Science.gov

Sample records for hiv-1 poxvirus immunizations

  1. Modulation of HIV-1 immunity by adjuvants

    PubMed Central

    Moody, M. Anthony

    2014-01-01

    Purpose of review To summarize the role of adjuvants in eliciting desirable antibody responses against HIV-1 with particular emphasis on both historical context and recent developments. Recent findings Increased understanding of the role of pattern recognition receptors such as Toll-like receptors in recruiting and directing the immune system has increased the variety of adjuvant formulations being tested in animal models and humans. Across all vaccine platforms, adjuvant formulations have been shown to enhance desirable immune responses such as higher antibody titers and increased functional activity. Although no vaccine formulation has yet succeeded in eliciting broad neutralizing antibodies against HIV-1, the ability of adjuvants to direct the immune response to immunogens suggests they will be critically important in any successful HIV-1 vaccine. Summary The parallel development of adjuvants along with better HIV-1 immunogens will be needed for a successful AIDS vaccine. Additional comparative testing will be required to determine the optimal adjuvant and immunogen regimen that can elicit antibody responses capable of blocking HIV-1 transmission. PMID:24670321

  2. A comparative analysis of HIV-specific mucosal/systemic T cell immunity and avidity following rDNA/rFPV and poxvirus-poxvirus prime boost immunisations.

    PubMed

    Ranasinghe, Charani; Eyers, Fiona; Stambas, John; Boyle, David B; Ramshaw, Ian A; Ramsay, Alistair J

    2011-04-05

    In this study we have firstly compared a range of recombinant DNA poxvirus prime-boost immunisation strategies and shown that combined intramuscular (i.m.) 2× DNA-HIV/intranasal (i.n.) 2× FPV-HIV prime-boost immunisation can generate high-level of HIV-specific systemic (spleen) and mucosal (genito-rectal nodes, vaginal tissues and lung tissues) T cell responses and HIV-1 p24 Gag-specific serum IgG1, IgG2a and mucosal IgG, SIgA responses in vaginal secretions in BALB/c mice. Data indicate that following rDNA priming, two rFPV booster immunisations were necessary to generate good antibody and mucosal T cell immunity. This data also revealed that mucosal uptake of recombinant fowl pox (rFPV) was far superior to plasmid DNA. To further evaluate CD8+ T cell immunity, i.m. 2× DNA-HIV/i.n. 1× FPV-HIV immunisation strategy was directly compared with single shot poxvirus/poxvirus, i.n. FPV-HIV/i.m. VV-HIV immunisation. Results indicate that the latter strategy was able to generate strong sustained HIV-specific CD8+ T cells with higher avidity, broader cytokine/chemokine profiles and better protection following influenza-K(d)Gag(197-205) challenge compared to rDNA poxvirus prime-boost strategy. Our findings further substantiate the importance of vector selection/combination, order and route of delivery when designing effective vaccines for HIV-1.

  3. Immune reconstitution and vaccination outcome in HIV-1 infected children

    PubMed Central

    Cagigi, Alberto; Cotugno, Nicola; Giaquinto, Carlo; Nicolosi, Luciana; Bernardi, Stefania; Rossi, Paolo; Douagi, Iyadh; Palma, Paolo

    2012-01-01

    Current evidence on routine immunization of HIV-1 infected children point out the need for a special vaccine schedule in this population. However, optimal strategies for identifying individuals susceptible to infections, and then offering them sustained protection through appropriate immunization schedule, both in terms of timing and number of vaccine doses, still remain to be elucidated. Understanding the degree of immune recovery after HAART initiation is important in guiding administration of routine vaccination in HIV-1 infected children. Although quantitative measures (e.g., CD4+ T-cell counts and immunoglobulin levels) are frequently performed to evaluate immune parameters, these measures do not fully mirror functional immune recovery. Here, we will review the status of single mandatory and recommended vaccines for HIV-1 infected children in relation to immune recovery after HAART initiation with the aim of identifying new means to help design personalized vaccine schedules for this population. PMID:22906931

  4. HIV-1 evades innate immune recognition through specific cofactor recruitment

    NASA Astrophysics Data System (ADS)

    Rasaiyaah, Jane; Tan, Choon Ping; Fletcher, Adam J.; Price, Amanda J.; Blondeau, Caroline; Hilditch, Laura; Jacques, David A.; Selwood, David L.; James, Leo C.; Noursadeghi, Mahdad; Towers, Greg J.

    2013-11-01

    Human immunodeficiency virus (HIV)-1 is able to replicate in primary human macrophages without stimulating innate immunity despite reverse transcription of genomic RNA into double-stranded DNA, an activity that might be expected to trigger innate pattern recognition receptors. We reasoned that if correctly orchestrated HIV-1 uncoating and nuclear entry is important for evasion of innate sensors then manipulation of specific interactions between HIV-1 capsid and host factors that putatively regulate these processes should trigger pattern recognition receptors and stimulate type 1 interferon (IFN) secretion. Here we show that HIV-1 capsid mutants N74D and P90A, which are impaired for interaction with cofactors cleavage and polyadenylation specificity factor subunit 6 (CPSF6) and cyclophilins (Nup358 and CypA), respectively, cannot replicate in primary human monocyte-derived macrophages because they trigger innate sensors leading to nuclear translocation of NF-κB and IRF3, the production of soluble type 1 IFN and induction of an antiviral state. Depletion of CPSF6 with short hairpin RNA expression allows wild-type virus to trigger innate sensors and IFN production. In each case, suppressed replication is rescued by IFN-receptor blockade, demonstrating a role for IFN in restriction. IFN production is dependent on viral reverse transcription but not integration, indicating that a viral reverse transcription product comprises the HIV-1 pathogen-associated molecular pattern. Finally, we show that we can pharmacologically induce wild-type HIV-1 infection to stimulate IFN secretion and an antiviral state using a non-immunosuppressive cyclosporine analogue. We conclude that HIV-1 has evolved to use CPSF6 and cyclophilins to cloak its replication, allowing evasion of innate immune sensors and induction of a cell-autonomous innate immune response in primary human macrophages.

  5. Heterologous prime-boost-boost immunisation of Chinese cynomolgus macaques using DNA and recombinant poxvirus vectors expressing HIV-1 virus-like particles

    PubMed Central

    2011-01-01

    Background There is renewed interest in the development of poxvirus vector-based HIV vaccines due to the protective effect observed with repeated recombinant canarypox priming with gp120 boosting in the recent Thai placebo-controlled trial. This study sought to investigate whether a heterologous prime-boost-boost vaccine regimen in Chinese cynomolgus macaques with a DNA vaccine and recombinant poxviral vectors expressing HIV virus-like particles bearing envelopes derived from the most prevalent clades circulating in sub-Saharan Africa, focused the antibody response to shared neutralising epitopes. Methods Three Chinese cynomolgus macaques were immunised via intramuscular injections using a regimen composed of a prime with two DNA vaccines expressing clade A Env/clade B Gag followed by boosting with recombinant fowlpox virus expressing HIV-1 clade D Gag, Env and cholera toxin B subunit followed by the final boost with recombinant modified vaccinia virus Ankara expressing HIV-1 clade C Env, Gag and human complement protein C3d. We measured the macaque serum antibody responses by ELISA, enumerated T cell responses by IFN-γ ELISpot and assessed seroneutralisation of HIV-1 using the TZM-bl β-galactosidase assay with primary isolates of HIV-1. Results This study shows that large and complex synthetic DNA sequences can be successfully cloned in a single step into two poxvirus vectors: MVA and FPV and the recombinant poxviruses could be grown to high titres. The vaccine candidates showed appropriate expression of recombinant proteins with the formation of authentic HIV virus-like particles seen on transmission electron microscopy. In addition the b12 epitope was shown to be held in common by the vaccine candidates using confocal immunofluorescent microscopy. The vaccine candidates were safely administered to Chinese cynomolgus macaques which elicited modest T cell responses at the end of the study but only one out of the three macaques elicited an HIV-specific antibody

  6. HIV-1 tuberculosis-associated immune reconstitution inflammatory syndrome.

    PubMed

    Lai, Rachel P J; Meintjes, Graeme; Wilkinson, Robert J

    2016-03-01

    Patients co-infected with HIV-1 and tuberculosis (TB) are at risk of developing TB-associated immune reconstitution inflammatory syndrome (TB-IRIS) following commencement of antiretroviral therapy (ART). TB-IRIS is characterized by transient but severe localized or systemic inflammatory reactions against Mycobacterium tuberculosis antigens. Here, we review the risk factors and clinical management of TB-IRIS, as well as the roles played by different aspects of the immune response in contributing to TB-IRIS pathogenesis.

  7. Innate immune reconstitution with suppression of HIV-1

    PubMed Central

    Scully, Eileen P.; Garcia-Beltran, Wilfredo; Palmer, Christine D.; Musante, Chelsey; Rosenberg, Eric; Allen, Todd M.; Bosch, Ronald J.

    2016-01-01

    Progressive HIV-1 infection leads to both profound immune suppression and pathologic inflammation in the majority of infected individuals. While adaptive immune dysfunction, as evidenced by CD4+ T cell depletion and exhaustion, has been extensively studied, less is known about the functional capacity of innate immune cell populations in the context of HIV-1 infection. Given the broad susceptibility to opportunistic infections and the dysregulated inflammation observed in progressive disease, we hypothesized that there would be significant changes in the innate cellular responses. Using a cohort of patients with multiple samplings before and after antiretroviral therapy (ART) initiation, we demonstrated increased responses to innate immune stimuli following viral suppression, as measured by the production of inflammatory cytokines. Plasma viral load itself had the strongest association with this change in innate functional capacity. We further identified epigenetic modifications in the TNFA promoter locus in monocytes that are associated with viremia, suggesting a molecular mechanism for the observed changes in innate immune function following initiation of ART. These data indicate that suppression of HIV-1 viremia is associated with changes in innate cellular function that may in part determine the restoration of protective immune responses. PMID:27158667

  8. Recombinant Poxvirus and the Tumor Microenvironment: Oncolysis, Immune Regulation and Immunization

    PubMed Central

    Sharp, Daniel W.; Lattime, Edmund C.

    2016-01-01

    Oncolytic viruses (OVs) are being extensively studied for their potential roles in the development of cancer therapy regimens. In addition to their direct lytic effects, OVs can initiate and drive systemic antitumor immunity indirectly via release of tumor antigen, as well as by encoding and delivering immunostimulatory molecules. This combination makes them an effective platform for the development of immunotherapeutic strategies beyond their primary lytic function. Engineering the viruses to also express tumor-associated antigens (TAAs) allows them to simultaneously serve as therapeutic vaccines, targeting and amplifying an immune response to TAAs. Our group and others have shown that vaccinating intratumorally with a poxvirus that encodes TAAs, in addition to immune stimulatory molecules, can modulate the tumor microenvironment, overcome immune inhibitory pathways, and drive both local and systemic tumor specific immune responses. PMID:28191451

  9. Infection with diverse immune-modulating poxviruses elicits different compositional shifts in the mouse gut microbiome

    PubMed Central

    Hernáez, Bruno; Rastrojo, Alberto; Alcamí, Antonio

    2017-01-01

    It is often not possible to demonstrate causality within the context of gut microbiota dysbiosis-linked diseases. Thus, we need a better understanding of the mechanisms whereby an altered host immunophysiology shapes its resident microbiota. In this regard, immune-modulating poxvirus strains and mutants could differentially alter gut mucosal immunity in the context of a natural immune response, providing a controlled natural in vivo setting to deepen our understanding of the immune determinants of microbiome composition. This study represents a proof-of-concept that the use of an existing collection of different immune-modulating poxviruses may represent an innovative tool in gut microbiome research. To this end, 16S rRNA amplicon sequencing and RNAseq transcriptome profiling were employed as proxies for microbiota composition and gut immunophysiological status in the analysis of caecal samples from control mice and mice infected with various poxvirus types. Our results show that different poxvirus species and mutants elicit different shifts in the mice mucosa-associated microbiota and, in some instances, significant concomitant shifts in gut transcriptome profiles, thus providing an initial validation to the proposed model. PMID:28282449

  10. Induction of Heterologous Tier 2 HIV-1-Neutralizing and Cross-Reactive V1/V2-Specific Antibodies in Rabbits by Prime-Boost Immunization

    PubMed Central

    Townsley, Samantha; Mohamed, Zeinab; Guo, Wenjin; McKenna, Jennifer; Cleveland, Brad; LaBranche, Celia; Beaumont, David; Shen, Xiaoying; Yates, Nicole L.; Pinter, Abraham; Tomaras, Georgia D.; Ferrari, Guido; Montefiori, David C.

    2016-01-01

    ABSTRACT Poxvirus prime-protein boost used in the RV144 trial remains the only immunization strategy shown to elicit a modest level of protection against HIV-1 acquisition in humans. Although neutralizing antibodies (NAb) were generated, they were against sensitive viruses, not the more resistant “tier 2” isolates that dominate circulating strains. Instead, risk reduction correlated with antibodies recognizing epitopes in the V1/V2 region of HIV-1 envelope glycoprotein (Env). Here, we examined whether tier 2 virus NAb and V1/V2-specific non-NAb could be elicited by a poxvirus prime-gp120 boost strategy in a rabbit model. We studied two clade B Envs that differ in multiple parameters, including tissue origin, neutralization sensitivity, and presence of the N197 (N7) glycan that was previously shown to modulate the exposure of conserved epitopes on Env. We demonstrate that immunized rabbits generated cross-reactive neutralizing activities against >50% of the tier 2 global HIV-1 isolates tested. Some of these activities were directed against the CD4 binding site (CD4bs). These rabbits also generated antibodies that recognized protein scaffolds bearing V1/V2 sequences from diverse HIV-1 isolates and mediated antibody-dependent cellular cytotoxicity. However, there are subtle differences in the specificities and the response rates of V1/V2-specific antibodies between animals immunized with different Envs, with or without the N7 glycan. These findings demonstrate that antibody responses that have been correlated with protection against HIV-1 acquisition in humans can be elicited in a preclinical model by a poxvirus prime-gp120 boost strategy and that improvements may be achievable by optimizing the nature of the priming and boosting immunogens. IMPORTANCE The only vaccine approach shown to elicit any protective efficacy against HIV-1 acquisition is based on a poxvirus prime-protein boost regimen (RV144 Thai trial). Reduction of risk was associated with

  11. A Phase I Randomized Therapeutic MVA-B Vaccination Improves the Magnitude and Quality of the T Cell Immune Responses in HIV-1-Infected Subjects on HAART

    PubMed Central

    Gómez, Carmen Elena; Perdiguero, Beatriz; García-Arriaza, Juan; Cepeda, Victoria; Sánchez-Sorzano, Carlos Óscar; Mothe, Beatriz; Jiménez, José Luis; Muñoz-Fernández, María Ángeles; Gatell, Jose M.; López Bernaldo de Quirós, Juan Carlos; Brander, Christian; García, Felipe; Esteban, Mariano

    2015-01-01

    Trial Design Previous studies suggested that poxvirus-based vaccines might be instrumental in the therapeutic HIV field. A phase I clinical trial was conducted in HIV-1-infected patients on highly active antiretroviral therapy (HAART), with CD4 T cell counts above 450 cells/mm3 and undetectable viremia. Thirty participants were randomized (2:1) to receive either 3 intramuscular injections of MVA-B vaccine (coding for clade B HIV-1 Env, Gag, Pol and Nef antigens) or placebo, followed by interruption of HAART. Methods The magnitude, breadth, quality and phenotype of the HIV-1-specific T cell response were assayed by intracellular cytokine staining (ICS) in 22 volunteers pre- and post-vaccination. Results MVA-B vaccine induced newly detected HIV-1-specific CD4 T cell responses and expanded pre-existing responses (mostly against Gag, Pol and Nef antigens) that were high in magnitude, broadly directed and showed an enhanced polyfunctionality with a T effector memory (TEM) phenotype, while maintaining the magnitude and quality of the pre-existing HIV-1-specific CD8 T cell responses. In addition, vaccination also triggered preferential CD8+ T cell polyfunctional responses to the MVA vector antigens that increase in magnitude after two and three booster doses. Conclusion MVA-B vaccination represents a feasible strategy to improve T cell responses in individuals with pre-existing HIV-1-specific immunity. Trial Registration ClinicalTrials.gov NCT01571466 PMID:26544853

  12. Use of an In Vivo FTA Assay to Assess the Magnitude, Functional Avidity and Epitope Variant Cross-Reactivity of T Cell Responses Following HIV-1 Recombinant Poxvirus Vaccination

    PubMed Central

    Wijesundara, Danushka K.; Ranasinghe, Charani; Jackson, Ronald J.; Lidbury, Brett A.; Parish, Christopher R.; Quah, Benjamin J. C.

    2014-01-01

    Qualitative characteristics of cytotoxic CD8+ T cells (CTLs) are important in measuring the effectiveness of CTLs in controlling HIV-1 infections. Indeed, in recent studies patients who are naturally resistant to HIV-1 infections have been shown to possess CTLs that are of high functional avidity and have a high capacity to recognize HIV epitope variants, when compared to HIV-1 infection progressors. When developing efficacious vaccines, assays that can effectively measure CTL quality specifically in vivo are becoming increasingly important. Here we report the use of a recently developed high-throughput multi-parameter technique, known as the fluorescent target array (FTA) assay, to simultaneously measure CTL killing magnitude, functional avidity and epitope variant cross-reactivity in real time in vivo. In the current study we have applied the FTA assay as a screening tool to assess a large cohort of over 20 different HIV-1 poxvirus vaccination strategies in mice. This screen revealed that heterologous poxvirus prime-boost vaccination regimes (i.e., recombinant fowlpox (FPV)-HIV prime followed by a recombinant vaccinia virus (VV)-HIV booster) were the most effective in generating high quality CTL responses in vivo. In conclusion, we have demonstrated how the FTA assay can be utilized as a cost effective screening tool (by reducing the required number of animals by >100 fold), to evaluate a large range of HIV-1 vaccination strategies in terms of CTL avidity and variant cross-reactivity in an in vivo setting. PMID:25170620

  13. 4-1BB ligand enhances tumor-specific immunity of poxvirus vaccines

    PubMed Central

    Kudo-Saito, Chie; Hodge, James W.; Kwak, Heesun; Kim-Schulze, Seunghee; Schlom, Jeffrey; Kaufman, Howard L.

    2007-01-01

    Purpose Recombinant poxvirus vaccines have been explored as tumor vaccines. The immunogenicity of these vaccines can be enhanced by co-expressing costimulatory molecules and tumor-associated antigens. While the B7-CD28 interaction has been most comprehensively investigated, other costimulatory molecules utilize different signaling pathways and might provide further cooperation in T cell priming and survival. 4-1BB (CD137) is a TNF family member and is critical for activation and long-term maintenance of primed T-cells. This study was conducted to determine if a poxvirus expressing the ligand for 4-1BB (4-1BBL) could further improve the immune and therapeutic responses of a previously reported poxvirus vaccine expressing a triad of costimulatory molecules (B7.1, ICAM-1, and LFA-3). Experimental Design A recombinant vaccinia virus expressing 4-1BBL was generated and characterized in an in vitro infection system. This vaccine was then used alone or in combination with a vaccinia virus expressing CEA, B7.1, ICAM-1, and LFA-3 in CEA-transgenic mice bearing established MC38 tumors. Tumor growth and immune responses against CEA and other tumor-associated antigens were determined. The level of anti-apoptotic proteins in responding T cells was determined by flow cytometry on tetramer selected T cells. Results The combination of 4-1BBL with B7.1-based poxvirus vaccination resulted in significantly enhanced therapeutic effects against CEA-expressing tumors in a CEA transgenic mouse model. This was associated with an increased level of CEA-specific CD4+ and CD8+ T cell responses, induction of antigen spreading to p53 and gp70, increased accumulation of CEA-specific T cells in the tumor microenvironment, and increased expression of bcl-XL and bcl-2 in CD4+ and CD8+ T cells in vaccinated mice. Conclusion 4-1BBL cooperates with B7 in enhancing anti-tumor and immunologic responses using a recombinant poxvirus vaccine model. The inclusion of costimulatory molecules targeting

  14. Pandemic HIV-1 Vpu overcomes intrinsic herd immunity mediated by tetherin.

    PubMed

    Iwami, Shingo; Sato, Kei; Morita, Satoru; Inaba, Hisashi; Kobayashi, Tomoko; Takeuchi, Junko S; Kimura, Yuichi; Misawa, Naoko; Ren, Fengrong; Iwasa, Yoh; Aihara, Kazuyuki; Koyanagi, Yoshio

    2015-07-17

    Among the four groups of HIV-1 (M, N, O, and P), HIV-1M alone is pandemic and has rapidly expanded across the world. However, why HIV-1M has caused a devastating pandemic while the other groups remain contained is unclear. Interestingly, only HIV-1M Vpu, a viral protein, can robustly counteract human tetherin, which tethers budding virions. Therefore, we hypothesize that this property of HIV-1M Vpu facilitates human-to-human viral transmission. Adopting a multilayered experimental-mathematical approach, we demonstrate that HIV-1M Vpu confers a 2.38-fold increase in the prevalence of HIV-1 transmission. When Vpu activity is lost, protected human populations emerge (i.e., intrinsic herd immunity develops) through the anti-viral effect of tetherin. We also reveal that all Vpus of transmitted/founder HIV-1M viruses maintain anti-tetherin activity. These findings indicate that tetherin plays the role of a host restriction factor, providing 'intrinsic herd immunity', whereas Vpu has evolved in HIV-1M as a tetherin antagonist.

  15. Maternal plasma and breastmilk viral loads are associated with HIV-1-specific cellular immune responses among HIV-1-exposed, uninfected infants in Kenya

    PubMed Central

    Liu, A Y; Lohman-Payne, B; Chung, M H; Kiarie, J; Kinuthia, J; Slyker, J; Richardson, B; Lehman, D; Farquhar, C; John-Stewart, G

    2015-01-01

    Infants exposed to maternal HIV-1 provide an opportunity to assess correlates of HIV-1-specific interferon (IFN)-γ responses and may be informative in the development of HIV-1 vaccines. HIV-1-infected women with CD4 counts 200–500 cells/mm3 were randomized to short-course zidovudine/nevirapine (ZDV/NVP) or highly active anti-retroviral therapy (HAART) between 2003 and 2005. Maternal plasma and breastmilk HIV-1 RNA and DNA were quantified during the first 6–12 months postpartum. HIV-1 gag peptide-stimulated enzyme-linked immunospot (ELISPOT) assays were conducted in HIV-1-exposed, uninfected infants (EU), and correlates were determined using regression and generalized estimating equations. Among 47 EU infants, 21 (45%) had ≥1 positive ELISPOT result during follow-up. Infants had a median response magnitude of 177 HIV-1-specific spot-forming units (SFU)/106 peripheral blood mononuclear cells (PBMC) [interquartile range (IQR) = 117–287] directed against 2 (IQR = 1–3) gag peptide pools. The prevalence and magnitude of responses did not differ by maternal anti-retroviral (ARV) randomization arm. Maternal plasma HIV-1 RNA levels during pregnancy (P = 0·009) and breastmilk HIV-1 DNA levels at 1 month (P = 0·02) were associated with a higher magnitude of infant HIV-1-specific ELISPOT responses at 1 month postpartum. During follow-up, concurrent breastmilk HIV-1 RNA and DNA (cell-free virus and cell-associated virus, respectively) each were associated positively with magnitude of infant HIV-1-specific responses (P = 0·01). Our data demonstrate the importance of antigenic exposure on the induction of infant HIV-1-specific cellular immune responses in the absence of infection. PMID:25652232

  16. Structural Conservation and Functional Diversity of the Poxvirus Immune Evasion (PIE) Domain Superfamily.

    PubMed

    Nelson, Christopher A; Epperson, Megan L; Singh, Sukrit; Elliott, Jabari I; Fremont, Daved H

    2015-08-28

    Poxviruses encode a broad array of proteins that serve to undermine host immune defenses. Structural analysis of four of these seemingly unrelated proteins revealed the recurrent use of a conserved beta-sandwich fold that has not been observed in any eukaryotic or prokaryotic protein. Herein we propose to call this unique structural scaffolding the PIE (Poxvirus Immune Evasion) domain. PIE domain containing proteins are abundant in chordopoxvirinae, with our analysis identifying 20 likely PIE subfamilies among 33 representative genomes spanning 7 genera. For example, cowpox strain Brighton Red appears to encode 10 different PIEs: vCCI, A41, C8, M2, T4 (CPVX203), and the SECRET proteins CrmB, CrmD, SCP-1, SCP-2, and SCP-3. Characterized PIE proteins all appear to be nonessential for virus replication, and all contain signal peptides for targeting to the secretory pathway. The PIE subfamilies differ primarily in the number, size, and location of structural embellishments to the beta-sandwich core that confer unique functional specificities. Reported ligands include chemokines, GM-CSF, IL-2, MHC class I, and glycosaminoglycans. We expect that the list of ligands and receptors engaged by the PIE domain will grow as we come to better understand how this versatile structural architecture can be tailored to manipulate host responses to infection.

  17. Structural Conservation and Functional Diversity of the Poxvirus Immune Evasion (PIE) Domain Superfamily

    PubMed Central

    Nelson, Christopher A.; Epperson, Megan L.; Singh, Sukrit; Elliott, Jabari I.; Fremont, Daved H.

    2015-01-01

    Poxviruses encode a broad array of proteins that serve to undermine host immune defenses. Structural analysis of four of these seemingly unrelated proteins revealed the recurrent use of a conserved beta-sandwich fold that has not been observed in any eukaryotic or prokaryotic protein. Herein we propose to call this unique structural scaffolding the PIE (Poxvirus Immune Evasion) domain. PIE domain containing proteins are abundant in chordopoxvirinae, with our analysis identifying 20 likely PIE subfamilies among 33 representative genomes spanning 7 genera. For example, cowpox strain Brighton Red appears to encode 10 different PIEs: vCCI, A41, C8, M2, T4 (CPVX203), and the SECRET proteins CrmB, CrmD, SCP-1, SCP-2, and SCP-3. Characterized PIE proteins all appear to be nonessential for virus replication, and all contain signal peptides for targeting to the secretory pathway. The PIE subfamilies differ primarily in the number, size, and location of structural embellishments to the beta-sandwich core that confer unique functional specificities. Reported ligands include chemokines, GM-CSF, IL-2, MHC class I, and glycosaminoglycans. We expect that the list of ligands and receptors engaged by the PIE domain will grow as we come to better understand how this versatile structural architecture can be tailored to manipulate host responses to infection. PMID:26343707

  18. ACTG 5197: A Placebo Controlled Trial of Immunization of HIV-1 Infected Persons with a Replication Deficient Ad5 Vaccine Expressing the HIV-1 Core Protein

    PubMed Central

    Schooley, Robert T.; Spritzler, John; Wang, Hongying; Lederman, Michael M.; Havlir, Diane; Kuritzkes, Daniel R.; Pollard, Richard; Battaglia, Cathy; Robertson, Michael; Mehrotra, Devan; Casimiro, Danilo; Cox, Kara; Schock, Barbara

    2010-01-01

    Background HIV-1 specific cellular immunity contributes to control of HIV-1 replication. HIV-1 infected volunteers on antiretroviral therapy received a replication defective Ad5 HIV-1 gag vaccine in a randomized, blinded therapeutic vaccination study. Methods HIV-1-infected vaccine or placebo recipients underwent a 16-wk analytical treatment interruption (ATI). The log10 HIV-1 RNA at the ATI set point and time averaged area under the curve (TA-AUC) served as co-primary endpoints. Immune responses were measured by intracellular cytokine staining and CFSE dye dilution. Results Vaccine benefit trends were seen for both primary endpoints, but did not reach a pre-specified p ≤ 0.025 level of significance. The estimated shift in TA-AUC and set point were 0.24 (unadjusted p=0.04) and 0.26 (unadjusted p=0.07) log10 copies lower in the vaccine than in the placebo arm. HIV-1 gag-specific CD4+ interferon-γ producing cells were an immunologic correlate of viral control. Conclusion The vaccine was generally safe and well tolerated. Despite a trend favoring viral suppression among vaccine recipients, differences in HIV-1 RNA levels did not meet the pre-specified level of significance. Induction of HIV-1 gag-specific CD4 cells correlated with control of viral replication in vivo. Future immunogenicity studies should require a substantially higher immunogenicity threshold before an ATI is contemplated. PMID:20662716

  19. Molecular clock of HIV-1 envelope genes under early immune selection

    DOE PAGES

    Park, Sung Yong; Love, Tanzy M. T.; Perelson, Alan S.; ...

    2016-06-01

    Here, the molecular clock hypothesis that genes or proteins evolve at a constant rate is a key tool to reveal phylogenetic relationships among species. Using the molecular clock, we can trace an infection back to transmission using HIV-1 sequences from a single time point. Whether or not a strict molecular clock applies to HIV-1’s early evolution in the presence of immune selection has not yet been fully examined.

  20. Enhanced Immune Activation Linked to Endotoxemia in HIV-1 Seronegative Men who have Sex with Men

    PubMed Central

    Palmer, Christine D.; Tomassilli, Julia; Sirignano, Michael; Tejeda, Marisol Romero; Arnold, Kelly B.; Che, Denise; Lauffenburger, Douglas A.; Jost, Stephanie; Allen, Todd; Mayer, Kenneth H.; Altfeld, Marcus

    2015-01-01

    Summary This study assessed cellular and soluble markers of immune activation in HIV-1-seronegative men who have sex with men (MSM). MSM immune profiles were characterized by increased expression of CD57 on T cells and endotoxemia. Endotoxin presence was linked to recent high-risk exposure and associated with elevated cytokine levels and decreased CD4/CD8 T cell ratios. Taken together, these data show elevated levels of inflammation linked to periods of endotoxemia resulting in a significantly different immune phenotype in a subset of MSM at high risk of HIV-1 acquisition. PMID:25003719

  1. Population-Level Immune-Mediated Adaptation in HIV-1 Polymerase during the North American Epidemic

    PubMed Central

    Kinloch, Natalie N.; MacMillan, Daniel R.; Le, Anh Q.; Cotton, Laura A.; Bangsberg, David R.; Buchbinder, Susan; Carrington, Mary; Fuchs, Jonathan; Harrigan, P. Richard; Koblin, Beryl; Kushel, Margot; Markowitz, Martin; Mayer, Kenneth; Milloy, M. J.; Schechter, Martin T.; Wagner, Theresa; Walker, Bruce D.; Carlson, Jonathan M.; Poon, Art F. Y.

    2015-01-01

    ABSTRACT Human leukocyte antigen (HLA) class I-associated polymorphisms in HIV-1 that persist upon transmission to HLA-mismatched hosts may spread in the population as the epidemic progresses. Transmission of HIV-1 sequences containing such adaptations may undermine cellular immune responses to the incoming virus in future hosts. Building upon previous work, we investigated the extent of HLA-associated polymorphism accumulation in HIV-1 polymerase (Pol) through comparative analysis of linked HIV-1/HLA class I genotypes sampled during historic (1979 to 1989; n = 338) and modern (2001 to 2011; n = 278) eras from across North America (Vancouver, BC, Canada; Boston, MA; New York, NY; and San Francisco, CA). Phylogenies inferred from historic and modern HIV-1 Pol sequences were star-like in shape, with an inferred most recent common ancestor (epidemic founder virus) sequence nearly identical to the modern North American subtype B consensus sequence. Nevertheless, modern HIV-1 Pol sequences exhibited roughly 2-fold-higher patristic (tip-to-tip) genetic distances than historic sequences, with HLA pressures likely driving ongoing diversification. Moreover, the frequencies of published HLA-associated polymorphisms in individuals lacking the selecting HLA class I allele was on average ∼2.5-fold higher in the modern than in the historic era, supporting their spread in circulation, though some remained stable in frequency during this time. Notably, polymorphisms restricted by protective HLA alleles appear to be spreading to a greater relative extent than others, though these increases are generally of modest absolute magnitude. However, despite evidence of polymorphism spread, North American hosts generally remain at relatively low risk of acquiring an HIV-1 polymerase sequence substantially preadapted to their HLA profiles, even in the present era. IMPORTANCE HLA class I-restricted cytotoxic T-lymphocyte (CTL) escape mutations in HIV-1 that persist upon transmission may

  2. Broadly Neutralizing Antibodies against HIV-1 As a Novel Aspect of the Immune Response.

    PubMed

    Shcherbakov, D N; Bakulina, A Y; Karpenko, L I; Ilyichev, A A

    2015-01-01

    The human immunodeficiency virus-1 (HIV-1) has the ability to evade the adaptive immune response due to high mutation rates. Soon after the discovery of HIV-1, it was originally proposed that neutralizing of antibodies to the virus occurs rarely or cannot be elicited at all. In the 1990s, there appeared reports that sera of select HIV-1-infected individuals contained antibodies capable of neutralizing different virus subtypes. Such antibodies were named broadly neutralizing antibodies (bNAbs). Since 2009, the development of new cell technologies has intensified research efforts directed at identifying new bNAbs with a neutralization potency of over 90% of primary HIV-1 isolates. These antibodies have unique characteristics which include high levels of somatic mutations and unusually long variable loops that penetrate through the glycan shield of HIV-1 Env to contact the protein surface. In this review, we will attempt to summarize the latest data on bNAbs against HIV-1 in terms of their interactions with the sites of vulnerability on HIV-1 glycoproteins.

  3. Broadly Neutralizing Antibodies against HIV-1 As a Novel Aspect of the Immune Response

    PubMed Central

    Shcherbakov, D. N.; Bakulina, A. Y.; Karpenko, L. I.; Ilyichev, A. A.

    2015-01-01

    The human immunodeficiency virus-1 (HIV-1) has the ability to evade the adaptive immune response due to high mutation rates. Soon after the discovery of HIV-1, it was originally proposed that neutralizing of antibodies to the virus occurs rarely or cannot be elicited at all. In the 1990s, there appeared reports that sera of select HIV-1-infected individuals contained antibodies capable of neutralizing different virus subtypes. Such antibodies were named broadly neutralizing antibodies (bNAbs). Since 2009, the development of new cell technologies has intensified research efforts directed at identifying new bNAbs with a neutralization potency of over 90% of primary HIV-1 isolates. These antibodies have unique characteristics which include high levels of somatic mutations and unusually long variable loops that penetrate through the glycan shield of HIV-1 Env to contact the protein surface. In this review, we will attempt to summarize the latest data on bNAbs against HIV-1 in terms of their interactions with the sites of vulnerability on HIV-1 glycoproteins. PMID:26798488

  4. Reconstructing the temporal progression of HIV-1 immune response pathways

    PubMed Central

    Jain, Siddhartha; Arrais, Joel; Venkatachari, Narasimhan J.; Ayyavoo, Velpandi; Bar-Joseph, Ziv

    2016-01-01

    Motivation: Most methods for reconstructing response networks from high throughput data generate static models which cannot distinguish between early and late response stages. Results: We present TimePath, a new method that integrates time series and static datasets to reconstruct dynamic models of host response to stimulus. TimePath uses an Integer Programming formulation to select a subset of pathways that, together, explain the observed dynamic responses. Applying TimePath to study human response to HIV-1 led to accurate reconstruction of several known regulatory and signaling pathways and to novel mechanistic insights. We experimentally validated several of TimePaths’ predictions highlighting the usefulness of temporal models. Availability and Implementation: Data, Supplementary text and the TimePath software are available from http://sb.cs.cmu.edu/timepath Contact: zivbj@cs.cmu.edu Supplementary information: Supplementary data are available at Bioinformatics online. PMID:27307624

  5. Immune-Based Approaches to the Prevention of Mother-to-child-Transmission of HIV-1: Active and Passive Immunization

    PubMed Central

    Lohman-Payne, Barb; Slyker, Jennifer; Rowland-Jones, Sarah L.

    2010-01-01

    Synopsis Despite more than two decades of research, an effective vaccine that can prevent HIV-1 infection in populations exposed to the virus remains elusive. In the pursuit of an HIV-1 vaccine, does prevention of exposure to maternal HIV-1 in utero, at birth or in early life through breast-milk require special consideration? In this article we will review what is known about the immune mechanisms of susceptibility and resistance to mother-to-child transmission (MTCT) of HIV-1 and will summarise studies that have used passive or active immunisation strategies to interrupt -MTCT of HIV-1. We will also describe potentially modifiable infectious co-factors that may enhance transmission and/or disease progression (especially in the developing world). Ultimately an effective prophylactic vaccine against HIV-1 infection will need to be deployed as part of the Extended Programme of Immunisation (EPI) recommended by the World Health Organisation (WHO) for use in developing countries, so it is important to understand how the infant immune system responds to HIV-1 antigens, both in natural infection and presented by candidate vaccines. PMID:21078451

  6. IMMUNE ACTIVATION AND PAEDIATRIC HIV-1 DISEASE OUTCOME

    PubMed Central

    Roider, J; Muenchhoff, M; Goulder, PJR

    2016-01-01

    Purpose of review The paediatric HIV epidemic is changing. Over the past decade, new infections have substantially reduced whilst access to antiretroviral therapy (ART) has increased. Overall this success means that numbers of children living with HIV are climbing. In addition, the problems in adults of chronic inflammation resulting from persistent immune activation even following ART-mediated suppression of viral replication are magnified in children infected from birth. Recent findings Features of immune ontogeny favor low immune activation in early life, whilst specific aspects of paediatric HIV infection tend to increase it. A subset of ART-naïve non-progressing children exists in whom normal CD4 counts are maintained in the setting of persistent high viremia and yet in the context of low immune activation. This sooty mangabey-like phenotype contrasts with non-progressing adult infection characterized by the expression of protective HLA class I molecules and low viral load. The particular factors contributing to raised or lowered immune activation in paediatric infection, and that ultimately influence disease outcome, are discussed. Summary Novel strategies to circumvent the unwanted long-term consequences of HIV infection may be possible in children in whom natural immune ontogeny in early life militates against immune activation. Defining the mechanisms underlying low immune activation in natural HIV infection would have applications beyond paediatric HIV. PMID:26679413

  7. The impact of inflammation and immune activation on B cell differentiation during HIV-1 infection.

    PubMed

    Ruffin, Nicolas; Thang, Pham Hong; Rethi, Bence; Nilsson, Anna; Chiodi, Francesca

    2011-01-01

    One important pathogenic feature of human immunodeficiency virus (HIV)-1 infection is chronic immune activation and impaired survival of T and B cells. A decline of resting memory B cells was reported to occur in both children and adults infected with HIV-1; these cells are responsible for maintaining an adequate serological response to antigens previously encountered in life through natural infection or vaccination. Further understanding of the mechanisms leading to impaired B cell differentiation and germinal center reaction might be essential to design new HIV vaccines and therapies that could improve humoral immune responses in HIV-1 infected individuals. In the present article we summarize the literature and present our view on critical mechanisms of B cell development impaired during HIV-1 infection. We also discuss the impact of microbial translocation, a driving force for persistent inflammation during HIV-1 infection, on survival of terminally differentiated B cells and how the altered expression of cytokines/chemokines pivotal for communication between T and B cells in lymphoid tissues may impair formation of memory B cells.

  8. The Impact of Inflammation and Immune Activation on B Cell Differentiation during HIV-1 Infection

    PubMed Central

    Ruffin, Nicolas; Thang, Pham Hong; Rethi, Bence; Nilsson, Anna; Chiodi, Francesca

    2012-01-01

    One important pathogenic feature of human immunodeficiency virus (HIV)-1 infection is chronic immune activation and impaired survival of T and B cells. A decline of resting memory B cells was reported to occur in both children and adults infected with HIV-1; these cells are responsible for maintaining an adequate serological response to antigens previously encountered in life through natural infection or vaccination. Further understanding of the mechanisms leading to impaired B cell differentiation and germinal center reaction might be essential to design new HIV vaccines and therapies that could improve humoral immune responses in HIV-1 infected individuals. In the present article we summarize the literature and present our view on critical mechanisms of B cell development impaired during HIV-1 infection. We also discuss the impact of microbial translocation, a driving force for persistent inflammation during HIV-1 infection, on survival of terminally differentiated B cells and how the altered expression of cytokines/chemokines pivotal for communication between T and B cells in lymphoid tissues may impair formation of memory B cells. PMID:22566879

  9. The Effect of Chloroquine on Immune Activation and Interferon Signatures Associated with HIV-1.

    PubMed

    Jacobson, Jeffrey M; Bosinger, Steven E; Kang, Minhee; Belaunzaran-Zamudio, Pablo; Matining, Roy M; Wilson, Cara C; Flexner, Charles; Clagett, Brian; Plants, Jill; Read, Sarah; Purdue, Lynette; Myers, Laurie; Boone, Linda; Tebas, Pablo; Kumar, Princy; Clifford, David; Douek, Daniel; Silvestri, Guido; Landay, Alan L; Lederman, Michael M

    2016-07-01

    Immune activation associated with HIV-1 infection contributes to morbidity and mortality. We studied whether chloroquine, through Toll-like receptor (TLR) antagonist properties, could reduce immune activation thought to be driven by TLR ligands, such as gut-derived bacterial elements and HIV-1 RNAs. AIDS Clinical Trials Group A5258 was a randomized, double-blind, placebo-controlled study in 33 HIV-1-infected participants off antiretroviral therapy (ART) and 37 participants on ART. Study participants in each cohort were randomized 1:1 to receive chloroquine 250 mg orally for the first 12 weeks then cross over to placebo for 12 weeks or placebo first and then chloroquine. Combining the periods of chloroquine use in both arms of the on-ART cohort yielded a modest reduction in the proportions of CD8 T cells co-expressing CD38 and DR (median decrease = 3.0%, p = .003). The effect on immune activation in the off-ART cohort was likely confounded by increased plasma HIV-1 RNA during chloroquine administration (median 0.29 log10 increase, p < .001). Transcriptional analyses in the off-ART cohort showed decreased expression of interferon-stimulated genes in 5 of 10 chloroquine-treated participants and modest decreases in CD38 and CCR5 RNAs in all chloroquine-treated participants. Chloroquine modestly reduced immune activation in ART-treated HIV-infected participants. Clinical Trials Registry Number: NCT00819390.

  10. Neutralizing antibodies to HIV-1 induced by immunization

    PubMed Central

    McCoy, Laura E.

    2013-01-01

    Most neutralizing antibodies act at the earliest steps of viral infection and block interaction of the virus with cellular receptors to prevent entry into host cells. The inability to induce neutralizing antibodies to HIV has been a major obstacle to HIV vaccine research since the early days of the epidemic. However, in the past three years, the definition of a neutralizing antibody against HIV has been revolutionized by the isolation of extremely broad and potent neutralizing antibodies from HIV-infected individuals. Considerable hurdles remain for inducing neutralizing antibodies to a protective level after immunization. Meanwhile, novel technologies to bypass the induction of antibodies are being explored to provide prophylactic antibody-based interventions. This review addresses the challenge of inducing HIV neutralizing antibodies upon immunization and considers notable recent advances in the field. A greater understanding of the successes and failures for inducing a neutralizing response upon immunization is required to accelerate the development of an effective HIV vaccine. PMID:23401570

  11. Advancing Toward HIV-1 Vaccine Efficacy through the Intersections of Immune Correlates.

    PubMed

    Tomaras, Georgia D; Haynes, Barton F

    2014-03-01

    Interrogating immune correlates of infection risk for efficacious and non-efficacious HIV-1 vaccine clinical trials have provided hypotheses regarding the mechanisms of induction of protective immunity to HIV-1. To date, there have been six HIV-1 vaccine efficacy trials (VAX003, Vaxgen, Inc., San Francisco, CA, USA), VAX004 (Vaxgen, Inc.), HIV-1 Vaccine Trials Network (HVTN) 502 (Step), HVTN 503 (Phambili), RV144 (sponsored by the U.S. Military HIV Research Program, MHRP) and HVTN 505). Cellular, humoral, host genetic and virus sieve analyses of these human clinical trials each can provide information that may point to potentially protective mechanisms for vaccine-induced immunity. Critical to staying on the path toward development of an efficacious vaccine is utilizing information from previous human and non-human primate studies in concert with new discoveries of basic HIV-1 host-virus interactions. One way that past discoveries from correlate analyses can lead to novel inventions or new pathways toward vaccine efficacy is to examine the intersections where different components of the correlate analyses overlap (e.g., virus sieve analysis combined with humoral correlates) that can point to mechanistic hypotheses. Additionally, differences in durability among vaccine-induced T- and B-cell responses indicate that time post-vaccination is an important variable. Thus, understanding the nature of protective responses, the degree to which such responses have, or have not, as yet, been induced by previous vaccine trials and the design of strategies to induce durable T- and B-cell responses are critical to the development of a protective HIV-1 vaccine.

  12. Modulation of Innate Immunity by Copolymer-1 Leads to Neuroprotection in Murine HIV-1 Encephalitis

    PubMed Central

    Gorantla, Santhi; Liu, Jianuo; Wang, Tong; Holguin, Adelina; Sneller, Hannah M; Dou, Huanyu; Kipnis, Jonathan; Poluektova, Larisa; Gendelman, Howard E

    2009-01-01

    Virus-infected and immune competent mononuclear phagocytes (MP; perivascular macrophages and microglia) drive the neuropathogenesis of human immunodeficiency virus type one (HIV-1) infection. Modulation of the MP phenotype from neurodestructive to neuroprotective underlies adjunctive therapeutic strategies for human disease. We reasoned that, as Copolymer-1 (Cop-1) can induce neuroprotective activities in a number of neuroinflammatory and neurodegenerative disorders, it could directly modulate HIV-1 infected MP neurotoxic activities. We now demonstrate that, in laboratory assays, Cop-1-stimulated virus-infected human monocyte-derived macrophages protect against neuronal injury and elicit anti-retroviral activities. Severe combined immune deficient (SCID) mice were stereotactically injected with HIV-1 infected human monocyte-derived macrophages, into the basal ganglia, to induce HIV-1 encephalitis (HIVE). Cop-1 was administered subcutaneously for 7 days. In HIVE mice Cop-1 treatment led to anti-inflammatory and neuroprotective responses. Reduced micro- and astro- gliosis, and conserved NeuN/MAP-2 levels were observed in virus affected brain regions in Cop-1-treated mice. These were linked to interleukin-10 and brain-derived neurotrophic factor expression and downregulation of inducible nitric oxide synthase. The data, taken together, demonstrate that Cop-1 can modulate innate immunity and, as such, improve disease outcomes in an animal model of HIVE. PMID:18046731

  13. Humoral Immune Pressure Selects for HIV-1 CXC-chemokine Receptor 4-using Variants.

    PubMed

    Lin, Nina; Gonzalez, Oscar A; Registre, Ludy; Becerril, Carlos; Etemad, Behzad; Lu, Hong; Wu, Xueling; Lockman, Shahin; Essex, Myron; Moyo, Sikhulile; Kuritzkes, Daniel R; Sagar, Manish

    2016-06-01

    Although both C-C chemokine receptor 5 (CCR5)- and CXC chemokine receptor 4 (CXCR4)-using HIV-1 strains cause AIDS, the emergence of CXCR4-utilizing variants is associated with an accelerated decline in CD4+ T cells. It remains uncertain if CXCR4-using viruses hasten disease or if these variants only emerge after profound immunological damage. We show that exclusively CXCR4- as compared to cocirculating CCR5-utilizing variants are less sensitive to neutralization by both contemporaneous autologous plasma and plasma pools from individuals that harbor only CCR5-using HIV-1. The CXCR4-utilizing variants, however, do not have a global antigenic change because they remain equivalently susceptible to antibodies that do not target coreceptor binding domains. Studies with envelope V3 loop directed antibodies and chimeric envelopes suggest that the neutralization susceptibility differences are potentially influenced by the V3 loop. In vitro passage of a neutralization sensitive CCR5-using virus in the presence of autologous plasma and activated CD4+ T cells led to the emergence of a CXCR4-utilizing virus in 1 of 3 cases. These results suggest that in some but not necessarily all HIV-1 infected individuals humoral immune pressure against the autologous virus selects for CXCR4-using variants, which potentially accelerates disease progression. Our observations have implications for using antibodies for HIV-1 immune therapy.

  14. HIV-1 VACCINES. Diversion of HIV-1 vaccine-induced immunity by gp41-microbiota cross-reactive antibodies.

    PubMed

    Williams, Wilton B; Liao, Hua-Xin; Moody, M Anthony; Kepler, Thomas B; Alam, S Munir; Gao, Feng; Wiehe, Kevin; Trama, Ashley M; Jones, Kathryn; Zhang, Ruijun; Song, Hongshuo; Marshall, Dawn J; Whitesides, John F; Sawatzki, Kaitlin; Hua, Axin; Liu, Pinghuang; Tay, Matthew Z; Seaton, Kelly E; Shen, Xiaoying; Foulger, Andrew; Lloyd, Krissey E; Parks, Robert; Pollara, Justin; Ferrari, Guido; Yu, Jae-Sung; Vandergrift, Nathan; Montefiori, David C; Sobieszczyk, Magdalena E; Hammer, Scott; Karuna, Shelly; Gilbert, Peter; Grove, Doug; Grunenberg, Nicole; McElrath, M Juliana; Mascola, John R; Koup, Richard A; Corey, Lawrence; Nabel, Gary J; Morgan, Cecilia; Churchyard, Gavin; Maenza, Janine; Keefer, Michael; Graham, Barney S; Baden, Lindsey R; Tomaras, Georgia D; Haynes, Barton F

    2015-08-14

    An HIV-1 DNA prime vaccine, with a recombinant adenovirus type 5 (rAd5) boost, failed to protect from HIV-1 acquisition. We studied the nature of the vaccine-induced antibody (Ab) response to HIV-1 envelope (Env). HIV-1-reactive plasma Ab titers were higher to Env gp41 than to gp120, and repertoire analysis demonstrated that 93% of HIV-1-reactive Abs from memory B cells responded to Env gp41. Vaccine-induced gp41-reactive monoclonal antibodies were non-neutralizing and frequently polyreactive with host and environmental antigens, including intestinal microbiota (IM). Next-generation sequencing of an immunoglobulin heavy chain variable region repertoire before vaccination revealed an Env-IM cross-reactive Ab that was clonally related to a subsequent vaccine-induced gp41-reactive Ab. Thus, HIV-1 Env DNA-rAd5 vaccine induced a dominant IM-polyreactive, non-neutralizing gp41-reactive Ab repertoire response that was associated with no vaccine efficacy.

  15. Targeting HIV-1 Env gp140 to LOX-1 Elicits Immune Responses in Rhesus Macaques.

    PubMed

    Zurawski, Gerard; Zurawski, Sandra; Flamar, Anne-Laure; Richert, Laura; Wagner, Ralf; Tomaras, Georgia D; Montefiori, David C; Roederer, Mario; Ferrari, Guido; Lacabaratz, Christine; Bonnabau, Henri; Klucar, Peter; Wang, Zhiqing; Foulds, Kathryn E; Kao, Shing-Fen; Yates, Nicole L; LaBranche, Celia; Jacobs, Bertram L; Kibler, Karen; Asbach, Benedikt; Kliche, Alexander; Salazar, Andres; Reed, Steve; Self, Steve; Gottardo, Raphael; Galmin, Lindsey; Weiss, Deborah; Cristillo, Anthony; Thiebaut, Rodolphe; Pantaleo, Giuseppe; Levy, Yves

    2016-01-01

    Improved antigenicity against HIV-1 envelope (Env) protein is needed to elicit vaccine-induced protective immunity in humans. Here we describe the first tests in non-human primates (NHPs) of Env gp140 protein fused to a humanized anti-LOX-1 recombinant antibody for delivering Env directly to LOX-1-bearing antigen presenting cells, especially dendritic cells (DC). LOX-1, or 1ectin-like oxidized low-density lipoprotein (LDL) receptor-1, is expressed on various antigen presenting cells and endothelial cells, and is involved in promoting humoral immune responses. The anti-LOX-1 Env gp140 fusion protein was tested for priming immune responses and boosting responses in animals primed with replication competent NYVAC-KC Env gp140 vaccinia virus. Anti-LOX-1 Env gp140 vaccination elicited robust cellular and humoral responses when used for either priming or boosting immunity. Co-administration with Poly ICLC, a TLR3 agonist, was superior to GLA, a TLR4 agonist. Both CD4+ and CD8+ Env-specific T cell responses were elicited by anti-LOX-1 Env gp140, but in particular the CD4+ T cells were multifunctional and directed to multiple epitopes. Serum IgG and IgA antibody responses induced by anti-LOX-1 Env gp140 against various gp140 domains were cross-reactive across HIV-1 clades; however, the sera neutralized only HIV-1 bearing sequences most similar to the clade C 96ZM651 Env gp140 carried by the anti-LOX-1 vehicle. These data, as well as the safety of this protein vaccine, justify further exploration of this DC-targeting vaccine approach for protective immunity against HIV-1.

  16. Vaccines that stimulate T cell immunity to HIV-1: the next step.

    PubMed

    McMichael, Andrew J; Koff, Wayne C

    2014-04-01

    The search for a vaccine against human immunodeficiency virus type 1 (HIV-1) has many hurdles to overcome. Ideally, the stimulation of both broadly neutralizing antibodies and cell-mediated immune responses remains the best option, but no candidate in clinical trials at present has elicited such antibodies, and efficacy trials have not demonstrated any benefit for vaccines designed to stimulate immune responses of CD8(+) T cells. Findings obtained with the simian immunodeficiency virus (SIV) monkey model have provided new evidence that stimulating effective CD8(+) T cell immunity could provide protection, and in this Perspective we explore the path forward for optimizing such responses in humans.

  17. HIV-1 Negative Female Sex Workers Sustain High Cervical IFNε, Low Immune Activation and Low Expression of HIV-1 Required Host Genes

    PubMed Central

    Abdulhaqq, Shaheed A.; Zorrilla, Carmen; Kang, Guobin; Yin, Xiangfan; Tamayo, Vivian; Seaton, Kelly E.; Joseph, Jocelin; Garced, Sheyla; Tomaras, Georgia D.; Linn, Kristin A.; Foulkes, Andrea S.; Azzoni, Livio; VerMilyea, Matthew; Coutifaris, Christos; Kossenkov, Andrew V.; Showe, Louise; Kraiselburd, Edmundo N.; Li, Qingsheng; Montaner, Luis J.

    2015-01-01

    Sex workers within high HIV endemic areas are often a target population where anti-HIV prophylactic strategies are tested. We hypothesize that in women with high levels of genital exposure to semen changes in cervicovaginal mucosal and/or systemic immune activation will contribute to a decreased susceptibility to HIV-1 infection. To address this question, we assessed sexual activity, immune activation status (in peripheral blood), as well as cellular infiltrates and gene expression in ectocervical mucosa biopsies in female sex workers [FSW] (n=50), as compared to control women [CG] (n=32). FSW had low to absent HIV-1 specific immune responses with significantly lower CD38 expression on circulating CD4+ or CD8+ T-Cells (both: p<0.001) together with lower cervical gene expression of genes associated with leukocyte homing and chemotaxis. FSW also had increased levels of Interferon-ε gene and protein expression in the cervical epithelium together with reduced expression of genes associated with HIV-1 integration and replication. A correlative relationship between semen exposure and elevated type-1 IFN expression in FSW was also established. Overall, our data suggest that long-term condomless sex work can result in multiple changes within the cervicovaginal compartment that would contribute to sustaining a lower susceptibility for HIV-1 infection in absence of HIV-specific responses. PMID:26555708

  18. Autoimmune anti-HIV-1gp120 antibody with antiidiotype-like activity in sera and immune complexes of HIV-1-related immunologic thrombocytopenia.

    PubMed Central

    Karpatkin, S; Nardi, M

    1992-01-01

    Autoimmune antiidiotype-like antibody (Ab2) directed against anti-HIV-1gp120 (Ab1) was found in high titer in the sera of 10 consecutive homosexual and 11 narcotic addict HIV-1-related immunologic thrombocytopenia (HIV-1-ITP) patients, was barely detectable in 10 nonthrombocytopenic HIV-1 sero-positive individuals, and was not detectable in 5 normal subjects by use of a solid-phase RIA. Reactivity of autologous Ab2 for Ab1 was 4-120-fold greater than Ab2 for homologous Ab1. Affinity-purified Ab2 did not block the binding of affinity-purified Ab1 to its HIV-1gp120 epitopes on immunoblot, indicating the absence of "internal image" antiidiotype. Both Ab1 and Ab2 are precipitable from sera with polyethylene glycol (PEG) and present in a macromolecular complex that is excluded by gel filtration on G200 and contains IgG, IgM, C3, and the anti-F(ab')2 antiidiotype-like complex. PEG-precipitable complexes bind to platelets in a saturation-dependent manner. Neither affinity-purified Ab1 nor Ab2 binds to platelets. However, the combination of Ab1 and Ab2 (preincubated for 2 h at 22 degrees C) binds to platelets in a saturation-dependent manner at an optimum ratio range of 10-20:1. Ab2 reactivity correlates with serum PEG-precipitable immune complex level (r = 0.91; P less than 0.001) and with thrombocytopenia (r = 0.89; P less than 0.001). We suggest that the anti-HIV-1gp120 antiidiotype-like complex contributes to the markedly elevated platelet Ig and C3 level of HIV-1-ITP patients and propose that this may contribute to their thrombocytopenia. Images PMID:1737832

  19. Mucosal Vaccination Overcomes the Barrier to Recombinant Vaccinia Immunization Caused by Preexisting Poxvirus Immunity

    NASA Astrophysics Data System (ADS)

    Belyakov, Igor M.; Moss, Bernard; Strober, Warren; Berzofsky, Jay A.

    1999-04-01

    Overcoming preexisting immunity to vaccinia virus in the adult population is a key requirement for development of otherwise potent recombinant vaccinia vaccines. Based on our observation that s.c. immunization with vaccinia induces cellular and antibody immunity to vaccinia only in systemic lymphoid tissue and not in mucosal sites, we hypothesized that the mucosal immune system remains naive to vaccinia and therefore amenable to immunization with recombinant vaccinia vectors despite earlier vaccinia exposure. We show that mucosal immunization of vaccinia-immune BALB/c mice with recombinant vaccinia expressing HIV gp160 induced specific serum antibody and strong HIV-specific cytotoxic T lymphocyte responses. These responses occurred not only in mucosal but also in systemic lymphoid tissue, whereas systemic immunization was ineffective under these circumstances. In this context, intrarectal immunization was more effective than intranasal immunization. Boosting with a second dose of recombinant vaccinia was also more effective via the mucosal route. The systemic HIV-specific cytotoxic T lymphocyte response was enhanced by coadministration of IL-12 at the mucosal site. These results also demonstrate the independent compartmentalization of the mucosal versus systemic immune systems and the asymmetric trafficking of lymphocytes between them. This approach to circumvent previous vaccinia immunity may be useful for induction of protective immunity against infectious diseases and cancer in the sizable populations with preexisting immunity to vaccinia from smallpox vaccination.

  20. Genetic determinants of HIV-1 infection and progression to AIDS: immune response genes.

    PubMed

    Kaur, G; Mehra, N

    2009-11-01

    Genomic studies involving well-defined multicenter cohorts of HIV-1/AIDS covering multiple populations have led to a greater understanding of the role of host determinants in viral acquisition, disease progression, transmission, and response to anti-retroviral therapy. Similarly, recent knowledge on the virus genetic diversity has helped in elucidating mechanisms leading to the evolution of viral escape mutants and the role played by host immune determinants, in particular the major histocompatibility complex (MHC) associated genes. At least two alleles, HLA-B*27 and B*57, have been identified as 'protective' against HIV-1 while B*35 and B*53 act as susceptibility favoring factors. How human leukocyte antigen (HLA)-mediated selection drives the evolution of HIV-1 and which circulating variants are more likely to evade immune surveillance of the population are now beginning to become clear. Importantly, the rare HLA alleles in a population bear a selective advantage to the host because these can induce immune responses against pre-adapted viruses. It is conceivable that previously established protective HLA associations are shifting with the evolving cytotoxic T lymphocyte (CTL) epitopes and may not remain protective in future. At the same time, this process is unraveling novel sub-dominant epitopes of the virus which could now be incorporated as the dominant target CTL epitopes. An insight into the population-specific correlates of protection is hence necessary for designing future anti-HIV therapeutic and/or prophylactic vaccine formulation(s).

  1. The innate immune response to HIV-1: to sense or not to sense.

    PubMed

    Landau, Nathaniel R

    2014-05-01

    The immune responses to viruses provide a means to quickly alert the host to the presence of an invader, activating a range of intrinsic and adaptive antiviral mechanisms. Several research groups have made advances in understanding the innate immune response to HIV-1, although their findings differ. Some investigators find that the virus slips under the radar of the pattern recognition receptors that sense viruses by co-opting host factors that restrict accessibility of the viral nucleic acids, while others find that the virus is sensed and activates a type-I interferon response. This article reviews the recent findings and discusses the similarities and differences.

  2. The Innate Immune Response to HIV-1: To Sense or Not to Sense

    PubMed Central

    2014-01-01

    The immune responses to viruses provide a means to quickly alert the host to the presence of an invader, activating a range of intrinsic and adaptive antiviral mechanisms. Several research groups have made advances in understanding the innate immune response to HIV-1, although their findings differ. Some investigators find that the virus slips under the radar of the pattern recognition receptors that sense viruses by co-opting host factors that restrict accessibility of the viral nucleic acids, while others find that the virus is sensed and activates a type-I interferon response. This article reviews the recent findings and discusses the similarities and differences. PMID:24665823

  3. HIV-1 Tat modulates T-bet expression and induces Th1 type of immune response

    SciTech Connect

    Kulkarni, Asavari; Ravi, Dyavar S.; Singh, Kamini; Rampalli, Shravanti; Parekh, Vrajesh; Mitra, Debashis; Chattopadhyay, Samit . E-mail: samit@nccs.res.in

    2005-04-08

    The HIV-1 transactivator Tat performs various viral and cellular functions. Primarily, it induces processive transcription from the HIV-1 LTR promoter. However, Tat secreted from infected cells is known to activate uninfected lymphocytes through receptors. To further delineate the specific target genes, extracellular Tat was expressed on the cell membrane of stimulator cells and co-cultured with human PBMCs. Along with induced CD4{sup +} T cell proliferation and IFN-{gamma} secretion, there was strong upregulation of T-bet expression which is majorly implicated in generating T{sub H}1 type of immune response. To further delineate the effect of extracellular Tat on HIV replication, both p24 analysis and in vivo GFP expression were performed. There was a significant inhibition of HIV-1 replication in human CEM-GFP cell line and hPBMCs. Thus, for the first time we report that apart from its transactivation activity, extracellular Tat acts as a costimulatory molecule that affects viral replication by modulating host immune response through induction of T-bet expression and IFN-{gamma} secretion.

  4. Innate and Adaptive Immune Responses Both Contribute to Pathological CD4 T Cell Activation in HIV-1 Infected Ugandans

    DTIC Science & Technology

    2011-04-01

    Matud JL, Yamashita TE, Mellors JW, et al. (2002) Predictive value of immunologic and virologic markers after long or short duration of HIV-1...of AIDS. Annu Rev Med 60: 471–484. 10. Gonzalez VD, Landay AL, Sandberg JK (2010) Innate immunity and chronic immune activation in HCV /HIV-1 co...rescues the proliferative response of simian immunodeficiency virus-specific CD4 and CD8 T cells during chronic infection. Immunology 124: 277–293. 31

  5. HIV-1 Replication in Human Immune Cells Is Independent of TAR DNA Binding Protein 43 (TDP-43) Expression

    PubMed Central

    Nehls, Julia; Koppensteiner, Herwig; Brack-Werner, Ruth; Floss, Thomas; Schindler, Michael

    2014-01-01

    The TAR DNA binding protein (TDP-43) was originally identified as a host cell factor binding to the HIV-1 LTR and thereby suppressing HIV-1 transcription and gene expression (Ou et al., J.Virol. 1995, 69(6):3584). TDP-43 is a global regulator of transcription, can influence RNA metabolism in many different ways and is ubiquitously expressed. Thus, TDP-43 could be a major factor restricting HIV-1 replication at the level of LTR transcription and gene expression. These facts prompted us to revisit the role of TDP-43 for HIV-1 replication. We utilized established HIV-1 cell culture systems as well as primary cell models and performed a comprehensive analysis of TDP-43 function and investigated its putative impact on HIV-1 gene expression. In HIV-1 infected cells TDP-43 was neither degraded nor sequestered from the nucleus. Furthermore, TDP-43 overexpression as well as siRNA mediated knockdown did not affect HIV-1 gene expression and virus production in T cells and macrophages. In summary, our experiments argue against a restricting role of TDP-43 during HIV-1 replication in immune cells. PMID:25127017

  6. Differential immune mechanism to HIV-1 Tat variants and its regulation by AEA [corrected].

    PubMed

    Krishnan, Gopinath; Chatterjee, Nivedita

    2015-05-06

    In the retina, Müller glia is a dominant player of immune response. The HIV-1 transactivator viral protein (Tat) induces production of several neurotoxic cytokines in retinal cells. We show that HIV-1 clades Tat B and C act differentially on Müller glia, which is reflected in apoptosis, activation of cell death pathway components and pro-inflammatory cytokines. The harsher immune-mediated pathology of Tat B, as opposed to milder effects of Tat C, manifests at several signal transduction pathways, notably, MAPK, STAT, SOCS, the NFκB signalosome, and TTP. In activated cells, anandamide (AEA), acting as an immune-modulator, suppresses Tat B effect through MKP-1 but Tat C action via MEK-1. AEA lowers nuclear NF-κB and TAB2 for both variants while elevating IRAK1BP1 in activated Müller glia. Müller glia exposed to Tat shows enhanced PBMC attachment. Tat-induced increase in leukocyte adhesion to Müller cells can be mitigated by AEA, involving both CB receptors. This study identifies multiple signalling components that drive immune-mediated pathology and contribute to disease severity in HIV clades. We show that the protective effects of AEA occur at various stages in cytokine generation and are clade-dependant.

  7. Sequential Immunization Elicits Broadly Neutralizing Anti-HIV-1 Antibodies in Ig Knockin Mice.

    PubMed

    Escolano, Amelia; Steichen, Jon M; Dosenovic, Pia; Kulp, Daniel W; Golijanin, Jovana; Sok, Devin; Freund, Natalia T; Gitlin, Alexander D; Oliveira, Thiago; Araki, Tatsuya; Lowe, Sarina; Chen, Spencer T; Heinemann, Jennifer; Yao, Kai-Hui; Georgeson, Erik; Saye-Francisco, Karen L; Gazumyan, Anna; Adachi, Yumiko; Kubitz, Michael; Burton, Dennis R; Schief, William R; Nussenzweig, Michel C

    2016-09-08

    A vaccine that elicits broadly neutralizing antibodies (bNAbs) against HIV-1 is likely to be protective, but this has not been achieved. To explore immunization regimens that might elicit bNAbs, we produced and immunized mice expressing the predicted germline PGT121, a bNAb specific for the V3-loop and surrounding glycans on the HIV-1 spike. Priming with an epitope-modified immunogen designed to activate germline antibody-expressing B cells, followed by ELISA-guided boosting with a sequence of directional immunogens, native-like trimers with decreasing epitope modification, elicited heterologous tier-2-neutralizing responses. In contrast, repeated immunization with the priming immunogen did not. Antibody cloning confirmed elicitation of high levels of somatic mutation and tier-2-neutralizing antibodies resembling the authentic human bNAb. Our data establish that sequential immunization with specifically designed immunogens can induce high levels of somatic mutation and shepherd antibody maturation to produce bNAbs from their inferred germline precursors.

  8. HIV-1 and hijacking of the host immune system: the current scenario.

    PubMed

    Imran, Muhammad; Manzoor, Sobia; Saalim, Muhammad; Resham, Saleha; Ashraf, Javed; Javed, Aneela; Waqar, Ahmed Bilal

    2016-10-01

    Human immunodeficiency virus (HIV) infection is a major health burden across the world which leads to the development of acquired immune deficiency syndrome (AIDS). This review article discusses the prevalence of HIV, its major routes of transmission, natural immunity, and evasion from the host immune system. HIV is mostly prevalent in Sub-Saharan Africa and low income countries. It is mostly transmitted by sharing syringe needles, blood transfusion, and sexual routes. The host immune system is categorized into three main types; the innate, the adaptive, and the intrinsic immune system. Regarding the innate immune system against HIV, the key players are mucosal membrane, dendritic cells (DCs), complement system, interferon, and host Micro RNAs. The major components of the adaptive immune system exploited by HIV are T cells mainly CD4+ T cells and B cells. The intrinsic immune system confronted by HIV involves (apolipoprotein B mRNA-editing enzyme, catalytic polypeptide-like 3G) APOBEC3G, tripartite motif 5-α (TRIM5a), terherin, and (SAM-domain HD-domain containing protein) SAMHD1. HIV-1 efficiently interacts with the host immune system, exploits the host machinery, successfully replicates and transmits from one cell to another. Further research is required to explore evasion strategies of HIV to develop novel therapeutic approaches against HIV.

  9. Diverse antibody genetic and recognition properties revealed following HIV-1 Env immunization

    PubMed Central

    Phad, Ganesh E.; Bernat, Néstor Vázquez; Feng, Yu; Ingale, Jidnyasa; Murillo, Paola Andrea Martinez; O’Dell, Sijy; Li, Yuxing; Mascola, John R.; Sundling, Christopher; Wyatt, Richard T.; Karlsson Hedestam, Gunilla B.

    2015-01-01

    Isolation of monoclonal antibodies (MAbs) elicited by vaccination provides opportunities to define the development of effective immunity. Ab responses elicited by current HIV-1 envelope glycoprotein (Env) immunogens display narrow neutralizing activity with limited capacity to block infection by tier 2 viruses. Intense work in the field suggests that improved Env immunogens are forthcoming and it is therefore important to concurrently develop approaches to investigate the quality of vaccine-elicited responses at a higher level of resolution. Here, we cloned a representative set of MAbs elicited by a model Env immunogen in rhesus macaques and comprehensively characterized their genetic and functional properties. The MAbs were genetically diverse, even within groups of Abs targeting the same sub-region of Env, consistent with a highly polyclonal response. MAbs directed against two sub-determinants of Env, the CD4 binding site (CD4bs) and the V3 region, could in part account for the neutralizing activity observed in the plasma of the animal from which they were cloned, demonstrating the power of MAb isolation for a detailed understanding of the elicited response. Finally, through comparative analyses of MAb binding and neutralizing capacity of HIV-1 using matched Envs, we demonstrate complex relationships between epitope recognition and accessibility, highlighting the protective quaternary packing of the HIV-1 spike relative to vaccine-induced MAbs. PMID:25964491

  10. A Mechanistic Understanding of Allosteric Immune Escape Pathways in the HIV-1 Envelope Glycoprotein

    PubMed Central

    Sethi, Anurag; Tian, Jianhui; Derdeyn, Cynthia A.; Korber, Bette; Gnanakaran, S.

    2013-01-01

    The HIV-1 envelope (Env) spike, which consists of a compact, heterodimeric trimer of the glycoproteins gp120 and gp41, is the target of neutralizing antibodies. However, the high mutation rate of HIV-1 and plasticity of Env facilitates viral evasion from neutralizing antibodies through various mechanisms. Mutations that are distant from the antibody binding site can lead to escape, probably by changing the conformation or dynamics of Env; however, these changes are difficult to identify and define mechanistically. Here we describe a network analysis-based approach to identify potential allosteric immune evasion mechanisms using three known HIV-1 Env gp120 protein structures from two different clades, B and C. First, correlation and principal component analyses of molecular dynamics (MD) simulations identified a high degree of long-distance coupled motions that exist between functionally distant regions within the intrinsic dynamics of the gp120 core, supporting the presence of long-distance communication in the protein. Then, by integrating MD simulations with network theory, we identified the optimal and suboptimal communication pathways and modules within the gp120 core. The results unveil both strain-dependent and -independent characteristics of the communication pathways in gp120. We show that within the context of three structurally homologous gp120 cores, the optimal pathway for communication is sequence sensitive, i.e. a suboptimal pathway in one strain becomes the optimal pathway in another strain. Yet the identification of conserved elements within these communication pathways, termed inter-modular hotspots, could present a new opportunity for immunogen design, as this could be an additional mechanism that HIV-1 uses to shield vulnerable antibody targets in Env that induce neutralizing antibody breadth. PMID:23696718

  11. "In vitro systems to characterize the immune response to HIV-1 and HIV-1 vaccine candidates", NIAID Workshop Report, Bethesda, August 4, 2010.

    PubMed

    Malaspina, Angela; Rinaldo, Charles R; Sekaly, Rafick P; Flores, Jorge; D'Souza, Patricia M

    2011-06-24

    Although clinical trials are the ultimate way to prove vaccine safety and efficacy, the complexity, cost and time required to develop a product to enter human trials demand a serious, long-term investment. Lack of knowledge on immune correlates of protection from HIV infections makes investments in HIV vaccine research significantly risky. Preclinical testing of HIV vaccines is routinely carried out in non-human primate models however these studies have a significant cost and their predictive value is still questionable. The potential value of screening new HIV-1 vaccine candidates on human cells and tissues via high throughput in vitro systems that allow rapid, cost-effective and accurate predictions of in vivo immune responses would be enormous. A one-day workshop was convened by Division of AIDS, National Institutes of Health on August 4, 2010 to address the benefits and challenges of assessing HIV-1 vaccine responses in alternative ways. Consideration was given to the use of various in vitro model systems, human mucosal tissue explants and humanized mouse models as ways to predict immunogenicity and efficacy of HIV-1 vaccines early in the development process, and support decisions on whether a product may be worthy of moving into non-human primates or human trials. This report summarizes the outcome of the workshop.

  12. Caps off to poxviruses.

    PubMed

    Silverman, Robert H

    2015-03-11

    In this issue of Cell Host & Microbe, Liu et al. (2015) and Burgess and Mohr (2015) describe how two poxvirus mRNA decapping enzymes hijack a host 5'-to-3'-exoribonuclease to evade antiviral innate immunity by limiting accumulation of double-stranded RNA.

  13. Dynamics of an HIV-1 infection model with cell mediated immunity

    NASA Astrophysics Data System (ADS)

    Yu, Pei; Huang, Jianing; Jiang, Jiao

    2014-10-01

    In this paper, we study the dynamics of an improved mathematical model on HIV-1 virus with cell mediated immunity. This new 5-dimensional model is based on the combination of a basic 3-dimensional HIV-1 model and a 4-dimensional immunity response model, which more realistically describes dynamics between the uninfected cells, infected cells, virus, the CTL response cells and CTL effector cells. Our 5-dimensional model may be reduced to the 4-dimensional model by applying a quasi-steady state assumption on the variable of virus. However, it is shown in this paper that virus is necessary to be involved in the modeling, and that a quasi-steady state assumption should be applied carefully, which may miss some important dynamical behavior of the system. Detailed bifurcation analysis is given to show that the system has three equilibrium solutions, namely the infection-free equilibrium, the infectious equilibrium without CTL, and the infectious equilibrium with CTL, and a series of bifurcations including two transcritical bifurcations and one or two possible Hopf bifurcations occur from these three equilibria as the basic reproduction number is varied. The mathematical methods applied in this paper include characteristic equations, Routh-Hurwitz condition, fluctuation lemma, Lyapunov function and computation of normal forms. Numerical simulation is also presented to demonstrate the applicability of the theoretical predictions.

  14. Cryptococcal immune reconstitution inflammatory syndrome in HIV-1-infected individuals: proposed clinical case definitions.

    PubMed

    Haddow, Lewis J; Colebunders, Robert; Meintjes, Graeme; Lawn, Stephen D; Elliott, Julian H; Manabe, Yukari C; Bohjanen, Paul R; Sungkanuparph, Somnuek; Easterbrook, Philippa J; French, Martyn A; Boulware, David R

    2010-11-01

    Cryptococcal immune reconstitution inflammatory syndrome (IRIS) may present as a clinical worsening or new presentation of cryptococcal disease after initiation of antiretroviral therapy (ART), and is thought to be caused by recovery of cryptococcus-specific immune responses. We have reviewed reports of cryptococcal IRIS and have developed a consensus case definition specifically for paradoxical crytopcoccal IRIS in patients with HIV-1 and known cryptococcal disease before ART, and a separate definition for incident cryptococcosis developed during ART (termed ART-associated cryptococcosis), for which a proportion of cases are likely to be unmasking cryptococcal IRIS. These structured case definitions are intended to aid design of future clinical, epidemiological, and immunopathological studies of cryptococcal IRIS, to standardise diagnostic criteria, and to facilitate comparisons between studies. As for definitions of tuberculosis-associated IRIS, definitions for cryptococcal IRIS should be regarded as preliminary until further insights into the immunopathology of IRIS permit their refinement.

