Science.gov

Sample records for ho-1 expression reduces

  1. Edaravone attenuates hippocampal damage in an infant mouse model of pneumococcal meningitis by reducing HMGB1 and iNOS expression via the Nrf2/HO-1 pathway

    PubMed Central

    Li, Zheng; Ma, Qian-qian; Yan, Yan; Xu, Feng-dan; Zhang, Xiao-ying; Zhou, Wei-qin; Feng, Zhi-chun

    2016-01-01

    ), nor it affected the protein levels of HMGB1 and iNOS in the hippocampus of the mice with mild meningitis. Conclusion: Edaravone produces neuroprotective actions in a mouse model of pneumococcal meningitis by reducing neuronal apoptosis and HMGB1 and iNOS expression in the hippocampus via the Nrf2/HO-1 pathway. Thus, edaravone may be a promising agent for the treatment of bacterial meningitis. PMID:27569388

  2. EGR-1 regulates Ho-1 expression induced by cigarette smoke

    SciTech Connect

    Chen, Huaqun; Wang, Lijuan; Gong, Tao; Yu, Yang; Zhu, Chunhua; Li, Fen; Wang, Li; Li, Chaojun

    2010-05-28

    As an anti-oxidant molecule, heme oxygenase-1 (HO-1) has been implicated in the protection of lung injury by cigarette smoke (CS). The mechanisms regulating its expression have not been defined. In this report, the role of early growth response 1 (EGR-1) in the regulation of Ho-1 expression was investigated. In C57BL/6 mice with CS exposure, HO-1 was greatly increased in bronchial epithelial cells and alveolar inflammatory cells. In primary cultured mouse lung fibroblasts and RAW264.7 cells exposed to cigarette smoke water extract (CSE), an increase in HO-1 protein level was detected. In addition, CSE induced HO-1 expression was decreased in Egr-1 deficient mouse embryo fibroblasts (Egr-1{sup -/-} MEFs). Nuclear localization of EGR-1 was examined in mouse lung fibroblasts after exposure to CSE. Luciferase reporter activity assays showed that the enhancer region of the Ho-1 gene containing a proposed EGR-1 binding site was responsible for the induction of HO-1. A higher increase of alveolar mean linear intercept (Lm) was observed in lung tissues, and a larger increase in the number of total cells and monocytes/macrophages from bronchial alveolar lavage fluid was found in CS-exposed mice by loss of function of EGR-1 treatment. In summary, the present data demonstrate that EGR-1 plays a critical role in HO-1 production induced by CS.

  3. [hHO-1 structure prediction and its mutant construct, expression, purification and activity analysis].

    PubMed

    Xia, Zhen Wei; Cui, Wen Jun; Zhou, Wen Pu; Zhang, Xue Hong; Shen, Qing Xiang; Li, Yun Zhu; Yu, Shan Chang

    2004-10-01

    Human Heme Oxygenase-1 (hHO-1) is the rate-limiting enzyme in the catabolism reaction of heme, which directly regulates the concentration of bilirubin in human body. The mutant structure was simulated by Swiss-pdbviewer procedure, which showed that the structure of active pocket was changed distinctly after Ala25 substituted for His25 in active domain, but the mutated enzyme still binded with heme. On the basis of the results, the expression vectors, pBHO-1 and pBHO-1(M), were constructed, induced by IPTG and expressed in E. coli DH5alpha strain. The expression products were purified with 30%-60% saturation (NH4)2SO4 and Q-Sepharose Fast Flow column chromatography. The concentration of hHO-1 in 30%-60% saturation (NH4)2SO4 components and in fractions through twice column chromatography was 3.6-fold and 30-fold higher than that in initial product, respectively. The activity of wild hHO-1 (whHO-1) and mutant hHO-1 (deltahHO-1) showed that the activity of deltahHO-1 was reduced 91.21% compared with that of whHO-1. The study shows that His25 is of importance for the mechanism of hHO-1, and provides the possibility for effectively regulating the activity to exert biological function.

  4. Agmatine Reduces Lipopolysaccharide-Mediated Oxidant Response via Activating PI3K/Akt Pathway and Up-Regulating Nrf2 and HO-1 Expression in Macrophages

    PubMed Central

    Chai, Jianshen; Luo, Li; Hou, Fengyan; Fan, Xia; Yu, Jing; Ma, Wei; Tang, Wangqi; Yang, Xue; Zhu, Junyu; Kang, Wenyuan; Yan, Jun; Liang, Huaping

    2016-01-01

    Macrophages are key responders of inflammation and are closely related with oxidative stress. Activated macrophages can enhance oxygen depletion, which causes an overproduction of reactive oxygen species (ROS) and leads to further excessive inflammatory response and tissue damage. Agmatine, an endogenous metabolite of L-arginine, has recently been shown to have neuroprotective effects based on its antioxidant properties. However, the antioxidant effects of agmatine in peripheral tissues and cells, especially macrophages, remain unclear. In this study we explored the role of agmatine in mediating antioxidant effects in RAW 264.7 cells and studied its antioxidant mechanism. Our data demonstrate that agmatine is an activator of Nrf2 signaling that markedly enhances Nrf2 nuclear translocation, increases nuclear Nrf2 protein level, up-regulates the expression of the Nrf2 downstream effector HO-1, and attenuates ROS generation induced by Lipopolysaccharide (LPS). We further demonstrated that the agmatine-induced activation of Nrf2 is likely through the PI3K/Akt pathway. LY294002, a specific PI3K/Akt inhibitor, abolished agmatine-induced HO-1 up-regulation and ROS suppression significantly. Inhibiting HO-1 pathway significantly attenuated the antioxidant effect of agmatine which the products of HO-1 enzymatic activity contributed to. Furthermore, the common membrane receptors of agmatine were evaluated, revealing that α2-adrenoceptor, I1-imidazoline receptor or I2-imidazoline receptor are not required by the antioxidant properties of agmatine. Taken together, our findings revealed that agmatine has antioxidant activity against LPS-induced ROS accumulation in RAW 264.7 cells involving HO-1 expression induced by Nrf2 via PI3K/Akt pathway activation. PMID:27685463

  5. Extratumoral Heme Oxygenase-1 (HO-1) Expressing Macrophages Likely Promote Primary and Metastatic Prostate Tumor Growth

    PubMed Central

    Adamo, Hanibal; Thysell, Elin; Jernberg, Emma; Stattin, Pär; Widmark, Anders; Wikström, Pernilla; Bergh, Anders

    2016-01-01

    Aggressive tumors induce tumor-supporting changes in the benign parts of the prostate. One factor that has increased expression outside prostate tumors is hemoxygenase-1 (HO-1). To investigate HO-1 expression in more detail, we analyzed samples of tumor tissue and peritumoral normal prostate tissue from rats carrying cancers with different metastatic capacity, and human prostate cancer tissue samples from primary tumors and bone metastases. In rat prostate tumor samples, immunohistochemistry and quantitative RT-PCR showed that the main site of HO-1 synthesis was HO-1+ macrophages that accumulated in the tumor-bearing organ, and at the tumor-invasive front. Small metastatic tumors were considerably more effective in attracting HO-1+ macrophages than larger non-metastatic ones. In clinical samples, accumulation of HO-1+ macrophages was seen at the tumor invasive front, almost exclusively in high-grade tumors, and it correlated with the presence of bone metastases. HO-1+ macrophages, located at the tumor invasive front, were more abundant in bone metastases than in primary tumors. HO-1 expression in bone metastases was variable, and positively correlated with the expression of macrophage markers but negatively correlated with androgen receptor expression, suggesting that elevated HO-1 could be a marker for a subgroup of bone metastases. Together with another recent observation showing that selective knockout of HO-1 in macrophages reduced prostate tumor growth and metastatic capacity in animals, the results of this study suggest that extratumoral HO-1+ macrophages may have an important role in prostate cancer. PMID:27280718

  6. Over-expression of HO-1 on mesenchymal stem cells promotes angiogenesis and improves myocardial function in infarcted myocardium

    PubMed Central

    2010-01-01

    Heme oxygenase-1 (HO-1) is a stress-inducible enzyme with diverse cytoprotective effects, and reported to have an important role in angiogenesis recently. Here we investigated whether HO-1 transduced by mesenchymal stem cells (MSCs) can induce angiogenic effects in infarcted myocardium. HO-1 was transfected into cultured MSCs using an adenoviral vector. 1 × 106 Ad-HO-1-transfected MSCs (HO-1-MSCs) or Ad-Null-transfected MSCs (Null-MSCs) or PBS was respectively injected into rat hearts intramyocardially at 1 h post-myocardial infarction. The results showed that HO-1-MSCs were able to induce stable expression of HO-1 in vitro and in vivo. The capillary density and expression of angiogenic growth factors, VEGF and FGF2 were significantly enhanced in HO-1-MSCs-treated hearts compared with Null-MSCs-treated and PBS-treated hearts. However, the angiogenic effects of HO-1 were abolished by treating the animals with HO inhibitor, zinc protoporphyrin. The myocardial apoptosis was marked reduced with significantly reduced fibrotic area in HO-1-MSCs-treated hearts; Furthermore, the cardiac function and remodeling were also significantly improved in HO-1-MSCs-treated hearts. Our current findings support the premise that HO-1 transduced by MSCs can induce angiogenic effects and improve heart function after acute myocardial infarction. PMID:20925964

  7. HO-1 expression increases mesenchymal stem cell-derived osteoblast but decreases adipocyte lineage

    PubMed Central

    Vanella, Luca; Kim, Dong Hyun; Asprinio, David; Peterson, Stephen J.; Barbagallo, Ignazio; Vanella, Angelo; Goldstein, Dove; Ikehara, Susumu; Abraham, Nader G.

    2009-01-01

    Human bone marrow mesenchymal stem cells (MSC) are pleitrophic cells that differentiate to either adipocytes or osteoblasts as a result of cross-talk by specific signaling pathways including heme oxygenase (HO)-1/-2 expression. We examined the effect of inducers of HO-1 expression and inhibitors of HO activity on MSC differentiation to the osteoblast and adipogenesis lineage. HO-1 expression is increased during osteoblast stem cell development, but remains elevated, at 25 days. The increase in HO-1 levels proceed an increase in alkaline phosphatase (AP) activity and an increase in BMP, osteonectin and RUNX-2 mRNA. Induction of HO-1 by osteogenic growth peptide (OGP) was associated with an increase in BMP-2 and osteonectin. Exposure of MSC to high glucose levels decreased osteocalcin and osteogenic protein expression, which was reversed by upregulation of the OGP-mediated increase in HO-1 expression. The glucose mediated decrease in HO-1 resulted in decreased levels of pAMPK, pAKT and the eNOS signaling pathway and was reversed by OGP. In contrast, MSC-derived adipocytes were increased by glucose. HO-1 siRNA decreased HO-1 expression but increased adipocyte stem cell differentiation and the adipogenesis marker, PPARγ. Thus, upregulation of HO-1 expression shifts the balance of MSC differentiation in favor of the osteoblast lineage. In contrast, a decrease in HO-1 or exposure to glucose drives the MSC towards adipogenesis. Thus targeting HO-1 expression is a portal to increased osteoblast stem cell differentiation and to the attenuation of osteoporosis by the promotion of bone formation. PMID:19853072

  8. Glial HO-1 expression, iron deposition and oxidative stress in neurodegenerative diseases.

    PubMed

    Schipper, H M

    1999-09-01

    The mechanisms responsible for the pathological deposition of brain iron in Parkinson's disease, Alzheimer's disease and other human neurodegenerative disorders remain poorly understood. In rat primary astrocyte cultures, we demonstrated that dopamine, cysteamine, H(2)O(2) and menadione rapidly induce heme oxygenase-1 (HO-1) expression (mRNA and protein) followed by sequestration of non-transferrin-derived (55)Fe by the mitochondrial compartment. The effects of dopamine on HO-1 expression were inhibited by ascorbate implicating a free radical mechanism of action. Dopamine-induced mitochondrial iron trapping was abrogated by administration of the heme oxygenase inhibitors, tin mesoporphyrin (SnMP) or dexamethasone (DEX) indicating that HO-1 upregulation is necessary for subsequent mitochondrial iron deposition in these cells. Overexpression of the human HO-1 gene in cultured rat astroglia by transient transfection also stimulated mitochondrial (55)Fe deposition, an effect that was again preventible by SnMP or DEX administration. We hypothesize that free ferrous iron and carbon monoxide generated by HO-1-mediated heme degradation promote mitochondrial membrane injury and the deposition of redox-active iron within this organelle. We have shown that the percentages of GFAP-positive astrocytes that co-express HO-1 in Parkinson-affected substantia nigra and Alzheimer-diseased hippocampus are significantly increased relative to age-matched controls. Stress-induced up-regulation of HO-1 in astroglia may be responsible for the abnormal patterns of brain iron deposition and mitochondrial insufficiency documented in various human neurodegenerative disorders. PMID:12835114

  9. Anti-Inflammatory Effect of Angelica gigas via Heme Oxygenase (HO)-1 Expression

    PubMed Central

    Cho, Joon Hyeong; Kwon, Jung Eun; Cho, Youngmi; Kim, Inhye; Kang, Se Chan

    2015-01-01

    Angelica gigas (AG) is effective against various medical conditions such as bacterial infection, inflammation, and cancer. It contains a number of coumarin compounds and the group of interest is the pyranocoumarin, which comprises decursin and decursinol angelate. This group has an effect on controlling inflammation, which is caused by excessive nitric oxide (NO) production. Heme oxygenases (HOs), particularly HO-1, play a role in regulating the production of NO. Thus, this study aimed to investigate the anti-inflammatory effects of AG by measuring HO-1 expression. Treatments with CH2Cl2 layer and Angelica gigas extract (AGE) showed the highest NO inhibition effects. Decursin, decursinol angelate, and nodakenin were isolated from the CH2Cl2 layer of AGE. Decursin also demonstrated the highest anti-oxidative effect among the coumarins. Although decursin had the best NO inhibition and anti-oxidative effects, the effects of AGE treatment far surpassed that of decursin. This is owing to the combination effect of the coumarins present within AGE, which is a solvent extract of AG. The expression of HO-1 is an effective indicator of the anti-inflammatory effects of AG. Based on the results of the coumarin compounds, HO-1 expression was found to be dose dependent and specific to decursin. PMID:26083119

  10. Anti-Inflammatory Effect of Angelica gigas via Heme Oxygenase (HO)-1 Expression.

    PubMed

    Cho, Joon Hyeong; Kwon, Jung Eun; Cho, Youngmi; Kim, Inhye; Kang, Se Chan

    2015-06-15

    Angelica gigas (AG) is effective against various medical conditions such as bacterial infection, inflammation, and cancer. It contains a number of coumarin compounds and the group of interest is the pyranocoumarin, which comprises decursin and decursinol angelate. This group has an effect on controlling inflammation, which is caused by excessive nitric oxide (NO) production. Heme oxygenases (HOs), particularly HO-1, play a role in regulating the production of NO. Thus, this study aimed to investigate the anti-inflammatory effects of AG by measuring HO-1 expression. Treatments with CH2Cl2 layer and Angelica gigas extract (AGE) showed the highest NO inhibition effects. Decursin, decursinol angelate, and nodakenin were isolated from the CH2Cl2 layer of AGE. Decursin also demonstrated the highest anti-oxidative effect among the coumarins. Although decursin had the best NO inhibition and anti-oxidative effects, the effects of AGE treatment far surpassed that of decursin. This is owing to the combination effect of the coumarins present within AGE, which is a solvent extract of AG. The expression of HO-1 is an effective indicator of the anti-inflammatory effects of AG. Based on the results of the coumarin compounds, HO-1 expression was found to be dose dependent and specific to decursin.

  11. Berberine Hydrochloride Protects C2C12 Myoblast Cells Against Oxidative Stress-Induced Damage via Induction of Nrf-2-Mediated HO-1 Expression.

    PubMed

    Choi, Yung Hyun

    2016-09-01

    Preclinical Research The aim of the present study was to evaluate the effects of berberine hydrochloride (BBH), an isoquinoline alkaloid that can be isolated from a variety of herbs, on hydrogen peroxide (H2 O2 )-induced oxidative stress in C2C12 myoblasts and to investigate the molecular mechanisms involved in this process, especially the expression of the Nrf2/HO-1 pathway. BBH preconditioning attenuated H2 O2 -induced growth inhibition and DNA damage as well as apoptosis in C2C12 cells via suppression of the accumulation of intracellular reactive oxygen species (ROS). Treatment with BBHride alone effectively upregulated the expression of nuclear factor-erythroid 2-related factor 2 (Nrf2) and heme oxygenase-1 (HO-1) and elevated HO-1 activity. However, the protective effects of BBH against H2 O2 -induced ROS generation and cell growth reduction were abolished by an HO-1 inhibitor. Moreover, BBH-mediated induction and activation of HO-1 were reduced by genetic silencing of Nrf2 using small interfering RNA (siRNA). In addition, the effects of BBH against H2 O2 -induced ROS accumulation and growth inhibition were abrogated in C2C12 cells transfected with Nrf2 siRNA. Therefore, the present study demonstrated that BBH could protect C2C12 cells against oxidative stress-induced injury and this effect involved activation of the Nrf2/HO-1 pathway. Drug Dev Res, 2016. © 2016 Wiley Periodicals, Inc. PMID:27535021

  12. Expression and characterization of truncated human heme oxygenase (hHO-1) and a fusion protein of hHO-1 with human cytochrome P450 reductase.

    PubMed

    Wilks, A; Black, S M; Miller, W L; Ortiz de Montellano, P R

    1995-04-01

    A human heme oxygenase (hHO-1) gene without the sequence coding for the last 23 amino acids has been expressed in Escherichia coli behind the pho A promoter. The truncated enzyme is obtained in high yields as a soluble, catalytically-active protein, making it available for the first time for detailed mechanistic studies. The purified, truncated hHO-1/heme complex is spectroscopically indistinguishable from that of the rat enzyme and converts heme to biliverdin when reconstituted with rat liver cytochrome P450 reductase. A self-sufficient heme oxygenase system has been obtained by fusing the truncated hHO-1 gene to the gene for human cytochrome P450 reductase without the sequence coding for the 20 amino acid membrane binding domain. Expression of the fusion protein in pCWori+ yields a protein that only requires NADPH for catalytic turnover. The failure of exogenous cytochrome P450 reductase to stimulate turnover and the insensitivity of the catalytic rate toward changes in ionic strength establish that electrons are transferred intramolecularly between the reductase and heme oxygenase domains of the fusion protein. The Vmax for the fusion protein is 2.5 times higher than that for the reconstituted system. Therefore, either the covalent tether does not interfere with normal docking and electron transfer between the flavin and heme domains or alternative but equally efficient electron transfer pathways are available that do not require specific docking.

  13. Hawthorn Fruit Extract Elevates Expression of Nrf2/HO-1 and Improves Lipid Profiles in Ovariectomized Rats.

    PubMed

    Yoo, Jeong-Hyun; Liu, Yanan; Kim, Hyun-Sook

    2016-01-01

    The purpose of this study was to investigate the effects of hawthorn (Crataegus pinnatifida Bunge) extract on the lipid profiles and antioxidant properties in ovariectomized (OVX) rats. After ovariectomy, the rats were randomly divided into four groups: the non-OVX control (Sham), the OVX-control (OVX), the OVX + 100 mg/kg b.w. of hawthorn extract (OL), and the OVX + 200 mg/kg b.w. of hawthorn extract (OH). The final body weights of the OVX group were significantly increased, but the increment was significantly decreased in hawthorn groups (p < 0.05). The serum total and low-density lipoprotein (LDL) cholesterol levels were significantly elevated in the OVX group, whereas the hawthorn groups showed a significant decrease in these levels (p < 0.05). The hepatic triglyceride (TG) and malondialdehyde (MDA) levels were significantly reduced in the hawthorn groups compared with the OVX group (p < 0.05). The mRNA expression of nuclear factor erythroid 2-related factor (Nrf2), heme oxygenase-1 (HO-1), and glutathione peroxidase (GPx) were significantly decreased in the OVX group, whereas the hawthorn groups exhibited a significant increase in expression (p < 0.05). The protein expressions of Nrf2, HO-1, and GPx were lower in the OVX group than the Sham group (p < 0.05). The oral administration of hawthorn extract reversed the suppression of protein levels. These results suggest that hawthorn extract could have protective effects in OVX rats by improving lipid profiles, decreasing oxidative stress, and improving the antioxidant defense system. PMID:27187458

  14. Hawthorn Fruit Extract Elevates Expression of Nrf2/HO-1 and Improves Lipid Profiles in Ovariectomized Rats

    PubMed Central

    Yoo, Jeong-Hyun; Liu, Yanan; Kim, Hyun-Sook

    2016-01-01

    The purpose of this study was to investigate the effects of hawthorn (Crataegus pinnatifida Bunge) extract on the lipid profiles and antioxidant properties in ovariectomized (OVX) rats. After ovariectomy, the rats were randomly divided into four groups: the non-OVX control (Sham), the OVX-control (OVX), the OVX + 100 mg/kg b.w. of hawthorn extract (OL), and the OVX + 200 mg/kg b.w. of hawthorn extract (OH). The final body weights of the OVX group were significantly increased, but the increment was significantly decreased in hawthorn groups (p < 0.05). The serum total and low-density lipoprotein (LDL) cholesterol levels were significantly elevated in the OVX group, whereas the hawthorn groups showed a significant decrease in these levels (p < 0.05). The hepatic triglyceride (TG) and malondialdehyde (MDA) levels were significantly reduced in the hawthorn groups compared with the OVX group (p < 0.05). The mRNA expression of nuclear factor erythroid 2–related factor (Nrf2), heme oxygenase-1 (HO-1), and glutathione peroxidase (GPx) were significantly decreased in the OVX group, whereas the hawthorn groups exhibited a significant increase in expression (p < 0.05). The protein expressions of Nrf2, HO-1, and GPx were lower in the OVX group than the Sham group (p < 0.05). The oral administration of hawthorn extract reversed the suppression of protein levels. These results suggest that hawthorn extract could have protective effects in OVX rats by improving lipid profiles, decreasing oxidative stress, and improving the antioxidant defense system. PMID:27187458

  15. The neuroprotection of hypoxic preconditioning on rat brain against traumatic brain injury by up-regulated transcription factor Nrf2 and HO-1 expression.

    PubMed

    Shu, Longfei; Wang, Chunlin; Wang, Jinbiao; Zhang, Yongming; Zhang, Xing; Yang, Yanyan; Zhuo, Jianwei; Liu, Jiachuan

    2016-01-12

    Hypoxic preconditioning (HPC) increases the inherent tolerance of brain tissue suffering from severe hypoxia or ischemia insult by stimulating the protective ability of the brain. However, little is known concerning the effect of HPC on traumatic brain injury (TBI). We designed this study to investigate the effect of HPC on TBI and explore its underlying mechanisms. We found that HPC significantly alleviates neurological dysfunction, lessens brain edema, reduces cell apoptosis, increases neuronal survival, up-regulates the expressions of Nrf2 and HO-1, and decreases the inducer of protein carbonyls, 4-hydroxy-2-nonenal, and 8-hydroxy-2-deoxyguanosine in the brain tissue of rats 24h after brain injury. However, no influence was observed in normal rats after only 3d of hypoxic training. Results further indicated that HPC protects the brain against traumatic damage. This protective effect may be achieved by up-regulating Nrf2 and HO-1 expression and alleviating oxidative stress damage. PMID:26590328

  16. 15d-PGJ{sub 2} stimulates HO-1 expression through p38 MAP kinase and Nrf-2 pathway in rat vascular smooth muscle cells

    SciTech Connect

    Lim, Hyun-Joung; Lee, Kuy-Sook; Lee, Seahyoung; Park, Jin-Hee; Choi, Hye-Eun; Go, Sang Hee; Kwak, Hyun-Jeong; Park, Hyun-Young

    2007-08-15

    15d-PGJ{sub 2}, a potent endogenous ligand for peroxisome proliferators activated receptor-{gamma}, is a cyclopentenone-type prostaglandin produced by many different types of cells. Pertinent to its effect on vascular smooth muscle cell (VSMC), antiproliferative effects have been most frequently reported. In the present study, we investigated the effect of 15d-PGJ{sub 2} on HO-1 expression that has been reported to inhibit VSMC proliferation. According to our data, 15d-PGJ{sub 2} significantly induced ROS/NO production and HO-1 expression in rVSMCs. We also observed 15d-PGJ{sub 2}-induced translocation of Nrf-2. In addition, ROS scavenger pretreatment suppressed 15d-PGJ{sub 2}-induced HO-1 expression while PPAR{gamma} antagonist did not, suggesting nuclear translocation of Nrf-2 and subsequent HO-1 expression was ROS dependent rather than PPAR{gamma} dependent. Furthermore, an inhibitor of p38 MAPK abolished 15d-PGJ{sub 2}-induced HO-1 expression. These data suggest that 15d-PGJ{sub 2}-induced up-regulation of HO-1 is independent of PPAR{gamma} but dependent of ROS and p38 MAPK pathway. The present study reports for the first time that 15d-PGJ{sub 2} induces HO-1 expression possibly using Nrf-2 pathway as a response to ROS in VSMCs.

  17. Baicalein inhibition of oxidative-stress-induced apoptosis via modulation of ERKs activation and induction of HO-1 gene expression in rat glioma cells C6

    SciTech Connect

    Chen, Y.-C. . E-mail: yc3270@tmu.edu.tw; Chow, J.-M.; Lin, C.-W.; Wu, C.-Y.; Shen, S.-C.

    2006-10-15

    In the present study, we examined the protective mechanism of baicalein (BE) and its glycoside, baicalin (BI), on hydrogen-peroxide (H{sub 2}O{sub 2})-induced cell death in rat glioma C6 cells. Results of the MTT assay, LDH release assay, and morphological observation showed that H{sub 2}O{sub 2} addition reduced the viability of C6 cells, and this was prevented by the addition of BE but not BI. Incubation of C6 cells with BE significantly decreased the intracellular peroxide level induced by H{sub 2}O{sub 2} according to flow cytometric analysis using DCHF-DA as a fluorescent substrate. Suppression of H{sub 2}O{sub 2}-induced apoptotic events including DNA ladders, hypodiploid cells, and activation of caspases 3, 8, and, 9 by BE but not BI was identified in C6 cells. The cytotoxicity and phosphorylation of ERK proteins induced by H{sub 2}O{sub 2} were blocked by the ERK inhibitor PD98059. Catalase addition prevented H{sub 2}O{sub 2}-induced ROS production, ERKs protein phosphorylation, and cell death, and BE dose-dependently inhibited H{sub 2}O{sub 2}-induced ERK protein phosphorylation in C6 cells. These data suggest that ROS-scavenging activity is involved in BE prevention of H{sub 2}O{sub 2}-induced cell death via blocking ERKs activation. Additionally, BE but not BI induced heat shock protein 32 (HSP32; HO-1) protein expression in both time- and dose-dependent manners, but not heme oxygenase 2 (HO-2), heat shock protein 70 (HSP70), or heat shock protein 90 (HSP90) protein expression. In the absence of H{sub 2}O{sub 2}, BE induces ERKs protein phosphorylation, and HO-1 protein expression induced by BE was blocked by the addition of cycloheximide, actinomycin D, and the ERK inhibitor PD98059. The addition of the HO inhibitor ZnPP inhibited the protective effect of BE against H{sub 2}O{sub 2}-induced cytotoxicity in C6 cells according to the MTT assay and apoptotic morphology under microscopic observation, accompanied by blocking the ROS-scavenging activity of BE

  18. Role of Hydroxytyrosol-dependent Regulation of HO-1 Expression in Promoting Wound Healing of Vascular Endothelial Cells via Nrf2 De Novo Synthesis and Stabilization.

    PubMed

    Zrelli, Houda; Kusunoki, Miki; Miyazaki, Hitoshi

    2015-07-01

    Hydroxytyrosol (HT), an olive plant (Olea europaea L.) polyphenol, has proven atheroprotective effects. We previously demonstrated that heme oxygenase-1 (HO-1) is involved in the HT dependent prevention of dysfunction induced by oxidative stress in vascular endothelial cells (VECs). Here, we further investigated the signaling pathway of HT-dependent HO-1 expression in VECs. HT dose- and time-dependently increased HO-1 mRNA and protein levels through the PI3K/Akt and ERK1/2 pathways. Cycloheximide and actinomycin D inhibited both increases, suggesting that HT-triggered HO-1 induction is transcriptionally regulated and that de novo protein synthesis is necessary for this HT effect. HT stimulated nuclear accumulation of nuclear factor E2-related factor 2 (Nrf2). This Nrf2 accumulation was blocked by actinomycin D and cycloheximide whereas HT in combination with the 26S proteasome inhibitor MG132 enhanced the accumulation. HT also extended the half-life of Nrf2 proteins by decelerating its turnover. Moreover, HO-1 inhibitor, ZnppIX and CO scavenger, hemoglobin impaired HT-dependent wound healing while CORM-2, a CO generator, accelerated wound closure. Together, these data demonstrate that HT upregulates HO-1 expression by stimulating the nuclear accumulation and stabilization of Nrf2, leading to the wound repair of VECs crucial in the prevention of atherosclerosis.

  19. An IκBα phosphorylation inhibitor induces heme oxygenase-1(HO-1) expression through the activation of reactive oxygen species (ROS)-Nrf2-ARE signaling and ROS-PI3K/Akt signaling in an NF-κB-independent mechanism.

    PubMed

    Min, Kyoung-jin; Lee, Jung Tae; Joe, Eun-hye; Kwon, Taeg Kyu

    2011-09-01

    Reactive oxygen species (ROS) are important signaling molecules in cells. Excessive ROS induce expression of inflammatory mediators, such as iNOS and COX2. Antioxidant enzymes, such as, heme oxygenase-1 (HO-1), tightly regulate ROS levels within cells. Here, we show that Bay 11-7082 (Bay) increased HO-1 mRNA and protein expression in human colon cancer HT29 cells. Bay induced translocation of NF-E2-related factor 2 (Nrf2) into nuclei and increased the binding activity of the antioxidant response element (ARE). In addition, PI3K/Akt inhibitor (LY294002) blocked Bay-induced HO-1 expression. Pretreatment with anti-oxidants (N-acetylcysteine (NAC) or glutathione) significantly reduced Bay-induced HO-1 mRNA/protein expression, nuclear translocation of Nrf2 and phosphorylation of Akt. However, PI3K/Akt signaling was independent of Bay-induced Nrf2 translocation and ARE binding activity. Furthermore, other NF-κB inhibitors, such as pyrrolidine dithiocarbamate (PDTC) and MG132, also increased HO-1 mRNA and protein expression. However, although overexpression of dominant negative inhibitory κB (IκB) reduced NF-κB-driven transcriptional activity, IκB overexpression did not increase HO-1 expression. Taken together, our results suggest that in human colon cancer HT29 cells, Bay induces HO-1 expression by increasing ROS production in an Nrf2-ARE and PI3K dependent manner, but Bay acts independently of NF-κB.

  20. Paracrine action of HO-1-modified mesenchymal stem cells mediates cardiac protection and functional improvement.

    PubMed

    Zeng, Bin; Ren, Xiaofeng; Lin, Guosheng; Zhu, Chengang; Chen, Honglei; Yin, Jiechao; Jiang, Hong; Yang, Bo; Ding, Danhua

    2008-10-01

    The aim has been to determine whether the supernatants of mesenchymal stem cells (MSCs) transfected with adenovirus carrying human heme oxygenase-1 (hHO-1) gene protect cardiomyocytes from ischemic injury. We have found that hHO-1 infected MSCs (hHO-1-MSCs) increased expression of hHO-1 protein. Apoptosis of cultured hHO-1-MSCs exposed to hypoxia was suppressed. Several cytokines, including HGF, bFGF, TGF-beta, VEGF and IL-1beta, were produced by hHO-1-MSCs, some being significantly enhanced under hypoxia stimulation. Meanwhile, those cytokines reduced caspase-3 level and activity in cultured adult rat ventricular cardiomyocytes (ARVCs) exposed to hypoxia. Supernatants obtained from hHO-1-MSCs improved left ventricular function, limited myocardial infarct size, increased microvessel density, and inhibited apoptosis of cardiomyocytes in rat myocardial infarction. It can be concluded hHO-1-modified MSCs prevent myocardial cell injury via secretion of paracrine-acting mediators.

  1. Induction of heme-oxygenase-1 (HO-1) does not enhance adiponectin production in human adipocytes: Evidence against a direct HO-1 - Adiponectin axis.

    PubMed

    Yang, Mengliu; Kimura, Masaki; Ng, Choaping; He, Jingjing; Keshvari, Sahar; Rose, Felicity J; Barclay, Johanna L; Whitehead, Jonathan P

    2015-09-15

    Adiponectin is a salutary adipokine and hypoadiponectinemia is implicated in the aetiology of obesity-related inflammation and cardiometabolic disease making therapeutic strategies to increase adiponectin attractive. Emerging evidence, predominantly from preclinical studies, suggests induction of heme-oxygenase-1 (HO-1) increases adiponectin production and reduces inflammatory tone. Here, we aimed to test whether induction of HO-1 enhanced adiponectin production from mature adipocytes. Treatment of human adipocytes with cobalt protoporphyrin (CoPP) or hemin for 24-48 h increased HO-1 expression and activity without affecting adiponectin expression and secretion. Treatment of adipocytes with TNFα reduced adiponectin secretion and increased expression and secretion of additional pro-inflammatory cytokines, IL-6 and MCP-1, as well as expression of sXBP-1, a marker of ER stress. HO-1 induction failed to reverse these effects. These results demonstrate that induction of HO-1 does not directly enhance adiponectin production or ameliorate the pro-inflammatory effects of TNFα and argue against a direct HO-1 - adiponectin axis.

  2. Novel roles of c-Met in the survival of renal cancer cells through the regulation of HO-1 and PD-L1 expression.

    PubMed

    Balan, Murugabaskar; Mier y Teran, Eduardo; Waaga-Gasser, Ana Maria; Gasser, Martin; Choueiri, Toni K; Freeman, Gordon; Pal, Soumitro

    2015-03-27

    The receptor tyrosine kinase c-Met is overexpressed in renal cancer cells and can play major role in the growth and survival of tumor. We investigated how the c-Met-mediated signaling through binding to its ligand hepatocyte growth factor (HGF) can modulate the apoptosis and immune escape mechanism(s) of renal cancer cells by the regulations of novel molecules heme oxygenase-1 (HO-1) and programmed death-1 ligand 1 (PD-L1). We found that HGF/c-Met-mediated signaling activated the Ras/Raf pathway and down-regulated cancer cell apoptosis; and it was associated with the overexpression of cytoprotective HO-1 and anti-apoptotic Bcl-2/Bcl-xL. c-Met-induced HO-1 overexpression was regulated at the transcriptional level. Next, we observed that c-Met induction markedly up-regulated the expression of the negative co-stimulatory molecule PD-L1, and this can be prevented following treatment of the cells with pharmacological inhibitors of c-Met. Interestingly, HGF/c-Met-mediated signaling could not induce PD-L1 at the optimum level when either Ras or HO-1 was knocked down. To study the functional significance of c-Met-induced PD-L1 expression, we performed a co-culture assay using mouse splenocytes (expressing PD-L1 receptor PD-1) and murine renal cancer cells (RENCA, expressing high PD-L1). We observed that the splenocyte-mediated apoptosis of cancer cells during co-culture was markedly increased in the presence of either c-Met inhibitor or PD-L1 neutralizing antibody. Finally, we found that both c-Met and PD-L1 are significantly up-regulated and co-localized in human renal cancer tissues. Together, our study suggests a novel mechanism(s) by which c-Met can promote increased survival of renal cancer cells through the regulation of HO-1 and PD-L1.

  3. Protective effect of Xuebijing injection on D-galactosamine- and lipopolysaccharide-induced acute liver injury in rats through the regulation of p38 MAPK, MMP-9 and HO-1 expression by increasing TIPE2 expression

    PubMed Central

    Liu, Ming-Wei; Liu, Rong; Wu, Hai-Yin; Zhang, Wei; Xia, Jing; Dong, Min-Na; Yu, Wen; Wang, Qiang; Xie, Feng-Mei; Wang, Rui; Huang, Yun-Qiao; Qian, Chuan-Yun

    2016-01-01

    Xuebijing injection (XBJ) has long been used to treat infectious diseases in China. The therapeutic effect of XBJ is probably associated with anti-inflammatory effects. However, the precise mechanisms responsible for the effects of XBJ remain unknown. The present study was conducted in order to evaluate the protective effects of XBJ in a rat model of D-galactosamine (D-Gal)- and lipopolysaccharide (LPS)-induced acute liver injury. In the present study, the rats were injected with D-Gal and LPS intraperitoneally to induce acute liver injury. Two hours prior to D-Gal and LPS administration, the treatment group was administered XBJ by intravenous infusion. The effects of XBJ on D-Gal- and LPS-induced expression of tumor necrosis factor (TNF)-alpha-induced protein 8-like 2 (TIPE2), nuclear factor-κB (NF-κB), matrix metalloproteinase-9 (MMP-9) and heme oxygenase-1 (HO-1) as well as mitogen-activated protein kinase (MAPK) signaling was examined using reverse transcription-quantitative polymerase chain reaction (RT-qPCR), western blot analysis, immunofluorescence, as well as by analysing the serum levels of pro-inflammatory cytokines and the transaminases, alanine aminotransferase (ALT) and aspartate aminotransferase (AST). Myeloperoxidase (MPO), malondialdehyde (MDA) and superoxide dismutase (SOD) levels in the rat liver tissues were also measured. For histological analysis, hematoxylin and eosin (H&E)-stained liver samples were evaluated. The results showed that XBJ upregulated TIPE2 and HO-1 expression, reduced the expression of NF-κB65 and MMP-9, inhibited the LPS-induced gene expression of c-jun N-terminal kinase (JNK) and p38 MAPK, decreased the generation of pro-inflammatory cytokines [interleukin (IL)-6, IL-13 and TNF-α], inhibited ALT and AST activity, and ameliorated D-Gal- and LPS-induced liver injury. The histological results also demonstrated that XBJ attenuated D-Gal- and LPS-induced liver inflammation. It was found that XBJ may prevent LPS-induced pro

  4. Kaposi Sarcoma Herpesvirus Induces HO-1 during De Novo Infection of Endothelial Cells via Viral miRNA-Dependent and -Independent Mechanisms

    PubMed Central

    Botto, Sara; Totonchy, Jennifer E.; Gustin, Jean K.

    2015-01-01

    ABSTRACT Kaposi sarcoma (KS) herpesvirus (KSHV) infection of endothelial cells (EC) is associated with strong induction of heme oxygenase-1 (HO-1), a stress-inducible host gene that encodes the rate-limiting enzyme responsible for heme catabolism. KS is an angioproliferative tumor characterized by the proliferation of KSHV-infected spindle cells, and HO-1 is highly expressed in such cells. HO-1 converts the pro-oxidant, proinflammatory heme molecule into metabolites with antioxidant, anti-inflammatory, and proliferative activities. Previously published work has shown that KSHV-infected EC in vitro proliferate in response to free heme in a HO-1-dependent manner, thus implicating virus-enhanced HO-1 activity in KS tumorigenesis. The present study investigated the molecular mechanisms underlying KSHV induction of HO-1 in lymphatic EC (LEC), which are the likely spindle cell precursors. In a time course analysis of KSHV-infected cells, HO-1 expression displays biphasic kinetics characterized by an early transient induction that is followed by a more sustained upregulation coincident with the establishment of viral latency. A viral microRNA miR-K12-11 deletion mutant of KSHV was found to be defective for induction of HO-1 during latency. A potential mechanism for this phenotype was provided by BACH1, a cellular HO-1 transcriptional repressor targeted by miR-K12-11. In fact, in KSHV-infected LEC, the BACH1 message level is reduced, BACH1 subcellular localization is altered, and miR-K12-11 mediates the inverse regulation of HO-1 and BACH1 during viral latency. Interestingly, the data indicate that neither miR-K12-11 nor de novo KSHV gene expression is required for the burst of HO-1 expression observed at early times postinfection, which suggests that additional virion components promote this phenotype. PMID:26045540

  5. HO-1 Protects against Hypoxia/Reoxygenation-Induced Mitochondrial Dysfunction in H9c2 Cardiomyocytes

    PubMed Central

    Chen, Dongling; Jin, Zhe; Zhang, Jingjing; Jiang, Linlin; Chen, Kai; He, Xianghu; Song, Yinwei; Ke, Jianjuan; Wang, Yanlin

    2016-01-01

    Background Mitochondrial dysfunction would ultimately lead to myocardial cell apoptosis and death during ischemia-reperfusion injuries. Autophagy could ameliorate mitochondrial dysfunction by autophagosome forming, which is a catabolic process to preserve the mitochondrial’s structural and functional integrity. HO-1 induction and expression are important protective mechanisms. This study in order to investigate the role of HO-1 during mitochondrial damage and its mechanism. Methods and Results The H9c2 cardiomyocyte cell line were incubated by hypoxic and then reoxygenated for the indicated time (2, 6, 12, 18, and 24 h). Cell viability was tested with CCK-8 kit. The expression of endogenous HO-1(RT-PCR and Western blot) increased with the duration of reoxygenation and reached maximum levels after 2 hours of H/R; thereafter, the expression gradually decreased to a stable level. Mitochondrial dysfunction (Flow cytometry quantified the ROS generation and JC-1 staining) and autophagy (The Confocal microscopy measured the autophagy. RFP-GFP-LC3 double-labeled adenovirus was used for testing.) were induced after 6 hours of H/R. Then, genetic engineering technology was employed to construct an Lv-HO1-H9c2 cell line. When HO-1 was overexpressed, the LC3II levels were significantly increased after reoxygenation, p62 protein expression was significantly decreased, the level of autophagy was unchanged, the mitochondrial membrane potential was significantly increased, and the mitochondrial ROS level was significantly decreased. Furthermore, when the HO-1 inhibitor ZnPP was applied the level of autophagy after reoxygenation was significantly inhibited, and no significant improvement in mitochondrial dysfunction was observed. Conclusions During myocardial hypoxia-reoxygenation injury, HO-1 overexpression induces autophagy to protect the stability of the mitochondrial membrane and reduce the amount of mitochondrial oxidation products, thereby exerting a protective effect. PMID

  6. α-Dihydroxychalcone-glycoside (α-DHC) isolated from the heartwood of Pterocarpus marsupium inhibits LPS induced MAPK activation and up regulates HO-1 expression in murine RAW 264.7 macrophage.

    PubMed

    Chakraborty, Prarthana; Saraswat, Ghungroo; Kabir, Syed N

    2014-05-15

    Three phenolic glycosides isolated from the heartwood of Pterocarpus marsupium showed significant free radical and superoxide ion scavenging activity and antioxidant potential that were comparable to, or several folds higher than those of standard antioxidants, trolox and ascorbic acid. The effective concentrations of these compounds were far below their cytotoxic levels. Compound 3, which was characterized to be α-dihydroxychalcone-glycoside (α-DHC), was the most potent one. Subsequent studies demonstrated that α-DHC effectively reduced nitric oxide and cytokine production by the LPS stimulated RAW 264.7 mouse macrophage cell line. The compound effectively attenuated the expression of inflammation-mediating enzymes COX-2 and iNOS at the mRNA as well as protein levels in a concentration dependent manner. It prevented phosphorylation of all the three MAPKs (JNK, ERK, p38) and eventually blocked the activation of downstream elements contributing to inflammation. Phosphorylation of IκB-α and subsequent translocation of NF-κB into the nucleus were restricted, while the expression of stress responsive gene HO-1 was up-regulated. α-DHC targeted Keap-1 by modifying its cysteine thiols, dissociating it from Nrf-2 and facilitating nuclear entry of the latter; and this in turn induced HO-1 expression. Thus α-DHC exerts its anti-inflammatory activity in a dual manner: by down regulating MAPKs and restricting nuclear stabilization of NF-κB at one end, and by disrupting Nrf-2-Keap-1 complex on the other. In conclusion, the anti-inflammatory potential together with its high therapeutic index envisages α-DHC as a prospective candidate molecule for the development of therapeutic strategy against inflammatory disorders.

  7. α-Dihydroxychalcone-glycoside (α-DHC) isolated from the heartwood of Pterocarpus marsupium inhibits LPS induced MAPK activation and up regulates HO-1 expression in murine RAW 264.7 macrophage

    SciTech Connect

    Chakraborty, Prarthana; Saraswat, Ghungroo; Kabir, Syed N.

    2014-05-15

    Three phenolic glycosides isolated from the heartwood of Pterocarpus marsupium showed significant free radical and superoxide ion scavenging activity and antioxidant potential that were comparable to, or several folds higher than those of standard antioxidants, trolox and ascorbic acid. The effective concentrations of these compounds were far below their cytotoxic levels. Compound 3, which was characterized to be α-dihydroxychalcone-glycoside (α-DHC), was the most potent one. Subsequent studies demonstrated that α-DHC effectively reduced nitric oxide and cytokine production by the LPS stimulated RAW 264.7 mouse macrophage cell line. The compound effectively attenuated the expression of inflammation-mediating enzymes COX-2 and iNOS at the mRNA as well as protein levels in a concentration dependent manner. It prevented phosphorylation of all the three MAPKs (JNK, ERK, p38) and eventually blocked the activation of downstream elements contributing to inflammation. Phosphorylation of IκB-α and subsequent translocation of NF-κB into the nucleus were restricted, while the expression of stress responsive gene HO-1 was up-regulated. α-DHC targeted Keap-1 by modifying its cysteine thiols, dissociating it from Nrf-2 and facilitating nuclear entry of the latter; and this in turn induced HO-1 expression. Thus α-DHC exerts its anti-inflammatory activity in a dual manner: by down regulating MAPKs and restricting nuclear stabilization of NF-κB at one end, and by disrupting Nrf-2–Keap-1 complex on the other. In conclusion, the anti-inflammatory potential together with its high therapeutic index envisages α-DHC as a prospective candidate molecule for the development of therapeutic strategy against inflammatory disorders. - Highlights: • α-DHC isolated from Pterocarpus marsupium has significant antioxidant potential. • α-DHC inhibits NO, IL-6, IL-1β, TNF-α production in LPS-stimulated RAW 264.7 cells. • α-DHC down-regulates of COX-2, iNOS expression in LPS

  8. Tomato powder impedes the development of azoxymethane-induced colorectal cancer in rats through suppression of COX-2 expression via NF-κB and regulating Nrf2/HO-1 pathway.

    PubMed

    Tuzcu, Mehmet; Aslan, Abdullah; Tuzcu, Zeynep; Yabas, Mehmet; Bahcecioglu, Ibrahim Halil; Ozercan, Ibrahim Hanifi; Kucuk, Omer; Sahin, Kazim

    2012-09-01

    Cancer is one of the leading causes of death worldwide. Since dietary factors have been connected to a reduced risk of a diversity of human cancers, in this study we investigated the effects of tomato powder (TP) on the development of azoxymethane (AOM)-induced colorectal cancer in Wistar rats, and possible mechanism(s) by which TP shows its chemopreventive activity. Here we show that TP added to feed at 5% rate decreases the rate of aberrant crypt foci (ACF) and reduces the development of adenocarcinoma and growth of AOM-induced colorectal cancer in rats. In addition, we demonstrate that TP supplementation shows its chemopreventive activities through inhibition of cyclooxygenase-2 (COX-2) expression via NF-κB pathway and promotion of apoptosis, as well as regulating Nrf2/HO-1 signaling pathway in colorectal tissue of AOM-treated rats. Our findings identify an intimate connection between dietary supplementation of TP and the decreased risk of colorectal cancer in rats, and suggest that consumption of TP would be a natural candidate for the prevention of colorectal cancer in men. PMID:22859375

  9. The effect of moderate-intensity exercise on the expression of HO-1 mRNA and activity of HO in cardiac and vascular smooth muscle of spontaneously hypertensive rats.

    PubMed

    Ren, Cailing; Qi, Jie; Li, Wanwei; Zhang, Jun

    2016-04-01

    The objective of this study was to observe the effects of moderate-intensity training on the activity of heme oxygenase (HO) and expression of HO-1 mRNA in the aorta and the cardiac muscle of spontaneously hypertensive rats (SHRs). After 9 weeks of swimming exercise, the activity of HO and expression of HO-1 mRNA in the SHRs were measured. The resting blood pressure in the exercise group was increased by 1.7% (P > 0.05), whereas it was significantly elevated by 10.3% (P < 0.01) in the SHR rats. Compared with animals in the control and sedentary groups, the expression level of HO-1 mRNA of aorta and cardiac muscle in the exercise group was significantly enhanced (P < 0.01). The HO activity and the content of plasma carbon monoxide (CO) in the sedentary group were dramatically decreased (P < 0.05 and P < 0.01, respectively) compared with the control group. HO activity and content of plasma CO in the exercise group were significantly higher compared with those in the sedentary group (P < 0.05 and P < 0.01, respectively). The HO/CO metabolic pathway might be involved in the regulation of blood pressure of the SHR models. PMID:26928589

  10. Acute toxicity of a commercial glyphosate formulation on European sea bass juveniles (Dicentrarchus labrax L.): gene expressions of heme oxygenase-1 (ho-1), acetylcholinesterase (AChE) and aromatases (cyp19a and cyp19b).

    PubMed

    Prevot-D'Alvise, N; Richard, S; Coupé, S; Bunet, R; Grillasca, J P

    2013-12-31

    Acute toxicity of Roundup, a commercial glyphosate--based herbicide, was evaluated in a teleost marine fish, the European sea bass, after 96 h of exposure. The LC50 96-h value of Roundup was 529 mg/L. Juveniles (Dicentrarchus labrax L.) were exposed to a sublethal concentration (35% of the LC50, i.e. 193 mg/L) of Roundup for 96-h. The study of heme oxygenase-1 (ho-1) gene expression was performed in four tissues (liver, gills, brain and gonads) and highlighted the disruption of antioxidant defence system. Results showed that ho-1 mRNA levels in liver and gills significantly decreased (p<0.001 and p<0.01 respectively) in fish exposed to 193 mg/L of Roundup, whereas in brain and gonads, ho-1 mRNA level was not altered. The analysis of acetylcholinesterase expression was used to evaluate the overall neurotoxicity of the herbicide and aromatase genes to assess the alteration of the endocrine system. Results showed that AChE and cyp19b gene transcriptions significantly increased (p<0.01) in brain of sea bass, whereas aromatase gene expression (cyp19a) in gonads was not significantly altered. Our results showed complex tissue-specific transcriptional responses after 96 h of exposure to a sublethal concentration. All these disruptions confirmed the deleterious effects of this glyphosate-based herbicide in a marine species.

  11. Downregulation of HO-1 promoted apoptosis induced by decitabine via increasing p15INK4B promoter demethylation in myelodysplastic syndrome.

    PubMed

    Ma, D; Fang, Q; Wang, P; Gao, R; Sun, J; Li, Y; Hu, X Y; Wang, J S

    2015-04-01

    Decitabine, which reverses hypermethylation of the p15(INK4B) gene in vitro, has been used to relieve cytopenias and blast excess in over 50% of patients with high-risk myelodysplastic syndrome (MDS). In this study, heme oxygenase-1 (HO-1) was overexpressed in MDS cell line SKM-1, which was closely related to resistance to decitabine-induced apoptosis. We aimed to further investigate the role of HO-1 in apoptosis induced by low-dose decitabine in SKM-1 cells. Upregulation of HO-1 by transfecting it into SKM-1 cells with lentivirus vector promoted cell proliferation and protected them against apoptosis. In contrast, downregulation of HO-1 enhanced decitabine-induced apoptosis but reduced accumulation of the S phase in cell cycle. To explore the mechanism, the expressions of cell cycle-related proteins were detected after the cells were treated by decitabine in each group. p15(INK4B) and CDK4 were overexpressed in SKM-1 cells in which HO-1 was inhibited, and the expression-depending apoptosis was related to the caspase-3 pathway. Even though HO-1 was silenced, the apoptotic rate never increased as the caspase-3 pathway was blocked. It is well known that p15(INK4B) dominantly regulates the S phase of the cell cycle. p15(INK4B) was herein demethylated more evidently in the group of SKM-1 cells in which HO-1 was downregulated, as well as in the mononuclear cells of patients suffering from MDS. In the case of poor prognosis, the mRNA level of HO-1 was raised. In conclusion, overexpression of HO-1 indicated resistance to demethylation of p15(INK4B) induced by decitabine.

  12. Resveratrol pretreatment attenuates injury and promotes proliferation of neural stem cells following oxygen-glucose deprivation/reoxygenation by upregulating the expression of Nrf2, HO-1 and NQO1 in vitro

    PubMed Central

    Shen, Changbo; Cheng, Wei; Yu, Pingping; Wang, Li; Zhou, Lulin; Zeng, Li; Yang, Qin

    2016-01-01

    There is considerable interest in the use of drugs and other methods for protecting implanted neural stem cells (NSCs) from the adverse environment of injured tissue for successful cell therapy. Resveratrol can modify cardiac stem cells to enhance their survival and differentiation, however, its effect and the mechanism underlying its neuroprotective effect on NSCs following stroke remain to be fully elucidated. Nuclear factor erythroid 2-related factor 2 (Nrf-2) signaling is important in antioxidative stress, and the role of Nrf-2 signaling in the enhanced neuroprotection of NSCs by resveratrol following stroke also remains to be elucidated. In the present study, NSCs were pretreated with resveratrol prior to oxygen-glucose deprivation/reoxygenation (OGD/R) in vitro. The survival, apoptosis and proliferation of the NSCs were assessed using an MTT assay, Hoechst 33258 staining of nuclei and flow cytometry, respectively. In addition, the activity of superoxide dismutase (SOD), level of malondiadehyde (MDA) and content of glutathione (GSH) were determined. The protein expressions levels of Nrf-2, NAD(P)H:quinone oxidoreductase 1 (NQO-1), and heme oxygenase 1 (HO-1) were detected using western blot analysis. It was found that resveratrol markedly enhanced NSC survival and proliferation, decreased apoptosis and the levels of MDA, and increased the activity of SOD and content of GSH in a concentration-dependent manner following OGD/R injury in vitro. In addition, the protein expression levels of Nrf2, HO-1 and NQO1 were significantly upregulated. These findings suggested that resveratrol attenuated injury and promoted proliferation of the NSCs, at least in part, by upregulating the expression of Nrf2, HO-1 and NQO1 following OGD/R injury in vitro. PMID:27573874

  13. Lipoic acid and pentoxifylline mitigate nandrolone decanoate-induced neurobehavioral perturbations in rats via re-balance of brain neurotransmitters, up-regulation of Nrf2/HO-1 pathway, and down-regulation of TNFR1 expression.

    PubMed

    Ahmed, Maha A E; El-Awdan, Sally A

    2015-07-01

    Behavioral perturbations associated with nandrolone decanoate abuse by athletes and adolescents may be attributed to oxidative stress and inflammation. However, the underlying mechanisms are not yet fully explored. On the other hand, the natural antioxidant lipoic acid can pass the blood brain barrier and enhance Nrf2/HO-1 (nuclear factor erythroid-2 related factor 2/heme oxygenase-1) pathway. In addition, the phosphodiesterase-IV inhibitor xanthine derivative pentoxifylline has a remarkable inhibitory effect on tumor necrosis factor-alpha (TNF-α). Therefore, this study aimed at investigation of the possible protective effects of lipoic acid and/or pentoxifylline against nandrolone-induced neurobehavioral alterations in rats. Accordingly, male albino rats were randomly distributed into seven groups and treated with either vehicle, nandrolone (15mg/kg, every third day, s.c.), lipoic acid (100mg/kg/day, p.o.), pentoxifylline (200mg/kg/day, i.p.), or nandrolone with lipoic acid and/or pentoxifylline. Rats were challenged in the open field, rewarded T-maze, Morris water maze, and resident-intruder aggression behavioral tests. The present findings showed that nandrolone induced hyperlocomotion, anxiety, memory impairment, and aggression in rats. These behavioral abnormalities were accompanied by several biochemical changes, including altered levels of brain monoamines, GABA, and acetylcholine, enhanced levels of malondialdehyde and TNF-α, elevated activity of acetylcholinesterase, and up-regulated expression of TNF-α receptor-1 (TNFR1). In addition, inhibited catalase activity, down-regulated Nrf2/HO-1 pathway, and suppressed acetylcholine receptor expression were observed. Lipoic acid and pentoxifylline combination significantly mitigated all the previously mentioned deleterious effects mainly via up-regulation of Nrf2/HO-1 pathway, inhibition of TNF-α and down-regulation of TNFR1 expression. In conclusion, the biochemical and histopathological findings of this

  14. Activated AMPK boosts the Nrf2/HO-1 signaling axis—A role for the unfolded protein response

    PubMed Central

    Zimmermann, Kristin; Baldinger, Johannes; Mayerhofer, Barbara; Atanasov, Atanas G.; Dirsch, Verena M.; Heiss, Elke H.

    2015-01-01

    In light of the emerging interplay between redox and metabolic signaling pathways we investigated the potential cross talk between nuclear factor E2-related factor 2 (Nrf2) and AMP-activated kinase (AMPK), central regulators of the cellular redox and energy balance, respectively. Making use of xanthohumol (XN) as an activator of both the AMPK and the Nrf2 signaling pathway we show that AMPK exerts a positive influence on Nrf2/heme oxygenase (HO)-1 signaling in mouse embryonic fibroblasts. Genetic ablation and pharmacological inhibition of AMPK blunts Nrf2-dependent HO-1 expression by XN already at the mRNA level. XN leads to AMPK activation via interference with mitochondrial function and activation of liver kinase B1 as upstream AMPK kinase. The subsequent AMPK-mediated enhancement of the Nrf2/HO-1 response does not depend on inhibition of the mammalian target of rapamycin, inhibition of glycogen synthase kinase 3β, or altered abundance of Nrf2 (total and nuclear). However, reduced endoplasmic reticulum stress was identified and elaborated as a step in the AMPK-augmented Nrf2/HO-1 response. Overall, we shed more light on the hitherto incompletely understood cross talk between the LKB1/AMPK and the Nrf2/HO-1 axis revealing for the first time involvement of the unfolded protein response as an additional player and suggesting tight cooperation between signaling pathways controlling cellular redox, energy, or protein homeostasis. PMID:25843659

  15. Mechanism of phytoestrogen puerarin-mediated cytoprotection following oxidative injury: Estrogen receptor-dependent up-regulation of PI3K/Akt and HO-1

    SciTech Connect

    Hwang, Yong Pil; Jeong, Hye Gwang

    2008-12-15

    Phytoestrogens are polyphenolic non-steroidal plant compounds with estrogen-like biological activity. The phytoestrogen puerarin, the main isoflavone glycoside found in the root of Pueraria lobata, has been used for various medicinal purposes in traditional Chinese medicines for thousands of years. Recent studies have indicated that the estrogen receptor (ER), through interaction with p85, regulates phosphoinositide 3-kinase (PI3K) activity, revealing a physiologic, non-nuclear function of ER that may be relevant in cytoprotection. In this study, we demonstrate that the phytoestrogen puerarin inhibits tert-butyl hydroperoxide (t-BHP)-induced oxidative injury via an ER-dependent G{beta}1/PI3K/Akt and heme oxygenase-1 (HO-1) pathway. Pretreatment of Hepa1c1c7 and HepG2 cells with puerarin significantly reduced t-BHP-induced caspase-3 activation and subsequent cell death. Also, puerarin up-regulated HO-1 expression and this expression conferred cytoprotection against oxidative injury induced by t-BHP. Moreover, puerarin induced Nrf2 nuclear translocation, which is upstream of puerarin-induced HO-1 expression, and PI3K activation, a pathway that is involved in induced Nrf2 nuclear translocation, HO-1 expression and cytoprotection. Puerarin-induced up-regulation of HO-1 and cytoprotection against t-BHP were abolished by silencing Nrf2 expression with specific siRNA. Also, puerarin-mediated increases in PI3K activation and HO-1 induction were reversed by co-treatment with ICI 182,780 and pertussis toxin. Taken together, these results suggest that puerarin augments cellular antioxidant defense capacity through ER-dependent HO-1 induction via the G{beta}1/PI3K/Akt-Nrf2 signaling pathway, thereby protecting cells from oxidative stress.

  16. Tetramethylpyrazine improves the recovery of spinal cord injury via Akt/Nrf2/HO-1 pathway.

    PubMed

    Wang, Chao; Wang, Peng; Zeng, Wen; Li, Weixin

    2016-02-15

    Spinal cord injury (SCI) is one of the most severe traumatic conditions, resulting in postoperative complications. Our results and other reports have shown that tetramethylpyrazine (TMP) is able to exhibit neuro-protective effects after SCI. In the current study, we aimed to examine the possible mechanism underlying the neuro-protective effect of TMP in rat model of SCI. TMP improved locomotor functions and decreased permeability of blood-spinal cord barrier in rats with SCI, as evidenced by increase of Basso-Beattie-Bresnahan scores and decrease of Evans blue leakage. In addition, TMP decreased the expression of several proinflammatory cytokines, including IL-1β, TNFα and IL-18, reduced TUNEL-positive cells and caspase 3 and 9 activities, decreased thiobarbituric acid reactive substances content and increased glutathione level and superoxide dismutase activity in rats. All these effects were inhibited by zinc protoporphyrin IX (ZnPP), an inhibitor of HO-1, and LY294002, an inhibitor of Akt. Moreover, TMP inhibited the decrease of mRNA expression of HO-1 which was suppressed by ZnPP and LY294002. TMP inhibited the decrease of Akt phosphorylation in rats after SCI, which was suppressed by LY294002, but not ZnPP. Furthermore, LY294002, but not ZnPP, significantly inhibited TMP-induced increase of mRNA expression of Nrf2 and DNA binding activity of Nrf2 in HO-1 promoters in rat model of SCI. The data suggested that TMP induced neuro-protective effects against injury of spinal cord through the activation of Akt/Nrf2/HO-1 signaling pathway. These results have appointed a new path toward the understanding of pathogenesis and TMP-related therapy of SCI and associated neurodegenerative diseases. PMID:26786697

  17. Tetramethylpyrazine improves the recovery of spinal cord injury via Akt/Nrf2/HO-1 pathway.

    PubMed

    Wang, Chao; Wang, Peng; Zeng, Wen; Li, Weixin

    2016-02-15

    Spinal cord injury (SCI) is one of the most severe traumatic conditions, resulting in postoperative complications. Our results and other reports have shown that tetramethylpyrazine (TMP) is able to exhibit neuro-protective effects after SCI. In the current study, we aimed to examine the possible mechanism underlying the neuro-protective effect of TMP in rat model of SCI. TMP improved locomotor functions and decreased permeability of blood-spinal cord barrier in rats with SCI, as evidenced by increase of Basso-Beattie-Bresnahan scores and decrease of Evans blue leakage. In addition, TMP decreased the expression of several proinflammatory cytokines, including IL-1β, TNFα and IL-18, reduced TUNEL-positive cells and caspase 3 and 9 activities, decreased thiobarbituric acid reactive substances content and increased glutathione level and superoxide dismutase activity in rats. All these effects were inhibited by zinc protoporphyrin IX (ZnPP), an inhibitor of HO-1, and LY294002, an inhibitor of Akt. Moreover, TMP inhibited the decrease of mRNA expression of HO-1 which was suppressed by ZnPP and LY294002. TMP inhibited the decrease of Akt phosphorylation in rats after SCI, which was suppressed by LY294002, but not ZnPP. Furthermore, LY294002, but not ZnPP, significantly inhibited TMP-induced increase of mRNA expression of Nrf2 and DNA binding activity of Nrf2 in HO-1 promoters in rat model of SCI. The data suggested that TMP induced neuro-protective effects against injury of spinal cord through the activation of Akt/Nrf2/HO-1 signaling pathway. These results have appointed a new path toward the understanding of pathogenesis and TMP-related therapy of SCI and associated neurodegenerative diseases.

  18. HO-1-mediated macroautophagy: a mechanism for unregulated iron deposition in aging and degenerating neural tissues.

    PubMed

    Zukor, Hillel; Song, Wei; Liberman, Adrienne; Mui, Jeannie; Vali, Hojatollah; Fillebeen, Carine; Pantopoulos, Kostas; Wu, Ting-Di; Guerquin-Kern, Jean-Luc; Schipper, Hyman M

    2009-05-01

    Oxidative stress, deposition of non-transferrin iron, and mitochondrial insufficiency occur in the brains of patients with Alzheimer disease (AD) and Parkinson disease (PD). We previously demonstrated that heme oxygenase-1 (HO-1) is up-regulated in AD and PD brain and promotes the accumulation of non-transferrin iron in astroglial mitochondria. Herein, dynamic secondary ion mass spectrometry (SIMS) and other techniques were employed to ascertain (i) the impact of HO-1 over-expression on astroglial mitochondrial morphology in vitro, (ii) the topography of aberrant iron sequestration in astrocytes over-expressing HO-1, and (iii) the role of iron regulatory proteins (IRP) in HO-1-mediated iron deposition. Astroglial hHO-1 over-expression induced cytoplasmic vacuolation, mitochondrial membrane damage, and macroautophagy. HO-1 promoted trapping of redox-active iron and sulfur within many cytopathological profiles without impacting ferroportin, transferrin receptor, ferritin, and IRP2 protein levels or IRP1 activity. Thus, HO-1 activity promotes mitochondrial macroautophagy and sequestration of redox-active iron in astroglia independently of classical iron mobilization pathways. Glial HO-1 may be a rational therapeutic target in AD, PD, and other human CNS conditions characterized by the unregulated deposition of brain iron.

  19. Non-coding RNA derived from the region adjacent to the human HO-1 E2 enhancer selectively regulates HO-1 gene induction by modulating Pol II binding

    PubMed Central

    Maruyama, Atsushi; Mimura, Junsei; Itoh, Ken

    2014-01-01

    Recent studies have disclosed the function of enhancer RNAs (eRNAs), which are long non-coding RNAs transcribed from gene enhancer regions, in transcriptional regulation. However, it remains unclear whether eRNAs are involved in the regulation of human heme oxygenase-1 gene (HO-1) induction. Here, we report that multiple nuclear-enriched eRNAs are transcribed from the regions adjacent to two human HO-1 enhancers (i.e. the distal E2 and proximal E1 enhancers), and some of these eRNAs are induced by the oxidative stress-causing reagent diethyl maleate (DEM). We demonstrated that the expression of one forward direction (5′ to 3′) eRNA transcribed from the human HO-1 E2 enhancer region (named human HO-1enhancer RNA E2-3; hereafter called eRNA E2-3) was induced by DEM in an NRF2-dependent manner in HeLa cells. Conversely, knockdown of BACH1, a repressor of HO-1 transcription, further increased DEM-inducible eRNA E2-3 transcription as well as HO-1 expression. In addition, we showed that knockdown of eRNA E2-3 selectively down-regulated DEM-induced HO-1 expression. Furthermore, eRNA E2-3 knockdown attenuated DEM-induced Pol II binding to the promoter and E2 enhancer regions of HO-1 without affecting NRF2 recruitment to the E2 enhancer. These findings indicate that eRNAE2-3 is functional and is required for HO-1 induction. PMID:25404134

  20. Schizophrenia-like features in transgenic mice overexpressing human HO-1 in the astrocytic compartment.

    PubMed

    Song, Wei; Zukor, Hillel; Lin, Shih-Hsiung; Hascalovici, Jacob; Liberman, Adrienne; Tavitian, Ayda; Mui, Jeannie; Vali, Hojatollah; Tong, Xin-Kang; Bhardwaj, Sanjeev K; Srivastava, Lalit K; Hamel, Edith; Schipper, Hyman M

    2012-08-01

    Delineation of key molecules that act epigenetically to transduce diverse stressors into established patterns of disease would facilitate the advent of preventive and disease-modifying therapeutics for a host of neurological disorders. Herein, we demonstrate that selective overexpression of the stress protein heme oxygenase-1 (HO-1) in astrocytes of novel GFAP.HMOX1 transgenic mice results in subcortical oxidative stress and mitochondrial damage/autophagy; diminished neuronal reelin content (males); induction of Nurr1 and Pitx3 with attendant suppression of their targeting miRNAs, 145 and 133b; increased tyrosine hydroxylase and α-synuclein expression with downregulation of the targeting miR-7b of the latter; augmented dopamine and serotonin levels in basal ganglia; reduced D1 receptor binding in nucleus accumbens; axodendritic pathology and altered hippocampal cytoarchitectonics; impaired neurovascular coupling; attenuated prepulse inhibition (males); and hyperkinetic behavior. The GFAP.HMOX1 neurophenotype bears resemblances to human schizophrenia and other neurodevelopmental conditions and implicates glial HO-1 as a prime transducer of inimical (endogenous and environmental) influences on the development of monoaminergic circuitry. Containment of the glial HO-1 response to noxious stimuli at strategic points of the life cycle may afford novel opportunities for the effective management of human neurodevelopmental and neurodegenerative conditions. PMID:22875919

  1. Posttreatment with 11-Keto-β-Boswellic Acid Ameliorates Cerebral Ischemia-Reperfusion Injury: Nrf2/HO-1 Pathway as a Potential Mechanism.

    PubMed

    Ding, Yi; Chen, MinChun; Wang, MingMing; Li, YuWen; Wen, AiDong

    2015-12-01

    Oxidative stress is well known to play a pivotal role in cerebral ischemia-reperfusion injury. The nuclear factor erythroid-2-related factor 2 (Nrf2)/heme oxygenase-1 (HO-1) pathway has been considered a potential target for neuroprotection in stroke. 11-Keto-β-boswellic acid (KBA) is a triterpenoid compound from extracts of Boswellia serrata. The aim of the present study was to determine whether KBA, a novel Nrf2 activator, can protect against cerebral ischemic injury. Middle cerebral artery occlusion (MCAO) was operated on male Sprague-Dawley rats. KBA (25 mg/kg) applied 1 h after reperfusion significantly reduced infarct volumes and apoptotic cells as well as increased neurologic scores at 48 h after reperfusion. Meanwhile, posttreatment with KBA significantly decreased malondialdehyde (MDA) levels, restored the superoxide dismutase (SOD) activity, and increased the protein Nrf2 and HO-1 expression in brain tissues. In primary cultured astrocytes, KBA increased the Nrf2 and HO-1 expression, which provided protection against oxygen and glucose deprivation (OGD)-induced oxidative insult. But knockdown of Nrf2 or HO-1 attenuated the protective effect of KBA. In conclusion, these findings provide evidence that the neuroprotection of KBA against oxidative stress-induced ischemic injury involves the Nrf2/HO-1 pathway.

  2. Posttreatment with 11-Keto-β-Boswellic Acid Ameliorates Cerebral Ischemia-Reperfusion Injury: Nrf2/HO-1 Pathway as a Potential Mechanism.

    PubMed

    Ding, Yi; Chen, MinChun; Wang, MingMing; Li, YuWen; Wen, AiDong

    2015-12-01

    Oxidative stress is well known to play a pivotal role in cerebral ischemia-reperfusion injury. The nuclear factor erythroid-2-related factor 2 (Nrf2)/heme oxygenase-1 (HO-1) pathway has been considered a potential target for neuroprotection in stroke. 11-Keto-β-boswellic acid (KBA) is a triterpenoid compound from extracts of Boswellia serrata. The aim of the present study was to determine whether KBA, a novel Nrf2 activator, can protect against cerebral ischemic injury. Middle cerebral artery occlusion (MCAO) was operated on male Sprague-Dawley rats. KBA (25 mg/kg) applied 1 h after reperfusion significantly reduced infarct volumes and apoptotic cells as well as increased neurologic scores at 48 h after reperfusion. Meanwhile, posttreatment with KBA significantly decreased malondialdehyde (MDA) levels, restored the superoxide dismutase (SOD) activity, and increased the protein Nrf2 and HO-1 expression in brain tissues. In primary cultured astrocytes, KBA increased the Nrf2 and HO-1 expression, which provided protection against oxygen and glucose deprivation (OGD)-induced oxidative insult. But knockdown of Nrf2 or HO-1 attenuated the protective effect of KBA. In conclusion, these findings provide evidence that the neuroprotection of KBA against oxidative stress-induced ischemic injury involves the Nrf2/HO-1 pathway. PMID:25452227

  3. Neuroprotection by acetyl-11-keto-β-Boswellic acid, in ischemic brain injury involves the Nrf2/HO-1 defense pathway.

    PubMed

    Ding, Yi; Chen, MinChun; Wang, Min; Wang, MingMing; Zhang, Tiejun; Park, Jongsun; Zhu, YanRong; Guo, Chao; Jia, YanYan; Li, YuWen; Wen, AiDong

    2014-01-01

    Stroke is a complex disease involved oxidative stress-related pathways in its pathogenesis. The nuclear factor erythroid-2-related factor 2 (Nrf2)/heme oxygenase-1 (HO-1) pathway has been considered a potential target for neuroprotection in stroke. Acetyl-11-Keto-β-Boswellic Acid (AKBA) is an active triterpenoid compound from the extract of Boswellia serrate. The present study was to determine whether AKBA, a novel Nrf2 activator, can protect against cerebral ischemic injury. The stroke model was produced in Sprague-Dawley rats via middle cerebral artery occlusion. To model ischemia-like conditions in vitro, primary cultured cortical neurons were exposed to transient oxygen and glucose deprivation (OGD). Treatment of AKBA significantly reduced infarct volumes and apoptotic cells, and also increased neurologic scores by elevating the Nrf2 and HO-1 expression in brain tissues in middle cerebral artery occlusion (MCAO) rats at 48 hours post reperfusion. In primary cultured neurons, AKBA increased the Nrf2 and HO-1 expression, which provided protection against OGD-induced oxidative insult. Additionally, AKBA treatment increased Nrf2 binding activity to antioxidant-response elements (ARE). The protective effect of AKBA was attenuated by knockdown of Nrf2 or HO-1. In conclusion, these findings provide evidence that AKBA protects neurons against ischemic injury, and this neuroprotective effect involves the Nrf2/HO-1 pathway. PMID:25384416

  4. S-Propargyl-cysteine Exerts a Novel Protective Effect on Methionine and Choline Deficient Diet-Induced Fatty Liver via Akt/Nrf2/HO-1 Pathway

    PubMed Central

    Li, Wenwen; Ma, Fenfen; Zhang, Laiyin; Huang, Yong; Li, Xinghui; Zhang, Aijie; Hou, Cuilan; Zhu, Yichun; Zhu, YiZhun

    2016-01-01

    This study investigated the antioxidative effect of S-propargyl-cysteine (SPRC) on nonalcoholic fatty liver (NAFLD) by treating mice fed a methionine and choline deficient (MCD) diet with SPRC for four weeks. We found that SPRC significantly reduced hepatic reactive oxygen species (ROS) and methane dicarboxylic aldehyde (MDA) levels. Moreover, SPRC also increased the superoxide dismutase (SOD) activity. By Western blot, we found that this protective effect of SPRC was importantly attributed to the regulated hepatic antioxidant-related proteins, including protein kinase B (Akt), heme oxygenase-1 (HO-1), nuclear factor erythroid 2-related factor 2 (Nrf2), and cystathionine γ-lyase (CSE, an enzyme that synthesizes hydrogen sulfide). Next, we examined the detailed molecular mechanism of the SPRC protective effect using oleic acid- (OA-) induced HepG2 cells. The results showed that SPRC significantly decreased intracellular ROS and MDA levels in OA-induced HepG2 cells by upregulating the phosphorylation of Akt, the expression of HO-1 and CSE, and the translocation of Nrf2. SPRC-induced HO-1 expression and Nrf2 translocation were abolished by the phosphoinositide 3-kinase (PI3K) inhibitor LY294002. Moreover, the antioxidative effect of SPRC was abolished by CSE inhibitor DL-propargylglycine (PAG) and HO-1 siRNA. Therefore, these results proved that SPRC produced an antioxidative effect on NAFLD through the PI3K/Akt/Nrf2/HO-1 signaling pathway. PMID:27313828

  5. Mechanical Stress Changes the Complex Interplay Between HO-1, Inflammation and Fibrosis, During Excisional Wound Repair.

    PubMed

    Cremers, Niels A J; Suttorp, Maarten; Gerritsen, Marlous M; Wong, Ronald J; van Run-van Breda, Coby; van Dam, Gooitzen M; Brouwer, Katrien M; Kuijpers-Jagtman, Anne Marie; Carels, Carine E L; Lundvig, Ditte M S; Wagener, Frank A D T G

    2015-01-01

    Mechanical stress following surgery or injury can promote pathological wound healing and fibrosis, and lead to functional loss and esthetic problems. Splinted excisional wounds can be used as a model for inducing mechanical stress. The cytoprotective enzyme heme oxygenase-1 (HO-1) is thought to orchestrate the defense against inflammatory and oxidative insults that drive fibrosis. Here, we investigated the activation of the HO-1 system in a splinted and non-splinted full-thickness excisional wound model using HO-1-luc transgenic mice. Effects of splinting on wound closure, HO-1 promoter activity, and markers of inflammation and fibrosis were assessed. After seven days, splinted wounds were more than three times larger than non-splinted wounds, demonstrating a delay in wound closure. HO-1 promoter activity rapidly decreased following removal of the (epi)dermis, but was induced in both splinted and non-splinted wounds during skin repair. Splinting induced more HO-1 gene expression in 7-day wounds; however, HO-1 protein expression remained lower in the epidermis, likely due to lower numbers of keratinocytes in the re-epithelialization tissue. Higher numbers of F4/80-positive macrophages, αSMA-positive myofibroblasts, and increased levels of the inflammatory genes IL-1β, TNF-α, and COX-2 were present in 7-day splinted wounds. Surprisingly, mRNA expression of newly formed collagen (type III) was lower in 7-day wounds after splinting, whereas, VEGF and MMP-9 were increased. In summary, these data demonstrate that splinting delays cutaneous wound closure and HO-1 protein induction. The pro-inflammatory environment following splinting may facilitate higher myofibroblast numbers and increase the risk of fibrosis and scar formation. Therefore, inducing HO-1 activity against mechanical stress-induced inflammation and fibrosis may be an interesting strategy to prevent negative effects of surgery on growth and function in patients with orofacial clefts or in patients with

  6. The ubiquitous PM component Zn2+ induces HO-1 expression through multiple targets in the Nrf2/Keap1 signaling pathway

    EPA Science Inventory

    Oxidant stress can play an important role in particulate matter (PM)–mediated toxicity in the respiratory tract. Zinc (Zn2+) is a ubiquitous component of ambient PM that induces adverse responses such as inflammatory and adaptive gene expression in human airway epithelial c...

