reverse transcriptase inhibitor zidovudine, it had no noticeable effect on the protease inhibitor indinavir. The results of this in vitro study support the need for clinical trials of propolis or one or more of its components in the treatment of HIV-1 infection.

  13. In vitro anti-HIV-1 activity of fucoidan from Sargassum swartzii.

    PubMed

    Dinesh, Subramaniam; Menon, Thangam; Hanna, Luke E; Suresh, V; Sathuvan, M; Manikannan, M

    2016-01-01

    Sargassum swartzii, a marine brown algae with wide range of biological properties belongs to the family Sargassaceae. Bioactive fucoidan fractions (CFF, FF1 and FF2) were isolated from S. swartzii and characterized by linear gradient anion-exchange chromatography and FT-IR. The characterized fucoidan fractions contained mainly sugars, sulfate and uronic acid. In the present study, anti-HIV-1 property of the fucoidan fractions was investigated. Fraction FF2 was found to exhibit significant anti-HIV-1 activity at concentrations of 1.56 and 6.25 μg/ml as observed by >50% reduction in HIV-1 p24 antigen levels and reverse transcriptase activity. Fucoidan fractions have no cytotoxic effects on PBMCs at the concentration range of 1.56-1000 μg/ml. These results suggest that fucoidan fractions could have inhibitory activity against HIV and has potential as an anti-HIV-1 agent.

  14. Development of prophylactic vaccines against HIV-1.

    PubMed

    Schiffner, Torben; Sattentau, Quentin J; Dorrell, Lucy

    2013-07-17

    The focus of most current HIV-1 vaccine development is on antibody-based approaches. This is because certain antibody responses correlated with protection from HIV-1 acquisition in the RV144 phase III trial, and because a series of potent and broad spectrum neutralizing antibodies have been isolated from infected individuals. Taken together, these two findings suggest ways forward to develop a neutralizing antibody-based vaccine. However, understanding of the correlates of protection from disease in HIV-1 and other infections strongly suggests that we should not ignore CTL-based research. Here we review recent progress in the field and highlight the challenges implicit in HIV-1 vaccine design and some potential solutions.

  15. Nuclear trafficking of the HIV-1 pre-integration complex depends on the ADAM10 intracellular domain

    SciTech Connect

    Endsley, Mark A.; Somasunderam, Anoma D.; Li, Guangyu; Oezguen, Numan; Thiviyanathan, Varatharasa; Murray, James L.; Rubin, Donald H.; Hodge, Thomas W.; and others

    2014-04-15

    Previously, we showed that ADAM10 is necessary for HIV-1 replication in primary human macrophages and immortalized cell lines. Silencing ADAM10 expression interrupted the HIV-1 life cycle prior to nuclear translocation of viral cDNA. Furthermore, our data indicated that HIV-1 replication depends on the expression of ADAM15 and γ-secretase, which proteolytically processes ADAM10. Silencing ADAM15 or γ-secretase expression inhibits HIV-1 replication between reverse transcription and nuclear entry. Here, we show that ADAM10 expression also supports replication in CD4{sup +} T lymphocytes. The intracellular domain (ICD) of ADAM10 associates with the HIV-1 pre-integration complex (PIC) in the cytoplasm and immunoprecipitates and co-localizes with HIV-1 integrase, a key component of PIC. Taken together, our data support a model whereby ADAM15/γ-secretase processing of ADAM10 releases the ICD, which then incorporates into HIV-1 PIC to facilitate nuclear trafficking. Thus, these studies suggest ADAM10 as a novel therapeutic target for inhibiting HIV-1 prior to nuclear entry. - Highlights: • Nuclear trafficking of the HIV-1 pre-integration complex depends on ADAM10. • ADAM10 associates with HIV-1 integrase in the pre-integration complex. • HIV-1 replication depends on the expression of ADAM15 and γ-secretase. • Silencing ADAM15 or γ-secretase expression inhibits nuclear import of viral cDNA. • ADAM10 is important for HIV-1 replication in human macrophages and CD4{sup +} T lymphocytes.

  16. Substance abuse, HIV-1 and hepatitis.

    PubMed

    Parikh, Nirzari; Nonnemacher, Michael R; Pirrone, Vanessa; Block, Timothy; Mehta, Anand; Wigdahl, Brian

    2012-10-01

    During the course of human immunodeficiency virus type 1 (HIV-1) disease, the virus has been shown to effectively escape the immune response with the subsequent establishment of latent viral reservoirs in specific cell populations within the peripheral blood (PB) and associated lymphoid tissues, bone marrow (BM), brain, and potentially other end organs. HIV-1, along with hepatitis B and C viruses (HBV and HCV), are known to share similar routes of transmission, including intravenous drug use, blood transfusions, sexual intercourse, and perinatal exposure. Substance abuse, including the use of opioids and cocaine, is a significant risk factor for exposure to HIV-1 and the development of acquired immune deficiency syndrome, as well as HBV and HCV exposure, infection, and disease. Thus, coinfection with HIV-1 and HBV or HCV is common and may be impacted by chronic substance abuse during the course of disease. HIV- 1 impacts the natural course of HBV and HCV infection by accelerating the progression of HBV/HCV-associated liver disease toward end-stage cirrhosis and quantitative depletion of the CD4+ T-cell compartment. HBV or HCV coinfection with HIV-1 is also associated with increased mortality when compared to either infection alone. This review focuses on the impact of substance abuse and coinfection with HBV and HCV in the PB, BM, and brain on the HIV-1 pathogenic process as it relates to viral pathogenesis, disease progression, and the associated immune response during the course of this complex interplay. The impact of HIV-1 and substance abuse on hepatitis virus-induced disease is also a focal point.

  17. HIV-1 Tropism Determines Different Mutation Profiles in Proviral DNA.

    PubMed

    Nascimento-Brito, Sieberth; Paulo Zukurov, Jean; Maricato, Juliana T; Volpini, Angela C; Salim, Anna Christina M; Araújo, Flávio M G; Coimbra, Roney S; Oliveira, Guilherme C; Antoneli, Fernando; Janini, Luiz Mário R

    2015-01-01

    In order to establish new infections HIV-1 particles need to attach to receptors expressed on the cellular surface. HIV-1 particles interact with a cell membrane receptor known as CD4 and subsequently with another cell membrane molecule known as a co-receptor. Two major different co-receptors have been identified: C-C chemokine Receptor type 5 (CCR5) and C-X-C chemokine Receptor type 4 (CXCR4) Previous reports have demonstrated cellular modifications upon HIV-1 binding to its co-receptors including gene expression modulations. Here we investigated the effect of viral binding to either CCR5 or CXCR4 co-receptors on viral diversity after a single round of reverse transcription. CCR5 and CXCR4 pseudotyped viruses were used to infect non-stimulated and stimulated PBMCs and purified CD4 positive cells. We adopted the SOLiD methodology to sequence virtually the entire proviral DNA from all experimental infections. Infections with CCR5 and CXCR4 pseudotyped virus resulted in different patterns of genetic diversification. CCR5 virus infections produced extensive proviral diversity while in CXCR4 infections a more localized substitution process was observed. In addition, we present pioneering results of a recently developed method for the analysis of SOLiD generated sequencing data applicable to the study of viral quasi-species. Our findings demonstrate the feasibility of viral quasi-species evaluation by NGS methodologies. We presented for the first time strong evidence for a host cell driving mechanism acting on the HIV-1 genetic variability under the control of co-receptor stimulation. Additional investigations are needed to further clarify this question, which is relevant to viral diversification process and consequent disease progression.

  18. HIV-1 transmission linkage in an HIV-1 prevention clinical trial

    SciTech Connect

    Leitner, Thomas; Campbell, Mary S; Mullins, James I; Hughes, James P; Wong, Kim G; Raugi, Dana N; Scrensen, Stefanie

    2009-01-01

    HIV-1 sequencing has been used extensively in epidemiologic and forensic studies to investigate patterns of HIV-1 transmission. However, the criteria for establishing genetic linkage between HIV-1 strains in HIV-1 prevention trials have not been formalized. The Partners in Prevention HSV/HIV Transmission Study (ClinicaITrials.gov NCT00194519) enrolled 3408 HIV-1 serodiscordant heterosexual African couples to determine the efficacy of genital herpes suppression with acyclovir in reducing HIV-1 transmission. The trial analysis required laboratory confirmation of HIV-1 linkage between enrolled partners in couples in which seroconversion occurred. Here we describe the process and results from HIV-1 sequencing studies used to perform transmission linkage determination in this clinical trial. Consensus Sanger sequencing of env (C2-V3-C3) and gag (p17-p24) genes was performed on plasma HIV-1 RNA from both partners within 3 months of seroconversion; env single molecule or pyrosequencing was also performed in some cases. For linkage, we required monophyletic clustering between HIV-1 sequences in the transmitting and seroconverting partners, and developed a Bayesian algorithm using genetic distances to evaluate the posterior probability of linkage of participants sequences. Adjudicators classified transmissions as linked, unlinked, or indeterminate. Among 151 seroconversion events, we found 108 (71.5%) linked, 40 (26.5%) unlinked, and 3 (2.0%) to have indeterminate transmissions. Nine (8.3%) were linked by consensus gag sequencing only and 8 (7.4%) required deep sequencing of env. In this first use of HIV-1 sequencing to establish endpoints in a large clinical trial, more than one-fourth of transmissions were unlinked to the enrolled partner, illustrating the relevance of these methods in the design of future HIV-1 prevention trials in serodiscordant couples. A hierarchy of sequencing techniques, analysis methods, and expert adjudication contributed to the linkage

  19. Exosomes: Implications in HIV-1 Pathogenesis.

    PubMed

    Madison, Marisa N; Okeoma, Chioma M

    2015-07-20

    Exosomes are membranous nanovesicles of endocytic origin that carry host and pathogen derived genomic, proteomic, and lipid cargos. Exosomes are secreted by most cell types into the extracellular milieu and are subsequently internalized by recipient cells. Upon internalization, exosomes condition recipient cells by donating their cargos and/or activating various signal transduction pathways, consequently regulating physiological and pathophysiological processes. The role of exosomes in viral pathogenesis, especially human immunodeficiency virus type 1 [HIV-1] is beginning to unravel. Recent research reports suggest that exosomes from various sources play important but different roles in the pathogenesis of HIV-1. From these reports, it appears that the source of exosomes is the defining factor for the exosomal effect on HIV-1. In this review, we will describe how HIV-1 infection is modulated by exosomes and in turn how exosomes are targeted by HIV-1 factors. Finally, we will discuss potentially emerging therapeutic options based on exosomal cargos that may have promise in preventing HIV-1 transmission.

  20. Exosomes: Implications in HIV-1 Pathogenesis

    PubMed Central

    Madison, Marisa N.; Okeoma, Chioma M.

    2015-01-01

    Exosomes are membranous nanovesicles of endocytic origin that carry host and pathogen derived genomic, proteomic, and lipid cargos. Exosomes are secreted by most cell types into the extracellular milieu and are subsequently internalized by recipient cells. Upon internalization, exosomes condition recipient cells by donating their cargos and/or activating various signal transduction pathways, consequently regulating physiological and pathophysiological processes. The role of exosomes in viral pathogenesis, especially human immunodeficiency virus type 1 [HIV-1] is beginning to unravel. Recent research reports suggest that exosomes from various sources play important but different roles in the pathogenesis of HIV-1. From these reports, it appears that the source of exosomes is the defining factor for the exosomal effect on HIV-1. In this review, we will describe how HIV-1 infection is modulated by exosomes and in turn how exosomes are targeted by HIV-1 factors. Finally, we will discuss potentially emerging therapeutic options based on exosomal cargos that may have promise in preventing HIV-1 transmission. PMID:26205405

  1. Phenyl-1-Pyridin-2yl-Ethanone-Based Iron Chelators Increase IκB-α Expression, Modulate CDK2 and CDK9 Activities, and Inhibit HIV-1 Transcription

    PubMed Central

    Kumari, Namita; Iordanskiy, Sergey; Kovalskyy, Dmytro; Breuer, Denitra; Niu, Xiaomei; Lin, Xionghao; Xu, Min; Gavrilenko, Konstantin; Kashanchi, Fatah; Dhawan, Subhash

    2014-01-01

    HIV-1 transcription is activated by the Tat protein, which recruits CDK9/cyclin T1 to the HIV-1 promoter. CDK9 is phosphorylated by CDK2, which facilitates formation of the high-molecular-weight positive transcription elongation factor b (P-TEFb) complex. We previously showed that chelation of intracellular iron inhibits CDK2 and CDK9 activities and suppresses HIV-1 transcription, but the mechanism of the inhibition was not understood. In the present study, we tested a set of novel iron chelators for the ability to inhibit HIV-1 transcription and elucidated their mechanism of action. Novel phenyl-1-pyridin-2yl-ethanone (PPY)-based iron chelators were synthesized and examined for their effects on cellular iron, HIV-1 inhibition, and cytotoxicity. Activities of CDK2 and CDK9, expression of CDK9-dependent and CDK2-inhibitory mRNAs, NF-κB expression, and HIV-1- and NF-κB-dependent transcription were determined. PPY-based iron chelators significantly inhibited HIV-1, with minimal cytotoxicity, in cultured and primary cells chronically or acutely infected with HIV-1 subtype B, but they had less of an effect on HIV-1 subtype C. Iron chelators upregulated the expression of IκB-α, with increased accumulation of cytoplasmic NF-κB. The iron chelators inhibited CDK2 activity and reduced the amount of CDK9/cyclin T1 in the large P-TEFb complex. Iron chelators reduced HIV-1 Gag and Env mRNA synthesis but had no effect on HIV-1 reverse transcription. In addition, iron chelators moderately inhibited basal HIV-1 transcription, equally affecting HIV-1 and Sp1- or NF-κB-driven transcription. By virtue of their involvement in targeting several key steps in HIV-1 transcription, these novel iron chelators have the potential for the development of new therapeutics for the treatment of HIV-1 infection. PMID:25155598

  2. Semen Bacterial Concentrations and HIV-1 RNA Shedding Among HIV-1–Seropositive Kenyan Men

    PubMed Central

    Srinivasan, Sujatha; Huang, Dandi; Ko, Daisy L.; Sanders, Eduard J.; Peshu, Norbert M.; Krieger, John N.; Muller, Charles H.; Coombs, Robert W.; Fredricks, David N.; Graham, Susan M.

    2017-01-01

    Introduction: HIV-1 is transmitted through semen from men to their sexual partners. Genital infections can increase HIV-1 RNA shedding in semen, but shedding also occurs in the absence of typical pathogens. We hypothesized that higher bacterial concentrations in semen would be associated with higher HIV-1 RNA levels. Methods: We analyzed semen samples from 42 HIV-1–seropositive Kenyan men using quantitative polymerase chain reaction (PCR) to assess bacterial concentrations and real-time PCR to measure HIV-1 RNA levels. Generalized estimation equations were used to evaluate associations between these 2 measures. Broad-range 16S rRNA gene PCR with pyrosequencing was performed on a subset of 13 samples to assess bacterial community composition. Results: Bacteria were detected in 96.6% of 88 samples by quantitative PCR. Semen bacterial concentration and HIV-1 RNA levels were correlated 0.30 (P = 0.01). The association between bacterial concentration and HIV-1 RNA detection was not significant after adjustment for antiretroviral therapy (ART) (adjusted odds ratio: 1.27, 95% CI: 0.84 to 1.91). Factors associated with semen bacterial concentration included insertive anal sex (adjusted beta 0.92, 95% CI: 0.12 to 1.73) and ART use (adjusted beta: −0.77, 95% CI: −1.50 to 0.04). Among 13 samples with pyrosequencing data, Corynebacterium spp., Staphylococcus spp., and Streptococcus spp. were most frequently detected. Conclusion: Most of these HIV-1–infected men had bacteria in their semen. ART use was associated with undetectable semen HIV-1 RNA and lower semen bacterial concentrations, whereas insertive anal sex was associated with higher bacterial concentrations. Additional studies evaluating the relationship between semen bacteria, inflammation, mucosal immunity, and HIV-1 shedding are needed to understand implications for HIV-1 transmission. PMID:27861240

  3. The use of HIV-1 integration site analysis information in clinical studies aiming at HIV cure.

    PubMed

    Kiselinova, Maja; De Spiegelaere, Ward; Vandekerckhove, Linos

    2016-07-01

    The mechanisms for the establishment and the persistence of the latent HIV-1 reservoir remain to be completely defined. HIV-1 infection is characterised by the integration of the reverse transcribed proviral DNA into the host's genome. This integrated proviral DNA can remain replication silent, but a small part of it is fully competent to restart viral replication when treatment is interrupted. Hence, this replication-competent provirus is the cause of viral rebound and is called the viral reservoir. The exact site of proviral integration within the host's cellular chromosome may affect the transcriptional activity of HIV. Thanks to recent technological advances, HIV-1 integration site analysis has been used to assess HIV-1 reservoirs in HIV-infected individuals. Analysis of HIV-1 integration sites in infected individuals undergoing suppressive ART led to identification of expanded clonal cell populations, indicating that clonal proliferation of the proviral reservoir may contribute to the long-term persistence of viral reservoirs. Here we describe the findings of several clinical studies, where a comprehensive HIV-1 integration site analysis was performed.

  4. Characterization of two distinct early post-entry blocks to HIV-1 in common marmoset lymphocytes

    PubMed Central

    Pacheco, Beatriz; Menéndez-Arias, Luis; Sodroski, Joseph

    2016-01-01

    In nature, primate lentiviruses infect humans and several Old World monkeys and apes. However, to date, lentiviruses infecting New World monkeys have not been described. We studied the susceptibility of common marmoset cells to HIV-1 infection and observed the presence of post-entry blocks to the early phase of HIV-1 infection in peripheral blood lymphocytes (PBLs) and a B lymphocytic cell line (B-LCL). The blocks present in these cells are dominant and phenotypically different from each other. In PBLs, the block occurs at the level of reverse transcription, reducing the accumulation of early and late transcripts, similar to the block imposed by TRIM5α. However, we have found that marmoset TRIM5α does not block HIV-1. In contrast, the restriction factor present in B-LCLs blocks HIV-1 replication at a later step, after nuclear entry, and inhibits integration. Additionally, we have identified an HIV-1 capsid mutant, N74D, that is able to escape the restriction in the marmoset B-LCLs. Our results suggest that the factors responsible for the blocks present in marmoset PBLs and B-LCLs are different. We propose the existence of at least two new restriction factors able to block HIV-1 infection in marmoset lymphocytes. PMID:27876849

  5. LINE-1 Retrotransposable Element DNA Accumulates in HIV-1-Infected Cells

    PubMed Central

    Song, Haihan; Xu, Yang; Garrison, Keith E.; Buzdin, Anton A.; Anwar, Naveed; Hunter, Diana V.; Mujib, Shariq; Mihajlovic, Vesna; Martin, Eric; Lee, Erika; Kuciak, Monika; Raposo, Rui André Saraiva; Bozorgzad, Ardalan; Meiklejohn, Duncan A.; Ndhlovu, Lishomwa C.; Nixon, Douglas F.; Ostrowski, Mario A.

    2013-01-01

    Type 1 long-interspersed nuclear elements (L1s) are autonomous retrotransposable elements that retain the potential for activity in the human genome but are suppressed by host factors. Retrotransposition of L1s into chromosomal DNA can lead to genomic instability, whereas reverse transcription of L1 in the cytosol has the potential to activate innate immune sensors. We hypothesized that HIV-1 infection would compromise cellular control of L1 elements, resulting in the induction of retrotransposition events. Here, we show that HIV-1 infection enhances L1 retrotransposition in Jurkat cells in a Vif- and Vpr-dependent manner. In primary CD4+ cells, HIV-1 infection results in the accumulation of L1 DNA, at least the majority of which is extrachromosomal. These data expose an unrecognized interaction between HIV-1 and endogenous retrotransposable elements, which may have implications for the innate immune response to HIV-1 infection, as well as for HIV-1-induced genomic instability and cytopathicity. PMID:24089548

  6. A Computational Model of Inhibition of HIV-1 by Interferon-Alpha

    PubMed Central

    Browne, Edward P.; Letham, Benjamin; Rudin, Cynthia

    2016-01-01

    Type 1 interferons such as interferon-alpha (IFNα) inhibit replication of Human immunodeficiency virus (HIV-1) by upregulating the expression of genes that interfere with specific steps in the viral life cycle. This pathway thus represents a potential target for immune-based therapies that can alter the dynamics of host-virus interactions to benefit the host. To obtain a deeper mechanistic understanding of how IFNα impacts spreading HIV-1 infection, we modeled the interaction of HIV-1 with CD4 T cells and IFNα as a dynamical system. This model was then tested using experimental data from a cell culture model of spreading HIV-1 infection. We found that a model in which IFNα induces reversible cellular states that block both early and late stages of HIV-1 infection, combined with a saturating rate of conversion to these states, was able to successfully fit the experimental dataset. Sensitivity analysis showed that the potency of inhibition by IFNα was particularly dependent on specific network parameters and rate constants. This model will be useful for designing new therapies targeting the IFNα network in HIV-1-infected individuals, as well as potentially serving as a template for understanding the interaction of IFNα with other viruses. PMID:27010978

  7. A Computational Model of Inhibition of HIV-1 by Interferon-Alpha.

    PubMed

    Browne, Edward P; Letham, Benjamin; Rudin, Cynthia

    2016-01-01

    Type 1 interferons such as interferon-alpha (IFNα) inhibit replication of Human immunodeficiency virus (HIV-1) by upregulating the expression of genes that interfere with specific steps in the viral life cycle. This pathway thus represents a potential target for immune-based therapies that can alter the dynamics of host-virus interactions to benefit the host. To obtain a deeper mechanistic understanding of how IFNα impacts spreading HIV-1 infection, we modeled the interaction of HIV-1 with CD4 T cells and IFNα as a dynamical system. This model was then tested using experimental data from a cell culture model of spreading HIV-1 infection. We found that a model in which IFNα induces reversible cellular states that block both early and late stages of HIV-1 infection, combined with a saturating rate of conversion to these states, was able to successfully fit the experimental dataset. Sensitivity analysis showed that the potency of inhibition by IFNα was particularly dependent on specific network parameters and rate constants. This model will be useful for designing new therapies targeting the IFNα network in HIV-1-infected individuals, as well as potentially serving as a template for understanding the interaction of IFNα with other viruses.