  15. A poxvirus Bcl-2-like gene family involved in regulation of host immune response: sequence similarity and evolutionary history

    PubMed Central

    2010-01-01

    Background Poxviruses evade the immune system of the host through the action of viral encoded inhibitors that block various signalling pathways. The exact number of viral inhibitors is not yet known. Several members of the vaccinia virus A46 and N1 families, with a Bcl-2-like structure, are involved in the regulation of the host innate immune response where they act non-redundantly at different levels of the Toll-like receptor signalling pathway. N1 also maintains an anti-apoptotic effect by acting similarly to cellular Bcl-2 proteins. Whether there are related families that could have similar functions is the main subject of this investigation. Results We describe the sequence similarity existing among poxvirus A46, N1, N2 and C1 protein families, which share a common domain of approximately 110-140 amino acids at their C-termini that spans the entire N1 sequence. Secondary structure and fold recognition predictions suggest that this domain presents an all-alpha-helical fold compatible with the Bcl-2-like structures of vaccinia virus proteins N1, A52, B15 and K7. We propose that these protein families should be merged into a single one. We describe the phylogenetic distribution of this family and reconstruct its evolutionary history, which indicates an extensive gene gain in ancestral viruses and a further stabilization of its gene content. Conclusions Based on the sequence/structure similarity, we propose that other members with unknown function, like vaccinia virus N2, C1, C6 and C16/B22, might have a similar role in the suppression of host immune response as A46, A52, B15 and K7, by antagonizing at different levels with the TLR signalling pathways. PMID:20230632

  16. Host Immune Responses in HIV-1 Infection: The Emerging Pathogenic Role of Siglecs and Their Clinical Correlates

    PubMed Central

    Mikulak, Joanna; Di Vito, Clara; Zaghi, Elisa; Mavilio, Domenico

    2017-01-01

    A better understanding of the mechanisms employed by HIV-1 to escape immune responses still represents one of the major tasks required for the development of novel therapeutic approaches targeting a disease still lacking a definitive cure. Host innate immune responses against HIV-1 are key in the early phases of the infection as they could prevent the development and the establishment of two hallmarks of the infection: chronic inflammation and viral reservoirs. Sialic acid-binding immunoglobulin-like lectins (Siglecs) belong to a family of transmembrane proteins able to dampen host immune responses and set appropriate immune activation thresholds upon ligation with their natural ligands, the sialylated carbohydrates. This immune-modulatory function is also targeted by many pathogens that have evolved to express sialic acids on their surface in order to escape host immune responses. HIV-1 envelope glycoprotein 120 (gp120) is extensively covered by carbohydrates playing active roles in life cycle of the virus. Indeed, besides forming a protecting shield from antibody recognition, this coat of N-linked glycans interferes with the folding of viral glycoproteins and enhances virus infectivity. In particular, the sialic acid residues present on gp120 can bind Siglec-7 on natural killer and monocytes/macrophages and Siglec-1 on monocytes/macrophages and dendritic cells. The interactions between these two members of the Siglec family and the sialylated glycans present on HIV-1 envelope either induce or increase HIV-1 entry in conventional and unconventional target cells, thus contributing to viral dissemination and disease progression. In this review, we address the impact of Siglecs in the pathogenesis of HIV-1 infection and discuss how they could be employed as clinic and therapeutic targets. PMID:28386256

  17. Poor functional immune recovery in aged HIV-1-infected patients following successfully treatment with antiretroviral therapy.

    PubMed

    Kasahara, Taissa M; Hygino, Joana; Andrade, Regis M; Monteiro, Clarice; Sacramento, Priscila M; Andrade, Arnaldo F B; Bento, Cleonice A M

    2015-10-01

    Aging is now a well-recognized characteristic of the HIV-infected population and both AIDS and aging are characterized by a deficiency of the T-cell compartment. The objective of the present study was to evaluate the impact of antiretroviral (ARV) therapy in recovering functional response of T cells to both HIV-1-specific ENV peptides (ENV) and tetanus toxoid (TT), in young and aged AIDS patients who responded to ARV therapy by controlling virus replication and elevating CD4(+) T cell counts. Here, we observed that proliferative response of T-cells to either HIV-1-specific Env peptides or tetanus toxoid (TT) was significantly lower in older antiretroviral (ARV)-treated patients. With regard to cytokine profile, lower levels of IFN-γ, IL-17 and IL-21, associated with elevated IL-10 release, were produced by Env- or TT-stimulated T-cells from older patients. The IL-10 neutralization by anti-IL-10 mAb did not elevate IFN-γ and IL-21 release in older patients. Finally, even after a booster dose of TT, reduced anti-TT IgG titers were quantified in older AIDS patients and it was related to both lower IL-21 and IFN-γ production and reduced frequency of central memory T-cells. Our results reveal that ARV therapy, despite the adequate recovery of CD4(+) T cell counts and suppression of viremia, was less efficient in recovering adequate immune response in older AIDS patients.

  18. Global stability for an HIV-1 infection model with Beddington-DeAngelis incidence rate and CTL immune response

    NASA Astrophysics Data System (ADS)

    Lv, Cuifang; Huang, Lihong; Yuan, Zhaohui

    2014-01-01

    In this paper, an HIV-1 infection model with Beddington-DeAngelis incidence rate and CTL immune response is investigated. One main feature of this model is that an eclipse stage for the infected cells is included and a portion of these cells is reverted to uninfected cells. We derive the basic reproduction number R1 and the immune response reproduction number R2 for the HIV-1 infection model. By constructing Lyapunov functions, the global stabilities for the equilibria have been analyzed.

  19. Immune Correlates of Vaccine Protection Against HIV-1 Acquisition: A Review

    PubMed Central

    Corey, Lawrence; Gilbert, Peter B.; Tomaras, Georgia; Haynes, Barton F.; Pantaleo, Giuseppe; Fauci, Anthony S.

    2016-01-01

    Since 2009, the HIV vaccine field has worked to define correlates of risk associated with HIV-1 acquisition based upon the partial efficacy found in the RV144 trial. Both immunological and genetic pressure on the virus has been demonstrated by Fc antiviral antibodies largely directed at conserved regions of the V1V2 loop including antibody dependent cellular cytotoxicity (ADCC) to HIV envelope in the absence of inhibiting serum IgA antibodies. CD4+ T-cell responses to HIV envelope also correlate with reduced acquisition. Recently, NHP studies using vaccine regimens that differ from that used in RV144 also indicate that non-neutralizing antibodies are associated with protection from experimental lentivirus challenge. These immunological correlates have provided the basis for the design of a next generation of vaccine regimens to improve upon the qualitative and quantitative degree of magnitude of these immune responses on HIV acquisition. PMID:26491081

  20. Broad and potent immune responses to a low dose intradermal HIV-1 DNA boosted with HIV-1 recombinant MVA among healthy adults in Tanzania☆,☆☆

    PubMed Central

    Bakari, Muhammad; Aboud, Said; Nilsson, Charlotta; Francis, Joel; Buma, Deus; Moshiro, Candida; Aris, Eric A.; Lyamuya, Eligius F.; Janabi, Mohamed; Godoy-Ramirez, Karina; Joachim, Agricola; Polonis, Victoria R.; Bråve, Andreas; Earl, Patricia; Robb, Merlin; Marovich, Mary; Wahren, Britta; Pallangyo, Kisali; Biberfeld, Gunnel; Mhalu, Fred; Sandström, Eric

    2016-01-01

    Background We conducted a phase I/II randomized placebo-controlled trial with the aim of exploring whether priming with a low intradermal dose of a multiclade, multigene HIV-1 DNA vaccine could improve the immunogenicity of the same vaccine given intramuscularly prior to boosting with a heterologous HIV-1 MVA among healthy adults in Dar es Salaam, Tanzania. Methods Sixty HIV-uninfected volunteers were randomized to receive DNA plasmid vaccine 1 mg intradermally (id), n = 20, or 3.8 mg intramuscularly (im), n = 20, or placebo, n = 20, using a needle-free injection device. DNA plasmids encoding HIV-1 genes gp160 subtype A, B, C; rev B; p17/p24 gag A, B and Rtmut B were given at weeks 0, 4 and 12. Recombinant MVA (108 pfu) expressing HIV-1 Env, Gag, Pol of CRF01_AE or placebo was administered im at month 9 and 21. Results The vaccines were well tolerated. Two weeks after the third HIV-DNA injection, 22/38 (58%) vaccinees had IFN-γ ELISpot responses to Gag. Two weeks after the first HIV-MVA boost all 35 (100%) vaccinees responded to Gag and 31 (89%) to Env. Two to four weeks after the second HIV-MVA boost, 28/29 (97%) vaccinees had IFN-γ ELISpot responses, 27 (93%) to Gag and 23 (79%) to Env. The id-primed recipients had significantly higher responses to Env than im recipients. Intracellular cytokine staining for Gag-specific IFN-γ/IL-2 production showed both CD8+ and CD4+ T cell responses. All vaccinees had HIV-specific lymphoproliferative responses. All vaccinees reacted in diagnostic HIV serological tests and 26/29 (90%) had antibodies against gp160 after the second HIV-MVA boost. Furthermore, while all of 29 vaccinee sera were negative for neutralizing antibodies against clade B, C and CRF01 AE pseudoviruses in the TZM-bl neutralization assay, in a PBMC assay, the response rate ranged from 31% to 83% positives, depending upon the clade B or CRF01_AE virus tested. This vaccine approach is safe and highly immunogenic. Low dose, id HIV-DNA priming elicited higher

  1. Multivalent dendrimeric compounds containing carbohydrates expressed on immune cells inhibit infection by primary isolates of HIV-1

    SciTech Connect

    Rosa Borges, Andrew; Wieczorek, Lindsay; Johnson, Benitra; Benesi, Alan J.; Brown, Bruce K.; Kensinger, Richard D.; Krebs, Fred C.; Wigdahl, Brian; Blumenthal, Robert; Puri, Anu; McCutchan, Francine E.; Birx, Deborah L.; Polonis, Victoria R.; Schengrund, Cara-Lynne

    2010-12-05

    Specific glycosphingolipids (GSL), found on the surface of target immune cells, are recognized as alternate cell surface receptors by the human immunodeficiency virus type 1 (HIV-1) external envelope glycoprotein. In this study, the globotriose and 3'-sialyllactose carbohydrate head groups found on two GSL were covalently attached to a dendrimer core to produce two types of unique multivalent carbohydrates (MVC). These MVC inhibited HIV-1 infection of T cell lines and primary peripheral blood mononuclear cells (PBMC) by T cell line-adapted viruses or primary isolates, with IC{sub 50}s ranging from 0.1 to 7.4 {mu}g/ml. Inhibition of Env-mediated membrane fusion by MVC was also observed using a dye-transfer assay. These carbohydrate compounds warrant further investigation as a potential new class of HIV-1 entry inhibitors. The data presented also shed light on the role of carbohydrate moieties in HIV-1 virus-host cell interactions. -- Research Highlights: {yields}Multivalent carbohydrates (MVCs) inhibited infection of PBMCs by HIV-1. {yields}MVCs inhibited infection by T cell line-adapted viruses. {yields}MVCs inhibited infection by primary isolates of HIV-1. {yields}MVCs inhibited Env-mediated membrane fusion.

  2. Delivery of DNA HIV-1 Vaccine to the Liver Induces High and Long-lasting Humoral Immune Responses

    PubMed Central

    Raska, Milan; Moldoveanu, Zina; Novak, Jan; Hel, Zdenek; Bozja, Jadranka; Compans, Richard W.; Yang, Chinglai; Mestecky, Jiri

    2008-01-01

    The quality of immune responses induced by DNA vaccination depends on the site of DNA administration, the expression, and the properties of the encoded antigen. In the present study we demonstrate that intravenous hydrodynamic HIV-1 envelope DNA injection resulted in high levels of expression of HIV-1 envelope antigen in the liver. When compared to the administration of DNA by i.n., i.d., i.m., and i.splenic routes, hydrodynamic vaccination induced, upon DNA boosting, 40 times increase of HIV-1 envelope-specific antibodies over the preimmune levels. Hydrodynamic vaccination with 1 μg DNA induced higher humoral responses than 100 μg DNA given intramuscularly in the prime – boost regimen. High levels of envelope-specific IgG and IgA antibodies were induced in genital tract secretions after two doses of DNA followed by intranasal boosting with recombinant HIV-1 gp120 protein. Furthermore, two doses of 100 μg DNA generated interferon-gamma production in ~ 4.3 ± 1.7 % of CD8+ splenocytes after in vitro stimulation with HIV-1 envelope peptides. These results demonstrate that DNA vaccines targeted to tissues with high proteosynthetic activity, such as the liver, results in enhanced immune responses. PMID:18304708

  3. Poxvirus-Based Active Immunotherapy with PD-1 and LAG-3 Dual Immune Checkpoint Inhibition Overcomes Compensatory Immune Regulation, Yielding Complete Tumor Regression in Mice

    PubMed Central

    dela Cruz, Tracy; Cote, Joseph J.; Gordon, Evan J.; Kemp, Felicia; Xavier, Veronica; Franzusoff, Alex; Rountree, Ryan B.; Mandl, Stefanie J.

    2016-01-01

    Poxvirus-based active immunotherapies mediate anti-tumor efficacy by triggering broad and durable Th1 dominated T cell responses against the tumor. While monotherapy significantly delays tumor growth, it often does not lead to complete tumor regression. It was hypothesized that the induced robust infiltration of IFNγ-producing T cells into the tumor could provoke an adaptive immune evasive response by the tumor through the upregulation of PD-L1 expression. In therapeutic CT26-HER-2 tumor models, MVA-BN-HER2 poxvirus immunotherapy resulted in significant tumor growth delay accompanied by a robust, tumor-infiltrating T cell response that was characterized by low to mid-levels of PD-1 expression on T cells. As hypothesized, this response was countered by significantly increased PD-L1 expression on the tumor and, unexpectedly, also on infiltrating T cells. Synergistic benefit of anti-tumor therapy was observed when MVA-BN-HER2 immunotherapy was combined with PD-1 immune checkpoint blockade. Interestingly, PD-1 blockade stimulated a second immune checkpoint molecule, LAG-3, to be expressed on T cells. Combining MVA-BN-HER2 immunotherapy with dual PD-1 plus LAG-3 blockade resulted in comprehensive tumor regression in all mice treated with the triple combination therapy. Subsequent rejection of tumors lacking the HER-2 antigen by treatment-responsive mice without further therapy six months after the original challenge demonstrated long lasting memory and suggested that effective T cell immunity to novel, non-targeted tumor antigens (antigen spread) had occurred. These data support the clinical investigation of this triple therapy regimen, especially in cancer patients harboring PD-L1neg/low tumors unlikely to benefit from immune checkpoint blockade alone. PMID:26910562

  4. HIV-1-Infected and/or Immune Activated Macrophages Regulate Astrocyte SDF-1 Production Through IL-1β

    PubMed Central

    PENG, HUI; ERDMANN, NATHAN; WHITNEY, NICHOLAS; DOU, HUANGYU; GORANTLA, SANTHI; GENDELMAN, HOWARD E.; GHORPADE, ANUJA; ZHENG, JIALIN

    2007-01-01

    Stromal cell-derived factor 1 alpha (SDF-1α) and its receptor CXCR4 play important roles in the pathogenesis of human immunodeficiency virus type one (HIV-1)-associated dementia (HAD) by serving as a HIV-1 co-receptor and affecting cell migration, virus-mediated neurotoxicity, and neurodegeneration. However, the underlying mechanisms regulating SDF-1 production during disease are not completely understood. In this report we investigated the role of HIV-1 infected and immune competent macrophage, the principal target cell and mediator of neuronal injury and death in HAD, in regulating SDF-1 production by astrocytes. Our data demonstrated that astrocytes are the primary cell type expressing SDF-1 in the brain. Immune-activated or HTV-1-infected human monocyte-derived-macrophage (MDM) conditioned media (MCM) induced a substantial increase in SDF-1 production by human astrocytes. This SDF-1 production was directly dependent on MDM IL-1β following both viral and immune activation. The MCM-induced production of SDF-1 was prevented by IL-1β receptor antagonist (IL-1Ra) and IL-1β siRNA treatment of human MDM. These laboratory observations were confirmed in severe combined immunodeficient (SCID) mice with HIV-1 encephalitis (HIVE). In these HIVE mice, reactive astrocytes showed a significant increase in SDF-1 expression, as observed by immunocytochemical staining. Similarly, SDF-1 mRNA levels were increased in the encephalitic region as measured by real time RT-PCR, and correlated with IL-1β mRNA expression. These observations provide direct evidence that IL-1β, produced from HIV-1-infected and/or immune competent macrophage, induces production of SDF-1 by astrocytes, and as such contribute to ongoing SDF-1 mediated CNS regulation during HAD. PMID:16944452

  5. HIV-1 Structural Proteins Serve as PAMPs for TLR2 Heterodimers Significantly Increasing Infection and Innate Immune Activation

    PubMed Central

    Henrick, Bethany M.; Yao, Xiao-Dan; Rosenthal, Kenneth Lee

    2015-01-01

    Immune activation is critical to HIV infection and pathogenesis; however, our understanding of HIV innate immune activation remains incomplete. Recently we demonstrated that soluble TLR2 (sTLR2) physically inhibited HIV-induced NFκB activation and inflammation, as well as HIV-1 infection. In light of these findings, we hypothesized that HIV-1 structural proteins may serve as pathogen-associated molecular patterns (PAMPs) for cellular TLR2 heterodimers. These studies made use of primary human T cells and TZMbl cells stably transformed to express TLR2 (TZMbl-2). Our results demonstrated that cells expressing TLR2 showed significantly increased proviral DNA compared to cells lacking TLR2, and mechanistically this may be due to a TLR2-mediated increased CCR5 expression. Importantly, we show that HIV-1 structural proteins, p17, p24, and gp41, act as viral PAMPs signaling through TLR2 and its heterodimers leading to significantly increased immune activation via the NFκB signaling pathway. Using co-immunoprecipitation and a dot blot method, we demonstrated direct protein interactions between these viral PAMPs and TLR2, while only p17 and gp41 bound to TLR1. Specifically, TLR2/1 heterodimer recognized p17 and gp41, while p24 lead to immune activation through TLR2/6. These results were confirmed using TLR2/1 siRNA knock down assays which ablated p17 and gp41-induced cellular activation and through studies of HEK293 cells expressing selected TLRs. Interestingly, our results show in the absence of TLR6, p24 bound to TLR2 and blocked p17 and gp41-induced activation, thus providing a novel mechanism by which HIV-1 can manipulate innate sensing. Taken together, our results identified, for the first time, novel HIV-1 PAMPs that play a role in TLR2-mediated cellular activation and increased proviral DNA. These findings have important implications for our fundamental understanding of HIV-1 immune activation and pathogenesis, as well as HIV-1 vaccine development. PMID:26347747

  6. Immunization with HIV-1 gp41 subunit virosomes induces mucosal antibodies protecting nonhuman primates against vaginal SHIV challenges.

    PubMed

    Bomsel, Morgane; Tudor, Daniela; Drillet, Anne-Sophie; Alfsen, Annette; Ganor, Yonatan; Roger, Marie-Gaëlle; Mouz, Nicolas; Amacker, Mario; Chalifour, Anick; Diomede, Lorenzo; Devillier, Gilles; Cong, Zhe; Wei, Qiang; Gao, Hong; Qin, Chuan; Yang, Gui-Bo; Zurbriggen, Rinaldo; Lopalco, Lucia; Fleury, Sylvain

    2011-02-25

    Human immunodeficiency virus (HIV)-1 is mainly transmitted mucosally during sexual intercourse. We therefore evaluated the protective efficacy of a vaccine active at mucosal sites. Macaca mulatta monkeys were immunized via both the intramuscular and intranasal routes with an HIV-1 vaccine made of gp41-subunit antigens grafted on virosomes, a safe delivery carrier approved in humans with self-adjuvant properties. Six months after 13 vaginal challenges with simian-HIV (SHIV)-SF162P3, four out of five vaccinated animals remained virus-negative, and the fifth was only transiently infected. None of the five animals seroconverted to p27gag-SIV. In contrast, all 6 placebo-vaccinated animals became infected and seroconverted. All protected animals showed gp41-specific vaginal IgAs with HIV-1 transcytosis-blocking properties and vaginal IgGs with neutralizing and/or antibody-dependent cellular-cytotoxicity activities. In contrast, plasma IgGs totally lacked virus-neutralizing activity. The protection observed challenges the paradigm whereby circulating antiviral antibodies are required for protection against HIV-1 infection and may serve in designing a human vaccine against HIV-1-AIDS.

  7. Recombinant measles viruses expressing single or multiple antigens of human immunodeficiency virus (HIV-1) induce cellular and humoral immune responses.

    PubMed

    Liniger, Matthias; Zuniga, Armando; Morin, Teldja Neige Azzouz; Combardiere, Behazine; Marty, Rene; Wiegand, Marian; Ilter, Orhan; Knuchel, Marlyse; Naim, Hussein Y

    2009-05-26

    Recombinant measles viruses (rMV) based on the live attenuated measles vaccine strain (MVb) expressing antigens of HIV-1 clade B were generated by reverse genetics. Recombinants expressing single or double antigens of HIV-1 (rMV-HIV) were genetically highly stable on human diploid cells. The production process of these viruses was essentially similar to the parental MV strain, yielding comparative end titers. Immunization of tg-mice by different regimens and formulations showed potent humoral and cellular immune responses against MV and HIV antigens. Recombinant MV-HIV expressing Gag protein conferred protective immunity in tg-mice after a high-dose pseudochallenge with recombinant vaccinia virus. In addition, rMV-HIV boosted anti-HIV antibodies, in the presence of pre-existing anti-vector antibodies.

  8. Structural basis of evasion of cellular adaptive immunity by HIV-1 Nef

    SciTech Connect

    Jia, Xiaofei; Singh, Rajendra; Homann, Stefanie; Yang, Haitao; Guatelli, John; Xiong, Yong

    2012-10-24

    The HIV-1 protein Nef inhibits antigen presentation by class I major histocompatibility complex (MHC-I). We determined the mechanism of this activity by solving the crystal structure of a protein complex comprising Nef, the MHC-I cytoplasmic domain (MHC-I CD) and the {mu}1 subunit of the clathrin adaptor protein complex 1. A ternary, cooperative interaction clamps the MHC-I CD into a narrow binding groove at the Nef-{mu}1 interface, which encompasses the cargo-recognition site of {mu}1 and the proline-rich strand of Nef. The Nef C terminus induces a previously unobserved conformational change in {mu}1, whereas the N terminus binds the Nef core to position it optimally for complex formation. Positively charged patches on {mu}1 recognize acidic clusters in Nef and MHC-I. The structure shows how Nef functions as a clathrin-associated sorting protein to alter the specificity of host membrane trafficking and enable viral evasion of adaptive immunity.

  9. Oncolytic Poxviruses

    PubMed Central

    Chan, Winnie M.; McFadden, Grant

    2015-01-01

    Current standard treatments of cancer can prolong survival of many cancer patients but usually do not effectively cure the disease. Oncolytic virotherapy is an emerging therapeutic for the treatment of cancer that exploits replication-competent viruses to selectively infect and destroy cancerous cells while sparing normal cells and tissues. Clinical and/or preclinical studies on oncolytic viruses have revealed that the candidate viruses being tested in trials are remarkably safe and offer potential for treating many classes of currently incurable cancers. Among these candidates are vaccinia and myxoma viruses, which belong to the family Poxviridae and possess promising oncolytic features. This article describes poxviruses that are being developed for oncolytic virotherapy and summarizes the outcomes of both clinical and preclinical studies. Additionally, studies demonstrating superior efficacy when poxvirus oncolytic virotherapy is combined with conventional therapies are described. PMID:25839047

  10. The inter-relation of maternal immune competence, HIV-1 viral load, and nutritional status in preventing vertical transmission: an alternative to chemoprophylaxis?

    PubMed

    Moran, P J; Welles, S L; Williams, M A

    1998-11-01

    As the human immunodeficiency virus (HIV) global pandemic moves towards the end of its second decade, women of reproductive age throughout the world have been shown to be increasingly at risk for acquiring HIV-1 infection. Recently, the focus for preventive measures has expanded to include preventing the perinatal transmission of HIV-1 to fetuses and newborns. This manuscript reviews the available literature that examines risk factors for perinatal transmission, immunopathogenesis of HIV-1 infection, and the role that antioxidant micronutrients play in modulating immune response to HIV-1 disease progression. The available information provides a compelling case for the design of studies that evaluate the extent to which maternal HIV-1 viremia and disease progression are modulated by her nutritional status. Should results from these studies confirm that antioxidant micronutrient status is inversely related to HIV-1 RNA load, particularly in economically vulnerable populations, carefully designed and executed supplementation trials would be warranted.

  11. Poxvirus pathogenesis.

    PubMed Central

    Buller, R M; Palumbo, G J

    1991-01-01

    Poxviruses are a highly successful family of pathogens, with variola virus, the causative agent of smallpox, being the most notable member. Poxviruses are unique among animal viruses in several respects. First, owing to the cytoplasmic site of virus replication, the virus encodes many enzymes required either for macromolecular precursor pool regulation or for biosynthetic processes. Second, these viruses have a very complex morphogenesis, which involves the de novo synthesis of virus-specific membranes and inclusion bodies. Third, and perhaps most surprising of all, the genomes of these viruses encode many proteins which interact with host processes at both the cellular and systemic levels. For example, a viral homolog of epidermal growth factor is active in vaccinia virus infections of cultured cells, rabbits, and mice. At least five virus proteins with homology to the serine protease inhibitor family have been identified and one, a 38-kDa protein encoded by cowpox virus, is thought to block a host pathway for generating a chemotactic substance. Finally, a protein which has homology with complement components interferes with the activation of the classical complement pathway. Poxviruses infect their hosts by all possible routes: through the skin by mechanical means (e.g., molluscum contagiosum infections of humans), via the respiratory tract (e.g., variola virus infections of humans), or by the oral route (e.g., ectromelia virus infection of the mouse). Poxvirus infections, in general, are acute, with no strong evidence for latent, persistent, or chronic infections. They can be localized or systemic. Ectromelia virus infection of the laboratory mouse can be systemic but inapparent with no mortality and little morbidity, or highly lethal with death in 10 days. On the other hand, molluscum contagiosum virus replicates only in the stratum spinosum of the human epidermis, with little or no involvement of the dermis, and does not spread systemically from the site of

  12. Immune Activation at Sites of HIV/TB Co-Infection Contributes to the Pathogenesis of HIV-1 Disease

    PubMed Central

    Meng, Qinglai; Sayin, Ismail; Canaday, David H.; Mayanja-Kizza, Harriet; Baseke, Joy; Toossi, Zahra

    2016-01-01

    Systemic immune activation is critical to the pathogenesis of HIV-1 disease, and is accentuated in HIV/TB co-infected patients. The contribution of immune activation at sites of HIV/TB co-infection to viral activity, CD4 T cell count, and productive HIV-1 infection remain unclear. In this study, we measured markers of immune activation both in pleural fluid and plasma, and in T cells in pleural fluid mononuclear cell (PFMC) and peripheral blood mononuclear cell (PBMC) in HIV/TB co-infected subjects. The relationship between soluble and T cell activation markers with viral load in pleural fluid and blood CD4 T cell count were assessed. The T cell phenotype and activation status of HIV-1 p24 + T cells in PFMC and PBMC from HIV/TB patients were determined. We found that T cell and macrophage-specific and non-specific soluble markers of immune activation, sCD27, sCD163, IL1Ra, and sCD14, were higher in pleural fluid as compared to plasma from HIV/TB co-infected subjects, and higher as compared to pleural fluid from TB mono-infected subjects. Intestinal fatty acid-binding protein, a marker of intestinal tract damage, in plasma from HIV/TB co-infected patients was not different than that in HIV+ subjects. Expression of HLADR and CD38 double positive (HLADR/CD38) on CD4 T cells, and CD69+ on CD8 T cells correlated with pleural fluid viral load, and inversely with blood CD4 T cell count. Higher expression of HLADR/CD38 and CCR5 on CD4 T cells, and HLADR/CD38 and CD69 on CD8 T cells in PFMC were limited to effector memory populations. HIV-1 p24+ CD8 negative (includes CD4 + and double negative T cells) effector memory T cells in PFMC had higher expression of HLADR/CD38, Ki67, and CCR5 compared to HIV-1 p24- CD8 negative PFMC. Cumulatively, these data indicate that sites of HIV/TB co-infection are the source of intense immune activation. PMID:27870882

  13. Keeping your armour intact: how HIV-1 evades detection by the innate immune system: HIV-1 capsid controls detection of reverse transcription products by the cytosolic DNA sensor cGAS.

    PubMed

    Maelfait, Jonathan; Seiradake, Elena; Rehwinkel, Jan

    2014-07-01

    HIV-1 infects dendritic cells (DCs) without triggering an effective innate antiviral immune response. As a consequence, the induction of adaptive immune responses controlling virus spread is limited. In a recent issue of Immunity, Lahaye and colleagues show that intricate interactions of HIV capsid with the cellular cofactor cyclophilin A (CypA) control infection and innate immune activation in DCs. Manipulation of HIV-1 capsid to increase its affinity for CypA results in reduced virus infectivity and facilitates access of the cytosolic DNA sensor cGAS to reverse transcribed DNA. This in turn induces a strong host response. Here, we discuss these findings in the context of recent developments in innate immunity and consider the implications for disease control and vaccine design.

  14. Immune Compromise in HIV-1/HTLV-1 Coinfection With Paradoxical Resolution of CD4 Lymphocytosis During Antiretroviral Therapy: A Case Report.

    PubMed

    Rockwood, N; Cook, L; Kagdi, H; Basnayake, S; Bangham, C R M; Pozniak, A L; Taylor, G P

    2015-12-01

    Human immunodeficiency virus type-1 (HIV-1) and human T lymphotropic virus type-1 (HTLV-1) infections have complex effects on adaptive immunity, with specific tropism for, but contrasting effects on, CD4 T lymphocytes: depletion with HIV-1, proliferation with HTLV-1. Impaired T lymphocyte function occurs early in HIV-1 infection but opportunistic infections (OIs) rarely occur in the absence of CD4 lymphopenia. In the unusual case where a HIV-1 infected individual with a high CD4 count presents with recurrent OIs, a clinician is faced with the possibility of a second underlying comorbidity. We present a case of pseudo-adult T cell leukemia/lymphoma (ATLL) in HIV-1/HTLV-1 coinfection where the individual fulfilled Shimoyama criteria for chronic ATLL and had pulmonary Mycobacterium kansasii, despite a high CD4 lymphocyte count. However, there was no evidence of clonal T-cell proliferation by T-cell receptor gene rearrangement studies nor of monoclonal HTLV-1 integration by high-throughput sequencing. Mutually beneficial interplay between HIV-1 and HTLV-1, maintaining high level HIV-1 and HTLV-1 viremia and proliferation of poorly functional CD4 cells despite chronicity of infection is a postulated mechanism. Despite good microbiological response to antimycobacterial therapy, the patient remained systemically unwell with refractory anemia. Subsequent initiation of combined antiretroviral therapy led to paradoxical resolution of CD4 T lymphocytosis as well as HIV-1 viral suppression and decreased HTLV-1 proviral load. This is proposed to be the result of attenuation of immune activation post-HIV virological control. This case illustrates the importance of screening for HTLV-1 in HIV-1 patients with appropriate clinical presentation and epidemiological risk factors and explores mechanisms for the complex interactions on HIV-1/HTLV-1 adaptive immunity.

  15. Effect of humoral immunity on HIV-1 dynamics with virus-to-target and infected-to-target infections

    NASA Astrophysics Data System (ADS)

    Elaiw, A. M.; Raezah, A. A.; Alofi, A. S.

    2016-08-01

    We consider an HIV-1 dynamics model by incorporating (i) two routes of infection via, respectively, binding of a virus to a receptor on the surface of a target cell to start genetic reactions (virus-to-target infection), and the direct transmission from infected cells to uninfected cells through the concept of virological synapse in vivo (infected-to-target infection); (ii) two types of distributed-time delays to describe the time between the virus or infected cell contacts an uninfected CD4+ T cell and the emission of new active viruses; (iii) humoral immune response, where the HIV-1 particles are attacked by the antibodies that are produced from the B lymphocytes. The existence and stability of all steady states are completely established by two bifurcation parameters, R 0 (the basic reproduction number) and R 1 (the viral reproduction number at the chronic-infection steady state without humoral immune response). By constructing Lyapunov functionals and using LaSalle's invariance principle, we have proven that, if R 0 ≤ 1 , then the infection-free steady state is globally asymptotically stable, if R 1 ≤ 1 < R 0 , then the chronic-infection steady state without humoral immune response is globally asymptotically stable, and if R 1 > 1 , then the chronic-infection steady state with humoral immune response is globally asymptotically stable. We have performed numerical simulations to confirm our theoretical results.

  16. Modulation of Th1/Th2 immune responses to HIV-1 Tat by new pro-GSH molecules.

    PubMed

    Fraternale, Alessandra; Paoletti, Maria Filomena; Dominici, Sabrina; Buondelmonte, Costantina; Caputo, Antonella; Castaldello, Arianna; Tripiciano, Antonella; Cafaro, Aurelio; Palamara, Anna Teresa; Sgarbanti, Rossella; Garaci, Enrico; Ensoli, Barbara; Magnani, Mauro

    2011-09-16

    We have previously demonstrated that in Ova-immunized mice the increase in intra-macrophage thiol pool induced by pro-GSH molecules modulates the Th1/Th2 balance in favour of a Th1-type immune response. We show now that the same molecules can support a Th1-type over Th2-type immunity against Tat, which is an early HIV-1 regulatory protein and a Th1 polarizing immunomodulator that is increasingly considered in new anti-HIV vaccination strategies. Our results indicate that Tat-immunized mice pre-treated with the C4 (n-butanoyl) derivative of reduced glutathione (GSH-C4) or a pro-drug of N-acetylcysteine (NAC) and beta-mercaptoethylamine (MEA) (I-152), have decreased levels of anti-Tat IgG1 as well as increased levels of anti-Tat IgG2a and IgG2b isotypes suggesting a Th1-type response. Moreover, Th1-(IFN-γ and IL-2) Ag-specific cellular responses were detected by ELISPOT assay in splenocytes of the same animals as well as an increase of IL-12 levels in the plasma. These findings suggest that the Th1 immune response to HIV-1 Tat could be further polarized by these molecules. These results together with those previously reported suggest that pro-GSH molecules could be used to modulate the immune response towards different antigens and may be further exploited for inducing specific Th1 immune responses against other HIV antigens as well as other intracellular pathogens in new Tat-based vaccination protocols.

  17. Elicitation of broadly reactive antibodies against glycan-modulated neutralizing V3 epitopes of HIV-1 by immune complex vaccines.

    PubMed

    Kumar, Rajnish; Tuen, Michael; Liu, Jianping; Nàdas, Arthur; Pan, Ruimin; Kong, Xiangpeng; Hioe, Catarina E

    2013-11-04

    HIV-1 envelope gp120 is the target for neutralizing antibodies (NAbs) against the virus. Various approaches have been explored to improve immunogenicity of broadly neutralizing epitopes on this antigen with limited success. We previously demonstrated that immunogenicity of gp120 and especially its V3 epitopes was enhanced when gp120 was co-administered as immune-complex vaccines with monoclonal antibodies (mAb) to the CD4-binding site (CD4bs). To define the mechanisms by which immune complexes influence V3 immunogenicity, we compared gp120 complexed with mAbs specific for the C2 region (1006-30), the V2 loop (2158), or the CD4bs (654), and found that the gp120/654 and gp120/2158 complexes elicited anti-V3 NAbs, but the gp120/654 complex was the most effective. gp120 complexed with 654 F(ab')2 was as potent, indicating that V3 immunogenicity is determined by the specificity of the mAb's Fab fragment used to form the complexes. Importantly, the gp120/654 complex not only induced anti-gp120 antibodies (Abs) to higher titers, but also of greater avidity. The Abs were cross-reactive with V3 peptides from most subtype B and some subtype C isolates. Neutralization was detected only against Tier-1 HIV-1 pseudoviruses, while Tier-2 viruses, including the homologous JRFL strain, were not neutralized. However, JRFL produced in the presence of a mannosidase inhibitor was sensitive to anti-V3 NAbs in the immune sera. These results demonstrate that the gp120/654 complex is a potent immunogen for eliciting cross-reactive functional NAbs against V3 epitopes, of which exposure is determined by the specific compositions of glycans shrouding the HIV-1 envelope glycoproteins.

  18. Whole Genome Deep Sequencing of HIV-1 Reveals the Impact of Early Minor Variants Upon Immune Recognition During Acute Infection

    PubMed Central

    Henn, Matthew R.; Lennon, Niall J.; Power, Karen A.; Macalalad, Alexander R.; Berlin, Aaron M.; Malboeuf, Christine M.; Ryan, Elizabeth M.; Gnerre, Sante; Zody, Michael C.; Erlich, Rachel L.; Green, Lisa M.; Berical, Andrew; Wang, Yaoyu; Casali, Monica; Streeck, Hendrik; Bloom, Allyson K.; Dudek, Tim; Tully, Damien; Newman, Ruchi; Axten, Karen L.; Gladden, Adrianne D.; Battis, Laura; Kemper, Michael; Zeng, Qiandong; Shea, Terrance P.; Gujja, Sharvari; Zedlack, Carmen; Gasser, Olivier; Brander, Christian; Hess, Christoph; Günthard, Huldrych F.; Brumme, Zabrina L.; Brumme, Chanson J.; Bazner, Suzane; Rychert, Jenna; Tinsley, Jake P.; Mayer, Ken H.; Rosenberg, Eric; Pereyra, Florencia; Levin, Joshua Z.; Young, Sarah K.; Jessen, Heiko; Altfeld, Marcus; Birren, Bruce W.; Walker, Bruce D.; Allen, Todd M.

    2012-01-01

    Deep sequencing technologies have the potential to transform the study of highly variable viral pathogens by providing a rapid and cost-effective approach to sensitively characterize rapidly evolving viral quasispecies. Here, we report on a high-throughput whole HIV-1 genome deep sequencing platform that combines 454 pyrosequencing with novel assembly and variant detection algorithms. In one subject we combined these genetic data with detailed immunological analyses to comprehensively evaluate viral evolution and immune escape during the acute phase of HIV-1 infection. The majority of early, low frequency mutations represented viral adaptation to host CD8+ T cell responses, evidence of strong immune selection pressure occurring during the early decline from peak viremia. CD8+ T cell responses capable of recognizing these low frequency escape variants coincided with the selection and evolution of more effective secondary HLA-anchor escape mutations. Frequent, and in some cases rapid, reversion of transmitted mutations was also observed across the viral genome. When located within restricted CD8 epitopes these low frequency reverting mutations were sufficient to prime de novo responses to these epitopes, again illustrating the capacity of the immune response to recognize and respond to low frequency variants. More importantly, rapid viral escape from the most immunodominant CD8+ T cell responses coincided with plateauing of the initial viral load decline in this subject, suggestive of a potential link between maintenance of effective, dominant CD8 responses and the degree of early viremia reduction. We conclude that the early control of HIV-1 replication by immunodominant CD8+ T cell responses may be substantially influenced by rapid, low frequency viral adaptations not detected by conventional sequencing approaches, which warrants further investigation. These data support the critical need for vaccine-induced CD8+ T cell responses to target more highly constrained

  19. Whole genome deep sequencing of HIV-1 reveals the impact of early minor variants upon immune recognition during acute infection.

    PubMed

    Henn, Matthew R; Boutwell, Christian L; Charlebois, Patrick; Lennon, Niall J; Power, Karen A; Macalalad, Alexander R; Berlin, Aaron M; Malboeuf, Christine M; Ryan, Elizabeth M; Gnerre, Sante; Zody, Michael C; Erlich, Rachel L; Green, Lisa M; Berical, Andrew; Wang, Yaoyu; Casali, Monica; Streeck, Hendrik; Bloom, Allyson K; Dudek, Tim; Tully, Damien; Newman, Ruchi; Axten, Karen L; Gladden, Adrianne D; Battis, Laura; Kemper, Michael; Zeng, Qiandong; Shea, Terrance P; Gujja, Sharvari; Zedlack, Carmen; Gasser, Olivier; Brander, Christian; Hess, Christoph; Günthard, Huldrych F; Brumme, Zabrina L; Brumme, Chanson J; Bazner, Suzane; Rychert, Jenna; Tinsley, Jake P; Mayer, Ken H; Rosenberg, Eric; Pereyra, Florencia; Levin, Joshua Z; Young, Sarah K; Jessen, Heiko; Altfeld, Marcus; Birren, Bruce W; Walker, Bruce D; Allen, Todd M

    2012-01-01

    Deep sequencing technologies have the potential to transform the study of highly variable viral pathogens by providing a rapid and cost-effective approach to sensitively characterize rapidly evolving viral quasispecies. Here, we report on a high-throughput whole HIV-1 genome deep sequencing platform that combines 454 pyrosequencing with novel assembly and variant detection algorithms. In one subject we combined these genetic data with detailed immunological analyses to comprehensively evaluate viral evolution and immune escape during the acute phase of HIV-1 infection. The majority of early, low frequency mutations represented viral adaptation to host CD8+ T cell responses, evidence of strong immune selection pressure occurring during the early decline from peak viremia. CD8+ T cell responses capable of recognizing these low frequency escape variants coincided with the selection and evolution of more effective secondary HLA-anchor escape mutations. Frequent, and in some cases rapid, reversion of transmitted mutations was also observed across the viral genome. When located within restricted CD8 epitopes these low frequency reverting mutations were sufficient to prime de novo responses to these epitopes, again illustrating the capacity of the immune response to recognize and respond to low frequency variants. More importantly, rapid viral escape from the most immunodominant CD8+ T cell responses coincided with plateauing of the initial viral load decline in this subject, suggestive of a potential link between maintenance of effective, dominant CD8 responses and the degree of early viremia reduction. We conclude that the early control of HIV-1 replication by immunodominant CD8+ T cell responses may be substantially influenced by rapid, low frequency viral adaptations not detected by conventional sequencing approaches, which warrants further investigation. These data support the critical need for vaccine-induced CD8+ T cell responses to target more highly constrained

  20. Acne vulgaris and acne rosacea as part of immune reconstitution disease in HIV-1 infected patients starting antiretroviral therapy.

    PubMed

    Scott, Christopher; Staughton, Richard C D; Bunker, Christopher J; Asboe, David

    2008-07-01

    Immune reconstitution disease (IRD) has been widely reported following the commencement of antiretrovirals. We report a case series from a cohort of HIV-1-infected patients of whom four developed acne vulgaris and one developed acne rosacea after the initiation of antiretroviral therapy. Acne vulgaris, as part of IRD, has been reported only once in the literature, whereas acne rosacea has not, to our knowledge, previously been described. This serves as a reminder not to overlook dermatological manifestations of disease in patients with HIV infection after starting antiretrovirals.

  1. Vaccination with gp120-depleted HIV-1 plus immunostimulatory CpG oligodeoxynucleotides in incomplete Freund's adjuvant stimulates cellular and humoral immunity in rhesus macaques.

    PubMed

    Silvera, Peter; Savary, Jay R; Livingston, Virginia; White, Jessica; Manson, Kelledy H; Wyand, Michael H; Salk, Peter L; Moss, Ronald B; Lewis, Mark G

    2004-12-21

    Whole killed human immunodeficiency virus type 1 (HIV-1) immunogens contain the more conserved epitopes of HIV-1 and therefore may provide some utility as potential HIV-1 vaccine candidates. Previous studies have shown that synthetic oligodeoxynucleotides (ODN) containing unmethylated cytosine-guanine (CpG) dinucleotides trigger rapid stimulation of both CD4+ and CD8+ T cells. Here, we investigated whether immunization of rhesus macaques with an inactivated gp120-depleted HIV-1 immunogen, emulsified in incomplete Freund's adjuvant (IFA) together with immunostimulatory CpG-containing ODN (ODN 2006), would elicit HIV-specific cellular and humoral immune responses. High titer anti-p24 antibody levels were induced in all four immunized animals that were sustained 6 weeks after the fifth and final boost at 23 months. These anti-gag antibodies mapped to linear B-cell epitopes within the matrix (MA), capsid (CA), p2, nucleocapsid (NC) and p6 proteins of HIV-1 gag. HIV-specific interferon-gamma-producing CD4+ and CD8+ T-cell responses were measured before and after the fourth and fifth immunizations by both intracellular cytokine (ICC) and ELISPOT techniques; responses were detected in three of the four immunized animals. CD4+ T-cell epitopes appear to map within amino acids 261-290 and 291-320 of p24 CA protein. Immunizations were well tolerated both locally and systemically. Based on these results, further studies of this approach are warranted.

  2. Features of Recently Transmitted HIV-1 Clade C Viruses that Impact Antibody Recognition: Implications for Active and Passive Immunization.

    PubMed

    Rademeyer, Cecilia; Korber, Bette; Seaman, Michael S; Giorgi, Elena E; Thebus, Ruwayhida; Robles, Alexander; Sheward, Daniel J; Wagh, Kshitij; Garrity, Jetta; Carey, Brittany R; Gao, Hongmei; Greene, Kelli M; Tang, Haili; Bandawe, Gama P; Marais, Jinny C; Diphoko, Thabo E; Hraber, Peter; Tumba, Nancy; Moore, Penny L; Gray, Glenda E; Kublin, James; McElrath, M Juliana; Vermeulen, Marion; Middelkoop, Keren; Bekker, Linda-Gail; Hoelscher, Michael; Maboko, Leonard; Makhema, Joseph; Robb, Merlin L; Abdool Karim, Salim; Abdool Karim, Quarraisha; Kim, Jerome H; Hahn, Beatrice H; Gao, Feng; Swanstrom, Ronald; Morris, Lynn; Montefiori, David C; Williamson, Carolyn

    2016-07-01

    The development of biomedical interventions to reduce acquisition of HIV-1 infection remains a global priority, however their potential effectiveness is challenged by very high HIV-1 envelope diversity. Two large prophylactic trials in high incidence, clade C epidemic regions in southern Africa are imminent; passive administration of the monoclonal antibody VRC01, and active immunization with a clade C modified RV144-like vaccines. We have created a large representative panel of C clade viruses to enable assessment of antibody responses to vaccines and natural infection in Southern Africa, and we investigated the genotypic and neutralization properties of recently transmitted clade C viruses to determine how viral diversity impacted antibody recognition. We further explore the implications of these findings for the potential effectiveness of these trials. A panel of 200 HIV-1 Envelope pseudoviruses was constructed from clade C viruses collected within the first 100 days following infection. Viruses collected pre-seroconversion were significantly more resistant to serum neutralization compared to post-seroconversion viruses (p = 0.001). Over 13 years of the study as the epidemic matured, HIV-1 diversified (p = 0.0009) and became more neutralization resistant to monoclonal antibodies VRC01, PG9 and 4E10. When tested at therapeutic levels (10ug/ml), VRC01 only neutralized 80% of viruses in the panel, although it did exhibit potent neutralization activity against sensitive viruses (IC50 titres of 0.42 μg/ml). The Gp120 amino acid similarity between the clade C panel and candidate C-clade vaccine protein boosts (Ce1086 and TV1) was 77%, which is 8% more distant than between CRF01_AE viruses and the RV144 CRF01_AE immunogen. Furthermore, two vaccine signature sites, K169 in V2 and I307 in V3, associated with reduced infection risk in RV144, occurred less frequently in clade C panel viruses than in CRF01_AE viruses from Thailand. Increased resistance of pre

  3. Features of Recently Transmitted HIV-1 Clade C Viruses that Impact Antibody Recognition: Implications for Active and Passive Immunization

    PubMed Central

    Rademeyer, Cecilia; Korber, Bette; Seaman, Michael S.; Giorgi, Elena E.; Thebus, Ruwayhida; Robles, Alexander; Sheward, Daniel J.; Wagh, Kshitij; Carey, Brittany R.; Gao, Hongmei; Greene, Kelli M.; Tang, Haili; Marais, Jinny C.; Diphoko, Thabo E.; Hraber, Peter; Tumba, Nancy; Moore, Penny L.; Gray, Glenda E.; Kublin, James; McElrath, M. Juliana; Vermeulen, Marion; Middelkoop, Keren; Bekker, Linda-Gail; Hoelscher, Michael; Maboko, Leonard; Makhema, Joseph; Robb, Merlin L.; Abdool Karim, Salim; Abdool Karim, Quarraisha; Kim, Jerome H.; Hahn, Beatrice H.; Gao, Feng; Swanstrom, Ronald; Morris, Lynn; Montefiori, David C.; Williamson, Carolyn

    2016-01-01

    The development of biomedical interventions to reduce acquisition of HIV-1 infection remains a global priority, however their potential effectiveness is challenged by very high HIV-1 envelope diversity. Two large prophylactic trials in high incidence, clade C epidemic regions in southern Africa are imminent; passive administration of the monoclonal antibody VRC01, and active immunization with a clade C modified RV144-like vaccines. We have created a large representative panel of C clade viruses to enable assessment of antibody responses to vaccines and natural infection in Southern Africa, and we investigated the genotypic and neutralization properties of recently transmitted clade C viruses to determine how viral diversity impacted antibody recognition. We further explore the implications of these findings for the potential effectiveness of these trials. A panel of 200 HIV-1 Envelope pseudoviruses was constructed from clade C viruses collected within the first 100 days following infection. Viruses collected pre-seroconversion were significantly more resistant to serum neutralization compared to post-seroconversion viruses (p = 0.001). Over 13 years of the study as the epidemic matured, HIV-1 diversified (p = 0.0009) and became more neutralization resistant to monoclonal antibodies VRC01, PG9 and 4E10. When tested at therapeutic levels (10ug/ml), VRC01 only neutralized 80% of viruses in the panel, although it did exhibit potent neutralization activity against sensitive viruses (IC50 titres of 0.42 μg/ml). The Gp120 amino acid similarity between the clade C panel and candidate C-clade vaccine protein boosts (Ce1086 and TV1) was 77%, which is 8% more distant than between CRF01_AE viruses and the RV144 CRF01_AE immunogen. Furthermore, two vaccine signature sites, K169 in V2 and I307 in V3, associated with reduced infection risk in RV144, occurred less frequently in clade C panel viruses than in CRF01_AE viruses from Thailand. Increased resistance of pre

  4. Comparative clonal analysis of human immunodeficiency virus type 1 (HIV- 1)-specific CD4+ and CD8+ cytolytic T lymphocytes isolated from seronegative humans immunized with candidate HIV-1 vaccines

    PubMed Central

    1992-01-01

    The lysis of infected host cells by virus-specific cytolytic T lymphocytes (CTL) is an important factor in host resistance to viral infection. An optimal vaccine against human immunodeficiency virus type 1 (HIV-1) would elicit virus-specific CTL as well as neutralizing antibodies. The induction by a vaccine of HIV-1-specific CD8+ CTL in humans has not been previously reported. In this study, CTL responses were evaluated in HIV-1-seronegative human volunteers participating in a phase I acquired immune deficiency syndrome (AIDS) vaccine trial involving a novel vaccine regimen. Volunteers received an initial immunization with a live recombinant vaccinia virus vector carrying the HIV-1 env gene and a subsequent boost with purified env protein. An exceptionally strong env-specific CTL response was detected in one of two vaccine recipients, while modest but significant env-specific CTL activity was present in the second vaccinee. Cloning of the responding CTL gave both CD4+ and CD8+ env-specific CTL clones, permitting a detailed comparison of critical functional properties of these two types of CTL. In particular, the potential antiviral effects of these CTL were evaluated in an in vitro system involving HIV-1 infection of cultures of normal autologous CD4+ lymphoblasts. At extremely low effector-to-target ratios, vaccine-induced CD8+ CTL clones lysed productively infected cells present within these cultures. When tested for lytic activity against target cells expressing the HIV-1 env gene, CD8+ CTL were 3-10-fold more active on a per cell basis than CD4+ CTL. However, when tested against autologous CD4+ lymphoblasts acutely infected with HIV-1, CD4+ clones lysed a much higher fraction of the target cell population than did CD8+ CTL. CD4+ CTL were shown to recognize not only the infected cells within these acutely infected cultures but also noninfected CD4+ T cells that had passively taken up gp120 shed from infected cells and/or free virions. These results were

  5. An Effective Vaccination Approach Augments anti-HIV Systemic and Vaginal Immunity in Mice with Decreased HIV-1 Susceptible α4β7high CD4+ T Cells

    PubMed Central

    Zhu, Wei; Shi, Guoping; Tang, Haijun; Lewis, Dorothy E; Song, Xiao-Tong

    2013-01-01

    HIV-1 preferentially infects activated CD4+ T cells expressing α4β7 integrin and conventional vaccination approaches non-selectively induce immune responses including α4β7high CD4+ T cells, suggesting that current candidate AIDS vaccines may produce more target cells for HIV-1 and paradoxically enhance HIV-1 infection. Thus it remains a challenge to selectively induce robust anti-HIV immunity without the unwanted HIV-1 susceptible α4β7high CD4+ T cells. Here we describe a vaccination strategy that targets ALDH1a2, a retinoic acid producing enzyme in dendritic cells (DCs). Silencing ALDH1a2 in DCs enhanced the maturation and production of proinflammatory cytokines of DCs and promoted Th1/Th2 differentiation while suppressing Treg. ALDH1a2-silenced DCs effectively downregulated the expression of guthoming receptors α4β7 and CCR9 on activated T and B lymphocytes. Consequently, intranasal immunization of a lentiviral vaccine encoding ALDH1a2 shRNA and HIV-1 gp140 redirected gp140-specific mucosal T cell and antibody responses from the gut to the vaginal tract, while dramatically enhancing systemic gp140-specific immune responses. We further demonstrated that silencing ALDH1a2 in human DCs resulted in downregulation of β7 expression on activated autologous CD4+ T cells. Hence this study provides a unique and effective strategy to induce α4β7low anti-HIV immune responses. PMID:23157585

  6. An effective vaccination approach augments anti-HIV systemic and vaginal immunity in mice with decreased HIV-1 susceptible α4β7high CD4+ T cells.

    PubMed

    Zhu, Wei; Shi, Guoping; Tang, Haijun; Lewis, Dorothy E; Song, Xiao-Tong

    2013-01-01

    HIV-1 preferentially infects activated CD4(+) T cells expressing α4β7 integrin and conventional vaccination approaches non-selectively induce immune responses including α4β7(high) CD4(+) T cells, suggesting that current candidate AIDS vaccines may produce more target cells for HIV-1 and paradoxically enhance HIV-1 infection. Thus it remains a challenge to selectively induce robust anti-HIV immunity without the unwanted HIV-1 susceptible α4β77(high) CD4(+)+ T cells. Here we describe a vaccination strategy that targets ALDH1a2, a retinoic acid producing enzyme in dendritic cells (DCs). Silencing ALDH1a2 in DCs enhanced the maturation and production of proinflammatory cytokines of DCs and promoted Th1/Th2 differentiation while suppressing Treg. ALDH1a2-silenced DCs effectively downregulated the expression of guthoming receptors α4β77 and CCR9 on activated T and B lymphocytes. Consequently, intranasal immunization of a lentiviral vaccine encoding ALDH1a2 shRNA and HIV-1 gp140 redirected gp140-specific mucosal T cell and antibody responses from the gut to the vaginal tract, while dramatically enhancing systemic gp140-specific immune responses. We further demonstrated that silencing ALDH1a2 in human DCs resulted in downregulation of β7 expression on activated autologous CD4(+) T cells. Hence this study provides a unique and effective strategy to induce α4β7(low) anti-HIV immune responses.

  7. [A novel immunization strategy to induce strong humoral responses against HIV-1 using combined DNA, recombinant vaccinia virus and protein vaccines].

    PubMed

    Liu, Chang; Wang, Shu-hui; Ren, Li; Hao, Yan-ling; Zhang, Qi-cheng; Liu, Ying

    2014-11-01

    To optimize the immunization strategy against HIV-1, a DNA vaccine was combined with a recombinant vaccinia virus (rTV) vaccine and a protein vaccine. Immune responses against HIV-1 were detected in 30 female guinea pigs divided into six groups. Three groups of guinea pigs were primed with HIV-1 DNA vaccine three times, boosted with rTV at week 14, and then boosted with gp140 protein at intervals of 4, 8 or 12 weeks. Simultaneously, the other three groups of animals were primed with rTV vaccine once, and then boosted with gp140 after 4, 8 or 12 weeks. The HIV-1 specific binding antibody and neutralizing antibody, in addition to the relative affinity of these antibodies, were detected at different time points after the final administration of vaccine in each group. The DNA-rTV-gp140 immune regimen induced higher titers and affinity levels of HIV-1 gp120/gp140 antibodies and stronger V1V2-gp70 antibodies than the rTV-gp140 regimen. In the guinea pigs that underwent the DNA-rTV-gp140 regimen, the highest V1V2-gp70 antibody was induced in the 12-week-interval group. However, the avidity of antibodies was improved in the 4-week-interval group. Using the rTV-gp140 immunization strategy, guinea pigs boosted at 8 or 12 weeks after rTV priming elicited stronger humoral responses than those boosted at 4 weeks after priming. In conclusion, this study shows that the immunization strategy of HIV-1 DNA vaccine priming, followed by rTV and protein vaccine boosting, could strengthen the humoral response against HIV-1. Longer intervals were better to induce V1V2-gp70-specific antibodies, while shorter intervals were more beneficial to enhance the avidity of antibodies.

  8. Cross-clade neutralizing antibodies against HIV-1 induced in rabbits by focusing the immune response on a neutralizing epitope

    SciTech Connect

    Zolla-Pazner, Susan; Cohen, Sandra; Pinter, Abraham; Krachmarov, Chavdar; Wrin, Terri; Wang Shixia; Lu Shan

    2009-09-15

    Studies were performed to induce cross-clade neutralizing antibodies (Abs) by testing various combinations of prime and boost constructs that focus the immune response on structurally-conserved epitopes in the V3 loop of HIV-1 gp120. Rabbits were immunized with gp120 DNA containing a V3 loop characterized by the GPGR motif at its tip, and/or with gp120 DNA with a V3 loop carrying the GPGQ motif. Priming was followed by boosts with V3-fusion proteins (V3-FPs) carrying the V3 sequence from a subtype B virus (GPGR motif), and/or with V3 sequences from subtypes A and C (GPGQ motif). The broadest and most consistent neutralizing responses were generated when using a clade C gp120 DNA prime and with the V3{sub B}-FP boost. Immune sera displayed neutralizing activity in three assays against pseudoviruses and primary isolates from subtypes A, AG, B, C, and D. Polyclonal Abs in the immune rabbit sera neutralized viruses that were not neutralized by pools of human anti-V3 monoclonal Abs. Greater than 80% of the neutralizing Abs were specific for V3, showing that the immune response could be focused on a neutralizing epitope and that vaccine-induced anti-V3 Abs have cross-clade neutralizing activity.

  9. Adenoviral vectors elicit humoral immunity against variable loop 2 of clade C HIV-1 gp120 via “Antigen Capsid-Incorporation” strategy

    PubMed Central

    Gu, Linlin; Krendelchtchikova, Valentina; Krendelchtchikov, Alexandre; Farrow, Anitra L.; Derdeyn, Cynthia A.; Matthews, Qiana L.

    2016-01-01

    Adenoviral (Ad) vectors in combination with the “Antigen Capsid-Incorporation” strategy have been applied in developing HIV-1 vaccines, due to the vectors’ abilities in incorporating and inducing immunity of capsid-incorporated antigens. Variable loop 2 (V2)-specific antibodies were suggested in the RV144 trial to correlate with reduced HIV-1 acquisition, which highlights the importance of developing novel HIV-1 vaccines by targeting the V2 loop. Therefore, the V2 loop of HIV-1 has been incorporated into the Ad capsid protein. We generated adenovirus serotype 5 (Ad5) vectors displaying variable loop 2 (V2) of HIV-1 gp120, with the “Antigen Capsid-Incorporation” strategy. To assess the incorporation capabilities on hexon hypervariable region1 (HVR1) and protein IX (pIX), 20aa or full length (43aa) of V2 and V1V2 (67aa) were incorporated, respectively. Immunizations with the recombinant vectors significantly generated antibodies against both linear and discontinuous V2 epitopes. The immunizations generated durable humoral immunity against V2. This study will lead to more stringent development of various serotypes of adenovirus-vectored V2 vaccine candidates, based on breakthroughs regarding the immunogenicity of V2. PMID:26499044

  10. Intranasal immunization of young mice with a multigene HIV-1 vaccine in combination with the N3 adjuvant induces mucosal and systemic immune responses.

    PubMed

    Bråve, Andreas; Hallengärd, David; Schröder, Ulf; Blomberg, Pontus; Wahren, Britta; Hinkula, Jorma

    2008-09-19

    One of the major challenges for the development of an HIV vaccine is to induce potent virus-specific immune responses at the mucosal surfaces where transmission of virus occurs. Intranasal delivery of classical vaccines has been shown to induce good mucosal antibody responses, but so far for genetic vaccines the success has been limited. This study shows that young individuals are sensitive to nasal immunization with a genetic vaccine delivered in a formulation of a lipid adjuvant, the Eurocine N3. Intranasal delivery of a multiclade/multigene HIV-1 genetic vaccine gave rise to vaginal and rectal IgA responses as well as systemic humoral and cellular responses. As electroporation might become the preferred means of delivering genetic vaccines for systemic HIV immunity, nasal delivery by droplet formulation in a lipid adjuvant might become a means of priming or boosting the mucosal immunity.

  11. Plasma levels of soluble CD27: a simple marker to monitor immune activation during potent antiretroviral therapy in HIV-1-infected subjects

    PubMed Central

    DE MILITO, A; ALEMAN, S; MARENZI, R; SÖNNERBORG, A; FUCHS, D; ZAZZI, M; CHIODI, F

    2002-01-01

    Plasma levels of soluble CD27 (sCD27) are elevated in diseases characterized by T cell activation and are used as a marker of immune activation. We assessed the usefulness of determining plasma sCD27 as a marker for monitoring immune activation in HIV-1-infected patients treated with highly active antiretroviral therapy (HAART). A first cross-sectional examination of 68 HIV-1-infected and 18 normal subjects showed high levels of sCD27 in HIV-1 infection; plasma sCD27 was correlated to HIV-1 viraemia and inversely correlated to CD4+ T cell count. Twenty-six HIV-1-infected patients undergoing HAART were studied at baseline and after 6, 12, 18 and 24 months of therapy. Seven additional patients under HAART were analysed at baseline, during and after interruption of therapy. In the total population, HAART induced a significant and progressive reduction, but not a normalization, of plasma levels of sCD27 after 24 months. A full normalization of plasma sCD27 was observed in the virological responders (undetectable HIV-1 RNA at months 18 and 24) and also in patients with moderate immunodeficiency at baseline (CD4+ T cell count >200 cells/mm3). Changes in plasma neopterin paralleled the changes in sCD27 but only baseline sCD27 levels were predictive of a greater increase in CD4+ T cell count during the follow-up. Discontinuation of therapy resulted in a rapid increase of sCD27 plasma levels associated with viraemia rebound and drop in CD4+ T cell count. Our findings suggest that plasma sCD27 may represent an alternative and simple marker to monitor immune activation during potent antiretroviral therapy. HIV-1-induced immune activation can be normalized by HAART in successfully treated patients where the disease is not advanced. PMID:11966765

  12. The importance of becoming double-stranded: Innate immunity and the kinetic model of HIV-1 central plus strand synthesis

    SciTech Connect

    Poeschla, Eric

    2013-06-20

    Central initiation of plus strand synthesis is a conserved feature of lentiviruses and certain other retroelements. This complication of the standard reverse transcription mechanism produces a transient “central DNA flap” in the viral cDNA, which has been proposed to mediate its subsequent nuclear import. This model has assumed that the important feature is the flapped DNA structure itself rather than the process that produces it. Recently, an alternative kinetic model was proposed. It posits that central plus strand synthesis functions to accelerate conversion to the double-stranded state, thereby helping HIV-1 to evade single-strand DNA-targeting antiviral restrictions such as APOBEC3 proteins, and perhaps to avoid innate immune sensor mechanisms. The model is consistent with evidence that lentiviruses must often synthesize their cDNAs when dNTP concentrations are limiting and with data linking reverse transcription and uncoating. There may be additional kinetic advantages for the artificial genomes of lentiviral gene therapy vectors. - Highlights: • Two main functional models for HIV central plus strand synthesis have been proposed. • In one, a transient central DNA flap in the viral cDNA mediates HIV-1 nuclear import. • In the other, multiple kinetic consequences are emphasized. • One is defense against APOBEC3G, which deaminates single-stranded DNA. • Future questions pertain to antiviral restriction, uncoating and nuclear import.

  13. HIV-1 Adaptation to Antigen Processing Results in Population-Level Immune Evasion and Affects Subtype Diversification

    PubMed Central

    Tenzer, Stefan; Crawford, Hayley; Pymm, Phillip; Gifford, Robert; Sreenu, Vattipally B.; Weimershaus, Mirjana; de Oliveira, Tulio; Burgevin, Anne; Gerstoft, Jan; Akkad, Nadja; Lunn, Daniel; Fugger, Lars; Bell, John; Schild, Hansjörg; van Endert, Peter; Iversen, Astrid K.N.

    2014-01-01

    Summary The recent HIV-1 vaccine failures highlight the need to better understand virus-host interactions. One key question is why CD8+ T cell responses to two HIV-Gag regions are uniquely associated with delayed disease progression only in patients expressing a few rare HLA class I variants when these regions encode epitopes presented by ∼30 more common HLA variants. By combining epitope processing and computational analyses of the two HIV subtypes responsible for ∼60% of worldwide infections, we identified a hitherto unrecognized adaptation to the antigen-processing machinery through substitutions at subtype-specific motifs. Multiple HLA variants presenting epitopes situated next to a given subtype-specific motif drive selection at this subtype-specific position, and epitope abundances correlate inversely with the HLA frequency distribution in affected populations. This adaptation reflects the sum of intrapatient adaptations, is predictable, facilitates viral subtype diversification, and increases global HIV diversity. Because low epitope abundance is associated with infrequent and weak T cell responses, this most likely results in both population-level immune evasion and inadequate responses in most people vaccinated with natural HIV-1 sequence constructs. Our results suggest that artificial sequence modifications at subtype-specific positions in vitro could refocus and reverse the poor immunogenicity of HIV proteins. PMID:24726370

  14. Allo-immunization elicits CCR5 antibodies, SDF-1 chemokines, and CD8-suppressor factors that inhibit transmission of R5 and X4 HIV-1 in women.

    PubMed

    Wang, Y; Underwood, J; Vaughan, R; Harmer, A; Doyle, C; Lehner, T

    2002-09-01

    Studies in humans suggest that allo-immunization induces CC-chemokines, CD8-suppressor factors (SF) and anti-HIV immunity. Here we report that allo-immunization with unmatched leucocytes from partners of women with recurrent spontaneous abortion elicits specific antibodies to the CCR5 receptor. Such antibodies inhibit replication of M-tropic HIV-1 (R5) and MIP-1beta-mediated chemotaxis. These CCR5 antibodies were also found in the sera of multiparous women that were naturally immunized by semi-allogeneic fetal antigens. The specificity of these antibodies was demonstrated by adsorption with CCR5 transfected HEK-293 cells, a baculovirus CCR5 preparation and a peptide of the 2nd extra-cellular loop of CCR5. Allo-immunization also stimulated increased concentrations of the CXC chemokine, SDF-1alpha and CD8-SF that inhibit T-tropic HIV-1 (X4) replication. We suggest that allo- immunization may elicit (a) CC chemokines, CCR5 antibodies and CD8-SF that inhibit M-tropic HIV-1 infection and (b) the CXC chemokine SDF-1alpha and CD8-SF that inhibit T-tropic HIV-1 infection.

  15. Poxviruses and the Evolution of Host Range and Virulence

    PubMed Central

    Haller, Sherry L.; Peng, Chen; McFadden, Grant; Rothenburg, Stefan

    2013-01-01

    Poxviruses as a group can infect a large number of animals. However, at the level of individual viruses, even closely related poxviruses display highly diverse host ranges and virulence. For example, variola virus, the causative agent of smallpox, is human-specific and highly virulent only to humans, whereas related cowpox viruses naturally infect a broad spectrum of animals and only cause relatively mild disease in humans. The successful replication of poxviruses depends on their effective manipulation of the host antiviral responses, at the cellular-, tissue- and species-specific levels, which constitutes a molecular basis for differences in poxvirus host range and virulence. A number of poxvirus genes have been identified that possess host range function in experimental settings, and many of these host range genes target specific antiviral host pathways. Herein, we review the biology of poxviruses with a focus on host range, zoonotic infections, virulence, genomics and host range genes as well as the current knowledge about the function of poxvirus host range factors and how their interaction with the host innate immune system contributes to poxvirus host range and virulence. We further discuss the evolution of host range and virulence in poxviruses as well as host switches and potential poxvirus threats for human and animal health. PMID:24161410

  16. Durable cytotoxic immune responses against gp120 elicited by recombinant SV40 vectors encoding HIV-1 gp120 +/- IL-15.

    PubMed

    McKee, Hayley J; T'sao, Patricia Y; Vera, Maria; Fortes, Puri; Strayer, David S

    2004-08-23

    BACKGROUND: A vaccine that elicits durable, powerful anti-HIV immunity remains an elusive goal. In these studies we tested whether multiple treatments with viral vector-delivered HIV envelope antigen (gp120), with and without IL-15, could help to approach that goal. For this purpose, we used recombinant Tag-deleted SV40-derived vectors (rSV40s), since they do not elicit neutralizing antibody responses, and so can be given multiply without loss of transduction efficiency. METHODS: SV(gp120) carried the coding sequences for HIV-1NL4-3 Env, and SV(mIL-15) carried the cDNA for mouse IL-15. Singly, and in combination, these two vectors were given monthly to BALB/cJ mice. Cytotoxic immunity and cytotoxic memory were tested in direct cytotoxicity assays using unselected effector cells. Antibody vs. gp120 was measured in a binding assay. In both cases, targets were P815 cells that were stably transfected with gp120. RESULTS: Multiple injections of SV(gp120) elicited powerful anti-gp120 cytolytic activity (>70% specific lysis) by unselected spleen cells. Cells from multiply-immunized mice that were rested 1 year after their last injections still showed >60% gp120-specific lysis. Anti-gp120 antibody was first detected after 2 monthly injections of SV(gp120) and remained elevated thereafter. Adding SV(mIL-15) to the immunization regimen dramatically accelerated the development of memory cytolytic responses, with >/= 50% specific lysis seen 1 month after two treatments. IL-15 did not alter the development of antibody responses. CONCLUSIONS: Thus, rSV40s encoding antigens and immunostimulatory cytokines may be useful tools for priming and/or boosting immune responses against HIV.

  17. Dynamics of a Delayed HIV-1 Infection Model with Saturation Incidence Rate and CTL Immune Response

    NASA Astrophysics Data System (ADS)

    Guo, Ting; Liu, Haihong; Xu, Chenglin; Yan, Fang

    2016-12-01

    In this paper, we investigate the dynamics of a five-dimensional virus model incorporating saturation incidence rate, CTL immune response and three time delays which represent the latent period, virus production period and immune response delay, respectively. We begin this model by proving the positivity and boundedness of the solutions. Our model admits three possible equilibrium solutions, namely the infection-free equilibrium E0, the infectious equilibrium without immune response E1 and the infectious equilibrium with immune response E2. Moreover, by analyzing corresponding characteristic equations, the local stability of each of the feasible equilibria and the existence of Hopf bifurcation at the equilibrium point E2 are established, respectively. Further, by using fluctuation lemma and suitable Lyapunov functionals, it is shown that E0 is globally asymptotically stable when the basic reproductive numbers for viral infection R0 is less than unity. When the basic reproductive numbers for immune response R1 is less than unity and R0 is greater than unity, the equilibrium point E1 is globally asymptotically stable. Finally, some numerical simulations are carried out for illustrating the theoretical results.

  18. Protection in Macaques Immunized with HIV-1 Candidate Vaccines Can Be Predicted Using the Kinetics of Their Neutralizing Antibodies

    PubMed Central

    Davis, David; Koornstra, Wim; Mortier, Daniella; Fagrouch, Zahra; Verschoor, Ernst J.; Heeney, Jonathan L.; Bogers, Willy M. J. M.

    2011-01-01

    Background A vaccine is needed to control the spread of human immunodeficiency virus type 1 (HIV-1). An in vitro assay that can predict the protection induced by a vaccine would facilitate the development of such a vaccine. A potential candidate would be an assay to quantify neutralization of HIV-1. Methods and Findings We have used sera from rhesus macaques that have been immunized with HIV candidate vaccines and subsequently challenged with simian human immunodeficiency virus (SHIV). We compared neutralization assays with different formats. In experiments with the standardized and validated TZMbl assay, neutralizing antibody titers against homologous SHIVSF162P4 pseudovirus gave a variable correlation with reductions in plasma viremia levels. The target cells used in the assays are not just passive indicators of virus infection but are actively involved in the neutralization process. When replicating virus was used with GHOST cell assays, events during the absorption phase, as well as the incubation phase, determine the level of neutralization. Sera that are associated with protection have properties that are closest to the traditional concept of neutralization: the concentration of antibody present during the absorption phase has no effect on the inactivation rate. In GHOST assays, events during the absorption phase may inactivate a fixed number, rather than a proportion, of virus so that while complete neutralization can be obtained, it can only be found at low doses particularly with isolates that are relatively resistant to neutralization. Conclusions Two scenarios have the potential to predict protection by neutralizing antibodies at concentrations that can be induced by vaccination: antibodies that have properties close to the traditional concept of neutralization may protect against a range of challenge doses of neutralization sensitive HIV isolates; a window of opportunity also exists for protection against isolates that are more resistant to

  19. Induction of HIV-1 gag specific immune responses by cationic micelles mediated delivery of gag mRNA.

    PubMed

    Zhao, Mengnan; Li, Man; Zhang, Zhirong; Gong, Tao; Sun, Xun

    2016-09-01

    In recent years, mRNA-based vaccines have emerged to be a great alternative to DNA-based vaccines due to the safety of not inserting into host genome. However, mRNA molecules are single-stranded nucleic acids that are vulnerable under RNase existing in human skin and tissues. In this study, a self-assembled cationic nanomicelles based on polyethyleneimine-stearic acid (PSA) copolymer were developed to delivery HIV-1 gag encoding mRNA to dendritic cells and BALB/c mice. We evaluated the transfection efficiency and cell uptake efficiency of naked EGFP mRNA, PSA, PEI-2k and PEI-25k nanoparticles format on DC2.4 cell lines. Immune responses after sub-cutaneous administration of gag mRNA to BALB/c mice were notably induced by PSA as compared with naked gag mRNA. We found the PSA/mRNA nanomicelles were potent systems that can effectively deliver mRNA and induce antigen-specific immune response, stimulating various new vaccine strategies using mRNA.

  20. Enzymatic removal of mannose moieties can increase the immune response to HIV-1 gp120 in vivo.

    PubMed

    Banerjee, Kaustuv; Andjelic, Sofija; Klasse, Per Johan; Kang, Yun; Sanders, Rogier W; Michael, Elizabeth; Durso, Robert J; Ketas, Thomas J; Olson, William C; Moore, John P

    2009-06-20

    The Env glycoproteins gp120 and gp41 are used in humoral immunity-based vaccines against human immunodeficiency virus (HIV-1) infection. One among many obstacles to such a vaccine is the structural defenses of Env glycoproteins that limit their immunogenicity. For example, gp120 mannose residues can induce immunosuppressive responses in vitro, including IL-10 expression, via mannose C-type lectin receptors on antigen-presenting cells. Here, we have investigated whether mannose removal alters gp120 immunogenicity in mice. Administering demannosylated gp120 (D-gp120) in the T(H)2-skewing adjuvant Alum induced approximately 50-fold higher titers of anti-gp120 IgG, compared to unmodified gp120. While the IgG subclass profile was predominantly T(H)2-associated IgG1, Abs of the T(H)1-associated IgG2a and IgG3 subclasses were also detectable in D-gp120 recipients. Immunizing with D-gp120 also improved T-cell responses. Giving an IL-10 receptor blocking MAb together with unmodified gp120 in Alum increased the anti-gp120 IgG titer, implicating IL-10 as a possible mediator of auto-suppressive responses to gp120.

  1. Enzymatic removal of mannose moieties can increase the immune response to HIV-1 gp120 in vivo

    PubMed Central

    Banerjee, Kaustuv; Andjelic, Sofija; Klasse, Per Johan; Kang, Yun; Sanders, Rogier W.; Michael, Elizabeth; Durso, Robert J.; Ketas, Thomas J.; Olson, William C.; Moore, John P.

    2009-01-01

    The Env glycoproteins gp120 and gp41 are used in humoral immunity-based vaccines against human immunodeficiency virus (HIV-1) infection. One among many obstacles to such a vaccine is the structural defenses of Env glycoproteins that limit their immunogenicity. For example, gp120 mannose residues can induce immunosuppressive responses in vitro, including IL-10 expression, via mannose C-type lectin receptors on antigen-presenting cells. Here, we have investigated whether mannose removal alters gp120 immunogenicity in mice. Administering demannosylated gp120 (D-gp120) in the TH2-skewing adjuvant Alum induced ~50-fold higher titers of anti-gp120 IgG, compared to unmodified gp120. While the IgG subclass profile was predominantly TH2-associated IgG1, Abs of the TH1-associated IgG2a and IgG3 subclasses were also detectable in D-gp120 recipients. Immunizing with D-gp120 also improved T-cell responses. Giving an IL-10 receptor blocking MAb together with unmodified gp120 in Alum increased the anti-gp120 IgG titer, implicating IL-10 as a possible mediator of auto-suppressive responses to gp120. PMID:19410272

  2. Successful vaccination of immune suppressed recipients using Listeria vector HIV-1 vaccines in helminth infected mice.