  7. Omega-3 polyunsaturated fatty acid has an anti-oxidant effect via the Nrf-2/HO-1 pathway in 3T3-L1 adipocytes

    SciTech Connect

    Kusunoki, Chisato; Yang, Liu; Yoshizaki, Takeshi; Nakagawa, Fumiyuki; Ishikado, Atsushi; Kondo, Motoyuki; Morino, Katsutaro; Sekine, Osamu; Ugi, Satoshi; Nishio, Yoshihiko; Kashiwagi, Atsunori; Maegawa, Hiroshi

    2013-01-04

    Highlights: Black-Right-Pointing-Pointer Omega-3 PUFA has a direct anti-oxidant effect in adipocytes. Black-Right-Pointing-Pointer EPA and DHA induce HO-1 expression in 3T3-L1 adipocytes. Black-Right-Pointing-Pointer Omega-3 PUFA and its end-product, 4-HHE, activates the Nrf-2/HO-1 pathway. Black-Right-Pointing-Pointer Omega-3 PUFA protects against oxidative stress-induced cytotoxicity. -- Abstract: Oxidative stress is produced in adipose tissue of obese subjects and has been associated with obesity-related disorders. Recent studies have shown that omega-3 polyunsaturated fatty acid ({omega}3-PUFA) has beneficial effects in preventing atherosclerotic diseases and insulin resistance in adipose tissue. However, the role of {omega}3-PUFA on adipocytes has not been elucidated. In this study, 3T3-L1 adipocytes were treated with {omega}3-PUFA and its metabolites, eicosapentaenoic acid (EPA), docosahexaenoic acid (DHA), or 4-hydroxy hexenal (4-HHE). {omega}3-PUFA and its metabolites dose-dependently increased mRNA and protein levels of the anti-oxidative enzyme, heme oxygenase-1 (HO-1); whereas no changes in the well-known anti-oxidant molecules, superoxide dismutase, catalase, and glutathione peroxidase, were observed. Knockdown of nuclear factor erythroid 2-related factor 2 (Nrf-2) significantly reduced EPA, DHA or 4-HHE-induced HO-1 mRNA and protein expression. Also, pretreatment with {omega}3-PUFA prevented H{sub 2}O{sub 2}-induced cytotoxicity in a HO-1 dependent manner. In conclusion, treatment with EPA and DHA induced HO-1 through the activation of Nrf-2 and prevented oxidative stress in 3T3-L1 adipocytes. This anti-oxidant defense may be of high therapeutic value for clinical conditions associated with systemic oxidative stress.

  8. HO-1 Upregulation Attenuates Adipocyte Dysfunction, Obesity, and Isoprostane Levels in Mice Fed High Fructose Diets

    PubMed Central

    Harsh, Mohit; Sodhi, Komal; Shapiro, Joseph I.; Abraham, Nader G.

    2014-01-01

    Background. Fructose metabolism is an unregulated metabolic pathway and excessive fructose consumption is known to activate ROS. HO-1 is a potent antioxidant gene that plays a key role in decreasing ROS and isoprostanes. We examined whether the fructose-mediated increase in adipocyte dysfunction involves an increase in isoprostanes and that pharmacological induction of HO-1 would decrease both isoprostane levels and adipogenesis. Methods and Results. We examined the effect of fructose, on adipogenesis in human MSCs in the presence and absence of CoPP, an inducer of HO-1. Fructose increased adipogenesis and the number of large lipid droplets while decreasing the number of small lipid droplets (P < 0.05). Levels of heme and isoprostane in fructose treated MSC-derived adipocytes were increased. CoPP reversed these effects and markedly increased HO-1 and the Wnt signaling pathway. The high fructose diet increased heme levels in adipose tissue and increased circulating isoprostane levels (P < 0.05 versus control). Fructose diets decreased HO-1 and adiponectin levels in adipose tissue. Induction of HO-1 by CoPP decreased isoprostane synthesis (P < 0.05 versus fructose). Conclusion. Fructose treatment resulted in increased isoprostane production and adipocyte dysfunction, which was reversed by the increased expression of HO-1. PMID:25295182

  9. The role of HO-1 in protection against lead-induced neurotoxicity.

    PubMed

    Li, Xiaoyi; Ye, Fang; Li, Lili; Chang, Wei; Wu, Xiongwen; Chen, Jun

    2016-01-01

    Lead is a pervasive and persistent environmental pollutant that exerts deleterious effects on all living organisms and continues to threaten public health on a global scale. Heme oxygenase-1 (HO-1) is a stress-inducible enzyme that mediates antioxidative and cytoprotective effects to maintain cellular redox homeostasis and protect cells from oxidative stress. This study was designed to explore the role of HO-1 in protection against lead neurotoxicity and the signaling pathways involved. Lead acetate (PbAc) exposure resulted in increased HO-1 expression in primary rat hippocampal neurons and SH-SY5Y cells. PbAc-induced intracellular reactive oxygen species (ROS) also increased, and cell viability decreased in SH-SY5Y cells. We further demonstrated that HO-1 could be induced by PbAc through the P38, ERK1/2, and PI3K/AKT signaling pathways in a ROS-dependent manner and through the JNK pathway in a ROS-independent manner. Further investigation revealed that HO-1 overexpression significantly restrained cell apoptosis and ROS production induced by PbAc in SH-SY5Y cells. Moreover, HO-1 knockdown aggravated PbAc-induced cell apoptosis and ROS production. Our results indicated that HO-1 was a novel protective factor that could efficiently inhibit PbAc-induced oxidative stress and cell death in the nervous system, thereby providing the potential therapeutic strategies for the prevention and treatment of lead-related diseases.

  10. The cytoprotective effect of isorhamnetin against oxidative stress is mediated by the upregulation of the Nrf2-dependent HO-1 expression in C2C12 myoblasts through scavenging reactive oxygen species and ERK inactivation.

    PubMed

    Choi, Yung Hyun

    2016-04-01

    This study was designed to confirm the protective effects of isorhamnetin against oxidative stress-induced cellular damage. Our results indicated that isorhamnetin inhibited the hydrogen peroxide (H2O2)-induced growth inhibition and exhibited scavenging activity against the intracellular reactive oxygen species (ROS) in mouse-derived C2C12 myoblasts. Isorhamnetin also significantly attenuated H2O2-induced DNA damage and apoptosis, and increased the levels of the nuclear factor erythroid 2-related factor 2 (Nrf2) and its phosphorylation associated with the induction of heme oxygenase-1 (HO-1). However, the protective effects of isorhamnetin on H2O2-induced ROS and growth inhibition were significantly abolished by an HO-1 competitive inhibitor. Moreover, the potential of isorhamnetin to mediate HO-1 induction and protect against H2O2-mediated growth inhibition was abrogated by transient transfection with Nrf2-specific small interfering RNA. Additionally, isorhamnetin induced the activation of mitogen-activated protein kinases (MAPKs), such as extracellular signal-regulated kinase (ERK), c-Jun N-terminal kinase (JNK), and p38 MAPK. However, the specific inhibitor of ERK, but not JNK and p38 MAPK, was able to abolish the HO-1 upregulation and the Nrf2 phosphorylation. Collectively, these results demonstrate that isorhamnetin augments the cellular antioxidant defense capacity by activating the Nrf2/HO-1 pathway involving the activation of the ERK pathway, thus protecting the C2C12 cells from H2O2-induced cytotoxicity. PMID:26830132

  11. Inhibition of beta-amyloid-induced neurotoxicity by pinocembrin through Nrf2/HO-1 pathway in SH-SY5Y cells.

    PubMed

    Wang, Yumin; Miao, Yingchun; Mir, Aamina Zia; Cheng, Long; Wang, Lina; Zhao, Linan; Cui, Qifu; Zhao, Weili; Wang, Hongquan

    2016-09-15

    Amyloid beta peptide (Aβ) can cause neurotoxicity in Alzheimer's disease (AD). It evokes a cascade of oxidative damage to neurons. Pinocembrin (PCB), the most abundant flavonoid in propolis, has been proven to have neuroprotective effects in vivo and in vitro. In the present study, we investigated the neuroprotective effects of PCB on Aβ25-35-induced neurotoxicity. Exposure of SH-SY5Y cells to 25μM Aβ25-35 for 24h caused viability loss, apoptotic increase and reactive oxygen species (ROS) increase, pre-treatment with PCB for 4h significantly reduced the viability loss, apoptotic rate and attenuated Aβ-mediated ROS production. PCB strikingly inhibited Aβ25-35-induced mitochondrial dysfunctions, including lowered membrane potential, decreased Bcl-2/Bax ratio. In addition, PCB suppressed the release of cytochrome c and the cleavage of caspase-3. PCB treatment also resulted in an increase in Nrf2 protein levels and subsequent induction of heme oxygenase-1(HO-1) expression in SH-SY5Y cells. RNA interference-mediated knockdown of Nrf2 expression suppressed the PCB-induced HO-1 expression. Notably, we found that the HO-1 inhibitor zinc protoporphyrin IX (ZnPP) markedly diminished the neuroprotective effect of PCB against Aβ-mediated neurotoxicity. Taken together, these results indicated that PCB protects SH-SY5Y cells from Aβ25-35-induced neurotoxicity through activation of Nrf2/HO-1 pathways. Thus, activation of Nrf2/HO-1 pathways and inhibition of mitochondria-dependent apoptosis together may protect cells from Aβ25-35-induceded neurotoxicity. PMID:27538638

  12. Ethanol Extract of Ganoderma lucidum Augments Cellular Anti-oxidant Defense through Activation of Nrf2/HO-1

    PubMed Central

    Lee, Yoo-hwan; Kim, Jung-hee; Song, Choon-ho; Jang, Kyung-jeon; kim, Cheol-hong; Kang, Ji- Sook; Choi, Yung-hyun

    2016-01-01

    Objectives: The mushroom Ganoderma lucidum has been widely used as a traditional herbal medicine for many years. Although several studies have focused on the anti-oxidative activity of this mushroom, the molecular mechanisms underlying its activity have not yet been clearly established. The present study investigated the cytoprotective effect of ethanol extract of Ganoderma lucidum (EGL) against oxidative stress (hydrogen peroxide, H2O2) and elucidated the underlying mechanisms in a C2C12 myoblast cell line. Methods: Oxidative stress markers were determined by using the comet assay to measure reactive oxygen species (ROS) generation and deoxyribonucleic acid (DNA) damage. Cell viability and Western blotting analyses were employed to evaluate the cellular response to EGL and H2O2 in C2C12 cells. Transfection with nuclear factor erythroid 2-related factor 2 (Nrf2)-specific small interfering ribonucleic acid (siRNA) was conducted to understand the relationship between Nrf2 expression and H2O2-induced growth inhibition. Results: The results showed that EGL effectively inhibited H2O2-induced growth and the generation of ROS. EGL markedly suppressed H2O2-induced comet-like DNA formation and phosphorylation of histone H2AX at serine 139 (p-γH2AX), a widely used marker of DNA damage, suggesting that EGL prevented H2O2-induced DNA damage. Furthermore, the EGL treatment effectively induced the expression of Nrf2, as well as heme oxygenase-1 (HO-1), with parallel phosphorylation and nuclear translocation of Nrf2 in the C2C12 myoblasts. However, zinc protoporphyrin IX, a HO-1 inhibitor, significantly abolished the protective effects of EGL against H2O2-induced accumulation of ROS and reduced cell growth. Notably, transient transfection with Nrf2-specific siRNA attenuated the cytoprotective effects and HO-1 induction by EGL, indicating that EGL induced the expression of HO-1 in an Nrf2-dependent manner. Conclusion: Collectively, these results demonstrate that EGL augments the

  13. Modulation of cGMP by human HO-1 retrovirus gene transfer in pulmonary microvessel endothelial cells.

    PubMed

    Abraham, Nader G; Quan, Shuo; Mieyal, Paul A; Yang, Liming; Burke-Wolin, Theresa; Mingone, Christopher J; Goodman, Alvin I; Nasjletti, Alberto; Wolin, Michael S

    2002-11-01

    Carbon monoxide (CO) stimulates guanylate cyclase (GC) and increases guanosine 3',5'-cyclic monophosphate (cGMP) levels. We transfected rat-lung pulmonary endothelial cells with a retrovirus-mediated human heme oxygenase (hHO)-1 gene. Pulmonary cells that expressed hHO-1 exhibited a fourfold increase in HO activity associated with decreases in the steady-state levels of heme and cGMP without changes in soluble GC (sGC) and endothelial nitric oxide synthase (NOS) proteins or basal nitrite production. Heme elicited significant increases in CO production and intracellular cGMP levels in both pulmonary endothelial and pulmonary hHO-1-expressing cells. N(omega)-nitro-L-arginine methyl ester (L-NAME), an inhibitor of NOS, significantly decreased cGMP levels in heme-treated pulmonary endothelial cells but not heme-treated hHO-1-expressing cells. In the presence of exogenous heme, CO and cGMP levels in hHO-1-expressing cells exceeded the corresponding levels in pulmonary endothelial cells. Acute exposure of endothelial cells to SnCl2, which is an inducer of HO-1, increased cGMP levels, whereas chronic exposure decreased heme and cGMP levels. These results indicate that prolonged overexpression of HO-1 ultimately decreases sGC activity by limiting the availability of cellular heme. Heme activates sGC and enhances cGMP levels via a mechanism that is largely insensitive to NOS inhibition.

  14. MiR-22 promotes porcine reproductive and respiratory syndrome virus replication by targeting the host factor HO-1.

    PubMed

    Xiao, Shuqi; Du, Taofeng; Wang, Xue; Ni, Huaibao; Yan, Yunhuan; Li, Na; Zhang, Chong; Zhang, Angke; Gao, Jiming; Liu, Hongliang; Pu, Fengxing; Zhang, Gaiping; Zhou, En-Min

    2016-08-30

    Porcine reproductive and respiratory syndrome virus (PRRSV) is one of the most economically important viruses affecting the swine industry worldwide. MicroRNAs (miRNAs) play vital roles in virus-host interactions by regulating the expression of viral or host gene at posttranscriptional level. Our previous research showed that PRRSV infection down-regulates the expression of heme oxygenase-1 (HO-1), a pivotal cytoprotective enzyme, and overexpression of HO-1 inhibits PRRSV replication. In this study, we demonstrate that host miRNA miR-22 can downregulate HO-1 expression by directly targeting its 3' untranslated region. Suppression of HO-1 expression by miR-22 facilitates PRRSV replication. This work suggests that PRRSV may utilize cellular miRNA to modify antiviral host factor expression, enabling viral replication, which not only provides new insights into virus-host interactions during PRRSV infection, but also suggests potential therapies for PRRSV infection. PMID:27527787

  15. Adoptive Transfer of Ex Vivo HO-1 Modified Bone Marrow–derived Macrophages Prevents Liver Ischemia and Reperfusion Injury

    PubMed Central

    Ke, Bibo; Shen, Xiu-Da; Gao, Feng; Ji, Haofeng; Qiao, Bo; Zhai, Yuan; Farmer, Douglas G; Busuttil, Ronald W; Kupiec-Weglinski, Jerzy W

    2009-01-01

    Macrophages play a critical role in the pathophysiology of liver ischemia and reperfusion (IR) injury (IRI). However, macrophages that overexpress antioxidant heme oxygenase-1 (HO-1) may exert profound anti-inflammatory functions. This study explores the cytoprotective effects and mechanisms of ex vivo modified HO-1-expressing bone marrow–derived macrophages (BMDMs) in well-defined mouse model of liver warm ischemia followed by reperfusion. Adoptive transfer of Ad-HO-1-transduced macrophages prevented IR-induced hepatocellular damage, as evidenced by depressed serum glutamic-oxaloacetic transaminase (sGOT) levels and preserved liver histology (Suzuki scores), compared to Ad-β-gal controls. This beneficial effect was reversed following concomitant treatment with HO-1 siRNA. Ad-HO-1-transfected macrophages significantly decreased local neutrophil accumulation, TNF-α/IL-1β, IFN-γ/E-selectin, and IP-10/MCP-1 expression, caspase-3 activity, and the frequency of apoptotic cells, as compared with controls. Unlike in controls, Ad-HO-1-transfected macrophages markedly increased hepatic expression of antiapoptotic Bcl-2/Bcl-xl and depressed caspase-3 activity. These results establish the precedent for a novel investigative tool and provide the rationale for a clinically attractive new strategy in which native macrophages can be transfected ex vivo with cytoprotective HO-1 and then infused, if needed, to prospective recipients exposed to hepatic IR–mediated local inflammation, such as during liver transplantation, resection, or trauma. PMID:20029397

  16. Diallyl-disulfide, an organosulfur compound of garlic, attenuates airway inflammation via activation of the Nrf-2/HO-1 pathway and NF-kappaB suppression.

    PubMed

    Shin, In-Sik; Hong, Jumi; Jeon, Chan-Mi; Shin, Na-Rae; Kwon, Ok-Kyoung; Kim, Hui-Seong; Kim, Jong-Choon; Oh, Sei-Ryang; Ahn, Kyung-Seop

    2013-12-01

    Diallyl disulfide (DADS) is a major organosulfur compound found in garlic oil that is widely used as a flavoring agent. In this study, we evaluated the effects of DADS on airway inflammation using an ovalbumin-induced model of allergic asthma and RAW264.7 cells. DADS decreased nitric oxide production with a reduction in the levels of interleukins (IL)-1β and IL-6 in RAW264.7 cells stimulated with LPS. DADS also reduced the expression of proinflammatory proteins including inducible nitric oxide synthase (iNOS), nuclear factor (NF)-κB, and matrix metalloproteinase (MMP)-9, and it enhanced the expression of antioxidant proteins including Nrf-2 and hemeoxygenase (HO)-1. In in vivo experiments, DADS decreased the inflammatory cell count in the bronchoalveolar lavage fluid (BALF) with IL-4, IL-5, IL-13, and immunoglobulin (Ig) E. These results were consistent with the histological analysis. DADS attenuated the airway inflammation and mucus hypersecretion induced by OVA challenge. In addition, DADS induced the activation of Nrf-2 and the expression of HO-1. In contrast, DADS reduced the activation of NF-κB, iNOS and MMP-9. In conclusion, DADS reduced the airway inflammation via regulation of Nrf-2/HO-1 and NF-κB. These results suggest that DADS might represent a useful new oral therapy to treat allergic asthma.

  17. Sea cucumber peptides exert anti-inflammatory activity through suppressing NF-κB and MAPK and inducing HO-1 in RAW264.7 macrophages.

    PubMed

    Song, Jiajia; Li, Tiange; Cheng, Xue; Ji, Xiaomin; Gao, Dongxiao; Du, Min; Jiang, Naiyi; Liu, Xueling; Mao, Xueying

    2016-06-15

    The anti-inflammatory effect of sea cucumber peptides (SCP) in lipopolysaccharide (LPS)-stimulated RAW264.7 murine macrophages was tested. SCP significantly reduced LPS-induced nitric oxide release by inhibiting the inducible nitric oxide synthase mRNA expression without affecting the cell viability. The mRNA expression of LPS-induced inflammatory cytokines including tumour necrosis factor-α, interleukin (IL)-1β and IL-6 was suppressed. SCP inhibited LPS-induced degradation of the inhibitor of κBα (IκBα) and nuclear transposition of NF-κB p65, resulting in decreased NF-κB transactivation. Moreover, SCP suppressed the LPS-induced phosphorylation of JNK, ERK and p38. In addition, the expression of heme oxygenase (HO)-1 in macrophages was up-regulated by SCP in a dose-dependent manner. The inhibition effect of SCP on the mRNA expression of LPS-induced inflammatory cytokines was partially reversed by co-treatment with a HO-1 inhibitor. The SCP with anti-inflammatory activity was made up of low-molecular-weight peptides rich in glycine, glutamic acid and aspartic acid. Collectively, these results demonstrate that SCP exerts anti-inflammatory function through inhibiting NF-κB and MAPK activation and inducing HO-1 expression in macrophages.

  18. Sea cucumber peptides exert anti-inflammatory activity through suppressing NF-κB and MAPK and inducing HO-1 in RAW264.7 macrophages.

    PubMed

    Song, Jiajia; Li, Tiange; Cheng, Xue; Ji, Xiaomin; Gao, Dongxiao; Du, Min; Jiang, Naiyi; Liu, Xueling; Mao, Xueying

    2016-06-15

    The anti-inflammatory effect of sea cucumber peptides (SCP) in lipopolysaccharide (LPS)-stimulated RAW264.7 murine macrophages was tested. SCP significantly reduced LPS-induced nitric oxide release by inhibiting the inducible nitric oxide synthase mRNA expression without affecting the cell viability. The mRNA expression of LPS-induced inflammatory cytokines including tumour necrosis factor-α, interleukin (IL)-1β and IL-6 was suppressed. SCP inhibited LPS-induced degradation of the inhibitor of κBα (IκBα) and nuclear transposition of NF-κB p65, resulting in decreased NF-κB transactivation. Moreover, SCP suppressed the LPS-induced phosphorylation of JNK, ERK and p38. In addition, the expression of heme oxygenase (HO)-1 in macrophages was up-regulated by SCP in a dose-dependent manner. The inhibition effect of SCP on the mRNA expression of LPS-induced inflammatory cytokines was partially reversed by co-treatment with a HO-1 inhibitor. The SCP with anti-inflammatory activity was made up of low-molecular-weight peptides rich in glycine, glutamic acid and aspartic acid. Collectively, these results demonstrate that SCP exerts anti-inflammatory function through inhibiting NF-κB and MAPK activation and inducing HO-1 expression in macrophages. PMID:27220344

  19. Myeloid Heme Oxygenase-1 Haploinsufficiency Reduces High Fat Diet-Induced Insulin Resistance by Affecting Adipose Macrophage Infiltration in Mice

    PubMed Central

    Huang, Jun-Yuan; Chiang, Ming-Tsai; Yet, Shaw-Fang; Chau, Lee-Young

    2012-01-01

    Increased adipose tissue macrophages contribute to obesity-induced metabolic syndrome. Heme oxygenase-1 (HO-1) is a stress-inducible enzyme with potent anti-inflammatory and proangiogenic activities in macrophages. However, the role of macrophage HO-1 on obesity-induced adipose inflammation and metabolic syndrome remains unclear. Here we show that high-fat diet (HFD) feeding in C57BL/6J mice induced HO-1 expression in the visceral adipose tissue, particularly the stromal vascular fraction. When the irradiated C57BL/6J mice reconstituted with wild-type or HO-1+/− bone marrow were fed with HFD for over 24 weeks, the HO-1+/− chimeras were protected from HFD-induced insulin resistance and this was associated with reduced adipose macrophage infiltration and angiogenesis, suggesting that HO-1 affects myeloid cell migration toward adipose tissue during obesity. In vivo and in vitro migration assays revealed that HO-1+/− macrophages exhibited an impaired migration response. Chemoattractant-induced phosphorylation of p38 and focal adhesion kinase (FAK) declined faster in HO-1+/− macrophages. Further experiments demonstrated that carbon monoxide and bilirubin, the byproducts derived from heme degradation by HO-1, enhanced macrophage migration by increasing phosphorylation of p38 and FAK, respectively. These data disclose a novel role of hematopoietic cell HO-1 in promoting adipose macrophage infiltration and the development of insulin resistance during obesity. PMID:22761690

  20. Knockout of ho-1 protects the striatum from ferrous iron-induced injury in a male-specific manner in mice

    PubMed Central

    Wang, Li-Fang; Yokoyama, Kazunari K.; Lin, Chih-Lung; Chen, Tzu-Yin; Hsiao, Hsiu-Wen; Chiang, Pei-Chi; Hsu, Chin

    2016-01-01

    Men have worse survival than premenopausal women after intracerebral hemorrhage (ICH). After ICH, overproduction of iron associated with induction of heme oxygenase-1 (HO-1) in brain was observed. Rodent ICH model using ferrous citrate (FC)-infusion into the striatum to simulate iron overload, showed a higher degree of injury severity in males than in females. However, the participation of HO-1 in sex-differences of iron-induced brain injury remains unknown. The present results showed a higher level of HO-1 expression associated with more severe injury in males compared with females after FC-infusion. Estradiol (E2) contributed to lower levels of FC-induced HO-1 expression in females compared with males. Heterozygote ho-1 KO decreased the levels of FC-induced injury severity, histological lesions, behavioral deficits, autophagy and autophagic cell death in the striatum of males but not in females. Moreover, ho-1 deficiency enhanced the neuroprotection by E2 only in males. These results suggested that over induction of HO-1 plays a harmful role in FC-induced brain injury in a male-specific manner. Suppression of HO-1 combined with E2 exhibits a synergistic effect on neuroprotection against FC-induced striatal injury in males. These findings open up the prospect for male-specific neuroprotection targeting HO-1 suppression for patients suffering from striatal iron overload. PMID:27198537

  1. The Nrf2/HO-1 Axis in Cancer Cell Growth and Chemoresistance

    PubMed Central

    Furfaro, A. L.; Traverso, N.; Domenicotti, C.; Piras, S.; Moretta, L.; Marinari, U. M.; Pronzato, M. A.; Nitti, M.

    2016-01-01

    The transcription factor, nuclear factor erythroid 2 p45-related factor 2 (Nrf2), acts as a sensor of oxidative or electrophilic stresses and plays a pivotal role in redox homeostasis. Oxidative or electrophilic agents cause a conformational change in the Nrf2 inhibitory protein Keap1 inducing the nuclear translocation of the transcription factor which, through its binding to the antioxidant/electrophilic response element (ARE/EpRE), regulates the expression of antioxidant and detoxifying genes such as heme oxygenase 1 (HO-1). Nrf2 and HO-1 are frequently upregulated in different types of tumours and correlate with tumour progression, aggressiveness, resistance to therapy, and poor prognosis. This review focuses on the Nrf2/HO-1 stress response mechanism as a promising target for anticancer treatment which is able to overcome resistance to therapies. PMID:26697129

  2. The Nrf2/HO-1 Axis in Cancer Cell Growth and Chemoresistance.

    PubMed

    Furfaro, A L; Traverso, N; Domenicotti, C; Piras, S; Moretta, L; Marinari, U M; Pronzato, M A; Nitti, M

    2016-01-01

    The transcription factor, nuclear factor erythroid 2 p45-related factor 2 (Nrf2), acts as a sensor of oxidative or electrophilic stresses and plays a pivotal role in redox homeostasis. Oxidative or electrophilic agents cause a conformational change in the Nrf2 inhibitory protein Keap1 inducing the nuclear translocation of the transcription factor which, through its binding to the antioxidant/electrophilic response element (ARE/EpRE), regulates the expression of antioxidant and detoxifying genes such as heme oxygenase 1 (HO-1). Nrf2 and HO-1 are frequently upregulated in different types of tumours and correlate with tumour progression, aggressiveness, resistance to therapy, and poor prognosis. This review focuses on the Nrf2/HO-1 stress response mechanism as a promising target for anticancer treatment which is able to overcome resistance to therapies.

  3. Unveiling the Association of STAT3 and HO-1 in Prostate Cancer: Role beyond Heme Degradation1

    PubMed Central

    Elguero, Belen; Gueron, Geraldine; Giudice, Jimena; Toscani, Martin A; De Luca, Paola; Zalazar, Florencia; Coluccio-Leskow, Federico; Meiss, Roberto; Navone, Nora; De Siervi, Adriana; Vazquez, Elba

    2012-01-01

    Activation of the androgen receptor (AR) is a key step in the development of prostate cancer (PCa). Several mechanisms have been identified in AR activation, among them signal transducer and activator of transcription 3 (STAT3) signaling. Disruption of STAT3 activity has been associated to cancer progression. Recent studies suggest that heme oxygenase 1 (HO-1) may play a key role in PCa that may be independent of its catalytic function. We sought to explore whether HO-1 operates on AR transcriptional activity through the STAT3 axis. Our results display that HO-1 induction in PCa cells represses AR activation by decreasing the prostate-specific antigen (PSA) promoter activity and mRNA levels. Strikingly, this is the first report to show by chromatin immunoprecipitation analysis that HO-1 associates to gene promoters, revealing a novel function for HO-1 in the nucleus. Furthermore, HO-1 and STAT3 directly interact as determined by co-immunoprecipitation studies. Forced expression of HO-1 increases STAT3 cytoplasmic retention. When PCa cells were transfected with a constitutively active STAT3 mutant, PSA and STAT3 downstream target genes were abrogated under hemin treatment. Additionally, a significant decrease in pSTAT3 protein levels was detected in the nuclear fraction of these cells. Confocal microscopy images exhibit a decreased rate of AR/STAT3 nuclear co-localization under hemin treatment. In vivo studies confirmed that STAT3 nuclear delimitation was significantly decreased in PC3 tumors overexpressing HO-1 grown as xenografts in nude mice. These results provide a novel function for HO-1 down-modulating AR transcriptional activity in PCa, interfering with STAT3 signaling, evidencing its role beyond heme degradation. PMID:23226098

  4. Catalase prevents maternal diabetes-induced perinatal programming via the Nrf2-HO-1 defense system.

    PubMed

    Chang, Shiao-Ying; Chen, Yun-Wen; Zhao, Xin-Ping; Chenier, Isabelle; Tran, Stella; Sauvé, Alexandre; Ingelfinger, Julie R; Zhang, Shao-Ling

    2012-10-01

    We investigated whether overexpression of catalase (CAT) in renal proximal tubular cells (RPTCs) could prevent the programming of hypertension and kidney disease in the offspring of dams with maternal diabetes. Male offspring of nondiabetic and diabetic dams from two transgenic (Tg) lines (Hoxb7-green fluorescent protein [GFP]-Tg [controls] and Hoxb7/CAT-GFP-Tg, which overexpress CAT in RPTCs) were studied from the prenatal period into adulthood. Nephrogenesis, systolic blood pressure, renal hyperfiltration, kidney injury, and reactive oxygen species (ROS) generation were assessed. Gene expression of transforming growth factor-β1 (TGF-β1), nuclear factor erythroid 2p45-related factor-2 (Nrf2), and heme oxygenase-1 (HO-1) was tested in both in vitro and in vivo studies. Renal dysmorphogenesis was observed in offspring of Hoxb7-GFP-Tg dams with severe maternal diabetes; the affected male offspring displayed higher renal ROS generation and developed hypertension and renal hyperfiltration as well as renal injury with heightened TGF-β1 expression in adulthood. These changes were ameliorated in male offspring of diabetic Hoxb7/CAT-GFP-Tg dams via the Nrf2-HO-1 defense system. CAT promoted Nrf2 nuclear translocation and HO-1 gene expression, seen in both in vitro and in vivo studies. In conclusion, CAT overexpression in the RPTCs ameliorated maternal diabetes-induced perinatal programming, mediated, at least in part, by triggering the Nrf2-HO-1 defense system.

  5. Nelumbo nucifera leaves protect hydrogen peroxide-induced hepatic damage via antioxidant enzymes and HO-1/Nrf2 activation.

    PubMed

    Je, Jae-Young; Lee, Da-Bin

    2015-06-01

    Naturally occurring phenolic compounds are widely found in plants. Here, the phenolic composition and hepatoprotective effect of the butanolic extract (BE) from Nelumbo nucifera leaves against H2O2-induced hepatic damage in cultured hepatocytes were investigated. BE showed high total phenol and flavonoid contents, and major phenolic compounds are quercetin, catechin, ferulic acid, rutin, and protocatechuic acid by HPLC analysis. BE effectively scavenged 2,2-diphenyl-1-picrylhydrazyl (DPPH) and 2,2-azino-bis(3-ethylbenzthiazoline)-6-sulfonic acid (ABTS) cation radicals (IC50 values of 5.21 μg mL(-1) for DPPH and 6.22 μg mL(-1) for ABTS(+)) and showed strong reducing power. Pretreatment of BE prior to 650 μM H2O2 exposure markedly increased cell viability and suppressed H2O2-induced intracellular reactive oxygen species generation and AAPH-induced cell membrane lipid peroxidation. In addition, BE up-regulated intracellular glutathione levels under normal and oxidative stress conditions. Notably, the hepatoprotective effect of BE was directly correlated with the increased expression of superoxide dismutase-1 (SOD-1) by 0.62-fold, catalase (CAT) by 0.42-fold, and heme oxygenase-1 (HO-1) by 2.4-fold. Pretreatment of BE also increased the nuclear accumulation of Nrf2 by 8.1-fold indicating that increased SOD-1, CAT, and HO-1 expressions are Nrf2-mediated. PMID:25962859

  6. Role of Nrf2, HO-1 and GSH in Neuroblastoma Cell Resistance to Bortezomib.

    PubMed

    Furfaro, A L; Piras, S; Domenicotti, C; Fenoglio, D; De Luigi, A; Salmona, M; Moretta, L; Marinari, U M; Pronzato, M A; Traverso, N; Nitti, M

    2016-01-01

    The activation of Nrf2 has been demonstrated to play a crucial role in cancer cell resistance to different anticancer therapies. The inhibition of proteasome activity has been proposed as a chemosensitizing therapy but the activation of Nrf2 could reduce its efficacy. Using the highly chemoresistant neuroblastoma cells HTLA-230, here we show that the strong reduction in proteasome activity, obtained by using low concentration of bortezomib (BTZ, 2.5 nM), fails in reducing cell viability. BTZ treatment favours the binding of Nrf2 to the ARE sequences in the promoter regions of target genes such as heme oxygenase 1 (HO-1), the modulatory subunit of γ-glutamylcysteine ligase (GCLM) and the transporter for cysteine (x-CT), enabling their transcription. GSH level is also increased after BTZ treatment. The up-regulation of Nrf2 target genes is responsible for cell resistance since HO-1 silencing and GSH depletion synergistically decrease BTZ-treated cell viability. Moreover, cell exposure to all-trans-Retinoic acid (ATRA, 3 μM) reduces the binding of Nrf2 to the ARE sequences, decreases HO-1 induction and lowers GSH level increasing the efficacy of bortezomib. These data suggest the role of Nrf2, HO-1 and GSH as molecular targets to improve the efficacy of low doses of bortezomib in the treatment of malignant neuroblastoma.

  7. Role of Nrf2, HO-1 and GSH in Neuroblastoma Cell Resistance to Bortezomib

    PubMed Central

    Furfaro, A. L.; Piras, S.; Domenicotti, C.; Fenoglio, D.; De Luigi, A.; Salmona, M.; Moretta, L.; Marinari, U. M.; Pronzato, M. A.; Traverso, N.; Nitti, M.

    2016-01-01

    The activation of Nrf2 has been demonstrated to play a crucial role in cancer cell resistance to different anticancer therapies. The inhibition of proteasome activity has been proposed as a chemosensitizing therapy but the activation of Nrf2 could reduce its efficacy. Using the highly chemoresistant neuroblastoma cells HTLA-230, here we show that the strong reduction in proteasome activity, obtained by using low concentration of bortezomib (BTZ, 2.5 nM), fails in reducing cell viability. BTZ treatment favours the binding of Nrf2 to the ARE sequences in the promoter regions of target genes such as heme oxygenase 1 (HO-1), the modulatory subunit of γ-glutamylcysteine ligase (GCLM) and the transporter for cysteine (x-CT), enabling their transcription. GSH level is also increased after BTZ treatment. The up-regulation of Nrf2 target genes is responsible for cell resistance since HO-1 silencing and GSH depletion synergistically decrease BTZ-treated cell viability. Moreover, cell exposure to all-trans-Retinoic acid (ATRA, 3 μM) reduces the binding of Nrf2 to the ARE sequences, decreases HO-1 induction and lowers GSH level increasing the efficacy of bortezomib. These data suggest the role of Nrf2, HO-1 and GSH as molecular targets to improve the efficacy of low doses of bortezomib in the treatment of malignant neuroblastoma. PMID:27023064

  8. Antrodia camphorata Potentiates Neuroprotection against Cerebral Ischemia in Rats via Downregulation of iNOS/HO-1/Bax and Activated Caspase-3 and Inhibition of Hydroxyl Radical Formation.

    PubMed

    Yang, Po-Sheng; Lin, Po-Yen; Chang, Chao-Chien; Yu, Meng-Che; Yen, Ting-Lin; Lan, Chang-Chou; Jayakumar, Thanasekaran; Yang, Chih-Hao

    2015-01-01

    Antrodia camphorata (A. camphorata) is a fungus generally used in Chinese folk medicine for treatment of viral hepatitis and cancer. Our previous study found A. camphorata has neuroprotective properties and could reduce stroke injury in cerebral ischemia animal models. In this study, we sought to investigate the molecular mechanisms of neuroprotective effects of A. camphorata in middle cerebral artery occlusion (MCAO) rats. A selective occlusion of the middle cerebral artery (MCA) with whole blood clots was used to induce ischemic stroke in rats and they were orally treated with A. camphorata (0.25 and 0.75 g/kg/day) alone or combined with aspirin (5 mg/kg/day). To provide insight into the functions of A. camphorata mediated neuroprotection, the expression of Bax, inducible nitric oxide synthase (iNOS), haem oxygenase-1 (HO-1), and activated caspase-3 was determined by Western blot assay. Treatment of aspirin alone significantly reduced the expressions of HO-1 (P < 0.001), iNOS (P < 0.001), and Bax (P < 0.01) in ischemic regions. The reduction of these expressions was more potentiated when rats treated by aspirin combined with A. camphorata (0.75 g/kg/day). Combination treatment also reduced apoptosis as measured by a significant reduction in active caspase-3 expression in the ischemic brain compared to MCAO group (P < 0.01). Moreover, treatment of A. camphorata significantly (P < 0.05) reduced fenton reaction-induced hydroxyl radical (OH(•)) formation at a dose of 40 mg/mL. Taken together, A. camphorata has shown neuroprotective effects in embolic rats, and the molecular mechanisms may correlate with the downregulation of Bax, iNOS, HO-1, and activated caspase-3 and the inhibition of OH(•) signals.

  9. Antrodia camphorata Potentiates Neuroprotection against Cerebral Ischemia in Rats via Downregulation of iNOS/HO-1/Bax and Activated Caspase-3 and Inhibition of Hydroxyl Radical Formation

    PubMed Central

    Yang, Po-Sheng; Lin, Po-Yen; Chang, Chao-Chien; Yu, Meng-Che; Yen, Ting-Lin; Lan, Chang-Chou; Jayakumar, Thanasekaran; Yang, Chih-Hao

    2015-01-01

    Antrodia camphorata (A. camphorata) is a fungus generally used in Chinese folk medicine for treatment of viral hepatitis and cancer. Our previous study found A. camphorata has neuroprotective properties and could reduce stroke injury in cerebral ischemia animal models. In this study, we sought to investigate the molecular mechanisms of neuroprotective effects of A. camphorata in middle cerebral artery occlusion (MCAO) rats. A selective occlusion of the middle cerebral artery (MCA) with whole blood clots was used to induce ischemic stroke in rats and they were orally treated with A. camphorata (0.25 and 0.75 g/kg/day) alone or combined with aspirin (5 mg/kg/day). To provide insight into the functions of A. camphorata mediated neuroprotection, the expression of Bax, inducible nitric oxide synthase (iNOS), haem oxygenase-1 (HO-1), and activated caspase-3 was determined by Western blot assay. Treatment of aspirin alone significantly reduced the expressions of HO-1 (P < 0.001), iNOS (P < 0.001), and Bax (P < 0.01) in ischemic regions. The reduction of these expressions was more potentiated when rats treated by aspirin combined with A. camphorata (0.75 g/kg/day). Combination treatment also reduced apoptosis as measured by a significant reduction in active caspase-3 expression in the ischemic brain compared to MCAO group (P < 0.01). Moreover, treatment of A. camphorata significantly (P < 0.05) reduced fenton reaction-induced hydroxyl radical (OH•) formation at a dose of 40 mg/mL. Taken together, A. camphorata has shown neuroprotective effects in embolic rats, and the molecular mechanisms may correlate with the downregulation of Bax, iNOS, HO-1, and activated caspase-3 and the inhibition of OH• signals. PMID:26379739

  10. Protective Effect of Decursin Extracted from Angelica gigas in Male Infertility via Nrf2/HO-1 Signaling Pathway

    PubMed Central

    Bae, Woong Jin; Ha, U. Syn; Choi, Jin Bong; Kim, Kang Sup; Kim, Su Jin; Cho, Hyuk Jin; Hong, Sung Hoo; Lee, Ji Youl; Wang, Zhiping; Hwang, Sung Yeoun; Kim, Sae Woong

    2016-01-01

    Higher testicular temperature results in altered spermatogenesis due to heat-related oxidative stress. We examined the effects of decursin extracted from Angelica gigas Nakai on antioxidant activity in vitro and in a cryptorchidism-induced infertility rat model. TM3 Leydig cell viability was measured based on oxidative stress according to treatment. Either distilled water or AG 400 mg/kg of A. gigas extract was administered orally for 4 weeks after unilateral cryptorchidism was induced. After 1, 2, and 4 weeks, six rats from the control group and six rats from treatment group were sacrificed. Testicular weight, semen quality, antioxidant activities, nuclear factor erythroid 2-related factor 2 (Nrf2) protein, and mRNA expression of Nrf2-regulated genes were analyzed. Treatment with A. gigas extract (1) protected TM3 cells against oxidative stress in a dose-dependent manner, (2) improved the mean weight of the cryptorchid testis, (3) maintained sperm counts, motility, and spermatogenic cell density, (4) decreased levels of 8-hydroxy-2-deoxyguanosine (8-OHdG) and increased levels of superoxide dismutase (SOD), (5) significantly increased Nrf2 and heme oxygenase-1 (HO-1), and (6) significantly decreased apoptosis. This study suggests that decursin extracted from A. gigas is a supplemental agent that can reduce oxidative stress by Nrf2-mediated upregulation of HO-1 in rat experimentally induced unilateral cryptorchidism and may improve cryptorchidism-induced infertility. PMID:27034737

  11. Regulation of hemeoxygenase-1 gene expression by Nrf2 and c-Jun in tertiary butylhydroquinone-stimulated rat primary astrocytes

    SciTech Connect

    Park, Jin-Sun; Kim, Hee-Sun

    2014-05-16

    Highlights: • tBHQ increased HO-1 mRNA and protein levels in rat primary astrocytes. • tBHQ enhanced HO-1 gene transcription in an ARE-dependent manner. • tBHQ increased the nuclear translocation and DNA binding of Nrf2 and c-Jun to ARE. • Nrf2 and c-Jun are involved in the differential modulation of HO-1 expression. • Nrf2 and c-Jun regulate HO-1 expression via their coordinated interaction. - Abstract: Hemeoxygenase-1 (HO-1) is a phase II antioxidant enzyme that is primarily involved in detoxification and cytoprotection in a variety of tissues. However, the mechanism underlying HO-1 gene expression remains unclear. In the present study, we investigated the regulation of HO-1 expression in primary cultured astrocytes by using the natural antioxidant compound tertiary butylhydroquinone (tBHQ). We found that tBHQ increased HO-1 mRNA and protein levels. Promoter analysis revealed that tBHQ enhanced HO-1 gene transcription in an antioxidant response element (ARE)-dependent manner. In addition, tBHQ increased the nuclear translocation and DNA binding of Nrf2 and c-Jun to ARE. Small interfering RNA (siRNA) experiments demonstrated that Nrf2 and c-Jun are involved in the differential modulation of HO-1 expression. Thus, Nrf2 knockdown reduced the basal level of HO-1 expression but did not affect the fold induction by tBHQ. On the other hand, knockdown of c-Jun diminished tBHQ-mediated induction of HO-1 without affecting basal expression. The data suggest that Nrf2 generally modulates the basal expression of HO-1, while c-Jun mediates HO-1 induction in response to tBHQ. The results of co-immunoprecipitation assays demonstrated a physical interaction between Nrf2 and c-Jun in tBHQ-treated astrocytes. The results suggest that Nrf2 and c-Jun regulate HO-1 expression via their coordinated interaction in tBHQ-treated rat primary astrocytes.

  12. The Cytoprotective Effects of E-α-(4-Methoxyphenyl)-2',3,4,4'-Tetramethoxychalcone (E-α-p-OMe-C6H4-TMC)--A Novel and Non-Cytotoxic HO-1 Inducer.

    PubMed

    Kaufmann, Kai B; Al-Rifai, Nafisah; Ulbrich, Felix; Schallner, Nils; Rücker, Hannelore; Enzinger, Monika; Petkes, Hermina; Pitzl, Sebastian; Goebel, Ulrich; Amslinger, Sabine

    2015-01-01

    Cell protection against different noxious stimuli like oxidative stress or chemical toxins plays a central role in the treatment of many diseases. The inducible heme oxygenase isoform, heme oxygenase-1 (HO-1), is known to protect cells against a variety of harmful conditions including apoptosis. Because a number of medium strong electrophiles from a series of α-X-substituted 2',3,4,4'-tetramethoxychalcones (α-X-TMCs, X = H, F, Cl, Br, I, CN, Me, p-NO2-C6H4, Ph, p-OMe-C6H4, NO2, CF3, COOEt, COOH) had proven to activate Nrf2 resulting in HO-1 induction and inhibit NF-κB downstream target genes, their protective effect against staurosporine induced apoptosis and reactive oxygen species (ROS) production was investigated. RAW264.7 macrophages treated with 19 different chalcones (15 α-X-TMCs, chalcone, 2'-hydroxychalcone, calythropsin and 2'-hydroxy-3,4,4'-trimethoxychalcone) prior to staurosporine treatment were analyzed for apoptosis and ROS production, as well as HO-1 protein expression and enzyme activity. Additionally, Nrf2 and NF-κB activity was assessed. We found that amongst all tested chalcones only E-α-(4-methoxyphenyl)-2',3,4,4'-tetramethoxychalcone (E-α-p-OMe-C6H4-TMC) demonstrated a distinct, statistically significant antiapoptotic effect in a dose dependent manner, showing no toxic effects, while its double bond isomer Z-α-p-OMe-C6H4-TMC displayed no significant activity. Also, E-α-p-OMe-C6H4-TMC induced HO-1 protein expression and increased HO-1 activity, whilst inhibition of HO-1 by SnPP-IX abolished its antiapoptotic effect. The only weakly electrophilic chalcone E-α-p-OMe-C6H4-TMC reduced the staurosporine triggered formation of ROS, while inducing the translocation of Nrf2 into the nucleus. Furthermore, staurosporine induced NF-κB activity was attenuated following E-α-p-OMe-C6H4-TMC treatment. Overall, E-α-p-OMe-C6H4-TMC demonstrated its effective cytoprotective potential via a non-toxic induction of HO-1 in RAW264.7 macrophages. The

  13. Modification of Caffeic Acid with Pyrrolidine Enhances Antioxidant Ability by Activating AKT/HO-1 Pathway in Heart

    PubMed Central

    Ku, Hui-Chun; Lee, Shih-Yi; Yang, Kai-Chien; Kuo, Yueh-Hsiung; Su, Ming-Jai

    2016-01-01

    Overproduction of free radicals during ischemia/reperfusion (I/R) injury leads to an interest in using antioxidant therapy. Activating an endogenous antioxidant signaling pathway is more important due to the fact that the free radical scavenging behavior in vitro does not always correlate with a cytoprotection effect in vivo. Caffeic acid (CA), an antioxidant, is a major phenolic constituent in nature. Pyrrolidinyl caffeamide (PLCA), a derivative of CA, was compared with CA for their antioxidant and cytoprotective effects. Our results indicate that CA and PLCA exert the same ability to scavenge DPPH in vitro. In response to myocardial I/R stress, PLCA was shown to attenuate lipid peroxydation and troponin release more than CA. These responses were accompanied with a prominent elevation in AKT and HO-1 expression and a preservation of mnSOD expression and catalase activity. PLCA also improved cell viability and alleviated the intracellular ROS level more than CA in cardiomyocytes exposed to H2O2. When inhibiting the AKT or HO-1 pathways, PLCA lost its ability to recover mnSOD expression and catalase activity to counteract with oxidative stress, suggesting AKT/HO-1 pathway activation by PLCA plays an important role. In addition, inhibition of AKT signaling further abolished HO-1 activity, while inhibition of HO-1 signaling attenuated AKT expression, indicating cross-talk between the AKT and HO-1 pathways. These protective effects may contribute to the cardiac function improvement by PLCA. These findings provide new insight into therapeutic approaches using a modified natural compound against oxidative stress from myocardial injuries. PMID:26845693

  14. Modification of Caffeic Acid with Pyrrolidine Enhances Antioxidant Ability by Activating AKT/HO-1 Pathway in Heart.

    PubMed

    Ku, Hui-Chun; Lee, Shih-Yi; Yang, Kai-Chien; Kuo, Yueh-Hsiung; Su, Ming-Jai

    2016-01-01

    Overproduction of free radicals during ischemia/reperfusion (I/R) injury leads to an interest in using antioxidant therapy. Activating an endogenous antioxidant signaling pathway is more important due to the fact that the free radical scavenging behavior in vitro does not always correlate with a cytoprotection effect in vivo. Caffeic acid (CA), an antioxidant, is a major phenolic constituent in nature. Pyrrolidinyl caffeamide (PLCA), a derivative of CA, was compared with CA for their antioxidant and cytoprotective effects. Our results indicate that CA and PLCA exert the same ability to scavenge DPPH in vitro. In response to myocardial I/R stress, PLCA was shown to attenuate lipid peroxydation and troponin release more than CA. These responses were accompanied with a prominent elevation in AKT and HO-1 expression and a preservation of mnSOD expression and catalase activity. PLCA also improved cell viability and alleviated the intracellular ROS level more than CA in cardiomyocytes exposed to H2O2. When inhibiting the AKT or HO-1 pathways, PLCA lost its ability to recover mnSOD expression and catalase activity to counteract with oxidative stress, suggesting AKT/HO-1 pathway activation by PLCA plays an important role. In addition, inhibition of AKT signaling further abolished HO-1 activity, while inhibition of HO-1 signaling attenuated AKT expression, indicating cross-talk between the AKT and HO-1 pathways. These protective effects may contribute to the cardiac function improvement by PLCA. These findings provide new insight into therapeutic approaches using a modified natural compound against oxidative stress from myocardial injuries. PMID:26845693

  15. t-BHQ Provides Protection against Lead Neurotoxicity via Nrf2/HO-1 Pathway.

    PubMed

    Ye, Fang; Li, Xiaoyi; Li, Lili; Yuan, Jing; Chen, Jun

    2016-01-01

    The neurotoxicity of lead has been well established, and oxidative stress is strongly associated with lead-induced neurotoxicity. Nrf2 is important for protection against oxidative stress in many disease models. We applied t-BHQ, which is an Nrf2 activator, to investigate the possible role of Nrf2 in the protection against lead neurotoxicity. t-BHQ significantly attenuated the oxidative stress in developmental rats by decreasing MDA level, as well as by increasing SOD activity and GSH content, in the hippocampus and frontal cortex. Furthermore, neuronal apoptosis was detected by Nissl staining, and Bax expression was inhibited in the t-BHQ-treated group. Results showed that t-BHQ suppressed ROS production and caspase 3/7 activity but increased intracellular GSH content, in SH-SY5Y cells under lead exposure. Moreover, in vivo and in vitro, t-BHQ enhanced the nuclear translocation of Nrf2 and binding to ARE areas but did not induce Nrf2 transcription. These phenomena were confirmed using RT-PCR, EMSA, Western blot, and immunofluorescence analyses. Subsequent upregulation of the expression of HO-1, NQO1, and GCLC was observed. However, knockdown of Nrf2 or HO-1 adversely affected the protective effects of t-BHQ against lead toxicity in SH-SY5Y cells. Thus, t-BHQ can protect against lead neurotoxicity, depending on the Nrf2/HO-1 pathway.

  16. t-BHQ Provides Protection against Lead Neurotoxicity via Nrf2/HO-1 Pathway

    PubMed Central

    Ye, Fang; Li, Xiaoyi; Li, Lili; Yuan, Jing; Chen, Jun

    2016-01-01

    The neurotoxicity of lead has been well established, and oxidative stress is strongly associated with lead-induced neurotoxicity. Nrf2 is important for protection against oxidative stress in many disease models. We applied t-BHQ, which is an Nrf2 activator, to investigate the possible role of Nrf2 in the protection against lead neurotoxicity. t-BHQ significantly attenuated the oxidative stress in developmental rats by decreasing MDA level, as well as by increasing SOD activity and GSH content, in the hippocampus and frontal cortex. Furthermore, neuronal apoptosis was detected by Nissl staining, and Bax expression was inhibited in the t-BHQ-treated group. Results showed that t-BHQ suppressed ROS production and caspase 3/7 activity but increased intracellular GSH content, in SH-SY5Y cells under lead exposure. Moreover, in vivo and in vitro, t-BHQ enhanced the nuclear translocation of Nrf2 and binding to ARE areas but did not induce Nrf2 transcription. These phenomena were confirmed using RT-PCR, EMSA, Western blot, and immunofluorescence analyses. Subsequent upregulation of the expression of HO-1, NQO1, and GCLC was observed. However, knockdown of Nrf2 or HO-1 adversely affected the protective effects of t-BHQ against lead toxicity in SH-SY5Y cells. Thus, t-BHQ can protect against lead neurotoxicity, depending on the Nrf2/HO-1 pathway. PMID:26798413

  17. Synergistic cardioprotective effects of Danshensu and hydroxysafflor yellow A against myocardial ischemia-reperfusion injury are mediated through the Akt/Nrf2/HO-1 pathway

    PubMed Central

    HU, TIANXIN; WEI, GUO; XI, MIAOMIAO; YAN, JIAJIA; WU, XIAOXIAO; WANG, YANHUA; ZHU, YANRONG; WANG, CHAO; WEN, AIDONG

    2016-01-01

    In clinical practice, the traditional Chinese medicinal herbs, Radix Salvia Miltiorrhiza and Carthamus tinctorius L., are usually prescribed in combination due to their significant cardioprotective effects. However, the mechanisms responsible for these combined effects remain unknown. Thus, in this study, we investigated the mechanisms responsible for the combined effects of Danshensu (DSS) and hydroxysafflor yellow A (HSYA) by establishing a rat model of myocardial ischemia/reperfusion (MI/R), as well as a model of hypoxia/reoxygenation (H/R) using H9c2 cells. The combination index (CI) was calculated using the median-effect method. DSS and HSYA in combination led to a CI value of <1 as regards infarct size in vivo and cell viability in vitro. The rats with MI/R injury that were treated with DSS and/or HSYA were found to have significantly lower levels of creatine kinase-MB (CK-MB) and cardiac troponin I (cTnI) and malondialdehyde (MDA), and a lower expressoin of 8-hydroxydeoxyguanosine (8-OHdG), and markedly enhanced superoxide dismutase (SOD) activity. Our in vitro experiments revealed that the cells treated with DSS and/or HSYA had a reduced lactate dehydrogenase (LDH) activity and a decreased percentage of cell apoptosis (increased Bcl-2/Bax ratio, decreased expression of cleaved caspase-3). DSS and HSYA increased the expression of heme oxygenase-1 (HO-1), the phosphorylation of Akt and the trans-location of nuclear factor erythroid 2-related factor 2 (Nrf2). Furthermore, the Akt inhibitor, LY294002, partially hampered the expression of Nrf2 and HO-1. The HO-1 inhibitor, zinc protoporphyrin IX (ZnPP-IX), did not decrease the expression of p-Akt and Nrf2, although it abolished the anti-apoptotic and antioxidant effects of DSS and HSYA. The findings of our study thus demonstrate that DSS and HSYA confer synergistic cardioprotective effects through the Akt/Nrf2/HO-1 signaling pathway, to certain extent, by enhancing the antioxidant defense system and exerting

  18. Synergistic cardioprotective effects of Danshensu and hydroxysafflor yellow A against myocardial ischemia-reperfusion injury are mediated through the Akt/Nrf2/HO-1 pathway.

    PubMed

    Hu, Tianxin; Wei, Guo; Xi, Miaomiao; Yan, Jiajia; Wu, Xiaoxiao; Wang, Yanhua; Zhu, Yanrong; Wang, Chao; Wen, Aidong

    2016-07-01

    In clinical practice, the traditional Chinese medicinal herbs, Radix Salvia Miltiorrhiza and Carthamus tinctorius L., are usually prescribed in combination due to their significant cardioprotective effects. However, the mechanisms responsible for these combined effects remain unknown. Thus, in this study, we investigated the mechanisms responsible for the combined effects of Danshensu (DSS) and hydroxysafflor yellow A (HSYA) by establishing a rat model of myocardial ischemia/reperfusion (MI/R), as well as a model of hypoxia/reoxygenation (H/R) using H9c2 cells. The combination index (CI) was calculated using the median-effect method. DSS and HSYA in combination led to a CI value of <1 as regards infarct size in vivo and cell viability in vitro. The rats with MI/R injury that were treated with DSS and/or HSYA were found to have significantly lower levels of creatine kinase-MB (CK-MB) and cardiac troponin I (cTnI) and malondialdehyde (MDA), and a lower expressoin of 8-hydroxydeoxyguanosine (8-OHdG), and markedly enhanced superoxide dismutase (SOD) activity. Our in vitro experiments revealed that the cells treated with DSS and/or HSYA had a reduced lactate dehydrogenase (LDH) activity and a decreased percentage of cell apoptosis (increased Bcl-2/Bax ratio, decreased expression of cleaved caspase-3). DSS and HSYA increased the expression of heme oxygenase-1 (HO-1), the phosphorylation of Akt and the translocation of nuclear factor erythroid 2-related factor 2 (Nrf2). Furthermore, the Akt inhibitor, LY294002, partially hampered the expression of Nrf2 and HO-1. The HO-1 inhibitor, zinc protoporphyrin IX (ZnPP‑IX), did not decrease the expression of p-Akt and Nrf2, although it abolished the anti-apoptotic and antioxidant effects of DSS and HSYA. The findings of our study thus demonstrate that DSS and HSYA confer synergistic cardioprotective effects through the Akt/Nrf2/HO-1 signaling pathway, to certain extent, by enhancing the antioxidant

  19. NRF2 activation is involved in ozonated human serum upregulation of HO-1 in endothelial cells

    SciTech Connect

    Pecorelli, Alessandra; Bocci, Velio; Acquaviva, Alessandra; Belmonte, Giuseppe; Gardi, Concetta; Virgili, Fabio; Ciccoli, Lucia; Valacchi, Giuseppe

    2013-02-15

    During the last decade, it has been shown that the activation of NRF2 and the binding to electrophile-responsive element (EpREs), stimulates the expression of a great number of genes responsible for the synthesis of phase I and phase II proteins, including antioxidants enzymes and heme oxygenase-1 (HO-1). This critical cell response occurs in cardiovascular, degenerative and chronic infective diseases aggravated by a chronic oxidative stress. In our previous reports we have shown that ozonated plasma is able to up-regulate HO-1 expression in endothelial cells. In the present work we investigated a candidate mechanism involved in this process. After treatment with increasing doses of ozonated serum (20, 40 and 80 μg/mL O{sub 3} per mL of serum), a clear dose dependent activation of NRF2 and the subsequent induction of HO-1 and NAD(P)H quinone oxidoreductase 1(NQO1) was observed. This effect was also present when cells were treated with serum and hydrogen peroxide (H{sub 2}O{sub 2}) or serum and 4-hydroxynonenal (4HNE). Moreover, the treatment with ozonated serum was associated with a dose-dependent activation of extracellular-signal-regulated kinases (ERK1/2) and p38 MAP kinases (p38), not directly involved in NRF2 activation. These data, provide a new insight on the mechanism responsible for the induction of HO-1 expression by ozonated serum in the endothelium, and have a practical importance as an expedient approach to the treatment of patients with both effective orthodox drugs and ozonated autohemotherapy, targeted to the restoration of redox homeostasis. - Highlights: ► Endothelial HO1 is upregulated by ozonated plasma ► This activation is induced by NRF2 and it is ERK independent. ► 4HNE and H{sub 2}O{sub 2} are the main molecules involved in this process. ► Ozonated plasma induced a hormetic effect ► Combination of orthodox medicine and ozonated plasma can be a useful treatment.

  20. Regulation of microglial migration, phagocytosis, and neurite outgrowth by HO-1/CO signaling.

    PubMed

    Scheiblich, Hannah; Bicker, Gerd

    2015-08-01

    Clearance of infected and apoptotic neuronal corpses during inflammatory conditions is a fundamental process to create a favorable environment for neuronal recovery. Microglia are the resident immune cells and the predominant phagocytic cells of the CNS, showing a multitude of cellular responses upon activation. Here, we investigated in functional assays how the CO generating enzyme heme oxygenase 1 (HO-1) influences BV-2 microglial migration, clearance of debris, and neurite outgrowth of human NT2 neurons. Stimulation of HO-1 activity attenuated microglial migration in a scratch wound assay, and phagocytosis in a cell culture model of acute inflammation comprising lipopolysaccharide (LPS)-activated microglia and apoptosis-induced neurons. Application of a CO donor prevented the production of NO during LPS stimulation, and reduced microglial migration and engulfment of neuronal debris. LPS-activated microglia inhibited neurite elongation of human neurons without requiring direct cell-cell surface contact. The inhibition of neurite outgrowth was totally reversed by application of exogenous CO or increased internal CO production through supply of the substrate hemin to HO. Our results point towards a vital cytoprotective role of HO-1/CO signaling after microglial activation. In addition, they support a therapeutic potential of CO releasing chemical agents in the treatment of excessive inflammatory conditions in the CNS.

  1. Genetic suppression of HO-1 exacerbates renal damage: reversed by an increase in the antiapoptotic signaling pathway.

    PubMed

    Olszanecki, Rafal; Rezzani, Rita; Omura, Shinji; Stec, David E; Rodella, Luigi; Botros, Fady T; Goodman, Alvin I; Drummond, George; Abraham, Nader G

    2007-01-01

    Apoptosis has been shown to contribute to the development of acute and chronic renal failure. The antiapoptotic action of the heme oxygenase (HO) system may represent an important protective mechanism in kidney pathology. We examined whether the lack of HO-1 would influence apoptosis in clipped kidneys of two-kidney, one-clip (2K1C) rats. Five-day-old Sprague-Dawley rats were injected in the left ventricle with approximately 5 x 10(9) colony-forming units/ml of retrovirus containing rat HO-1 antisense (LSN-RHO-1-AS) or control retrovirus (LXSN). After 3 mo, a 0.25-mm U-shaped silver clip was placed around the left renal artery. Animals were killed 3 wk later. Clipping the renal artery in LSN-RHO-1-AS rats did not result in increased HO-1 expression. In contrast to LXSN animals, 2K1C LSN-RHO-1-AS rats showed increased expression of cyclooxygenase 2 (COX-2) and higher 3-nitrotyrosine (3-NT) content as well as increased expression of the proapoptotic protein Apaf-1 and caspase-3 activity. Clipping the renal artery in LXSN rats resulted in increased expression of the antiapoptotic proteins Bcl-2 and Bcl-xl, while clipping the renal artery in LSN-RHO-1-AS rats did not change Bcl-2 levels and decreased the levels of Bcl-xl. Treatment of LSN-RHO-1-AS rats with cobalt protoporphyrin resulted in induction of renal HO-1, which was accompanied by decreases in blood pressure, COX-2, 3-NT, and caspase-3 activity, and increased expression of anti-apoptotic molecules (Bcl-2, Bcl-xl, Akt and p-Akt) in the clipped kidneys. These findings underscore the prominent role of HO-1 in counteracting apoptosis in this 2K1C renovascular hypertension model. PMID:16940561

  2. Resveratrol pretreatment attenuates injury and promotes proliferation of neural stem cells following oxygen-glucose deprivation/reoxygenation by upregulating the expression of Nrf2, HO-1 and NQO1 in vitro.

    PubMed

    Shen, Changbo; Cheng, Wei; Yu, Pingping; Wang, Li; Zhou, Lulin; Zeng, Li; Yang, Qin

    2016-10-01

    There is considerable interest in the use of drugs and other methods for protecting implanted neural stem cells (NSCs) from the adverse environment of injured tissue for successful cell therapy. Resveratrol can modify cardiac stem cells to enhance their survival and differentiation, however, its effect and the mechanism underlying its neuroprotective effect on NSCs following stroke remain to be fully elucidated. Nuclear factor erythroid 2‑related factor 2 (Nrf‑2) signaling is important in antioxidative stress, and the role of Nrf‑2 signaling in the enhanced neuroprotection of NSCs by resveratrol following stroke also remains to be elucidated. In the present study, NSCs were pretreated with resveratrol prior to oxygen‑glucose deprivation/reoxygenation (OGD/R) in vitro. The survival, apoptosis and proliferation of the NSCs were assessed using an MTT assay, Hoechst 33258 staining of nuclei and flow cytometry, respectively. In addition, the activity of superoxide dismutase (SOD), level of malondiadehyde (MDA) and content of glutathione (GSH) were determined. The protein expressions levels of Nrf‑2, NAD(P)H:quinone oxidoreductase 1 (NQO‑1), and heme oxygenase 1 (HO‑1) were detected using western blot analysis. It was found that resveratrol markedly enhanced NSC survival and proliferation, decreased apoptosis and the levels of MDA, and increased the activity of SOD and content of GSH in a concentration‑dependent manner following OGD/R injury in vitro. In addition, the protein expression levels of Nrf2, HO‑1 and NQO1 were significantly upregulated. These findings suggested that resveratrol attenuated injury and promoted proliferation of the NSCs, at least in part, by upregulating the expression of Nrf2, HO‑1 and NQO1 following OGD/R injury in vitro. PMID:27573874

  3. Glabridin Alleviates the Toxic Effects of Methylglyoxal on Osteoblastic MC3T3-E1 Cells by Increasing Expression of the Glyoxalase System and Nrf2/HO-1 Signaling and Protecting Mitochondrial Function.

    PubMed

    Choi, Eun Mi; Suh, Kwang Sik; Kim, Yu Jin; Hong, Soo Min; Park, So Yong; Chon, Suk

    2016-01-13

    Methylglyoxal (MG) contributes to the pathogenesis of age- and diabetes-associated complications. The present study investigated the effects of glabridin on MG-induced cytotoxicity in MC3T3-E1 osteoblastic cells. MC3T3-E1 cells were treated with glabridin in the presence of MG, and markers of mitochondrial function and oxidative damage were examined. Pretreatment of MC3T3-E1 osteoblastic cells with glabridin prevented MG-induced cell death, the production of intracellular reactive oxygen species and mitochondrial superoxides, cardiolipin peroxidation, and the production of inflammatory cytokines. The soluble form of receptor for advanced glycation end products (sRAGEs)/RAGE ratio increased upon MG treatment, but less so after pretreatment with glabridin, which also increased the level of reduced glutathione and the activities of glyoxalase I and heme oxygenase-1, all of which were reduced by MG. In addition, glabridin elevated the level of nuclear factor erythroid 2-related factor 2. These findings suggest that glabridin protects against MG-induced cell damage by inhibiting oxidative stress and increasing MG detoxification. Pretreatment of MC3T3-E1 osteoblastic cells with glabridin reduced MG-induced mitochondrial dysfunction. Additionally, the nitric oxide level significantly increased upon glabridin pretreatment. Together, these data show that glabridin may potentially serve to prevent the development of diabetic bone disease associated with MG-induced oxidative stress.

  4. Upregulation of heme oxygenase-1 expression by dehydrodiconiferyl alcohol (DHCA) through the AMPK–Nrf2 dependent pathway

    SciTech Connect

    Lee, Junghun; Kim, Sunyoung

    2014-11-15

    Oxidative stress is induced by the accumulation of free radicals, resulting in an imbalanced cellular redox state, which has been implicated in a variety of human diseases. Dehydrodiconiferyl alcohol (DHCA), a lignan compound isolated from Cucurbita moschata, has previously been reported to contain anti-adipogenic and anti-lipogenic effects on 3T3-L1 cells and primary MEFs (Abraham and Kappas, 2008). In this study, it was tested whether DHCA could affect the expression of HO-1, using Raw264.7 mouse macrophage cell line. DHCA increased the protein and RNA levels of HO-1 and upregulated its promoter activity. Data from transient transfection assays indicated that ARE located in the E1 region of the HO-1 promoter are important in this DHCA-mediated induction of HO-1 expression. DHCA was also shown to enhance the nuclear translocation and binding of Nrf2 to the respective DNA sequences. The upregulation of HO-1 expression by DHCA was also observed in primary macrophages derived from wild type animals, but not in those from Nrf2 KO mice. Effects of DHCA on HO-1 and Nrf2 were reduced when cells were treated with an AMPK inhibitor, Compound C, but not by PI3K/Akt or MAPK inhibitors. Data from an experiment using a specific siRNA or chemical inhibitor for HO-1 suggested that the DHCA-mediated induction of the HO-1 protein could suppress the LPS-stimulated production of NO. Taken together, our data suggest that DHCA induces the expression of HO-1 by controlling its promoter activity through the AMPK–Nrf2 pathway, eventually leading to the reduction of NO production, and may thus have potential as an effective antioxidant. - Highlights: • Dehydrodiconiferyl alcohol (DHCA) induced the expression of heme oxygenase (HO)-1. • The AMPK–Nrf2 pathway is critically involved in the DHCA-mediated induction of HO-1. • DHCA increased the expression of HO-1, Gclc and Gclm in primary macrophages. • DHCA-mediated induction of HO-1 contributed to the suppression of NO production.

  5. Modulation of haem oxygenase-1 expression by nitric oxide and leukotrienes in zymosan-activated macrophages

    PubMed Central

    Vicente, Ana María; Guillén, María Isabel; Alcaraz, María José

    2001-01-01

    Phagocytosis of unopsonized zymosan by RAW 264.7 macrophages upregulated protein expression of haem oxygenase-1 (HO-1), inducible nitric oxide synthase (iNOS) and cyclo-oxygenase-2 (COX-2) in a time- and concentration-dependent manner. In the presence of zymosan, exogenous prostaglandin E2 (PGE2) did not exert significant effects on the expression of these three enzymes. In contrast, exogenous leukotriene B4 (LTB4) and LTC4 in the nanomolar range inhibited HO-1 and iNOS expression, as well as nitrite accumulation. The COX inhibitors indomethacin and NS398 weakly inhibited HO-1 expression but had no effect on iNOS and COX-2 expression or nitrite. In contrast, the 5-lipoxygenase (5-LO) inhibitor ZM 230,487 significantly decreased HO-1, iNOS and nitrite, which were not affected by zileuton. Dexamethasone showed an inhibitory effect on HO-1 expression induced by zymosan. ZM 230,487 but not zileuton, inhibited the shift due to nuclear factor-κB (NF-κB), whereas they did not modify activator protein-1 (AP-1) binding. Our results suggest that inhibition of NF-κB binding could mediate the effects of ZM 230,487 on the modulation of HO-1 and iNOS protein expression. NOS inhibition by L-NG-nitroarginine methyl ester (L-NAME) or 1400 W abolished nitrite production and strongly reduced HO-1 expression. These results show an induction of HO-1 protein expression by zymosan phagocytosis in macrophages, with a positive modulatory role for endogenous NO and a negative regulation by exogenous LTs, likely dependent on the reduction of iNOS expression and NO production. PMID:11454666

  6. AN ENZYME LINKED IMMUNOSORBENT ASSAY FOR THE HO-1 ISOFORM OF HEME OXYGENASE

    EPA Science Inventory

    AN ENZYME LINKED IMMUNOSORBENT ASSAY FOR THE HO-1 ISOFORM OF HEME OXYGENASE

    Heme oxygenase (HO) occurs in biological tissues as two major isoforms HO-1 and HO-2. HO-1 is inducible by many treatments, particularly oxidative stress-related conditions such as depletion of gl...

  7. 20C, a bibenzyl compound isolated from Gastrodia elata, protects PC12 cells against rotenone-induced apoptosis via activation of the Nrf2/ARE/HO-1 signaling pathway

    PubMed Central

    Huang, Ju-yang; Yuan, Yu-he; Yan, Jia-qing; Wang, Ya-nan; Chu, Shi-feng; Zhu, Cheng-gen; Guo, Qing-lan; Shi, Jian-gong; Chen, Nai-hong

    2016-01-01

    Aim: Our preliminary study shows that a bibenzyl compound isolated from Gastrodia elata, 2-[4-hydroxy-3-(4-hydroxybenzyl)benzyl]-4-(4-hydroxybenzyl)phenol (designated 20C), protects PC12 cells against H2O2-induced injury. In this study we investigated whether 20C exerted neuroprotective action in a cell model of Parkinson's disease. Methods: A cell model of Parkinson's disease was established in PC12 cells by exposure to rotenone (4 μmol/L) for 48 h. Cell viability and apoptosis were assessed, and intracellular ROS level and the mitochondrial membrane potential (MMP) were detected. The expression of apoptosis-related proteins Bax, Bcl-2, cytochrome c, cleaved caspase-3, and oxidative stress-related proteins Nrf2, HO-1 and NQO1 were examined using Western blotting. The mRNA levels of HO-1 and NQO1 were determined with RT-PCR. The nuclear translocation of Nrf2 was observed with immunofluorescence staining. Results: Treatment with rotenone significantly increased the number of apoptotic cells, accompanied by marked increases in the Bax/Bcl-2 ratio, cytochrome c release and caspase-3 activation. Rotenone also increased ROS accumulation, reduced MMP, and increased the nuclear translocation of Nrf2 as well as the mRNA and protein levels of the Nrf2 downstream target genes HO-1 and NQO1 in PC12 cells. Co-treatment with 20C (0.01–1 μmol/L) dose-dependently attenuated rotenone-induced apoptosis and oxidative stress in PC12 cells. Nrf2 knockdown by siRNA partially reversed the protective effects of 20C in rotenone-treated PC12 cells. Conclusion: The bibenzyl compound 20C protects PC12 cells from rotenone-induced apoptosis, at least in part, via activation of the Nrf2/ARE/HO-1 signaling pathway. PMID:27180985

  8. Desipramine Protects Neuronal Cell Death and Induces Heme Oxygenase-1 Expression in Mes23.5 Dopaminergic Neurons

    PubMed Central

    Lin, Hsiao-Yun; Yeh, Wei-Lan; Huang, Bor-Ren; Lin, Chingju; Lai, Chih-Ho; Lin, Ho; Lu, Dah-Yuu

    2012-01-01

    Background Desipramine is known principally as a tricyclic antidepressant drug used to promote recovery of depressed patients. It has also been used in a number of other psychiatric and medical conditions. The present study is the first to investigate the neuroprotective effect of desipramine. Methodology/Principal Findings Mes23.5 dopaminergic cells were used to examine neuroprotective effect of desipramine. Western blot, reverse transcription-PCR, MTT assay, siRNA transfection and electrophoretic mobility shift assay (EMSA) were carried out to assess the effects of desipramine. Desipramine induces endogenous anti-oxidative enzyme, heme oxygenase-1 (HO-1) protein and mRNA expression in concentration- and time-dependent manners. A different type of antidepressant SSRI (selective serotonin reuptake inhibitor), fluoxetine also shows similar effects of desipramine on HO-1 expression. Moreover, desipramine induces HO-1 expression through activation of ERK and JNK signaling pathways. Desipramine also increases NF-E2-related factor-2 (Nrf2) accumulation in the nucleus and enhances Nrf2-DNA binding activity. Moreover, desipramine-mediated increase of HO-1 expression is reduced by transfection with siRNA against Nrf2. On the other hand, pretreatment of desipramine protects neuronal cells against rotenone- and 6-hydroxydopamine (6-OHDA)-induced neuronal death. Furthermore, inhibition of HO-1 activity by a HO-1 pharmacological inhibitor, ZnPP IX, attenuates the neuroprotective effect of desipramine. Otherwise, activation of HO-1 activity by HO-1 activator and inducer protect 6-OHDA-induced neuronal death. Conclusions/Significance These findings suggest that desipramine-increased HO-1 expression is mediated by Nrf2 activation through the ERK and JNK signaling pathways. Our results also suggest that desipramine provides a novel effect of neuroprotection, and neurodegenerative process might play an important role in depression disorder. PMID:23209658

  9. Activation of the Nrf2/HO-1 Antioxidant Pathway Contributes to the Protective Effects of Lycium Barbarum Polysaccharides in the Rodent Retina after Ischemia-Reperfusion-Induced Damage

    PubMed Central

    Chang, Raymond Chuen-Chung; So, Kwok-Fai; Brecha, Nicholas C.; Pu, Mingliang

    2014-01-01

    Lycium barbarum polysaccharides (LBP), extracts from the wolfberries, are protective to retina after ischemia-reperfusion (I/R). The antioxidant response element (ARE)–mediated antioxidant pathway plays an important role in maintaining the redox status of the retina. Heme oxygenase-1 (HO-1), combined with potent AREs in its promoter, is a highly effective therapeutic target for the protection against neurodegenerative diseases, including I/R-induced retinal damage. The aim of our present study was to investigate whether the protective effect of LBP after I/R damage was mediated via activation of the Nrf2/HO-1-antioxidant pathway in the retina. Retinal I/R was induced by an increase in intraocular pressure to 130 mm Hg for 60 minutes. Prior to the induction of ischemia, rats were orally treated with either vehicle (PBS) or LBP (1 mg/kg) once a day for 1 week. For specific experiments, zinc protoporphyrin (ZnPP, 20 mg/kg), an HO-1 inhibitor, was intraperitoneally administered at 24 h prior to ischemia. The protective effects of LBP were evaluated by quantifying ganglion cell and amacrine cell survival, and by measuring cell apoptosis in the retinal layers. In addition, HO-1 expression was examined using Western blotting and immunofluorescence analyses. Cytosolic and nuclear Nrf2 was measured using immunofluorescent staining. LBP treatment significantly increased Nrf2 nuclear accumulation and HO-1 expression in the retina after I/R injury. Increased apoptosis and a decrease in the number of viable cells were observed in the ganglion cell layer (GCL) and inner nuclear layer (INL) in the I/R retina, which were reversed by LBP treatment. The HO-1 inhibitor, ZnPP, diminished the LBP treatment-induced protective effects in the retina after I/R. Taken together, these results suggested that LBP partially exerted its beneficial neuroprotective effects via the activation of Nrf2 and an increase in HO-1 protein expression. PMID:24400114

  10. Carbon monoxide down-modulates Toll-like receptor 4/MD2 expression on innate immune cells and reduces endotoxic shock susceptibility

    PubMed Central

    Riquelme, Sebastián A; Bueno, Susan M; Kalergis, Alexis M

    2015-01-01

    Carbon monoxide (CO) has been recently reported as the main anti-inflammatory mediator of the haem-degrading enzyme haem-oxygenase 1 (HO-1). It has been shown that either HO-1 induction or CO treatment reduces the ability of monocytes to respond to inflammatory stimuli, such as lipopolysaccharide (LPS), due to an inhibition of the signalling pathways leading to nuclear factor-κB, mitogen-activated protein kinases and interferon regulatory factor 3 activation. Hence, it has been suggested that CO impairs the stimulation of the Toll-like receptor 4 (TLR4)/myeloid differentiation factor-2 (MD2) complex located on the surface of immune cells. However, whether CO can negatively modulate the surface expression of the TLR4/MD2 complex in immune cells remains unknown. Here we report that either HO-1 induction or treatment with CO decreases the surface expression of TLR4/MD2 in dendritic cells (DC) and neutrophils. In addition, in a septic shock model of mice intraperitoneally injected with lipopolysaccharide (LPS), prophylactic treatment with CO protected animals from hypothermia, weight loss, mobility loss and death. Further, mice pre-treated with CO and challenged with LPS showed reduced recruitment of DC and neutrophils to peripheral blood, suggesting that this gas causes a systemic tolerance to endotoxin challenge. No differences in the amount of innate cells in lymphoid tissues were observed in CO-treated mice. Our results suggest that CO treatment reduces the expression of the TLR4/MD2 complex on the surface of myeloid cells, which renders them resistant to LPS priming in vitro, as well as in vivo in a model of endotoxic shock. PMID:25179131

  11. Carbon monoxide down-modulates Toll-like receptor 4/MD2 expression on innate immune cells and reduces endotoxic shock susceptibility.