  8. LINE-1 retrotransposable element DNA accumulates in HIV-1-infected cells.

    PubMed

    Jones, R Brad; Song, Haihan; Xu, Yang; Garrison, Keith E; Buzdin, Anton A; Anwar, Naveed; Hunter, Diana V; Mujib, Shariq; Mihajlovic, Vesna; Martin, Eric; Lee, Erika; Kuciak, Monika; Raposo, Rui André Saraiva; Bozorgzad, Ardalan; Meiklejohn, Duncan A; Ndhlovu, Lishomwa C; Nixon, Douglas F; Ostrowski, Mario A

    2013-12-01

    Type 1 long-interspersed nuclear elements (L1s) are autonomous retrotransposable elements that retain the potential for activity in the human genome but are suppressed by host factors. Retrotransposition of L1s into chromosomal DNA can lead to genomic instability, whereas reverse transcription of L1 in the cytosol has the potential to activate innate immune sensors. We hypothesized that HIV-1 infection would compromise cellular control of L1 elements, resulting in the induction of retrotransposition events. Here, we show that HIV-1 infection enhances L1 retrotransposition in Jurkat cells in a Vif- and Vpr-dependent manner. In primary CD4(+) cells, HIV-1 infection results in the accumulation of L1 DNA, at least the majority of which is extrachromosomal. These data expose an unrecognized interaction between HIV-1 and endogenous retrotransposable elements, which may have implications for the innate immune response to HIV-1 infection, as well as for HIV-1-induced genomic instability and cytopathicity.

  9. Specific Elimination of Latently HIV-1 Infected Cells Using HIV-1 Protease-Sensitive Toxin Nanocapsules

    PubMed Central

    Wen, Jing; Yan, Ming; Liu, Yang; Li, Jie; Xie, Yiming; Lu, Yunfeng; Kamata, Masakazu; Chen, Irvin S. Y.

    2016-01-01

    Anti-retroviral drugs suppress HIV-1 plasma viremia to undetectable levels; however, latent HIV-1 persists in reservoirs within HIV-1-infected patients. The silent provirus can be activated through the use of drugs, including protein kinase C activators and histone deacetylase inhibitors. This “shock” approach is then followed by “kill” of the producing cells either through direct HIV-1-induced cell death or natural immune mechanisms. However, these mechanisms are relatively slow and effectiveness is unclear. Here, we develop an approach to specifically target and kill cells that are activated early in the process of virus production. We utilize a novel nanocapsule technology whereby the ricin A chain is encapsulated in an inactive form within a polymer shell. Specificity for release of the ricin A toxin is conferred by peptide crosslinkers that are sensitive to cleavage by HIV-1 protease. By using well-established latent infection models, J-Lat and U1 cells, we demonstrate that only within an HIV-1-producing cell expressing functional HIV-1 protease will the nanocapsule release its ricin A cargo, shutting down viral and cellular protein synthesis, and ultimately leading to rapid death of the producer cell. Thus, we provide proof of principle for a novel technology to kill HIV-1-producing cells without effects on non-target cells. PMID:27049645

  10. Specific Elimination of Latently HIV-1 Infected Cells Using HIV-1 Protease-Sensitive Toxin Nanocapsules.

    PubMed

    Wen, Jing; Yan, Ming; Liu, Yang; Li, Jie; Xie, Yiming; Lu, Yunfeng; Kamata, Masakazu; Chen, Irvin S Y

    2016-01-01

    Anti-retroviral drugs suppress HIV-1 plasma viremia to undetectable levels; however, latent HIV-1 persists in reservoirs within HIV-1-infected patients. The silent provirus can be activated through the use of drugs, including protein kinase C activators and histone deacetylase inhibitors. This "shock" approach is then followed by "kill" of the producing cells either through direct HIV-1-induced cell death or natural immune mechanisms. However, these mechanisms are relatively slow and effectiveness is unclear. Here, we develop an approach to specifically target and kill cells that are activated early in the process of virus production. We utilize a novel nanocapsule technology whereby the ricin A chain is encapsulated in an inactive form within a polymer shell. Specificity for release of the ricin A toxin is conferred by peptide crosslinkers that are sensitive to cleavage by HIV-1 protease. By using well-established latent infection models, J-Lat and U1 cells, we demonstrate that only within an HIV-1-producing cell expressing functional HIV-1 protease will the nanocapsule release its ricin A cargo, shutting down viral and cellular protein synthesis, and ultimately leading to rapid death of the producer cell. Thus, we provide proof of principle for a novel technology to kill HIV-1-producing cells without effects on non-target cells.

  11. Macrophage polarization and HIV-1 infection.

    PubMed

    Cassol, Edana; Cassetta, Luca; Alfano, Massimo; Poli, Guido

    2010-04-01

    Polarization of MP into classically activated (M1) and alternatively activated (M2a, M2b, and M2c) macrophages is critical in mediating an effective immune response against invading pathogens. However, several pathogens use these activation pathways to facilitate dissemination and pathogenesis. Viruses generally induce an M1-like phenotype during the acute phase of infection. In addition to promoting the development of Th1 responses and IFN production, M1 macrophages often produce cytokines that drive viral replication and tissue damage. As shown for HIV-1, polarization can also alter macrophage susceptibility to infection. In vitro polarization into M1 cells prevents HIV-1 infection, and M2a polarization inhibits viral replication at a post-integration level. M2a cells also express high levels of C-type lectins that can facilitate macrophage-mediated transmission of HIV-1 to CD4(+) T cells. Macrophages are particularly abundant in mucosal membranes and unlike DCs, do not usually migrate to distal tissues. As a result, macrophages are likely to contribute to HIV-1 pathogenesis in mucosal rather than lymphatic tissues. In vivo polarization of MP is likely to span a spectrum of activation phenotypes that may change the permissivity to and alter the outcome of HIV-1 and other viral infections.

  12. HIV-1 Entry Inhbitors: An Overview

    PubMed Central

    Kuritzkes, Daniel R.

    2009-01-01

    Purpose of review This review provides an overview of HIV-1 entry inhibitors, with a focus on chemokine receptor antagonists. Recent findings Entry of HIV-1 into target cells is an ordered multi-step process involving attachment, co-receptor binding and fusion. Inhibitors of each step have been identified and shown to have antiviral activity in clinical trials. Phase 1-2 trials of monoclonal antibodies and small-molecule attachment inhibitors have demonstrated activity in HIV-1-infected subjects, but none has progressed to later phase clinical trials. The post-attachment inhibitor ibalizumab has shown activity in phase 1 and 2 trials; further studies are anticipated. The CCR5 antagonists maraviroc (now been approved for clinical use) and vicriviroc (in phase 3 trials) have shown significant benefit in controlled trials in treatment-experienced subjects; additional CCR5 antagonists are in various stages of clinical development. Targeting CXCR4 has proven to be more challenging. Although proof of concept has been demonstrated in phase 1-2 trials of two compounds, neither proved suitable for chronic administration. Little progress has been reported in developing longer acting or orally bioavailable fusion inhibitors. Summary ACCR5 antagonist and a fusion inhibitor are approved for use as HIV-1 entry inhibitors. Development of drugs targeting other steps in HIV-1 entry is ongoing. PMID:19339945

  13. Modulation of HIV-1 immunity by adjuvants

    PubMed Central

    Moody, M. Anthony

    2014-01-01

    Purpose of review To summarize the role of adjuvants in eliciting desirable antibody responses against HIV-1 with particular emphasis on both historical context and recent developments. Recent findings Increased understanding of the role of pattern recognition receptors such as Toll-like receptors in recruiting and directing the immune system has increased the variety of adjuvant formulations being tested in animal models and humans. Across all vaccine platforms, adjuvant formulations have been shown to enhance desirable immune responses such as higher antibody titers and increased functional activity. Although no vaccine formulation has yet succeeded in eliciting broad neutralizing antibodies against HIV-1, the ability of adjuvants to direct the immune response to immunogens suggests they will be critically important in any successful HIV-1 vaccine. Summary The parallel development of adjuvants along with better HIV-1 immunogens will be needed for a successful AIDS vaccine. Additional comparative testing will be required to determine the optimal adjuvant and immunogen regimen that can elicit antibody responses capable of blocking HIV-1 transmission. PMID:24670321

  14. HIV-1 associated dementia: symptoms and causes

    PubMed Central

    Ghafouri, Mohammad; Amini, Shohreh; Khalili, Kamel; Sawaya, Bassel E

    2006-01-01

    Despite the use of highly active antiretroviral therapy (HAART), neuronal cell death remains a problem that is frequently found in the brains of HIV-1-infected patients. HAART has successfully prevented many of the former end-stage complications of AIDS, however, with increased survival times, the prevalence of minor HIV-1 associated cognitive impairment appears to be rising among AIDS patients. Further, HIV-1 associated dementia (HAD) is still prevalent in treated patients as well as attenuated forms of HAD and CNS opportunistic disorders. HIV-associated cognitive impairment correlates with the increased presence in the CNS of activated, though not necessarily HIV-1-infected, microglia and CNS macrophages. This suggests that indirect mechanisms of neuronal injury and loss/death occur in HIV/AIDS as a basis for dementia since neurons are not themselves productively infected by HIV-1. In this review, we discussed the symptoms and causes leading to HAD. Outcome from this review will provide new information regarding mechanisms of neuronal loss in AIDS patients. PMID:16712719

  15. Successful Isolation of Infectious and High Titer Human Monocyte-Derived HIV-1 from Two Subjects with Discontinued Therapy

    PubMed Central

    Zhu, Haiying; Andrus, Thomas; Ivanov, Sergei B.; Pan, Charlotte; Dolores, Jazel; Dann, Gregory C.; Zhou, Michael; Forte, Dominic; Yang, Zihuan; Holte, Sarah; Corey, Lawrence; Zhu, Tuofu

    2013-01-01

    Background HIV-1 DNA in blood monocytes is considered a viral source of various HIV-1 infected tissue macrophages, which is also known as “Trojan horse” hypothesis. However, whether these DNA can produce virions has been an open question for years, due to the inability of isolating high titer and infectious HIV-1 directly from monocytes. Results In this study, we demonstrated successful isolation of two strains of M-HIV-1 (1690 M and 1175 M) from two out of four study subjects, together with their in vivo controls, HIV-1 isolated from CD4+ T-cells (T-HIV-1), 1690 T and 1175 T. All M- and T- HIV-1 isolates were detected CCR5-tropic. Both M- HIV-1 exhibited higher levels of replication in monocyte-derived macrophages (MDM) than the two T- HIV-1. Consistent with our previous reports on the subject 1175 with late infection, compartmentalized env C2-V3-C3 sequences were identified between 1175 M and 1175 T. In contrast, 1690 M and 1690 T, which were isolated from subject 1690 with relatively earlier infection, showed homogenous env C2-V3-C3 sequences. However, multiple reverse transcriptase (RT) inhibitor resistance-associated variations were detected in the Gag-Pol region of 1690 M, but not of 1690 T. By further measuring HIV DNA intracellular copy numbers post-MDM infection, 1690 M was found to have significantly higher DNA synthesis efficiency than 1690 T in macrophages, indicating a higher RT activity, which was confirmed by AZT inhibitory assays. Conclusions These results suggested that the M- and T- HIV-1 are compartmentalized in the two study subjects, respectively. Therefore, we demonstrated that under in vitro conditions, HIV-1 infected human monocytes can productively release live viruses while differentiating into macrophages. PMID:23741458

  16. HIV-1 genetic diversity and antiretroviral drug resistance among individuals from Roraima state, northern Brazil

    PubMed Central

    Leão, Renato Augusto Carvalho; Granja, Fabiana; Naveca, Felipe Gomes

    2017-01-01

    The HIV-1 epidemic in Brazil has spread towards the Northern country region, but little is known about HIV-1 subtypes and prevalence of HIV strains with resistance mutations to antiretrovirals in some of the Northern states. HIV-1 protease (PR) and reverse transcriptase (RT) sequences were obtained from 73 treatment-naive and -experienced subjects followed between 2013 and 2014 at a public health reference unit from Roraima, the northernmost Brazilian state. The most prevalent HIV-1 clade observed in the study population was the subtype B (91%), followed by subtype C (9%). Among 12 HIV-1 strains from treatment-naïve patients, only one had a transmitted drug resistance mutation for NNRTI. Among 59 treatment-experienced patients, 12 (20%) harbored HIV-1 strains with acquired drug resistance mutations (ADRM) that reduce the susceptibility to two classes of antiretroviral drugs (NRTI and NNRTI or NRTI and PI), and five (8%) harbored HIV-1 strains with ADRM that reduced susceptibility to only one class of antiretroviral drugs (NNRTI or PI). No patients harboring HIV strains with reduced susceptibility to all three classes of antiretroviral drugs were detected. A substantial fraction of treatment-experienced patients with (63%) and without (70%) ADRM had undetectable plasma viral loads (<40 copies/ml) at the time of sampling. Among treatment-experienced with plasma viral loads above 2,000 copies/ml, 44% displayed no ADRM. This data showed that the HIV-1 epidemic in Roraima displayed a much lower level of genetic diversity and a lower prevalence of ADRM than that described in other Brazilian states. PMID:28301548

  17. Limited HIV-1 Reactivation in Resting CD4+ T cells from Aviremic Patients under Protease Inhibitors

    PubMed Central

    Kumar, Amit; Abbas, Wasim; Bouchat, Sophie; Gatot, Jean-Stéphane; Pasquereau, Sébastien; Kabeya, Kabamba; Clumeck, Nathan; De Wit, Stéphane; Van Lint, Carine; Herbein, Georges

    2016-01-01

    A latent viral reservoir that resides in resting CD4+ T cells represents a major barrier for eradication of HIV infection. We test here the impact of HIV protease inhibitor (PI) based combination anti-retroviral therapy (cART) over nonnucleoside reverse transcriptase inhibitor (NNRTI)-based cART on HIV-1 reactivation and integration in resting CD4+ T cells. This is a prospective cohort study of patients with chronic HIV-1 infection treated with conventional cART with an undetectable viremia. We performed a seven-year study of 47 patients with chronic HIV-infection treated with cART regimens and with undetectable plasma HIV-1 RNA levels for at least 1 year. Of these 47 patients treated with cART, 24 were treated with a PI-based regimen and 23 with a NNRTI-based regimen as their most recent treatment for more than one year. We evaluated the HIV-1 reservoir using reactivation assay and integrated HIV-1 DNA, respectively, in resting CD4+ T cells. Resting CD4+ T cells isolated from PI-treated patients compared to NNRTI-treated patients showed a limited HIV-1 reactivation upon T-cell stimulation (p = 0·024) and a lower level of HIV-1 integration (p = 0·024). Our study indicates that PI-based cART could be more efficient than NNRTI-based cART for limiting HIV-1 reactivation in aviremic chronically infected patients. PMID:27922055

  18. Suppression of APOBEC3-mediated restriction of HIV-1 by Vif

    PubMed Central

    Feng, Yuqing; Baig, Tayyba T.; Love, Robin P.; Chelico, Linda

    2014-01-01

    The APOBEC3 restriction factors are a family of deoxycytidine deaminases that are able to suppress replication of viruses with a single-stranded DNA intermediate by inducing mutagenesis and functional inactivation of the virus. Of the seven human APOBEC3 enzymes, only APOBEC3-D, -F, -G, and -H appear relevant to restriction of HIV-1 in CD4+ T cells and will be the focus of this review. The restriction of HIV-1 occurs most potently in the absence of HIV-1 Vif that induces polyubiquitination and degradation of APOBEC3 enzymes through the proteasome pathway. To restrict HIV-1, APOBEC3 enzymes must be encapsidated into budding virions. Upon infection of the target cell during reverse transcription of the HIV-1 RNA into (-)DNA, APOBEC3 enzymes deaminate cytosines to form uracils in single-stranded (-)DNA regions. Upon replication of the (-)DNA to (+)DNA, the HIV-1 reverse transcriptase incorporates adenines opposite to the uracils thereby inducing C/G to T/A mutations that can functionally inactivate HIV-1. APOBEC3G is the most studied APOBEC3 enzyme and it is known that Vif attempts to thwart APOBEC3 function not only by inducing its proteasomal degradation but also by several degradation-independent mechanisms, such as inhibiting APOBEC3G virion encapsidation, mRNA translation, and for those APOBEC3G molecules that still become virion encapsidated, Vif can inhibit APOBEC3G mutagenic activity. Although most Vif variants can induce efficient degradation of APOBEC3-D, -F, and -G, there appears to be differential sensitivity to Vif-mediated degradation for APOBEC3H. This review examines APOBEC3-mediated HIV restriction mechanisms, how Vif acts as a substrate receptor for a Cullin5 ubiquitin ligase complex to induce degradation of APOBEC3s, and the determinants and functional consequences of the APOBEC3 and Vif interaction from a biological and biochemical perspective. PMID:25206352

  19. MSM ameliorates HIV-1 Tat induced neuronal oxidative stress via rebalance of the glutathione cycle

    PubMed Central

    Kim, Seol-hee; Smith, Adam J; Tan, Jun; Shytle, R Douglas; Giunta, Brian

    2015-01-01

    HIV-1 Tat protein is a key neuropathological element in HIV associated neurogcognitive disorders (HAND); a type of cognitive syndrome thought to be at least partially mediated by increased levels of brain reactive oxygen species (ROS) and nitric oxide (NO). Methylsulfonylmethane (MSM) is a sulfur-containing compound known to reduce oxidative stress. This study was conducted to determine whether administration of MSM attenuates HIV-1 Tat induced oxidative stress in mouse neuronal cells. MSM treatment significantly decreased neuronal cell NO and ROS secretion. Further, MSM significantly reversed HIV-1 Tat mediated reductions in reduced glutathione (GSH) as well as HIV-1 Tat mediated increases in oxidized glutathione (GSSG). In addition, Tat reduced nuclear translocation of nuclear factor-erythroid 2 p45-related factor 2 (Nrf2), a key nuclear promoter of antioxidant activity, while MSM increased its translocation to the nucleus in the presence of Tat. These results suggest that HIV-1 Tat reduces the resiliency of neuron cells to oxidative stress which can be reversed by MSM. Given the clinical safety of MSM, future preclinical in vivo studies will be required to further confirm these results in effort to validate MSM as a neuroprotectant in patients at risk of, or who are already diagnosed with, HAND. PMID:25893035

  20. Unusual Fusion Proteins of HIV-1

    PubMed Central

    Langer, Simon; Sauter, Daniel

    2017-01-01

    Despite its small genome size, the Human Immunodeficiency Virus 1 (HIV-1) is one of the most successful pathogens and has infected more than 70 million people worldwide within the last decades. In total, HIV-1 expresses 16 canonical proteins from only nine genes within its 10 kb genome. Expression of the structural genes gag, pol, and env, the regulatory genes rev and tat and the accessory genes vpu, nef, vpr, and vif enables assembly of the viral particle, regulates viral gene transcription, and equips the virus to evade or counteract host immune responses. In addition to the canonically expressed proteins, a growing number of publications describe the existence of non-canonical fusion proteins in HIV-1 infected cells. Most of them are encoded by the tat-env-rev locus. While the majority of these fusion proteins (e.g., TNV/p28tev, p186Drev, Tat1-Rev2, Tat^8c, p17tev, or Ref) are the result of alternative splicing events, Tat-T/Vpt is produced upon programmed ribosomal frameshifting, and a Rev1-Vpu fusion protein is expressed due to a nucleotide polymorphism that is unique to certain HIV-1 clade A and C strains. A better understanding of the expression and activity of these non-canonical viral proteins will help to dissect their potential role in viral replication and reveal how HIV-1 optimized the coding potential of its genes. The goal of this review is to provide an overview of previously described HIV-1 fusion proteins and to summarize our current knowledge of their expression patterns and putative functions. PMID:28119676

  1. Antitumor/Antifungal Celecoxib Derivative AR-12 is a Non-Nucleoside Inhibitor of the ANL-Family Adenylating Enzyme Acetyl CoA Synthetase

    PubMed Central

    2016-01-01

    AR-12/OSU-03012 is an antitumor celecoxib-derivative that has progressed to Phase I clinical trial as an anticancer agent and has activity against a number of infectious agents including fungi, bacteria and viruses. However, the mechanism of these activities has remained unclear. Based on a chemical-genetic profiling approach in yeast, we have found that AR-12 is an ATP-competitive, time-dependent inhibitor of yeast acetyl coenzyme A synthetase. AR-12-treated fungal cells show phenotypes consistent with the genetic reduction of acetyl CoA synthetase activity, including induction of autophagy, decreased histone acetylation, and loss of cellular integrity. In addition, AR-12 is a weak inhibitor of human acetyl CoA synthetase ACCS2. Acetyl CoA synthetase activity is essential in many fungi and parasites. In contrast, acetyl CoA is primarily synthesized by an alternate enzyme, ATP-citrate lyase, in mammalian cells. Taken together, our results indicate that AR-12 is a non-nucleoside acetyl CoA synthetase inhibitor and that acetyl CoA synthetase may be a feasible antifungal drug target. PMID:27088128

  2. MAS NMR of HIV-1 protein assemblies

    NASA Astrophysics Data System (ADS)

    Suiter, Christopher L.; Quinn, Caitlin M.; Lu, Manman; Hou, Guangjin; Zhang, Huilan; Polenova, Tatyana

    2015-04-01

    The negative global impact of the AIDS pandemic is well known. In this perspective article, the utility of magic angle spinning (MAS) NMR spectroscopy to answer pressing questions related to the structure and dynamics of HIV-1 protein assemblies is examined. In recent years, MAS NMR has undergone major technological developments enabling studies of large viral assemblies. We discuss some of these evolving methods and technologies and provide a perspective on the current state of MAS NMR as applied to the investigations into structure and dynamics of HIV-1 assemblies of CA capsid protein and of Gag maturation intermediates.