    PubMed

    Shollenberger, Lisa M; Bui, Cac; Paterson, Yvonne; Allen, Kelsey; Harn, Donald

    2013-04-12

    Vaccines for HIV, malaria and TB remain high priorities, especially for sub-Saharan populations. The question is: will vaccines currently in development for these diseases function in populations that have a high prevalence of helminth infection? Infection with helminth parasites causes immune suppression and a CD4+ Th2 skewing of the immune system, thereby impairing Th1-type vaccine efficacy. In this study, we conduct HIV vaccine trials in mice with and without chronic helminth infection to mimic the human vaccine recipient populations in Sub-Saharan Africa and other helminth parasite endemic regions of the world, as there is large overlap in global prevalence for HIV and helminth infection. Here, we demonstrate that Listeria monocytogenes functions as a vaccine vector to drive robust and functional HIV-specific cellular immune responses, irrespective of chronic helminth infection. This observation represents a significant advance in the field of vaccine research and underscores the concept that vaccines in the developmental pipeline should be effective in the target populations.

  3. VS411 Reduced Immune Activation and HIV-1 RNA Levels in 28 Days: Randomized Proof-of-Concept Study for AntiViral-HyperActivation Limiting Therapeutics

    PubMed Central

    Lori, Franco; De Forni, Davide; Katabira, Elly; Baev, Denis; Maserati, Renato; Calarota, Sandra A.; Cahn, Pedro; Testori, Marco; Rakhmanova, Aza; Stevens, Michael R.

    2012-01-01

    Background A new class of antiretrovirals, AntiViral-HyperActivation Limiting Therapeutics (AV-HALTs), has been proposed as a disease-modifying therapy to both reduce Human Immunodeficiency Virus Type 1 (HIV-1) RNA levels and the excessive immune activation now recognized as the major driver of not only the continual loss of CD4+ T cells and progression to Acquired Immunodeficiency Syndrome (AIDS), but also of the emergence of both AIDS-defining and non-AIDS events that negatively impact upon morbidity and mortality despite successful (ie, fully suppressive) therapy. VS411, the first-in-class AV-HALT, combined low-dose, slow-release didanosine with low-dose hydroxycarbamide to accomplish both objectives with a favorable toxicity profile during short-term administration. Five dose combinations were administered as VS411 to test the AV-HALT Proof-of-Concept in HIV-1-infected subjects. Methods Multinational, double-blind, 28-day Phase 2a dose-ranging Proof-of-Concept study of antiviral activity, immunological parameters, safety, and genotypic resistance in 58 evaluable antiretroviral-naïve HIV-1-infected adults. Randomization and allocation to study arms were carried out by a central computer system. Results were analyzed by ANOVA, Kruskal-Wallis, ANCOVA, and two-tailed paired t tests. Results VS411 was well-tolerated, produced significant reductions of HIV-1 RNA levels, increased CD4+ T cell counts, and led to significant, rapid, unprecedented reductions of immune activation markers after 28 days despite incomplete viral suppression and without inhibiting HIV-1-specific immune responses. The didanosine 200 mg/HC 900 mg once-daily formulation demonstrated the greatest antiviral efficacy (HIV-1 RNA: −1.47 log10 copies/mL; CD4+ T cell count: +135 cells/mm3) and fewest adverse events. Conclusions VS411 successfully established the Proof-of-Concept that AV-HALTs can combine antiviral efficacy with rapid, potentially beneficial reductions in the excessive immune system

  4. Naloxone/alum mixture a potent adjuvant for HIV-1 vaccine: induction of cellular and poly-isotypic humoral immune responses.

    PubMed

    Velashjerdi Farahani, Sima; Reza Aghasadeghi, Mohammad; Memarnejadian, Arash; Faezi, Sobhan; Shahosseini, Zahra; Mahdavi, Mehdi

    2016-03-01

    In the present study we used a fusion peptide from HIV-1 p24 and Nef as vaccine model and adjuvant activity of Naloxone/alum mixture was evaluated in a peptide vaccine model. HIV-1 p24-Nef fusion peptide was synthesized. Female BALB/c mice were divided into five groups. The first group immunized subcutaneously with the p24-Nef fusion peptide adjuvanted with Naloxone/alum mixture and boosted with same protocol. The second was immunized with fusion peptide adjuvanted in alum. The control groups were injected with NLX (Group 3), Alum (Group 4), or PBS (Groups 5) under the same conditions. To determine the type of induced immune response, sera and splenocytes were analyzed by commercial ELISA method for total IgG and isotypes and cytokine secretion (IL-4 & IFN-γ), respectively. We have also used the ELISPOT assay to monitor changes in the frequency of IFN-γ-producing T cells. The proliferation of T cells was assessed using Brdu method and T-cell cytotoxicity was assessed with CFSE method. Immunization of mice with HIV-1 p24-Nef fusion peptide formulated in Naloxone/alum mixture significantly increased lymphocyte proliferation and shifted cytokine responses toward Th1 profile compared to all other groups. Analysis of humoral immune responses revealed that administration of HIV-1 p24-Nef fusion peptide with Naloxone/alum mixture significantly increased specific IgG responses and also increased IgG1,IgG2a, IgG2b, IgG3, and IgM vs. alum-adjuvanted vaccine groups. Naloxone/alum mixture as an adjuvant could improve cellular and humoral immune response for HIV vaccine model and this adjuvant maybe useful for HIV vaccine model in human clinical trial.

  5. Live attenuated Salmonella displaying HIV-1 10E8 epitope on fimbriae: systemic and mucosal immune responses in BALB/c mice by mucosal administration

    PubMed Central

    Li, Qing-Hai; Jin, Gang; Wang, Jia-Ye; Li, Hai-Ning; Liu, Huidi; Chang, Xiao-Yun; Wang, Fu-Xiang; Liu, Shu-Lin

    2016-01-01

    The HIV-1 membrane proximal external region (MPER) that is targeted by several broadly neutralizing antibodies (BNAbs) has been considered a potential immunogen for vaccine development. However, to date the immunogenicity of these BNAb epitopes has not been made sufficiently adequate. In the present work, we used live attenuated Salmonella as a platform to present the HIV-1 MPER 10E8 epitope in the fimbriae. The insertion of the 10E8 epitope into the fimbriae had no significant influence on the expression and the absorption capacity of bacterial fimbriae, nor on the virulence and invasiveness of the attenuated Salmonella. After oral administration of the vaccine construct to mice followed by 10E8 epitope peptide boost, specific antibody responses in serum and mucosa as well as memory lymphocytes in spleen and plasma cells in bone marrow were induced. We also found that the live attenuated Salmonella vector directed the immunity toward Th1 bias, induced Th1 and Th2 cytokine responses and stimulated significant B cell differentiation into GC B, memory B and plasma cells. Therefore, we propose that the live attenuated Salmonella constitutively expressing HIV-1 BNAb epitopes on the fimbriae will be an effective approach to improving immune microenvironment and enhancing the immunogenicity of HIV-1 epitope vaccines. PMID:27411313

  6. Immunogenic Profiling in Mice of a HIV/AIDS Vaccine Candidate (MVA-B) Expressing Four HIV-1 Antigens and Potentiation by Specific Gene Deletions

    PubMed Central

    García-Arriaza, Juan; Nájera, José Luis; Gómez, Carmen E.; Sorzano, Carlos Oscar S.; Esteban, Mariano

    2010-01-01

    Background The immune parameters of HIV/AIDS vaccine candidates that might be relevant in protection against HIV-1 infection are still undefined. The highly attenuated poxvirus strain MVA is one of the most promising vectors to be use as HIV-1 vaccine. We have previously described a recombinant MVA expressing HIV-1 Env, Gag, Pol and Nef antigens from clade B (referred as MVA-B), that induced HIV-1-specific immune responses in different animal models and gene signatures in human dendritic cells (DCs) with immunoregulatory function. Methodology/Principal Findings In an effort to characterize in more detail the immunogenic profile of MVA-B and to improve its immunogenicity we have generated a new vector lacking two genes (A41L and B16R), known to counteract host immune responses by blocking the action of CC-chemokines and of interleukin 1β, respectively (referred as MVA-B ΔA41L/ΔB16R). A DNA prime/MVA boost immunization protocol was used to compare the adaptive and memory HIV-1 specific immune responses induced in mice by the parental MVA-B and by the double deletion mutant MVA-B ΔA41L/ΔB16R. Flow cytometry analysis revealed that both vectors triggered HIV-1-specific CD4+ and CD8+ T cells, with the CD8+ T-cell compartment responsible for >91.9% of the total HIV-1 responses in both immunization groups. However, MVA-B ΔA41L/ΔB16R enhanced the magnitude and polyfunctionality of the HIV-1-specific CD4+ and CD8+ T-cell immune responses. HIV-1-specific CD4+ T-cell responses were polyfunctional and preferentially Env-specific in both immunization groups. Significantly, while MVA-B induced preferentially Env-specific CD8+ T-cell responses, MVA-B ΔA41L/ΔB16R induced more GPN-specific CD8+ T-cell responses, with an enhanced polyfunctional pattern. Both vectors were capable of producing similar levels of antibodies against Env. Conclusions/Significance These findings revealed that MVA-B and MVA-B ΔA41L/ΔB16R induced in mice robust, polyfunctional and durable T

  7. Discordant Immune Response with Antiretroviral Therapy in HIV-1: A Systematic Review of Clinical Outcomes

    PubMed Central

    Kelly, Christine; Gaskell, Katherine M.; Richardson, Marty; Klein, Nigel; Garner, Paul; MacPherson, Peter

    2016-01-01

    Background A discordant immune response (DIR) is a failure to satisfactorily increase CD4 counts on ART despite successful virological control. Literature on the clinical effects of DIR has not been systematically evaluated. We aimed to summarise the risk of mortality, AIDS and serious non-AIDS events associated with DIR with a systematic review. Methods The protocol is registered with the Centre for Review Dissemination, University of York (registration number CRD42014010821). Included studies investigated the effect of DIR on mortality, AIDS, or serious non-AIDS events in cohort studies or cohorts contained in arms of randomised controlled trials for adults aged 16 years or older. DIR was classified as a suboptimal CD4 count (as defined by the study) despite virological suppression following at least 6 months of ART. We systematically searched PubMed, Embase, and the Cochrane Library to December 2015. Risk of bias was assessed using the Cochrane tool for assessing risk of bias in cohort studies. Two authors applied inclusion criteria and one author extracted data. Risk ratios were calculated for each clinical outcome reported. Results Of 20 studies that met the inclusion criteria, 14 different definitions of DIR were used. Risk ratios for mortality in patients with and without DIR ranged between 1.00 (95% CI 0.26 to 3.92) and 4.29 (95% CI 1.96 to 9.38) with the majority of studies reporting a 2 to 3 fold increase in risk. Conclusions DIR is associated with a marked increase in mortality in most studies but definitions vary widely. We propose a standardised definition to aid the development of management options for DIR. PMID:27284683

  8. Increased immunogenicity of HIV-1 p24 and gp120 following immunization with gp120/p24 fusion protein vaccine expressing alpha-gal epitopes.

    PubMed

    Abdel-Motal, Ussama M; Wang, Shixia; Awad, Amany; Lu, Shan; Wigglesworth, Kim; Galili, Uri

    2010-02-17

    Developing an effective HIV-1 vaccine will require strategies to enhance antigen presentation to the immune system. In a previous study we demonstrated a marked increase in immunogenicity of the highly glycosylated HIV-1 gp120 protein following enzymatic addition of alpha-gal epitopes to the carbohydrate chains. In the present study we determined whether gp120(alphagal) can also serve as an effective platform for targeting other HIV-1 proteins to APC and thus increase immunogenicity of both proteins. For this purpose we produced a recombinant fusion protein between gp120 and the HIV-1 matrix p24 protein (gp120/p24). Multiple alpha-gal epitopes were synthesized enzymatically on the gp120 portion of the fusion protein to generate a gp120(alphagal)/p24 vaccine. Immune responses to gp120(alphagal)/p24 compared to gp120/p24 vaccine lacking alpha-gal epitopes were evaluated in alpha1,3galactosyltransferase knockout (KO) mice. These mice lack alpha-gal epitopes and, therefore, are capable of producing the anti-Gal antibody. T cell responses to p24, as assessed by ELISPOT and by CD8+ T cells intracellular staining assays for IFNgamma, was on average 12- and 10-fold higher, respectively, in gp120(alphagal)/p24 immunized mice than in mice immunized with gp120/p24. In addition, cellular and humoral immune responses against gp120 were higher by 10-30-fold in mice immunized with gp120(alphagal)/p24 than in gp120/p24 immunized mice. Our data suggest that the alpha-gal epitopes on the gp120 portion of the fusion protein can significantly augment the immunogenicity of gp120, as well as that of the fused viral protein which lacks alpha-gal epitopes. This strategy of anti-Gal mediated targeting to APC may be used for production of effective HIV-1 vaccines comprised of various viral proteins fused to gp120.

  9. Effect of Schistosoma mansoni Infection on Innate and HIV-1-Specific T-Cell Immune Responses in HIV-1-Infected Ugandan Fisher Folk.

    PubMed

    Obuku, Andrew Ekii; Asiki, Gershim; Abaasa, Andrew; Ssonko, Isaac; Harari, Alexandre; van Dam, Govert J; Corstjens, Paul L; Joloba, Moses; Ding, Song; Mpendo, Juliet; Nielsen, Leslie; Kamali, Anatoli; Elliott, Alison M; Pantaleo, Giuseppe; Kaleebu, Pontiano; Pala, Pietro

    2016-07-01

    In Uganda, fisher folk have HIV prevalence rates, about four times higher than the national average, and are often coinfected with Schistosoma mansoni. We hypothesized that innate immune responses and HIV-specific Th1 immune responses might be downmodulated in HIV/S. mansoni-coinfected individuals compared with HIV+/S. mansoni-negative individuals. We stimulated whole blood with innate receptor agonists and analyzed supernatant cytokines by Luminex. We evaluated HIV-specific responses by intracellular cytokine staining for IFN-γ, IL-2, and TNF-α. We found that the plasma viral load and CD4 count were similar between the HIV+SM+ and HIV+SM- individuals. In addition, the TNF-α response to the imidazoquinoline compound CL097 and β-1, 3-glucan (curdlan), was significantly higher in HIV/S. mansoni-coinfected individuals compared with HIV only-infected individuals. The frequency of HIV-specific IFN-γ+IL-2-TNF-α- CD8 T cells and IFN-γ+IL-2-TNF-α+ CD4 T cells was significantly higher in HIV/S. mansoni-coinfected individuals compared with HIV only-infected individuals. These findings do not support the hypothesis that S. mansoni downmodulates innate or HIV-specific Th1 responses in HIV/S. mansoni-coinfected individuals.

  10. Conjugated anionic PEG-citrate G2 dendrimer with multi-epitopic HIV-1 vaccine candidate enhance the cellular immune responses in mice.

    PubMed

    Abdoli, Asghar; Radmehr, Nina; Bolhassani, Azam; Eidi, Akram; Mehrbod, Parvaneh; Motevalli, Fatemeh; Kianmehr, Zahra; Chiani, Mohsen; Mahdavi, Mehdi; Yazdani, Shaghayegh; Ardestani, Mehdi Shafiee; Kandi, Mohammad Reza; Aghasadeghi, Mohammad Reza

    2017-02-20

    Multi-epitope vaccines might cause immunity against multiple antigenic targets. Four immunodominant epitopes of HIV-1 genome were used to construct a polytope vaccine, formulated by dendrimer. Two regimens of polytopes mixture with dendrimer were utilized to immunize BALB/c mice. Adjuvants were also used to boost immune responses. The conjugated polytope could arouse significant cellular immune responses (P < 0.05) and Th1 response showed higher intensity compared to Th2 (P < 0.05). Our study depicted that conjugated dendrimer with multi-epitopic rHIVtop4 would efficiently induce cell-mediated immune responses and might be considered as promising delivery system for vaccines formulation.

  11. Immunization with an SIV-based IDLV Expressing HIV-1 Env 1086 Clade C Elicits Durable Humoral and Cellular Responses in Rhesus Macaques

    PubMed Central

    Negri, Donatella; Blasi, Maria; LaBranche, Celia; Parks, Robert; Balachandran, Harikrishnan; Lifton, Michelle; Shen, Xiaoying; Denny, Thomas; Ferrari, Guido; Vescio, Maria Fenicia; Andersen, Hanne; Montefiori, David C; Tomaras, Georgia D; Liao, Hua-Xin; Santra, Sampa; Haynes, Barton F; Klotman, Mary E; Cara, Andrea

    2016-01-01

    The design of an effective HIV-1 vaccine remains a major challenge. Several vaccine strategies based on viral vectors have been evaluated in preclinical and clinical trials, with largely disappointing results. Integrase defective lentiviral vectors (IDLV) represent a promising vaccine candidate given their ability to induce durable and protective immune responses in mice after a single immunization. Here, we evaluated the immunogenicity of a SIV-based IDLV in nonhuman primates. Six rhesus monkeys were primed intramuscularly with IDLV-Env and boosted with the same vector after 1 year. A single immunization with IDLV-Env induced broad humoral and cellular immune responses that waned over time but were still detectable at 1 year postprime. The boost with IDLV-Env performed at 1 year from the prime induced a remarkable increase in both antibodies and T-cell responses. Antibody binding specificity showed a predominant cross-clade gp120-directed response. Monkeys' sera efficiently blocked anti-V2 and anti-CD4 binding site antibodies, neutralized the tier 1 MW965.26 pseudovirus and mediated antibody-dependent cellular cytotoxicity (ADCC). Durable polyfunctional Env-specific T-cell responses were also elicited. Our study demonstrates that an IDLV-Env-based vaccine induces functional, comprehensive, and durable immune responses in Rhesus macaques. These results support further evaluation of IDLV as a new HIV-1 vaccine delivery platform. PMID:27455880

  12. Intravaginal immunization using the recombinant HIV-1 clade-C trimeric envelope glycoprotein CN54gp140 formulated within lyophilized solid dosage forms

    PubMed Central

    Donnelly, Louise; Curran, Rhonda M.; Tregoning, John S.; McKay, Paul F.; Cole, Tom; Morrow, Ryan J.; Kett, Vicky L.; Andrews, Gavin P.; Woolfson, A. David; Malcolm, R. Karl; Shattock, Robin J.

    2011-01-01

    Vaccine-mediated prevention of primary HIV-1 infection at the heterosexual mucosal portal of entry may be facilitated by highly optimised formulations or drug delivery devices for intravaginal (i.vag) immunization. Previously we described hydroxyethylcellulose (HEC)-based rheologically structured gel vehicles (RSVs) for vaginal immunization of an HIV-1 vaccine candidate, a soluble recombinant trimeric HIV-1 clade-C envelope glycoprotein designated CN54gp140. Here we investigated the efficacy of lyophilized solid dosage formulations (LSDFs) for prolonging antigen stability and as i.vag delivery modalities. LSDFs were designed and developed that upon i.vag administration they would reconstitute with the imbibing of vaginal fluid to mucoadhesive, site-retentive semi-solids. Mice were immunized with lyophilized equivalents of (i) RSVs, (ii) modified versions of the RSVs more suited to lyophilization (sodium carboxymethyl cellulose (NaCMC)-based gels) and (iii) Carbopol® gel, all containing CN54gp140. NaCMC-based LSDFs provided significantly enhanced antigen stability compared to aqueous-based RSVs. Rheological analysis indicated the NaCMC-based LSDFs would offer enhanced vaginal retention in woman compared to more conventional vaginal gel formulations. All LSDFs were well tolerated in the mouse model. Following i.vag administration, all LSDFs boosted systemic CN54gp140-specific antibody responses in sub-cutaneously primed mice. Induction of CN54gp140-specific antibody responses in the female genital tract was evident. Of all the LSDFs the fastest releasing which was lyophilized Carbopol® gel elicited immune responses comparable to buffer instillation of antigen suggesting that rather than slower sustained release, initial high burst release from the LSDFs may suffice. The boosting of specific immune responses upon i.vag administration indicates that LSDFs are viable mucosal vaccine delivery modalities promoting antigen stability and facilitating intimate exposure of

  13. Metabolic and Immune Activation Effects of Treatment Interruption in Chronic HIV-1 Infection: Implications for Cardiovascular Risk

    PubMed Central

    Tebas, Pablo; Henry, William Keith; Matining, Roy; Weng-Cherng, Deborah; Schmitz, John; Valdez, Hernan; Jahed, Nasreen; Myers, Laurie; Powderly, William G.; Katzenstein, David

    2008-01-01

    Background Concern about costs and antiretroviral therapy (ART)-associated toxicities led to the consideration of CD4 driven strategies for the management of HIV. That approach was evaluated in the SMART trial that reported an unexpected increase of cardiovascular events after treatment interruption (TI). Our goal was to evaluate fasting metabolic changes associated with interruption of antiretroviral therapy and relate them to changes of immune activation markers and cardiovascular risk. Methodology ACTG 5102 enrolled 47 HIV-1-infected subjects on stable ART, with <200 HIV RNA copies/mL and CD4 cell count ≥500 cells/µL. Subjects were randomly assigned to continue ART for 18 weeks with or without 3 cycles of interleukin-2 (IL-2) (cycle = 4.5 million IU sc BID x 5 days every 8 weeks). After 18 weeks ART was discontinued in all subjects until the CD4 cell count dropped below 350 cells/µL. Glucose and lipid parameters were evaluated every 8 weeks initially and at weeks 2, 4, 8 and every 8 weeks after TI. Immune activation was evaluated by flow-cytometry and soluble TNFR2 levels. Principal Findings By week 8 of TI, levels of total cholesterol (TC) (median (Q1, Q3) (−0.73 (−1.19, −0.18) mmol/L, p<0.0001), LDL, HDL cholesterol (−0.36(−0.73,−0.03)mmol/L, p = 0.0007 and −0.05(−0.26,0.03), p = 0.0033, respectively) and triglycerides decreased (−0.40 (−0.84, 0.07) mmol/L, p = 0.005). However the TC/HDL ratio remained unchanged (−0.09 (−1.2, 0.5), p = 0.2). Glucose and insulin levels did not change (p = 0.6 and 0.8, respectively). After TI there was marked increase in immune activation (CD8+/HLA-DR+/CD38+ cells, 34% (13, 43), p<0.0001) and soluble TNFR2 (1089 ng/L (−189, 1655), p = 0.0008) coinciding with the rebound of HIV viremia. Conclusions Our data suggests that interrupting antiretroviral therapy does not reduce cardiovascular disease (CVD) risk, as the improvements in lipid parameters are modest and overshadowed

  14. Multimodal evoked potentials in HIV-1-seropositive patients: relationship between the immune impairment and the neurophysiological function.

    PubMed

    Pierelli, F; Garrubba, C; Tilia, G; Parisi, L; Fattapposta, F; Pozzessere, G; Soldati, G; Stanzione, P; D'Offizi, G; Mezzaroma, I

    1996-04-01

    Multimodal evoked potentials (PRVEP, BAEP, mSEP) were recorded in 56 HIV-1 seropositive outpatients free from opportunistic CNS pathologies and/or overt HIV-1 encephalopathy. EPs were altered in 17 of 39 (43.6%) seropositive subjects without AIDS (group A) and in 13 of 17 (76.5%) patients with AIDS (group B). A high incidence of subclinical alterations (30.8%) were found in group A patients. Significant BAEP (I-III, III-V, I-V) interpeak latency and mSEP (N9-N13, N9-N20) conduction time prolongations were found in group A and B patients. PRVEP P100 was significantly prolonged only in group B. An inverse relationship between BAEP interpeak latencies and CD4 count was found. Our findings support the hypothesis of an important role of immunodepression in the development of neurophysiologic abnormalities, together with a preferential involvement of acoustic pathways, in the course of HIV-1 infection.

  15. Structural Basis of Immune Evasion at the Site of CD4 Attachment on HIV-1 gp120

    SciTech Connect

    Chen, Lei; Kwon, Young Do; Zhou, Tongqing; Wu, Xueling; O'Dell, Sijy; Cavacini, Lisa; Hessell, Ann J.; Pancera, Marie; Tang, Min; Xu, Ling; Yang, Zhi-Yong; Zhang, Mei-Yun; Arthos, James; Burton, Dennis R.; Dimitrov, Dimiter S.; Nabel, Gary J.; Posner, Marshall R.; Sodroski, Joseph; Wyatt, Richard; Mascola, John R.; Kwong, Peter D.

    2010-01-13

    The site on HIV-1 gp120 that binds to the CD4 receptor is vulnerable to antibodies. However, most antibodies that interact with this site cannot neutralize HIV-1. To understand the basis of this resistance, we determined co-crystal structures for two poorly neutralizing, CD4-binding site (CD4BS) antibodies, F105 and b13, in complexes with gp120. Both antibodies exhibited approach angles to gp120 similar to those of CD4 and a rare, broadly neutralizing CD4BS antibody, b12. Slight differences in recognition, however, resulted in substantial differences in F105- and b13-bound conformations relative to b12-bound gp120. Modeling and binding experiments revealed these conformations to be poorly compatible with the viral spike. This incompatibility, the consequence of slight differences in CD4BS recognition, renders HIV-1 resistant to all but the most accurately targeted antibodies.

  16. T-Cell Immune Responses Against Env from CRF12_BF and Subtype B HIV-1 Show High Clade-Specificity that Can Be Overridden by Multiclade Immunizations

    PubMed Central

    Mónaco, Daniela C.; Rodríguez, Ana M.; Pascutti, María F.; Carobene, Mauricio; Falivene, Juliana; Gómez, Alejandro; Maeto, Cynthia; Turk, Gabriela; Nájera, José L.; Esteban, Mariano; Gherardi, M. Magdalena

    2011-01-01

    Background The extreme genetic diversity of the human immunodeficiency virus type 1 (HIV-1) poses a daunting challenge to the generation of an effective AIDS vaccine. In Argentina, the epidemic is characterized by the high prevalence of infections caused by subtype B and BF variants. The aim of this study was to characterize in mice the immunogenic and antigenic properties of the Env protein from CRF12_BF in comparison with clade B, employing prime-boost schemes with the combination of recombinant DNA and vaccinia virus (VV) vectors. Methodology/Principal Findings As determined by ELISPOT from splenocytes of animals immunized with either EnvBF or EnvB antigens, the majority of the cellular responses to Env were found to be clade-specific. A detailed peptide mapping of the responses reveal that when there is cross-reactivity, there are no amino acid changes in the peptide sequence or were minimal and located at the peptide ends. In those cases, analysis of T cell polifunctionality and affinity indicated no differences with respect to the cellular responses found against the original homologous sequence. Significantly, application of a mixed immunization combining both clades (B and BF) induced a broader cellular response, in which the majority of the peptides targeted after the single clade vaccinations generated a positive response. In this group we could also find significant cellular and humoral responses against the whole gp120 protein from subtype B. Conclusions/Significance This work has characterized for the first time the immunogenic peptides of certain EnvBF regions, involved in T cell responses. It provides evidence that to improve immune responses to HIV there is a need to combine Env antigens from different clades, highlighting the convenience of the inclusion of BF antigens in future vaccines for geographic regions where these HIV variants circulate. PMID:21364754

  17. Animal poxvirus vaccines: a comprehensive review.

    PubMed

    Bhanuprakash, Veerakyathappa; Hosamani, Madhusudan; Venkatesan, Gnanavel; Balamurugan, Vinayagamurthy; Yogisharadhya, Revanaiah; Singh, Raj Kumar

    2012-11-01

    The family Poxviridae includes several viruses of medical and veterinary importance. Global concerted efforts combined with an intensive mass-vaccination campaign with highly efficaceious live vaccine of vaccinia virus have led to eradication of smallpox. However, orthopoxviruses affecting domestic animals continue to cause outbreaks in several endemic countries. Different kinds of vaccines starting from conventional inactivated/attenuated to recombinant protein-based vaccines have been used for control of poxvirus infections. Live virus homologous vaccines are currently in use for diseases including capripox, parapox, camelpox and fowlpox, and these vaccines are highly effective in eliciting (with the exception of parapoxviruses) long-lasting immunity. Attenuated strains of poxviruses have been exploited as vectored vaccines to deliver heterologous immunogens, many of them being licensed for use in animals. Worthy of note are vaccinia virus, fowlpox virus, capripoxvirus, parapoxvirus and canary pox, which have been successfully used for developing new-generation vaccines targeting many important pathogens. Remarkable features of these vaccines are thermostability and their ability to engender both cellular and humoral immune responses to the target pathogens. This article updates the important vaccines available for poxviruses of livestock and identifies some of the research gaps in the present context of poxvirus research.

  18. Robust antigen-specific humoral immune responses to sublingually delivered adenoviral vectors encoding HIV-1 Env: association with mucoadhesion and efficient penetration of the sublingual barrier.

    PubMed

    Domm, William; Brooks, Lauren; Chung, Hung Li; Feng, Changyong; Bowers, William J; Watson, Gene; McGrath, James L; Dewhurst, Stephen

    2011-09-16

    The efficient induction of virus-specific mucosal antibodies is an important unmet objective in Human Immunodeficiency Virus Type-1 (HIV-1) vaccine research. One promising approach is sublingual (SL) immunization. We examined the effectiveness of SL delivery of two different viral vectors: (i) a recombinant adenovirus (rAd5), and (ii) a Herpes Simplex Virus Type-1 amplicon vector (HSV-1). Initial in vitro videomicroscopy experiments showed that rAd5 particles were trapped in saliva (i.e., that Ad5 was mucoadhesive) - unlike HSV-1 virions, which migrated freely in both saliva and water. In vivo imaging studies in mice revealed that only the rAd5 vector efficiently transduced the SL epithelium. Consistent with this, SL delivery of an rAd5 encoding HIV-1 envelope glycoprotein (Env) resulted in robust antigen-specific antibody responses in plasma and in vaginal washes, whereas SL delivery of a HSV-1 amplicon vector encoding HIV-1 Env failed to elicit Env-specific antibodies. In contrast, both vectors elicited equivalent humoral responses following intramuscular (IM) delivery. Finally, SL delivery of the rAd5:Env vector resulted in elevated levels of Env-specific serum IgA, and vaginal IgA and IgG, when compared to IM delivery of the same vector. These results findings shed light on vector properties (mucoadhesion, penetration of the sublingual barrier) which may be important for the induction of potent humoral immune responses following sublingual vector administration. Our data also show that SL delivery of an Env-encoding rAd5 vector can elicit a potent antigen-specific mucosal antibody response in the absence of adjuvant. Overall, these findings support the further exploration of the SL delivery route for HIV-1 vaccine delivery.

  19. Robust Antigen-Specific Humoral Immune Responses to Sublingually Delivered Adenoviral Vectors Encoding HIV-1 Env: Association with Mucoadhesion and Efficient Penetration of the Sublingual Barrier

    PubMed Central

    Domm, William; Brooks, Lauren; Chung, Hung Li; Feng, Changyong; Bowers, William J.; Watson, Gene; McGrath, James L.; Dewhurst, Stephen

    2011-01-01

    The efficient induction of virus-specific mucosal antibodies is an important unmet objective in Human Immunodeficiency Virus Type-1 (HIV-1) vaccine research. One promising approach is sublingual (SL) immunization. We examined the effectiveness of SL delivery of two different viral vectors: (i) a recombinant adenovirus (rAd5), and (ii) a Herpes Simplex Virus Type-1 amplicon vector (HSV-1). Initial in vitro videomicroscopy experiments showed that rAd5 particles were trapped in saliva (i.e., that Ad5 was mucoadhesive) - unlike HSV-1 virions, which migrated freely in both saliva and water. In vivo imaging studies in mice revealed that only the rAd5 vector efficiently transduced the SL epithelium. Consistent with this, SL delivery of an rAd5 encoding HIV-1 envelope glycoprotein (Env) resulted in robust antigen-specific antibody responses in plasma and in vaginal washes, whereas SL delivery of a HSV-1 amplicon vector encoding HIV-1 Env failed to elicit Env-specific antibodies. In contrast, both vectors elicited equivalent humoral responses following intramuscular (IM) delivery. Finally, SL delivery of the rAd5:Env vector resulted in elevated levels of Env-specific serum IgA, and vaginal IgA and IgG, when compared to IM delivery of the same vector. These results findings shed light on vector properties (mucoadhesion, penetration of the sublingual barrier) which may be important for the induction of potent humoral immune responses following sublingual vector administration. Our data also show that SL delivery of an Env-encoding rAd5 vector can elicit a potent antigen-specific mucosal antibody response in the absence of adjuvant. Overall, these findings support the further exploration of the SL delivery route for HIV-1 vaccine delivery. PMID:21801777

  20. Poxvirus membrane biogenesis.

    PubMed

    Moss, Bernard

    2015-05-01

    Poxviruses differ from most DNA viruses by replicating entirely within the cytoplasm. The first discernible viral structures are crescents and spherical immature virions containing a single lipoprotein membrane bilayer with an external honeycomb lattice. Because this viral membrane displays no obvious continuity with a cellular organelle, a de novo origin was suggested. Nevertheless, transient connections between viral and cellular membranes could be difficult to resolve. Despite the absence of direct evidence, the intermediate compartment (ERGIC) between the endoplasmic reticulum (ER) and Golgi apparatus and the ER itself were considered possible sources of crescent membranes. A break-through in understanding poxvirus membrane biogenesis has come from recent studies of the abortive replication of several vaccinia virus null mutants. Novel images showing continuity between viral crescents and the ER and the accumulation of immature virions in the expanded ER lumen provide the first direct evidence for a cellular origin of this poxvirus membrane.

  1. Immunogenicity of HIV-1 IIIB and SHIV 89.6P Tat and Tat toxoids in rhesus macaques: induction of humoral and cellular immune responses.

    PubMed

    Richardson, Max W; Mirchandani, Jyotika; Silvera, Peter; Régulier, Emmanuel G; Capini, Christelle; Bojczuk, Paul M; Hu, Jason; Gracely, Edward J; Boyer, Jean D; Khalili, Kamel; Zagury, Jean-François; Lewis, Mark G; Rappaport, Jay

    2002-09-01

    This study compared immune responses in rhesus macaques immunized with unmodified HIV-1 IIIB Tat, SHIV89.6P Tat, and carboxymethylated IIIB and 89.6P Tat toxoids. Immunization with either IIIB or 89.6P preparation induced high titer and broadly crossreactive serum anti-Tat IgG that recognized HIV-1 subtype-E and SIVmac251 Tat. However, the response was delayed, and titers were lower in 89.6P vaccination groups. Serum anti-Tat IgG recognized peptides corresponding to the amino-terminus, basic domain, and carboxy-terminal region. Cellular proliferative responses to Tat toxoids corresponding to the immunogen were evident in vitro in both IIIB and 89.6P groups. Crossreactive proliferative responses were observed in IIIB groups in response to stimulation with 89.6P or SIVmac251 Tat toxoids, but were much less prevalent in 89.6P groups. The truncated 86 amino acid IIIB Tat appears to be more immunogenic than the 102 amino acid 89.6P Tat with respect to both humoral and cellular immune responses, and may be a better vaccine component. Despite induction of robust humoral and cellular immune responses (including both CD4+ and CD8+ T-cell responses) to Tat, all animals were infected upon intravenous challenge with 30 MID(50) of SHIV89.6P and outcome of vaccine groups was not different from controls. Sequencing both Tat exons from serum viral RNA revealed no evidence of escape mutants. These results suggest that with intravenous SHIV89.6P challenge in rhesus macaques, precipitous CD4+ T-cell decline overwhelms potentially protective immune responses. Alternatively, Tat specific CD8+ T-cell responses may not appropriately recognize infected cells in vivo in this model. In view of evidence demonstrating Tat specific CTLs in the SIV model and in humans infected with HIV-1, results in this pathogenic SHIV model may not apparently predict the efficacy of this approach in human studies. The potency and cross-reactivity of these immune responses confirm Tat toxoid as an excellent

  2. Nedd4-mediated increase in HIV-1 Gag and Env proteins and immunity following DNA-vaccination of BALB/c mice.

    PubMed

    Lewis, Brad; Whitney, Stephen; Hudacik, Lauren; Galmin, Lindsey; Huaman, Maria Cecilia; Cristillo, Anthony D

    2014-01-01

    The late assembly domain of many viruses is critical for budding. Within these domains, encoded in viral structural proteins, are the conserved motifs PTAP, PPxY and YPxL. These sequences are the key determinants for association of viral proteins with intracellular molecules such as Tsg101, Nedd4 and AIP1/ALIX. While roles for Tsg101 and AIP1/ALIX in HIV-1 budding have been well established, less is known about the role of Nedd4. Recent studies, however, have identified a function for Nedd4-like protein in HIV-1 release. In this study, we investigated post-transcriptional changes of Nedd4 following SHIVSF162P3 infection of rhesus macaques, its role on HIV-1 p24 and gp120 levels in vitro and its potential as an immune modulator in HIV vaccination of BALB/c mice. Increased Nedd4 protein levels were noted in both CD4+ and CD8+ T cells following SHIVSF162P3-infection of naïve macaques. Transient co-transfection studies in 293 cells with HXB2 and Nedd4 demonstrated a Nedd4-mediated increase in p24 and gp120 levels. This increase was found to be dependent on the Ca2+/calmodulin-regulated phospholipid binding C2 domain and not ubiquitin ligase activity or HIV LTR activity. Co-transfection of Nedd4 with plasmid DNA expressing Gag or Env was further shown to augment both intracellular and extracellular Gag or Env proteins. To assess the potential of Nedd4 as an immune modulator, BALB/c mice were immunized intramuscularly with plasmid DNA encoding HIV gag, env and Nedd4. Nedd4 co-administration was found to increase serum anti-p24 but not anti-gp120 antibodies. Nedd4 co-injection was found to have no affect on Gag- or Env-specific IFNγ but had a trend of increased Gag-specific IL-6, IL-17A and TNFα that was not seen following Env stimulation. Based on our initial findings, Nedd4-mediated changes in HIV protein levels and its potential use in HIV-1 vaccine development warrants further investigation.

  3. Nedd4-Mediated Increase in HIV-1 Gag and Env Proteins and Immunity following DNA-Vaccination of BALB/c Mice

    PubMed Central

    Lewis, Brad; Whitney, Stephen; Hudacik, Lauren; Galmin, Lindsey; Huaman, Maria Cecilia; Cristillo, Anthony D.

    2014-01-01

    The late assembly domain of many viruses is critical for budding. Within these domains, encoded in viral structural proteins, are the conserved motifs PTAP, PPxY and YPxL. These sequences are the key determinants for association of viral proteins with intracellular molecules such as Tsg101, Nedd4 and AIP1/ALIX. While roles for Tsg101 and AIP1/ALIX in HIV-1 budding have been well established, less is known about the role of Nedd4. Recent studies, however, have identified a function for Nedd4-like protein in HIV-1 release. In this study, we investigated post-transcriptional changes of Nedd4 following SHIVSF162P3 infection of rhesus macaques, its role on HIV-1 p24 and gp120 levels in vitro and its potential as an immune modulator in HIV vaccination of BALB/c mice. Increased Nedd4 protein levels were noted in both CD4+ and CD8+ T cells following SHIVSF162P3-infection of naïve macaques. Transient co-transfection studies in 293 cells with HXB2 and Nedd4 demonstrated a Nedd4-mediated increase in p24 and gp120 levels. This increase was found to be dependent on the Ca2+/calmodulin-regulated phospholipid binding C2 domain and not ubiquitin ligase activity or HIV LTR activity. Co-transfection of Nedd4 with plasmid DNA expressing Gag or Env was further shown to augment both intracellular and extracellular Gag or Env proteins. To assess the potential of Nedd4 as an immune modulator, BALB/c mice were immunized intramuscularly with plasmid DNA encoding HIV gag, env and Nedd4. Nedd4 co-administration was found to increase serum anti-p24 but not anti-gp120 antibodies. Nedd4 co-injection was found to have no affect on Gag- or Env-specific IFNγ but had a trend of increased Gag-specific IL-6, IL-17A and TNFα that was not seen following Env stimulation. Based on our initial findings, Nedd4-mediated changes in HIV protein levels and its potential use in HIV-1 vaccine development warrants further investigation. PMID:24614057

  4. Depot Medroxyprogesterone Acetate (DMPA) Use is Associated with Elevated Innate Immune Effector Molecules in Cervicovaginal Secretions of HIV-1-uninfected Women

    PubMed Central

    Guthrie, Brandon L.; Introini, Andrea; Roxby, Alison C.; Choi, Robert Y.; Bosire, Rose; Lohman-Payne, Barbara; Hirbod, Taha; Farquhar, Carey; Broliden, Kristina

    2015-01-01

    OBJECTIVE The effects of sex hormones on the immune defenses of the female genital mucosa and its susceptibility to infections are poorly understood. The injectable hormonal contraceptive depot medroxyprogesterone acetate (DMPA) may increase risk of HIV-1 acquisition. We assessed the local concentration in the female genital mucosa of cationic polypeptides with reported antiviral activity in relation to DMPA use. METHODS HIV-1-uninfected women were recruited from among couples testing for HIV in Nairobi, Kenya. Cervicovaginal secretion (CVS) samples were collected and the concentrations of HNP1–3, LL-37, lactoferrin, HBD-2 and SLPI were measured by enzyme-linked immunosorbent assays.. Levels of cationic polypeptides in CVS were compared between women who were not using hormonal contraception and those using DMPA, oral, or implantable contraception. RESULTS Among 228 women, 165 (72%) reported not using hormonal contraception at enrollment, 41 (18%) used DMPA, 16 (7%) used an oral contraceptive, and 6 (3%) used a contraceptive implant. Compared to non-users of hormonal contraception, DMPA users had significantly higher mean levels of HNP1–3 (2.38 vs. 2.04 log10 ng/ml; p=0.024), LL-37 (0.81 vs. 0.40 log10 ng/ml; p=0.027), and lactoferrin (3.03 vs. 2.60 log10 ng/ml; p=0.002), whereas SLPI and HBD-2 were similar. CONCLUSIONS Although all analyzed cationic polypeptides have intrinsic antiviral capacity, their interaction and cumulative effect on female genital mucosa susceptibility to infections in vivo has yet to be unraveled. This study suggests a potential mechanism underlying the effect of DMPA on the innate immune defenses, providing a rationale to investigate its effect on HIV-1 acquisition risk. PMID:25622059

  5. Low Double-Negative CD3+CD4−CD8− T Cells Are Associated with Incomplete Restoration of CD4+ T Cells and Higher Immune Activation in HIV-1 Immunological Non-Responders

    PubMed Central

    Lu, Xiaofan; Su, Bin; Xia, Huan; Zhang, Xin; Liu, Zhiying; Ji, Yunxia; Yang, Zixuan; Dai, Lili; Mayr, Luzia M.; Moog, Christiane; Wu, Hao; Huang, Xiaojie; Zhang, Tong

    2016-01-01

    Failure of immune reconstitution increases the risk of AIDS or non-AIDS related morbidity and mortality in HIV-1-infected patients. CD3+CD4−CD8− T cells, which are usually described as double-negative (DN) T cells, display CD4-like helper and immunoregulatory functions. Here, we have measured the percentage of DN T cells in the immune reconstituted vs. non-immune reconstituted HIV-1-infected individuals. We observed that immunological non-responders (INRs) had a low number of DN T cells after long-term antiretroviral therapy (ART), and the number of these cells positively correlated with the CD4+ T cell count. The ART did not result in complete suppression of immune activation recorded by the percentage of CD38+HLA-DR+CD8+ T cells in INRs, and a strong inverse correlation was observed between DN T cells and immune activation. A low proportion of TGF-β1+DN T cells was found in INRs. Further mechanism study demonstrated that the level of TGF-β1-producing DN T cells and immune activation had a negative correlation after ART. Taken together, our study suggests that DN T cells control the immunological response in HIV-1-infected patients. These findings expand our understanding of the mechanism of immune reconstitution and could develop specific treatments to return the immune system to homeostasis following initiation of HIV-1 therapy. PMID:28018346

  6. Low Double-Negative CD3(+)CD4(-)CD8(-) T Cells Are Associated with Incomplete Restoration of CD4(+) T Cells and Higher Immune Activation in HIV-1 Immunological Non-Responders.

    PubMed

    Lu, Xiaofan; Su, Bin; Xia, Huan; Zhang, Xin; Liu, Zhiying; Ji, Yunxia; Yang, Zixuan; Dai, Lili; Mayr, Luzia M; Moog, Christiane; Wu, Hao; Huang, Xiaojie; Zhang, Tong

    2016-01-01

    Failure of immune reconstitution increases the risk of AIDS or non-AIDS related morbidity and mortality in HIV-1-infected patients. CD3(+)CD4(-)CD8(-) T cells, which are usually described as double-negative (DN) T cells, display CD4-like helper and immunoregulatory functions. Here, we have measured the percentage of DN T cells in the immune reconstituted vs. non-immune reconstituted HIV-1-infected individuals. We observed that immunological non-responders (INRs) had a low number of DN T cells after long-term antiretroviral therapy (ART), and the number of these cells positively correlated with the CD4(+) T cell count. The ART did not result in complete suppression of immune activation recorded by the percentage of CD38(+)HLA-DR(+)CD8(+) T cells in INRs, and a strong inverse correlation was observed between DN T cells and immune activation. A low proportion of TGF-β1(+)DN T cells was found in INRs. Further mechanism study demonstrated that the level of TGF-β1-producing DN T cells and immune activation had a negative correlation after ART. Taken together, our study suggests that DN T cells control the immunological response in HIV-1-infected patients. These findings expand our understanding of the mechanism of immune reconstitution and could develop specific treatments to return the immune system to homeostasis following initiation of HIV-1 therapy.

  7. The genome of Yoka poxvirus.

    PubMed

    Zhao, Guoyan; Droit, Lindsay; Tesh, Robert B; Popov, Vsevolod L; Little, Nicole S; Upton, Chris; Virgin, Herbert W; Wang, David

    2011-10-01

    Yoka poxvirus was isolated almost four decades ago from a mosquito pool in the Central African Republic. Its classification as a poxvirus is based solely upon the morphology of virions visualized by electron microscopy. Here we describe sequencing of the Yoka poxvirus genome using a combination of Roche/454 and Illumina next-generation sequencing technologies. A single consensus contig of ∼175 kb in length that encodes 186 predicted genes was generated. Multiple methods were used to show that Yoka poxvirus is most closely related to viruses in the Orthopoxvirus genus, but it is clearly distinct from previously described poxviruses. Collectively, the phylogenetic and genomic sequence analyses suggest that Yoka poxvirus is the prototype member of a new genus in the family Poxviridae.

  8. HIV-1 adenoviral vector vaccines expressing multi-trimeric BAFF and 4-1BBL enhance T cell mediated anti-viral immunity.

    PubMed

    Kanagavelu, Saravana; Termini, James M; Gupta, Sachin; Raffa, Francesca N; Fuller, Katherine A; Rivas, Yaelis; Philip, Sakhi; Kornbluth, Richard S; Stone, Geoffrey W

    2014-01-01

    Adenoviral vectored vaccines have shown considerable promise but could be improved by molecular adjuvants. Ligands in the TNF superfamily (TNFSF) are potential adjuvants for adenoviral vector (Ad5) vaccines based on their central role in adaptive immunity. Many TNFSF ligands require aggregation beyond the trimeric state (multi-trimerization) for optimal biological function. Here we describe Ad5 vaccines for HIV-1 Gag antigen (Ad5-Gag) adjuvanted with the TNFSF ligands 4-1BBL, BAFF, GITRL and CD27L constructed as soluble multi-trimeric proteins via fusion to Surfactant Protein D (SP-D) as a multimerization scaffold. Mice were vaccinated with Ad5-Gag combined with Ad5 expressing one of the SP-D-TNFSF constructs or single-chain IL-12p70 as adjuvant. To evaluate vaccine-induced protection, mice were challenged with vaccinia virus expressing Gag (vaccinia-Gag) which is known to target the female genital tract, a major route of sexually acquired HIV-1 infection. In this system, SP-D-4-1BBL or SP-D-BAFF led to significantly reduced vaccinia-Gag replication when compared to Ad5-Gag alone. In contrast, IL-12p70, SP-D-CD27L and SP-D-GITRL were not protective. Histological examination following vaccinia-Gag challenge showed a dramatic lymphocytic infiltration into the uterus and ovaries of SP-D-4-1BBL and SP-D-BAFF-treated animals. By day 5 post challenge, proinflammatory cytokines in the tissue were reduced, consistent with the enhanced control over viral replication. Splenocytes had no specific immune markers that correlated with protection induced by SP-D-4-1BBL and SP-D-BAFF versus other groups. IL-12p70, despite lack of anti-viral efficacy, increased the total numbers of splenic dextramer positive CD8+ T cells, effector memory T cells, and effector Gag-specific CD8+ T cells, suggesting that these markers are poor predictors of anti-viral immunity in this model. In conclusion, soluble multi-trimeric 4-1BBL and BAFF adjuvants led to strong protection from vaccinia

  9. Priming Immunization with DNA Augments Immunogenicity of Recombinant Adenoviral Vectors for Both HIV-1 Specific Antibody and T-Cell Responses

    PubMed Central

    Koup, Richard A.; Roederer, Mario; Lamoreaux, Laurie; Fischer, Jennifer; Novik, Laura; Nason, Martha C.; Larkin, Brenda D.; Enama, Mary E.; Ledgerwood, Julie E.; Bailer, Robert T.; Mascola, John R.; Nabel, Gary J.; Graham, Barney S.

    2010-01-01

    Background Induction of HIV-1-specific T-cell responses relevant to diverse subtypes is a major goal of HIV vaccine development. Prime-boost regimens using heterologous gene-based vaccine vectors have induced potent, polyfunctional T cell responses in preclinical studies. Methods The first opportunity to evaluate the immunogenicity of DNA priming followed by recombinant adenovirus serotype 5 (rAd5) boosting was as open-label rollover trials in subjects who had been enrolled in prior studies of HIV-1 specific DNA vaccines. All subjects underwent apheresis before and after rAd5 boosting to characterize in depth the T cell and antibody response induced by the heterologous DNA/rAd5 prime-boost combination. Results rAd5 boosting was well-tolerated with no serious adverse events. Compared to DNA or rAd5 vaccine alone, sequential DNA/rAd5 administration induced 7-fold higher magnitude Env-biased HIV-1-specific CD8+ T-cell responses and 100-fold greater antibody titers measured by ELISA. There was no significant neutralizing antibody activity against primary isolates. Vaccine-elicited CD4+ and CD8+ T-cells expressed multiple functions and were predominantly long-term (CD127+) central or effector memory T cells and that persisted in blood for >6 months. Epitopes mapped in Gag and Env demonstrated partial cross-clade recognition. Conclusion Heterologous prime-boost using vector-based gene delivery of vaccine antigens is a potent immunization strategy for inducing both antibody and T-cell responses. Trial Registration ClinicalTrails.gov NCT00102089, NCT00108654 PMID:20126394

  10. Induction of multi-antigen multi-stage immune responses against Plasmodium falciparum in rhesus monkeys, in the absence of antigen interference, with heterologous DNA prime/poxvirus boost immunization

    PubMed Central

    Jiang, George; Charoenvit, Yupin; Moreno, Alberto; Baraceros, Maria F; Banania, Glenna; Richie, Nancy; Abot, Steve; Ganeshan, Harini; Fallarme, Victoria; Patterson, Noelle B; Geall, Andrew; Weiss, Walter R; Strobert, Elizabeth; Caro-Aquilar, Ivette; Lanar, David E; Saul, Allan; Martin, Laura B; Gowda, Kalpana; Morrissette, Craig R; Kaslow, David C; Carucci, Daniel J; Galinski, Mary R; Doolan, Denise L

    2007-01-01

    The present study has evaluated the immunogenicity of single or multiple Plasmodium falciparum (Pf) antigens administered in a DNA prime/poxvirus boost regimen with or without the poloxamer CRL1005 in rhesus monkeys. Animals were primed with PfCSP plasmid DNA or a mixture of PfCSP, PfSSP2/TRAP, PfLSA1, PfAMA1 and PfMSP1-42 (CSLAM) DNA vaccines in PBS or formulated with CRL1005, and subsequently boosted with ALVAC-Pf7, a canarypox virus expressing the CSLAM antigens. Cell-mediated immune responses were evaluated by IFN-γ ELIspot and intracellular cytokine staining, using recombinant proteins and overlapping synthetic peptides. Antigen-specific and parasite-specific antibody responses were evaluated by ELISA and IFAT, respectively. Immune responses to all components of the multi-antigen mixture were demonstrated following immunization with either DNA/PBS or DNA/CRL1005, and no antigen interference was observed in animals receiving CSLAM as compared to PfCSP alone. These data support the down-selection of the CSLAM antigen combination. CRL1005 formulation had no apparent effect on vaccine-induced T cell or antibody responses, either before or after viral boost. In high responder monkeys, CD4+IL-2+ responses were more predominant than CD8+ T cell responses. Furthermore, CD8+ IFN-γ responses were detected only in the presence of detectable CD4+ T cell responses. Overall, this study demonstrates the potential for multivalent Pf vaccines based on rational antigen selection and combination, and suggests that further formulation development to increase the immunogenicity of DNA encoded antigens is warranted. PMID:17925026

  11. Poxvirus-Induced Immunostimulating Effects on Porcine Leukocytes

    PubMed Central

    Fachinger, Vicky; Schlapp, Tobias; Strube, Walter; Schmeer, Norbert; Saalmüller, Armin

    2000-01-01

    The prophylactic application of inactivated parapox ovis viruses (Baypamun; Bayer AG, Leverkusen, Germany) has been shown to reduce efficiently the outbreak of stress-mediated diseases in different species. However, little is known about the basic mechanism behind this observed stimulatory property. We therefore tested eight inactivated poxvirus strains belonging to three different genera (Orthopoxvirus, Avipoxvirus, and Parapoxvirus) for their capacity to activate cells of the porcine innate and specific immune systems in vitro. The results indicated that poxviruses failed to induce increased phagocytosis, oxidative burst, or natural killer cell activity in swine. In contrast, enhanced release of interleukin-2, alpha interferon, and gamma interferon, as well as strong proliferation, could be measured. Flow cytometric analyses and cell sorting experiments identified T-helper cells as the main target responding to inactivated poxviruses: the activated cells had a CD4high CD25+ major histocompatibility complex type II-positive phenotype and were the major source of secreted cytokines. Together, the results demonstrated that all tested poxviruses possessed immunostimulating capacity. These in vitro poxvirus-induced effects may be responsible at least in part for the in vivo immunostimulating capacity of inactivated poxviruses. PMID:10933702

  12. Poxvirus-induced immunostimulating effects on porcine leukocytes.

    PubMed

    Fachinger, V; Schlapp, T; Strube, W; Schmeer, N; Saalmüller, A

    2000-09-01

    The prophylactic application of inactivated parapox ovis viruses (Baypamun; Bayer AG, Leverkusen, Germany) has been shown to reduce efficiently the outbreak of stress-mediated diseases in different species. However, little is known about the basic mechanism behind this observed stimulatory property. We therefore tested eight inactivated poxvirus strains belonging to three different genera (Orthopoxvirus, Avipoxvirus, and Parapoxvirus) for their capacity to activate cells of the porcine innate and specific immune systems in vitro. The results indicated that poxviruses failed to induce increased phagocytosis, oxidative burst, or natural killer cell activity in swine. In contrast, enhanced release of interleukin-2, alpha interferon, and gamma interferon, as well as strong proliferation, could be measured. Flow cytometric analyses and cell sorting experiments identified T-helper cells as the main target responding to inactivated poxviruses: the activated cells had a CD4(high) CD25(+) major histocompatibility complex type II-positive phenotype and were the major source of secreted cytokines. Together, the results demonstrated that all tested poxviruses possessed immunostimulating capacity. These in vitro poxvirus-induced effects may be responsible at least in part for the in vivo immunostimulating capacity of inactivated poxviruses.

  13. Neopterin and Soluble CD14 Levels as Indicators of Immune Activation in Cases with Indeterminate Pattern and True Positive HIV-1 Infection

    PubMed Central

    Uysal, Hayriye Kırkoyun; Sohrabi, Pari; Habip, Zafer; Saribas, Suat; Kocazeybek, Emre; Seyhan, Fatih; Calışkan, Reyhan; Bonabi, Esad; Yuksel, Pelin; Birinci, Ilhan; Uysal, Omer; Kocazeybek, Bekir

    2016-01-01

    Background We aimed to evaluate the roles of the plasma immune activation biomarkers neopterin and soluble CD14 (sCD14) in the indirect assessment of the immune activation status of patients with the indeterminate HIV-1 (IHIV-1) pattern and a true HIV-1-positive infection (PCG). Methods This cross-sectional and descriptive study included eighty-eight patients with the IHIV-1 pattern, 100 patients in the PCG, and 100 people in a healthy control group (HCG). Neopterin and sCD14 levels were determined by competitive and sandwich ELISA methods, respectively. Results Mean neopterin and sCD14 levels among those with the IHIV-1 pattern were significantly lower than among the PCG (p < 0.001 and p = 0.001, respectively), but they were similiar to those in the HCG (p = 0.57 and p = 0.66, respectively. Mean neopterin and sCD14 levels among the PCG were found to be significantly higher than among those with the IHIV-1 pattern (p < 0.001 and p = 0.001, respectively) and among those in the HCG (p = 0.001, p < 0.001, respectively). Neopterin did not have adequate predictive value for identifying those in the PCG (area under the curve [AUC] = 0.534; 95% CI, 0.463–0.605; p = 0.4256); sCD14 also had poor predictive value but high specificity (100%) for identifying those in the PCG (AUC = 0.627; 95% CI, 0.556–0.694; p = 0.0036). Conclusions While low levels of these two biomarkers were detected among those with the IHIV-1 pattern, they were found in high levels among those in the PCG. These two markers obviously cannot be used as a sceening test because they have low sensitivies. Taken together, we suggest that neopterin and sCD14 may be helpful because they both have high specificity (92%-100%) as indirect non-specific markers for predicting the immune activation status of individuals, whether or not they have true positive HIV-1. PMID:27031691

  14. Vaginal delivery of the recombinant HIV-1 clade-C trimeric gp140 envelope protein CN54gp140 within novel rheologically structured vehicles elicits specific immune responses

    PubMed Central

    Curran, Rhonda M.; Donnelly, Louise; Morrow, Ryan J.; Fraser, Carol; Andrews, Gavin; Cranage, Martin; Malcolm, R. Karl; Shattock, Robin J.; Woolfson, A. David

    2009-01-01

    Rheologically structured vehicle (RSV) gels were developed as delivery systems for vaginal mucosal vaccination with an HIV-1 envelope glycoprotein (CN54gp140). RSVs comprised a mucoadhesive matrix-forming and vaginal fluid absorbing polymer. The mucoadhesive and rheological properties of the RSVs were evaluated in vitro, and the distribution, antigenicity and release of CN54gp140 were analysed by ELISA. CN54gp140 was uniformly distributed within the RSVs and continuously released in vitro in an antigenically intact form over 24 h. Vaginal administration to rabbits induced specific serum IgG, and IgG and IgA in genital tract secretions. The RSVs are a viable delivery modality for vaginal immunization. PMID:19747994

  15. [Poxvirus infection in a cat].

    PubMed

    Ballauf, B; Linckh, S; Lechner, J

    1989-01-01

    For the first time, a poxvirus infection was diagnosed as an etiologic agent of dermal disease in a living domestic cat in Germany. A literature survey, the clinical symptoms of the infection and the diagnostic procedures are described. Poxvirus infections should be considered as a differential diagnosis in feline dermatologic problems.

  16. Poxvirus DNA Replication

    PubMed Central

    Moss, Bernard

    2013-01-01

    Poxviruses are large, enveloped viruses that replicate in the cytoplasm and encode proteins for DNA replication and gene expression. Hairpin ends link the two strands of the linear, double-stranded DNA genome. Viral proteins involved in DNA synthesis include a 117-kDa polymerase, a helicase–primase, a uracil DNA glycosylase, a processivity factor, a single-stranded DNA-binding protein, a protein kinase, and a DNA ligase. A viral FEN1 family protein participates in double-strand break repair. The DNA is replicated as long concatemers that are resolved by a viral Holliday junction endonuclease. PMID:23838441

  17. A candidate HIV/AIDS vaccine (MVA-B) lacking vaccinia virus gene C6L enhances memory HIV-1-specific T-cell responses.

    PubMed

    García-Arriaza, Juan; Nájera, José Luis; Gómez, Carmen E; Tewabe, Nolawit; Sorzano, Carlos Oscar S; Calandra, Thierry; Roger, Thierry; Esteban, Mariano

    2011-01-01

    The vaccinia virus (VACV) C6 protein has sequence similarities with the poxvirus family Pox_A46, involved in regulation of host immune responses, but its role is unknown. Here, we have characterized the C6 protein and its effects in virus replication, innate immune sensing and immunogenicity in vivo. C6 is a 18.2 kDa protein, which is expressed early during virus infection and localizes to the cytoplasm of infected cells. Deletion of the C6L gene from the poxvirus vector MVA-B expressing HIV-1 Env, Gag, Pol and Nef antigens from clade B (MVA-B ΔC6L) had no effect on virus growth kinetics; therefore C6 protein is not essential for virus replication. The innate immune signals elicited by MVA-B ΔC6L in human macrophages and monocyte-derived dendritic cells (moDCs) are characterized by the up-regulation of the expression of IFN-β and IFN-α/β-inducible genes. In a DNA prime/MVA boost immunization protocol in mice, flow cytometry analysis revealed that MVA-B ΔC6L enhanced the magnitude and polyfunctionality of the HIV-1-specific CD4+ and CD8+ T-cell memory immune responses, with most of the HIV-1 responses mediated by the CD8+ T-cell compartment with an effector phenotype. Significantly, while MVA-B induced preferentially Env- and Gag-specific CD8+ T-cell responses, MVA-B ΔC6L induced more Gag-Pol-Nef-specific CD8+ T-cell responses. Furthermore, MVA-B ΔC6L enhanced the levels of antibodies against Env in comparison with MVA-B. These findings revealed that C6 can be considered as an immunomodulator and that deleting C6L gene in MVA-B confers an immunological benefit by enhancing IFN-β-dependent responses and increasing the magnitude and quality of the T-cell memory immune responses to HIV-1 antigens. Our observations are relevant for the improvement of MVA vectors as HIV-1 vaccines.

  18. HIV-1 Receptor Binding Site-Directed Antibodies Using a VH1-2 Gene Segment Orthologue Are Activated by Env Trimer Immunization

    PubMed Central

    Bale, Shridhar; Phad, Ganesh E.; Guenaga, Javier; Wilson, Richard; Soldemo, Martina; McKee, Krisha; Sundling, Christopher; Mascola, John; Li, Yuxing; Wyatt, Richard T.; Karlsson Hedestam, Gunilla B.

    2014-01-01

    Broadly neutralizing antibodies (bNAbs) isolated from chronically HIV-1 infected individuals reveal important information regarding how antibodies target conserved determinants of the envelope glycoprotein (Env) spike such as the primary receptor CD4 binding site (CD4bs). Many CD4bs-directed bNAbs use the same heavy (H) chain variable (V) gene segment, VH1-2*02, suggesting that activation of B cells expressing this allele is linked to the generation of this type of Ab. Here, we identify the rhesus macaque VH1.23 gene segment to be the closest macaque orthologue to the human VH1-2 gene segment, with 92% homology to VH1-2*02. Of the three amino acids in the VH1-2*02 gene segment that define a motif for VRC01-like antibodies (W50, N58, flanking the HCDR2 region, and R71), the two identified macaque VH1.23 alleles described here encode two. We demonstrate that immunization with soluble Env trimers induced CD4bs-specific VH1.23-using Abs with restricted neutralization breadth. Through alanine scanning and structural studies of one such monoclonal Ab (MAb), GE356, we demonstrate that all three HCDRs are involved in neutralization. This contrasts to the highly potent CD4bs-directed VRC01 class of bNAb, which bind Env predominantly through the HCDR2. Also unlike VRC01, GE356 was minimally modified by somatic hypermutation, its light (L) chain CDRs were of average lengths and it displayed a binding footprint proximal to the trimer axis. These results illustrate that the Env trimer immunogen used here activates B cells encoding a VH1-2 gene segment orthologue, but that the resulting Abs interact distinctly differently with the HIV-1 Env spike compared to VRC01. PMID:25166308

  19. Synergistic effect of combined HIV/HCV immunogens: a combined HIV-1/HCV candidate vaccine induces a higher level of CD8+ T cell-immune responses in HLA-A2.1 mice.

    PubMed

    Azizi, Ali; Ghorbani, Masoud; Soare, Catalina; Mojibian, Majid; Diaz-Mitoma, Francisco

    2007-03-01

    Dual infections with HIV-1 and Hepatitis C virus (HCV) may proceed in concert to cause severe disease. HIV positive individuals that become infected with HCV advance more rapidly to AIDS than those that are infected with HIV-1 alone. In this study, HLA-A2.1 mice were immunized with a combination vaccine including HIV and HCV immunogens (polycistronic DNA + proteins) or vaccine containing either HIV or HCV immunogens. Mice immunized with the combined HIV/HCV regimen had similar antibody titers as the group receiving either the HIV-1 or HCV only regimen. Proliferative immune responses showed that mice receiving the combined HIV/HCV vaccine exhibited a three fold higher stimulation index (SI) to gp120 than mice immunized with the vaccine containing HIV alone. To determine whether our vaccine strategy induced Th1 or Th2 immune responses, IFN-gamma and IL-4/IL-5 were measured. The combined HIV/HCV vaccine induced a higher level of Th1 responses to HIV-1 gag protein compared with the other groups, as measured by IFN-gamma production. Interestingly, detection of IFN-gamma by ELISPOT assay demonstrated that the combined HIV/HCV vaccine group had increased numbers of spot forming cells (SFC) to HIV-gp120 peptides when compared to that of the HIV-1 only vaccine group. The combined HIV/HCV vaccine group also showed an increase in SFC to HCV-core peptides in comparison with the group receiving the HCV only vaccine. Intracellular IFN-gamma staining confirmed the ELISPOT results and demonstrated that the combined HIV/HCV group had significantly higher percentages of HIV and HCV-specific CD8+ T cells in comparison to the groups receiving the HIV or HCV vaccines. These results suggest a new approach to maximize vaccine efficacy against HIV and HCV.

  20. Simultaneous approach using systemic, mucosal and transcutaneous routes of immunization for development of protective HIV-1 vaccines.

    PubMed

    Belyakov, I M; Ahlers, J D

    2011-01-01

    Mucosal tissues are major sites of HIV entry and initial infection. Induction of a local mucosal cytotoxic T lymphocyte response is considered an important goal in developing an effective HIV vaccine. In addition, activation and recruitment of memory CD4(+) and CD8(+) T cells in systemic lymphoid circulation to mucosal effector sites might provide the firewall needed to prevent virus spread. Therefore a vaccine that generates CD4(+) and CD8(+) responses in both mucosal and systemic tissues might be required for protection against HIV. However, optimal routes and number of vaccinations required for the generation of long lasting CD4(+) and CD8(+) CTL effector and memory responses are not well understood especially for mucosal T cells. A number of studies looking at protective immune responses against diverse mucosal pathogens have shown that mucosal vaccination is necessary to induce a compartmentalized immune response including maximum levels of mucosal high-avidity CD8(+) CTL, antigen specific mucosal antibodies titers (especially sIgA), as well as induction of innate anti-viral factors in mucosa tissue. Immune responses are detectable at mucosal sites after systemic delivery of vaccine, and prime boost regimens can amplify the magnitude of immune responses in mucosal sites and in systemic lymphoid tissues. We believe that the most optimal mucosal and systemic HIV/SIV specific protective immune responses and innate factors might best be achieved by simultaneous mucosal and systemic prime and boost vaccinations. Similar principals of vaccination may be applied for vaccine development against cancer and highly invasive pathogens that lead to chronic infection.

  1. Immune Reconstitution During the First Year of Antiretroviral Therapy of HIV-1-Infected Adults in Rural Burkina Faso

    PubMed Central

    Tiba, Fabrice; Nauwelaers, Frans; Traoré, Siaka; Coulibaly, Boubacar; Ouedraogo, Thierry; Compaoré, Adama; Kräusslich, Hans-Georg; Böhler, Thomas

    2012-01-01

    There are no data on the outcome of highly active antiretroviral therapy (HAART) in HIV-infected adults in rural Burkina Faso. We therefore assessed CD4+ T-cell counts and HIV-1 plasma viral load (VL), the proportion of naive T-cells (co-expressing CCR7 and CD45RA) and T-cell activation (expression of CD95 or CD38) in 61 previously untreated adult patients from Nouna, Burkina Faso, at baseline and 2 weeks, 1, 3, 6, 9 and 12 months after starting therapy. Median CD4+ T-cell counts increased from 174 (10th-90th percentile: 33-314) cells/µl at baseline to 300 (114- 505) cells/µl after 3 months and 360 (169-562) cells/µl after 12 months of HAART. Median VL decreased from 5.8 (4.6- 6.6) log10 copies/ml at baseline to 1.6 (1.6-2.3) log10 copies/ml after 12 months. Early CD4+ T-cell recovery was accompanied by a reduction of the expression levels of CD95 and CD38 on T-cells. Out of 42 patients with complete virological follow-up under HAART, 19 (45%) achieved concordant good immunological (gain of ≥100 CD4+ T-cells/µl above baseline) and virological (undetectable VL) responses after 12 months of treatment (intention-to-treat analysis). Neither a decreased expression of the T-cell activation markers CD38 and CD95, nor an increase in the percentage of naive T-cells reliably predicted good virological treatment responses in patients with good CD4+ T-cell reconstitution. Repeated measurement of CD4+ T-cell counts during HAART remains the most important parameter for immunologic monitoring. Substitution of repeated VL testing by determination of T-cell activation levels (e.g., CD38 expression on CD8+ T-cells) should be applied with caution. PMID:22435082

  2. Cryptococcal Immune Reconstitution Inflammatory Syndrome in HIV-1–infected individuals: Literature Review and Proposed Clinical Case Definitions

    PubMed Central

    Haddow, Lewis J; Colebunders, Robert; Meintjes, Graeme; Lawn, Stephen D; Elliott, Julian H; Manabe, Yukari C; Bohjanen, Paul R; Sungkanuparph, Somnuek; Easterbrook, Philippa J; French, Martyn A; Boulware, David R

    2011-01-01

    Cryptococcal immune reconstitution inflammatory syndrome (C-IRIS) may present as a clinical deterioration or new presentation of cryptococcal disease following initiation of antiretroviral therapy (ART) and is believed to be caused by recovery of cryptococcus-specific immune responses. We have reviewed the existing literature on C-IRIS to inform the development of a consensus case definition specific for paradoxical cryptococcal IRIS in patients with known cryptococcal disease prior to ART, and a second definition for incident cases of cryptococcosis developing during ART (here termed ART-associated cryptococcosis), a proportion of which are likely to be “unmasking” C-IRIS. These structured case definitions are intended for use in future clinical, epidemiologic and immunopathologic studies of C-IRIS, harmonizing diagnostic criteria, and facilitating comparisons between studies. As with tuberculosis-associated IRIS, these proposed definitions should be regarded as preliminary until further insights into the immunopathology of IRIS permit their refinement. PMID:21029993

  3. Immunogenicity and sustainability of the immune response in Brazilian HIV-1-infected individuals vaccinated with inactivated triple influenza vaccine.

    PubMed

    Souza, Thiago Moreno L; Santini-Oliveira, Marilia; Martorelli, Andressa; Luz, Paula M; Vasconcellos, Mauricio T L; Giacoia-Gripp, Carmem B W; Morgado, Mariza; Nunes, Estevão P; Lemos, Alberto S; Ferreira, Ana C G; Moreira, Ronaldo I; Veloso, Valdiléa G; Siqueira, Marilda; Grinsztejn, Beatriz; Camacho, Luiz A B

    2016-03-01

    HIV-infected individuals have a higher risk of serious illnesses following infection by infection with influenza. Although anti-influenza vaccination is recommended, immunosuppression may limit their response to active immunization. We followed-up a cohort of HIV-infected individuals vaccinated against influenza to assess the immunogenicity and sustainability of the immune response to vaccination. Individuals were vaccinated 2011 with inactivated triple influenza vaccine (TIV), and they had received in 2010 the monovalent anti-A(H1N1)pdm09 vaccine. The sustainability of the immune response to A(H1N1)pdm09 at 12 months after monovalent vaccination fell, both in individuals given two single or two double doses. For these individuals, A(H1N1)pdm09 component from TIV acted as a booster, raising around 40% the number of seroprotected individuals. Almost 70% of the HIV-infected individuals were already seroprotected to A/H3N2 at baseline. Again, TIV boosted over 90% the seroprotection to A/H3N2. Anti-A/H3N2 titers dropped by 20% at 6 months after vaccination. Pre-vaccination seroprotection rate to influenza B (victoria lineage) was the lowest among those tested, seroconversion rates were higher after vaccination. Seroconversion/protection after TIV vaccination did not differ significantly across categories of clinical and demographic variables. Anti-influenza responses in Brazilian HIV-infected individuals reflected both the previous history of virus circulation in Brazil and vaccination.

  4. Cidofovir Activity against Poxvirus Infections

    PubMed Central

    Andrei, Graciela; Snoeck, Robert

    2010-01-01

    Cidofovir [(S)-1-(3-hydroxy-2-phosphonylmethoxypropyl)cytosine, HPMPC] is an acyclic nucleoside analog approved since 1996 for clinical use in the treatment of cytomegalovirus (CMV) retinitis in AIDS patients. Cidofovir (CDV) has broad-spectrum activity against DNA viruses, including herpes-, adeno-, polyoma-, papilloma- and poxviruses. Among poxviruses, cidofovir has shown in vitro activity against orthopox [vaccinia, variola (smallpox), cowpox, monkeypox, camelpox, ectromelia], molluscipox [molluscum contagiosum] and parapox [orf] viruses. The anti-poxvirus activity of cidofovir in vivo has been shown in different models of infection when the compound was administered either intraperitoneal, intranasal (aerosolized) or topically. In humans, cidofovir has been successfully used for the treatment of recalcitrant molluscum contagiosum virus and orf virus in immunocompromised patients. CDV remains a reference compound against poxviruses and holds potential for the therapy and short-term prophylaxis of not only orthopox- but also parapox- and molluscipoxvirus infections. PMID:21994641

  5. Cidofovir Activity against Poxvirus Infections.

    PubMed

    Andrei, Graciela; Snoeck, Robert

    2010-12-01

    Cidofovir [(S)-1-(3-hydroxy-2-phosphonylmethoxypropyl)cytosine, HPMPC] is an acyclic nucleoside analog approved since 1996 for clinical use in the treatment of cytomegalovirus (CMV) retinitis in AIDS patients. Cidofovir (CDV) has broad-spectrum activity against DNA viruses, including herpes-, adeno-, polyoma-, papilloma- and poxviruses. Among poxviruses, cidofovir has shown in vitro activity against orthopox [vaccinia, variola (smallpox), cowpox, monkeypox, camelpox, ectromelia], molluscipox [molluscum contagiosum] and parapox [orf] viruses. The anti-poxvirus activity of cidofovir in vivo has been shown in different models of infection when the compound was administered either intraperitoneal, intranasal (aerosolized) or topically. In humans, cidofovir has been successfully used for the treatment of recalcitrant molluscum contagiosum virus and orf virus in immunocompromised patients. CDV remains a reference compound against poxviruses and holds potential for the therapy and short-term prophylaxis of not only orthopox- but also parapox- and molluscipoxvirus infections.

  6. Quasispecies tropism and compartmentalization in gut and peripheral blood during early and chronic phases of HIV-1 infection: possible correlation with immune activation markers.

    PubMed

    Rozera, G; Abbate, I; Vlassi, C; Giombini, E; Lionetti, R; Selleri, M; Zaccaro, P; Bartolini, B; Corpolongo, A; D'Offizi, G; Baiocchini, A; Del Nonno, F; Ippolito, G; Capobianchi, M R

    2014-03-01

    HIV quasispecies was analysed in plasma and proviral genomes hosted by duodenal mucosa and peripheral blood cells (PBMC) from patients with early or chronic infection, with respect to viral heterogeneity, tropism compartmentalization and extent of immune activation. Seventeen HIV-1-infected combined antiretroviral therapy naive patients were enrolled (11 early infection and six chronic infection). V3 and nef genomic regions were analysed by ultra-deep pyrosequencing. Sequences were used to infer co-receptor usage and to construct phylogenetic trees. As markers of immune activation, plasma sCD14 and soluble tumour necrosis factor receptor II (sTNFRII) levels were measured. Median diversity of HIV RNA was lower in patients with early infection versus chronic infection patients. Overall, direct correlation was observed between V3 diversity and X4 frequency; V3 diversity of HIV RNA was inversely correlated with CD4 T-cell count; median sCD14 and sTNFRII values were similar in early and chronic patients, but X4 frequency of HIV RNA was directly correlated with plasma sCD14. The proportion of patients harbouring X4 variants and median intra-patient X4 frequency of proviral genomes tended to be higher in chronic infection than early infection patients. More pronounced compartmentalization of proviral quasispecies in gut compared with PBMC samples was observed in patients with early infection compared with chronic patients. The loss of gut/PBMC compartmentalization in more advanced stages of HIV infection was confirmed by longitudinal observation. More studies are needed to understand the pathogenetic significance of early HIV quasispecies compartmentalization and progressive intermixing of viral variants in subsequent phases of the infection, as well as the role of immune activation in tropism switch.

  7. Role of lipid structure in the humoral immune response in mice to covalent lipid-peptides from the membrane proximal region of HIV-1 gp41

    PubMed Central

    Watson, Douglas S.; Szoka, Francis C.