    PubMed

    Riquelme, Sebastián A; Bueno, Susan M; Kalergis, Alexis M

    2015-02-01

    Carbon monoxide (CO) has been recently reported as the main anti-inflammatory mediator of the haem-degrading enzyme haem-oxygenase 1 (HO-1). It has been shown that either HO-1 induction or CO treatment reduces the ability of monocytes to respond to inflammatory stimuli, such as lipopolysaccharide (LPS), due to an inhibition of the signalling pathways leading to nuclear factor-κB, mitogen-activated protein kinases and interferon regulatory factor 3 activation. Hence, it has been suggested that CO impairs the stimulation of the Toll-like receptor 4 (TLR4)/myeloid differentiation factor-2 (MD2) complex located on the surface of immune cells. However, whether CO can negatively modulate the surface expression of the TLR4/MD2 complex in immune cells remains unknown. Here we report that either HO-1 induction or treatment with CO decreases the surface expression of TLR4/MD2 in dendritic cells (DC) and neutrophils. In addition, in a septic shock model of mice intraperitoneally injected with lipopolysaccharide (LPS), prophylactic treatment with CO protected animals from hypothermia, weight loss, mobility loss and death. Further, mice pre-treated with CO and challenged with LPS showed reduced recruitment of DC and neutrophils to peripheral blood, suggesting that this gas causes a systemic tolerance to endotoxin challenge. No differences in the amount of innate cells in lymphoid tissues were observed in CO-treated mice. Our results suggest that CO treatment reduces the expression of the TLR4/MD2 complex on the surface of myeloid cells, which renders them resistant to LPS priming in vitro, as well as in vivo in a model of endotoxic shock.

  12. Pro-inflammatory and pro-oxidant status of pancreatic islet in vitro is controlled by TLR-4 and HO-1 pathways.

    PubMed

    Vivot, Kevin; Langlois, Allan; Bietiger, William; Dal, Stéphanie; Seyfritz, Elodie; Pinget, Michel; Jeandidier, Nathalie; Maillard, Elisa; Gies, Jean-Pierre; Sigrist, Séverine

    2014-01-01

    Since their isolation until implantation, pancreatic islets suffer a major stress leading to the activation of inflammatory reactions. The maintenance of controlled inflammation is essential to preserve survival and function of the graft. Identification and targeting of pathway(s) implicated in post-transplant detrimental inflammatory events, is mandatory to improve islet transplantation success. We sought to characterize the expression of the pro-inflammatory and pro-oxidant mediators during islet culture with a focus on Heme oxygenase (HO-1) and Toll-like receptors-4 signaling pathways. Rat pancreatic islets were isolated and pro-inflammatory and pro-oxidant status were evaluated after 0, 12, 24 and 48 hours of culture through TLR-4, HO-1 and cyclooxygenase-2 (COX-2) expression, CCL-2 and IL-6 secretion, ROS (Reactive Oxygen Species) production (Dihydroethidine staining, DHE) and macrophages migration. To identify the therapeutic target, TLR4 inhibition (CLI-095) and HO-1 activation (cobalt protoporphyrin,CoPP) was performed. Activation of NFκB signaling pathway was also investigated. After isolation and during culture, pancreatic islet exhibited a proinflammatory and prooxidant status (increase levels of TLR-4, COX-2, CCL-2, IL-6, and ROS). Activation of HO-1 or inhibition of TLR-4 decreased inflammatory status and oxidative stress of islets. Moreover, the overexpression of HO-1 induced NFκB phosphorylation while the inhibition of TLR-4 had no effect NFκB activation. Finally, inhibition of pro-inflammatory pathway induced a reduction of macrophages migration. These data demonstrated that the TLR-4 signaling pathway is implicated in early inflammatory events leading to a pro-inflammatory and pro-oxidant status of islets in vitro. Moreover, these results provide the mechanism whereby the benefits of HO-1 target in TLR-4 signaling pathway. HO-1 could be then an interesting target to protect islets before transplantation. PMID:25343247

  13. Involvement of PKA and HO-1 signaling in anti-inflammatory effects of surfactin in BV-2 microglial cells

    SciTech Connect

    Park, Sun Young; Kim, Ji-Hee; Lee, Sang Joon; Kim, YoungHee

    2013-04-01

    Surfactin, one of the most powerful biosurfactants, is a bacterial cyclic lipopeptide. Here, we investigated the anti-neuroinflammatory properties of surfactin in lipoteichoic acid (LTA)-stimulated BV-2 microglial cells. Surfactin significantly inhibited excessive production of the pro-inflammatory mediators TNF-α, IL-1β, IL-6, monocyte chemoattractant protein-1 (MCP-1), prostaglandin E{sub 2} (PGE{sub 2}), nitric oxide (NO) and reactive oxygen species (ROS), and suppressed the expression of matrix metalloproteinase-9 (MMP-9), inducible NO synthase (iNOS) and cyclooxygenase-2 (COX-2). Subsequent mechanistic studies revealed that surfactin inhibited LTA-induced nuclear factor-kappaB (NF-κB) and signal transducer and activator of transcription-1 (STAT-1) activation. However, surfactin increases the phosphorylation of the STAT-3, a component of the homeostatic mechanism causing anti-inflammatory events. We also demonstrated that surfactin induces heme oxygenase-1 (HO-1) expression and nuclear factor-regulated factor-2 (Nrf-2) activation, and that the anti-inflammatory effects of surfactin are abrogated by small interfering RNA-mediated knock-down of HO-1 or Nrf-2. Interestingly, we found that surfactin increased the level of cAMP and induced phosphorylation of cAMP responsive element binding protein (CREB) in microglial cells. Furthermore, treatment with the protein kinase A (PKA) inhibitor, H-89, blocked HO-1 induction by surfactin and abolished surfactin's suppressive effects on ROS and NO production. These results indicate that HO-1 and its upstream effector, PKA, play a pivotal role in the anti-neuroinflammatory response of surfactin in LTA-stimulated microglia. Therefore, surfactin might have therapeutic potential for neuroprotective agents to treat inflammatory and neurodegenerative diseases. - Highlights: ► Surfactin inhibits proinflammatory mediator synthesis in LTA-activated BV-2 cells. ► Surfactin suppresses NF-κB and STAT-1, but potentiates

  14. Production and characterization of soluble human TNFRI-Fc and human HO-1(HMOX1) transgenic pigs by using the F2A peptide.

    PubMed

    Park, Sol Ji; Cho, Bumrae; Koo, Ok Jae; Kim, Hwajung; Kang, Jung Taek; Hurh, Sunghoon; Kim, Su Jin; Yeom, Hye Jung; Moon, Joonho; Lee, Eun Mi; Choi, Ji Yei; Hong, Ju Ho; Jang, Goo; Hwang, Joing-Ik; Yang, Jaeseok; Lee, Byeong Chun; Ahn, Curie

    2014-06-01

    Generation of transgenic pigs for xenotransplantation is one of the most promising technologies for resolving organ shortages. Human heme oxygenase-1 (hHO-1/HMOX1) can protect transplanted organs by its strong anti-oxidative, anti-apoptotic, and anti-inflammatory effects. Soluble human TNFRI-Fc (shTNFRI-Fc) can inhibit the binding of human TNF-α (hTNF-α) to TNF receptors on porcine cells, and thereby, prevent hTNF-α-mediated inflammation and apoptosis. Herein, we successfully generated shTNFRI-Fc-F2A-HA-hHO-1 transgenic (TG) pigs expressing both shTNFRI-Fc and hemagglutinin-tagged-human heme oxygenase-1 (HA-hHO-1) by using an F2A self-cleaving peptide. shTNFRI-Fc and HA-hHO-1 transgenes containing the F2A peptide were constructed under the control of the CAG promoter. Transgene insertion and copy number in the genome of transgenic pigs was confirmed by polymerase chain reaction (PCR) and Southern blot analysis. Expressions of shTNFRI-Fc and HA-hHO-1 in TG pigs were confirmed using PCR, RT-PCR, western blot, ELISA, and immunohistochemistry. shTNFRI-Fc and HA-hHO-1 were expressed in various organs, including the heart, lung, and spleen. ELISA assays detected shTNFRI-Fc in the sera of TG pigs. For functional analysis, fibroblasts isolated from a shTNFRI-Fc-F2A-HA-hHO-1 TG pig (i.e., #14; 1 × 10(5) cells) were cultured with hTNF-α (20 ng/mL) and cycloheximide (10 μg/mL). The viability of shTNFRI-Fc-F2A-HA-hHO-1 TG pig fibroblasts was significantly higher than that of the wild type (wild type vs. shTNFRI-Fc-F2A-HA-hHO-1 TG at 24 h, 31.6 ± 3.2 vs. 60.4 ± 8.3 %, respectively; p < 0.05). Caspase-3/-7 activity of the shTNFRI-Fc-F2A-HA-hHO-1 TG pig fibroblasts was lower than that of the wild type pig fibroblasts (wild type vs. shTNFRI-Fc-F2A-HA-hHO-1 TG at 12 h, 812,452 ± 113,078 RLU vs. 88,240 ± 10,438 RLU, respectively; p < 0.05). These results show that shTNFRI-Fc and HA-hHO-1 TG pigs generated by the F2A self-cleaving peptide express both sh

  15. Sulforaphane Attenuates Contrast-Induced Nephropathy in Rats via Nrf2/HO-1 Pathway.

    PubMed

    Zhao, Zhihong; Liao, Guixiang; Zhou, Qin; Lv, Daoyuan; Holthfer, Harry; Zou, Hequn

    2016-01-01

    Background. Oxidative stress plays an important role in the pathogenesis of contrast-induced nephropathy (CIN). The aim of this study was to investigate the antioxidant effects of sulforaphane (SFN) in a rat model of CIN and a cell model of oxidative stress in HK2 cells. Methods. Rats were randomized into four groups (n = 6 per group): control group, Ioversol group (Ioversol-induced CIN), Ioversol + SFN group (CIN rats pretreated with SFN), and SFN group (rats treated with SFN). Renal function tests, malondialdehyde (MDA), and reactive oxygen species (ROS) were measured. Western blot, real-time polymerase chain reaction analysis, and immunohistochemical analysis were performed for nuclear factor erythroid-derived 2-like 2 (Nrf2) and heme oxygenase-1 (HO-1) detection. Results. Serum blood urea nitrogen (BUN), creatinine, and renal tissue MDA were increased after contrast exposure. Serum BUN, creatinine, and renal tissue MDA were decreased in the Ioversol + SFN group as compared with those in the Ioversol group. SFN increased the expression of Nrf2 and HO-1 in CIN rats and in Ioversol-induced injury HK2 cells. SFN increased cell viability and attenuated ROS level in vitro. Conclusions. SFN attenuates experimental CIN in vitro and in vivo. This effect is suggested to activate the Nrf2 antioxidant defenses pathway. PMID:27006750

  16. Luteolin and luteolin-7-O-glucoside strengthen antioxidative potential through the modulation of Nrf2/MAPK mediated HO-1 signaling cascade in RAW 264.7 cells.

    PubMed

    Song, Young Sun; Park, Chung Mu

    2014-03-01

    It has been understood that glycosidic forms of flavonoids were hydrolyzed by gut bacteria and absorbed as aglycones. However, several reports suggested that glycosides were partly absorbed without hydrolysis and remained biologically active. In this study, we evaluated the antioxidative potential of luteolin and luteolin-7-O-glucoside, glycosidic form of luteolin, against the oxidative damage and compared their antioxidative mechanisms in RAW 264.7 cells. Heme oxygenase-1 (HO-1), one of the phase II enzymes showing an antioxidative activity, was potently induced by luteolin and luteolin-7-O-glucoside treatment, which was in accordance with the translocated nuclear factor-erythroid 2 p45-related factor 2 (Nrf2) into nucleus. Moreover, luteolin and the luteolin-7-O-glucoside activated HO-1 expression by p38 and c-Jun NH2-terminal kinase (JNK) regulation. In order to identify the antioxidation potential by HO-1, tert-butyl hydroperoxide (t-BHP)-induced oxidative damage was applied and ameliorated by luteolin and the luteolin-7-O-glucoside treatment in a dose dependent manner, which was confirmed by HO-1 selective inhibitor and inducer, tin protoporphyrin (SnPP) and cobalt protoporphyrin (CoPP), respectively. Consequently, luteolin and luteolin-7-O-glucoside potently strengthen the HO-1-mediated antioxidative potential through the modulation of the Nrf2/MAPK signaling pathways.

  17. Luteolin and luteolin-7-O-glucoside strengthen antioxidative potential through the modulation of Nrf2/MAPK mediated HO-1 signaling cascade in RAW 264.7 cells.

    PubMed

    Song, Young Sun; Park, Chung Mu

    2014-03-01

    It has been understood that glycosidic forms of flavonoids were hydrolyzed by gut bacteria and absorbed as aglycones. However, several reports suggested that glycosides were partly absorbed without hydrolysis and remained biologically active. In this study, we evaluated the antioxidative potential of luteolin and luteolin-7-O-glucoside, glycosidic form of luteolin, against the oxidative damage and compared their antioxidative mechanisms in RAW 264.7 cells. Heme oxygenase-1 (HO-1), one of the phase II enzymes showing an antioxidative activity, was potently induced by luteolin and luteolin-7-O-glucoside treatment, which was in accordance with the translocated nuclear factor-erythroid 2 p45-related factor 2 (Nrf2) into nucleus. Moreover, luteolin and the luteolin-7-O-glucoside activated HO-1 expression by p38 and c-Jun NH2-terminal kinase (JNK) regulation. In order to identify the antioxidation potential by HO-1, tert-butyl hydroperoxide (t-BHP)-induced oxidative damage was applied and ameliorated by luteolin and the luteolin-7-O-glucoside treatment in a dose dependent manner, which was confirmed by HO-1 selective inhibitor and inducer, tin protoporphyrin (SnPP) and cobalt protoporphyrin (CoPP), respectively. Consequently, luteolin and luteolin-7-O-glucoside potently strengthen the HO-1-mediated antioxidative potential through the modulation of the Nrf2/MAPK signaling pathways. PMID:24361407

  18. Gold nanoparticles induce heme oxygenase-1 expression through Nrf2 activation and Bach1 export in human vascular endothelial cells

    PubMed Central

    Lai, Tsung-Hsuan; Shieh, Jiunn-Min; Tsou, Chih-Jen; Wu, Wen-Bin

    2015-01-01

    It has been reported that increased levels and activity of the heme oxygenase-1 (HO-1) protein ameliorate tissue injuries. In the present study, we investigated the effects and mechanisms of action of gold nanoparticles (AuNPs) on HO-1 protein expression in human vascular endothelial cells (ECs). The AuNPs induced HO-1 protein and mRNA expression in a concentration- and time-dependent manner. The induction was reduced by the thiol-containing antioxidants, including N-acetylcysteine and glutathione, but not by the non-thiol-containing antioxidants and inhibitors that block the enzymes for intracellular reactive oxygen species generation. The AuNPs enhanced Nrf2 protein levels but did not affect Nrf2 mRNA expression. In response to the AuNP treatment, the cytosolic Nrf2 translocated to the nucleus, and, concomitantly, Bach1 exited the nucleus and its tyrosine phosphorylation increased. The chromatin immunoprecipitation assay revealed that the translocated Nrf2 bound to the antioxidant-response element located in the E2 enhancer region of the HO-1 gene promoter and acted as a transcription factor. Although N-acetylcysteine inhibited the AuNP-induced Nrf2 nuclear translocation, the AuNPs did not promote intracellular reactive oxygen species production or endoplasmic reticulum stress in the ECs. Knockdown of Nrf2 expression by RNA interference significantly inhibited AuNP-induced HO-1 expression at the protein and mRNA levels. In summary, AuNPs enhance the levels and nuclear translocation of the Nrf2 protein and Bach1 export/tyrosine phosphorylation, leading to Nrf2 binding to the HO-1 E2 enhancer promoter region to drive HO-1 expression in ECs. This study, together with our parallel findings, demonstrates that AuNPs can act as an HO-1 inducer, which may partially contribute to their anti-inflammatory bioactivity in human vascular ECs. PMID:26445536

  19. Thioredoxin reductase regulates the induction of haem oxygenase-1 expression in aortic endothelial cells

    PubMed Central

    Trigona, Wendy L.; Mullarky, Isis K.; Cao, Yuzhang; Sordillo, Lorraine M.

    2005-01-01

    Certain selenoproteins such as GPX-1 (glutathione peroxidase-1) and TrxR1 (thioredoxin reductase-1) possess important antioxidant defence functions in vascular endothelial cells. Reduced selenoprotein activity during dietary selenium (Se) deficiency can result in a compensatory increase of other non-Se-dependent antioxidants, such as HO-1 (haem oxygenase-1) that may help to counteract the damaging effects of oxidant stress. However, the role of individual selenoproteins in regulating vascular-derived protective gene responses such as HO-1 is less understood. Using an oxidant stress model based on Se deficiency in BAECs (bovine aortic endothelial cells), we sought to determine whether TrxR1 activity may contribute to the differential regulation of HO-1 expression as a function of altered redox environment. Se-sufficient BAECs up-regulated HO-1 expression following stimulation with the pro-oxidant, 15-HPETE (15-hydroperoxyeicosatetraenoic acid), and levels of this antioxidant inversely correlated with EC apoptosis. While Se-deficient BAECs exhibited higher basal levels of HO-1, it was not up-regulated upon 15-HPETE treatment, which resulted in significantly higher levels of pro-apoptotic markers. Subsequent results showed that HO-1 induction depended on the activity of TrxR1, as proved with chemical inhibitor studies and direct inhibition with TrxR1 siRNA. Finally, restoring intracellular levels of the reduced substrate Trx (thioredoxin) in Sedeficient BAECs was sufficient to increase HO-1 activation following 15-HPETE stimulation. These data provide evidence for the involvement of the Trx/TrxR system, in the regulation of HO-1 expression in BAECs during pro-oxidant challenge. PMID:16209660

  20. The protective role of vitamin D3 in a murine model of asthma via the suppression of TGF-β/Smad signaling and activation of the Nrf2/HO-1 pathway

    PubMed Central

    Wang, Zhihui; Zhang, Haitao; Sun, Xiaohan; Ren, Lihong

    2016-01-01

    Asthma is a common worldwide health burden, the prevalence of which is increasing. Recently, the biologically active form of vitamin D3, 1,25-dihydroxyvitamin D3, has been reported to have a protective role in murine asthma; however, the molecular mechanisms by which vitamin D3 attenuates asthma-associated airway injury remain elusive. In the present study, BALB/c mice were sensitized to ovalbumin (OVA) and were administered 100 ng 1,25-dihydroxyvitamin D3 (intraperitoneal injection) 30 min prior to each airway challenge. The inflammatory responses were measured by ELISA, airway damage was analyzed by hematoxylin and eosin staining, airway remodeling was analyzed by Masson staining and periodic acid-Schiff staining, markers of oxidative stress were measured by commercial kits, and the expression levels of α-smooth muscle actin (α-SMA) and the activity of the NF-E2-related factor 2 (Nrf2)/heme oxygenase-1 (HO-1) and the transforming growth factor-β (TGF-β)/Smad signaling pathways were measured by immunohistochemistry and western blotting. The results demonstrated that OVA-induced airway inflammation and immunoglobulin E overexpression were significantly reduced by vitamin D3 treatment. In addition, treatment with vitamin D3 decreased α-SMA expression, collagen deposition and goblet cell hyperplasia, and inhibited TGF-β/Smad signaling in the asthmatic airway. The upregulated levels of malondialdehyde, and the reduced activities of superoxide dismutase and glutathione in OVA-challenged mice were also markedly restored following vitamin D3 treatment. Furthermore, treatment with vitamin D3 enhanced activation of the Nrf2/HO-1 pathway in the airways of asthmatic mice. In conclusion, these findings suggest that vitamin D3 may protect airways from asthmatic damage via the suppression of TGF-β/Smad signaling and activation of the Nrf2/HO-1 pathway; however, these protective effects were shown to be accompanied by hypercalcemia. PMID:27484042

  1. Mangiferin Mitigates Gastric Ulcer in Ischemia/ Reperfused Rats: Involvement of PPAR-γ, NF-κB and Nrf2/HO-1 Signaling Pathways

    PubMed Central

    Mahmoud-Awny, Magdy; Attia, Ahmed S.; Abd-Ellah, Mohamed F.; El-Abhar, Hanan Salah

    2015-01-01

    Mangiferin (MF), a xanthonoid from Mangifera indica, has been proved to have antisecretory and antioxidant gastroprotective effects against different gastric ulcer models; however, its molecular mechanism has not been previously elucidated. Therefore, the aim of this study was to test its modulatory effect on several signaling pathways using the ischemia/reperfusion model for the first time. Animals were treated with MF, omeprazole (OMP), and the vehicle. The mechanistic studies revealed that MF mediated its gastroprotective effect partly via inducing the expression of Nrf2, HO-1 and PPAR-γ along with downregulating that of NF-κB. Surprisingly, the effect of MF, especially the high dose, exceeded that mediated by OMP except for Nrf2. The molecular results were reflected on the biomarkers measured, where the antioxidant effect of MF was manifested by increasing total antioxidant capacity and glutathione, besides normalizing malondialdehyde level. Additionally, MF decreased the I/R-induced nitric oxide elevation, an effect that was better than that of OMP. In the serum, MF, dose dependently, enhanced endothelial nitric oxide synthase, while reduced the inducible isoform. Regarding the anti-inflammatory effect of MF, it reduced serum level of IL-1β and sE-selectin, effects that were mirrored on the tissue level of myeloperoxidase, the neutrophil infiltration marker. In addition, MF possessed an antiapoptotic character evidenced by elevating Bcl-2 level and reducing that of caspase-3 in a dose related order. As a conclusion, the intimated gastroprotective mechanisms of MF are mediated, partially, by modulation of oxidative stress, inflammation and apoptosis possibly via the Nrf2/HO-1, PPAR-γ/NF-κB signaling pathways. PMID:26196679

  2. Gambogic acid synergistically potentiates cisplatin-induced apoptosis in non-small-cell lung cancer through suppressing NF-κB and MAPK/HO-1 signalling

    PubMed Central

    Wang, L-H; Li, Y; Yang, S-N; Wang, F-Y; Hou, Y; Cui, W; Chen, K; Cao, Q; Wang, S; Zhang, T-Y; Wang, Z-Z; Xiao, W; Yang, J-Y; Wu, C-F

    2014-01-01

    Background: Gambogic acid (GA) has been reported to have potent anticancer activity and is authorised to be tested in phase II clinical trials for treatment of non-small-cell lung cancer (NSCLC). The present study aims to investigate whether GA would be synergistic with cisplatin (CDDP) against the NSCLC. Methods: 1-(4,5-Dimethylthiazol-2-yl)-3,5-diphenylformazan (MTT), combination index (CI) isobologram, western blot, quantitative PCR, flow cytometry, electrophoretic mobility shift assay, xenograft tumour models and terminal deoxynucleotide transferase-mediated dUTP nick-end labelling analysis were used in this study. Results: The cell viability results showed that sequential CDDP-GA treatment resulted in a strong synergistic action in A549, NCI-H460, and NCI-H1299 cell lines, whereas the reverse sequence and simultaneous treatments led to a slight synergistic or additive action. Increased sub-G1 phase cells and enhanced PARP cleavage demonstrated that the sequence of CDDP-GA treatment markedly increased apoptosis in comparison with other treatments. Furthermore, the sequential combination could enhance the activation of caspase-3, -8, and 9, increase the expression of Fas and Bax, and decrease the expression of Bcl-2, survivin and X-inhibitor of apoptosis protein (X-IAP) in A549 and NCI-H460 cell lines. In addition, increased apoptosis was correlated with enhanced reactive oxygen species generation. Importantly, it was found that, followed by CDDP treatment, GA could inhibit NF-κB and mitogen-activated protein kinase (MAPK)/heme oxygenase-1 (HO-1) signalling pathways, which have been validated to reduce ROS release and confer CDDP resistance. The roles of NF-κB and MAPK pathways were further confirmed by using specific inhibitors, which significantly increased ROS release and apoptosis induced by the sequential combination of CDDP and GA. Moreover, our results indicated that the combination of CDDP and GA exerted increased antitumour effects on A549 xenograft

  3. Reduced expression of neurofibromin in human meningiomas.

    PubMed

    Sundaram, V; Lee, J H; Harwalkar, J A; Stein, D J; Roudebush, M; Stacey, D W; Golubic, M

    1997-01-01

    Meningiomas are common, mostly benign, tumours arising from leptomeningeal cells of the meninges, which frequently contain mutations in the neurofibromatosis type 2 (NF2) gene. In this study, we analysed a protein product of the neurofibromatosis type 1 (NF1) gene, neurofibromin, in human established leptomeningeal cells LTAg2B, in 17 sporadic meningiomas and in a meningioma from a patient affected by NF2. The expression level of neurofibromin was determined by immunoblotting and immunoprecipitation with anti-neurofibromin antibodies. The functional status of neurofibromin was analysed through its ability to stimulate the intrinsic GTPase activity of p21 ras. In the cytosolic extracts of four sporadic meningiomas and in the NF2-related meningioma, the expression level and the GTPase stimulatory activity of neurofibromin were drastically reduced compared with the level present in the human brain, human established leptomeningeal cells LTAg2B and the remaining 13 meningiomas. Our results suggest that neurofibromin is expressed in leptomeningeal cells LTAg2B and in most meningiomas, i.e. tumours derived from these cells. The reduced expression and GTPase stimulatory activity of neurofibromin was found in about 23% of meningiomas and in the single NF2-related meningioma analysed. These results suggest that decreased levels of neurofibromin in these tumours may contribute to their tumorigenesis.

  4. Berberis aristata Ameliorates Adjuvant-Induced Arthritis by Inhibition of NF-κB and Activating Nuclear Factor-E2-related Factor 2/hem Oxygenase (HO)-1 Signaling Pathway.

    PubMed

    Kumar, Rohit; Nair, Vinod; Gupta, Yogendra Kumar; Singh, Surender; Arunraja, S

    2016-08-01

    The present study was carried out to investigate the anti-arthritic activity of Berberis aristata hydroalcoholic extract (BAHE) in formaldehyde-induced arthritis and adjuvant-induced arthritis (AIA) model. Arthritis was induced by administration of either formaldehyde (2% v/v) or CFA into the subplantar surface of the hind paw of the animal. In formaldehyde-induced arthritis and AIA, treatment of BAHE at doses 50, 100 and 200 mg/kg orally significantly decreased joint inflammation as evidenced by decrease in joint diameter and reduced inflammatory cell infiltration in histopathological examination. BAHE treatment demonstrated dose-dependent improvement in the redox status of synovium (decrease in GSH, MDA, and NO levels and increase in SOD and CAT activities). The beneficial effect of BAHE was substantiated with decreased expression of inflammatory markers such as IL-1β, IL-6, TNF-R1, and VEGF by immunohistochemistry analysis in AIA model. BAHE increased HO-1/Nrf-2 and suppressed NF-κB mRNA and protein expression in adjuvant immunized joint. Additionally, BAHE abrogated degrading enzymes, as there was decreased protein expression of MMP-3 and -9 in AIA. In conclusion, we demonstrated the anti-arthritic activity of Berberis aristata hydroalcoholic extract via the mechanism of inhibition of NF-κB and activation of Nrf-2/HO-1.

  5. N-acetyl cysteine inhibits H2O2-mediated reduction in the mineralization of MC3T3-E1 cells by down-regulating Nrf2/HO-1 pathway.

    PubMed

    Lee, Daewoo; Kook, Sung-Ho; Ji, Hyeok; Lee, Seung-Ah; Choi, Ki-Choon; Lee, Kyung-Yeol; Lee, Jeong-Chae

    2015-11-01

    There are controversial findings regarding the roles of nuclear factor (erythroid-derived 2)-like 2 (Nrf2)/heme oxygenase-1 (HO-1) pathway on bone metabolism under oxidative stress. We investigated how Nrf2/HO-1 pathway affects osteoblast differentiation of MC3T3-E1 cells in response to hydrogen peroxide (H2O2), N-acetyl cysteine (NAC), or both. Exposing the cells to H2O2 decreased the alkaline phosphatase activity, calcium accumulation, and expression of osteoblast markers, such as osteocalcin and runt-related transcription factor-2. In contrast, H2O2 treatment increased the expression of Nrf2 and HO-1 in the cells. Treatment with hemin, a chemical HO-1 inducer, mimicked the inhibitory effect of H2O2 on osteoblast differentiation by increasing the HO-1 expression and decreasing the osteogenic marker genes. Pretreatment with NAC restored all changes induced by H2O2 to near normal levels in the cells. Collectively, our findings suggest that H2O2-mediated activation of Nrf2/HO-1 pathway negatively regulates the osteoblast differentiation, which is inhibited by NAC. PMID:26303969

  6. Selenolate complexes of CYP101 and the heme-bound hHO-1/H25A proximal cavity mutant.

    PubMed

    Jiang, Yongying; Ortiz de Montellano, Paul R

    2008-05-01

    Thiolate and selenolate complexes of CYP101 (P450cam) and the H25A proximal cavity mutant of heme-bound human heme oxygenase-1 (hHO-1) have been examined by UV-vis spectroscopy. Both thiolate and selenolate ligands bound to the heme distal side in CYP101 and gave rise to characteristic hyperporphyrin spectra. Thiolate ligands also bound to the proximal side of the heme in the cavity created by the H25A mutation in hHO-1, giving a Soret absorption similar to that of the H25C hHO-1 mutant. Selenolate ligands also bound to this cavity mutant under anaerobic conditions but reduced the heme iron to the ferrous state, as shown by the formation of a ferrous CO complex. Under aerobic conditions, the selenolate ligand but not the thiolate ligand was rapidly oxidized. These results indicate that selenocysteine-coordinated heme proteins will not be stable species in the absence of a redox potential stabilizing effect.

  7. Preconditioning with low concentration NO attenuates subsequent NO-induced apoptosis in vascular smooth muscle cells via HO-1-dependent mitochondrial death pathway

    SciTech Connect

    Kwak, Hyun-Jeong; Park, Kyoung-Mi; Lee, Seahyoung; Lim, Hyun-Joung; Go, Sang-Hee; Eom, Sang-Mi; Park, Hyun-Young . E-mail: hypark65@nih.go.kr

    2006-12-01

    Nitric oxide (NO) signaling pathways are important in both the maintenance of vascular homeostasis and disease progression. Overproduction of NO has been associated with ischemia/reperfusion (I/R) injury. Growing evidences suggest that NO preconditioning has cytoprotective effects against I/R injury. However, the mechanism with which NO mediates these effects remains to be elucidated. The purpose of this study was to examine the mechanism of how NO preconditioning inhibits subsequent NO-induced apoptosis in vascular smooth muscle cells (VSMC), specifically focusing on heme oxygenase-1 (HO-1). According to our data, sodium nitroprusside (SNP) increased HO-1 expression in a concentration dependent manner. Preconditioning with low concentration SNP (0.3 mM) inhibited subsequent high concentration SNP (1.5 mM)-induced apoptosis, and this effect was reversed by the HO-1 inhibitor SnPP. Low concentration SNP-mediated protection involved p38 kinase inactivation and increased Bcl-2 expression. Furthermore, mitochondrial membrane potential was concomitantly increased with decreased expressions of Bax, Apaf-1, and activity of caspase-3, which was reversed by SnPP treatment. Our results show that low concentration SNP preconditioning suppresses subsequent high concentration SNP-induced apoptosis by inhibiting p38 kinase and mitochondrial death pathway via HO-1-dependent mechanisms in VSMC.

  8. Sulforaphane Protects Rodent Retinas against Ischemia-Reperfusion Injury through the Activation of the Nrf2/HO-1 Antioxidant Pathway

    PubMed Central

    Liu, Ruixing; Brecha, Nicholas C.; Yu, Albert Cheung Hoi; Pu, Mingliang

    2014-01-01

    Retinal ischemia-reperfusion (I/R) injury induces oxidative stress, leukocyte infiltration, and neuronal cell death. Sulforaphane (SF), which can be obtained in cruciferous vegetables such as broccoli, exerts protective effects in response to oxidative stress in various tissues. These effects can be initiated through nuclear factor E2-related factor 2 (Nrf2)-mediated induction of heme oxygenase-1 (HO-1). This investigation was designed to elucidate the neural protective mechanisms of SF in the retinal I/R rat model. Animals were intraperitoneally (i.p.) injected with SF (12.5 mg/kg) or vehicle (corn oil) once a day for 7 consecutive days. Then, retinal I/R was made by elevating the intraocular pressure (IOP) to 130 mmHg for 1 h. To determine if HO-1 was involved in the Nrf2 antioxidant pathway, rats were subjected to protoporphyrin IX zinc (II) (ZnPP, 30 mg/kg, i.p.) treatments at 24 h before retinal ischemia. The neuroprotective effects of SF were assessed by determining the morphology of the retina, counting the infiltrating inflammatory cells and the surviving retinal ganglion cells (RGCs) and amacrine cells, and measuring apoptosis in the retinal layers. The expression of Nrf2 and HO-1 was studied by immunofluorescence analysis and western blotting. I/R induced a marked increase of ROS generation, caused pronounced inflammation, increased the apoptosis of RGCs and amacrine cells and caused the thinning of the inner retinal layer (IRL), and these effects were diminished or abolished by SF pretreatment. Meanwhile, SF pretreatment significantly elevated the nuclear accumulation of Nrf2 and the level of HO-1 expression in the I/R retinas; however, ZnPP reversed the protective effects of SF on I/R retinas. Together, we offer direct evidence that SF had protective effects on I/R retinas, which could be attributed, at least in part, to the activation of the Nrf2/HO-1 antioxidant pathway. PMID:25470382

  9. Nrf2-mediated HO-1 induction contributes to antioxidant capacity of a Schisandrae Fructus ethanol extract in C2C12 myoblasts.

    PubMed

    Kang, Ji Sook; Han, Min Ho; Kim, Gi-Young; Kim, Cheol Min; Kim, Byung Woo; Hwang, Hye Jin; Hyun, Yung

    2014-12-01

    This study was designed to confirm the protective effect of Schisandrae Fructus, which are the dried fruits of Schisandra chinensis (Turcz.) Baill, against oxidative stress-induced cellular damage and to elucidate the underlying mechanisms in C2C12 myoblasts. Preincubating C2C12 cells with a Schisandrae Fructus ethanol extract (SFEE) significantly attenuated hydrogen peroxide (H2O2)-induced inhibition of growth and induced scavenging activity against intracellular reactive oxygen species (ROS) induced by H2O2. SFEE also inhibited comet tail formation and phospho-histone γH2A.X expression, suggesting that it prevents H2O2-induced cellular DNA damage. Furthermore, treating C2C12 cells with SFEE significantly induced heme oxygenase-1 (HO-1) and phosphorylation of nuclear factor-erythroid 2 related factor 2 (Nrf2). However, zinc protoporphyrin IX, a potent inhibitor of HO-1 activity, significantly reversed the protective effects of SFEE against H2O2-induced growth inhibition and ROS generation in C2C12 cells. Additional experiments revealed that the potential of the SFEE to induce HO-1 expression and protect against H2O2-mediated cellular damage was abrogated by transient transfection with Nrf2-specific small interfering RNA, suggesting that the SFEE protected C2C12 cells against oxidative stress-induced injury through the Nrf2/HO-1 pathway. PMID:25493944

  10. Hydrogen gas reduces hyperoxic lung injury via the Nrf2 pathway in vivo

    PubMed Central

    Kawamura, Tomohiro; Wakabayashi, Nobunao; Shigemura, Norihisa; Huang, Chien-Sheng; Masutani, Kosuke; Tanaka, Yugo; Noda, Kentaro; Peng, Ximei; Takahashi, Toru; Billiar, Timothy R.; Okumura, Meinoshin; Toyoda, Yoshiya; Kensler, Thomas W.

    2013-01-01

    Hyperoxic lung injury is a major concern in critically ill patients who receive high concentrations of oxygen to treat lung diseases. Successful abrogation of hyperoxic lung injury would have a huge impact on respiratory and critical care medicine. Hydrogen can be administered as a therapeutic medical gas. We recently demonstrated that inhaled hydrogen reduced transplant-induced lung injury and induced heme oxygenase (HO)-1. To determine whether hydrogen could reduce hyperoxic lung injury and investigate the underlying mechanisms, we randomly assigned rats to four experimental groups and administered the following gas mixtures for 60 h: 98% oxygen (hyperoxia), 2% nitrogen; 98% oxygen (hyperoxia), 2% hydrogen; 98% balanced air (normoxia), 2% nitrogen; and 98% balanced air (normoxia), 2% hydrogen. We examined lung function by blood gas analysis, extent of lung injury, and expression of HO-1. We also investigated the role of NF-E2-related factor (Nrf) 2, which regulates HO-1 expression, by examining the expression of Nrf2-dependent genes and the ability of hydrogen to reduce hyperoxic lung injury in Nrf2-deficient mice. Hydrogen treatment during exposure to hyperoxia significantly improved blood oxygenation, reduced inflammatory events, and induced HO-1 expression. Hydrogen did not mitigate hyperoxic lung injury or induce HO-1 in Nrf2-deficient mice. These findings indicate that hydrogen gas can ameliorate hyperoxic lung injury through induction of Nrf2-dependent genes, such as HO-1. The findings suggest a potentially novel and applicable solution to hyperoxic lung injury and provide new insight into the molecular mechanisms and actions of hydrogen. PMID:23475767

  11. Sulforaphane Ameliorates Okadaic Acid-Induced Memory Impairment in Rats by Activating the Nrf2/HO-1 Antioxidant Pathway.

    PubMed

    Dwivedi, Subhash; Rajasekar, N; Hanif, Kashif; Nath, Chandishwar; Shukla, Rakesh

    2016-10-01

    Okadaic acid (OKA) causes memory impairment and attenuates nuclear factor erythroid 2-related factor 2 (Nrf2) along with oxidative stress and neuroinflammation in rats. Sulforaphane (dietary isothiocyanate compound), an activator of Nrf2 signaling, exhibits neuroprotective effects. However, the protective effect of sulforaphane in OKA-induced neurotoxicity remains uninvestigated. Therefore, in the present study, the role of sulforaphane in OKA-induced memory impairment in rats was explored. A significant increased Nrf2 expression in the hippocampus and cerebral cortex was observed in trained (Morris water maze) rats, and a significant decreased Nrf2 expression in memory-impaired (OKA, 200 ng icv) rats indicated its involvement in memory function. Sulforaphane administration (5 and 10 mg/kg, ip, days 1 and 2) ameliorates OKA-induced memory impairment in rats. The treatment also restored Nrf2 and its downstream antioxidant protein expression (GCLC, HO-1) and attenuated oxidative stress (ROS, nitrite, GSH), neuroinflammation (NF-κB, TNF-α, IL-10), and neuronal apoptosis in the cerebral cortex and hippocampus of OKA-treated rats. Further, to determine whether modulation of Nrf2 signaling is responsible for the protective effect of sulforaphane, in vitro, Nrf2 siRNA and its downstream HO-1 inhibition studies were carried out in a rat astrocytoma cell line (C6). The protective effects of sulforaphane were abolished with Nrf2 siRNA and HO-1 inhibition in astrocytes. The results suggest that Nrf2-dependent activation of cellular antioxidant machinery results in sulforaphane-mediated protection against OKA-induced memory impairment in rats. Graphical Abstract ᅟ.

  12. Upregulation of endothelial heme oxygenase-1 expression through the activation of the JNK pathway by sublethal concentrations of acrolein

    SciTech Connect

    Wu, C.C.; Hsieh, C.W.; Lai, P.H.; Lin, J.B.; Liu, Y.C.; Wung, B.S. . E-mail: bswung@mail.ncyu.edu.tw

    2006-08-01

    Acrolein is a highly electrophilic {alpha},{beta}-unsaturated aldehyde that is present in cigarette smoke. Heme oxygenase-1 (HO-1) is a cytoprotective enzyme activated by various such electrophilic compounds. In this study, the regulatory effects of acrolein upon the expression of HO-1 were investigated in endothelial cells (ECs). We demonstrate that acrolein induces the elevation of HO-1 protein levels, and subsequent enzyme activity, at non-cytotoxic concentrations. An additional {alpha},{beta}-unsaturated aldehyde, cinnamaldehyde, was also found to increase HO-1 expression and have less cytotoxicity than acrolein. Moreover, acrolein-mediated HO-1 induction is abrogated in the presence of actinomycin D and cycloheximide. Nrf2 is a transcription factor involved in the induction of HO-1 through an antioxidant response element (ARE) in the promoter region of the HO-1 gene. We show that acrolein induces Nrf2 translocation and ARE-luciferase reporter activity. Acrolein was also found to induce the production of both superoxide and H{sub 2}O{sub 2} at levels greater than 100 {mu}M. However, with the exception of NAC, no antioxidant generated any effect upon acrolein-dependent HO-1 expression in ECs. Our present findings suggest that reactive oxygen species (ROS) may not be a major modulator for HO-1 induction. Using buthionine sulfoximine to deplete the intracellular GSH levels further enhanced the effects of acrolein. We also found that cellular GSH level was rapidly reduced after both 10 and 100 {mu}M acrolein treatment. However, after 6 h of exposure to ECs, only 10 {mu}M acrolein treatment increases GSH level. In addition, only the JNK inhibitor SP600125 and tyrosine kinase inhibitor genistein had any significant inhibitory impact upon the upregulation of HO-1 by acrolein. Pretreatment with a range of other PI3 kinase inhibitors, including wortmannin and LY294002, showed no effects. Hence, we show in our current experiments that a sublethal concentration of

  13. Downregulation of Heme Oxygenase 1 (HO-1) Activity in Hematopoietic Cells Enhances Their Engraftment After Transplantation.

    PubMed

    Adamiak, Mateusz; Moore, Joseph B; Zhao, John; Abdelbaset-Ismail, Ahmed; Grubczak, Kamil; Rzeszotek, Sylwia; Wysoczynski, Marcin; Ratajczak, Mariusz Z

    2016-01-01

    Heme oxygenase 1 (HO-1) is an inducible stress-response enzyme that not only catalyzes the degradation of heme (e.g., released from erythrocytes) but also has an important function in various physiological and pathophysiological states associated with cellular stress, such as ischemic/reperfusion injury. HO-1 has a well-documented anti-inflammatory potential, and HO-1 has been reported to have a negative effect on adhesion and migration of neutrophils in acute inflammation in a model of peritonitis. This finding is supported by our recent observation that hematopoietic stem progenitor cells (HSPCs) from HO-1 KO mice are easy mobilizers, since they respond better to peripheral blood chemotactic gradients than wild-type littermates. Based on these findings, we hypothesized that transient inhibition of HO-1 by nontoxic small-molecule inhibitors would enhance migration of HSPCs in response to bone marrow chemoattractants and thereby facilitate their homing. To directly address this issue, we generated several human hematopoietic cell lines in which HO-1 was upregulated or downregulated. We also exposed murine and human BM-derived cells to small-molecule activators and inhibitors of HO-1. Our results indicate that HO-1 is an inhibitor of hematopoietic cell migration in response to crucial BM homing chemoattractants such as stromal-derived factor 1 (SDF-1) and sphingosine-1-phosphate (S1P). Most importantly, our in vitro and in vivo animal experiments demonstrate for the first time that transiently inhibiting HO-1 activity in HSPCs by small-molecule inhibitors improves HSPC engraftment. We propose that this simple and inexpensive strategy could be employed in the clinical setting to improve engraftment of HSPCs, particularly in those situations in which the number of HSPCs available for transplant is limited (e.g., when transplanting umbilical cord blood). PMID:27412411

  14. Methamphetamine induces heme oxygenase-1 expression in cortical neurons and glia to prevent its toxicity

    SciTech Connect

    Huang, Y.-N.; Wu, C.-H.; Lin, T.-C.; Wang, J.-Y.

    2009-11-01

    The impairment of cognitive and motor functions in humans and animals caused by methamphetamine (METH) administration underscores the importance of METH toxicity in cortical neurons. The heme oxygenase-1 (HO-1) exerts a cytoprotective effect against various neuronal injures; however, it remains unclear whether HO-1 is involved in METH-induced toxicity. We used primary cortical neuron/glia cocultures to explore the role of HO-1 in METH-induced toxicity. Exposure of cultured cells to various concentrations of METH (0.1, 0.5, 1, 3, 5, and 10 mM) led to cytotoxicity in a concentration-dependent manner. A METH concentration of 5 mM, which caused 50% of neuronal death and glial activation, was chosen for subsequent experiments. RT-PCR and Western blot analysis revealed that METH significantly induced HO-1 mRNA and protein expression, both preceded cell death. Double and triple immunofluorescence staining further identified HO-1-positive cells as activated astrocytes, microglia, and viable neurons, but not dying neurons. Inhibition of the p38 mitogen-activated protein kinase pathway significantly blocked HO-1 induction by METH and aggravated METH neurotoxicity. Inhibition of HO activity using tin protoporphyrine IX significantly reduced HO activity and exacerbated METH neurotoxicity. However, prior induction of HO-1 using cobalt protoporphyrine IX partially protected neurons from METH toxicity. Taken together, our results suggest that induction of HO-1 by METH via the p38 signaling pathway may be protective, albeit insufficient to completely protect cortical neurons from METH toxicity.

  15. The Anti-Inflammatory Activity of Eucommia ulmoides Oliv. Bark. Involves NF-κB Suppression and Nrf2-Dependent HO-1 Induction in BV-2 Microglial Cells

    PubMed Central

    Kwon, Seung-Hwan; Ma, Shi-Xun; Hwang, Ji-Young; Ko, Yong-Hyun; Seo, Ji-Yeon; Lee, Bo-Ram; Lee, Seok-Yong; Jang, Choon-Gon

    2016-01-01

    In the present study, we investigated the anti-inflammatory properties of Eucommia ulmoides Oliv. Bark. (EUE) in lipopolysaccharide (LPS)-stimulated microglial BV-2 cells and found that EUE inhibited LPS-mediated up-regulation of pro-inflammatory response factors. In addition, EUE inhibited the elevated production of pro-inflammatory cytokines, mediators, and reactive oxygen species (ROS) in LPS-stimulated BV-2 microglial cells. Subsequent mechanistic studies revealed that EUE suppressed LPS-induced phosphorylation of mitogen-activated protein kinases (MAPKs), phosphoinositide-3-kinase (PI3K)/Akt, glycogen synthase kinase-3β (GSK-3β), and their downstream transcription factor, nuclear factor-kappa B (NF-κB). EUE also blocked the nuclear translocation of NF-κB and inhibited its binding to DNA. We next demonstrated that EUE induced the nuclear translocation of nuclear factor erythroid 2-related factor 2 (Nrf2) and upregulated heme oxygenase-1 (HO-1) expression. We determined that the significant up-regulation of HO-1 expression by EUE was a consequence of Nrf2 nuclear translocation; furthermore, EUE increased the DNA binding of Nrf2. In contrast, zinc protoporphyrin (ZnPP), a specific HO-1 inhibitor, blocked the ability of EUE to inhibit NO and PGE2 production, indicating the vital role of HO-1. Overall, our results indicate that EUE inhibits pro-inflammatory responses by modulating MAPKs, PI3K/Akt, and GSK-3β, consequently suppressing NF-κB activation and inducing Nrf2-dependent HO-1 activation. PMID:27068259

  16. Uric Acid-Induced Adipocyte Dysfunction Is Attenuated by HO-1 Upregulation: Potential Role of Antioxidant Therapy to Target Obesity

    PubMed Central

    Sodhi, Komal; Hilgefort, Jordan; Banks, George; Gilliam, Chelsea; Stevens, Sarah; Ansinelli, Hayden A.; Getty, Morghan; Abraham, Nader G.; Shapiro, Joseph I.

    2016-01-01

    Increased uric acid levels have been implicated in the pathogenesis of metabolic syndrome. To examine the mechanisms by which this occurs, we hypothesized that an increase in heme oxygenase 1, a potent antioxidant gene, will decrease uric acid levels and adipocyte dysfunction via suppression of ROS and xanthine oxidase (XO) levels. We examined the effect of uric acid on adipogenesis in human mesenchymal stem cells (MSCs) in the presence and absence of cobalt protoporphyrin (CoPP), an HO-1 inducer, and tin mesoporphyrin (SnMP), an HO activity inhibitor. Uric acid increased adipogenesis by increasing NADPH oxidase expression and elevation in the adipogenesis markers C/EBPα, PPARγ, and Mest, while decreasing small lipid droplets and Wnt10b levels. We treated MSCs with fructose, a fuel source that increases uric acid levels. Our results showed that fructose increased XO expression as compared to the control and concomitant treatment with CoPP significantly decreased XO expression and uric acid levels. These beneficial effects of CoPP were reversed by SnMP, supporting a role for HO activity in mediating these effects. These findings demonstrate that increased levels of HO-1 appear crucial in modulating the phenotype of adipocytes exposed to uric acid and in downregulating XO and NADPH oxidase levels. PMID:26681956

  17. Arctigenin Protects against Lipopolysaccharide-Induced Pulmonary Oxidative Stress and Inflammation in a Mouse Model via Suppression of MAPK, HO-1, and iNOS Signaling.

    PubMed

    Zhang, Wen-zhou; Jiang, Zheng-kui; He, Bao-xia; Liu, Xian-ben

    2015-08-01

    Arctigenin, a bioactive component of Arctium lappa (Nubang), has anti-inflammatory activity. Here, we investigated the effects of arctigenin on lipopolysaccharide (LPS)-induced acute lung injury. Mice were divided into four groups: control, LPS, LPS + DMSO, and LPS + Arctigenin. Mice in the LPS + Arctigenin group were injected intraperitoneally with 50 mg/kg of arctigenin 1 h before an intratracheal administration of LPS (5 mg/kg). Lung tissues and bronchoalveolar lavage fluids (BALFs) were collected. Histological changes of the lung were analyzed by hematoxylin and eosin staining. Arctigenin decreased LPS-induced acute lung inflammation, infiltration of inflammatory cells into BALF, and production of pro-inflammatory cytokines. Moreover, arctigenin pretreatment reduced the malondialdehyde level and increased superoxide dismutase and catalase activities and glutathione peroxidase/glutathione disulfide ratio in the lung. Mechanically, arctigenin significantly reduced the production of nitric oxygen and inducible nitric oxygen synthase (iNOS) expression, enhanced the expression of heme oxygenase-1, and decreased the phosphorylation of mitogen-activated protein kinases (MAPKs). Arctigenin has anti-inflammatory and antioxidative effects on LPS-induced acute lung injury, which are associated with modulation of MAPK, HO-1, and iNOS signaling.

  18. Arctigenin Protects against Lipopolysaccharide-Induced Pulmonary Oxidative Stress and Inflammation in a Mouse Model via Suppression of MAPK, HO-1, and iNOS Signaling.

    PubMed

    Zhang, Wen-zhou; Jiang, Zheng-kui; He, Bao-xia; Liu, Xian-ben

    2015-08-01

    Arctigenin, a bioactive component of Arctium lappa (Nubang), has anti-inflammatory activity. Here, we investigated the effects of arctigenin on lipopolysaccharide (LPS)-induced acute lung injury. Mice were divided into four groups: control, LPS, LPS + DMSO, and LPS + Arctigenin. Mice in the LPS + Arctigenin group were injected intraperitoneally with 50 mg/kg of arctigenin 1 h before an intratracheal administration of LPS (5 mg/kg). Lung tissues and bronchoalveolar lavage fluids (BALFs) were collected. Histological changes of the lung were analyzed by hematoxylin and eosin staining. Arctigenin decreased LPS-induced acute lung inflammation, infiltration of inflammatory cells into BALF, and production of pro-inflammatory cytokines. Moreover, arctigenin pretreatment reduced the malondialdehyde level and increased superoxide dismutase and catalase activities and glutathione peroxidase/glutathione disulfide ratio in the lung. Mechanically, arctigenin significantly reduced the production of nitric oxygen and inducible nitric oxygen synthase (iNOS) expression, enhanced the expression of heme oxygenase-1, and decreased the phosphorylation of mitogen-activated protein kinases (MAPKs). Arctigenin has anti-inflammatory and antioxidative effects on LPS-induced acute lung injury, which are associated with modulation of MAPK, HO-1, and iNOS signaling. PMID:25616905

  19. Ginsenoside Rb1 protects against 6-hydroxydopamine-induced oxidative stress by increasing heme oxygenase-1 expression through an estrogen receptor-related PI3K/Akt/Nrf2-dependent pathway in human dopaminergic cells

    SciTech Connect

    Hwang, Yong Pil; Jeong, Hye Gwang

    2010-01-01

    Phytoestrogens are polyphenolic non-steroidal plant compounds with estrogen-like biological activity. Ginseng, the root of Panax ginseng C.A. Meyer (Araliaceae), is a popular traditional herbal medicine. Ginsenoside Rb1 (Rb1), an active component commonly found in ginseng root, is a phytoestrogen that exerts estrogen-like activity. In this study, we demonstrate that the phytoestrogen Rb1 inhibits 6-hydroxydopamine (6-OHDA)-induced oxidative injury via an ER-dependent Gbeta1/PI3K/Akt and heme oxygenase-1 (HO-1) pathway. Pretreatment of SH-SY5Y cells with Rb1 significantly reduced 6-OHDA-induced caspase-3 activation and subsequent cell death. Rb1 also up-regulated HO-1 expression, which conferred cytoprotection against 6-OHDA-induced oxidative injury. Moreover, Rb1 induced both Nrf2 nuclear translocation, which is upstream of HO-1 expression and PI3K activation, a pathway that is involved in induced Nrf2 nuclear translocation, HO-1 expression and cytoprotection. Also, Rb1-mediated increases in PI3K activation and HO-1 induction were reversed by co-treatment with ICI 182,780 and pertussis toxin. Taken together, these results suggest that Rb1 augments the cellular antioxidant defenses through ER-dependent HO-1 induction via the Gbeta1/PI3K/Akt-Nrf2 signaling pathway, thereby protecting cells from oxidative stress. Thus our study indicates that Rb1 has a partial cytoprotective role in dopaminergic cell culture systems.

  20. Vascular Protective Role of Samul-Tang in HUVECs: Involvement of Nrf2/HO-1 and NO

    PubMed Central

    Choi, Eun Sik; Lee, Yun Jung; Seo, Chang Seob; Yoon, Jung Joo; Han, Byung Hyuk; Park, Min Cheol; Kang, Dae Gill; Lee, Ho Sub

    2016-01-01

    Samul-Tang (Si-Wu-Tang, SMT), composed of four medicinal herbs, is a well-known herbal formula treating hematological disorder or gynecologic disease. However, vascular protective effects of SMT and its molecular mechanisms on the vascular endothelium, known as the central spot of vascular inflammatory process, are not reported. The aim of this study was to investigate vascular protective effects of SMT water extract in human umbilical vein endothelial cells (HUVECs). Water extract of SMT was prepared and identified by HPLC-PDA analysis. Expression of cell adhesion molecules (CAMs) and heme oxygenase-1 (HO-1) and translocation of nuclear factor-kappa B (NF-κB) and nuclear factor-erythroid 2-related factor 2 (Nrf2) were determined by western blot. Nuclear localization of NF-κB and Nrf2 was visualized by immunofluorescence and DNA binding activity of NF-κB was measured. ROS production, HL-60 monocyte adhesion, and intracellular nitric oxide (NO) were also measured using a fluorescent indicator. SMT suppressed NF-κB translocation and activation as well as expression of CAMs, monocyte adhesion, and ROS production induced by TNF-α in HUVECs. SMT treated HUVECs showed upregulation of HO-1 and NO which are responsible for vascular protective action. Our study suggests that SMT, a traditionally used herbal formula, protects the vascular endothelium from inflammation and might be used as a promising vascular protective drug. PMID:27366195

  1. Isorhamnetin Attenuates Atherosclerosis by Inhibiting Macrophage Apoptosis via PI3K/AKT Activation and HO-1 Induction

    PubMed Central

    Luo, Yun; Sun, Guibo; Dong, Xi; Wang, Min; Qin, Meng; Yu, Yingli; Sun, Xiaobo

    2015-01-01

    Background and Purpose Isorhamnetin (Iso) is a flavonoid compound extracted from the Chinese herb Hippophae rhamnoides L. Previous studies have revealed its anti-cancer, anti-inflammatory, and anti-oxidant activities. This study investigated the ability of Iso to inhibit oxidized low-density lipoprotein (ox-LDL)-induced cell apoptosis in THP-1-derived macrophages. The effects of Iso on atherosclerosis in vivo were also evaluated in apolipoprotein E knockout (ApoE-/-) mice fed a high fat diet. Methods and Results Iso showed significant inhibitory effects on ox-LDL-induced THP-1-derived macrophage injuries via decreasing reactive oxygen species levels, lipid deposition, and caspase-3 activation, restoring mitochondrial membrane potential, reducing the number of terminal deoxynucleotidyl transferase-mediated dUTP nick end-labeling (TUNEL)-positive cells, and regulating apoptosis-related proteins. We also determined the protective effects of Iso by PI3K/AKT activation and HO-1 induction. Iso reduced the atherosclerotic plaque size in vivo in ApoE-/- mice as assessed by oil red O, Sudan IV staining, and CD68-positive cells, and reduced macrophage apoptosis as assessed by caspase-3 and TUNEL assays in lesions. Conclusion In conclusion, our results show that Iso inhibited atherosclerotic plaque development in ApoE-/- mice by PI3K/AKT activation and HO-1 induction. PMID:25799286

  2. Heme Oxygenase-1 Expression Affects Murine Abdominal Aortic Aneurysm Progression.

    PubMed

    Azuma, Junya; Wong, Ronald J; Morisawa, Takeshi; Hsu, Mark; Maegdefessel, Lars; Zhao, Hui; Kalish, Flora; Kayama, Yosuke; Wallenstein, Matthew B; Deng, Alicia C; Spin, Joshua M; Stevenson, David K; Dalman, Ronald L; Tsao, Philip S

    2016-01-01

    Heme oxygenase-1 (HO-1), the rate-limiting enzyme in heme degradation, is a cytoprotective enzyme upregulated in the vasculature by increased flow and inflammatory stimuli. Human genetic data suggest that a diminished HO-1 expression may predispose one to abdominal aortic aneurysm (AAA) development. In addition, heme is known to strongly induce HO-1 expression. Utilizing the porcine pancreatic elastase (PPE) model of AAA induction in HO-1 heterozygous (HO-1+/-, HO-1 Het) mice, we found that a deficiency in HO-1 leads to augmented AAA development. Peritoneal macrophages from HO-1+/- mice showed increased gene expression of pro-inflammatory cytokines, including MCP-1, TNF-alpha, IL-1-beta, and IL-6, but decreased expression of anti-inflammatory cytokines IL-10 and TGF-beta. Furthermore, treatment with heme returned AAA progression in HO-1 Het mice to a wild-type profile. Using a second murine AAA model (Ang II-ApoE-/-), we showed that low doses of the HMG-CoA reductase inhibitor rosuvastatin can induce HO-1 expression in aortic tissue and suppress AAA progression in the absence of lipid lowering. Our results support those studies that suggest that pleiotropic statin effects might be beneficial in AAA, possibly through the upregulation of HO-1. Specific targeted therapies designed to induce HO-1 could become an adjunctive therapeutic strategy for the prevention of AAA disease.

  3. Heme Oxygenase-1 Expression Affects Murine Abdominal Aortic Aneurysm Progression.

    PubMed

    Azuma, Junya; Wong, Ronald J; Morisawa, Takeshi; Hsu, Mark; Maegdefessel, Lars; Zhao, Hui; Kalish, Flora; Kayama, Yosuke; Wallenstein, Matthew B; Deng, Alicia C; Spin, Joshua M; Stevenson, David K; Dalman, Ronald L; Tsao, Philip S

    2016-01-01

    Heme oxygenase-1 (HO-1), the rate-limiting enzyme in heme degradation, is a cytoprotective enzyme upregulated in the vasculature by increased flow and inflammatory stimuli. Human genetic data suggest that a diminished HO-1 expression may predispose one to abdominal aortic aneurysm (AAA) development. In addition, heme is known to strongly induce HO-1 expression. Utilizing the porcine pancreatic elastase (PPE) model of AAA induction in HO-1 heterozygous (HO-1+/-, HO-1 Het) mice, we found that a deficiency in HO-1 leads to augmented AAA development. Peritoneal macrophages from HO-1+/- mice showed increased gene expression of pro-inflammatory cytokines, including MCP-1, TNF-alpha, IL-1-beta, and IL-6, but decreased expression of anti-inflammatory cytokines IL-10 and TGF-beta. Furthermore, treatment with heme returned AAA progression in HO-1 Het mice to a wild-type profile. Using a second murine AAA model (Ang II-ApoE-/-), we showed that low doses of the HMG-CoA reductase inhibitor rosuvastatin can induce HO-1 expression in aortic tissue and suppress AAA progression in the absence of lipid lowering. Our results support those studies that suggest that pleiotropic statin effects might be beneficial in AAA, possibly through the upregulation of HO-1. Specific targeted therapies designed to induce HO-1 could become an adjunctive therapeutic strategy for the prevention of AAA disease. PMID:26894432

  4. HO-1 up-regulation: a key point in high-risk neuroblastoma resistance to bortezomib.

    PubMed

    Furfaro, Anna Lisa; Piras, Sabrina; Passalacqua, Mario; Domenicotti, Cinzia; Parodi, Alessia; Fenoglio, Daniela; Pronzato, Maria Adelaide; Marinari, Umberto Maria; Moretta, Lorenzo; Traverso, Nicola; Nitti, Mariapaola

    2014-04-01

    High-risk neuroblastoma (NB) is characterized by the development of chemoresistance, and bortezomib (BTZ), a selective inhibitor of proteasome, has been proposed in order to overcome drug resistance. Considering the involvement of the nuclear factor-erythroid-derived 2-like 2 (Nrf2) and heme oxygenase-1 (HO-1) in the antioxidant and detoxifying ability of cancer cells, in this study we have investigated their role in differently aggressive NB cell lines treated with BTZ, focusing on the modulation of HO-1 to improve sensitivity to therapy. We have shown that MYCN amplified HTLA-230 cells were slightly sensitive to BTZ treatment, due to the activation of Nrf2 that led to an impressive up-regulation of HO-1. BTZ-treated HTLA-230 cells down-regulated p53 and up-regulated p21, favoring cell survival. The inhibition of HO-1 activity obtained by Zinc (II) protoprophyrin IX (ZnPPIX) was able to significantly increase the pro-apoptotic effect of BTZ in a p53- and p21-independent way. However, MYCN non-amplified SH-SY5Y cells showed a greater sensitivity to BTZ in relation to their inability to up-regulate HO-1. Therefore, we have shown that HO-1 inhibition improves the sensitivity of aggressive NB to proteasome inhibition-based therapy, suggesting that HO-1 up-regulation can be used as a marker of chemoresistance in NB. These results open up a new scenario in developing a combined therapy to overcome chemoresistance in high-risk neuroblastoma.

  5. Lung endothelial HO-1 targeting in vivo using lentiviral miRNA regulates apoptosis and autophagy during oxidant injury

    PubMed Central

    Zhang, Yi; Jiang, Ge; Sauler, Maor; Lee, Patty J.

    2013-01-01

    The lung endothelium is a major target for inflammatory and oxidative stress. Heme oxygenase-1 (HO-1) induction is a crucial defense mechanism during oxidant challenges, such as hyperoxia. The role of lung endothelial HO-1during hyperoxia in vivo is not well defined. We engineered lentiviral vectors with microRNA (miRNA) sequences controlled by vascular endothelium cadherin (VE-cad) to study the specific role of lung endothelial HO-1. Wild-type (WT) murine lung endothelial cells (MLECs) or WT mice were treated with lentivirus and exposed to hyperoxia (95% oxygen). We detected HO-1 knockdown (∼55%) specifically in the lung endothelium. MLECs and lungs showed approximately a 2-fold increase in apoptosis and ROS generation after HO-1 silencing. We also demonstrate for the first time that silencing endothelial HO-1 has the same effect on lung injury and survival as silencing HO-1 in multiple lung cell types and that HO-1 regulates caspase 3 activation and autophagy in endothelium during hyperoxia. These studies demonstrate the utility of endothelial-targeted gene silencing in vivo using lentiviral miRNA constructs to assess gene function and that endothelial HO-1 is an important determinant of survival during hyperoxia.—Zhang, Y., Jiang, G., Sauler, M., Lee, P. J. Lung endothelial HO-1 targeting in vivo using lentiviral miRNA regulates apoptosis and autophagy during oxidant injury. PMID:23771928

  6. Spirulina non-protein components induce BDNF gene transcription via HO-1 activity in C6 glioma cells.

    PubMed

    Morita, Kyoji; Itoh, Mari; Nishibori, Naoyoshi; Her, Song; Lee, Mi-Sook

    2015-01-01

    Blue-green algae are known to contain biologically active proteins and non-protein substances and considered as useful materials for manufacturing the nutritional supplements. Particularly, Spirulina has been reported to contain a variety of antioxidants, such as flavonoids, carotenoids, and vitamin C, thereby exerting their protective effects against the oxidative damage to the cells. In addition to their antioxidant actions, polyphenolic compounds have been speculated to cause the protection of neuronal cells and the recovery of neurologic function in the brain through the production of brain-derived neurotrophic factor (BDNF) in glial cells. Then, the protein-deprived extract was prepared by removing the most part of protein components from aqueous extract of Spirulina platensis, and the effect of this extract on BDNF gene transcription was examined in C6 glioma cells. Consequently, the protein-deprived extract was shown to cause the elevation of BDNF mRNA levels following the expression of heme oxygenase-1 (HO-1) in the glioma cells. Therefore, the non-protein components of S. platensis are considered to stimulate BDNF gene transcription through the HO-1 induction in glial cells, thus proposing a potential ability of the algae to indirectly modulate the brain function through the glial cell activity. PMID:25349086

  7. Metallothionein-III protects against 6-hydroxydopamine-induced oxidative stress by increasing expression of heme oxygenase-1 in a PI3K and ERK/Nrf2-dependent manner

    SciTech Connect

    Hwang, Yong Pil; Kim, Hyung Gyun; Han, Eun Hee; Jeong, Hye Gwang

    2008-09-15

    The zinc-binding protein metallothionein-III (MT-III) is associated with resistance to neuronal injury. However, the underlying mechanism for its effects is unclear. In this study, we demonstrate that MT-III prevents the accumulation of reactive oxygen species (ROS) in dopaminergic SH-SY5Y cells challenged with the Parkinson's disease-related neurotoxin 6-hydroxydopamine (6-OHDA) by a mechanism that involves phosphatidylinositol 3-kinase (PI3K) and ERK kinase/NF-E2-related factor 2 (Nrf2) dependent induction of the stress response protein heme oxygenase-1 (HO-1). Pretreatment of SH-SY5Y cells with MT-III significantly reduced 6-OHDA-induced generation of ROS, caspase-3 activation, and subsequent cell death. Also, MT-III up-regulates HO-1 expression and this expression confers neuroprotection against oxidative injury induced by 6-OHDA. Moreover, MT-III induces Nrf2 nuclear translocation, which is upstream of MT-III-induced HO-1 expression, and PI3K and ERK1/2 activation, a pathway that is involved in induced Nrf2 nuclear translocation, HO-1 expression and neuroprotection. Taken together, these results suggest that the PI3K and ERK/Nrf2 signaling pathway controls the intracellular levels of ROS by regulating the expression of the antioxidant enzyme HO-1.

  8. Lycopene Attenuates Colistin-Induced Nephrotoxicity in Mice via Activation of the Nrf2/HO-1 Pathway

    PubMed Central

    Dai, Chongshan; Tang, Shusheng; Deng, Sijun; Zhang, Shen; Zhou, Yan; Velkov, Tony

    2014-01-01

    Nephrotoxicity is the major dose-limiting factor for the clinical use of colistin against multidrug-resistant (MDR) Gram-negative bacteria. This study aimed to investigate the protective effect of lycopene on colistin-induced nephrotoxicity in a mouse model. Fifty mice were randomly divided into 5 groups: the control group (saline solution), the lycopene group (20 mg/kg of body weight/day administered orally), the colistin group (15 mg/kg/day administered intravenously), the colistin (15 mg/kg/day) plus lycopene (5 mg/kg/day) group, and the colistin (15 mg/kg/day) plus lycopene (20 mg/kg/day) group; all mice were treated for 7 days. At 12 h after the last dose, blood was collected for measurements of blood urea nitrogen (BUN) and serum creatinine levels. The kidney tissue samples were obtained for examination of biomarkers of oxidative stress and apoptosis, histopathological assessment, and quantitative reverse transcription-PCR (qRT-PCR) analysis. Colistin treatment significantly increased concentrations of BUN and serum creatinine, tubular apoptosis/necrosis, lipid peroxidation, and heme oxygenase 1 (HO-1) activity, while the treatment decreased the levels of endogenous antioxidant biomarkers glutathione (GSH), catalase (CAT), and superoxide dismutase (SOD). Notably, the changes in the levels of all biomarkers were attenuated in the kidneys of mice treated with colistin by lycopene (5 or 20 mg/kg). Lycopene treatment, especially in the colistin plus lycopene (20 mg/kg) group, significantly downregulated the expression of NF-κB mRNA (P < 0.01) but upregulated the expression of nuclear factor erythroid 2-related factor 2 (Nrf2) and HO-1 mRNA (both P < 0.01) in the kidney compared with the results seen with the colistin group. Our data demonstrated that coadministration of 20 mg/kg/day lycopene can protect against colistin-induced nephrotoxicity in mice. This effect may be attributed to the antioxidative property of lycopene and its ability to activate the Nrf2/HO

  9. Lycopene attenuates colistin-induced nephrotoxicity in mice via activation of the Nrf2/HO-1 pathway.

    PubMed

    Dai, Chongshan; Tang, Shusheng; Deng, Sijun; Zhang, Shen; Zhou, Yan; Velkov, Tony; Li, Jian; Xiao, Xilong

    2015-01-01

    Nephrotoxicity is the major dose-limiting factor for the clinical use of colistin against multidrug-resistant (MDR) Gram-negative bacteria. This study aimed to investigate the protective effect of lycopene on colistin-induced nephrotoxicity in a mouse model. Fifty mice were randomly divided into 5 groups: the control group (saline solution), the lycopene group (20 mg/kg of body weight/day administered orally), the colistin group (15 mg/kg/day administered intravenously), the colistin (15 mg/kg/day) plus lycopene (5 mg/kg/day) group, and the colistin (15 mg/kg/day) plus lycopene (20 mg/kg/day) group; all mice were treated for 7 days. At 12 h after the last dose, blood was collected for measurements of blood urea nitrogen (BUN) and serum creatinine levels. The kidney tissue samples were obtained for examination of biomarkers of oxidative stress and apoptosis, histopathological assessment, and quantitative reverse transcription-PCR (qRT-PCR) analysis. Colistin treatment significantly increased concentrations of BUN and serum creatinine, tubular apoptosis/necrosis, lipid peroxidation, and heme oxygenase 1 (HO-1) activity, while the treatment decreased the levels of endogenous antioxidant biomarkers glutathione (GSH), catalase (CAT), and superoxide dismutase (SOD). Notably, the changes in the levels of all biomarkers were attenuated in the kidneys of mice treated with colistin by lycopene (5 or 20 mg/kg). Lycopene treatment, especially in the colistin plus lycopene (20 mg/kg) group, significantly downregulated the expression of NF-κB mRNA (P < 0.01) but upregulated the expression of nuclear factor erythroid 2-related factor 2 (Nrf2) and HO-1 mRNA (both P < 0.01) in the kidney compared with the results seen with the colistin group. Our data demonstrated that coadministration of 20 mg/kg/day lycopene can protect against colistin-induced nephrotoxicity in mice. This effect may be attributed to the antioxidative property of lycopene and its ability to activate the Nrf2/HO

  10. Ginkgo biloba Extract Prevents Female Mice from Ischemic Brain Damage and the Mechanism Is Independent of the HO1/Wnt Pathway.

    PubMed

    Tulsulkar, Jatin; Glueck, Bryan; Hinds, Terry D; Shah, Zahoor A

    2016-04-01

    It is well known that gender differences exist in experimental or clinical stroke with respect to brain damage and loss of functional outcome. We have previously reported neuroprotective properties of Ginkgo biloba/EGb 761® (EGb 761) in transient and permanent mouse models of brain ischemia using male mice, and the mechanism of action was attributed to the upregulation of the heme oxygenase 1 (HO1)/Wnt pathway. Here, we sought to investigate whether EGb 761's protective effect in ovariectomized female mice following stroke is also mediated by the HO1/Wnt pathway. Female mice were ovariectomized (OVX) to remove the protective effect of estrogen and were treated with EGb 761 for 7 days prior to inducing permanent middle cerebral artery occlusion (pMCAO) and allowed to survive for an additional 7 days. At day 8, animals were sacrificed, and the brains were harvested for infarct volume analysis, western blots, and immunohistochemistry. The OVX female mice treated with EGb 761 showed significantly lower infarct size as compared to Veh/OVX animals. EGb 761 treatment in female mice inhibited apoptosis by preventing caspase-3 cleavage and blocking the extrinsic apoptotic pathway. EGb 761 pretreatment significantly enhanced neurogenesis in OVX mice as compared to the Veh/OVX group and significantly upregulated androgen receptor expression with no changes in HO1/Wnt signaling. These results suggest that EGb 761 prevented brain damage in OVX female mice by improving grip strength and neurological deficits, and the mechanism of action is not through HO1/Wnt but via blocking the extrinsic apoptotic pathway. PMID:26573919

  11. Curcumin ameliorates the permeability of the blood-brain barrier during hypoxia by upregulating heme oxygenase-1 expression in brain microvascular endothelial cells.

    PubMed

    Wang, Yan-feng; Gu, Yan-ting; Qin, Guang-hua; Zhong, Lei; Meng, Ying-nan

    2013-10-01

    Curcumin (Cur) is a major active component of the food flavor turmeric isolated from the powdered dry rhizome of Curcuma longa Linn., which has been used in traditional Chinese medicine to ameliorate intracerebral ischemic damage and reduce brain edema. However, the effects of Cur on the disruption of the blood-brain barrier (BBB) induced by brain ischemia are still unclear. The effects of Cur on the disruption of BBB and changes of tight junction (TJ) proteins induced by oxygen glucose deprivation (OGD) were studied in BBB in vitro. The transendothelial electrical resistance and the flux of horseradish peroxidase in BBB in vitro were measured. The expression and localization of the TJ proteins occludin and zonula occludens-1 (ZO-1) were evaluated by Western blots and immunofluorescence microscopy. The protein levels of heme oxygenase-1 (HO-1) were also analyzed via Western blots. Cur attenuated OGD-induced disruption of paracellular permeability and increased the expression of HO-1 protein in rat brain microvascular endothelial cells (RBMECs). After administration of OGD, the expression of occludin and ZO-1 proteins was restored by Cur, and this effect was blocked by a HO-1 inhibitor, zinc protoporphyrin (ZnPP). Cur protects RBMECs against OGD-induced disruption of TJ and barrier dysfunction via the HO-1 pathway. We propose that Cur is capable of improving the barrier function of BBB under ischemic conditions and this beneficial effect might be reversed by a HO-1 inhibitor, ZnPP. PMID:23494637

  12. Metformin inhibits heme oxygenase-1 expression in cancer cells through inactivation of Raf-ERK-Nrf2 signaling and AMPK-independent pathways

    SciTech Connect

    Do, Minh Truong; Kim, Hyung Gyun; Khanal, Tilak; Choi, Jae Ho; Kim, Dong Hee; Jeong, Tae Cheon; Jeong, Hye Gwang

    2013-09-01

    Resistance to therapy is the major obstacle to more effective cancer treatment. Heme oxygenase-1 (HO-1) is often highly up-regulated in tumor tissues, and its expression is further increased in response to therapies. It has been suggested that inhibition of HO-1 expression is a potential therapeutic approach to sensitize tumors to chemotherapy and radiotherapy. In this study, we tested the hypothesis that the anti-tumor effects of metformin are mediated by suppression of HO-1 expression in cancer cells. Our results indicate that metformin strongly suppresses HO-1 mRNA and protein expression in human hepatic carcinoma HepG2, cervical cancer HeLa, and non-small-cell lung cancer A549 cells. Metformin also markedly reduced Nrf2 mRNA and protein levels in whole cell lysates and suppressed tert-butylhydroquinone (tBHQ)-induced Nrf2 protein stability and antioxidant response element (ARE)-luciferase activity in HepG2 cells. We also found that metformin regulation of Nrf2 expression is mediated by a Keap1-independent mechanism and that metformin significantly attenuated Raf-ERK signaling to suppress Nrf2 expression in cancer cells. Inhibition of Raf-ERK signaling by PD98059 decreased Nrf2 mRNA expression in HepG2 cells, confirming that the inhibition of Nrf2 expression is mediated by an attenuation of Raf-ERK signaling in cancer cells. The inactivation of AMPK by siRNA, DN-AMPK or the pharmacological AMPK inhibitor compound C, revealed that metformin reduced HO-1 expression in an AMPK-independent manner. These results highlight the Raf-ERK-Nrf2 axis as a new molecular target in anticancer therapy in response to metformin treatment. - Highlights: • Metformin inhibits HO-1 expression in cancer cells. • Metformin attenuates Raf-ERK-Nrf2 signaling. • Suppression of HO-1 by metformin is independent of AMPK. • HO-1 inhibition contributes to anti-proliferative effects of metformin.

  13. Emotional facial expressions reduce neural adaptation to face identity.

    PubMed

    Gerlicher, Anna M V; van Loon, Anouk M; Scholte, H Steven; Lamme, Victor A F; van der Leij, Andries R

    2014-05-01

    In human social interactions, facial emotional expressions are a crucial source of information. Repeatedly presented information typically leads to an adaptation of neural responses. However, processing seems sustained with emotional facial expressions. Therefore, we tested whether sustained processing of emotional expressions, especially threat-related expressions, would attenuate neural adaptation. Neutral and emotional expressions (happy, mixed and fearful) of same and different identity were presented at 3 Hz. We used electroencephalography to record the evoked steady-state visual potentials (ssVEP) and tested to what extent the ssVEP amplitude adapts to the same when compared with different face identities. We found adaptation to the identity of a neutral face. However, for emotional faces, adaptation was reduced, decreasing linearly with negative valence, with the least adaptation to fearful expressions. This short and straightforward method may prove to be a valuable new tool in the study of emotional processing.