  3. FACT Proteins, SUPT16H and SSRP1, Are Transcriptional Suppressors of HIV-1 and HTLV-1 That Facilitate Viral Latency.

    PubMed

    Huang, Huachao; Santoso, Netty; Power, Derek; Simpson, Sydney; Dieringer, Michael; Miao, Hongyu; Gurova, Katerina; Giam, Chou-Zen; Elledge, Stephen J; Zhu, Jian

    2015-11-06

    Our functional genomic RNAi screens have identified the protein components of the FACT (facilitates chromatin transcription) complex, SUPT16H and SSRP1, as top host factors that negatively regulate HIV-1 replication. FACT interacts specifically with histones H2A/H2B to affect assembly and disassembly of nucleosomes, as well as transcription elongation. We further investigated the suppressive role of FACT proteins in HIV-1 transcription. First, depletion of SUPT16H or SSRP1 protein enhances Tat-mediated HIV-1 LTR (long terminal repeat) promoter activity. Second, HIV-1 Tat interacts with SUPT16H but not SSRP1 protein. However, both SUPT16H and SSRP1 are recruited to LTR promoter. Third, the presence of SUPT16H interferes with the association of Cyclin T1 (CCNT1), a subunit of P-TEFb, with the Tat-LTR axis. Removing inhibitory mechanisms to permit HIV-1 transcription is an initial and key regulatory step to reverse post-integrated latent HIV-1 proviruses for purging of reservoir cells. We therefore evaluated the role of FACT proteins in HIV-1 latency and reactivation. Depletion of SUPT16H or SSRP1 protein affects both HIV-1 transcriptional initiation and elongation and spontaneously reverses latent HIV-1 in U1/HIV and J-LAT cells. Similar effects were observed with a primary CD4+ T cell model of HIV-1 latency. FACT proteins also interfere with HTLV-1 Tax-LTR-mediated transcription and viral latency, indicating that they may act as general transcriptional suppressors for retroviruses. We conclude that FACT proteins SUPT16H and SSRP1 play a key role in suppressing HIV-1 transcription and promoting viral latency, which may serve as promising gene targets for developing novel HIV-1 latency-reversing agents.

  4. Reversals.

    ERIC Educational Resources Information Center

    National Center on Educational Media and Materials for the Handicapped, Columbus, OH.

    Selected from the National Instructional Materials Information System (NIMIS)--a computer based on-line interactive retrieval system on special education materials--the bibliography covers nine materials for remediating reversals in handicapped students at the early childhood and elementary levels. Entries are presented in order of NIMIS accession…

  5. Phosphorylation of HIV-1 Tat by CDK2 in HIV-1 transcription

    PubMed Central

    Ammosova, Tatyana; Berro, Reem; Jerebtsova, Marina; Jackson, Angela; Charles, Sharroya; Klase, Zachary; Southerland, William; Gordeuk, Victor R; Kashanchi, Fatah; Nekhai, Sergei

    2006-01-01

    Background Transcription of HIV-1 genes is activated by HIV-1 Tat protein, which induces phosphorylation of RNA polymerase II (RNAPII) C-terminal domain (CTD) by CDK9/cyclin T1. Earlier we showed that CDK2/cyclin E phosphorylates HIV-1 Tat in vitro. We also showed that CDK2 induces HIV-1 transcription in vitro and that inhibition of CDK2 expression by RNA interference inhibits HIV-1 transcription and viral replication in cultured cells. In the present study, we analyzed whether Tat is phosphorylated in cultured cells by CDK2 and whether Tat phosphorylation has a regulatory effect on HIV-1 transcription. Results We analyzed HIV-1 Tat phosphorylation by CDK2 in vitro and identified Ser16 and Ser46 residues of Tat as potential phosphorylation sites. Tat was phosphorylated in HeLa cells infected with Tat-expressing adenovirus and metabolically labeled with 32P. CDK2-specific siRNA reduced the amount and the activity of cellular CDK2 and significantly decreased phosphorylation of Tat. Tat co-migrated with CDK2 on glycerol gradient and co-immunoprecipitated with CDK2 from the cellular extracts. Tat was phosphorylated on serine residues in vivo, and mutations of Ser16 and Ser46 residues of Tat reduced Tat phosphorylation in vivo. Mutation of Ser16 and Ser46 residues of Tat reduced HIV-1 transcription in transiently transfected cells. The mutations of Tat also inhibited HIV-1 viral replication and Tat phosphorylation in the context of the integrated HIV-1 provirus. Analysis of physiological importance of the S16QP(K/R)19 and S46YGR49 sequences of Tat showed that Ser16 and Ser46 and R49 residues are highly conserved whereas mutation of the (K/R)19 residue correlated with non-progression of HIV-1 disease. Conclusion Our results indicate for the first time that Tat is phosphorylated in vivo; Tat phosphorylation is likely to be mediated by CDK2; and phosphorylation of Tat is important for HIV-1 transcription. PMID:17083724

  6. HIV-1 Capsid: The Multifaceted Key Player in HIV-1 infection

    PubMed Central

    Campbell, Edward M.; Hope, Thomas J.

    2016-01-01

    In a mature, infectious HIV-1 virion, the viral genome is housed within a conical capsid core comprised of the viral capsid (CA) protein. The CA protein, and the structure into which it assembles, facilitate virtually every step of infection through a series of interactions with multiple host cell factors. This review describes our understanding of the interactions between the viral capsid core and several cellular factors that enable efficient HIV-1 genome replication, timely core disassembly, nuclear import and the integration of the viral genome into the genome of the target cell. We then discuss how elucidating these interactions can reveal new targets for therapeutic interactions against HIV-1. PMID:26179359

  7. HIV-1 vaccines: challenges and new perspectives.

    PubMed

    Excler, Jean-Louis; Robb, Merlin L; Kim, Jerome H

    2014-01-01

    The development of a safe and effective preventive HIV-1 vaccine remains a public health priority. Despite scientific difficulties and disappointing results, HIV-1 vaccine clinical development has, for the first time, established proof-of-concept efficacy against HIV-1 acquisition and identified vaccine-associated immune correlates of risk. The correlate of risk analysis showed that IgG antibodies against the gp120 V2 loop correlated with decreased risk of HIV infection, while Env-specific IgA directly correlated with increased risk. The development of vaccine strategies such as improved envelope proteins formulated with potent adjuvants and DNA and vectors expressing mosaics, or conserved sequences, capable of eliciting greater breadth and depth of potentially relevant immune responses including neutralizing and non-neutralizing antibodies, CD4+ and CD8+ cell-mediated immune responses, mucosal immune responses, and immunological memory, is now proceeding quickly. Additional human efficacy trials combined with other prevention modalities along with sustained funding and international collaboration remain key to bring an HIV-1 vaccine to licensure.

  8. HIV-1 transcription and latency: an update

    PubMed Central

    2013-01-01

    Combination antiretroviral therapy, despite being potent and life-prolonging, is not curative and does not eradicate HIV-1 infection since interruption of treatment inevitably results in a rapid rebound of viremia. Reactivation of latently infected cells harboring transcriptionally silent but replication-competent proviruses is a potential source of persistent residual viremia in cART-treated patients. Although multiple reservoirs may exist, the persistence of resting CD4+ T cells carrying a latent infection represents a major barrier to eradication. In this review, we will discuss the latest reports on the molecular mechanisms that may regulate HIV-1 latency at the transcriptional level, including transcriptional interference, the role of cellular factors, chromatin organization and epigenetic modifications, the viral Tat trans-activator and its cellular cofactors. Since latency mechanisms may also operate at the post-transcriptional level, we will consider inhibition of nuclear RNA export and inhibition of translation by microRNAs as potential barriers to HIV-1 gene expression. Finally, we will review the therapeutic approaches and clinical studies aimed at achieving either a sterilizing cure or a functional cure of HIV-1 infection, with a special emphasis on the most recent pharmacological strategies to reactivate the latent viruses and decrease the pool of viral reservoirs. PMID:23803414

  9. Chicoric acid analogues as HIV-1 integrase inhibitors.

    PubMed

    Lin, Z; Neamati, N; Zhao, H; Kiryu, Y; Turpin, J A; Aberham, C; Strebel, K; Kohn, K; Witvrouw, M; Pannecouque, C; Debyser, Z; De Clercq, E; Rice, W G; Pommier, Y; Burke, T R

    1999-04-22

    The present study was undertaken to examine structural features of L-chicoric acid (3) which are important for potency against purified HIV-1 integrase and for reported cytoprotective effects in cell-based systems. Through a progressive series of analogues, it was shown that enantiomeric D-chicoric acid (4) retains inhibitory potency against purified integrase equal to its L-counterpart and further that removal of either one or both carboxylic functionalities results in essentially no loss of inhibitory potency. Additionally, while two caffeoyl moieties are required, attachment of caffeoyl groups to the central linking structure can be achieved via amide or mixed amide/ester linkages. More remarkable is the finding that blockage of the catechol functionality through conversion to tetraacetate esters results in almost no loss of potency, contingent on the presence of at least one carboxyl group on the central linker. Taken as a whole, the work has resulted in the identification of new integrase inhibitors which may be regarded as bis-caffeoyl derivatives of glycidic acid and amino acids such as serine and beta-aminoalanine. The present study also examined the reported ability of chicoric acid to exert cytoprotective effects in HIV-infected cells. It was demonstrated in target and cell-based assays that the chicoric acids do not significantly inhibit other targets associated with HIV-1 replication, including reverse transcription, protease function, NCp7 zinc finger function, or replication of virus from latently infected cells. In CEM cells, for both the parent chicoric acid and selected analogues, antiviral activity was observable under specific assay conditions and with high dependence on the multiplicity of viral infection. However, against HIV-1- and HIV-2-infected MT-4 cells, the chicoric acids and their tetraacetylated esters exhibited antiviral activity (50% effective concentration (EC50) ranging from 1.7 to 20 microM and 50% inhibitory concentration (IC50

  10. Structural basis of HIV-1 resistance to AZT by excision

    SciTech Connect

    Tu, Xiongying; Das, Kalyan; Han, Qianwei; Bauman, Joseph D.; Clark, Jr., Arthur D.; Hou, Xiaorong; Frenkel, Yulia V.; Gaffney, Barbara L.; Jones, Roger A.; Boyer, Paul L.; Hughes, Stephen H.; Sarafianos, Stefan G.; Arnold, Eddy

    2011-11-23

    Human immunodeficiency virus (HIV-1) develops resistance to 3'-azido-2',3'-deoxythymidine (AZT, zidovudine) by acquiring mutations in reverse transcriptase that enhance the ATP-mediated excision of AZT monophosphate from the 3' end of the primer. The excision reaction occurs at the dNTP-binding site, uses ATP as a pyrophosphate donor, unblocks the primer terminus and allows reverse transcriptase to continue viral DNA synthesis. The excision product is AZT adenosine dinucleoside tetraphosphate (AZTppppA). We determined five crystal structures: wild-type reverse transcriptase-double-stranded DNA (RT-dsDNA)-AZTppppA; AZT-resistant (AZTr; M41L D67N K70R T215Y K219Q) RT-dsDNA-AZTppppA; AZTr RT-dsDNA terminated with AZT at dNTP- and primer-binding sites; and AZTr apo reverse transcriptase. The AMP part of AZTppppA bound differently to wild-type and AZTr reverse transcriptases, whereas the AZT triphosphate part bound the two enzymes similarly. Thus, the resistance mutations create a high-affinity ATP-binding site. The structure of the site provides an opportunity to design inhibitors of AZT-monophosphate excision.

  11. HIV-1 target cells in the CNS.

    PubMed

    Joseph, Sarah B; Arrildt, Kathryn T; Sturdevant, Christa B; Swanstrom, Ronald

    2015-06-01

    HIV-1 replication in the central nervous system (CNS) is typically limited by the availability of target cells. HIV-1 variants that are transmitted and dominate the early stages of infection almost exclusively use the CCR5 coreceptor and are well adapted to entering, and thus infecting, cells expressing high CD4 densities similar to those found on CD4+ T cells. While the "immune privileged" CNS is largely devoid of CD4+ T cells, macrophage and microglia are abundant throughout the CNS. These cells likely express CD4 densities that are too low to facilitate efficient entry or allow sustained replication by most HIV-1 isolates. Examination of CNS viral populations reveals that late in disease the CNS of some individuals contains HIV-1 lineages that have evolved the ability to enter cells expressing low levels of CD4 and are well-adapted to entering macrophages. These macrophage-tropic (M-tropic) viruses are able to maintain sustained replication in the CNS for many generations, and their presence is associated with severe neurocognitive impairment. Whether conditions such as pleocytosis are necessary for macrophage-tropic viruses to emerge in the CNS is unknown, and extensive examinations of macrophage-tropic variants have not revealed a genetic signature of this phenotype. It is clear, however, that macrophage tropism is rare among HIV-1 isolates and is not transmitted, but is important due to its pathogenic effects on hosts. Prior to the evolution of macrophage-tropic variants, the viruses that are predominately infecting T cells (R5 T cell-tropic) may infect macrophages at a low level and inefficiently, but this could contribute to the reservoir.

  12. HIV-1 target cells in the CNS

    PubMed Central

    Joseph, Sarah B.; Arrildt, Kathryn T.; Sturdevant, Christa B.; Swanstrom, Ronald

    2014-01-01

    HIV-1 replication in the central nervous system (CNS) is typically limited by the availability of target cells. HIV-1 variants that are transmitted and dominate the early stages of infection almost exclusively use the CCR5 coreceptor and are well adapted to entering, and thus infecting, cells expressing high CD4 densities similar to those found on CD4+ T cells. While the “immune privileged” CNS is largely devoid of CD4+ T cells, macrophage and microglia are abundant throughout the CNS. These cells likely express CD4 densities that are too low to facilitate efficient entry or allow sustained replication by most HIV-1 isolates. Examination of CNS viral populations reveals that late in disease the CNS of some individuals contains HIV-1 lineages that have evolved the ability to enter cells expressing low levels of CD4 and are well-adapted to entering macrophages. These macrophage-tropic (M-tropic) viruses are able to maintain sustained replication in the CNS for many generations, and their presence is associated with severe neurocognitive impairment. Whether conditions such as pleocytosis are necessary for macrophage-tropic viruses to emerge in the CNS is unknown, and extensive examinations of macrophage-tropic variants have not revealed a genetic signature of this phenotype. It is clear, however, that macrophage tropism is rare among HIV-1 isolates and is not transmitted, but is important due to its pathogenic effects on hosts. Prior to the evolution of macrophage-tropic variants, the viruses that are predominately infecting T cells (R5 T cell-tropic) may infect macrophages at a low level and inefficiently, but this could contribute to the reservoir. PMID:25236812

  13. Primary Human Mammary Epithelial Cells Endocytose HIV-1 and Facilitate Viral Infection of CD4+ T Lymphocytes ▿

    PubMed Central

    Dorosko, Stephanie M.; Connor, Ruth I.

    2010-01-01

    The contribution of mammary epithelial cells (MEC) to human immunodeficiency virus type 1 (HIV-1) in breast milk remains largely unknown. While breast milk contains CD4+ cells throughout the breast-feeding period, it is not known whether MEC directly support HIV-1 infection or facilitate infection of CD4+ cells in the breast compartment. This study evaluated primary human MEC for direct infection with HIV-1 and for indirect transfer of infection to CD4+ target cells. Primary human MEC were isolated and assessed for expression of HIV-1 receptors. MEC were exposed to CCR5-, CXCR4- and dual-tropic strains of HIV-1 and evaluated for viral reverse transcription and integration and productive viral infection. MEC were also tested for the ability to transfer HIV to CD4+ target cells and to activate resting CD4+ T cells. Our results demonstrate that MEC express HIV-1 receptor proteins CD4, CCR5, CXCR4, and galactosyl ceramide (GalCer). While no evidence for direct infection of MEC was found, HIV-1 virions were observed in MEC endosomal compartments. Coculture of HIV-exposed MEC resulted in productive infection of activated CD4+ T cells. In addition, MEC secretions increased HIV-1 replication and proliferation of infected target cells. Overall, our results indicate that MEC are capable of endosomal uptake of HIV-1 and can facilitate virus infection and replication in CD4+ target cells. These findings suggest that MEC may serve as a viral reservoir for HIV-1 and may enhance infection of CD4+ T lymphocytes in vivo. PMID:20702626

  14. Enhanced clearance of HIV-1-infected cells by broadly neutralizing antibodies against HIV-1 in vivo.

    PubMed

    Lu, Ching-Lan; Murakowski, Dariusz K; Bournazos, Stylianos; Schoofs, Till; Sarkar, Debolina; Halper-Stromberg, Ariel; Horwitz, Joshua A; Nogueira, Lilian; Golijanin, Jovana; Gazumyan, Anna; Ravetch, Jeffrey V; Caskey, Marina; Chakraborty, Arup K; Nussenzweig, Michel C

    2016-05-20

    Antiretroviral drugs and antibodies limit HIV-1 infection by interfering with the viral life cycle. In addition, antibodies also have the potential to guide host immune effector cells to kill HIV-1-infected cells. Examination of the kinetics of HIV-1 suppression in infected individuals by passively administered 3BNC117, a broadly neutralizing antibody, suggested that the effects of the antibody are not limited to free viral clearance and blocking new infection but also include acceleration of infected cell clearance. Consistent with these observations, we find that broadly neutralizing antibodies can target CD4(+) T cells infected with patient viruses and can decrease their in vivo half-lives by a mechanism that requires Fcγ receptor engagement in a humanized mouse model. The results indicate that passive immunotherapy can accelerate elimination of HIV-1-infected cells.

  15. An international multicenter study on HIV-1 drug resistance testing by 454 ultra-deep pyrosequencing.

    PubMed

    Simen, Birgitte B; Braverman, Michael S; Abbate, Isabella; Aerssens, Jeroen; Bidet, Yannick; Bouchez, Olivier; Gabriel, Christian; Izopet, Jacques; Kessler, Harald H; Stelzl, Evelyn; Di Giallonardo, Francesca; Schlapbach, Ralph; Radonic, Aleksander; Paredes, Roger; Recordon-Pinson, Patricia; Sakwa, James; St John, Elizabeth P; Schmitz-Agheguian, Gudrun G; Metzner, Karin J; Däumer, Martin P

    2014-08-01

    The detection of mutant spectra within the viral quasispecies is critical for therapeutic management of HIV-1 infections. Routine clinical application of ultrasensitive genotyping requires reproducibility and concordance within and between laboratories. The goal of the study was to evaluate a new protocol on HIV-1 drug resistance testing by 454 ultra-deep pyrosequencing (454-UDS) in an international multicenter study. Sixteen blinded HIV-1 subtype B samples were provided for 454-UDS as both RNA and cDNA with viral titers of 88,600-573,000 HIV-1 RNA copies/ml. Eight overlapping amplicons spanning protease (PR) codons 10-99 and reverse transcriptase (RT) codons 1-251 were generated using molecular barcoded primers. 454-UDS was performed using the 454 Life Sciences/Roche GS FLX platform. PR and RT sequences were analyzed using 454 Life Sciences Amplicon Variant Analyzer (AVA) software. Quantified variation data were analyzed for intra-laboratory reproducibility and inter-laboratory concordance. Routine population sequencing was performed using the ViroSeq HIV-1 genotyping system. Eleven laboratories and the reference laboratory 454 Life Sciences sequenced the HIV-1 sample set. Data presented are derived from seven laboratories and the reference laboratory since severe study protocol execution errors occurred in four laboratories leading to exclusion. The median sequencing depth across all sites was 1364 reads per position (IQR=809-2065). 100% of the ViroSeq-reported mutations were also detected by 454-UDS. Minority HIV-1 drug resistance mutations, defined as HIV-1 drug resistance mutations identified at frequencies of 1-25%, were only detected by 454-UDS. Analysis of 10 preselected majority and minority mutations were consistently found across sites. The analysis of drug-resistance mutations detected between 1 and 10% demonstrated high intra- and inter-laboratory consistency in frequency estimates for both RNA and prepared cDNA samples, indicating robustness of the

  16. [Molecular characterization of complex recombinant HIV-1 CRF06_cpx subtype detected in Turkey].