    2009-01-01

    The membrane proximal region (MPR) of HIV-1 gp41 is a desirable target for development of a vaccine that elicits neutralizing antibodies since the patient-derived monoclonal antibodies, 2F5 and 4E10, bind to the MPR and neutralize primary HIV isolates. The 2F5 and 4E10 antibodies cross-react with lipids and structural studies suggest that MPR immunogens may be presented in a membrane environment. We hypothesized that covalent attachment of lipid anchors would enhance the humoral immune response to MPR-derived peptides presented in liposomal bilayers. In a comparison of eight lipids conjugated to an extended 2F5 epitope peptide, a sterol, cholesterol hemisuccinate (CHEMS), was found to promote the strongest anti-peptide IgG titers (6.4 × 104) in sera of BALB/C mice. Two lipid anchors, palmitic acid and phosphatidylcholine, failed to elicit a detectable serum anti-peptide IgG response. Association with the liposomal vehicle contributed to the ability of a lipopeptide to elicit anti-peptide antibodies, but no other single factor, such as position of the lipid anchor, peptide helical content, lipopeptide partition coefficient, or presence of phosphate on the anchor clearly determined lipopeptide potency. Conjugation to CHEMS also rendered a 4E10 epitope peptide immunogenic (5.6 × 102 IgG titer in serum). Finally, attachment of CHEMS to a peptide spanning both the 2F5 and 4E10 epitopes elicited serum IgG antibodies that bound to each of the individual epitopes as well as to recombinant gp140. Further research into the mechanism of how structure influences the immune response to the MPR may lead to immunogens that could be useful in prime-boost regimens for focusing the immune response in an HIV vaccine. PMID:19520200

  8. Coupling of HIV-1 Antigen to the Selective Autophagy Receptor SQSTM1/p62 Promotes T-Cell-Mediated Immunity

    PubMed Central

    Andersen, Aram Nikolai; Landsverk, Ole Jørgen; Simonsen, Anne; Bogen, Bjarne; Corthay, Alexandre; Øynebråten, Inger

    2016-01-01

    Vaccines aiming to promote T-cell-mediated immune responses have so far showed limited efficacy, and there is a need for novel strategies. Studies indicate that autophagy plays an inherent role in antigen processing and presentation for CD4+ and CD8+ T cells. Here, we report a novel vaccine strategy based on fusion of antigen to the selective autophagy receptor sequestosome 1 (SQSTM1)/p62. We hypothesized that redirection of vaccine antigen from proteasomal degradation into the autophagy pathway would increase the generation of antigen-specific T cells. A hybrid vaccine construct was designed in which the antigen is fused to the C-terminus of p62, a signaling hub, and a receptor that naturally delivers ubiquitinated cargo for autophagic degradation. Fusion of the human immunodeficiency virus-1 antigen Gagp24 to p62 resulted in efficient antigen delivery into the autophagy pathway. Intradermal immunization of mice revealed that, in comparison to Gagp24 delivered alone, fusion to p62 enhanced the number of Gagp24-specific interferon-γ-producing T cells, including CD8+ T cells. The strategy may also have the potential to modulate the antigenic peptide repertoire. Because p62 and autophagy are highly conserved between species, we anticipate this strategy to be a candidate for the development of T-cell-based vaccines in humans. PMID:27242780

  9. Synthetic consensus HIV-1 DNA induces potent cellular immune responses and synthesis of granzyme B, perforin in HIV infected individuals.

    PubMed

    Morrow, Matthew P; Tebas, Pablo; Yan, Jian; Ramirez, Lorenzo; Slager, Anna; Kraynyak, Kim; Diehl, Malissa; Shah, Divya; Khan, Amir; Lee, Jessica; Boyer, Jean; Kim, J Joseph; Sardesai, Niranjan Y; Weiner, David B; Bagarazzi, Mark L

    2015-03-01

    This study evaluated the safety and immunogenicity of PENNVAX-B in 12 HIV infected individuals. PENNVAX-B is a combination of three optimized synthetic plasmids encoding for multiclade HIV Gag and Pol and a consensus CladeB Env delivered by electroporation. HIV infected individuals whose virus was effectively suppressed using highly active antiretroviral therapy (HAART) received PENNVAX-B DNA followed by electroporation with CELLECTRA-5P at study weeks 0, 4, 8, and 16. Local administration site and systemic reactions to PENNVAX-B were recorded after each treatment along with any adverse events. Pain of the treatment procedure was assessed using a Visual Analog Scale. Whole PBMCs were isolated for use in IFN ELISpot and Flow Cytometric assays. PENNVAX-B was generally safe and well tolerated. Overall, the four dose regimen was not associated with any serious adverse events or severe local or systemic reactions. A rise in antigen-specific SFU was detected in the INFγ ELISpot assay in all 12 participants. T cells from 8/12 participants loaded with both granzyme B and perforin in response to HIV antigen, an immune finding characteristic of long-term nonprogressors (LTNPs) and elite controllers (ECs). Thus administration of PENNVAX-B may prove useful adjunctive therapy to ART for treatment and control of HIV infection.

  10. Synthetic Consensus HIV-1 DNA Induces Potent Cellular Immune Responses and Synthesis of Granzyme B, Perforin in HIV Infected Individuals

    PubMed Central

    Morrow, Matthew P; Tebas, Pablo; Yan, Jian; Ramirez, Lorenzo; Slager, Anna; Kraynyak, Kim; Diehl, Malissa; Shah, Divya; Khan, Amir; Lee, Jessica; Boyer, Jean; Kim, J Joseph; Sardesai, Niranjan Y; Weiner, David B; Bagarazzi, Mark L

    2015-01-01

    This study evaluated the safety and immunogenicity of PENNVAX-B in 12 HIV infected individuals. PENNVAX-B is a combination of three optimized synthetic plasmids encoding for multiclade HIV Gag and Pol and a consensus CladeB Env delivered by electroporation. HIV infected individuals whose virus was effectively suppressed using highly active antiretroviral therapy (HAART) received PENNVAX-B DNA followed by electroporation with CELLECTRA-5P at study weeks 0, 4, 8, and 16. Local administration site and systemic reactions to PENNVAX-B were recorded after each treatment along with any adverse events. Pain of the treatment procedure was assessed using a Visual Analog Scale. Whole PBMCs were isolated for use in IFN ELISpot and Flow Cytometric assays. PENNVAX-B was generally safe and well tolerated. Overall, the four dose regimen was not associated with any serious adverse events or severe local or systemic reactions. A rise in antigen-specific SFU was detected in the INFγ ELISpot assay in all 12 participants. T cells from 8/12 participants loaded with both granzyme B and perforin in response to HIV antigen, an immune finding characteristic of long-term nonprogressors (LTNPs) and elite controllers (ECs). Thus administration of PENNVAX-B may prove useful adjunctive therapy to ART for treatment and control of HIV infection. PMID:25531694

  11. Immune and Viral Correlates of “Secondary Viral Control” after Treatment Interruption in Chronically HIV-1 Infected Patients

    PubMed Central

    Van Gulck, Ellen; Bracke, Lotte; Heyndrickx, Leo; Coppens, Sandra; Atkinson, Derek; Merlin, Céline; Pasternak, Alexander; Florence, Eric; Vanham, Guido

    2012-01-01

    Upon interruption of antiretroviral therapy, HIV-infected patients usually show viral load rebound to pre-treatment levels. Four patients, hereafter referred to as secondary controllers (SC), were identified who initiated therapy during chronic infection and, after stopping treatment, could control virus replication at undetectable levels for more than six months. In the present study we set out to unravel possible viral and immune parameters or mechanisms of this phenomenon by comparing secondary controllers with elite controllers and non-controllers, including patients under HAART. As candidate correlates of protection, virus growth kinetics, levels of intracellular viral markers, several aspects of HIV-specific CD4+ and CD8+ T cell function and HIV neutralizing antibodies were investigated. As expected all intracellular viral markers were lower in aviremic as compared to viremic subjects, but in addition both elite and secondary controllers had lower levels of viral unspliced RNA in PBMC as compared to patients on HAART. Ex vivo cultivation of the virus from CD4+ T cells of SC consistently failed in one patient and showed delayed kinetics in the three others. Formal in vitro replication studies of these three viruses showed low to absent growth in two cases and a virus with normal fitness in the third case. T cell responses toward HIV peptides, evaluated in IFN-γ ELISPOT, revealed no significant differences in breadth, magnitude or avidity between SC and all other patient groups. Neither was there a difference in polyfunctionality of CD4+ or CD8+ T cells, as evaluated with intracellular cytokine staining. However, secondary and elite controllers showed higher proliferative responses to Gag and Pol peptides. SC also showed the highest level of autologous neutralizing antibodies. These data suggest that higher T cell proliferative responses and lower replication kinetics might be instrumental in secondary viral control in the absence of treatment. PMID:22666392

  12. Adenoviral gene delivery for HIV-1 vaccination.

    PubMed

    Vanniasinkam, T; Ertl, H C J

    2005-04-01

    The AIDS epidemic continues to spread throughout nations of Africa and Asia and is by now threatening to undermine the already frail infrastructure of developing countries in Sub-Saharan Africa that are hit the hardest. The only option to stem this epidemic is through inexpensive and efficacious vaccines that prevent or at least blunt HIV-1 infections. Despite decades of pre-clinical and clinical research such vaccines remain elusive. Most anti-viral vaccines act by inducing protective levels of virus-neutralizing antibodies. The envelope protein of HIV-1, the sole target of neutralizing antibodies, is constantly changing due to mutations, B cell epitopes are masked by heavy glycosylation and the protein's structural unfolding upon binding to its CD4 receptor and chemokine co-receptors. Efforts to induce broadly cross-reactive virus-neutralizing antibodies able to induce sterilizing or near sterilizing immunity to HIV-1 have thus failed. Studies have indicated that cell-mediated immune responses and in particular CD8+ T cell responses to internal viral proteins may control HIV-1 infections without necessarily preventing them. Adenoviral vectors expressing antigens of HIV-1 are eminently suited to stimulate potent CD8+ T cell responses against transgene products, such as antigens of HIV-1. They performed well in pre-clinical studies in rodents and nonhuman primates and are currently in human clinical trials. This review summarizes the published literature on adenoviral vectors as vaccine carriers for HIV-1 and discusses advantages and disadvantages of this vaccine modality.

  13. Combined HIV-1 Envelope Systemic and Mucosal Immunization of Lactating Rhesus Monkeys Induces a Robust Immunoglobulin A Isotype B Cell Response in Breast Milk

    PubMed Central

    Nelson, Cody S.; Pollara, Justin; Kunz, Erika L.; Jeffries, Thomas L.; Duffy, Ryan; Beck, Charles; Stamper, Lisa; Wang, Minyue; Shen, Xiaoying; Pickup, David J.; Hudgens, Michael G.; Kepler, Thomas B.; Montefiori, David C.; Moody, M. Anthony; Tomaras, Georgia D.; Liao, Hua-Xin; Haynes, Barton F.; Ferrari, Guido; Fouda, Genevieve G. A.

    2016-01-01

    ABSTRACT Maternal vaccination to induce anti-HIV immune factors in breast milk is a potential intervention to prevent postnatal HIV-1 mother-to-child transmission (MTCT). We previously demonstrated that immunization of lactating rhesus monkeys with a modified vaccinia Ankara (MVA) prime/intramuscular (i.m.) protein boost regimen induced functional IgG responses in milk, while MVA prime/intranasal (i.n.) boost induced robust milk Env-specific IgA responses. Yet, recent studies have suggested that prevention of postnatal MTCT may require both Env-specific IgA and functional IgG responses in milk. Thus, to investigate whether both responses could be elicited by a combined systemic/mucosal immunization strategy, animals previously immunized with the MVA prime/i.n. boost regimen received an i.n./i.m. combined C.1086 gp120 boost. Remarkably, high-magnitude Env-specific IgA responses were observed in milk, surpassing those in plasma. Furthermore, 29% of vaccine-elicited Env-specific B cells isolated from breast milk were IgA isotype, in stark contrast to the overwhelming predominance of IgG isotype Env-specific B cells in breast milk of chronically HIV-infected women. A clonal relationship was identified between Env-specific blood and breast milk B cells, suggesting trafficking of that cell population between the two compartments. Furthermore, IgA and IgG monoclonal antibodies isolated from Env-specific breast milk B cells demonstrated diverse Env epitope specificities and multiple effector functions, including tier 1 neutralization, antibody-dependent cellular cytotoxicity (ADCC), infected cell binding, and inhibition of viral attachment to epithelial cells. Thus, maternal i.n./i.m. combined immunization is a novel strategy to enhance protective Env-specific IgA in milk, which is subsequently transferred to the infant via breastfeeding. IMPORTANCE Efforts to increase the availability of antiretroviral therapy to pregnant and breastfeeding women in resource-limited areas

  14. Comparative impact of antiretroviral drugs on markers of inflammation and immune activation during the first two years of effective therapy for HIV-1 infection: an observational study

    PubMed Central

    2014-01-01

    Background Few studies have compared the impact of different antiretroviral regimens on residual immune activation and inflammation with discordant results. Aim of the study was to investigate the impact of various antiretroviral regimens on markers of immune activation and inflammation during the first two years of effective therapy. Methods We studied HIV-infected antiretroviral-naïve patients who began cART with either abacavir/lamivudine or tenofovir/emtricitabine, combined with ritonavir-boosted lopinavir (LPV/r), atazanavir (ATV/r) or efavirenz (EFV). All the patients had a virological response within 6 months, which was maintained for 2 years with no change in their ART regimen. C-reactive protein (hs-CRP), interleukin-6 (IL-6), soluble CD14 (sCD14), monokine induced by interferon-γ (MIG) and interferon-γ-inducible protein-10 (IP-10) were measured in stored plasma obtained at cART initiation and 24 months later. Mean changes from baseline were analyzed on loge-transformed values and multivariable linear regression models were used to study the effect of the treatment components, after adjusting for factors that might have influenced the choice of ART regimen or biomarker levels. Differences were expressed as the mean fold change percentage difference (Δ). Results Seventy-eight patients (91% males) with a median age of 43 years met the inclusion criteria. Their median baseline CD4 cell count was 315/mm3 and HIV-1 RNA level 4.6 log10 copies/ml. During the 2-years study period, IL-6, IP-10 and MIG levels fell significantly, while hs-CRP and sCD14 levels remained stable. IP-10 and MIG levels declined significantly less strongly with ATV/r than with EFV (IP-10Δ -57%, p = 0.011; MIGΔ -136%, p = 0.007), while no difference was noted between LPV/r and EFV. The decline in IL-6 did not differ significantly across the different treatment components. Conclusions After the first 2 years of successful cART, IL-6, IP-10 and MIG fell markedly while hs

  15. High Dose Atorvastatin Decreases Cellular Markers of Immune Activation Without Affecting HIV-1 RNA Levels: Results of a Double-Blind Randomized Placebo Controlled Clinical Trial

    DTIC Science & Technology

    2011-02-15

    cholesterol -depleting agents, such as 3-hydroxy- 3-methyl-glutaryl-coenzyme A (HMG-CoA) reductase inhibitors ( statins ), reduces HIV-1 particle production [5...Furthermore, virions derived from cholesterol -depleted cells demonstrate reduced infectivity in vitro [5]. In addition, statins have dem- onstrated...studies revealed that substantial statin - induced decreases in cholesterol resulted in declines in HIV-1 production [5]. We therefore chose the highest

  16. Psychoneuroimmunology and HIV-1.

    ERIC Educational Resources Information Center

    Antoni, Michael H.; And Others

    1990-01-01

    Presents evidence describing benefits of behavioral interventions such as aerobic exercise training on both psychological and immunological functioning among high risk human immunodeficiency virus-Type 1 (HIV-1) seronegative and very early stage seropositive homosexual men. HIV-1 infection is cast as chronic disease for which early…

  17. Immune deficiency could be an early risk factor for altered insulin sensitivity in antiretroviral-naive HIV-1-infected patients: the ANRS COPANA cohort

    PubMed Central

    Boufassa, Faroudy; Goujard, Cécile; Viard, Jean-Paul; Carlier, Robert; Lefebvre, Bénédicte; Yeni, Patrick; Bouchaud, Olivier; Capeau, Jacqueline; Meyer, Laurence; Vigouroux, Corinne

    2012-01-01

    Background The relationships between immunovirological status, inflammatory markers, insulin resistance and fat distribution have not been studied in recently diagnosed (<1 year) antiretroviral-naïve HIV-1-infected patients. Methods We studied 214 antiretroviral-naïve patients at enrolment in the metabolic sub-study of the ANRS COPANA cohort. We measured clinical, immunovirological and inflammatory parameters, glucose/insulin during oral glucose tolerance test (OGTT), adipokines, subcutaneous and visceral fat surfaces (SAT and VAT, assessed by computed tomography) and the body fat distribution based on dual-energy X-ray absorptiometry (DEXA). Results Median age was 36 years; 28% of the patients were female and 35% of sub-Saharan origin; 20% had low CD4 counts (≤200/mm3). Patients with low CD4 counts were older and more frequently of sub-Saharan Africa origin, had lower BMI but not different SAT/VAT ratio and fat distribution than other patients. They also had lower total, LDL- and HDL-cholesterolemia, higher triglyceridemia and post-OGTT glycemia, higher markers of insulin resistance (insulin during OGTT and HOMA-IR) and of inflammation (hsCRP, IL-6, TNFα, sTNFR1 and sTNFR2). After adjustment for age, sex, geographic origin, BMI and waist circumference, increased insulin resistance was not related to any inflammatory marker. In multivariate analysis, low CD4 count was an independent risk factor for altered insulin sensitivity (β-coefficient for HOMA-IR: +0.90; p=0.001; CD4>500/mm3 as the reference), in addition to older age (β: +0.26 for a 10-year increase; p=0.01) and higher BMI (β: +0.07 for a 1-kg/m2 increase; p=0.003). Conclusions In ART-naive patients, severe immune deficiency but not inflammation could be an early risk factor for altered insulin sensitivity. PMID:22267473

  18. Substance abuse, HIV-1 and hepatitis.

    PubMed

    Parikh, Nirzari; Nonnemacher, Michael R; Pirrone, Vanessa; Block, Timothy; Mehta, Anand; Wigdahl, Brian

    2012-10-01

    During the course of human immunodeficiency virus type 1 (HIV-1) disease, the virus has been shown to effectively escape the immune response with the subsequent establishment of latent viral reservoirs in specific cell populations within the peripheral blood (PB) and associated lymphoid tissues, bone marrow (BM), brain, and potentially other end organs. HIV-1, along with hepatitis B and C viruses (HBV and HCV), are known to share similar routes of transmission, including intravenous drug use, blood transfusions, sexual intercourse, and perinatal exposure. Substance abuse, including the use of opioids and cocaine, is a significant risk factor for exposure to HIV-1 and the development of acquired immune deficiency syndrome, as well as HBV and HCV exposure, infection, and disease. Thus, coinfection with HIV-1 and HBV or HCV is common and may be impacted by chronic substance abuse during the course of disease. HIV- 1 impacts the natural course of HBV and HCV infection by accelerating the progression of HBV/HCV-associated liver disease toward end-stage cirrhosis and quantitative depletion of the CD4+ T-cell compartment. HBV or HCV coinfection with HIV-1 is also associated with increased mortality when compared to either infection alone. This review focuses on the impact of substance abuse and coinfection with HBV and HCV in the PB, BM, and brain on the HIV-1 pathogenic process as it relates to viral pathogenesis, disease progression, and the associated immune response during the course of this complex interplay. The impact of HIV-1 and substance abuse on hepatitis virus-induced disease is also a focal point.

  19. B cell depletion in HIV-1 subtype A infected Ugandan adults: relationship to CD4 T cell count, viral load and humoral immune responses.

    PubMed

    Oballah, Peter; Flach, Britta; Eller, Leigh A; Eller, Michael A; Ouma, Benson; de Souza, Mark; Kibuuka, Hannah N; Wabwire-Mangen, Fred; Brown, Bruce K; Michael, Nelson L; Robb, Merlin L; Montefiori, David; Polonis, Victoria R

    2011-01-01

    To better understand the nature of B cell dysfunctions in subjects infected with HIV-1 subtype A, a rural cohort of 50 treatment-naïve Ugandan patients chronically infected with HIV-1 subtype A was studied, and the relationship between B cell depletion and HIV disease was assessed. B cell absolute counts were found to be significantly lower in HIV-1+ patients, when compared to community matched negative controls (p<0.0001). HIV-1-infected patients displayed variable functional and binding antibody titers that showed no correlation with viral load or CD4+ T cell count. However, B cell absolute counts were found to correlate inversely with neutralizing antibody (NAb) titers against subtype A (p = 0.05) and subtype CRF02_AG (p = 0.02) viruses. A positive correlation was observed between subtype A gp120 binding antibody titers and NAb breadth (p = 0.02) and mean titer against the 10 viruses (p = 0.0002). In addition, HIV-1 subtype A sera showed preferential neutralization of the 5 subtype A or CRF02_AG pseudoviruses, as compared with 5 pseudoviruses from subtypes B, C or D (p<0.001). These data demonstrate that in patients with chronic HIV-1 subtype A infection, significant B cell depletion can be observed, the degree of which does not appear to be associated with a decrease in functional antibodies. These findings also highlight the potential importance of subtype in the specificity of cross-clade neutralization in HIV-1 infection.

  20. The Evolution of Poxvirus Vaccines

    PubMed Central

    Sánchez-Sampedro, Lucas; Perdiguero, Beatriz; Mejías-Pérez, Ernesto; García-Arriaza, Juan; Di Pilato, Mauro; Esteban, Mariano

    2015-01-01

    After Edward Jenner established human vaccination over 200 years ago, attenuated poxviruses became key players to contain the deadliest virus of its own family: Variola virus (VARV), the causative agent of smallpox. Cowpox virus (CPXV) and horsepox virus (HSPV) were extensively used to this end, passaged in cattle and humans until the appearance of vaccinia virus (VACV), which was used in the final campaigns aimed to eradicate the disease, an endeavor that was accomplished by the World Health Organization (WHO) in 1980. Ever since, naturally evolved strains used for vaccination were introduced into research laboratories where VACV and other poxviruses with improved safety profiles were generated. Recombinant DNA technology along with the DNA genome features of this virus family allowed the generation of vaccines against heterologous diseases, and the specific insertion and deletion of poxvirus genes generated an even broader spectrum of modified viruses with new properties that increase their immunogenicity and safety profile as vaccine vectors. In this review, we highlight the evolution of poxvirus vaccines, from first generation to the current status, pointing out how different vaccines have emerged and approaches that are being followed up in the development of more rational vaccines against a wide range of diseases. PMID:25853483

  1. Quantification of the epitope diversity of HIV-1-specific binding antibodies by peptide microarrays for global HIV-1 vaccine development

    DOE PAGES

    Stephenson, Kathryn E.; Neubauer, George H.; Reimer, Ulf; ...

    2014-11-14

    An effective vaccine against human immunodeficiency virus type 1 (HIV-1) will have to provide protection against a vast array of different HIV-1 strains. Current methods to measure HIV-1-specific binding antibodies following immunization typically focus on determining the magnitude of antibody responses, but the epitope diversity of antibody responses has remained largely unexplored. Here we describe the development of a global HIV-1 peptide microarray that contains 6564 peptides from across the HIV-1 proteome and covers the majority of HIV-1 sequences in the Los Alamos National Laboratory global HIV-1 sequence database. Using this microarray, we quantified the magnitude, breadth, and depth ofmore » IgG binding to linear HIV-1 sequences in HIV-1-infected humans and HIV-1-vaccinated humans, rhesus monkeys and guinea pigs. The microarray measured potentially important differences in antibody epitope diversity, particularly regarding the depth of epitope variants recognized at each binding site. Our data suggest that the global HIV-1 peptide microarray may be a useful tool for both preclinical and clinical HIV-1 research.« less

  2. Quantification of the epitope diversity of HIV-1-specific binding antibodies by peptide microarrays for global HIV-1 vaccine development

    SciTech Connect

    Stephenson, Kathryn E.; Neubauer, George H.; Reimer, Ulf; Pawlowski, Nikolaus; Knaute, Tobias; Zerweck, Johannes; Korber, Bette T.; Barouch, Dan H.

    2014-11-14

    An effective vaccine against human immunodeficiency virus type 1 (HIV-1) will have to provide protection against a vast array of different HIV-1 strains. Current methods to measure HIV-1-specific binding antibodies following immunization typically focus on determining the magnitude of antibody responses, but the epitope diversity of antibody responses has remained largely unexplored. Here we describe the development of a global HIV-1 peptide microarray that contains 6564 peptides from across the HIV-1 proteome and covers the majority of HIV-1 sequences in the Los Alamos National Laboratory global HIV-1 sequence database. Using this microarray, we quantified the magnitude, breadth, and depth of IgG binding to linear HIV-1 sequences in HIV-1-infected humans and HIV-1-vaccinated humans, rhesus monkeys and guinea pigs. The microarray measured potentially important differences in antibody epitope diversity, particularly regarding the depth of epitope variants recognized at each binding site. Our data suggest that the global HIV-1 peptide microarray may be a useful tool for both preclinical and clinical HIV-1 research.

  3. Selective induction of cell-mediated immunity and protection of rhesus macaques from chronic SHIV{sub KU2} infection by prophylactic vaccination with a conserved HIV-1 envelope peptide-cocktail

    SciTech Connect

    Nehete, Pramod N.; Nehete, Bharti P.; Hill, Lori; Manuri, Pallavi R.; Baladandayuthapani, Veerabhadran; Feng Lei; Simmons, Johnny; Sastry, K. Jagannadha

    2008-01-05

    Infection of Indian-origin rhesus macaques by the simian human immunodeficiency virus (SHIV) is considered to be a suitable preclinical model for directly testing efficacy of vaccine candidates based on the HIV-1 envelope. We used this model for prophylactic vaccination with a peptide-cocktail comprised of highly conserved HIV-1 envelope sequences immunogenic/antigenic in macaques and humans. Separate groups of macaques were immunized with the peptide-cocktail by intravenous and subcutaneous routes using autologous dendritic cells (DC) and Freund's adjuvant, respectively. The vaccine elicited antigen specific IFN-{gamma}-producing cells and T-cell proliferation, but not HIV-neutralizing antibodies. The vaccinated animals also exhibited efficient cross-clade cytolytic activity against target cells expressing envelope proteins corresponding to HIV-1 strains representative of multiple clades that increased after intravenous challenge with pathogenic SHIV{sub KU2}. Virus-neutralizing antibodies were either undetectable or present only transiently at low levels in the control as well as vaccinated monkeys after infection. Significant control of plasma viremia leading to undetectable levels was achieved in majority of vaccinated monkeys compared to mock-vaccinated controls. Monkeys vaccinated with the peptide-cocktail using autologous DC, compared to Freund's adjuvant, and the mock-vaccinated animals, showed significantly higher IFN-{gamma} production, higher levels of vaccine-specific IFN-{gamma} producing CD4{sup +} cells and significant control of plasma viremia. These results support DC-based vaccine delivery and the utility of the conserved HIV-1 envelope peptide-cocktail, capable of priming strong cell-mediated immunity, for potential inclusion in HIV vaccination strategies.

  4. Semen Bacterial Concentrations and HIV-1 RNA Shedding Among HIV-1–Seropositive Kenyan Men

    PubMed Central

    Srinivasan, Sujatha; Huang, Dandi; Ko, Daisy L.; Sanders, Eduard J.; Peshu, Norbert M.; Krieger, John N.; Muller, Charles H.; Coombs, Robert W.; Fredricks, David N.; Graham, Susan M.

    2017-01-01

    Introduction: HIV-1 is transmitted through semen from men to their sexual partners. Genital infections can increase HIV-1 RNA shedding in semen, but shedding also occurs in the absence of typical pathogens. We hypothesized that higher bacterial concentrations in semen would be associated with higher HIV-1 RNA levels. Methods: We analyzed semen samples from 42 HIV-1–seropositive Kenyan men using quantitative polymerase chain reaction (PCR) to assess bacterial concentrations and real-time PCR to measure HIV-1 RNA levels. Generalized estimation equations were used to evaluate associations between these 2 measures. Broad-range 16S rRNA gene PCR with pyrosequencing was performed on a subset of 13 samples to assess bacterial community composition. Results: Bacteria were detected in 96.6% of 88 samples by quantitative PCR. Semen bacterial concentration and HIV-1 RNA levels were correlated 0.30 (P = 0.01). The association between bacterial concentration and HIV-1 RNA detection was not significant after adjustment for antiretroviral therapy (ART) (adjusted odds ratio: 1.27, 95% CI: 0.84 to 1.91). Factors associated with semen bacterial concentration included insertive anal sex (adjusted beta 0.92, 95% CI: 0.12 to 1.73) and ART use (adjusted beta: −0.77, 95% CI: −1.50 to 0.04). Among 13 samples with pyrosequencing data, Corynebacterium spp., Staphylococcus spp., and Streptococcus spp. were most frequently detected. Conclusion: Most of these HIV-1–infected men had bacteria in their semen. ART use was associated with undetectable semen HIV-1 RNA and lower semen bacterial concentrations, whereas insertive anal sex was associated with higher bacterial concentrations. Additional studies evaluating the relationship between semen bacteria, inflammation, mucosal immunity, and HIV-1 shedding are needed to understand implications for HIV-1 transmission. PMID:27861240

  5. Specific Elimination of Latently HIV-1 Infected Cells Using HIV-1 Protease-Sensitive Toxin Nanocapsules

    PubMed Central

    Wen, Jing; Yan, Ming; Liu, Yang; Li, Jie; Xie, Yiming; Lu, Yunfeng; Kamata, Masakazu; Chen, Irvin S. Y.

    2016-01-01

    Anti-retroviral drugs suppress HIV-1 plasma viremia to undetectable levels; however, latent HIV-1 persists in reservoirs within HIV-1-infected patients. The silent provirus can be activated through the use of drugs, including protein kinase C activators and histone deacetylase inhibitors. This “shock” approach is then followed by “kill” of the producing cells either through direct HIV-1-induced cell death or natural immune mechanisms. However, these mechanisms are relatively slow and effectiveness is unclear. Here, we develop an approach to specifically target and kill cells that are activated early in the process of virus production. We utilize a novel nanocapsule technology whereby the ricin A chain is encapsulated in an inactive form within a polymer shell. Specificity for release of the ricin A toxin is conferred by peptide crosslinkers that are sensitive to cleavage by HIV-1 protease. By using well-established latent infection models, J-Lat and U1 cells, we demonstrate that only within an HIV-1-producing cell expressing functional HIV-1 protease will the nanocapsule release its ricin A cargo, shutting down viral and cellular protein synthesis, and ultimately leading to rapid death of the producer cell. Thus, we provide proof of principle for a novel technology to kill HIV-1-producing cells without effects on non-target cells. PMID:27049645

  6. Specific Elimination of Latently HIV-1 Infected Cells Using HIV-1 Protease-Sensitive Toxin Nanocapsules.

    PubMed

    Wen, Jing; Yan, Ming; Liu, Yang; Li, Jie; Xie, Yiming; Lu, Yunfeng; Kamata, Masakazu; Chen, Irvin S Y

    2016-01-01

    Anti-retroviral drugs suppress HIV-1 plasma viremia to undetectable levels; however, latent HIV-1 persists in reservoirs within HIV-1-infected patients. The silent provirus can be activated through the use of drugs, including protein kinase C activators and histone deacetylase inhibitors. This "shock" approach is then followed by "kill" of the producing cells either through direct HIV-1-induced cell death or natural immune mechanisms. However, these mechanisms are relatively slow and effectiveness is unclear. Here, we develop an approach to specifically target and kill cells that are activated early in the process of virus production. We utilize a novel nanocapsule technology whereby the ricin A chain is encapsulated in an inactive form within a polymer shell. Specificity for release of the ricin A toxin is conferred by peptide crosslinkers that are sensitive to cleavage by HIV-1 protease. By using well-established latent infection models, J-Lat and U1 cells, we demonstrate that only within an HIV-1-producing cell expressing functional HIV-1 protease will the nanocapsule release its ricin A cargo, shutting down viral and cellular protein synthesis, and ultimately leading to rapid death of the producer cell. Thus, we provide proof of principle for a novel technology to kill HIV-1-producing cells without effects on non-target cells.

  7. The Genome of Yoka Poxvirus

    PubMed Central

    Zhao, Guoyan; Droit, Lindsay; Tesh, Robert B.; Popov, Vsevolod L.; Little, Nicole S.; Upton, Chris; Virgin, Herbert W.; Wang, David

    2011-01-01

    Yoka poxvirus was isolated almost four decades ago from a mosquito pool in the Central African Republic. Its classification as a poxvirus is based solely upon the morphology of virions visualized by electron microscopy. Here we describe sequencing of the Yoka poxvirus genome using a combination of Roche/454 and Illumina next-generation sequencing technologies. A single consensus contig of ∼175 kb in length that encodes 186 predicted genes was generated. Multiple methods were used to show that Yoka poxvirus is most closely related to viruses in the Orthopoxvirus genus, but it is clearly distinct from previously described poxviruses. Collectively, the phylogenetic and genomic sequence analyses suggest that Yoka poxvirus is the prototype member of a new genus in the family Poxviridae. PMID:21813608

  8. Mosaic clade M human immunodeficiency virus type 1 (HIV-1) envelope immunogens

    DOEpatents

    Korber, Bette T.; Fischer, William; Liao, Hua-Xin; Haynes, Barton F.; Letvin, Norman; Hahn; Beatrice H.

    2011-05-31

    The present invention relates to mosaic clade M HIV-1 Env polypeptides and to compositions comprising same. The polypeptides of the invention are suitable for use in inducing an immune response to HIV-1 in a human.

  9. Interleukin-1- and Type I Interferon-Dependent Enhanced Immunogenicity of an NYVAC-HIV-1 Env-Gag-Pol-Nef Vaccine Vector with Dual Deletions of Type I and Type II Interferon-Binding Proteins

    PubMed Central

    Delaloye, Julie; Filali-Mouhim, Abdelali; Cameron, Mark J.; Haddad, Elias K.; Harari, Alexandre; Goulet, Jean-Pierre; Gomez, Carmen E.; Perdiguero, Beatriz; Esteban, Mariano; Pantaleo, Giuseppe; Roger, Thierry; Sékaly, Rafick-Pierre

    2015-01-01

    ABSTRACT NYVAC, a highly attenuated, replication-restricted poxvirus, is a safe and immunogenic vaccine vector. Deletion of immune evasion genes from the poxvirus genome is an attractive strategy for improving the immunogenic properties of poxviruses. Using systems biology approaches, we describe herein the enhanced immunological profile of NYVAC vectors expressing the HIV-1 clade C env, gag, pol, and nef genes (NYVAC-C) with single or double deletions of genes encoding type I (ΔB19R) or type II (ΔB8R) interferon (IFN)-binding proteins. Transcriptomic analyses of human monocytes infected with NYVAC-C, NYVAC-C with the B19R deletion (NYVAC-C-ΔB19R), or NYVAC-C with B8R and B19R deletions (NYVAC-C-ΔB8RB19R) revealed a concerted upregulation of innate immune pathways (IFN-stimulated genes [ISGs]) of increasing magnitude with NYVAC-C-ΔB19R and NYVAC-C-ΔB8RB19R than with NYVAC-C. Deletion of B8R and B19R resulted in an enhanced activation of IRF3, IRF7, and STAT1 and the robust production of type I IFNs and of ISGs, whose expression was inhibited by anti-type I IFN antibodies. Interestingly, NYVAC-C-ΔB8RB19R induced the production of much higher levels of proinflammatory cytokines (tumor necrosis factor [TNF], interleukin-6 [IL-6], and IL-8) than NYVAC-C or NYVAC-C-ΔB19R as well as a strong inflammasome response (caspase-1 and IL-1β) in infected monocytes. Top network analyses showed that this broad response mediated by the deletion of B8R and B19R was organized around two upregulated gene expression nodes (TNF and IRF7). Consistent with these findings, monocytes infected with NYVAC-C-ΔB8RB19R induced a stronger type I IFN-dependent and IL-1-dependent allogeneic CD4+ T cell response than monocytes infected with NYVAC-C or NYVAC-C-ΔB19R. Dual deletion of type I and type II IFN immune evasion genes in NYVAC markedly enhanced its immunogenic properties via its induction of the increased expression of type I IFNs and IL-1β and make it an attractive candidate HIV

  10. HIV-1 vaccines: challenges and new perspectives.

    PubMed

    Excler, Jean-Louis; Robb, Merlin L; Kim, Jerome H

    2014-01-01

    The development of a safe and effective preventive HIV-1 vaccine remains a public health priority. Despite scientific difficulties and disappointing results, HIV-1 vaccine clinical development has, for the first time, established proof-of-concept efficacy against HIV-1 acquisition and identified vaccine-associated immune correlates of risk. The correlate of risk analysis showed that IgG antibodies against the gp120 V2 loop correlated with decreased risk of HIV infection, while Env-specific IgA directly correlated with increased risk. The development of vaccine strategies such as improved envelope proteins formulated with potent adjuvants and DNA and vectors expressing mosaics, or conserved sequences, capable of eliciting greater breadth and depth of potentially relevant immune responses including neutralizing and non-neutralizing antibodies, CD4+ and CD8+ cell-mediated immune responses, mucosal immune responses, and immunological memory, is now proceeding quickly. Additional human efficacy trials combined with other prevention modalities along with sustained funding and international collaboration remain key to bring an HIV-1 vaccine to licensure.

  11. Membrane fusion during poxvirus entry.

    PubMed

    Moss, Bernard

    2016-12-01

    Poxviruses comprise a large family of enveloped DNA viruses that infect vertebrates and invertebrates. Poxviruses, unlike most DNA viruses, replicate in the cytoplasm and encode enzymes and other proteins that enable entry, gene expression, genome replication, virion assembly and resistance to host defenses. Entry of vaccinia virus, the prototype member of the family, can occur at the plasma membrane or following endocytosis. Whereas many viruses encode one or two proteins for attachment and membrane fusion, vaccinia virus encodes four proteins for attachment and eleven more for membrane fusion and core entry. The entry-fusion proteins are conserved in all poxviruses and form a complex, known as the Entry Fusion Complex (EFC), which is embedded in the membrane of the mature virion. An additional membrane that encloses the mature virion and is discarded prior to entry is present on an extracellular form of the virus. The EFC is held together by multiple interactions that depend on nine of the eleven proteins. The entry process can be divided into attachment, hemifusion and core entry. All eleven EFC proteins are required for core entry and at least eight for hemifusion. To mediate fusion the virus particle is activated by low pH, which removes one or more fusion repressors that interact with EFC components. Additional EFC-interacting fusion repressors insert into cell membranes and prevent secondary infection. The absence of detailed structural information, except for two attachment proteins and one EFC protein, is delaying efforts to determine the fusion mechanism.

  12. Enhanced clearance of HIV-1-infected cells by broadly neutralizing antibodies against HIV-1 in vivo.

    PubMed

    Lu, Ching-Lan; Murakowski, Dariusz K; Bournazos, Stylianos; Schoofs, Till; Sarkar, Debolina; Halper-Stromberg, Ariel; Horwitz, Joshua A; Nogueira, Lilian; Golijanin, Jovana; Gazumyan, Anna; Ravetch, Jeffrey V; Caskey, Marina; Chakraborty, Arup K; Nussenzweig, Michel C

    2016-05-20

    Antiretroviral drugs and antibodies limit HIV-1 infection by interfering with the viral life cycle. In addition, antibodies also have the potential to guide host immune effector cells to kill HIV-1-infected cells. Examination of the kinetics of HIV-1 suppression in infected individuals by passively administered 3BNC117, a broadly neutralizing antibody, suggested that the effects of the antibody are not limited to free viral clearance and blocking new infection but also include acceleration of infected cell clearance. Consistent with these observations, we find that broadly neutralizing antibodies can target CD4(+) T cells infected with patient viruses and can decrease their in vivo half-lives by a mechanism that requires Fcγ receptor engagement in a humanized mouse model. The results indicate that passive immunotherapy can accelerate elimination of HIV-1-infected cells.

  13. Primate immune responses to HIV-1 Env formulated in the saponin-based adjuvant AbISCO-100 in the presence or absence of TLR9 co-stimulation

    PubMed Central

    Martinez, Paola; Sundling, Christopher; O'Dell, Sijy; Mascola, John R.; Wyatt, Richard T.; Karlsson Hedestam, Gunilla B.

    2015-01-01

    Protein-based vaccines require adjuvants to achieve optimal responses. Toll-like receptor (TLR) 9 agonists were previously shown to improve responses to protein-based vaccines, such as the Hepatitis B virus vaccine formulated in alum. Here, we used CpG-C together with the clinically relevant saponin-based adjuvant AbISCO-100/Matrix-M (AbISCO), to assess if TLR9 co-stimulation would quantitatively or qualitatively modulate HIV-1 envelope glycoprotein (Env)-specific B and T cell responses in rhesus macaques. The macaques were inoculated with soluble Env trimers in AbISCO, with or without the addition of CpG-C, using an interval similar to the Hepatitis B virus vaccine. Following a comprehensive evaluation of antigen-specific responses in multiple immune compartments, we show that the Env-specific circulating IgG, memory B cells and plasma cells displayed similar kinetics and magnitude in the presence or absence of CpG-C and that there was no apparent difference between the two groups in the elicited HIV-1 neutralizing antibody titers or antigen-specific CD4+ T cell responses. Importantly, the control of SHIV viremia was significantly improved in animals from both Env-immunized groups relative to adjuvant alone controls, demonstrating the potential of AbISCO to act as a stand-alone adjuvant for Env-based vaccines. PMID:25762407

  14. Macrophage polarization and HIV-1 infection.

    PubMed

    Cassol, Edana; Cassetta, Luca; Alfano, Massimo; Poli, Guido

    2010-04-01

    Polarization of MP into classically activated (M1) and alternatively activated (M2a, M2b, and M2c) macrophages is critical in mediating an effective immune response against invading pathogens. However, several pathogens use these activation pathways to facilitate dissemination and pathogenesis. Viruses generally induce an M1-like phenotype during the acute phase of infection. In addition to promoting the development of Th1 responses and IFN production, M1 macrophages often produce cytokines that drive viral replication and tissue damage. As shown for HIV-1, polarization can also alter macrophage susceptibility to infection. In vitro polarization into M1 cells prevents HIV-1 infection, and M2a polarization inhibits viral replication at a post-integration level. M2a cells also express high levels of C-type lectins that can facilitate macrophage-mediated transmission of HIV-1 to CD4(+) T cells. Macrophages are particularly abundant in mucosal membranes and unlike DCs, do not usually migrate to distal tissues. As a result, macrophages are likely to contribute to HIV-1 pathogenesis in mucosal rather than lymphatic tissues. In vivo polarization of MP is likely to span a spectrum of activation phenotypes that may change the permissivity to and alter the outcome of HIV-1 and other viral infections.

  15. Poxvirus targeting of E3 ligase β-TrCP by molecular mimicry: a mechanism to inhibit NF-κB activation and promote immune evasion and virulence.

    PubMed

    Mansur, Daniel S; Maluquer de Motes, Carlos; Unterholzner, Leonie; Sumner, Rebecca P; Ferguson, Brian J; Ren, Hongwei; Strnadova, Pavla; Bowie, Andrew G; Smith, Geoffrey L

    2013-02-01

    The transcription factor NF-κB is essential for immune responses against pathogens and its activation requires the phosphorylation, ubiquitination and proteasomal degradation of IκBα. Here we describe an inhibitor of NF-κB from vaccinia virus that has a closely related counterpart in variola virus, the cause of smallpox, and mechanistic similarity with the HIV protein Vpu. Protein A49 blocks NF-κB activation by molecular mimicry and contains a motif conserved in IκBα which, in IκBα, is phosphorylated by IKKβ causing ubiquitination and degradation. Like IκBα, A49 binds the E3 ligase β-TrCP, thereby preventing ubiquitination and degradation of IκBα. Consequently, A49 stabilised phosphorylated IκBα (p-IκBα) and its interaction with p65, so preventing p65 nuclear translocation. Serine-to-alanine mutagenesis within the IκBα-like motif of A49 abolished β-TrCP binding, stabilisation of p-IκBα and inhibition of NF-κB activation. Remarkably, despite encoding nine other inhibitors of NF-κB, a VACV lacking A49 showed reduced virulence in vivo.

  16. Nanochemistry-based immunotherapy for HIV-1.

    PubMed

    Lori, F; Calarota, S A; Lisziewicz, J

    2007-01-01

    Highly active antiretroviral treatment (HAART), i.e. the combination of three or more drugs against human immunodeficiency virus type 1 (HIV-1), has greatly improved the clinical outcome of HIV-1-infected individuals. However, HAART is unable to reconstitute HIV-specific immunity and eradicate the virus. Several observations in primate models and in humans support the notion that cell-mediated immunity can control viral replication and slow disease progression. Thus, besides drugs, an immunotherapy that induces long-lasting HIV-specific T-cell responses could play a role in the treatment of HIV/AIDS. To induce such immune responses, DermaVir Patch has been developed. DermaVir consists of an HIV-1 antigen-encoding plasmid DNA that is chemically formulated in a nanoparticle. DermaVir is administered under a patch after a skin preparation that supports the delivery of the nanoparticle to Langerhans cells (LC). Epidermal LC trap and transport the nanomedicine to draining lymph nodes. While in transit, LC mature into dendritic cells (DC), which can efficiently present the DNA-encoded antigens to naïve T-cells for the induction of cellular immunity. Pre-clinical studies and Phase I clinical testing of DermaVir in HIV-1-infected individuals have demonstrated the safety and tolerability of DermaVir Patch. To further modulate cellular immunity, molecular adjuvants might be added into the nanoparticle. DermaVir Patch represents a new nanomedicine platform for immunotherapy of HIV/AIDS. In this review, the antiviral activity of DermaVir-induced cellular immunity is discussed. Furthermore, the action of some cytokines currently being tested as adjuvants are highlighted and the adjuvant effect of cytokine plasmid DNA included in the DermaVir nanoparticle is reviewed.

  17. Worldwide Phylogenetic Relationship of Avian Poxviruses

    PubMed Central

    Foster, Jeffrey T.; Dán, Ádám; Ip, Hon S.; Egstad, Kristina F.; Parker, Patricia G.; Higashiguchi, Jenni M.; Skinner, Michael A.; Höfle, Ursula; Kreizinger, Zsuzsa; Dorrestein, Gerry M.; Solt, Szabolcs; Sós, Endre; Kim, Young Jun; Uhart, Marcela; Pereda, Ariel; González-Hein, Gisela; Hidalgo, Hector; Blanco, Juan-Manuel; Erdélyi, Károly

    2013-01-01

    Poxvirus infections have been found in 230 species of wild and domestic birds worldwide in both terrestrial and marine environments. This ubiquity raises the question of how infection has been transmitted and globally dispersed. We present a comprehensive global phylogeny of 111 novel poxvirus isolates in addition to all available sequences from GenBank. Phylogenetic analysis of the Avipoxvirus genus has traditionally relied on one gene region (4b core protein). In this study we expanded the analyses to include a second locus (DNA polymerase gene), allowing for a more robust phylogenetic framework, finer genetic resolution within specific groups, and the detection of potential recombination. Our phylogenetic results reveal several major features of avipoxvirus evolution and ecology and propose an updated avipoxvirus taxonomy, including three novel subclades. The characterization of poxviruses from 57 species of birds in this study extends the current knowledge of their host range and provides the first evidence of the phylogenetic effect of genetic recombination of avipoxviruses. The repeated occurrence of avian family or order-specific grouping within certain clades (e.g., starling poxvirus, falcon poxvirus, raptor poxvirus, etc.) indicates a marked role of host adaptation, while the sharing of poxvirus species within prey-predator systems emphasizes the capacity for cross-species infection and limited host adaptation. Our study provides a broad and comprehensive phylogenetic analysis of the Avipoxvirus genus, an ecologically and environmentally important viral group, to formulate a genome sequencing strategy that will clarify avipoxvirus taxonomy. PMID:23408635

  18. Worldwide phylogenetic relationship of avian poxviruses

    USGS Publications Warehouse

    Gyuranecz, Miklós; Foster, Jeffrey T.; Dán, Ádám; Ip, Hon S.; Egstad, Kristina F.; Parker, Patricia G.; Higashiguchi, Jenni M.; Skinner, Michael A.; Höfle, Ursula; Kreizinger, Zsuzsa; Dorrestein, Gerry M.; Solt, Szabolcs; Sós, Endre; Kim, Young Jun; Uhart, Marcela; Pereda, Ariel; González-Hein, Gisela; Hidalgo, Hector; Blanco, Juan-Manuel; Erdélyi, Károly

    2013-01-01

    Poxvirus infections have been found in 230 species of wild and domestic birds worldwide in both terrestrial and marine environments. This ubiquity raises the question of how infection has been transmitted and globally dispersed. We present a comprehensive global phylogeny of 111 novel poxvirus isolates in addition to all available sequences from GenBank. Phylogenetic analysis of Avipoxvirus genus has traditionally relied on one gene region (4b core protein). In this study we have expanded the analyses to include a second locus (DNA polymerase gene), allowing for a more robust phylogenetic framework, finer genetic resolution within specific groups and the detection of potential recombination. Our phylogenetic results reveal several major features of avipoxvirus evolution and ecology and propose an updated avipoxvirus taxonomy, including three novel subclades. The characterization of poxviruses from 57 species of birds in this study extends the current knowledge of their host range and provides the first evidence of the phylogenetic effect of genetic recombination of avipoxviruses. The repeated occurrence of avian family or order-specific grouping within certain clades (e.g. starling poxvirus, falcon poxvirus, raptor poxvirus, etc.) indicates a marked role of host adaptation, while the sharing of poxvirus species within prey-predator systems emphasizes the capacity for cross-species infection and limited host adaptation. Our study provides a broad and comprehensive phylogenetic analysis of the Avipoxvirus genus, an ecologically and environmentally important viral group, to formulate a genome sequencing strategy that will clarify avipoxvirus taxonomy.

  19. Zoonotic Poxviruses Associated with Companion Animals

    PubMed Central

    Tack, Danielle M.; Reynolds, Mary G.

    2011-01-01

    Simple Summary Contemporary enthusiasm for the ownership of exotic animals and hobby livestock has created an opportunity for the movement of poxviruses—such as monkeypox, cowpox, and orf—outside their traditional geographic range bringing them into contact with atypical animal hosts and groups of people not normally considered at risk. It is important that pet owners and practitioners of human and animal medicine develop a heightened awareness for poxvirus infections and understand the risks that can be associated with companion animals and livestock. This article reviews the epidemiology and clinical features of zoonotic poxviruses that are most likely to affect companion animals. Abstract Understanding the zoonotic risk posed by poxviruses in companion animals is important for protecting both human and animal health. The outbreak of monkeypox in the United States, as well as current reports of cowpox in Europe, point to the fact that companion animals are increasingly serving as sources of poxvirus transmission to people. In addition, the trend among hobbyists to keep livestock (such as goats) in urban and semi-urban areas has contributed to increased parapoxvirus exposures among people not traditionally considered at high risk. Despite the historic notoriety of poxviruses and the diseases they cause, poxvirus infections are often missed. Delays in diagnosing poxvirus-associated infections in companion animals can lead to inadvertent human exposures. Delays in confirming human infections can result in inappropriate treatment or prolonged recovery. Early recognition of poxvirus-associated infections and application of appropriate preventive measures can reduce the spread of virus between companion animals and their owners. This review will discuss the epidemiology and clinical features associated with the zoonotic poxvirus infections most commonly associated with companion animals. PMID:26486622

  20. Unusual Fusion Proteins of HIV-1

    PubMed Central

    Langer, Simon; Sauter, Daniel

    2017-01-01

    Despite its small genome size, the Human Immunodeficiency Virus 1 (HIV-1) is one of the most successful pathogens and has infected more than 70 million people worldwide within the last decades. In total, HIV-1 expresses 16 canonical proteins from only nine genes within its 10 kb genome. Expression of the structural genes gag, pol, and env, the regulatory genes rev and tat and the accessory genes vpu, nef, vpr, and vif enables assembly of the viral particle, regulates viral gene transcription, and equips the virus to evade or counteract host immune responses. In addition to the canonically expressed proteins, a growing number of publications describe the existence of non-canonical fusion proteins in HIV-1 infected cells. Most of them are encoded by the tat-env-rev locus. While the majority of these fusion proteins (e.g., TNV/p28tev, p186Drev, Tat1-Rev2, Tat^8c, p17tev, or Ref) are the result of alternative splicing events, Tat-T/Vpt is produced upon programmed ribosomal frameshifting, and a Rev1-Vpu fusion protein is expressed due to a nucleotide polymorphism that is unique to certain HIV-1 clade A and C strains. A better understanding of the expression and activity of these non-canonical viral proteins will help to dissect their potential role in viral replication and reveal how HIV-1 optimized the coding potential of its genes. The goal of this review is to provide an overview of previously described HIV-1 fusion proteins and to summarize our current knowledge of their expression patterns and putative functions. PMID:28119676

  1. Therapeutics for HIV-1 reactivation from latency.

    PubMed

    Sgarbanti, Marco; Battistini, Angela

    2013-08-01

    Intensive combined antiretroviral therapy successfully suppresses HIV-1 replication and AIDS disease progression making infection manageable, but it is unable to eradicate the virus that persists in long-lived, drug-insensitive and immune system-insensitive reservoirs thus asking for life-long treatments with problems of compliance, resistance, toxicity and cost. These limitations and recent insights into latency mechanisms have fueled a renewed effort in finding a cure for HIV-1 infection. Proposed eradication strategies involve reactivation of the latent reservoir upon induction of viral transcription followed by the elimination of reactivated virus-producing cells by viral cytopathic effect or host immune response. Several molecules identified by mechanism-directed approaches or in large-scale screenings have been proposed as latency reversing agents. Some of them have already entered clinical testing in humans but with mixed or unsatisfactory results.

  2. HIV-1 replication.

    PubMed

    Freed, E O

    2001-11-01

    In general terms, the replication cycle of lentiviruses, including HIV-1, closely resembles that of other retroviruses. There are, however, a number of unique aspects of HIV replication; for example, the HIVs and SIVs target receptors and coreceptors distinct from those used by other retroviruses. Lentiviruses encode a number of regulatory and accessory proteins not encoded by the genomes of the prototypical "simple" retroviruses. Of particular interest from the gene therapy perspective, lentiviruses possess the ability to productively infect some types of non-dividing cells. This chapter, while reiterating certain points discussed in Chapter 1, will attempt to focus on issues unique to HIV-1 replication. The HIV-1 genome encodes the major structural and non-structural proteins common to all replication-competent retroviruses (Fig. 1, and Chapter 1). From the 5'- to 3'-ends of the genome are found the gag (for group-specific antigen), pol (for polymerase), and env (for envelope glycoprotein) genes. The gag gene encodes a polyprotein precursor whose name, Pr55Gag, is based on its molecular weight. Pr55Gag is cleaved by the viral protease (PR) to the mature Gag proteins matrix (also known as MA or p17), capsid (CA or p24), nucleocapsid (NC or p7), and p6. Two spacer peptides, p2 and p1, are also generated upon Pr55Gag processing. The pol-encoded enzymes are initially synthesized as part of a large polyprotein precursor, Pr160GagPol, whose synthesis results from a rare frameshifting event during Pr55Gag translation. The individual pol-encoded enzymes, PR, reverse transcriptase (RT), and integrase (IN), are cleaved from Pr160GagPol by the viral PR. The envelope (Env) glycoproteins are also synthesized as a polyprotein precursor (Fig. 1). Unlike the Gag and Pol precursors, which are cleaved by the viral PR, the Env precursor, known as gp160, is processed by a cellular protease during Env trafficking to the cell surface, gp160 processing results in the generation of the

  3. Decreased Fc-Receptor expression on innate immune cells is associated with impaired antibody mediated cellular phagocytic activity in chronically HIV-1 infected individuals

    PubMed Central

    Dugast, Anne-Sophie; Tonelli, Andrew; Berger, Christoph T.; Ackerman, Margaret E.; Sciaranghella, Gaia; Liu, Qingquan; Sips, Magdalena; Toth, Ildiko; Piechocka-Trocha, Alicja; Ghebremichael, Musie; Alter, Galit

    2011-01-01

    In addition to neutralization, antibodies mediate other antiviral activities including antibody-dependent cellular-phagocytosis (ADCP), antibody dependent cellular-cytotoxicity (ADCC), as well as complement deposition. While it is established that progressive HIV infection is associated with reduced ADCC and ADCP, the underlying mechanism for this loss of function is unknown. Here we report considerable changes in FcR expression over the course of HIV infection on both mDCs and monocytes, including elevated FcγRI expression in acute HIV infection and reduced expression of FcγRII and FcγRIIIa in chronic HIV infection. Furthermore, selective blockade of FcγRII alone was associated with a loss in ADCP activity, suggesting that FcγRII plays a central role in modulating ADCP. Overall, HIV infection is associated with a number of changes in FcR expression on phagocytic cells that are associated with changes in their ability to respond to antibody-opsonized targets, potentially contributing to a failure in viral clearance in progressive HIV-1 infection. PMID:21565376

  4. Decreased Fc receptor expression on innate immune cells is associated with impaired antibody-mediated cellular phagocytic activity in chronically HIV-1 infected individuals.

    PubMed

    Dugast, Anne-Sophie; Tonelli, Andrew; Berger, Christoph T; Ackerman, Margaret E; Sciaranghella, Gaia; Liu, Qingquan; Sips, Magdalena; Toth, Ildiko; Piechocka-Trocha, Alicja; Ghebremichael, Musie; Alter, Galit

    2011-07-05

    In addition to neutralization, antibodies mediate other antiviral activities including antibody-dependent cellular phagocytosis (ADCP), antibody-dependent cellular cytotoxicity (ADCC), as well as complement deposition. While it is established that progressive HIV infection is associated with reduced ADCC and ADCP, the underlying mechanism for this loss of function is unknown. Here we report considerable changes in FcR expression over the course of HIV infection on both mDCs and monocytes, including elevated FcγRI expression in acute HIV infection and reduced expression of FcγRII and FcγRIIIa in chronic HIV infection. Furthermore, selective blockade of FcγRII alone was associated with a loss in ADCP activity, suggesting that FcγRII plays a central role in modulating ADCP. Overall, HIV infection is associated with a number of changes in FcR expression on phagocytic cells that are associated with changes in their ability to respond to antibody-opsonized targets, potentially contributing to a failure in viral clearance in progressive HIV-1 infection.

  5. Stress Beyond Translation: Poxviruses and More

    PubMed Central

    Liem, Jason; Liu, Jia

    2016-01-01

    Poxviruses are large double-stranded DNA viruses that form viral factories in the cytoplasm of host cells. These viruses encode their own transcription machinery, but rely on host translation for protein synthesis. Thus, poxviruses have to cope with and, in most cases, reprogram host translation regulation. Granule structures, called antiviral granules (AVGs), have been observed surrounding poxvirus viral factories. AVG formation is associated with abortive poxvirus infection, and AVGs contain proteins that are typically found in stress granules (SGs). With certain mutant poxviruses lack of immunoregulatory factor(s), we can specifically examine the mechanisms that drive the formation of these structures. In fact, cytoplasmic macromolecular complexes form during many viral infections and contain sensing molecules that can help reprogram transcription. More importantly, the similarity between AVGs and cytoplasmic structures formed during RNA and DNA sensing events prompts us to reconsider the cause and consequence of these AVGs. In this review, we first summarize recent findings regarding how poxvirus manipulates host translation. Next, we compare and contrast SGs and AVGs. Finally, we review recent findings regarding RNA- and especially DNA-sensing bodies observed during viral infection. PMID:27314378

  6. Antiviral Therapy by HIV-1 Broadly Neutralizing and Inhibitory Antibodies.

    PubMed

    Zhang, Zhiqing; Li, Shaowei; Gu, Ying; Xia, Ningshao

    2016-11-18

    Human immunodeficiency virus type 1 (HIV-1) infection causes acquired immune deficiency syndrome (AIDS), a global epidemic for more than three decades. HIV-1 replication is primarily controlled through antiretroviral therapy (ART) but this treatment does not cure HIV-1 infection. Furthermore, there is increasing viral resistance to ART, and side effects associated with long-term therapy. Consequently, there is a need of alternative candidates for HIV-1 prevention and therapy. Recent advances have discovered multiple broadly neutralizing antibodies against HIV-1. In this review, we describe the key epitopes on the HIV-1 Env protein and the reciprocal broadly neutralizing antibodies, and discuss the ongoing clinical trials of broadly neutralizing and inhibitory antibody therapy as well as antibody combinations, bispecific antibodies, and methods that improve therapeutic efficacy by combining broadly neutralizing antibodies (bNAbs) with latency reversing agents. Compared with ART, HIV-1 therapeutics that incorporate these broadly neutralizing and inhibitory antibodies offer the advantage of decreasing virus load and clearing infected cells, which is a promising prospect in HIV-1 prevention and treatment.

  7. Antiviral Therapy by HIV-1 Broadly Neutralizing and Inhibitory Antibodies

    PubMed Central

    Zhang, Zhiqing; Li, Shaowei; Gu, Ying; Xia, Ningshao

    2016-01-01

    Human immunodeficiency virus type 1 (HIV-1) infection causes acquired immune deficiency syndrome (AIDS), a global epidemic for more than three decades. HIV-1 replication is primarily controlled through antiretroviral therapy (ART) but this treatment does not cure HIV-1 infection. Furthermore, there is increasing viral resistance to ART, and side effects associated with long-term therapy. Consequently, there is a need of alternative candidates for HIV-1 prevention and therapy. Recent advances have discovered multiple broadly neutralizing antibodies against HIV-1. In this review, we describe the key epitopes on the HIV-1 Env protein and the reciprocal broadly neutralizing antibodies, and discuss the ongoing clinical trials of broadly neutralizing and inhibitory antibody therapy as well as antibody combinations, bispecific antibodies, and methods that improve therapeutic efficacy by combining broadly neutralizing antibodies (bNAbs) with latency reversing agents. Compared with ART, HIV-1 therapeutics that incorporate these broadly neutralizing and inhibitory antibodies offer the advantage of decreasing virus load and clearing infected cells, which is a promising prospect in HIV-1 prevention and treatment. PMID:27869733

  8. Eradicating HIV-1 infection: seeking to clear a persistent pathogen

    PubMed Central

    Archin, Nancie M.; Sung, Julia Marsh; Garrido, Carolina; Soriano-Sarabia, Natalia; Margolis, David M.

    2015-01-01

    Effective antiretroviral therapy (ART) blunts viraemia, which enables HIV-1-infected individuals to control infection and live long, productive lives. However, HIV-1 infection remains incurable owing to the persistence of a viral reservoir that harbours integrated provirus within host cellular DNA. This latent infection is unaffected by ART and hidden from the immune system. Recent studies have focused on the development of therapies to disrupt latency. These efforts unmasked residual viral genomes and highlighted the need to enable the clearance of latently infected cells, perhaps via old and new strategies that improve the HIV-1-specific immune response. In this Review, we explore new approaches to eradicate established HIV-1 infection and avoid the burden of lifelong ART. PMID:25402363

  9. Connectivity and HIV-1 infection: role of CD4(+) T-cell counts and HIV-1 RNA copy number.

    PubMed

    Padierna-Olivos, L; Moreno-Altamirano, M M; Sánchez-Colón, S; Massó-Rojas, F; Sánchez-García, F J

    2000-12-01

    Following primary infection with human immunodeficiency virus (HIV)-1, antibodies against specific HIV-1 epitopes are elicited. However, non-HIV-1 specific antibodies, including autoantibodies, also arise. In fact, it has been proposed that such autoantibodies have an important role in the pathogenesis of HIV-1 infection. Because an imbalance in connectivity has been associated with autoimmune processes, we investigated the connectivity status of HIV-1-infected individuals. Moreover, we tested the possible role of viral load and CD4(+) T-cell counts, in connectivity, because these parameters appear to be important in the prognosis of HIV-1 infection. Results show that indeed, there is an alteration in connectivity in these patients, both for immunoglobulin (Ig)G and IgM, which is an immune alteration not previously identified in HIV-1 infection. In addition, our results show that viral load and CD4(+) T-cell counts are both equally important in defining the characteristic pattern of connectivity in HIV-1-infected individuals, and that neither is independently responsible for alterations in patient connectivity status.

  10. CCR5 Disruption in Induced Pluripotent Stem Cells Using CRISPR/Cas9 Provides Selective Resistance of Immune Cells to CCR5-tropic HIV-1 Virus.

    PubMed

    Kang, HyunJun; Minder, Petra; Park, Mi Ae; Mesquitta, Walatta-Tseyon; Torbett, Bruce E; Slukvin, Igor I

    2015-12-15

    The chemokine (C-C motif) receptor 5 (CCR5) serves as an HIV-1 co-receptor and is essential for cell infection with CCR5-tropic viruses. Loss of functional receptor protects against HIV infection. Here, we report the successful targeting of CCR5 in GFP-marked human induced pluripotent stem cells (iPSCs) using CRISPR/Cas9 with single and dual guide RNAs (gRNAs). Following CRISPER/Cas9-mediated gene editing using a single gRNA, 12.5% of cell colonies demonstrated CCR5 editing, of which 22.2% showed biallelic editing as determined by a Surveyor nuclease assay and direct sequencing. The use of dual gRNAs significantly increased the efficacy of CCR5 editing to 27% with a biallelic gene alteration frequency of 41%. To ensure the homogeneity of gene editing within cells, we used single cell sorting to establish clonal iPSC lines. Single cell-derived iPSC lines with homozygous CCR5 mutations displayed the typical characteristics of pluripotent stem cells and differentiated efficiently into hematopoietic cells, including macrophages. Although macrophages from both wild-type and CCR5-edited iPSCs supported CXCR4-tropic virus replication, macrophages from CCR5-edited iPSCs were uniquely resistant to CCR5-tropic virus challenge. This study demonstrates the feasibility of applying iPSC technology for the study of the role of CCR5 in HIV infection in vitro, and generation of HIV-resistant cells for potential therapeutic applications.

  11. Role of IgE immune complexes in the regulation of HIV-1 replication and increased cell death of infected U1 monocytes: involvement of CD23/Fc epsilon RII-mediated nitric oxide and cyclic AMP pathways.

    PubMed Central

    Ouaaz, F.; Ruscetti, F. W.; Dugas, B.; Mikovits, J.; Agut, H.; Debré, P.; Mossalayi, M. D.

    1996-01-01

    BACKGROUND: IgE/anti-IgE immune complexes (IgE-IC) induce the release of multiple mediators from monocytes/macrophages and the monocytic cell line U937 following the ligation of the low-affinity Fc epsilon receptors (Fc epsilon RII/CD23). These effects are mediated through an accumulation of cAMP and the generation of L-arginine-dependent nitric oxide (NO). Since high IgE levels predict more rapid progression to acquired immunodeficiency syndrome, we attempted to define the effects of IgE-IC on human immunodeficiency virus (HIV) production in monocytes. MATERIALS AND METHODS: Two variants of HIV-1 chronically infected monocytic U1 cells were stimulated with IgE-IC and virus replication was quantified. NO and cAMP involvement was tested through the use of agonistic and antagonistic chemicals of these two pathways. RESULTS: IgE-IC induced p24 production by U1 cells with low-level constitutive expression of HIV-1 mRNAs and extracellular HIV capsid protein p24 levels (U1low), upon their pretreatment with interleukin 4 (IL-4) or IL-13. This effect was due to the crosslinking of CD23, as it was reversed by blocking the IgE binding site on CD23. The IgE-IC effect could also be mimicked by crosslinking of CD23 by a specific monoclonal antibody. p24 induction by IgE-IC was then shown to be due to CD23-mediated stimulation of cAMP, NO, and tumor necrosis factor alpha (TNF alpha) generation. In another variant of U1 cells with > 1 log higher constitutive production of p24 levels (U1high), IgE-IC addition dramatically decreased all cell functions tested and accelerated cell death. This phenomenon was reversed by blocking the nitric oxide generation. CONCLUSIONS: These data point out a regulatory role of IgE-IC on HIV-1 production in monocytic cells, through CD23-mediated stimulation of cAMP and NO pathways. IgE-IC can also stimulate increased cell death in high HIV producing cells through the NO pathway. Images FIG. 1 FIG. 2 FIG. 5 PMID:8900533

  12. HIV-1 target cells in the CNS.

    PubMed

    Joseph, Sarah B; Arrildt, Kathryn T; Sturdevant, Christa B; Swanstrom, Ronald

    2015-06-01

    HIV-1 replication in the central nervous system (CNS) is typically limited by the availability of target cells. HIV-1 variants that are transmitted and dominate the early stages of infection almost exclusively use the CCR5 coreceptor and are well adapted to entering, and thus infecting, cells expressing high CD4 densities similar to those found on CD4+ T cells. While the "immune privileged" CNS is largely devoid of CD4+ T cells, macrophage and microglia are abundant throughout the CNS. These cells likely express CD4 densities that are too low to facilitate efficient entry or allow sustained replication by most HIV-1 isolates. Examination of CNS viral populations reveals that late in disease the CNS of some individuals contains HIV-1 lineages that have evolved the ability to enter cells expressing low levels of CD4 and are well-adapted to entering macrophages. These macrophage-tropic (M-tropic) viruses are able to maintain sustained replication in the CNS for many generations, and their presence is associated with severe neurocognitive impairment. Whether conditions such as pleocytosis are necessary for macrophage-tropic viruses to emerge in the CNS is unknown, and extensive examinations of macrophage-tropic variants have not revealed a genetic signature of this phenotype. It is clear, however, that macrophage tropism is rare among HIV-1 isolates and is not transmitted, but is important due to its pathogenic effects on hosts. Prior to the evolution of macrophage-tropic variants, the viruses that are predominately infecting T cells (R5 T cell-tropic) may infect macrophages at a low level and inefficiently, but this could contribute to the reservoir.

  13. HIV-1 target cells in the CNS

    PubMed Central

    Joseph, Sarah B.; Arrildt, Kathryn T.; Sturdevant, Christa B.; Swanstrom, Ronald

    2014-01-01

    HIV-1 replication in the central nervous system (CNS) is typically limited by the availability of target cells. HIV-1 variants that are transmitted and dominate the early stages of infection almost exclusively use the CCR5 coreceptor and are well adapted to entering, and thus infecting, cells expressing high CD4 densities similar to those found on CD4+ T cells. While the “immune privileged” CNS is largely devoid of CD4+ T cells, macrophage and microglia are abundant throughout the CNS. These cells likely express CD4 densities that are too low to facilitate efficient entry or allow sustained replication by most HIV-1 isolates. Examination of CNS viral populations reveals that late in disease the CNS of some individuals contains HIV-1 lineages that have evolved the ability to enter cells expressing low levels of CD4 and are well-adapted to entering macrophages. These macrophage-tropic (M-tropic) viruses are able to maintain sustained replication in the CNS for many generations, and their presence is associated with severe neurocognitive impairment. Whether conditions such as pleocytosis are necessary for macrophage-tropic viruses to emerge in the CNS is unknown, and extensive examinations of macrophage-tropic variants have not revealed a genetic signature of this phenotype. It is clear, however, that macrophage tropism is rare among HIV-1 isolates and is not transmitted, but is important due to its pathogenic effects on hosts. Prior to the evolution of macrophage-tropic variants, the viruses that are predominately infecting T cells (R5 T cell-tropic) may infect macrophages at a low level and inefficiently, but this could contribute to the reservoir. PMID:25236812

  14. Clustered epitopes within the Gag-Pol fusion protein DNA vaccine enhance immune responses and protection against challenge with recombinant vaccinia viruses expressing HIV-1 Gag and Pol antigens.

    PubMed

    Bolesta, Elizabeth; Gzyl, Jaroslaw; Wierzbicki, Andrzej; Kmieciak, Dariusz; Kowalczyk, Aleksandra; Kaneko, Yutaro; Srinivasan, Alagarsamy; Kozbor, Danuta

    2005-02-20

    We have generated a codon-optimized hGagp17p24-Polp51 plasmid DNA expressing the human immunodeficiency virus type 1 (HIV-1) Gag-Pol fusion protein that consists of clusters of highly conserved cytotoxic T lymphocyte (CTL) epitopes presented by multiple MHC class I alleles. In the hGagp17p24-Polp51 construct, the ribosomal frameshift site had been deleted together with the potentially immunosuppressive Gag nucleocapsid (p15) as well as Pol protease (p10) and integrase (p31). Analyses of the magnitude and breadth of cellular responses demonstrated that immunization of HLA-A2/K(b) transgenic mice with the hGagp17p24-Polp51 construct induced 2- to 5-fold higher CD8+ T-cell responses to Gag p17-, p24-, and Pol reverse transcriptase (RT)-specific CTL epitopes than the full-length hGag-PolDeltaFsDeltaPr counterpart. The increases were correlated with higher protection against challenge with recombinant vaccinia viruses (rVVs) expressing gag and pol gene products. Consistent with the profile of Gag- and Pol-specific CD8+ T cell responses, an elevated level of type 1 cytokine production was noted in p24- and RT-stimulated splenocyte cultures established from hGagp17p24-Polp51-immunized mice compared to responses induced with the hGag-PolDeltaFsDeltaPr vaccine. Sera of mice immunized with the hGagp17p24-Polp51 vaccine also exhibited an increased titer of p24- and RT-specific IgG2 antibody responses. The results from our studies provide insights into approaches for boosting the breadth of Gag- and Pol-specific immune responses.

  15. HIV-1 Gag p17 presented as virus-like particles on the E2 scaffold from Geobacillus stearothermophilus induces sustained humoral and cellular immune responses in the absence of IFNγ production by CD4+ T cells

    PubMed Central

    Caivano, Antonella; Doria-Rose, Nicole A.; Buelow, Benjamin; Sartorius, Rossella; Trovato, Maria; D’Apice, Luciana; Domingo, Gonzalo J.; Sutton, William F.; Haigwood, Nancy L.; De Berardinis, Piergiuseppe

    2012-01-01

    We have constructed stable virus-like particles displaying the HIV-1 Gag(p17) protein as an N-terminal fusion with an engineered protein domain from the Geobacillus stearothermophilus pyruvate dehydrogenase subunit E2. Mice immunized with the Gag(p17)-E2 60-mer scaffold particles mounted a strong and sustained antibody response. Antibodies directed to Gag(p17) were boosted significantly with additional immunizations, while anti-E2 responses reached a plateau. The isotype of the induced antibodies was biased towards IgG1, and the E2-primed CD4+ T cells did not secrete IFNγ. Using transgenic mouse model systems, we demonstrated that CD8+ T cells primed with E2 particles were able to exert lytic activity and produce IFNγ. These results show that the E2 scaffold represents a powerful vaccine delivery system for whole antigenic proteins or polyepitope engineered proteins, evoking antibody production and antigen specific CTL activity even in the absence of IFNγ-producing CD4+ T cells. PMID:20850858

  16. HIV-1 Gag p17 presented as virus-like particles on the E2 scaffold from Geobacillus stearothermophilus induces sustained humoral and cellular immune responses in the absence of IFN{gamma} production by CD4+ T cells

    SciTech Connect

    Caivano, Antonella; Doria-Rose, Nicole A.; Buelow, Benjamin; Sartorius, Rossella; Trovato, Maria; D'Apice, Luciana; Domingo, Gonzalo J.; Sutton, William F.; Haigwood, Nancy L.; De Berardinis, Piergiuseppe

    2010-11-25

    We have constructed stable virus-like particles displaying the HIV-1 Gag(p17) protein as an N-terminal fusion with an engineered protein domain from the Geobacillus stearothermophilus pyruvate dehydrogenase subunit E2. Mice immunized with the Gag(p17)-E2 60-mer scaffold particles mounted a strong and sustained antibody response. Antibodies directed to Gag(p17) were boosted significantly with additional immunizations, while anti-E2 responses reached a plateau. The isotype of the induced antibodies was biased towards IgG1, and the E2-primed CD4+ T cells did not secrete IFN{gamma}. Using transgenic mouse model systems, we demonstrated that CD8+ T cells primed with E2 particles were able to exert lytic activity and produce IFN{gamma}. These results show that the E2 scaffold represents a powerful vaccine delivery system for whole antigenic proteins or polyepitope engineered proteins, evoking antibody production and antigen specific CTL activity even in the absence of IFN{gamma}-producing CD4+ T cells.

  17. High levels of CC-chemokine expression and downregulated levels of CCR5 during HIV-1/HTLV-1 and HIV-1/HTLV-2 coinfections.

    PubMed

    Oo, Z; Barrios, C S; Castillo, L; Beilke, M A

    2015-05-01

    The human T-cell lymphotropic virus type 1 (HTLV-1) and HTLV-2 are common copathogens among Human Immunodeficiency Virus (HIV)-infected individuals. HTLV-2 may confer a survival benefit among patients with HIV-1/HTLV-2 coinfections, along with lower plasma HIV-1 levels and delayed rates of CD4(+) T-cell decline. These effects have been attributed to the ability of the HTLV-2 viral transactivating Tax2 protein to induce the production of high levels of antiviral CC-chemokines and to downregulate expression of the CCR5 receptor, resulting in impaired entry of HIV-1 into CD4(+) T-cells. This study investigated the innate immunity of coinfected HIV/HTLV individuals by testing the ability of patient PBMCs to produce CC-chemokines in association CCR5 receptor modulation. The cellular proliferative responses of HIV/HTLV coinfected versus HIV monoinfected individuals were also evaluated. Higher levels of MIP-1α, MIP-1β, and RANTES (P < 0.05) were found in HIV-1/HTLV-2 coinfected group compared to HIV-1 monoinfected population. Upregulated levels of RANTES were shown in HIV-1/HTLV-1 after 1 and 3 days of culture (P < 0.05). Lymphocytes from HIV-1/HTLV-2 coinfected individuals showed significant CCR5 downregulation after 1 and 3 days of culture compared to lymphocytes from HIV-1 and uninfected groups (P < 0.05). Lower percentages of CCR5-positive cells were found in HIV-1/HTLV-1 coinfected after 3 days of incubation (P < 0.05). Levels of proliferation were significantly higher in the HIV-1/HTLV-1 group compared to HIV-1 alone (P < 0.05). HTLV-2 and HTLV-1 infections may induce the involvement of innate immunity against HIV-1 via stimulation of CC-chemokines and receptors, potentially modifying CCR5/HIV-1 binding and HIV-1 progression in coinfected individuals.