  14. Emotional facial expressions reduce neural adaptation to face identity.

    PubMed

    Gerlicher, Anna M V; van Loon, Anouk M; Scholte, H Steven; Lamme, Victor A F; van der Leij, Andries R

    2014-05-01

    In human social interactions, facial emotional expressions are a crucial source of information. Repeatedly presented information typically leads to an adaptation of neural responses. However, processing seems sustained with emotional facial expressions. Therefore, we tested whether sustained processing of emotional expressions, especially threat-related expressions, would attenuate neural adaptation. Neutral and emotional expressions (happy, mixed and fearful) of same and different identity were presented at 3 Hz. We used electroencephalography to record the evoked steady-state visual potentials (ssVEP) and tested to what extent the ssVEP amplitude adapts to the same when compared with different face identities. We found adaptation to the identity of a neutral face. However, for emotional faces, adaptation was reduced, decreasing linearly with negative valence, with the least adaptation to fearful expressions. This short and straightforward method may prove to be a valuable new tool in the study of emotional processing. PMID:23512931

  15. Effect of curcumin on hepatic heme oxygenase 1 expression in high fat diet fed rats: is there a triangular relationship?

    PubMed

    Öner-İyidoğan, Yildiz; Tanrıkulu-Küçük, Sevda; Seyithanoğlu, Muhammed; Koçak, Hikmet; Doğru-Abbasoğlu, Semra; Aydin, A Fatih; Beyhan-Özdaş, Şule; Yapişlar, Hande; Koçak-Toker, Necla

    2014-10-01

    High fat diet (HFD) is associated with oxidative stress induced fatty liver. Curcumin, an extract of Curcuma longa, has been shown to possess potent antioxidant and hypolipidemic properties. In this study, we investigated the effect of curcumin treatment on hepatic heme oxygenase-1 (HO-1) expression along with pro-oxidant-antioxidant status and lipid accumulation in rats fed an HFD. Male Sprague-Dawley rats were distributed among 4 groups: Group 1, which was fed the control diet (10% of total calories from fat); Group 2, which was fed the HFD (60% of total calories from fat); and groups 3 and 4, which received the HFD supplemented with curcumin and the control diet supplemented with curcumin (1 g/kg diet; w/w), respectively, for 16 weeks. HFD caused increases in hepatic lipid levels, production of reactive oxygen species, and lipid peroxidation. Further, HO-1 expression was significantly decreased. Histopathological examination showed hepatic fat accumulation and slight fibrotic changes. Curcumin treatment reduced hepatic lipids and oxidative stress parameters, and HO-1 expression was significantly increased. These findings suggest that increased HO-1 expression, along with suppressed oxidative stress as well as reduced hepatic fat accumulation and fibrotic changes, contribute to the beneficial effects of curcumin in attenuating the pathogenesis of fatty liver induced metabolic diseases.

  16. Silencing heme oxygenase-1 gene expression in retinal pigment epithelial cells inhibits proliferation, migration and tube formation of cocultured endothelial cells

    SciTech Connect

    Zhang, Wenjie; Zhang, Xiaomei; Lu, Hong; Matsukura, Makoto; Zhao, Jien; Shinohara, Makoto

    2013-05-10

    Highlights: •HO-1 is highly induced in RPE cells by hypoxia. •Inhibition of HO-1 activity and knockdown of HO-1 expression inhibit VEGF expression in RPE cells under hypoxia. •Knockdown of HO-1 in RPE cells inhibits angiogenesis of endothelial cells in vitro. -- Abstract: Heme oxygenase-1 (HO-1) plays an important role in the vasculature and in the angiogenesis of tumors, wounds and other environments. Retinal pigment epithelial (RPE) cells and choroidal endothelial cells (CECs) are the main cells involved in choroidal neovascularization (CNV), a process in which hypoxia plays an important role. Our aim was to evaluate the role of human RPE-cell HO-1 in the angiogenic activities of cocultured endothelial cells under hypoxia. Small interfering RNA (siRNA) for HO-1 was transfected into human RPE cell line ARPE-19, and zinc protoporphyrin (ZnPP) was used to inhibit HO-1 activity. Knockdown of HO-1 expression and inhibition of HO-1 activity resulted in potent reduction of the expression of vascular endothelial growth factor (VEGF) under hypoxia. Furthermore, knockdown of HO-1 suppressed the proliferation, migration and tube formation of cocultured endothelial cells. These findings indicated that HO-1 might have an angiogenic effect in CNV through modulation of VEGF expression and might be a potential target for treating CNV.

  17. Fatty aldehyde dehydrogenases in Acinetobacter sp. strain HO1-N: role in hexadecane and hexadecanol metabolism

    SciTech Connect

    Singer, M.E.; Finnerty, W.R.

    1985-12-01

    The role of fatty aldehyde dehydrogenases (FALDHs) in hexadecane and hexadecanol metabolism was studied in Acinetobacter sp. strain HO1-N. Two distinct FALDHs were demonstrated in Acinetobacter sp. strain HO1-N: (i) a membrane-bound, NADP-dependent FALDH activity induced 5-, 15-, and 9 fold by growth on hexadecanol, dodecyl aldehyde, and hexadecane, respectively, and (ii) a constitutive, NAD-dependent, membrane-localized FALDH. Dodecyl aldehyde-negative mutants were isolated and grouped into two phenotypic classes based on growth: class 1 mutants were hexadecane and hexadecanol negative and class 2 mutants were hexadecane and hexadecanol positive. Specific activity of NADP-dependent FALDH in Ald21 (class 1 mutant) was 85% lower than that of wild-type FALDH, while the specific activity of Ald24 (class 2 mutant) was 55% greater than that of wild-type FALDH. Ald21R, a dodecyl aldehyde-positive revertant able to grow on hexadecane, hexadecanol, and dodecyl aldehyde, exhibited a 100% increase in the specific activity of the NADP-dependent FALDH. This study provides genetic and physiological evidence for the role of fatty aldehyde as an essential metabolic intermediate and NADP-dependent FALDH as a key enzyme in the dissimilation of hexadecane, hexadecanol, and dodecyl aldehyde in Acinetobacter sp. strain HO1-N.

  18. Clopidogrel Protects Endothelium by Hindering TNFα-Induced VCAM-1 Expression through CaMKKβ/AMPK/Nrf2 Pathway

    PubMed Central

    Yang, Huabing; Zhao, Pengjun; Tian, Shiliu

    2016-01-01

    Clopidogrel (INN), an oral antiplatelet drug, has been revealed to have a number of biological properties, for instance, anti-inflammation and antioxidation. Oxidative stress plays an imperative role in inflammation, diabetes mellitus, atherosclerosis, and cancer. In the present study, human aortic endothelial cells (HAECs) were employed to explore the anti-inflammatory activity of INN. INN reduced TNFα-induced reactive oxygen species (ROS) generation and time-dependently prompted the expression and activity of heme oxygenase 1 (HO-1). Cellular glutathione (GSH) levels were augmented by INN. shHO-1 blocked the INN suppression of TNFα-induced HL-60 cell adhesion. The CaMKKβ/AMPK pathway and Nrf2 transcriptional factor were implicated in the induction of HO-1 by INN. Additionally, TNFα dramatically augmented VCAM-1 expression at protein and mRNA levels. INN treatment strikingly repressed TNFα-induced expression of VCAM-1 and HL-60 cell adhesion. Compound C, an AMPK inhibitor, and shNrf2 abolished TNFα-induced expression of VCAM-1 and HL-60 cell adhesion. Our data suggest that INN diminishes TNFα-stimulated VCAM-1 expression at least in part via HO-1 induction, which is CaMKKβ/AMPK pathway-dependent. PMID:26824050

  19. Clopidogrel Protects Endothelium by Hindering TNFα-Induced VCAM-1 Expression through CaMKKβ/AMPK/Nrf2 Pathway.

    PubMed

    Yang, Huabing; Zhao, Pengjun; Tian, Shiliu

    2016-01-01

    Clopidogrel (INN), an oral antiplatelet drug, has been revealed to have a number of biological properties, for instance, anti-inflammation and antioxidation. Oxidative stress plays an imperative role in inflammation, diabetes mellitus, atherosclerosis, and cancer. In the present study, human aortic endothelial cells (HAECs) were employed to explore the anti-inflammatory activity of INN. INN reduced TNFα-induced reactive oxygen species (ROS) generation and time-dependently prompted the expression and activity of heme oxygenase 1 (HO-1). Cellular glutathione (GSH) levels were augmented by INN. shHO-1 blocked the INN suppression of TNFα-induced HL-60 cell adhesion. The CaMKKβ/AMPK pathway and Nrf2 transcriptional factor were implicated in the induction of HO-1 by INN. Additionally, TNFα dramatically augmented VCAM-1 expression at protein and mRNA levels. INN treatment strikingly repressed TNFα-induced expression of VCAM-1 and HL-60 cell adhesion. Compound C, an AMPK inhibitor, and shNrf2 abolished TNFα-induced expression of VCAM-1 and HL-60 cell adhesion. Our data suggest that INN diminishes TNFα-stimulated VCAM-1 expression at least in part via HO-1 induction, which is CaMKKβ/AMPK pathway-dependent. PMID:26824050

  20. H2 Treatment Attenuated Pain Behavior and Cytokine Release Through the HO-1/CO Pathway in a Rat Model of Neuropathic Pain.

    PubMed

    Chen, Yajun; Chen, Hongguang; Xie, Keliang; Liu, Lingling; Li, Yuan; Yu, Yonghao; Wang, Guolin

    2015-10-01

    Neuropathic pain (NP) is characterized by persistent pain, tactile allodynia, or hyperalgesia. Peripheral nerve injury contributes to rapid progress of inflammatory response and simultaneously generates neuropathic pain. Hydrogen (H2) has anti-inflammation, anti-apoptosis, and anti-oxidative stress effects. Therefore, we hypothesized that H2 treatment could alleviate allodynic and hyperalgesic behaviors and the release of inflammatory factors in rats with neuropathic pain. Peripheral neuropathic pain was established by chronic constriction injury of sciatic nerve in rats. H2 was given twice through intraperitoneal injection at a daily dose of 10 mL/kg during days 1-7 after the operation. Hyperalgesia and allodynia were tested, pro-inflammatory factors of dorsal root ganglia (DRG) and the spinal cord were measured by enzyme-linked immunosorbent assay (ELISA) during days 1-14 after the operation, and heme oxygenase (HO)-1 messenger RNA (mRNA) and protein expression and activities were measured at day 14 after sciatic nerve injury in rats. After Sn (IV) protoporphyrin IX dihydrochloride (SnPP)-IX, hemin, and carbon monoxide-releasing molecule (CORM)-2 had been given for chronic constriction injury (CCI) in rats, the above indicators were assessed. We found that H2 clearly inhibited hyperalgesia and allodynia in neuropathic pain and also attenuated the pro-inflammatory cytokines TNF-α, IL-1β, and high-mobility group box (HMGB) 1. H2 improved HO-1 mRNA and protein expression and activities in the process of pain. SnPP-IX reversed the inhibitory effect of H2 on hyperalgesia and allodynia and on pro-inflammatory cytokines in DRG and the spinal cord. The antinociceptive and anti-inflammatory effects of H2 were involved in the activation of HO-1/CO signaling during neuropathic pain in rats. PMID:25820467

  1. The processing of coreference for reduced expressions in discourse integration.

    PubMed

    Yang, C L; Gordon, P C; Hendrick, R; Wu, J T; Chou, T L

    2001-01-01

    Three reading-time experiments in Chinese are reported that test contrasting views of how pronominal coreference is achieved. On the one hand, studies of reading time and eye tracking suggest that reduced expressions, such as the pronoun he, serve as critical links to integrate separate utterances into a coherent model of discourse. On the other hand, probe-word recognition studies indicate that full anaphoric expressions, such as a repeated name, are more readily interpreted than reduced expressions due to their rich lexical information, which provides effective cues to match the representation of the appropriate referent in memory. The results indicate that the ease of integrating the critical referent into a model of discourse is a function of the congruence of lexical, semantic, and discourse features conveyed by a syntactically prominent reduced expression within linguistic input. This pattern supports the view that a reduced expression is interpreted on-line and indeed plays a critical role in promoting discourse coherence by facilitating the semantic integration of separate utterances.

  2. Anti-Inflammatory Effect of Rhapontici Radix Ethanol Extract via Inhibition of NF-κB and MAPK and Induction of HO-1 in Macrophages

    PubMed Central

    Oh, You-Chang; Cho, Won-Kyung; Yim, Nam-Hui

    2016-01-01

    Rhapontici Radix (RR) has been used in traditional medicine in East Asia and has been shown to have various beneficial effects. However, its biological properties or mechanism on inflammation-related diseases is unknown. The goal of this study was to determine the anti-inflammatory activity and underlying molecular mechanisms of Rhapontici Radix ethanol extract (RRE). The inhibitory effect of RRE on the production of NO, cytokines, inflammatory-related proteins, and mRNAs in LPS-stimulated macrophages was determined by the Griess assay, ELISA, Western blot analysis, and real-time RT-PCR, respectively. Our results indicate that treatment with RRE significantly inhibited the secretion of NO and inflammatory cytokines in RAW 264.7 cells and mouse peritoneal macrophages without cytotoxicity. We also found that RRE strongly suppressed the expression of iNOS and COX-2 and induced HO-1 expression. It also prevented nuclear translocation of NF-κB by inhibiting the phosphorylation and degradation of IκBα. Furthermore, the phosphorylation of MAPKs in LPS-stimulated RAW 264.7 cells was significantly inhibited by RRE. These findings suggest that RRE may operate as an effective anti-inflammatory agent by inhibiting the activation of NF-κB and MAPK signaling pathways and inducing HO-1 expression in macrophages. Our results suggest that RRE has potential value as candidate to inflammatory therapeutic phytomedicine. PMID:27524868

  3. Attenuation of smoke induced neuronal and physiological changes by bacoside rich extract in Wistar rats via down regulation of HO-1 and iNOS.

    PubMed

    Pandareesh, M D; Anand, T

    2014-01-01

    Bacopa monniera is well known herbal medicine for its neuropharmacological effects. It alleviates variety of disorders including neuronal and physiological changes. Crackers smoke is a potent risk factor that leads to free radical mediated oxidative stress in vivo. The aim of the current study is to evaluate the protective efficacy of B. monniera extract (BME) against crackers smoke induced neuronal and physiological changes via modulating inducible nitric oxide synthase (iNOS) and hemeoxygenase-1 (HO-1) expression in rats. Rats were exposed to smoke for 1h for a period of 3 weeks and consecutively treated with BME at three different dosages (i.e., 10, 20 and 40 mg/kg b.wt.). Our results elucidate that BME treatment ameliorates histopathalogical changes, reactive oxygen species levels, lipid peroxidation, acetylcholine esterase activity and brain neurotransmitter levels to normal. BME supplementation efficiently inhibited HO-1 expression and nitric oxide generation by down-regulating iNOS expression. Smoke induced depletion of antioxidant enzyme status, monoamine oxidase activity was also replenished by BME supplementation. Thus the present study indicates that BME ameliorates various impairments associated with neuronal and physiological changes in rats exposed to crackers smoke by its potent neuromodulatory, antioxidant and adaptogenic propensity.

  4. Gastrodin protects against MPP(+)-induced oxidative stress by up regulates heme oxygenase-1 expression through p38 MAPK/Nrf2 pathway in human dopaminergic cells.

    PubMed

    Jiang, Genling; Hu, Yuqin; Liu, Lanlan; Cai, Jiali; Peng, Cheng; Li, Qinglin

    2014-09-01

    Although the etiology of PD remains unclear, increasing evidence has shown that oxidative stress plays an important role in its pathogenesis and that of other neurodegenerative disorders. The phenolic glucoside gastrodin, a main constituent of a Chinese herbal medicine Gastrodia elata (GE) Blume, has been known to display antioxidant activity. The present study aimed to investigate the protective effects of gastrodin on 1-methyl-4-phenylpyridinium (MPP(+))-induced oxidative cytotoxicity in human dopaminergic SH-SY5Y cells and the underlying mechanism for this neuroprotection. Results indicate that pre-treatment with gastrodin for 1h significantly reduced the MPP(+)-induced viability loss, apoptotic rate and attenuated MPP(+)-mediated ROS production. In addition, gastrodin inhibited MPP(+)-induced lowered membrane potential, decreased Bcl-2/Bax ratio. Moreover, we have revealed the gastrodin increased Nrf2 nuclear translocation, which is upstream of heme oxygenase-1 (HO-1) expression and for the first time revealed gastrodin could increased antioxidant enzyme HO-1 expression in concentration-dependent and time-dependent manners. HO-1 siRNA transfection was employed, and confirmed gastrodin could active the expression of HO-1. And the increase in HO-1 expression was correlated with the protective effect of gastrodin against MPP(+)-induced injury. Because the inhibitor of HO-1 activity, ZnPP reversed the protective effect of gastrodin against MPP(+)-induced cell death. We also demonstrated that the specific p38 MAPK inhibitor, SB203580, concentration-dependently blocked on gastrodin-induced HO-1 expression, and meanwhile SB203580 reversed the protective effect of gastrodin against MPP(+)-induced cell death. Taken together, these findings suggest that gastrodin can induce HO-1 expression through activation of p38 MAPK/Nrf2 signaling pathway, thereby protecting the SH-SY5Y cells from MPP(+)-induced oxidative cell death. Thus our study indicates that gastrodin has a

  5. 3H-1,2-dithiole-3-thione protects retinal pigment epithelium cells against Ultra-violet radiation via activation of Akt-mTORC1-dependent Nrf2-HO-1 signaling

    PubMed Central

    Li, Ke-ran; Yang, Su-qing; Gong, Yi-qing; Yang, Hong; Li, Xiu-miao; Zhao, Yu-xia; Yao, Jin; Jiang, Qin; Cao, Cong

    2016-01-01

    Excessive UV radiation and reactive oxygen species (ROS) cause retinal pigment epithelium (RPE) cell injuries. Nrf2 regulates transcriptional activation of many anti-oxidant genes. Here, we tested the potential role of 3H-1,2-dithiole-3-thione (D3T) against UV or ROS damages in cultured RPE cells (both primary cells and ARPE-19 line). We showed that D3T significantly inhibited UV-/H2O2-induced RPE cell death and apoptosis. UV-stimulated ROS production was dramatically inhibited by D3T pretreatment. D3T induced Nrf2 phosphorylation in cultured RPE cells, causing Nrf2 disassociation with KEAP1 and its subsequent nuclear accumulation. This led to expression of antioxidant response elements (ARE)-dependent gene heme oxygenase-1 (HO-1). Nrf2-HO-1 activation was required for D3T-mediated cytoprotective effect. Nrf2 shRNA knockdown or S40T dominant negative mutation as well as the HO-1 inhibitor Zinc protoporphyrin (ZnPP) largely inhibited D3T’s RPE cytoprotective effects against UV radiation. Yet, exogenous overexpression Nrf2 enhanced D3T’s activity in RPE cells. Further studies showed that D3T activated Akt/mTORC1 in cultured RPE cells. Akt-mTORC1 inhibitors, or Akt1 knockdown by shRNA, not only inhibited D3T-induced Nrf2-HO-1 activation, but also abolished the RPE cytoprotective effects. In vivo, D3T intravitreal injection protected from light-induced retinal dysfunctions in mice. Thus, D3T protects RPE cells from UV-induced damages via activation of Akt-mTORC1-Nrf2-HO-1 signaling axis. PMID:27151674

  6. Simultaneous Overexpression of Functional Human HO-1, E5NT and ENTPD1 Protects Murine Fibroblasts against TNF-α-Induced Injury In Vitro

    PubMed Central

    Cinti, Alessandro; De Giorgi, Marco; Chisci, Elisa; Arena, Claudia; Galimberti, Gloria; Farina, Laura; Bugarin, Cristina; Rivolta, Ilaria; Gaipa, Giuseppe; Smolenski, Ryszard Tom; Cerrito, Maria Grazia; Lavitrano, Marialuisa; Giovannoni, Roberto

    2015-01-01

    Several biomedical applications, such as xenotransplantation, require multiple genes simultaneously expressed in eukaryotic cells. Advances in genetic engineering technologies have led to the development of efficient polycistronic vectors based on the use of the 2A self-processing oligopeptide. The aim of this work was to evaluate the protective effects of the simultaneous expression of a novel combination of anti-inflammatory human genes, ENTPD1, E5NT and HO-1, in eukaryotic cells. We produced an F2A system-based multicistronic construct to express three human proteins in NIH3T3 cells exposed to an inflammatory stimulus represented by tumor necrosis factor alpha (TNF-α), a pro-inflammatory cytokine which plays an important role during inflammation, cell proliferation, differentiation and apoptosis and in the inflammatory response during ischemia/reperfusion injury in several organ transplantation settings. The protective effects against TNF-α-induced cytotoxicity and cell death, mediated by HO-1, ENTPD1 and E5NT genes were better observed in cells expressing the combination of genes as compared to cells expressing each single gene and the effect was further improved by administrating enzymatic substrates of the human genes to the cells. Moreover, a gene expression analyses demonstrated that the expression of the three genes has a role in modulating key regulators of TNF-α signalling pathway, namely Nemo and Tnfaip3, that promoted pro-survival phenotype in TNF-α injured cells. These results could provide new insights in the research of protective mechanisms in transplantation settings. PMID:26513260

  7. AmeriFlux US-Ho1 Howland Forest (main tower)

    DOE Data Explorer

    Hollinger, David [USDA Forest Service; Hollinger, David [USDA Forest Service

    2016-01-01

    This is the AmeriFlux version of the carbon flux data for the site US-Ho1 Howland Forest (main tower). Site Description - Closed conifer forest, minimal disturbance. References: Fernandez et al. (1993), Canadian Journal of Soil Science 73 317-328. Hollinger et al. (1999), Global Change Biology 5: 891-902. Savage KE, Davidson EA (2001), Global Biogeochemical Cycles 15 337-350. Scott et al. (2004), Environmental Management, Vol. 33, Supplement 1, pp. S9-S22. Hollinger et al. (2004), Global Change Biology 10: 1689-1706.

  8. Reduced Ang2 expression in aging endothelial cells.

    PubMed

    Hohensinner, P J; Ebenbauer, B; Kaun, C; Maurer, G; Huber, K; Wojta, J

    2016-06-01

    Aging endothelial cells are characterized by increased cell size, reduced telomere length and increased expression of proinflammatory cytokines. In addition, we describe here that aging reduces the migratory distance of endothelial cells. Furthermore, we observe an increase of the quiescence protein Ang1 and a decrease of the endothelial activation protein Ang2 upon aging. Supplementing Ang2 to aged endothelial cells restored their migratory capacity. We conclude that aging shifts the balance of the Ang1/Ang2 network favouring a quiescent state. Activation of endothelial cells in aging might be necessary to enhance wound healing capacities. PMID:27137842

  9. LIN28A Expression Reduces Sickling of Cultured Human Erythrocytes

    PubMed Central

    de Vasconcellos, Jaira F.; Fasano, Ross M.; Lee, Y. Terry; Kaushal, Megha; Byrnes, Colleen; Meier, Emily R.; Anderson, Molly; Rabel, Antoinette; Braylan, Raul; Stroncek, David F.; Miller, Jeffery L.

    2014-01-01

    Induction of fetal hemoglobin (HbF) has therapeutic importance for patients with sickle cell disease (SCD) and the beta-thalassemias. It was recently reported that increased expression of LIN28 proteins or decreased expression of its target let-7 miRNAs enhances HbF levels in cultured primary human erythroblasts from adult healthy donors. Here LIN28A effects were studied further using erythrocytes cultured from peripheral blood progenitor cells of pediatric subjects with SCD. Transgenic expression of LIN28A was accomplished by lentiviral transduction in CD34(+) sickle cells cultivated ex vivo in serum-free medium. LIN28A over-expression (LIN28A-OE) increased HbF, reduced beta (sickle)-globin, and strongly suppressed all members of the let-7 family of miRNAs. LIN28A-OE did not affect erythroblast differentiation or prevent enucleation, but it significantly reduced or ameliorated the sickling morphologies of the enucleated erythrocytes. PMID:25188417

  10. Rosmarinic Acid Methyl Ester Inhibits LPS-Induced NO Production via Suppression of MyD88- Dependent and -Independent Pathways and Induction of HO-1 in RAW 264.7 Cells.

    PubMed

    So, Yangkang; Lee, Seung Young; Han, Ah-Reum; Kim, Jin-Baek; Jeong, Hye Gwang; Jin, Chang Hyun

    2016-01-01

    In this study, we investigated the anti-inflammatory effect of rosmarinic acid methyl ester (RAME) isolated from a mutant cultivar of Perilla frutescens (L.) Britton. We found that RAME inhibits lipopolysaccharide (LPS)-induced nitric oxide (NO) production, with an IC50 of 14.25 µM, in RAW 264.7 cells. RAME inhibited the LPS-induced expression of pro-inflammatory cytokines including interleukin (IL)-1β, IL-6, IL-10, monocyte chemoattractant protein-1, interferon-β, and inducible nitric oxide synthase (iNOS). Moreover, RAME suppressed the activation of nuclear factor kappa B. These results suggest that the downregulation of iNOS expression by RAME was due to myeloid differentiation primary response gene 88 (MyD88)-dependent and -independent pathways. Furthermore, RAME induced the expression of heme oxygenase-1 (HO-1) through activation of nuclear factor-erythroid 2-related factor 2. Treatment with tin protoporphyrin, an inhibitor of HO-1, reversed the RAME-induced suppression of NO production. Taken together, RAME isolated from P. frutescens inhibited NO production in LPS-treated RAW 264.7 cells through simultaneous induction of HO-1 and inhibition of MyD88-dependent and -independent pathways. PMID:27548124

  11. Triptolide reduces the viability of osteosarcoma cells by reducing MKP-1 and Hsp70 expression

    PubMed Central

    ZHAO, LEI; JIANG, BO; WANG, DONG; LIU, WEI; ZHANG, HUAWU; LIU, WEISHENG; QIU, ZHEN

    2016-01-01

    Osteosarcoma is the most common type of malignant bone tumor found in adolescents and young adults. The aim of the present study was to determine whether triptolide, a diterpene epoxide extracted from the Tripterygium plant, was able effectively decrease the viability of osteosarcoma cells. The underlying molecular mechanisms are also investigated. The human osteosarcoma cell lines U-2 OS and MG-63 were used in this study. The U-2 OS and MG-63 cells were treated with 0, 5, 10, 25 or 50 nM triptolide. Cells treated with dimethyl sulfoxide only were used as the no drug treatment control. A commercial MTT kit was used to determine the effects of triptolide on cells. Mitogen-activated protein kinase phosphatase-1 (MKP-1) is frequently overexpressed in tumor tissues, possibly related to the failure of a number of chemotherapeutics. Heat shock protein 70 (Hsp70) is a chaperone molecule that is able to increase drug resistance. The protein expression levels of MKP-1 and Hsp70 were determined using western blot analysis. The results indicate that triptolide effectively reduced the viability of the osteosarcoma cells. Furthermore, triptolide was found to effectively reduce MKP-1 expression and Hsp70 levels. Further analysis showed that triptolide reduced MKP-1 mRNA expression in the U-2 OS and MG-63 cells. Triptolide reduced Hsp70 mRNA expression levels in U-2 OS and MG-63 cells. These results suggest that triptolide effectively decreases the viability of osteosarcoma cells. These effects may be associated with the decreased expression of MKP-1 and Hsp70 levels. These results suggest that triptolide may be used in the treatments of osteosarcoma. PMID:27168842

  12. Lithospermic acid B protects beta-cells from cytokine-induced apoptosis by alleviating apoptotic pathways and activating anti-apoptotic pathways of Nrf2-HO-1 and Sirt1

    SciTech Connect

    Lee, Byung-Wan; Chun, Sung Wan; Kim, Soo Hyun; Lee, Yongho; Kang, Eun Seok; Cha, Bong-Soo; Lee, Hyun Chul

    2011-04-01

    Lithospermic acid B (LAB) has been reported to protect OLETF rats, an established type 2 diabetic animal model, from the development of diabetes-related vascular complications. We investigated whether magnesium lithospermate B (LAB) has a protective role under cytokine-induced apoptosis in INS-1 cells in vitro and whether it slows the development of diabetes in OLETF rats in vivo. Pretreatment with 50 {mu}M LAB significantly reduced the 1000 U/mL INF-{gamma} and 100 U/mL IL-1{beta}-induced INS-1 cell death. LAB significantly alleviated cytokine-induced phosphorylations of p38 and JNK in accordance with a decrease in cleaved caspase-3 activity in beta-cells. LAB also protected against the cytokine-induced caspase-3 apoptotic pathway via significant activation of Nrf2-HO (heme-oxigenase)-1 and Sirt1 expression. OLETF rats treated with 40 mg/kg/day LAB showed a significant improvement in glucose tolerance compared to untreated OLETF control rats in vivo. Our results suggest that the cytoprotective effects of LAB on pancreatic {beta}-cells are related with both alleviating apoptotic pathways and activating anti-apoptotic pathways of Nrf2-HO-1 and Sirt1.

  13. Doping induced modification in polyhedral tilt in hexagonal Ho1-xYxMnO3

    NASA Astrophysics Data System (ADS)

    Kaushik, S. D.; Rayaprol, S.

    2012-06-01

    We have studied the effect of systematic doping of Y at Ho site on the crystal structure of hexagonal HoMnO3 We have carried out room temperature neutron diffraction (ND) study on Ho1-xYxMnO3 (x = 0, 0.25, 0.50, 0.75), and by analyzing this ND data we have determined the cell parameters, Mn-O bond length, O-Mn-O bond angle. The variation in certain M-O bond length and O-Mn-O bond angles has been understood in terms of modifications in tilt of the MnO5 polyhedra due to Ho site Y doping in hexagonal HoMnO3.

  14. Transport and structural properties of the Ho1Ba2Cu3O9 - delta superconductor

    NASA Astrophysics Data System (ADS)

    Lee, Sung-Ik; Golben, John P.; Song, Yi; Lee, Sang Young; Noh, Tae W.; Chen, Xiao-dong; Testa, Joe; Gaines, J. R.; Tettenhorst, Rodney T.

    1987-07-01

    The compound Ho1Ba2Cu3O9-δ has been found to be a high Tc superconductor. The onset of the superconducting transition is 88 K with zero resistance achieved at 87 K. The x-ray diffraction spectrum of this material shows it to be a single-phase perovskite similar to the Y1Ba2Cu3O9-δ compound but different from the K2NiF4 perovskite which is believed to be the superconducting phase for the La2(1-x) Ba2xCuO4-δ system. Possible oxygen deficiencies in several of the unit cell planes are discussed. The room-temperature resistance, the superconducting onset temperature, and the emergence of the single phase all depend upon the sample preparation firing conditions.

  15. Heme oxygenase-1 expression protects the heart from acute injury caused by inducible Cre recombinase.

    PubMed

    Hull, Travis D; Bolisetty, Subhashini; DeAlmeida, Angela C; Litovsky, Silvio H; Prabhu, Sumanth D; Agarwal, Anupam; George, James F

    2013-08-01

    The protective effect of heme oxygenase-1 (HO-1) expression in cardiovascular disease has been previously demonstrated using transgenic animal models in which HO-1 is constitutively overexpressed in the heart. However, the temporal requirements for protection by HO-1 induction relative to injury have not been investigated, but are essential to employ HO-1 as a therapeutic strategy in human cardiovascular disease states. Therefore, we generated mice with cardiac-specific, tamoxifen (TAM)-inducible overexpression of a human HO-1 (hHO-1) transgene (myosin heavy chain (MHC)-HO-1 mice) by breeding mice with cardiac-specific expression of a TAM-inducible Cre recombinase (MHC-Cre mice), with mice containing an hHO-1 transgene preceded by a floxed-stop signal. MHC-HO-1 mice overexpress HO-1 mRNA and the enzymatically active protein following TAM administration (40 mg/kg body weight on 2 consecutive days). In MHC-Cre controls, TAM administration leads to severe, acute cardiac toxicity, cardiomyocyte necrosis, and 80% mortality by day 3. This cardiac toxicity is accompanied by a significant increase in inflammatory cells in the heart that are predominantly neutrophils. In MHC-HO-1 mice, HO-1 overexpression ameliorates the depression of cardiac function and high mortality rate observed in MHC-Cre mice following TAM administration and attenuates cardiomyocyte necrosis and neutrophil infiltration. These results highlight that HO-1 induction is sufficient to prevent the depression of cardiac function observed in mice with TAM-inducible Cre recombinase expression by protecting the heart from necrosis and neutrophil infiltration. These findings are important because MHC-Cre mice are widely used in cardiovascular research despite the limitations imposed by Cre-induced cardiac toxicity, and also because inflammation is an important pathological component of many human cardiovascular diseases.

  16. Heme oxygenase-1 expression protects the heart from acute injury caused by inducible Cre recombinase

    PubMed Central

    Hull, Travis D.; Bolisetty, Subashini; DeAlmeida, Angela; Litovsky, Silvio H.; Prabhu, Sumanth D.; Agarwal, Anupam; George, James F.

    2013-01-01

    The protective effect of heme oxygenase-1 (HO-1) expression in cardiovascular disease has been previously demonstrated using transgenic animal models in which HO-1 is constitutively overexpressed in the heart. However, the temporal requirements for protection by HO-1 induction relative to injury have not been investigated, but are essential to employ HO-1 as a therapeutic strategy in human cardiovascular disease states. Therefore, we generated mice with cardiac-specific, tamoxifen (TAM)-inducible overexpression of a human HO-1 (hHO-1) transgene (MHC-HO-1 mice) by breeding mice with cardiac-specific expression of a TAM-inducible Cre recombinase (MHC-Cre mice) with mice containing an hHO-1 transgene preceded by a floxed stop signal (CBA-flox mice). MHC-HO-1 overexpress the HO-1 gene and enzymatically protein following TAM administration (40 mg/kg body weight on two consecutive days). In MHC-Cre controls, TAM administration leads to severe, acute cardiac toxicity, cardiomyocyte necrosis, and 80% mortality by day 3. This cardiac toxicity is accompanied by a significant increase in inflammatory cells in the heart that are predominantly neutrophils. In MHC-HO-1 mice, HO-1 overexpression ameliorates the depression of cardiac function and high mortality rate observed in MHC-Cre mice following TAM administration and attenuates cardiomyocyte necrosis and neutrophil infiltration. These results highlight that HO-1 induction is sufficient to prevent the depression of cardiac function observed in mice with TAM-inducible Cre recombinase expression by protecting the heart from necrosis and neutrophil infiltration. These findings are important because MHC-Cre mice are widely used in cardiovascular research despite the limitations imposed by Cre-induced cardiac toxicity and also because inflammation is an important pathological component of many human cardiovascular diseases. PMID:23732814

  17. Expressive writing as a brief intervention for reducing drinking intentions.

    PubMed

    Young, Chelsie M; Rodriguez, Lindsey M; Neighbors, Clayton

    2013-12-01

    The present study examined the effectiveness of expressive writing in reducing drinking behavior. We expected that students prompted to write about negative drinking experiences would show greater decreases in future drinking intentions compared to the neutral and the positive writing conditions. We also expected that decreases in drinking intentions following the writing prompts might differ based on current drinking and AUDIT scores. Participants included 200 (76% female) undergraduates who completed measures of their current drinking behavior. They were then randomly assigned to either write about: a time when they had a lot to drink that was a good time (Positive); a time when they had a lot to drink that was a bad time (Negative); or their first day of college (Neutral), followed by measures assessing intended drinking over the next three months. Results revealed that participants intended to drink significantly fewer drinks per week and engage in marginally fewer heavy drinking occasions after writing about a negative drinking occasion when compared to control. Interactions provided mixed findings suggesting that writing about a positive event was associated with higher drinking intentions for heavier drinkers. Writing about a negative event was associated with higher intentions among heavier drinkers, but lower intentions among those with higher AUDIT scores. This research builds on previous expressive writing interventions by applying this technique to undergraduate drinkers. Preliminary results provide some support for this innovative strategy but also suggest the need for further refinement, especially with heavier drinkers.

  18. Expressive writing as a brief intervention for reducing drinking intentions.

    PubMed

    Young, Chelsie M; Rodriguez, Lindsey M; Neighbors, Clayton

    2013-12-01

    The present study examined the effectiveness of expressive writing in reducing drinking behavior. We expected that students prompted to write about negative drinking experiences would show greater decreases in future drinking intentions compared to the neutral and the positive writing conditions. We also expected that decreases in drinking intentions following the writing prompts might differ based on current drinking and AUDIT scores. Participants included 200 (76% female) undergraduates who completed measures of their current drinking behavior. They were then randomly assigned to either write about: a time when they had a lot to drink that was a good time (Positive); a time when they had a lot to drink that was a bad time (Negative); or their first day of college (Neutral), followed by measures assessing intended drinking over the next three months. Results revealed that participants intended to drink significantly fewer drinks per week and engage in marginally fewer heavy drinking occasions after writing about a negative drinking occasion when compared to control. Interactions provided mixed findings suggesting that writing about a positive event was associated with higher drinking intentions for heavier drinkers. Writing about a negative event was associated with higher intentions among heavier drinkers, but lower intentions among those with higher AUDIT scores. This research builds on previous expressive writing interventions by applying this technique to undergraduate drinkers. Preliminary results provide some support for this innovative strategy but also suggest the need for further refinement, especially with heavier drinkers. PMID:24064189

  19. Heme Oxygenase-1 Induction Improves Cardiac Function following Myocardial Ischemia by Reducing Oxidative Stress

    PubMed Central

    Issan, Yossi; Kornowski, Ran; Aravot, Dan; Shainberg, Asher; Laniado-Schwartzman, Michal; Sodhi, Komal; Abraham, Nader G.; Hochhauser, Edith

    2014-01-01

    Background Oxidative stress plays a key role in exacerbating diabetes and cardiovascular disease. Heme oxygenase-1 (HO-1), a stress response protein, is cytoprotective, but its role in post myocardial infarction (MI) and diabetes is not fully characterized. We aimed to investigate the protection and the mechanisms of HO-1 induction in cardiomyocytes subjected to hypoxia and in diabetic mice subjected to LAD ligation. Methods In vitro: cultured cardiomyocytes were treated with cobalt-protoporphyrin (CoPP) and tin protoporphyrin (SnPP) prior to hypoxic stress. In vivo: CoPP treated streptozotocin-induced diabetic mice were subjected to LAD ligation for 2/24 h. Cardiac function, histology, biochemical damage markers and signaling pathways were measured. Results HO-1 induction lowered release of lactate dehydrogenase (LDH) and creatine phospho kinase (CK), decreased propidium iodide staining, improved cell morphology and preserved mitochondrial membrane potential in cardiomyocytes. In diabetic mice, Fractional Shortening (FS) was lower than non-diabetic mice (35±1%vs.41±2, respectively p<0.05). CoPP-treated diabetic animals improved cardiac function (43±2% p<0.01), reduced CK, Troponin T levels and infarct size compared to non-treated diabetic mice (P<0.01, P<0.001, P<0.01 respectively). CoPP-enhanced HO-1 protein levels and reduced oxidative stress in diabetic animals, as indicated by the decrease in superoxide levels in cardiac tissues and plasma TNFα levels (p<0.05). The increased levels of HO-1 by CoPP treatment after LAD ligation led to a shift of the Bcl-2/bax ratio towards the antiapoptotic process (p<0.05). CoPP significantly increased the expression levels of pAKT and pGSK3β (p<0.05) in cardiomyocytes and in diabetic mice with MI. SnPP abolished CoPP's cardioprotective effects. Conclusions HO-1 induction plays a role in cardioprotection against hypoxic damage in cardiomyocytes and in reducing post ischemic cardiac damage in the diabetic heart as proved by

  20. Treatment of Chronic Experimental Autoimmune Encephalomyelitis with Epigallocatechin-3-Gallate and Glatiramer Acetate Alters Expression of Heme-Oxygenase-1

    PubMed Central

    Janssen, Antonia; Fiebiger, Sebastian; Bros, Helena; Hertwig, Laura; Romero-Suarez, Silvina; Hamann, Isabell; Chanvillard, Coralie; Bellmann-Strobl, Judith; Paul, Friedemann; Millward, Jason M.; Infante-Duarte, Carmen

    2015-01-01

    We previously demonstrated that epigallocatechin-3-gallate (EGCG) synergizes with the immunomodulatory agent glatiramer acetate (GA) in eliciting anti-inflammatory and neuroprotective effects in the relapsing-remitting EAE model. Thus, we hypothesized that mice with chronic EAE may also benefit from this combination therapy. We first assessed how a treatment with a single dose of GA together with daily application of EGCG may modulate EAE. Although single therapies with a suboptimal dose of GA or EGCG led to disease amelioration and reduced CNS inflammation, the combination therapy had no effects. While EGCG appeared to preserve axons and myelin, the single GA dose did not improve axonal damage or demyelination. Interestingly, the neuroprotective effect of EGCG was abolished when GA was applied in combination. To elucidate how a single dose of GA may interfere with EGCG, we focused on the anti-inflammatory, iron chelating and anti-oxidant properties of EGCG. Surprisingly, we observed that while EGCG induced a downregulation of the gene expression of heme oxygenase-1 (HO-1) in affected CNS areas, the combined therapy of GA+EGCG seems to promote an increased HO-1 expression. These data suggest that upregulation of HO-1 may contribute to diminish the neuroprotective benefits of EGCG alone in this EAE model. Altogether, our data indicate that neuroprotection by EGCG in chronic EAE may involve regulation of oxidative processes, including downmodulation of HO-1. Further investigation of the re-dox balance in chronic neuroinflammation and in particular functional studies on HO-1 are warranted to understand its role in disease progression. PMID:26114502

  1. Oryeongsan inhibits LPS-induced production of inflammatory mediators via blockade of the NF-kappaB, MAPK pathways and leads to HO-1 induction in macrophage cells

    PubMed Central

    2014-01-01

    Background Oryeongsan (OR) is an herbal medication used in east-Asian traditional medicine to treat dysuresia, such as urinary frequency, hematuria, and dysuria due to renal disease and chronic nephritis. Recent studies showed that protective effect against acute gastric mucosal injury and an inhibitory effect on the renin-angiotensin-aldosterone pathway of OR. However, its effect on inflammation still remains unknown. In this study, to provide insight into the biological effects of OR, we investigated their effects on lipopolysaccharide (LPS)-mediated inflammation in the RAW 264.7 macrophage cells. Methods We investigated the pharmacological and biological effects of OR on the production of pro-inflammatory cytokines, inflammatory mediators, and related products through Enzyme-linked immunosorbent assay (ELISA), reverse transcription-polymerase chain reaction (RT-PCR) and Western blot analysis. Also, we examined the activation and suppression of nuclear factor (NF)-kappaB and mitogen-activated protein kinases (MAPKs) pathways in LPS-stimulated macrophages via Western blot analysis in order to explore inhibitory mechanism of OR. Results OR had anti-inflammatory effects by inhibiting the production of nitric oxide (NO), tumor necrosis factor (TNF)-alpha, interleukin (IL)-6, and IL-1beta. In addition, it strongly suppressed cyclooxygenase (COX)-2 and inducible nitric oxide synthase (iNOS), NO synthesizing enzymes. It also induced heme oxygenase (HO)-1 expression and inhibited NF-kappaB signaling pathway activation and phosphorylation of MAPKs. Conclusions We further demonstrate the anti-inflammatory effects and inhibitory mechanism of OR in LPS-stimulated macrophages for the first time. OR contains strong anti-inflammatory activity and affects various mechanism pathways including NF-kappaB, MAPKs and HO-1. Our results suggest that OR has potential value to be developed as an inflammatory therapeutic agent from a natural substance. PMID:25023125

  2. Lectin from Abelmoschus esculentus reduces zymosan-induced temporomandibular joint inflammatory hypernociception in rats via heme oxygenase-1 pathway integrity and tnf-α and il-1β suppression.

    PubMed

    Freitas, Raul Sousa; do Val, Danielle Rocha; Fernandes, Maria Ester Frota; Gomes, Francisco Isaac Fernandes; de Lacerda, José Thalles Jocelino Gomes; SantiGadelha, Tatiane; de Almeida Gadelha, Carlos Alberto; de Paulo Teixeira Pinto, Vicente; Cristino-Filho, Gerardo; Pereira, Karuza Maria Alves; de Castro Brito, Gerly Anne; Bezerra, Mirna Marques; Chaves, Hellíada Vasconcelos

    2016-09-01

    Temporomandibular joint (TMJ) disorders show inflammatory components, heavily impacting on quality of life. Abelmoschus esculentus is largely cultivated in Northeastern Brazil for medicinal purposes, having it shown anti-inflammatory activity. We evaluated A. esculentus lectin (AEL) efficacy in reducing zymosan-induced temporomandibular joint inflammatory hypernociception in rats along with the mechanism of action through which it exerts anti-inflammatory activity. Animals were pre-treated with AEL (0.01, 0.1 or 1mg/kg) before zymosan (Zy) injection in the TMJ to determine anti-inflammatory activity. To analyse the possible effect of the hemeoxygenase-1 (HO-1) and the nitric oxide (NO) pathways on AEL efficacy, animals were pre-treated with ZnPP-IX (3mg/kg), a specific HO-1 inhibitor, or aminoguanidine (30mg/kg), a selective iNOS inhibitor, before AEL administration. Von Frey test evaluated inflammatory hypernociception, synovial fluid collection was performed to determine leukocyte counting and myeloperoxidase (MPO) activity 6h after Zy injection, and Evans Blue extravasation determined vascular permeability. TMJ tissue was collected for histopathological analysis (H&E) and immunohistochemistry (TNF-α, IL-1β, HO-1). In addition, TMJ tissue and trigeminal ganglion collection was performed for TNF-α and IL-1β dosage (ELISA). AEL increased inflammatory nociceptive threshold, reduced leukocyte influx along with MPO activity, leukocyte influx into the synovial membrane, and Evans Blue extravasation. It promoted HO-1 overexpression whilst decreased TNF-α and IL-1β expression in the TMJ tissue. AEL reduced TNF-α and IL-1β levels in TMJ tissue and trigeminal ganglion. AEL effects, however, were not observed in the presence of ZnPP-IX. These findings suggest that AEL efficacy depends on TNF-α/IL-1β inhibition and HO-1 pathway integrity.

  3. Lectin from Abelmoschus esculentus reduces zymosan-induced temporomandibular joint inflammatory hypernociception in rats via heme oxygenase-1 pathway integrity and tnf-α and il-1β suppression.

    PubMed

    Freitas, Raul Sousa; do Val, Danielle Rocha; Fernandes, Maria Ester Frota; Gomes, Francisco Isaac Fernandes; de Lacerda, José Thalles Jocelino Gomes; SantiGadelha, Tatiane; de Almeida Gadelha, Carlos Alberto; de Paulo Teixeira Pinto, Vicente; Cristino-Filho, Gerardo; Pereira, Karuza Maria Alves; de Castro Brito, Gerly Anne; Bezerra, Mirna Marques; Chaves, Hellíada Vasconcelos

    2016-09-01

    Temporomandibular joint (TMJ) disorders show inflammatory components, heavily impacting on quality of life. Abelmoschus esculentus is largely cultivated in Northeastern Brazil for medicinal purposes, having it shown anti-inflammatory activity. We evaluated A. esculentus lectin (AEL) efficacy in reducing zymosan-induced temporomandibular joint inflammatory hypernociception in rats along with the mechanism of action through which it exerts anti-inflammatory activity. Animals were pre-treated with AEL (0.01, 0.1 or 1mg/kg) before zymosan (Zy) injection in the TMJ to determine anti-inflammatory activity. To analyse the possible effect of the hemeoxygenase-1 (HO-1) and the nitric oxide (NO) pathways on AEL efficacy, animals were pre-treated with ZnPP-IX (3mg/kg), a specific HO-1 inhibitor, or aminoguanidine (30mg/kg), a selective iNOS inhibitor, before AEL administration. Von Frey test evaluated inflammatory hypernociception, synovial fluid collection was performed to determine leukocyte counting and myeloperoxidase (MPO) activity 6h after Zy injection, and Evans Blue extravasation determined vascular permeability. TMJ tissue was collected for histopathological analysis (H&E) and immunohistochemistry (TNF-α, IL-1β, HO-1). In addition, TMJ tissue and trigeminal ganglion collection was performed for TNF-α and IL-1β dosage (ELISA). AEL increased inflammatory nociceptive threshold, reduced leukocyte influx along with MPO activity, leukocyte influx into the synovial membrane, and Evans Blue extravasation. It promoted HO-1 overexpression whilst decreased TNF-α and IL-1β expression in the TMJ tissue. AEL reduced TNF-α and IL-1β levels in TMJ tissue and trigeminal ganglion. AEL effects, however, were not observed in the presence of ZnPP-IX. These findings suggest that AEL efficacy depends on TNF-α/IL-1β inhibition and HO-1 pathway integrity. PMID:27344040

  4. Lycopene ameliorates atrazine-induced oxidative damage in adrenal cortex of male rats by activation of the Nrf2/HO-1 pathway.

    PubMed

    Abass, Marwa Ahmed; Elkhateeb, Shereen Ahmed; Abd El-Baset, Samia Adel; Kattaia, Asmaa Alhosiny; Mohamed, Eman Mosallam; Atteia, Hebatallah Husseini

    2016-08-01

    Atrazine (ATZ) is one of the most commonly used herbicides contaminating plants, soil and water resources. Several strategies have been used to counteract ATZ toxicity. Here, we tested the hypothesis that lycopene could ameliorate ATZ-induced toxicity in the adrenal cortex. For this purpose, 35 adult male albino rats were randomized into five equal groups: untreated control, vehicle control (received 0.5 mL corn oil/day), lycopene (treated with lycopene dissolved in 0.5 mL corn oil, 10 mg/kg b.w./day), ATZ (received ATZ dissolved in 0.5 mL corn oil 300 mg/kg b.w./day), and ATZ + lycopene (treated with ATZ and lycopene at the same previously mentioned doses). All treatments were given by oral gavage for 4 weeks. We found that ATZ exposure significantly increased relative adrenal weight, plasma ACTH levels, and adrenal oxidative stress as manifested by elevated malondialdehyde levels, decreased reduced glutathione content and depressed antioxidant enzyme activities in adrenal cortex tissues with respect to control groups. Furthermore, the transcription of adrenal cortex nuclear factor erythroid 2-related factor 2 (Nrf2), heme oxygenase-1 (HO-1), nuclear factor kappa B, and caspase-3 genes was increased significantly compared with the control groups. This was accompanied with DNA fragmentation and structural and ultrastructural changes in zona glomerulosa and zona fasiculata of the adrenal cortex. Notably, all these changes were partially ameliorated in rats treated concomitantly with ATZ and lycopene. Our results showed that lycopene exerts protective effects against ATZ-induced toxicity in rat adrenal cortex. These effects may be attributed to the antioxidative property of lycopene and its ability to activate the Nrf2/HO-1 pathway. PMID:27102619

  5. Low concentration of 4-hydroxy hexenal increases heme oxygenase-1 expression through activation of Nrf2 and antioxidative activity in vascular endothelial cells

    SciTech Connect

    Ishikado, Atsushi; Nishio, Yoshihiko; Morino, Katsutaro; Ugi, Satoshi; Kondo, Hajime; Makino, Taketoshi; Kashiwagi, Atsunori; Maegawa, Hiroshi

    2010-11-05

    Research highlights: {yields} Low doses of 4-HHE and 4-HNE induce HO-1 expression in vascular endothelial cells. {yields} 4-HHE and 4-HNE increase the intranuclear expression and DNA binding of Nrf2. {yields} 4-HHE and 4-HNE-induced HO-1 expression depends on the activation of Nrf2. {yields} Pretreatment with 4-HHE and 4-HNE prevents oxidative stress-induced cytotoxicity. -- Abstract: Large-scale clinical studies have shown that n-3 polyunsaturated fatty acids (n-3 PUFAs) such as eicosapentaenoic and docosahexaenoic acids reduce cardiovascular events without improving classical risk factors for atherosclerosis. Recent studies have proposed that direct actions of n-3 PUFAs themselves, or of their enzymatic metabolites, have antioxidative and anti-inflammatory effects on vascular cells. Although a recent study showed that plasma 4-hydroxy hexenal (4-HHE), a peroxidation product of n-3 PUFA, increased after supplementation of docosahexaenoic acid, the antiatherogenic effects of 4-HHE in vascular cells remain unclear. In the present study, we tested the hypothesis that 4-HHE induces the antioxidative enzyme heme oxygenase-1 (HO-1) through activation of nuclear factor erythroid 2-related factor 2 (Nrf2), a master regulatory transcriptional factor, and prevents oxidative stress-induced cytotoxicity in vascular endothelial cells. This mechanism could partly explain the cardioprotective effects of n-3 PUFAs. Human umbilical vein endothelial cells were stimulated with 1-10 {mu}M 4-HHE or 4-hydroxy nonenal (4-HNE), a peroxidation product of n-6 PUFAs. Both 4-HHE and 4-HNE dose-dependently increased HO-1 mRNA and protein expression, and intranuclear expression and DNA binding of Nrf2 at 5 {mu}M. Small interfering RNA for Nrf2 significantly reduced 4-HHE- or 4-HNE-induced HO-1 mRNA and protein expression. Furthermore, pretreatment with 4-HHE or 4-HNE prevented tert-butyl hydroperoxide-induced cytotoxicity. In conclusion, 4-HHE, a peroxidation product of n-3 PUFAs, stimulated

  6. Nitric oxide sets off an antioxidant response in adrenal cells: involvement of sGC and Nrf2 in HO-1 induction.

    PubMed

    Astort, F; Mercau, M; Giordanino, E; Degese, M S; Caldareri, L; Coso, O; Cymeryng, C B

    2014-02-15

    Induction of microsomal heme oxygenase 1 (HO-1) activity is considered a cytoprotective mechanism in different cell types. In adrenal cells, HO-1 induction by ACTH exerts a modulatory effect on steroid production as well. As nitric oxide (NO) has been also regarded as an autocrine/paracrine modulator of adrenal steroidogenesis we sought to study the effects of NO on the induction of HO-1 and the mechanism involved. We hereby analyzed the time and dose-dependent effect of a NO-donor (DETA/NO) on HO-1 induction in a murine adrenocortical cell line. We showed that this effect is mainly exerted at a transcriptional level as it is inhibited by actinomycin D and HO-1 mRNA degradation rates were not affected by DETA/NO treatment. HO-1 induction by NO does not appear to involve the generation of oxidative stress as it was not affected by antioxidant treatment. We also demonstrated that NO-treatment results in the nuclear translocation of the nuclear factor-erythroid 2-related factor (Nrf2), an effect that is attenuated by transfecting the cells with a dominant negative isoform of Nrf2. We finally show that the effects of the NO-donor are reproduced by a permeable analog of cGMP and that a soluble guanylate cyclase specific inhibitor blocked both the induction of HO-1 by NO and the nuclear translocation of Nrf2. PMID:24361900

  7. Nitric oxide sets off an antioxidant response in adrenal cells: involvement of sGC and Nrf2 in HO-1 induction.

    PubMed

    Astort, F; Mercau, M; Giordanino, E; Degese, M S; Caldareri, L; Coso, O; Cymeryng, C B

    2014-02-15

    Induction of microsomal heme oxygenase 1 (HO-1) activity is considered a cytoprotective mechanism in different cell types. In adrenal cells, HO-1 induction by ACTH exerts a modulatory effect on steroid production as well. As nitric oxide (NO) has been also regarded as an autocrine/paracrine modulator of adrenal steroidogenesis we sought to study the effects of NO on the induction of HO-1 and the mechanism involved. We hereby analyzed the time and dose-dependent effect of a NO-donor (DETA/NO) on HO-1 induction in a murine adrenocortical cell line. We showed that this effect is mainly exerted at a transcriptional level as it is inhibited by actinomycin D and HO-1 mRNA degradation rates were not affected by DETA/NO treatment. HO-1 induction by NO does not appear to involve the generation of oxidative stress as it was not affected by antioxidant treatment. We also demonstrated that NO-treatment results in the nuclear translocation of the nuclear factor-erythroid 2-related factor (Nrf2), an effect that is attenuated by transfecting the cells with a dominant negative isoform of Nrf2. We finally show that the effects of the NO-donor are reproduced by a permeable analog of cGMP and that a soluble guanylate cyclase specific inhibitor blocked both the induction of HO-1 by NO and the nuclear translocation of Nrf2.

  8. Quantitative real-time polymerase chain reaction (qRT-PCR) restriction fragment length polymorphism (RFLP) method for monitoring highly conserved transgene expression during gene therapy.

    PubMed

    Bruzzone, Carol M; Belcher, John D; Schuld, Nathan J; Newman, Kristal A; Vineyard, Julie; Nguyen, Julia; Chen, Chunsheng; Beckman, Joan D; Steer, Clifford J; Vercellotti, Gregory M

    2008-12-01

    Evaluation of the transfer efficiency of a rat heme oxygenase-1 (HO-1) transgene into mice requires differentiation of rat and mouse HO-1. However, rat and mouse HO-1 have 94% homology; antibodies and enzyme activity cannot adequately distinguish HO-1. We designed a quantitative real-time polymerase chain reaction (qRT-PCR) method to monitor HO-1 transcription relative to a housekeeping gene, GAPDH. The ratio of rat and mouse HO-1 mRNA could be estimated through restriction fragment length polymorphism (RFLP) analysis of the PCR products. In vitro, murine AML12 hepatocytes were transfected with rat HO-1. After 40 h, the total HO-1 mRNA was enriched 2-fold relative to control cells, and rat HO-1 comprised 84% of HO-1 cDNA. In vivo, the rat HO-1 transgene was cloned into a Sleeping Beauty transposase (SB-Tn) construct and was injected hydrodynamically into a mouse model of sickle cell disease (SCD). After 21 days, there was a 32% enrichment of HO-1 mRNA relative to control mice and the rat transgene comprised 88% of HO-1 cDNA. After 21 days, HO-1 protein expression in liver was increased 2.5-fold. In summary, qRT-PCR RFLP is a useful and reliable method to differentiate the transgene from host gene transcription, especially when the host and transgene protein are identical or highly homologous. This method has translational applications to the design, delivery, and monitoring of gene-therapy vectors. PMID:19059164

  9. Imputing gene expression from optimally reduced probe sets

    PubMed Central

    Donner, Yoni; Feng, Ting; Benoist, Christophe; Koller, Daphne

    2012-01-01

    Measuring complete gene expression profiles for a large number of experiments is costly. We propose an approach in which a small subset of probes is selected based on a preliminary set of full expression profiles. In subsequent experiments, only the subset is measured, and the missing values are imputed. We develop several algorithms to simultaneously select probes and impute missing values, and demonstrate that these probe selection for imputation (PSI) algorithms can successfully reconstruct missing gene expression values in a wide variety of applications, as evaluated using multiple metrics of biological importance. We analyze the performance of PSI methods under varying conditions, provide guidelines for choosing the optimal method based on the experimental setting, and indicate how to estimate imputation accuracy. Finally, we apply our approach to a large-scale study of immune system variation. PMID:23064520

  10. Manganese [III] Tetrakis [5,10,15,20]-Benzoic Acid Porphyrin Reduces Adiposity and Improves Insulin Action in Mice with Pre-Existing Obesity

    PubMed Central

    Brestoff, Jonathan R.; Brodsky, Tim; Sosinsky, Alexandra Z.; McLoughlin, Ryan; Stansky, Elena; Fussell, Leila; Sheppard, Aaron; DiSanto-Rose, Maria; Kershaw, Erin E.; Reynolds, Thomas H.

    2015-01-01

    The superoxide dismutase mimetic manganese [III] tetrakis [5,10,15,20]-benzoic acid porphyrin (MnTBAP) is a potent antioxidant compound that has been shown to limit weight gain during short-term high fat feeding without preventing insulin resistance. However, whether MnTBAP has therapeutic potential to treat pre-existing obesity and insulin resistance remains unknown. To investigate this, mice were treated with MnTBAP or vehicle during the last five weeks of a 24-week high fat diet (HFD) regimen. MnTBAP treatment significantly decreased body weight and reduced white adipose tissue (WAT) mass in mice fed a HFD and a low fat diet (LFD). The reduction in adiposity was associated with decreased caloric intake without significantly altering energy expenditure, indicating that MnTBAP decreases adiposity in part by modulating energy balance. MnTBAP treatment also improved insulin action in HFD-fed mice, a physiologic response that was associated with increased protein kinase B (PKB) phosphorylation and expression in muscle and WAT. Since MnTBAP is a metalloporphyrin molecule, we hypothesized that its ability to promote weight loss and improve insulin sensitivity was regulated by heme oxygenase-1 (HO-1), in a similar fashion as cobalt protoporphyrins. Despite MnTBAP treatment increasing HO-1 expression, administration of the potent HO-1 inhibitor tin mesoporphyrin (SnMP) did not block the ability of MnTBAP to alter caloric intake, adiposity, or insulin action, suggesting that MnTBAP influences these metabolic processes independent of HO-1. These data demonstrate that MnTBAP can ameliorate pre-existing obesity and improve insulin action by reducing caloric intake and increasing PKB phosphorylation and expression. PMID:26397111

  11. Reduced expression of Slit2 in renal cell carcinoma.

    PubMed

    Ma, Wei-Jie; Zhou, Yu; Lu, Dan; Dong, Dong; Tian, Xiao-Jun; Wen, Jie-Xi; Zhang, Jun

    2014-01-01

    Slit2, initially identified as an important axon guidance molecule in the nervous system, was suggested to be involved in multiple cellular processes. Recently, Slit2 was reported to function as a potential tumor suppressor in diverse tumors. In this study, we systematically analyzed the expression level of Slit2 in renal cell carcinoma. Compared to paired adjacent non-malignant tissues, both Slit2 mRNA and protein expression were significantly down-regulated in renal cell carcinoma (RCC). Methylation-specific PCR showed that Slit2 promoter was methylated in two renal carcinoma cell lines. Pharmacologic demethylation dramatically induced Slit2 expression in cancer cell lines with weak expression of Slit2. Besides, bisulfite genomic sequencing confirmed that dense methylation existed in Slit2 promoter. Furthermore, in paired RCC samples, Slit2 methylation was observed in 8 out of 38 patients (21.1 %), which was well correlated with the down-regulation of Slit2 in RCC. Therefore, Slit2 may also be a potential tumor suppressor in RCC, which is down-regulated in RCC partially due to promoter methylation.

  12. Reduced Glucocorticoid Receptor Expression Predicts Bladder Tumor Recurrence and Progression

    PubMed Central

    Ishiguro, Hitoshi; Kawahara, Takashi; Zheng, Yichun; Netto, George J.; Miyamoto, Hiroshi

    2015-01-01

    Objectives To assess the levels of glucocorticoid receptor (GR) expression in bladder tumors because the status and its prognostic value remain largely unknown. Methods We immunohistochemically stained for GR in bladder tumor and matched non-neoplastic bladder tissue specimens. Results Overall, GR was positive in 129 (87%) of 149 urothelial tumors, which was significantly (P = .026) lower than in non-neoplastic urothelium (90 [96%] of 94). Forty-two (79%) of 53 low-grade tumors vs 45 (47%) of 96 high-grade carcinomas (P < .001) and 61 (73%) of 84 non–muscle-invasive (NMI) tumors vs 26 (40%) of 65 muscle-invasive (MI) carcinomas (P < .001) were moderately to strongly immunoreactive for GR. Kaplan-Meier and log-rank tests revealed that loss or weak positivity of GR significantly or marginally correlated with recurrence of NMI tumors (P = .025), progression of MI tumors (P = .082), and cancer-specific survival of MI tumors (P = .067). Multivariate analysis identified low GR expression as a strong predictor for recurrence of NMI tumors (P = .034). Conclusions GR expression was downregulated in bladder tumors compared with nonneoplastic bladder tumors and in high-grade/MI tumors compared with low-grade/NMI tumors. Decreased expression of GR, as an independent prognosticator, predicted recurrence of NMI tumors. These results support experimental evidence suggesting an inhibitory role of GR signals in bladder cancer outgrowth. PMID:25015855

  13. Apolipoprotein A-I expression suppresses COX-2 expression by reducing reactive oxygen species in hepatocytes.

    PubMed

    Mao, Jing; Liu, Wei; Wang, Yutong

    2014-11-21

    Abnormal lipid metabolism may contribute to the increase of reactive oxygen species (ROS) and inflammation in the pathogenesis of non-alcoholic steatohepatitis (NASH). Apolipoprotein A-I (apoA-I) accepts cellular cholesterol and phospholipids transported by ATP-binding cassette transporter A1 to generate nascent high density lipoprotein particles. Previous studies revealed that the overexpression of ABCA1 or apoA-I alleviated hepatic lipid levels by modifying lipid transport. Here, we examined the effect of apoA-I overexpression on ROS and genes involved in inflammation in both BEL-7402 hepatocytes and mice. Human apoA-I was overexpressed by transfection in BEL-7402 hepatocytes and by an adenoviral vector in C57BL/6J mice fed a methionine choline-deficient diet. The overexpression of apoA-I in both models resulted in decreased ROS and lipid peroxidation levels, as well as a reduced MAPK phosphorylation and decreased expression levels of c-Fos and COX-2. These results suggest that apoA-I overexpression can reduce steatosis by decreasing ROS levels and suppressing COX-2-induced inflammation in hepatocytes. MAPK and c-Fos are involved in this regulatory process.

  14. Erythropoietin reduces the expression of myostatin in mdx dystrophic mice.

    PubMed

    Feder, D; Rugollini, M; Santomauro, A; Oliveira, L P; Lioi, V P; Santos, R dos; Ferreira, L G; Nunes, M T; Carvalho, M H; Delgado, P O; Carvalho, A A S; Fonseca, F L A

    2014-11-01

    Erythropoietin (EPO) has been well characterized as a renal glycoprotein hormone regulating red blood cell production by inhibiting apoptosis of erythrocyte progenitors in hematopoietic tissues. EPO exerts regulatory effects in cardiac and skeletal muscles. Duchenne muscular dystrophy is a lethal degenerative disorder of skeletal and cardiac muscle. In this study, we tested the possible therapeutic beneficial effect of recombinant EPO (rhEPO) in dystrophic muscles in mdx mice. Total strength was measured using a force transducer coupled to a computer. Gene expression for myostatin, transforming growth factor-β1 (TGF-β1), and tumor necrosis factor-α (TNF-α) was determined by quantitative real time polymerase chain reaction. Myostatin expression was significantly decreased in quadriceps from mdx mice treated with rhEPO (rhEPO = 0.60 ± 0.11, control = 1.07 ± 0.11). On the other hand, rhEPO had no significant effect on the expression of TGF-β1 (rhEPO = 0.95 ± 0.14, control = 1.05 ± 0.16) and TNF-α (rhEPO = 0.73 ± 0.20, control = 1.01 ± 0.09). These results may help to clarify some of the direct actions of EPO on skeletal muscle. PMID:25296358

  15. Saccharomyces cerevisiae expressing bacteriophage endolysins reduce Lactobacillus contamination during fermentation

    Technology Transfer Automated Retrieval System (TEKTRAN)

    One of the challenges facing the fuel ethanol industry is the management of bacterial contamination during fermentation. Lactobacillus species are the predominant contaminants that decrease the profitability of biofuel production by reducing ethanol yields and causing “stuck” fermentations, which i...

  16. Anti-inflammatory activity of myricetin from Diospyros lotus through suppression of NF-κB and STAT1 activation and Nrf2-mediated HO-1 induction in lipopolysaccharide-stimulated RAW264.7 macrophages.

    PubMed

    Cho, Byoung Ok; Yin, Hong Hua; Park, Sang Hyun; Byun, Eui Baek; Ha, Hun Yong; Jang, Seon Il

    2016-08-01

    Diospyros lotus is traditionally used for the treatment of diabetes, diarrhea, tumor, and hypertension. The purpose of this study was to investigate the anti-inflammatory effect and underlying molecular mechanisms of myricetin in lipopolysaccharide (LPS)-stimulated RAW264.7 macrophages. Myricetin dose-dependently suppressed the production of pro-inflammatory mediators (NO, iNOS, PGE2, and COX-2) in LPS-stimulated RAW264.7 macrophages. Myricetin administration decreased the production of NO, iNOS, TNF-α, IL-6, and IL-12 in mice. Myricetin decreased NF-κB activation by suppressing the degradation of IκBα, nuclear translocation of p65 subunit of NF-κB, and NF-κB DNA binding activity in LPS-stimulated RAW264.7 macrophages. Moreover, myricetin attenuated the phosphorylation of STAT1 and the production of IFN-β in LPS-stimulated RAW264.7 macrophages. Furthermore, myricetin induced the expression of HO-1 through Nrf2 translocation. In conclusion, these results suggest that myricetin inhibits the production of pro-inflammatory mediators through the suppression of NF-κB and STAT1 activation and induction of Nrf2-mediated HO-1 expression in LPS-stimulated RAW264.7 macrophages. PMID:27068250

  17. Glucocorticoids decrease astrocyte numbers by reducing glucocorticoid receptor expression in vitro and in vivo.

    PubMed

    Unemura, Kazuhiro; Kume, Toshiaki; Kondo, Minami; Maeda, Yuki; Izumi, Yasuhiko; Akaike, Akinori

    2012-01-01

    Glucocorticoids are stress hormones released from the adrenal cortex and their concentration is controlled by the hypothalamic-pituitary-adrenal axis. In this study, we investigated the effect of glucocorticoids on the number of astrocytes and glucocorticoid receptor (GR) expression in vitro and in vivo. Proliferation of cultured astrocytes was reduced following treatment with corticosterone and dexamethasone for 72 h. Corticosterone and dexamethasone also reduced GR expression in astrocytes. RU486, a GR antagonist, inhibited the reduction in both astrocyte proliferation and GR expression. Furthermore, GR knockdown by siRNA inhibited astrocyte proliferation. We also examined the effect of excessive glucocorticoid release on GR expression and the number of astrocytes in vivo by administering adrenocorticotropic hormone to rats for 14 days. GR expression was reduced in the prefrontal cortex and hippocampus and the number of astrocytes was reduced in the frontal cortex. Overall, our results suggest that glucocorticoids decrease the number of astrocytes by reducing GR expression.

  18. Aged garlic extract enhances heme oxygenase-1 and glutamate-cysteine ligase modifier subunit expression via the nuclear factor erythroid 2-related factor 2-antioxidant response element signaling pathway in human endothelial cells.

    PubMed

    Hiramatsu, Kei; Tsuneyoshi, Tadamitsu; Ogawa, Takahiro; Morihara, Naoaki

    2016-02-01

    The nuclear factor erythroid 2-related factor 2 (Nrf2)-antioxidant response element (ARE) pathway defends cells against oxidative stress and regulates the cellular redox balance. Activation of this pathway induces a variety of antioxidant enzymes, resulting in the protection of our bodies against oxidative damage. It has been reported that aged garlic extract (AGE), a garlic preparation that is rich in water-soluble cysteinyl moieties, reduces oxidative stress and helps to ameliorate of cardiovascular, renal and hepatic diseases. We hypothesized that AGE enhances the expression of antioxidant enzymes via the Nrf2-ARE pathway in human umbilical vein endothelial cells in culture. Gene expression of antioxidant enzymes was measured using real-time polymerase chain reaction. Nuclear accumulation of Nrf2 and antioxidant enzymes expression were evaluated using western blotting analyses. We found that AGE promoted the accumulation of Nrf2 into the nucleus in a time- and dose-dependent manner and increased the gene expression and polypeptide level of heme oxygenase-1 (HO-1) and glutamate-cysteine ligase modifier subunit (GCLM). Moreover, the effect of AGE in elevating the gene expression of HO-1 and GCLM was found to be mediated via Nrf2 activation in human umbilical vein endothelial cells. Taken together, these observations suggest that AGE induces the expression of HO-1 and GCLM, which are antioxidant enzymes, via activation of the Nrf2-ARE signaling pathway. PMID:26507778

  19. Sulforaphane exerts its anti-inflammatory effect against amyloid-β peptide via STAT-1 dephosphorylation and activation of Nrf2/HO-1 cascade in human THP-1 macrophages.

    PubMed

    An, Ye Won; Jhang, Kyoung A; Woo, So-Youn; Kang, Jihee Lee; Chong, Young Hae

    2016-02-01

    Alzheimer's disease (AD) is the most common neurodegenerative disorder worldwide, accounting for most cases of dementia in elderly individuals, and effective therapies are still lacking. This study was designed to investigate the anti-inflammatory properties of sulforaphane against Aβ1-42 monomers in human THP-1 microglia-like cells. The results showed that sulforaphane preferentially inhibited cathepsin B- and caspase-1-dependent NLRP3 inflammasome activation induced by mostly Aβ1-42 monomers, an effect that potently reduced excessive secretion of the proinflammatory cytokine interleukin-1β (IL-1β). Subsequent mechanistic studies revealed that sulforaphane mitigated the activation of signal transducer and activator of transcription-1 induced by Aβ1-42 monomers. Sulforaphane also increased nuclear factor erythroid 2-related factor 2 (Nrf2) nuclear translocation, which was followed by upregulation of heme-oxygenase 1 (HO-1). The anti-inflammatory effect of sulforaphane on Aβ1-42-induced IL-1β production was diminished by small interfering RNA-mediated knockdown of Nrf2 or HO-1. Moreover, sulforaphane significantly attenuated the levels of microRNA-146a, which is selectively upregulated in the temporal cortex and hippocampus of AD brains. The aforementioned effects of sulforaphane were replicated by the tyrosine kinase inhibitor, herbimycin A, and Nrf2 activator. These results indicate that signal transducer and activator of transcription-1 dephosphorylation, HO-1 and its upstream effector, Nrf2, play a pivotal role in triggering an anti-inflammatory signaling cascade of sulforaphane that results in decreases of IL-1β release and microRNA-146a production in Aβ1-42-stimulated human microglia-like cells. These findings suggest that the phytochemical sulforaphane has a potential application in AD therapeutics.

  20. Grape seed proanthocyanidins protects against cadmium induced oxidative pancreatitis in rats by attenuating oxidative stress, inflammation and apoptosis via Nrf-2/HO-1 signaling.

    PubMed

    Bashir, Nazima; Manoharan, Vaihundam; Miltonprabu, Selvaraj

    2016-06-01

    The present study has been designed and carried out to explore the role of grape seed proanthocyanidins (GSP) in the pancreas of cadmium (Cd)-induced cellular oxidative stress-mediated toxicity in rats. Four groups of healthy rats were given oral doses of Cd (5-mg/kg BW) and to identify the possible mechanism of action of GSP 100-mg/kg BW was selected and was given 90 min before Cd intoxication. The causative molecular and cellular mechanism of Cd was determined using various biochemical assays, histology, western blotting and ELISA. Cd intoxication revealed increased levels of proinflammatory cytokines (TNF-α, IL1β and IFN-γ), reduced levels of cellular defense proteins (Nrf-2 and HO-1) and glucose transporter (GLUT-2 and GLUT-4) along with the enhanced levels of signaling molecules of apoptosis (cleaved Caspase-12/9/8/3) in the pancreas of Cd-intoxicated rats. Results suggested that the treatment with GSP reduced blood glucose level, increased plasma insulin and mitigated oxidative stress-related markers. GSP protects pancreatic tissue by attenuated inflammatory responses and inhibited apoptosis. This uniqueness and absence of any detectable adverse effect of GSP proposes the possibility of using it as an effective protector in the oxidative stress-mediated pancreatic dysfunction in rats. PMID:27142746

  1. Expression of the RNase III enzyme DROSHA is reduced during progression of human cutaneous melanoma

    PubMed Central

    Jafarnejad, Seyed Mehdi; Sjoestroem, Cecilia; Martinka, Magdalena; Li, Gang

    2016-01-01

    Aberrant expression of miRNAs and their biogenesis factors has been frequently observed in different types of cancer. We recently reported that expression of DICER1 is reduced in metastatic melanoma. Nevertheless, so far very little is known about the expression pattern of other miRNA biogenesis factors in this type of malignancy. Here, we investigated the expression pattern of DROSHA in a large set of melanocytic lesions by tissue microarray and immunohistochemistry (n = 409). We found that nuclear expression of DROSHA is markedly reduced in the early stages of melanoma progression (P = 0.0001) and is inversely correlated with melanoma thickness (P = 0.0001), AJCC stages (P = 0.0001), and ulceration status (P = 0.002). We also confirmed the reduced expression of nuclear DROSHA by a second specific antibody raised against a different region of the DROSHA protein. In addition, we observed that the reduced nuclear expression of DROSHA during melanoma progression is accompanied by an increased cytoplasmic expression of this protein (P = 0.0001). Finally, we found that expression pattern of DROSHA varies from that of DICER1 and concomitant loss of expression of both DICER1 and DROSHA confers the worse outcome for melanoma patients. Our results demonstrate a reduced nuclear expression of DROSHA which further highlights a perturbed miRNA biogenesis pathway in melanoma. In addition, the aberrant subcellular localization of DROSHA indicates possible deregulation in the mechanisms responsible for its proper localization in the nucleus. PMID:23370771

  2. Propofol-induced protection of SH-SY5Y cells against hydrogen peroxide is associated with the HO-1 via the ERK pathway.

    PubMed

    Gu, Jing; Chi, Meng; Sun, Xuechao; Wang, Guonian; Li, Mingming; Liu, Li; Li, Xuan

    2013-01-01

    Propofol (2, 6-diisopropylphenol), is an anesthetic and routinely used for the humans sedation during surgery. The potent inducers of phase II detoxifying and antioxidant stress responsive to propofol were investigated. First, a dose of 25-100 µM propofol showed no significant cytotoxicity on SH-SY5Y cells and pre-treatment of SH-SY5Y cells with propofol (25-100 μM) for 8h prevented cell death and maintained cell integrity following exposure to 1 mM hydrogen peroxide by MTT assays. Then, an increase in the generation of ROS following hydrogen peroxide treatment was significantly attenuated by 8 h pre-treatment with propofol. Additionally, the potential roles of ERK, p 38 MAPK and JNK in the regulation of propofol-induced endogenous HO-1 expression in SH-SY5Y cells were estimated by Western blotting assays. Results showed that propofol significantly increased the phosphorylation levels of ERK, p 38 MAPK and JNK and antioxidant stress responsive to propofol was attenuated by the inhibition of ERK signaling biochemical inhibitors. These results suggest that the ERK pathway plays an important role in the regulation of propofol-mediated antioxidant effects in SH-SY5Y cells.