    PubMed

    Sayan, Murat; Kaptan, Figen; Ormen, Bahar; Türker, Nesrin

    2014-01-01

    A major proportion of the global HIV infections is caused by group M of HIV-1 genotype and to date approximately nine subtypes (A, B, C, D, F, G, H, J, K) and 50 circulating recombinant forms (CRFs) have been recognized. Recombinants between different HIV-1 group M subtypes are designated as CRF. The extension 'cpx', for complex, is given if the CRF consists of contributions from three or more different subtypes but the composition of the subtype is not given. The objective of this study was to present, for the first time an HIV-1 positive married couple infected with CRF06_cpx subtype in Izmir, Turkey. A 39-year-old male patient who admitted to hospital with the complaints of oral candidiasis and zona, was found to be anti-HIV positive. CD4+ T lymphocyte count was 21 cells/mm3 and plasma HIV-1 RNA level was 56.380 copies/ml. He reported unprotected heterosexual contact with multiple partners including African women during his stay in Saudi Arabia between 1996 and 2002. After his diagnosis, his 37-year-old wife was screened for HIV infection and she was also found anti-HIV positive, with CD4+ T cell count of 122 cells/mm3. However, her results of basal plasma HIV-1 RNA could not be obtained because of an internal control error. HIV-1 strains were analysed for subtyping, recombination and drug resistance mutations with pol gene region sequencing. HIV-1 sequences were subtyped as CRF06_cpx after phylogenetic analysis using neighbor-joining method. According to the recombination analysis, HIV-1 pol gene regions consisted of group M subtype G, A, D, and B in the male patient and G K, A, F, and D in the female patient. While L10I + L33F mutation associated with protease inhibitor (PI) resistance was detected in both of the patients, K219N mutation associated with nucleoside reverse transcriptase inhibitor (NRTI) resistance was detected only in the male patient. In conclusion, HIV-1 molecular epidemiology studies are important tools for tracking transmission patterns and

  17. Picomolar dichotomous activity of gnidimacrin against HIV-1.

    PubMed

    Huang, Li; Ho, Phong; Yu, Jie; Zhu, Lei; Lee, Kuo-Hsiung; Chen, Chin-Ho

    2011-01-01

    Highly active antiretroviral therapy (HAART) has offered a promising approach for controlling HIV-1 replication in infected individuals. However, with HARRT, HIV-1 is suppressed rather than eradicated due to persistence of HIV-1 in latent viral reservoirs. Thus, purging the virus from latent reservoirs is an important strategy toward eradicating HIV-1 infection. In this study, we discovered that the daphnane diterpene gnidimacrin, which was previously reported to have potent anti-cancer cell activity, activated HIV-1 replication and killed persistently-infected cells at picomolar concentrations. In addition to its potential to purge HIV-1 from latently infected cells, gnidimacrin potently inhibited a panel of HIV-1 R5 virus infection of peripheral blood mononuclear cells (PBMCs) at an average concentration lower than 10 pM. In contrast, gnidimacrin only partially inhibited HIV-1 ×4 virus infection of PBMCs. The strong anti-HIV-1 R5 virus activity of gnidimacrin was correlated with its effect on down-regulation of the HIV-1 coreceptor CCR5. The anti-R5 virus activity of gnidimacrin was completely abrogated by a selective protein kinase C beta inhibitor enzastaurin, which suggests that protein kinase C beta plays a key role in the potent anti-HIV-1 activity of gnidimacrin in PBMCs. In summary, these results suggest that gnidimacrin could activate latent HIV-1, specifically kill HIV-1 persistently infected cells, and inhibit R5 viruses at picomolar concentrations.

  18. APOBEC3G restricts early HIV-1 replication in the cytoplasm of target cells.

    PubMed

    Anderson, Jenny L; Hope, Thomas J

    2008-05-25

    Cellular APOBEC3G (A3G) protein is packaged into human immunodeficiency virus type 1 (HIV-1) virions in producer cells yet restricts viral replication in target cells. To characterize this restriction in target cells, the effect of A3G on generating various HIV-1 cDNA products was measured by quantitative real-time PCR. A3G decreased cDNA products from Vif-deficient HIV-1, with minor effects on early reverse transcripts and larger declines in late reverse transcripts. However, the greatest decline was typically observed in nuclear 2-LTR circles. Moreover, the magnitude of these declines varied with A3G dose. Adding integration inhibitor did not stop the A3G-mediated loss in 2-LTR circles. Moreover, obstructing HIV-1 nuclear entry using vesicular stomatitis virus matrix protein did not stop the A3G-mediated decline in late reverse transcripts. Collectively, these data suggest that A3G has important restriction activity in the cytoplasm and progressively diminishes viral cytoplasmic and nuclear cDNA forms with increasing magnitude during restriction.

  19. Performance characteristics of the TRUGENE HIV-1 Genotyping Kit and the Opengene DNA Sequencing System.

    PubMed

    Kuritzkes, Daniel R; Grant, Robert M; Feorino, Paul; Griswold, Marshal; Hoover, Marie; Young, Russell; Day, Stephen; Lloyd Jr, Robert M; Reid, Caroline; Morgan, Gillian F; Winslow, Dean L

    2003-04-01

    The TRUGENE HIV-1 Genotyping Kit and OpenGene DNA Sequencing System are designed to sequence the protease (PR)- and reverse transcriptase (RT)-coding regions of human immunodeficiency virus type 1 (HIV-1) pol. Studies were undertaken to determine the accuracy of this assay system in detecting resistance-associated mutations and to determine the effects of RNA extraction methods, anticoagulants, specimen handling, and potentially interfering substances. Samples were plasma obtained from HIV-infected subjects or seronegative plasma to which viruses derived from wild-type and mutant infectious molecular clones (IMC) of HIV-1 were added. Extraction methods tested included standard and UltraSensitive AMPLICOR HIV-1 MONITOR, QIAGEN viral RNA extraction mini kit, and QIAGEN Ultra HIV extraction kit, and NASBA manual HIV-1 quantitative NucliSens. Sequence data from test sites were compared to a "gold standard" reference sequence to determine the percent agreement. Comparisons between test and reference sequences at the nucleotide level showed 97.5 to 100% agreement. Similar results were obtained regardless of extraction method, regardless of use of EDTA or acid citrate dextrose as anticoagulant, and despite the presence of triglycerides, bilirubin, hemoglobin, antiretroviral drugs, HIV-2, hepatitis C virus (HCV), HBV, cytomegalovirus, human T-cell leukemia virus type 1 (HTLV-1), or HTLV-2. Samples with HIV-1 RNA titers of >or=1,000 copies/ml gave consistent results. The TRUGENE HIV-1 Genotyping Kit and OpenGene DNA Sequencing System consistently generate highly accurate sequence data when tested with IMC-derived HIV and patient samples.

  20. Sequence determinants of breakpoint location during HIV-1 intersubtype recombination.

    PubMed

    Baird, Heather A; Galetto, Román; Gao, Yong; Simon-Loriere, Etienne; Abreha, Measho; Archer, John; Fan, Jun; Robertson, David L; Arts, Eric J; Negroni, Matteo

    2006-01-01

    Retroviral recombination results from strand switching, during reverse transcription, between the two copies of genomic RNA present in the virus. We analysed recombination in part of the envelope gene, between HIV-1 subtype A and D strains. After a single infection cycle, breakpoints clustered in regions corresponding to the constant portions of Env. With some exceptions, a similar distribution was observed after multiple infection cycles, and among recombinant sequences in the HIV Sequence Database. We compared the experimental data with computer simulations made using a program that only allows recombination to occur whenever an identical base is present in the aligned parental RNAs. Experimental recombination was more frequent than expected on the basis of simulated recombination when, in a region spanning 40 nt from the 5' border of a breakpoint, no more than two discordant bases between the parental RNAs were present. When these requirements were not fulfilled, breakpoints were distributed randomly along the RNA, closer to the distribution predicted by computer simulation. A significant preference for recombination was also observed for regions containing homopolymeric stretches. These results define, for the first time, local sequence determinants for recombination between divergent HIV-1 isolates.

  1. Sequence determinants of breakpoint location during HIV-1 intersubtype recombination

    PubMed Central

    Baird, Heather A.; Galetto, Román; Gao, Yong; Simon-Loriere, Etienne; Abreha, Measho; Archer, John; Fan, Jun; Robertson, David L.; Arts, Eric J.; Negroni, Matteo

    2006-01-01

    Retroviral recombination results from strand switching, during reverse transcription, between the two copies of genomic RNA present in the virus. We analysed recombination in part of the envelope gene, between HIV-1 subtype A and D strains. After a single infection cycle, breakpoints clustered in regions corresponding to the constant portions of Env. With some exceptions, a similar distribution was observed after multiple infection cycles, and among recombinant sequences in the HIV Sequence Database. We compared the experimental data with computer simulations made using a program that only allows recombination to occur whenever an identical base is present in the aligned parental RNAs. Experimental recombination was more frequent than expected on the basis of simulated recombination when, in a region spanning 40 nt from the 5′ border of a breakpoint, no more than two discordant bases between the parental RNAs were present. When these requirements were not fulfilled, breakpoints were distributed randomly along the RNA, closer to the distribution predicted by computer simulation. A significant preference for recombination was also observed for regions containing homopolymeric stretches. These results define, for the first time, local sequence determinants for recombination between divergent HIV-1 isolates. PMID:17003055

  2. Prevalence of HIV-1 resistant strains in recent seroconverters.

    PubMed

    Balotta, C; Berlusconi, A; Pan, A; Violin, M; Riva, C; Gori, A; Corvasce, S; Mazzucchelli, R; Facchi, G; Velleca, R; Senese, D; Dehò, L; Galli, M; Rusconi, S; Moroni, M

    2000-01-01

    Twenty-nine HIV-1 recently infected subjects were retrospectively studied to investigate both the prevalence of nucleoside reverse transcriptase inhibitors (NRTI)-related mutations at primary infection and the proportion of naturally occurring mutations in protease inhibitor (PI)-naive patients. Neither HIV-1 plasma viremia nor CD4 absolute count at baseline could distinguish patients with NRTI pre-existing mutations from those with wild-type virus. An increasing proportion of ZDV-related mutations was observed over time with an overall frequency of 20.7% in the study period. Only 1 out of 6 patients (16.7%) with ZDV-related mutations showed a phenotypically ZDV resistant isolate. A striking proportion of polymorphic changes was present in the protease region of pol gene in newly infected individuals. As many as 80% of seroconverters presented at least one naturally occurring substitution. Some PI-associated substitutions, thought to be compensatory in protease enzymatic function, could confer intermediate to high PI-resistance. Their role following PI administration remains to be elucidated. Our data suggest that the choice of drugs should be oriented by both genotypic and phenotypic evaluations to tailor individual regimens in seroconverters.

  3. Multiple APOBEC3 Restriction Factors for HIV-1 and One Vif to Rule Them All

    PubMed Central

    Desimmie, Belete A.; Delviks-Frankenberry, Krista A.; Burdick, Ryan; Qi, Dongfei; Izumi, Taisuke; Pathak, Vinay K.

    2013-01-01

    Several members of the APOBEC3 family of cellular restriction factors provide intrinsic immunity to the host against viral infection. Specifically, APOBEC3DE, APOBEC3F, APOBEC3G, and APOBEC3H haplotypes II, V, and VII provide protection against HIV-1Δvif through hypermutation of the viral genome, inhibition of reverse transcription, and inhibition of viral DNA integration into the host genome. HIV-1 counteracts APOBEC3 proteins by encoding the viral protein Vif, which contains distinct domains that specifically interact with these APOBEC3 proteins to ensure their proteasomal degradation, allowing virus replication to proceed. Here, we review our current understanding of APOBEC3 structure, editing and non-editing mechanisms of APOBEC3-mediated restriction, Vif-APOBEC3 interactions that trigger APOBEC3 degradation, and the contribution of APOBEC3 proteins to restriction and control of HIV-1 replication in infected patients. PMID:24189052

  4. Interactions of host APOBEC3 restriction factors with HIV-1 in vivo: implications for therapeutics.

    PubMed

    Albin, John S; Harris, Reuben S

    2010-01-22

    Restriction factors are natural cellular proteins that defend individual cells from viral infection. These factors include the APOBEC3 family of DNA cytidine deaminases, which restrict the infectivity of HIV-1 by hypermutating viral cDNA and inhibiting reverse transcription and integration. HIV-1 thwarts this restriction activity through its accessory protein virion infectivity factor (Vif), which uses multiple mechanisms to prevent APOBEC3 proteins such as APOBEC3G and APOBEC3F from entering viral particles. Here, we review the basic biology of the interactions between human APOBEC3 proteins and HIV-1 Vif. We also summarise, for the first time, current clinical data on the in vivo effects of APOBEC3 proteins, and survey strategies and progress towards developing therapeutics aimed at the APOBEC3-Vif axis.

  5. The HIV-1 Entry Process: A Stoichiometric View.

    PubMed

    Brandenberg, Oliver F; Magnus, Carsten; Regoes, Roland R; Trkola, Alexandra

    2015-12-01

    HIV-1 infection starts with fusion of the viral and the host cell membranes, a process mediated by the HIV-1 envelope glycoprotein trimer. The number of trimers required to complete membrane fusion, referred to as HIV-1 entry stoichiometry, remains under debate. A precise definition of HIV-1 entry stoichiometry is important as it reflects the efficacy of the viral entry process and steers the infectivity of HIV-1 virion populations. Initial estimates suggested a unanimous entry stoichiometry across HIV-1 strains while recent findings showed that HIV-1 strains can differ in entry stoichiometry. Here, we review current analyses of HIV-1 entry stoichiometry and point out future research directions to further define the interplay between entry stoichiometry, virus entry fitness, transmission, and susceptibility to antibody neutralization.

  6. Biochemical and virological analysis of the 18-residue C-terminal tail of HIV-1 integrase

    PubMed Central

    Dar, Mohd J; Monel, Blandine; Krishnan, Lavanya; Shun, Ming-Chieh; Di Nunzio, Francesca; Helland, Dag E; Engelman, Alan

    2009-01-01

    Background The 18 residue tail abutting the SH3 fold that comprises the heart of the C-terminal domain is the only part of HIV-1 integrase yet to be visualized by structural biology. To ascertain the role of the tail region in integrase function and HIV-1 replication, a set of deletion mutants that successively lacked three amino acids was constructed and analyzed in a variety of biochemical and virus infection assays. HIV-1/2 chimers, which harbored the analogous 23-mer HIV-2 tail in place of the HIV-1 sequence, were also studied. Because integrase mutations can affect steps in the replication cycle other than integration, defective mutant viruses were tested for integrase protein content and reverse transcription in addition to integration. The F185K core domain mutation, which increases integrase protein solubility, was furthermore analyzed in a subset of mutants. Results Purified proteins were assessed for in vitro levels of 3' processing and DNA strand transfer activities whereas HIV-1 infectivity was measured using luciferase reporter viruses. Deletions lacking up to 9 amino acids (1-285, 1-282, and 1-279) displayed near wild-type activities in vitro and during infection. Further deletion yielded two viruses, HIV-11-276 and HIV-11-273, that displayed approximately two and 5-fold infectivity defects, respectively, due to reduced integrase function. Deletion mutant HIV-11-270 and the HIV-1/2 chimera were non-infectious and displayed approximately 3 to 4-fold reverse transcription in addition to severe integration defects. Removal of four additional residues, which encompassed the C-terminal β strand of the SH3 fold, further compromised integrase incorporation into virions and reverse transcription. Conclusion HIV-11-270, HIV-11-266, and the HIV-1/2 chimera were typed as class II mutant viruses due to their pleiotropic replication defects. We speculate that residues 271-273 might play a role in mediating the known integrase-reverse transcriptase interaction, as

  7. Transplanting Supersites of HIV-1 Vulnerability

    PubMed Central

    Yang, Yongping; Gorman, Jason; Ofek, Gilad; Srivatsan, Sanjay; Druz, Aliaksandr; Lees, Christopher R.; Lu, Gabriel; Soto, Cinque; Stuckey, Jonathan; Burton, Dennis R.; Koff, Wayne C.; Connors, Mark; Kwon, Peter D.

    2014-01-01

    One strategy for isolating or eliciting antibodies against a specific target region on the envelope glycoprotein trimer (Env) of the human immunodeficiency virus type 1 (HIV-1) involves the creation of site transplants, which present the target region on a heterologous protein scaffold with preserved antibody-binding properties. If the target region is a supersite of HIV-1 vulnerability, recognized by a collection of broadly neutralizing antibodies, this strategy affords the creation of “supersite transplants”, capable of binding (and potentially eliciting) antibodies similar to the template collection of effective antibodies. Here we transplant three supersites of HIV-1 vulnerability, each targeted by effective neutralizing antibodies from multiple donors. To implement our strategy, we chose a single representative antibody against each of the target supersites: antibody 10E8, which recognizes the membrane-proximal external region (MPER) on the HIV-1 gp41 glycoprotein; antibody PG9, which recognizes variable regions one and two (V1V2) on the HIV-1 gp120 glycoprotein; and antibody PGT128 which recognizes a glycopeptide supersite in variable region 3 (glycan V3) on gp120. We used a structural alignment algorithm to identify suitable acceptor proteins, and then designed, expressed, and tested antigenically over 100-supersite transplants in a 96-well microtiter-plate format. The majority of the supersite transplants failed to maintain the antigenic properties of their respective template supersite. However, seven of the glycan V3-supersite transplants exhibited nanomolar affinity to effective neutralizing antibodies from at least three donors and recapitulated the mannose9-N-linked glycan requirement of the template supersite. The binding of these transplants could be further enhanced by placement into self-assembling nanoparticles. Essential elements of the glycan V3 supersite, embodied by as few as 3 N-linked glycans and ∼25 Env residues, can be segregated

  8. APOBEC3G ubiquitination by Nedd4-1 favors its packaging into HIV-1 particles.

    PubMed

    Dussart, Sylvie; Douaisi, Marc; Courcoul, Marianne; Bessou, Gilles; Vigne, Robert; Decroly, Etienne

    2005-01-21

    APOBEC3G is a cytidine deaminase that limits the replication of many retroviruses. This antiviral host factor is packaged into retrovirus particles, where it targets single-stranded DNA generated during reverse transcription and induces up to 2% of G-to-A mutations, which are lethal for the HIV-1 provirus. Vif protein counteracts this antiviral factor by decreasing its packaging into lentivirus particles. Here, we demonstrate that Nedd4-1, an HECT E3 ubiquitin ligase, interacts with APOBEC3G, through its WW2 and WW3 domains. As a result of this interaction, APOBEC3G undergoes post-translational modification by addition of ubiquitin moieties. Accordingly, we demonstrate that the dominant negative Nedd4-1 C/S form prevents APOBEC3G ubiquitination. Moreover, the packaging of APOBEC3G into Pr55 Gag virus-like particles and into HIV-1 virions is reduced when Nedd4-1 C/S is expressed. During HIV-1 viral production in the presence of APOBEC3G, Nedd4-1 C/S restores partially the infectivity of Deltavif HIV-1. We conclude that the ubiquitination of APOBEC3G by Nedd4-1 favors its targeting to the virus assembly site where APOBEC3G interacts with Gag and is packaged into HIV-1 particles in the absence of Vif.

  9. Broad CTL response is required to clear latent HIV-1 due to dominance of escape mutations

    PubMed Central

    Deng, Kai; Pertea, Mihaela; Rongvaux, Anthony; Wang, Leyao; Durand, Christine M.; Ghiaur, Gabriel; Lai, Jun; McHugh, Holly L.; Hao, Haiping; Zhang, Hao; Margolick, Joseph B.; Gurer, Cagan; Murphy, Andrew J.; Valenzuela, David M.; Yancopoulos, George D.; Deeks, Steven G.; Strowig, Till; Kumar, Priti; Siliciano, Janet D.; Salzberg, Steven L.; Flavell, Richard A.; Shan, Liang; Siliciano, Robert F.

    2015-01-01

    Despite antiretroviral therapy (ART), HIV-1 persists in a stable latent reservoir1, 2, primarily in resting memory CD4+ T cells3, 4. This reservoir presents a major barrier to the cure of HIV-1 infection. To purge the reservoir, pharmacological reactivation of latent HIV-1 has been proposed5 and tested both in vitro and in vivo6–8. A key remaining question is whether virus-specific immune mechanisms including cytolytic T lymphocytes (CTL) can clear infected cells in ART-treated patients after latency is reversed. Here we show that there is a striking all or none pattern for CTL escape mutations in HIV-1 Gag epitopes. Unless ART is started early, the vast majority (>98%) of latent viruses carry CTL escape mutations that render infected cells insensitive to CTLs directed at common epitopes. To solve this problem, we identified CTLs that could recognize epitopes from latent HIV-1 that were unmutated in every chronically infected patient tested. Upon stimulation, these CTLs eliminated target cells infected with autologous virus derived from the latent reservoir, both in vitro and in patient-derived humanized mice. The predominance of CTL-resistant viruses in the latent reservoir poses a major challenge to viral eradication. Our results demonstrate that chronically infected patients retain a broad spectrum viral-specific CTL response and that appropriate boosting of this response may be required for the elimination of the latent reservoir. PMID:25561180

  10. HIV-1 Genetic Diversity and Drug Resistance Mutations Among Treatment-Naive Adult Patients in Suriname.

    PubMed

    Abdoel Wahid, Firoz; Sno, Rachel; Darcissac, Edith; Lavergne, Anne; Adhin, Malti R; Lacoste, Vincent

    2016-12-01

    The molecular epidemiologic profile of HIV-1 in Suriname was determined through protease (PR) and reverse transcriptase (RT) sequences obtained from HIV-1 strains collected from 100 drug-naive HIV-1-infected persons. Subtype determination revealed that most viruses were of subtype B (94.9%) in both PR and RT genomic regions, followed by B/D recombinants (5.1%). Analysis of drug resistance mutations showed only one transmitted dug resistance mutation (TDRM) (V75M) in a single strain. The genetic data obtained can serve as a baseline for Suriname to monitor emerging mutations. This study reveals that the HIV-1 epidemic in Suriname is still characterized by a low TDRM rate (1%) and a low level of subtype diversity. However, both genes display a high genetic polymorphism. This high polymorphism may ultimately lead to drug resistance. Continuous monitoring of the baseline resistance is therefore a prerequisite to safeguard effective long-term treatment for people living with HIV-1 in Suriname.

  11. Development of HIV-1 fusion inhibitors targeting gp41.

    PubMed

    Lu, K; Asyifah, M R; Shao, F; Zhang, D

    2014-06-01

    The HIV-1 envelope protein glycoprotein 41 (gp41) is crucial in the HIV-1 infection process, therefore gp41 has emerged as an attractive target for drug design against AIDS. During the past few decades, tremendous efforts have been made on developing inhibitors that can prevent the HIV-1 entry process via suppressing functional gp41. In this review, the development of HIV-1 fusion inhibitors targeting gp41 including peptide inhibitors, small molecule inhibitors, vaccines and neutralized antibodies will be discussed.