  18. Transplanting Supersites of HIV-1 Vulnerability

    PubMed Central

    Yang, Yongping; Gorman, Jason; Ofek, Gilad; Srivatsan, Sanjay; Druz, Aliaksandr; Lees, Christopher R.; Lu, Gabriel; Soto, Cinque; Stuckey, Jonathan; Burton, Dennis R.; Koff, Wayne C.; Connors, Mark; Kwon, Peter D.

    2014-01-01

    into acceptor scaffolds away from the immune-evading capabilities of the rest of HIV-1 Env, thereby providing a means to focus the immune response on the scaffolded supersite. PMID:24992528

  19. Induction of CD8+ cytotoxic T lymphocytes by immunization with syngeneic irradiated HIV-1 envelope derived peptide-pulsed dendritic cells.

    PubMed

    Takahashi, H; Nakagawa, Y; Yokomuro, K; Berzofsky, J A

    1993-08-01

    Based on the evidence that CD8+ cytotoxic T cells (CTL) precursors do not appear to distinguish between virus-infected cells and viral peptide-pulsed syngeneic cells, we have developed methods for priming class I MHC molecule restricted CD8+ CTL with such peptides without using any adjuvant. We were able to prime in vivo such CTL immunity lasting at least 6 months with a single i.v. injection of syngeneic 2200-3300 rad irradiated peptide-pulsed spleen cells, and even more efficiently with a very small number of irradiated class II MHC molecule expressing splenic dendritic cells (DC). No foreign serum source was necessary during the pulsing. Interestingly, we could not generate significant CTL activity with unirradiated or low dose (< 1100 rad) irradiated spleen cells. Because even purified DC required irradiation for optimal activity, because unirradiated B cells did not significantly inhibit the immunization with DC, and because B cell depletion did not substitute for irradiation, we believe that the effect of irradiation is more to determine homing of the cells than to eliminate interference by B cells. Intravenous immunization was much more effective than s.c. or i.p. immunization. CTL generated by this method could kill both peptide-pulsed syngeneic targets and targets endogenously expressing the whole gp160 gene. Moreover, we found that we could prime CD8+ CTL with the minimal 10-residue core peptide (RGPGRAFVTI) for optimal presentation by class I MHC molecules as efficiently as the original p18. These results suggested that DC bearing antigenic peptide may prime antigen-specific CD8+ CTL in vivo. These results offer useful information for development of synthetic peptide vaccines and immunotherapy.

  20. Relationship Between Genital Drug Concentrations and Cervical Cellular Immune Activation and Reconstitution in HIV-1-Infected Women on a Raltegravir Versus a Boosted Atazanavir Regimen

    PubMed Central

    Palmer, Claire; Predhomme, Julie; Searls, Kristina; Kerr, Becky; Seifert, Sharon; Caraway, Patricia; Gardner, Edward M.; MaWhinney, Samantha; Anderson, Peter L.

    2015-01-01

    Abstract Determinants of HIV-infected women's genital tract mucosal immune health are not well understood. Because raltegravir (RAL) achieves relatively higher genital tract concentrations than ritonavir-boosted atazanavir (ATV), we examined whether an RAL-based regimen is associated with improved cervical immune reconstitution and less activation in HIV+ women compared to an ATV-based regimen. Peripheral blood, cervical brushings, cervical–vaginal lavage (CVL), and cervical biopsies were collected from HIV+ women on tenofovir disoproxil fumarate and emtricitabine (TDF/FTC) and either RAL (n=14) or ATV (n=19) with CD4+ T cells>300 cells/mm3 and HIV RNA<48 copies/ml. HLA-DR+CD38+ T cells were measured in blood and cervical cells using flow cytometry, CD4+ and CD8+ T cells were quantified in cervical biopsies by immunofluorescent analysis, and HIV RNA (VL), ATV, and RAL concentrations were measured in CVL. In a linear regression model of log(CVL concentration) versus both log(plasma concentration) and treatment group, the RAL CVL level was 519% (95% CI: 133, 1,525%) higher than for ATV (p<0.001). Genital tract VL was undetectable in 90% of subjects and did not differ by regimen. There were no significant differences between groups in terms of cervical %HLA-DR+CD38+CD4+ or CD8+ T cells, CD4+ or CD8+ T cells/mm2, or CD4:CD8 ratio. After adjusting for treatment time and group, the CVL:plasma drug ratio was not associated with the cervical CD4:CD8 ratio or immune activation (p>0.6). Despite significantly higher genital tract penetration of RAL compared to ATV, there were no significant differences in cervical immune activation or reconstitution between women on these regimens, suggesting both drug regimens achieve adequate genital tract levels to suppress virus replication. PMID:26059647

  1. High-risk oncogenic HPV genotype infection associates with increased immune activation and T cell exhaustion in ART-suppressed HIV-1-infected women

    PubMed Central

    Papasavvas, Emmanouil; Surrey, Lea F.; Glencross, Deborah K.; Azzoni, Livio; Joseph, Jocelin; Omar, Tanvier; Feldman, Michael D.; Williamson, Anna-Lise; Siminya, Maureen; Swarts, Avril; Yin, Xiangfan; Liu, Qin; Firnhaber, Cynthia; Montaner, Luis J.

    2016-01-01

    ABSTRACT Persistence of human papillomavirus (HPV) and cervical disease in the context of HIV co-infection can be influenced by introduction of antiretroviral therapy (ART) and sustained immune activation despite ART. We conducted a cross-sectional study in order to evaluate immune activation/exhaustion in ART-suppressed HIV+ women with or without high-risk (HR) HPV-related cervical intraepithelial neoplasia (CIN). 55 South African women were recruited in three groups: HR (-) (n = 16) and HR (+) (n = 15) HPV with negative cervical histopathology, and HR (+) HPV with CIN grade 1/2/3 (n = 24). Sampling included endocervical brushing (HPV DNA genotyping), Pap smear (cytology), colposcopic punch biopsy (histopathology, histochemical evaluation of immune cells), and peripheral blood (clinical assessment, flow cytometry-based immune subset characterization). Statistics were done using R2.5.1. Irrespective of the presence of CIN, HR (+) HPV women had higher circulating levels of T cells expressing markers of activation/exhaustion (CD38, PD1, CTLA-4, BTLA, CD160), Tregs, and myeloid subsets expressing corresponding ligands (PDL1, PDL2, CD86, CD40, HVEM) than HR (-) HPV women. A decrease in circulating NK cells was associated with CIN grade. CD4+ T cell count associated negatively with T cell exhaustion and expression of negative regulators on myeloid cells. Women with CIN when compared to HR (-) HPV women, had higher cervical cell density in stroma and epithelium for CD4+, CD68+, and CD11c+ cells, and only in stroma for CD8+ cells. We conclude that in ART-suppressed HIV-infected women with HPV co-infection the levels of T and myeloid cell activation/exhaustion are associated with the presence of HR HPV genotypes. PMID:27467943

  2. Forensic Proteomics of Poxvirus Production

    SciTech Connect

    Wunschel, David S.; Tulman, Edan; Engelmann, Heather E.; Clowers, Brian H.; Geary, Steven J.; Robinson, Aaron C.; Liao, Xiaofen

    2013-08-27

    The field of microbial forensics has recently sought to develop methods to discern biological signatures to indicate production methods for biological agents. Viral agents have received less attention to date. Their obligate propagation in living cells makes purification from cellular material a challenge. This leads to potential carryover of protein-rich signature of their production system. Here we have explored a proteomic analysis of Vaccinia virus as a model poxvirus system in which to compare samples of virus propagated in different cell lines and subjected to different purification schemes. The proteomic data sets indicated viral, host cell and culture medium proteins, and several layers of data analysis were applied to build confidence in the peptide identification and capture information on the taxonomic utility of each. The analysis showed clear shifts in protein profiles with virus purification, with successive gradient purification steps showing different levels of viral protein enrichment. Peptides from cellular proteins, including those present in purified virus preparations, provided signatures which enabled discrimination of cell line substrates, including distinguishing between cells derived from different primate species. The ability to discern multiple aspects of viral production demonstrates the potential value of proteomic analysis as tool for microbial forensics.

  3. The Complex Interaction between Methamphetamine Abuse and HIV-1 pathogenesis

    PubMed Central

    Passaro, Ryan Colby; Pandhare, Jui; Qian, Han-Zhu; Dash, Chandravanu

    2016-01-01

    The global HIV/AIDS pandemic has claimed the lives of an estimated 35 million people. A significant barrier for combating this global pandemic is substance use since it is associated with HIV transmission, delayed diagnosis/initiation of therapy, and poor adherence to therapy. Clinical studies also suggest a link between substance use and HIV-disease progression/AIDS-associated mortality. Methamphetamine (METH) use is one of the fastest-growing substance use problems in the world. METH use enhances high-risk sexual behaviors, therefore increases the likelihood of HIV-1 acquisition. METH use is also associated with higher viral loads, immune dysfunction, and antiretroviral resistance. Moreover, METH use has also been correlated with rapid progression to AIDS. However, direct effects of METH on HIV-1 disease progression remains poorly understood because use of METH and other illicit drugs is often associated with reduced/non adherence to ART. Nevertheless, in vitro studies demonstrate that METH increases HIV-1 replication in cell cultures and animal models. Thus, it has been proposed that METH’s potentiating effects on HIV-1 replication may in part contribute to the worsening of HIV-1 pathogenesis. However, our recent data demonstrate that METH inhibits HIV-1 replication in CD4+ T cells and challenges this paradigm. Thus, the goal of this review is to systematically examine the published literature to better understand the complex interaction between METH abuse and HIV-1 disease progression. PMID:25850893

  4. Candidate antibody-based therapeutics against HIV-1.

    PubMed

    Gong, Rui; Chen, Weizao; Dimitrov, Dimiter S

    2012-06-01

    Antibody-based therapeutics have been successfully used for the treatment of various diseases and as research tools. Several well characterized, broadly neutralizing monoclonal antibodies (bnmAbs) targeting HIV-1 envelope glycoproteins or related host cell surface proteins show sterilizing protection of animals, but they are not effective when used for therapy of an established infection in humans. Recently, a number of novel bnmAbs, engineered antibody domains (eAds), and multifunctional fusion proteins have been reported which exhibit exceptionally potent and broad neutralizing activity against a wide range of HIV-1 isolates from diverse genetic subtypes. eAds could be more effective in vivo than conventional full-size antibodies generated by the human immune system. Because of their small size (12∼15 kD), they can better access sterically restricted epitopes and penetrate densely packed tissue where HIV-1 replicates than the larger full-size antibodies. HIV-1 possesses a number of mechanisms to escape neutralization by full-size antibodies but could be less likely to develop resistance to eAds. Here, we review the in vitro and in vivo antiviral efficacies of existing HIV-1 bnmAbs, summarize the development of eAds and multispecific fusion proteins as novel types of HIV-1 inhibitors, and discuss possible strategies to generate more potent antibody-based candidate therapeutics against HIV-1, including some that could be used to eradicate the virus.

  5. HIV-1 envelope glycoprotein immunogens to induce broadly neutralizing antibodies.

    PubMed

    Sliepen, Kwinten; Sanders, Rogier W

    2016-01-01

    The long pursuit for a vaccine against human immunodeficiency virus 1 (HIV-1) has recently been boosted by a number of exciting developments. An HIV-1 subunit vaccine ideally should elicit potent broadly neutralizing antibodies (bNAbs), but raising bNAbs by vaccination has proved extremely difficult because of the characteristics of the HIV-1 envelope glycoprotein complex (Env). However, the isolation of bNAbs from HIV-1-infected patients demonstrates that the human humoral immune system is capable of making such antibodies. Therefore, a focus of HIV-1 vaccinology is the elicitation of bNAbs by engineered immunogens and by using vaccination strategies aimed at mimicking the bNAb maturation pathways in HIV-infected patients. Important clues can also be taken from the successful subunit vaccines against hepatitis B virus and human papillomavirus. Here, we review the different types of HIV-1 immunogens and vaccination strategies that are being explored in the search for an HIV-1 vaccine that induces bNAbs.

  6. Hyperthermia Stimulates HIV-1 Replication

    PubMed Central

    Roesch, Ferdinand; Meziane, Oussama; Kula, Anna; Nisole, Sébastien; Porrot, Françoise; Anderson, Ian; Mammano, Fabrizio; Fassati, Ariberto; Marcello, Alessandro; Benkirane, Monsef; Schwartz, Olivier

    2012-01-01

    HIV-infected individuals may experience fever episodes. Fever is an elevation of the body temperature accompanied by inflammation. It is usually beneficial for the host through enhancement of immunological defenses. In cultures, transient non-physiological heat shock (42–45°C) and Heat Shock Proteins (HSPs) modulate HIV-1 replication, through poorly defined mechanisms. The effect of physiological hyperthermia (38–40°C) on HIV-1 infection has not been extensively investigated. Here, we show that culturing primary CD4+ T lymphocytes and cell lines at a fever-like temperature (39.5°C) increased the efficiency of HIV-1 replication by 2 to 7 fold. Hyperthermia did not facilitate viral entry nor reverse transcription, but increased Tat transactivation of the LTR viral promoter. Hyperthermia also boosted HIV-1 reactivation in a model of latently-infected cells. By imaging HIV-1 transcription, we further show that Hsp90 co-localized with actively transcribing provirus, and this phenomenon was enhanced at 39.5°C. The Hsp90 inhibitor 17-AAG abrogated the increase of HIV-1 replication in hyperthermic cells. Altogether, our results indicate that fever may directly stimulate HIV-1 replication, in a process involving Hsp90 and facilitation of Tat-mediated LTR activity. PMID:22807676

  7. Post-translational intracellular trafficking determines the type of immune response elicited by DNA vaccines expressing Gag antigen of Human Immunodeficiency Virus Type 1 (HIV-1)

    PubMed Central

    Wallace, Aaron; West, Kim; Rothman, Alan L; Ennis, Francis A; Lu, Shan; Wang, Shixia

    2013-01-01

    In the current study, immune responses induced by Gag DNA vaccines with different designs were evaluated in Balb/C mice. The results demonstrated that the DNA vaccine with the full length wild type gag gene (Wt-Gag) mainly produced Gag antigens intracellularly and induced a higher level of cell-mediated immune (CMI) responses, as measured by IFN-gamma ELISPOT, intracellular cytokine staining (ICS), and cytotoxic T lymphocytes (CTL) assays against a dominant CD8+ T cell epitope (AMQMLKETI). In contrast, the addition of a tissue plasminogen activator (tPA) leader sequence significantly improved overall Gag protein expression/secretion and Gag-specific antibody responses; however, Gag-specific CMI responses were decreased. The mutation of zinc-finger motif changed Gag protein expression patterns and reduced the ability to generate both CMI and antibody responses against Gag. These findings indicate that the structure and post-translational processing of antigens expressed by DNA vaccines play a critical role in eliciting optimal antibody or CMI responses. PMID:23941868

  8. Post-translational intracellular trafficking determines the type of immune response elicited by DNA vaccines expressing Gag antigen of Human Immunodeficiency Virus Type 1 (HIV-1).

    PubMed

    Wallace, Aaron; West, Kim; Rothman, Alan L; Ennis, Francis A; Lu, Shan; Wang, Shixia

    2013-10-01

    In the current study, immune responses induced by Gag DNA vaccines with different designs were evaluated in Balb/C mice. The results demonstrated that the DNA vaccine with the full length wild type gag gene (Wt-Gag) mainly produced Gag antigens intracellularly and induced a higher level of cell-mediated immune (CMI) responses, as measured by IFN-gamma ELISPOT, intracellular cytokine staining (ICS), and cytotoxic T lymphocytes (CTL) assays against a dominant CD8(+) T cell epitope (AMQMLKETI). In contrast, the addition of a tissue plasminogen activator (tPA) leader sequence significantly improved overall Gag protein expression/secretion and Gag-specific antibody responses; however, Gag-specific CMI responses were decreased. The mutation of zinc-finger motif changed Gag protein expression patterns and reduced the ability to generate both CMI and antibody responses against Gag. These findings indicate that the structure and post-translational processing of antigens expressed by DNA vaccines play a critical role in eliciting optimal antibody or CMI responses.

  9. Tobacco smoking effect on HIV-1 pathogenesis: role of cytochrome P450 isozymes

    PubMed Central

    Ande, Anusha; McArthur, Carole; Kumar, Anil; Kumar, Santosh

    2014-01-01

    Introduction Tobacco smoking is highly prevalent among the HIV-1-infected population. In addition to diminished immune response, smoking has been shown to increase HIV-1 replication and decrease response to antiretroviral therapy, perhaps through drug–drug interaction. However, the mechanism by which tobacco/nicotine increases HIV-1 replication and mediates drug–drug interaction is poorly understood. Areas covered In this review, the authors discuss the effects of smoking on HIV-1 pathogenesis. Since they propose a role for the cytochrome P450 (CYP) pathway in smoking-mediated HIV-1 pathogenesis, the authors briefly converse the role of CYP enzymes in tobacco-mediated oxidative stress and toxicity. Finally, the authors focus on the role of CYP enzymes, especially CYP2A6, in tobacco/nicotine metabolism and oxidative stress in HIV-1 model systems monocytes/macrophages, lymphocytes, astrocytes and neurons, which may be responsible for HIV-1 pathogenesis. Expert opinion Recent findings suggest that CYP-mediated oxidative stress is a novel pathway that may be involved in smoking-mediated HIV-1 pathogenesis, including HIV-1 replication and drug–drug interaction. Thus, CYP and CYP-associated oxidative stress pathways may be potential targets to develop novel pharmaceuticals for HIV-1-infected smokers. Since HIV-1/TB co-infections are common, future study involving interactions between antiretroviral and antituberculosis drugs that involve CYP pathways would also help treat HIV-1/TB co-infected smokers effectively. PMID:23822755

  10. Identification of differentially expressed proteins in the cervical mucosa of HIV-1-resistant sex workers.

    PubMed

    Burgener, Adam; Boutilier, Julie; Wachihi, Charles; Kimani, Joshua; Carpenter, Michael; Westmacott, Garrett; Cheng, Keding; Ball, Terry B; Plummer, Francis

    2008-10-01

    Novel tools are necessary to understand mechanisms of altered susceptibility to HIV-1 infection in women of the Pumwani Sex Worker cohort, Kenya. In this cohort, more than 140 of the 2000 participants have been characterized to be relatively resistant to HIV-1 infection. Given that sexual transmission of HIV-1 occurs through mucosal surfaces such as that in the cervicovaginal environment, our hypothesis is that innate immune factors in the genital tract may play a role in HIV-1 infection resistance. Understanding this mechanism may help develop microbicides and/or vaccines against HIV-1. A quantitative proteomics technique (2D-DIGE: two-dimensional difference in-gel electrophoresis) was used to examine cervical mucosa of HIV-1 resistant women ( n = 10) for biomarkers of HIV-1 resistance. Over 15 proteins were found to be differentially expressed between HIV-1-resistant women and control groups ( n = 29), some which show a greater than 8-fold change. HIV-1-resistant women overexpressed several antiproteases, including those from the serpin B family, and also cystatin A, a known anti-HIV-1 factor. Immunoblotting for a selection of the identified proteins confirmed the DIGE volume differences. Validation of these results on a larger sample of individuals will provide further evidence these biomarkers are associated with HIV-1 resistance and could help aid in the development of effective microbicides against HIV-1.

  11. Phages and HIV-1: From Display to Interplay

    PubMed Central

    Delhalle, Sylvie; Schmit, Jean-Claude; Chevigné, Andy

    2012-01-01

    The complex hide-and-seek game between HIV-1 and the host immune system has impaired the development of an efficient vaccine. In addition, the high variability of the virus impedes the long-term control of viral replication by small antiviral drugs. For more than 20 years, phage display technology has been intensively used in the field of HIV-1 to explore the epitope landscape recognized by monoclonal and polyclonal HIV-1-specific antibodies, thereby providing precious data about immunodominant and neutralizing epitopes. In parallel, biopanning experiments with various combinatorial or antibody fragment libraries were conducted on viral targets as well as host receptors to identify HIV-1 inhibitors. Besides these applications, phage display technology has been applied to characterize the enzymatic specificity of the HIV-1 protease. Phage particles also represent valuable alternative carriers displaying various HIV-1 antigens to the immune system and eliciting antiviral responses. This review presents and summarizes the different studies conducted with regard to the nature of phage libraries, target display mode and biopanning procedures. PMID:22606007

  12. Viral piracy: HIV-1 targets dendritic cells for transmission.

    PubMed

    Lekkerkerker, Annemarie N; van Kooyk, Yvette; Geijtenbeek, Teunis B H

    2006-04-01

    Dendritic cells (DCs), the professional antigen presenting cells, are critical for host immunity by inducing specific immune responses against a broad variety of pathogens. Remarkably the human immunodeficiency virus-1 (HIV-1) subverts DC function leading to spread of the virus. At an early phase of HIV-1 transmission, DCs capture HIV-1 at mucosal surfaces and transmit the virus to T cells in secondary lymphoid tissues. Capture of the virus on DCs takes place via C-type lectins of which the dendritic cell-specific intercellular adhesion molecule-3 (ICAM-3) grabbing nonintegrin (DC-SIGN) is the best studied. DC-SIGN-captured HIV-1 particles accumulate in CD81(+) multivesicular bodies (MVBs) in DCs and are subsequently transmitted to CD4+ T cells resulting in infection of T cells. The viral cell-to-cell transmission takes place at the DC-T cell interface termed the infectious synapse. Recent studies demonstrate that direct infection of DCs contributes to the transmission to T cells at a later phase. Moreover, the infected DCs may function as cellular reservoirs for HIV-1. This review discusses the different processes that govern viral piracy of DCs by HIV-1, emphasizing the intracellular routing of the virus from capture on the cell surface to egress in the infectious synapse.

  13. Early Combination Antiretroviral Therapy Limits HIV-1 Persistence in Children.

    PubMed

    Luzuriaga, Katherine

    2016-01-01

    Globally, 240,000 infants are newly infected with HIV-1 each year and 3.2 million children are living with the infection. Combination antiretroviral therapy (cART) has reduced HIV-1-related disease and mortality in children but is not curative owing to the early generation of a latent reservoir of long-lived memory CD4(+) T cells bearing replication-competent HIV-1 provirus integrated into cellular DNA. This review focuses on recent advances in our understanding of the establishment of HIV-1 persistence in children and how early initiation of cART in the setting of the developing infant immune system limits the formation of the long-lived latent CD4(+) cell reservoir that remains a barrier to remission or cure.

  14. Developments in HIV-1 immunotherapy and therapeutic vaccination

    PubMed Central

    Tanner, Helen; Dalgleish, Angus

    2014-01-01

    Since the human immunodeficiency virus (HIV-1) pandemic began, few prophylactic vaccines have reached phase III trials. Only one has shown partial efficacy in preventing HIV-1 infection. The introduction of antiretroviral therapy (ART) has had considerable success in controlling infection and reducing transmission but in so doing has changed the nature of HIV-1 infection for those with access to ART. Access, compliance, and toxicity alongside the emergence of serious non-AIDS morbidity and the sometimes poor immune reconstitution in ART-treated patients have emphasized the need for additional therapies. Such therapy is intended to contribute to control of HIV-1 infection, permit structured treatment interruptions, or even establish a functional cure of permanently suppressed and controlled infection. Both immunotherapy and therapeutic vaccination have the potential to reach these goals. In this review, the latest developments in immunotherapy and therapeutic vaccination are discussed. PMID:24991420

  15. Towards HIV-1 remission: potential roles for broadly neutralizing antibodies

    PubMed Central

    Halper-Stromberg, Ariel; Nussenzweig, Michel C.

    2016-01-01

    Current antiretroviral drug therapies do not cure HIV-1 because they do not eliminate a pool of long-lived cells harboring immunologically silent but replication-competent proviruses — termed the latent reservoir. Eliminating this reservoir and stimulating the immune response to control infection in the absence of therapy remain important but unsolved goals of HIV-1 cure research. Recently discovered broadly neutralizing antibodies (bNAbs) exhibit remarkable breadth and potency in their ability to neutralize HIV-1 in vitro, and recent studies have demonstrated new therapeutic applications for passively administered bNAbs in vivo. This Review discusses the roles bNAbs might play in HIV-1 treatment regimens, including prevention, therapy, and cure. PMID:26752643

  16. Treating HIV-1 Infection: What Might the Future Hold?

    PubMed Central

    Lichterfeld, Mathias; Zachary, Kimon C.

    2011-01-01

    Advances in antiretroviral combination therapy lasting the past two decades have transformed HIV-1 infection from a fatal disease into a chronic medical condition that in many cases does not compromise life quality. There are 25 different antiretroviral agents available currently, allowing for patient-centered, individualized management of HIV-1 infection, and ongoing progress in HIV-1 virology and antiretroviral pharmacology is likely to expand treatment options further in the future. Nevertheless, antiretroviral therapy continues to have limitations, including insufficient immunological reconstitution, selection of drug resistance, ongoing abnormal immune activation despite effective suppression of HIV-1 viremia, and the inability to target latently infected cells that are responsible for long-term viral persistence. Owing to these shortcomings, the theoretical ability of antiretroviral therapy to extend life expectancy to normal levels is not realized in many cases. Strategies to address these limitations are a matter of active ongoing research and will be summarized in this article. PMID:23251756

  17. Quantitative trait loci for CD4:CD8 lymphocyte ratio are associated with risk of type 1 diabetes and HIV-1 immune control.

    PubMed

    Ferreira, Manuel A R; Mangino, Massimo; Brumme, Chanson J; Zhao, Zhen Zhen; Medland, Sarah E; Wright, Margaret J; Nyholt, Dale R; Gordon, Scott; Campbell, Megan; McEvoy, Brian P; Henders, Anjali; Evans, David M; Lanchbury, Jerry S; Pereyra, Florencia; Walker, Bruce D; Haas, David W; Soranzo, Nicole; Spector, Tim D; de Bakker, Paul I W; Frazer, Ian H; Montgomery, Grant W; Martin, Nicholas G

    2010-01-01

    Abnormal expansion or depletion of particular lymphocyte subsets is associated with clinical manifestations such as HIV progression to AIDS and autoimmune disease. We sought to identify genetic predictors of lymphocyte levels and reasoned that these may play a role in immune-related diseases. We tested 2.3 million variants for association with five lymphocyte subsets, measured in 2538 individuals from the general population, including CD4+ T cells, CD8+ T cells, CD56+ natural killer (NK) cells, and the derived measure CD4:CD8 ratio. We identified two regions of strong association. The first was located in the major histocompatibility complex (MHC), with multiple SNPs strongly associated with CD4:CD8 ratio (rs2524054, p = 2.1 x 10(-28)). The second region was centered within a cluster of genes from the Schlafen family and was associated with NK cell levels (rs1838149, p = 6.1 x 10(-14)). The MHC association with CD4:CD8 replicated convincingly (p = 1.4 x 10(-9)) in an independent panel of 988 individuals. Conditional analyses indicate that there are two major independent quantitative trait loci (QTL) in the MHC region that regulate CD4:CD8 ratio: one is located in the class I cluster and influences CD8 levels, whereas the second is located in the class II cluster and regulates CD4 levels. Jointly, both QTL explained 8% of the variance in CD4:CD8 ratio. The class I variants are also strongly associated with durable host control of HIV, and class II variants are associated with type-1 diabetes, suggesting that genetic variation at the MHC may predispose one to immune-related diseases partly through disregulation of T cell homeostasis.

  18. Evolution of viruses and their impact on human life: HIV-1 subgroup M.

    PubMed

    Becker, Yechiel

    2008-01-01

    The history of mankind over many millennia has been marred by many epidemics caused by viruses which infect the human respiratory system and alimentary tract. The current HIV-1/AIDS pandemic, however, is caused by one virus mutant, HIV-1M, which has evolved to infect humans through the genitals. The virus is able to use the innate system cells of the infected individual to inactivate the adaptive immune system, causing AIDS. The mechanisms used by HIV-1M to inhibit the immune system are presented. Understanding the viral mechanisms is leading to novel antiviral treatments and an approach to an HIV-1 vaccine.

  19. Stochastic modeling for dynamics of HIV-1 infection using cellular automata: A review.

    PubMed

    Precharattana, Monamorn

    2016-02-01

    Recently, the description of immune response by discrete models has emerged to play an important role to study the problems in the area of human immunodeficiency virus type 1 (HIV-1) infection, leading to AIDS. As infection of target immune cells by HIV-1 mainly takes place in the lymphoid tissue, cellular automata (CA) models thus represent a significant step in understanding when the infected population is dispersed. Motivated by these, the studies of the dynamics of HIV-1 infection using CA in memory have been presented to recognize how CA have been developed for HIV-1 dynamics, which issues have been studied already and which issues still are objectives in future studies.

  20. HIV-1 subtypes in Yugoslavia.

    PubMed

    Stanojevic, Maja; Papa, Anna; Papadimitriou, Evagelia; Zerjav, Sonja; Jevtovic, Djordje; Salemovic, Dubravka; Jovanovic, Tanja; Antoniadis, Antonis

    2002-05-01

    To gain insight concerning the genetic diversity of HIV-1 viruses associated with the HIV-1 epidemic in Yugoslavia, 45 specimens from HIV-1-infected individuals were classified into subtypes by sequence-based phylogenetic analysis of the polymerase (pol) region of the viral genome. Forty-one of 45 specimens (91.2%) were identified as pol subtype B, 2 of 45 as subtype C (4.4%), 1 of 45 as CRF01_AE (2.2%), and 1 as CRF02_AG recombinant (2.2%). Nucleotide divergence among subtype B sequences was 4.8%. Results of this study show that among HIV-1-infected patients in Yugoslavia subtype B predominates (91.5%), whereas non-B subtypes are present at a low percentage, mostly related to travel abroad.

  1. Epitope-vaccine strategy against HIV-1: today and tomorrow.

    PubMed

    Liu, Zuqiang; Xiao, Yi; Chen, Ying-Hua

    2003-01-01

    Vaccines play important roles in preventing infectious diseases caused by different pathogens. However, some pathogens such as HIV-1 challenge current vaccine strategy. Poor immunogenicity and the high mutation rate of HIV-1 make great difficulties in inducing potent immune responses strong enough to prevent infection via vaccination. Epitope-vaccine, which could intensively enhance predefined epitope-specific immune responses, was suggested as a new strategy against HIV-1 and HIV-1 mutation. Epitope-vaccines afford powerful approaches to elicit potent, broad and complete immune protection against not only primary homologous viral isolates but also heterologous viral mutants. Although most studies are still preliminary now, epitope-vaccine as a novel strategy against the AIDS epidemic has great developmental potential. To trigger T-cell-dependent IgG antibody responses and improve affinities of the epitope-specific antibodies, approaches such as recombinant multi-epitope-vaccination and prime-boosting vaccination were suggested. Cellular immune responses, especially CTL responses, could also be elicited and enhanced in addition to humoral immune responses. Developed epitope-vaccines activating both arms of the immune system would benefit prevention and immunotherapy not only against HIV but also other chronic infections.

  2. Enhanced clearance of HIV-1-infected cells by anti-HIV-1 broadly neutralizing antibodies in vivo

    PubMed Central

    Lu, Ching-Lan; Murakowski, Dariusz K.; Bournazos, Stylianos; Schoofs, Till; Sarkar, Debolina; Halper-Stromberg, Ariel; Horwitz, Joshua A.; Nogueira, Lilian; Golijanin, Jovana; Gazumyan, Anna; Ravetch, Jeffrey V.; Caskey, Marina; Chakraborty, Arup K.; Nussenzweig, Michel C.

    2016-01-01

    Anti-retroviral drugs and antibodies limit HIV-1 infection by interfering with the viral life-cycle. In addition, antibodies also have the potential to guide host immune effector cells to kill HIV-1 infected cells. Examination of the kinetics of HIV-1 suppression in infected individuals by passively administered 3BNC117, a broadly neutralizing antibody (bNAb), suggested that the effects of the antibody are not limited to free viral clearance and blocking new infection, but also include acceleration of infected cell clearance. Consistent with these observations, we find that bNAbs can target CD4+ T cells infected with patient viruses and decrease their in vivo half-lives by a mechanism that requires FcγR engagement in a humanized mouse model. The results indicate that passive immunotherapy can accelerate elimination of HIV-1 infected cells. PMID:27199430

  3. CCL3L1-CCR5 genotype influences durability of immune recovery during antiretroviral therapy of HIV-1–infected individuals

    PubMed Central

    Ahuja, Sunil K; Kulkarni, Hemant; Catano, Gabriel; Agan, Brian K; Camargo, Jose F; He, Weijing; O'Connell, Robert J; Marconi, Vincent C; Delmar, Judith; Eron, Joseph; Clark, Robert A; Frost, Simon; Martin, Jeffrey; Ahuja, Seema S; Deeks, Steven G; Little, Susan; Richman, Douglas; Hecht, Frederick M; Dolan, Matthew J

    2008-01-01

    The basis for the extensive variability seen in the reconstitution of CD4+ T cell counts in HIV-infected individuals receiving highly active antiretroviral therapy (HAART) is not fully known. Here, we show that variations in CCL3L1 gene dose and CCR5 genotype, but not major histocompatibility complex HLA alleles, influence immune reconstitution, especially when HAART is initiated at <350 CD4+ T cells/mm3. The CCL3L1-CCR5 genotypes favoring CD4+ T cell recovery are similar to those that blunted CD4+ T cell depletion during the time before HAART became available (pre-HAART era), suggesting that a common CCL3L1-CCR5 genetic pathway regulates the balance between pathogenic and reparative processes from early in the disease course. Hence, CCL3L1-CCR5 variations influence HIV pathogenesis even in the presence of HAART and, therefore, may prospectively identify subjects in whom earlier initiation of therapy is more likely to mitigate immunologic failure despite viral suppression by HAART. Furthermore, as reconstitution of CD4+ cells during HAART is more sensitive to CCL3L1 dose than to CCR5 genotypes, CCL3L1 analogs might be efficacious in supporting immunological reconstitution. PMID:18376407

  4. Effectiveness, safety, durability and immune recovery in a retrospective, multicentre, observational cohort of ART-experienced, HIV-1-infected patients receiving maraviroc.

    PubMed

    Dentone, C; Sterrantino, G; Signori, A; Cenderello, G; Guerra, M; De Leo, P; Bartolacci, V; Mantia, E; Orofino, G; Giacomini, M; Bruzzone, B; Francisci, D; Di Biagio, A

    2017-01-01

    The aim of this retrospective, multicentre, observational study was to assess the durability, safety, immune recovery and effectiveness on viral suppression of antiretroviral therapy (ART) in a maraviroc (MVC)-based cohort. We collected clinical, demographical, immunological and virological parameters of adult HIV patients who were infected by CCR5-tropic virus and started an ART regimen containing MVC from 2005 to 2012. We created a longitudinal mixed model to assess the change over time of data. We enrolled 126 drug-experienced patients; the median duration of MVC treatment was 25 months. The probability of stopping ART at one year was 13.3%, and at three years was 27.3%. Statistically significant changes were observed for CD4+ cell count increase ( p < 0.001), HIV-RNA decrease ( p < 0.001) and total cholesterol decrease ( p = 0.005). Ninety-four patients (79.7%) had CD4 ≥ 200 cells/mm(3) at baseline while nine of them reached this threshold at nine months (7.6%), 17 (13%) after nine months and six (5%) remained below 200 cells/mm(3) at the end of the study. Overall, 114 patients (90.5%) achieved an HIV-RNA ≤ 50 cp/ml. A majority of patients maintained CD4 cell counts of ≥ 200 cells/mm(3) and achieved an undetectable HIV viral load within three months. MVC-containing regimens are safe and appear to be a feasible therapeutic option for ART.

  5. HIV-1: the confounding variables of virus neutralization.

    PubMed

    Nara, Peter L; Lin, George

    2005-06-01

    The development of an effective vaccine against HIV-1 would be greatly facilitated by the ability to elicit potent, high affinity antibodies that are capable of broad neutralization, viral inactivation and protection against infection and/or disease. New insights into the structure and function of the HIV-1 envelope glycoprotein (Env) that mediates viral fusion and entry may ultimately lead to strategies successful in eliciting these protective antibody responses. Insights have been gained regarding HIV-1 Env attachment and receptor engagement, the fusion process and kinetics, and the structural/functional attributes of Env that allow humoral immune evasion. In addition, studies of a limited number of broadly neutralizing human monoclonal antibodies have shed some light as to how antibodies may penetrate the immune evading armor that HIV-1 has evolved. As the elusive goal of generating these types of antibodies emerge and are developed in the context of generating new candidate HIV-1 vaccines, a relevant in vitro measurement of neutralization by these types of antibodies becomes a complex task. This is in part due to a list of confounding variables which include: the physical and genomic nature (amino acid variation) of the infecting virion, the type of target cells, the concentration and clonality of the reactants, assay format and design, the affinity and kinetics of the reaction, receptors/coreceptors and attachment factors, and soluble host factors. This review will focus on the past, current, and future knowledge required to advance the field of HIV-1 humoral immunity as it impacts future HIV-1 vaccine development.

  6. Therapeutic doses of irradiation activate viral transcription and induce apoptosis in HIV-1 infected cells.

    PubMed

    Iordanskiy, Sergey; Van Duyne, Rachel; Sampey, Gavin C; Woodson, Caitlin M; Fry, Kelsi; Saifuddin, Mohammed; Guo, Jia; Wu, Yuntao; Romerio, Fabio; Kashanchi, Fatah

    2015-11-01

    The highly active antiretroviral therapy reduces HIV-1 RNA in plasma to undetectable levels. However, the virus continues to persist in the long-lived resting CD4(+) T cells, macrophages and astrocytes which form a viral reservoir in infected individuals. Reactivation of viral transcription is critical since the host immune response in combination with antiretroviral therapy may eradicate the virus. Using the chronically HIV-1 infected T lymphoblastoid and monocytic cell lines, primary quiescent CD4(+) T cells and humanized mice infected with dual-tropic HIV-1 89.6, we examined the effect of various X-ray irradiation (IR) doses (used for HIV-related lymphoma treatment and lower doses) on HIV-1 transcription and viability of infected cells. Treatment of both T cells and monocytes with IR, a well-defined stress signal, led to increase of HIV-1 transcription, as evidenced by the presence of RNA polymerase II and reduction of HDAC1 and methyl transferase SUV39H1 on the HIV-1 promoter. This correlated with the increased GFP signal and elevated level of intracellular HIV-1 RNA in the IR-treated quiescent CD4(+) T cells infected with GFP-encoding HIV-1. Exposition of latently HIV-1infected monocytes treated with PKC agonist bryostatin 1 to IR enhanced transcription activation effect of this latency-reversing agent. Increased HIV-1 replication after IR correlated with higher cell death: the level of phosphorylated Ser46 in p53, responsible for apoptosis induction, was markedly higher in the HIV-1 infected cells following IR treatment. Exposure of HIV-1 infected humanized mice with undetectable viral RNA level to IR resulted in a significant increase of HIV-1 RNA in plasma, lung and brain tissues. Collectively, these data point to the use of low to moderate dose of IR alone or in combination with HIV-1 transcription activators as a potential application for the "Shock and Kill" strategy for latently HIV-1 infected cells.

  7. Dendritic Cells and HIV-1 Trans-Infection

    PubMed Central

    McDonald, David

    2010-01-01

    Dendritic cells initiate and sustain immune responses by migrating to sites of pathogenic insult, transporting antigens to lymphoid tissues and signaling immune specific activation of T cells through the formation of the immunological synapse. Dendritic cells can also transfer intact, infectious HIV-1 to CD4 T cells through an analogous structure, the infectious synapse. This replication independent mode of HIV-1 transmission, known as trans-infection, greatly increases T cell infection in vitro and is thought to contribute to viral dissemination in vivo. This review outlines the recent data defining the mechanisms of trans-infection and provides a context for the potential contribution of trans-infection in HIV-1 disease. PMID:21994702

  8. HIV-1 increases TLR responses in human primary astrocytes

    PubMed Central

    Serramía, M Jesús; Muñoz-Fernández, M Ángeles; Álvarez, Susana

    2015-01-01

    Astrocytes are the major glial cell within the central nervous system and have a number of important physiological properties related to brain homeostasis. They provide trophic support to neurons and are immune cells with key roles during states-of-inflammation. The potential for production of proinflammatory cytokines and its consequences has been studied in the context of HIV-1 infection of normal human astrocytes (NHA). NHA express TLR3, TLR4, and TLR5. TLR3 ligation induced the strongest proinflammatory polarizing response, characterized by generation of high levels of TNF-α, IL-6, and IL-8. HIV-1 increased the transient production of key inflammatory mediators, and exposure to LPS of HIV-1-infected cells increased significantly the cytokine secretion. We confirmed that it is necessary viral gene expression from the moment of pretreatment with antiretrovirals inhibited totally HIV-1-induced TLR response. The higher response to LPS from HIV-1-infected cells did not correlate with TLR4 or MyD88 increased expression. LPS responsiveness of infected cells parallels MHC class II expression, but not CD14. HIV-1-infected NHA present increased sensitivity to the proinflammatory effects of LPS. If this phenomenon occurs in vivo, it will contribute to the immunopathogenesis of this disease and may ultimately offer novel targets for immunomodulatory therapy. PMID:26671458

  9. CRISPR-mediated Activation of Latent HIV-1 Expression.

    PubMed

    Limsirichai, Prajit; Gaj, Thomas; Schaffer, David V

    2016-03-01

    Complete eradication of HIV-1 infection is impeded by the existence of cells that harbor chromosomally integrated but transcriptionally inactive provirus. These cells can persist for years without producing viral progeny, rendering them refractory to immune surveillance and antiretroviral therapy and providing a permanent reservoir for the stochastic reactivation and reseeding of HIV-1. Strategies for purging this latent reservoir are thus needed to eradicate infection. Here, we show that engineered transcriptional activation systems based on CRISPR/Cas9 can be harnessed to activate viral gene expression in cell line models of HIV-1 latency. We further demonstrate that complementing Cas9 activators with latency-reversing compounds can enhance latent HIV-1 transcription and that epigenome modulation using CRISPR-based acetyltransferases can also promote viral gene activation. Collectively, these results demonstrate that CRISPR systems are potentially effective tools for inducing latent HIV-1 expression and that their use, in combination with antiretroviral therapy, could lead to improved therapies for HIV-1 infection.

  10. Impairment of B-cell functions during HIV-1 infection.

    PubMed

    Amu, Sylvie; Ruffin, Nicolas; Rethi, Bence; Chiodi, Francesca

    2013-09-24

    A variety of B-cell dysfunctions are manifested during HIV-1 infection, as reported early during the HIV-1 epidemic. It is not unusual that the pathogenic mechanisms presented to elucidate impairment of B-cell responses during HIV-1 infection focus on the impact of reduced T-cell numbers and functions, and lack of germinal center formation in lymphoid tissues. To our understanding, however, perturbation of B-cell phenotype and function during HIV-1 infection may begin at several different B-cell developmental stages. These impairments can be mediated by intrinsic B-cell defects as well as by the lack of proper T-cell help. In this review, we will highlight some of the pathways and molecular interactions leading to B-cell impairment prior to germinal center formation and B-cell activation mediated through the B-cell receptor in response to HIV-1 antigens. Recent studies indicate a regulatory role for B cells on T-cell biology and immune responses. We will discuss some of these novel findings and how these regulatory mechanisms could potentially be affected by the intrinsic defects of B cells taking place during HIV-1 infection.

  11. Structured antiretroviral treatment interruptions in chronically HIV-1-infected subjects

    PubMed Central

    Ortiz, Gabriel M.; Wellons, Melissa; Brancato, Jason; Vo, Ha T. T.; Zinn, Rebekah L.; Clarkson, Daniel E.; Van Loon, Katherine; Bonhoeffer, Sebastian; Miralles, G. Diego; Montefiori, David; Bartlett, John A.; Nixon, Douglas F.

    2001-01-01

    The risks and benefits of structured treatment interruption (STI) in HIV-1-infected subjects are not fully understood. A pilot study was performed to compare STI with continuous highly active antiretroviral therapy (HAART) in chronic HIV-1-infected subjects with HIV-1 plasma RNA levels (VL) <400 copies per ml and CD4+ T cells >400 per μl. CD4+ T cells, VL, HIV-1-specific neutralizing antibodies, and IFN-γ-producing HIV-1-specific CD8+ and CD4+ T cells were measured in all subjects. STIs of 1-month duration separated by 1 month of HAART, before a final 3-month STI, resulted in augmented CD8+ T cell responses in all eight STI subjects (P = 0.003), maintained while on HAART up to 22 weeks after STI, and augmented neutralization titers to autologous HIV-1 isolate in one of eight subjects. However, significant decline of CD4+ T cell count from pre-STI level, and VL rebound to pre-HAART baseline, occurred during STI (P = 0.001 and 0.34, respectively). CD4+ T cell counts were regained on return to HAART. Control subjects (n = 4) maintained VL <400 copies per ml and stable CD4+ T cell counts, and showed no enhancement of antiviral CD8+ T cell responses. Despite increases in antiviral immunity, no control of VL was observed. Future studies of STI should proceed with caution. PMID:11687611

  12. Engineering T Cells to Functionally Cure HIV-1 Infection

    PubMed Central

    Leibman, Rachel S; Riley, James L

    2015-01-01

    Despite the ability of antiretroviral therapy to minimize human immunodeficiency virus type 1 (HIV-1) replication and increase the duration and quality of patients' lives, the health consequences and financial burden associated with the lifelong treatment regimen render a permanent cure highly attractive. Although T cells play an important role in controlling virus replication, they are themselves targets of HIV-mediated destruction. Direct genetic manipulation of T cells for adoptive cellular therapies could facilitate a functional cure by generating HIV-1–resistant cells, redirecting HIV-1–specific immune responses, or a combination of the two strategies. In contrast to a vaccine approach, which relies on the production and priming of HIV-1–specific lymphocytes within a patient's own body, adoptive T-cell therapy provides an opportunity to customize the therapeutic T cells prior to administration. However, at present, it is unclear how to best engineer T cells so that sustained control over HIV-1 replication can be achieved in the absence of antiretrovirals. This review focuses on T-cell gene-engineering and gene-editing strategies that have been performed in efforts to inhibit HIV-1 replication and highlights the requirements for a successful gene therapy–mediated functional cure. PMID:25896251

  13. CRISPR-mediated Activation of Latent HIV-1 Expression

    PubMed Central

    Limsirichai, Prajit; Gaj, Thomas; Schaffer, David V

    2016-01-01

    Complete eradication of HIV-1 infection is impeded by the existence of cells that harbor chromosomally integrated but transcriptionally inactive provirus. These cells can persist for years without producing viral progeny, rendering them refractory to immune surveillance and antiretroviral therapy and providing a permanent reservoir for the stochastic reactivation and reseeding of HIV-1. Strategies for purging this latent reservoir are thus needed to eradicate infection. Here, we show that engineered transcriptional activation systems based on CRISPR/Cas9 can be harnessed to activate viral gene expression in cell line models of HIV-1 latency. We further demonstrate that complementing Cas9 activators with latency-reversing compounds can enhance latent HIV-1 transcription and that epigenome modulation using CRISPR-based acetyltransferases can also promote viral gene activation. Collectively, these results demonstrate that CRISPR systems are potentially effective tools for inducing latent HIV-1 expression and that their use, in combination with antiretroviral therapy, could lead to improved therapies for HIV-1 infection. PMID:26607397

  14. Therapeutic doses of irradiation activate viral transcription and induce apoptosis in HIV-1 infected cells

    SciTech Connect

    Iordanskiy, Sergey; Van Duyne, Rachel; Sampey, Gavin C; Woodson, Caitlin M; Fry, Kelsi; Saifuddin, Mohammed; Guo, Jia; Wu, Yuntao; Romerio, Fabio; Kashanchi, Fatah

    2015-11-15

    The highly active antiretroviral therapy reduces HIV-1 RNA in plasma to undetectable levels. However, the virus continues to persist in the long-lived resting CD4{sup +} T cells, macrophages and astrocytes which form a viral reservoir in infected individuals. Reactivation of viral transcription is critical since the host immune response in combination with antiretroviral therapy may eradicate the virus. Using the chronically HIV-1 infected T lymphoblastoid and monocytic cell lines, primary quiescent CD4{sup +} T cells and humanized mice infected with dual-tropic HIV-1 89.6, we examined the effect of various X-ray irradiation (IR) doses (used for HIV-related lymphoma treatment and lower doses) on HIV-1 transcription and viability of infected cells. Treatment of both T cells and monocytes with IR, a well-defined stress signal, led to increase of HIV-1 transcription, as evidenced by the presence of RNA polymerase II and reduction of HDAC1 and methyl transferase SUV39H1 on the HIV-1 promoter. This correlated with the increased GFP signal and elevated level of intracellular HIV-1 RNA in the IR-treated quiescent CD4{sup +} T cells infected with GFP-encoding HIV-1. Exposition of latently HIV-1infected monocytes treated with PKC agonist bryostatin 1 to IR enhanced transcription activation effect of this latency-reversing agent. Increased HIV-1 replication after IR correlated with higher cell death: the level of phosphorylated Ser46 in p53, responsible for apoptosis induction, was markedly higher in the HIV-1 infected cells following IR treatment. Exposure of HIV-1 infected humanized mice with undetectable viral RNA level to IR resulted in a significant increase of HIV-1 RNA in plasma, lung and brain tissues. Collectively, these data point to the use of low to moderate dose of IR alone or in combination with HIV-1 transcription activators as a potential application for the “Shock and Kill” strategy for latently HIV-1 infected cells. - Highlights: • X-ray irradiation

  15. HIV-1 reservoirs in breast milk and challenges to elimination of breast-feeding transmission of HIV-1.

    PubMed

    Van de Perre, Philippe; Rubbo, Pierre-Alain; Viljoen, Johannes; Nagot, Nicolas; Tylleskär, Thorkild; Lepage, Philippe; Vendrell, Jean-Pierre; Tuaillon, Edouard

    2012-07-18

    By compensating for the relative immaturity of the neonatal immune system, breast milk and breast-feeding prevent deaths in children. Nevertheless, transmission of HIV-1 through breast-feeding is responsible for more than half of new pediatric HIV infections. Recent studies of possible HIV-1 reservoirs in breast milk shed new light on features that influence HIV-1 transmission through breast-feeding. The particular characteristics of breast milk CD4(+) T cells that distinguish them from circulating blood lymphocytes (high frequency of cell activation and expression of memory and mucosal homing markers) facilitate the establishment of HIV-1 replication. Breast milk also contains a plethora of factors with anti-infectious, immunomodulatory, or anti-inflammatory properties that can regulate both viral replication and infant susceptibility. In addition, CD8(+) T lymphocytes, macrophages, and epithelial cells in breast milk can alter the dynamics of HIV-1 transmission. Even during efficient antiretroviral therapy, a residual stable, CD4(+) T cell-associated reservoir of HIV-1 is persistently present in breast milk, a likely source of infection. Only prophylactic treatment in infants--ideally with a long-acting drug, administered for the entire duration of breast-feeding--is likely to protect HIV-exposed babies against all forms of HIV transmission from breast milk, including cell-to-cell viral transfer.

  16. The macrophage in HIV-1 infection: from activation to deactivation?

    PubMed

    Herbein, Georges; Varin, Audrey

    2010-04-09

    Macrophages play a crucial role in innate and adaptative immunity in response to microorganisms and are an important cellular target during HIV-1 infection. Recently, the heterogeneity of the macrophage population has been highlighted. Classically activated or type 1 macrophages (M1) induced in particular by IFN-gamma display a pro-inflammatory profile. The alternatively activated or type 2 macrophages (M2) induced by Th-2 cytokines, such as IL-4 and IL-13 express anti-inflammatory and tissue repair properties. Finally IL-10 has been described as the prototypic cytokine involved in the deactivation of macrophages (dM). Since the capacity of macrophages to support productive HIV-1 infection is known to be modulated by cytokines, this review shows how modulation of macrophage activation by cytokines impacts the capacity to support productive HIV-1 infection. Based on the activation status of macrophages we propose a model starting with M1 classically activated macrophages with accelerated formation of viral reservoirs in a context of Th1 and proinflammatory cytokines. Then IL-4/IL-13 alternatively activated M2 macrophages will enter into the game that will stop the expansion of the HIV-1 reservoir. Finally IL-10 deactivation of macrophages will lead to immune failure observed at the very late stages of the HIV-1 disease.

  17. Authentic HIV-1 integrase inhibitors

    PubMed Central

    Liao, Chenzhong; Marchand, Christophe; Burke, Terrence R; Pommier, Yves; Nicklaus, Marc C

    2010-01-01

    HIV-1 integrase (IN) is indispensable for HIV-1 replication and has become a validated target for developing anti-AIDS agents. In two decades of development of IN inhibition-based anti-HIV therapeutics, a significant number of compounds were identified as IN inhibitors, but only some of them showed antiviral activity. This article reviews a number of patented HIV-1 IN inhibitors, especially those that possess high selectivity for the strand transfer reaction. These compounds generally have a polar coplanar moiety, which is assumed to chelate two magnesium ions in the binding site. Resistance to those compounds, when given to patients, can develop as a result of IN mutations. We refer to those compounds as authentic IN inhibitors. Continued drug development has so far delivered one authentic IN inhibitor to the market (raltegravir in 2007). Current and future attention will be focused on the development of novel authentic IN inhibitors with the goal of overcoming viral resistance. PMID:21426159

  18. Kinetics of human immunodeficiency virus type 1 (HIV-1) DNA and RNA synthesis during primary HIV-1 infection.

    PubMed Central

    Graziosi, C; Pantaleo, G; Butini, L; Demarest, J F; Saag, M S; Shaw, G M; Fauci, A S

    1993-01-01

    HIV-1 replication and viral burden in peripheral blood mononuclear cells (PBMC) have been reported to be high in primary infection but generally very low during the prolonged period of clinical latency. It is uncertain precisely when this transition occurs during the HIV-1 infection and what the relationship is between the changes in HIV-1 replication versus the clearance of infected cells in the overall control of viral replication. In the present study, the kinetics of viral burden (i.e., frequency of HIV-1-infected cells) and replication during primary and early-chronic infection were analyzed in PBMC of four acutely infected individuals. High frequencies of HIV-1-infected cells and high levels of virus replication were observed in PBMC after primary HIV-1 infection. Down-regulation of virus replication in PBMC was observed in all four patients coincident with the emergence of HIV-1-specific immune responses. Other parameters of virus replication, such as circulating plasma p24 antigen and plasma viremia showed similar kinetics. In contrast, a significant decline in viral burden in PBMC was observed in only one of four patients. These results indicate that the down-regulation in the levels of virus replication associated with the clinical transition from acute to chronic infection does not necessarily reflect a reduction in viral burden, thus suggesting the involvement of additional factors. Identification of these factors will be important in elucidating the host mechanisms involved in the early control of HIV-1 infection and disease. Images Fig. 1 Fig. 2 Fig. 3 PMID:8341646

  19. Nucleic acids encoding mosaic clade M human immunodeficiency virus type 1 (HIV-1) envelope immunogens

    DOEpatents

    Korber, Bette T; Fischer, William; Liao, Hua-Xin; Haynes, Barton F; Letvin, Norman; Hahn, Beatrice H

    2015-04-21

    The present invention relates to nucleic acids encoding mosaic clade M HIV-1 Env polypeptides and to compositions and vectors comprising same. The nucleic acids of the invention are suitable for use in inducing an immune response to HIV-1 in a human.

  20. Mother-to-Child HIV-1 Transmission Events Are Differentially Impacted by Breast Milk and Its Components from HIV-1-Infected Women.

    PubMed

    Shen, Ruizhong; Achenbach, Jenna; Shen, Yue; Palaia, Jana; Rahkola, Jeremy T; Nick, Heidi J; Smythies, Lesley E; McConnell, Michelle; Fowler, Mary G; Smith, Phillip D; Janoff, Edward N

    2015-01-01

    Breast milk is a vehicle of infection and source of protection in post-natal mother-to-child HIV-1 transmission (MTCT). Understanding the mechanism by which breast milk limits vertical transmission will provide critical insight into the design of preventive and therapeutic approaches to interrupt HIV-1 mucosal transmission. However, characterization of the inhibitory activity of breast milk in human intestinal mucosa, the portal of entry in postnatal MTCT, has been constrained by the limited availability of primary mucosal target cells and tissues to recapitulate mucosal transmission ex vivo. Here, we characterized the impact of skimmed breast milk, breast milk antibodies (Igs) and non-Ig components from HIV-1-infected Ugandan women on the major events of HIV-1 mucosal transmission using primary human intestinal cells and tissues. HIV-1-specific IgG antibodies and non-Ig components in breast milk inhibited the uptake of Ugandan HIV-1 isolates by primary human intestinal epithelial cells, viral replication in and transport of HIV-1- bearing dendritic cells through the human intestinal mucosa. Breast milk HIV-1-specific IgG and IgA, as well as innate factors, blocked the uptake and transport of HIV-1 through intestinal mucosa. Thus, breast milk components have distinct and complementary effects in reducing HIV-1 uptake, transport through and replication in the intestinal mucosa and, therefore, likely contribute to preventing postnatal HIV-1 transmission. Our data suggests that a successful preventive or therapeutic approach would require multiple immune factors acting at multiple steps in the HIV-1 mucosal transmission process.

  1. Broad HIV-1 inhibition in vitro by vaccine-elicited CD8+ T cells in African adults

    PubMed Central

    Mutua, Gaudensia; Farah, Bashir; Langat, Robert; Indangasi, Jackton; Ogola, Simon; Onsembe, Brian; Kopycinski, Jakub T; Hayes, Peter; Borthwick, Nicola J; Ashraf, Ambreen; Dally, Len; Barin, Burc; Tillander, Annika; Gilmour, Jill; De Bont, Jan; Crook, Alison; Hannaman, Drew; Cox, Josephine H; Anzala, Omu; Fast, Patricia E; Reilly, Marie; Chinyenze, Kundai; Jaoko, Walter; Hanke, Tomáš; HIV-CORE 004 study group, the

    2016-01-01

    We are developing a pan-clade HIV-1 T-cell vaccine HIVconsv, which could complement Env vaccines for prophylaxis and be a key to HIV cure. Our strategy focuses vaccine-elicited effector T-cells on functionally and structurally conserved regions (not full-length proteins and not only epitopes) of the HIV-1 proteome, which are common to most global variants and which, if mutated, cause a replicative fitness loss. Our first clinical trial in low risk HIV-1-negative adults in Oxford demonstrated the principle that naturally mostly subdominant epitopes, when taken out of the context of full-length proteins/virus and delivered by potent regimens involving combinations of simian adenovirus and poxvirus modified vaccinia virus Ankara, can induce robust CD8+ T cells of broad specificities and functions capable of inhibiting in vitro HIV-1 replication. Here and for the first time, we tested this strategy in low risk HIV-1-negative adults in Africa. We showed that the vaccines were well tolerated and induced high frequencies of broadly HIVconsv-specific plurifunctional T cells, which inhibited in vitro viruses from four major clades A, B, C, and D. Because sub-Saharan Africa is globally the region most affected by HIV-1/AIDS, trial HIV-CORE 004 represents an important stage in the path toward efficacy evaluation of this highly rational and promising vaccine strategy. PMID:27617268

  2. The changes in the T helper 1 (Th1) and T helper 2 (Th2) cytokine balance during HIV-1 infection are indicative of an allergic response to viral proteins that may be reversed by Th2 cytokine inhibitors and immune response modifiers--a review and hypothesis.

    PubMed

    Becker, Yechiel

    2004-01-01

    The HIV-1 infection in humans induces an early cellular immune response to react to the viral proteins with a cytotoxic T cell (CTL) response that fails to inhibit virus replication and the spread of the virus. It became evident that the progression of the disease causes chronic changes to the immune system of which a gradual increase in IgE antibodies is one of its features. When the HIV-1 epidemic began, the relation between the gradual increase in IgE content and AIDS was not understood, but later it became a marker for disease prognosis. The advances in the knowledge on T helper 1 (Th1) and T helper 2 (Th2) cells revealed that Th1 cells produce cytokines that stimulate the proliferation of CTLs. Th2 cells produce cytokines that are responsible for the activation of the humoral immune response in healthy people. Studies on both Th1 and Th2 cytokine synthesis revealed an aberration in HIV-1 infected people. Clerici and Shearer presented a hypothesis (1993) whereby Th1 cell activity declines and Th2 activity increases (the Th1 --> Th2 switch hypothesis) in HIV-1 infected people. In fact, experiments concerning this hypothesis ultimately supported the premise that the switch involves a critical change in the cytokine balance, which leads to the contraction of AIDS. However, the research community must still discern why such a Th1 --> Th2 switch takes place in infected people and how it can be reversed. The present review points to the fact that a similar Th1 --> Th2 switch constitutes the response of allergic people to environmental allergens. HIV-1 patients and allergic people that are exposed to allergens respond with an increased synthesis of Th2 cytokines and IgE, together with a decrease in Th1 cytokines. The studies on allergen-induced Th2 cells revealed that the Th2 cytokine IL-4 induces B cells to synthesize IgE, and cytokine IL-5 is the inducer of eosinophilia, just as in HIV-1 infection. The difference between the HIV-1 infection and allergies is the

  3. HIV-1 elite controllers: beware of super-infections.

    PubMed

    Clerc, Olivier; Colombo, Sara; Yerly, Sabine; Telenti, Amalio; Cavassini, Matthias

    2010-04-01

    Super- and co-infection with HIV-1 are generally associated with accelerated disease progression. We report on the outcome of super-infection in two HIV-1 infected individuals previously known as elite controllers. Both presented an acute retroviral syndrome following super-infection and showed an immuno-virological progression thereafter. Host genotyping failed to reveal any of the currently recognized protective factors associated with slow disease progression. This report indicates that elite controllers should be informed of the risk of super-infection, and illustrates the complexity of mounting broad anti-HIV immunity.

  4. HIV-1, methamphetamine and astrocytes at neuroinflammatory Crossroads

    PubMed Central

    Borgmann, Kathleen; Ghorpade, Anuja

    2015-01-01

    As a popular psychostimulant, methamphetamine (METH) use leads to long-lasting, strong euphoric effects. While METH abuse is common in the general population, between 10 and 15% of human immunodeficiency virus-1 (HIV-1) patients report having abused METH. METH exacerbates the severity and onset of HIV-1-associated neurocognitive disorders (HAND) through direct and indirect mechanisms. Repetitive METH use impedes adherence to antiretroviral drug regimens, increasing the likelihood of HIV-1 disease progression toward AIDS. METH exposure also directly affects both innate and adaptive immunity, altering lymphocyte numbers and activity, cytokine signaling, phagocytic function and infiltration through the blood brain barrier. Further, METH triggers the dopamine reward pathway and leads to impaired neuronal activity and direct toxicity. Concurrently, METH and HIV-1 alter the neuroimmune balance and induce neuroinflammation, which modulates a wide range of brain functions including neuronal signaling and activity, glial activation, viral infection, oxidative stress, and excitotoxicity. Pathologically, reactive gliosis is a hallmark of both HIV-1- and METH-associated neuroinflammation. Significant commonality exists in the neurotoxic mechanisms for both METH and HAND; however, the pathways dysregulated in astroglia during METH exposure are less clear. Thus, this review highlights alterations in astrocyte intracellular signaling pathways, gene expression and function during METH and HIV-1 comorbidity, with special emphasis on HAND-associated neuroinflammation. Importantly, this review carefully evaluates interventions targeting astrocytes in HAND and METH as potential novel therapeutic approaches. This comprehensive overview indicates, without a doubt, that during HIV-1 infection and METH abuse, a complex dialog between all neural cells is orchestrated through astrocyte regulated neuroinflammation. PMID:26579077

  5. [Identification and characterization of HIV-1 transmitted /founder viruses].

    PubMed

    Jianyuan, Zhao; Jiwei, Ding; Zeyun, Mi; Tao, Wei; Shan, Cen

    2015-05-01

    During the spread of human immunodeficiency virus type 1 (HIV-1) in the mucosa, the entire genetic diversity of the viruses is significantly reduced. The vast majority of HIV-1 mucosal infections are established by one or a few viruses and ultimately develop into systemic infections, thus the initial virus is called transmitted/founder virus (T/F virus). The study of T/F virus will benefit understanding its key characteristics resulting in successful viral replication in the new host body, which may provide novel strategies for the development of AIDS vaccines, pre-exposure prophylaxis and other therapeutic interventions. In this review, we summarize the discovery and evolutionary characteristics of T/F virus as well as early immune response after HIV-1 infection, which will establish the basis to explore the features of T/F viruses.

  6. Anatomic dissociation between HIV-1 and its endogenous inhibitor in mucosal tissues.

    PubMed Central

    Wahl, S. M.; Worley, P.; Jin, W.; McNeely, T. B.; Eisenberg, S.; Fasching, C.; Orenstein, J. M.; Janoff, E. N.

    1997-01-01

    The rarity of oral transmission of human immunodeficiency virus (HIV)-1 by saliva suggests the absence of HIV-1 in the oral cavity and/or the presence of viral inhibitory molecules. We analyzed salivary gland tissues from 55 individuals with acquired immune deficiency syndrome (AIDS) for the presence of HIV-1 by in situ hybridization and detected the virus in more than 30% of these salivary glands. These data, together with previous demonstrations of HIV-1 in oral secretions, implicate a key role for an anti-viral molecule(s) in suppressing transmission. Thus, we focused on the characterization and localization of the endogenous antiviral molecule secretory leukocyte protease inhibitor (SLPI), which inhibits HIV-1 infection in vitro. Expression of SLPI transcripts was evident in submandibular, parotid, and minor salivary glands from both HIV-1-infected and seronegative subjects. Gene expression was reflected by similar levels of SLPI protein by immunohistochemical analysis in the tissues and by enzyme-linked immunosorbent assay in the saliva. However, although SLPI accumulated in acinar cells or ductal epithelium, HIV-1 transcripts did not, and these viral transcripts were identified only in mononuclear cells within the salivary gland stroma. By in situ hybridization, we found no evidence of productive HIV-1 infection of salivary gland epithelium. Thus, HIV-1 was frequently identified in salivary gland tissue, but the virus was found in interstitial mononuclear cells only and did not co-localize with SLPI. Once within the oral cavity, HIV-1 exposure to antiviral levels of SLPI may impede infection of additional target cells, contributing to the virtual absence of oral transmission of HIV-1 by saliva. These studies emphasize the importance of innate, endogenous inhibitors of HIV-1, particularly SLPI, as effective inhibitors of HIV-1 transmission. Images Figure 1 Figure 3 Figure 4 Figure 5 PMID:9094984

  7. Microbial translocation, the innate cytokine response, and HIV-1 disease progression in Africa

    PubMed Central

    Redd, Andrew D.; Dabitao, Djeneba; Bream, Jay H.; Charvat, Blake; Laeyendecker, Oliver; Kiwanuka, Noah; Lutalo, Tom; Kigozi, Godfrey; Tobian, Aaron A. R.; Gamiel, Jordyn; Neal, Jessica D.; Oliver, Amy E.; Margolick, Joseph B.; Sewankambo, Nelson; Reynolds, Steven J.; Wawer, Maria J.; Serwadda, David; Gray, Ronald H.; Quinn, Thomas C.

    2009-01-01

    Reports from the United States have demonstrated that elevated markers of microbial translocation from the gut may be found in chronic and advanced HIV-1 infection and are associated with an increase in immune activation. However, this phenomenon's role in HIV-1 disease in Africa is unknown. This study examined the longitudinal relationship between microbial translocation and circulating inflammatory cytokine responses in a cohort of people with varying rates of HIV-1 disease progression in Rakai, Uganda. Multiple markers for microbial translocation (lipopolysaccharide, endotoxin antibody, and sCD14) did not change significantly during HIV-1 disease progression. Moreover, circulating immunoreactive cytokine levels either decreased or remained virtually unchanged throughout disease progression. These data suggest that microbial translocation and its subsequent inflammatory immune response do not have a causal relationship with HIV-1 disease progression in Africa. PMID:19357303

  8. Defective proviruses rapidly accumulate during acute HIV-1 infection.

    PubMed

    Bruner, Katherine M; Murray, Alexandra J; Pollack, Ross A; Soliman, Mary G; Laskey, Sarah B; Capoferri, Adam A; Lai, Jun; Strain, Matthew C; Lada, Steven M; Hoh, Rebecca; Ho, Ya-Chi; Richman, Douglas D; Deeks, Steven G; Siliciano, Janet D; Siliciano, Robert F

    2016-09-01

    Although antiretroviral therapy (ART) suppresses viral replication to clinically undetectable levels, human immunodeficiency virus type 1 (HIV-1) persists in CD4(+) T cells in a latent form that is not targeted by the immune system or by ART. This latent reservoir is a major barrier to curing individuals of HIV-1 infection. Many individuals initiate ART during chronic infection, and in this setting, most proviruses are defective. However, the dynamics of the accumulation and the persistence of defective proviruses during acute HIV-1 infection are largely unknown. Here we show that defective proviruses accumulate rapidly within the first few weeks of infection to make up over 93% of all proviruses, regardless of how early ART is initiated. By using an unbiased method to amplify near-full-length proviral genomes from HIV-1-infected adults treated at different stages of infection, we demonstrate that early initiation of ART limits the size of the reservoir but does not profoundly affect the proviral landscape. This analysis allows us to revise our understanding of the composition of proviral populations and estimate the true reservoir size in individuals who were treated early versus late in infection. Additionally, we demonstrate that common assays for measuring the reservoir do not correlate with reservoir size, as determined by the number of genetically intact proviruses. These findings reveal hurdles that must be overcome to successfully analyze future HIV-1 cure strategies.

  9. Identifying Recombination Hot Spots in the HIV-1 Genome

    PubMed Central

    Smyth, Redmond P.; Schlub, Timothy E.; Grimm, Andrew J.; Waugh, Caryll; Ellenberg, Paula; Chopra, Abha; Mallal, Simon; Cromer, Deborah

    2014-01-01

    ABSTRACT HIV-1 infection is characterized by the rapid generation of genetic diversity that facilitates viral escape from immune selection and antiretroviral therapy. Despite recombination's crucial role in viral diversity and evolution, little is known about the genomic factors that influence recombination between highly similar genomes. In this study, we use a minimally modified full-length HIV-1 genome and high-throughput sequence analysis to study recombination in gag and pol in T cells. We find that recombination is favored at a number of recombination hot spots, where recombination occurs six times more frequently than at corresponding cold spots. Interestingly, these hot spots occur near important features of the HIV-1 genome but do not occur at sites immediately around protease inhibitor or reverse transcriptase inhibitor drug resistance mutations. We show that the recombination hot and cold spots are consistent across five blood donors and are independent of coreceptor-mediated entry. Finally, we check common experimental confounders and find that these are not driving the location of recombination hot spots. This is the first study to identify the location of recombination hot spots between two similar viral genomes with great statistical power and under conditions that closely reflect natural recombination events among HIV-1 quasispecies. IMPORTANCE The ability of HIV-1 to evade the immune system and antiretroviral therapy depends on genetic diversity within the viral quasispecies. Retroviral recombination is an important mechanism that helps to generate and maintain this genetic diversity, but little is known about how recombination rates vary within the HIV-1 genome. We measured recombination rates in gag and pol and identified recombination hot and cold spots, demonstrating that recombination is not random but depends on the underlying gene sequence. The strength and location of these recombination hot and cold spots can be used to improve models of

  10. Trichomonas vaginalis-Induced Epithelial Monolayer Disruption and Human Immunodeficiency Virus Type 1 (HIV-1) Replication: Implications for the Sexual Transmission of HIV-1

    PubMed Central

    Guenthner, Patricia C.; Secor, W. Evan; Dezzutti, Charlene S.

    2005-01-01

    The objective of this study was to evaluate potential mechanisms of Trichomonas vaginalis involvement in human immunodeficiency virus type 1 (HIV-1) transmission. Polarized monolayer integrity of primary cervical and prostate epithelial cells or cell lines cultured with T. vaginalis was measured by monitoring transepithelium resistance. The effect of T. vaginalis isolates on HIV-1 passage through polarized epithelial cell monolayers was evaluated for HIV-1 p24gag in the basolateral supernatants. Coincubation with T. vaginalis isolates induced disruption of monolayer integrity and resulted in passage of virus to the basolateral side of the monolayer. Furthermore, there was isolate variability in which two isolates induced greater monolayer damage and increased HIV-1 passage than did the other two isolates. Coincubation of T. vaginalis isolates with acutely HIV-1-infected peripheral blood mononuclear cells enhanced HIV-1 replication. This enhancement was associated with cellular proliferation and activation, as well as with tumor necrosis factor alpha production. In contrast to the monolayer disruption, the effect of T. vaginalis on HIV-1 replication was not isolate dependent. Thus, two mechanisms have been identified that could contribute to the epidemiologic association of trichomoniasis with the sexual transmission of HIV-1. (i) T. vaginalis disruption of urogenital epithelial monolayers could facilitate passage of HIV-1 to underlying layers. (ii) Activation of local immune cells by T. vaginalis in the presence of infectious HIV-1 might lead to increased viral replication. Collectively, these data suggest the need for more vigilant efforts in the diagnosis and treatment of T. vaginalis in women and men, especially in countries with a high prevalence of HIV-1. PMID:15972505

  11. Trichomonas vaginalis-induced epithelial monolayer disruption and human immunodeficiency virus type 1 (HIV-1) replication: implications for the sexual transmission of HIV-1.

    PubMed

    Guenthner, Patricia C; Secor, W Evan; Dezzutti, Charlene S

    2005-07-01

    The objective of this study was to evaluate potential mechanisms of Trichomonas vaginalis involvement in human immunodeficiency virus type 1 (HIV-1) transmission. Polarized monolayer integrity of primary cervical and prostate epithelial cells or cell lines cultured with T. vaginalis was measured by monitoring transepithelium resistance. The effect of T. vaginalis isolates on HIV-1 passage through polarized epithelial cell monolayers was evaluated for HIV-1 p24gag in the basolateral supernatants. Coincubation with T. vaginalis isolates induced disruption of monolayer integrity and resulted in passage of virus to the basolateral side of the monolayer. Furthermore, there was isolate variability in which two isolates induced greater monolayer damage and increased HIV-1 passage than did the other two isolates. Coincubation of T. vaginalis isolates with acutely HIV-1-infected peripheral blood mononuclear cells enhanced HIV-1 replication. This enhancement was associated with cellular proliferation and activation, as well as with tumor necrosis factor alpha production. In contrast to the monolayer disruption, the effect of T. vaginalis on HIV-1 replication was not isolate dependent. Thus, two mechanisms have been identified that could contribute to the epidemiologic association of trichomoniasis with the sexual transmission of HIV-1. (i) T. vaginalis disruption of urogenital epithelial monolayers could facilitate passage of HIV-1 to underlying layers. (ii) Activation of local immune cells by T. vaginalis in the presence of infectious HIV-1 might lead to increased viral replication. Collectively, these data suggest the need for more vigilant efforts in the diagnosis and treatment of T. vaginalis in women and men, especially in countries with a high prevalence of HIV-1.

  12. Genetic identification of novel poxviruses of cetaceans and pinnipeds.

    PubMed

    Bracht, A J; Brudek, R L; Ewing, R Y; Manire, C A; Burek, K A; Rosa, C; Beckmen, K B; Maruniak, J E; Romero, C H

    2006-03-01

    Novel poxviruses were identified in skin lesions of several species of cetaceans and pinnipeds using polymerase chain reaction targeting DNA polymerase and DNA topoisomerase I genes of members of the subfamily Chordopoxvirinae. With the exception of parapoxviruses, no molecular data of marine mammal poxviruses were available to infer genetic and evolutionary relatedness to terrestrial vertebrate poxviruses. Viruses were assigned to a cetacean poxvirus 1 (CPV-1) group based on nucleotide and amino acid identities of gene fragments amplified from skin lesions of Asian bottlenose (Tursiops aduncus), Atlantic bottlenose (Tursiops truncatus), rough-toothed (Steno bredanensis), and striped (Stenella coeruleoalba) dolphins. A different poxvirus was detected in skin lesions of a bowhead whale (Balaena mysticetus) and provisionally assigned to a CPV-2 group. These viruses showed highest identity to terrestrial poxviruses of the genera Orthopoxvirus and Suipoxvirus. A novel species-specific poxvirus was also identified in skin lesions of Steller sea lions (Eumetopias jubatus). None of these poxviruses were found to have amplifiable hemagglutinin gene sequences. Novel parapoxviruses were also identified in skin lesions of Steller sea lions and spotted seals (Phoca largha). A significant degree of divergence was observed in sequences of Steller sea lion parapoxviruses, while those of spotted seals and harbor seals (Phoca vitulina) were highly conserved.