  3. Propofol-Induced Protection of SH-SY5Y Cells against Hydrogen Peroxide Is Associated with the HO-1 via the ERK Pathway

    PubMed Central

    Gu, Jing; Chi, Meng; Sun, Xuechao; Wang, Guonian; Li, Mingming; Liu, Li; Li, Xuan

    2013-01-01

    Propofol (2, 6-diisopropylphenol), is an anesthetic and routinely used for the humans sedation during surgery. The potent inducers of phase II detoxifying and antioxidant stress responsive to propofol were investigated. First, a dose of 25-100 µM propofol showed no significant cytotoxicity on SH-SY5Y cells and pre-treatment of SH-SY5Y cells with propofol (25-100 μM) for 8h prevented cell death and maintained cell integrity following exposure to 1 mM hydrogen peroxide by MTT assays. Then, an increase in the generation of ROS following hydrogen peroxide treatment was significantly attenuated by 8 h pre-treatment with propofol. Additionally, the potential roles of ERK, p 38 MAPK and JNK in the regulation of propofol-induced endogenous HO-1 expression in SH-SY5Y cells were estimated by Western blotting assays. Results showed that propofol significantly increased the phosphorylation levels of ERK, p 38 MAPK and JNK and antioxidant stress responsive to propofol was attenuated by the inhibition of ERK signaling biochemical inhibitors. These results suggest that the ERK pathway plays an important role in the regulation of propofol-mediated antioxidant effects in SH-SY5Y cells. PMID:23569422

  4. Reducing dynamin 2 expression rescues X-linked centronuclear myopathy

    PubMed Central

    Cowling, Belinda S.; Chevremont, Thierry; Prokic, Ivana; Kretz, Christine; Ferry, Arnaud; Coirault, Catherine; Koutsopoulos, Olga; Laugel, Vincent; Romero, Norma B.; Laporte, Jocelyn

    2014-01-01

    Centronuclear myopathies (CNM) are congenital disorders associated with muscle weakness and abnormally located nuclei in skeletal muscle. An autosomal dominant form of CNM results from mutations in the gene encoding dynamin 2 (DNM2), and loss-of-function mutations in the gene encoding myotubularin (MTM1) result in X-linked CNM (XLCNM, also called myotubular myopathy), which promotes severe neonatal hypotonia and early death. Currently, no effective treatments exist for XLCNM. Here, we found increased DNM2 levels in XLCNM patients and a mouse model of XLCNM (Mtm1–/y). Generation of Mtm1–/y mice that were heterozygous for Dnm2 revealed that reduction of DNM2 in XLCNM mice restored life span, whole-body strength, and diaphragm function and increased muscle strength. Additionally, classic CNM-associated histological features, including fiber atrophy and nuclei mispositioning, were absent or reduced. Ultrastructural analysis revealed improvement of sarcomere organization and triad structures. Skeletal muscle–specific decrease of Dnm2 during embryogenesis or in young mice after disease onset revealed that the rescue associated with downregulation of Dnm2 is cell autonomous and is able to stop and potentially revert XLCNM progression. These data indicate that MTM1 and DNM2 regulate muscle organization and force through a common pathway. Furthermore, despite DNM2 being a key mechanoenzyme, its reduction is beneficial for XLCNM and represents a potential therapeutic approach for patients. PMID:24569376

  5. N-acetylcysteine protects against liver injure induced by carbon tetrachloride via activation of the Nrf2/HO-1 pathway.

    PubMed

    Cai, Zhaobin; Lou, Qi; Wang, Fugen; Li, Er; Sun, Jingjing; Fang, Hongying; Xi, Jianjun; Ju, Liping

    2015-01-01

    Chronic liver injury is an important clinical problem which eventually leads to cirrhosis, hepatocellular carcinoma and end-stage liver failure. It is well known that cell damage induced by reactive oxygen species (ROS) is an important mechanism of hepatocyte injure. N-acetylcysteine (NAC), a precursor of glutathione (GSH), is well-known role as the antidote to acetaminophen toxicity in clinic. NAC is now being utilized more widely in the clinical setting for non-acetaminophen (APAP) related causes of liver injure. However, the mechanisms underlying its beneficial effects are poorly defined. Thus, Aim of the present study was to investigate potential hepatic protective role of NAC and to delineate its mechanism of action against carbon tetrachloride (CCl4)-induced liver injury in models of rat. Our results showed that the alanine aminotransferase (ALT) and aspartate aminotransferase (AST) activities as well as malondialdehyde (MDA) contents decreased significantly in CCl4-induced rats with NAC treatment. GSH content and superoxide dismutase (SOD) activities remarkably increased in the NAC groups compared with those in CCl4-induced group. Treatment with NAC had been shown to an increase in nuclear factor erythroid 2-related factor 2 (Nrf2) and heme oxygenase-1 (HO-1) mRNA levels. In conclusion, these results suggested that NAC upregulated HO-1 through the activation of Nrf2 pathway and protected rat against CCl4-induced liver injure. The results of this study provided pharmacological evidence to support the clinical application of NAC. PMID:26339453

  6. Magnetoelectric and magnetic properties of aluminum borates Ho1 - x Nd x Al3(BO3)4

    NASA Astrophysics Data System (ADS)

    Volkov, N. V.; Gudim, I. A.; Demidov, A. A.; Eremin, E. V.

    2015-03-01

    The magnetoelectric and magnetic properties of substituted aluminum borates Ho1 - x Nd x Al3(BO3)4 have been studied experimentally and theoretically. A large magnetoelectric effect exceeding all known values in isostructural compounds except for HoAl3(BO3)4 has been found. The magnetoelectric polarization of Ho0.8Nd0.2Al3(BO3)4 and Ho0.5Nd0.5Al3(BO3)4 at T = 5 K in a field of 9 T is Δ P ab ( B b ) ≈ -2630 and 1380 μC/m2, respectively. A theoretical consideration based on the crystal field model for the rare-earth ion made it possible to interpret all measured properties within the unified approach. The crystal field parameters have been determined. The temperature (3-300 K) and field (up to 9 T) dependences of the magnetization and the temperature (5-100 K) and field (up to 9 T) dependences of the polarization have been described. The studied properties of Ho1 - x Nd x Al3(BO3)4 have been compared with those of HoAl3(BO3)4 demonstrating record-high polarization values.

  7. Morin downregulates nitric oxide and prostaglandin E2 production in LPS-stimulated BV2 microglial cells by suppressing NF-κB activity and activating HO-1 induction.

    PubMed

    Dilshara, Matharage Gayani; Jayasooriya, Rajapaksha Gedara Prasad Tharanga; Lee, Seungheon; Choi, Yung Hyun; Kim, Gi-Young

    2016-06-01

    Morin possesses anti-inflammatory activity against septic shock and allergic responses, and prevents acute liver damage. However, the biological mechanism of action of morin in neuroinflammation remains largely unknown. Therefore, the present study investigated whether morin has the ability to attenuate expression of proinflammatory mediators such as nitric oxide (NO) and prostaglandin E2 (PGE2) in lipopolysaccharide (LPS)-stimulated BV2 microglial cells. Morin inhibited the expression of LPS-induced proinflammatory mediators such as NO and PGE2, without any cytotoxic effects. Furthermore, LPS-induced inducible NO synthase (iNOS) and cyclooxygenase-2 (COX-2) were inhibited both at the mRNA and protein levels in response to morin. Morin also attenuated LPS-induced DNA-binding activity of nuclear transcription factor-κB (NF-κB) and its promoter activity. Pyrrolidine dithiocarbamate (PDTC), a specific NF-κB inhibitor, downregulated the expression of LPS-induced iNOS and COX-2, which suggests that morin-mediated NF-κB inhibition is the main signaling pathway responsible for the inhibition of iNOS and COX-2 expression. Additionally, morin increased induction of heme oxygenase-1 (HO-1) activity, leading to the suppression of NO and PGE2 production. Our results indicate that morin downregulates the expression of proinflammatory genes, such as iNOS and COX-2, involved in the synthesis of NO and PGE2 in LPS-stimulated BV2 microglial cells by suppressing NF-κB activity and activation of HO-1. Taken together, the findings of the present study suggest that morin may have potential as a therapeutic for the prevention of neuroinflammation.

  8. Face in profile view reduces perceived facial expression intensity: an eye-tracking study.

    PubMed

    Guo, Kun; Shaw, Heather

    2015-02-01

    Recent studies measuring the facial expressions of emotion have focused primarily on the perception of frontal face images. As we frequently encounter expressive faces from different viewing angles, having a mechanism which allows invariant expression perception would be advantageous to our social interactions. Although a couple of studies have indicated comparable expression categorization accuracy across viewpoints, it is unknown how perceived expression intensity and associated gaze behaviour change across viewing angles. Differences could arise because diagnostic cues from local facial features for decoding expressions could vary with viewpoints. Here we manipulated orientation of faces (frontal, mid-profile, and profile view) displaying six common facial expressions of emotion, and measured participants' expression categorization accuracy, perceived expression intensity and associated gaze patterns. In comparison with frontal faces, profile faces slightly reduced identification rates for disgust and sad expressions, but significantly decreased perceived intensity for all tested expressions. Although quantitatively viewpoint had expression-specific influence on the proportion of fixations directed at local facial features, the qualitative gaze distribution within facial features (e.g., the eyes tended to attract the highest proportion of fixations, followed by the nose and then the mouth region) was independent of viewpoint and expression type. Our results suggest that the viewpoint-invariant facial expression processing is categorical perception, which could be linked to a viewpoint-invariant holistic gaze strategy for extracting expressive facial cues. PMID:25531122

  9. Beneficial effects of Camellia Oil (Camellia oleifera Abel.) on ketoprofen-induced gastrointestinal mucosal damage through upregulation of HO-1 and VEGF.

    PubMed

    Cheng, Yu-Ting; Wu, Shu-Li; Ho, Cheng-Ying; Huang, Shang-Ming; Cheng, Chun-Lung; Yen, Gow-Chin

    2014-01-22

    Nonsteroidal anti-inflammatory drugs, such as ketoprofen, are generally used to treat pain and inflammation and as pyretic agents in clinical medicine. However, the usage of these drugs may lead to oxidative injury to the gastrointestinal mucosa. Camellia oil ( Camellia oleifera Abel.) is commonly used in Taiwan and China as cooking oil. Traditional remedies containing this oil exert beneficial health effects on the bowel, stomach, liver, and lungs. However, the effects of camellia oil on ketoprofen-induced oxidative gastrointestinal mucosal lesions remain unknown. The objective of this study was to evaluate the effect of camellia oil on ketoprofen-induced acute gastrointestinal ulcers. The results showed that treatment of Int-407 cells with camellia oil (50-75 μg/mL) not only increased the levels of heme oxygenase-1 (HO-1), glutathione peroxidase (GPx), and superoxide dismutase (SOD) mRNA expression but also increased vascular endothelial growth factor (VEGF) and prostaglandin E2 (PGE2) protein secretion, which served as a mucosal barrier against gastrointestinal oxidative injury. Moreover, Sprague-Dawley (SD) rats treated with camellia oil (2 mL/kg/day) prior to the administration of ketoprofen (50 mg/kg/day) successfully inhibited COX-2 protein expression, inhibited the production of interleukin-6 (IL-6) and nitrite oxide (NO), reversed the impairment of the antioxidant system, and decreased oxidative damage in the gastrointestinal mucosa. More importantly, pretreatment of SD rats with camellia oil strongly inhibited gastrointestinal mucosal injury induced by ketoprofen, which was proved by the histopathological staining of gastrointestinal tissues. Our data suggest that camellia oil exerts potent antiulcer effects against oxidative damage in the stomach and intestine induced by ketoprofen.

  10. Reduced expression of Autographa californica nucleopolyhedrovirus ORF34, an essential gene, enhances heterologous gene expression

    SciTech Connect

    Salem, Tamer Z.; Zhang, Fengrui; Thiem, Suzanne M.

    2013-01-20

    Autographa californica multiple nucleopolyhedrovirus ORF34 is part of a transcriptional unit that includes ORF32, encoding a viral fibroblast growth factor (FGF) and ORF33. We identified ORF34 as a candidate for deletion to improve protein expression in the baculovirus expression system based on enhanced reporter gene expression in an RNAi screen of virus genes. However, ORF34 was shown to be an essential gene. To explore ORF34 function, deletion (KO34) and rescue bacmids were constructed and characterized. Infection did not spread from primary KO34 transfected cells and supernatants from KO34 transfected cells could not infect fresh Sf21 cells whereas the supernatant from the rescue bacmids transfection could recover the infection. In addition, budded viruses were not observed in KO34 transfected cells by electron microscopy, nor were viral proteins detected from the transfection supernatants by western blots. These demonstrate that ORF34 is an essential gene with a possible role in infectious virus production.

  11. Oxidative stress suppression by luteolin-induced heme oxygenase-1 expression

    SciTech Connect

    Sun, Gui-bo; Sun, Xiao; Wang, Min; Ye, Jing-xue; Si, Jian-yong; Xu, Hui-bo; Meng, Xiang-bao; Qin, Meng; Sun, Jing; Wang, Hong-wei; Sun, Xiao-bo

    2012-12-01

    Luteolin, a flavonoid that exhibits antioxidative properties, exerts myocardial protection effects. However, the underlying molecular mechanisms are not yet fully understood. To investigate the effects of luteolin on myocardial injury protection and its possible mechanisms, a myocardial injury model was established with intragastric administration of 4 mg/kg isoproterenol (ISO) to male Sprague–Dawley rats (200–220 g) daily for 2 days. We found that pretreatment of luteolin (160, 80 and 40 mg/kg, i.g., respectively) daily for 15 days can prevent ISO-induced myocardial damage, including decrease of serum cardiac enzymes, improvement electrocardiography and heart vacuolation. Luteolin also improved the free radical scavenging and antioxidant potential, suggesting one possible mechanism of luteolin-induced cardio-protection is mediated by blocking the oxidative stress. To clarify the mechanisms, we performed the in vitro study by hydrogen peroxide (H{sub 2}O{sub 2})-induced cytotoxicty model in H9c2 cells. We found that luteolin pretreatment prevented apoptosis, increased the expression of heme oxygenase-1 (HO-1), and enhanced the binding of Nrf2 to the antioxidant response element, providing an adaptive survival response against H{sub 2}O{sub 2}-derived oxidative cytotoxicity. The addition of Znpp, a selective HO-1 competitive inhibitor, reduced the cytoprotective ability of luteolin, indicating the vital role of HO-1 on these effects. Luteolin also activated Akt and ERK, whereas the addition of LY294002 and U0126, the pharmacologic inhibitors of PI3K and ERK, attenuated luteolin-induced HO-1 expression and cytoprotective effect. Taken together, the above findings suggest that luteolin protects against myocardial injury and enhances cellular antioxidant defense capacity through the activation of Akt and ERK signal pathways that leads to Nrf2 activation, and subsequently HO-1 induction. -- Highlights: ► Luteolin prevents isoproterenol-induced myocardial damage.

  12. Assessing and reducing sources of gene expression variability in Staphylococcus epidermidis biofilms.

    PubMed

    Sousa, Cármen; França, Angela; Cerca, Nuno

    2014-12-01

    Gene expression quantification can be a useful tool in studying the properties of bacterial biofilms. Unfortunately, techniques such as RNA extraction, cDNA synthesis, and quantitative PCR (qPCR) can introduce variability into mRNA transcript measurements, obscuring biologically relevant results. Here we sought to identify the steps that impair accurate gene expression quantification from Staphylococcus epidermidis biofilm samples. We devised an experimental setup that could be used to determine the contribution of each experimental step to the variability of mRNA transcript measurement. Among factors tested, biofilm growth contributed the most bias to gene expression quantification. Additional experiments demonstrated that pooling biofilms together reduced this variability, resulting in more accurate gene expression analysis results. We therefore recommend pooling in order to reduce the variability associated with gene expression quantification from biofilm samples. PMID:25495729

  13. Increased expression of heme oxygenase-1 in human retinal pigment epithelial cells by transforming growth factor-beta.

    PubMed

    Kutty, R K; Nagineni, C N; Kutty, G; Hooks, J J; Chader, G J; Wiggert, B

    1994-05-01

    Antibodies specific for heme oxygenase-1 (HO-1) were produced in rabbits, using the multiple antigen peptide (MAP) technique, and were employed to investigate the ability of transforming growth factor-beta 1 (TGF-beta 1) to induce the HO-1 protein in cultured human retinal pigment epithelial (RPE) cells. Western blot analyses showed that the cytokine induced HO-1 in these cells in a time- and dose-dependent manner. TGF-beta 1 also increased the mRNA for HO-1 in treated cells prior to the increase in HO-1 protein. The induction was effectively blocked by a neutralizing antibody preparation against TGF-beta 1. When tested under similar conditions, other growth factors such as basic fibroblast growth factor-I, platelet-derived growth factor, insulin-like growth factor, transforming growth factor-alpha, and epidermal growth factor did not show appreciable induction of HO-1. Lipopolysaccharide, tumor necrosis factor-alpha, and interferon-gamma were also not inducers, although TGF-beta 2 effectively induced HO-1. Heavy metal ions and thiol reagents were also highly potent inducers of HO-1 in human RPE cells. The induction of HO-1 by TGF-beta 1 was also observed in bovine choroid fibroblasts, but not in HELA, HEL or bovine corneal fibroblasts. Our results demonstrate for the first time that HO-1 can be induced by an important cytokine, TGF-beta 1, causing an increase in the expression of both HO-1 message and protein in specific neuroepithelial and fibroblast cells.

  14. Expression of heme oxygenase-1 in non-small cell lung cancer (NSCLC) and its correlation with clinical data.

    PubMed

    Degese, María S; Mendizabal, Javier E; Gandini, Norberto A; Gutkind, J Silvio; Molinolo, Alfredo; Hewitt, Stephen M; Curino, Alejandro C; Coso, Omar A; Facchinetti, María M

    2012-07-01

    While changes in heme oxygenase (HO-1) in lung cancer have already been reported, conflicting results were obtained for enzyme expression in human lung cancer specimens. Therefore, the aim of this work was to study HO-1 expression in a large collection of human lung cancer samples. For this purpose, we analyzed the expression of HO-1 in an organized tissue microarray (TMA) and investigated its correlation with clinicopathological data. Ninety-six percent of tumor samples were positive for HO-1, and the expression of HO-1 was significantly higher in cancerous than in non-cancerous tissues. Importantly, HO-1 expression correlated with advanced stages and lymph node involvement. Additionally, quantitative RT-PCR in 18 pairs of human lung carcinomas and their adjacent non-malignant tissues was performed. Our results demonstrate that HO-1 protein is upregulated in epithelial malignant cells in NSCLC and its expression is associated with higher stages of the disease. Additionally, different subcellular localization is observed between tumor and adjacent non-malignant tissues.

  15. Hydrogen Gas Alleviates the Intestinal Injury Caused by Severe Sepsis in Mice by Increasing the Expression of Heme Oxygenase-1.

    PubMed

    Li, Yuan; Li, Qi; Chen, Hongguang; Wang, Tao; Liu, Lingling; Wang, Guolin; Xie, Keliang; Yu, Yonghao

    2015-07-01

    Hydrogen gas (H2) has antioxidative, anti-inflammatory, and antiapoptotic effects and may have beneficial effects in severe sepsis. The purpose of this study was to investigate the mechanisms underlying these protective effects. Male Institute for Cancer Research mice were randomized into 6 groups: sham; sham + H2; severe sepsis; severe sepsis + H2; severe sepsis + zinc protoporphyrin IX (ZnPPIX), a heme oxygenase-1 (HO-1) inhibitor; and severe sepsis + H2 + ZnPPIX. Cecal ligation and puncture (CLP) was used to induce sepsis. Mice in the H2 groups received inhaled 2% H2 for 1 h at 1 h and 6 h after CLP or sham operation. Mice in the ZnPPIX groups received 40-mg/kg ZnPPIX by intraperitoneal injection 1 h before CLP. Tin protoporphyrin IX (TinPPIX), another HO-1 inhibitor, was also used in part for this study. Mice in the TinPPIX groups received 50-mg/kg TinPPIX through subcutaneous injection 6 h before CLP. The levels of biochemical markers, oxidative products, inflammatory mediator, the number of intestinal apoptotic cells, and the colony-forming unit numbers in the peritoneal lavage fluid were much higher in the severe sepsis group compared with the sham group. Intestinal injury in animals with severe sepsis was worse than that in animals in the sham group. H2 therapy in the animals with severe sepsis was associated with reduced intestinal injury, decreased numbers of colony-forming unit and apoptotic cells, reduced levels of biochemical markers, oxidative products, and high-mobility group box 1 protein. The protective effects of H2 were reversed by ZnPPIX and TinPPIX. Protein and messenger RNA expressions of HO-1 and nuclear factor-erythroid 2 p45-related factor 2 (Nrf2) in the intestine were increased in the severe sepsis group compared to the sham group, and H2 further increased their expressions in the severe septic mice. Zinc protoporphyrin IX and TinPPIX inhibited the expression of HO-1 protein. Hydrogen has the capacity to protect mice from organ injury in

  16. Endoplasmic reticulum stress stimulates heme oxygenase-1 gene expression in vascular smooth muscle. Role in cell survival.

    PubMed

    Liu, Xiao-ming; Peyton, Kelly J; Ensenat, Diana; Wang, Hong; Schafer, Andrew I; Alam, Jawed; Durante, William

    2005-01-14

    Heme oxygenase-1 (HO-1) is a cytoprotective protein that catalyzes the degradation of heme to biliverdin, iron, and carbon monoxide (CO). In the present study, we found that endoplasmic reticulum (ER) stress induced by a variety of experimental agents stimulated a time- and concentration-dependent increase in HO-1 mRNA and protein in vascular smooth muscle cells (SMC). The induction of HO-1 by ER stress was blocked by actinomycin D or cycloheximide and was independent of any changes in HO-1 mRNA stability. Luciferase reporter assays indicated that ER stress stimulated HO-1 promoter activity via the antioxidant response element. Moreover, ER stress induced the nuclear import of Nrf2 and the binding of Nrf2 to the HO-1 antioxidant response element. Interestingly, ER stress stimulated SMC apoptosis, as demonstrated by annexin V binding, caspase-3 activation, and DNA laddering. The induction of apoptosis by ER stress was potentiated by HO inhibition, whereas it was prevented by addition of HO substrate. In addition, exposure of SMC to exogenously administered CO inhibited ER stress-mediated apoptosis, and this was associated with a decrease in the expression of the proapoptotic protein, GADD153. In contrast, the other HO-1 products failed to block apoptosis or GADD153 expression during ER stress. These results demonstrated that ER stress is an inducer of HO-1 gene expression in vascular SMC and that HO-1-derived CO acts in an autocrine fashion to inhibit SMC apoptosis. The capacity of ER stress to stimulate the HO-1/CO system provides a novel mechanism by which this organelle regulates cell survival.

  17. DIESEL EXHAUST PARTICLE CHEMICALS ACTIVATE HO-1 GENE EXPRESSION VIA THE STABILIZATION OF NRF2 PROTEIN. (R827352C008)

    EPA Science Inventory

    The perspectives, information and conclusions conveyed in research project abstracts, progress reports, final reports, journal abstracts and journal publications convey the viewpoints of the principal investigator and may not represent the views and policies of ORD and EPA. Concl...

  18. Increased NY-ESO-1 expression and reduced infiltrating CD3+ T cells in cutaneous melanoma.

    PubMed

    Giavina-Bianchi, Mara; Giavina-Bianchi, Pedro; Sotto, Mirian Nacagami; Muzikansky, Alona; Kalil, Jorge; Festa-Neto, Cyro; Duncan, Lyn M

    2015-01-01

    NY-ESO-1 is a cancer-testis antigen aberrantly expressed in melanomas, which may serve as a robust and specific target in immunotherapy. NY-ESO-1 antigen expression, tumor features, and the immune profile of tumor infiltrating lymphocytes were assessed in primary cutaneous melanoma. NY-ESO-1 protein was detected in 20% of invasive melanomas (16/79), rarely in in situ melanoma (1/10) and not in benign nevi (0/20). Marked intratumoral heterogeneity of NY-ESO-1 protein expression was observed. NY-ESO-1 expression was associated with increased primary tumor thickness (P = 0.007) and inversely correlated with superficial spreading melanoma (P < 0.02). NY-ESO-1 expression was also associated with reduced numbers and density of CD3+ tumor infiltrating lymphocytes (P = 0.017). When NY-ESO-1 protein was expressed, CD3+ T cells were less diffusely infiltrating the tumor and were more often arranged in small clusters (P = 0.010) or as isolated cells (P = 0.002) than in large clusters of more than five lymphocytes. No correlation of NY-ESO-1 expression with gender, age, tumor site, ulceration, lymph node sentinel status, or survival was observed. NY-ESO-1 expression in melanoma was associated with tumor progression, including increased tumor thickness, and with reduced tumor infiltrating lymphocytes.

  19. Characterization of Staphylococcus aureus mutants expressing reduced susceptibility to common house-cleaners

    PubMed Central

    Davis, A.O.; O’Leary, J.O.; Muthaiyan, A.; Langevin, M.J.; Delgado, A.; Abalos, A.T.; Fajardo, A.R.; Marek, J.; Wilkinson, B.J.; Gustafson, J.E.

    2013-01-01

    Aims To characterize mutants of Staphylococcus aureus expressing reduced susceptibility to house cleaners (HC), assess the impact of the alternative sigma factor SigB on HC susceptibility, and determine the MIC of clinical methicillin-resistant S. aureus (MRSA) to a HC. Methods and Results Susceptibility to HC, HC components, H2O2, vancomycin and oxacillin and physiological parameters were determined for HC-reduced susceptibility (HCRS) mutants, parent strain COL and COLsigB::kan. HCRS mutants selected with three HC expressed reduced susceptibility to multiple HC, HC components, H2O2 and vancomycin. Two unique HCRS mutants also lost the methicillin resistance determinant. In addition, all HCRS mutants exhibited better growth at two temperatures, and one HCRS mutant expressed reduced carotenoid production. COLsigB::kan demonstrated increased susceptibility to all HC and many HC components. sigB operon mutations were not detected in one HCRS mutant background. Of 76 clinical MRSA, 20 exhibited reduced susceptibility to a HC. Conclusions HCRS mutants demonstrate altered susceptibility to multiple antimicrobials. While sigB is required for full HC resistance, one HCRS mechanism does not involve sigB operon mutations. Clinical MRSA expressing reduced susceptibility to a common HC were detected. Significance and Impact of the Study This study suggests that HCRS mutants are not protected against, nor selected by, practical HC concentrations. PMID:15659191

  20. The Heme Oxygenase-1 Inducer THI-56 Negatively Regulates iNOS Expression and HMGB1 Release in LPS-Activated RAW 264.7 Cells and CLP-Induced Septic Mice

    PubMed Central

    Kim, Young Min; Park, Sang Won; Kim, Hye Jung; Lee, Jae Heun; Chang, Ki Churl

    2013-01-01

    The nuclear DNA binding protein high mobility group box 1 (HMGB1) has recently been suggested to act as a late mediator of septic shock. The effect of ((S)-6,7-dihydroxy-1-(4-hydroxynaphthylmethyl)-1,2,3,4-tetrahydroisoquinoline alkaloid, also known as THI-56, in an experimental model of sepsis was investigated. THI-56 exhibited potent anti-inflammatory properties in response to LPS in RAW 264.7 cells. In particular, THI-56 significantly inhibited the expression of inducible nitric oxide synthase (iNOS) and the release of HMGB1 in activated macrophages. THI-56 activated NE-F2-regulated factor 2 (Nrf-2)/heme oxygenase 1 (HO-1). The specific knockdown of the HO-1 gene by HO-1 siRNA significantly reversed the inhibitory effects of THI-56 on iNOS expression and HMGB1 release in LPS-stimulated macrophages. Importantly, THI-56 administration protected animals from death induced by either a lethal dose of LPS or cecal ligation and puncture (CLP). Furthermore, the ALT, AST, BUN, creatinine, and HMGB1 levels in the blood were significantly increased in CLP-induced septic mice, and the administration of THI-56 reduced these levels in a concentration-dependent and zinc protoporphyrin IX (ZnPPIX)-sensitive manner. In addition, the administration of THI-56 significantly ameliorated not only lung damage but also macrophage infiltration in the livers of CLP-induced septic mice, and these effects were also abrogated in the presence of ZnPPIX. Thus, we conclude that THI-56 significantly attenuates the proinflammatory response induced by LPS and reduces organ damage in a CLP-induced sepsis model through the upregulation of Nrf-2/HO-1. PMID:24098466

  1. Endothelial microparticles reduce ICAM-1 expression in a microRNA-222-dependent mechanism.

    PubMed

    Jansen, Felix; Yang, Xiaoyan; Baumann, Katharina; Przybilla, David; Schmitz, Theresa; Flender, Anna; Paul, Kathrin; Alhusseiny, Adil; Nickenig, Georg; Werner, Nikos

    2015-09-01

    Endothelial microparticles (EMP) are released from activated or apoptotic endothelial cells (ECs) and can be taken up by adjacent ECs, but their effect on vascular inflammation after engulfment is largely unknown. We sought to determine the role of EMP in EC inflammation. In vitro, EMP treatment significantly reduced tumour necrosis factor-α-induced endothelial intercellular adhesion molecule (ICAM)-1 expression on mRNA and protein level, whereas there was no effect on vascular cell adhesion molecule-1 expression. Reduced ICAM-1 expression after EMP treatment resulted in diminished monocyte adhesion in vitro. In vivo, systemic treatment of ApoE-/- mice with EMP significantly reduced murine endothelial ICAM-1 expression. To explore the underlying mechanisms, Taqman microRNA array was performed and microRNA (miR)-222 was identified as the strongest regulated miR between EMP and ECs. Following experiments demonstrated that miR-222 was transported into recipient ECs by EMP and functionally regulated expression of its target protein ICAM-1 in vitro and in vivo. After simulating diabetic conditions, EMP derived from glucose-treated ECs contained significantly lower amounts of miR-222 and showed reduced anti-inflammatory capacity in vitro and in vivo. Finally, circulating miR-222 level was diminished in patients with coronary artery disease (CAD) compared to patients without CAD. EMPs promote anti-inflammatory effects in vitro and in vivo by reducing endothelial ICAM-1 expression via the transfer of functional miR-222 into recipient cells. In pathological hyperglycaemic conditions, EMP-mediated miR-222-dependent anti-inflammatory effects are reduced.

  2. STAT3 Knockdown Reduces Pancreatic Cancer Cell Invasiveness and Matrix Metalloproteinase-7 Expression in Nude Mice

    PubMed Central

    Huang, Ke jian; Wu, Wei dong; Jiang, Tao; Cao, Jun; Feng, Zhen zhong; Qiu, Zheng jun

    2011-01-01

    Aims Transducer and activator of transcription-3 (STAT3) plays an important role in tumor cell invasion and metastasis. The aim of the present study was to investigate the effects of STAT3 knockdown in nude mouse xenografts of pancreatic cancer cells and underlying gene expression. Methods A STAT3 shRNA lentiviral vector was constructed and infected into SW1990 cells. qRT-PCR and western immunoblot were performed to detect gene expression. Nude mouse xenograft assays were used to assess changes in phenotypes of these stable cells in vivo. HE staining was utilized to evaluate tumor cell invasion and immunohistochemistry was performed to analyze gene expression. Results STAT3 shRNA successfully silenced expression of STAT3 mRNA and protein in SW1990 cells compared to control cells. Growth rate of the STAT3-silenced tumor cells in nude mice was significantly reduced compared to in the control vector tumors and parental cells-generated tumors. Tumor invasion into the vessel and muscle were also suppressed in the STAT3-silenced tumors compared to controls. Collagen IV expression was complete and continuous surrounding the tumors of STAT3-silenced SW1990 cells, whereas collagen IV expression was incomplete and discontinuous surrounding the control tumors. Moreover, microvessel density was significantly lower in STAT3-silenced tumors than parental or control tumors of SW1990 cells. In addition, MMP-7 expression was reduced in STAT3-silenced tumors compared to parental SW1990 xenografts and controls. In contrast, expression of IL-1β and IgT7α was not altered. Conclusion These data clearly demonstrate that STAT3 plays an important role in regulation of tumor growth, invasion, and angiogenesis, which could be act by reducing MMP-7 expression in pancreatic cancer cells. PMID:21991388

  3. Introduced Amino Terminal Epitopes Can Reduce Surface Expression of Neuronal Nicotinic Receptors

    PubMed Central

    Bracamontes, John R.; Akk, Gustav; Steinbach, Joe Henry

    2016-01-01

    Epitopes accessible on the surface of intact cells are extremely valuable in studies of membrane proteins, allowing quantification and determination of the distribution of proteins as well as identification of cells expressing large numbers of proteins. However for many membrane proteins there are no suitable antibodies to native sequences, due to lack of availability, low affinity or lack of specificity. In these cases the use of an introduced epitope at specific sites in the protein of interest can often provide a suitable tool for studies. However, the introduction of the epitope sequence has the potential to affect protein expression, the assembly of multisubunit proteins or transport to the surface membrane. We find that surface expression of heteromeric neuronal nicotinic receptors containing the α4 and β4 subunits can be affected by introduced epitopes when inserted near the amino terminus of a subunit. The FLAG epitope greatly reduces surface expression when introduced into either α4 or β4 subunits, the V5 epitope has little effect when placed in either, while the Myc epitope reduces expression more when inserted into β4 than α4. These results indicate that the extreme amino terminal region is important for assembly of these receptors, and demonstrate that some widely used introduced epitopes may severely reduce surface expression. PMID:26963253

  4. Reduced LIMK2 expression in colorectal cancer reflects its role in limiting stem cell proliferation

    PubMed Central

    Lourenço, Filipe C; Munro, June; Brown, Jennifer; Cordero, Julia; Stefanatos, Rhoda; Strathdee, Karen; Orange, Clare; Feller, Stephan M; Sansom, Owen J; Vidal, Marcos; Murray, Graeme I; Olson, Michael F

    2014-01-01

    Objective Colorectal cancer (CRC) is a major contributor to cancer mortality and morbidity. LIM kinase 2 (LIMK2) promotes tumour cell invasion and metastasis. The objectives of this study were to determine how LIMK2 expression is associated with CRC progression and patient outcome, and to use genetically modified Drosophila and mice to determine how LIMK2 deletion affects gastrointestinal stem cell regulation and tumour development. Design LIMK2 expression and activity were measured by immunostaining tumours from CRC-prone mice, human CRC cell lines and 650 human tumours. LIMK knockdown in Drosophila or Limk2 deletion in mice allowed for assessment of their contributions to gastrointestinal stem cell homeostasis and tumour development. Results LIMK2 expression was reduced in intestinal tumours of cancer-prone mice, as well as in human CRC cell lines and tumours. Reduced LIMK2 expression and substrate phosphorylation were associated with shorter patient survival. Genetic analysis in Drosophila midgut and intestinal epithelial cells isolated from genetically modified mice revealed a conserved role for LIMK2 in constraining gastrointestinal stem cell proliferation. Limk2 deletion increased colon tumour size in a colitis-associated colorectal mouse cancer model. Conclusions This study revealed that LIMK2 expression and activity progressively decrease with advancing stage, and supports the hypothesis that there is selective pressure for reduced LIMK2 expression in CRC to relieve negative constraints imposed upon gastrointestinal stem cells. PMID:23585469

  5. Leukocyte Pyruvate Kinase Expression is Reduced in Normal Human Pregnancy but not in Preeclampsia

    PubMed Central

    Xu, Yi; Madsen-Bouterse, Sally A.; Romero, Roberto; Hassan, Sonia; Mittal, Pooja; Elfline, Megan; Zhu, Aiping; Petty, Howard R.

    2010-01-01

    Problem Emerging evidence suggests that metabolism influences immune cell signaling and immunoregulation. To examine the immunoregulatory role of glycolysis in pregnancy, we evaluated the properties of pyruvate kinase in leukocytes from non-pregnant women and those with normal pregnancy and pre-eclampsia. Method of study We evaluated pyruvate kinase expression in lymphocytes and neutrophils from non-pregnant, pregnant, and pre-eclampsia patients using fluorescence microscopy and flow cytometry. Leukocyte pyruvate kinase activity and pyruvate concentrations were also evaluated. To study pyruvate’s effect on signaling, we labeled Jurkat T cells with Ca2+ dyes and measured cell responses in the presence of agents influencing intracellular pyruvate. Results The expression of pyruvate kinase is reduced in lymphocytes and neutrophils from normal pregnant women in comparison to those of non-pregnant women and pre-eclampsia patients. Similarly, the activity of pyruvate kinase and the intracellular pyruvate concentration are reduced in leukocytes of normal pregnant women in comparison to non-pregnant women and women with pre-eclampsia. Using Jurkat cells as a model of leukocyte signaling, we have shown that perturbations of intracellular pyruvate influence Ca2+ signals. Conclusion Normal pregnancy is characterized by reduced pyruvate kinase expression within lymphocytes and neutrophils. We speculate that reduced pyruvate kinase expression modifies immune cell responses due to reduced pyruvate concentrations. PMID:20560913

  6. Reduced expression and prognostic implication of inhibitor of growth 4 in human osteosarcoma

    PubMed Central

    ZHAO, DAHANG; LIU, XIANGJIE; ZHANG, YUNGE; DING, ZHAOMING; DONG, FENG; XU, HONGWEI; WANG, BAOXIN; WANG, WENBO

    2016-01-01

    Osteosarcoma is the most prevalent type of primary malignant bone tumor. Inhibitor of growth 4 (ING4) has been demonstrated to function as a tumor suppressor through multiple pathways, and is its expression is understood to be suppressed or reduced in various malignancies. The present study aimed to investigate the expression of ING4 and to determine its prognostic value in osteosarcoma tissue. Formalin-fixed, paraffin-embedded tissue microarrays were analyzed, and contained 41 osteosarcoma specimens and 11 normal bone tissue specimens with duplicate cores. ING4 expression was evaluated by immunohistochemical staining. The association between ING4 expression in the osteosarcoma and normal bone tissues was analyzed, in addition to the association between ING4 expression and Enneking classification of the osteosarcoma tissues. A significant statistical difference was observed in the ING4 immunohistochemical staining score between the osteosarcoma and normal bone tissues (P<0.001). Furthermore, a significant negative correlation was detected between the ING4 immunohistochemical staining scores and the Enneking classification results of the 41 osteosarcoma tissues (P=0.002). Low expression of ING4 was observed in the osteosarcoma specimens, and this reduced expression of ING4 was negatively correlated with Enneking classification. Thus, the results of the present study indicate that ING4 may serve as a promising prognostic marker in osteosarcoma. PMID:27073567

  7. Reduced tissue osmolarity increases TRPV4 expression and pro-inflammatory cytokines in intervertebral disc cells.

    PubMed

    Walter, B A; Purmessur, D; Moon, A; Occhiogrosso, J; Laudier, D M; Hecht, A C; Iatridis, J C

    2016-01-01

    The mechanical behaviour and cellular metabolism of intervertebral discs (IVDs) and articular cartilage are strongly influenced by their proteoglycan content and associated osmotic properties. This osmotic environment is a biophysical signal that changes with disease and may contribute to the elevated matrix breakdown and altered biologic response to loading observed in IVD degeneration and osteoarthritis. This study tested the hypothesis that changes in osmo-sensation by the transient receptor potential vallinoid-4 (TRPV4) ion channel occur with disease and contribute to the inflammatory environment found during degeneration. Immunohistochemistry on bovine IVDs from an inflammatory organ culture model were used to investigate if TRPV4 is expressed in the IVD and how expression changes with degeneration. Western blot, live-cell calcium imaging, and qRT-PCR were used to investigate whether osmolarity changes or tumour necrosis factor α (TNFα) regulate TRPV4 expression, and how altered TRPV4 expression influences calcium signalling and pro-inflammatory cytokine expression. TRPV4 expression correlated with TNFα expression, and was increased when cultured in reduced medium osmolarity and unaltered with TNFα-stimulation. Increased TRPV4 expression increased the calcium flux following TRPV4 activation and increased interleukin-1β (IL-1β) and IL-6 gene expression in IVD cells. TRPV4 expression was qualitatively elevated in regions of aggrecan depletion in degenerated human IVDs. Collectively, results suggest that reduced tissue osmolarity, likely following proteoglycan degradation, can increase TRPV4 signalling and enhance pro-inflammatory cytokine production, suggesting changes in TRPV4 mediated osmo-sensation may contribute to the progressive matrix breakdown in disease. PMID:27434269

  8. REDUCED TISSUE OSMOLARITY INCREASES TRPV4 EXPRESSION AND PRO-INFLAMMATORY CYTOKINES IN INTERVERTEBRAL DISC CELLS

    PubMed Central

    Walter, B.A.; Purmessur, D; Moon, A.; Occhiogrosso, J.; Laudier, D.M.; Hecht, A.C.; Iatridis, J.C.

    2016-01-01

    The mechanical behaviour and cellular metabolism of intervertebral discs (IVDs) and articular cartilage are strongly influenced by their proteoglycan content and associated osmotic properties. This osmotic environment is a biophysical signal that changes with disease and may contribute to the elevated matrix breakdown and altered biologic response to loading observed in IVD degeneration and osteoarthritis. This study tested the hypothesis that changes in osmo-sensation by the transient receptor potential vallinoid-4 (TRPV4) ion channel occur with disease and contribute to the inflammatory environment found during degeneration. Immunohistochemistry on bovine IVDs from an inflammatory organ culture model were used to investigate if TRPV4 is expressed in the IVD and how expression changes with degeneration. Western blot, live-cell calcium imaging, and qRT-PCR were used to investigate whether osmolarity changes or tumour necrosis factor α (TNFα) regulate TRPV4 expression, and how altered TRPV4 expression influences calcium signalling and pro-inflammatory cytokine expression. TRPV4 expression correlated with TNFα expression, and was increased when cultured in reduced medium osmolarity and unaltered with TNFα-stimulation. Increased TRPV4 expression increased the calcium flux following TRPV4 activation and increased interleukin-1β (IL-1β) and IL-6 gene expression in IVD cells. TRPV4 expression was qualitatively elevated in regions of aggrecan depletion in degenerated human IVDs. Collectively, results suggest that reduced tissue osmolarity, likely following proteoglycan degradation, can increase TRPV4 signalling and enhance pro-inflammatory cytokine production, suggesting changes in TRPV4 mediated osmo-sensation may contribute to the progressive matrix breakdown in disease. PMID:27434269

  9. Neurotrophin-3 significantly reduces sodium channel expression linked to neuropathic pain states.

    PubMed

    Wilson-Gerwing, Tracy D; Stucky, Cheryl L; McComb, Geoffrey W; Verge, Valerie M K

    2008-10-01

    Neuropathic pain resulting from chronic constriction injury (CCI) is critically linked to sensitization of peripheral nociceptors. Voltage gated sodium channels are major contributors to this state and their expression can be upregulated by nerve growth factor (NGF). We have previously demonstrated that neurotrophin-3 (NT-3) acts antagonistically to NGF in modulation of aspects of CCI-induced changes in trkA-associated nociceptor phenotype and thermal hyperalgesia. Thus, we hypothesized that exposure of neurons to increased levels of NT-3 would reduce expression of Na(v)1.8 and Na(v)1.9 in DRG neurons subject to CCI. In adult male rats, Na(v)1.8 and Na(v)1.9 mRNAs are expressed at high levels in predominantly small to medium size neurons. One week following CCI, there is reduced incidence of neurons expressing detectable Na(v)1.8 and Na(v)1.9 mRNA, but without a significant decline in mean level of neuronal expression, and similar findings observed immunohistochemically. There is also increased accumulation/redistribution of channel protein in the nerve most apparent proximal to the first constriction site. Intrathecal infusion of NT-3 significantly attenuates neuronal expression of Na(v)1.8 and Na(v)1.9 mRNA contralateral and most notably, ipsilateral to CCI, with a similar impact on relative protein expression at the level of the neuron and constricted nerve. We also observe reduced expression of the common neurotrophin receptor p75 in response to CCI that is not reversed by NT-3 in small to medium sized neurons and may confer an enhanced ability of NT-3 to signal via trkA, as has been previously shown in other cell types. These findings are consistent with an analgesic role for NT-3. PMID:18601922

  10. Epigallocatechin activates haem oxygenase-1 expression via protein kinase Cδ and Nrf2

    PubMed Central

    Ogborne, Richard M.; Rushworth, Stuart A.; O’Connell, Maria A.

    2008-01-01

    The Nrf2/anti-oxidant response element (ARE) pathway plays an important role in regulating cellular anti-oxidants, including haem oxygenase-1 (HO-1). Various kinases have been implicated in the pathways leading to Nrf2 activation. Here, we investigated the effect of epigallocatechin (EGC) on ARE-mediated gene expression in human monocytic cells. EGC time and dose dependently increased HO-1 mRNA and protein expression but had minimal effect on expression of other ARE-regulated genes, including NAD(P)H:quinone oxidoreductase 1, glutathione cysteine ligase and ferritin. siRNA knock down of Nrf2 significantly inhibited EGC-induced HO-1 expression. Furthermore, inhibition of PKC by Ro-31-8220 dose dependently decreased EGC-induced HO-1 mRNA expression, whereas MAP kinase and phosphatidylinositol-3-kinase pathway inhibitors had no significant effect. EGC stimulated phosphorylation of PKCαβ and δ in THP-1 cells. PKCδ inhibition significantly decreased EGC-induced HO-1 mRNA expression, whereas PKCα- and β-specific inhibitors had no significant effect. These results demonstrate for the first time that EGC-induced HO-1 expression occurs via PKCδ and Nrf2. PMID:18586007

  11. An Acceptance-Based Psychoeducation Intervention to Reduce Expressed Emotion in Relatives of Bipolar Patients

    ERIC Educational Resources Information Center

    Eisner, Lori R.; Johnson, Sheri L.

    2008-01-01

    Expressed emotion (EE) is a robust predictor of outcome in bipolar disorder. Despite decades of research, interventions to reduce EE levels have had only modest effects. This study used an expanded model of EE to develop an intervention. Research has demonstrated a strong link between attributions and EE in families of patients with psychiatric…

  12. Reduced capacity in automatic processing of facial expression in restrictive anorexia nervosa and obesity.

    PubMed

    Cserjési, Renáta; Vermeulen, Nicolas; Lénárd, László; Luminet, Olivier

    2011-07-30

    There is growing evidence that disordered eating is associated with facial expression recognition and emotion processing problems. In this study, we investigated the question of whether anorexia and obesity occur on a continuum of attention bias towards negative facial expressions in comparison with healthy individuals of normal weight. Thirty-three patients with restrictive anorexia nervosa (AN-R), 30 patients with obesity (OB) and 63 healthy age and social-economic status matched controls were recruited. Our results indicated that AN-R patients were more attentive to angry faces and had difficulties in being attentive to positive expressions, whilst OB patients had problems in looking for or being attentive to negative expressions independently of self-reported depression and anxiety. Our findings did not support the idea that AN-R and OB occur on a continuum. We found that AN-R was associated with a reduced capacity in positive facial expression processing, whereas OB was associated with a reduced capacity in negative facial expressions processing. The social relevance of our findings and a possible explanation based upon neuroscience are discussed.

  13. Hepatic expression of heme oxygenase-1 and antioxidant response element-mediated genes following administration of ethinyl estradiol to rats

    SciTech Connect

    Morio, Lisa A.; Leone, Angelique; Sawant, Sharmilee P.; Nie, Alex Y.; Brandon Parker, J.; Taggart, Peter; Barron, Alfred M.; McMillian, Michael K. . E-mail: mmcmilli@prdus.jnj.com; Lord, Peter

    2006-11-01

    Heme oxygenase-1 (HO-1) is one of several enzymes induced by hepatotoxicants, and is thought to have an important protective role against cellular stress during liver inflammation and injury. The objective of the present study was to evaluate the role of HO-1 in estradiol-induced liver injury. A single dose of ethinyl estradiol (500 mg/kg, po) resulted in mild liver injury. Repeated administration of ethinyl estradiol (500 mg/kg/day for 4 days, po) resulted in no detectable liver injury or dysfunction. Using RT-PCR analysis, we demonstrate that HO-1 gene expression in whole liver tissue is elevated (> 20-fold) after the single dose of ethinyl estradiol. The number and intensity of HO-1 immunoreactive macrophages were increased after the single dose of ethinyl estradiol. HO-1 expression was undetectable in hepatic parenchymal cells from rats receiving Methocel control or a single dose of ethinyl estradiol, however cytosolic HO-1 immunoreactivity in these cells after repeated dosing of ethinyl estradiol was pronounced. The increases in HO-1 mRNA and HO-1 immunoreactivity following administration of a single dose of ethinyl estradiol suggested that this enzyme might be responsible for the observed protection of the liver during repeated dosing. To investigate the effect of HO-1 expression on ethinyl estradiol-induced hepatotoxicity, rats were pretreated with hemin (50 {mu}mol/kg, ip, a substrate and inducer of HO-1), with tin protoporphyrin IX (60 {mu}mol/kg, ip, an HO-1 inhibitor), or with gadolinium chloride (10 mg/kg, iv, an inhibitor/toxin of Kupffer cells) 24 h before ethinyl estradiol treatment. Pretreatment with modulators of HO-1 expression and activity had generally minimal effects on ethinyl estradiol-induced liver injury. These data suggest that HO-1 plays a limited role in antioxidant defense against ethinyl estradiol-induced oxidative stress and hepatotoxicity, and suggests that other coordinately induced enzymes are responsible for protection observed

  14. Magnetism of Ho1-xTbxAl₂ alloys: Critical dependence of a first-order transition on Tb concentration

    DOE PAGESBeta

    Khan, Mahmud; Mudryk, Ya.; Gschneidner, K. A.; Pecharsky, V. K.

    2011-12-27

    HoAl₂ exhibits a first-order spin reorientation transition at 20 K, which is manifested as a sharp peak in the heat capacity. When Ho is partially replaced by only 5% of Tb, the sharp heat-capacity peak in Ho1-xTbxAl₂ (x = 0.05) disappears, and then reappears again for x ≥ 0.07. For x = 0.05, the anomaly corresponding to the spin reorientation transition is barely seen in the heat capacity, but as x exceeds 0.07 the weak anomaly transforms to a sharp peak. The spin reorientation transition temperature increases to 29 K for x = 0.05, and as x increases further themore » transition shifts to lower temperature and returns to ~20 K for x = 0.25. The transition is no longer observed when x exceeds 0.60. Temperature-dependent x-ray powder-diffraction data confirm the first-order nature of the spin reorientation transition for the alloy with x = 0.40, and indicate that the compound retains the room-temperature cubic structure within the sensitivity of the technique. Experimental observations are discussed considering the easy magnetization directions of HoAl₂ and TbAl₂.« less

  15. Hysteresis and magnetostriction of TbxDyyHo1-x-yFe1.95 [112] dendritic rods

    NASA Astrophysics Data System (ADS)

    Wun-Fogle, M.; Restorff, J. B.; Clark, A. E.

    1999-04-01

    The magnetization and magnetostriction of a variety of 3/16-in.-diam Laves phase rods of TbxDyyHo1-x-yFe1.95 grown in the form of [112] oriented dendritic compounds were measured as a function of applied magnetic field -3000

  16. Puerarin suppresses AGEs-induced inflammation in mouse mesangial cells: A possible pathway through the induction of heme oxygenase-1 expression

    SciTech Connect

    Kim, Ki Mo; Jung, Dong Ho; Jang, Dae Sik; Kim, Young Sook; Kim, Jong Min; Kim, Ha-Na; Surh, Young-Joon; Kim, Jin Sook

    2010-04-15

    Puerarin is a natural product isolated from Puerarin lobata and has various pharmacological effects, including anti-hyperglycemic and anti-allergic properties. In the present study, we investigated the effect of puerarin against advanced glycation end products (AGEs)-induced inflammation in mouse mesangial cells. Puerarin acts by inducing the expression of heme oxygenase-1 (HO-1) in a dose- and time-dependent manner. Puerarin was able to enhance phosphorylation of protein kinase C (PKC) delta, but not PKC alpha/beta II, in a time-dependent manner. Induction of HO-1 expression by puerarin was suppressed by GF109203X, a general inhibitor of PKC, and by rottlerin, a specific inhibitor of PKC delta. However, induction was not suppressed by Goe6976, a selective inhibitor for PKC alpha/beta II. Additionally, the knockdown of endogenous PKC delta by small interfering RNA (siRNA) resulted in the inhibition of HO-1 expression and Akt phosphorylation. Puerarin increased antioxidant response element (ARE)-Luciferase activity in a dose- and time-dependent manner in transfected mouse mesangial cells. Mutation of the ARE sequence abolished puerarin-induced HO-1 expression. Furthermore, puerarin treatments resulted in a marked increase in NF-E2 related factor-2 (Nrf-2) translocation, leading to up-regulation of HO-1 expression. However, transfection of Nrf-2 specific siRNA abolished HO-1 expression. Pretreatment with puerarin inhibited the expressions of COX-2, MMP-2 and MMP-9. But, these effects were reversed by ZnPP, an inhibitor of HO-1. Taken together, our results demonstrate that puerarin-induced expression of HO-1 is mediated by the PKC delta-Nrf-2-HO-1 pathway and inhibits N-carboxymethyllysine (CML)-induced inflammation in mouse mesangial cells.

  17. Hepcidin Bound to α2-Macroglobulin Reduces Ferroportin-1 Expression and Enhances Its Activity at Reducing Serum Iron Levels

    PubMed Central

    Huang, Michael Li-Hsuan; Austin, Christopher J. D.; Sari, Marie-Agnès; Suryo Rahmanto, Yohan; Ponka, Prem; Vyoral, Daniel; Richardson, Des R.

    2013-01-01

    Hepcidin regulates iron metabolism by down-regulating ferroportin-1 (Fpn1). We demonstrated that hepcidin is complexed to the blood transport protein, α2-macroglobulin (α2M) (Peslova, G., Petrak, J., Kuzelova, K., Hrdy, I., Halada, P., Kuchel, P. W., Soe-Lin, S., Ponka, P., Sutak, R., Becker, E., Huang, M. L., Suryo Rahmanto, Y., Richardson, D. R., and Vyoral, D. (2009) Blood 113, 6225–6236). However, nothing is known about the mechanism of hepcidin binding to α2M or the effects of the α2M·hepcidin complex in vivo. We show that decreased Fpn1 expression can be mediated by hepcidin bound to native α2M and also, for the first time, hepcidin bound to methylamine-activated α2M (α2M-MA). Passage of high molecular weight α2M·hepcidin or α2M-MA·hepcidin complexes (≈725 kDa) through a Sephadex G-25 size exclusion column retained their ability to decrease Fpn1 expression. Further studies using ultrafiltration indicated that hepcidin binding to α2M and α2M-MA was labile, resulting in some release from the protein, and this may explain its urinary excretion. To determine whether α2M-MA·hepcidin is delivered to cells via the α2M receptor (Lrp1), we assessed α2M uptake and Fpn1 expression in Lrp1−/− and Lrp1+/+ cells. Interestingly, α2M·hepcidin or α2M-MA·hepcidin demonstrated similar activities at decreasing Fpn1 expression in Lrp1−/− and Lrp1+/+ cells, indicating that Lrp1 is not essential for Fpn1 regulation. In vivo, hepcidin bound to α2M or α2M-MA did not affect plasma clearance of α2M/α2M-MA. However, serum iron levels were reduced to a significantly greater extent in mice treated with α2M·hepcidin or α2M-MA·hepcidin relative to unbound hepcidin. This effect could be mediated by the ability of α2M or α2M-MA to retard kidney filtration of bound hepcidin, increasing its half-life. A model is proposed that suggests that unlike proteases, which are irreversibly bound to activated α2M, hepcidin remains labile and available to down

  18. Association of reduced Connexin 43 expression with retinal vascular lesions in human diabetic retinopathy.

    PubMed

    Tien, Thomas; Muto, Tetsuya; Zhang, Joyce; Sohn, Elliott H; Mullins, Robert F; Roy, Sayon

    2016-05-01

    Connexin 43 (Cx43) downregulation promotes apoptosis in retinal vascular cells of diabetic animal models; however, its relevance to human diabetic retinopathy has not been established. In this study, we investigated whether diabetes alters Cx43 expression and promotes retinal vascular lesions in human retinas. Diabetic human eyes (aged 64-94 years) and non-diabetic human eyes (aged 61-90 years) were analyzed in this study. Retinal protein samples and retinal capillary networks were assessed for Cx43 level by Western blot (WB) analysis and immunostaining. In parallel, retinal capillary networks were stained with hematoxylin and periodic acid Schiff to determine the extent of pericyte loss (PL) and acellular capillaries (AC) in these retinas. Cx43 protein expression was significantly reduced in the diabetic retinas compared to non-diabetic retinas as indicated by WB analysis (81 ± 11% of control). Additionally, a significant decrease in the number of Cx43 plaques per unit length of vessel was observed in the diabetic retinas compared to those of non-diabetic retinas (62 ± 10% of control; p < 0.005). Importantly, a strong inverse relationship was noted between Cx43 expression and the relative number of AC (r = -0.89; p < 0.0005), and between Cx43 expression and number of pericyte loss (r = -0.88; p < 0.0005). Overall, these results show that Cx43 expression is reduced in the human diabetic retinas and Cx43 reduction is associated with increased vascular cell death. These findings suggest that diabetes decreases retinal Cx43 expression and that the development of PL and AC is associated with reduced Cx43 expression in human diabetic retinopathy. PMID:26738943

  19. Screening of mRNA Chemical Modification to Maximize Protein Expression with Reduced Immunogenicity

    PubMed Central

    Uchida, Satoshi; Kataoka, Kazunori; Itaka, Keiji

    2015-01-01

    Chemical modification of nucleosides in mRNA is an important technology to regulate the immunogenicity of mRNA. In this study, various previously reported mRNA formulations were evaluated by analyzing in vitro protein expression and immunogenicity in multiple cell lines. For the macrophage-derived cell line, RAW 264.7, modified mRNA tended to have reduced immunogenicity and increased protein expression compared to the unmodified mRNA. In contrast, in some cell types, such as hepatocellular carcinoma cells (HuH-7) and mouse embryonic fibroblasts (MEFs), protein expression was decreased by mRNA modification. Further analyses revealed that mRNA modifications decreased translation efficiency but increased nuclease stability. Thus, mRNA modification is likely to exert both positive and negative effects on the efficiency of protein expression in transfected cells and optimal mRNA formulation should be determined based on target cell types and transfection purposes. PMID:26213960

  20. Screening of mRNA Chemical Modification to Maximize Protein Expression with Reduced Immunogenicity.

    PubMed

    Uchida, Satoshi; Kataoka, Kazunori; Itaka, Keiji

    2015-01-01

    Chemical modification of nucleosides in mRNA is an important technology to regulate the immunogenicity of mRNA. In this study, various previously reported mRNA formulations were evaluated by analyzing in vitro protein expression and immunogenicity in multiple cell lines. For the macrophage-derived cell line, RAW 264.7, modified mRNA tended to have reduced immunogenicity and increased protein expression compared to the unmodified mRNA. In contrast, in some cell types, such as hepatocellular carcinoma cells (HuH-7) and mouse embryonic fibroblasts (MEFs), protein expression was decreased by mRNA modification. Further analyses revealed that mRNA modifications decreased translation efficiency but increased nuclease stability. Thus, mRNA modification is likely to exert both positive and negative effects on the efficiency of protein expression in transfected cells and optimal mRNA formulation should be determined based on target cell types and transfection purposes. PMID:26213960

  1. Z-ligustilide ameliorated ultraviolet B-induced oxidative stress and inflammatory cytokine production in human keratinocytes through upregulation of Nrf2/HO-1 and suppression of NF-κB pathway.

    PubMed

    Wu, Zhouwei; Uchi, Hiroshi; Morino-Koga, Saori; Shi, Weimin; Furue, Masutaka

    2015-09-01

    Ultraviolet B (UVB), a harmful environmental factor, is responsible for a variety of skin disorders including skin inflammation through reactive oxygen species (ROS) and inflammatory mediator production. Here, we investigated the effect of Z-ligustilide (Z-lig), an active ingredient isolated from the medicinal plants Cnidium officinale and Angelica acutiloba, on UVB-induced ROS generation and inflammatory mediator production in normal human epidermal keratinocytes (NHEKs) as well as its underlying mechanisms. Z-lig significantly rescued UVB-induced NHEKs damage in a dosage-dependent manner. Pretreatment of NHEKs with Z-lig inhibited UVB-induced ROS production in NHEKs. Both silencing the nuclear factor E2-related factor 2 (Nrf2) and the supplement of tin protoporphyrin IX (SnPP), a haeme oxygenase-1 (HO-1) inhibitor, cancelled the inhibitory effect of Z-lig on UVB-induced ROS upregulation in NHEKs. Moreover, pretreatment of NHEKs with Z-lig reduced UVB-induced nuclear factor kappa B (NF-κB)-dependent inflammatory mediators (IL-6, IL-8 and MCP-1) production at both mRNA and protein level. In the presence of Z-lig, UVB-induced NF-κB subunit p65 nuclear translocation was abolished, and the IκBα degradation was suppressed. Taken together, these findings suggest that Z-lig can suppress UVB-induced ROS generation through Nrf2/HO-1 upregulation and inflammation by suppressing the NF-κB pathway, suggesting that Z-lig may be beneficial in protecting skin from UVB exposure.

  2. Trifluoperazine reduces the expression of CD69 in phytohemagglutinin-activated lymphocytes.

    PubMed

    Pires, V; Harab, R C; Rumjanek, V M

    1996-04-01

    Trifluoperazine (TFP) is a phenothiazine capable of inhibiting lymphocyte proliferation as well as natural killer cells (NK) and lymphokine-activated killer cells (LAK) cytotoxic activity. CD69 is a surface molecule induced by various mechanisms of cellular activation. In the present work the modulation of CD69 expression by TFP was investigated on PHA-stimulated peripheral blood mononuclear cells and compared to that of CD25 (IL-2 receptor) expression. Determination of surface molecules was performed in an indirect immunofluorescence assay using anti-CD69 or anti-CD25 monoclonal antibodies, and analyzed by flow cytometry. The time course of the expression of these two molecules differed: CD69 expression was already declining at 48 h, whereas CD25 was still increasing at 72 h after stimulation. TFP (10 microM) reduced CD69 expression by 71.8% at 24 h, 68.4% at 48 h and 24% at 72 h following activation. In contrast, the same dose of TFP did not significantly affect CD25 expression at 24 h but showed an inhibitory effect at later times. These results suggest that different activation pathways are involved in the expression of CD25 and CD69.

  3. Inducing a concurrent motor load reduces categorization precision for facial expressions.

    PubMed

    Ipser, Alberta; Cook, Richard

    2016-05-01

    Motor theories of expression perception posit that observers simulate facial expressions within their own motor system, aiding perception and interpretation. Consistent with this view, reports have suggested that blocking facial mimicry induces expression labeling errors and alters patterns of ratings. Crucially, however, it is unclear whether changes in labeling and rating behavior reflect genuine perceptual phenomena (e.g., greater internal noise associated with expression perception or interpretation) or are products of response bias. In an effort to advance this literature, the present study introduces a new psychophysical paradigm for investigating motor contributions to expression perception that overcomes some of the limitations inherent in simple labeling and rating tasks. Observers were asked to judge whether smiles drawn from a morph continuum were sincere or insincere, in the presence or absence of a motor load induced by the concurrent production of vowel sounds. Having confirmed that smile sincerity judgments depend on cues from both eye and mouth regions (Experiment 1), we demonstrated that vowel production reduces the precision with which smiles are categorized (Experiment 2). In Experiment 3, we replicated this effect when observers were required to produce vowels, but not when they passively listened to the same vowel sounds. In Experiments 4 and 5, we found that gender categorizations, equated for difficulty, were unaffected by vowel production, irrespective of the presence of a smiling expression. These findings greatly advance our understanding of motor contributions to expression perception and represent a timely contribution in light of recent high-profile challenges to the existing evidence base.

  4. Defective erythropoiesis in a mouse model of reduced Fbxo7 expression due to decreased p27 expression

    PubMed Central

    Randle, Suzanne J; Nelson, David E; Patel, Shachi P; Laman, Heike

    2015-01-01

    During the final stages of erythropoiesis, lineage-restricted progenitors mature over three to five cell divisions, culminating with withdrawal from the cell cycle and the loss of most organelles, including mitochondria and nuclei. Recent genome-wide association studies in human populations have associated several SNPs near or within FBXO7 with erythrocyte phenotypes. Fbxo7 encodes a multi-functional F-box protein known to bind p27 and participate in selective mitophagy. One SNP causes an amino acid substitution (Met115Ile) and is associated with smaller erythrocytes. We find that the less common IIe115 allele of Fbxo7 binds less efficiently to p27, and cells expressing this allele proliferate faster than cells expressing Met115. We show that an erythroleukaemic cell line with reduced Fbxo7 expression fails to stabilize p27 levels, exit the cell cycle, and produce haemoglobin. In addition, mice deficient in Fbxo7 expression are anaemic due to a reduction in erythrocyte numbers, and this is associated with lower p27 levels, increased numbers of late-stage erythroblasts with greater than 2N DNA content, and delayed mitophagy during terminal differentiation. Collectively, these data support an important physiological, cell cycle regulatory role for Fbxo7 during erythropoiesis. © 2015 Authors. Journal of Pathology published by John Wiley & Sons Ltd on behalf of Pathological Society of Great Britain and Ireland. PMID:26095538

  5. Reduced seed germination in Arabidopsis over-expressing SWI/SNF2 ATPase genes.

    PubMed

    Leeggangers, Hendrika A C F; Folta, Adam; Muras, Aleksandra; Nap, Jan-Peter; Mlynarova, Ludmila

    2015-02-01

    In the life of flowering plants, seed germination is a critical step to ensure survival into the next generation. Generally the seed prior to germination has been in a dormant state with a low rate of metabolism. In the transition from a dormant seed to a germinating seed, various epigenetic mechanisms play a regulatory role. Here, we demonstrate that the over-expression of chromatin remodeling ATPase genes (AtCHR12 or AtCHR23) reduced the frequency of seed germination in Arabidopsis thaliana up to 30% relative to the wild-type seeds. On the other hand, single loss-of-function mutations of the two genes did not affect seed germination. The reduction of germination in over-expressing mutants was more pronounced in stress conditions (salt or high temperature), showing the impact of the environment. Reduced germinations upon over-expression coincided with increased transcript levels of seed maturation genes and with reduced degradation of their mRNAs stored in dry seeds. Our results indicate that repression of AtCHR12/23 gene expression in germinating wild-type Arabidopsis seeds is required for full germination. This establishes a functional link between chromatin modifiers and regulatory networks towards seed maturation and germination.

  6. Shear stress reduces protease activated receptor-1 expression in human endothelial cells

    NASA Technical Reports Server (NTRS)

    Nguyen, K. T.; Eskin, S. G.; Patterson, C.; Runge, M. S.; McIntire, L. V.

    2001-01-01

    Shear stress has been shown to regulate several genes involved in the thrombotic and proliferative functions of endothelial cells. Thrombin receptor (protease-activated receptor-1: PAR-1) increases at sites of vascular injury, which suggests an important role for PAR-1 in vascular diseases. However, the effect of shear stress on PAR-1 expression has not been previously studied. This work investigates effects of shear stress on PAR-1 gene expression in both human umbilical vein endothelial cells (HUVECs) and microvascular endothelial cells (HMECs). Cells were exposed to different shear stresses using a parallel plate flow system. Northern blot and flow cytometry analysis showed that shear stress down-regulated PAR-1 messenger RNA (mRNA) and protein levels in both HUVECs and HMECs but with different thresholds. Furthermore, shear-reduced PAR-1 mRNA was due to a decrease of transcription rate, not increased mRNA degradation. Postshear stress release of endothelin-1 in response to thrombin was reduced in HUVECs and HMECs. Moreover, inhibitors of potential signaling pathways applied during shear stress indicated mediation of the shear-decreased PAR-1 expression by protein kinases. In conclusion, shear stress exposure reduces PAR-1 gene expression in HMECs and HUVECs through a mechanism dependent in part on protein kinases, leading to altered endothelial cell functional responses to thrombin.

  7. A Complex Interaction Between Reduced Reelin Expression and Prenatal Organophosphate Exposure Alters Neuronal Cell Morphology

    PubMed Central

    Mullen, Brian R.; Ross, Brennan; Chou, Joan Wang; Khankan, Rana; Khialeeva, Elvira; Bui, Kimberly

    2016-01-01

    Genetic and environmental factors are both likely to contribute to neurodevelopmental disorders including schizophrenia, autism spectrum disorders, and major depressive disorders. Prior studies from our laboratory and others have demonstrated that the combinatorial effect of two factors—reduced expression of reelin protein and prenatal exposure to the organophosphate pesticide chlorpyrifos oxon—gives rise to acute biochemical effects and to morphological and behavioral phenotypes in adolescent and young adult mice. In the current study, we examine the consequences of these factors on reelin protein expression and neuronal cell morphology in adult mice. While the cell populations that express reelin in the adult brain appear unchanged in location and distribution, the levels of full length and cleaved reelin protein show persistent reductions following prenatal exposure to chlorpyrifos oxon. Cell positioning and organization in the hippocampus and cerebellum are largely normal in animals with either reduced reelin expression or prenatal exposure to chlorpyrifos oxon, but cellular complexity and dendritic spine organization is altered, with a skewed distribution of immature dendritic spines in adult animals. Paradoxically, combinatorial exposure to both factors appears to generate a rescue of the dendritic spine phenotypes, similar to the mitigation of behavioral and morphological changes observed in our prior study. Together, our observations support an interaction between reelin expression and chlorpyrifos oxon exposure that is not simply additive, suggesting a complex interplay between genetic and environmental factors in regulating brain morphology. PMID:27364165

  8. Reduced WIF-1 expression stimulates skin hyperpigmentation in patients with melasma.

    PubMed

    Kim, Ji-Young; Lee, Tae-Ryong; Lee, Ai-Young

    2013-01-01

    The expression of Wnt inhibitory factor-1 (WIF-1) gene, which was detected by a microarray analysis of hyperpigmented and normally pigmented skin sets of melasma patients, was significantly reduced in the hyperpigmented skin from melasma patients, but not in healthy controls, regardless of UV irradiation. Wnt signals regulate skin pigmentation; however, WIF-1 is expressed in cultured skin keratinocytes and fibroblasts, but not in melanocytes. Therefore, we examined whether WIF-1 knockdown in neighboring keratinocytes and fibroblasts plays a role in melasma. Additionally, the effect of WIF-1 overexpression on the amelioration of hyperpigmentation was examined. WIF-1 knockdown, either in fibroblasts or in keratinocytes, significantly stimulated tyrosinase expression and melanosome transfer, whereas melanocytes with WIF-1 overexpression significantly reduced those parameters. The WIF-1 knockdown decreased glycogen synthase kinase-3β (GSK-3β), β-catenin, and NFATc2 (nuclear factor of activated T cells, cytoplasmic, calcineurin-dependent 2) phosphorylation and increased microphthalmia-associated transcription factor (MITF) expression as in melanocytes with Wnt-1 overexpression, whereas the WIF-1 overexpression reversed the results. Expression of Wnts, both canonical and noncanonical, was increased in the hyperpigmented skin of melasma patients. Collectively, WIF-1 downregulation, which may occur in epidermal keratinocytes and in dermal fibroblasts, is involved in melasma development because of the stimulation of melanogenesis and melanosome transfer through upregulation of the canonical and the noncanonical Wnt signaling pathway.

  9. Developmental abnormalities and reduced fruit softening in tomato plants expressing an antisense Rab11 GTPase gene.

    PubMed

    Lu, C; Zainal, Z; Tucker, G A; Lycett, G W

    2001-08-01

    A cDNA clone from tomato fruit encodes a protein with strong homology with the rab11/YPT3 class of small GTPases that is thought to be involved in the control of protein trafficking within cells. The gene, LeRab11a, showed a pattern consistent with a single copy in DNA gel blots. The corresponding mRNA was developmentally regulated during fruit ripening, and its expression was inhibited in several ripening mutants. Its reduced expression in the Never-ripe mutant indicates that it may be induced by ethylene in fruit. The ripening-induced expression in tissues that are undergoing cell wall loosening immediately suggests a possible role in trafficking of cell wall-modifying enzymes. The message also was produced in leaves and flowers but not in roots. Antisense transformation was used to generate a "mutant phenotype." Antisense fruit changed color as expected but failed to soften normally. This was accompanied by reduced levels of two cell wall hydrolases, pectinesterase and polygalacturonase. There were other phenotypic effects in the plants, including determinate growth, reduced apical dominance, branched inflorescences, abnormal floral structure, and ectopic shoots on the leaves. In some plants, ethylene production was reduced. These data suggest an alternative or additional role in exocytosis or endocytosis of homeotic proteins, hormone carriers, or receptors.

  10. Reduced DOCK4 expression leads to erythroid dysplasia in myelodysplastic syndromes

    PubMed Central

    Sundaravel, Sriram; Duggan, Ryan; Bhagat, Tushar; Ebenezer, David L.; Liu, Hui; Yu, Yiting; Bartenstein, Matthias; Unnikrishnan, Madhu; Karmakar, Subhradip; Liu, Ting-Chun; Torregroza, Ingrid; Quenon, Thomas; Anastasi, John; McGraw, Kathy L.; Pellagatti, Andrea; Boultwood, Jacqueline; Yajnik, Vijay; Artz, Andrew; Le Beau, Michelle M.; Steidl, Ulrich; List, Alan F.; Evans, Todd; Verma, Amit; Wickrema, Amittha

    2015-01-01

    Anemia is the predominant clinical manifestation of myelodysplastic syndromes (MDS). Loss or deletion of chromosome 7 is commonly seen in MDS and leads to a poor prognosis. However, the identity of functionally relevant, dysplasia-causing, genes on 7q remains unclear. Dedicator of cytokinesis 4 (DOCK4) is a GTPase exchange factor, and its gene maps to the commonly deleted 7q region. We demonstrate that DOCK4 is underexpressed in MDS bone marrow samples and that the reduced expression is associated with decreased overall survival in patients. We show that depletion of DOCK4 levels leads to erythroid cells with dysplastic morphology both in vivo and in vitro. We established a novel single-cell assay to quantify disrupted F-actin filament network in erythroblasts and demonstrate that reduced expression of DOCK4 leads to disruption of the actin filaments, resulting in erythroid dysplasia that phenocopies the red blood cell (RBC) defects seen in samples from MDS patients. Reexpression of DOCK4 in −7q MDS patient erythroblasts resulted in significant erythropoietic improvements. Mechanisms underlying F-actin disruption revealed that DOCK4 knockdown reduces ras-related C3 botulinum toxin substrate 1 (RAC1) GTPase activation, leading to increased phosphorylation of the actin-stabilizing protein ADDUCIN in MDS samples. These data identify DOCK4 as a putative 7q gene whose reduced expression can lead to erythroid dysplasia. PMID:26578796

  11. Reduced expression of sarcospan in muscles of Fukuyama congenital muscular dystrophy.

    PubMed

    Wakayama, Yoshihiro; Inoue, Masahiko; Kojima, Hiroko; Yamashita, Sumimasa; Shibuya, Seiji; Jimi, Takahiro; Hara, Hajime; Matsuzaki, Yoko; Oniki, Hiroaki; Kanagawa, Motoi; Kobayashi, Kazuhiro; Toda, Tatsushi

    2008-12-01

    Expression profiles of sarcospan in muscles with muscular dystrophies are scarcely reported. To examine this, we studied five Fukuyama congenital muscular dystrophy (FCMD) muscles, five Duchenne muscular dystrophy (DMD) muscles, five disease control and five normal control muscles. Immunoblot showed reactions of sarcospan markedly decreased in FCMD and DMD muscle extracts. Immunohistochemistry of FCMD muscles showed that most large diameter myofibers expressed sarcospan discontinuously at their surface membranes. Immature small diameter FCMD myofibers usually did not express sarcospan. Immunoreactivity of sarcospan in DMD muscles was similarly reduced. With regard to dystroglycans and sarcoglycans, immunohistochemistry of FCMD muscles showed selective deficiency of glycosylated alpha-dystroglycan, together with reduced expression of beta-dystroglycan and alpha-, beta-, gamma-, delta-sarcoglycans. Although the expression of glycosylated alpha-dystroglycan was lost, scattered FCMD myofibers showed positive immunoreaction with an antibody against the core protein of alpha-dystroglycan. The group mean ratios of sarcospan mRNA copy number versus GAPDH mRNA copy number by real-time RT-PCR showed that the ratios between FCMD and normal control groups were not significantly different (P>0.1 by the two-tailed t test). This study implied either O-linked glycosylation defects of alpha-dystroglycan in the Golgi apparatus of FCMD muscles may lead to decreased expression of sarcoglycan and sarcospan molecules, or selective deficiency of glycosylated alpha-dystroglycan due to impaired glycosylation in FCMD muscles may affect the molecular integrity of the basal lamina of myofibers. This, in turn, leads to decreased expression of sarcoglycans, and finally of sarcospan at the FCMD myofiber surfaces.

  12. Methamphetamine reduces expression of caveolin-1 in the dorsal striatum: Implication for dysregulation of neuronal function.