  12. Nanochemistry-based immunotherapy for HIV-1.

    PubMed

    Lori, F; Calarota, S A; Lisziewicz, J

    2007-01-01

    Highly active antiretroviral treatment (HAART), i.e. the combination of three or more drugs against human immunodeficiency virus type 1 (HIV-1), has greatly improved the clinical outcome of HIV-1-infected individuals. However, HAART is unable to reconstitute HIV-specific immunity and eradicate the virus. Several observations in primate models and in humans support the notion that cell-mediated immunity can control viral replication and slow disease progression. Thus, besides drugs, an immunotherapy that induces long-lasting HIV-specific T-cell responses could play a role in the treatment of HIV/AIDS. To induce such immune responses, DermaVir Patch has been developed. DermaVir consists of an HIV-1 antigen-encoding plasmid DNA that is chemically formulated in a nanoparticle. DermaVir is administered under a patch after a skin preparation that supports the delivery of the nanoparticle to Langerhans cells (LC). Epidermal LC trap and transport the nanomedicine to draining lymph nodes. While in transit, LC mature into dendritic cells (DC), which can efficiently present the DNA-encoded antigens to naïve T-cells for the induction of cellular immunity. Pre-clinical studies and Phase I clinical testing of DermaVir in HIV-1-infected individuals have demonstrated the safety and tolerability of DermaVir Patch. To further modulate cellular immunity, molecular adjuvants might be added into the nanoparticle. DermaVir Patch represents a new nanomedicine platform for immunotherapy of HIV/AIDS. In this review, the antiviral activity of DermaVir-induced cellular immunity is discussed. Furthermore, the action of some cytokines currently being tested as adjuvants are highlighted and the adjuvant effect of cytokine plasmid DNA included in the DermaVir nanoparticle is reviewed.

  13. HIV-1 Transmission Networks Across South Korea.

    PubMed

    Ahn, Mi Young; Wertheim, Joel O; Kim, Woo Joo; Kim, Shin-Woo; Lee, Jin Soo; Ann, Hea Won; Jeon, Yongduk; Ahn, Jin Young; Song, Je Eun; Oh, Dong Hyun; Kim, Yong Chan; Kim, Eun Jin; Jung, In Young; Kim, Moo Hyun; Jeong, Wooyoung; Jeong, Su Jin; Ku, Nam Su; Kim, June Myung; Smith, Davey M; Choi, Jun Yong

    2017-03-27

    Molecular epidemiology can help clarify the properties and dynamics of HIV-1 transmission networks in both global and regional scales. We studied 143 HIV-1-infected individuals recruited from four medical centers of three cities in South Korea between April 2013 and May 2014. HIV-1 env V3 sequence data were generated (337-793 bp) and analyzed using a pairwise distance-based clustering approach to infer putative transmission networks. Participants whose viruses were ≤2.0% divergent according to Tamura-Nei 93 genetic distance were defined as clustering. We collected demographic, risk, and clinical data and analyzed these data in relation to clustering. Among 143 participants, we identified nine putative transmission clusters of different sizes (range 2-4 participants). The reported risk factor of participants were concordant in only one network involving two participants, that is, both individuals reported homosexual sex as their risk factor. The participants in the other eight networks did not report concordant risk factors, although they were phylogenetically linked. About half of the participants refused to report their risk factor. Overall, molecular epidemiology provides more information to understand local transmission networks and the risks associated with these networks.

  14. Nup153 and Nup98 bind the HIV-1 core and contribute to the early steps of HIV-1 replication

    SciTech Connect

    Di Nunzio, Francesca; Fricke, Thomas; Miccio, Annarita; Valle-Casuso, Jose Carlos; Perez, Patricio; Souque, Philippe; Rizzi, Ermanno; Severgnini, Marco; Mavilio, Fulvio; Charneau, Pierre; Diaz-Griffero, Felipe

    2013-05-25

    The early steps of HIV-1 replication involve the entry of HIV-1 into the nucleus, which is characterized by viral interactions with nuclear pore components. HIV-1 developed an evolutionary strategy to usurp the nuclear pore machinery and chromatin in order to integrate and efficiently express viral genes. In the current work, we studied the role of nucleoporins 153 and 98 (Nup153 and Nup98) in infection of human Jurkat lymphocytes by HIV-1. We showed that Nup153-depleted cells exhibited a defect in nuclear import, while depletion of Nup 98 caused a slight defect in HIV integration. To explore the biochemical viral determinants for the requirement of Nup153 and Nup98 during HIV-1 infection, we tested the ability of these nucleoporins to interact with HIV-1 cores. Our findings showed that both nucleoporins bind HIV-1 cores suggesting that this interaction is important for HIV-1 nuclear import and/or integration. Distribution analysis of integration sites in Nup153-depleted cells revealed a reduced tendency of HIV-1 to integrate in intragenic sites, which in part could account for the large infectivity defect observed in Nup153-depleted cells. Our work strongly supports a role for Nup153 in HIV-1 nuclear import and integration. - Highlights: ► We studied the role of Nup98 and Nup153 in HIV-1 infection. ► Nup98 binds the HIV-1 core and is involved in HIV-1 integration. ► Nup153 binds the HIV-1 core and is involved in HIV-1 nuclear import. ► Depletion of Nup153 decreased the integration of HIV-1 in transcriptionally active sites.

  15. Requirements for capsid-binding and an effector function in TRIMCyp-mediated restriction of HIV-1

    SciTech Connect

    Diaz-Griffero, Felipe; Vandegraaff, Nick; Li Yuan; McGee-Estrada, Kathleen; Stremlau, Matthew; Welikala, Sohanya; Si Zhihai; Engelman, Alan; Sodroski, Joseph . E-mail: joseph_sodroski@dfci.harvard.edu

    2006-08-01

    In owl monkeys, a retrotransposition event replaced the gene encoding the retroviral restriction factor TRIM5{alpha} with one encoding TRIMCyp, a fusion between the RING, B-box 2 and coiled-coil domains of TRIM5 and cyclophilin A. TRIMCyp restricts human immunodeficiency virus (HIV-1) infection by a mechanism dependent on the interaction of the cyclophilin A moiety and the HIV-1 capsid protein. Here, we show that infection by retroviruses other than HIV-1 can be restricted by TRIMCyp, providing an explanation for the evolutionary retention of the TRIMCyp gene in owl monkey lineages. The TRIMCyp-mediated block to HIV-1 infection occurs before the earliest step of reverse transcription. TRIMCyp-mediated restriction involves at least two functions: (1) capsid binding, which occurs most efficiently for trimeric TRIMCyp proteins that retain the coiled-coil and cyclophilin A domains, and (2) an effector function that depends upon the B-box 2 domain.

  16. Suppression of HIV-1 Infectivity by Human Glioma Cells.

    PubMed

    Hoque, Sheikh Ariful; Tanaka, Atsushi; Islam, Salequl; Ahsan, Gias Uddin; Jinno-Oue, Atsushi; Hoshino, Hiroo

    2016-05-01

    HIV-1 infection to the central nervous system (CNS) is very common in AIDS patients. The predominant cell types infected in the brain are monocytes and macrophages, which are surrounded by several HIV-1-resistant cell types, such as astrocytes, oligodendrocytes, neurons, and microvascular cells. The effect of these HIV-1-resistant cells on HIV-1 infection is largely unknown. In this study, we examined the stability of HIV-1 cultured with several human glioblastoma cell lines, for example, NP-2, U87MG, T98G, and A172, to determine whether these HIV-1-resistant brain cells could enhance or suppress HIV-1 infection and thus modulate HIV-1 infection in the CNS. The HIV-1 titer was determined using the MAGIC-5A indicator cell line as well as naturally occurring CD4(+) T cells. We found that the stability of HIV-1 incubated with NP-2 or U87MG cells at 37°C was significantly shorter (half-life, 2.5-4 h) compared to that of HIV-1 incubated with T98G or A172 cells or in culture medium without cells (half-life, 8-18 h). The spent culture media (SCM) of NP-2 and U87MG cells had the ability to suppress both R5- and X4-HIV-1 infection by inhibiting HIV-1 attachment to target cells. This inhibitory effect was eliminated by the treatment of the SCM with chondroitinase ABC but not heparinase, suggesting that the inhibitory factor(s) secreted by NP-2 and U87MG cells was chiefly mediated by chondroitin sulfate (CS) or CS-like moiety. Thus, this study reveals that some but not all glioma cells secrete inhibitory molecules to HIV-1 infection that may contribute in lowering HIV-1 infection in the CNS in vivo.

  17. Quantification of the epitope diversity of HIV-1-specific binding antibodies by peptide microarrays for global HIV-1 vaccine development

    DOE PAGES

    Stephenson, Kathryn E.; Neubauer, George H.; Reimer, Ulf; ...

    2014-11-14

    An effective vaccine against human immunodeficiency virus type 1 (HIV-1) will have to provide protection against a vast array of different HIV-1 strains. Current methods to measure HIV-1-specific binding antibodies following immunization typically focus on determining the magnitude of antibody responses, but the epitope diversity of antibody responses has remained largely unexplored. Here we describe the development of a global HIV-1 peptide microarray that contains 6564 peptides from across the HIV-1 proteome and covers the majority of HIV-1 sequences in the Los Alamos National Laboratory global HIV-1 sequence database. Using this microarray, we quantified the magnitude, breadth, and depth ofmore » IgG binding to linear HIV-1 sequences in HIV-1-infected humans and HIV-1-vaccinated humans, rhesus monkeys and guinea pigs. The microarray measured potentially important differences in antibody epitope diversity, particularly regarding the depth of epitope variants recognized at each binding site. Our data suggest that the global HIV-1 peptide microarray may be a useful tool for both preclinical and clinical HIV-1 research.« less

  18. Quantification of the epitope diversity of HIV-1-specific binding antibodies by peptide microarrays for global HIV-1 vaccine development

    SciTech Connect

    Stephenson, Kathryn E.; Neubauer, George H.; Reimer, Ulf; Pawlowski, Nikolaus; Knaute, Tobias; Zerweck, Johannes; Korber, Bette T.; Barouch, Dan H.

    2014-11-14

    An effective vaccine against human immunodeficiency virus type 1 (HIV-1) will have to provide protection against a vast array of different HIV-1 strains. Current methods to measure HIV-1-specific binding antibodies following immunization typically focus on determining the magnitude of antibody responses, but the epitope diversity of antibody responses has remained largely unexplored. Here we describe the development of a global HIV-1 peptide microarray that contains 6564 peptides from across the HIV-1 proteome and covers the majority of HIV-1 sequences in the Los Alamos National Laboratory global HIV-1 sequence database. Using this microarray, we quantified the magnitude, breadth, and depth of IgG binding to linear HIV-1 sequences in HIV-1-infected humans and HIV-1-vaccinated humans, rhesus monkeys and guinea pigs. The microarray measured potentially important differences in antibody epitope diversity, particularly regarding the depth of epitope variants recognized at each binding site. Our data suggest that the global HIV-1 peptide microarray may be a useful tool for both preclinical and clinical HIV-1 research.

  19. Identifying the Important HIV-1 Recombination Breakpoints

    PubMed Central

    Fan, Jun; Simon-Loriere, Etienne; Arts, Eric J.; Negroni, Matteo; Robertson, David L.

    2008-01-01

    Recombinant HIV-1 genomes contribute significantly to the diversity of variants within the HIV/AIDS pandemic. It is assumed that some of these mosaic genomes may have novel properties that have led to their prevalence, particularly in the case of the circulating recombinant forms (CRFs). In regions of the HIV-1 genome where recombination has a tendency to convey a selective advantage to the virus, we predict that the distribution of breakpoints—the identifiable boundaries that delimit the mosaic structure—will deviate from the underlying null distribution. To test this hypothesis, we generate a probabilistic model of HIV-1 copy-choice recombination and compare the predicted breakpoint distribution to the distribution from the HIV/AIDS pandemic. Across much of the HIV-1 genome, we find that the observed frequencies of inter-subtype recombination are predicted accurately by our model. This observation strongly indicates that in these regions a probabilistic model, dependent on local sequence identity, is sufficient to explain breakpoint locations. In regions where there is a significant over- (either side of the env gene) or under- (short regions within gag, pol, and most of env) representation of breakpoints, we infer natural selection to be influencing the recombination pattern. The paucity of recombination breakpoints within most of the envelope gene indicates that recombinants generated in this region are less likely to be successful. The breakpoints at a higher frequency than predicted by our model are approximately at either side of env, indicating increased selection for these recombinants as a consequence of this region, or at least part of it, having a tendency to be recombined as an entire unit. Our findings thus provide the first clear indication of the existence of a specific portion of the genome that deviates from a probabilistic null model for recombination. This suggests that, despite the wide diversity of recombinant forms seen in the viral

  20. SAMHD1 enhances nucleoside-analogue efficacy against HIV-1 in myeloid cells

    PubMed Central

    Ordonez, Paula; Kunzelmann, Simone; Groom, Harriet C. T.; Yap, Melvyn W.; Weising, Simon; Meier, Chris; Bishop, Kate N.; Taylor, Ian A.; Stoye, Jonathan P.

    2017-01-01

    SAMHD1 is an intracellular enzyme that specifically degrades deoxynucleoside triphosphates into component nucleoside and inorganic triphosphate. In myeloid-derived dendritic cells and macrophages as well as resting T-cells, SAMHD1 blocks HIV-1 infection through this dNTP triphosphohydrolase activity by reducing the cellular dNTP pool to a level that cannot support productive reverse transcription. We now show that, in addition to this direct effect on virus replication, manipulating cellular SAMHD1 activity can significantly enhance or decrease the anti-HIV-1 efficacy of nucleotide analogue reverse transcription inhibitors presumably as a result of modulating dNTP pools that compete for recruitment by viral polymerases. Further, a variety of other nucleotide-based analogues, not normally considered antiretrovirals, such as the anti-herpes drugs Aciclovir and Ganciclovir and the anti-cancer drug Clofarabine are now revealed as potent anti-HIV-1 agents, under conditions of low dNTPs. This in turn suggests novel uses for nucleotide analogues to inhibit HIV-1 in differentiated cells low in dNTPs. PMID:28220857

  1. HIV-1 Tat and Viral Latency: What We Can Learn from Naturally Occurring Sequence Variations.

    PubMed

    Kamori, Doreen; Ueno, Takamasa

    2017-01-01

    Despite the effective use of antiretroviral therapy, the remainder of a latently HIV-1-infected reservoir mainly in the resting memory CD4(+) T lymphocyte subset has provided a great setback toward viral eradication. While host transcriptional silencing machinery is thought to play a dominant role in HIV-1 latency, HIV-1 protein such as Tat, may affect both the establishment and the reversal of latency. Indeed, mutational studies have demonstrated that insufficient Tat transactivation activity can result in impaired transcription of viral genes and the establishment of latency in cell culture experiments. Because Tat protein is one of highly variable proteins within HIV-1 proteome, it is conceivable that naturally occurring Tat mutations may differentially modulate Tat functions, thereby influencing the establishment and/or the reversal of viral latency in vivo. In this mini review, we summarize the recent findings of Tat naturally occurring polymorphisms associating with host immune responses and we highlight the implication of Tat sequence variations in relation to HIV latency.

  2. HIV-1 Tat and Viral Latency: What We Can Learn from Naturally Occurring Sequence Variations

    PubMed Central

    Kamori, Doreen; Ueno, Takamasa

    2017-01-01

    Despite the effective use of antiretroviral therapy, the remainder of a latently HIV-1-infected reservoir mainly in the resting memory CD4+ T lymphocyte subset has provided a great setback toward viral eradication. While host transcriptional silencing machinery is thought to play a dominant role in HIV-1 latency, HIV-1 protein such as Tat, may affect both the establishment and the reversal of latency. Indeed, mutational studies have demonstrated that insufficient Tat transactivation activity can result in impaired transcription of viral genes and the establishment of latency in cell culture experiments. Because Tat protein is one of highly variable proteins within HIV-1 proteome, it is conceivable that naturally occurring Tat mutations may differentially modulate Tat functions, thereby influencing the establishment and/or the reversal of viral latency in vivo. In this mini review, we summarize the recent findings of Tat naturally occurring polymorphisms associating with host immune responses and we highlight the implication of Tat sequence variations in relation to HIV latency. PMID:28194140

  3. The SET Complex Acts as a Barrier to Autointegration of HIV-1

    PubMed Central

    Yan, Nan; Cherepanov, Peter; Daigle, Janet E.; Engelman, Alan; Lieberman, Judy

    2009-01-01

    Retroviruses and retrotransposons are vulnerable to a suicidal pathway known as autointegration, which occurs when the 3′-ends of the reverse transcript are activated by integrase and then attack sites within the viral DNA. Retroelements have diverse strategies for suppressing autointegration, but how HIV-1 protects itself from autointegration is not well-understood. Here we show that knocking down any of the components of the SET complex, an endoplasmic reticulum-associated complex that contains 3 DNases (the base excision repair endonuclease APE1, 5′-3′ exonuclease TREX1, and endonuclease NM23-H1), inhibits HIV-1 and HIV-2/SIV, but not MLV or ASV, infection. Inhibition occurs at a step in the viral life cycle after reverse transcription but before chromosomal integration. Antibodies to SET complex proteins capture HIV-1 DNA in the cytoplasm, suggesting a direct interaction between the SET complex and the HIV preintegration complex. Cloning of HIV integration sites in cells with knocked down SET complex components revealed an increase in autointegration, which was verified using a novel semi-quantitative nested PCR assay to detect autointegrants. When SET complex proteins are knocked down, autointegration increases 2–3–fold and chromosomal integration correspondingly decreases ∼3-fold. Therefore, the SET complex facilitates HIV-1 infection by preventing suicidal autointegration. PMID:19266025

  4. Time-Resolved Imaging of Single HIV-1 Uncoating In Vitro and in Living Cells

    PubMed Central

    Francis, Ashwanth C.; Marin, Mariana; Shi, Jiong; Aiken, Christopher; Melikyan, Gregory B.

    2016-01-01

    Disassembly of the cone-shaped HIV-1 capsid in target cells is a prerequisite for establishing a life-long infection. This step in HIV-1 entry, referred to as uncoating, is critical yet poorly understood. Here we report a novel strategy to visualize HIV-1 uncoating using a fluorescently tagged oligomeric form of a capsid-binding host protein cyclophilin A (CypA-DsRed), which is specifically packaged into virions through the high-avidity binding to capsid (CA). Single virus imaging reveals that CypA-DsRed remains associated with cores after permeabilization/removal of the viral membrane and that CypA-DsRed and CA are lost concomitantly from the cores in vitro and in living cells. The rate of loss is modulated by the core stability and is accelerated upon the initiation of reverse transcription. We show that the majority of single cores lose CypA-DsRed shortly after viral fusion, while a small fraction remains intact for several hours. Single particle tracking at late times post-infection reveals a gradual loss of CypA-DsRed which is dependent on reverse transcription. Uncoating occurs both in the cytoplasm and at the nuclear membrane. Our novel imaging assay thus enables time-resolved visualization of single HIV-1 uncoating in living cells, and reveals the previously unappreciated spatio-temporal features of this incompletely understood process. PMID:27322072

  5. Combination of the CCL5-Derived Peptide R4.0 with Different HIV-1 Blockers Reveals Wide Target Compatibility and Synergic Cobinding to CCR5

    PubMed Central

    Secchi, Massimiliano; Vassena, Lia; Morin, Sébastien; Schols, Dominique

    2014-01-01

    R4.0, a synthetic CCL5/RANTES-derived peptide, exerts potent anti-HIV-1 activity via its nonactivating interaction with CCR5, the major HIV-1 coreceptor. CCR5 chronic activation may promote undesirable inflammatory effects and enhance viral infection; thus, receptor antagonism is a necessary requisite. HIV-1 gp120, CCL5, and maraviroc dock on CCR5 by sharing two receptor sites: the N terminus and the second extracellular loop. In combination studies, R4.0, CCL5, and maraviroc exhibited concomitant interactions with CCR5 and promoted synergic inhibition of HIV-1 in acute-infection assays. Furthermore, various degrees of additive/synergic HIV-1 inhibition were observed when R4.0 was tested in combination with drugs and lead compounds directed toward different viral targets (gp120, gp41, reverse transcriptase, and protease). In combination with tenofovir, R4.0 provides cross-clade synergic inhibition of primary HIV-1 isolates. Remarkably, an in vitro-generated maraviroc-resistant R5 HIV-1 strain was inhibited by R4.0 comparably to the wild-type strain, suggesting the presence of viral resistance barriers similar to those reported for CCL5. Overall, R4.0 appears to be a promising lead peptide with potential for combination in anti-HIV-1 therapy and in microbicide development to prevent sexual HIV-1 transmission. PMID:25114130

  6. Combination of the CCL5-derived peptide R4.0 with different HIV-1 blockers reveals wide target compatibility and synergic cobinding to CCR5.

    PubMed

    Secchi, Massimiliano; Vassena, Lia; Morin, Sébastien; Schols, Dominique; Vangelista, Luca

    2014-10-01

    R4.0, a synthetic CCL5/RANTES-derived peptide, exerts potent anti-HIV-1 activity via its nonactivating interaction with CCR5, the major HIV-1 coreceptor. CCR5 chronic activation may promote undesirable inflammatory effects and enhance viral infection; thus, receptor antagonism is a necessary requisite. HIV-1 gp120, CCL5, and maraviroc dock on CCR5 by sharing two receptor sites: the N terminus and the second extracellular loop. In combination studies, R4.0, CCL5, and maraviroc exhibited concomitant interactions with CCR5 and promoted synergic inhibition of HIV-1 in acute-infection assays. Furthermore, various degrees of additive/synergic HIV-1 inhibition were observed when R4.0 was tested in combination with drugs and lead compounds directed toward different viral targets (gp120, gp41, reverse transcriptase, and protease). In combination with tenofovir, R4.0 provides cross-clade synergic inhibition of primary HIV-1 isolates. Remarkably, an in vitro-generated maraviroc-resistant R5 HIV-1 strain was inhibited by R4.0 comparably to the wild-type strain, suggesting the presence of viral resistance barriers similar to those reported for CCL5. Overall, R4.0 appears to be a promising lead peptide with potential for combination in anti-HIV-1 therapy and in microbicide development to prevent sexual HIV-1 transmission.