  13. Curcumin derivatives as HIV-1 protease inhibitors

    SciTech Connect

    Sui, Z.; Li, J.; Craik, C.S.; Ortiz de Montellano, P.R.

    1993-12-31

    Curcumin, a non-toxic natural compound from Curcuma longa, has been found to be an HIV-1 protease inhibitor. Some of its derivatives were synthesized and their inhibitory activity against the HIV-1 protease was tested. Curcumin analogues containing boron enhanced the inhibitory activity. At least of the the synthesized compounds irreversibly inhibits the HIV-1 protease.

  14. Driving HIV-1 into a Vulnerable Corner by Taking Advantage of Viral Adaptation and Evolution

    PubMed Central

    Harada, Shigeyoshi; Yoshimura, Kazuhisa

    2017-01-01

    Anti-retroviral therapy (ART) is crucial for controlling human immunodeficiency virus type-1 (HIV-1) infection. Recently, progress in identifying and characterizing highly potent broadly neutralizing antibodies has provided valuable templates for HIV-1 therapy and vaccine design. Nevertheless, HIV-1, like many RNA viruses, exhibits genetically diverse populations known as quasispecies. Evolution of quasispecies can occur rapidly in response to selective pressures, such as that exerted by ART and the immune system. Hence, rapid viral evolution leading to drug resistance and/or immune evasion is a significant barrier to the development of effective HIV-1 treatments and vaccines. Here, we describe our recent investigations into evolutionary pressure exerted by anti-retroviral drugs and monoclonal neutralizing antibodies (NAbs) on HIV-1 envelope sequences. We also discuss sensitivities of HIV-1 escape mutants to maraviroc, a CCR5 inhibitor, and HIV-1 sensitized to NAbs by small-molecule CD4-mimetic compounds. These studies help to develop an understanding of viral evolution and escape from both anti-retroviral drugs and the immune system, and also provide fundamental insights into the combined use of NAbs and entry inhibitors. These findings of the adaptation and evolution of HIV in response to drug and immune pressure will inform the development of more effective antiviral therapeutic strategies. PMID:28360890

  15. Expansion of monocytic myeloid-derived suppressor cells dampens T cell function in HIV-1-seropositive individuals.

    PubMed

    Qin, Aiping; Cai, Weiping; Pan, Ting; Wu, Kang; Yang, Qiong; Wang, Nina; Liu, Yufeng; Yan, Dehong; Hu, Fengyu; Guo, Pengle; Chen, Xiaoping; Chen, Ling; Zhang, Hui; Tang, Xiaoping; Zhou, Jie

    2013-02-01

    T lymphocyte dysfunction contributes to human immunodeficiency virus type 1 (HIV-1) disease progression by impairing antivirus cellular immunity. However, the mechanisms of HIV-1 infection-mediated T cell dysfunction are not completely understood. Here, we provide evidence that expansion of monocytic myeloid-derived suppressor cells (M-MDSCs) suppressed T cell function in HIV-1-infected individuals. We observed a dramatic elevation of M-MDSCs (HLA-DR(-/low) CD11b(+) CD33(+/high) CD14(+) CD15(-) cells) in the peripheral blood of HIV-1-seropositive subjects (n = 61) compared with healthy controls (n = 51), despite efficacious antiretroviral therapy for nearly 2 years. The elevated M-MDSC frequency in HIV-1(+) subjects correlated with prognostic HIV-1 disease markers, including the HIV-1 load (r = 0.5957; P < 0.0001), CD4(+) T cell loss (r = -0.5312; P < 0.0001), and activated T cells (r = 0.4421; P = 0.0004). Functional studies showed that M-MDSCs from HIV-1(+) subjects suppressed T cell responses in both HIV-1-specific and antigen-nonspecific manners; this effect was dependent on the induction of arginase 1 and required direct cell-cell contact. Further investigations revealed that direct HIV-1 infection or culture with HIV-1-derived Tat protein significantly enhanced human MDSC generation in vitro, and MDSCs from healthy donors could be directly infected by HIV-1 to facilitate HIV-1 replication and transmission, indicating that a positive-feedback loop between HIV-1 infection and MDSC expansion existed. In summary, our studies revealed a novel mechanism of T cell dysfunction in HIV-1-infected individuals and suggested that targeting MDSCs may be a promising strategy for HIV-1 immunotherapy.

  16. Preliminary molecular characterization of a fowl poxvirus isolate in Grenada.

    PubMed

    Arathy, D S; Tripathy, D N; Sabarinath, G P; Bhaiyat, M I; Chikweto, A; Matthew, V; Sharma, R N

    2010-09-01

    Two 1-mo-old local breed chickens, with gross lesions in the skin of the head region suspected to be fowl poxvirus infection, were submitted to the Diagnostic Laboratory of the School of Veterinary Medicine, Grenada, West Indies. Cutaneous lesions were collected from these birds for virus isolation, histopathologic diagnosis, and molecular analysis. Fowl poxvirus infection was confirmed by virus isolation in chicken embryo and by histopathology. Molecular characterization of the fowl poxvirus was conducted by PCR amplification of selected genomic fragments and by nucleotide sequencing. Integration of reticuloendotheliosis virus fragments into the fowl poxvirus genome was confirmed by PCR and DNA sequencing. This is the first report from the Caribbean region on the preliminary molecular characterization of a fowl poxvirus isolate.

  17. Maternal HIV-1 envelope–specific antibody responses and reduced risk of perinatal transmission

    PubMed Central

    Permar, Sallie R.; Fong, Youyi; Vandergrift, Nathan; Fouda, Genevieve G.; Gilbert, Peter; Parks, Robert; Jaeger, Frederick H.; Pollara, Justin; Martelli, Amanda; Liebl, Brooke E.; Lloyd, Krissey; Yates, Nicole L.; Overman, R. Glenn; Shen, Xiaoying; Whitaker, Kaylan; Chen, Haiyan; Pritchett, Jamie; Solomon, Erika; Friberg, Emma; Marshall, Dawn J.; Whitesides, John F.; Gurley, Thaddeus C.; Von Holle, Tarra; Martinez, David R.; Cai, Fangping; Kumar, Amit; Xia, Shi-Mao; Lu, Xiaozhi; Louzao, Raul; Wilkes, Samantha; Datta, Saheli; Sarzotti-Kelsoe, Marcella; Liao, Hua-Xin; Ferrari, Guido; Alam, S. Munir; Montefiori, David C.; Denny, Thomas N.; Moody, M. Anthony; Tomaras, Georgia D.; Gao, Feng; Haynes, Barton F.

    2015-01-01

    Despite the wide availability of antiretroviral drugs, more than 250,000 infants are vertically infected with HIV-1 annually, emphasizing the need for additional interventions to eliminate pediatric HIV-1 infections. Here, we aimed to define humoral immune correlates of risk of mother-to-child transmission (MTCT) of HIV-1, including responses associated with protection in the RV144 vaccine trial. Eighty-three untreated, HIV-1–transmitting mothers and 165 propensity score–matched nontransmitting mothers were selected from the Women and Infants Transmission Study (WITS) of US nonbreastfeeding, HIV-1–infected mothers. In a multivariable logistic regression model, the magnitude of the maternal IgG responses specific for the third variable loop (V3) of the HIV-1 envelope was predictive of a reduced risk of MTCT. Neutralizing Ab responses against easy-to-neutralize (tier 1) HIV-1 strains also predicted a reduced risk of peripartum transmission in secondary analyses. Moreover, recombinant maternal V3–specific IgG mAbs mediated neutralization of autologous HIV-1 isolates. Thus, common V3-specific Ab responses in maternal plasma predicted a reduced risk of MTCT and mediated autologous virus neutralization, suggesting that boosting these maternal Ab responses may further reduce HIV-1 MTCT. PMID:26053661

  18. Maternal HIV-1 envelope-specific antibody responses and reduced risk of perinatal transmission.

    PubMed

    Permar, Sallie R; Fong, Youyi; Vandergrift, Nathan; Fouda, Genevieve G; Gilbert, Peter; Parks, Robert; Jaeger, Frederick H; Pollara, Justin; Martelli, Amanda; Liebl, Brooke E; Lloyd, Krissey; Yates, Nicole L; Overman, R Glenn; Shen, Xiaoying; Whitaker, Kaylan; Chen, Haiyan; Pritchett, Jamie; Solomon, Erika; Friberg, Emma; Marshall, Dawn J; Whitesides, John F; Gurley, Thaddeus C; Von Holle, Tarra; Martinez, David R; Cai, Fangping; Kumar, Amit; Xia, Shi-Mao; Lu, Xiaozhi; Louzao, Raul; Wilkes, Samantha; Datta, Saheli; Sarzotti-Kelsoe, Marcella; Liao, Hua-Xin; Ferrari, Guido; Alam, S Munir; Montefiori, David C; Denny, Thomas N; Moody, M Anthony; Tomaras, Georgia D; Gao, Feng; Haynes, Barton F

    2015-07-01

    Despite the wide availability of antiretroviral drugs, more than 250,000 infants are vertically infected with HIV-1 annually, emphasizing the need for additional interventions to eliminate pediatric HIV-1 infections. Here, we aimed to define humoral immune correlates of risk of mother-to-child transmission (MTCT) of HIV-1, including responses associated with protection in the RV144 vaccine trial. Eighty-three untreated, HIV-1-transmitting mothers and 165 propensity score-matched nontransmitting mothers were selected from the Women and Infants Transmission Study (WITS) of US nonbreastfeeding, HIV-1-infected mothers. In a multivariable logistic regression model, the magnitude of the maternal IgG responses specific for the third variable loop (V3) of the HIV-1 envelope was predictive of a reduced risk of MTCT. Neutralizing Ab responses against easy-to-neutralize (tier 1) HIV-1 strains also predicted a reduced risk of peripartum transmission in secondary analyses. Moreover, recombinant maternal V3-specific IgG mAbs mediated neutralization of autologous HIV-1 isolates. Thus, common V3-specific Ab responses in maternal plasma predicted a reduced risk of MTCT and mediated autologous virus neutralization, suggesting that boosting these maternal Ab responses may further reduce HIV-1 MTCT.

  19. Characterization of Deoxyribonucleases Induced by Poxviruses 1

    PubMed Central

    Jungwirth, C.; Launer, J.; Dombrowski, G.; Horák, I.

    1969-01-01

    Increases in deoxyribonuclease activity assayed at alkaline pH can be observed in poxvirus-infected cells when native or denatured deoxyribonucleic acid (DNA) is used as substrate. The deoxyribonuclease assayable with native DNA as substrate, induced in HeLa cells by cowpoxvirus or vaccinia virus WR, can be separated from the corresponding enzyme present in normal cells by chromatography on diethylaminoethyl cellulose. In addition, the two enzymes induced in the virus-infected cells differ from each other in their chromatographic properties. The two induced enzymes have been further characterized with respect to properties of enzymatic reaction. PMID:16789119

  20. Circulating microRNAs in Sera Correlate with Soluble Biomarkers of Immune Activation but Do Not Predict Mortality in ART Treated Individuals with HIV-1 Infection: A Case Control Study

    PubMed Central

    Murray, Daniel D.; Suzuki, Kazuo; Law, Matthew; Trebicka, Jonel; Neuhaus, Jacquie; Wentworth, Deborah; Johnson, Margaret; Vjecha, Michael J.; Kelleher, Anthony D.; Emery, Sean

    2015-01-01

    Introduction The use of anti-retroviral therapy (ART) has dramatically reduced HIV-1 associated morbidity and mortality. However, HIV-1 infected individuals have increased rates of morbidity and mortality compared to the non-HIV-1 infected population and this appears to be related to end-organ diseases collectively referred to as Serious Non-AIDS Events (SNAEs). Circulating miRNAs are reported as promising biomarkers for a number of human disease conditions including those that constitute SNAEs. Our study sought to investigate the potential of selected miRNAs in predicting mortality in HIV-1 infected ART treated individuals. Materials and Methods A set of miRNAs was chosen based on published associations with human disease conditions that constitute SNAEs. This case: control study compared 126 cases (individuals who died whilst on therapy), and 247 matched controls (individuals who remained alive). Cases and controls were ART treated participants of two pivotal HIV-1 trials. The relative abundance of each miRNA in serum was measured, by RTqPCR. Associations with mortality (all-cause, cardiovascular and malignancy) were assessed by logistic regression analysis. Correlations between miRNAs and CD4+ T cell count, hs-CRP, IL-6 and D-dimer were also assessed. Results None of the selected miRNAs was associated with all-cause, cardiovascular or malignancy mortality. The levels of three miRNAs (miRs -21, -122 and -200a) correlated with IL-6 while miR-21 also correlated with D-dimer. Additionally, the abundance of miRs -31, -150 and -223, correlated with baseline CD4+ T cell count while the same three miRNAs plus miR-145 correlated with nadir CD4+ T cell count. Discussion No associations with mortality were found with any circulating miRNA studied. These results cast doubt onto the effectiveness of circulating miRNA as early predictors of mortality or the major underlying diseases that contribute to mortality in participants treated for HIV-1 infection. PMID:26465293

  1. Foxp3 and Treg cells in HIV-1 infection and immuno-pathogenesis

    PubMed Central

    Holmes, Derek; Jiang, Qi; Zhang, Liguo

    2014-01-01

    FoxP3+CD4+CD25+ regulatory T (Treg) cells are implicated in a number of pathologic processes including elevated levels in cancers and infectious diseases, and reduced levels in autoimmune diseases. Treg cells are activated to modulate immune responses to avoid over-reactive immunity. However, conflicting findings are reported regarding relative levels of Treg cells during HIV-1 infection and disease progression. The role of Treg cells in HIV-1 diseases (aberrant immune activation) is poorly understood due to lack of a robust model. We summarize here the regulation and function of Foxp3 in Treg cells and in modulating HIV-1 replication. Based on recent findings from SIV/monkey and HIV/humanized mouse models, a model of the dual role of Treg cells in HIV-1 infection and immuno-pathogenesis is discussed. PMID:18726715

  2. Impaired T-cell responses to sphingosine-1-phosphate in HIV-1 infected lymph nodes

    PubMed Central

    Mudd, Joseph C.; Murphy, Patrick; Manion, Maura; Debernardo, Robert; Hardacre, Jeffrey; Ammori, John; Hardy, Gareth A.; Harding, Clifford V.; Mahabaleshwar, Ganapati H.; Jain, Mukesh K.; Jacobson, Jeffrey M.; Brooks, Ari D.; Lewis, Sharon; Schacker, Timothy W.; Anderson, Jodi; Haddad, Elias K.; Cubas, Rafael A.; Rodriguez, Benigno; Sieg, Scott F.

    2013-01-01

    The determinants of HIV-1-associated lymphadenopathy are poorly understood. We hypothesized that lymphocytes could be sequestered in the HIV-1+ lymph node (LN) through impairments in sphingosine-1-phosphate (S1P) responsiveness. To test this hypothesis, we developed novel assays for S1P-induced Akt phosphorylation and actin polymerization. In the HIV-1+ LN, naïve CD4 T cells and central memory CD4 and CD8 T cells had impaired Akt phosphorylation in response to S1P, whereas actin polymerization responses to S1P were impaired dramatically in all LN maturation subsets. These defects were improved with antiretroviral therapy. LN T cells expressing CD69 were unable to respond to S1P in either assay, yet impaired S1P responses were also seen in HIV-1+ LN T cells lacking CD69 expression. Microbial elements, HIV-1, and interferon α – putative drivers of HIV-1associated immune activation all tended to increase CD69 expression and reduce T-cell responses to S1P in vitro. Impairment in T-cell egress from lymph nodes through decreased S1P responsiveness may contribute to HIV-1-associated LN enlargement and to immune dysregulation in a key organ of immune homeostasis. PMID:23422746

  3. HIV-1, Reactive Oxygen Species and Vascular Complications

    PubMed Central

    Porter, Kristi M.; Sutliff, Roy L.

    2012-01-01

    Over 1 million people in the United States and 33 million individuals worldwide suffer from HIV/AIDS. Since its discovery, HIV/AIDS has been associated with an increased susceptibility to opportunistic infection due to immune dysfunction. Highly active antiretroviral therapies (HAART) restore immune function and, as a result, people infected with HIV-1 are living longer. This improved survival of HIV-1 patients has revealed a previously unrecognized risk of developing vascular complications, such as atherosclerosis and pulmonary hypertension. The mechanisms underlying these HIV-associated vascular disorders are poorly understood. However, HIV-induced elevations in reactive oxygen species, including superoxide and hydrogen peroxide, may contribute to vascular disease development and progression by altering cell function and redox-sensitive signaling pathways. In this review, we summarize the clinical and experimental evidence demonstrating HIV- and HIV antiretroviral therapy-induced alterations in reactive oxygen species (ROS) and how these effects likely contribute to vascular dysfunction and disease. PMID:22564529

  4. In Vitro Reactivation of Replication-Competent and Infectious HIV-1 by Histone Deacetylase Inhibitors

    PubMed Central

    Banga, Riddhima; Procopio, Francesco Andrea; Cavassini, Matthias

    2015-01-01

    ABSTRACT The existence of long-lived HIV-1-infected resting memory CD4 T cells is thought to be the primary obstacle to HIV-1 eradication. In the search for novel therapeutic approaches that may reverse HIV-1 latency, inhibitors of histone deacetylases (HDACis) have been tested to reactivate HIV-1 replication with the objective of rendering HIV-1-infected cells susceptible to elimination either by HIV-specific CD8 T cells or through virus-mediated cytopathicity. In the present study, we evaluated the efficiency of HDACis to reactivate HIV-1 replication from resting memory CD4 T cells isolated from aviremic long-term-treated HIV-1-infected subjects. We demonstrate that following prolonged/repeated treatment of resting memory CD4 T cells with HDACis, HIV-1 replication may be induced from primary resting memory CD4 T cells isolated from aviremic long-term-treated HIV-1-infected subjects. More importantly, we demonstrate that HIV-1 reactivated in the cell cultures was not only replication competent but also infectious. Interestingly, givinostat, an HDACi that has not been investigated in clinical trials, was more efficient than vorinostat, panobinostat, and romidepsin in reversing HIV-1 latency in vitro. Taken together, these results support further evaluation of givinostat as a latency-reversing agent (LRA) in aviremic long-term-treated HIV-1-infected subjects. IMPORTANCE The major barrier to HIV cure is the existence of long-lived latently HIV-1-infected resting memory CD4 T cells. Latently HIV-1-infected CD4 T cells are transcriptionally silent and are therefore not targeted by conventional antiretroviral therapy (ART) or the immune system. In this context, one strategy to target latently infected cells is based on pharmacological molecules that may force the virus to replicate and would therefore render HIV-1-infected cells susceptible to elimination either by HIV-specific CD8 T cells or through virus-mediated cytopathicity. In this context, we developed an

  5. Reversal of Latency as Part of a Cure for HIV-1.

    PubMed

    Rasmussen, Thomas Aagaard; Tolstrup, Martin; Søgaard, Ole Schmeltz

    2016-02-01

    Here, the use of pharmacological agents to reverse HIV-1 latency will be explored as a therapeutic strategy towards a cure. However, while clinical trials of latency-reversing agents LRAs) have demonstrated their ability to increase production of latent HIV-1, such interventions have not had an effect on the size of the latent HIV-1 reservoir. Plausible explanations for this include insufficient host immune responses against virus-expressing cells, the presence of escape mutations in archived virus, or an insufficient scale of latency reversal. Importantly, these early studies of LRAs were primarily designed to investigate their ability to perturb the state of HIV-1 latency; using the absence of an impact on the size of the HIV-1 reservoir to discard their potential inclusion in curative strategies would be erroneous and premature.

  6. B-cell-lineage immunogen design in vaccine development with HIV-1 as a case study.

    PubMed

    Haynes, Barton F; Kelsoe, Garnett; Harrison, Stephen C; Kepler, Thomas B

    2012-05-07

    Failure of immunization with the HIV-1 envelope to induce broadly neutralizing antibodies against conserved epitopes is a major barrier to producing a preventive HIV-1 vaccine. Broadly neutralizing monoclonal antibodies (BnAbs) from those subjects who do produce them after years of chronic HIV-1 infection have one or more unusual characteristics, including polyreactivity for host antigens, extensive somatic hypermutation and long, variable heavy-chain third complementarity-determining regions, factors that may limit their expression by host immunoregulatory mechanisms. The isolation of BnAbs from HIV-1-infected subjects and the use of computationally derived clonal lineages as templates provide a new path for HIV-1 vaccine immunogen design. This approach, which should be applicable to many infectious agents, holds promise for the construction of vaccines that can drive B cells along rare but desirable maturation pathways.

  7. Exercise and Human Immunodeficiency Virus (HIV-1) Infection

    NASA Technical Reports Server (NTRS)

    Lawless, DeSales; Jackson, Catherine G. R.; Greenleaf, John E.

    1995-01-01

    The human immune system is highly efficient and remarkably protective when functioning properly. Similar to other physiological systems, it functions best when the body is maintained with a balanced diet, sufficient rest and a moderately stress-free lifestyle. It can be disrupted by inappropriate drug use and extreme emotion or exertion. The functioning of normal or compromised immune systems can be enhanced by properly prescribed moderate exercise conditioning regimens in healthy people, and in some human immunodeficiency virus (HIV-1)-infected patients but not in others who unable to complete an interval training program. Regular exercise conditioning in healthy people reduces cardiovascular risk factors, increases stamina, facilitates bodyweight control, and reduces stress by engendering positive feelings of well-being. Certain types of cancer may also be suppressed by appropriate exercise conditioning. Various exercise regimens are being evaluated as adjunct treatments for medicated patients with the HIV-1 syndrome. Limited anecdotal evidence from patients suggests that moderate exercise conditioning is per se responsible for their survival well beyond expectancy. HIV-1-infected patients respond positively, both physiologically and psychologically, to moderate exercise conditioning. However, the effectiveness of any exercise treatment programme depends on its mode, frequency, intensity and duration when prescribed o complement the pathological condition of the patient. The effectiveness of exercise conditioning regimens in patients with HIV-1 infection is reviewed in this article. In addition, we discuss mechanisms and pathways, involving the interplay of psychological and physiological factors, through which the suppressed immune system can be enhanced. The immune modulators discussed are endogenous opioids, cytokines, neurotransmitters and other hormones. Exercise conditioning treatment appears to be more effective when combined with other stress management

  8. Poxvirus Exploitation of the Ubiquitin-Proteasome System

    PubMed Central

    Barry, Michele; van Buuren, Nicholas; Burles, Kristin; Mottet, Kelly; Wang, Qian; Teale, Alastair

    2010-01-01

    Ubiquitination plays a critical role in many cellular processes. A growing number of viruses have evolved strategies to exploit the ubiquitin-proteasome system, including members of the Poxviridae family. Members of the poxvirus family have recently been shown to encode BTB/kelch and ankyrin/F-box proteins that interact with cullin-3 and cullin-1 based ubiquitin ligases, respectively. Multiple members of the poxvirus family also encode ubiquitin ligases with intrinsic activity. This review describes the numerous mechanisms that poxviruses employ to manipulate the ubiquitin-proteasome system. PMID:21994622

  9. Identification of dual-tropic HIV-1 using evolved neural networks.

    PubMed

    Fogel, Gary B; Lamers, Susanna L; Liu, Enoch S; Salemi, Marco; McGrath, Michael S

    2015-11-01

    Blocking the binding of the envelope HIV-1 protein to immune cells is a popular concept for development of anti-HIV therapeutics. R5 HIV-1 binds CCR5, X4 HIV-1 binds CXCR4, and dual-tropic HIV-1 can bind either coreceptor for cellular entry. R5 viruses are associated with early infection and over time can evolve to X4 viruses that are associated with immune failure. Dual-tropic HIV-1 is less studied; however, it represents functional antigenic intermediates during the transition of R5 to X4 viruses. Viral tropism is linked partly to the HIV-1 envelope V3 domain, where the amino acid sequence helps dictate the receptor a particular virus will target; however, using V3 sequence information to identify dual-tropic HIV-1 isolates has remained difficult. Our goal in this study was to elucidate features of dual-tropic HIV-1 isolates that assist in the biological understanding of dual-tropism and develop an approach for their detection. Over 1559 HIV-1 subtype B sequences with known tropisms were analyzed. Each sequence was represented by 73 structural, biochemical and regional features. These features were provided to an evolved neural network classifier and evaluated using balanced and unbalanced data sets. The study resolved R5X4 viruses from R5 with an accuracy of 81.8% and from X4 with an accuracy of 78.8%. The approach also identified a set of V3 features (hydrophobicity, structural and polarity) that are associated with tropism transitions. The ability to distinguish R5X4 isolates will improve computational tropism decisions for R5 vs. X4 and assist in HIV-1 research and drug development efforts.

  10. HERV-K–specific T cells eliminate diverse HIV-1/2 and SIV primary isolates

    PubMed Central

    Jones, R. Brad; Garrison, Keith E.; Mujib, Shariq; Mihajlovic, Vesna; Aidarus, Nasra; Hunter, Diana V.; Martin, Eric; John, Vivek M.; Zhan, Wei; Faruk, Nabil F.; Gyenes, Gabor; Sheppard, Neil C.; Priumboom-Brees, Ingrid M.; Goodwin, David A.; Chen, Lianchun; Rieger, Melanie; Muscat-King, Sophie; Loudon, Peter T.; Stanley, Cole; Holditch, Sara J.; Wong, Jessica C.; Clayton, Kiera; Duan, Erick; Song, Haihan; Xu, Yang; SenGupta, Devi; Tandon, Ravi; Sacha, Jonah B.; Brockman, Mark A.; Benko, Erika; Kovacs, Colin; Nixon, Douglas F.; Ostrowski, Mario A.

    2012-01-01

    The genetic diversity of HIV-1 represents a major challenge in vaccine development. In this study, we establish a rationale for eliminating HIV-1–infected cells by targeting cellular immune responses against stable human endogenous retroviral (HERV) antigens. HERV DNA sequences in the human genome represent the remnants of ancient infectious retroviruses. We show that the infection of CD4+ T cells with HIV-1 resulted in transcription of the HML-2 lineage of HERV type K [HERV-K(HML-2)] and the expression of Gag and Env proteins. HERV-K(HML-2)–specific CD8+ T cells obtained from HIV-1–infected human subjects responded to HIV-1–infected cells in a Vif-dependent manner in vitro. Consistent with the proposed mode of action, a HERV-K(HML-2)–specific CD8+ T cell clone exhibited comprehensive elimination of cells infected with a panel of globally diverse HIV-1, HIV-2, and SIV isolates in vitro. We identified a second T cell response that exhibited cross-reactivity between homologous HIV-1-Pol and HERV-K(HML-2)-Pol determinants, raising the possibility that homology between HIV-1 and HERVs plays a role in shaping, and perhaps enhancing, the T cell response to HIV-1. This justifies the consideration of HERV-K(HML-2)–specific and cross-reactive T cell responses in the natural control of HIV-1 infection and for exploring HERV-K(HML-2)–targeted HIV-1 vaccines and immunotherapeutics. PMID:23143309

  11. Ectopic expression of anti-HIV-1 shRNAs protects CD8(+) T cells modified with CD4ζ CAR from HIV-1 infection and alleviates impairment of cell proliferation.

    PubMed

    Kamata, Masakazu; Kim, Patrick Y; Ng, Hwee L; Ringpis, Gene-Errol E; Kranz, Emiko; Chan, Joshua; O'Connor, Sean; Yang, Otto O; Chen, Irvin S Y

    2015-07-31

    Chimeric antigen receptors (CARs) are artificially engineered receptors that confer a desired specificity to immune effector T cells. As an HIV-1-specific CAR, CD4ζ CAR has been extensively tested in vitro as well as in clinical trials. T cells modified with this CAR mediated highly potent anti-HIV-1 activities in vitro and were well-tolerated in vivo, but exerted limited effects on viral load and reservoir size due to poor survival and/or functionality of the transduced cells in patients. We hypothesize that ectopic expression of CD4ζ on CD8(+) T cells renders them susceptible to HIV-1 infection, resulting in poor survival of those cells. To test this possibility, highly purified CD8(+) T cells were genetically modified with a CD4ζ-encoding lentiviral vector and infected with HIV-1. CD8(+) T cells were vulnerable to HIV-1 infection upon expression of CD4ζ as evidenced by elevated levels of p24(Gag) in cells and culture supernatants. Concurrently, the number of CD4ζ-modified CD8(+) T cells was reduced relative to control cells upon HIV-1 infection. To protect these cells from HIV-1 infection, we co-expressed two anti-HIV-1 shRNAs previously developed by our group together with CD4ζ. This combination vector was able to suppress HIV-1 infection without impairing HIV-1-dependent effector activities of CD4ζ. In addition, the number of CD4ζ-modified CD8(+) T cells maintained similar levels to that of the control even under HIV-1 infection. These results suggest that protecting CD4ζ-modified CD8(+) T cells from HIV-1 infection is required for prolonged HIV-1-specific immune surveillance.

  12. Vpr-host interactions during HIV-1 viral life cycle.

    PubMed

    Zhao, Richard Y; Li, Ge; Bukrinsky, Michael I

    2011-06-01

    Human immunodeficiency virus type 1 (HIV-1) viral protein R (Vpr) is a multifunctional viral protein that plays important role at multiple stages of the HIV-1 viral life cycle. Although the molecular mechanisms underlying these activities are subject of ongoing investigations, overall, these activities have been linked to promotion of viral replication and impairment of anti-HIV immunity. Importantly, functional defects of Vpr have been correlated with slow disease progression of HIV-infected patients. Vpr is required for efficient viral replication in non-dividing cells such as macrophages, and it promotes, to some extent, viral replication in proliferating CD4+ T cells. The specific activities of Vpr include modulation of fidelity of viral reverse transcription, nuclear import of the HIV-1 pre-integration complex, transactivation of the HIV-1 LTR promoter, induction of cell cycle G2 arrest and cell death via apoptosis. In this review, we focus on description of the cellular proteins that specifically interact with Vpr and discuss their significance with regard to the known Vpr activities at each step of the viral life cycle in proliferating and non-proliferating cells.

  13. Psoriasis risk SNPs and their association with HIV-1 control.

    PubMed

    Nititham, Joanne; Gupta, Rashmi; Zeng, Xue; Hartogensis, Wendy; Nixon, Douglas F; Deeks, Steven G; Hecht, Frederick M; Liao, Wilson

    2017-02-01

    Human evolution has resulted in selection for genetic polymorphisms beneficial in the defense against pathogens. However, such polymorphisms may have the potential to heighten the risk of autoimmune disease. Here, we investigated whether psoriasis-associated single nucleotide polymorphisms influence host control of HIV-1 infection. We studied psoriasis and viral immune response variants in three HIV-positive cohorts: (1) HIV-1 controllers and non-controllers in the Study of the Consequences of the Protease Inhibitor Era (SCOPE) cohort (n=366), (2) Individuals with primary HIV infection in the Options cohort (n=675), and (3) HIV-positive injection drug users from the Urban Health Study (UHS) (n=987). We found a strong association of two psoriasis MHC variants, rs9264942 and rs3021366, with both HIV-1 controller status and viral load, and identified another Class III MHC variant rs9368699 to be strongly associated with viral load. A number of genetic variants outside the MHC (SOX5, TLR9, SDC4, PROX1, IL12B, TLR4, MBL-2, TYK2, IFIH1) demonstrated nominal significance. Overall, our data suggest that several psoriasis variants within the MHC have a robust impact on HIV-1 control, while variants outside the MHC require further investigation.

  14. Defective proviruses rapidly accumulate during acute HIV-1 infection

    PubMed Central

    Bruner, Katherine M.; Murray, Alexandra J.; Pollack, Ross A.; Soliman, Mary G.; Laskey, Sarah B.; Capoferri, Adam A.; Lai, Jun; Strain, Matthew C.; Lada, Steven M.; Hoh, Rebecca; Ho, Ya-Chi; Richman, Douglas D.; Deeks, Steven G.; Siliciano, Janet D.; Siliciano, Robert F.

    2016-01-01

    Although antiretroviral therapy (ART) suppresses viral replication to clinically undetectable levels, HIV-1 persists in CD4+ T cells in a latent form not targeted by the immune system or ART1–5. This latent reservoir is a major barrier to cure. Many individuals initiate ART during chronic infection, and in this setting, most proviruses are defective6. However, the dynamics of the accumulation and persistence of defective proviruses during acute HIV-1 infection are largely unknown. Here we show that defective proviruses accumulate rapidly within the first few weeks of infection to make up over 93% of all proviruses, regardless of how early ART is initiated. Using an unbiased method to amplify near full-length proviral genomes from HIV-1 infected adults treated at different stages of infection, we demonstrate that early ART initiation limits the size of the reservoir but does not profoundly impact the proviral landscape. This analysis allows us to revise our understanding of the composition of proviral populations and estimate the true reservoir size in individuals treated early vs. late in infection. Additionally, we demonstrate that common assays for measuring the reservoir do not correlate with reservoir size. These findings reveal hurdles that must be overcome to successfully analyze future HIV-1 cure strategies. PMID:27500724

  15. Polyvalent vaccine approaches to combat HIV-1 diversity

    DOE PAGES

    Korber, Bette; Hraber, Peter Thomas; Wagh, Kshitij; ...

    2017-01-30

    In this study, a key unresolved challenge for developing an effective HIV-1 vaccine is the discovery of strategies to elicit immune responses that are able to cross-protect against a significant fraction of the diverse viruses that are circulating worldwide. Here, we summarize some of the immunological implications of HIV-1 diversity, and outline the rationale behind several polyvalent vaccine design strategies that are currently under evaluation. Vaccine-elicited T-cell responses, which contribute to the control of HIV-1 in natural infections, are currently being considered in both prevention and treatment settings. Approaches now in preclinical and human trials include full proteins in novelmore » vectors, concatenated conserved protein regions, and polyvalent strategies that improve coverage of epitope diversity and enhance the cross-reactivity of responses. While many barriers to vaccine induction of broadly neutralizing antibody (bNAb) responses remain, epitope diversification has emerged as both a challenge and an opportunity. Recent longitudinal studies have traced the emergence of bNAbs in HIV-1 infection, inspiring novel approaches to recapitulate and accelerate the events that give rise to potent bNAb in vivo. In this review, we have selected two such lineage-based design strategies to illustrate how such in-depth analysis can offer conceptual improvements that may bring us closer to an effective vaccine.« less

  16. International NeuroAIDS: prospects of HIV-1 associated neurological complications.

    PubMed

    Trujillo, J Roberto; Jaramillo-Rangel, Gilberto; Ortega-Martinez, Marta; Penalva de Oliveira, Augusto C; Vidal, Jose E; Bryant, Joseph; Gallo, Robert C

    2005-01-01

    Neurological complications associated with HIV-1/AIDS are being recognized with a high frequency that parallels the increased number of AIDS cases. The early infiltration by HIV-1 into the nervous system can cause primary and/or secondary neurological complications. The most common neurocognitive disorder is AIDS Dementia Complex (ADC). In developing countries of Asia the three most opportunistic infections are tuberculosis (TB), cryptococcosis, and Pneumocystis carinii pneumonia. Therefore, it is expected that secondary neurological complications due to TB and cryptococcosis will be the most common cause of morbility and mortality in HIV-1/AIDS cases in China. Research of NeuroAIDS in China is necessary to understand the impact and the biology of HIV-1 in the nervous system. Future studies would include, the molecular epidemiology and the description of opportunistic infections associated to HIV-1; the neuropathological description of primary and secondary HIV-1 complications in different groups; the HIV-1 neurotropism and immune response studies for China's unique HIV-1 strains and recombinant forms derived from the nervous system, including experimental models such as the use of transgenic rats; and the study of potential resistant virus, primarily when the anti-retroviral therapy (ART) has not full access in the brain.

  17. Hybrid spreading mechanisms and T cell activation shape the dynamics of HIV-1 infection.

    PubMed

    Zhang, Changwang; Zhou, Shi; Groppelli, Elisabetta; Pellegrino, Pierre; Williams, Ian; Borrow, Persephone; Chain, Benjamin M; Jolly, Clare

    2015-04-01

    HIV-1 can disseminate between susceptible cells by two mechanisms: cell-free infection following fluid-phase diffusion of virions and by highly-efficient direct cell-to-cell transmission at immune cell contacts. The contribution of this hybrid spreading mechanism, which is also a characteristic of some important computer worm outbreaks, to HIV-1 progression in vivo remains unknown. Here we present a new mathematical model that explicitly incorporates the ability of HIV-1 to use hybrid spreading mechanisms and evaluate the consequences for HIV-1 pathogenenesis. The model captures the major phases of the HIV-1 infection course of a cohort of treatment naive patients and also accurately predicts the results of the Short Pulse Anti-Retroviral Therapy at Seroconversion (SPARTAC) trial. Using this model we find that hybrid spreading is critical to seed and establish infection, and that cell-to-cell spread and increased CD4+ T cell activation are important for HIV-1 progression. Notably, the model predicts that cell-to-cell spread becomes increasingly effective as infection progresses and thus may present a considerable treatment barrier. Deriving predictions of various treatments' influence on HIV-1 progression highlights the importance of earlier intervention and suggests that treatments effectively targeting cell-to-cell HIV-1 spread can delay progression to AIDS. This study suggests that hybrid spreading is a fundamental feature of HIV infection, and provides the mathematical framework incorporating this feature with which to evaluate future therapeutic strategies.

  18. Small Molecule Inhibitors of BAF; A Promising Family of Compounds in HIV-1 Latency Reversal.

    PubMed

    Stoszko, Mateusz; De Crignis, Elisa; Rokx, Casper; Khalid, Mir Mubashir; Lungu, Cynthia; Palstra, Robert-Jan; Kan, Tsung Wai; Boucher, Charles; Verbon, Annelies; Dykhuizen, Emily C; Mahmoudi, Tokameh

    2016-01-01

    Persistence of latently infected cells in presence of Anti-Retroviral Therapy presents the main obstacle to HIV-1 eradication. Much effort is thus placed on identification of compounds capable of HIV-1 latency reversal in order to render infected cells susceptible to viral cytopathic effects and immune clearance. We identified the BAF chromatin remodeling complex as a key player required for maintenance of HIV-1 latency, highlighting its potential as a molecular target for inhibition in latency reversal. Here, we screened a recently identified panel of small molecule inhibitors of BAF (BAFi's) for potential to activate latent HIV-1. Latency reversal was strongly induced by BAFi's Caffeic Acid Phenethyl Ester and Pyrimethamine, two molecules previously characterized for clinical application. BAFi's reversed HIV-1 latency in cell line based latency models, in two ex vivo infected primary cell models of latency, as well as in HIV-1 infected patient's CD4 + T cells, without inducing T cell proliferation or activation. BAFi-induced HIV-1 latency reversal was synergistically enhanced upon PKC pathway activation and HDAC-inhibition. Therefore BAFi's constitute a promising family of molecules for inclusion in therapeutic combinatorial HIV-1 latency reversal.

  19. Small Molecule Inhibitors of BAF; A Promising Family of Compounds in HIV-1 Latency Reversal

    PubMed Central

    Stoszko, Mateusz; De Crignis, Elisa; Rokx, Casper; Khalid, Mir Mubashir; Lungu, Cynthia; Palstra, Robert-Jan; Kan, Tsung Wai; Boucher, Charles; Verbon, Annelies; Dykhuizen, Emily C.; Mahmoudi, Tokameh

    2015-01-01

    Persistence of latently infected cells in presence of Anti-Retroviral Therapy presents the main obstacle to HIV-1 eradication. Much effort is thus placed on identification of compounds capable of HIV-1 latency reversal in order to render infected cells susceptible to viral cytopathic effects and immune clearance. We identified the BAF chromatin remodeling complex as a key player required for maintenance of HIV-1 latency, highlighting its potential as a molecular target for inhibition in latency reversal. Here, we screened a recently identified panel of small molecule inhibitors of BAF (BAFi's) for potential to activate latent HIV-1. Latency reversal was strongly induced by BAFi's Caffeic Acid Phenethyl Ester and Pyrimethamine, two molecules previously characterized for clinical application. BAFi's reversed HIV-1 latency in cell line based latency models, in two ex vivo infected primary cell models of latency, as well as in HIV-1 infected patient's CD4 + T cells, without inducing T cell proliferation or activation. BAFi-induced HIV-1 latency reversal was synergistically enhanced upon PKC pathway activation and HDAC-inhibition. Therefore BAFi's constitute a promising family of molecules for inclusion in therapeutic combinatorial HIV-1 latency reversal. PMID:26870822

  20. Breaking Barriers to an AIDS Model with Macaque-Tropic HIV-1 Derivatives.

    PubMed

    Thippeshappa, Rajesh; Ruan, Hongmei; Kimata, Jason T

    2012-05-12

    The development of an animal model of human immunodeficiency virus type 1 (HIV-1)/AIDS that is suitable for preclinical testing of antiretroviral therapy, vaccines, curative strategies, and studies of pathogenesis has been hampered by the human-specific tropism of HIV-1. Although simian immunodeficiency virus (SIV) or HIV-1/SIV chimeric viruses (SHIVs)-rhesus macaque models are excellent surrogates for AIDS research, the genetic differences between SIV or SHIV and HIV-1 limit their utility as model systems. The identification of innate retro viral restriction factors has increased our understanding about blockades to HIV-1 replication in macaques and provided a guide for the construction of macaque-tropic HIV-1 clones. However, while these viruses replicate in macaque cells in vitro, they are easily controlled and have not caused AIDS in host animals, indicating that we may not fully understand the restrictive barriers of innate immunity. In this review, we discuss recent findings regarding HIV-1 restriction factors, particularly as they apply to cross-species transmission of primate lentiviruses and the development of a macaque model of HIV-1/AIDS.

  1. Plasmacytoid dendritic cells promote HIV-1–induced group 3 innate lymphoid cell depletion

    PubMed Central

    Zhang, Zheng; Cheng, Liang; Zhao, Juanjuan; Li, Guangming; Zhang, Liguo; Chen, Weiwei; Nie, Weiming; Reszka-Blanco, Natalia J.; Wang, Fu-Sheng; Su, Lishan

    2015-01-01

    Group 3 innate lymphoid cells (ILC3s) have demonstrated roles in promoting antibacterial immunity, maintaining epithelial barrier function, and supporting tissue repair. ILC3 alterations are associated with chronic inflammation and inflammatory disease; however, the characteristics and relevant regulatory mechanisms of this cell population in HIV-1 infection are poorly understood due in part to a lack of a robust model. Here, we determined that functional human ILC3s develop in lymphoid organs of humanized mice and that persistent HIV-1 infection in this model depletes ILC3s, as observed in chronic HIV-1–infected patients. In HIV-1–infected mice, effective antiretroviral therapy reversed the loss of ILC3s. HIV-1–dependent reduction of ILC3s required plasmacytoid dendritic cells (pDCs), IFN-I, and the CD95/FasL pathway, as targeted depletion or blockade of these prevented HIV-1–induced ILC3 depletion in vivo and in vitro, respectively. Finally, we determined that HIV-1 infection induces CD95 expression on ILC3s via a pDC- and IFN-I–dependent mechanism that sensitizes ILC3s to undergo CD95/FasL-mediated apoptosis. We conclude that chronic HIV-1 infection depletes ILC3s through pDC activation, induction of IFN-I, and CD95-mediated apoptosis. PMID:26301812

  2. Macrophages and HIV-1: An Unhealthy Constellation.

    PubMed

    Sattentau, Quentin J; Stevenson, Mario

    2016-03-09

    Lentiviruses have a long-documented association with macrophages. Abundant evidence exists for in vitro and, in a tissue-specific manner, in vivo infection of macrophages by the primate lentiviruses HIV-1 and SIV. However, macrophage contribution to aspects of HIV-1 and SIV pathogenesis, and their role in viral persistence in individuals on suppressive antiretroviral therapy, remains unclear. Here we discuss recent evidence implicating macrophages in HIV-1-mediated disease and highlight directions for further investigation.

  3. HIV-1-infected Blood Mononuclear Cells Form an Integrin- and Agrin-dependent Viral Synapse to Induce Efficient HIV-1 Transcytosis across Epithelial Cell Monolayer

    PubMed Central

    Alfsen, Annette; Yu, Huifeng; Magérus-Chatinet, Aude; Schmitt, Alain; Bomsel, Morgane

    2005-01-01

    The heparan sulfate proteoglycan agrin and adhesion molecules are key players in the formation of neuronal and immune synapses that evolved for efficient communication at the sites of cell-cell contact. Transcytosis of infectious virus across epithelial cells upon contact between HIV-1-infected cells and the mucosal pole of the epithelial cells is one mechanism for HIV-1 entry at mucosal sites. In contrast, transcytosis of cell-free HIV-1 is not efficient. A synapse between HIV-1-infected cells and the mucosal epithelial surface that resembles neuronal and immune synapses is visualized by electron microscopy. We have termed this the “viral synapse.” Similarities of the viral synapse also extend to the functional level. HIV-1-infected cell-induced transcytosis depends on RGD-dependent integrins and efficient cell-free virus transcytosis is inducible upon RGD-dependent integrin cross-linking. Agrin appears differentially expressed at the apical epithelial surface and acts as an HIV-1 attachment receptor. Envelope glycoprotein subunit gp41 binds specifically to agrin, reinforcing the interaction of gp41 to its epithelial receptor galactosyl ceramide. PMID:15975901

  4. HIV-1-infected blood mononuclear cells form an integrin- and agrin-dependent viral synapse to induce efficient HIV-1 transcytosis across epithelial cell monolayer.

    PubMed

    Alfsen, Annette; Yu, Huifeng; Magérus-Chatinet, Aude; Schmitt, Alain; Bomsel, Morgane

    2005-09-01

    The heparan sulfate proteoglycan agrin and adhesion molecules are key players in the formation of neuronal and immune synapses that evolved for efficient communication at the sites of cell-cell contact. Transcytosis of infectious virus across epithelial cells upon contact between HIV-1-infected cells and the mucosal pole of the epithelial cells is one mechanism for HIV-1 entry at mucosal sites. In contrast, transcytosis of cell-free HIV-1 is not efficient. A synapse between HIV-1-infected cells and the mucosal epithelial surface that resembles neuronal and immune synapses is visualized by electron microscopy. We have termed this the "viral synapse." Similarities of the viral synapse also extend to the functional level. HIV-1-infected cell-induced transcytosis depends on RGD-dependent integrins and efficient cell-free virus transcytosis is inducible upon RGD-dependent integrin cross-linking. Agrin appears differentially expressed at the apical epithelial surface and acts as an HIV-1 attachment receptor. Envelope glycoprotein subunit gp41 binds specifically to agrin, reinforcing the interaction of gp41 to its epithelial receptor galactosyl ceramide.

  5. The HIV-1 epidemic in South Africa.

    PubMed

    Puren, A J

    2002-01-01

    The first reported cases of HIV-1 infection in South Africa occurred in 1982. Two distinct HIV-1 epidemic patterns were recognized. Initially the infection was prevalent in white males who had sex with males. The HIV-1 clade B was associated with this group. By 1989, the second epidemic was recognized primarily in the black population. Infections in this case were mainly heterosexual in origin. The HIV-1 clade involved was mainly C. The national HIV-1 sero-prevalence in antenatal attendees was less than 1% in 1990 and by 1994 this figure had risen to 7.5%. The most recent antenatal surveillance for HIV-1 sero-prevalence in 1999 revealed the following. The national prevalence rate for 1999 was 22.4% compared with the 1998 rate of 22.8%. The data highlighted the profound effect the epidemic had and will have on the disease burden in South Africa and by extension on the social and economic fronts. This view was emphasised by the impact HIV-1 infection had on tuberculosis. For example, sentinel surveys have attributed 44% of tuberculosis cases to HIV-1 infection. Moreover, the high prevalence of sexually transmitted infections will certainly exacerbate the HIV-1 epidemic.

  6. Therapeutic doses of irradiation activate viral transcription and induce apoptosis in HIV-1 infected cells

    PubMed Central

    Iordanskiy, Sergey; Van Duyne, Rachel; Sampey, Gavin C; Woodson, Caitlin M; Fry, Kelsi; Saifuddin, Mohammed; Guo, Jia; Wu, Yuntao; Romerio, Fabio; Kashanchi, Fatah

    2015-01-01

    The highly active antiretroviral therapy reduces HIV-1 RNA in plasma to undetectable levels. However, the virus continues to persist in the long-lived resting CD4+ T cells, macrophages and astrocytes which form a viral reservoir in infected individuals. Reactivation of viral transcription is critical since the host immune response in combination with antiretroviral therapy may eradicate the virus. Using the chronically HIV-1 infected T lymphoblastoid and monocytic cell lines, primary quiescent CD4+ T cells and humanized mice infected with dual-tropic HIV-1 89.6, we examined the effect of various X-ray irradiation (IR) doses (used for HIV-related lymphoma treatment and lower doses) on HIV-1 transcription and viability of infected cells. Treatment of both T cells and monocytes with IR, a well-defined stress signal, led to increase of HIV-1 transcription, as evidenced by the presence of RNA polymerase II and reduction of HDAC1 and methyl transferase SUV39H1 on the HIV-1 promoter. This correlated with the increased GFP signal and elevated level of intracellular HIV-1 RNA in the IR-treated quiescent CD4+ T cells infected with GFP-encoding HIV-1. Exposition of latently HIV-1infected monocytes treated with PKC agonist bryostatin 1 to IR enhanced transcription activation effect of this latency-reversing agent. Increased HIV-1 replication after IR correlated with higher cell death: the level of phosphorylated Ser46 in p53, responsible for apoptosis induction, was markedly higher in the HIV-1 infected cells following IR treatment. Exposure of HIV-1 infected humanized mice with undetectable viral RNA level to IR resulted in a significant increase of HIV-1 RNA in plasma, lung and brain tissues. Collectively, these data point to the use of low to moderate dose of IR alone or in combination with HIV-1 transcription activators as a potential application for the “Shock and Kill” strategy for latently HIV-1 infected cells. PMID:26184775

  7. Design and characterization of a peptide mimotope of the HIV-1 gp120 bridging sheet.

    PubMed

    Schiavone, Marco; Fiume, Giuseppe; Caivano, Antonella; de Laurentiis, Annamaria; Falcone, Cristina; Masci, Francesca Fasanella; Iaccino, Enrico; Mimmi, Selena; Palmieri, Camillo; Pisano, Antonio; Pontoriero, Marilena; Rossi, Annalisa; Scialdone, Annarita; Vecchio, Eleonora; Andreozzi, Concetta; Trovato, Maria; Rafay, Jan; Ferko, Boris; Montefiori, David; Lombardi, Angela; Morsica, Giulia; Poli, Guido; Quinto, Ileana; Pavone, Vincenzo; de Berardinis, Piergiuseppe; Scala, Giuseppe

    2012-01-01

    The Bridging Sheet domain of HIV-1 gp120 is highly conserved among the HIV-1 strains and allows HIV-1 binding to host cells via the HIV-1 coreceptors. Further, the bridging sheet domain is a major target to neutralize HIV-1 infection. We rationally designed four linear peptide epitopes that mimic the three-dimensional structure of bridging sheet by using molecular modeling. Chemically synthesized peptides BS3 and BS4 showed a fair degree of antigenicity when tested in ELISA with IgG purified from HIV(+) broadly neutralizing sera while the production of synthetic peptides BS1 and BS2 failed due to their high degree of hydrophobicity. To overcome this limitation, we linked all four BS peptides to the COOH-terminus of GST protein to test both their antigenicity and immunogenicity. Only the BS1 peptide showed good antigenicity; however, no envelope specific antibodies were elicited upon mice immunization. Therefore we performed further analyses by linking BS1 peptide to the NH2-terminus of the E2 scaffold from the Geobacillus Stearothermophylus PDH complex. The E2-BS1 fusion peptide showed good antigenic results, however only one immunized rabbit elicited good antibody titers towards both the monomeric and oligomeric viral envelope glycoprotein (Env). In addition, moderate neutralizing antibodies response was elicited against two HIV-1 clade B and one clade C primary isolates. These preliminary data validate the peptide mimotope approach as a promising tool to obtain an effective HIV-1 vaccine.

  8. Superiority in Rhesus Macaques of Targeting HIV-1 Env Gp140 to CD40 Versus LOX-1 in Combination with Replication Competent NYVAC-KC for Induction of Env-Specific Antibody and T Cell Responses.

    PubMed

    Zurawski, Gerard; Shen, Xiaoying; Zurawski, Sandra; Tomaras, Georgia D; Montefiori, David C; Roederer, Mario; Ferrari, Guido; Lacabaratz, Christine; Klucar, Peter; Wang, Zhiqing; Foulds, Kathryn E; Kao, Shing-Fen; Yu, Xuesong; Sato, Alicia; Yates, Nicole L; LaBranche, Celia; Stanfield-Oakley, Sherry; Kibler, Karen; Jacobs, Bertram; Salazar, Andres; Self, Steve; Fulp, Jimmy; Gottardo, Raphael; Galmin, Lindsey; Weiss, Deborah; Cristillo, Anthony; Pantaleo, Giuseppe; Levy, Yves

    2017-02-15

    We compared the HIV-1-specific immune responses generated by targeting HIV-1 envelope protein (Env gp140) to either CD40 or LOX-1, two endocytic receptors on dendritic cells (DCs), in Rhesus macaques primed with a poxvirus vector (NYVAC-KC) expressing Env gp140. The DC-targeting vaccines, humanized recombinant monoclonal antibodies fused to Env gp140, were administered as a boost with poly ICLC adjuvant either alone or co-administered with the NYVAC-KC vector. All the DC-targeting vaccine administrations with poly ICLC increased the low-level serum anti-Env IgG responses elicited by NYVAC-KC priming significantly more (up to P =0.01) than a group without poly ICLC. The responses were robust, cross-reactive, and contained antibodies specific to multiple epitopes within gp140 including the C1, C2, V1-3, C4, C5, and gp41 immuno-dominant regions. The DC-targeting vaccines also elicited modest serum Env-specific IgA responses. All groups gave serum neutralization activity limited to Tier 1 viruses and antibody dependent cytotoxicity responses (ADCC) after DC-targeting boosts. Furthermore, CD4(+) and CD8(+) T cell responses specific to multiple Env epitopes were strongly boosted by the DC-targeting vaccines + poly ICLC. Together, these results indicate that prime/boost immunization via NYVAC-KC and either αCD40.Env gp140/poly ICLC or αLOX-1.Env gp140/poly ICLC induced balanced antibody and T cell responses against HIV-1 Env. Co-administration of NYVAC-KC with the DC-targeting vaccines increased T cell responses, but had minimal effects on antibody responses except for suppressing serum IgA responses. Overall, compared to LOX-1, targeting Env to CD40 gave more robust T cell and serum antibody responses with broader epitope representation and greater durability.IMPORTANCE An effective vaccine to prevent HIV-1 infection does not yet exist. An approach to elicit strong protective antibody development is to direct virus protein antigens specifically to dendritic cells

  9. The Poxvirus C7L Host Range Factor Superfamily

    PubMed Central

    Liu, Jia; Rothenburg, Stefan; McFadden, Grant

    2012-01-01

    Host range factors, expressed by the poxvirus family, determine the host tropism of species, tissue, and cell specificity. C7L family members exist in the genomes of most sequenced mammalian poxviruses, suggesting an evolutionarily conserved effort adapting to the hosts. In general, C7L orthologs influence the host tropism in mammalian cell culture, and for some poxviruses it is essential for the complete viral life cycle in vitro and in vivo. The C7L family members lack obvious sequence homology with any other known viral or cellular proteins. Here we review recent findings from an evolutionary perspective and summarize recent progress that broadens our view on the role of C7L family members in mediating poxvirus host range and antagonizing the host defense system. PMID:23103013

  10. Neutralizing Monoclonal Antibodies to Fight HIV-1: On the Threshold of Success

    PubMed Central

    Jaworski, Juan Pablo; Vendrell, Alejandrina; Chiavenna, Sebastián Matias

    2017-01-01

    Anti-human immunodeficiency virus type-1 (anti-HIV-1) neutralizing monoclonal antibodies are broadening the spectrum of pre- and post-exposure treatment against HIV-1. A better understanding of how these antibodies develop and interact with particular regions of the viral envelope protein is guiding a more rational structure-based immunogen design. The aim of this article is to review the most recent advances in the field, from the development of these particular antibodies during natural HIV-1 infection, to their role preventing infection, boosting endogenous immune responses and clearing both free viral particles and persistently infected cells. PMID:28123384

  11. The role of micronutrients in the diet of HIV-1-infected individuals.

    PubMed

    Nunnari, Giuseppe; Coco, Christian; Pinzone, Marilia Rita; Pavone, Piero; Berretta, Massimiliano; Di Rosa, Michelino; Schnell, Matthias; Calabrese, Giorgio; Cacopardo, Bruno

    2012-06-01

    Vitamins, zinc and selenium are important micronutrients that play crucial functions at the cellular and molecular level. Immune response of several different cell types can be modulated by these micronutrients. Deficiency in micronutrients has been extensively reported in HIV-1-infected individuals and further correlated with CD4+ T-cell count, HIV-1 plasma viral load, disease progression and mortality. Supplementation by micronutrients has had controversial effects. Thorough future investigations and trials are certainly needed to strategically plan evidence-based interventions. Here, we review the available data on use of micronutrients during the course of HIV-1 infection.

  12. The design and evaluation of HIV-1 vaccines.

    PubMed

    Saunders, Kevin O; Rudicell, Rebecca S; Nabel, Gary J

    2012-06-19

    There is renewed optimism that the goal of developing a highly effective AIDS vaccine is attainable. The HIV-1 vaccine field has seen its first trial of a vaccine candidate that prevents infection. Although modest in efficacy, this finding, along with the recent discovery that the human immune system can produce broadly neutralizing antibodies capable of inhibiting greater than 90% of circulating viruses, provides a guide for the rational design of vaccines and protection by passive immunization. Together, these findings will help shape the next generation of HIV vaccines.

  13. Morphological evidence for natural poxvirus infection in rats

    NASA Technical Reports Server (NTRS)

    Kraft, L. M.; Dantoni Damelio, E.; Damelio, F. E.

    1982-01-01

    Focal inflammatory and desquamating lesions were seen in the nasal mucosa of rats that were flown aboard the Soviet satellite, Cosmos 1129, in 1979 and in the ground based controls. The infection was clinically inapparent. Electron microscopic examination revealed the presence of poxvirus virions in desquamating cells. The specific poxvirus involved could not be identified. The lesions appeared to be similar to those described by others in rats experimentally infected with mousepox (infectious ectromelia) virus by the intranasal route.

  14. A survey of host range genes in poxvirus genomes

    PubMed Central

    Bratke, Kirsten A.; McLysaght, Aoife; Rothenburg, Stefan

    2014-01-01

    Poxviruses are widespread pathogens, which display extremely different host ranges. Whereas some poxviruses, including variola virus, display narrow host ranges, others such as cowpox viruses naturally infect a wide range of mammals. The molecular basis for differences in host range are poorly understood but apparently depend on the successful manipulation of the host antiviral response. Some poxvirus genes have been shown to confer host tropism in experimental settings and are thus called host range factors. Identified host range genes include vaccinia virus K1L, K3L, E3L, B5R, C7L and SPI-1, cowpox virus CP77/CHOhr, ectromelia virus p28 and 022, and myxoma virus T2, T4, T5, 11L, 13L, 062R and 063R. These genes encode for ankyrin repeat-containing proteins, tumor necrosis factor receptor II homologs, apoptosis inhibitor T4-related proteins, Bcl-2-related proteins, pyrin domain-containing proteins, cellular serine protease inhibitors (serpins), short complement-like repeats containing proteins, KilA-N/RING domain-containing proteins, as well as inhibitors of the double-stranded RNA-activated protein kinase PKR. We conducted a systematic survey for the presence of known host range genes and closely related family members in poxvirus genomes, classified them into subgroups based on their phylogenetic relationship and correlated their presence with the poxvirus phylogeny. Common themes in the evolution of poxvirus host range genes are lineage-specific duplications and multiple independent inactivation events. Our analyses yield new insights into the evolution of poxvirus host range genes. Implications of our findings for poxvirus host range and virulence are discussed. PMID:23268114

  15. HIV Type 1 (HIV-1) Proviral Reservoirs Decay Continuously Under Sustained Virologic Control in HIV-1–Infected Children Who Received Early Treatment

    PubMed Central

    Luzuriaga, Katherine; Tabak, Barbara; Garber, Manuel; Chen, Ya Hui; Ziemniak, Carrie; McManus, Margaret M.; Murray, Danielle; Strain, Matthew C.; Richman, Douglas D.; Chun, Tae-Wook; Cunningham, Coleen K.; Persaud, Deborah

    2014-01-01

    Background. Early initiation of combination antiretroviral therapy (cART) to human immunodeficiency virus type 1 (HIV-1)–infected infants controls HIV-1 replication and reduces mortality. Methods. Plasma viremia (lower limit of detection, <2 copies/mL), T-cell activation, HIV-1–specific immune responses, and the persistence of cells carrying replication-competent virus were quantified during long-term effective combination antiretroviral therapy (cART) in 4 perinatally HIV-1–infected youth who received treatment early (the ET group) and 4 who received treatment late (the LT group). Decay in peripheral blood mononuclear cell (PBMC) proviral DNA levels was also measured over time in the ET youth. Results. Plasma viremia was not detected in any ET youth but was detected in all LT youth (median, 8 copies/mL; P = .03). PBMC proviral load was significantly lower in ET youth (median, 7 copies per million PBMCs) than in LT youth (median, 181 copies; P = .03). Replication-competent virus was recovered from all LT youth but only 1 ET youth. Decay in proviral DNA was noted in all 4 ET youth in association with limited T-cell activation and with absent to minimal HIV-1–specific immune responses. Conclusions. Initiation of early effective cART during infancy significantly limits circulating levels of proviral and replication-competent HIV-1 and promotes continuous decay of viral reservoirs. Continued cART with reduction in HIV-1 reservoirs over time may facilitate HIV-1 eradication strategies. PMID:24850788

  16. Poxvirus viability and signatures in historical relics.

    PubMed

    McCollum, Andrea M; Li, Yu; Wilkins, Kimberly; Karem, Kevin L; Davidson, Whitni B; Paddock, Christopher D; Reynolds, Mary G; Damon, Inger K

    2014-02-01

    Although it has been >30 years since the eradication of smallpox, the unearthing of well-preserved tissue material in which the virus may reside has called into question the viability of variola virus decades or centuries after its original occurrence. Experimental data to address the long-term stability and viability of the virus are limited. There are several instances of well-preserved corpses and tissues that have been examined for poxvirus viability and viral DNA. These historical specimens cause concern for potential exposures, and each situation should be approached cautiously and independently with the available information. Nevertheless, these specimens provide information on the history of a major disease and vaccination against it.

  17. Restricted isotype, distinct variable gene usage, and high rate of gp120 specificity of HIV-1 envelope-specific B cells in colostrum compared with those in blood of HIV-1-infected, lactating African women.

    PubMed

    Sacha, C R; Vandergrift, N; Jeffries, T L; McGuire, E; Fouda, G G; Liebl, B; Marshall, D J; Gurley, T C; Stiegel, L; Whitesides, J F; Friedman, J; Badiabo, A; Foulger, A; Yates, N L; Tomaras, G D; Kepler, T B; Liao, H X; Haynes, B F; Moody, M A; Permar, S R

    2015-03-01

    A successful HIV-1 vaccine must elicit immune responses that impede mucosal virus transmission, though functional roles of protective HIV-1 Envelope (Env)-specific mucosal antibodies remain unclear. Colostrum is a rich source of readily accessible mucosal B cells that may help define the mucosal antibody response contributing to prevention of postnatal HIV-1 transmission. To examine the HIV-1 Env-specific colostrum B-cell repertoire, single B cells were isolated from 17 chronically HIV-infected, lactating women, producing 51 blood and 39 colostrum HIV-1 Env-specific B-cell antibodies. All HIV-1 Env-specific colostrum-derived antibodies were immunoglobulin (Ig)G1 isotype and had mean heavy chain complementarity-determining region 3 (CDR3) lengths and mutation frequencies similar to those isolated from blood. However, variable heavy chain (VH) gene subfamily 1(∼)69 usage was higher among colostrum than blood HIV-1 Env-reactive antibodies (49% vs. 20%, P=0.006, Fisher's exact test). Additionally, more HIV-1 Env-specific colostrum antibodies were gp120 specific than those isolated from blood (44% vs. 16%, P=0.005, Fisher's exact test). One cross-compartment HIV-1 Env-specific clonal B-cell lineage was identified. These unique characteristics of colostrum B-cell antibodies suggest selective homing of HIV-1-specific IgG1-secreting memory B cells to the mammary gland and have implications for targeting mucosal B-cell populations by vaccination.

  18. Persistent HIV-1 replication during antiretroviral therapy

    PubMed Central

    Martinez-Picado, Javier; Deeks, Steven G.

    2016-01-01

    Purpose of review The present review will highlight some of the recent findings regarding the capacity of HIV-1 to replicate during antiretroviral therapy (ART). Recent findings Although ART is highly effective at inhibiting HIV replication, it is not curative. Several mechanisms contribute to HIV persistence during ART, including HIV latency, immune dysfunction, and perhaps persistent low-level spread of the virus to uninfected cells (replication). The success in curing HIV will depend on efficiently targeting these three aspects. The degree to which HIV replicates during ART remains controversial. Most studies have failed to find any evidence of HIV evolution in blood, even with samples collected over many years, although a recent very intensive study of three individuals suggested that the virus population does shift, at least during the first few months of therapy. Stronger but still not definitive evidence for replication comes from a series of studies in which standard regimens were intensified with an integration inhibitor, resulting in changes in episomal DNA (blood) and cell-associated RNA (tissue). Limited drug penetration within tissues and the presence of immune sanctuaries have been argued as potential mechanisms allowing HIV to spread during ART. Mathematical models suggest that HIV replication and evolution is possible even without the selection of fully drug-resistant variants. As persistent HIV replication could have clinical consequences and might limit the efficacy of curative interventions, determining if HIV replicates during ART and why, should remain a key focus of the HIV research community. Summary Residual viral replication likely persists in lymphoid tissues, at least in a subset of individuals. Abnormal levels of immune activation might contribute to sustain virus replication. PMID:27078619

  19. HIV-1 protease-induced apoptosis

    PubMed Central

    2014-01-01

    Background Apoptosis is one of the presumptive causes of CD4+ T cell depletion during HIV infection and progression to AIDS. However, the precise role of HIV-1 in this process remains unexplained. HIV-1 protease (PR) has been suggested as a possible factor, but a direct link between HIV-1 PR enzymatic activity and apoptosis has not been established. Results Here, we show that expression of active HIV-1 PR induces death in HeLa and HEK-293 cells via the mitochondrial apoptotic pathway. This conclusion is based on in vivo observations of the direct localization of HIV-1 PR in mitochondria, a key player in triggering apoptosis. Moreover, we observed an HIV-1 PR concentration-dependent decrease in mitochondrial membrane potential and the role of HIV-1 PR in activation of caspase 9, PARP cleavage and DNA fragmentation. In addition, in vitro data demonstrated that HIV-1 PR mediates cleavage of mitochondrial proteins Tom22, VDAC and ANT, leading to release of AIF and Hsp60 proteins. By using yeast two-hybrid screening, we also identified a new HIV-1 PR interaction partner, breast carcinoma-associated protein 3 (BCA3). We found that BCA3 accelerates p53 transcriptional activity on the bax promoter, thus elevating the cellular level of pro-apoptotic Bax protein. Conclusion In summary, our results describe the involvement of HIV-1 PR in apoptosis, which is caused either by a direct effect of HIV-1 PR on mitochondrial membrane integrity or by its interaction with cellular protein BCA3. PMID:24886575

  20. HIV-1 Genetic Diversity Among Incident Infections in Mbeya, Tanzania.

    PubMed

    Billings, Erik; Sanders-Buell, Eric; Bose, Meera; Kijak, Gustavo H; Bradfield, Andrea; Crossler, Jacqueline; Arroyo, Miguel A; Maboko, Leonard; Hoffmann, Oliver; Geis, Steffen; Birx, Deborah L; Kim, Jerome H; Michael, Nelson L; Robb, Merlin L; Hoelscher, Michael; Tovanabutra, Sodsai

    2017-04-01

    In preparation for vaccine trials, HIV-1 genetic diversity was surveyed between 2002 and 2006 through the Cohort Development study in the form of a retrospective and prospective observational study in and around the town of Mbeya in Tanzania's Southwest Highlands. This study describes the molecular epidemiology of HIV-1 strains obtained from 97 out of 106 incident HIV-1 infections identified in three subpopulations of participants (one rural, two urban) from the Mbeya area. Near full-genome or half-genome sequencing showed a subtype distribution of 40% C, 17% A1, 1% D, and 42% inter-subtype recombinants. Compared to viral subtyping results previously obtained from the retrospective phase of this study, the overall proportion of incident viral strains did not change greatly during the study course, suggesting maturity of the epidemic. A comparison to a current Phase I-II vaccine being tested in Africa shows ∼17% amino acid sequence difference between the gp120 of the vaccine and subtype C incident strains. Phylogenetic and recombinant breakpoint analysis of the incident strains revealed the emergence of CRF41_CD and many unique recombinants, as well as the presence of six local transmission networks most of which were confined to the rural subpopulation. In the context of vaccine cohort selection, these results suggest distinct infection transmission dynamics within these three geographically close subpopulations. The diversity and genetic sequences of the HIV-1 strains obtained during this study will greatly contribute to the planning, immunogen selection, and analysis of vaccine-induced immune responses observed during HIV-1 vaccine trials in Tanzania and neighboring countries.

  1. Targeting dendritic cells for improved HIV-1 vaccines.

    PubMed

    Smed-Sörensen, Anna; Loré, Karin

    2013-01-01

    As dendritic cells (DCs) have the unique capacity to activate antigen-naive T cells they likely play a critical role in eliciting immune responses to vaccines. DCs are therefore being explored as attractive targets for vaccines, but understanding the interaction of DCs and clinically relevant vaccine antigens and adjuvants is a prerequisite. The HIV-1/AIDS epidemic continues to be a significant health problem, and despite intense research efforts over the past 30 years a protective vaccine has not yet been developed. A common challenge in vaccine design is to find a vaccine formulation that best shapes the immune response to protect against and/or control the given pathogen. Here, we discuss the importance of understanding the diversity, anatomical location and function of different human DC subsets in order to identify the optimal target cells for an HIV-1 vaccine. We review human DC interactions with some of the HIV-1 vaccine antigen delivery vehicles and adjuvants currently utilized in preclinical and clinical studies. Specifically, the effects of distinctly different vaccine adjuvants in terms of activation of DCs and improving DC function and vaccine efficacy are discussed. The susceptibility and responses of DCs to recombinant adenovirus vectors are reviewed, as well as the strategy of directly targeting DCs by using DC marker-specific monoclonal antibodies coupled to an antigen.

  2. Complement-Opsonized HIV-1 Overcomes Restriction in Dendritic Cells

    PubMed Central

    Posch, Wilfried; Steger, Marion; Knackmuss, Ulla; Blatzer, Michael; Baldauf, Hanna-Mari; Doppler, Wolfgang; White, Tommy E.; Hörtnagl, Paul; Diaz-Griffero, Felipe; Lass-Flörl, Cornelia; Hackl, Hubert; Moris, Arnaud; Keppler, Oliver T.; Wilflingseder, Doris

    2015-01-01

    DCs express intrinsic cellular defense mechanisms to specifically inhibit HIV-1 replication. Thus, DCs are productively infected only at very low levels with HIV-1, and this non-permissiveness of DCs is suggested to go along with viral evasion. We now illustrate that complement-opsonized HIV-1 (HIV-C) efficiently bypasses SAMHD1 restriction and productively infects DCs including BDCA-1 DCs. Efficient DC infection by HIV-C was also observed using single-cycle HIV-C, and correlated with a remarkable elevated SAMHD1 T592 phosphorylation but not SAMHD1 degradation. If SAMHD1 phosphorylation was blocked using a CDK2-inhibitor HIV-C-induced DC infection was also significantly abrogated. Additionally, we found a higher maturation and co-stimulatory potential, aberrant type I interferon expression and signaling as well as a stronger induction of cellular immune responses in HIV-C-treated DCs. Collectively, our data highlight a novel protective mechanism mediated by complement opsonization of HIV to effectively promote DC immune functions, which might be in the future exploited to tackle HIV infection. PMID:26121641

  3. Comprehensive epitope analysis of human immunodeficiency virus type 1 (HIV-1)-specific T-cell responses directed against the entire expressed HIV-1 genome demonstrate broadly directed responses, but no correlation to viral load.

    PubMed

    Addo, M M; Yu, X G; Rathod, A; Cohen, D; Eldridge, R L; Strick, D; Johnston, M N; Corcoran, C; Wurcel, A G; Fitzpatrick, C A; Feeney, M E; Rodriguez, W R; Basgoz, N; Draenert, R; Stone, David R; Brander, C; Goulder, P J R; Rosenberg, E S; Altfeld, M; Walker, B D

    2003-02-01

    Cellular immune responses play a critical role in the control of human immunodeficiency virus type 1 (HIV-1); however, the breadth of these responses at the single-epitope level has not been comprehensively assessed. We therefore screened peripheral blood mononuclear cells (PBMC) from 57 individuals at different stages of HIV-1 infection for virus-specific T-cell responses using a matrix of 504 overlapping peptides spanning all expressed HIV-1 proteins in a gamma interferon-enzyme-linked immunospot (Elispot) assay. HIV-1-specific T-cell responses were detectable in all study subjects, with a median of 14 individual epitopic regions targeted per person (range, 2 to 42), and all 14 HIV-1 protein subunits were recognized. HIV-1 p24-Gag and Nef contained the highest epitope density and were also the most frequently recognized HIV-1 proteins. The total magnitude of the HIV-1-specific response ranged from 280 to 25,860 spot-forming cells (SFC)/10(6) PBMC (median, 4,245) among all study participants. However, the number of epitopic regions targeted, the protein subunits recognized, and the total magnitude of HIV-1-specific responses varied significantly among the tested individuals, with the strongest and broadest responses detectable in individuals with untreated chronic HIV-1 infection. Neither the breadth nor the magnitude of the total HIV-1-specific CD8+-T-cell responses correlated with plasma viral load. We conclude that a peptide matrix-based Elispot assay allows for rapid, sensitive, specific, and efficient assessment of cellular immune responses directed against the entire expressed HIV-1 genome. These data also suggest that the impact of T-cell responses on control of viral replication cannot be explained by the mere quantification of the magnitude and breadth of the CD8+-T-cell response, even if a comprehensive pan-genome screening approach is applied.

  4. Ectopic expression of anti-HIV-1 shRNAs protects CD8{sup +} T cells modified with CD4ζ CAR from HIV-1 infection and alleviates impairment of cell proliferation

    SciTech Connect

    Kamata, Masakazu; Kim, Patrick Y.; Ng, Hwee L.; Ringpis, Gene-Errol E.; Kranz, Emiko; Chan, Joshua; O'Connor, Sean; Yang, Otto O.; Chen, Irvin S.Y.

    2015-07-31

    Chimeric antigen receptors (CARs) are artificially engineered receptors that confer a desired specificity to immune effector T cells. As an HIV-1-specific CAR, CD4ζ CAR has been extensively tested in vitro as well as in clinical trials. T cells modified with this CAR mediated highly potent anti-HIV-1 activities in vitro and were well-tolerated in vivo, but exerted limited effects on viral load and reservoir size due to poor survival and/or functionality of the transduced cells in patients. We hypothesize that ectopic expression of CD4ζ on CD8{sup +} T cells renders them susceptible to HIV-1 infection, resulting in poor survival of those cells. To test this possibility, highly purified CD8{sup +} T cells were genetically modified with a CD4ζ-encoding lentiviral vector and infected with HIV-1. CD8{sup +} T cells were vulnerable to HIV-1 infection upon expression of CD4ζ as evidenced by elevated levels of p24{sup Gag} in cells and culture supernatants. Concurrently, the number of CD4ζ-modified CD8{sup +} T cells was reduced relative to control cells upon HIV-1 infection. To protect these cells from HIV-1 infection, we co-expressed two anti-HIV-1 shRNAs previously developed by our group together with CD4ζ. This combination vector was able to suppress HIV-1 infection without impairing HIV-1-dependent effector activities of CD4ζ. In addition, the number of CD4ζ-modified CD8{sup +} T cells maintained similar levels to that of the control even under HIV-1 infection. These results suggest that protecting CD4ζ-modified CD8{sup +} T cells from HIV-1 infection is required for prolonged HIV-1-specific immune surveillance. - Highlights: • Ectopic expression of CD4ζ CAR in CD8{sup +} T cells renders them susceptible to HIV-1 infection. • Co-expression of two anti-HIV-1 shRNAs protects CD4ζ CAR-modified CD8{sup +} T cells from HIV-1 infection. • Protecting CD4ζ CAR-modified CD8{sup +} T cells from HIV-1 infection suppresses its cytopathic effect.