    PubMed

    Somkuwar, Sucharita S; Fannon, McKenzie J; Head, Brian P; Mandyam, Chitra D

    2016-07-22

    Role of striatal dopamine D1 receptors (D1Rs) in methamphetamine (Meth) taking and seeking is recognized from contingent Meth self-administration studies. For example, Meth increases levels of D1Rs in the dorsal striatum in animal models of Meth addiction, and blockade of striatal D1Rs decreased responding for Meth and reduced Meth priming-induced drug seeking. However, the mechanism underlying enhanced expression of striatal D1Rs in animals self-administering Meth is unknown and is hypothesized to involve maladaptive intracellular signal transduction mechanism via hyperphosphorylation of extracellular signal-regulated kinase 1/2 (ERK1/2). D1Rs are predominantly localized to detergent-resistant membrane/lipid raft fractions (MLR fraction), and in vitro studies indicate that D1R signaling and recycling is regulated by the MLR-resident protein caveolin-1 (Cav-1), in an endocytotic-dependent manner. Notably, expression of Cav-1 is inversely regulated by ERK1/2 activation, suggesting a signaling interplay among D1Rs, ERK1/2 and Cav-1. We therefore evaluated the effects of extended access Meth self-administration on expression of striatal D1Rs, activated ERK1/2 and Cav-1. We first report that Cav-1 is heavily expressed in neurons located in the dorsal striatum. We also report that extended access Meth produces compulsive-like unregulated intake of the drug, and these behavioral outcomes are associated with enhanced expression of D1Rs, increased activity of ERK1/2, and reduced Cav-1 expression in the dorsal striatum. These data suggest a possible cellular mechanism that involves Cav-1 regulation of D1R expression in response to escalated Meth intake, and how this response of altered D1Rs and enhanced ERK1/2 activation to Meth self-administration contributes to contingent-related processes such as addiction. PMID:27138644

  13. Reduced retinoids and retinoid receptors' expression in pancreatic cancer: A link to patient survival.

    PubMed

    Bleul, Tim; Rühl, Ralph; Bulashevska, Svetlana; Karakhanova, Svetlana; Werner, Jens; Bazhin, Alexandr V

    2015-09-01

    Pancreatic ductal adenocarcinoma (PDAC) represents one of the deadliest cancers in the world. All-trans retinoic acid (ATRA) is the major physiologically active form of vitamin A, regulating expression of many genes. Disturbances of vitamin A metabolism are prevalent in some cancer cells. The main aim of this work was to investigate deeply the components of retinoid signaling in PDAC compared to in the normal pancreas and to prove the clinical importance of retinoid receptor expression. For the study, human tumor tissues obtained from PDAC patients and murine tumors from the orthotopic Panc02 model were used for the analysis of retinoids, using high performance liquid chromatography mass spectrometry and real-time RT-PCR gene expression analysis. Survival probabilities in univariate analysis were estimated using the Kaplan-Meier method and the Cox proportional hazards model was used for the multivariate analysis. In this work, we showed for the first time that the ATRA and all-trans retinol concentration is reduced in PDAC tissue compared to their normal counterparts. The expression of RARα and β as well as RXRα and β are down-regulated in PDAC tissue. This reduced expression of retinoid receptors correlates with the expression of some markers of differentiation and epithelial-to-mesenchymal transition as well as of cancer stem cell markers. Importantly, the expression of RARα and RXRβ is associated with better overall survival of PDAC patients. Thus, reduction of retinoids and their receptors is an important feature of PDAC and is associated with worse patient survival outcomes.

  14. Klotho expression is reduced in COPD airway epithelial cells: effects on inflammation and oxidant injury.

    PubMed

    Gao, Wei; Yuan, Cheng; Zhang, Jingying; Li, Lingling; Yu, Like; Wiegman, Coen H; Barnes, Peter J; Adcock, Ian M; Huang, Mao; Yao, Xin

    2015-12-01

    COPD (chronic obstructive pulmonary disease) is associated with sustained inflammation, excessive injury, and accelerated lung aging. Human Klotho (KL) is an anti-aging protein that protects cells against inflammation and damage. In the present study, we quantified KL expression in the lungs of COPD patients and in an ozone-induced mouse model of COPD, and investigated the mechanisms that control KL expression and function in the airways. KL distribution and levels in human and mouse airways were measured by immunohistochemistry and Western blotting. The effect of CSE (cigarette smoke extract) on KL expression was detected in human bronchial epithelial cells. Moreover, the effect of KL on CSE-mediated inflammation and hydrogen peroxide-induced cellular injury/apoptosis was determined using siRNAs. KL expression was decreased in the lungs of smokers and further reduced in patients with COPD. Similarly, 6 weeks of exposure to ozone decreased KL levels in airway epithelial cells. CSE and TNFα (tumour necrosis factor α) decreased KL expression and release from airway epithelial cells, which was associated with enhanced pro-inflammatory cytokine expression. Moreover, KL depletion increased cell sensitivity to cigarette smoke-induced inflammation and oxidative stress-induced cell damage. These effects involved the NF-κB (nuclear factor κB), MAPK (mitogen-activated protein kinase) and Nrf2 (nuclear factor erythroid 2-related factor 2) pathways. Reduced KL expression in COPD airway epithelial cells was associated with increased oxidative stress, inflammation and apoptosis. These data provide new insights into the mechanisms associated with the accelerated lung aging in COPD development. PMID:26201096

  15. HMA4 expression in tobacco reduces Cd accumulation due to the induction of the apoplastic barrier.

    PubMed

    Siemianowski, Oskar; Barabasz, Anna; Kendziorek, Maria; Ruszczynska, Anna; Bulska, Ewa; Williams, Lorraine Elizabeth; Antosiewicz, Danuta Maria

    2014-03-01

    Ectopic expression in tobacco (Nicotiana tabacum v. Xanthi) of the export protein AtHMA4 (responsible in Arabidopsis for the control of Zn/Cd root to shoot translocation) resulted in decreased Cd uptake/accumulation in roots and shoots. This study contributes to understanding the mechanisms underlying this Cd-dependent phenotype to help predict the consequences of transgene expression for potential phytoremediation/biofortification-based strategies. Microarray analysis was performed to identify metal homeostasis genes that were differentially expressed in roots of Cd-exposed AtHMA4-expressing tobacco relative to the wild type. It was established that down-regulation of genes known to mediate Cd uptake was not responsible for reduced Cd uptake/accumulation in AtHMA4 transformants. The transcript levels of NtIRT1 and NtZIP1 were higher in transgenic plants, indicating an induction of the Fe and Zn deficiency status due to AtHMA4 expression. Interestingly, upon exposure to Cd, genes involved in cell wall lignification (NtHCT, NtOMET, and NtPrx11a) were up-regulated in transformants. Microscopic analysis of roots demonstrated that expression of AtHMA4 caused an induction of cell wall lignification in the external cell layers that was accompanied by enhanced H2O2 accumulation. Further study showed that the concentration of other elements (B, Co, Cu, Ni, Mo, and Zn) was reduced in AtHMA4 transformants in the presence of Cd. In conclusion, due to ectopic expression of 35S::AtHMA4, the physical apoplastic barrier within the external cell layer developed, which is likely to be responsible for the reduction of Cd uptake/accumulation.

  16. HMA4 expression in tobacco reduces Cd accumulation due to the induction of the apoplastic barrier

    PubMed Central

    Antosiewicz, Danuta Maria

    2014-01-01

    Ectopic expression in tobacco (Nicotiana tabacum v. Xanthi) of the export protein AtHMA4 (responsible in Arabidopsis for the control of Zn/Cd root to shoot translocation) resulted in decreased Cd uptake/accumulation in roots and shoots. This study contributes to understanding the mechanisms underlying this Cd-dependent phenotype to help predict the consequences of transgene expression for potential phytoremediation/biofortification-based strategies. Microarray analysis was performed to identify metal homeostasis genes that were differentially expressed in roots of Cd-exposed AtHMA4-expressing tobacco relative to the wild type. It was established that down-regulation of genes known to mediate Cd uptake was not responsible for reduced Cd uptake/accumulation in AtHMA4 transformants. The transcript levels of NtIRT1 and NtZIP1 were higher in transgenic plants, indicating an induction of the Fe and Zn deficiency status due to AtHMA4 expression. Interestingly, upon exposure to Cd, genes involved in cell wall lignification (NtHCT, NtOMET, and NtPrx11a) were up-regulated in transformants. Microscopic analysis of roots demonstrated that expression of AtHMA4 caused an induction of cell wall lignification in the external cell layers that was accompanied by enhanced H2O2 accumulation. Further study showed that the concentration of other elements (B, Co, Cu, Ni, Mo, and Zn) was reduced in AtHMA4 transformants in the presence of Cd. In conclusion, due to ectopic expression of 35S::AtHMA4, the physical apoplastic barrier within the external cell layer developed, which is likely to be responsible for the reduction of Cd uptake/accumulation. PMID:24420575

  17. Rare TREM2 variants associated with Alzheimer's disease display reduced cell surface expression.

    PubMed

    Sirkis, Daniel W; Bonham, Luke W; Aparicio, Renan E; Geier, Ethan G; Ramos, Eliana Marisa; Wang, Qing; Karydas, Anna; Miller, Zachary A; Miller, Bruce L; Coppola, Giovanni; Yokoyama, Jennifer S

    2016-09-02

    Rare variation in TREM2 has been associated with greater risk for Alzheimer's disease (AD). TREM2 encodes a cell surface receptor expressed on microglia and related cells, and the R47H variant associated with AD appears to affect the ability of TREM2 to bind extracellular ligands. In addition, other rare TREM2 mutations causing early-onset neurodegeneration are thought to impair cell surface expression. Using a sequence kernel association (SKAT) analysis in two independent AD cohorts, we found significant enrichment of rare TREM2 variants not previously characterized at the protein level. Heterologous expression of the identified variants showed that novel variants S31F and R47C displayed significantly reduced cell surface expression. In addition, we identified rare variant R136Q in a patient with language-predominant AD that also showed impaired surface expression. The results suggest rare TREM2 variants enriched in AD may be associated with altered TREM2 function and that AD risk may be conferred, in part, from altered TREM2 surface expression.

  18. Rare TREM2 variants associated with Alzheimer's disease display reduced cell surface expression.

    PubMed

    Sirkis, Daniel W; Bonham, Luke W; Aparicio, Renan E; Geier, Ethan G; Ramos, Eliana Marisa; Wang, Qing; Karydas, Anna; Miller, Zachary A; Miller, Bruce L; Coppola, Giovanni; Yokoyama, Jennifer S

    2016-01-01

    Rare variation in TREM2 has been associated with greater risk for Alzheimer's disease (AD). TREM2 encodes a cell surface receptor expressed on microglia and related cells, and the R47H variant associated with AD appears to affect the ability of TREM2 to bind extracellular ligands. In addition, other rare TREM2 mutations causing early-onset neurodegeneration are thought to impair cell surface expression. Using a sequence kernel association (SKAT) analysis in two independent AD cohorts, we found significant enrichment of rare TREM2 variants not previously characterized at the protein level. Heterologous expression of the identified variants showed that novel variants S31F and R47C displayed significantly reduced cell surface expression. In addition, we identified rare variant R136Q in a patient with language-predominant AD that also showed impaired surface expression. The results suggest rare TREM2 variants enriched in AD may be associated with altered TREM2 function and that AD risk may be conferred, in part, from altered TREM2 surface expression. PMID:27589997

  19. Arterial Shear Stress Reduces Eph-B4 Expression in Adult Human Veins

    PubMed Central

    Model, Lynn S.; Hall, Michael R.; Wong, Daniel J.; Muto, Akihito; Kondo, Yuka; Ziegler, Kenneth R.; Feigel, Amanda; Quint, Clay; Niklason, Laura; Dardik, Alan

    2014-01-01

    Vein graft adaptation to the arterial environment is characterized by loss of venous identity, with reduced Ephrin type-B receptor 4 (Eph-B4) expression but without increased Ephrin-B2 expression. We examined changes of vessel identity of human saphenous veins in a flow circuit in which shear stress could be precisely controlled. Medium circulated at arterial or venous magnitudes of laminar shear stress for 24 hours; histologic, protein, and RNA analyses of vein segments were performed. Vein endothelium remained viable and functional, with platelet endothelial cell adhesion molecule (PECAM)-expressing cells on the luminal surface. Venous Eph-B4 expression diminished (p = .002), Ephrin-B2 expression was not induced (p = .268), and expression of osteopontin (p = .002) was increased with exposure to arterial magnitudes of shear stress. Similar changes were not found in veins placed under venous flow or static conditions. These data show that human saphenous veins remain viable during ex vivo application of shear stress in a bioreactor, without loss of the venous endothelium. Arterial magnitudes of shear stress cause loss of venous identity without gain of arterial identity in human veins perfused ex vivo. Shear stress alone, without immunologic or hormonal influence, is capable of inducing changes in vessel identity and, specifically, loss of venous identity. PMID:25191151

  20. Brain SERT Expression of Male Rats Is Reduced by Aging and Increased by Testosterone Restitution

    PubMed Central

    Herrera-Pérez, José Jaime; Fernández-Guasti, Alonso; Martínez-Mota, Lucía

    2013-01-01

    In preclinical and clinical studies aging has been associated with a deteriorated response to antidepressant treatment. We hypothesize that such impairment is explained by an age-related decrease in brain serotonin transporter (SERT) expression associated with low testosterone (T) levels. The objectives of this study were to establish (1) if brain SERT expression is reduced by aging and (2) if the SERT expression in middle-aged rats is increased by T-restitution. Intact young rats (3–5 months) and gonad-intact middle-aged rats with or without T-restitution were used. The identification of the brain SERT expression was done by immunofluorescence in prefrontal cortex, lateral septum, hippocampus, and raphe nuclei. An age-dependent reduction of SERT expression was observed in all brain regions examined, while T-restitution recovered the SERT expression only in the dorsal raphe of middle-aged rats. This last action seems relevant since dorsal raphe plays an important role in the antidepressant action of selective serotonin reuptake inhibitors. All data suggest that this mechanism accounts for the T-replacement usefulness to improve the response to antidepressants in the aged population. PMID:26317087

  1. Atorvastatin reduces CD68, FABP4, and HBP expression in oxLDL-treated human macrophages.

    PubMed

    Llaverias, Gemma; Noé, Véronique; Peñuelas, Silvia; Vázquez-Carrera, Manuel; Sánchez, Rosa M; Laguna, Juan C; Ciudad, Carlos J; Alegret, Marta

    2004-05-21

    With the aim of identifying new target genes that could contribute to limit foam cell formation, we analyzed changes in the pattern of gene expression in human THP-1 macrophages treated with atorvastatin and oxidized-LDL (oxLDL). To this end, we used a human cDNA array containing 588 cardiovascular-related cDNAs. Exposure to oxLDL resulted in differential expression of 26 genes, while coincubation with atorvastatin modified the expression of 29 genes, compared to treatment with oxLDL alone. Changes in the expression of candidate genes, potentially connected to the atherosclerotic process, were confirmed by quantitative RT-PCR and Western blot. We show that atorvastatin prevents the increase in the expression of scavenger receptor CD68 and that of fatty acid binding protein 4 caused by oxLDL. In addition, atorvastatin reduces the expression of HDL-binding protein, apolipoprotein E, and matrix metalloproteinase 9. These findings are relevant to understand the direct antiatherogenic effects of statins on macrophages.

  2. Reduced GABAA receptor α6 expression in the trigeminal ganglion alters inflammatory TMJ hypersensitivity

    PubMed Central

    Puri, Jyoti; Vinothini, Priya; Reuben, Jayne; Bellinger, Larry L.; Ailing, Li; Peng, Yuan B.; Kramer, Phillip R.

    2012-01-01

    Trigeminal ganglia neurons express the GABAA receptor subunit alpha 6 (Gabrα6) but the role of this particular subunit in orofacial hypersensitivity is unknown. In this report the function of Gabrα6 was tested by reducing its expression in the trigeminal ganglia and measuring the effect of this reduction on inflammatory temporomandibular joint (TMJ) hypersensitivity. Gabrα6 expression was reduced by infusing the trigeminal ganglia of male Sprague Dawley rats with small interfering RNA (siRNA) having homology to either the Gabrα6 gene (Gabrα6 siRNA) or no known gene (control siRNA). Sixty hours after siRNA infusion the rats received a bilateral TMJ injection of complete Freund’s adjuvant to induce an inflammatory response. Hypersensitivity was then quantitated by measuring meal duration, which lengthens when hypersensitivity increases. Neuronal activity in the trigeminal ganglia was also measured by quantitating the amount of phosphorylated ERK. Rats in a different group that did not have TMJ inflammation had an electrode placed in the spinal cord at the level of C1 sixty hours after siRNA infusion to record extracellular electrical activity of neurons that responded to TMJ stimulation. Our results show that Gabrα6 was expressed in both neurons and satellite glia of the trigeminal ganglia and that Gabrα6 positive neurons within the trigeminal ganglia have afferents in the TMJ. Gabrα6 siRNA infusion reduced Gabrα6 gene expression by 30% and significantly lengthened meal duration in rats with TMJ inflammation. Gabrα6 siRNA infusion also significantly increased p-ERK expression in the trigeminal ganglia of rats with TMJ inflammation and increased electrical activity in the spinal cord of rats without TMJ inflammation. These results suggest that maintaining Gabrα6 expression was necessary to inhibit primary sensory afferents in the trigeminal pathway and reduce inflammatory orofacial nociception. PMID:22521829

  3. Behavioral stress reduces RIP140 expression in astrocyte and increases brain lipid accumulation.

    PubMed

    Feng, Xudong; Lin, Yu-Lung; Wei, Li-Na

    2015-05-01

    Receptor-interacting protein 140 (RIP140) is highly expressed in the brain, and acts in neurons and microglia to affect emotional responses. The present study reveals an additional function of RIP140 in the brain, which is to regulate brain lipid homeostasis via its action in astrocytes. We found forced swim stress (FSS) significantly reduces the expression level of RIP140 and elevates cholesterol content in the brain. Mechanistically, FSS elevates endoplasmic reticulum stress, which suppresses RIP140 expression by increasing microRNA 33 (miR33) that targets RIP140 mRNA's 3'-untranslated region. Consequentially, cholesterol biosynthesis and export are dramatically increased in astrocyte, the major source of brain cholesterol. These results demonstrate that RIP140 plays an important role in maintaining brain cholesterol homeostasis through, partially, regulating cholesterol metabolism in, and mobilization from, astrocyte. Altering RIP140 levels can disrupt brain cholesterol homeostasis, which may contribute to behavioral stress-induced neurological disorders. PMID:25697398

  4. Behavioral stress reduces RIP140 expression in astrocyte and increases brain lipid accumulation.

    PubMed

    Feng, Xudong; Lin, Yu-Lung; Wei, Li-Na

    2015-05-01

    Receptor-interacting protein 140 (RIP140) is highly expressed in the brain, and acts in neurons and microglia to affect emotional responses. The present study reveals an additional function of RIP140 in the brain, which is to regulate brain lipid homeostasis via its action in astrocytes. We found forced swim stress (FSS) significantly reduces the expression level of RIP140 and elevates cholesterol content in the brain. Mechanistically, FSS elevates endoplasmic reticulum stress, which suppresses RIP140 expression by increasing microRNA 33 (miR33) that targets RIP140 mRNA's 3'-untranslated region. Consequentially, cholesterol biosynthesis and export are dramatically increased in astrocyte, the major source of brain cholesterol. These results demonstrate that RIP140 plays an important role in maintaining brain cholesterol homeostasis through, partially, regulating cholesterol metabolism in, and mobilization from, astrocyte. Altering RIP140 levels can disrupt brain cholesterol homeostasis, which may contribute to behavioral stress-induced neurological disorders.

  5. Expertise in video game playing is associated with reduced valence-concordant emotional expressivity.

    PubMed

    Weinreich, André; Strobach, Tilo; Schubert, Torsten

    2015-01-01

    In carefully selected groups of video game playing (VGP) experts and nonexperts, we examined valence-concordant emotional expressivity. We measured electromyographic (EMG) activity over the corrugator supercilii muscle while participants viewed pleasant, neutral, and unpleasant pictures. Potential group differences concerning valence-concordant expressivity may arise from differences concerning the participants' emotional reactivity. To control for such differences, we concomitantly measured skin conductance response (SCR) and, in a separate affect misattribution procedure (AMP), valence transfer from the same set of stimuli. Importantly, we found attenuated valence-concordant EMG activity over the corrugator supercilii muscle in VGP experts compared to nonexperts, but no differences were evident concerning SCR or valence transfer in the AMP. The findings suggest that expertise in VGP is particularly associated with reduced valence-concordant emotional expressivity.

  6. Transcriptional upregulation centra of HO-1 by EGB via the MAPKs/Nrf2 pathway in mouse C2C12 myoblasts.

    PubMed

    Wang, Jianfeng; Zhang, Li; Zhang, Ying; Luo, Meiling; Wu, Qiong; Yu, Lijun; Chu, Haiying

    2015-03-01

    Long-term abuse of alcohol results in chronic alcoholic myopathy which is associated with increased oxidative stress. Ginkgo biloba extract (EGB) is widely used as a therapeutic agent to treat certain cardiovascular and neurological disorders. Although EGB is known to possess antioxidant functions and potent cytoprotective effects, its protective mechanism on alcohol-induced oxidative damage in C2C12 myoblasts remains unclear. In this study, we investigated the cytoprotective mechanisms of EGB against alcohol-derived oxidative stress in mouse C2C12 myoblasts. Challenge with alcohol (100mM) caused an increase in intracellular reactive oxygen species in mouse C2C12 myoblasts, which was not alleviated by treatment with EGB. These results indicate that EGB does not seem to act as an ROS scavenger in this experimental model. Additionally, EGB produced activation of ERK and JNK [two major mitogen-activated protein kinases (MAPKs)], an increase in the nuclear level of nuclear factor erythroid-2-related factor 2 (Nrf2) and upregulation of heme oxygenase-1 (HO-1, a stress-responsive protein with antioxidant function). Pretreatment with inhibitors of MAPKs PD98059 (a specific inhibitor of ERK), SP600125 (a specific inhibitor of JNK) abolished both EGB-induced Nrf2 nuclear translocation and HO-1 up-regulation. We conclude that EGB confers cytoprotective effects from oxidative stress induced by alcohol in mouse C2C12 myoblasts depend on transcriptional upregulation of HO-1 by EGB via the MAPKs/Nrf2 pathway.

  7. Platelets do not express the oxidized or reduced forms of tissue factor

    PubMed Central

    Bouchard, Beth A.; Gissel, Matthew T.; Whelihan, Matthew F.; Mann, Kenneth G.; Butenas, Saulius

    2014-01-01

    Background Expression of tissue factor (TF) antigen and activity in platelets is controversial and dependent upon the laboratory and reagents used. Two forms of TF were described: an oxidized functional form and a reduced nonfunctional form that is converted to the active form through the formation of an allosteric disulfide. This study tests the hypothesis that the discrepancies regarding platelet TF expression are due to differential expression of the two forms. Methods Specific reagents that recognize both oxidized and reduced TF were used in flow cytometry of unactivated and activated platelets and western blotting of whole platelet lysates. TF-dependent activity measurements were used to confirm the results. Results Western blotting analyses of placental TF demonstrated that, in contrast to anti-TF#5, which is directed against the oxidized form of TF, a sheep anti-human TF polyclonal antibody recognizes both the reduced and oxidized forms. Flow cytometric analyses demonstrated that the sheep antibody did not react with the surface of unactivated platelets or platelets activated with thrombin receptor agonist peptide, PAR-1. This observation was confirmed using biotinylated active site-blocked factor (F)VIIa: no binding was observed. Likewise, neither form of TF was detected by western blotting of whole platelet lysates with sheep anti-hTF. Consistent with these observations, no FXa or FIXa generation by FVIIa was detected at the surface of these platelets. Similarly, no TF-related activity was observed in whole blood using thomboelastography. Conclusion and Significance Platelets from healthy donors do not express either oxidized (functional) or reduced (nonfunctional) forms of TF. PMID:24361609

  8. Benzylglucosinolate Derived Isothiocyanate from Tropaeolum majus Reduces Gluconeogenic Gene and Protein Expression in Human Cells

    PubMed Central

    Guzmán-Pérez, Valentina; Bumke-Vogt, Christiane; Schreiner, Monika; Mewis, Inga; Borchert, Andrea; Pfeiffer, Andreas F. H.

    2016-01-01

    Nasturtium (Tropaeolum majus L.) contains high concentrations of benzylglcosinolate. We found that a hydrolysis product of benzyl glucosinolate—the benzyl isothiocyanate (BITC)—modulates the intracellular localization of the transcription factor Forkhead box O 1 (FOXO1). FoxO transcription factors can antagonize insulin effects and trigger a variety of cellular processes involved in tumor suppression, longevity, development and metabolism. The current study evaluated the ability of BITC—extracted as intact glucosinolate from nasturtium and hydrolyzed with myrosinase—to modulate i) the insulin-signaling pathway, ii) the intracellular localization of FOXO1 and, iii) the expression of proteins involved in gluconeogenesis, antioxidant response and detoxification. Stably transfected human osteosarcoma cells (U-2 OS) with constitutive expression of FOXO1 protein labeled with GFP (green fluorescent protein) were used to evaluate the effect of BITC on FOXO1. Human hepatoma HepG2 cell cultures were selected to evaluate the effect on gluconeogenic, antioxidant and detoxification genes and protein expression. BITC reduced the phosphorylation of protein kinase B (AKT/PKB) and FOXO1; promoted FOXO1 translocation from cytoplasm into the nucleus antagonizing the insulin effect; was able to down-regulate the gene and protein expression of gluconeogenic enzymes; and induced the gene expression of antioxidant and detoxification enzymes. Knockdown analyses with specific siRNAs showed that the expression of gluconeogenic genes was dependent on nuclear factor (erythroid derived)-like2 (NRF2) and independent of FOXO1, AKT and NAD-dependent deacetylase sirtuin-1 (SIRT1). The current study provides evidence that BITC might have a role in type 2 diabetes T2D by reducing hepatic glucose production and increasing antioxidant resistance. PMID:27622707

  9. Benzylglucosinolate Derived Isothiocyanate from Tropaeolum majus Reduces Gluconeogenic Gene and Protein Expression in Human Cells.

    PubMed

    Guzmán-Pérez, Valentina; Bumke-Vogt, Christiane; Schreiner, Monika; Mewis, Inga; Borchert, Andrea; Pfeiffer, Andreas F H

    2016-01-01

    Nasturtium (Tropaeolum majus L.) contains high concentrations of benzylglcosinolate. We found that a hydrolysis product of benzyl glucosinolate-the benzyl isothiocyanate (BITC)-modulates the intracellular localization of the transcription factor Forkhead box O 1 (FOXO1). FoxO transcription factors can antagonize insulin effects and trigger a variety of cellular processes involved in tumor suppression, longevity, development and metabolism. The current study evaluated the ability of BITC-extracted as intact glucosinolate from nasturtium and hydrolyzed with myrosinase-to modulate i) the insulin-signaling pathway, ii) the intracellular localization of FOXO1 and, iii) the expression of proteins involved in gluconeogenesis, antioxidant response and detoxification. Stably transfected human osteosarcoma cells (U-2 OS) with constitutive expression of FOXO1 protein labeled with GFP (green fluorescent protein) were used to evaluate the effect of BITC on FOXO1. Human hepatoma HepG2 cell cultures were selected to evaluate the effect on gluconeogenic, antioxidant and detoxification genes and protein expression. BITC reduced the phosphorylation of protein kinase B (AKT/PKB) and FOXO1; promoted FOXO1 translocation from cytoplasm into the nucleus antagonizing the insulin effect; was able to down-regulate the gene and protein expression of gluconeogenic enzymes; and induced the gene expression of antioxidant and detoxification enzymes. Knockdown analyses with specific siRNAs showed that the expression of gluconeogenic genes was dependent on nuclear factor (erythroid derived)-like2 (NRF2) and independent of FOXO1, AKT and NAD-dependent deacetylase sirtuin-1 (SIRT1). The current study provides evidence that BITC might have a role in type 2 diabetes T2D by reducing hepatic glucose production and increasing antioxidant resistance. PMID:27622707

  10. Menthol reduces the anticoagulant effect of warfarin by inducing cytochrome P450 2C expression.

    PubMed

    Hoshino, Motohiro; Ikarashi, Nobutomo; Tsukui, Makoto; Kurokawa, Asako; Naito, Rina; Suzuki, Midori; Yokobori, Kohsuke; Ochiai, Takumi; Ishii, Makoto; Kusunoki, Yoshiki; Kon, Risako; Ochiai, Wataru; Wakui, Nobuyuki; Machida, Yoshiaki; Sugiyama, Kiyoshi

    2014-06-01

    Recently, it was reported that the anticoagulant effect of warfarin was reduced when patients receiving warfarin also took menthol. The purpose of this study is to reveal the mechanism of this reduced anticoagulant effect of warfarin from the pharmacokinetic point of view. Warfarin was orally administered to mice 24h after the administration of menthol for 2 days, and the plasma warfarin concentration was measured. In the menthol administration group, the area under the blood concentration time curve of warfarin was decreased by approximately 25%, while total clearance was increased to 1.3-fold compared to the control group. The hepatic cytochrome P450 (CYP) 2C protein expression level in the menthol administration group was significantly increased compared to that in the control group. An increase in the nuclear translocation of constitutive androstane receptor (CAR) was also observed. The addition of menthol to human hepatic cells, HepaRG cells, caused an increase in the mRNA expression level of CYP2C9. The results of this study revealed that menthol causes an increase in CYP2C expression levels in the liver, which leads to an enhancement of warfarin metabolism, resulting in a decreased anticoagulant effect of warfarin. It was also suggested that menthol acted directly on the liver and increased the expression level of CYP2C by enhancing the nuclear translocation of CAR. PMID:24594507

  11. Gentiana scabra Reduces SR-A Expression and Oxidized-LDL Uptake in Human Macrophages

    PubMed Central

    Lin, Chin-Sheng; Liu, Pang-Yen; Lian, Chen-Hao; Lin, Ching-Heng; Lai, Jenn-Haung; Ho, Ling-Jun; Yang, Shih-Ping; Cheng, Shu-Meng

    2016-01-01

    Background Macrophages can imbibe low-density lipoprotein (LDL) through scavenger receptors to become foam cells, which is critical in the initiation and progression of atherosclerosis. Mounting evidence suggests that the anti-inflammatory nature of Chinese herbs have the capacity to halt the complex mechanisms underlying atherosclerosis. This study examined the effects of Chinese herbs on foam cell formation. Methods Chinese herbs were obtained from the Sun Ten pharmaceutic company. Using oxidized LDL (OxLDL) uptake and a cell toxicity assay, we screened more than 30 types of Chinese herbs. Western blotting was used to determine expressions of scavenger receptors (SRs) and extracellular-signal-regulated kinase (ERK) activities. Results We found that Gentiana scabra reduced oxidized LDL uptake effectively in THP-1 macrophages (p < 0.05 vs. OxLDL treated control). Moreover, treatment with Gentiana scabra in THP-1 macrophages resulted in decreased expression of scavenger receptor- A (SR-A) (p < 0.05 vs. control). Molecular investigation revealed that Gentiana scabra inhibited SR-A protein expression, possibly by regulating ERK signaling pathways (p < 0.05 vs. control). Conclusions By regulating SR-A expression, Gentiana scabra reduced oxidized LDL uptake in human macrophages. These results support the potential use of Gentiana scabra in treating atherosclerosis. PMID:27471359

  12. Promoter mutation and reduced expression of BRCA1 in canine mammary tumors.

    PubMed

    Qiu, H B; Sun, W D; Yang, X; Jiang, Q Y; Chen, S; Lin, D G

    2015-12-01

    Breast cancer 1, early onset (BRCA1) is one of the most important genes in human familial breast cancer, which also plays an important role in canine mammary tumors. The objectives of this study were to determine the promoter sequence of canine BRCA1, to investigate its promoter mutation status and to describe BRCA1 expression pattern in canine mammary tumors. The promoter sequence of canine BRCA1 was acquired by aligning human BRCA1 promoter sequence with canine genomic sequence and confirmed by standard promoter activity analysis. Same as human BRCA1 promoter, the CAAT box and G/C box were found in canine BRCA1 promoter. In order to explore the mutation status of the promoter region and to investigate the expression pattern of this gene, 10 normal canine mammary tissues, 15 benign mammary tumors and 15 malignant mammary tumors were used. By sequencing, 46.7% of the malignant mammary tumors were found with a deletion of one cytosine in the promoter region. The mRNA expression of BRCA1 was significantly reduced in benign and malignant mammary tumors (P<0.05), and the protein expression of BRCA1 was significantly reduced in malignant mammary tumors (P<0.05). This study is the first time to determine the canine BRCA1 promoter sequence and to describe the promoter mutation status in canine mammary tumors. PMID:26679809

  13. Bisdemethoxycurcumin inhibits ovarian cancer via reducing oxidative stress mediated MMPs expressions

    PubMed Central

    Pei, Haifeng; Yang, Yi; Cui, Lin; Yang, Jiong; Li, Xiuchuan; Yang, Yongjian; Duan, Haixia

    2016-01-01

    As one main active compound of curcuminoids, Bisdemethoxycurcumin (BDMC) possesses several biological activities, such as anti-inflammation and anti-cancer activities. However, the detailed mechanism of BDMC’s anti-metastasis activity in ovarian cancer has not been clearly elucidated yet. In the present study, cell proliferation, wound healing motility, cell adhesion and invasion with or without BDMC were determined. In addition, western blot was used to examine proteins expressions. The lucigenin-enhanced luminescence was introduced to assess cellular oxidative stress. The luciferase reporter gene assay was introduced to evaluate the transcriptional activity of NF-κB. Finally, BDMC significantly inhibited the adhesion, migration, invasion and metastasis of SKOV-3 cells. Moreover, BDMC inhibited expressions of several degradation-associated proteins, such as matrix metalloproteinase-2 (MMP-2), matrix metalloproteinase-9 (MMP-9), CD147, urokinase plasminogen activator (uPA), intercellular adhesion molecule-1 (ICAM-1) and vascular cell adhesion molecule-1 (VCAM-1), whereas increased expression of tissue inhibitor of metalloproteinase-1 (TIMP-1), in a dose-dependent manner. In addition, BDMC reduced generation of cellular superoxide in a dose-dependent manner. Furthermore, BDMC inhibited the phosphorylation levels of NF-κB p65 and IκB-α, and consequently reduced NF-κB-driven luciferase expression. Collectively, BDMC serves as a therapeutic medicine to suppress ovarian cancer, perhaps via inhibiting cellular oxidative stress and subsequently inactivating NF-κB pathway. PMID:27349797

  14. Expression of Heme Oxygenase-1 in Thick Ascending Loop of Henle Attenuates Angiotensin II-Dependent Hypertension

    PubMed Central

    Drummond, Heather A.; Gousette, Monette U.; Storm, Megan V.; Abraham, Nader G.; Csongradi, Eva

    2012-01-01

    Kidney-specific induction of heme oxygenase-1 (HO-1) attenuates the development of angiotensin II (Ang II) -dependent hypertension, but the relative contribution of vascular versus tubular induction of HO-1 is unknown. To determine the specific contribution of thick ascending loop of Henle (TALH) -derived HO-1, we generated a transgenic mouse in which the uromodulin promoter controlled expression of human HO-1. Quantitative RT-PCR and confocal microscopy confirmed successful localization of the HO-1 transgene to TALH tubule segments. Medullary HO activity, but not cortical HO activity, was significantly higher in transgenic mice than control mice. Enhanced TALH HO-1 attenuated the hypertension induced by Ang II delivered by an osmotic minipump for 10 days (139±3 versus 153±2 mmHg in the transgenic and control mice, respectively; P<0.05). The lower blood pressure in transgenic mice associated with a 60% decrease in medullary NKCC2 transporter expression determined by Western blot. Transgenic mice also exhibited a 36% decrease in ouabain-sensitive sodium reabsorption and a significantly attenuated response to furosemide in isolated TALH segments,. In summary, these results show that increased levels of HO-1 in the TALH can lower blood pressure by a mechanism that may include alterations in NKCC2-dependent sodium reabsorption. PMID:22323644

  15. Reduced ubiquitin C-terminal hydrolase-1 expression levels in dementia with Lewy bodies.

    PubMed

    Barrachina, Marta; Castaño, Esther; Dalfó, Esther; Maes, Tamara; Buesa, Carlos; Ferrer, Isidro

    2006-05-01

    Parkinson disease (PD) and dementia with Lewy bodies (DLB) are characterized by the accumulation of abnormal alpha-synuclein and ubiquitin in protein aggregates conforming Lewy bodies and Lewy neurites. Ubiquitin C-terminal hydrolase-1 (UCHL-1) disassembles polyubiquitin chains to increase the availability of free monomeric ubiquitin to the ubiquitin proteasome system (UPS) thus favoring protein degradation. Since mutations in the UCHL-1 gene, reducing UPS activity by 50%, have been reported in autosomal dominant PD, and UCHL-1 inhibition results in the formation of alpha-synuclein aggregates in mesencephalic cultured neurons, the present study was initiated to test UCHL-1 mRNA and protein levels in post-mortem frontal cortex (area 8) of PD and DLB cases, compared with age-matched controls. TaqMan PCR assays, and Western blots demonstrated down-regulation of UCHL-1 mRNA and UCHL-1 protein in the cerebral cortex in DLB (either in pure forms, not associated with Alzheimer disease: AD, and in common forms, with accompanying AD changes), but not in PD, when compared with age-matched controls. Interestingly, UCHL-1 mRNA and protein expressions were reduced in the medulla oblongata in the same PD cases. Moreover, UCHL-1 protein was decreased in the substantia nigra in cases with Lewy body pathology. UCHL-1 down-regulation was not associated with reduced protein levels of several proteasomal subunits, including 20SX, 20SY, 19S and 11Salpha. Yet UCHL-3 expression was reduced in the cerebral cortex of PD and DLB patients. Together, these observations show reduced UCHL-1 expression as a contributory factor in the abnormal protein aggregation in DLB, and points UCHL-1 as a putative therapeutic target in the treatment of DLB.

  16. Disturbed shear stress reduces Klf2 expression in arterial-venous fistulae in vivo

    PubMed Central

    Yamamoto, Kota; Protack, Clinton D; Kuwahara, Go; Tsuneki, Masayuki; Hashimoto, Takuya; Hall, Michael R; Assi, Roland; Brownson, Kirstyn E; Foster, Trenton R; Bai, Hualong; Wang, Mo; Madri, Joseph A; Dardik, Alan

    2015-01-01

    Laminar shear stress (SS) induces an antiproliferative and anti-inflammatory endothelial phenotype and increases Klf2 expression. We altered the diameter of an arteriovenous fistula (AVF) in the mouse model to determine whether increased fistula diameter produces disturbed SS in vivo and if acutely increased disturbed SS results in decreased Klf2 expression. The mouse aortocaval fistula model was performed with 22, 25, or 28 gauge needles to puncture the aorta and the inferior vena cava. Duplex ultrasound was used to examine the AVF and its arterial inflow and venous outflow, and SS was calculated. Arterial samples were examined with western blot, immunohistochemistry, and immunofluorescence analysis for proteins and qPCR for RNA. Mice with larger diameter fistulae had diminished survival but increased AVF patency. Increased SS magnitudes and range of frequencies were directly proportional to the needle diameter in the arterial limb proximal to the fistula but not in the venous limb distal to the fistula, with 22-gauge needles producing the most disturbed SS in vivo. Klf2 mRNA and protein expression was diminished in the artery proximal to the fistula in proportion to increasing SS. Increased fistula diameter produces increased SS magnitude and frequency, consistent with disturbed SS in vivo. Disturbed SS is associated with decreased mRNA and protein expression of Klf2. Disturbed SS and reduced Klf2 expression near the fistula are potential therapeutic targets to improve AVF maturation. PMID:25780089

  17. Inducing a Concurrent Motor Load Reduces Categorization Precision for Facial Expressions

    PubMed Central

    2015-01-01

    Motor theories of expression perception posit that observers simulate facial expressions within their own motor system, aiding perception and interpretation. Consistent with this view, reports have suggested that blocking facial mimicry induces expression labeling errors and alters patterns of ratings. Crucially, however, it is unclear whether changes in labeling and rating behavior reflect genuine perceptual phenomena (e.g., greater internal noise associated with expression perception or interpretation) or are products of response bias. In an effort to advance this literature, the present study introduces a new psychophysical paradigm for investigating motor contributions to expression perception that overcomes some of the limitations inherent in simple labeling and rating tasks. Observers were asked to judge whether smiles drawn from a morph continuum were sincere or insincere, in the presence or absence of a motor load induced by the concurrent production of vowel sounds. Having confirmed that smile sincerity judgments depend on cues from both eye and mouth regions (Experiment 1), we demonstrated that vowel production reduces the precision with which smiles are categorized (Experiment 2). In Experiment 3, we replicated this effect when observers were required to produce vowels, but not when they passively listened to the same vowel sounds. In Experiments 4 and 5, we found that gender categorizations, equated for difficulty, were unaffected by vowel production, irrespective of the presence of a smiling expression. These findings greatly advance our understanding of motor contributions to expression perception and represent a timely contribution in light of recent high-profile challenges to the existing evidence base. PMID:26618622

  18. Acute Heat Stress and Reduced Nutrient Intake Alter Intestinal Proteomic Profile and Gene Expression in Pigs

    PubMed Central

    Pearce, Sarah C.; Lonergan, Steven M.; Huff-Lonergan, Elisabeth; Baumgard, Lance H.; Gabler, Nicholas K.

    2015-01-01

    Heat stress and reduced feed intake negatively affect intestinal integrity and barrier function. Our objective was to compare ileum protein profiles of pigs subjected to 12 hours of HS, thermal neutral ad libitum feed intake, or pair-fed to heat stress feed intake under thermal neutral conditions (pair-fed thermal neutral). 2D-Differential In Gel Electrophoresis and gene expression were performed. Relative abundance of 281 and 138 spots differed due to heat stress, compared to thermal neutral and pair-fed thermal neutral pigs, respectively. However, only 20 proteins were different due to feed intake (thermal neutral versus pair-fed thermal neutral). Heat stress increased mRNA expression of heat shock proteins and protein abundance of heat shock proteins 27, 70, 90-α and β were also increased. Heat stress reduced ileum abundance of several metabolic enzymes, many of which are involved in the glycolytic or TCA pathways, indicating a change in metabolic priorities. Stress response enzymes peroxiredoxin-1 and peptidyl-prolyl cis-trans isomerase A were decreased in pair-fed thermal neutral and thermal neutral pigs compared to heat stress. Heat stress increased mRNA abundance markers of ileum hypoxia. Altogether, these data show that heat stress directly alters intestinal protein and mRNA profiles largely independent of reduced feed intake. These changes may be related to the reduced intestinal integrity associated with heat stress. PMID:26575181

  19. Signal peptide peptidase-mediated nuclear localization of heme oxygenase-1 promotes cancer cell proliferation and invasion independent of its enzymatic activity.

    PubMed

    Hsu, F-F; Yeh, C-T; Sun, Y-J; Chiang, M-T; Lan, W-M; Li, F-A; Lee, W-H; Chau, L-Y

    2015-04-30

    Heme oxygenase-1 (HO-1) is a heme-degrading enzyme anchored in the endoplasmic reticulum by a carboxyl-terminal transmembrane segment (TMS). HO-1 is highly expressed in various cancers and its nuclear localization is associated with the progression of some cancers. Nevertheless, the mechanism underlying HO-1 nuclear translocation and its pathological significance remain elusive. Here we show that the signal peptide peptidase (SPP) catalyzes the intramembrane cleavage of HO-1. Coexpression of HO-1 with wild-type SPP, but not a dominant-negative SPP, promoted the nuclear localization of HO-1 in cells. Mass spectrometry analysis of cytosolic HO-1 isolated from HeLa cells overexpressing HO-1 and SPP revealed two adjacent intramembrane cleavage sites located after S275 and F276 within the TMS. Mutations of S275F276 to A275L276 significantly hindered SPP-mediated HO-1 cleavage and nuclear localization. Nuclear HO-1 was detected in A549 and DU145 cancer cell lines expressing high levels of endogenous HO-1 and SPP. SPP knockdown or inhibition significantly reduced nuclear HO-1 localization in A549 and DU145 cells. The positive nuclear HO-1 stain was also evident in lung cancer tissues expressing high levels of HO-1 and SPP. Overexpression of a truncated HO-1 (t-HO-1) lacking the TMS in HeLa and H1299 cells promoted cell proliferation and migration/invasion. The effect of t-HO-1 was not affected by a mutation in the catalytic site. However, blockade of t-HO-1 nuclear localization abolished t-HO-1-mediated effect. The tumorigenic effect of t-HO-1 was also demonstrated in the mouse model. These findings disclose that SPP-mediated intramembrane cleavage of HO-1 promotes HO-1 nuclear localization and cancer progression independent of HO-1 enzymatic activity.

  20. Ethanol impaired neuronal migration is associated with reduced aspartyl-asparaginyl-beta-hydroxylase expression.

    PubMed

    Carter, Jade J; Tong, Ming; Silbermann, Elizabeth; Lahousse, Stephanie A; Ding, Fei Fei; Longato, Lisa; Roper, Nitin; Wands, Jack R; de la Monte, Suzanne M

    2008-09-01

    Cerebellar hypoplasia in fetal alcohol spectrum disorders (FASD) is associated with inhibition of insulin and insulin-like growth factor (IGF) signaling in the brain. Aspartyl (asparaginyl)-beta-hydroxylase (AAH) is a mediator of neuronal motility, and stimulated by insulin and IGF activation of PI3 kinase-Akt, or inhibition of GSK-3beta. Since ethanol inhibits PI3 Kinase-Akt and increases GSK-3beta activity in brain, we examined the effects of ethanol and GSK-3beta on AAH expression and directional motility in neuronal cells. Control and ethanol-exposed (100 mM x 48 h) human PNET2 cerebellar neuronal cells were stimulated with IGF-1 and used to measure AAH expression and directional motility. Molecular and biochemical approaches were used to characterize GSK-3beta regulation of AAH and neuronal motility. Ethanol reduced IGF-1 stimulated AAH protein expression and directional motility without inhibiting AAH's mRNA. Further analysis revealed that: (1) AAH protein could be phosphorylated by GSK-3beta; (2) high levels of GSK-3beta activity decreased AAH protein; (3) inhibition of GSK-3beta and/or global Caspases increased AAH protein; (4) AAH protein was relatively more phosphorylated in ethanol-treated compared with control cells; and (5) chemical inhibition of GSK-3beta and/or global Caspases partially rescued ethanol-impaired AAH protein expression and motility. Ethanol-impaired neuronal migration is associated with reduced IGF-I stimulated AAH protein expression. This effect may be mediated by increased GSK-3beta phosphorylation and Caspase degradation of AAH. Therapeutic strategies to rectify CNS developmental abnormalities in FASD should target factors underlying the ethanol-associated increases in GSK-3beta and Caspase activation, e.g. IGF resistance and increased oxidative stress. PMID:18478238

  1. Reduced mRNA expression levels of MBD2 and MBD3 in gastric carcinogenesis.

    PubMed

    Pontes, Thaís Brilhante; Chen, Elizabeth Suchi; Gigek, Carolina Oliveira; Calcagno, Danielle Queiroz; Wisnieski, Fernanda; Leal, Mariana Ferreira; Demachki, Samia; Assumpção, Paulo Pimentel; Artigiani, Ricardo; Lourenço, Laércio Gomes; Burbano, Rommel Rodriguez; Arruda Cardoso Smith, Marília

    2014-04-01

    Aberrant methylation has been reported in several neoplasias, including gastric cancer. The methyl-CpG-binding domain (MBD) family proteins have been implicated in the chromatin remodeling process, leading to the modulation of gene expression. To evaluate the role of MBD2 and MBD3 in gastric carcinogenesis and the possible association with clinicopathological characteristics, we assessed the mRNA levels and promoter methylation patterns in gastric tissues. In this study, MBD2 and MBD3 mRNA levels were determined by RT-qPCR in 28 neoplastic and adjacent nonneoplastic and 27 gastritis and non-gastritis samples. The promoter methylation status was determined by bisulfite sequencing, and we found reduced MBD2 and MBD3 levels in the neoplastic samples compared with the other groups. Moreover, a strong correlation between the MBD2 and MBD3 expression levels was observed in each set of paired samples. Our data also showed that the neoplastic tissues exhibited higher MBD2 promoter methylation than the other groups. Interestingly, the non-gastritis group was the only one with positive methylation in the MBD3 promoter region. Furthermore, a weak correlation between gene expression and methylation was observed. Therefore, our data suggest that DNA methylation plays a minor role in the regulation of MBD2 and MBD3 expression, and the presence of methylation at CpGs that interact with transcription factor complexes might also be involved in the modulation of these genes. Moreover, reduced mRNA expression of MBD2 and MBD3 is implicated in gastric carcinogenesis, and thus, further investigations about these genes should be conducted for a better understanding of the role of abnormal methylation involved in this neoplasia. PMID:24338710

  2. Drought response transcriptomes are altered in poplar with reduced tonoplast sucrose transporter expression

    PubMed Central

    Xue, Liang-Jiao; Frost, Christopher J.; Tsai, Chung-Jui; Harding, Scott A.

    2016-01-01

    Transgenic Populus tremula x alba (717-1B4) plants with reduced expression of a tonoplast sucrose efflux transporter, PtaSUT4, exhibit reduced shoot growth compared to wild type (WT) under sustained mild drought. The present study was undertaken to determine whether SUT4-RNAi directly or indirectly altered poplar predisposition and/or response to changes in soil water availability. While sucrose and hexose levels were constitutively elevated in shoot organs, expression responses to drought were most altered in the root tips of SUT4-RNAi plants. Prior to any drought treatment, constitutively elevated transcript levels of abscisic acid biosynthetic genes and bark/vegetative storage proteins suggested altered metabolism in root tips of RNAi plants. Stronger drought-stimulation of stress-inducible genes encoding late-embryogenesis-abundant proteins in transgenic roots was consistent with increased vulnerability to soil drying. Transcript evidence suggested an RNAi effect on intercellular water trafficking by aquaporins in stem xylem during soil drying and recovery. Co-expression network analysis predicted altered integration of abscisic acid sensing/signaling with ethylene and jasmonate sensing/signaling in RNAi compared to WT roots. The overall conclusion is that steepened shoot-root sugar gradient in RNAi plants increased sensitivity of root tips to decreasing soil water availability. PMID:27641356

  3. Drought response transcriptomes are altered in poplar with reduced tonoplast sucrose transporter expression.

    PubMed

    Xue, Liang-Jiao; Frost, Christopher J; Tsai, Chung-Jui; Harding, Scott A

    2016-01-01

    Transgenic Populus tremula x alba (717-1B4) plants with reduced expression of a tonoplast sucrose efflux transporter, PtaSUT4, exhibit reduced shoot growth compared to wild type (WT) under sustained mild drought. The present study was undertaken to determine whether SUT4-RNAi directly or indirectly altered poplar predisposition and/or response to changes in soil water availability. While sucrose and hexose levels were constitutively elevated in shoot organs, expression responses to drought were most altered in the root tips of SUT4-RNAi plants. Prior to any drought treatment, constitutively elevated transcript levels of abscisic acid biosynthetic genes and bark/vegetative storage proteins suggested altered metabolism in root tips of RNAi plants. Stronger drought-stimulation of stress-inducible genes encoding late-embryogenesis-abundant proteins in transgenic roots was consistent with increased vulnerability to soil drying. Transcript evidence suggested an RNAi effect on intercellular water trafficking by aquaporins in stem xylem during soil drying and recovery. Co-expression network analysis predicted altered integration of abscisic acid sensing/signaling with ethylene and jasmonate sensing/signaling in RNAi compared to WT roots. The overall conclusion is that steepened shoot-root sugar gradient in RNAi plants increased sensitivity of root tips to decreasing soil water availability. PMID:27641356

  4. Reduced effects of thyroid hormone on gene expression and metamorphosis in a paedomorphic plethodontid salamander.

    PubMed

    Aran, Robert P; Steffen, Michael A; Martin, Samuel D; Lopez, Olivia I; Bonett, Ronald M

    2014-07-01

    It has been over a century since Gudernatsch (1912, Wilhelm Roux Arch Entwickl Mech Org 35:457-483) demonstrated that mammalian thyroid gland extracts can stimulate tadpole metamorphosis. Despite the tremendous developmental diversity of amphibians, mechanisms of metamorphosis have mostly been studied in a few model systems. This limits our understanding of the processes that influence the evolution of developmental aberrations. Here we isolated thyroid hormone receptors alpha (TRα) and beta (TRβ) from Oklahoma salamanders (Eurycea tynerensis), which exhibit permanently aquatic (paedomorphic) or biphasic (metamorphic) developmental modes in different populations. We found that TRα and TRβ were upregulated by thyroid hormone (T3 ) in tail tissues of larvae from metamorphic populations, but basal levels of TR expression and T3 responsiveness were reduced in larvae from paedomorphic populations. Likewise, we found that T3 treatment resulted in complete loss of larval epibranchials in larvae from metamorphic populations, but little to no epibranchial remodeling occurred in larvae from paedomorphic populations over the same duration. This is the first study to directly demonstrate reduced gene expression and metamorphic responses to T3 in a paedomorphic plethodontid compared to metamorphic conspecifics, and the first salamander system to show differential expression of thyroid hormone receptors associated with alternative developmental patterns.

  5. Reduced expression of PNUTS leads to activation of Rb-phosphatase and caspase-mediated apoptosis.

    PubMed

    De Leon, Gabriel; Sherry, Tara C; Krucher, Nancy A

    2008-06-01

    There is abundant evidence that Retinoblastoma (Rb) activity is important in the control of cell proliferation and apoptosis. Reversible phosphorylation of the Rb protein that is carried out by cyclin dependent kinases and Protein phosphatase 1 (PP1) regulates its functions. A PP1 interacting protein, PNUTS (Phosphatase Nuclear Targeting Subunit) is proposed to be a regulator of Rb phosphorylation. In this study, PNUTS knockdown in MCF7, SKA and HCT116 cancer cells causes a reduction in viability due to increased apoptosis. However, normal cells (MCF10A breast and CCD-18Co colon) do not exhibit reduced viability when PNUTS expression is diminished. PNUTS knockdown has no effect in Rb-null Saos-2 cells. However, when Rb is stably expressed in Saos-2 cells, PNUTS knockdown reduces cell number. Knockdown of PNUTS in p53-/- HCT116 cells indicates that p53 is dispensable for the induction of apoptosis. Loss of PNUTS expression results in increased Rb-phosphatase activity and Rb dephosphorylation. E2F1 dissociates from Rb in cells depleted of PNUTS and the resulting apoptosis is dependent on caspase-8. These results indicate that Rb phosphorylation state can be manipulated by targeting Rb phosphatase activity and suggest that PNUTS may be a potential target for therapeutic pro-apoptotic strategies. PMID:18360108

  6. Dietary lufenuron reduces egg hatch and influences protein expression in the fruit fly Bactrocera latifrons (Hendel).

    PubMed

    Chang, Chiou Ling; Geib, Scott; Cho, Il Kyu; Li, Qing X; Stanley, David

    2014-08-01

    Lufenuron (LFN), a chitin synthase inhibitor, impacts the fertility of Ceratitis capitata, Bactrocera dorsalis, B. cucurbitae, and B. latifrons. We posed the hypothesis that LFN curtails egg hatch in the solanaceous fruit fly, B. latifrons. In this study, newly emerged virgin adults were sexed and fed for 12 days with varying concentrations of LFN-laced agar diets until sexual maturation. Eggs were collected from 12-d-old adults and the egg hatch was assessed. Egg hatch decreased in adults reared on LFN-treated diets. LFN-treated media did not influence fertility after one gender was reared on experimental and the other on control media before mating. Exposure to LFN-treated medium after mating led to reduced egg hatch. We infer that LFN is not a permanent sterilant, and reduced egg hatch depends on continuous exposure to dietary LFN after mating. Proteomic analysis identified two differentially expressed proteins, a pheromone binding protein and a chitin binding protein, between adults maintained on LFN-treated and control diets. Expression of two genes encoding chitin synthase 2, and chitin binding protein, was altered in adults exposed to dietary LFN. LFN treatments also led to increased expression of two odorant binding proteins one in females and one in males. We surmise these data support our hypothesis and provide insight into LFN actions. PMID:24753137

  7. Reduced myelin basic protein and actin-related gene expression in visual cortex in schizophrenia.

    PubMed

    Matthews, Paul R; Eastwood, Sharon L; Harrison, Paul J

    2012-01-01

    Most brain gene expression studies of schizophrenia have been conducted in the frontal cortex or hippocampus. The extent to which alterations occur in other cortical regions is not well established. We investigated primary visual cortex (Brodmann area 17) from the Stanley Neuropathology Consortium collection of tissue from 60 subjects with schizophrenia, bipolar disorder, major depression, or controls. We first carried out a preliminary array screen of pooled RNA, and then used RT-PCR to quantify five mRNAs which the array identified as differentially expressed in schizophrenia (myelin basic protein [MBP], myelin-oligodendrocyte glycoprotein [MOG], β-actin [ACTB], thymosin β-10 [TB10], and superior cervical ganglion-10 [SCG10]). Reduced mRNA levels were confirmed by RT-PCR for MBP, ACTB and TB10. The MBP reduction was limited to transcripts containing exon 2. ACTB and TB10 mRNAs were also decreased in bipolar disorder. None of the transcripts were altered in subjects with major depression. Reduced MBP mRNA in schizophrenia replicates findings in other brain regions and is consistent with oligodendrocyte involvement in the disorder. The decreases in expression of ACTB, and the actin-binding protein gene TB10, suggest changes in cytoskeletal organisation. The findings confirm that the primary visual cortex shows molecular alterations in schizophrenia and extend the evidence for a widespread, rather than focal, cortical pathophysiology.

  8. Reduced Tau protein expression is associated with frontotemporal degeneration with progranulin mutation.

    PubMed

    Papegaey, Anthony; Eddarkaoui, Sabiha; Deramecourt, Vincent; Fernandez-Gomez, Francisco-Jose; Pantano, Pierre; Obriot, Hélène; Machala, Camille; Anquetil, Vincent; Camuzat, Agnès; Brice, Alexis; Maurage, Claude-Alain; Le Ber, Isabelle; Duyckaerts, Charles; Buée, Luc; Sergeant, Nicolas; Buée-Scherrer, Valérie

    2016-07-19

    Reduction of Tau protein expression was described in 2003 by Zhukareva et al. in a variant of frontotemporal lobar degeneration (FTLD) referred to as diagnosis of dementia lacking distinctive histopathology, then re-classified as FTLD with ubiquitin inclusions. However, the analysis of Tau expression in FTLD has not been reconsidered since then. Knowledge of the molecular basis of protein aggregates and genes that are mutated in the FTLD spectrum would enable to determine whether the "Tau-less" is a separate pathological entity or if it belongs to an existing subclass of FTLD. To address this question, we have analyzed Tau expression in the frontal brain areas from control, Alzheimer's disease and FTLD cases, including FTLD- Tau (MAPT), FTLD-TDP (sporadic, FTLD-TDP-GRN, FTLD-TDP-C9ORF72) and sporadic FTLD-FUS, using western blot and 2D-DIGE (Two-Dimensional fluorescence Difference Gel Electrophoresis) approaches. Surprisingly, we found that most of the FTLD-TDP-GRN brains are characterized by a huge reduction of Tau protein expression without any decrease in Tau mRNA levels. Interestingly, only cases affected by point mutations, rather than cases with total deletion of one GRN allele, seem to be affected by this reduction of Tau protein expression. Moreover, proteomic analysis highlighted correlations between reduced Tau protein level, synaptic impairment and massive reactive astrogliosis in these FTLD-GRN cases. Consistent with a recent study, our data also bring new insights regarding the role of progranulin in neurodegeneration by suggesting its involvement in lysosome and synaptic regulation. Together, our results demonstrate a strong association between progranulin deficiency and reduction of Tau protein expression that could lead to severe neuronal and glial dysfunctions. Our study also indicates that this FTLD-TDP-GRN subgroup could be part as a distinct entity of FTLD classification.

  9. Blood-Gene Expression Reveals Reduced Circadian Rhythmicity in Individuals Resistant to Sleep Deprivation

    PubMed Central

    Arnardottir, Erna S.; Nikonova, Elena V.; Shockley, Keith R.; Podtelezhnikov, Alexei A.; Anafi, Ron C.; Tanis, Keith Q.; Maislin, Greg; Stone, David J.; Renger, John J.; Winrow, Christopher J.; Pack, Allan I.

    2014-01-01

    Study Objectives: To address whether changes in gene expression in blood cells with sleep loss are different in individuals resistant and sensitive to sleep deprivation. Design: Blood draws every 4 h during a 3-day study: 24-h normal baseline, 38 h of continuous wakefulness and subsequent recovery sleep, for a total of 19 time-points per subject, with every 2-h psychomotor vigilance task (PVT) assessment when awake. Setting: Sleep laboratory. Participants: Fourteen subjects who were previously identified as behaviorally resistant (n = 7) or sensitive (n = 7) to sleep deprivation by PVT. Intervention: Thirty-eight hours of continuous wakefulness. Measurements and Results: We found 4,481 unique genes with a significant 24-h diurnal rhythm during a normal sleep-wake cycle in blood (false discovery rate [FDR] < 5%). Biological pathways were enriched for biosynthetic processes during sleep. After accounting for circadian effects, two genes (SREBF1 and CPT1A, both involved in lipid metabolism) exhibited small, but significant, linear changes in expression with the duration of sleep deprivation (FDR < 5%). The main change with sleep deprivation was a reduction in the amplitude of the diurnal rhythm of expression of normally cycling probe sets. This reduction was noticeably higher in behaviorally resistant subjects than sensitive subjects, at any given P value. Furthermore, blood cell type enrichment analysis showed that the expression pattern difference between sensitive and resistant subjects is mainly found in cells of myeloid origin, such as monocytes. Conclusion: Individual differences in behavioral effects of sleep deprivation are associated with differences in diurnal amplitude of gene expression for genes that show circadian rhythmicity. Citation: Arnardottir ES, Nikonova EV, Shockley KR, Podtelezhnikov AA, Anafi RC, Tanis KQ, Maislin G, Stone DJ, Renger JJ, Winrow CJ, Pack AI. Blood-gene expression reveals reduced circadian rhythmicity in individuals resistant to

  10. Reduced SIRT1 expression correlates with enhanced oxidative stress in compensated and decompensated heart failure.

    PubMed

    Akkafa, Feridun; Halil Altiparmak, Ibrahim; Erkus, Musluhittin Emre; Aksoy, Nurten; Kaya, Caner; Ozer, Ahmet; Sezen, Hatice; Oztuzcu, Serdar; Koyuncu, Ismail; Umurhan, Berrin

    2015-12-01

    Sirtuin-1 (SIRT1) is a longevity factor in mammals initiating the cell survival mechanisms, and preventing ischemic injury in heart. In the etiopathogenesis of heart failure (HF), impairment in cardiomyocyte survival is a notable factor. Oxidative stress comprises a critical impact on cardiomyocyte lifespan in HF. The aim of the present study was to investigate SIRT1 expression in patients with compensated (cHF) and decompensated HF (dHF), and its correlation with oxidative stress. SIRT1 expression in peripheral leukocytes was examined using quantitative RT-PCR in 163 HF patients and 84 controls. Serum total oxidant status (TOS) and total antioxidant status (TAS) were measured via colorimetric assays, and oxidative stress index (OSI) was calculated. Lipid parameters were also determined by routine laboratory methods. SIRT1 mRNA expression was significantly downregulated in HF with more robust decrease in dHF (p=0.002, control vs cHF; p<0.001, control vs dHF). Markedly increased oxidative stress defined as elevated TOS, OSI and low TAS levels were detected in HF patients comparing with the controls (TAS; p=0.010, control vs cHF, p=0.045 control vs dHF, TOS; p=0.004 control vs cHF; p<0.001 control vs dHF, OSI; p<0.001 for both comparisons, respectively). With SIRT1 expression levels, TAS, TOS, OSI, and high density lipoprotein levels in cHF and dHF were determined correlated. SIRT1 expression were significantly reduced in both HF subtypes, particularly in dHF. SIRT1 expression was correlated with the oxidant levels and antioxidant capacity. Data suggest that SIRT1 may have a significant contribution in regulation of oxidant/antioxidant balance in HF etiology and compensation status. PMID:26233702

  11. Expression of Arabidopsis Hexokinase in Citrus Guard Cells Controls Stomatal Aperture and Reduces Transpiration.

    PubMed

    Lugassi, Nitsan; Kelly, Gilor; Fidel, Lena; Yaniv, Yossi; Attia, Ziv; Levi, Asher; Alchanatis, Victor; Moshelion, Menachem; Raveh, Eran; Carmi, Nir; Granot, David

    2015-01-01

    Hexokinase (HXK) is a sugar-phosphorylating enzyme involved in sugar-sensing. It has recently been shown that HXK in guard cells mediates stomatal closure and coordinates photosynthesis with transpiration in the annual species tomato and Arabidopsis. To examine the role of HXK in the control of the stomatal movement of perennial plants, we generated citrus plants that express Arabidopsis HXK1 (AtHXK1) under KST1, a guard cell-specific promoter. The expression of KST1 in the guard cells of citrus plants has been verified using GFP as a reporter gene. The expression of AtHXK1 in the guard cells of citrus reduced stomatal conductance and transpiration with no negative effect on the rate of photosynthesis, leading to increased water-use efficiency. The effects of light intensity and humidity on stomatal behavior were examined in rooted leaves of the citrus plants. The optimal intensity of photosynthetically active radiation and lower humidity enhanced stomatal closure of AtHXK1-expressing leaves, supporting the role of sugar in the regulation of citrus stomata. These results suggest that HXK coordinates photosynthesis and transpiration and stimulates stomatal closure not only in annual species, but also in perennial species. PMID:26734024

  12. Expression of Arabidopsis Hexokinase in Citrus Guard Cells Controls Stomatal Aperture and Reduces Transpiration.

    PubMed

    Lugassi, Nitsan; Kelly, Gilor; Fidel, Lena; Yaniv, Yossi; Attia, Ziv; Levi, Asher; Alchanatis, Victor; Moshelion, Menachem; Raveh, Eran; Carmi, Nir; Granot, David

    2015-01-01

    Hexokinase (HXK) is a sugar-phosphorylating enzyme involved in sugar-sensing. It has recently been shown that HXK in guard cells mediates stomatal closure and coordinates photosynthesis with transpiration in the annual species tomato and Arabidopsis. To examine the role of HXK in the control of the stomatal movement of perennial plants, we generated citrus plants that express Arabidopsis HXK1 (AtHXK1) under KST1, a guard cell-specific promoter. The expression of KST1 in the guard cells of citrus plants has been verified using GFP as a reporter gene. The expression of AtHXK1 in the guard cells of citrus reduced stomatal conductance and transpiration with no negative effect on the rate of photosynthesis, leading to increased water-use efficiency. The effects of light intensity and humidity on stomatal behavior were examined in rooted leaves of the citrus plants. The optimal intensity of photosynthetically active radiation and lower humidity enhanced stomatal closure of AtHXK1-expressing leaves, supporting the role of sugar in the regulation of citrus stomata. These results suggest that HXK coordinates photosynthesis and transpiration and stimulates stomatal closure not only in annual species, but also in perennial species.

  13. Expression of Arabidopsis Hexokinase in Citrus Guard Cells Controls Stomatal Aperture and Reduces Transpiration

    PubMed Central

    Lugassi, Nitsan; Kelly, Gilor; Fidel, Lena; Yaniv, Yossi; Attia, Ziv; Levi, Asher; Alchanatis, Victor; Moshelion, Menachem; Raveh, Eran; Carmi, Nir; Granot, David

    2015-01-01

    Hexokinase (HXK) is a sugar-phosphorylating enzyme involved in sugar-sensing. It has recently been shown that HXK in guard cells mediates stomatal closure and coordinates photosynthesis with transpiration in the annual species tomato and Arabidopsis. To examine the role of HXK in the control of the stomatal movement of perennial plants, we generated citrus plants that express Arabidopsis HXK1 (AtHXK1) under KST1, a guard cell-specific promoter. The expression of KST1 in the guard cells of citrus plants has been verified using GFP as a reporter gene. The expression of AtHXK1 in the guard cells of citrus reduced stomatal conductance and transpiration with no negative effect on the rate of photosynthesis, leading to increased water-use efficiency. The effects of light intensity and humidity on stomatal behavior were examined in rooted leaves of the citrus plants. The optimal intensity of photosynthetically active radiation and lower humidity enhanced stomatal closure of AtHXK1-expressing leaves, supporting the role of sugar in the regulation of citrus stomata. These results suggest that HXK coordinates photosynthesis and transpiration and stimulates stomatal closure not only in annual species, but also in perennial species. PMID:26734024

  14. Nandrolone reduces activation of Notch signaling in denervated muscle associated with increased Numb expression

    SciTech Connect

    Liu, Xin-Hua; Yao, Shen; Qiao, Rui-Fang; Levine, Alice C.; Kirschenbaum, Alexander; Pan, Jiangping; Wu, Yong; Qin, Weiping; Bauman, William A.; Cardozo, Christopher P.

    2011-10-14

    Highlights: {yields} Nerve transection increased Notch signaling in paralyzed muscle. {yields} Nandrolone prevented denervation-induced Notch signaling. {yields} Nandrolone induced the expression of an inhibitor of the Notch signaling, Numb. {yields} Reduction of denervation-induced Notch signaling by nandrolone is likely through upregulation of Numb. -- Abstract: Nandrolone, an anabolic steroid, slows denervation-atrophy in rat muscle. The molecular mechanisms responsible for this effect are not well understood. Androgens and anabolic steroids activate Notch signaling in animal models of aging and thereby mitigate sarcopenia. To explore the molecular mechanisms by which nandrolone prevents denervation-atrophy, we investigated the effects of nandrolone on Notch signaling in denervated rat gastrocnemius muscle. Denervation significantly increased Notch activity reflected by elevated levels of nuclear Notch intracellular domain (NICD) and expression of Hey1 (a Notch target gene). Activation was greatest at 7 and 35 days after denervation but remained present at 56 days after denervation. Activation of Notch in denervated muscle was prevented by nandrolone associated with upregulated expression of Numb mRNA and protein. These data demonstrate that denervation activates Notch signaling, and that nandrolone abrogates this response associated with increased expression of Numb, suggesting a potential mechanism by which nandrolone reduces denervation-atrophy.

  15. Effects of reduced frequency of milk removal on gene expression in the bovine mammary gland.

    PubMed

    Littlejohn, M D; Walker, C G; Ward, H E; Lehnert, K B; Snell, R G; Verkerk, G A; Spelman, R J; Clark, D A; Davis, S R

    2010-03-01

    Regulation of milk synthesis and secretion is controlled mostly through local (intramammary) mechanisms. To gain insight into the molecular pathways comprising this response, an analysis of mammary gene expression was conducted in 12 lactating cows shifted from twice daily to once daily milking. Tissues were sampled by biopsy from adjacent mammary quarters of these animals during the two milking frequencies, allowing changes in gene expression to be assessed within each animal. Using bovine-specific, oligonucleotide arrays representing 21,495 unique transcripts, a range of differentially expressed genes were found as a result of less frequent milk removal, constituting transcripts and pathways related to apoptotic signaling (NF-kappaB, JUN, ATF3, IGFBP5, TNFSF12A) mechanical stress and epithelial tight junction synthesis (CYR61, CTGF, THBS1, CLDN4, CLDN8), and downregulated milk synthesis (LALBA, B4GALT1, UGP2, CSN2, GPAM, LPL). Quantitative real-time PCR was used to assess the expression of 13 genes in the study, and all 13 of these were correlated (P < 0.05) with values derived from array analysis. It can be concluded that the physiological changes that occur in the bovine mammary gland as a result of reduced milk removal frequency likely comprise the earliest stages of the involution response and that mechano-signal transduction cascades associated with udder distension may play a role in triggering these events.

  16. Pulsed electromagnetic field stimulates osteoprotegerin and reduces RANKL expression in ovariectomized rats.

    PubMed

    Zhou, Jun; Chen, Shiju; Guo, Hua; Xia, Lu; Liu, Huifang; Qin, Yuxi; He, Chengqi

    2013-05-01

    Pulsed electromagnetic field (PEMF) has been shown to increase bone mineral density in osteoporosis patients and prevent bone loss in ovariectomized rats. But the mechanisms through which PEMF elicits these favorable biological responses are still not fully understood. Receptor activator of nuclear factor κB ligand (RANKL) and osteoprotegerin (OPG) are cytokines predominantly secreted by osteoblasts and play a central role in differentiation and functional activation of osteoclasts. The purpose of this study was to investigate the effects of PEMF on RANKL and OPG expression in ovariectomized rats. Thirty 3-month-old female Sprague-Dawley rats were randomly divided into three groups: sham-operated control (Sham), ovariectomy control (OVX), and ovariectomy with PEMF treatment (PEMF). After 12-week interventions, the results showed that PEMF increased serum 17β-estradiol level, reduced serum tartrate-resistant acid phosphatase level, increased bone mineral density, and inhibited deterioration of bone microarchitecture and strength in OVX rats. Furthermore, PEMF could suppress RANKL expression and improve OPG expression in bone marrow cells of OVX rats. In conclusion, this study suggests that PEMF can prevent ovariectomy-induced bone loss through regulating the expression of RANKL and OPG.

  17. Lack of CD24 expression in mice reduces the number of leukocytes in the colon.

    PubMed

    Bretz, Niko P; Salnikov, Alexei V; Doberstein, Kai; Garbi, Natalio; Kloess, Volker; Joumaa, Safwan; Naumov, Inna; Boon, Louis; Moldenhauer, Gerhard; Arber, Nadir; Altevogt, Peter

    2014-09-01

    CD24 is an extensively glycosylated membrane protein that is linked to the membrane via a glycosyl-phosphatidylinositol (GPI)-anchor. In mice, CD24 is expressed by hematopoietic and non-hematopoietic cells. CD24-/- mice do not have gross immunological defects, but detailed analysis revealed strongly reduced responses in an experimental autoimmune encephalomyelitis (EAE) model and a massive proliferation of T cells under lymphopenic conditions. It was also demonstrated that preB cells from CD24-/- mice are impaired in α4-integrin-mediated cell binding. Here we report that CD24-/- mice have strongly reduced numbers of leukocytes in the colon compared to wildtype mice. The reduction comprized all subpopulations. Leukocyte counts in spleen, mesenteric lymph nodes or small intestine were not significantly different. We find that beside leukocytes, CD24 is widely expressed in EpCAM+ epithelial and CD31+ endothelial cells of colon and small intestine. However, in CD24-/- mice the number of CD31+ endothelial cells in colons was strongly reduced and the number of epithelial cells was augmented. Leukocyte transfer experiments provided evidence that the CD24 status of recipient mice, rather than of the transferred cells, is crucial for leukocyte recruitment to the colon. We hypothesize that CD24 on colonic epithelial and endothelial cells is required for the retention and positioning of leukocytes most likely by affecting integrin function.

  18. Trichomonas vaginalis promotes apoptosis of human neutrophils by activating caspase-3 and reducing Mcl-1 expression.

    PubMed

    Kang, J H; Song, H O; Ryu, J S; Shin, M H; Kim, J M; Cho, Y S; Alderete, J F; Ahn, M H; Min, D Y

    2006-09-01

    Neutrophils are the predominant inflammatory cells found in the vaginal discharge of patients with Trichomonas vaginalis infection. However, it is not known whether neutrophil apoptosis is induced by live T. vaginalis. Therefore, we examined whether T. vaginalis can influence neutrophil apoptosis, and also whether caspase-3 and the Bcl-2 family members are involved in the apoptosis. Thus, human neutrophils were incubated with live T. vaginalis and neutrophil apoptosis was evaluated by Giemsa, annexin V-PI, and DiOC6 stainings. The neutrophil apoptosis was significantly higher in those incubated with T. vaginalis than in the control group. When trichomonads were pre-treated with mAb to AP65 (adhesin protein), or when trophozoites were separated from neutrophils using a Transwell chamber, neutrophil apoptosis was significantly reduced. The activation of caspase-3 was evident in neutrophils undergoing spontaneous apoptosis but was markedly enhanced during T. vaginalis-induced apoptosis. Moreover, the inhibition of caspase-3 effectively reduced T. vaginalis-induced apoptosis. Trichomonad-induced apoptosis was also associated with reduced expression of the neutrophil anti-apoptotic protein, Mcl-1. These results indicate that T. vaginalis alters Mcl-1 expression and caspase-3 activation, thereby inducing apoptosis of human neutrophils. PMID:16916367

  19. Nuclear protein import is reduced in cells expressing nuclear envelopathy-causing lamin A mutants

    SciTech Connect

    Busch, Albert; Kiel, Tilman; Heupel, Wolfgang-M.; Wehnert, Manfred; Huebner, Stefan

    2009-08-15

    Lamins, which form the nuclear lamina, not only constitute an important determinant of nuclear architecture, but additionally play essential roles in many nuclear functions. Mutations in A-type lamins cause a wide range of human genetic disorders (laminopathies). The importance of lamin A (LaA) in the spatial arrangement of nuclear pore complexes (NPCs) prompted us to study the role of LaA mutants in nuclear protein transport. Two mutants, causing prenatal skin disease restrictive dermopathy (RD) and the premature aging disease Hutchinson Gilford progeria syndrome, were used for expression in HeLa cells to investigate their impact on the subcellular localization of NPC-associated proteins and nuclear protein import. Furthermore, dynamics of the LaA mutants within the nuclear lamina were studied. We observed affected localization of NPC-associated proteins, diminished lamina dynamics for both LaA mutants and reduced nuclear import of representative cargo molecules. Intriguingly, both LaA mutants displayed similar effects on nuclear morphology and functions, despite their differences in disease severity. Reduced nuclear protein import was also seen in RD fibroblasts and impaired lamina dynamics for the nucleoporin Nup153. Our data thus represent the first study of a direct link between LaA mutant expression and reduced nuclear protein import.

  20. Demeclocycline attenuates hyponatremia by reducing aquaporin-2 expression in the renal inner medulla.

    PubMed

    Kortenoeven, Marleen L A; Sinke, Anne P; Hadrup, Niels; Trimpert, Christiane; Wetzels, Jack F M; Fenton, Robert A; Deen, Peter M T

    2013-12-15

    Binding of vasopressin to its type 2 receptor in renal collecting ducts induces cAMP signaling, transcription and translocation of aquaporin (AQP)2 water channels to the plasma membrane, and water reabsorption from the prourine. Demeclocycline is currently used to treat hyponatremia in patients with the syndrome of inappropriate antidiuretic hormone secretion (SIADH). Demeclocycline's mechanism of action, which is poorly understood, is studied here. In mouse cortical collecting duct (mpkCCD) cells, which exhibit deamino-8-D-arginine vasopressin (dDAVP)-dependent expression of endogenous AQP2, demeclocycline decreased AQP2 abundance and gene transcription but not its protein stability. Demeclocycline did not affect vasopressin type 2 receptor localization but decreased dDAVP-induced cAMP generation and the abundance of adenylate cyclase 3 and 5/6. The addition of exogenous cAMP partially corrected the demeclocycline effect. As in patients, demeclocycline increased urine volume, decreased urine osmolality, and reverted hyponatremia in an SIADH rat model. AQP2 and adenylate cyclase 5/6 abundances were reduced in the inner medulla but increased in the cortex and outer medulla, in the absence of any sign of toxicity. In conclusion, our in vitro and in vivo data indicate that demeclocycline mainly attenuates hyponatremia in SIADH by reducing adenylate cyclase 5/6 expression and, consequently, cAMP generation, AQP2 gene transcription, and AQP2 abundance in the renal inner medulla, coinciding with a reduced vasopressin escape response in other collecting duct segments.

  1. Lactobacilli Reduce Helicobacter pylori Attachment to Host Gastric Epithelial Cells by Inhibiting Adhesion Gene Expression.