  7. HIV-1 Phylogenetic analysis shows HIV-1 transits through the meninges to brain and peripheral tissues

    PubMed Central

    Lamers, Susanna L.; Gray, Rebecca R.; Salemi, Marco; Huysentruyt, Leanne C.; McGrath, Michael

    2010-01-01

    Brain infection by the human immunodeficiency virus type 1 (HIV-1) has been investigated in many reports with a variety of conclusions concerning the time of entry and degree of viral compartmentalization. To address these diverse findings, we sequenced HIV-1 gp120 clones from a wide range of brain, peripheral and meningeal tissues from five patients who died from several HIV-1 associated disease pathologies. High-resolution phylogenetic analysis confirmed previous studies that showed a significant degree of compartmentalization in brain and peripheral tissue subpopulations. Some intermixing between the HIV-1 subpopulations was evident, especially in patients that died from pathologies other than HIV-associated dementia. Interestingly, the major tissue harboring virus from both the brain and peripheral tissues was the meninges. These results show that 1) HIV-1 is clearly capable of migrating out of the brain, 2) the meninges are the most likely primary transport tissues, and 3) infected brain macrophages comprise an important HIV reservoir during highly active antiretroviral therapy. PMID:21055482

  8. Phenotypic Correlates of HIV-1 Macrophage Tropism

    PubMed Central

    Arrildt, Kathryn T.; LaBranche, Celia C.; Joseph, Sarah B.; Dukhovlinova, Elena N.; Graham, William D.; Ping, Li-Hua; Schnell, Gretja; Sturdevant, Christa B.; Kincer, Laura P.; Mallewa, Macpherson; Heyderman, Robert S.; Van Rie, Annelies; Cohen, Myron S.; Spudich, Serena; Price, Richard W.; Montefiori, David C.

    2015-01-01

    ABSTRACT HIV-1 is typically CCR5 using (R5) and T cell tropic (T-tropic), targeting memory CD4+ T cells throughout acute and chronic infections. However, viruses can expand into alternative cells types. Macrophage-tropic (M-tropic) HIV-1 variants have evolved to infect macrophages, which have only low levels of surface CD4. Most M-tropic variants have been isolated from the central nervous system during late-stage chronic infection. We used the HIV-1 env genes of well-defined, subject-matched M-tropic and T-tropic viruses to characterize the phenotypic features of the M-tropic Env protein. We found that, compared to T-tropic viruses, M-tropic viruses infect monocyte-derived macrophages (MDMs) on average 28-fold more efficiently, use low-density CD4 more efficiently, have increased sensitivity to soluble CD4 (sCD4), and show trends toward sensitivity to some CD4 binding site antibodies but no difference in sensitivity to antibodies targeting the CD4-bound conformation. M-tropic viruses also displayed a trend toward resistance to neutralization by monoclonal antibodies targeting the V1/V2 region of Env, suggesting subtle changes in Env protein conformation. The paired M- and T-tropic viruses did not differ in autologous serum neutralization, temperature sensitivity, entry kinetics, intrinsic infectivity, or Env protein incorporation. We also examined viruses with modestly increased CD4 usage. These variants have significant sensitivity to sCD4 and may represent evolutionary intermediates. CD4 usage is strongly correlated with infectivity of MDMs over a wide range of CD4 entry phenotypes. These data suggest that emergence of M-tropic HIV-1 includes multiple steps in which a phenotype of increased sensitivity to sCD4 and enhanced CD4 usage accompany subtle changes in Env conformation. IMPORTANCE HIV-1 typically replicates in CD4+ T cells. However, HIV-1 can evolve to infect macrophages, especially within the brain. Understanding how CCR5-using macrophage-tropic viruses

  9. Pharmacodynamic activity of Dapivirine and Maraviroc single entity and combination topical gels for HIV-1 prevention

    PubMed Central

    Dezzutti, Charlene S.; Yandura, Sarah; Wang, Lin; Moncla, Bernard; Teeple, Elizabeth A.; Devlin, Brid; Nuttall, Jeremy; Brown, Elizabeth R.; Rohan, Lisa C.

    2015-01-01

    Purpose Dapivirine (DPV), a non-nucleoside reverse transcriptase inhibitor, and maraviroc (MVC), a CCR5 antagonist, were formulated into aqueous gels designed to prevent mucosal HIV transmission. Methods 0.05% DPV, 0.1% MVC, 0.05% DPV/0.1% MVC and placebo gels were evaluated for pH, viscosity, osmolality, and in vitro release. In vitro assays and mucosal tissues were used to evaluate anti-HIV activity. Viability (Lactobacilli only) and epithelial integrity in cell lines and mucosal tissues defined safety. Results The gels were acidic and viscous. DPV gel had an osmolality of 893 mOsm/kg while the other gels had an osmolality of <100 mOsm/kg. MVC release was similar from the single and combination gels (~5 μg/cm2/min1/2), while DPV release was 10-fold less from the single as compared to the combination gel (0.4331 μg/cm2/min1/2). Titrations of the gels showed 10-fold more drug was needed to protect ectocervical than colonic tissue. The combination gel showed ~10- and 100-fold improved activity as compared to DPV and MVC gel, respectively. All gels were safe. Conclusions The DPV/MVC gel showed a benefit blocking HIV infection of mucosal tissue compared to the single entity gels. Combination products with drugs affecting unique steps in the viral replication cycle would be advantageous for HIV prevention. PMID:26078001

  10. HIV-1 VACCINES. HIV-1 neutralizing antibodies induced by native-like envelope trimers.

    PubMed

    Sanders, Rogier W; van Gils, Marit J; Derking, Ronald; Sok, Devin; Ketas, Thomas J; Burger, Judith A; Ozorowski, Gabriel; Cupo, Albert; Simonich, Cassandra; Goo, Leslie; Arendt, Heather; Kim, Helen J; Lee, Jeong Hyun; Pugach, Pavel; Williams, Melissa; Debnath, Gargi; Moldt, Brian; van Breemen, Mariëlle J; Isik, Gözde; Medina-Ramírez, Max; Back, Jaap Willem; Koff, Wayne C; Julien, Jean-Philippe; Rakasz, Eva G; Seaman, Michael S; Guttman, Miklos; Lee, Kelly K; Klasse, Per Johan; LaBranche, Celia; Schief, William R; Wilson, Ian A; Overbaugh, Julie; Burton, Dennis R; Ward, Andrew B; Montefiori, David C; Dean, Hansi; Moore, John P

    2015-07-10

    A challenge for HIV-1 immunogen design is the difficulty of inducing neutralizing antibodies (NAbs) against neutralization-resistant (tier 2) viruses that dominate human transmissions. We show that a soluble recombinant HIV-1 envelope glycoprotein trimer that adopts a native conformation, BG505 SOSIP.664, induced NAbs potently against the sequence-matched tier 2 virus in rabbits and similar but weaker responses in macaques. The trimer also consistently induced cross-reactive NAbs against more sensitive (tier 1) viruses. Tier 2 NAbs recognized conformational epitopes that differed between animals and in some cases overlapped with those recognized by broadly neutralizing antibodies (bNAbs), whereas tier 1 responses targeted linear V3 epitopes. A second trimer, B41 SOSIP.664, also induced a strong autologous tier 2 NAb response in rabbits. Thus, native-like trimers represent a promising starting point for the development of HIV-1 vaccines aimed at inducing bNAbs.

  11. Productive replication and evolution of HIV-1 in ferret cells.

    PubMed

    Fadel, Hind J; Saenz, Dyana T; Guevara, Rebekah; von Messling, Veronika; Peretz, Mary; Poeschla, Eric M

    2012-02-01

    A rodent or other small animal model for HIV-1 has not been forthcoming, with the principal obstacles being species-specific restriction mechanisms and deficits in HIV-1 dependency factors. Some Carnivorans may harbor comparatively fewer impediments. For example, in contrast to mice, the domestic cat genome encodes essential nonreceptor HIV-1 dependency factors. All Feliformia species and at least one Caniformia species also lack a major lentiviral restriction mechanism (TRIM5α/TRIMCyp proteins). Here we investigated cells from two species in another carnivore family, the Mustelidae, for permissiveness to the HIV-1 life cycle. Mustela putorius furo (domesticated ferret) primary cells and cell lines did not restrict HIV-1, feline immunodeficiency virus (FIV), equine infectious anemia virus (EIAV), or N-tropic murine leukemia virus (MLV) postentry and supported late HIV-1 life cycle steps comparably to human cells. The ferret TRIM5α gene exon 8, which encodes the B30.2 domain, was found to be pseudogenized. Strikingly, ferret (but not mink) cells engineered to express human HIV-1 entry receptors supported productive spreading replication, amplification, and serial passage of wild-type HIV-1. Nevertheless, produced virions had relatively reduced infectivity and the virus accrued G→A hypermutations, consistent with APOBEC3 protein pressure. Ferret cell-passaged HIV-1 also evolved amino acid changes in the capsid cyclophilin A binding loop. We conclude that the genome of this carnivore can provide essential nonreceptor HIV-1 dependency factors and that ferret APOBEC3 proteins with activity against HIV-1 are likely. Even so, unlike in cat cells, HIV-1 can replicate in ferret cells without vif substitution. The virus evolves in this novel nonprimate cell adaptive landscape. We suggest that further characterization of HIV-1 adaptation in ferret cells and delineation of Mustelidae restriction factor repertoires are warranted, with a view to the potential for an HIV-1

  12. Influence of sequence identity and unique breakpoints on the frequency of intersubtype HIV-1 recombination

    PubMed Central

    Baird, Heather A; Gao, Yong; Galetto, Román; Lalonde, Matthew; Anthony, Reshma M; Giacomoni, Véronique; Abreha, Measho; Destefano, Jeffrey J; Negroni, Matteo; Arts, Eric J

    2006-01-01

    Background HIV-1 recombination between different subtypes has a major impact on the global epidemic. The generation of these intersubtype recombinants follows a defined set of events starting with dual infection of a host cell, heterodiploid virus production, strand transfers during reverse transcription, and then selection. In this study, recombination frequencies were measured in the C1-C4 regions of the envelope gene in the presence (using a multiple cycle infection system) and absence (in vitro reverse transcription and single cycle infection systems) of selection for replication-competent virus. Ugandan subtypes A and D HIV-1 env sequences (115-A, 120-A, 89-D, 122-D, 126-D) were employed in all three assay systems. These subtypes co-circulate in East Africa and frequently recombine in this human population. Results Increased sequence identity between viruses or RNA templates resulted in increased recombination frequencies, with the exception of the 115-A virus or RNA template. Analyses of the recombination breakpoints and mechanistic studies revealed that the presence of a recombination hotspot in the C3/V4 env region, unique to 115-A as donor RNA, could account for the higher recombination frequencies with the 115-A virus/template. Single-cycle infections supported proportionally less recombination than the in vitro reverse transcription assay but both systems still had significantly higher recombination frequencies than observed in the multiple-cycle virus replication system. In the multiple cycle assay, increased replicative fitness of one HIV-1 over the other in a dual infection dramatically decreased recombination frequencies. Conclusion Sequence variation at specific sites between HIV-1 isolates can introduce unique recombination hotspots, which increase recombination frequencies and skew the general observation that decreased HIV-1 sequence identity reduces recombination rates. These findings also suggest that the majority of intra- or intersubtype A

  13. HIV-1 Integrates Widely throughout the Genome of the Human Blood Fluke Schistosoma mansoni

    PubMed Central

    Mann, Victoria H.; Dubrovsky, Larisa; Yan, Hong-bin; Huckvale, Thomas; Protasio, Anna V.; Pushkarsky, Tatiana; Iordanskiy, Sergey; Bukrinsky, Michael I.

    2016-01-01

    Schistosomiasis is the most important helminthic disease of humanity in terms of morbidity and mortality. Facile manipulation of schistosomes using lentiviruses would enable advances in functional genomics in these and related neglected tropical diseases pathogens including tapeworms, and including their non-dividing cells. Such approaches have hitherto been unavailable. Blood stream forms of the human blood fluke, Schistosoma mansoni, the causative agent of the hepatointestinal schistosomiasis, were infected with the human HIV-1 isolate NL4-3 pseudotyped with vesicular stomatitis virus glycoprotein. The appearance of strong stop and positive strand cDNAs indicated that virions fused to schistosome cells, the nucleocapsid internalized and the RNA genome reverse transcribed. Anchored PCR analysis, sequencing HIV-1-specific anchored Illumina libraries and Whole Genome Sequencing (WGS) of schistosomes confirmed chromosomal integration; >8,000 integrations were mapped, distributed throughout the eight pairs of chromosomes including the sex chromosomes. The rate of integrations in the genome exceeded five per 1,000 kb and HIV-1 integrated into protein-encoding loci and elsewhere with integration bias dissimilar to that of human T cells. We estimated ~ 2,100 integrations per schistosomulum based on WGS, i.e. about two or three events per cell, comparable to integration rates in human cells. Accomplishment in schistosomes of post-entry processes essential for HIV-1replication, including integrase-catalyzed integration, was remarkable given the phylogenetic distance between schistosomes and primates, the natural hosts of the genus Lentivirus. These enigmatic findings revealed that HIV-1 was active within cells of S. mansoni, and provided the first demonstration that HIV-1 can integrate into the genome of an invertebrate. PMID:27764257

  14. HIV-1 Variants and Drug Resistance in Pregnant Women from Bata (Equatorial Guinea): 2012-2013

    PubMed Central

    Alvarez, Patricia; Fernández McPhee, Carolina; Prieto, Luis; Martín, Leticia; Obiang, Jacinta; Avedillo, Pedro; Vargas, Antonio; Rojo, Pablo; Benito, Agustín; Ramos, José Tomás; Holguín, África

    2016-01-01

    Objectives This is the first study describing drug resistance mutations (DRM) and HIV-1 variants among infected pregnant women in Equatorial Guinea (GQ), a country with high (6.2%) and increasing HIV prevalence. Methods Dried blood spots (DBS) were collected from November 2012 to December 2013 from 69 HIV-1 infected women participating in a prevention of mother-to-child transmission program in the Hospital Regional of Bata and Primary Health Care Centre María Rafols, Bata, GQ. The transmitted (TDR) or acquired (ADR) antiretroviral drug resistance mutations at partial pol sequence among naive or antiretroviral therapy (ART)-exposed women were defined following WHO or IAS USA 2015 lists, respectively. HIV-1 variants were identified by phylogenetic analyses. Results A total of 38 of 69 HIV-1 specimens were successfully amplified and sequenced. Thirty (79%) belonged to ART-experienced women: 15 exposed to nucleoside reverse transcriptase inhibitors (NRTI) monotherapy, and 15 to combined ART (cART) as first regimen including two NRTI and one non-NRTI (NNRTI) or one protease inhibitor (PI). The TDR rate was only found for PI (3.4%). The ADR rate was 37.5% for NNRTI, 8.7% for NRTI and absent for PI or NRTI+NNRTI. HIV-1 group M non-B variants caused most (97.4%) infections, mainly (78.9%) recombinants: CRF02_AG (55.2%), CRF22_A101 (10.5%), subtype C (10.5%), unique recombinants (5.3%), and A3, D, F2, G, CRF06_cpx and CRF11_cpx (2.6% each). Conclusions The high rate of ADR to retrotranscriptase inhibitors (mainly to NNRTIs) observed among pretreated pregnant women reinforces the importance of systematic DRM monitoring in GQ to reduce HIV-1 resistance transmission and to optimize first and second-line ART regimens when DRM are present. PMID:27798676

  15. The NRTIs Lamivudine, Stavudine and Zidovudine Have Reduced HIV-1 Inhibitory Activity in Astrocytes

    PubMed Central

    Gray, Lachlan R.; Tachedjian, Gilda; Ellett, Anne M.; Roche, Michael J.; Cheng, Wan-Jung; Guillemin, Gilles J.; Brew, Bruce J.; Turville, Stuart G.; Wesselingh, Steve L.; Gorry, Paul R.; Churchill, Melissa J.

    2013-01-01

    HIV-1 establishes infection in astrocytes and macroage-lineage cells of the central nervous system (CNS). Certain antiretroviral drugs (ARVs) can penetrate the CNS, and are therefore often used in neurologically active combined antiretroviral therapy (Neuro-cART) regimens, but their relative activity in the different susceptible CNS cell populations is unknown. Here, we determined the HIV-1 inhibitory activity of CNS-penetrating ARVs in astrocytes and macrophage-lineage cells. Primary human fetal astrocytes (PFA) and the SVG human astrocyte cell line were used as in vitro models for astrocyte infection, and monocyte-derived macrophages (MDM) were used as an in vitro model for infection of macrophage-lineage cells. The CNS-penetrating ARVs tested were the nucleoside reverse transcriptase inhibitors (NRTIs) abacavir (ABC), lamivudine (3TC), stavudine (d4T) and zidovudine (ZDV), the non-NRTIs efavirenz (EFV), etravirine (ETR) and nevirapine (NVP), and the integrase inhibitor raltegravir (RAL). Drug inhibition assays were performed using single-round HIV-1 entry assays with luciferase viruses pseudotyped with HIV-1 YU-2 envelope or vesicular stomatitis virus G protein (VSV-G). All the ARVs tested could effectively inhibit HIV-1 infection in macrophages, with EC90s below concentrations known to be achievable in the cerebral spinal fluid (CSF). Most of the ARVs had similar potency in astrocytes, however the NRTIs 3TC, d4T and ZDV had insufficient HIV-1 inhibitory activity in astrocytes, with EC90s 12-, 187- and 110-fold greater than achievable CSF concentrations, respectively. Our data suggest that 3TC, d4T and ZDV may not adequately target astrocyte infection in vivo, which has potential implications for their inclusion in Neuro-cART regimens. PMID:23614033

  16. HIV-1 Integrates Widely throughout the Genome of the Human Blood Fluke Schistosoma mansoni.

    PubMed

    Suttiprapa, Sutas; Rinaldi, Gabriel; Tsai, Isheng J; Mann, Victoria H; Dubrovsky, Larisa; Yan, Hong-Bin; Holroyd, Nancy; Huckvale, Thomas; Durrant, Caroline; Protasio, Anna V; Pushkarsky, Tatiana; Iordanskiy, Sergey; Berriman, Matthew; Bukrinsky, Michael I; Brindley, Paul J

    2016-10-01

    Schistosomiasis is the most important helminthic disease of humanity in terms of morbidity and mortality. Facile manipulation of schistosomes using lentiviruses would enable advances in functional genomics in these and related neglected tropical diseases pathogens including tapeworms, and including their non-dividing cells. Such approaches have hitherto been unavailable. Blood stream forms of the human blood fluke, Schistosoma mansoni, the causative agent of the hepatointestinal schistosomiasis, were infected with the human HIV-1 isolate NL4-3 pseudotyped with vesicular stomatitis virus glycoprotein. The appearance of strong stop and positive strand cDNAs indicated that virions fused to schistosome cells, the nucleocapsid internalized and the RNA genome reverse transcribed. Anchored PCR analysis, sequencing HIV-1-specific anchored Illumina libraries and Whole Genome Sequencing (WGS) of schistosomes confirmed chromosomal integration; >8,000 integrations were mapped, distributed throughout the eight pairs of chromosomes including the sex chromosomes. The rate of integrations in the genome exceeded five per 1,000 kb and HIV-1 integrated into protein-encoding loci and elsewhere with integration bias dissimilar to that of human T cells. We estimated ~ 2,100 integrations per schistosomulum based on WGS, i.e. about two or three events per cell, comparable to integration rates in human cells. Accomplishment in schistosomes of post-entry processes essential for HIV-1replication, including integrase-catalyzed integration, was remarkable given the phylogenetic distance between schistosomes and primates, the natural hosts of the genus Lentivirus. These enigmatic findings revealed that HIV-1 was active within cells of S. mansoni, and provided the first demonstration that HIV-1 can integrate into the genome of an invertebrate.

  17. Inhibition of HIV-1 Maturation via Small Molecule Targeting of the Amino-Terminal Domain in the Viral Capsid Protein.