  5. Multiple T-cell responses are associated with better control of acute HIV-1 infection

    PubMed Central

    Sun, Jianping; Zhao, Yan; Peng, Yanchun; Han, Zhen; Liu, Guihai; Qin, Ling; Liu, Sai; Sun, Huanhuan; Wu, Hao; Dong, Tao; Zhang, Yonghong

    2016-01-01

    Abstract Cytotoxic T lymphocyte (CTL) responses play pivotal roles in controlling the replication of human immunodeficiency virus type 1 (HIV-1), but the correlation between CTL responses and the progression of HIV-1 infection are controversial on account of HIV immune escape mutations driven by CTL pressure were reported. The acute HIV-1-infected patients from Beijing were incorporated into our study to investigate the effects of CTL response on the progression of HIV-1 infection. A longitudinal study was performed on acute HIV-1-infected patients to clarify the kinetic of T-cell responses, the dynamic of escape mutations, as well as the correlation between effective T-cell response and the progression of HIV infection. Seven human leukocyte antigen-B51+ (HLA-B51+) individuals were screened from 105 acute HIV-1 infectors. The detailed kinetic of HLA-B51-restricted CTL responses was described through blood sampling time points including seroconversion, 3 and 6 months after HIV-1 infection in the 7 HLA-B51+ individuals, by using 16 known HLA-B51 restricted epitopes. Pol743–751 (LPPVVAKEI, LI9), Pol283–289 (TAFTIPSI, TI8), and Gag327–3459 (NANPDCKTI, NI9) were identified as 3 dominant epitopes, and ranked as starting with LI9, followed by TI8 and NI9 in the ability to induce T-cell responses. The dynamics of escape mutations in the 3 epitopes were also found with the same order as T-cell response, by using sequencing for viral clones on blood sampling at seroconversion, 3 and 6 months after HIV-1 infection. We use solid evidence to demonstrate the correlation between T-cell response and HIV-1 mutation, and postulate that multiple T-cell responses might benefit the control of HIV-1 infection, especially in acute infection phase. PMID:27472741

  6. Expression of HIV-1 matrix protein p17 and association with B-cell lymphoma in HIV-1 transgenic mice

    PubMed Central

    Carroll, Virginia A.; Lafferty, Mark K.; Marchionni, Luigi; Bryant, Joseph L.; Gallo, Robert C.

    2016-01-01

    HIV-1 infection is associated with increased risk for B-cell lymphomas. How HIV infection promotes the development of lymphoma is unclear, but it may involve chronic B-cell activation, inflammation, and/or impaired immunity, possibly leading to a loss of control of oncogenic viruses and reduced tumor immunosurveillance. We hypothesized that HIV structural proteins may contribute to lymphomagenesis directly, because they can persist long term in lymph nodes in the absence of viral replication. The HIV-1 transgenic mouse Tg26 carries a noninfectious HIV-1 provirus lacking part of the gag-pol region, thus constituting a model for studying the effects of viral products in pathogenesis. Approximately 15% of Tg26 mice spontaneously develop leukemia/lymphoma. We investigated which viral proteins are associated with the development of leukemia/lymphoma in the Tg26 mouse model, and performed microarray analysis on RNA from spleen and lymph nodes to identify potential mechanisms of lymphomagenesis. Of the viral proteins examined, only expression of HIV-1 matrix protein p17 was associated with leukemia/lymphoma development and was highly expressed in bone marrow before disease. The tumor cells resembled pro-B cells, and were CD19+IgM−IgD−CD93+CD43+CD21−CD23−VpreB+CXCR4+. Consistent with the pro-B-cell stage of B-cell development, microarray analysis revealed enrichment of transcripts, including Rag1, Rag2, CD93, Vpreb1, Vpreb3, and Igll1. We confirmed RAG1 expression in Tg26 tumors, and hypothesized that HIV-1 matrix protein p17 may directly induce RAG1 in B cells. Stimulation of human activated B cells with p17 enhanced RAG1 expression in three of seven donors, suggesting that intracellular signaling by p17 may lead to genomic instability and transformation. PMID:27799525

  7. Altered sialylation of alveolar macrophages in HIV-1-infected individuals

    PubMed Central

    PERRIN, C; GIORDANENGO, V; BANNWARTH, S; BLAIVE, B; LEFEBVRE, J-C

    1997-01-01

    In previous studies, we have demonstrated that O-glycans at the surface of HIV-1-infected cell lines were hyposialylated. Moreover, we and others have shown that HIV+ individuals produced autoantibodies that react with hyposialylated CD43, on T cell lines. Since the autoantigen responsible for this abnormal immune response was not easily found in the peripheral blood cells of corresponding patients, we searched for its possible presence in other sites. Using fluorescence staining of alveolar macrophages with various lectins, we show that the binding of the PNA lectin specific for asialo O-glycans is much more efficient on cells from HIV-1-infected individuals. Moreover, the degree of reactivity of PNA is correlated with the clinical stage of the illness. PMID:9353144

  8. Altered sialylation of alveolar macrophages in HIV-1-infected individuals.

    PubMed

    Perrin, C; Giordanengo, V; Bannwarth, S; Blaive, B; Lefebvre, J C

    1997-10-01

    In previous studies, we have demonstrated that O-glycans at the surface of HIV-1-infected cell lines were hyposialylated. Moreover, we and others have shown that HIV+ individuals produced autoantibodies that react with hyposialylated CD43, on T cell lines. Since the autoantigen responsible for this abnormal immune response was not easily found in the peripheral blood cells of corresponding patients, we searched for its possible presence in other sites. Using fluorescence staining of alveolar macrophages with various lectins, we show that the binding of the PNA lectin specific for asialo O-glycans is much more efficient on cells from HIV-1-infected individuals. Moreover, the degree of reactivity of PNA is correlated with the clinical stage of the illness.

  9. Persistent HIV-1 replication maintains the tissue reservoir during therapy

    PubMed Central

    Bedford, Trevor; Kim, Eun-Young; Archer, John; Pond, Sergei L. Kosakovsky; Chung, Yoon-Seok; Penugonda, Sudhir; Chipman, Jeffrey; Fletcher, Courtney V.; Schacker, Timothy W.; Malim, Michael H.; Rambaut, Andrew; Haase, Ashley T.; McLean, Angela R.; Wolinsky, Steven M.

    2015-01-01

    Lymphoid tissue is a key reservoir established by HIV-1 during acute infection. It is a site of viral production, storage of viral particles in immune complexes, and viral persistence. Whilst combinations of antiretroviral drugs usually suppress viral replication and reduce viral RNA to undetectable levels in blood, it is unclear whether treatment fully suppresses viral replication in lymphoid tissue reservoirs. Here we show that virus evolution and trafficking between tissue compartments continues in patients with undetectable levels of virus in their bloodstream. A spatial dynamic model of persistent viral replication and spread explains why the development of drug resistance is not a foregone conclusion under conditions where drug concentrations are insufficient to completely block virus replication. These data provide fresh insights into the evolutionary and infection dynamics of the virus population within the host, revealing that HIV-1 can continue to replicate and refill the viral reservoir despite potent antiretroviral therapy. PMID:26814962

  10. HIV-1-induced AIDS in monkeys.

    PubMed

    Hatziioannou, Theodora; Del Prete, Gregory Q; Keele, Brandon F; Estes, Jacob D; McNatt, Matthew W; Bitzegeio, Julia; Raymond, Alice; Rodriguez, Anthony; Schmidt, Fabian; Mac Trubey, C; Smedley, Jeremy; Piatak, Michael; KewalRamani, Vineet N; Lifson, Jeffrey D; Bieniasz, Paul D

    2014-06-20

    Primate lentiviruses exhibit narrow host tropism, reducing the occurrence of zoonoses but also impairing the development of optimal animal models of AIDS. To delineate the factors limiting cross-species HIV-1 transmission, we passaged a modified HIV-1 in pigtailed macaques that were transiently depleted of CD8(+) cells during acute infection. During adaptation over four passages in macaques, HIV-1 acquired the ability to antagonize the macaque restriction factor tetherin, replicated at progressively higher levels, and ultimately caused marked CD4(+) T cell depletion and AIDS-defining conditions. Transient treatment with an antibody to CD8 during acute HIV-1 infection caused rapid progression to AIDS, whereas untreated animals exhibited an elite controller phenotype. Thus, an adapted HIV-1 can cause AIDS in macaques, and stark differences in outcome can be determined by immunological perturbations during early infection.

  11. Natural mannosylation of HIV-1 gp120 imposes no immunoregulatory effects in primary human plasmacytoid dendritic cells.

    PubMed

    Søndergaard, Jonas Nørskov; Vinner, Lasse; Brix, Susanne

    2014-06-01

    Plasmacytoid dendritic cells (pDCs) play a vital role in activation of anti-HIV-1 immunity, and suppression of pDCs might mitigate immune responses against HIV-1. HIV-1 gp120 high-mannose has been attributed immunosuppressive roles in human myeloid DCs, but no receptors for high-mannose have so far been reported on human pDCs. Here we show that upon activation with HIV-1 or by a synthetic compound triggering the same receptor in human pDCs as single-stranded RNA, human pDCs upregulate the mannose receptor (MR, CD206). To examine the functional outcome of this upregulation, inactivated intact or viable HIV-1 particles with various degrees of mannosylation were cultured with pDCs. Activation of pDCs was determined by assaying secretion of IFN-alpha, viability, and upregulation of several pDC-activation markers: CD40, CD86, HLA-DR, CCR7, and PD-L1. The level of activation negatively correlated with degree of mannosylation, however, subsequent reduction in the original mannosylation level had no effect on the pDC phenotype. Furthermore, two of the infectious HIV-1 strains induced profound necrosis in pDCs, also in a mannose-independent manner. We therefore conclude that natural mannosylation of HIV-1 is not involved in HIV-1-mediated immune suppression of pDCs.

  12. GADD45 proteins inhibit HIV-1 replication through specific suppression of HIV-1 transcription.

    PubMed

    Liang, Zhibin; Liu, Ruikang; Zhang, Hui; Zhang, Suzhen; Hu, Xiaomei; Tan, Juan; Liang, Chen; Qiao, Wentao

    2016-06-01

    GADD45 proteins are a group of stress-induced proteins and participate in various cellular pathways including cell cycle regulation, cell survival and death, DNA repair and demethylation. It was recently shown that HIV-1 infection induces the expression of GADD45 proteins. However, the effect of GADD45 on HIV-1 replication has not been studied. Here, we report that overexpression of GADD45 proteins reduces HIV-1 production through suppressing transcription from the HIV-1 LTR promoter. This inhibitory effect is specific to HIV-1, since GADD45 proteins neither inhibit the LTR promoters from other retroviruses nor reduce the production of these viruses. Knockdown of endogenous GADD45 modestly activates HIV-1 in the J-Lat A72 latency cell line, which suggests GADD45 proteins might play a role in maintaining HIV-1 latency.

  13. HIV-1 VACCINES. Priming a broadly neutralizing antibody response to HIV-1 using a germline-targeting immunogen.

    PubMed

    Jardine, Joseph G; Ota, Takayuki; Sok, Devin; Pauthner, Matthias; Kulp, Daniel W; Kalyuzhniy, Oleksandr; Skog, Patrick D; Thinnes, Theresa C; Bhullar, Deepika; Briney, Bryan; Menis, Sergey; Jones, Meaghan; Kubitz, Mike; Spencer, Skye; Adachi, Yumiko; Burton, Dennis R; Schief, William R; Nemazee, David

    2015-07-10

    A major goal of HIV-1 vaccine research is the design of immunogens capable of inducing broadly neutralizing antibodies (bnAbs) that bind to the viral envelope glycoprotein (Env). Poor binding of Env to unmutated precursors of bnAbs, including those of the VRC01 class, appears to be a major problem for bnAb induction. We engineered an immunogen that binds to VRC01-class bnAb precursors and immunized knock-in mice expressing germline-reverted VRC01 heavy chains. Induced antibodies showed characteristics of VRC01-class bnAbs, including a short CDRL3 (light-chain complementarity-determining region 3) and mutations that favored binding to near-native HIV-1 gp120 constructs. In contrast, native-like immunogens failed to activate VRC01-class precursors. The results suggest that rational epitope design can prime rare B cell precursors for affinity maturation to desired targets.

  14. Rabbit CD200R binds host CD200 but not CD200-like proteins from poxviruses

    PubMed Central

    Akkaya, Munir; Kwong, Lai-Shan; Akkaya, Erdem; Hatherley, Deborah; Barclay, A. Neil

    2016-01-01

    CD200 is a widely distributed membrane protein that gives inhibitory signals through its receptor (CD200R) on myeloid cells. CD200 has been acquired by herpesviruses where it has been shown to interact with host CD200R and downmodulate the immune system. It has been hypothesized that poxviruses have acquired CD200; but the potential orthologues show less similarity to their hosts. Myxoma virus M141 protein is a potential CD200 orthologue with a potent immune modulatory function in rabbits. Here, we characterized the rabbit CD200, CD200R and tested the CD200-like sequences for binding CD200R. No binding could be detected using soluble recombinant proteins, full length protein expressed on cells or myxoma virus infected cells. Finally, using knockdown models, we showed that the inhibitory effect of M141 on RAW 264.7 cells upon myxoma virus infection is not due to CD200R. We conclude that the rabbit poxvirus CD200-like proteins cause immunomodulation without utilizing CD200R. PMID:26590792

  15. Improved quantification of HIV-1-infected CD4+ T cells using an optimised method of intracellular HIV-1 gag p24 antigen detection.

    PubMed

    Yang, Hongbing; Yorke, Elisabeth; Hancock, Gemma; Clutton, Genevieve; Sande, Nellia; Angus, Brian; Smyth, Redmond; Mak, Johnson; Dorrell, Lucy

    2013-05-31

    The capacity of CD8+ T cells to inhibit HIV-1 replication in vitro strongly correlates with virus control in vivo. Post-hoc evaluations of HIV-1 vaccine candidates suggest that this immunological parameter is a promising benchmark of vaccine efficacy. Large-scale analysis of CD8+ T cell antiviral activity requires a rapid, robust and economical assay for accurate quantification of HIV-1 infection in primary CD4+ T cells. Detection of intracellular HIV-1 p24 antigen (p24 Ag) by flow cytometry is one such method but it is thought to be less sensitive and quantitative than p24 Ag ELISA. We report that fixation and permeabilisation of HIV-infected cells using paraformaldehyde/50% methanol/Nonidet P-40 instead of a conventional paraformaldehyde/saponin-based protocol improved their detection across multiplicities of infection (MOI) ranging from 10(-2) to 8×10(-5), and by nearly two-fold (p<0.001) at the optimal MOI tested (10(-2)). The frequency of infected cells was strongly correlated with p24 Ag release during culture, thus validating its use as a measure of productive infection. We were also able to quantify infection with a panel of HIV-1 isolates representing the major clades. The protocol described here is rapid and cost-effective compared with ELISA and thus could be a useful component of immune monitoring of HIV-1 vaccines and interventions to reduce viral reservoirs.

  16. The impact of pregnancy on the HIV-1-specific T cell function in infected pregnant women.

    PubMed

    Hygino, Joana; Vieira, Morgana M; Kasahara, Taissa M; Xavier, Luciana F; Blanco, Bernardo; Guillermo, Landi V C; Filho, Renato G S; Saramago, Carmen S M; Lima-Silva, Agostinho A; Oliveira, Ariane L; Guimarães, Vander; Andrade, Arnaldo F B; Bento, Cleonice A M

    2012-12-01

    Evidences indicate that pregnancy can alter the Ag-specific T-cell responses. This work aims to evaluate the impact of pregnancy on the in vitro HIV-1-specific immune response. As compared with non-pregnant patients, lower T-cell proliferation and higher IL-10 production were observed in T-cell cultures from pregnant patients following addition of either mitogens or HIV-1 antigens. In our system, the main T lymphocyte subset involved in producing IL-10 was CD4(+)FoxP3(-). Depletion of CD4(+) cells elevated TNF-α and IFN-γ production. Interestingly, the in vitro HIV-1 replication was lower in cell cultures from pregnant patients, and it was inversely related to IL-10 production. In these cultures, the neutralization of IL-10 by anti-IL-10 mAb elevated TNF-α release and HIV-1 replication. In conclusion, our results reveal that pregnancy-related events should favor the expansion of HIV-1-specific IL-10-secreting CD4(+) T-cells in HIV-1-infected women, which should, in the scenario of pregnancy, help to reduce the risk of vertical HIV-1 transmission.

  17. Prevalence and persistence of antibody titers to recombinant HIV-1 core and matrix proteins in HIV-1 infection.

    PubMed

    Janvier, B; Mallet, F; Cheynet, V; Dalbon, P; Vernet, G; Besnier, J M; Choutet, P; Goudeau, A; Mandrand, B; Barin, F

    1993-08-01

    Numerous studies have established the correlation between antibodies to the core protein p24 of HIV-1 and the progression of the acquired immunodeficiency syndrome. In this study, we analyzed the immune response to two recombinant gag proteins, p24 and p17, in order to evaluate their diagnostic or prognostic significance. Immune response to the immunodominant domain of the transmembrane glycoprotein gp41 was used as a reference. Sera collected from individuals from France and Burundi (Central Africa) at various CDC stages of HIV-1 infection were tested using three sandwich enzyme-linked immunoassays developed with a synthetic peptide corresponding to the immunodominant domain of gp41, SP gp41, or recombinant p24 and p17 cloned and expressed in Escherichia coli. These assays allowed detection of titer antibodies to the three cited antigens. Antibodies to SP gp41 were detected in every HIV-1-positive patient from France and Burundi, generally at a high and stable level. Results obtained with p24 confirmed the value of antibodies to p24 as a prognostic marker only in European and North American populations, since the African population had very high levels of these antibodies even at an advanced stage of the disease. They also confirmed that initial antibody response to p24 is more predictive of outcome than antibody titer change over time. Although antibodies to p17 decline during progression to AIDS, they are frequently absent in French patients at early, asymptomatic stages and therefore could not be used as a prognostic marker. In contrast, antibodies to p17 are significantly less common in African patients with AIDS when compared with symptomless HIV-1-infected African individuals.(ABSTRACT TRUNCATED AT 250 WORDS)

  18. Differential Induction of Apoptosis, Interferon Signaling, and Phagocytosis in Macrophages Infected with a Panel of Attenuated and Nonattenuated Poxviruses

    PubMed Central

    Royo, Sandra; Sainz, Bruno; Hernández-Jiménez, Enrique; Reyburn, Hugh; López-Collazo, Eduardo

    2014-01-01

    ABSTRACT Due to the essential role macrophages play in antiviral immunity, it is important to understand the intracellular and molecular processes that occur in macrophages following infection with various strains of vaccinia virus, particularly those used as vaccine vectors. Similarities as well as differences were found in macrophages infected with different poxvirus strains, particularly at the level of virus-induced apoptosis and the expression of immunomodulatory genes, as determined by microarray analyses. Interestingly, the attenuated modified vaccinia Ankara virus (MVA) was particularly efficient in triggering apoptosis and beta interferon (IFN-β) secretion and in inducing changes in the expression of genes associated with increased activation of innate immunity, setting it apart from the other five vaccinia virus strains tested. Taken together, these results increase our understanding of how these viruses interact with human macrophages, at the cellular and molecular levels, and suggest mechanisms that may underlie their utility as recombinant vaccine vectors. IMPORTANCE Our studies clearly demonstrate that there are substantial biological differences in the patterns of cellular gene expression between macrophages infected with different poxvirus strains and that these changes are due specifically to infection with the distinct viruses. For example, a clear induction in IFN-β mRNA was observed after infection with MVA but not with other poxviruses. Importantly, antiviral bioassays confirmed that MVA-infected macrophages secreted a high level of biologically active type I IFN. Similarly, the phagocytic capacity of macrophages was also specifically increased after infection with MVA. Although the main scope of this study was not to test the vaccine potential of MVA as there are several groups in the field working extensively on this aspect, the characteristics/phenotypes we observed at the in vitro level clearly highlight the inherent advantages that MVA

  19. In Vivo Molecular Dissection of the Effects of HIV-1 in Active Tuberculosis.

    PubMed

    Bell, Lucy C K; Pollara, Gabriele; Pascoe, Mellissa; Tomlinson, Gillian S; Lehloenya, Rannakoe J; Roe, Jennifer; Meldau, Richard; Miller, Robert F; Ramsay, Alan; Chain, Benjamin M; Dheda, Keertan; Noursadeghi, Mahdad

    2016-03-01

    Increased risk of tuberculosis (TB) associated with HIV-1 infection is primarily attributed to deficient T helper (Th)1 immune responses, but most people with active TB have robust Th1 responses, indicating that these are not sufficient to protect against disease. Recent findings suggest that favourable outcomes following Mycobacterium tuberculosis infection arise from finely balanced inflammatory and regulatory pathways, achieving pathogen control without immunopathology. We hypothesised that HIV-1 and antiretroviral therapy (ART) exert widespread changes to cell mediated immunity, which may compromise the optimal host protective response to TB and provide novel insights into the correlates of immune protection and pathogenesis. We sought to define these effects in patients with active TB by transcriptional profiling of tuberculin skin tests (TST) to make comprehensive molecular level assessments of in vivo human immune responses at the site of a standardised mycobacterial challenge. We showed that the TST transcriptome accurately reflects the molecular pathology at the site of human pulmonary TB, and used this approach to investigate immune dysregulation in HIV-1/TB co-infected patients with distinct clinical phenotypes associated with TST reactivity or anergy and unmasking TB immune reconstitution inflammatory syndrome (IRIS) after initiation of ART. HIV-1 infected patients with positive TSTs exhibited preserved Th1 responses but deficient immunoregulatory IL10-inducible responses. Those with clinically negative TSTs revealed profound anergy of innate as well as adaptive immune responses, except for preservation of type 1 interferon activity, implicated in impaired anti-mycobacterial immunity. Patients with unmasking TB IRIS showed recovery of Th1 immunity to normal levels, but exaggerated Th2-associated responses specifically. These mechanisms of immune dysregulation were localised to the tissue microenvironment and not evident in peripheral blood. TST

  20. Systems analysis of MVA-C induced immune response reveals its significance as a vaccine candidate against HIV/AIDS of clade C.

    PubMed

    Gómez, Carmen Elena; Perdiguero, Beatriz; Jiménez, Victoria; Filali-Mouhim, Abdelali; Ghneim, Khader; Haddad, Elias K; Quakkelaar, Esther D; Quakkerlaar, Esther D; Delaloye, Julie; Harari, Alexandre; Roger, Thierry; Duhen, Thomas; Dunhen, Thomas; Sékaly, Rafick P; Melief, Cornelis J M; Calandra, Thierry; Sallusto, Federica; Lanzavecchia, Antonio; Wagner, Ralf; Pantaleo, Giuseppe; Esteban, Mariano

    2012-01-01

    Based on the partial efficacy of the HIV/AIDS Thai trial (RV144) with a canarypox vector prime and protein boost, attenuated poxvirus recombinants expressing HIV-1 antigens are increasingly sought as vaccine candidates against HIV/AIDS. Here we describe using systems analysis the biological and immunological characteristics of the attenuated vaccinia virus Ankara strain expressing the HIV-1 antigens Env/Gag-Pol-Nef of HIV-1 of clade C (referred as MVA-C). MVA-C infection of human monocyte derived dendritic cells (moDCs) induced the expression of HIV-1 antigens at high levels from 2 to 8 hpi and triggered moDCs maturation as revealed by enhanced expression of HLA-DR, CD86, CD40, HLA-A2, and CD80 molecules. Infection ex vivo of purified mDC and pDC with MVA-C induced the expression of immunoregulatory pathways associated with antiviral responses, antigen presentation, T cell and B cell responses. Similarly, human whole blood or primary macrophages infected with MVA-C express high levels of proinflammatory cytokines and chemokines involved with T cell activation. The vector MVA-C has the ability to cross-present antigens to HIV-specific CD8 T cells in vitro and to increase CD8 T cell proliferation in a dose-dependent manner. The immunogenic profiling in mice after DNA-C prime/MVA-C boost combination revealed activation of HIV-1-specific CD4 and CD8 T cell memory responses that are polyfunctional and with effector memory phenotype. Env-specific IgG binding antibodies were also produced in animals receiving DNA-C prime/MVA-C boost. Our systems analysis of profiling immune response to MVA-C infection highlights the potential benefit of MVA-C as vaccine candidate against HIV/AIDS for clade C, the prevalent subtype virus in the most affected areas of the world.

  1. Antiretroviral (HIV-1) activity of azulene derivatives.

    PubMed

    Peet, Julia; Selyutina, Anastasia; Bredihhin, Aleksei

    2016-04-15

    The antiretroviral activity of azulene derivatives was detected for the first time. A series of eighteen diversely substituted azulenes was synthesized and tested in vitro using HIV-1 based virus-like particles (VLPs) and infectious HIV-1 virus in U2OS and TZM-bl cell lines. Among the compounds tested, the 2-hydroxyazulenes demonstrated the most significant activity by inhibiting HIV-1 replication with IC50 of 2-10 and 8-20 μM for the VLPs and the infectious virus, respectively. These results indicate that azulene derivatives may be potentially useful candidates for the development of antiretroviral agents.

  2. LINE-1 Retrotransposable Element DNA Accumulates in HIV-1-Infected Cells

    PubMed Central

    Song, Haihan; Xu, Yang; Garrison, Keith E.; Buzdin, Anton A.; Anwar, Naveed; Hunter, Diana V.; Mujib, Shariq; Mihajlovic, Vesna; Martin, Eric; Lee, Erika; Kuciak, Monika; Raposo, Rui André Saraiva; Bozorgzad, Ardalan; Meiklejohn, Duncan A.; Ndhlovu, Lishomwa C.; Nixon, Douglas F.; Ostrowski, Mario A.

    2013-01-01

    Type 1 long-interspersed nuclear elements (L1s) are autonomous retrotransposable elements that retain the potential for activity in the human genome but are suppressed by host factors. Retrotransposition of L1s into chromosomal DNA can lead to genomic instability, whereas reverse transcription of L1 in the cytosol has the potential to activate innate immune sensors. We hypothesized that HIV-1 infection would compromise cellular control of L1 elements, resulting in the induction of retrotransposition events. Here, we show that HIV-1 infection enhances L1 retrotransposition in Jurkat cells in a Vif- and Vpr-dependent manner. In primary CD4+ cells, HIV-1 infection results in the accumulation of L1 DNA, at least the majority of which is extrachromosomal. These data expose an unrecognized interaction between HIV-1 and endogenous retrotransposable elements, which may have implications for the innate immune response to HIV-1 infection, as well as for HIV-1-induced genomic instability and cytopathicity. PMID:24089548

  3. LINE-1 retrotransposable element DNA accumulates in HIV-1-infected cells.

    PubMed

    Jones, R Brad; Song, Haihan; Xu, Yang; Garrison, Keith E; Buzdin, Anton A; Anwar, Naveed; Hunter, Diana V; Mujib, Shariq; Mihajlovic, Vesna; Martin, Eric; Lee, Erika; Kuciak, Monika; Raposo, Rui André Saraiva; Bozorgzad, Ardalan; Meiklejohn, Duncan A; Ndhlovu, Lishomwa C; Nixon, Douglas F; Ostrowski, Mario A

    2013-12-01

    Type 1 long-interspersed nuclear elements (L1s) are autonomous retrotransposable elements that retain the potential for activity in the human genome but are suppressed by host factors. Retrotransposition of L1s into chromosomal DNA can lead to genomic instability, whereas reverse transcription of L1 in the cytosol has the potential to activate innate immune sensors. We hypothesized that HIV-1 infection would compromise cellular control of L1 elements, resulting in the induction of retrotransposition events. Here, we show that HIV-1 infection enhances L1 retrotransposition in Jurkat cells in a Vif- and Vpr-dependent manner. In primary CD4(+) cells, HIV-1 infection results in the accumulation of L1 DNA, at least the majority of which is extrachromosomal. These data expose an unrecognized interaction between HIV-1 and endogenous retrotransposable elements, which may have implications for the innate immune response to HIV-1 infection, as well as for HIV-1-induced genomic instability and cytopathicity.

  4. Construction of Nef-positive doxycycline-dependent HIV-1 variants using bicistronic expression elements

    SciTech Connect

    Velden, Yme U. van der; Kleibeuker, Wendy; Harwig, Alex; Klaver, Bep; Siteur-van Rijnstra, Esther; Frankin, Esmay; Berkhout, Ben; Das, Atze T.

    2016-01-15

    Conditionally replicating HIV-1 variants that can be switched on and off at will are attractive tools for HIV research. We previously developed a genetically modified HIV-1 variant that replicates exclusively when doxycycline (dox) is administered. The nef gene in this HIV-rtTA variant was replaced with the gene encoding the dox-dependent rtTA transcriptional activator. Because loss of Nef expression compromises virus replication in primary cells and precludes studies on Nef function, we tested different approaches to restore Nef production in HIV-rtTA. Strategies that involved translation via an EMCV or synthetic internal ribosome entry site (IRES) failed because these elements were incompatible with efficient virus replication. Fusion protein approaches with the FMDV 2A peptide and human ubiquitin were successful and resulted in genetically-stable Nef-expressing HIV-rtTA strains that replicate more efficiently in primary T-cells and human immune system (HIS) mice than Nef-deficient variants, thus confirming the positive effect of Nef on in vivo virus replication. - Highlights: • Different approaches to encode additional proteins in the HIV-1 genome were tested. • IRES translation elements are incompatible with efficient HIV-1 replication. • Ubiquitin and 2A fusion protein approaches allow efficient HIV-1 replication. • Doxycycline-controlled HIV-1 variants that encode all viral proteins were developed. • Nef stimulates HIV-rtTA replication in primary cells and human immune system mice.

  5. Antibody-Mediated Internalization of Infectious HIV-1 Virions Differs among Antibody Isotypes and Subclasses

    PubMed Central

    McRaven, Michael D; Sawant, Sheetal; Gurley, Thaddeus C; Xu, Thomas T.; Dennison, S. Moses; Liao, Hua-Xin; Chenine, Agnès-Laurence; Alam, S. Munir; Haynes, Barton F.; Tomaras, Georgia D.

    2016-01-01

    Emerging data support a role for antibody Fc-mediated antiviral activity in vaccine efficacy and in the control of HIV-1 replication by broadly neutralizing antibodies. Antibody-mediated virus internalization is an Fc-mediated function that may act at the portal of entry whereby effector cells may be triggered by pre-existing antibodies to prevent HIV-1 acquisition. Understanding the capacity of HIV-1 antibodies in mediating internalization of HIV-1 virions by primary monocytes is critical to understanding their full antiviral potency. Antibody isotypes/subclasses differ in functional profile, with consequences for their antiviral activity. For instance, in the RV144 vaccine trial that achieved partial efficacy, Env IgA correlated with increased risk of HIV-1 infection (i.e. decreased vaccine efficacy), whereas V1-V2 IgG3 correlated with decreased risk of HIV-1 infection (i.e. increased vaccine efficacy). Thus, understanding the different functional attributes of HIV-1 specific IgG1, IgG3 and IgA antibodies will help define the mechanisms of immune protection. Here, we utilized an in vitro flow cytometric method utilizing primary monocytes as phagocytes and infectious HIV-1 virions as targets to determine the capacity of Env IgA (IgA1, IgA2), IgG1 and IgG3 antibodies to mediate HIV-1 infectious virion internalization. Importantly, both broadly neutralizing antibodies (i.e. PG9, 2G12, CH31, VRC01 IgG) and non-broadly neutralizing antibodies (i.e. 7B2 mAb, mucosal HIV-1+ IgG) mediated internalization of HIV-1 virions. Furthermore, we found that Env IgG3 of multiple specificities (i.e. CD4bs, V1-V2 and gp41) mediated increased infectious virion internalization over Env IgG1 of the same specificity, while Env IgA mediated decreased infectious virion internalization compared to IgG1. These data demonstrate that antibody-mediated internalization of HIV-1 virions depends on antibody specificity and isotype. Evaluation of the phagocytic potency of vaccine

  6. Antibody-Mediated Internalization of Infectious HIV-1 Virions Differs among Antibody Isotypes and Subclasses.

    PubMed

    Tay, Matthew Zirui; Liu, Pinghuang; Williams, LaTonya D; McRaven, Michael D; Sawant, Sheetal; Gurley, Thaddeus C; Xu, Thomas T; Dennison, S Moses; Liao, Hua-Xin; Chenine, Agnès-Laurence; Alam, S Munir; Moody, M Anthony; Hope, Thomas J; Haynes, Barton F; Tomaras, Georgia D

    2016-08-01

    Emerging data support a role for antibody Fc-mediated antiviral activity in vaccine efficacy and in the control of HIV-1 replication by broadly neutralizing antibodies. Antibody-mediated virus internalization is an Fc-mediated function that may act at the portal of entry whereby effector cells may be triggered by pre-existing antibodies to prevent HIV-1 acquisition. Understanding the capacity of HIV-1 antibodies in mediating internalization of HIV-1 virions by primary monocytes is critical to understanding their full antiviral potency. Antibody isotypes/subclasses differ in functional profile, with consequences for their antiviral activity. For instance, in the RV144 vaccine trial that achieved partial efficacy, Env IgA correlated with increased risk of HIV-1 infection (i.e. decreased vaccine efficacy), whereas V1-V2 IgG3 correlated with decreased risk of HIV-1 infection (i.e. increased vaccine efficacy). Thus, understanding the different functional attributes of HIV-1 specific IgG1, IgG3 and IgA antibodies will help define the mechanisms of immune protection. Here, we utilized an in vitro flow cytometric method utilizing primary monocytes as phagocytes and infectious HIV-1 virions as targets to determine the capacity of Env IgA (IgA1, IgA2), IgG1 and IgG3 antibodies to mediate HIV-1 infectious virion internalization. Importantly, both broadly neutralizing antibodies (i.e. PG9, 2G12, CH31, VRC01 IgG) and non-broadly neutralizing antibodies (i.e. 7B2 mAb, mucosal HIV-1+ IgG) mediated internalization of HIV-1 virions. Furthermore, we found that Env IgG3 of multiple specificities (i.e. CD4bs, V1-V2 and gp41) mediated increased infectious virion internalization over Env IgG1 of the same specificity, while Env IgA mediated decreased infectious virion internalization compared to IgG1. These data demonstrate that antibody-mediated internalization of HIV-1 virions depends on antibody specificity and isotype. Evaluation of the phagocytic potency of vaccine

  7. HIV-1 transgenic rats display alterations in immunophenotype and cellular responses associated with aging.

    PubMed

    Abbondanzo, Susan J; Chang, Sulie L

    2014-01-01

    Advances in anti-retroviral therapy over the last two decades have allowed life expectancy in patients infected with the human immunodeficiency virus to approach that of the general population. The process of aging in mammalian species, including rats, results in immune response changes, alterations in immunological phenotypes, and ultimately increased susceptibility to many infectious diseases. In order to investigate the immunological pathologies associated with chronic HIV-1 disease, particularly in aging individuals, the HIV-1 transgenic (HIV-1Tg) rat model was utilized. HIV-1Tg rats were challenged with lipopolysaccharide (LPS) to determine immunological alterations during the aging process. LPS is known to cause an imbalance in cytokine and chemokine release, and provides a method to identify changes in immune responses to bacterial infection in an HIV animal model. An immune profile and accompanying cellular consequences as well as changes in inflammatory cytokine and chemokine release related to age and genotype were assessed in HIV-1Tg rats. The percentage of T cells decreased with age, particularly T cytotoxic cells, whereas T helper cells increased with age. Neutrophils and monocytes increased in HIV-1Tg rats during maturation compared to age-matched F344 control rats. Aging HIV-1Tg rats displayed a significant increase in the pro-inflammatory cytokines, IL-6 and TNF-α, along with an increase in the chemokine, KC/GRO, in comparison to age-matched controls. Our data indicate that immunophenotype and immune responses can change during aging in HIV-positive individuals. This information could be important in determining the most beneficial age-dependent therapeutic treatment for HIV patients.

  8. HIV-1 and Morphine Regulation of Autophagy in Microglia: Limited Interactions in the Context of HIV-1 Infection and Opioid Abuse

    PubMed Central

    Rodriguez, Myosotys; Dever, Seth M.; Masvekar, Ruturaj R.; Gewirtz, David A.; Shacka, John J.

    2014-01-01

    neuropathogenesis is mostly due to inflammatory responses by infected microglia, the resident immune cells of the brain. Cognitive disorders may also be associated with drugs of abuse. In fact, opioid drug users have an increased risk of developing neurocognitive disorders with increased progression to dementia. Although the mechanism(s) by which opioids exacerbate the neuropathogenesis of HIV-1 are not entirely known, it is well accepted that glia are critical to opiate responses. This study gives us new insight into possible autophagic mechanism(s) in microglia that control HIV-1 replication and virus-induced inflammation in the context of opioid abuse and should greatly improve our knowledge in the pathogenesis of HIV-1 resulting from substance abuse to provide a better understanding for the design of candidate antiviral therapies targeting drug-abusing individuals. PMID:25355898

  9. Quantifying Selection against Synonymous Mutations in HIV-1 env Evolution

    PubMed Central

    Zanini, Fabio

    2013-01-01

    Intrapatient evolution of human immunodeficiency virus type 1 (HIV-1) is driven by the adaptive immune system resulting in rapid change of HIV-1 proteins. When cytotoxic CD8+ T cells or neutralizing antibodies target a new epitope, the virus often escapes via nonsynonymous mutations that impair recognition. Synonymous mutations do not affect this interplay and are often assumed to be neutral. We test this assumption by tracking synonymous mutations in longitudinal intrapatient data from the C2-V5 part of the env gene. We find that most synonymous variants are lost even though they often reach high frequencies in the viral population, suggesting a cost to the virus. Using published data from SHAPE (selective 2′-hydroxyl acylation analyzed by primer extension) assays, we find that synonymous mutations that disrupt base pairs in RNA stems flanking the variable loops of gp120 are more likely to be lost than other synonymous changes: these RNA hairpins might be important for HIV-1. Computational modeling indicates that, to be consistent with the data, a large fraction of synonymous mutations in this genomic region need to be deleterious with a cost on the order of 0.002 per day. This weak selection against synonymous substitutions does not result in a strong pattern of conservation in cross-sectional data but slows down the rate of evolution considerably. Our findings are consistent with the notion that large-scale patterns of RNA structure are functionally relevant, whereas the precise base pairing pattern is not. PMID:23986591

  10. Breast-feeding and Transmission of HIV-1.

    PubMed

    John-Stewart, Grace; Mbori-Ngacha, Dorothy; Ekpini, Rene; Janoff, Edward N; Nkengasong, John; Read, Jennifer S; Van de Perre, Phillippe; Newell, Marie-Louise

    2004-02-01

    Breast-feeding substantially increases the risk of HIV-1 transmission from mother to child, and although peripartum antiretroviral therapy prophylaxis significantly decreases the risk of mother-to-child transmission around the time of delivery, this approach does not affect breast-feeding transmission. Increased maternal RNA viral load in plasma and breast milk is strongly associated with increased risk of transmission through breast-feeding, as is breast health, and it has been suggested that exclusive breast-feeding could be associated with lower rates of breast-feeding transmission than mixed feeding of both breast- and other milk or feeds. Transmission through breast-feeding can take place at any point during lactation, and the cumulative probability of acquisition of infection increases with duration of breast-feeding. HIV-1 has been detected in breast milk in cell-free and cellular compartments; infant gut mucosal surfaces are the most likely site at which transmission occurs. Innate and acquired immune factors may act most effectively in combination to prevent primary HIV-1 infection by breast milk.

  11. Proteomic Modeling for HIV-1 Infected Microglia-Astrocyte Crosstalk

    PubMed Central

    Wang, Tong; Gong, Nan; Liu, Jianuo; Kadiu, Irena; Kraft-Terry, Stephanie D.; Mosley, R. Lee; Volsky, David J.; Ciborowski, Pawel; Gendelman, Howard E.

    2008-01-01

    Background HIV-1-infected and immune competent brain mononuclear phagocytes (MP; macrophages and microglia) secrete cellular and viral toxins that affect neuronal damage during advanced disease. In contrast, astrocytes can affect disease by modulating the nervous system's microenvironment. Interestingly, little is known how astrocytes communicate with MP to influence disease. Methods and Findings MP-astrocyte crosstalk was investigated by a proteomic platform analysis using vesicular stomatitis virus pseudotyped HIV infected murine microglia. The microglial-astrocyte dialogue was significant and affected microglial cytoskeleton by modulation of cell death and migratory pathways. These were mediated, in part, through F-actin polymerization and filament formation. Astrocyte secretions attenuated HIV-1 infected microglia neurotoxicity and viral growth linked to the regulation of reactive oxygen species. Conclusions These observations provide unique insights into glial crosstalk during disease by supporting astrocyte-mediated regulation of microglial function and its influence on the onset and progression of neuroAIDS. The results open new insights into previously undisclosed pathogenic mechanisms and open the potential for biomarker discovery and therapeutics that may influence the course of HIV-1-mediated neurodegeneration. PMID:18575609

  12. Sialoadhesin Expressed on IFN-Induced Monocytes Binds HIV-1 and Enhances Infectivity

    PubMed Central

    Rempel, Hans; Calosing, Cyrus; Sun, Bing; Pulliam, Lynn

    2008-01-01

    Background HIV-1 infection dysregulates the immune system and alters gene expression in circulating monocytes. Differential gene expression analysis of CD14+ monocytes from subjects infected with HIV-1 revealed increased expression of sialoadhesin (Sn, CD169, Siglec 1), a cell adhesion molecule first described in a subset of macrophages activated in chronic inflammatory diseases. Methodology/Principal Findings We analyzed sialoadhesin expression on CD14+ monocytes by flow cytometry and found significantly higher expression in subjects with elevated viral loads compared to subjects with undetectable viral loads. In cultured CD14+ monocytes isolated from healthy individuals, sialoadhesin expression was induced by interferon-α and interferon-γ but not tumor necrosis factor-α. Using a stringent binding assay, sialoadhesin-expressing monocytes adsorbed HIV-1 through interaction with the sialic acid residues on the viral envelope glycoprotein gp120. Furthermore, monocytes expressing sialoadhesin facilitated HIV-1 trans infection of permissive cells, which occurred in the absence of monocyte self-infection. Conclusions/Significance Increased sialoadhesin expression on CD14+ monocytes occurred in response to HIV-1 infection with maximum expression associated with high viral load. We show that interferons induce sialoadhesin in primary CD14+ monocytes, which is consistent with an antiviral response during viremia. Our findings suggest that circulating sialoadhesin-expressing monocytes are capable of binding HIV-1 and effectively delivering virus to target cells thereby enhancing the distribution of HIV-1. Sialoadhesin could disseminate HIV-1 to viral reservoirs during monocyte immunosurveillance or migration to sites of inflammation and then facilitate HIV-1 infection of permissive cells. PMID:18414664

  13. DNA/MVA Vaccination of HIV-1 Infected Participants with Viral Suppression on Antiretroviral Therapy, followed by Treatment Interruption: Elicitation of Immune Responses without Control of Re-Emergent Virus

    PubMed Central

    Heath, Sonya L.; Sweeton, Bentley; Williams, Kathy; Cunningham, Pamela; Keele, Brandon F.; Sen, Sharon; Palmer, Brent E.; Chomont, Nicolas; Xu, Yongxian; Basu, Rahul; Hellerstein, Michael S.; Kwa, Suefen

    2016-01-01

    GV-TH-01, a Phase 1 open-label trial of a DNA prime—Modified Vaccinia Ankara (MVA) boost vaccine (GOVX-B11), was undertaken in HIV infected participants on antiretroviral treatment (ART) to evaluate safety and vaccine-elicited T cell responses, and explore the ability of elicited CD8+ T cells to control viral rebound during analytical treatment interruption (TI). Nine men who began antiretroviral therapy (ART) within 18 months of seroconversion and had sustained plasma HIV-1 RNA <50 copies/mL for at least 6 months were enrolled. Median age was 38 years, median pre-ART HIV-1 RNA was 140,000 copies/ml and mean baseline CD4 count was 755/μl. Two DNA, followed by 2 MVA, inoculations were given 8 weeks apart. Eight subjects completed all vaccinations and TI. Clinical and laboratory adverse events were generally mild, with no serious or grade 4 events. Only reactogenicity events were considered related to study drug. No treatment emergent viral resistance was seen. The vaccinations did not reduce viral reservoirs and virus re-emerged in all participants during TI, with a median time to re-emergence of 4 weeks. Eight of 9 participants had CD8+ T cells that could be stimulated by vaccine-matched Gag peptides prior to vaccination. Vaccinations boosted these responses as well as eliciting previously undetected CD8+ responses. Elicited T cells did not display signs of exhaustion. During TI, temporal patterns of viral re-emergence and Gag-specific CD8+ T cell expansion suggested that vaccine-specific CD8+ T cells had been stimulated by re-emergent virus in only 2 of 8 participants. In these 2, transient decreases in viremia were associated with Gag selection in known CD8+ T cell epitopes. We hypothesize that escape mutations, already archived in the viral reservoir, plus a poor ability of CD8+ T cells to traffic to and control virus at sites of re-emergence, limited the therapeutic efficacy of the DNA/MVA vaccine. Trial Registration clinicaltrials.gov NCT01378156 PMID

  14. Development of prophylactic vaccines against HIV-1.

    PubMed

    Schiffner, Torben; Sattentau, Quentin J; Dorrell, Lucy

    2013-07-17

    The focus of most current HIV-1 vaccine development is on antibody-based approaches. This is because certain antibody responses correlated with protection from HIV-1 acquisition in the RV144 phase III trial, and because a series of potent and broad spectrum neutralizing antibodies have been isolated from infected individuals. Taken together, these two findings suggest ways forward to develop a neutralizing antibody-based vaccine. However, understanding of the correlates of protection from disease in HIV-1 and other infections strongly suggests that we should not ignore CTL-based research. Here we review recent progress in the field and highlight the challenges implicit in HIV-1 vaccine design and some potential solutions.

  15. HIV-1 Eradication: Early Trials (and Tribulations).

    PubMed

    Spivak, Adam M; Planelles, Vicente

    2016-01-01

    Antiretroviral therapy (ART) has rendered HIV-1 infection a manageable illness for those with access to treatment. However, ART does not lead to viral eradication owing to the persistence of replication-competent, unexpressed proviruses in long-lived cellular reservoirs. The potential for long-term drug toxicities and the lack of access to ART for most people living with HIV-1 infection have fueled scientific interest in understanding the nature of this latent reservoir. Exploration of HIV-1 persistence at the cellular and molecular level in resting memory CD4(+) T cells, the predominant viral reservoir in patients on ART, has uncovered potential strategies to reverse latency. We review recent advances in pharmacologically based 'shock and kill' HIV-1 eradication strategies, including comparative analysis of early clinical trials.

  16. Characterization of anti-HIV-1 neutralizing and binding antibodies in chronic HIV-1 subtype C infection

    PubMed Central

    Archary, Derseree; Rong, Rong; Gordon, Michelle L; Boliar, Saikat; Madiga, Maphuti; Gray, Elin S; Dugast, Anne-Sophie; Hermanus, Tandile; Goulder, Philip JR; Coovadia, Hoosen M; Werner, Lise; Morris, Lynn; Alter, Galit; Derdeyn, Cynthia A; Ndung'u, Thumbi

    2012-01-01

    Neutralizing (nAbs) and high affinity binding antibodies may be critical for an efficacious HIV-1 vaccine. We characterized virus-specific nAbs and binding antibody responses over 21 months in eight HIV-1 subtype C chronically infected individuals with heterogeneous rates of disease progression. Autologous nAb titers at study exit were significantly higher compared to contemporaneous responses at study entry (p=0.002) and exit (p=0.01). NAb IC50 titers correlated inversely with V1-V2 length (p=0.04). Significant differences in breadth and potencies were noted against subtype C compared to subtype A (p= 0.03 and p=0.01) or subtype B (p= 0.03; p=0.05) viruses respectively. IgG binding affinity for gp41 was higher than for gp120 (p=0.0002). IgG-FcγR1 affinity was significantly higher than FcγRIIIa (p<0.005) at study entry and FcγRIIb (p<0.05) or FcγRIIIa (p<0.005) at study exit. Evolving IgG binding suggests alteration of immune function mediated by binding antibodies. Evolution of nAbs was a potential marker of HIV-1 disease progression. PMID:22995189

  17. HIV-1 transmission linkage in an HIV-1 prevention clinical trial

    SciTech Connect

    Leitner, Thomas; Campbell, Mary S; Mullins, James I; Hughes, James P; Wong, Kim G; Raugi, Dana N; Scrensen, Stefanie

    2009-01-01

    HIV-1 sequencing has been used extensively in epidemiologic and forensic studies to investigate patterns of HIV-1 transmission. However, the criteria for establishing genetic linkage between HIV-1 strains in HIV-1 prevention trials have not been formalized. The Partners in Prevention HSV/HIV Transmission Study (ClinicaITrials.gov NCT00194519) enrolled 3408 HIV-1 serodiscordant heterosexual African couples to determine the efficacy of genital herpes suppression with acyclovir in reducing HIV-1 transmission. The trial analysis required laboratory confirmation of HIV-1 linkage between enrolled partners in couples in which seroconversion occurred. Here we describe the process and results from HIV-1 sequencing studies used to perform transmission linkage determination in this clinical trial. Consensus Sanger sequencing of env (C2-V3-C3) and gag (p17-p24) genes was performed on plasma HIV-1 RNA from both partners within 3 months of seroconversion; env single molecule or pyrosequencing was also performed in some cases. For linkage, we required monophyletic clustering between HIV-1 sequences in the transmitting and seroconverting partners, and developed a Bayesian algorithm using genetic distances to evaluate the posterior probability of linkage of participants sequences. Adjudicators classified transmissions as linked, unlinked, or indeterminate. Among 151 seroconversion events, we found 108 (71.5%) linked, 40 (26.5%) unlinked, and 3 (2.0%) to have indeterminate transmissions. Nine (8.3%) were linked by consensus gag sequencing only and 8 (7.4%) required deep sequencing of env. In this first use of HIV-1 sequencing to establish endpoints in a large clinical trial, more than one-fourth of transmissions were unlinked to the enrolled partner, illustrating the relevance of these methods in the design of future HIV-1 prevention trials in serodiscordant couples. A hierarchy of sequencing techniques, analysis methods, and expert adjudication contributed to the linkage

  18. Exosomes: Implications in HIV-1 Pathogenesis.

    PubMed

    Madison, Marisa N; Okeoma, Chioma M

    2015-07-20

    Exosomes are membranous nanovesicles of endocytic origin that carry host and pathogen derived genomic, proteomic, and lipid cargos. Exosomes are secreted by most cell types into the extracellular milieu and are subsequently internalized by recipient cells. Upon internalization, exosomes condition recipient cells by donating their cargos and/or activating various signal transduction pathways, consequently regulating physiological and pathophysiological processes. The role of exosomes in viral pathogenesis, especially human immunodeficiency virus type 1 [HIV-1] is beginning to unravel. Recent research reports suggest that exosomes from various sources play important but different roles in the pathogenesis of HIV-1. From these reports, it appears that the source of exosomes is the defining factor for the exosomal effect on HIV-1. In this review, we will describe how HIV-1 infection is modulated by exosomes and in turn how exosomes are targeted by HIV-1 factors. Finally, we will discuss potentially emerging therapeutic options based on exosomal cargos that may have promise in preventing HIV-1 transmission.

  19. Exosomes: Implications in HIV-1 Pathogenesis

    PubMed Central

    Madison, Marisa N.; Okeoma, Chioma M.

    2015-01-01

    Exosomes are membranous nanovesicles of endocytic origin that carry host and pathogen derived genomic, proteomic, and lipid cargos. Exosomes are secreted by most cell types into the extracellular milieu and are subsequently internalized by recipient cells. Upon internalization, exosomes condition recipient cells by donating their cargos and/or activating various signal transduction pathways, consequently regulating physiological and pathophysiological processes. The role of exosomes in viral pathogenesis, especially human immunodeficiency virus type 1 [HIV-1] is beginning to unravel. Recent research reports suggest that exosomes from various sources play important but different roles in the pathogenesis of HIV-1. From these reports, it appears that the source of exosomes is the defining factor for the exosomal effect on HIV-1. In this review, we will describe how HIV-1 infection is modulated by exosomes and in turn how exosomes are targeted by HIV-1 factors. Finally, we will discuss potentially emerging therapeutic options based on exosomal cargos that may have promise in preventing HIV-1 transmission. PMID:26205405

  20. HIV-1 matrix protein p17: a candidate antigen for therapeutic vaccines against AIDS.

    PubMed

    Fiorentini, Simona; Giagulli, Cinzia; Caccuri, Francesca; Magiera, Anna K; Caruso, Arnaldo

    2010-12-01

    The success in the development of anti-retroviral therapies (HAART) that contain human immunodeficiency virus type 1 (HIV-1) infection is challenged by the cost of this lifelong therapy and by its toxicity. Immune-based therapeutic strategies that boost the immune response against HIV-1 proteins or protein subunits have been recently proposed to control virus replication in order to provide protection from disease development, reduce virus transmission, and help limit the use of anti-retroviral treatments. HIV-1 matrix protein p17 is a structural protein that is critically involved in most stages of the life cycle of the retrovirus. Besides its well established role in the virus life cycle, increasing evidence suggests that p17 may also be active extracellularly in deregulating biological activities of many different immune cells that are directly or indirectly involved in AIDS pathogenesis. Thus, p17 might represent a promising target for developing a therapeutic vaccine as a contribution to combating AIDS. In this article we review the biological characteristics of HIV-1 matrix protein p17 and we describe why a synthetic peptide representative of the p17 functional epitope may work as a vaccine molecule capable of inducing anti-p17 neutralizing response against p17 derived from divergent HIV-1 strains.

  1. New insights into HIV-1 specific cytotoxic T-lymphocyte responses in exposed, persistently seronegative Kenyan sex workers.

    PubMed

    Kaul, R; Rowland-Jones, S L; Kimani, J; Fowke, K; Dong, T; Kiama, P; Rutherford, J; Njagi, E; Mwangi, F; Rostron, T; Onyango, J; Oyugi, J; MacDonald, K S; Bwayo, J J; Plummer, F A

    2001-11-01

    A clearer understanding of HIV-1 specific immune responses in highly-exposed, persistently seronegative (HEPS) subjects is important in developing models of HIV-1 protective immunity. HIV-1 specific cytotoxic T-lymphocytes (CTL) have been described in a cohort of HEPS Kenyan sex workers, and recent work has further elucidated these responses. CTL specific for HIV-1 Env were found in the blood of over half the sex workers meeting criteria for HIV resistance, and in some women recognized unmapped epitopes. The proportion of women with Env-specific CTL increased with the duration of uninfected HIV exposure, suggesting that these responses were acquired over time. CD8+ lymphocyte responses directed against predefined HIV-1 CTL epitopes from various HIV-1 genes were found in the blood and genital tract of >50% resistant sex workers, at a ten-fold lower frequency than in infected subjects. The epitope specificity of CD8+ responses differs between HEPS and HIV infected women, and in HEPS the maintenance of responses appears to be dependent on persistent HIV exposure. Several HIV-1 'resistant' sex workers have become HIV infected over the past 6 years, possibly related to waning of pre-existing HIV-specific CTL, and infection has often been associated with a switch in the epitope specificity of CD8+ responses. These findings suggest that vaccine-induced protective HIV immunity is a realistic goal, but that vaccine strategies of boosting or persistent antigen may be necessary for long-lived protection.

  2. The effect of CD4 receptor downregulation and its downstream signaling molecules on HIV-1 latency

    SciTech Connect

    Kim, Kyung-Chang; Kim, Hyeon Guk; Roh, Tae-Young; Park, Jihwan; Jung, Kyung-Min; Lee, Joo-Shil; Choi, Sang-Yun; Kim, Sung Soon; Choi, Byeong-Sun

    2011-01-14

    Research highlights: {yields} CD4 receptors were downregulated on the surface of HIV-1 latently infected cells. {yields} CD4 downstream signaling molecules were suppressed in HIV-1 latently infected cells. {yields} HIV-1 progeny can be reactivated by induction of T-cell activation signal molecules. {yields} H3K4me3 and H3K9ac were highly enriched in CD4 downstream signaling molecules. {yields} HIV-1 latency can be maintained by the reduction of downstream signaling molecules. -- Abstract: HIV-1 can establish a latent infection in memory CD4 + T cells to evade the host immune response. CD4 molecules can act not only as the HIV-1 receptor for entry but also as the trigger in an intracellular signaling cascade for T-cell activation and proliferation via protein tyrosine kinases. Novel chronic HIV-1-infected A3.01-derived (NCHA) cells were used to examine the involvement of CD4 downstream signaling in HIV-1 latency. CD4 receptors in NCHA cells were dramatically downregulated on its surface but were slightly decreased in whole-cell lysates. The expression levels of CD4 downstream signaling molecules, including P56{sup Lck}, ZAP-70, LAT, and c-Jun, were sharply decreased in NCHA cells. The lowered histone modifications of H3K4me3 and H3K9ac correlated with the downregulation of P56{sup Lck}, ZAP-70, and LAT in NCHA cells. AP-1 binding activity was also reduced in NCHA cells. LAT and c-Jun suppressed in NCHA cells were highly induced after PMA treatment. In epigenetic analysis, other signal transduction molecules which are associated with active and/or latent HIV-1 infection showed normal states in HIV-1 latently infected cells compared to A3.01 cells. In conclusion, we demonstrated that the HIV-1 latent state is sustained by the reduction of downstream signaling molecules via the downregulation of CD4 and the attenuated activity of transcription factor as AP-1. The HIV-1 latency model via T-cell deactivation may provide some clues for the development of the new

  3. Endotoxin-induced cytokine and chemokine expression in the HIV-1 transgenic rat

    PubMed Central

    2012-01-01

    Background Repeated exposure to a low dose of a bacterial endotoxin such as lipopolysaccharide (LPS) causes immune cells to become refractory to a subsequent endotoxin challenge, a phenomenon known as endotoxin tolerance (ET). During ET, there is an imbalance in pro- and anti-inflammatory cytokine and chemokine production, leading to a dysregulated immune response. HIV-1 viral proteins are known to have an adverse effect on the immune system. However, the effects of HIV-1 viral proteins during ET have not been investigated. Methods In this study, HIV-1 transgenic (HIV-1Tg) rats and control F344 rats (n = 12 ea) were randomly treated with 2 non-pyrogenic doses of LPS (LL) to induce ET, or saline (SS), followed by a high challenge dose of LPS (LL+L, SS+L) or saline (LL+S, SS+S). The gene expression of 84 cytokines, chemokines, and their receptors in the brain and spleen was examined by relative quantitative PCR using a PCR array, and protein levels in the brain, spleen, and serum of 7 of these 84 genes was determined using an electrochemiluminescent assay. Results In the spleen, there was an increase in key pro-inflammatory (IL1α, IL-1β, IFN-γ) and anti-inflammatory (IL-10) cytokines, and inflammatory chemokines (Ccl2, Ccl7, and Ccl9,) in response to LPS in the SS+L and LL+L (ET) groups of both the HIV-1Tg and F344 rats, but was greater in the HIV-1Tg rats than in the F344. In the ET HIV-1Tg and F344 (LL+L) rats in the spleen, the LPS-induced increase in pro-inflammatory cytokines was diminished and that of the anti-inflammatory cytokine was enhanced compared to the SS+L group rats. In the brain, IL-1β, as well as the Ccl2, Ccl3, and Ccl7 chemokines were increased to a greater extent in the HIV-1Tg rats compared to the F344; whereas Cxcl1, Cxcl10, and Cxcl11 were increased to a greater extent in the F344 rats compared to the HIV-1Tg rats in the LL+L and SS+L groups. Conclusion Our data indicate that the continuous presence of HIV-1 viral proteins can have tissue

  4. Safeguard against DNA sensing: the role of TREX1 in HIV-1 infection and autoimmune diseases.

    PubMed

    Hasan, Maroof; Yan, Nan

    2014-01-01

    Innate immune recognition is crucial for host responses against viral infections, including infection by human immunodeficiency virus 1 (HIV-1). Human cells detect such invading pathogens with a collection of pattern recognition receptors that activate the production of antiviral proteins, such as the cytokine interferon-type I, to initiate antiviral responses immediately as well as the adaptive immune response for long-term protection. To establish infection in the host, many viruses have thus evolved strategies for subversion of these mechanisms of innate immunity. For example, acute infection by HIV-1 and other retroviruses have long been thought to be non-immunogenic, signifying suppression of host defenses by these pathogens. Studies in the past few years have begun to uncover a multifaceted scheme of how HIV-1 evades innate immune detection, especially of its DNA, by exploiting host proteins. This review will discuss the host mechanisms of HIV-1 DNA sensing and viral immune evasion, with a particular focus on TREX1, three prime repair exonuclease 1, a host 3' exonuclease (also known as DNase III).

  5. Blocking HIV-1 transmission in the female reproductive tract: from microbicide development to exploring local antiviral responses

    PubMed Central

    Eid, Sahar G; Mangan, Niamh E; Hertzog, Paul J; Mak, Johnson

    2015-01-01

    The majority of new HIV-1 infections are transmitted sexually by penetrating the mucosal barrier to infect target cells. The development of microbicides to restrain heterosexual HIV-1 transmission in the past two decades has proven to be a challenging endeavor. Therefore, better understanding of the tissue environment in the female reproductive tract may assist in the development of the next generation of microbicides to prevent HIV-1 transmission. In this review, we highlight the important factors involved in the heterosexual transmission of HIV-1, provide an update on microbicides' clinical trials, and discuss how different delivery platforms and local immunity may empower the development of next generation of microbicide to block HIV-1 transmission in the female reproductive tract. PMID:26682051

  6. A case series of 104 women infected with HIV-1 via blood transfusion postnatally: high rate of HIV-1 transmission to infants through breast-feeding.

    PubMed

    Liang, Ke; Gui, Xien; Zhang, Yuan-Zhen; Zhuang, Ke; Meyers, Kathrine; Ho, David D

    2009-09-01

    We investigated transmission of human immunodeficiency virus type 1 (HIV-1) via breast-feeding by 104 Chinese mothers who acquired the infection through blood transfusion postnatally. Of 106 children, 38 (35.8%) were infected. All children survived to age 5 years, and their survival curve was similar to that of their mothers. These findings suggest a high rate of HIV-1 transmission via breast-feeding when mothers were infected postnatally via blood transfusion, perhaps because of the higher viremia expected during the acute phase of infection. The course of disease among infected children was significantly less rapid than that among newborns infected perinatally, suggesting that a brief window of HIV-1-free life often enables the immune system of an infant to stave off rapid disease progression.

  7. A mucosally targeted subunit vaccine candidate eliciting HIV-1 transcytosis-blocking Abs

    PubMed Central

    Matoba, Nobuyuki; Magérus, Aude; Geyer, Brian C.; Zhang, Yunfang; Muralidharan, Mrinalini; Alfsen, Annette; Arntzen, Charles J.; Bomsel, Morgane; Mor, Tsafrir S.

    2004-01-01

    A vaccine that would engage the mucosal immune system against a broad range of HIV-1 subtypes and prevent epithelial transmission is highly desirable. Here we report fusing the mucosal targeting B subunit of cholera toxin to the conserved galactosylceramide-binding domain (including the ELDKWA-neutralizing epitope) of the HIV-1 gp41 envelope protein, which mediates the transcytosis of HIV-1 across the mucosal epithelia. Chimeric protein expressed in bacteria or plants assembled into oligomers that were capable of binding galactosyl-ceramide and GM1 gangliosides. Mucosal (intranasal) administration in mice of the purified chimeric protein followed by an i.p. boost resulted in transcytosis-neutralizing serum IgG and mucosal IgA responses and induced immunological memory. Plant production of mucosally targeted immunogens could be particularly useful for immunization programs in developing countries, where desirable product traits include low cost of manufacture, heat stability, and needle-free delivery. PMID:15347807

  8. Improving Adaptive and Memory Immune Responses of an HIV/AIDS Vaccine Candidate MVA-B by Deletion of Vaccinia Virus Genes (C6L and K7R) Blocking Interferon Signaling Pathways

    PubMed Central

    García-Arriaza, Juan; Arnáez, Pilar; Gómez, Carmen E.; Sorzano, Carlos Óscar S.; Esteban, Mariano

    2013-01-01

    Poxvirus vector Modified Vaccinia Virus Ankara (MVA) expressing HIV-1 Env, Gag, Pol and Nef antigens from clade B (termed MVA-B) is a promising HIV/AIDS vaccine candidate, as confirmed from results obtained in a prophylactic phase I clinical trial in humans. To improve the immunogenicity elicited by MVA-B, we have generated and characterized the innate immune sensing and the in vivo immunogenicity profile of a vector with a double deletion in two vaccinia virus (VACV) genes (C6L and K7R) coding for inhibitors of interferon (IFN) signaling pathways. The innate immune signals elicited by MVA-B deletion mutants (MVA-B ΔC6L and MVA-B ΔC6L/K7R) in human macrophages and monocyte-derived dendritic cells (moDCs) showed an up-regulation of the expression of IFN-β, IFN-α/β-inducible genes, TNF-α, and other cytokines and chemokines. A DNA prime/MVA boost immunization protocol in mice revealed that these MVA-B deletion mutants were able to improve the magnitude and quality of HIV-1-specific CD4+ and CD8+ T cell adaptive and memory immune responses, which were mostly mediated by CD8+ T cells of an effector phenotype, with MVA-B ΔC6L/K7R being the most immunogenic virus recombinant. CD4+ T cell responses were mainly directed against Env, while GPN-specific CD8+ T cell responses were induced preferentially by the MVA-B deletion mutants. Furthermore, antibody levels to Env in the memory phase were slightly enhanced by the MVA-B deletion mutants compared to the parental MVA-B. These findings revealed that double deletion of VACV genes that act blocking intracellularly the IFN signaling pathway confers an immunological benefit, inducing innate immune responses and increases in the magnitude, quality and durability of the HIV-1-specific T cell immune responses. Our observations highlighted the immunomodulatory role of the VACV genes C6L and K7R, and that targeting common pathways, like IRF3/IFN-β signaling, could be a general strategy to improve the immunogenicity of poxvirus

  9. Analysis of Host Gene Expression Profile in HIV-1 and HIV-2 Infected T-Cells.

    PubMed

    Devadas, Krishnakumar; Biswas, Santanu; Haleyurgirisetty, Mohan; Wood, Owen; Ragupathy, Viswanath; Lee, Sherwin; Hewlett, Indira

    2016-01-01

    HIV replication is closely regulated by a complex pathway of host factors, many of them being determinants of cell tropism and host susceptibility to HIV infection. These host factors are known to exert a positive or negative influence on the replication of the two major types of HIV, HIV-1 and HIV-2, thereby modulating virus infectivity, host response to infection and ultimately disease progression profiles characteristic of these two types. Understanding the differential regulation of host cellular factors in response to HIV-1 and HIV-2 infections will help us to understand the apparent differences in rates of disease progression and pathogenesis. This knowledge would aid in the discovery of new biomarkers that may serve as novel targets for therapy and diagnosis. The objective of this study was to determine the differential expression of host genes in response to HIV-1/HIV-2 infection. To achieve this, we analyzed the effects of HIV-1 (MN) and HIV-2 (ROD) infection on the expression of host factors in PBMC at the RNA level using the Agilent Whole Human Genome Oligo Microarray. Differentially expressed genes were identified and their biological functions determined. Host gene expression profiles were significantly changed. Gene expression profiling analysis identified a subset of differentially expressed genes in HIV-1 and HIV-2 infected cells. Genes involved in cellular metabolism, apoptosis, immune cell proliferation and activation, cytokines, chemokines, and transcription factors were differentially expressed in HIV-1 infected cells. Relatively few genes were differentially expressed in cells infected with HIV-2.

  10. Analysis of Host Gene Expression Profile in HIV-1 and HIV-2 Infected T-Cells

    PubMed Central

    Devadas, Krishnakumar; Biswas, Santanu; Haleyurgirisetty, Mohan; Wood, Owen; Ragupathy, Viswanath; Lee, Sherwin; Hewlett, Indira

    2016-01-01

    HIV replication is closely regulated by a complex pathway of host factors, many of them being determinants of cell tropism and host susceptibility to HIV infection. These host factors are known to exert a positive or negative influence on the replication of the two major types of HIV, HIV-1 and HIV-2, thereby modulating virus infectivity, host response to infection and ultimately disease progression profiles characteristic of these two types. Understanding the differential regulation of host cellular factors in response to HIV-1 and HIV-2 infections will help us to understand the apparent differences in rates of disease progression and pathogenesis. This knowledge would aid in the discovery of new biomarkers that may serve as novel targets for therapy and diagnosis. The objective of this study was to determine the differential expression of host genes in response to HIV-1/HIV-2 infection. To achieve this, we analyzed the effects of HIV-1 (MN) and HIV-2 (ROD) infection on the expression of host factors in PBMC at the RNA level using the Agilent Whole Human Genome Oligo Microarray. Differentially expressed genes were identified and their biological functions determined. Host gene expression profiles were significantly changed. Gene expression profiling analysis identified a subset of differentially expressed genes in HIV-1 and HIV-2 infected cells. Genes involved in cellular metabolism, apoptosis, immune cell proliferation and activation, cytokines, chemokines, and transcription factors were differentially expressed in HIV-1 infected cells. Relatively few genes were differentially expressed in cells infected with HIV-2. PMID:26821323

  11. Herpes Simplex Virus: The Interplay Between HSV, Host, and HIV-1.

    PubMed

    Desai, Dipen Vijay; Kulkarni, Smita Shrikant

    2015-12-01

    Herpes simplex virus proteins interact with host (human) proteins and create an environment conducive for its replication. Genital ulceration due to herpes simplex virus type 2 (HSV-2) infections is an important clinical manifestation reported to increase the risk of human immunodeficiency virus type 1 (HIV-1) acquisition and replication in HIV-1/HSV-2 coinfection. Dampening the innate and adaptive immune responses of the skin-resident dendritic cells, HSV-2 not only helps itself, but creates a "yellow brick road" for one of the most dreaded viruses HIV, which is transmitted mainly through the sexual route. Although, data from clinical trials show that HSV-2 suppression reduces HIV-1 viral load, there are hardly any reports presenting conclusive evidence on the impact of HSV-2 coinfection on HIV-1 disease progression. Be that as it may, understanding the interplay between these three characters (HSV, host, and HIV-1) is imperative. This review endeavors to collate studies on the influence of HSV-derived proteins on the host response and HIV-1 replication. Studying such complex interactions may help in designing and developing common strategies for the two viruses to keep these "partners in crime" at bay.

  12. A Computational Model of Inhibition of HIV-1 by Interferon-Alpha

    PubMed Central

    Browne, Edward P.; Letham, Benjamin; Rudin, Cynthia

    2016-01-01

    Type 1 interferons such as interferon-alpha (IFNα) inhibit replication of Human immunodeficiency virus (HIV-1) by upregulating the expression of genes that interfere with specific steps in the viral life cycle. This pathway thus represents a potential target for immune-based therapies that can alter the dynamics of host-virus interactions to benefit the host. To obtain a deeper mechanistic understanding of how IFNα impacts spreading HIV-1 infection, we modeled the interaction of HIV-1 with CD4 T cells and IFNα as a dynamical system. This model was then tested using experimental data from a cell culture model of spreading HIV-1 infection. We found that a model in which IFNα induces reversible cellular states that block both early and late stages of HIV-1 infection, combined with a saturating rate of conversion to these states, was able to successfully fit the experimental dataset. Sensitivity analysis showed that the potency of inhibition by IFNα was particularly dependent on specific network parameters and rate constants. This model will be useful for designing new therapies targeting the IFNα network in HIV-1-infected individuals, as well as potentially serving as a template for understanding the interaction of IFNα with other viruses. PMID:27010978

  13. A Computational Model of Inhibition of HIV-1 by Interferon-Alpha.

    PubMed

    Browne, Edward P; Letham, Benjamin; Rudin, Cynthia

    2016-01-01

    Type 1 interferons such as interferon-alpha (IFNα) inhibit replication of Human immunodeficiency virus (HIV-1) by upregulating the expression of genes that interfere with specific steps in the viral life cycle. This pathway thus represents a potential target for immune-based therapies that can alter the dynamics of host-virus interactions to benefit the host. To obtain a deeper mechanistic understanding of how IFNα impacts spreading HIV-1 infection, we modeled the interaction of HIV-1 with CD4 T cells and IFNα as a dynamical system. This model was then tested using experimental data from a cell culture model of spreading HIV-1 infection. We found that a model in which IFNα induces reversible cellular states that block both early and late stages of HIV-1 infection, combined with a saturating rate of conversion to these states, was able to successfully fit the experimental dataset. Sensitivity analysis showed that the potency of inhibition by IFNα was particularly dependent on specific network parameters and rate constants. This model will be useful for designing new therapies targeting the IFNα network in HIV-1-infected individuals, as well as potentially serving as a template for understanding the interaction of IFNα with other viruses.

  14. Development of Hematopoietic Stem Cell Based Gene Therapy for HIV-1 Infection: Considerations for Proof of Concept Studies and Translation to Standard Medical Practice

    PubMed Central

    DiGiusto, David L.; Stan, Rodica; Krishnan, Amrita; Li, Haitang; Rossi, John J.; Zaia, John A.

    2013-01-01

    Over the past 15 years we have been investigating an alternative approach to treating HIV-1/AIDS, based on the creation of a disease-resistant immune system through transplantation of autologous, gene-modified (HIV-1-resistant) hematopoietic stem and progenitor cells (GM-HSPC). We propose that the expression of selected RNA-based HIV-1 inhibitors in the CD4+ cells derived from GM-HSPC will protect them from HIV-1 infection and results in a sufficient immune repertoire to control HIV-1 viremia resulting in a functional cure for HIV-1/AIDS. Additionally, it is possible that the subset of protected T cells will also be able to facilitate the immune-based elimination of latently infected cells if they can be activated to express viral antigens. Thus, a single dose of disease resistant GM-HSPC could provide an effective treatment for HIV-1+ patients who require (or desire) an alternative to lifelong antiretroviral chemotherapy. We describe herein the results from several pilot clinical studies in HIV-1 patients and our strategies to develop second generation vectors and clinical strategies for HIV-1+ patients with malignancy who require ablative chemotherapy as part of treatment and others without malignancy. The important issues related to stem cell source, patient selection, conditioning regimen and post-infusion correlative studies become increasingly complex and are discussed herein. PMID:24284880

  15. N6-methyladenosine of HIV-1 RNA regulates viral infection and HIV-1 Gag protein expression

    PubMed Central

    Tirumuru, Nagaraja; Zhao, Boxuan Simen; Lu, Wuxun; Lu, Zhike; He, Chuan; Wu, Li

    2016-01-01

    The internal N6-methyladenosine (m6A) methylation of eukaryotic nuclear RNA controls post-transcriptional gene expression, which is regulated by methyltransferases (writers), demethylases (erasers), and m6A-binding proteins (readers) in cells. The YTH domain family proteins (YTHDF1–3) bind to m6A-modified cellular RNAs and affect RNA metabolism and processing. Here, we show that YTHDF1–3 proteins recognize m6A-modified HIV-1 RNA and inhibit HIV-1 infection in cell lines and primary CD4+ T-cells. We further mapped the YTHDF1–3 binding sites in HIV-1 RNA from infected cells. We found that the overexpression of YTHDF proteins in cells inhibited HIV-1 infection mainly by decreasing HIV-1 reverse transcription, while knockdown of YTHDF1–3 in cells had the opposite effects. Moreover, silencing the m6A writers decreased HIV-1 Gag protein expression in virus-producing cells, while silencing the m6A erasers increased Gag expression. Our findings suggest an important role of m6A modification of HIV-1 RNA in viral infection and HIV-1 protein synthesis. DOI: http://dx.doi.org/10.7554/eLife.15528.001 PMID:27371828

  16. Blocking CXCL9 Decreases HIV-1 Replication and Enhances the Activity of Prophylactic Antiretrovirals in Human Cervical Tissues

    PubMed Central

    Macura, Sherrill L.; Lathrop, Melissa J.; Gui, Jiang; Doncel, Gustavo F.; Rollenhagen, Christiane

    2016-01-01

    Objectives: The interferon-gamma–induced chemokine CXCL9 is expressed in a wide range of inflammatory conditions including those affecting the female genital tract. CXCL9 promotes immune cell recruitment, activation, and proliferation. The role of CXCL9 in modulating HIV-1 infection of cervicovaginal tissues, a main portal of viral entry, however, has not been established. We report a link between CXCL9 and HIV-1 replication in human cervical tissues and propose CXCL9 as a potential target to enhance the anti–HIV-1 activity of prophylactic antiretrovirals. Design: Using ex vivo infection of human cervical tissues as a model of mucosal HIV-1 acquisition, we described the effect of CXCL9 neutralization on HIV-1 gene expression and mucosal CD4+ T-cell activation. The anti-HIV-1 activity of tenofovir, the leading mucosal pre-exposure prophylactic microbicide, alone or in combination with CXCL9 neutralization was also studied. Methods: HIV-1 replication was evaluated by p24 ELISA. HIV-1 DNA and RNA, and CD4, CCR5, and CD38 transcription were evaluated by quantitative real-time polymerase chain reaction. Frequency of activated cervical CD4+ T cells was quantified using fluorescence-activated cell sorting. Results: Antibody blocking of CXCL9 reduced HIV-1 replication by decreasing mucosal CD4+ T-cell activation. CXCL9 neutralization in combination with suboptimal concentrations of tenofovir, possibly present in the cervicovaginal tissues of women using the drug inconsistently, demonstrated an earlier and greater decrease in HIV-1 replication compared with tissues treated with tenofovir alone. Conclusions: CXCL9 neutralization reduces HIV-1 replication and may be an effective target to enhance the efficacy of prophylactic antiretrovirals. PMID:26545124

  17. Early type I Interferon response induces upregulation of human β-defensin 1 during acute HIV-1 infection

    PubMed Central

    Lisanti, Antonella C.; Körner, Christian; Schiff, Abigail E.; Rosenberg, Eric S.; Allen, Todd M.; Altfeld, Marcus; Kwon, Douglas S.