    PubMed

    de Klerk, Nele; Maudsdotter, Lisa; Gebreegziabher, Hanna; Saroj, Sunil D; Eriksson, Beatrice; Eriksson, Olaspers Sara; Roos, Stefan; Lindén, Sara; Sjölinder, Hong; Jonsson, Ann-Beth

    2016-05-01

    The human gastrointestinal tract, including the harsh environment of the stomach, harbors a large variety of bacteria, of which Lactobacillus species are prominent members. The molecular mechanisms by which species of lactobacilli interfere with pathogen colonization are not fully characterized. In this study, we aimed to study the effect of lactobacillus strains upon the initial attachment of Helicobacter pylori to host cells. Here we report a novel mechanism by which lactobacilli inhibit adherence of the gastric pathogen H. pylori In a screen with Lactobacillus isolates, we found that only a few could reduce adherence of H. pylori to gastric epithelial cells. Decreased attachment was not due to competition for space or to lactobacillus-mediated killing of the pathogen. Instead, we show that lactobacilli act on H. pylori directly by an effector molecule that is released into the medium. This effector molecule acts on H. pylori by inhibiting expression of the adhesin-encoding gene sabA Finally, we verified that inhibitory lactobacilli reduced H. pylori colonization in an in vivo model. In conclusion, certain Lactobacillus strains affect pathogen adherence by inhibiting sabA expression and thereby reducing H. pylori binding capacity. PMID:26930708

  2. Trichomonas vaginalis promotes apoptosis of human neutrophils by activating caspase-3 and reducing Mcl-1 expression

    PubMed Central

    KANG, J. H.; SONG, H. O.; RYU, J. S.; SHIN, M. H.; KIM, J. M.; CHO, Y. S.; ALDERETE, J. F.; AHN, M. H.; MIN, D. Y.

    2007-01-01

    SUMMARY Neutrophils are the predominant inflammatory cells found in the vaginal discharge of patients with Trichomonas vaginalis infection. However, it is not known whether neutrophil apoptosis is induced by live T. vaginalis. Therefore, we examined whether T. vaginalis can influence neutrophil apoptosis, and also whether caspase-3 and the Bcl-2 family members are involved in the apoptosis. Thus, human neutrophils were incubated with live T. vaginalis and neutrophil apoptosis was evaluated by Giemsa, annexin V-PI, and DiOC6 stainings. The neutrophil apoptosis was significantly higher in those incubated with T. vaginalis than in the control group. When trichomonads were pre-treated with mAb to AP65 (adhesin protein), or when trophozoites were separated from neutrophils using a Transwell chamber, neutrophil apoptosis was significantly reduced. The activation of caspase-3 was evident in neutrophils undergoing spontaneous apoptosis but was markedly enhanced during T. vaginalis-induced apoptosis. Moreover, the inhibition of caspase-3 effectively reduced T. vaginalis-induced apoptosis. Trichomonad-induced apoptosis was also associated with reduced expression of the neutrophil anti-apoptotic protein, Mcl-1. These results indicate that T. vaginalis alters Mcl-1 expression and caspase-3 activation, thereby inducing apoptosis of human neutrophils. PMID:16916367

  3. Lactobacilli Reduce Helicobacter pylori Attachment to Host Gastric Epithelial Cells by Inhibiting Adhesion Gene Expression.

    PubMed

    de Klerk, Nele; Maudsdotter, Lisa; Gebreegziabher, Hanna; Saroj, Sunil D; Eriksson, Beatrice; Eriksson, Olaspers Sara; Roos, Stefan; Lindén, Sara; Sjölinder, Hong; Jonsson, Ann-Beth

    2016-05-01

    The human gastrointestinal tract, including the harsh environment of the stomach, harbors a large variety of bacteria, of which Lactobacillus species are prominent members. The molecular mechanisms by which species of lactobacilli interfere with pathogen colonization are not fully characterized. In this study, we aimed to study the effect of lactobacillus strains upon the initial attachment of Helicobacter pylori to host cells. Here we report a novel mechanism by which lactobacilli inhibit adherence of the gastric pathogen H. pylori In a screen with Lactobacillus isolates, we found that only a few could reduce adherence of H. pylori to gastric epithelial cells. Decreased attachment was not due to competition for space or to lactobacillus-mediated killing of the pathogen. Instead, we show that lactobacilli act on H. pylori directly by an effector molecule that is released into the medium. This effector molecule acts on H. pylori by inhibiting expression of the adhesin-encoding gene sabA Finally, we verified that inhibitory lactobacilli reduced H. pylori colonization in an in vivo model. In conclusion, certain Lactobacillus strains affect pathogen adherence by inhibiting sabA expression and thereby reducing H. pylori binding capacity.

  4. Mice with reduced NMDA receptor expression: more consistent with autism than schizophrenia?

    PubMed Central

    Gandal, Michael J.; Anderson, Rachel L.; Billingslea, Eddie N.; Carlson, Gregory C.; Roberts, Timothy P.L.; Siegel, Steven J.

    2012-01-01

    Reduced NMDA-receptor (NMDAR) function has been implicated in the pathophysiology of neuropsychiatric disease, most strongly in schizophrenia but also recently in autism spectrum disorders (ASD). To determine the direct contribution of NMDAR dysfunction to disease phenotypes, a mouse model with constitutively reduced expression of the obligatory NR1 subunit has been developed and extensively investigated. Adult NR1neo−/− mice show multiple abnormal behaviors, including reduced social interactions, locomotor hyperactivity, self-injury, deficits in prepulse inhibition, and sensory hypersensitivity, among others. Whereas such phenotypes have largely been interpreted in the context of schizophrenia, these behavioral abnormalities are rather non-specific and are frequently present across models of diseases characterized by negative symptom domains. This study investigated auditory electrophysiological and behavioral paradigms relevant to autism, to determine whether NMDAR hypofunction may be more consistent with adult ASD-like phenotypes. Indeed, transgenic mice demonstrated behavioral deficits relevant to all core ASD symptoms, including decreased social interactions, altered ultrasonic vocalizations, and increased repetitive behaviors. NMDAR disruption recapitulated clinical endophenotypes including reduced prepulse inhibition, auditory-evoked response N1 latency delay, and reduced gamma synchrony. Auditory electrophysiological abnormalities more closely resembled those seen in clinical studies of autism than schizophrenia. These results suggest that NMDA-receptor hypofunction may be associated with a continuum of neuropsychiatric diseases, including schizophrenia and autism. Neural synchrony abnormalities suggest an imbalance of glutamatergic and GABAergic coupling and may provide a target, along with behavioral phenotypes, for preclinical screening of novel therapeutics. PMID:22726567

  5. Huoxue Rongluo Tablet reduces matrix metalloproteinase-9 expression in infarcted brain tissue.

    PubMed

    Zhou, Desheng; Li, Mei; Hu, Hua; Chen, Yao; Yang, Yang; Zhong, Jie; Liu, Lijuan

    2013-12-01

    Huoxue Rongluo Tablet was made of tall gastrodis tuber, dahurian angelica root, honeysuckle stem, grassleaf sweetflag rhizome, common flowering quince fruit, figwort root, red peony root and peach seed at a ratio of 3:2:6:2:3:3:3:3. Huoxue Rongluo Tablet is a well-established and common pre-scription for the treatment of cerebral infarction. In this study, a rat model of cerebral ischemia was established and the animals were intragastrically administered Huoxue Rongluo Tablet. This treat-ment reduced infarct volume, decreased matrix metalloproteinase-9 expression, and improved neurological function. Moreover, the effects of Huoxue Rongluo Tablet were better than those of buflomedil pyridoxal phosphate. These results indicate that Huoxue Rongluo Tablet is effective in treating cerebral infarction by regulating matrix metalloproteinase-9 protein expression.

  6. Huoxue Rongluo Tablet reduces matrix metalloproteinase-9 expression in infarcted brain tissue

    PubMed Central

    Zhou, Desheng; Li, Mei; Hu, Hua; Chen, Yao; Yang, Yang; Zhong, Jie; Liu, Lijuan

    2013-01-01

    Huoxue Rongluo Tablet was made of tall gastrodis tuber, dahurian angelica root, honeysuckle stem, grassleaf sweetflag rhizome, common flowering quince fruit, figwort root, red peony root and peach seed at a ratio of 3:2:6:2:3:3:3:3. Huoxue Rongluo Tablet is a well-established and common pre-scription for the treatment of cerebral infarction. In this study, a rat model of cerebral ischemia was established and the animals were intragastrically administered Huoxue Rongluo Tablet. This treat-ment reduced infarct volume, decreased matrix metalloproteinase-9 expression, and improved neurological function. Moreover, the effects of Huoxue Rongluo Tablet were better than those of buflomedil pyridoxal phosphate. These results indicate that Huoxue Rongluo Tablet is effective in treating cerebral infarction by regulating matrix metalloproteinase-9 protein expression. PMID:25206642

  7. Hydrolyzed Methylhesperidin Induces Antioxidant Enzyme Expression via the Nrf2-ARE Pathway in Normal Human Epidermal Keratinocytes.

    PubMed

    Kuwano, Tetsuya; Watanabe, Manabu; Kagawa, Daiji; Murase, Takatoshi

    2015-09-16

    Methylhesperidin (MHES) is a mixture of methylated derivatives of the citrus flavonoid hesperidin and is used as a food or pharmaceutical additive. Dietary MHES could be hydrolyzed by gut microflora to give aglycons. Therefore, we prepared hydrolyzed methylhesperidin (h-MHES) and assessed its pharmacological activity in human epidermal keratinocytes. h-MHES promoted nuclear factor erythroid 2-related factor 2 (Nrf2) nuclear translocation and the expression of cytoprotective genes (e.g., heme oxygenase-1 (HO-1) and glutamate cysteine ligase catalytic subunit (GCLC)). h-MHES also increased intracellular glutathione levels and reduced UVB-induced reactive oxygen species. Moreover, h-MHES increased phosphorylation of p38 mitogen-activated protein kinase (MAPK), and a p38 MAPK inhibitor significantly attenuated h-MHES-induced HO-1 and GCLC expression. Furthermore, when we purified the components of h-MHES, we identified two methoxy-chalcones as novel Nrf2 activators. Our study demonstrates that h-MHES can induce cytoprotective gene expression and reduce oxidative stress via the Nrf2-ARE pathway in keratinocytes, suggesting that MHES may contribute to the suppression of UVB-induced skin damage in vivo. PMID:26313892

  8. Green tea extracts reduce adipogenesis by decreasing expression of transcription factors C/EBPα and PPARγ

    PubMed Central

    Yang, Xiuling; Yin, Lei; Li, Tang; Chen, Zhihong

    2014-01-01

    Objectives: This study is to determine if green tea (Camellia sinensis) extracts (GTE) affects adipogenesis and further investigate the related molecular mechanisms. Methods: Patients with metabolic syndrome were recruited in this study. Of them, 70 patients received GTE and 64 received water to serve as the control group. The human serum adiponectin, visfatin, and leptin concentrations were determined by enzyme-linked immunosorbent assay. Adipogenesis of 3T3-L1 preadipocytes was induced with reagents and then the cells were treated with GTE. The lipids were stained with Oil Red O for analysis of adipogenesis of 3T3-L1 preadipocytes. The 3T3-L1 preadipocytes were treated with increasing concentrations (0.2-0.5%, w/v) of GTE for 2 days and the cell viability was determined by MTT assay. Reverse transcription real-time PCR and immunoblotting assays were performed to determine RNA and protein levels of relative molecules. Results: GTE increases the serum concentrations of adiponectin but decreases visfatin levels in patients received GTE. The leptin concentrations in serum were not significantly affected. The GTE reduces the adipogenesis-induced lipid accumulation in 3T3-L1 preadipocytes. GTE decreases the mRNA and protein expression of adipogenic transcription factors C/EBPα and PPARγ in 3T3-L1 cells. Expression levels of the adipocyte-specific genes encoding adipocyte protein 2, lipoprotein lipase, and glucose transporter 4 were also decreased by GTE. Furthermore, it was found that GTE reduces phosphorylation of Akt during adipocyte differentiation. Conclusions: GTE reduces adipogenesis by decreasing expression of transcription factors C/EBPα and PPARγ by reduction of phosphorylation of Akt during adipocyte differentiation. PMID:25663987

  9. Reduced sputum expression of interferon-stimulated genes in severe COPD

    PubMed Central

    Hilzendeger, Clarissa; da Silva, Jane; Henket, Monique; Schleich, Florence; Corhay, Jean Louis; Kebadze, Tatiana; Edwards, Michael R; Mallia, Patrick; Johnston, Sebastian L; Louis, Renaud

    2016-01-01

    Background Exacerbations of COPD are frequent and commonly triggered by respiratory tract infections. The purpose of our study was to investigate innate immunity in stable COPD patients. Methods Induced sputum was collected from 51 stable consecutive COPD patients recruited from the COPD Clinic of CHU Liege and 35 healthy subjects. Expression of interferons beta (IFN-β) and lambda1 (IL-29), IFN-stimulated genes (ISGs) MxA, OAS, and viperin were measured in total sputum cells by reverse transcription quantitative polymerase chain reaction (RT-qPCR). The presence of Picornaviruses was assessed by RT-PCR, while potential pathogenic microorganisms (PPM) were identified by sputum bacteriology. Results Expression of IL-29 was found in 16 of 51 COPD patients (31%) and in nine of 35 healthy subjects (26%), while IFN-β was detected in six of 51 COPD patients (12%) and in two of 35 healthy subjects (6%). ISGs were easily detectable in both groups. In the whole group of COPD patients, OAS expression was decreased (P<0.05), while that of viperin was increased (P<0.01) compared to healthy subjects. No difference was found with respect to MxA. COPD patients from group D of Global Initiative for Chronic Obstructive Lung Disease (GOLD) had reduced expression of all three ISGs (P<0.01 for MxA, P<0.05 for OAS, and P<0.01 for viperin) as compared to those of group B patients. Picornaviruses were detected in eight of 51 (16%) COPD patients vs four of 33 (12%) healthy subjects, while PPM were detected in seven of 39 (18%) COPD patients and associated with raised sputum neutrophil counts. IFN-β expression was raised when either picornavirus or PPM were detected (P=0.06), but no difference was seen regarding IL-29 or ISGs. Conclusion ISGs expression was reduced in severe COPD that may favor exacerbation and contribute to disease progress by altering response to infection. PMID:27418822

  10. Proinflammatory cytokines promote glial heme oxygenase-1 expression and mitochondrial iron deposition: implications for multiple sclerosis.

    PubMed

    Mehindate, K; Sahlas, D J; Frankel, D; Mawal, Y; Liberman, A; Corcos, J; Dion, S; Schipper, H M

    2001-06-01

    Proinflammatory cytokines, pathological iron deposition, and oxidative stress have been implicated in the pathogenesis of multiple sclerosis (MS) and experimental autoimmune encephalomyelitis (EAE). HO-1 mRNA levels and mitochondrial uptake of [(55)Fe]Cl(3)-derived iron were measured in rat astroglial cultures exposed to interleukin-1beta (IL-1beta) or tumor necrosis factor-alpha (TNF-alpha) alone or in combination with the heme oxygenase-1 (HO-1) inhibitors, tin mesoporphyrin (SnMP) or dexamthasone (DEX), or interferon beta1b (INF-beta). HO-1 expression in astrocytes was evaluated by immunohistochemical staining of spinal cord tissue derived from MS and control subjects. IL-1beta or TNF-alpha promoted sequestration of non-transferrin-derived (55)Fe by astroglial mitochondria. HO-1 inhibitors, mitochondrial permeability transition pore (MTP) blockers and antioxidants significantly attenuated cytokine-related mitochondrial iron sequestration in these cells. IFN-beta decreased HO-1 expression and mitochondrial iron sequestration in IL-1beta- and TNF-alpha-challenged astroglia. The percentage of astrocytes coexpressing HO-1 in affected spinal cord from MS patients (57.3% +/- 12.8%) was significantly greater (p < 0.05) than in normal spinal cord derived from controls subjects (15.4% +/- 8.4%). HO-1 is over-expressed in MS spinal cord astroglia and may promote mitochondrial iron deposition in MS plaques. In MS, IFN-beta may attenuate glial HO-1 gene induction and aberrant mitochondrial iron deposition accruing from exposure to proinflammatory cytokines.

  11. Ammonia-induced miRNA expression changes in cultured rat astrocytes.

    PubMed

    Oenarto, Jessica; Karababa, Ayse; Castoldi, Mirco; Bidmon, Hans J; Görg, Boris; Häussinger, Dieter

    2016-01-01

    Hepatic encephalopathy is a neuropsychiatric syndrome evolving from cerebral osmotic disturbances and oxidative/nitrosative stress. Ammonia, the main toxin of hepatic encephalopathy, triggers astrocyte senescence in an oxidative stress-dependent way. As miRNAs are critically involved in cell cycle regulation and their expression may be regulated by oxidative stress, we analysed, whether astrocyte senescence is a consequence of ammonia-induced miRNA expression changes. Using a combined miRNA and gene microarray approach, 43 miRNA species which were downregulated and 142 genes which were upregulated by NH4Cl (5 mmol/l, 48 h) in cultured rat astrocytes were found. Ammonia-induced miRNA and gene expression changes were validated by qPCR and 43 potential miRNA target genes, including HO-1, were identified by matching upregulated mRNA species with predicted targets of miRNA species downregulated by ammonia. Inhibition of HO-1 targeting miRNAs which were downregulated by NH4Cl strongly upregulated HO-1 mRNA and protein levels and inhibited astrocyte proliferation in a HO-1-dependent way. Preventing ammonia-induced upregulation of HO-1 by taurine (5 mmol/l) as well as blocking HO-1 activity by tin-protoporphyrine IX fully prevented ammonia-induced proliferation inhibition and senescence. The data suggest that ammonia induces astrocyte senescence through NADPH oxidase-dependent downregulation of HO-1 targeting miRNAs and concomitant upregulation of HO-1 at both mRNA and protein level. PMID:26755400

  12. Characterization of potato plants with reduced StSYR1 expression

    PubMed Central

    Eschen-Lippold, Lennart; Lübken, Tilo; Smolka, Ulrike; Rosahl, Sabine

    2012-01-01

    Vesicle fusion processes in plants are important for both development and stress responses. Transgenic potato plants with reduced expression of SYNTAXIN-RELATED1 (StSYR1), a gene encoding the potato homolog of Arabidopsis PENETRATION1 (AtPEN1), display spontaneous necrosis and chlorosis at later stages of development. In accordance with this developmental defect, tuber number, weight and overall yield are significantly reduced in StSYR1-RNAi lines. Enhanced resistance of StSYR1-RNAi plants to Phytophthora infestans, the causal agent of late blight disease of potato, correlates with enhanced levels of salicylic acid, whereas levels of 12-oxophytodienoic acid and jasmonic acid are unaltered. Cultured cells of StSYR1-RNAi lines secrete at least two compounds which are not detectable in the supernatant of control cells, suggesting an involvement of StSYR1 in secretion processes to the apoplast. PMID:22516814

  13. Characterization of potato plants with reduced StSYR1 expression.

    PubMed

    Eschen-Lippold, Lennart; Lübken, Tilo; Smolka, Ulrike; Rosahl, Sabine

    2012-05-01

    Vesicle fusion processes in plants are important for both development and stress responses. Transgenic potato plants with reduced expression of SYNTAXIN-RELATED1 (StSYR1), a gene encoding the potato homolog of Arabidopsis PENETRATION1 (AtPEN1), display spontaneous necrosis and chlorosis at later stages of development. In accordance with this developmental defect, tuber number, weight and overall yield are significantly reduced in StSYR1-RNAi lines. Enhanced resistance of StSYR1-RNAi plants to Phytophthora infestans, the causal agent of late blight disease of potato, correlates with enhanced levels of salicylic acid, whereas levels of 12-oxophytodienoic acid and jasmonic acid are unaltered. Cultured cells of StSYR1-RNAi lines secrete at least two compounds which are not detectable in the supernatant of control cells, suggesting an involvement of StSYR1 in secretion processes to the apoplast.

  14. Hepatic AQP9 expression in male rats is reduced in response to PPARα agonist treatment.

    PubMed

    Lebeck, Janne; Cheema, Muhammad Umar; Skowronski, Mariusz T; Nielsen, Søren; Praetorius, Jeppe

    2015-02-01

    The peroxisome proliferator receptor α (PPARα) is a key regulator of the hepatic response to fasting with effects on both lipid and carbohydrate metabolism. A role in hepatic glycerol metabolism has also been found; however, the results are somewhat contradictive. Aquaporin 9 (AQP9) is a pore-forming transmembrane protein that facilitates hepatic uptake of glycerol. Its expression is inversely regulated by insulin in male rodents, with increased expression during fasting. Previous results indicate that PPARα plays a crucial role in the induction of AQP9 mRNA during fasting. In the present study, we use PPARα agonists to explore the effect of PPARα activation on hepatic AQP9 expression and on the abundance of enzymes involved in glycerol metabolism using both in vivo and in vitro systems. In male rats with free access to food, treatment with the PPARα agonist WY 14643 (3 mg·kg(-1)·day(-1)) caused a 50% reduction in hepatic AQP9 abundance with the effect being restricted to AQP9 expressed in periportal hepatocytes. The pharmacological activation of PPARα had no effect on the abundance of GlyK, whereas it caused an increased expression of hepatic GPD1, GPAT1, and L-FABP protein. In WIF-B9 and HepG2 hepatocytes, both WY 14643 and another PPARα agonist GW 7647 reduced the abundance of AQP9 protein. In conclusion, pharmacological PPARα activation results in a marked reduction in the abundance of AQP9 in periportal hepatocytes. Together with the effect on the enzymatic apparatus for glycerol metabolism, our results suggest that PPARα activation in the fed state directs glycerol into glycerolipid synthesis rather than into de novo synthesis of glucose. PMID:25477377

  15. Decreased Bdnf expression and reduced social behavior in periadolescent rats following prenatal stress.

    PubMed

    Berry, Alessandra; Panetta, Pamela; Luoni, Alessia; Bellisario, Veronica; Capoccia, Sara; Riva, Marco Andrea; Cirulli, Francesca

    2015-04-01

    Prenatal stress (PNS) is a risk factor for the development of neuropsychiatric disorders. This study was aimed at assessing, in a rodent model, changes in gene expression profiles and behavioral output as a result of PNS, during periadolescence, a critical developmental period for the onset of psychopathology. Social behavior was studied in a standardized social interaction paradigm and the expression of Brain-Derived Neurotrophic Factor (Bdnf), a marker of neuronal plasticity, and of inhibitory and excitatory mechanisms (Na(+)-K(+)-2Cl(-) and K(+)-Cl(-) cotransporters ratio, NKCC1/KCC2) was analyzed. Results indicate that PNS reduced Bdnf transcripts while increasing the NKCC1/KCC2 ratio, primarily in the hippocampus. In the prefrontal cortex, changes in Bdnf were found to be gender-dependent. These effects were accompanied by reduced levels of affiliative and investigative social behaviors. Interestingly, interaction with non-stressed subjects was able to improve sociality in PNS rats suggesting that the social environment could be exploited for therapeutic intervention. PMID:25783782

  16. Phenanthrene exposure induces cardiac hypertrophy via reducing miR-133a expression by DNA methylation.

    PubMed

    Huang, Lixing; Xi, Zhihui; Wang, Chonggang; Zhang, Youyu; Yang, Zhibing; Zhang, Shiqi; Chen, Yixin; Zuo, Zhenghong

    2016-01-01

    Growing evidence indicates that there is an emerging link between environmental pollution and cardiac hypertrophy, while the mechanism is unclear. The objective of this study was to examine whether phenanthrene (Phe) could cause cardiac hypertrophy, and elucidate the molecular mechanisms involved. We found that: 1) Phe exposure increased the heart weight and cardiomyocyte size of rats; 2) Phe exposure led to enlarged cell size, and increased protein synthesis in H9C2 cells; 3) Phe exposure induced important markers of cardiac hypertrophy, such as atrial natriuretic peptide, B-type natriuretic peptide, and c-Myc in H9C2 cells and rat hearts; 4) Phe exposure perturbed miR-133a, CdC42 and RhoA, which were key regulators of cardiac hypertrophy, in H9C2 cells and rat hearts; 5) Phe exposure induced DNA methyltransferases (DNMTs) in H9C2 cells and rat hearts; 6) Phe exposure led to methylation of CpG sites within the miR-133a locus and reduced miR-133a expression in H9C2 cells; 7) DNMT inhibition and miR-133a overexpression could both alleviate the enlargement of cell size and perturbation of CdC42 and RhoA caused by Phe exposure. These results indicated that Phe could induce cardiomyocyte hypertrophy in the rat and H9C2 cells. The mechanism might involve reducing miR-133a expression by DNA methylation. PMID:26830171

  17. Phenanthrene exposure induces cardiac hypertrophy via reducing miR-133a expression by DNA methylation

    PubMed Central

    Huang, Lixing; Xi, Zhihui; Wang, Chonggang; Zhang, Youyu; Yang, Zhibing; Zhang, Shiqi; Chen, Yixin; Zuo, Zhenghong

    2016-01-01

    Growing evidence indicates that there is an emerging link between environmental pollution and cardiac hypertrophy, while the mechanism is unclear. The objective of this study was to examine whether phenanthrene (Phe) could cause cardiac hypertrophy, and elucidate the molecular mechanisms involved. We found that: 1) Phe exposure increased the heart weight and cardiomyocyte size of rats; 2) Phe exposure led to enlarged cell size, and increased protein synthesis in H9C2 cells; 3) Phe exposure induced important markers of cardiac hypertrophy, such as atrial natriuretic peptide, B-type natriuretic peptide, and c-Myc in H9C2 cells and rat hearts; 4) Phe exposure perturbed miR-133a, CdC42 and RhoA, which were key regulators of cardiac hypertrophy, in H9C2 cells and rat hearts; 5) Phe exposure induced DNA methyltransferases (DNMTs) in H9C2 cells and rat hearts; 6) Phe exposure led to methylation of CpG sites within the miR-133a locus and reduced miR-133a expression in H9C2 cells; 7) DNMT inhibition and miR-133a overexpression could both alleviate the enlargement of cell size and perturbation of CdC42 and RhoA caused by Phe exposure. These results indicated that Phe could induce cardiomyocyte hypertrophy in the rat and H9C2 cells. The mechanism might involve reducing miR-133a expression by DNA methylation. PMID:26830171

  18. Nonspecific transcription factor binding can reduce noise in the expression of downstream proteins

    NASA Astrophysics Data System (ADS)

    Soltani, M.; Bokes, P.; Fox, Z.; Singh, A.

    2015-10-01

    Transcription factors (TFs) interact with a multitude of binding sites on DNA and partner proteins inside cells. We investigate how nonspecific binding/unbinding to such decoy binding sites affects the magnitude and time-scale of random fluctuations in TF copy numbers arising from stochastic gene expression. A stochastic model of TF gene expression, together with decoy site interactions is formulated. Distributions for the total (bound and unbound) and free (unbound) TF levels are derived by analytically solving the chemical master equation under physiologically relevant assumptions. Our results show that increasing the number of decoy binding sides considerably reduces stochasticity in free TF copy numbers. The TF autocorrelation function reveals that decoy sites can either enhance or shorten the time-scale of TF fluctuations depending on model parameters. To understand how noise in TF abundances propagates downstream, a TF target gene is included in the model. Intriguingly, we find that noise in the expression of the target gene decreases with increasing decoy sites for linear TF-target protein dose-responses, even in regimes where decoy sites enhance TF autocorrelation times. Moreover, counterintuitive noise transmissions arise for nonlinear dose-responses. In summary, our study highlights the critical role of molecular sequestration by decoy binding sites in regulating the stochastic dynamics of TFs and target proteins at the single-cell level.

  19. Reduced GABAA Receptor α6 Expression in The Trigeminal Ganglion Enhanced Myofascial Nociceptive Response

    PubMed Central

    Kramer, P. R.; Bellinger, L. L.

    2013-01-01

    Activation of the GABAA receptor results in inhibition of neuronal activity. One subunit of this multi-subunit receptor termed alpha 6 (Gabrα6) contributed to inflammatory temporomandibular joint (TMJ) nociception but TMJ disorders often include myofascial pain. To address Gabrα6 role in myofascial pain we hypothesized that Gabrα6 has an inhibitory role in myofascial nociceptive responses similar to inflammatory TMJ arthritis. To test this hypothesis a, myofascial nociceptive response was induced by placing a ligature bilaterally on the tendon attachment of the anterior superficial part of a male rat's masseter muscle. Four days after ligature placement Gabrα6 expression was reduced by infusing the trigeminal ganglia (TG) with small interfering RNA (siRNA) having homology to either the Gabrα6 gene (Gabra6 siRNA) or no known gene (control siRNA). After siRNA infusion nociceptive behavioral responses were measured, i.e., feeding behavior and head withdrawal after pressing upon the region above the ligature with von Frey filaments. Neuronal activity in the TG and trigeminal nucleus caudalis and upper cervical region (Vc–C1) was measured by quantitating the amount of phosphorylated extracellular signalregulated kinase (p-ERK). Total Gabrα6 and GABAA receptor contents in the TG and Vc–C1 were determined. Gabrα6 siRNA infusion reduced Gabrα6 and GABAA receptor expression and significantly increased the nociceptive response in both nociceptive assays. Gabra6 siRNA infusion also significantly increased TG p-ERK expression of the ligated rats. From these results we conclude GABAA receptors consisting of the Gabrα6 subunit inhibit TG nociceptive sensory afferents in the trigeminal pathway and have an important role in the regulation of myofascial nociception. PMID:23602886

  20. Chemical Inhibition of Kynureninase Reduces Pseudomonas aeruginosa Quorum Sensing and Virulence Factor Expression.

    PubMed

    Kasper, Stephen H; Bonocora, Richard P; Wade, Joseph T; Musah, Rabi Ann; Cady, Nathaniel C

    2016-04-15

    The opportunistic pathogen Pseudomonas aeruginosa utilizes multiple quorum sensing (QS) pathways to coordinate an arsenal of virulence factors. We previously identified several cysteine-based compounds inspired by natural products from the plant Petiveria alliacea which are capable of antagonizing multiple QS circuits as well as reducing P. aeruginosa biofilm formation. To understand the global effects of such compounds on virulence factor production and elucidate their mechanism of action, RNA-seq transcriptomic analysis was performed on P. aeruginosa PAO1 exposed to S-phenyl-l-cysteine sulfoxide, the most potent inhibitor from the prior study. Exposure to this inhibitor down-regulated expression of several QS-regulated virulence operons (e.g., phenazine biosynthesis, type VI secretion systems). Interestingly, many genes that were differentially regulated pertain to the related metabolic pathways that yield precursors of pyochelin, tricarboxylic acid cycle intermediates, phenazines, and Pseudomonas quinolone signal (PQS). Activation of the MexT-regulon was also indicated, including the multidrug efflux pump encoded by mexEF-oprN, which has previously been shown to inhibit QS and pathogenicity. Deeper investigation of the metabolites involved in these systems revealed that S-phenyl-l-cysteine sulfoxide has structural similarity to kynurenine, a precursor of anthranilate, which is critical for P. aeruginosa virulence. By supplementing exogenous anthranilate, the QS-inhibitory effect was reversed. Finally, it was shown that S-phenyl-l-cysteine sulfoxide competitively inhibits P. aeruginosa kynureninase (KynU) activity in vitro and reduces PQS production in vivo. The kynurenine pathway has been implicated in P. aeruginosa QS and virulence factor expression; however, this is the first study to show that targeted inhibition of KynU affects P. aeruginosa gene expression and QS, suggesting a potential antivirulence strategy.

  1. Chemical Inhibition of Kynureninase Reduces Pseudomonas aeruginosa Quorum Sensing and Virulence Factor Expression.

    PubMed

    Kasper, Stephen H; Bonocora, Richard P; Wade, Joseph T; Musah, Rabi Ann; Cady, Nathaniel C

    2016-04-15

    The opportunistic pathogen Pseudomonas aeruginosa utilizes multiple quorum sensing (QS) pathways to coordinate an arsenal of virulence factors. We previously identified several cysteine-based compounds inspired by natural products from the plant Petiveria alliacea which are capable of antagonizing multiple QS circuits as well as reducing P. aeruginosa biofilm formation. To understand the global effects of such compounds on virulence factor production and elucidate their mechanism of action, RNA-seq transcriptomic analysis was performed on P. aeruginosa PAO1 exposed to S-phenyl-l-cysteine sulfoxide, the most potent inhibitor from the prior study. Exposure to this inhibitor down-regulated expression of several QS-regulated virulence operons (e.g., phenazine biosynthesis, type VI secretion systems). Interestingly, many genes that were differentially regulated pertain to the related metabolic pathways that yield precursors of pyochelin, tricarboxylic acid cycle intermediates, phenazines, and Pseudomonas quinolone signal (PQS). Activation of the MexT-regulon was also indicated, including the multidrug efflux pump encoded by mexEF-oprN, which has previously been shown to inhibit QS and pathogenicity. Deeper investigation of the metabolites involved in these systems revealed that S-phenyl-l-cysteine sulfoxide has structural similarity to kynurenine, a precursor of anthranilate, which is critical for P. aeruginosa virulence. By supplementing exogenous anthranilate, the QS-inhibitory effect was reversed. Finally, it was shown that S-phenyl-l-cysteine sulfoxide competitively inhibits P. aeruginosa kynureninase (KynU) activity in vitro and reduces PQS production in vivo. The kynurenine pathway has been implicated in P. aeruginosa QS and virulence factor expression; however, this is the first study to show that targeted inhibition of KynU affects P. aeruginosa gene expression and QS, suggesting a potential antivirulence strategy. PMID:26785289

  2. Corticosteroids Mediate Heart Failure-Induced Depression through Reduced σ1-Receptor Expression

    PubMed Central

    Bhuiyan, Md. Shenuarin; Hasegawa, Hideyuki; Kanai, Hiroshi; Zhang, Chen; Han, Feng; Fukunaga, Kohji

    2016-01-01

    Cardiovascular diseases are risk factors for depression in humans. We recently proposed that σ1 receptor (σ1R) stimulation rescued cardiac hypertrophy and heart failure induced by transverse aortic constriction (TAC) in mice. Importantly, σ1R stimulation reportedly ameliorates depression-like behaviors in rodents. Thus, we hypothesized that impaired σ1R activity in brain triggers depression-like behaviors in animals with cardiovascular disease. Indeed, here we found that cardiac hypertrophy and heart failure induced by TAC were associated with depression-like behaviors concomitant with downregulation of σ1R expression in brain 6 weeks after surgery. σ1R levels significantly decreased in astrocytes in both the hippocampal CA1 region and dentate gyrus. Oral administration of the specific σ1R agonist SA4503 (0.3–1.0mg/kg) significantly improved TAC-induced depression-like behaviors concomitant with rescued astrocytic σ1R expression in CA1 and the dentate gyrus. Plasma corticosterone levels significantly increased 6 weeks after TAC, and chronic treatment of mice with corticosterone for 3 weeks elicited depression-like behaviors concomitant with reduced astrocytic σ1R expression in hippocampus. Furthermore, the glucocorticoid receptor antagonist mifepristone antagonized depressive-like behaviors and ameliorated decreased hippocampal σ1R expression in TAC mice. We conclude that elevated corticosterone levels trigger hippocampal σ1R downregulation and that σ1R stimulation with SA4503 is an attractive therapy to improve not only cardiac dysfunction but depression-like behaviors associated with heart failure. PMID:27741227

  3. Shugan-decoction relieves visceral hyperalgesia and reduces TRPV1 and SP colon expression

    PubMed Central

    Shang, Jing-Juan; Yuan, Jian-Ye; Xu, Hui; Tang, Rong-Zhu; Dong, Yue-Bin; Xie, Jian-Qun

    2013-01-01

    AIM: To evaluate the therapeutic effect of Shugan-decoction (SGD) on visceral hyperalgesia and colon gene expressions using a rat model. METHODS: Ninety-six adult male Wistar rats were randomized into six equal groups for assessment of SGD effects on psychological stress-induced changes using the classic water avoidance stress (WAS) test. Untreated model rats were exposed to chronic (1 h/d for 10 d consecutive) WAS conditions; experimental treatment model rats were administered with intragastric SGD at 1 h before WAS on consecutive days 4-10 (low-dose: 0.1 g/mL; mid-dose: 0.2 g/mL; high-dose: 0.4 g/mL); control treatment model rats were similarly administered with the irritable bowel syndrome drug, dicetel (0.0042 g/mL); untreated normal control rats received no drug and were not subjected to the WAS test. At the end of the 10-d WAS testing period, a semi-quantitative measurement of visceral sensitivity was made by assessing the abdominal withdrawal reflex (AWR) to colorectal balloon-induced distension (at 5 mmHg increments) to determine the pain pressure threshold (PPT, evidenced by pain behavior). Subsequently, the animals were sacrificed and colonic tissues collected for assessment of changes in expressions of proteins related to visceral hypersensitivity (transient receptor potential vanilloid 1, TRPV1) and sustained visceral hyperalgesia (substance P, SP) by immunohistochemistry and real-time polymerase chain reaction. Inter-group differences were assessed by paired t test or repeated measures analysis of variance. RESULTS: The WAS test successfully induced visceral hypersensitivity, as evidenced by a significantly reduced AWR pressure in the untreated model group as compared to the untreated normal control group (190.4 ± 3.48 mmHg vs 224.0 ± 4.99 mmHg, P < 0.001). SGD treatments at mid-dose and high-dose and the dicetel treatment significantly increased the WAS-reduced PPT (212.5 ± 2.54, 216.5 ± 3.50 and 217.7 ± 2.83 mmHg respectively, all P < 0

  4. Flunitrazepam rapidly reduces GABAA receptor subunit protein expression via a protein kinase C-dependent mechanism

    PubMed Central

    Johnston, Jonathan D; Price, Sally A; Bristow, David R

    1998-01-01

    Acute flunitrazepam (1 μM) exposure for 1 h reduced GABAA receptor α1 (22±4%, mean±s.e.mean) and β2/3 (21±4%) subunit protein levels in cultured rat cerebellar granule cells. This rapid decrease in subunit proteins was completely prevented by bisindolymaleimide 1 (1 μM), an inhibitor of protein kinase C, but not by N-[2-((p-bromocinnamyl)amino)ethyl]-5-isoquinolinesulfonamide (H-89, 4.8 μM), an inhibitor of protein kinases A and G. These results suggest the existence of a benzodiazepine-induced mechanism to rapidly alter GABAA receptor protein expression, that appears to be dependent on protein kinase C activity. PMID:9723942

  5. Transcriptomic Profiling in Childhood H1N1/09 Influenza Reveals Reduced Expression of Protein Synthesis Genes

    PubMed Central

    Herberg, Jethro A.; Kaforou, Myrsini; Gormley, Stuart; Sumner, Edward R.; Patel, Sanjay; Jones, Kelsey D. J.; Paulus, Stéphane; Fink, Colin; Martinon-Torres, Federico; Montana, Giovanni; Wright, Victoria J.; Levin, Michael

    2013-01-01

    We compared the blood RNA transcriptome of children hospitalized with influenza A H1N1/09, respiratory syncytial virus (RSV) or bacterial infection, and healthy controls. Compared to controls, H1N1/09 patients showed increased expression of inflammatory pathway genes and reduced expression of adaptive immune pathway genes. This was validated on an independent cohort. The most significant function distinguishing H1N1/09 patients from controls was protein synthesis, with reduced gene expression. Reduced expression of protein synthesis genes also characterized the H1N1/09 expression profile compared to children with RSV and bacterial infection, suggesting that this is a key component of the pathophysiological response in children hospitalized with H1N1/09 infection. PMID:23901082

  6. Hyperglycemia reduces functional expression of astrocytic Kir4.1 channels and glial glutamate uptake.

    PubMed

    Rivera-Aponte, D E; Méndez-González, M P; Rivera-Pagán, A F; Kucheryavykh, Y V; Kucheryavykh, L Y; Skatchkov, S N; Eaton, M J

    2015-12-01

    Diabetics are at risk for a number of serious health complications including an increased incidence of epilepsy and poorer recovery after ischemic stroke. Astrocytes play a critical role in protecting neurons by maintaining extracellular homeostasis and preventing neurotoxicity through glutamate uptake and potassium buffering. These functions are aided by the presence of potassium channels, such as Kir4.1 inwardly rectifying potassium channels, in the membranes of astrocytic glial cells. The purpose of the present study was to determine if hyperglycemia alters Kir4.1 potassium channel expression and homeostatic functions of astrocytes. We used q-PCR, Western blot, patch-clamp electrophysiology studying voltage and potassium step responses and a colorimetric glutamate clearance assay to assess Kir4.1 channel levels and homeostatic functions of rat astrocytes grown in normal and high glucose conditions. We found that astrocytes grown in high glucose (25 mM) had an approximately 50% reduction in Kir4.1 mRNA and protein expression as compared with those grown in normal glucose (5mM). These reductions occurred within 4-7 days of exposure to hyperglycemia, whereas reversal occurred between 7 and 14 days after return to normal glucose. The decrease in functional Kir channels in the astrocytic membrane was confirmed using barium to block Kir channels. In the presence of 100-μM barium, the currents recorded from astrocytes in response to voltage steps were reduced by 45%. Furthermore, inward currents induced by stepping extracellular [K(+)]o from 3 to 10mM (reflecting potassium uptake) were 50% reduced in astrocytes grown in high glucose. In addition, glutamate clearance by astrocytes grown in high glucose was significantly impaired. Taken together, our results suggest that down-regulation of astrocytic Kir4.1 channels by elevated glucose may contribute to the underlying pathophysiology of diabetes-induced CNS disorders and contribute to the poor prognosis after stroke

  7. Arctigenin Increases Hemeoxygenase-1 Gene Expression by Modulating PI3K/AKT Signaling Pathway in Rat Primary Astrocytes.

    PubMed

    Jeong, Yeon-Hui; Park, Jin-Sun; Kim, Dong-Hyun; Kim, Hee-Sun

    2014-11-01

    In the present study, we found that the natural compound arctigenin inhibited hydrogen peroxide-induced reactive oxygen species (ROS) production in rat primary astrocytes. Since hemeoxygenase-1 (HO-1) plays a critical role as an antioxidant defense factor in the brain, we examined the effect of arctigenin on HO-1 expression in rat primary astrocytes. We found that arctigenin increased HO-1 mRNA and protein levels. Arctigenin also increases the nuclear translocation and DNA binding of Nrf2/c-Jun to the antioxidant response element (ARE) on HO-1 promoter. In addition, arctigenin increased ARE-mediated transcriptional activities in rat primary astrocytes. Further mechanistic studies revealed that arctigenin increased the phosphorylation of AKT, a downstream substrate of phosphatidylinositol 3-kinase (PI3K). Treatment of cells with a PI3K-specific inhibitor, LY294002, suppressed the HO-1 expression, Nrf2 DNA binding and ARE-mediated transcriptional activities in arctigenin-treated astrocyte cells. The results collectively suggest that PI3K/AKT signaling pathway is at least partly involved in HO-1 expression by arctigenin via modulation of Nrf2/ARE axis in rat primary astrocytes.

  8. Arctigenin Increases Hemeoxygenase-1 Gene Expression by Modulating PI3K/AKT Signaling Pathway in Rat Primary Astrocytes.

    PubMed

    Jeong, Yeon-Hui; Park, Jin-Sun; Kim, Dong-Hyun; Kim, Hee-Sun

    2014-11-01

    In the present study, we found that the natural compound arctigenin inhibited hydrogen peroxide-induced reactive oxygen species (ROS) production in rat primary astrocytes. Since hemeoxygenase-1 (HO-1) plays a critical role as an antioxidant defense factor in the brain, we examined the effect of arctigenin on HO-1 expression in rat primary astrocytes. We found that arctigenin increased HO-1 mRNA and protein levels. Arctigenin also increases the nuclear translocation and DNA binding of Nrf2/c-Jun to the antioxidant response element (ARE) on HO-1 promoter. In addition, arctigenin increased ARE-mediated transcriptional activities in rat primary astrocytes. Further mechanistic studies revealed that arctigenin increased the phosphorylation of AKT, a downstream substrate of phosphatidylinositol 3-kinase (PI3K). Treatment of cells with a PI3K-specific inhibitor, LY294002, suppressed the HO-1 expression, Nrf2 DNA binding and ARE-mediated transcriptional activities in arctigenin-treated astrocyte cells. The results collectively suggest that PI3K/AKT signaling pathway is at least partly involved in HO-1 expression by arctigenin via modulation of Nrf2/ARE axis in rat primary astrocytes. PMID:25489416

  9. Arctigenin Increases Hemeoxygenase-1 Gene Expression by Modulating PI3K/AKT Signaling Pathway in Rat Primary Astrocytes

    PubMed Central

    Jeong, Yeon-Hui; Park, Jin-Sun; Kim, Dong-Hyun; Kim, Hee-Sun

    2014-01-01

    In the present study, we found that the natural compound arctigenin inhibited hydrogen peroxide-induced reactive oxygen species (ROS) production in rat primary astrocytes. Since hemeoxygenase-1 (HO-1) plays a critical role as an antioxidant defense factor in the brain, we examined the effect of arctigenin on HO-1 expression in rat primary astrocytes. We found that arctigenin increased HO-1 mRNA and protein levels. Arctigenin also increases the nuclear translocation and DNA binding of Nrf2/c-Jun to the antioxidant response element (ARE) on HO-1 promoter. In addition, arctigenin increased ARE-mediated transcriptional activities in rat primary astrocytes. Further mechanistic studies revealed that arctigenin increased the phosphorylation of AKT, a downstream substrate of phosphatidylinositol 3-kinase (PI3K). Treatment of cells with a PI3K-specific inhibitor, LY294002, suppressed the HO-1 expression, Nrf2 DNA binding and ARE-mediated transcriptional activities in arctigenin-treated astrocyte cells. The results collectively suggest that PI3K/AKT signaling pathway is at least partly involved in HO-1 expression by arctigenin via modulation of Nrf2/ARE axis in rat primary astrocytes. PMID:25489416

  10. Kefir reduces insulin resistance and inflammatory cytokine expression in an animal model of metabolic syndrome.

    PubMed

    Rosa, Damiana D; Grześkowiak, Łukasz M; Ferreira, Célia L L F; Fonseca, Ana Carolina M; Reis, Sandra A; Dias, Mariana M; Siqueira, Nathane P; Silva, Leticia L; Neves, Clóvis A; Oliveira, Leandro L; Machado, Alessandra B F; Peluzio, Maria do Carmo G

    2016-08-10

    There is growing evidence that kefir can be a promising tool in decreasing the risk of many diseases, including metabolic syndrome (MetS). The aim of the present study was to evaluate the effect of kefir supplementation in the diet of Spontaneously Hypertensive Rats (SHR) in which MetS was induced with monosodium glutamate (MSG), and to determine its effect on metabolic parameters, inflammatory and oxidation marker expression and glycemic index control. Thirty animals were used in this experiment. For the induction of MetS, twenty two-day-old male SHR received five consecutive intradermal injections of MSG. For the Negative Control, ten newborn male SHR received intradermal injections of saline solution (0.9% saline solution). After weaning, animals received standard diet and water ad libitum until reaching 3 months old, for the development of MetS. They were then divided into three groups (n = 10): negative control (NC, 1 mL saline solution per day), positive control (PC, 1 mL saline solution per day) and the Kefir group (1 mL kefir per day). Feeding was carried out by gavage for 10 weeks and the animals received standard food and water ad libitum. Obesity, insulin resistance, pro- and anti-inflammatory markers, and the histology of pancreatic and adipose tissues were among the main variables evaluated. Compared to the PC group, kefir supplementation reduced plasma triglycerides, liver lipids, liver triglycerides, insulin resistance, fasting glucose, fasting insulin, thoracic circumference, abdominal circumference, products of lipid oxidation, pro-inflammatory cytokine expression (IL-1β) and increased anti-inflammatory cytokine expression (IL-10). The present findings indicate that kefir has the potential to benefit the management of MetS. PMID:27384318

  11. An intronic polymorphism associated with increased XRCC1 expression, reduced apoptosis and familial breast cancer.

    PubMed

    Bu, Dawei; Tomlinson, Gail; Lewis, Cheryl M; Zhang, Cindy; Kildebeck, Eric; Euhus, David M

    2006-10-01

    XRCC1 coordinates the activities of DNA polymerase-beta and DNA ligase for base excision repair of oxidative DNA damage. In addition, there is some evidence that XRCC1 is a negative regulator of apoptosis. Single nucleotide polymorphisms in XRCC1 have been inconsistently associated with breast cancer risk. We evaluated XRCC1 gene expression in breast cancer cell lines and carcinogen-induced apoptosis in benign breast epithelial cells in relation to XRCC1 genotypes. XRCC1 IVS10+141G>A was associated with increased expression of XRCC1 mRNA and protein, and reduced apoptosis in response to benzo-[a]-pyrene or ionizing radiation, but XRCC1 R399Q was not. These genotypes were also assessed in a clinic-based sample that included 190 breast cancer patients with a family history of breast cancer and 95 controls with no family history of breast cancer. Heterozygous XRCC1 IVS10+141G>A was associated with an increased breast cancer risk (O.R. = 1.7, 95% C.I. 1.016-2.827, P = 0.04) as was homozygous XRCC1 IVS10+141G>A (O.R. = 4.7, 95% C.I. 1.028-21.444, P = 0.03). XRCC1 R399Q was not associated with breast cancer (O.R. 1.00, 95% C.I. 0.61-1.64). The XRCC1 IVS10+141G>A locus is centered in a sequence that is nearly identical to the consensus binding site for the PLAG1 transcription factor. XRCC1 IVS10+141G>A is an intronic polymorphism that is associated with XRCC1 expression, apoptosis and familial breast cancer. It may occur within an intronic regulatory sequence. PMID:16596326

  12. Reduced kynurenine pathway metabolism and cytokine expression in the prefrontal cortex of depressed individuals

    PubMed Central

    Clark, Sarah M.; Pocivavsek, Ana; Nicholson, James D.; Notarangelo, Francesca M.; Langenberg, Patricia; McMahon, Robert P.; Kleinman, Joel E.; Hyde, Thomas M.; Stiller, John; Postolache, Teodor T.; Schwarcz, Robert; Tonelli, Leonardo H.

    2016-01-01

    Background Neuroinflammatory processes are increasingly believed to participate in the pathophysiology of a number of major psychiatric diseases, including depression. Immune activation stimulates the conversion of the amino acid tryptophan to kynurenine, leading to the formation of neuroactive metabolites, such as quinolinic acid and kynurenic acid. These compounds affect glutamatergic neurotransmission, which plays a prominent role in depressive pathology. Increased tryptophan degradation along the kynurenine pathway (KP) has been proposed to contribute to disease etiology. Methods We used postmortem brain tissue from the ventrolateral prefrontal cortex (VLPFC) to assess tissue levels of tryptophan and KP metabolites, the expression of several KP enzymes and a series of cytokines as well as tissue pathology, including microglial activation. Tissue samples came from nonpsychiatric controls (n = 36) and individuals with depressive disorder not otherwise specified (DD-NOS, n = 45) who died of natural causes, homicide, accident, or suicide. Results We found a reduction in the enzymatic conversion of tryptophan to kynurenine, determined using the kynurenine:tryptophan ratio, and reduced messenger RNA expression of the enzymes indoleamine-2,3-dioxygenase 1 and 2 and tryptophan-2,3-dioxygenase in depressed individuals irrespective of the cause of death. These findings correlated with reductions in the expression of several cytokines, including interferon-γ and tumour necrosis factor-α. Notably, quinolinic acid levels were also lower in depressed individuals than controls. Limitations Information on the use of antidepressants and other psychotropic medications was insufficient for statistical comparisons. Conclusion Contrary to expectations, the present results indicate that depression, in the absence of medical illness or an overt inflammatory process, is associated with compromised, rather than increased, KP metabolism in the VLPFC. PMID:27070351

  13. Bromelain treatment reduces CD25 expression on activated CD4+ T cells in vitro.

    PubMed

    Secor, Eric R; Singh, Anurag; Guernsey, Linda A; McNamara, Jeff T; Zhan, Lijun; Maulik, Nilanjana; Thrall, Roger S

    2009-03-01

    Bromelain (Br), an extract from pineapple stem with cysteine protease activity, exerts anti-inflammatory effects in a number of inflammatory models. We have previously shown that Br treatment decreased activated CD4(+) T cells and has a therapeutic role in an ovalbumin-induced murine model of allergic airway disease. The current study was designed to determine the effect of Br on CD4(+) T cell activation, specifically the expression of CD25 in vitro. CD25 is up regulated upon T cell activation, found as a soluble fraction (sCD25) and is a therapeutic target in inflammation, autoimmunity and allergy. Br treatment of anti-CD3 stimulated CD4(+) T cells reduced CD25 expression in a dose and time dependent manner. This reduction of CD25 was dependent on the proteolytic action of Br as the addition of E64 (a cysteine protease inhibitor) abrogated this response. The concentration of sCD25 was increased in supernatants of Br treated activated CD4(+) T cells as compared to control cells, suggesting that Br proteolytically cleaved cell-surface CD25. This novel mechanism of action identifies how Br may exert its therapeutic benefits in inflammatory conditions.

  14. Insecticides reduce survival and the expression of traits associated with carnivory of carnivorous plants.

    PubMed

    Jennings, David E; Congelosi, Alexandra M; Rohr, Jason R

    2012-03-01

    While agrochemical pollution is thought to be an important conservation threat to carnivorous plants, the effects of insecticides on these taxa have not been quantified previously. Using a combination of lab- and field-based experiments, we tested the effects of commercial and technical grades of three widely used insecticides (carbaryl, lambda-cyhalothrin, and malathion) on survival and the expression of traits associated with carnivory of pink sundews (Drosera capillaris) and Venus flytraps (Dionaea muscipula). Commercial grades were generally more harmful than technical grades under lab and field conditions, but all three insecticides were capable of reducing both survival and the expression of traits associated with carnivory within recommended application rates. However, pink sundews appeared to be more susceptible to insecticides than Venus flytraps, perhaps because of larger numbers of digestive glands on the leaf surfaces. We make several recommendations for future research directions, such as examining the long-term effects of insecticides on carnivorous plant populations, for example in terms of growth rates and fitness. Additionally, future research should include representative species from a wider-range of carnivorous plant growth forms, and explore the mechanism by which insecticides are harming the plants. Given the effects we observed in the present study, we suggest that the use of insecticides should be carefully managed in areas containing vulnerable carnivorous plant species.

  15. Reduced expression of galectin-1 and galectin-9 by leucocytes in asthma patients

    PubMed Central

    Sanchez-Cuellar, S; Fuente, H; Cruz-Adalia, A; Lamana, A; Cibrian, D; Giron, R M; Vara, A; Sanchez-Madrid, F; Ancochea, J

    2012-01-01

    Accumulating evidence shows that galectins play roles in the initiation and resolution phases of inflammatory responses by promoting anti- or proinflammatory effects. This study investigated the presence of three members of the galectin family (galectin-1, -3 and -9) in induced sputum samples of asthma patients, as well as their possible implication in the immunopathogenesis of human asthma. Levels of interleukin (IL)-5, IL-13, and galectins were determined in leucocytes isolated from induced sputum samples by reverse transcription–polymerase chain reaction (RT–PCR) immunofluorescence and flow cytometry. High levels of IL-5 and IL-13 mRNA were detected in sputum cells from asthma patients. In parallel, immunoregulatory proteins galectin-1 and galectin-9 showed a reduced expression on macrophages from sputum samples compared with cells from healthy donors. In-vitro immunoassays showed that galectin-1 and galectin-9, but not galectin-3, are able to induce the production of IL-10 by peripheral blood mononuclear cells from healthy donors. These findings indicate that macrophages from sputum samples of asthma patients express low levels of galectin-1 and galectin-9, favouring the exacerbated immune response observed in this disease. PMID:23121677

  16. Disrupting protein expression with Peptide Nucleic Acids reduces infection by obligate intracellular Rickettsia.

    PubMed

    Pelc, Rebecca S; McClure, Jennifer C; Kaur, Simran J; Sears, Khandra T; Rahman, M Sayeedur; Ceraul, Shane M

    2015-01-01

    Peptide Nucleic Acids (PNAs) are single-stranded synthetic nucleic acids with a pseudopeptide backbone in lieu of the phosphodiester linked sugar and phosphate found in traditional oligos. PNA designed complementary to the bacterial Shine-Dalgarno or start codon regions of mRNA disrupts translation resulting in the transient reduction in protein expression. This study examines the use of PNA technology to interrupt protein expression in obligate intracellular Rickettsia sp. Their historically intractable genetic system limits characterization of protein function. We designed PNA targeting mRNA for rOmpB from Rickettsia typhi and rickA from Rickettsia montanensis, ubiquitous factors important for infection. Using an in vitro translation system and competitive binding assays, we determined that our PNAs bind target regions. Electroporation of R. typhi and R. montanensis with PNA specific to rOmpB and rickA, respectively, reduced the bacteria's ability to infect host cells. These studies open the possibility of using PNA to suppress protein synthesis in obligate intracellular bacteria.

  17. Baicalein pretreatment reduces liver ischemia/reperfusion injury via induction of autophagy in rats.

    PubMed

    Liu, Anding; Huang, Liang; Guo, Enshuang; Li, Renlong; Yang, Jiankun; Li, Anyi; Yang, Yan; Liu, Shenpei; Hu, Jifa; Jiang, Xiaojing; Dirsch, Olaf; Dahmen, Uta; Sun, Jian

    2016-01-01

    We previously demonstrated that baicalein could protect against liver ischemia/reperfusion (I/R) injury in mice. The exact mechanism of baicalein remains poorly understood. Autophagy plays an important role in protecting against I/R injury. This study was designed to determine whether baicalein could protect against liver I/R injury via induction of autophagy in rats. Baicalein was intraperitoneally injected 1 h before warm ischemia. Pretreatment with baicalein prior to I/R insult significantly blunted I/R-induced elevations of serum aminotransferase levels and significantly improved the histological status of livers. Electron microscopy and expression of the autophagic marker LC3B-II suggested induction of autophagy after baicalein treatment. Moreover, inhibition of the baicalein-induced autophagy using 3-methyladenine (3-MA) worsened liver injury. Furthermore, baicalein treatment increased heme oxygenase (HO)-1 expression, and pharmacological inhibition of HO-1 with tin protoporphyrin IX (SnPP) abolished the baicalein-mediated autophagy and the hepatocellular protection. In primary rat hepatocytes, baicalein-induced autophagy also protected hepatocytes from hypoxia/reoxygenation injury in vitro and the beneficial effect was abrogated by 3-MA or Atg7 siRNA, respectively. Suppression of HO-1 activity by SnPP or HO-1 siRNA prevented the baicalein-mediated autophagy and resulted in increased hepatocellular injury. Collectively, these results suggest that baicalein prevents hepatocellular injury via induction of HO-1-mediated autophagy.

  18. Reduced FOXO1 Expression Accelerates Skin Wound Healing and Attenuates Scarring

    PubMed Central

    Mori, Ryoichi; Tanaka, Katsuya; de Kerckhove, Maiko; Okamoto, Momoko; Kashiyama, Kazuya; Tanaka, Katsumi; Kim, Sangeun; Kawata, Takuya; Komatsu, Toshimitsu; Park, Seongjoon; Ikematsu, Kazuya; Hirano, Akiyoshi; Martin, Paul; Shimokawa, Isao

    2015-01-01

    The forkhead box O (FOXO) family has been extensively investigated in aging and metabolism, but its role in tissue-repair processes remains largely unknown. Herein, we clarify the molecular aspect of the FOXO family in skin wound healing. We demonstrated that Foxo1 and Foxo3a were both up-regulated during murine skin wound healing. Partial knockout of Foxo1 in Foxo1+/− mice throughout the body led to accelerated skin wound healing with enhanced keratinocyte migration, reduced granulation tissue formation, and decreased collagen density, accompanied by an attenuated inflammatory response, but we observed no wound phenotype in Foxo3a−/− mice. Fibroblast growth factor 2, adiponectin, and notch1 genes were significantly increased at wound sites in Foxo1+/− mice, along with markedly altered extracellular signal–regulated kinase 1/2 and AKT phosphorylation. Similarly, transient knockdown of Foxo1 at the wound site by local delivery of antisense oligodeoxynucleotides enhanced skin wound healing. The link between FOXO1 and scarring extends to patients, in particular keloid scars, where we see FOXO1 expression markedly increased in fibroblasts and inflammatory cells within the otherwise normal dermis. This occurs in the immediate vicinity of the keloid by comparison to the center of the mature keloid, indicating that FOXO1 is associated with the overgrowth of this fibrotic response into adjacent normal skin. Overall, our data indicate that molecular targeting of FOXO1 may improve the quality of healing and reduce pathological scarring. PMID:25010393

  19. Mechanical vibration inhibits osteoclast formation by reducing DC-STAMP receptor expression in osteoclast precursor cells.

    PubMed

    Kulkarni, Rishikesh N; Voglewede, Philip A; Liu, Dawei

    2013-12-01

    It is well known that physical inactivity leads to loss of muscle mass, but it also causes bone loss. Mechanistically, osteoclastogenesis and bone resorption have recently been shown to be regulated by vibration. However, the underlying mechanism behind the inhibition of osteoclast formation is yet unknown. Therefore, we investigated whether mechanical vibration of osteoclast precursor cells affects osteoclast formation by the involvement of fusion-related molecules such as dendritic cell-specific transmembrane protein (DC-STAMP) and P2X7 receptor (P2X7R). RAW264.7 (a murine osteoclastic-like cell line) cells were treated with 20ng/ml receptor activator of NF-κB ligand (RANKL). For 3 consecutive days, the cells were subjected to 1h of mechanical vibration with 20μm displacement at a frequency of 4Hz and compared to the control cells that were treated under the same condition but without the vibration. After 5days of culture, osteoclast formation was determined. Gene expression of DC-STAMP and P2X7R by RAW264.7 cells was determined after 1h of mechanical vibration, while protein production of the DC-STAMP was determined after 6h of postincubation after vibration. As a result, mechanical vibration of RAW264.7 cells inhibited the formation of osteoclasts. Vibration down-regulated DC-STAMP gene expression by 1.6-fold in the presence of RANKL and by 1.4-fold in the absence of RANKL. Additionally, DC-STAMP protein production was also down-regulated by 1.4-fold in the presence of RANKL and by 1.2-fold in the absence of RANKL in RAW264.7 cells in response to mechanical vibration. However, vibration did not affect P2X7R gene expression. Mouse anti-DC-STAMP antibody inhibited osteoclast formation in the absence of vibration. Our results suggest that mechanical vibration of osteoclast precursor cells reduces DC-STAMP expression in osteoclast precursor cells leading to the inhibition of osteoclast formation.

  20. MicroRNA-194 Modulates Glucose Metabolism and Its Skeletal Muscle Expression Is Reduced in Diabetes

    PubMed Central

    Latouche, Celine; Natoli, Alaina; Reddy-Luthmoodoo, Medini; Heywood, Sarah E.; Armitage, James A.; Kingwell, Bronwyn A.

    2016-01-01

    Background The regulation of microRNAs (miRNAs) at different stages of the progression of type 2 diabetes mellitus (T2DM) and their role in glucose homeostasis was investigated. Methods Microarrays were used to assess miRNA expression in skeletal muscle biopsies taken from healthy individuals and patients with pre-diabetes or T2DM, and insulin resistant offspring of rat dams fed a high fat diet during pregnancy. Results Twenty-three miRNAs were differentially expressed in patients with T2DM, and 7 in the insulin resistant rat offspring compared to their controls. Among these, only one miRNA was similarly regulated: miR-194 expression was significantly reduced by 25 to 50% in both the rat model and in human with pre-diabetes and established diabetes. Knockdown of miR-194 in L6 skeletal muscle cells induced an increase in basal and insulin-stimulated glucose uptake and glycogen synthesis. This occurred in conjunction with an increased glycolysis, indicated by elevated lactate production. Moreover, oxidative capacity was also increased as we found an enhanced glucose oxidation in presence of the mitochondrial uncoupler FCCP. When miR-194 was down-regulated in vitro, western blot analysis showed an increased phosphorylation of AKT and GSK3β in response to insulin, and an increase in expression of proteins controlling mitochondrial oxidative phosphorylation. Conclusions Type 2 diabetes mellitus is associated with regulation of several miRNAs in skeletal muscle. Interestingly, miR-194 was a unique miRNA that appeared regulated across different stages of the disease progression, from the early stages of insulin resistance to the development of T2DM. We have shown miR-194 is involved in multiple aspects of skeletal muscle glucose metabolism from uptake, through to glycolysis, glycogenesis and glucose oxidation, potentially via mechanisms involving AKT, GSK3 and oxidative phosphorylation. MiR-194 could be down-regulated in patients with early features of diabetes as an

  1. Involvement of aberrant DNA methylation on reduced expression of lysophosphatidic acid receptor-1 gene in rat tumor cell lines

    SciTech Connect

    Tsujiuchi, Toshifumi . E-mail: ttujiuch@life.kindai.ac.jp; Shimizu, Kyoko; Onishi, Mariko; Sugata, Eriko; Fujii, Hiromasa; Mori, Toshio; Honoki, Kanya; Fukushima, Nobuyuki

    2006-10-27

    Lysophosphatidic acid (LPA) is a bioactive phospholipid that stimulates cell proliferation, migration, and protects cells from apoptosis. It interacts with specific G protein-coupled transmembrane receptors. Recently, it has been reported that alterations of LPA receptor expression might be important in the malignant transformation of tumor cells. Therefore, to assess an involvement of DNA methylation in reduced expression of the LPA receptor-1 (lpa1) gene, we investigated the expression of the lpa1 gene and its DNA methylation patterns in rat tumor cell lines. Both rat brain-derived neuroblastoma B103 and liver-derived hepatoma RH7777 cells used in this study indicated no expression of lpa1. For the analysis of methylation status, bisulfite sequencing was performed with B103 and RH7777 cells, comparing with other lpa1 expressed cells and normal tissues of brain and liver. The lpa1 expressed cells and tissues were all unmethylated in this region of lpa1. In contrast, both B103 and RH7777 cells were highly methylated, correlating with reduced expression of the lpa1. Treatment with 5-aza 2'-deoxycytidine induced expression of lpa1 gene in B103 and RH7777 cells after 24 h. In RH7777 cells treated with 5-aza 2'-deoxycytidine, stress fiber formation was also observed in response to LPA in RH7777 cells, but not in untreated RH7777 cells. These results suggest that aberrant DNA methylation of the lpa1 gene may be involved in its reduced expression in rat tumor cells.

  2. Reduced expression of 15-hydroxy prostaglandin dehydrogenase in chorion during labor is associated with decreased PRB and increased PRA and GR expression.

    PubMed

    Li, Yuan; He, Ping; Sun, Qianqian; Liu, Jie; Gao, Lu; You, Xingji; Gu, Hang; Ni, Xin

    2013-05-01

    The chorion laeve controls the levels of active prostaglandins within the uterus by NAD-dependent 15-hydroxy prostaglandin dehydrogenase (PGDH). The expression of PGDH in chorion is modulated by glucocorticoids and progesterone. In this study, we investigated glucocorticoid receptor (GR) and progesterone receptor A and B (PRA and PRB) in the regulation of PGDH expression in chorion, and we determined whether reduced PGDH expression in chorion during labor is associated with the changes in GR and PR expression by real-time RT-PCR and Western blot analysis. Dexamethasone (DEX) inhibited PGDH expression whereas progesterone stimulated PGDH expression in chorionic trophoblasts. DEX suppressed PGDH expression in GR overexpression and PR knockdown cells. The inhibitory effect of DEX did not occur in GR knockdown cells. Progesterone inhibited PGDH in GR overexpression and PR knockdown cells and it stimulated PGDH in PRB overexpression cells whereas it suppressed PGDH in PRA overexpression cells. Knockdown of c-Jun resulted in a loss of progesterone- and DEX-induced effects. PGDH was down-regulated in chorion tissues during labor. PRB was decreased whereas PRA and GR were increased in chorion during labor. Glucocorticoids inhibit PGDH expression via GR in chorionic trophoblasts. Progesterone enhances PGDH expression through PRB, whereas it inhibits PGDH expression via GR and PRA. Decreased PGDH expression is associated with increased GR and PRA, although decreased PRB, in chorion during labor.

  3. Unregulated brain iron deposition in transgenic mice over-expressing HMOX1 in the astrocytic compartment.

    PubMed

    Song, Wei; Zukor, Hillel; Lin, Shih-Hsiung; Liberman, Adrienne; Tavitian, Ayda; Mui, Jeannie; Vali, Hojatollah; Fillebeen, Carine; Pantopoulos, Kostas; Wu, Ting-Di; Guerquin-Kern, Jean-Luc; Schipper, Hyman M

    2012-10-01

    The mechanisms responsible for pathological iron deposition in the aging and degenerating mammalian CNS remain poorly understood. The stress protein, HO-1 mediates the degradation of cellular heme to biliverdin/bilirubin, free iron, and CO and is up-regulated in the brains of persons with Alzheimer's disease and Parkinson's disease. HO-1 induction in primary astroglial cultures promotes deposition of non-transferrin iron, mitochondrial damage and macroautophagy, and predisposes cocultured neuronal elements to oxidative injury. To gain a better appreciation of the role of glial HO-1 in vivo, we probed for aberrant brain iron deposition using Perls' method and dynamic secondary ion mass spectrometry in novel, conditional GFAP.HMOX1 transgenic mice that selectively over-express human HO-1 in the astrocytic compartment. At 48 weeks, the GFAP.HMOX1 mice exhibited increased deposits of glial iron in hippocampus and other subcortical regions without overt changes in iron-regulatory and iron-binding proteins relative to age-matched wild-type animals. Dynamic secondary ion mass spectrometry revealed abundant FeO⁻ signals in the transgenic, but not wild-type, mouse brain that colocalized to degenerate mitochondria and osmiophilic cytoplasmic inclusions (macroautophagy) documented by TEM. Sustained up-regulation of HO-1 in astrocytes promotes pathological brain iron deposition and oxidative mitochondrial damage characteristic of Alzheimer's disease-affected neural tissues. Curtailment of glial HO-1 hyperactivity may limit iron-mediated cytotoxicity in aging and degenerating neural tissues.

  4. Targeted expression of heme oxygenase-1 prevents the pulmonary inflammatory and vascular responses to hypoxia

    NASA Astrophysics Data System (ADS)

    Minamino, Tohru; Christou, Helen; Hsieh, Chung-Ming; Liu, Yuxiang; Dhawan, Vijender; Abraham, Nader G.; Perrella, Mark A.; Mitsialis, S. Alex; Kourembanas, Stella

    2001-07-01

    Chronic hypoxia causes pulmonary hypertension with smooth muscle cell proliferation and matrix deposition in the wall of the pulmonary arterioles. We demonstrate here that hypoxia also induces a pronounced inflammation in the lung before the structural changes of the vessel wall. The proinflammatory action of hypoxia is mediated by the induction of distinct cytokines and chemokines and is independent of tumor necrosis factor- signaling. We have previously proposed a crucial role for heme oxygenase-1 (HO-1) in protecting cardiomyocytes from hypoxic stress, and potent anti-inflammatory properties of HO-1 have been reported in models of tissue injury. We thus established transgenic mice that constitutively express HO-1 in the lung and exposed them to chronic hypoxia. HO-1 transgenic mice were protected from the development of both pulmonary inflammation as well as hypertension and vessel wall hypertrophy induced by hypoxia. Significantly, the hypoxic induction of proinflammatory cytokines and chemokines was suppressed in HO-1 transgenic mice. Our findings suggest an important protective function of enzymatic products of HO-1 activity as inhibitors of hypoxia-induced vasoconstrictive and proinflammatory pathways.

  5. Adverse effects of reduced oxygen tension on the proliferative capacity of rat kidney and insulin-secreting cell lines involve DNA damage and stress responses

    SciTech Connect

    Chen Jianhua Jones, R. Huw; Tarry-Adkins, Jane; Smith, Noel H.; Ozanne, Susan E.

    2008-10-01

    Standard cell culture conditions do not reflect the physiological environment in terms of oxygen tension (20% vs 3%). The effects of lowering oxygen tension on cell proliferation in culture can be beneficial as well as detrimental depending on the cell line studied, but the molecular mechanism underlying such effects is not fully understood. We observed that the proliferative capacity of the rat cell lines NRK and INS-1 was inhibited when cultured under 3% oxygen as compared to 20% oxygen. Suppression of proliferation in NRK cells was accompanied by induction of DNA double strand breaks whereas in INS-1 cells it was accompanied by up-regulation of p53 and p27. Although Sirt1 was up-regulated in both cell lines by 3% oxygen the effects on antioxidant enzymes (MnSOD, CuZnSOD and catalase) were cell line specific. Marked up-regulation of heme oxygenase-1 (HO-1) was detected in both NRK and INS-1 cells when cultured in 3% oxygen. HO-1 expression can be readily induced by exposure to hydrogen peroxide in culture. These results suggest that reduced oxygen tension suppresses the proliferative capacity of these two cell lines through a stress response that is similar to an oxidative stress response but the molecular events that lead to the reduced cell proliferation are cell line specific.

  6. Reduced O-GlcNAcase expression promotes mitotic errors and spindle defects.

    PubMed

    Lanza, Chris; Tan, Ee Phie; Zhang, Zhen; Machacek, Miranda; Brinker, Amanda E; Azuma, Mizuki; Slawson, Chad

    2016-05-18

    Alterations in O-GlcNAc cycling, the addition and removal of O-GlcNAc, lead to mitotic defects and increased aneuploidy. Herein, we generated stable O-GlcNAcase (OGA, the enzyme that removes O-GlcNAc) knockdown HeLa cell lines and characterized the effect of the reduction in OGA activity on cell cycle progression. After release from G1/S, the OGA knockdown cells progressed normally through S phase but demonstrated mitotic exit defects. Cyclin A was increased in the knockdown cells while Cyclin B and D expression was reduced. Retinoblastoma protein (RB) phosphorylation was also increased in the knockdown compared to control. At M phase, the knockdown cells showed more compact spindle chromatids than control cells and had a greater percentage of cells with multipolar spindles. Furthermore, the timing of the inhibitory tyrosine phosphorylation of Cyclin Dependent Kinase 1 (CDK1) was altered in the OGA knockdown cells. Although expression and localization of the chromosomal passenger protein complex (CPC) was unchanged, histone H3 threonine 3 phosphorylation was decreased in one of the OGA knockdown cell lines. The Ewing Sarcoma Breakpoint Region 1 Protein (EWS) participates in organizing the CPC at the spindle and is a known substrate for O-GlcNAc transferase (OGT, the enzyme that adds O-GlcNAc). EWS O-GlcNAcylation was significantly increased in the OGA knockdown cells promoting uneven localization of the mitotic midzone. Our data suggests that O-GlcNAc cycling is an essential mechanism for proper mitotic signaling and spindle formation, and alterations in the rate of O-GlcNAc cycling produces aberrant spindles and promotes aneuploidy.

  7. Reduced O-GlcNAcase expression promotes mitotic errors and spindle defects.

    PubMed

    Lanza, Chris; Tan, Ee Phie; Zhang, Zhen; Machacek, Miranda; Brinker, Amanda E; Azuma, Mizuki; Slawson, Chad

    2016-05-18

    Alterations in O-GlcNAc cycling, the addition and removal of O-GlcNAc, lead to mitotic defects and increased aneuploidy. Herein, we generated stable O-GlcNAcase (OGA, the enzyme that removes O-GlcNAc) knockdown HeLa cell lines and characterized the effect of the reduction in OGA activity on cell cycle progression. After release from G1/S, the OGA knockdown cells progressed normally through S phase but demonstrated mitotic exit defects. Cyclin A was increased in the knockdown cells while Cyclin B and D expression was reduced. Retinoblastoma protein (RB) phosphorylation was also increased in the knockdown compared to control. At M phase, the knockdown cells showed more compact spindle chromatids than control cells and had a greater percentage of cells with multipolar spindles. Furthermore, the timing of the inhibitory tyrosine phosphorylation of Cyclin Dependent Kinase 1 (CDK1) was altered in the OGA knockdown cells. Although expression and localization of the chromosomal passenger protein complex (CPC) was unchanged, histone H3 threonine 3 phosphorylation was decreased in one of the OGA knockdown cell lines. The Ewing Sarcoma Breakpoint Region 1 Protein (EWS) participates in organizing the CPC at the spindle and is a known substrate for O-GlcNAc transferase (OGT, the enzyme that adds O-GlcNAc). EWS O-GlcNAcylation was significantly increased in the OGA knockdown cells promoting uneven localization of the mitotic midzone. Our data suggests that O-GlcNAc cycling is an essential mechanism for proper mitotic signaling and spindle formation, and alterations in the rate of O-GlcNAc cycling produces aberrant spindles and promotes aneuploidy. PMID:27070276

  8. Nell1-deficient mice have reduced expression of extracellular matrix proteins causing cranial and vertebral defects

    SciTech Connect

    Desai, Jayashree; Shannon, Mark E.; Johnson, Mahlon D.; Ruff, David W.; Hughes, Lori A; Kerley, Marilyn K; Carpenter, D A; Johnson, Dabney K; Rinchik, Eugene M.; Culiat, Cymbeline T

    2006-01-01

    The mammalian Nell1 gene encodes a protein kinase C-b1 (PKC-b1) binding protein that belongs to a new class of cell-signaling molecules controlling cell growth and differentiation. Over-expression of Nell1 in the developing cranial sutures in both human and mouse induces craniosynostosis, the premature fusion of the growing cranial bone fronts. Here, we report the generation, positional cloning and characterization of Nell16R, a recessive, neonatal-lethal point mutation in the mouse Nell1 gene, induced by N-ethyl-N-nitrosourea. Nell16R has a T!A base change that converts a codon for cysteine into a premature stop codon [Cys(502)Ter], resulting in severe truncation of the predicted protein product and marked reduction in steady-state levels of the transcript. In addition to the expected alteration of cranial morphology, Nell16R mutants manifest skeletal defects in the vertebral column and ribcage, revealing a hitherto undefined role for Nell1 in signal transduction in endochondral ossification. Real-time quantitative reverse transcription-PCR assays of 219 genes showed an association between the loss of Nell1 function and reduced expression of genes for extracellular matrix (ECM) proteins critical for chondrogenesis and osteogenesis. Several affected genes are involved in the human cartilage disorder Ehlers-Danlos Syndrome and other disorders associated with spinal curvature anomalies. Nell16R mutant mice are a new tool for elucidating basic mechanisms in osteoblast and chrondrocyte differentiation in the developing skull and vertebral column and understanding how perturbations in the production of ECM proteins can lead to anomalies in these structures.

  9. Reduced phototropism in pks mutants may be due to altered auxin-regulated gene expression or reduced lateral auxin transport.