    PubMed

    Wang, Weifeng; Zhou, Jing; Halambage, Upul D; Jurado, Kellie A; Jamin, Augusta V; Wang, Yujie; Engelman, Alan N; Aiken, Christopher

    2017-02-15

    The HIV-1 capsid protein is an attractive therapeutic target owing to its multifunctionality in virus replication and the high fitness cost of amino acid substitutions in capsid to HIV-1 infectivity. To date, small molecule inhibitors have been identified that inhibit HIV-1 capsid assembly and/or impair its function in target cells. Here we describe the mechanism of action of the previously reported capsid-targeting HIV-1 inhibitor, BI compound 1 (C1). We show that C1 acts during HIV-1 maturation to prevent assembly of a mature viral capsid. However, unlike the maturation inhibitor Bevirimat, C1 did not significantly affect the kinetics or fidelity of Gag processing. HIV-1 particles produced in the presence of C1 contained unstable capsids that lacked associated electron density and exhibited impairments in early postentry stages of infection, most notably reverse transcription. C1 inhibited assembly of recombinant HIV-1 CA in vitro and induced aberrant crosslinks in mutant HIV-1 particles capable of spontaneous intersubunit disulfide bonds at the interhexamer interface in the capsid lattice. Resistance to C1 was conferred by a single amino acid substitution within the compound-binding site in the N-terminal domain of the CA protein. Our results demonstrate that the binding site for C1 represents a new pharmacological vulnerability in the capsid assembly stage of the HIV-1 life cycle.IMPORTANCE The HIV-1 capsid protein is an attractive but unexploited target for clinical drug development. Prior studies have identified HIV-1 capsid-targeting compounds that display different mechanisms of action, which in part reflects the requirement for capsid function at both the efferent and afferent phases of viral replication. Here we show that one such compound, Compound 1, interferes with assembly of the conical viral capsid during virion maturation, and results in perturbations at a specific protein-protein interface in the capsid lattice. We also identify and characterize a

  18. HIV-1 Accessory Proteins: Vpu and Vif

    PubMed Central

    Andrew, Amy; Strebel, Klaus

    2014-01-01

    HIV-1 Vif and Vpu are accessory factors involved in late stages of viral replication. Vif regulates viral infectivity by preventing virion incorporation of APOBEC3G and other members of the family of cytidine deaminases, while Vpu causes degradation of CD4 and promotes virus release by functionally inactivating the host factor BST-2. This chapter described techniques used for the characterization of Vif and Vpu and their functional interaction with host factors. Many of the techniques are, however, applicable to the functional analysis of other viral proteins. PMID:24158820

  19. Methamphetamine inhibits HIV-1 replication in CD4+ T cells by modulating anti-HIV-1 miRNA expression.

    PubMed

    Mantri, Chinmay K; Mantri, Jyoti V; Pandhare, Jui; Dash, Chandravanu

    2014-01-01

    Methamphetamine is the second most frequently used illicit drug in the United States. Methamphetamine abuse is associated with increased risk of HIV-1 acquisition, higher viral loads, and enhanced HIV-1 pathogenesis. Although a direct link between methamphetamine abuse and HIV-1 pathogenesis remains to be established in patients, methamphetamine has been shown to increase HIV-1 replication in macrophages, dendritic cells, and cells of HIV transgenic mice. Intriguingly, the effects of methamphetamine on HIV-1 replication in human CD4(+) T cells that serve as the primary targets of infection in vivo are not clearly understood. Therefore, we examined HIV-1 replication in primary CD4(+) T cells in the presence of methamphetamine in a dose-dependent manner. Our results demonstrate that methamphetamine had a minimal effect on HIV-1 replication at concentrations of 1 to 50 μmol/L. However, at concentrations >100 μmol/L, it inhibited HIV-1 replication in a dose-dependent manner. We also discovered that methamphetamine up-regulated the cellular anti-HIV-1 microRNAs (miR-125b, miR-150, and miR-28-5p) in CD4(+) T cells. Knockdown experiments illustrated that up-regulation of the anti-HIV miRNAs inhibited HIV-1 replication. These results are contrary to the paradigm that methamphetamine accentuates HIV-1 pathogenesis by increasing HIV-1 replication. Therefore, our findings underline the complex interaction between drug use and HIV-1 and necessitate comprehensive understanding of the effects of methamphetamine on HIV-1 pathogenesis.

  20. Methamphetamine Inhibits HIV-1 Replication in CD4+ T Cells by Modulating Anti–HIV-1 miRNA Expression

    PubMed Central

    Mantri, Chinmay K.; Mantri, Jyoti V.; Pandhare, Jui; Dash, Chandravanu

    2015-01-01

    Methamphetamine is the second most frequently used illicit drug in the United States. Methamphetamine abuse is associated with increased risk of HIV-1 acquisition, higher viral loads, and enhanced HIV-1 pathogenesis. Although a direct link between methamphetamine abuse and HIV-1 pathogenesis remains to be established in patients, methamphetamine has been shown to increase HIV-1 replication in macrophages, dendritic cells, and cells of HIV transgenic mice. Intriguingly, the effects of methamphetamine on HIV-1 replication in human CD4+ T cells that serve as the primary targets of infection in vivo are not clearly understood. Therefore, we examined HIV-1 replication in primary CD4+ T cells in the presence of methamphetamine in a dose-dependent manner. Our results demonstrate that methamphetamine had a minimal effect on HIV-1 replication at concentrations of 1 to 50 μmol/L. However, at concentrations >100 μmol/L, it inhibited HIV-1 replication in a dose-dependent manner. We also discovered that methamphetamine up-regulated the cellular anti–HIV-1 microRNAs (miR-125b, miR-150, and miR-28-5p) in CD4+ T cells. Knockdown experiments illustrated that up-regulation of the anti-HIV miRNAs inhibited HIV-1 replication. These results are contrary to the paradigm that methamphetamine accentuates HIV-1 pathogenesis by increasing HIV-1 replication. Therefore, our findings underline the complex interaction between drug use and HIV-1 and necessitate comprehensive understanding of the effects of methamphetamine on HIV-1 pathogenesis. PMID:24434277

  1. Zinc coupling potentiates anti-HIV-1 activity of baicalin.

    PubMed

    Wang, Qian; Wang, Yu-Tian; Pu, Shao-Ping; Zheng, Yong-Tang

    2004-11-12

    Baicalin (BA) has been shown with anti-HIV-1 activity. Zinc is a nutrient element. The anti-HIV-1 activity of zinc complex of baicalin (BA-Zn) in vitro was studied and compared with the anti-HIV-1 activities between BA and BA-Zn in the present study. Our results suggested that BA-Zn has lower cytotoxicity and higher anti-HIV-1 activity compared with those of BA in vitro. The CC50s of BA-Zn and BA were 221.52 and 101.73 microM, respectively. The cytotoxicity of BA-Zn was about 1.2-fold lower than that of BA. The BA and BA-Zn inhibited HIV-1 induced syncytium formation, HIV-1 p24 antigen and HIV-1 RT production. The EC50s of BA-Zn on inhibiting HIV-1 induced syncytium formation (29.08 microM) and RT production (31.17 microM) were lower than those of BA (43.27 and 47.34 microM, respectively). BA-Zn was more effective than BA in inhibiting the activities of recombinant RT and HIV-1 entry into host cells. Zinc coupling enhanced the anti-HIV-1 activity of baicalin.

  2. [Comparison of three genotyping methods for the detection of HIV-1 resistance to antiretroviral drugs].

    PubMed

    Suárez, A; Picazo, J; Alonso, R; Bouza, E; Delgado, R; Rodríguez-Noriega, A; Bernal, A; García, A

    2002-03-01

    Highly active antiretroviral therapy has dramatically improved the life expectancy of human immunodeficiency virus (HIV)-infected patients, but mutations in the HIV-1 reverse transcriptase (RT) and protease (P) genes confer drug failure. Evaluation of drug resistance genotyping in HIV-1 has proven to be useful for the selection of drug combinations with maximum antiretroviral activity. The aim of this study was to evaluate the optimal procedure to determine the resistance profile in the laboratory. Plasma from 90 antiretroviral-treated patients was analyzed by reverse hybridization, which identifies the presence of wild-types or mutations at the 19 key codons for protease and RT regions, and was compared with two other methods of direct cDNA sequencing. A total of 408 mutations were detected by InnoLiPA HIV-1, (Line Probe Assay, Innogenetics, Belgium), 572 by TrueGene HIV-1 Genotyping System (Visible Genetics, Canada), and 721 by ViroSeq HIV-1 Genotyping System (Perkin Elmer/Applied Biosystems, California). Hybridization detected a significantly higher number of primary mutations which are associated with a high level of drug resistance (p <0.001). Hybridization also detected a higher number of mixtures of wild-type and mutant viruses. There was a good concordance among the three methods, although it was higher between the two sequencing methods. Sequencing determines a higher number of mutations, but hybridization better identifies primary mutations correlated with a high level of drug resistance. Hybridization is more suitable for detecting mixed populations and is easier to implement in clinical laboratories but does not eliminate the need for sequence analysis for detection of drug-resistant HIV.

  3. High Degree of HIV-1 Group M (HIV-1M) Genetic Diversity within Circulating Recombinant Forms: Insight into the Early Events of HIV-1M Evolution.

    PubMed

    Tongo, Marcel; Dorfman, Jeffrey R; Martin, Darren P

    2015-12-09

    The existence of various highly divergent HIV-1 lineages and of recombination-derived sequence tracts of indeterminate origin within established circulating recombinant forms (CRFs) strongly suggests that HIV-1 group M (HIV-1M) diversity is not fully represented under the current classification system. Here we used a fully exploratory screen for recombination on a set of 480 near-full-length genomes representing the full known diversity of HIV-1M. We decomposed recombinant sequences into their constituent parts and then used maximum-likelihood phylogenetic analyses of this mostly recombination-free data set to identify rare divergent sequence lineages that fall outside the major named HIV-1M taxonomic groupings. We found that many of the sequence fragments occurring within CRFs (including CRF04_cpx, CRF06_cpx, CRF11_cpx, CRF18_cpx, CRF25_cpx, CRF27_cpx, and CRF49_cpx) are in fact likely derived from divergent unclassified parental lineages that may predate the current subtypes, even though they are presently identified as derived from currently defined HIV-1M subtypes. Our evidence suggests that some of these CRFs are descended predominantly from what were or are major previously unidentified HIV-1M lineages that were likely epidemiologically relevant during the early stages of the HIV-1M epidemic. The restriction of these divergent lineages to the Congo basin suggests that they were less infectious and/or simply not present at the time and place of the initial migratory wave that triggered the global epidemic.IMPORTANCE HIV-1 group M (HIV-1M) likely spread to the rest of the world from the Congo basin in the mid-1900s (N. R. Faria et al., Science 346:56-61, 2014, http://dx.doi.org/10.1126/science.1256739) and is today the principal cause of the AIDS pandemic. Here, we show that large sequence fragments from several HIV-1M circulating recombinant forms (CRFs) are derived from divergent parental lineages that cannot reasonably be classified within the nine

  4. High Degree of HIV-1 Group M (HIV-1M) Genetic Diversity within Circulating Recombinant Forms: Insight into the Early Events of HIV-1M Evolution

    PubMed Central

    2015-01-01

    ABSTRACT The existence of various highly divergent HIV-1 lineages and of recombination-derived sequence tracts of indeterminate origin within established circulating recombinant forms (CRFs) strongly suggests that HIV-1 group M (HIV-1M) diversity is not fully represented under the current classification system. Here we used a fully exploratory screen for recombination on a set of 480 near-full-length genomes representing the full known diversity of HIV-1M. We decomposed recombinant sequences into their constituent parts and then used maximum-likelihood phylogenetic analyses of this mostly recombination-free data set to identify rare divergent sequence lineages that fall outside the major named HIV-1M taxonomic groupings. We found that many of the sequence fragments occurring within CRFs (including CRF04_cpx, CRF06_cpx, CRF11_cpx, CRF18_cpx, CRF25_cpx, CRF27_cpx, and CRF49_cpx) are in fact likely derived from divergent unclassified parental lineages that may predate the current subtypes, even though they are presently identified as derived from currently defined HIV-1M subtypes. Our evidence suggests that some of these CRFs are descended predominantly from what were or are major previously unidentified HIV-1M lineages that were likely epidemiologically relevant during the early stages of the HIV-1M epidemic. The restriction of these divergent lineages to the Congo basin suggests that they were less infectious and/or simply not present at the time and place of the initial migratory wave that triggered the global epidemic. IMPORTANCE HIV-1 group M (HIV-1M) likely spread to the rest of the world from the Congo basin in the mid-1900s (N. R. Faria et al., Science 346:56–61, 2014, http://dx.doi.org/10.1126/science.1256739) and is today the principal cause of the AIDS pandemic. Here, we show that large sequence fragments from several HIV-1M circulating recombinant forms (CRFs) are derived from divergent parental lineages that cannot reasonably be classified within the

  5. The choreography of HIV-1 proteolytic processing and virion assembly.

    PubMed

    Lee, Sook-Kyung; Potempa, Marc; Swanstrom, Ronald

    2012-11-30

    HIV-1 has been the target of intensive research at the molecular and biochemical levels for >25 years. Collectively, this work has led to a detailed understanding of viral replication and the development of 24 approved drugs that have five different targets on various viral proteins and one cellular target (CCR5). Although most drugs target viral enzymatic activities, our detailed knowledge of so much of the viral life cycle is leading us into other types of inhibitors that can block or disrupt protein-protein interactions. Viruses have compact genomes and employ a strategy of using a small number of proteins that can form repeating structures to enclose space (i.e. condensing the viral genome inside of a protein shell), thus minimizing the need for a large protein coding capacity. This creates a relatively small number of critical protein-protein interactions that are essential for viral replication. For HIV-1, the Gag protein has the role of a polyprotein precursor that contains all of the structural proteins of the virion: matrix, capsid, spacer peptide 1, nucleocapsid, spacer peptide 2, and p6 (which contains protein-binding domains that interact with host proteins during budding). Similarly, the Gag-Pro-Pol precursor encodes most of the Gag protein but now includes the viral enzymes: protease, reverse transcriptase (with its associated RNase H activity), and integrase. Gag and Gag-Pro-Pol are the substrates of the viral protease, which is responsible for cleaving these precursors into their mature and fully active forms (see Fig. 1A).

  6. Consistent inhibition of HIV-1 replication in CD4+ T cells by acyclovir without detection of human herpesviruses.

    PubMed

    McMahon, Moira A; Parsons, Teresa L; Shen, Lin; Siliciano, Janet D; Siliciano, Robert F

    2011-05-01

    Acyclovir, a nucleoside analog, is thought to be specific for the human herpesviruses because it requires a virally encoded enzyme to phosphorylate it to acyclovir monophosphate. Recently, acyclovir triphosphate was shown to be a direct inhibitor of human immunodeficiency virus type 1 (HIV-1) reverse transcriptase. Here, we showed that acyclovir is an inhibitor of HIV-1 replication in CD4(+) T cells from cord blood that have undetectable levels of the eight human herpesviruses. Additionally, acyclovir phosphates were detected by reverse-phase-high performance liquid chromatography (RP-HPLC) and quantified in a primer extension assay from cord blood. The data support acyclovir as an inhibitor of HIV-1 replication in herpesvirus-negative cells.

  7. Phylodynamic and Phylogeographic Profiles of Subtype B HIV-1 Epidemics in South Spain

    PubMed Central

    Pérez-Parra, Santiago; Chueca, Natalia; Álvarez, Marta; Pasquau, Juan; Omar, Mohamed; Collado, Antonio; Vinuesa, David; Lozano, Ana B.; Yebra, Gonzalo; García, Federico

    2016-01-01

    Background Since 1982, HIV-1 epidemics have evolved to different scenarios in terms of transmission routes, subtype distribution and characteristics of transmission clusters. We investigated the evolutionary history of HIV-1 subtype B in south Spain. Patients & Methods We studied all newly diagnosed HIV-1 subtype B patients in East Andalusia during the 2005–2012 period. For the analysis, we used the reverse transcriptase and protease sequences from baseline resistance, and the Trugene® HIV Genotyping kit (Siemens, Barcelona, Spain). Subtyping was done with REGA v3.0. The maximum likelihood trees constructed with RAxML were used to study HIV-1 clustering. Phylogeographic and phylodynamic profiles were studied by Bayesian inference methods with BEAST v1.7.5 and SPREAD v1.0.6. Results Of the 493 patients infected with HIV-1 subtype B, 234 grouped into 55 clusters, most of which were small (44 clusters ≤ 5 patients, 31 with 2 patients, 13 with 3). The rest (133/234) were grouped into 11 clusters with ≥ 5 patients, and most (82%, 109/133) were men who have sex with men (MSM) grouped into 8 clusters. The association with clusters was more frequent in Spanish (p = 0.02) men (p< 0.001), MSM (p<0.001) younger than 35 years (p = 0.001) and with a CD4+ T-cell count above 350 cells/ul (p<0.001). We estimated the date of HIV-1 subtype B regional epidemic diversification around 1970 (95% CI: 1965–1987), with an evolutionary rate of 2.4 (95%CI: 1.7–3.1) x 10−3 substitutions/site/year. Most clusters originated in the 1990s in MSMs. We observed exponential subtype B HIV-1 growth in 1980–1990 and 2005–2008. The most significant migration routes for subtype B went from inland cities to seaside locations. Conclusions We provide the first data on the phylodynamic and phylogeographic profiles of HIV-1 subtype B in south Spain. Our findings of transmission clustering among MSMs should alert healthcare managers to enhance preventive measures in this risk group in order to

  8. Fucoidans as potential inhibitors of HIV-1.

    PubMed

    Prokofjeva, Maria M; Imbs, Tatyana I; Shevchenko, Natalya M; Spirin, Pavel V; Horn, Stefan; Fehse, Boris; Zvyagintseva, Tatyana N; Prassolov, Vladimir S

    2013-08-19

    The antiviral activity of different structure fucoidans (α-l-fucans and galactofucans) was studied using two model viral systems based on a lentiviral vectors and a replication competent Moloney murine leukemia virus (Mo-MuLV). It was found that investigated fucoidans have no cytotoxic effects on Jurkat and SC-1cell at the concentration range of 0.001-100 µg/mL. Fucoidans with different efficiency suppressed transduction of Jurkat cell line by pseudo-HIV-1 particles carrying the envelope protein of HIV-1 and infection of SC-1 cells by Mo-MuLV. According to our data, all natural fucoidans can be considered as potential anti-HIV agents regardless of their carbohydrate backbone and degree of sulfating, since their activity is shown at low concentrations (0.001-0.05 µg/mL). High molecular weight fucoidans isolated from Saccharina cichorioides (1.3-α-l-fucan), and S. japonica (galactofucan) were the most effective inhibitors.

  9. Cyclophilin B enhances HIV-1 infection

    SciTech Connect

    DeBoer, Jason; Madson, Christian J.; Belshan, Michael

    2016-02-15

    Cyclophilin B (CypB) is a member of the immunophilin family and intracellular chaperone. It predominantly localizes to the ER, but also contains a nuclear localization signal and is secreted from cells. CypB has been shown to interact with the Gag protein of human immunodeficiency type 1 (HIV-1). Several proteomic and genetic studies identified it as a potential factor involved in HIV replication. Herein, we show that over-expression of CypB enhances HIV infection by increasing nuclear import of viral DNA. This enhancement was unaffected by cyclosporine treatment and requires the N-terminus of the protein. The N-terminus contains an ER leader sequence, putative nuclear localization signal, and is required for secretion. Deletion of the N-terminus resulted in mislocalization from the ER and suppression of HIV infection. Passive transfer experiments showed that secreted CypB did not impact HIV infection. Combined, these experiments show that intracellular CypB modulates a pathway of HIV nuclear import. - Highlights: • CypB has been identified in several proteomic studies of HIV-1 infection. • CypB expression is upregulated in activated and infected T-cells. • Over-expression of CypB enhances HIV nuclear import and infection. • The N-terminus of CypB is necessary for these effects.

  10. Celastrol ameliorates HIV-1 Tat-induced inflammatory responses via NF-kappaB and AP-1 inhibition and heme oxygenase-1 induction in astrocytes

    SciTech Connect

    Youn, Gi Soo; Kwon, Dong-Joo; Ju, Sung Mi; Rhim, Hyangshuk; Bae, Yong Soo; Choi, Soo Young; Park, Jinseu

    2014-10-01

    HIV-1 Tat causes extensive neuroinflammation that may progress to AIDS-related encephalitis and dementia. Celastrol possesses various biological activities such as anti-oxidant, anti-tumor, and anti-inflammatory activities. In this study, we investigated the modulatory effects of celastrol on HIV-1 Tat-induced inflammatory responses and the molecular mechanisms underlying its action in astrocytes. Pre-treatment of CRT-MG human astroglioma cells with celastrol significantly inhibited HIV-1 Tat-induced expression of ICAM-1/VCAM-1 and subsequent monocyte adhesiveness in CRT-MG cells. In addition, celastrol suppressed HIV-1 Tat-induced expression of pro-inflammatory chemokines, such as CXCL10, IL-8, and MCP-1. Celastrol decreased HIV-1 Tat-induced activation of JNK MAPK, AP-1, and NF-κB. Furthermore, celastrol induced mRNA and protein expression of HO-1 as well as Nrf2 activation. Blockage of HO-1 expression using siRNA reversed the inhibitory effect of celastrol on HIV-1 Tat-induced inflammatory responses. These results suggest that celastrol has regulatory effects on HIV-1 Tat-induced inflammatory responses by blocking the JNK MAPK-AP-1/NF-κB signaling pathways and inducing HO-1 expression in astrocytes. - Highlights: • Celastrol suppressed HIV-1 Tat-induced expression of pro-inflammatory genes. • Celastrol inhibited HIV-1 Tat -induced activation of JNK MAPK. • Celastrol inhibited HIV-1 Tat-induced activation of both NF-κB and AP-1. • Celastrol inhibited HIV-1 Tat-induced inflammatory responses via HO-1 induction.

  11. HIV-1 and Human PEG10 Frameshift Elements Are Functionally Distinct and Distinguished by Novel Small Molecule Modulators

    PubMed Central

    Sleebs, Brad E.; Lackovic, Kurt; Parisot, John P.; Moss, Rebecca M.; Crowe-McAuliffe, Caillan; Mathew, Suneeth F.; Edgar, Christina D.; Kleffmann, Torsten; Tate, Warren P.