    2017-01-01

    HIV-1 is able to evade innate antiviral responses during acute infection to establish a chronic systemic infection which, in the absence of antiretroviral therapy (ART), typically progresses to severe immunodeficiency. Understanding these early innate immune responses against HIV-1 and their mechanisms of failure is relevant to the development of interventions to better prevent HIV-1 transmission. Human beta defensins (HBDs) are antibacterial peptides but have recently also been associated with control of viral replication. HBD1 and 2 are expressed in PBMCs as well as intestinal tissue, but their expression in vivo during HIV-1 infection has not been characterized. We demonstrate that during acute HIV-1 infection, HBD1 but not HBD2 is highly upregulated in circulating monocytes but returns to baseline levels during chronic infection. HBD1 expression in monocytes can be induced by HIV-1 in vitro, although direct infection may not entirely account for the increase in HBD1 during acute infection. We provide evidence that HIV-1 triggers antiviral IFN-α responses, which act as a potent inducer of HBD1. Our results show the first characterization of induction of an HBD during acute and chronic viral infection in humans. HBD1 has been reported to have low activity against HIV-1 compared to other defensins, suggesting that in vivo induced defensins may not significantly contribute to the robust early antiviral response against HIV-1. These data provide important insight into the in vivo kinetics of HBD expression, the mechanism of HBD1 induction by HIV-1, and the role of HBDs in the early innate response to HIV-1 during acute infection. PMID:28253319

  18. HIV-1 Entry Inhbitors: An Overview

    PubMed Central

    Kuritzkes, Daniel R.

    2009-01-01

    Purpose of review This review provides an overview of HIV-1 entry inhibitors, with a focus on chemokine receptor antagonists. Recent findings Entry of HIV-1 into target cells is an ordered multi-step process involving attachment, co-receptor binding and fusion. Inhibitors of each step have been identified and shown to have antiviral activity in clinical trials. Phase 1-2 trials of monoclonal antibodies and small-molecule attachment inhibitors have demonstrated activity in HIV-1-infected subjects, but none has progressed to later phase clinical trials. The post-attachment inhibitor ibalizumab has shown activity in phase 1 and 2 trials; further studies are anticipated. The CCR5 antagonists maraviroc (now been approved for clinical use) and vicriviroc (in phase 3 trials) have shown significant benefit in controlled trials in treatment-experienced subjects; additional CCR5 antagonists are in various stages of clinical development. Targeting CXCR4 has proven to be more challenging. Although proof of concept has been demonstrated in phase 1-2 trials of two compounds, neither proved suitable for chronic administration. Little progress has been reported in developing longer acting or orally bioavailable fusion inhibitors. Summary ACCR5 antagonist and a fusion inhibitor are approved for use as HIV-1 entry inhibitors. Development of drugs targeting other steps in HIV-1 entry is ongoing. PMID:19339945

  19. HIV-1 associated dementia: symptoms and causes

    PubMed Central

    Ghafouri, Mohammad; Amini, Shohreh; Khalili, Kamel; Sawaya, Bassel E

    2006-01-01

    Despite the use of highly active antiretroviral therapy (HAART), neuronal cell death remains a problem that is frequently found in the brains of HIV-1-infected patients. HAART has successfully prevented many of the former end-stage complications of AIDS, however, with increased survival times, the prevalence of minor HIV-1 associated cognitive impairment appears to be rising among AIDS patients. Further, HIV-1 associated dementia (HAD) is still prevalent in treated patients as well as attenuated forms of HAD and CNS opportunistic disorders. HIV-associated cognitive impairment correlates with the increased presence in the CNS of activated, though not necessarily HIV-1-infected, microglia and CNS macrophages. This suggests that indirect mechanisms of neuronal injury and loss/death occur in HIV/AIDS as a basis for dementia since neurons are not themselves productively infected by HIV-1. In this review, we discussed the symptoms and causes leading to HAD. Outcome from this review will provide new information regarding mechanisms of neuronal loss in AIDS patients. PMID:16712719

  20. Antigenicity and Immunogenicity of a Trimeric Envelope Protein from an Indian Clade C HIV-1 Isolate*

    PubMed Central

    Sneha Priya, Rangasamy; Veena, Menon; Kalisz, Irene; Whitney, Stephen; Priyanka, Dhopeshwarkar; LaBranche, Celia C.; Sri Teja, Mullapudi; Montefiori, David C.; Pal, Ranajit; Mahalingam, Sundarasamy; Kalyanaraman, Vaniambadi S.

    2015-01-01

    Human immunodeficiency virus type 1 (HIV-1) isolates from India mainly belong to clade C and are quite distinct from clade C isolates from Africa in terms of their phylogenetic makeup, serotype, and sensitivity to known human broadly neutralizing monoclonal antibodies. Because many of these properties are associated with the envelope proteins of HIV-1, it is of interest to study the envelope proteins of Indian clade C isolates as part of the ongoing efforts to develop a vaccine against HIV-1. To this end, we purified trimeric uncleaved gp145 of a CCR5 tropic Indian clade C HIV-1 (93IN101) from the conditioned medium of 293 cells. The purified protein was shown to be properly folded with stable structure by circular dichroism. Conformational integrity was further demonstrated by its high affinity binding to soluble CD4, CD4 binding site antibodies such as b12 and VRC01, quaternary epitope-specific antibody PG9, and CD4-induced epitope-specific antibody 17b. Sera from rabbits immunized with gp145 elicited high titer antibodies to various domains of gp120 and neutralized a broad spectrum of clade B and clade C HIV-1 isolates. Similar to other clade B and clade C envelope immunogens, most of the Tier 1 neutralizing activity could be absorbed with the V3-specific peptide. Subsequent boosting of these rabbits with a clade B HIV-1 Bal gp145 resulted in an expanded breadth of neutralization of HIV-1 isolates. The present study strongly supports the inclusion of envelopes from Indian isolates in a future mixture of HIV-1 vaccines. PMID:25691567

  1. Altered immunological reactivity in HIV-1-exposed uninfected neonates.

    PubMed

    Hygino, Joana; Lima, Patrícia G; Filho, Renato G S; Silva, Agostinho A L; Saramago, Carmen S M; Andrade, Regis M; Andrade, Daniel M; Andrade, Arnaldo F B; Brindeiro, Rodrigo; Tanuri, Amilcar; Bento, Cleonice A M

    2008-06-01

    This work aimed to evaluate immune events in HIV-1-exposed uninfected neonates born from mothers who control (G1) or not (G2) the plasma viral load, using unexposed neonates as controls. Cord blood from each neonate was collected, plasma and mononuclear cells were separated and the lymphoproliferation and cytokine pattern were evaluated. The results demonstrated that the in vitro lymphoproliferation induced by polyclonal activators was higher in the G2 neonates. Nevertheless, no cell culture responded to poll synthetic HIV-1 envelope peptides. The cytokine dosage in the plasma and supernatants of polyclonally-activated cultures demonstrated that, while IL-4 and IL-10 were the dominant cytokines produced in G1 and control groups, IFN-gamma and TNF-alpha were significantly higher in G2 neonates. Systemic levels of IL-10 observed among the G1 neonates were higher in those born from anti-retroviral treated mothers. In summary, our results indicate an altered immune responsiveness in neonates exposed in utero to HIV and support the role of maternal anti-retroviral treatment to attenuate it.

  2. Effects of HIV-1 on Cognition in Humanized NSG Mice

    NASA Astrophysics Data System (ADS)

    Akhter, Sidra Pervez

    Host species specificity of human immunodeficiency virus (HIV) creates a challenge to study the pathology, diagnostic tools, and therapeutic agents. The closely related simian immunodeficiency virus and studies of neurocognitive impairments on transgenic animals expressing partial viral genome have significant limitations. The humanized mice model provides a small animal system in which a human immune system can be engrafted and immunopathobiology of HIV-1 infection can be studied. However, features of HIV-associated neurocognitive disorders (HAND) were not evaluated in this model. Open field activity test was selected to characterize behavior of original strain NOD/scid-IL-2Rgammac null (NSG) mice, effects of engraftment of human CD34+ hematopoietic stem cells (HSCs) and functional human immune system (huNSG), and finally, investigate the behavior changes induced by chronic HIV-1 infection. Long-term infected HuNSG mice showed the loss of working memory and increased anxiety in the open field. Additionally, these animals were utilized for evaluation of central nervous system metabolic and structural changes. Detected behavioral abnormalities are correlated with obtained neuroimaging and histological abnormalities published.

  3. Appreciating HIV-1 diversity: subtypic differences in ENV

    SciTech Connect

    Gnanakaran, S; Shen, Tongye; Lynch, Rebecca M; Derdeyn, Cynthia A

    2008-01-01

    Human immunodeficiency virus type 1 (HIV-1) group M is responsible for the current AIDS pandemic and exhibits exceedingly high levels of viral genetic diversity around the world, necessitating categorization of viruses into distinct lineages, or subtypes. These subtypes can differ by around 35% in the envelope (Env) glycoproteins of the virus, which are displayed on the surface of the virion and are targets for both neutralizing antibody and cell-mediated immune responses. This diversity reflects the remarkable ability of the virus to adapt to selective pressures, the bulk of which is applied by the host immune response, and represents a serious obstacle for developing an effective vaccine with broad coverage. Thus, it is important to understand the underlying biological consequences of inter-subtype diversity. Recent studies have revealed that the HIV-1 subtypes exhibit phenotypic differences that result from subtle differences in Env structure, particularly within the highly immunogenic V3 domain, which participates directly in viral entry. This review will therefore explore current research that describes subtypic differences in Env at the genetic and phenotypic level, focusing in particular on V3, and highlighting recent discoveries about the unique features of subtype C Env, which is the most prevalent subtype globally.

  4. Modulation of HIV-1 virulence via the host glucocorticoid receptor: towards further understanding the molecular mechanisms of HIV-1 pathogenesis.

    PubMed

    Hapgood, Janet Patricia; Tomasicchio, Michele

    2010-07-01

    The glucocorticoid receptor (GR) is a steroid receptor that regulates diverse functions, which include the immune response. In humans, the GR acts via binding to cortisol, resulting in the transcriptional modulation of key host genes. Several lines of evidence suggest that the host GR could be a key protein exploited by HIV at multiple levels to ensure its pathogenic success. Endogenous and therapeutic glucocorticoids play important roles in patients with HIV due to their well-established effects on immune function. AIDS patients develop glucocorticoid hypersensitivity, consistent with a mechanism involving an HIV-1-induced increase in expression or activity of the GR. Both the HIV-1 accessory protein Vpr and the host GR affect transcription of viral proteins from the long terminal repeat (LTR) region of the HIV-1 promoter. In addition, Vpr modulates host GR function to affect transcription of host genes, most likely via direct interaction with the GR. Vpr appears to regulate GR function by acting as a co-activator for the GR. Since both the GR and Vpr are involved in apoptosis in T cells and dendritic cells, crosstalk between these proteins may also regulate apoptosis in these and other cells. Given that cortisol is not the only ligand that activates the GR, other endogenous as well as synthetic GR ligands such as progestins may also modulate HIV pathogenesis, in particular in the cervicovaginal environment. Investigating the molecular determinants, ligand-selectivity and role in HIV pathogenesis of the GR-Vpr interaction may lead to new strategies for development of anti-HIV drugs.

  5. Effect of Biomolecular Conformation on Docking Simulation: A Case Study on a Potent HIV-1 Protease Inhibitor

    PubMed Central

    Razzaghi-Asl, Nima; Sepehri, Saghi; Ebadi, Ahmad; Miri, Ramin; Shahabipour, Sara

    2015-01-01

    Human immunodeficiency virus infection/acquired immunodeficiency syndrome (HIV/AIDS) is a disease pertained to the human immune system. Given its crucial role in viral replication, HIV-1 protease (HIV-1 PR) is a prime therapeutic target in AIDS therapy. In this regard, the dynamic aspects of ligand-enzyme interactions may indicate an important role of conformational variability in HIV-1 PR inhibitor/drug design. In the present contribution, the effect of HIV-1 PR flexibility (within multiple crystallographic structures of HIV-1 PR) on binding to the Amprenavir was elucidated via an ensemble docking approach. Molecular docking studies were performed via advanced AutoDock4.2 software. Ensemble docking of Amprenavir into the active site of various conformations of HIV-1 PR predicted different interaction modes/energies. Analysis of binding factors in terms of docking false negatives/positives revealed a determinant role of enzyme conformational variation in prediction of optimum induced fit (PDB ID: 1HPV). The outcomes of this study demonstrated that conformation of receptor may significantly affect the accuracy of docking/binding results in structure-based rational design of anti HIV-1 PR agents. Furthermore; some strategies to re-score the docking results in HIV-1 PR targeted docking studies were proposed. PMID:26330867

  6. Neutralizing antibodies to HIV-1 envelope protect more effectively in vivo than those to the CD4 receptor

    PubMed Central

    Pegu, Amarendra; Yang, Zhi-yong; Boyington, Jeffrey C.; Wu, Lan; Ko, Sung-Youl; Schmidt, Stephen D.; McKee, Krisha; Kong, Wing-Pui; Shi, Wei; Chen, Xuejun; Todd, John-Paul; Huang, Jinghe; Nason, Martha C.; Hoxie, James A.; Kwong, Peter D.; Connors, Mark; Rao, Srinivas S.; Mascola, John R.; Nabel, Gary J.

    2015-01-01

    HIV-1 infection depends on effective viral entry mediated by the interaction of its envelope (Env) glycoprotein with specific cell surface receptors. Protective antiviral antibodies generated by passive or active immunization must prevent these interactions. Because the HIV-1 Env is highly variable, attention has also focused on blocking the HIV-1 primary cell receptor CD4. We therefore analyzed the in vivo protective efficacy of three potent neutralizing monoclonal antibodies (mAbs) to HIV-1 Env compared to an antibody against the CD4 receptor. Protection was assessed after mucosal challenge of rhesus macaques with simian/HIV (SHIV). Despite its comparable or greater neutralization potency in vitro, the anti-CD4 antibody did not provide effective protection in vivo, whereas the HIV-1–specific mAbs VRC01, 10E8, and PG9, targeting the CD4 binding site, membrane-proximal, and V1V2 glycan Env regions, respectively, conferred complete protection, albeit at different relative potencies. These findings demonstrate the protective efficacy of broadly neutralizing antibodies directed to the HIV-1 Env and suggest that targeting the HIV-1 Env is preferable to the cell surface receptor CD4 for the prevention of HIV-1 transmission. PMID:24990883

  7. Polyepitope protein incorporated the HIV-1 mimotope recognized by monoclonal antibody 2G12.

    PubMed

    Karpenko, Larisa I; Scherbakova, Nadezhda S; Chikaev, Anton N; Tumanova, Olga Yu; Lebedev, Leonid R; Shalamova, Lyudmila A; Pyankova, Olga G; Ryzhikov, Alexander B; Ilyichev, Alexander A

    2012-04-01

    A major goal in HIV-1 vaccine research is to develop an immunogen that can elicit broadly neutralizing antibodies that efficiently neutralize a wide range of the HIV-1 subtypes. Using biopanning procedure we have selected linear peptide VGAFGSFYRLSVLQS mimicking the structure of discontinuous binding sites of broadly neutralizing antibodies 2G12 from phage peptide library. As a protein carrier, we used the earlier designed artificial polyepitope immunogen named TBI (T- and B-cell immunogen), which comprises B-cell and T-helper epitopes from the HIV-1 Env and Gag proteins. On the base of selected peptide mimotope VGAFGSFYRLSVLQS the artificial protein TBI-2g12 was constructed and its immunogenic properties was investigated. It was shown that the TBI-2g12 as well as the original TBI induces antibodies that recognize HIV-1 proteins and TBI protein using ELISA and immunoblotting. However only anti-TBI-2g12 serum recognized the synthetic peptide mimotope VGAFGSFYRLSVLQS, whereas the antibodies against original TBI don't recognize it. The neutralization assay demonstrated that serum antibodies of the mice immunized with TBI-2g12 possess virus neutralizing activity. The addition of selected peptide leads to inhibition neutralizing activity of anti- TBI-2g12 serum. We conclude from these results that immunogen TBI-2g12 containing the selected peptide VGAFGSFYRLSVLQS elicits HIV-1 neutralizing antibodies during immunization. Our data suggest that this immunogen may be useful in designing effective HIV-vaccine candidates.

  8. Increased HIV-1 vaccine efficacy against viruses with genetic signatures in Env V2.

    PubMed

    Rolland, Morgane; Edlefsen, Paul T; Larsen, Brendan B; Tovanabutra, Sodsai; Sanders-Buell, Eric; Hertz, Tomer; deCamp, Allan C; Carrico, Chris; Menis, Sergey; Magaret, Craig A; Ahmed, Hasan; Juraska, Michal; Chen, Lennie; Konopa, Philip; Nariya, Snehal; Stoddard, Julia N; Wong, Kim; Zhao, Hong; Deng, Wenjie; Maust, Brandon S; Bose, Meera; Howell, Shana; Bates, Adam; Lazzaro, Michelle; O'Sullivan, Annemarie; Lei, Esther; Bradfield, Andrea; Ibitamuno, Grace; Assawadarachai, Vatcharain; O'Connell, Robert J; deSouza, Mark S; Nitayaphan, Sorachai; Rerks-Ngarm, Supachai; Robb, Merlin L; McLellan, Jason S; Georgiev, Ivelin; Kwong, Peter D; Carlson, Jonathan M; Michael, Nelson L; Schief, William R; Gilbert, Peter B; Mullins, James I; Kim, Jerome H

    2012-10-18

    The RV144 trial demonstrated 31% vaccine efficacy at preventing human immunodeficiency virus (HIV)-1 infection. Antibodies against the HIV-1 envelope variable loops 1 and 2 (Env V1 and V2) correlated inversely with infection risk. We proposed that vaccine-induced immune responses against V1/V2 would have a selective effect against, or sieve, HIV-1 breakthrough viruses. A total of 936 HIV-1 genome sequences from 44 vaccine and 66 placebo recipients were examined. We show that vaccine-induced immune responses were associated with two signatures in V2 at amino acid positions 169 and 181. Vaccine efficacy against viruses matching the vaccine at position 169 was 48% (confidence interval 18% to 66%; P = 0.0036), whereas vaccine efficacy against viruses mismatching the vaccine at position 181 was 78% (confidence interval 35% to 93%; P = 0.0028). Residue 169 is in a cationic glycosylated region recognized by broadly neutralizing and RV144-derived antibodies. The predicted distance between the two signature sites (21 ± 7 Å) and their match/mismatch dichotomy indicate that multiple factors may be involved in the protection observed in RV144. Genetic signatures of RV144 vaccination in V2 complement the finding of an association between high V1/V2-binding antibodies and reduced risk of HIV-1 acquisition, and provide evidence that vaccine-induced V2 responses plausibly had a role in the partial protection conferred by the RV144 regimen.

  9. The role of NK cells in HIV-1 protection: autologous, allogeneic or both?

    PubMed

    Hens, Jef; Jennes, Wim; Kestens, Luc

    2016-01-01

    Natural killer (NK) cells specialize in killing virally infected- or tumor cells and are part of the innate immune system. The activational state of NK cells is determined by the balance of incoming activating and inhibitory signals mediated by receptor-ligand binding with the target cell. These receptor-ligand bonds mainly consist of the killer immunoglobulin-like receptors (KIR), which are expressed at the cell surface of NK cells, and their ligands: the highly variable human leukocyte antigen -class I molecules (HLA). Absence of an inhibitory receptor-ligand bond lowers the NK cell activation threshold, whereas an activating receptor-ligand bond stimulates the cell, potentially overcoming this threshold and triggering NK cell activation. NK cells influence the course of infection as well as the acquisition of HIV-1. Several lines of evidence relate the activating NK cell receptor KIR3DS1, in the presence or absence of its putative ligand HLA-Bw4, with slower disease progression as well as resistance to HIV-1 infection. Overall, resistance to HIV-1 infection predominantly correlates with activating KIR/HLA profiles, consisting of e.g. activating KIRs, group B haplotypes, or inhibitory KIRs in absence of their ligands. Such a conclusion is less evident for studies of HIV-1 disease progression, with studies reporting beneficial as well as detrimental effects of activating KIR/HLA genotypes. It is likely that KIR/HLA association studies are complicated by the complexity of the KIR and HLA loci and their mutual interactions, as well as by additional factors like route of HIV exposure, immune activation, presence of co-infections, and the effect of anti-HIV-1 antibodies. One newly discovered NK cell activation pathway associated with resistance to HIV-1 infection involves the presence of an iKIR/HLA mismatch between partners. The absence of such an iKIR/HLA bond renders donor-derived allogeneic HIV-1 infected cells vulnerable to NK cell responses during HIV-1

  10. BST-2 Expression Modulates Small CD4 Mimetic Sensitization of HIV-1-infected cells to ADCC.

    PubMed

    Richard, Jonathan; Prévost, Jérémie; von Bredow, Benjamin; Ding, Shilei; Brassard, Nathalie; Medjahed, Halima; Coutu, Mathieu; Melillo, Bruno; Bibollet-Ruche, Frédéric; Hahn, Beatrice H; Kaufmann, Daniel E; Smith, Amos B; Sodroski, Joseph; Sauter, Daniel; Kirchhoff, Frank; Gee, Katrina; Neil, Stuart J; Evans, David T; Finzi, Andrés

    2017-03-22

    Antibodies recognizing conserved CD4-induced (CD4i) epitopes on HIV-1 Env and able to mediate antibody-dependent cellular cytotoxicity (ADCC) have been shown to be present in sera from most HIV-1-infected individuals. These antibodies preferentially recognize Env in its CD4-bound conformation. CD4 downregulation by Nef and Vpu dramatically reduces exposure of CD4i HIV-1 Env epitopes and therefore reduce the susceptibility of HIV-1-infected cells to ADCC mediated by HIV+ sera. Importantly, this mechanism of immune evasion can be circumvented with small-molecule CD4-mimetics (CD4mc) which are able to transition Env into the CD4-bound conformation and sensitize HIV-1-infected cells to ADCC mediated by HIV+ sera. However, HIV-1 developed additional mechanisms to avoid ADCC including Vpu-mediated BST-2 antagonism, which decreases the overall amount of Env present at the cell surface. Accordingly, BST-2 up-regulation in response to IFN-α was shown to increase the susceptibility of HIV-1-infected cells to ADCC despite the activity of Vpu. Here we show that BST-2 upregulation by IFN-β and IL-27 also increases the surface expression of Env and thus boosts the ability of CD4mc to sensitize HIV-1-infected cells to ADCC by sera from HIV-1-infected individuals.IMPORTANCE HIV-1 evolved sophisticated strategies to conceal Env epitopes from ADCC-mediating antibodies present in HIV+ sera. Vpu-mediated BST-2 downregulation was shown to decrease ADCC responses by limiting the amount of Env present at the cell surface. This effect of Vpu was shown to be attenuated by IFN-α treatment. Here we show that in addition to IFN-α, IFN-β and IL-27 also affect Vpu-mediated BST-2 downregulation and greatly enhance ADCC responses against HIV-1-infected cells in the presence of CD4mc. These findings may inform strategies aimed at HIV prevention and eradication.

  11. Cutting edge: An antibody recognizing ancestral endogenous virus glycoproteins mediates antibody-dependent cellular cytotoxicity on HIV-1-infected cells.

    PubMed

    Michaud, Henri-Alexandre; SenGupta, Devi; de Mulder, Miguel; Deeks, Steven G; Martin, Jeffrey N; Kobie, James J; Sacha, Jonah B; Nixon, Douglas F

    2014-08-15

    The failure of antiviral vaccines is often associated with rapid viral escape from specific immune responses. In the past, conserved epitope or algorithmic epitope selections, such as mosaic vaccines, have been designed to diversify immunity and to circumvent potential viral escape. An alternative approach is to identify conserved stable non-HIV-1 self-epitopes present exclusively in HIV-1-infected cells. We showed previously that human endogenous retroviral (HERV) mRNA transcripts and protein are found in cells of HIV-1-infected patients and that HERV-K (HML-2)-specific T cells can eliminate HIV-1-infected cells in vitro. In this article, we demonstrate that a human anti-HERV-K (HML-2) transmembrane protein Ab binds specifically to HIV-1-infected cells and eliminates them through an Ab-dependent cellular cytotoxicity mechanism in vitro. Thus, Abs directed against epitopes other than HIV-1 proteins may have a role in eliminating HIV-1-infected cells and could be targeted in novel vaccine approaches or immunotherapeutic modalities.

  12. MAS NMR of HIV-1 protein assemblies

    NASA Astrophysics Data System (ADS)

    Suiter, Christopher L.; Quinn, Caitlin M.; Lu, Manman; Hou, Guangjin; Zhang, Huilan; Polenova, Tatyana

    2015-04-01

    The negative global impact of the AIDS pandemic is well known. In this perspective article, the utility of magic angle spinning (MAS) NMR spectroscopy to answer pressing questions related to the structure and dynamics of HIV-1 protein assemblies is examined. In recent years, MAS NMR has undergone major technological developments enabling studies of large viral assemblies. We discuss some of these evolving methods and technologies and provide a perspective on the current state of MAS NMR as applied to the investigations into structure and dynamics of HIV-1 assemblies of CA capsid protein and of Gag maturation intermediates.

  13. Reactivation Kinetics of HIV-1 and Susceptibility of Reactivated Latently Infected CD4+ T Cells to HIV-1-Specific CD8+ T Cells

    PubMed Central

    Walker-Sperling, Victoria E. K.; Cohen, Valerie J.; Tarwater, Patrick M.

    2015-01-01

    ABSTRACT The “shock and kill” model of human immunodeficiency virus type 1 (HIV-1) eradication involves the induction of transcription of HIV-1 genes in latently infected CD4+ T cells, followed by the elimination of these infected CD4+ T cells by CD8+ T cells or other effector cells. CD8+ T cells may also be needed to control the spread of new infection if residual infected cells are present at the time combination antiretroviral therapy (cART) is discontinued. In order to determine the time frame needed for CD8+ T cells to effectively prevent the spread of HIV-1 infection, we examined the kinetics of HIV transcription and virus release in latently infected cells reactivated ex vivo. Isolated resting, primary CD4+ T cells from HIV-positive (HIV+) subjects on suppressive regimens were found to upregulate cell-associated HIV-1 mRNA within 1 h of stimulation and produce extracellular virus as early as 6 h poststimulation. In spite of the rapid kinetics of virus production, we show that CD8+ T cells from 2 out of 4 viremic controllers were capable of effectively eliminating reactivated autologous CD4+ cells that upregulate cell-associated HIV-1 mRNA. The results have implications for devising strategies to prevent rebound viremia due to reactivation of rare latently infected cells that persist after potentially curative therapy. IMPORTANCE A prominent HIV-1 cure strategy termed “shock and kill” involves the induction of HIV-1 transcription in latently infected CD4+ T cells with the goal of elimination of these cells by either the cytotoxic T lymphocyte response or other immune cell subsets. However, the cytotoxic T cell response may also be required after curative treatment if residual latently infected cells remain. The kinetics of HIV-1 reactivation indicate rapid upregulation of cell-associated HIV-1 mRNA and a 5-h window between transcription and virus release. Thus, HIV-specific CD8+ T cell responses likely have a very short time frame to eliminate

  14. Phosphorylation of HIV-1 Tat by CDK2 in HIV-1 transcription

    PubMed Central

    Ammosova, Tatyana; Berro, Reem; Jerebtsova, Marina; Jackson, Angela; Charles, Sharroya; Klase, Zachary; Southerland, William; Gordeuk, Victor R; Kashanchi, Fatah; Nekhai, Sergei

    2006-01-01

    Background Transcription of HIV-1 genes is activated by HIV-1 Tat protein, which induces phosphorylation of RNA polymerase II (RNAPII) C-terminal domain (CTD) by CDK9/cyclin T1. Earlier we showed that CDK2/cyclin E phosphorylates HIV-1 Tat in vitro. We also showed that CDK2 induces HIV-1 transcription in vitro and that inhibition of CDK2 expression by RNA interference inhibits HIV-1 transcription and viral replication in cultured cells. In the present study, we analyzed whether Tat is phosphorylated in cultured cells by CDK2 and whether Tat phosphorylation has a regulatory effect on HIV-1 transcription. Results We analyzed HIV-1 Tat phosphorylation by CDK2 in vitro and identified Ser16 and Ser46 residues of Tat as potential phosphorylation sites. Tat was phosphorylated in HeLa cells infected with Tat-expressing adenovirus and metabolically labeled with 32P. CDK2-specific siRNA reduced the amount and the activity of cellular CDK2 and significantly decreased phosphorylation of Tat. Tat co-migrated with CDK2 on glycerol gradient and co-immunoprecipitated with CDK2 from the cellular extracts. Tat was phosphorylated on serine residues in vivo, and mutations of Ser16 and Ser46 residues of Tat reduced Tat phosphorylation in vivo. Mutation of Ser16 and Ser46 residues of Tat reduced HIV-1 transcription in transiently transfected cells. The mutations of Tat also inhibited HIV-1 viral replication and Tat phosphorylation in the context of the integrated HIV-1 provirus. Analysis of physiological importance of the S16QP(K/R)19 and S46YGR49 sequences of Tat showed that Ser16 and Ser46 and R49 residues are highly conserved whereas mutation of the (K/R)19 residue correlated with non-progression of HIV-1 disease. Conclusion Our results indicate for the first time that Tat is phosphorylated in vivo; Tat phosphorylation is likely to be mediated by CDK2; and phosphorylation of Tat is important for HIV-1 transcription. PMID:17083724

  15. HIV-1 Capsid: The Multifaceted Key Player in HIV-1 infection

    PubMed Central

    Campbell, Edward M.; Hope, Thomas J.

    2016-01-01

    In a mature, infectious HIV-1 virion, the viral genome is housed within a conical capsid core comprised of the viral capsid (CA) protein. The CA protein, and the structure into which it assembles, facilitate virtually every step of infection through a series of interactions with multiple host cell factors. This review describes our understanding of the interactions between the viral capsid core and several cellular factors that enable efficient HIV-1 genome replication, timely core disassembly, nuclear import and the integration of the viral genome into the genome of the target cell. We then discuss how elucidating these interactions can reveal new targets for therapeutic interactions against HIV-1. PMID:26179359

  16. DNA and modified vaccinia virus Ankara vaccines encoding multiple cytotoxic and helper T-lymphocyte epitopes of human immunodeficiency virus type 1 (HIV-1) are safe but weakly immunogenic in HIV-1-uninfected, vaccinia virus-naive adults.

    PubMed

    Gorse, Geoffrey J; Newman, Mark J; deCamp, Allan; Hay, Christine Mhorag; De Rosa, Stephen C; Noonan, Elizabeth; Livingston, Brian D; Fuchs, Jonathan D; Kalams, Spyros A; Cassis-Ghavami, Farah L

    2012-05-01

    We evaluated a DNA plasmid-vectored vaccine and a recombinant modified vaccinia virus Ankara vaccine (MVA-mBN32), each encoding cytotoxic and helper T-lymphocyte epitopes of human immunodeficiency virus type 1 (HIV-1) in a randomized, double-blinded, placebo-controlled trial in 36 HIV-1-uninfected adults using a heterologous prime-boost schedule. HIV-1-specific cellular immune responses, measured as interleukin-2 and/or gamma interferon production, were induced in 1 (4%) of 28 subjects after the first MVA-mBN32 immunization and in 3 (12%) of 25 subjects after the second MVA-mBN32 immunization. Among these responders, polyfunctional T-cell responses, including the production of tumor necrosis factor alpha and perforin, were detected. Vaccinia virus-specific antibodies were induced to the MVA vector in 27 (93%) of 29 and 26 (93%) of 28 subjects after the first and second immunizations with MVA-mBN32. These peptide-based vaccines were safe but were ineffective at inducing HIV-1-specific immune responses and induced much weaker responses than MVA vaccines expressing the entire open reading frames of HIV-1 proteins.

  17. Is the high virulence of HIV-1 an unfortunate coincidence of primate lentiviral evolution?

    PubMed

    Kirchhoff, Frank

    2009-06-01

    In the subset of primate lentiviruses that contain a vpu gene - HIV-1 and its simian precursors - the Nef protein has lost the ability to down-modulate CD3, block T cell activation and suppress programmed death. Vpu counteracts a host restriction factor induced by the inflammatory cytokine interferon-alpha. I propose that the acquisition of vpu may have allowed the viral lineage that gave rise to HIV-1 to evolve towards greater pathogenicity by removing the selective pressure for a protective Nef function that prevents damagingly high levels of immune activation.

  18. Identification of peptides from human pathogens able to cross-activate an HIV-1-gag-specific CD4+ T cell clone.

    PubMed

    Venturini, Sara; Allicotti, Gina; Zhao, Yindong; Simon, Richard; Burton, Dennis R; Pinilla, Clemencia; Poignard, Pascal

    2006-01-01

    Antigen recognition by T cells is degenerate both at the MHC and the TCR level. In this study, we analyzed the cross-reactivity of a human HIV-1 gag p24-specific CD4(+) T cell clone obtained from an HIV-1-seronegative donor using a positional scanning synthetic combinatorial peptide library (PS-SCL)-based biometrical analysis. A number of decapeptides able to activate the HIV-1 gag-specific clone were identified and shown to correspond to sequences found in other human pathogens. Two of these peptides activated the T cell clone with the same stimulatory potency as the original HIV-1 gag p24 peptide. These findings show that an HIV-1-specific human T helper clone can react efficiently with peptides from other pathogens and suggest that cellular immune responses identified as being specific for one human pathogen (HIV-1) could arise from exposure to other pathogens.

  19. HIV-1 transcription and latency: an update

    PubMed Central

    2013-01-01

    Combination antiretroviral therapy, despite being potent and life-prolonging, is not curative and does not eradicate HIV-1 infection since interruption of treatment inevitably results in a rapid rebound of viremia. Reactivation of latently infected cells harboring transcriptionally silent but replication-competent proviruses is a potential source of persistent residual viremia in cART-treated patients. Although multiple reservoirs may exist, the persistence of resting CD4+ T cells carrying a latent infection represents a major barrier to eradication. In this review, we will discuss the latest reports on the molecular mechanisms that may regulate HIV-1 latency at the transcriptional level, including transcriptional interference, the role of cellular factors, chromatin organization and epigenetic modifications, the viral Tat trans-activator and its cellular cofactors. Since latency mechanisms may also operate at the post-transcriptional level, we will consider inhibition of nuclear RNA export and inhibition of translation by microRNAs as potential barriers to HIV-1 gene expression. Finally, we will review the therapeutic approaches and clinical studies aimed at achieving either a sterilizing cure or a functional cure of HIV-1 infection, with a special emphasis on the most recent pharmacological strategies to reactivate the latent viruses and decrease the pool of viral reservoirs. PMID:23803414

  20. Toll-Like receptor-3 mediates HIV-1 transactivation via NFκB and JNK pathways and histone acetylation, but prolonged activation suppresses Tat and HIV-1 replication

    PubMed Central

    Bhargavan, Biju; Woollard, Shawna M.; Kanmogne, Georgette D.

    2016-01-01

    TLR3 has been implicated in the pathogenesis of several viral infections, including SIV- and HIV-1-induced inflammation and AIDS. However the molecular mechanisms of these TLR3-mediated effects are not known, and it is not known whether HIV interacts with cellular TLR3 to affect disease process. Here we investigate the effects of TLR3 ligands on HIV-1 transactivation using both primary human macrophages and cells containing integrated copies of the HIV-1 promoter. We demonstrate that TLR3 activation induced upregulation of transcription factors such as c-Jun, CCAAT/enhancer-binding protein alpha (CEBPA), signal transducer and activator of transcription (STAT)-1, STAT-2, RELB, and nuclear factor kappa-B1 (NFκB1), most of which are known to regulate the HIV promoter activity. We also demonstrate that TLR3 activation increased HIV-1 transactivation via the c-Jun N-terminal kinase (JNK) and NFκB pathways. This was associated with epigenetics modifications, including decreased histone deacetylase activity, increased histone acetyl transferase (HAT) activity, and increased acetylation of histones H3 and H4 at lysine residues in the nucleosome-0 and nucleosome-1 of the HIV-1 promoter. However, prolonged TLR3 activation decreased HIV-1 transactivation, decreased HAT activity and Tat transcription, and suppressed viral replication. Overall, data suggests TLR3 can acts as viral sensor to mediate viral transactivation, cellular signaling, innate immune response, and inflammation in HIV-infected humans. Our study provides novel insights into the molecular basis for these TLR3-mediated effects. PMID:26569339

  1. Viremic Control and Viral Coreceptor Usage in Two HIV-1-Infected Persons Homozygous for CCR5 Δ32

    PubMed Central

    Henrich, Timothy J.; Hanhauser, Emily; Hu, Zixin; Stellbrink, Hans-Jürgen; Noah, Christian; Martin, Jeffrey N.; Deeks, Steven G.; Kuritzkes, Daniel R.; Pereyra, Florencia

    2015-01-01

    Objectives To determine viral and immune factors involved in transmission and control of HIV-1 infection in persons without functional CCR5 Design Understanding transmission and control of HIV-1 in persons homozygous for CCR5Δ32 is important given efforts to develop HIV-1 curative therapies aimed at modifying or disrupting CCR5 expression. Methods We identified two HIV-infected CCR5Δ32/Δ32 individuals among a cohort of patients with spontaneous control of HIV-1 infection without antiretroviral therapy and determined co-receptor usage of the infecting viruses. We assessed genetic evolution of full-length HIV-1 envelope sequences by single-genome analysis from one participant and his sexual partner, and explored HIV-1 immune responses and HIV-1 mutations following virologic escape and disease progression. Results Both participants experienced viremia of less than 4,000 RNA copies/ml with preserved CD4+ T cell counts off ART for at least 3.3 and 4.6 years after diagnosis, respectively. One participant had phenotypic evidence of X4 virus, had no known favorable HLA alleles, and appeared to be infected by minority X4 virus from a pool that predominately used CCR5 for entry. The second participant had virus that was unable to use CXCR4 for entry in phenotypic assay but was able to engage alternative viral coreceptors (e.g. CXCR6) in vitro. Conclusions Our study demonstrates that individuals may be infected by minority X4 viruses from a population that predominately uses CCR5 for entry, and that viruses may bypass traditional HIV-1 coreceptors (CCR5 and CXCR4) completely by engaging alternative coreceptors to establish and propagate HIV-1 infection. PMID:25730507

  2. PQBP1 is a Proximal Sensor of the cGAS-dependent Innate Response to HIV-1

    PubMed Central

    Yoh, Sunnie M.; Schneider, Monika; Akleh, Rana E.; Olivieri, Kevin C.; De Jesus, Paul D.; Ruan, Chunhai; de Castro, Elisa; Ruiz, Pedro A.; Germanaud, David; des Portes, Vincent; García-Sastre, Adolfo; König, Renate; Chanda, Sumit K.

    2015-01-01

    Summary Dendritic cells (DCs) play a critical role in the immune response to viral infection through the facilitation of cell intrinsic antiviral activity and the activation of adaptive immunity. HIV-1 infection of DCs triggers an IRF3-dependent innate immune response, which requires the activity of cyclic GAMP synthase (cGAS). We report the results of a targeted RNAi screen utilizing primary human monocyte-derived DCs (MDDCs) to identify immune regulators that directly interface with HIV-1-encoded features to initiate this innate response. Polyglutamine binding protein 1 (PQBP1) emerged as a strong candidate through this analysis. We found that PQBP1 directly binds to reverse-transcribed HIV-1 DNA and interacts with cGAS to initiate an IRF3-dependent innate response. MDDCs derived from Renpenning Syndrome patients, who harbor mutations in the PQBP1 locus, possess a severely attenuated innate immune response to HIV-1 challenge, underscoring the role of PQBP1 as a proximal innate sensor of a HIV-1 infection. PMID:26046437

  3. HIV-1 proteins in infected cells determine the presentation of viral peptides by HLA class I and class II molecules and the nature of the cellular and humoral antiviral immune responses--a review.

    PubMed

    Becker, Y

    1994-07-01

    The goals of molecular virology and immunology during the second half of the 20th century have been to provide the conceptual approaches and the tools for the development of safe and efficient virus vaccines for the human population. The success of the vaccination approach to prevent virus epidemics was attributed to the ability of inactivated and live virus vaccines to induce a humoral immune response and to produce antiviral neutralizing antibodies in the vaccinees. The successful development of antiviral vaccines and their application to most of the human population led to a marked decrease in virus epidemics around the globe. Despite this remarkable achievement, the developing epidemics of HIV-caused AIDS (accompanied by activation of latent herpesviruses in AIDS patients), epidemics of Dengue fever, and infections with respiratory syncytial virus may indicate that conventional approaches to the development of virus vaccines that induce antiviral humoral responses may not suffice. This may indicate that virus vaccines that induce a cellular immune response, leading to the destruction of virus-infected cells by CD8+ cytotoxic T cells (CTLs), may be needed. Antiviral CD8+ CTLs are induced by viral peptides presented within the peptide binding grooves of HLA class I molecules present on the surface of infected cells. Studies in the last decade provided an insight into the presentation of viral peptides by HLA class I molecules to CD8+ T cells. These studies are here reviewed, together with a review of the molecular events of virus replication, to obtain an overview of how viral peptides associate with the HLA class I molecules. A similar review is provided on the molecular pathway by which viral proteins, used as subunit vaccines or inactivated virus particles, are taken up by endosomes in the endosome pathway and are processed by proteolytic enzymes into peptides that interact with HLA class II molecules during their transport to the plasma membrane of antigen

  4. The Envelope Gene of Transmitted HIV-1 Resists a Late Interferon Gamma-Induced Block

    PubMed Central

    Rihn, Suzannah J.; Foster, Toshana L.; Busnadiego, Idoia; Aziz, Muhamad Afiq; Hughes, Joseph; Neil, Stuart J. D.

    2017-01-01

    ABSTRACT Type I interferon (IFN) signaling engenders an antiviral state that likely plays an important role in constraining HIV-1 transmission and contributes to defining subsequent AIDS pathogenesis. Type II IFN (IFN-γ) also induces an antiviral state but is often primarily considered to be an immunomodulatory cytokine. We report that IFN-γ stimulation can induce an antiviral state that can be both distinct from that of type I interferon and can potently inhibit HIV-1 in primary CD4+ T cells and a number of human cell lines. Strikingly, we find that transmitted/founder (TF) HIV-1 viruses can resist a late block that is induced by type II IFN, and the use of chimeric IFN-γ-sensitive/resistant viruses indicates that interferon resistance maps to the env gene. Simultaneously, in vitro evolution also revealed that just a single amino acid substitution in the envelope can confer substantial resistance to IFN-mediated inhibition. Thus, the env gene of transmitted HIV-1 confers resistance to a late block that is phenotypically distinct from blocks previously described to be resisted by env and is therefore mediated by unknown IFN-γ-stimulated factor(s) in human CD4+ T cells and cell lines. This important unidentified block could play a key role in constraining HIV-1 transmission. IMPORTANCE The human immune system can hinder invading pathogens through interferon (IFN) signaling. One consequence of this signaling is that cells enter an antiviral state, increasing the levels of hundreds of defenses that can inhibit the replication and spread of viruses. The majority of HIV-1 infections result from a single virus particle (the transmitted/founder) that makes it past these defenses and colonizes the host. Thus, the founder virus is hypothesized to be a relatively interferon-resistant entity. Here, we show that certain HIV-1 envelope genes have the unanticipated ability to resist specific human defenses mediated by different types of interferons. Strikingly, the envelope

  5. Quasispecies Analyses of the HIV-1 Near-full-length Genome With Illumina MiSeq.

    PubMed

    Ode, Hirotaka; Matsuda, Masakazu; Matsuoka, Kazuhiro; Hachiya, Atsuko; Hattori, Junko; Kito, Yumiko; Yokomaku, Yoshiyuki; Iwatani, Yasumasa; Sugiura, Wataru

    2015-01-01

    Human immunodeficiency virus type-1 (HIV-1) exhibits high between-host genetic diversity and within-host heterogeneity, recognized as quasispecies. Because HIV-1 quasispecies fluctuate in terms of multiple factors, such as antiretroviral exposure and host immunity, analyzing the HIV-1 genome is critical for selecting effective antiretroviral therapy and understanding within-host viral coevolution mechanisms. Here, to obtain HIV-1 genome sequence information that includes minority variants, we sought to develop a method for evaluating quasispecies throughout the HIV-1 near-full-length genome using the Illumina MiSeq benchtop deep sequencer. To ensure the reliability of minority mutation detection, we applied an analysis method of sequence read mapping onto a consensus sequence derived from de novo assembly followed by iterative mapping and subsequent unique error correction. Deep sequencing analyses of aHIV-1 clone showed that the analysis method reduced erroneous base prevalence below 1% in each sequence position and discarded only < 1% of all collected nucleotides, maximizing the usage of the collected genome sequences. Further, we designed primer sets to amplify the HIV-1 near-full-length genome from clinical plasma samples. Deep sequencing of 92 samples in combination with the primer sets and our analysis method provided sufficient coverage to identify >1%-frequency sequences throughout the genome. When we evaluated sequences of pol genes from 18 treatment-naïve patients' samples, the deep sequencing results were in agreement with Sanger sequencing and identified numerous additional minority mutations. The results suggest that our deep sequencing method would be suitable for identifying within-host viral population dynamics throughout the genome.

  6. Picomolar dichotomous activity of gnidimacrin against HIV-1.

    PubMed

    Huang, Li; Ho, Phong; Yu, Jie; Zhu, Lei; Lee, Kuo-Hsiung; Chen, Chin-Ho

    2011-01-01

    Highly active antiretroviral therapy (HAART) has offered a promising approach for controlling HIV-1 replication in infected individuals. However, with HARRT, HIV-1 is suppressed rather than eradicated due to persistence of HIV-1 in latent viral reservoirs. Thus, purging the virus from latent reservoirs is an important strategy toward eradicating HIV-1 infection. In this study, we discovered that the daphnane diterpene gnidimacrin, which was previously reported to have potent anti-cancer cell activity, activated HIV-1 replication and killed persistently-infected cells at picomolar concentrations. In addition to its potential to purge HIV-1 from latently infected cells, gnidimacrin potently inhibited a panel of HIV-1 R5 virus infection of peripheral blood mononuclear cells (PBMCs) at an average concentration lower than 10 pM. In contrast, gnidimacrin only partially inhibited HIV-1 ×4 virus infection of PBMCs. The strong anti-HIV-1 R5 virus activity of gnidimacrin was correlated with its effect on down-regulation of the HIV-1 coreceptor CCR5. The anti-R5 virus activity of gnidimacrin was completely abrogated by a selective protein kinase C beta inhibitor enzastaurin, which suggests that protein kinase C beta plays a key role in the potent anti-HIV-1 activity of gnidimacrin in PBMCs. In summary, these results suggest that gnidimacrin could activate latent HIV-1, specifically kill HIV-1 persistently infected cells, and inhibit R5 viruses at picomolar concentrations.

  7. Poxvirus Protein MC132 from Molluscum Contagiosum Virus Inhibits NF-κB Activation by Targeting p65 for Degradation

    PubMed Central

    Haas, Darya A.; Farrell, Paul J.; Pichlmair, Andreas

    2015-01-01

    ABSTRACT Molluscum contagiosum virus (MCV) is unique in being the only known extant, human-adapted poxvirus, yet to date, it is very poorly characterized in terms of host-pathogen interactions. MCV causes persistent skin lesions filled with live virus, but these are generally immunologically silent, suggesting the presence of potent inhibitors of human antiviral immunity and inflammation. Fewer than five MCV immunomodulatory genes have been characterized in detail, but it is likely that many more remain to be discovered given the density of such sequences in all well-characterized poxviruses. Following virus infection, NF-κB activation occurs in response to both pattern recognition receptor (PRR) signaling and cellular activation by virus-elicited proinflammatory cytokines, such as tumor necrosis factor (TNF). As such, NF-κB activation is required for virus detection, antiviral signaling, inflammation, and clearance of viral infection. Hence, we screened a library of MCV genes for effects on TNF-stimulated NF-κB activation. This revealed MC132, a unique protein with no orthologs in other poxviral genomes, as a novel inhibitor of NF-κB. Interestingly, MC132 also inhibited PRR- and virus-activated NF-κB, since MC132 interacted with the NF-κB subunit p65 and caused p65 degradation. Unbiased affinity purification to identify host targets of MC132 revealed that MC132 acted by targeting NF-κB p65 for ubiquitin-dependent proteasomal degradation by recruiting p65 to a host Cullin-5/Elongin B/Elongin C complex. These data reveal a novel mechanism for poxviral inhibition of human innate immunity and further clarify how the human-adapted poxvirus MCV can so effectively evade antiviral immunity to persist in skin lesions. IMPORTANCE How human cells detect and respond to viruses is incompletely understood, but great leaps in our understanding have been made by studying both the early innate immune response and the ways that viruses evade it. Poxviruses adapt to specific

  8. HIV-1 infected astrocytes and the microglial proteome

    PubMed Central

    Wang, Tong; Gong, Nan; Liu, Jianuo; Kadiu, Irena; Kraft-Terry, Stephanie D; Schlautman, Joshua D; Ciborowski, Pawel; Volsky, David J; Gendelman, Howard E

    2008-01-01

    The human immunodeficiency virus (HIV) invades the central nervous system early after viral exposure but causes progressive cognitive, behavior, and motor impairments years later with the onset of immune deficiency. Although in the brain, HIV preferentially replicates productively in cells of mononuclear phagocyte (MP; blood borne macrophage and microglia), astrocytes also can be infected, at low and variable frequency, particularly in patients with encephalitis. Among their many functions, astrocytes network with microglia to provide the first line of defense against microbial infection; however, very little is known about its consequences on MP. Here, we addressed this question using co-culture systems of HIV infected mouse astrocytes and microglia. Pseudotyped vesicular stomatis virus/HIV was used to circumvent absence of viral receptors and ensure cell genotypic uniformity for studies of intercellular communication. The study demonstrated that infected astrocytes show modest changes in protein elements as compared to uninfected cells. In contrast, infected astrocytes induce robust changes in the proteome of HIV-1 infected microglia. Accelerated cell death and redox proteins, amongst others, were produced in abundance. The observations confirmed the potential of astrocytes to influence the neuropathogenesis of HIV-1 infection by specifically altering the neurotoxic potential of infected microglia and in this manner, disease progression. PMID:18587649

  9. HIV-1 Populations in Semen Arise through Multiple Mechanisms

    PubMed Central

    Dibben, Oliver; Jabara, Cassandra B.; Arney, Leslie; Kincer, Laura; Tang, Yuyang; Hobbs, Marcia; Hoffman, Irving; Kazembe, Peter; Jones, Corbin D.; Borrow, Persephone; Fiscus, Susan; Cohen, Myron S.; Swanstrom, Ronald

    2010-01-01

    HIV-1 is present in anatomical compartments and bodily fluids. Most transmissions occur through sexual acts, making virus in semen the proximal source in male donors. We find three distinct relationships in comparing viral RNA populations between blood and semen in men with chronic HIV-1 infection, and we propose that the viral populations in semen arise by multiple mechanisms including: direct import of virus, oligoclonal amplification within the seminal tract, or compartmentalization. In addition, we find significant enrichment of six out of nineteen cytokines and chemokines in semen of both HIV-infected and uninfected men, and another seven further enriched in infected individuals. The enrichment of cytokines involved in innate immunity in the seminal tract, complemented with chemokines in infected men, creates an environment conducive to T cell activation and viral replication. These studies define different relationships between virus in blood and semen that can significantly alter the composition of the viral population at the source that is most proximal to the transmitted virus. PMID:20808902

  10. HIV-1 Populations in Semen Arise through Multiple Mechanisms.

    PubMed

    Anderson, Jeffrey A; Ping, Li-Hua; Dibben, Oliver; Jabara, Cassandra B; Arney, Leslie; Kincer, Laura; Tang, Yuyang; Hobbs, Marcia; Hoffman, Irving; Kazembe, Peter; Jones, Corbin D; Borrow, Persephone; Fiscus, Susan; Cohen, Myron S; Swanstrom, Ronald

    2010-08-19

    HIV-1 is present in anatomical compartments and bodily fluids. Most transmissions occur through sexual acts, making virus in semen the proximal source in male donors. We find three distinct relationships in comparing viral RNA populations between blood and semen in men with chronic HIV-1 infection, and we propose that the viral populations in semen arise by multiple mechanisms including: direct import of virus, oligoclonal amplification within the seminal tract, or compartmentalization. In addition, we find significant enrichment of six out of nineteen cytokines and chemokines in semen of both HIV-infected and uninfected men, and another seven further enriched in infected individuals. The enrichment of cytokines involved in innate immunity in the seminal tract, complemented with chemokines in infected men, creates an environment conducive to T cell activation and viral replication. These studies define different relationships between virus in blood and semen that can significantly alter the composition of the viral population at the source that is most proximal to the transmitted virus.

  11. Genomic architecture of HIV-1 infection: current status & challenges.

    PubMed

    Kaur, Gurvinder; Sharma, Gaurav; Kumar, Neeraj; Kaul, Mrinali H; Bansal, Rhea A; Vajpayee, Madhu; Wig, Naveet; Sharma, Surender K; Mehra, Narinder K

    2013-11-01

    Studies on host genomics have revealed the existence of identifiable HIV-1 specific protective factors among infected individuals who remain naturally resistant viraemia controllers with little or no evidence of virus replication. These factors are broadly grouped into those that are immune associated (MHC, chemokines, cytokines, CTLs and others), linked to viral entry (chemokine co-receptors and ligands), act as post-entry restriction elements (TRIM5a, APOBEC3) and those associated with viral replication (cytokines and others). These features have been identified through multiple experimental approaches ranging from candidate gene approaches, genome wide association studies (GWAS), expression analysis in conjunction with functional assays in humans to primate based models. Several studies have highlighted the individual and population level gross differences both in the viral clade sequences as well as host determined genetic associations. This review collates current information on studies involving major histocompatibility complex (MHC) as well as non MHC genes in the context of HIV-1 infection and AIDS involving varied ethnic groups. Special focus of the review is on the genetic studies carried out on the Indian population. Further challenges with regard to therapeutic interventions based on current knowledge have been discussed along with discussion on documented cases of stem cell therapy and very early highly active antiretroviral therapy (HAART) interventions.

  12. Multiple APOBEC3 Restriction Factors for HIV-1 and One Vif to Rule Them All

    PubMed Central

    Desimmie, Belete A.; Delviks-Frankenberry, Krista A.; Burdick, Ryan; Qi, Dongfei; Izumi, Taisuke; Pathak, Vinay K.

    2013-01-01

    Several members of the APOBEC3 family of cellular restriction factors provide intrinsic immunity to the host against viral infection. Specifically, APOBEC3DE, APOBEC3F, APOBEC3G, and APOBEC3H haplotypes II, V, and VII provide protection against HIV-1Δvif through hypermutation of the viral genome, inhibition of reverse transcription, and inhibition of viral DNA integration into the host genome. HIV-1 counteracts APOBEC3 proteins by encoding the viral protein Vif, which contains distinct domains that specifically interact with these APOBEC3 proteins to ensure their proteasomal degradation, allowing virus replication to proceed. Here, we review our current understanding of APOBEC3 structure, editing and non-editing mechanisms of APOBEC3-mediated restriction, Vif-APOBEC3 interactions that trigger APOBEC3 degradation, and the contribution of APOBEC3 proteins to restriction and control of HIV-1 replication in infected patients. PMID:24189052

  13. Focused Evolution of HIV-1 Neutralizing Antibodies Revealed by Structures and Deep Sequencing

    SciTech Connect

    Wu, Xueling; Zhou, Tongqing; Zhu, Jiang; Zhang, Baoshan; Georgiev, Ivelin; Wang, Charlene; Chen, Xuejun; Longo, Nancy S.; Louder, Mark; McKee, Krisha; O’Dell, Sijy; Perfetto, Stephen; Schmidt, Stephen D.; Shi, Wei; Wu, Lan; Yang, Yongping; Yang, Zhi-Yong; Yang, Zhongjia; Zhang, Zhenhai; Bonsignori, Mattia; Crump, John A.; Kapiga, Saidi H.; Sam, Noel E.; Haynes, Barton F.; Simek, Melissa; Burton, Dennis R.; Koff, Wayne C.; Doria-Rose, Nicole A.; Connors, Mark; Mullikin, James C.; Nabel, Gary J.; Roederer, Mario; Shapiro, Lawrence; Kwong, Peter D.; Mascola, John R.

    2013-03-04

    Antibody VRC01 is a human immunoglobulin that neutralizes about 90% of HIV-1 isolates. To understand how such broadly neutralizing antibodies develop, we used x-ray crystallography and 454 pyrosequencing to characterize additional VRC01-like antibodies from HIV-1-infected individuals. Crystal structures revealed a convergent mode of binding for diverse antibodies to the same CD4-binding-site epitope. A functional genomics analysis of expressed heavy and light chains revealed common pathways of antibody-heavy chain maturation, confined to the IGHV1-2*02 lineage, involving dozens of somatic changes, and capable of pairing with different light chains. Broadly neutralizing HIV-1 immunity associated with VRC01-like antibodies thus involves the evolution of antibodies to a highly affinity-matured state required to recognize an invariant viral structure, with lineages defined from thousands of sequences providing a genetic roadmap of their development.

  14. Suppression of HIV-1 replication by propolis and its immunoregulatory effect.

    PubMed

    Harish, Z; Rubinstein, A; Golodner, M; Elmaliah, M; Mizrachi, Y

    1997-01-01

    In the current study we show that propolis, a non-toxic natural bee-hive product, suppresses HIV-1 replication and modulates in vitro immune responses. CEM cells were treated with propolis at nontoxic concentrations prior to or following infection with HIV-1. Propolis abolished syncytium formation at 4.5 micrograms/ml and inhibited it at lower doses in a concentration-dependent manner. Propolis decreased p24 antigen production by as much as 90-100% in a concentration-dependent manner. Furthermore, modulation of peripheral blood mononuclear cells (PBMCs) mitogenic responses upon the addition of propolis was noted, reducing the elevated responses to Concanavalin A (Con A) and enhancing suppressed mitogenic responses to pokeweed mitogen (PWM). In summary, propolis may constitute a non-toxic natural product with both anti HIV-1 and immunoregulatory effects.

  15. Identification of Novel Cetacean Poxviruses in Cetaceans Stranded in South West England.

    PubMed

    Barnett, James; Dastjerdi, Akbar; Davison, Nick; Deaville, Rob; Everest, David; Peake, Julie; Finnegan, Christopher; Jepson, Paul; Steinbach, Falko

    2015-01-01

    Poxvirus infections in marine mammals have been mainly reported through their clinical lesions and electron microscopy (EM). Poxvirus particles in association with such lesions have been demonstrated by EM and were previously classified as two new viruses, cetacean poxvirus 1 (CePV-1) and cetacean poxvirus 2 (CePV-2). In this study, epidermal pox lesions in cetaceans stranded in South West England (Cornwall) between 2008 and 2012 were investigated by electron microscopy and molecular analysis. PCR and sequencing of a highly conserved region within the viral DNA polymerase gene ruled out both parapox- and orthopoxviruses. Moreover, phylogenetic analysis of the PCR product clustered the sequences with those previously described as cetacean poxviruses. However, taking the close genetic distance of this gene fragment across the family of poxviridae into account, it is reasonable to postulate further, novel cetacean poxvirus species. The nucleotide similarity within each cluster (tentative species) detected ranged from 98.6% to 100%, whilst the similarity between the clusters was no more than 95%. The detection of several species of poxvirus in different cetacean species confirms the likelihood of a heterogeneous cetacean poxvirus genus, comparable to the heterogeneity observed in other poxvirus genera.

  16. Identification of Novel Cetacean Poxviruses in Cetaceans Stranded in South West England

    PubMed Central

    Barnett, James; Dastjerdi, Akbar; Davison, Nick; Deaville, Rob; Everest, David; Peake, Julie; Finnegan, Christopher; Jepson, Paul; Steinbach, Falko

    2015-01-01

    Poxvirus infections in marine mammals have been mainly reported through their clinical lesions and electron microscopy (EM). Poxvirus particles in association with such lesions have been demonstrated by EM and were previously classified as two new viruses, cetacean poxvirus 1 (CePV-1) and cetacean poxvirus 2 (CePV-2). In this study, epidermal pox lesions in cetaceans stranded in South West England (Cornwall) between 2008 and 2012 were investigated by electron microscopy and molecular analysis. PCR and sequencing of a highly conserved region within the viral DNA polymerase gene ruled out both parapox- and orthopoxviruses. Moreover, phylogenetic analysis of the PCR product clustered the sequences with those previously described as cetacean poxviruses. However, taking the close genetic distance of this gene fragment across the family of poxviridae into account, it is reasonable to postulate further, novel cetacean poxvirus species. The nucleotide similarity within each cluster (tentative species) detected ranged from 98.6% to 100%, whilst the similarity between the clusters was no more than 95%. The detection of several species of poxvirus in different cetacean species confirms the likelihood of a heterogeneous cetacean poxvirus genus, comparable to the heterogeneity observed in other poxvirus genera. PMID:26046847

  17. SAMHD1 controls cell cycle status, apoptosis and HIV-1 infection in monocytic THP-1 cells.

    PubMed

    Bonifati, Serena; Daly, Michele B; St Gelais, Corine; Kim, Sun Hee; Hollenbaugh, Joseph A; Shepard, Caitlin; Kennedy, Edward M; Kim, Dong-Hyun; Schinazi, Raymond F; Kim, Baek; Wu, Li

    2016-08-01

    SAMHD1 limits HIV-1 infection in non-dividing myeloid cells by decreasing intracellular dNTP pools. HIV-1 restriction by SAMHD1 in these cells likely prevents activation of antiviral immune responses and modulates viral pathogenesis, thus highlighting a critical role of SAMHD1 in HIV-1 physiopathology. Here, we explored the function of SAMHD1 in regulating cell proliferation, cell cycle progression and apoptosis in monocytic THP-1 cells. Using the CRISPR/Cas9 technology, we generated THP-1 cells with stable SAMHD1 knockout. We found that silencing of SAMHD1 in cycling cells stimulates cell proliferation, redistributes cell cycle population in the G1/G0 phase and reduces apoptosis. These alterations correlated with increased dNTP levels and more efficient HIV-1 infection in dividing SAMHD1 knockout cells relative to control. Our results suggest that SAMHD1, through its dNTPase activity, affects cell proliferation, cell cycle distribution and apoptosis, and emphasize a key role of SAMHD1 in the interplay between cell cycle regulation and HIV-1 infection.

  18. A Small Set of Succinct Signature Patterns Distinguishes Chinese and Non-Chinese HIV-1 Genomes

    PubMed Central

    Wilms, Christoph; Heider, Dominik; Yang, Rongge; Hoffmann, Daniel

    2013-01-01

    The epidemiology of HIV-1 in China has unique features that may have led to unique viral strains. We therefore tested the hypothesis that it is possible to find distinctive patterns in HIV-1 genomes sampled in China. Using a rule inference algorithm we could indeed extract from sequences of the third variable loop (V3) of HIV-1 gp120 a set of 14 signature patterns that with 89% accuracy distinguished Chinese from non-Chinese sequences. These patterns were found to be specific to HIV-1 subtype, i.e. sequences complying with pattern 1 were of subtype B, pattern 2 almost exclusively covered sequences of subtype 01_AE, etc. We then analyzed the first of these signature patterns in depth, namely that L and W at two V3 positions are specifically occurring in Chinese sequences of subtype B/B' (3% false positives). This pattern was found to be in agreement with the phylogeny of HIV-1 of subtype B inside and outside of China. We could neither reject nor convincingly confirm that the pattern is stabilized by immune escape. For further interpretation of the signature pattern we used the recently developed measure of Direct Information, and in this way discovered evidence for physical interactions between V2 and V3. We conclude by a discussion of limitations of signature patterns, and the applicability of the approach to other genomic regions and other countries. PMID:23527028

  19. Synthesis and evaluation of orally active small molecule HIV-1 Nef antagonists.

    PubMed

    Emert-Sedlak, Lori A; Loughran, H Marie; Shi, Haibin; Kulp, John L; Shu, Sherry T; Zhao, Jielu; Day, Billy W; Wrobel, Jay E; Reitz, Allen B; Smithgall, Thomas E

    2016-03-01

    The HIV-1 Nef accessory factor enhances viral replication and promotes immune system evasion of HIV-infected cells, making it an attractive target for drug discovery. Recently we described a novel class of diphenylpyrazolodiazene compounds that bind directly to Nef in vitro and inhibit Nef-dependent HIV-1 infectivity and replication in cell culture. However, these first-generation Nef antagonists have several structural liabilities, including an azo linkage that led to poor oral bioavailability. The azo group was therefore replaced with either a one- or two-carbon linker. The resulting set of non-azo analogs retained nanomolar binding affinity for Nef by surface plasmon resonance, while inhibiting HIV-1 replication with micromolar potency in cell-based assays without cytotoxicity. Computational docking studies show that these non-azo analogs occupy the same predicted binding site within the HIV-1 Nef dimer interface as the original azo compound. Computational methods also identified a hot spot for inhibitor binding within this site that is defined by conserved HIV-1 Nef residues Asp108, Leu112, and Pro122. Pharmacokinetic evaluation of the non-azo B9 analogs in mice showed that replacement of the azo linkage dramatically enhanced oral bioavailability without substantially affecting plasma half-life or clearance. The improved oral bioavailability of non-azo diphenylpyrazolo Nef antagonists provides a starting point for further drug lead optimization in support of future efficacy testing in animal models of HIV/AIDS.

  20. Tailored HIV-1 Vectors for Genetic Modification of Primary Human Dendritic Cells and Monocytes

    PubMed Central

    Durand, Stéphanie; Nguyen, Xuan-Nhi; Turpin, Jocelyn; Cordeil, Stephanie; Nazaret, Nicolas; Croze, Séverine; Mahieux, Renaud; Lachuer, Joël; Legras-Lachuer, Catherine

    2013-01-01

    Monocyte-derived dendritic cells (MDDCs) play a key role in the regulation of the immune system and are the target of numerous gene therapy applications. The genetic modification of MDDCs is possible with human immunodeficiency virus type 1 (HIV-1)-derived lentiviral vectors (LVs) but requires high viral doses to bypass their natural resistance to viral infection, and this in turn affects their physiological properties. To date, a single viral protein is able to counter this restrictive phenotype, Vpx, a protein derived from members of the HIV-2/simian immunodeficiency virus SM lineage that counters at least two restriction factors present in myeloid cells. By tagging Vpx with a short heterologous membrane-targeting domain, we have obtained HIV-1 LVs incorporating high levels of this protein (HIV-1-Src-Vpx). These vectors efficiently transduce differentiated MDDCs and monocytes either as previously purified populations or as populations within unsorted peripheral blood mononuclear cells (PBMCs). In addition, these vectors can be efficiently pseudotyped with receptor-specific envelopes, further restricting their cellular tropism almost uniquely to MDDCs. Compared to conventional HIV-1 LVs, these novel vectors allow for an efficient genetic modification of MDDCs and, more importantly, do not cause their maturation or affect their survival, which are unwanted side effects of the transduction process. This study describes HIV-1-Src-Vpx LVs as a novel potent tool for the genetic modification of differentiated MDDCs and of circulating monocyte precursors with strong potential for a wide range of gene therapy applications. PMID:23077304

  1. Cellular aspartyl proteases promote the unconventional secretion of biologically active HIV-1 matrix protein p17

    PubMed Central

    Caccuri, Francesca; Iaria, Maria Luisa; Campilongo, Federica; Varney, Kristen; Rossi, Alessandro; Mitola, Stefania; Schiarea, Silvia; Bugatti, Antonella; Mazzuca, Pietro; Giagulli, Cinzia; Fiorentini, Simona; Lu, Wuyuan; Salmona, Mario; Caruso, Arnaldo

    2016-01-01

    The human immune deficiency virus type 1 (HIV-1) matrix protein p17 (p17), although devoid of a signal sequence, is released by infected cells and detected in blood and in different organs and tissues even in HIV-1-infected patients undergoing successful combined antiretroviral therapy (cART). Extracellularly, p17 deregulates the function of different cells involved in AIDS pathogenesis. The mechanism of p17 secretion, particularly during HIV-1 latency, still remains to be elucidated. A recent study showed that HIV-1-infected cells can produce Gag without spreading infection in a model of viral latency. Here we show that in Gag-expressing cells, secretion of biologically active p17 takes place at the plasma membrane and occurs following its interaction with phosphatidylinositol-(4,5)-bisphosphate and its subsequent cleavage from the precursor Gag (Pr55Gag) operated by cellular aspartyl proteases. These enzymes operate a more complex Gag polypeptide proteolysis than the HIV-1 protease, thus hypothetically generating slightly truncated or elongated p17s in their C-terminus. A 17 C-terminal residues excised p17 was found to be structurally and functionally identical to the full-length p17 demonstrating that the final C-terminal region of p17 is irrelevant for the protein’s biological activity. These findings offer new opportunities to identify treatment strategies for inhibiting p17 release in the extracellular microenvironment. PMID:27905556

  2. HIV-1 gp120 as a therapeutic target: Navigating a moving labyrinth

    PubMed Central

    Acharya, Priyamvada; Lusvarghi, Sabrina; Bewley, Carole A.; Kwong, Peter D.

    2015-01-01

    Introduction The HIV-1 gp120 envelope (Env) glycoprotein mediates attachment of virus to human target cells that display requisite receptors, CD4 and co-receptor, generally CCR5. Despite high affinity interactions with host receptors and proof-of-principle by the drug maraviroc that interference with CCR5 provides therapeutic benefit, no licensed drug currently targets gp120. Areas covered An overview of the role of gp120 in HIV-1 entry and of sites of potential gp120 vulnerability to therapeutic inhibition is presented. Viral defenses that protect these sites and turn gp120 into a moving labyrinth are discussed together with strategies for circumventing these defenses to allow therapeutic targeting of gp120 sites of vulnerability. Expert opinion The gp120 envelope glycoprotein interacts with host proteins through multiple interfaces and has conserved structural features at these interaction sites. In spite of this, targeting gp120 for therapeutic purposes is challenging. Env mechanisms evolved to evade the humoral immune response also shield it from potential therapeutics. Nevertheless, substantial progress has been made in understanding HIV-1 gp120 structure and its interactions with host receptors, and in developing therapeutic leads that potently neutralize diverse HIV-1 strains. Synergies between advances in understanding, needs for therapeutics against novel viral targets, and characteristics of breadth and potency for a number of gp120-targetting lead molecules bodes well for gp120 as a HIV-1 therapeutic target. PMID:25724219

  3. Broad CTL response is required to clear latent HIV-1 due to dominance of escape mutations

    PubMed Central

    Deng, Kai; Pertea, Mihaela; Rongvaux, Anthony; Wang, Leyao; Durand, Christine M.; Ghiaur, Gabriel; Lai, Jun; McHugh, Holly L.; Hao, Haiping; Zhang, Hao; Margolick, Joseph B.; Gurer, Cagan; Murphy, Andrew J.; Valenzuela, David M.; Yancopoulos, George D.; Deeks, Steven G.; Strowig, Till; Kumar, Priti; Siliciano, Janet D.; Salzberg, Steven L.; Flavell, Richard A.; Shan, Liang; Siliciano, Robert F.

    2015-01-01

    Despite antiretroviral therapy (ART), HIV-1 persists in a stable latent reservoir1, 2, primarily in resting memory CD4+ T cells3, 4. This reservoir presents a major barrier to the cure of HIV-1 infection. To purge the reservoir, pharmacological reactivation of latent HIV-1 has been proposed5 and tested both in vitro and in vivo6–8. A key remaining question is whether virus-specific immune mechanisms including cytolytic T lymphocytes (CTL) can clear infected cells in ART-treated patients after latency is reversed. Here we show that there is a striking all or none pattern for CTL escape mutations in HIV-1 Gag epitopes. Unless ART is started early, the vast majority (>98%) of latent viruses carry CTL escape mutations that render infected cells insensitive to CTLs directed at common epitopes. To solve this problem, we identified CTLs that could recognize epitopes from latent HIV-1 that were unmutated in every chronically infected patient tested. Upon stimulation, these CTLs eliminated target cells infected with autologous virus derived from the latent reservoir, both in vitro and in patient-derived humanized mice. The predominance of CTL-resistant viruses in the latent reservoir poses a major challenge to viral eradication. Our results demonstrate that chronically infected patients retain a broad spectrum viral-specific CTL response and that appropriate boosting of this response may be required for the elimination of the latent reservoir. PMID:25561180

  4. Tailored HIV-1 vectors for genetic modification of primary human dendritic cells and monocytes.

    PubMed

    Durand, Stéphanie; Nguyen, Xuan-Nhi; Turpin, Jocelyn; Cordeil, Stephanie; Nazaret, Nicolas; Croze, Séverine; Mahieux, Renaud; Lachuer, Joël; Legras-Lachuer, Catherine; Cimarelli, Andrea

    2013-01-01

    Monocyte-derived dendritic cells (MDDCs) play a key role in the regulation of the immune system and are the target of numerous gene therapy applications. The genetic modification of MDDCs is possible with human immunodeficiency virus type 1 (HIV-1)-derived lentiviral vectors (LVs) but requires high viral doses to bypass their natural resistance to viral infection, and this in turn affects their physiological properties. To date, a single viral protein is able to counter this restrictive phenotype, Vpx, a protein derived from members of the HIV-2/simian immunodeficiency virus SM lineage that counters at least two restriction factors present in myeloid cells. By tagging Vpx with a short heterologous membrane-targeting domain, we have obtained HIV-1 LVs incorporating high levels of this protein (HIV-1-Src-Vpx). These vectors efficiently transduce differentiated MDDCs and monocytes either as previously purified populations or as populations within unsorted peripheral blood mononuclear cells (PBMCs). In addition, these vectors can be efficiently pseudotyped with receptor-specific envelopes, further restricting their cellular tropism almost uniquely to MDDCs. Compared to conventional HIV-1 LVs, these novel vectors allow for an efficient genetic modification of MDDCs and, more importantly, do not cause their maturation or affect their survival, which are unwanted side effects of the transduction process. This study describes HIV-1-Src-Vpx LVs as a novel potent tool for the genetic modification of differentiated MDDCs and of circulating monocyte precursors with strong potential for a wide range of gene therapy applications.

  5. SAMHD1 controls cell cycle status, apoptosis and HIV-1 infection in monocytic THP-1 cells

    SciTech Connect

    Bonifati, Serena; Daly, Michele B.; St Gelais, Corine; Kim, Sun Hee; Hollenbaugh, Joseph A.; Shepard, Caitlin; Kennedy, Edward M.; Kim, Dong-Hyun; Schinazi, Raymond F.; Kim, Baek; Wu, Li

    2016-08-15

    SAMHD1 limits HIV-1 infection in non-dividing myeloid cells by decreasing intracellular dNTP pools. HIV-1 restriction by SAMHD1 in these cells likely prevents activation of antiviral immune responses and modulates viral pathogenesis, thus highlighting a critical role of SAMHD1 in HIV-1 physiopathology. Here, we explored the function of SAMHD1 in regulating cell proliferation, cell cycle progression and apoptosis in monocytic THP-1 cells. Using the CRISPR/Cas9 technology, we generated THP-1 cells with stable SAMHD1 knockout. We found that silencing of SAMHD1 in cycling cells stimulates cell proliferation, redistributes cell cycle population in the G{sub 1}/G{sub 0} phase and reduces apoptosis. These alterations correlated with increased dNTP levels and more efficient HIV-1 infection in dividing SAMHD1 knockout cells relative to control. Our results suggest that SAMHD1, through its dNTPase activity, affects cell proliferation, cell cycle distribution and apoptosis, and emphasize a key role of SAMHD1 in the interplay between cell cycle regulation and HIV-1 infection.

  6. Collection of phage-peptide probes for HIV-1 immunodominant loop-epitope.

    PubMed

    Palacios-Rodríguez, Yadira; Gazarian, Tatiana; Rowley, Merrill; Majluf-Cruz, Abraham; Gazarian, Karlen

    2007-02-01

    Early diagnosis and prevention of human immunodeficiency virus type-1 (HIV-1) infection, which remains a serious public health threat, is inhibited by the lack of reagents that elicit antiviral responses in the immune system. To create mimotopes (peptide models of epitopes) of the most immunodominant epitope, CSGKLIC, that occurs as a loop on the envelope gp41 glycoprotein and is a key participant in infection, we used phage-display technology involving biopanning of large random libraries with IgG of HIV-1-infected patients. Under the conditions used, library screening with IgG from patient serum was directed to the CSGKLIC epitope. Three rounds of selection converted a 12 mer library of 10(9) sequences into a population in which up to 79% of phage bore a family of CxxKxxC sequences ("x" designates a non-epitope amino acid). Twenty-one phage clones displaying the most frequently selected peptides were obtained and were shown to display the principal structural (sequence and conformational), antigenic and immunogenic features of the HIV-1 immunodominant loop-epitope. Notably, when the mixture of the phage mimotopes was injected into mice, it induced 2- to 3-fold higher titers of antibody to the HIV-1 epitope than could be induced from individual mimotopes. The described approach could be applicable for accurately reproducing HIV-1 epitope structural and immunological patterns by generation of specialized viral epitope libraries for use in diagnosis and therapy.