    2015-01-01

    Frameshifting during translation of viral or in rare cases cellular mRNA results in the synthesis of proteins from two overlapping reading frames within the same mRNA. In HIV-1 the protease, reverse transcriptase, and integrase enzymes are in a second reading frame relative to the structural group-specific antigen (gag), and their synthesis is dependent upon frameshifting. This ensures that a strictly regulated ratio of structural proteins and enzymes, which is critical for HIV-1 replication and viral infectivity, is maintained during protein synthesis. The frameshift element in HIV-1 RNA is an attractive target for the development of a new class of anti HIV-1 drugs. However, a number of examples are now emerging of human genes using −1 frameshifting, such as PEG10 and CCR5. In this study we have compared the HIV-1 and PEG10 frameshift elements and shown they have distinct functional characteristics. Frameshifting occurs at several points within each element. Moreover, frameshift modulators that were isolated by high-throughput screening of a library of 114,000 lead-like compounds behaved differently with the PEG10 frameshift element. The most effective compounds affecting the HIV-1 element enhanced frameshifting by 2.5-fold at 10 μM in two different frameshift reporter assay systems. HIV-1 protease:gag protein ratio was affected by a similar amount in a specific assay of virally-infected cultured cell, but the modulation of frameshifting of the first-iteration compounds was not sufficient to show significant effects on viral infectivity. Importantly, two compounds did not affect frameshifting with the human PEG10 element, while one modestly inhibited rather than enhanced frameshifting at the human element. These studies indicate that frameshift elements have unique characteristics that may allow targeting of HIV-1 and of other viruses specifically for development of antiviral therapeutic molecules without effect on human genes like PEG10 that use the same

  12. Broadly neutralizing antibodies: An approach to control HIV-1 infection.

    PubMed

    Yaseen, Mahmoud Mohammad; Yaseen, Mohammad Mahmoud; Alqudah, Mohammad Ali

    2017-01-02

    Although available antiretroviral therapy (ART) has changed human immunodeficiency virus (HIV)-1 infection to a non-fatal chronic disease, the economic burden of lifelong therapy, severe adverse ART effects, daily ART adherence, and emergence of ART-resistant HIV-1 mutants require prospecting for alternative therapeutic modalities. Indeed, a growing body of evidence suggests that broadly neutralizing anti-HIV-1 antibodies (BNAbs) may offer one such feasible alternative. To evaluate their therapeutic potential in established HIV-1 infection, we sought to address recent advances in pre-clinical and clinical investigations in this area of HIV-1 research. In addition, we addressed the obstacles that may impede the success of such immunotherapeutic approach, suggested strategic solutions, and briefly compared this approach with the currently used ART to open new insights for potential future passive immunotherapy for HIV-1 infection.

  13. Host Proteins Ku and HMGA1 As Participants of HIV-1 Transcription

    PubMed Central

    Shadrina, O. A.; Knyazhanskaya, E. S.; Korolev, S.P.; Gottikh, M. B.

    2016-01-01

    Human immunodeficiency virus type 1 is known to use the transcriptional machinery of the host cell for viral gene transcription, and the only viral protein that partakes in this process is Tat, the viral trans-activator of transcription. During acute infection, the binding of Tat to the hairpin at the beginning of the transcribed viral RNA recruits the PTEFb complex, which in turn hyperphosphorylates RNA-polymerase II and stimulates transcription elongation. Along with acute infection, HIV-1 can also lead to latent infection that is characterized by a low level of viral transcription. During the maintenance and reversal of latency, there are no detectable amounts of Tat protein in the cell and the mechanism of transcription activation in the absence of Tat protein remains unclear. The latency maintenance is also a problematic question. It seems evident that cellular proteins with a yet unknown nature or role regulate both transcriptional repression in the latent phase and its activation during transition into the lytic phase. The present review discusses the role of cellular proteins Ku and HMGA1 in the initiation of transcription elongation of the HIV-1 provirus. The review presents data regarding Ku-mediated HIV-1 transcription and its dependence on the promoter structure and the shape of viral DNA. We also describe the differential influence of the HMGA1 protein on the induced and basal transcription of HIV-1. Finally, we offer possible mechanisms for Ku and HMGA1 proteins in the proviral transcription regulation. PMID:27099783

  14. A small circular TAR RNA decoy specifically inhibits Tat-activated HIV-1 transcription.

    PubMed Central

    Bohjanen, P R; Colvin, R A; Puttaraju, M; Been, M D; Garcia-Blanco, M A

    1996-01-01

    Linear TAR RNA has previously been used as a decoy to inhibit HIV-1 transcription in vitro and HIV-1 replication in vivo. A 48 nucleotide circular RNA containing the stem, bulge and loop of the HIV-1 TAR element was synthesized using the self-splicing activity of a group I permuted intron-exon and was tested for its ability to function as a TAR decoy in vitro. This small circular TAR molecule was exceptionally stable in HeLa nuclear extracts, whereas a similar linear TAR molecule was rapidly degraded. The TAR circle bound specifically to Tfr38, a peptide containing the TAR-binding region of Tat. The ability of Tat to trans-activate transcription from the HIV-1 promoter in vitro was efficiently inhibited by circular TAR RNA but not by TAR circles that contained either bulge or loop mutations. TAR circles did not inhibit transactivation exclusively by binding to Tat since this inhibition was not reversed by adding excess Tat to the transcription reaction. Together, these data suggest that TAR circles act as decoys that inhibit transactivation by binding to Tat and at least one cellular factor. These data also demonstrate the utility of small circular RNA molecules as tools for biochemical studies. PMID:8871552

  15. Inhibition of HIV-1 replication by newly developed adamantane-containing polyanionic agents.

    PubMed

    Burstein, M E; Serbin, A V; Khakhulina, T V; Alymova, I V; Stotskaya, L L; Bogdan, O P; Manukchina, E E; Jdanov, V V; Sharova, N K; Bukrinskaya, A G

    1999-04-01

    Newly developed antiviral compounds consisting of an adamantane derivative chemically linked to a water-soluble polyanionic matrix were shown to inhibit HIV-1 infection in lymphoblastoid cells, HeLa CD4+ beta-galactosidase (MAGI) cells and macrophages. The effect of the compounds was recorded by measuring viral reverse transcriptase activity and p24 by ELISA in culture supernatant and by immunoblotting of cell lysates. In this paper we describe the data obtained with one of the most promising compounds, Amant. Amant was not toxic for the host cells at concentrations as high as 1 mg/ml. The inhibition of HIV-1 replication in MT-4 and MAGI cells was observed when Amant was added either before infection or with the virus (0 h of infection), and was expressed even when the compound added at 0 h was removed 1.5 h after infection. Its inhibitory concentration (IC50) against HIV-1 and HIV-2 replication was 2-6 and 93 microg/ml, respectively. The anti-HIV-1 effect of the compound was gradually decreased when it was added 1 and 2 h post infection, and no inhibition was observed when the compound was added 4 h after infection, suggesting that the compound as a membranotropic drug blocks an early step of replication. It completely prevented the transport of Gag proteins into the nuclei. Pretreatment of the virus with Amant did not reduce its infectious activity. The classical adamantane derivatives amantadine and rimantadine hydrochloride did not inhibit HIV replication.

  16. Similarities in the HIV-1 and ASV Integrease Active Site Upon Metal Binding

    SciTech Connect

    Lins, Roberto D.; Straatsma, TP; Briggs, J. M.

    2000-04-05

    The HIV-1 integrase, which is essential for viral replication, catalyzes the insertion of viral DNA into the host chromosome thereby recruiting host cell machinery into making viral proteins. It represents the third main HIV enzyme target for inhibitor design, the first two being the reverse transcriptase and the protease. We report here a fully hydrated 2 ns molecular dynamics simulation performed using parallel NWChem3.2.1 with the AMBER95 force field. The HIV-1 integrase catalytic domain previously determined by crystallography (1B9D) and modeling including two Mg2+ ions placed into the active site based on an alignment against an ASV integrase structure containing two divalent metals (1VSH), was used as the starting structure. The simulation reveals a high degree of flexibility in the region of residues 140-149 even in the presence of a second divalent metal ion and a dramatic conformational change of the side chain of E152 when the second metal ion is present. This study shows similarities in the behavior of the catalytic residues in the HIV-1 and ASV integrases upon metal binding. The present simulation also provides support to the hypothesis that the second metal ion is likely to be carried into the HIV-1 integrase active site by the substrate, a strand of DNA.

  17. In Vivo validation of a bioinformatics based tool to identify reduced replication capacity in HIV-1.

    PubMed

    Kitchen, Christina M R; Krogstad, Paul; Kitchen, Scott G

    2010-01-01

    Although antiretroviral drug resistance is common in treated HIV infected individuals, it is not a consistent indicator of HIV morbidity and mortality. To the contrary, HIV resistance-associated mutations may lead to changes in viral fitness that are beneficial to infected individuals. Using a bioinformatics-based model to assess the effects of numerous drug resistance mutations, we determined that the D30N mutation in HIV-1 protease had the largest decrease in replication capacity among known protease resistance mutations. To test this in silico result in an in vivo environment, we constructed several drug-resistant mutant HIV-1 strains and compared their relative fitness utilizing the SCID-hu mouse model. We found HIV-1 containing the D30N mutation had a significant defect in vivo, showing impaired replication kinetics and a decreased ability to deplete CD4+ thymocytes, compared to the wild-type or virus without the D30N mutation. In comparison, virus containing the M184V mutation in reverse transcriptase, which shows decreased replication capacity in vitro, did not have an effect on viral fitness in vivo. Thus, in this study we have verified an in silico bioinformatics result with a biological assessment to identify a unique mutation in HIV-1 that has a significant fitness defect in vivo.

  18. Modeling HIV-1 Latency in Primary T Cells Using a Replication-Competent Virus.

    PubMed

    Martins, Laura J; Bonczkowski, Pawel; Spivak, Adam M; De Spiegelaere, Ward; Novis, Camille L; DePaula-Silva, Ana Beatriz; Malatinkova, Eva; Typsteen, Wim; Bosque, Alberto; Vanderkerckhove, Linos; Planelles, Vicente

    2016-02-01

    HIV-1 latently infected cells in vivo can be found in extremely low frequencies. Therefore, in vitro cell culture models have been used extensively for the study of HIV-1 latency. Often, these in vitro systems utilize defective viruses. Defective viruses allow for synchronized infections and circumvent the use of antiretrovirals. In addition, replication-defective viruses cause minimal cytopathicity because they fail to spread and usually do not encode env or accessory genes. On the other hand, replication-competent viruses encode all or most viral genes and better recapitulate the nuances of the viral replication cycle. The study of latency with replication-competent viruses requires the use of antiretroviral drugs in culture, and this mirrors the use of antiretroviral treatment (ART) in vivo. We describe a model that utilizes cultured central memory CD4(+) T cells and replication-competent HIV-1. This method generates latently infected cells that can be reactivated using latency reversing agents in the presence of antiretroviral drugs. We also describe a method for the removal of productively infected cells prior to viral reactivation, which takes advantage of the downregulation of CD4 by HIV-1, and the use of a GFP-encoding virus for increased throughput.

  19. Modeling HIV-1 Latency in Primary T Cells Using a Replication-Competent Virus

    PubMed Central

    Martins, Laura J.; Bonczkowski, Pawel; Spivak, Adam M.; De Spiegelaere, Ward; Novis, Camille L.; DePaula-Silva, Ana Beatriz; Malatinkova, Eva; Typsteen, Wim; Vanderkerckhove, Linos

    2016-01-01

    Abstract HIV-1 latently infected cells in vivo can be found in extremely low frequencies. Therefore, in vitro cell culture models have been used extensively for the study of HIV-1 latency. Often, these in vitro systems utilize defective viruses. Defective viruses allow for synchronized infections and circumvent the use of antiretrovirals. In addition, replication-defective viruses cause minimal cytopathicity because they fail to spread and usually do not encode env or accessory genes. On the other hand, replication-competent viruses encode all or most viral genes and better recapitulate the nuances of the viral replication cycle. The study of latency with replication-competent viruses requires the use of antiretroviral drugs in culture, and this mirrors the use of antiretroviral treatment (ART) in vivo. We describe a model that utilizes cultured central memory CD4+ T cells and replication-competent HIV-1. This method generates latently infected cells that can be reactivated using latency reversing agents in the presence of antiretroviral drugs. We also describe a method for the removal of productively infected cells prior to viral reactivation, which takes advantage of the downregulation of CD4 by HIV-1, and the use of a GFP-encoding virus for increased throughput. PMID:26171776

  20. Human APOBEC3G drives HIV-1 evolution and the development of drug resistance

    SciTech Connect

    Bhattacharya, Tamoy; Kim, Eun - Young; Koning, Fransje; Malim, Michael; Wolinsky, Steven M

    2008-01-01

    Human APOBEC3G (hA3G) is an innate virus restriction factor that induces deamination of specific cytidine residues in single-stranded human immunodeficiency virus type 1 (HIV-1) DNA. Whereas destructive hA3G editing leads to a profound loss of HIV-1 infectivity, more limited editing could be a source of adaptation and diversification. Here we show that the presence of hA3G in T-cells can drive the development of diversity in HIV-1 populations and that under selection pressure imposed by the nucleotide analog reverse transcriptase inhibitor 3TC ((-)2',3'-dideoxy-3'-thiacytidine), a single point mutation that confers 3TC resistance, methionine 184 to isoleucine (M1841), emerges rapidly and reaches fixation. These results provide strong evidence that mutation by hA3G is an important source of genetic variation on which natural selection acts to shape the structure of the viral population and drive the tempo of HIV-1 evolution.

  1. HSV-2- and HIV-1- permissive cell lines co-infected by HSV-2 and HIV-1 co-replicate HSV-2 and HIV-1 without production of HSV-2/HIV-1 pseudotype particles

    PubMed Central

    LeGoff, Jérôme; Bouhlal, Hicham; Lecerf, Maxime; Klein, Christophe; Hocini, Hakim; Si-Mohamed, Ali; Muggeridge, Martin; Bélec, Laurent

    2007-01-01

    Background Herpes simplex virus type 2 (HSV-2) is a major cofactor of human immunodeficiency virus type 1 (HIV-1) sexual acquisition and transmission. In the present study, we investigated whether HIV-1 and HSV-2 may interact at the cellular level by forming HIV-1 hybrid virions pseudotyped with HSV-2 envelope glycoproteins, as was previously reported for HSV type 1. Methods We evaluated in vitro the production of HSV-2/HIV-1 pseudotypes in mononuclear CEM cells and epithelial HT29 and P4P cells. We analyzed the incorporation into the HIV-1 membrane of HSV-2 gB and gD, two major HSV-2 glycoproteins required for HSV-2 fusion with the cell membrane, in co-infected cells and in HIV-1-infected P4P cells transfected by plasmids coding for gB or gD. Results We show that HSV-2 and HIV-1 co-replicated in dually infected cells, and gB and gD were co-localized with gp160. However, HIV-1 particles, produced in HIV-1-infected cells expressing gB or gD after transfection or HSV-2 superinfection, did not incorporate either gB or gD in the viral membrane, and did not have the capacity to infect cells normally non-permissive for HIV-1, such as epithelial cells. Conclusion Our results do not support the hypothesis of HSV-2/HIV-1 pseudotype formation and involvement in the synergistic genital interactions between HIV-1 and HSV-2. PMID:17207276

  2. Transcriptomic Analysis Implicates the p53 Signaling Pathway in the Establishment of HIV-1 Latency in Central Memory CD4 T Cells in an In Vitro Model.

    PubMed

    White, Cory H; Moesker, Bastiaan; Beliakova-Bethell, Nadejda; Martins, Laura J; Spina, Celsa A; Margolis, David M; Richman, Douglas D; Planelles, Vicente; Bosque, Alberto; Woelk, Christopher H

    2016-11-01

    The search for an HIV-1 cure has been greatly hindered by the presence of a viral reservoir that persists despite antiretroviral therapy (ART). Studies of HIV-1 latency in vivo are also complicated by the low proportion of latently infected cells in HIV-1 infected individuals. A number of models of HIV-1 latency have been developed to examine the signaling pathways and viral determinants of latency and reactivation. A primary cell model of HIV-1 latency, which incorporates the generation of primary central memory CD4 T cells (TCM), full-length virus infection (HIVNL4-3) and ART to suppress virus replication, was used to investigate the establishment of HIV latency using RNA-Seq. Initially, an investigation of host and viral gene expression in the resting and activated states of this model indicated that the resting condition was reflective of a latent state. Then, a comparison of the host transcriptome between the uninfected and latently infected conditions of this model identified 826 differentially expressed genes, many of which were related to p53 signaling. Inhibition of the transcriptional activity of p53 by pifithrin-α during HIV-1 infection reduced the ability of HIV-1 to be reactivated from its latent state by an unknown mechanism. In conclusion, this model may be used to screen latency reversing agents utilized in shock and kill approaches to cure HIV, to search for cellular markers of latency, and to understand the mechanisms by which HIV-1 establishes latency.

  3. Transcriptomic Analysis Implicates the p53 Signaling Pathway in the Establishment of HIV-1 Latency in Central Memory CD4 T Cells in an In Vitro Model

    PubMed Central

    White, Cory H.; Moesker, Bastiaan; Beliakova-Bethell, Nadejda; Martins, Laura J.; Richman, Douglas D.; Planelles, Vicente; Woelk, Christopher H.

    2016-01-01

    The search for an HIV-1 cure has been greatly hindered by the presence of a viral reservoir that persists despite antiretroviral therapy (ART). Studies of HIV-1 latency in vivo are also complicated by the low proportion of latently infected cells in HIV-1 infected individuals. A number of models of HIV-1 latency have been developed to examine the signaling pathways and viral determinants of latency and reactivation. A primary cell model of HIV-1 latency, which incorporates the generation of primary central memory CD4 T cells (TCM), full-length virus infection (HIVNL4-3) and ART to suppress virus replication, was used to investigate the establishment of HIV latency using RNA-Seq. Initially, an investigation of host and viral gene expression in the resting and activated states of this model indicated that the resting condition was reflective of a latent state. Then, a comparison of the host transcriptome between the uninfected and latently infected conditions of this model identified 826 differentially expressed genes, many of which were related to p53 signaling. Inhibition of the transcriptional activity of p53 by pifithrin-α during HIV-1 infection reduced the ability of HIV-1 to be reactivated from its latent state by an unknown mechanism. In conclusion, this model may be used to screen latency reversing agents utilized in shock and kill approaches to cure HIV, to search for cellular markers of latency, and to understand the mechanisms by which HIV-1 establishes latency. PMID:27898737

  4. HIV-1 variants in South and South-East Asia.

    PubMed

    Tsuchie, H; Saraswathy, T S; Sinniah, M; Vijayamalar, B; Maniar, J K; Monzon, O T; Santana, R T; Paladin, F J; Wasi, C; Thongcharoen, P

    1995-01-01

    HIV spread in South and South-East Asia is most alarming, and genetic variability of HIV-1 is an important consideration in vaccine development. In this study, we examined the third variable (V3) region of env gene of HIV-1 variants prevalent in Thailand, Malaysia, India, and the Philippines. By phylogenetic tree analyses, an HIV-1 variant from an injecting drug user (IDU) in Thailand belonged to subtype B, and HIV-1 variants from 2 IDUs in Malaysia were classified into 2 subtypes, B and E. One HIV-1 variant from a male homosexual in the Philippines belonged to subtype B. Out of 8 HIV-1 variants from sexually transmitted disease patients in India, 7 belonged to subtype C, and one to subtype A. Although the total number of individuals examined in this study was limited, 4 HIV-1 subtypes were found in South and South-East Asia and large international movements of HIV-1-infected individuals in this region could induce global dissemination of these HIV-1 variants.

  5. Genome editing strategies: potential tools for eradicating HIV-1/AIDS

    PubMed Central

    Khalili, Kamel; Gordon, Jennifer; Cosentino, Laura; Hu, Wenhui

    2015-01-01

    Current therapy for controlling HIV-1 infection and preventing AIDS progression has profoundly decreased viral replication in cells susceptible to HIV-1 infection, but it does not eliminate the low level of viral replication in latently infected cells which contain integrated copies of HIV-1 proviral DNA. There is an urgent need for the development of HIV-1 genome eradication strategies that will lead to a permanent or “sterile” cure of HIV-1/AIDS. In the past few years, novel nuclease-initiated genome editing tools have been developing rapidly, including ZFNs, TALENs, and the CRISPR/Cas9 system. These surgical knives, which can excise any genome, provide a great opportunity to eradicate the HIV-1 genome by targeting highly conserved regions of the HIV-1 long terminal repeats or essential viral genes. Given the time consuming and costly engineering of target-specific ZFNs and TALENs, the RNA-guided endonuclease Cas9 technology has emerged as a simpler and more versatile technology to allow permanent removal of integrated HIV-1 proviral DNA in eukaryotic cells, and hopefully animal models or human patients. The major unmet challenges of this approach at present include inefficient nuclease gene delivery, potential off-target cleavage, and cell-specific genome targeting. Nanoparticle or lentivirus-mediated delivery of next generation Cas9 technologies including nickase or RNA-guided FokI nuclease (RFN) will further improve the potential for genome editing to become a promising approach for curing HIV-1/AIDS. PMID:25716921

  6. A multi-scale mathematical modeling framework to investigate anti-viral therapeutic opportunities in targeting HIV-1 accessory proteins.

    PubMed

    Suryawanshi, Gajendra W; Hoffmann, Alexander

    2015-12-07

    Human immunodeficiency virus-1 (HIV-1) employs accessory proteins to evade innate immune responses by neutralizing the anti-viral activity of host restriction factors. Apolipoprotein B mRNA-editing enzyme 3G (APOBEC3G, A3G) and bone marrow stromal cell antigen 2 (BST2) are host resistance factors that potentially inhibit HIV-1 infection. BST2 reduces viral production by tethering budding HIV-1 particles to virus producing cells, while A3G inhibits the reverse transcription (RT) process and induces viral genome hypermutation through cytidine deamination, generating fewer replication competent progeny virus. Two HIV-1 proteins counter these cellular restriction factors: Vpu, which reduces surface BST2, and Vif, which degrades cellular A3G. The contest between these host and viral proteins influences whether HIV-1 infection is established and progresses towards AIDS. In this work, we present an age-structured multi-scale viral dynamics model of in vivo HIV-1 infection. We integrated the intracellular dynamics of anti-viral activity of the host factors and their neutralization by HIV-1 accessory proteins into the virus/cell population dynamics model. We calculate the basic reproductive ratio (Ro) as a function of host-viral protein interaction coefficients, and numerically simulated the multi-scale model to understand HIV-1 dynamics following host factor-induced perturbations. We found that reducing the influence of Vpu triggers a drop in Ro, revealing the impact of BST2 on viral infection control. Reducing Vif׳s effect reveals the restrictive efficacy of A3G in blocking RT and in inducing lethal hypermutations, however, neither of these factors alone is sufficient to fully restrict HIV-1 infection. Interestingly, our model further predicts that BST2 and A3G function synergistically, and delineates their relative contribution in limiting HIV-1 infection and disease progression. We provide a robust modeling framework for devising novel combination therapies that target