    PubMed

    Kami, Chitose; Allenbach, Laure; Zourelidou, Melina; Ljung, Karin; Schütz, Frédéric; Isono, Erika; Watahiki, Masaaki K; Yamamoto, Kotaro T; Schwechheimer, Claus; Fankhauser, Christian

    2014-02-01

    Phototropism allows plants to orient their photosynthetic organs towards the light. In Arabidopsis, phototropins 1 and 2 sense directional blue light such that phot1 triggers phototropism in response to low fluence rates, while both phot1 and phot2 mediate this response under higher light conditions. Phototropism results from asymmetric growth in the hypocotyl elongation zone that depends on an auxin gradient across the embryonic stem. How phototropin activation leads to this growth response is still poorly understood. Members of the phytochrome kinase substrate (PKS) family may act early in this pathway, because PKS1, PKS2 and PKS4 are needed for a normal phototropic response and they associate with phot1 in vivo. Here we show that PKS proteins are needed both for phot1- and phot2-mediated phototropism. The phototropic response is conditioned by the developmental asymmetry of dicotyledonous seedlings, such that there is a faster growth reorientation when cotyledons face away from the light compared with seedlings whose cotyledons face the light. The molecular basis for this developmental effect on phototropism is unknown; here we show that PKS proteins play a role at the interface between development and phototropism. Moreover, we present evidence for a role of PKS genes in hypocotyl gravi-reorientation that is independent of photoreceptors. pks mutants have normal levels of auxin and normal polar auxin transport, however they show altered expression patterns of auxin marker genes. This situation suggests that PKS proteins are involved in auxin signaling and/or lateral auxin redistribution.

  10. Fraxetin Induces Heme Oxygenase-1 Expression by Activation of Akt/Nrf2 or AMP-activated Protein Kinase α/Nrf2 Pathway in HaCaT Cells

    PubMed Central

    Kundu, Juthika; Chae, In Gyeong; Chun, Kyung-Soo

    2016-01-01

    Background Fraxetin (7,8-dihydroxy-6-methoxy coumarin), a coumarin derivative, has been reported to possess antioxidative, anti-inflammatory and neuroprotective effects. A number of recent observations suggest that the induction of heme oxygenase-1 (HO-1) inhibits inflammation and tumorigenesis. In the present study, we determined the effect of fraxetin on HO-1 expression in HaCaT human keratinocytes and investigated its underlying molecular mechanisms. Methods Reverse transcriptase-PCR and Western blot analysis were performed to detect HO-1 mRNA and protein expression, respectively. Cell viability was measured by the MTS test. The induction of intracellular reactive oxygen species (ROS) by fraxetin was evaluated by 2′,7′-dichlorofluorescin diacetate staining. Results Fraxetin upregulated mRNA and protein expression of HO-1. Incubation with fraxetin induced the localization of nuclear factor-erythroid-2-related factor-2 (Nrf2) in the nucleus and increased the antioxidant response element-reporter gene activity. Fraxetin also induced the phosphorylation of Akt and AMP-activated protein kinase (AMPK)α and diminished the expression of phosphatase and tensin homolog, a negative regulator of Akt. Pharmacological inhibition of Akt and AMPKα abrogated fraxetin-induced expression of HO-1 and nuclear localization of Nrf2. Furthermore, fraxetin generated ROS in a concentration-dependent manner. Conclusions Fraxetin induces HO-1 expression through activation of Akt/Nrf2 or AMPKα/Nrf2 pathway in HaCaT cells. PMID:27722139

  11. Targeted deletion of Secisbp2 reduces, but does not abrogate, selenoprotein expression and leads to striatal interneuron loss.

    PubMed

    Seeher, Sandra; Schweizer, Ulrich

    2014-10-01

    Selenoproteins contain the amino acid selenocysteine (Sec). The Sec insertion sequence (SECIS)-binding protein 2 (Secisbp2) binds to SECIS elements in the 3'-UTR of eukaryotic selenoprotein mRNAs. Mutations in SECISBP2 in humans lead to reduced selenoprotein expression thereby affecting thyroid hormone-dependent growth and differentiation processes. The most severe cases also display mental retardation and ataxia. Mouse models are needed to understand selenoprotein-dependent processes underlying the patients' pleiotropic phenotypes. Homozygous Secisbp2 deletion is embryonic lethal. Conditional deletion of Secisbp2 in hepatocytes significantly decreased selenoprotein expression and reduced the abundance of many, but not all, selenoprotein mRNAs. Regarding selenoprotein expression, compensatory Nrf2-dependent gene expression, or embryonic development, phenotypes were always milder in Secisbp2- than in tRNA(Sec)-deficient mice. Neuron-specific inactivation of Secisbp2 reduced cerebral expression of selenoproteins, but allowed to study the development of cortical PVpos interneurons, which are known to depend on selenoproteins. Cre expression spares the cerebellum of these mice, why we suspected that basal ganglia dysfunction may cause the obvious movement phenotype. We observed for the first time that the number of PVpos neurons was reduced by 50% in the caudate putamen of a selenoprotein-deficient mouse model. In situ hybridization for Gad67 showed that selenoprotein deficiency selectively reduced the number of PVpos GABAergic interneurons. We propose that the striatal neuron loss likely causes the movement disorder. The most striking novel finding of this work is the selective damage of PVpos/Gad67pos neurons in the striatum. The second key finding is that selenoprotein expression in hepatocytes and neurons is less dependent on Secisbp2 than on tRNA(Sec). This implies the possibility of Secisbp2-independent selenoprotein expression, albeit on a reduced level. PMID

  12. Modulation of APP Expression Reduces Aβ Deposition in a Mouse Model

    PubMed Central

    Asuni, Ayodeji A.; Guridi, Maitea; Pankiewicz, Joanna E.; Sanchez, Sandrine; Sadowski, Martin J.

    2014-01-01

    Objective Proteolytic cleavage of the amyloid precursor protein (APP) generates β-amyloid (Aβ) peptides. Prolonged accumulation of Aβ in the brain underlies the pathogenesis of Alzheimer’s disease (AD) and is regarded as a principal target for development of disease-modifying therapeutics. Methods Using CHO APP751SW cells we identified and characterized effects of 2-[(pyridine-2-ylmethyl)-amino]-phenol (2-PMAP) on APP steady-state level and Aβ production. Outcomes of 2-PMAP treatment on Aβ accumulation and associated memory deficit were studied in APPSW/PS1dE9 AD transgenic model mice. Results In CHO APP751SW cells, 2-PMAP in a dose-response manner lowered the steady-state APP level and inhibited Aβx-40 and Aβx-42 production with minimum effective concentration ≤0.5μM. The inhibitory effect of 2-PMAP on translational efficiency of APP mRNA into protein was directly confirmed using 35S-methionine/cysteine metabolic labeling technique, while APP mRNA level remained unaltered. Administration of 2-PMAP to APPSW/PS1dE9 mice reduced brain levels of full length APP and its C-terminal fragments along with lowering levels of soluble Aβx-40 and Aβx-42. Four-month chronic treatment of APPSW/PS1dE9 mice revealed no observable toxicity and improved animals’ memory performance. 2-PMAP treatment also caused significant reduction in brain Aβ deposition determined by both unbiased quantification of Aβ plaque load and biochemical analysis of formic acid extracted Aβx-40 and Aβx-42 levels and the level of oligomeric Aβ. Interpretation We demonstrate the potential of modulating APP steady-state expression level as a safe and effective approach for reducing Aβ deposition in AD transgenic model mice. PMID:24687915

  13. Reducing premature KCC2 expression rescues seizure susceptibility and spine morphology in atypical febrile seizures.

    PubMed

    Awad, Patricia N; Sanon, Nathalie T; Chattopadhyaya, Bidisha; Carriço, Josianne Nunes; Ouardouz, Mohamed; Gagné, Jonathan; Duss, Sandra; Wolf, Daniele; Desgent, Sébastien; Cancedda, Laura; Carmant, Lionel; Di Cristo, Graziella

    2016-07-01

    Atypical febrile seizures are considered a risk factor for epilepsy onset and cognitive impairments later in life. Patients with temporal lobe epilepsy and a history of atypical febrile seizures often carry a cortical malformation. This association has led to the hypothesis that the presence of a cortical dysplasia exacerbates febrile seizures in infancy, in turn increasing the risk for neurological sequelae. The mechanisms linking these events are currently poorly understood. Potassium-chloride cotransporter KCC2 affects several aspects of neuronal circuit development and function, by modulating GABAergic transmission and excitatory synapse formation. Recent data suggest that KCC2 downregulation contributes to seizure generation in the epileptic adult brain, but its role in the developing brain is still controversial. In a rodent model of atypical febrile seizures, combining a cortical dysplasia and hyperthermia-induced seizures (LHS rats), we found a premature and sustained increase in KCC2 protein levels, accompanied by a negative shift of the reversal potential of GABA. In parallel, we observed a significant reduction in dendritic spine size and mEPSC amplitude in CA1 pyramidal neurons, accompanied by spatial memory deficits. To investigate whether KCC2 premature overexpression plays a role in seizure susceptibility and synaptic alterations, we reduced KCC2 expression selectively in hippocampal pyramidal neurons by in utero electroporation of shRNA. Remarkably, KCC2 shRNA-electroporated LHS rats show reduced hyperthermia-induced seizure susceptibility, while dendritic spine size deficits were rescued. Our findings demonstrate that KCC2 overexpression in a compromised developing brain increases febrile seizure susceptibility and contribute to dendritic spine alterations. PMID:26875662

  14. Embryo Microinjection of Selenomethionine Reduces Hatchability and Modifies Oxidant Responsive Gene Expression in Zebrafish

    NASA Astrophysics Data System (ADS)

    Thomas, J. K.; Janz, D. M.

    2016-05-01

    In previous studies we demonstrated that exposure to selenomethionine (SeMet) causes developmental toxicities in zebrafish (Danio rerio). The objectives of this study were to establish a dose-response relationship for developmental toxicities in zebrafish after embryo microinjection of Se (8, 16 or 32 μg/g dry mass of eggs) in the form of SeMet, and to investigate potential underlying mechanism(s) of SeMet-induced developmental toxicities. A dose-dependent increase in frequencies of mortality and total deformities, and reduced hatchability were observed in zebrafish exposed to excess Se via embryo microinjection. The egg Se concentration causing 20% mortality was then used to investigate transcript abundance of proteins involved in antioxidant protection and methylation. Excess Se exposure modified gene expression of oxidant-responsive transcription factors (nuclear factor erythroid 2-related factor nrf2a and nrf2b), and enzymes involved in cellular methylation (methionine adenosyltransferase mat1a and mat2ab) in zebrafish larvae. Notably, excess Se exposure up-regulated transcript abundance of aryl hydrocarbon receptor 2 (ahr2), a signalling pathway involved in the toxicity of dioxin-related compounds. Our findings suggest that oxidative stress or modification of methylation, or a combination of these mechanisms, might be responsible for Se-induced developmental toxicities in fishes.

  15. Protein-poor diet reduces host-specific immune gene expression in Bombus terrestris.

    PubMed

    Brunner, Franziska S; Schmid-Hempel, Paul; Barribeau, Seth M

    2014-07-01

    Parasites infect hosts non-randomly as genotypes of hosts vary in susceptibility to the same genotypes of parasites, but this specificity may be modulated by environmental factors such as nutrition. Nutrition plays an important role for any physiological investment. As immune responses are costly, resource limitation should negatively affect immunity through trade-offs with other physiological requirements. Consequently, nutritional limitation should diminish immune capacity in general, but does it also dampen differences among hosts? We investigated the effect of short-term pollen deprivation on the immune responses of our model host Bombus terrestris when infected with the highly prevalent natural parasite Crithidia bombi. Bumblebees deprived of pollen, their protein source, show reduced immune responses to infection. They failed to upregulate a number of genes, including antimicrobial peptides, in response to infection. In particular, they also showed less specific immune expression patterns across individuals and colonies. These findings provide evidence for how immune responses on the individual-level vary with important elements of the environment and illustrate how nutrition can functionally alter not only general resistance, but also alter the pattern of specific host-parasite interactions. PMID:24850921

  16. Protein-poor diet reduces host-specific immune gene expression in Bombus terrestris.

    PubMed

    Brunner, Franziska S; Schmid-Hempel, Paul; Barribeau, Seth M

    2014-07-01

    Parasites infect hosts non-randomly as genotypes of hosts vary in susceptibility to the same genotypes of parasites, but this specificity may be modulated by environmental factors such as nutrition. Nutrition plays an important role for any physiological investment. As immune responses are costly, resource limitation should negatively affect immunity through trade-offs with other physiological requirements. Consequently, nutritional limitation should diminish immune capacity in general, but does it also dampen differences among hosts? We investigated the effect of short-term pollen deprivation on the immune responses of our model host Bombus terrestris when infected with the highly prevalent natural parasite Crithidia bombi. Bumblebees deprived of pollen, their protein source, show reduced immune responses to infection. They failed to upregulate a number of genes, including antimicrobial peptides, in response to infection. In particular, they also showed less specific immune expression patterns across individuals and colonies. These findings provide evidence for how immune responses on the individual-level vary with important elements of the environment and illustrate how nutrition can functionally alter not only general resistance, but also alter the pattern of specific host-parasite interactions.

  17. Increased Expression of Alpha-Synuclein Reduces Neurotransmitter Release by Inhibiting Synaptic Vesicle Reclustering After Endocytosis

    PubMed Central

    Nemani, Venu M.; Lu, Wei; Berge, Victoria; Nakamura, Ken; Onoa, Bibiana; Lee, Michael K.; Chaudhry, Farrukh A.; Nicoll, Roger A.; Edwards, Robert H.

    2011-01-01

    Summary The protein α-synuclein accumulates in the brain of patients with sporadic Parkinson’s disease (PD), and increased gene dosage causes a severe, dominantly inherited form of PD, but we know little about the effects of synuclein that precede degeneration. α-Synuclein localizes to the nerve terminal, but the knockout has little if any effect on synaptic transmission. In contrast, we now find that the modest over-expression of α-synuclein, in the range predicted for gene multiplication and in the absence of overt toxicity, markedly inhibits neurotransmitter release. The mechanism, elucidated by direct imaging of the synaptic vesicle cycle, involves a specific reduction in size of the synaptic vesicle recycling pool. Ultrastructural analysis demonstrates reduced synaptic vesicle density at the active zone, and imaging further reveals a defect in the reclustering of synaptic vesicles after endocytosis. Increased levels of α-synuclein thus produce a specific, physiological defect in synaptic vesicle recycling that precedes detectable neuropathology. PMID:20152114

  18. Object recognition memory and BDNF expression are reduced in young TgCRND8 mice

    PubMed Central

    Francis, Beverly M.; Kim, John; Barakat, Meredith E.; Fraenkl, Stephan; Yücel, Yeni H.; Peng, Shiyong; Michalski, Bernadeta; Fahnestock, Margaret; McLaurin, JoAnne; Mount, Howard T.J.

    2012-01-01

    The TgCRND8 mouse model of Alzheimer’s disease exhibits progressive cortical and hippocampal β-amyloid accumulation, resulting in plaque pathology and spatial memory impairment by 3 months of age. We tested whether TgCRND8 cognitive function is disrupted prior to the appearance of macroscopic plaques in an object recognition task. We found profound deficits in 8-week-old mice. Animals this age were not impaired on the Morris water maze task. TgCRND8 and littermate controls did not differ in their duration of object exploration or optokinetic responses. Thus, visual and motor dysfunction did not confound the phenotype. Object memory deficits point to the frontal cortex and hippocampus as early targets of functional disruption. Indeed, we observed altered levels of brain-derived neurotrophic factor (BDNF) messenger ribonucleic acid (mRNA) in these brain regions of preplaque TgCRND8 mice. Our findings suggest that object recognition provides an early index of cognitive impairment associated with amyloid exposure and reduced brain-derived neurotrophic factor expression in the TgCRND8 mouse. PMID:20447730

  19. Embryo Microinjection of Selenomethionine Reduces Hatchability and Modifies Oxidant Responsive Gene Expression in Zebrafish

    PubMed Central

    Thomas, J. K.; Janz, D. M.

    2016-01-01

    In previous studies we demonstrated that exposure to selenomethionine (SeMet) causes developmental toxicities in zebrafish (Danio rerio). The objectives of this study were to establish a dose-response relationship for developmental toxicities in zebrafish after embryo microinjection of Se (8, 16 or 32 μg/g dry mass of eggs) in the form of SeMet, and to investigate potential underlying mechanism(s) of SeMet-induced developmental toxicities. A dose-dependent increase in frequencies of mortality and total deformities, and reduced hatchability were observed in zebrafish exposed to excess Se via embryo microinjection. The egg Se concentration causing 20% mortality was then used to investigate transcript abundance of proteins involved in antioxidant protection and methylation. Excess Se exposure modified gene expression of oxidant-responsive transcription factors (nuclear factor erythroid 2-related factor nrf2a and nrf2b), and enzymes involved in cellular methylation (methionine adenosyltransferase mat1a and mat2ab) in zebrafish larvae. Notably, excess Se exposure up-regulated transcript abundance of aryl hydrocarbon receptor 2 (ahr2), a signalling pathway involved in the toxicity of dioxin-related compounds. Our findings suggest that oxidative stress or modification of methylation, or a combination of these mechanisms, might be responsible for Se-induced developmental toxicities in fishes. PMID:27210033

  20. Protein-poor diet reduces host-specific immune gene expression in Bombus terrestris

    PubMed Central

    Brunner, Franziska S.; Schmid-Hempel, Paul; Barribeau, Seth M.

    2014-01-01

    Parasites infect hosts non-randomly as genotypes of hosts vary in susceptibility to the same genotypes of parasites, but this specificity may be modulated by environmental factors such as nutrition. Nutrition plays an important role for any physiological investment. As immune responses are costly, resource limitation should negatively affect immunity through trade-offs with other physiological requirements. Consequently, nutritional limitation should diminish immune capacity in general, but does it also dampen differences among hosts? We investigated the effect of short-term pollen deprivation on the immune responses of our model host Bombus terrestris when infected with the highly prevalent natural parasite Crithidia bombi. Bumblebees deprived of pollen, their protein source, show reduced immune responses to infection. They failed to upregulate a number of genes, including antimicrobial peptides, in response to infection. In particular, they also showed less specific immune expression patterns across individuals and colonies. These findings provide evidence for how immune responses on the individual-level vary with important elements of the environment and illustrate how nutrition can functionally alter not only general resistance, but also alter the pattern of specific host–parasite interactions. PMID:24850921

  1. Cobalt alleviates GA-induced programmed cell death in wheat aleurone layers via the regulation of H2O2 production and heme oxygenase-1 expression.

    PubMed

    Wu, Mingzhu; Li, Jiale; Wang, Fangquan; Li, Feng; Yang, Jun; Shen, Wenbiao

    2014-11-14

    Heme oxygenase-1 (HO-1) and hydrogen peroxide (H2O2) are key signaling molecules that are produced in response to various environmental stimuli. Here, we demonstrate that cobalt is able to delay gibberellic acid (GA)-induced programmed cell death (PCD) in wheat aleurone layers. A similar response was observed when samples were pretreated with carbon monoxide (CO) or bilirubin (BR), two end-products of HO catalysis. We further observed that increased HO-1 expression played a role in the cobalt-induced alleviation of PCD. The application of HO-1-specific inhibitor, zinc protoporphyrin-IX (ZnPPIX), substantially prevented the increases of HO-1 activity and the alleviation of PCD triggered by cobalt. The stimulation of HO-1 expression, and alleviation of PCD might be caused by the initial H2O2 production induced by cobalt. qRT-PCR and enzymatic assays revealed that cobalt-induced gene expression and the corresponding activities of superoxide dismutase (SOD), catalase (CAT) and ascorbate peroxidase (APX), three enzymes that metabolize reactive oxygen species, were consistent with the H2O2 accumulation during GA treatment. These cobalt responses were differentially blocked by co-treatment with ZnPPIX. We therefore suggest that HO-1 functions in the cobalt-triggered alleviation of PCD in wheat aleurone layers, which is also dependent on the enhancement of the activities of antioxidant enzymes.

  2. Protective effects of protostemonine on LPS/GalN-induced acute liver failure: Roles of increased hepatic expression of heme oxygenase-1.

    PubMed

    Cheng, Zhuo; Yue, Ling; Zhao, Wenhao; Yang, Xinzhou; Shu, Guangwen

    2015-12-01

    Here, we explored protective effects of protostemonine (PSN), on mouse acute liver failure induced by lipopolysaccharide/d-galactosamine (LPS/GalN). PSN dose-dependently declined LPS/GalN-induced lethality of mice as well as increase of ALT/AST activities in their serum. Hepatoprotective effects of PSN were also supported by liver histopathological examinations. After LPS/GalN treatment, severe oxidative stresses in the liver could be detected by boosted MDA and ROS as well as decreased GSH. Moreover, hepatic expression of pro-inflammatory cytokines, including TNF-α, IL-1β and IL-6, were sharply elevated. These symptoms were dose-dependently ameliorated by PSN. Mechanistically, PSN promoted the transcription and translation of heme oxygenase-1 (HO-1) in hepatocytes and liver Kupffer cells. Nrf2 is a master transcription factor contributing to the expression of HO-1. PSN elevated Nrf2 nuclear accumulation and enhanced Nrf2/HO-1 promoter interaction. Suppressing enzyme activity of HO-1 by co-treating mice with HO-1 inhibitor ZnPP abolished protective effects of PSN. ZnPP also abrogated alleviative impacts of PSN on LPS/GalN-mediated hepatic oxidative stresses and inflammatory responses. Finally, we showed that PSN exhibited undetectable toxic effects on vital organs of mice. Our findings suggested that PSN is able to attenuate LPS/GalN-induced acute liver failure and upregulating HO-1 expression is implicated in its hepatoprotective activity.

  3. Cobalt Alleviates GA-Induced Programmed Cell Death in Wheat Aleurone Layers via the Regulation of H2O2 Production and Heme Oxygenase-1 Expression

    PubMed Central

    Wu, Mingzhu; Li, Jiale; Wang, Fangquan; Li, Feng; Yang, Jun; Shen, Wenbiao

    2014-01-01

    Heme oxygenase-1 (HO-1) and hydrogen peroxide (H2O2) are key signaling molecules that are produced in response to various environmental stimuli. Here, we demonstrate that cobalt is able to delay gibberellic acid (GA)-induced programmed cell death (PCD) in wheat aleurone layers. A similar response was observed when samples were pretreated with carbon monoxide (CO) or bilirubin (BR), two end-products of HO catalysis. We further observed that increased HO-1 expression played a role in the cobalt-induced alleviation of PCD. The application of HO-1-specific inhibitor, zinc protoporphyrin-IX (ZnPPIX), substantially prevented the increases of HO-1 activity and the alleviation of PCD triggered by cobalt. The stimulation of HO-1 expression, and alleviation of PCD might be caused by the initial H2O2 production induced by cobalt. qRT-PCR and enzymatic assays revealed that cobalt-induced gene expression and the corresponding activities of superoxide dismutase (SOD), catalase (CAT) and ascorbate peroxidase (APX), three enzymes that metabolize reactive oxygen species, were consistent with the H2O2 accumulation during GA treatment. These cobalt responses were differentially blocked by co-treatment with ZnPPIX. We therefore suggest that HO-1 functions in the cobalt-triggered alleviation of PCD in wheat aleurone layers, which is also dependent on the enhancement of the activities of antioxidant enzymes. PMID:25405743

  4. Rosiglitazone ameliorates diffuse axonal injury by reducing loss of tau and up-regulating caveolin-1 expression

    PubMed Central

    Zhao, Yong-lin; Song, Jin-ning; Ma, Xu-dong; Zhang, Bin-fei; Li, Dan-dong; Pang, Hong-gang

    2016-01-01

    Rosiglitazone up-regulates caveolin-1 levels and has neuroprotective effects in both chronic and acute brain injury. Therefore, we postulated that rosiglitazone may ameliorate diffuse axonal injury via its ability to up-regulate caveolin-1, inhibit expression of amyloid-beta precursor protein, and reduce the loss and abnormal phosphorylation of tau. In the present study, intraperitoneal injection of rosiglitazone significantly reduced the levels of amyloid-beta precursor protein and hyperphosphorylated tau (phosphorylated at Ser404(p-tau (S404)), and it increased the expression of total tau and caveolin-1 in the rat cortex. Our results show that rosiglitazone inhibits the expression of amyloid-beta precursor protein and lowers p-tau (S404) levels, and it reduces the loss of total tau, possibly by up-regulating caveolin-1. These actions of rosiglitazone may underlie its neuroprotective effects in the treatment of diffuse axonal injury. PMID:27482223

  5. Systemic neutralization of IL-17A significantly reduces breast cancer associated metastasis in arthritic mice by reducing CXCL12/SDF-1 expression in the metastatic niches

    PubMed Central

    2014-01-01

    Background IL-17A is a pro-inflammatory cytokine that is normally associated with autoimmune arthritis and other pro-inflammatory conditions. Recently, IL-17A has emerged as a critical factor in enhancing breast cancer (BC)-associated metastases. We generated immune competent arthritic mouse models that develop spontaneous BC-associated bone and lung metastasis. Using these models, we have previously shown that neutralization of IL-17A resulted in significant reduction in metastasis. However, the underlying mechanism/s remains unknown. Methods We have utilized two previously published mouse models for this study: 1) the pro-arthritic mouse model (designated SKG) injected with metastatic BC cell line (4T1) in the mammary fat pad, and 2) the PyV MT mice that develop spontaneous mammary gland tumors injected with type II collagen to induce autoimmune arthritis. Mice were treated with anti-IL-17A neutralizing antibody and monitored for metastasis and assessed for pro-inflammatory cytokines and chemokines associated with BC-associated metastasis. Results We first corroborate our previous finding that in vivo neutralization of IL-17A significantly reduced metastasis to the bones and lungs in both models. Next, we report that treatment with anti-IL17A antibody significantly reduced the expression of a key chemokine, CXCL12 (also known as stromal derived factor-1 (SDF - 1)) in the bones and lungs of treated mice. CXCL12 is a ligand for CXCR4 (expressed on BC cells) and their interaction is known to be critical for metastasis. Interestingly, levels of CXCR4 in the tumor remained unchanged with treatment. Consequently, protein lysates derived from the bones and lungs of treated mice were significantly less chemotactic for the BC cells than lysates from untreated mice; and addition of exogenous SDF-1 to the lysates from treated mice completely restored BC cell migration. In addition, cytokines such as IL-6 and M-CSF were significantly reduced in the lung and bone lysates

  6. Reduced plasma membrane surface expression of GLAST mediates decreased glutamate regulation in the aged striatum.

    PubMed

    Nickell, Justin; Salvatore, Michael F; Pomerleau, Francois; Apparsundaram, Subbu; Gerhardt, Greg A

    2007-11-01

    Extracellular L-glutamate poses a severe excitotoxic threat to neurons and glia when unregulated, therefore low synaptic levels of this neurotransmitter must be maintained via a rapid and robust transport system. A recent study from our laboratory showed a reduced glutamate uptake rate in the striatum of the aged Fischer 344 (F344) rat, yet the mechanism underlying this phenomenon is unknown. The current study utilized in vivo electrochemical recordings, immunoblotting and biotinylation in young (6 months), late-middle aged (18 months) and aged (24 months) F344 rats to elucidate the potential role that glutamate transporters (GLT-1, GLAST, and EAAC1) may play in this mechanism. Here we show that the time necessary to clear glutamate from the late-middle aged and aged striatum is significantly prolonged in comparison to the young striatum. In addition, an analysis of various sub-regions of the striatum revealed a marked dorsoventral gradient in terms of glutamate clearance times in the aged striatum, a phenomenon which was not present in the striatum of the animals of the remaining age groups. We also found that the decreased glutamate clearance time observed in the late-middle aged and aged rats is not due to a decrease in the production of total transporter protein among these three transporters. Rather, a significant reduction in the amount of GLAST expressed on the plasma membrane surface in the aged animals (approximately 55% when compared to young rats) may contribute to this phenomenon. These age-related alterations in extracellular l-glutamate regulation may be key contributors to the increased susceptibility of the aged brain to excitotoxic insults such as stroke and hypoxia.

  7. Inflammation-Induced Downregulation of Butyrate Uptake and Oxidation Is Not Caused by a Reduced Gene Expression.

    PubMed

    Boesmans, Leen; Ramakers, Meine; Arijs, Ingrid; Windey, Karen; Vanhove, Wiebe; Schuit, Frans; Rutgeerts, Paul; Verbeke, Kristin; De Preter, Vicky

    2015-02-01

    In ulcerative colitis (UC) the butyrate metabolism is impaired, leading to energy-deficiency in the colonic cells. The effect of inflammation on the butyrate metabolism was investigated. HT-29 cells were incubated with pro-inflammatory cytokines (TNF-α and/or IFN-γ) for 1 and 24 h. Cells were additionally stimulated with butyrate to investigate its anti-inflammatory potential. Butyrate uptake and oxidation were measured using (14)C-labeled butyrate. Gene expression of the butyrate metabolism enzymes, interleukin 8 (IL-8; inflammatory marker) and villin-1 (VIL-1; epithelial cell damage marker) was measured via quantitative RT-PCR. Significantly increased IL-8 expression and decreased VIL-1 expression after 24 h incubation with TNF-α and/or IFN-γ confirmed the presence of inflammation. These conditions induced a decrease of both butyrate uptake and oxidation, whereas the gene expression was not reduced. Simultaneous incubation with butyrate counteracted the reduced butyrate oxidation. In contrast, 1 h incubation with TNF-α induced a significant increased IL-8 expression and decreased butyrate uptake. Incubation with TNF-α and/or IFN-γ for 1 h did not induce cell damage nor influence butyrate oxidation. The inflammation-induced downregulation of the butyrate metabolism was not caused by a reduced gene expression, but appeared consequential to a decreased butyrate uptake. Increasing the luminal butyrate levels might have therapeutic potential in UC.

  8. PTEN expression in PTEN-null leukaemic T cell lines leads to reduced proliferation via slowed cell cycle progression.

    PubMed

    Seminario, Maria-Cristina; Precht, Patricia; Wersto, Robert P; Gorospe, Myriam; Wange, Ronald L

    2003-11-01

    The balance of activities between the proto-oncogene phosphoinositide 3-kinase (PI3K) and the tumour suppressor gene PTEN has been shown to affect cellular growth and proliferation, as well as tumorigenesis. Previously, PTEN expression in the PTEN-null Jurkat T cell leukaemia line was shown to cause reduced proliferation without cell cycle arrest. Here, we further these investigations by determining the basis for this phenomenon. By BrdU pulse-chase and cell cycle arrest and release assays, we find that PTEN expression reduced proliferation by slowing progression through all phases of the cell cycle. This was associated with reduced levels of cyclins A, B1 and B2, cdk4, and cdc25A and increased p27KIP1 expression. Apoptosis played no role in the antiproliferative effect of PTEN, since only marginal increases in the rate of apoptosis were detected upon PTEN expression, and inhibitors of effector caspases did not restore proliferative capacity. Active Akt blocked the antiproliferative effects of PTEN, indicating that PTEN mediates its effects through conventional PI3K-linked signalling pathways. Similar results were obtained from a different PTEN-null leukaemia T cell line, CEM. Together, these results show that PTEN expression in leukaemic T cells leads to reduced proliferation via an apoptosis-independent mechanism involving slower passage through the cell cycle.

  9. Coordinated expression and mechanism of induction of HSP32 (heme oxygenase-1) mRNA by hyperthermia in rat organs.

    PubMed

    Raju, V S; Maines, M D

    1994-04-01

    Heme oxygenase isozymes, HO-1 and HO-2, catalyze the cleavage of heme b (Fe-protoporphyrin-IX) at the alpha-meso carbon bridge to form the antioxidant, biliverdin IX alpha, and the putative cellular messenger, carbon monoxide. HO-1 is a heat shock (HSP32) or stress protein, while HO-2 is a noninducible enzyme. Presently, we have examined the time course of expression of HSP32 in liver, kidney, and heart of rats exposed to hyperthermia and investigated the mechanism of induction of HO-1 by hyperthermia. We report a coordinated induction response of all organs to elevated ambient temperature (42 degrees C, 20 min). Specifically, the maximum induction of the 1.8 kb HO-1 mRNA was observed 1 h after hyperthermia and reached a value 20-40-fold that of the control; the transcript level approximated the control value by 6 h after heat stress. In contrast, the levels and the ratio of the 1.3 and 1.9 kb HO-2 transcripts were not affected by hyperthermia. As judged by in vitro nuclear transcription run-on assays, thermal stress caused the stimulation of HO-1 gene transcription. The increase in HO-1 mRNA transcription was accompanied by an increase in binding of nuclear factor(s) to the heat shock element in the promoter region of the gene. The increase of the HO-1 mRNA was reflected in increases in both heme oxygenase activity and in immunoreactive HO-1 protein. We suggest that the induction of heme oxygenase by heat stress is a physiologically relevant defense mechanism whereby both the degradation of heme of denatured hemoproteins and the generation of biologically active products of heme catabolism are enhanced.

  10. PALMITATE INHIBITS INSULIN GENE EXPRESSION BY ALTERING PDX-1 NUCLEAR LOCALIZATION AND REDUCING MAFA EXPRESSION IN ISOLATED RAT ISLETS OF LANGERHANS*

    PubMed Central

    Hagman, Derek K.; Hays, Lori B.; Parazzoli, Susan D.; Poitout, Vincent

    2005-01-01

    Abnormalities in lipid metabolism have been proposed as contributing factors to both defective insulin secretion from the pancreatic beta cell and peripheral insulin resistance in type 2 diabetes. Previously, we have shown that prolonged exposure of isolated rat islets of Langerhans to excessive fatty acid levels impairs insulin gene transcription. This study was designed to assess whether palmitate alters the expression and binding activity of the key regulatory factors pancreas-duodenum homeobox-1 (PDX-1), MafA, and Beta2, which respectively bind to the A3, C1, and E1 elements in the proximal region of the insulin promoter. Nuclear extracts of isolated rat islets cultured with 0.5 mM palmitate exhibited reduced binding activity to the A3 and C1 elements, but not the E1 element. Palmitate did not affect the overall expression of PDX-1, but reduced its nuclear localization. In contrast, palmitate blocked the stimulation of MafA mRNA and protein expression by glucose. Combined, adenovirus-mediated, over-expression of PDX-1 and MafA in islets completely prevented the inhibition of insulin gene expression by palmitate. These results demonstrate that prolonged exposure of islets to palmitate inhibits insulin gene transcription by impairing nuclear localization of PDX-1 and cellular expression of MafA. PMID:15944145

  11. Teneligliptin Decreases Uric Acid Levels by Reducing Xanthine Dehydrogenase Expression in White Adipose Tissue of Male Wistar Rats

    PubMed Central

    2016-01-01

    We investigated the effects of teneligliptin on uric acid metabolism in male Wistar rats and 3T3-L1 adipocytes. The rats were fed with a normal chow diet (NCD) or a 60% high-fat diet (HFD) with or without teneligliptin for 4 weeks. The plasma uric acid level was not significantly different between the control and teneligliptin groups under the NCD condition. However, the plasma uric acid level was significantly decreased in the HFD-fed teneligliptin treated rats compared to the HFD-fed control rats. The expression levels of xanthine dehydrogenase (Xdh) mRNA in liver and epididymal adipose tissue of NCD-fed rats were not altered by teneligliptin treatment. On the other hand, Xdh expression was reduced significantly in the epididymal adipose tissue of the HFD-fed teneligliptin treated rats compared with that of HFD-fed control rats, whereas Xdh expression in liver did not change significantly in either group. Furthermore, teneligliptin significantly decreased Xdh expression in 3T3-L1 adipocytes. DPP-4 treatment significantly increased Xdh expression in 3T3-L1 adipocytes. With DPP-4 pretreatment, teneligliptin significantly decreased Xdh mRNA expression compared to the DPP-4-treated 3T3-L1 adipocytes. In conclusion, our studies suggest that teneligliptin reduces uric acid levels by suppressing Xdh expression in epididymal adipose tissue of obese subjects.

  12. Teneligliptin Decreases Uric Acid Levels by Reducing Xanthine Dehydrogenase Expression in White Adipose Tissue of Male Wistar Rats

    PubMed Central

    2016-01-01

    We investigated the effects of teneligliptin on uric acid metabolism in male Wistar rats and 3T3-L1 adipocytes. The rats were fed with a normal chow diet (NCD) or a 60% high-fat diet (HFD) with or without teneligliptin for 4 weeks. The plasma uric acid level was not significantly different between the control and teneligliptin groups under the NCD condition. However, the plasma uric acid level was significantly decreased in the HFD-fed teneligliptin treated rats compared to the HFD-fed control rats. The expression levels of xanthine dehydrogenase (Xdh) mRNA in liver and epididymal adipose tissue of NCD-fed rats were not altered by teneligliptin treatment. On the other hand, Xdh expression was reduced significantly in the epididymal adipose tissue of the HFD-fed teneligliptin treated rats compared with that of HFD-fed control rats, whereas Xdh expression in liver did not change significantly in either group. Furthermore, teneligliptin significantly decreased Xdh expression in 3T3-L1 adipocytes. DPP-4 treatment significantly increased Xdh expression in 3T3-L1 adipocytes. With DPP-4 pretreatment, teneligliptin significantly decreased Xdh mRNA expression compared to the DPP-4-treated 3T3-L1 adipocytes. In conclusion, our studies suggest that teneligliptin reduces uric acid levels by suppressing Xdh expression in epididymal adipose tissue of obese subjects. PMID:27652270

  13. Teneligliptin Decreases Uric Acid Levels by Reducing Xanthine Dehydrogenase Expression in White Adipose Tissue of Male Wistar Rats.

    PubMed

    Moriya, Chihiro; Satoh, Hiroaki

    2016-01-01

    We investigated the effects of teneligliptin on uric acid metabolism in male Wistar rats and 3T3-L1 adipocytes. The rats were fed with a normal chow diet (NCD) or a 60% high-fat diet (HFD) with or without teneligliptin for 4 weeks. The plasma uric acid level was not significantly different between the control and teneligliptin groups under the NCD condition. However, the plasma uric acid level was significantly decreased in the HFD-fed teneligliptin treated rats compared to the HFD-fed control rats. The expression levels of xanthine dehydrogenase (Xdh) mRNA in liver and epididymal adipose tissue of NCD-fed rats were not altered by teneligliptin treatment. On the other hand, Xdh expression was reduced significantly in the epididymal adipose tissue of the HFD-fed teneligliptin treated rats compared with that of HFD-fed control rats, whereas Xdh expression in liver did not change significantly in either group. Furthermore, teneligliptin significantly decreased Xdh expression in 3T3-L1 adipocytes. DPP-4 treatment significantly increased Xdh expression in 3T3-L1 adipocytes. With DPP-4 pretreatment, teneligliptin significantly decreased Xdh mRNA expression compared to the DPP-4-treated 3T3-L1 adipocytes. In conclusion, our studies suggest that teneligliptin reduces uric acid levels by suppressing Xdh expression in epididymal adipose tissue of obese subjects. PMID:27652270

  14. Crocin Suppresses LPS-Stimulated Expression of Inducible Nitric Oxide Synthase by Upregulation of Heme Oxygenase-1 via Calcium/Calmodulin-Dependent Protein Kinase 4

    PubMed Central

    Kim, Ji-Hee; Park, Ga-Young; Bang, Soo Young; Park, Sun Young; Bae, Soo-Kyung; Kim, YoungHee

    2014-01-01

    Crocin is a water-soluble carotenoid pigment that is primarily used in various cuisines as a seasoning and coloring agent, as well as in traditional medicines for the treatment of edema, fever, and hepatic disorder. In this study, we demonstrated that crocin markedly induces the expression of heme oxygenase-1 (HO-1) which leads to an anti-inflammatory response. Crocin inhibited inducible nitric oxide synthase (iNOS) expression and nitric oxide production via downregulation of nuclear factor kappa B activity in lipopolysaccharide- (LPS-) stimulated RAW 264.7 macrophages. These effects were abrogated by blocking of HO-1 expression or activity. Crocin also induced Ca2+ mobilization from intracellular pools and phosphorylation of Ca2+/calmodulin-dependent protein kinase 4 (CAMK4). CAMK4 knockdown and kinase-dead mutant inhibited crocin-mediated HO-1 expression, Nrf2 activation, and phosphorylation of Akt, indicating that HO-1 expression is mediated by CAMK4 and that Akt is a downstream mediator of CAMK4 in crocin signaling. Moreover, crocin-mediated suppression of iNOS expression was blocked by CAMK4 inhibition. Overall, these results suggest that crocin suppresses LPS-stimulated expression of iNOS by inducing HO-1 expression via Ca2+/calmodulin-CAMK4-PI3K/Akt-Nrf2 signaling cascades. Our findings provide a novel molecular mechanism for the inhibitory effects of crocin against endotoxin-mediated inflammation. PMID:24839356

  15. Reduced MeCP2 expression is frequent in autism frontal cortex and correlates with aberrant MECP2 promoter methylation

    PubMed Central

    Nagarajan, Raman P.; Hogart, Amber R.; Gwye, Ynnez; Martin, Michelle R.; LaSalle, Janine M.

    2007-01-01

    Mutations in MECP2, encoding methyl CpG binding protein 2 (MeCP2), cause most cases of Rett syndrome (RTT), an X-linked neurodevelopmental disorder. Both RTT and autism are “pervasive developmental disorders” and share a loss of social, cognitive and language skills and a gain in repetitive stereotyped behavior, following apparently normal perinatal development. Although MECP2 coding mutations are a rare cause of autism, MeCP2 expression defects were previously found in autism brain. To further study the role of MeCP2 in autism spectrum disorders (ASDs), we determined the frequency of MeCP2 expression defects in brain samples from autism and other ASDs. We also tested the hypotheses that MECP2 promoter mutations or aberrant promoter methylation correlate with reduced expression in cases of idiopathic autism. MeCP2 immunofluorescence in autism and other neurodevelopmental disorders was quantified by laser scanning cytometry and compared with control postmortem cerebral cortex samples on a large tissue microarray. A significant reduction in MeCP2 expression compared to age-matched controls was found in 11/14 autism (79%), 9/9 RTT (100%), 4/4 Angelman syndrome (100%), 3/4 Prader-Willi syndrome (75%), 3/5 Down syndrome (60%), and 2/2 attention deficit hyperactivity disorder (100%) frontal cortex samples. One autism female was heterozygous for a rare MECP2 promoter variant that correlated with reduced MeCP2 expression. A more frequent occurrence was significantly increased MECP2 promoter methylation in autism male frontal cortex compared to controls. Furthermore, percent promoter methylation of MECP2 significantly correlated with reduced MeCP2 protein expression. These results suggest that both genetic and epigenetic defects lead to reduced MeCP2 expression and may be important in the complex etiology of autism. PMID:17486179

  16. DL-propargylglycine reduces blood pressure and renal injury but increases kidney weight in angiotensin-II infused rats.

    PubMed

    Oosterhuis, Nynke R; Frenay, Anne-Roos S; Wesseling, Sebastiaan; Snijder, Pauline M; Slaats, Gisela G; Yazdani, Saleh; Fernandez, Bernadette O; Feelisch, Martin; Giles, Rachel H; Verhaar, Marianne C; Joles, Jaap A; van Goor, Harry

    2015-09-15

    Hydrogen sulfide (H2S), carbon monoxide (CO) and nitric oxide (NO) share signaling and vasorelaxant properties and are involved in proliferation and apoptosis. Inhibiting NO production or availability induces hypertension and proteinuria, which is prevented by concomitant blockade of the H2S producing enzyme cystathionine γ-lyase (CSE) by d,l-propargylglycine (PAG). We hypothesized that blocking H2S production ameliorates Angiotensin II (AngII)-induced hypertension and renal injury in a rodent model. Effects of concomitant administration of PAG or saline were therefore studied in healthy (CON) and AngII hypertensive rats. In CON rats, PAG did not affect systolic blood pressure (SBP), but slightly increased proteinuria. In AngII rats PAG reduced SBP, proteinuria and plasma creatinine (180 ± 12 vs. 211 ± 19 mmHg; 66 ± 35 vs. 346 ± 92 mg/24 h; 24 ± 6 vs. 47 ± 15 μmol/L, respectively; p < 0.01). Unexpectedly, kidney to body weight ratio was increased in all groups by PAG (p < 0.05). Renal injury induced by AngII was reduced by PAG (p < 0.001). HO-1 gene expression was increased by PAG alone (p < 0.05). PAG increased inner cortical tubular cell proliferation after 1 week and decreased outer cortical tubular nucleus number/field after 4 weeks. In vitro proximal tubular cell size increased after exposure to PAG. In summary, blocking H2S production with PAG reduced SBP and renal injury in AngII infused rats. Independent of the cardiovascular and renal effects, PAG increased HO-1 gene expression and kidney weight. PAG alone increased tubular cell size and proliferation in-vivo and in-vitro. Our results are indicative of a complex interplay of gasotransmitter signaling/action of mutually compensatory nature in the kidney.

  17. The Hedgehog Inhibitor Cyclopamine Reduces β-Catenin-Tcf Transcriptional Activity, Induces E-Cadherin Expression, and Reduces Invasion in Colorectal Cancer Cells

    PubMed Central

    Qualtrough, David; Rees, Phil; Speight, Beverley; Williams, Ann C.; Paraskeva, Christos

    2015-01-01

    Colorectal cancer is a major global health problem resulting in over 600,000 deaths world-wide every year with the majority of these due to metastatic disease. Wnt signalling, and more specifically β-catenin-related transcription, has been shown to drive both tumorigenesis and the metastatic process in colorectal neoplasia, yet its complex interactions with other key signalling pathways, such as hedgehog, remain to be elucidated. We have previously shown that the Hedgehog (HH) signalling pathway is active in cells from colorectal tumours, and that inhibition of the pathway with cyclopamine induces apoptosis. We now show that cyclopamine treatment reduces β-catenin related transcription in colorectal cancer cell lines, and that this effect can be reversed by addition of Sonic Hedgehog protein. We also show that cyclopamine concomitantly induces expression of the tumour suppressor and prognostic indicator E-cadherin. Consistent with a role for HH in regulating the invasive potential we show that cyclopamine reduces the expression of transcription factors (Slug, Snail and Twist) associated with the epithelial-mesenchymal transition and reduces the invasiveness of colorectal cancer cells in vitro. Taken together, these data show that pharmacological inhibition of the hedgehog pathway has therapeutic potential in the treatment of colorectal cancer. PMID:26393651

  18. Expression of viral EPS-depolymerase reduces fire blight susceptibility in transgenic pear.

    PubMed

    Malnoy, Mickaël; Faize, Mohamed; Venisse, Jean-Stéphane; Geider, Klaus; Chevreau, Elisabeth

    2005-02-01

    Erwinia amylovora is the causal agent of fire blight of Maloideae. One of the main pathogenicity factors of this bacterium is the exopolysaccharide (EPS) of its capsule. In this paper, we used genetic transformation tools to constitutively express an EPS-depolymerase transgene in the pear (Pyrus communis L.) cv. Passe Crassane with the aim of decreasing its high susceptibility to fire blight. Expression of the depolymerase gene in 15 independent transgenic clones led, on average, to low depolymerase activity, although relatively high expression was observed at the transcriptional and translational levels. Only two of the transgenic clones (9X and 10M) consistently showed a decrease in fire blight susceptibility in vitro and in the greenhouse. These clones were also among the highest expressers of depolymerase at the RNA and enzyme activity levels. The correlation observed among all transgenic clones between depolymerase expression and fire blight resistance suggested the potential of this strategy.

  19. High expression of Lifeact in Arabidopsis thaliana reduces dynamic reorganization of actin filaments but does not affect plant development.

    PubMed

    van der Honing, Hannie S; van Bezouwen, Laura S; Emons, Anne Mie C; Ketelaar, Tijs

    2011-10-01

    Lifeact is a novel probe that labels actin filaments in a wide range of organisms. We compared the localization and reorganization of Lifeact:Venus-labeled actin filaments in Arabidopsis root hairs and root epidermal cells of lines that express different levels of Lifeact: Venus with that of actin filaments labeled with GFP:FABD2, a commonly used probe in plants. Unlike GFP:FABD2, Lifeact:Venus labeled the highly dynamic fine F-actin in the subapical region of tip-growing root hairs. Lifeact:Venus expression at varying levels was not observed to affect plant development. However, at expression levels comparable to those of GFP:FABD2 in a well-characterized marker line, Lifeact:Venus reduced reorganization rates of bundles of actin filaments in root epidermal cells. Reorganization rates of cytoplasmic strands, which reflect the reorganization of the actin cytoskeleton, were also reduced in these lines. Moreover, in the same line, Lifeact:Venus-decorated actin filaments were more resistant to depolymerization by latrunculin B than those in an equivalent GFP:FABD2-expressing line. In lines where Lifeact: Venus is expressed at lower levels, these effects are less prominent or even absent. We conclude that Lifeact: Venus reduces remodeling of the actin cytoskeleton in Arabidopsis in a concentration-dependent manner. Since this reduction occurs at expression levels that do not cause defects in plant development, selection of normally growing plants is not sufficient to determine optimal Lifeact expression levels. When correct expression levels of Lifeact have been determined, it is a valuable probe that labels dynamic populations of actin filaments such as fine F-actin, better than FABD2 does.

  20. Novel SPAST deletion and reduced DPY30 expression in a Spastic Paraplegia type 4 kindred

    PubMed Central

    2014-01-01

    Background The hereditary spastic paraplegias (HSPs) are pleiomorphic disorders of motor pathway and a large number of affected genes have been discovered. Yet, mutations in SPG4/SPAST represent the most frequent molecular etiology in autosomal dominant (AD) patients and sporadic cases. We describe a large, AD-HSP Sardinian family where 5 out of several living members harbored a novel deletion affecting also the 5′UTR of SPAST and resulting in reduced expression of DPY30, the gene located upstream SPAST in a head-to-head manner. Case presentation A 54-year-old woman manifested leg stiffness at age 39 and required a cane to walk at age 50. Neurological examination disclosed mild spasticity and weakness in the legs, hyperreflexia in all limbs, and bilateral Babinski sign. She also complained of urinary urgency, but no additional neurological symptoms or signs were detected at examination. The clinical examination of 24 additional relatives disclosed three further affected individuals, two men and one woman. In the four symptomatic patients the initial manifestations were walking abnormalities and leg stiffness with a mean age at onset (SD) of 46.75 (5.44) years (range 39–51). The mean disease duration was 13.2 (13.4) years (range 6–35), and it correlated well with clinical severity (SPRS score) (r = 0.975, p = 0.005). One patient was confined to bed and displayed knee and ankle contractures, another case needed a cane to walk, and two individuals were able to walk without aids. Interestingly, a patient had also had a miscarriage during her first pregnancy. Gene testing revealed an heterozygous deletion spanning from the 5′-UTR to intron 4 of SPAST in the affected individuals and in one clinically unaffected woman. In three affected patients, the deletion also determined low mRNA levels of SPAST and DPY30, a component of the Set1-like multiprotein histone methyltransferase complex located upstream, head-to-head with SPAST. Conclusion Together with data

  1. Overwintering Is Associated with Reduced Expression of Immune Genes and Higher Susceptibility to Virus Infection in Honey Bees.

    PubMed

    Steinmann, Nadja; Corona, Miguel; Neumann, Peter; Dainat, Benjamin

    2015-01-01

    The eusocial honey bee, Apis mellifera, has evolved remarkable abilities to survive extreme seasonal differences in temperature and availability of resources by dividing the worker caste into two groups that differ in physiology and lifespan: summer and winter bees. Most of the recent major losses of managed honey bee colonies occur during the winter, suggesting that winter bees may have compromised immune function and higher susceptibility to diseases. We tested this hypothesis by comparing the expression of eight immune genes and naturally occurring infection levels of deformed wing virus (DWV), one of the most widespread viruses in A. mellifera populations, between summer and winter bees. Possible interactions between immune response and physiological activity were tested by measuring the expression of vitellogenin and methyl farnesoate epoxidase, a gene coding for the last enzyme involved in juvenile hormone biosynthesis. Our data show that high DWV loads in winter bees correlate with reduced expression of genes involved in the cellular immune response and physiological activity and high expression of humoral immune genes involved in antibacterial defense compared with summer bees. This expression pattern could reflect evolutionary adaptations to resist bacterial pathogens and economize energy during the winter under a pathogen landscape with reduced risk of pathogenic viral infections. The outbreak of Varroa destructor infestation could have overcome these adaptations by promoting the transmission of viruses. Our results suggest that reduced cellular immune function during the winter may have increased honey bee's susceptibility to DWV. These results contribute to our understanding of honey bee colony losses in temperate regions.

  2. Reversing the reduced level of endometrial GLUT4 expression in polycystic ovary syndrome: a mechanistic study of metformin action

    PubMed Central

    Li, Xin; Cui, Peng; Jiang, Hong-Yuan; Guo, Yan-Rong; Pishdari, Bano; Hu, Min; Feng, Yi; Billig, Håkan; Shao, Ruijin

    2015-01-01

    Conflicting results have been reported regarding whether or not insulin-regulated glucose transporter 4 (GLUT4) is expressed in human and rodent endometria. There is an inverse relationship between androgen levels and insulin-dependent glucose metabolism in women. Hyperandrogenemia, hyperinsulinemia, and insulin resistance are believed to contribute to endometrial abnormalities in women with polycystic ovary syndrome (PCOS). However, it has been unclear in previous studies if endometrial GLUT4 expression is regulated by androgen-dependent androgen receptors (ARs) and/or the insulin receptor/Akt/mTOR signaling network. In this study, we demonstrate that GLUT4 is expressed in normal endometrial cells (mainly in the epithelial cells) and is down-regulated under conditions of hyperandrogenemia in tissues from PCOS patients and in a 5α-dihydrotestosterone-induced PCOS-like rat model. Western blot analysis revealed reduced endometrial GLUT4 expression and increased AR expression in PCOS patients. However, the reduced GLUT4 level was not always associated with an increase in AR in PCOS patients when comparing non-hyperplasia with hyperplasia. Using a human tissue culture system, we investigated the molecular basis by which GLUT4 regulation in endometrial hyperplasia tissues is affected by metformin in PCOS patients. We show that specific endogenous organic cation transporter isoforms are regulated by metformin, and this suggests a direct effect of metformin on endometrial hyperplasia. Moreover, we demonstrate that metformin induces GLUT4 expression and inhibits AR expression and blocks insulin receptor/PI3K/Akt/mTOR signaling in the same hyperplasia human tissues. These findings indicate that changes in endometrial GLUT4 expression in PCOS patients involve the androgen-dependent alteration of AR expression and changes in the insulin receptor/PI3K/Akt/mTOR signaling network. PMID:26045896

  3. Reversing the reduced level of endometrial GLUT4 expression in polycystic ovary syndrome: a mechanistic study of metformin action.

    PubMed

    Li, Xin; Cui, Peng; Jiang, Hong-Yuan; Guo, Yan-Rong; Pishdari, Bano; Hu, Min; Feng, Yi; Billig, Håkan; Shao, Ruijin

    2015-01-01

    Conflicting results have been reported regarding whether or not insulin-regulated glucose transporter 4 (GLUT4) is expressed in human and rodent endometria. There is an inverse relationship between androgen levels and insulin-dependent glucose metabolism in women. Hyperandrogenemia, hyperinsulinemia, and insulin resistance are believed to contribute to endometrial abnormalities in women with polycystic ovary syndrome (PCOS). However, it has been unclear in previous studies if endometrial GLUT4 expression is regulated by androgen-dependent androgen receptors (ARs) and/or the insulin receptor/Akt/mTOR signaling network. In this study, we demonstrate that GLUT4 is expressed in normal endometrial cells (mainly in the epithelial cells) and is down-regulated under conditions of hyperandrogenemia in tissues from PCOS patients and in a 5α-dihydrotestosterone-induced PCOS-like rat model. Western blot analysis revealed reduced endometrial GLUT4 expression and increased AR expression in PCOS patients. However, the reduced GLUT4 level was not always associated with an increase in AR in PCOS patients when comparing non-hyperplasia with hyperplasia. Using a human tissue culture system, we investigated the molecular basis by which GLUT4 regulation in endometrial hyperplasia tissues is affected by metformin in PCOS patients. We show that specific endogenous organic cation transporter isoforms are regulated by metformin, and this suggests a direct effect of metformin on endometrial hyperplasia. Moreover, we demonstrate that metformin induces GLUT4 expression and inhibits AR expression and blocks insulin receptor/PI3K/Akt/mTOR signaling in the same hyperplasia human tissues. These findings indicate that changes in endometrial GLUT4 expression in PCOS patients involve the androgen-dependent alteration of AR expression and changes in the insulin receptor/PI3K/Akt/mTOR signaling network. PMID:26045896

  4. CD117 expression in breast phyllodes tumors correlates with adverse pathologic parameters and reduced survival.

    PubMed

    Tan, Wai Jin; Thike, Aye Aye; Tan, Sie Yong; Tse, Gary M-K; Tan, Min-Han; Bay, Boon Huat; Tan, Puay Hoon

    2015-03-01

    CD117 (c-kit) is a type III receptor tyrosine kinase encoded by the KIT gene. Deregulation of expression and mutations in the gene are implicated in various tumors. Reports of CD117 expression in phyllodes tumors have been controversial. We aim to investigate the protein expression of CD117 and mutations in the KIT gene in phyllodes tumors, and correlate the findings with pathological parameters and clinical outcome. A total of 272 cases were included in this study. CD117 expression was investigated by immunohistochemistry on tissue microarray sections. Toluidine blue staining was performed to indicate mast cells. Overall, 28 (10%) cases were CD117 positive. CD117 expression was significantly associated with tumor grade (P<0.001), increased stromal hypercellularity (P=0.003), stromal atypia (P=0.01), and stromal mitotic activity (P<0.001), permeative microscopic margins (P=0.002), and presence of hemorrhage (P=0.001). Expression was also associated with poorer overall survival (P=0.003). Nineteen cases were further selected for mutation screening through the Affymetrix OncoScan platform. No mutation of the KIT gene was found. Despite a lack of mutations in the KIT gene, CD117 protein expression is associated with unfavorable pathological parameters and poorer prognosis, suggesting an underlying role in the biology of phyllodes tumors.

  5. Heparanase Overexpression Reduces Hepcidin Expression, Affects Iron Homeostasis and Alters the Response to Inflammation

    PubMed Central

    Asperti, Michela; Stuemler, Tanja; Poli, Maura; Gryzik, Magdalena; Lifshitz, Lena; Meyron-Holtz, Esther G.; Vlodavsky, Israel

    2016-01-01

    Hepcidin is the key regulator of systemic iron availability that acts by controlling the degradation of the iron exporter ferroportin. It is expressed mainly in the liver and regulated by iron, inflammation, erythropoiesis and hypoxia. The various agents that control its expression act mainly via the BMP6/SMAD signaling pathway. Among them are exogenous heparins, which are strong hepcidin repressors with a mechanism of action not fully understood but that may involve the competition with the structurally similar endogenous Heparan Sulfates (HS). To verify this hypothesis, we analyzed how the overexpression of heparanase, the HS degrading enzyme, modified hepcidin expression and iron homeostasis in hepatic cell lines and in transgenic mice. The results showed that transient and stable overexpression of heparanase in HepG2 cells caused a reduction of hepcidin expression and of SMAD5 phosphorylation. Interestingly, the clones showed also altered level of TfR1 and ferritin, indices of a modified iron homeostasis. The heparanase transgenic mice showed a low level of liver hepcidin, an increase of serum and liver iron with a decrease in spleen iron content. The hepcidin expression remained surprisingly low even after treatment with the inflammatory LPS. The finding that modification of HS structure mediated by heparanase overexpression affects hepcidin expression and iron homeostasis supports the hypothesis that HS participate in the mechanisms controlling hepcidin expression. PMID:27711215

  6. Lifelong expression of apolipoprotein D in the human brainstem: correlation with reduced age-related neurodegeneration.

    PubMed

    Navarro, Ana; Méndez, Elena; Diaz, Celso; del Valle, Eva; Martínez-Pinilla, Eva; Ordóñez, Cristina; Tolivia, Jorge

    2013-01-01

    The lipocalin apolipoprotein D (Apo D) is upregulated in peripheral nerves following injury and in regions of the central nervous system, such as the cerebral cortex, hippocampus, and cerebellum, during aging and progression of certain neurological diseases. In contrast, few studies have examined Apo D expression in the brainstem, a region necessary for survival and generally less prone to age-related degeneration. We measured Apo D expression in whole human brainstem lysates by slot-blot and at higher spatial resolution by quantitative immunohistochemistry in eleven brainstem nuclei (the 4 nuclei of the vestibular nuclear complex, inferior olive, hypoglossal nucleus, oculomotor nucleus, facial motor nucleus, nucleus of the solitary tract, dorsal motor nucleus of the vagus nerve, and Roller`s nucleus). In contrast to cortex, hippocampus, and cerebellum, apolipoprotein D was highly expressed in brainstem tissue from subjects (N = 26, 32-96 years of age) with no history of neurological disease, and expression showed little variation with age. Expression was significantly stronger in somatomotor nuclei (hypoglossal, oculomotor, facial) than visceromotor or sensory nuclei. Both neurons and glia expressed Apo D, particularly neurons with larger somata and glia in the periphery of these brainstem centers. Immunostaining was strongest in the neuronal perinuclear region and absent in the nucleus. We propose that strong brainstem expression of Apo D throughout adult life contributes to resistance against neurodegenerative disease and age-related degeneration, possibly by preventing oxidative stress and ensuing lipid peroxidation.

  7. Lifelong Expression of Apolipoprotein D in the Human Brainstem: Correlation with Reduced Age-Related Neurodegeneration

    PubMed Central

    Navarro, Ana; Méndez, Elena; Diaz, Celso; del Valle, Eva; Martínez-Pinilla, Eva; Ordóñez, Cristina; Tolivia, Jorge

    2013-01-01

    The lipocalin apolipoprotein D (Apo D) is upregulated in peripheral nerves following injury and in regions of the central nervous system, such as the cerebral cortex, hippocampus, and cerebellum, during aging and progression of certain neurological diseases. In contrast, few studies have examined Apo D expression in the brainstem, a region necessary for survival and generally less prone to age-related degeneration. We measured Apo D expression in whole human brainstem lysates by slot-blot and at higher spatial resolution by quantitative immunohistochemistry in eleven brainstem nuclei (the 4 nuclei of the vestibular nuclear complex, inferior olive, hypoglossal nucleus, oculomotor nucleus, facial motor nucleus, nucleus of the solitary tract, dorsal motor nucleus of the vagus nerve, and Roller`s nucleus). In contrast to cortex, hippocampus, and cerebellum, apolipoprotein D was highly expressed in brainstem tissue from subjects (N = 26, 32−96 years of age) with no history of neurological disease, and expression showed little variation with age. Expression was significantly stronger in somatomotor nuclei (hypoglossal, oculomotor, facial) than visceromotor or sensory nuclei. Both neurons and glia expressed Apo D, particularly neurons with larger somata and glia in the periphery of these brainstem centers. Immunostaining was strongest in the neuronal perinuclear region and absent in the nucleus. We propose that strong brainstem expression of Apo D throughout adult life contributes to resistance against neurodegenerative disease and age-related degeneration, possibly by preventing oxidative stress and ensuing lipid peroxidation. PMID:24167586

  8. Mesenchymal Stromal Cells Expressing Heme Oxygenase-1 Reverse Pulmonary Hypertension

    PubMed Central

    Liang, Olin D.; Mitsialis, S. Alex; Chang, Mun Seog; Vergadi, Eleni; Lee, Changjin; Aslam, Muhammad; Fernandez-Gonzalez, Angeles; Liu, Xianlan; Baveja, Rajiv; Kourembanas, Stella

    2012-01-01

    Pulmonary arterial hypertension (PAH) remains a serious disease, and, while current treatments may prolong and improve quality of life, search for novel and effective therapies is warranted. Using genetically-modified mouse lines, we tested the ability of bone marrow-derived stromal cells (MSCs), to treat chronic hypoxia-induced PAH. Recipient mice were exposed for five weeks to normobaric hypoxia (8%–10% O2), MSC preparations were delivered through jugular vein injection and their effect on PAH was assessed after two additional weeks in hypoxia. Donor MSCs derived from wild-type (WT) mice or Heme Oxygenase-1 (HO-1) null mice (Hmox1KO) conferred partial protection from PAH when transplanted into WT or Hmox1KO recipients, whereas treatment with MSCs isolated from transgenic mice harboring a human HO-1 transgene under the control of surfactant protein C promoter (SHO1 line) reversed established disease in WT recipients. SH01-MSC treatment of Hmox1KO animals, which develop right ventricular (RV) infarction under prolonged hypoxia, resulted in normal RV systolic pressure, significant reduction of RV hypertrophy and prevention of RV infarction. Donor MSCs isolated from a bitransgenic mouse line with doxycycline-inducible, lung-specific expression of HO-1 exhibited similar therapeutic efficacy only upon doxycycline treatment of the recipients. In vitro experiments indicate that potential mechanisms of MSC action include modulation of hypoxia-induced lung inflammation and inhibition of smooth muscle cell proliferation. Cumulative, our results demonstrate that MSCs ameliorate chronic hypoxia – induced PAH and their efficacy is highly augmented by lung-specific HO-1 expression in the transplanted cells, suggesting an interplay between HO-1 dependent and HO-1 independent protective pathways. PMID:20957739

  9. Ovarian Hormone Deprivation Reduces Oxytocin Expression in Paraventricular Nucleus Preautonomic Neurons and Correlates with Baroreflex Impairment in Rats

    PubMed Central

    De Melo, Vitor U.; Saldanha, Rayssa R. M.; Dos Santos, Carla R.; De Campos Cruz, Josiane; Lira, Vitor A.; Santana-Filho, Valter J.; Michelini, Lisete C.

    2016-01-01

    The prevalence of cardiovascular diseases including hypertension increases dramatically in women after menopause, however the mechanisms involved remain incompletely understood. Oxytocinergic (OTergic) neurons are largely present within the paraventricular nucleus of the hypothalamus (PVN). Several studies have shown that OTergic drive from PVN to brainstem increases baroreflex sensitivity and improves autonomic control of the circulation. Since preautonomic PVN neurons express different types of estrogen receptors, we hypothesize that ovarian hormone deprivation causes baroreflex impairment, autonomic imbalance and hypertension by negatively impacting OTergic drive and oxytocin levels in pre-autonomic neurons. Here, we assessed oxytocin gene and protein expression (qPCR and immunohistochemistry) within PVN subnuclei in sham-operated and ovariectomized Wistar rats. Conscious hemodynamic recordings were used to assess resting blood pressure and heart rate and the autonomic modulation of heart and vessels was estimated by power spectral analysis. We observed that the ovarian hormone deprivation in ovariectomized rats decreased baroreflex sensitivity, increased sympathetic and reduced vagal outflows to the heart and augmented the resting blood pressure. Of note, ovariectomized rats had reduced PVN oxytocin mRNA and protein expression in all pre-autonomic PVN subnuclei. Furthermore, reduced PVN oxytocin protein levels were positively correlated with decreased baroreflex sensitivity and negatively correlated with increased LF/HF ratio. These findings suggest that reduced oxytocin expression in OTergic neurons of the PVN contributes to the baroreflex dysfunction and autonomic dysregulation observed with ovarian hormone deprivation. PMID:27790154

  10. PHTHALATE ESTER-INDUCED GUBERNACULAR LESIONS ARE ASSOCIATED WITH REDUCED INSL-3 GENE EXPRESSION IN THE FETAL RAT TESTIS

    EPA Science Inventory

    Phthalate ester-induced gubernacular ligament lesions are associated with reduced Insl3 gene expression in the fetal rat testis during sexual differentiation.
    VS Wilson, C Lambright, J Furr, J Ostby, C Wood, G Held, LE Gray Jr.
    U.S. EPA, ORD, NHEERL, Reproductive Toxicology...

  11. Hypoxia reduces constitutive and TNF-{alpha}-induced expression of monocyte chemoattractant protein-1 in human proximal renal tubular cells

    SciTech Connect

    Li Xuan; Kimura, Hideki . E-mail: hkimura@fmsrsa.fukui-med.ac.jp; Hirota, Kiichi; Sugimoto, Hidehiro; Yoshida, Haruyoshi

    2005-10-07

    Chronic hypoxia has been reported to be associated with macrophage infiltration in progressive forms of kidney disease. Here, we investigated the regulatory effects of hypoxia on constitutive and TNF-{alpha}-stimulated expression of monocyte chemoattractant protein-1 (MCP-1) in cultured human proximal renal tubular cells (HPTECs). Hypoxia reduced constitutive MCP-1 expression at the mRNA and protein levels in a time-dependent fashion for up to 48 h. Hypoxia also inhibited MCP-1 up-regulation by TNF-{alpha}. Treatment with actinomycin D showed that hypoxic down-regulation of MCP-1 expression resulted mainly from a decrease in the transcription but not the mRNA stability. Immunoblot and immunofluorescence analyses revealed that treatment with hypoxia or an iron chelator, desferrioxamine, induced nuclear accumulation of hypoxia-inducible factor-1{alpha} (HIF-1{alpha}) in HPTECs. Desferrioxamine mimicked hypoxia in the reduction of MCP-1 expression. However, overexpression of a dominant negative form of HIF-1{alpha} did not abolish the hypoxia-induced reduction of MCP-1 expression in HPTECs. These results suggest that hypoxia is an important negative regulator of monocyte chemotaxis to the renal inflamed interstitium, by reducing MCP-1 expression partly via hypoxia-activated signals other than the HIF-1 pathway.

  12. Momilactione B inhibits protein kinase A signaling and reduces tyrosinase-related proteins 1 and 2 expression in melanocytes.

    PubMed

    Lee, Ji Hae; Cho, Boram; Jun, Hee-jin; Seo, Woo-Duck; Kim, Dong-Woo; Cho, Kang-Jin; Lee, Sung-Joon

    2012-05-01

    Momilactone B (MB) is a terpenoid phytoalexin present in rice bran that exhibits several biological activities. MB reduced the melanin content in B16 melanocytes melanin content and inhibited tyrosinase activities. Using transcriptome analysis, the genes involved in protein kinase A (PKA) signaling were found to be markedly altered. B16 cells stimulated with MB had decreased concentrations of cAMP protein kinase A activity, and cAMP-response element-binding protein which is a key transcription factor for microphthalmia-associated transcription factor (MITF) expression. Accordingly, the expression of MITF and its target genes, which are essential for melanogenesis, were reduced. MB thus exhibits anti-melanogenic effects by repressing tyrosinase enzyme activity and inhibiting the PKA signaling pathway which, in turn, decreases melanogenic gene expression.

  13. Cardiac β-Adrenoceptor Expression Is Reduced in Zucker Diabetic Fatty Rats as Type-2 Diabetes Progresses

    PubMed Central

    Haley, James M.; Thackeray, James T.; Thorn, Stephanie L.; DaSilva, Jean N.

    2015-01-01

    Objectives Reduced cardiac β-adrenoceptor (β-AR) expression and cardiovascular dysfunction occur in models of hyperglycemia and hypoinsulinemia. Cardiac β-AR expression in type-2 diabetes models of hyperglycemia and hyperinsulinemia, remain less clear. This study investigates cardiac β-AR expression in type-2 diabetic Zucker diabetic fatty (ZDF) rats. Methods Ex vivo biodistribution experiments with [3H]CGP12177 were performed in Zucker lean (ZL) and ZDF rats at 10 and 16 weeks of age as diabetes develops. Blood glucose, body mass, and diet consumption were measured. Western blotting of β-AR subtypes was completed in parallel. Echocardiography was performed at 10 and 16 weeks to assess systolic and diastolic function. Fasted plasma insulin, free fatty acids (FFA), leptin and fed-state insulin were also measured. Results At 10 weeks, myocardial [3H]CGP12177 was normal in hyperglycemic ZDF (17±4.1mM) compared to ZL, but reduced 16-25% at 16 weeks of age as diabetes and hyperglycemia (22±2.4mM) progressed. Reduced β-AR expression not apparent at 10 weeks also developed by 16 weeks of age in ZDF brown adipose tissue. In the heart, Western blotting at 10 weeks indicated normal β1-AR (98±9%), reduced β2-AR (76±10%), and elevated β3-AR (108±6). At 16 weeks, β1-AR expression became reduced (69±16%), β2-AR expression decreased further (68±14%), and β3-AR remained elevated, similar to 10 weeks (112±9%). While HR was reduced at 10 and 16 weeks in ZDF rats, no significant changes were observed in diastolic or systolic function. Conclusions Cardiac β-AR are reduced over 6 weeks of sustained hyperglycemia in type-2 diabetic ZDF rats. This indicates cardiac [3H]CGP12177 retention and β1- and β2-AR expression are inversely correlated with the progression of type-2 diabetes. PMID:25996498

  14. Loss of HuR Is Linked to Reduced Expression of Proliferative Genes during Replicative Senescence

    PubMed Central

    Wang, Wengong; Yang, Xiaoling; Cristofalo, Vincent J.; Holbrook, Nikki J.; Gorospe, Myriam

    2001-01-01

    Cellular aging is accompanied by alterations in gene expression patterns. Here, using two models of replicative senescence, we describe the influence of the RNA-binding protein HuR in regulating the expression of several genes whose expression decreases during senescence. We demonstrate that HuR levels, HuR binding to target mRNAs encoding proliferative genes, and the half-lives of such mRNAs are lower in senescent cells. Importantly, overexpression of HuR in senescent cells restored a “younger” phenotype, while a reduction in HuR expression accentuated the senescent phenotype. Our studies highlight a critical role for HuR during the process of replicative senescence. PMID:11486028

  15. Maternal protein restriction reduces expression of angiotensin I-converting enzyme 2 in rat placental labyrinth zone in late pregnancy.

    PubMed

    Gao, Haijun; Yallampalli, Uma; Yallampalli, Chandra

    2012-02-01

    Both the systemic and the uteroplacental renin-angiotensin system (RAS) display dramatic changes during pregnancy. However, whether gestational protein insufficiency affects the expressions of RAS in the placenta remains unknown. In this study, we hypothesized that the expression of Ace2 in the placental labyrinth was reduced by maternal protein restriction. Pregnant Sprague-Dawley rats were fed a normal diet or a low-protein diet (LP) from Day 1 of pregnancy until they were killed at Day 14 or Day 18. The labyrinth zone (LZ) of the placenta was then dissected and snap frozen for expression analysis by quantitative real-time PCR of Ace, Ace2, Agtr1a, Agtr1b, and Agtr2. Formalin-fixed placentas were used for immunohistochemical analysis on ACE and ACE2 proteins. The findings include 1) the expression of Ace2 in rat LZ was reduced by maternal protein restriction in late pregnancy; 2) ACE protein was mainly present in syncytiotrophoblasts, whereas ACE2 protein was found predominantly in fetal mesenchymal tissue and fetal capillaries; 3) Agtr1a was predominant in the rat LZ, and its mRNA levels, but not protein levels, were reduced by LP; 4) expressions of Ace, Ace2, and Agtr1a in the rat LZ and their response to LP occurred in a gender-dependent manner. These results may indicate that a reduced expression of Ace2 and perhaps an associated reduction in angiotensin (1-7) production in the placenta by maternal protein restriction may be responsible for fetal growth restriction and associated programming of adulthood hypertension.

  16. Induction of heme oxygenase-1 with hemin reduces obesity-induced adipose tissue inflammation via adipose macrophage phenotype switching.

    PubMed

    Tu, Thai Hien; Joe, Yeonsoo; Choi, Hye-Seon; Chung, Hun Taeg; Yu, Rina

    2014-01-01

    Adipose macrophages with the anti-inflammatory M2 phenotype protect against obesity-induced inflammation and insulin resistance. Heme oxygenase-1 (HO-1), which elicits antioxidant and anti-inflammatory activity, modulates macrophage phenotypes and thus is implicated in various inflammatory diseases. Here, we demonstrate that the HO-1 inducer, hemin, protects against obesity-induced adipose inflammation by inducing macrophages to switch to the M2 phenotype. HO-1 induction by hemin reduced the production of proinflammatory cytokines (TNF-α and IL-6) from cocultured adipocytes and macrophages by inhibiting the activation of inflammatory signaling molecules (JNK and NF-κB) in both cell types. Hemin enhanced transcript levels of M2 macrophage marker genes (IL-4, Mrc1, and Clec10a) in the cocultures, while reducing transcripts of M1 macrophage markers (CD274 and TNF-α). The protective effects of hemin on adipose inflammation and macrophage phenotype switching were confirmed in mice fed a high-fat diet, and these were associated with PPARγ upregulation and STAT6 activation. These findings suggest that induction of HO-1 with hemin protects against obesity-induced adipose inflammation through M2 macrophage phenotype switching, which is induced by the PPARγ and STAT6 pathway. HO-1 inducers such as hemin may be useful for preventing obesity-induced adipose inflammation.

  17. Association of NDRG1 gene promoter methylation with reduced NDRG1 expression in gastric cancer cells and tissue specimens.

    PubMed

    Chang, Xiaojing; Zhang, Shuanglong; Ma, Jinguo; Li, Zhenhua; Zhi, Yu; Chen, Jing; Lu, Yao; Dai, Dongqiu

    2013-05-01

    NDRG1 (N-myc downstream-regulated gene 1) plays a role in cell differentiation and suppression of tumor metastasis. This study aims to determine the expression of NDRG1 mRNA and protein in gastric cancer cell lines and tissue specimens and then assess the possible cause of its aberrant expression. Six gastric cancer cell lines and 20 pairs of normal and gastric cancer tissue samples were used to assess NDRG1 expression using Real-time PCR and Western blot. High-resolution melting analysis (HRM) and methylation-specific PCR (MSP) were performed to detect gene mutation and methylation, respectively, in cell lines and tissues samples. Expression of NDRG1 mRNA and protein was downregulated in gastric cancer cell lines and tissues. Specifically, expression of NDRG1 mRNA and protein was lower in all six gastric cancer cell lines than that of normal gastric cells, while 15 out of 20 cases of gastric cancer tissues had the reduced levels of NDRG1 mRNA and protein. HRM data showed that there was no mutation in NDRG1 gene, but MSP data showed high levels of NDRG1 gene promoter methylation in the CpG islands in both cell lines and tissue samples. Moreover, treatment with the DNA methyltransferase inhibitor 5-Aza-2'-deoxycytidine upregulated NDRG1 expression in gastric cancer HGC27 cells, but not in the histone deacetylase inhibitor trichostatin A-treated HGC27 cells. In conclusion, this study has shown that expression of NDRG1 mRNA and protein was reduced in gastric cancer cell lines and tissues, which is due to methylation of NDRG1 gene promoter. Further study will unearth the clinical significance of the reduced NDRG1 protein in gastric cancer.

  18. Weight-loss changes PPAR expression, reduces atherosclerosis and improves cardiovascular function in obese insulin-resistant mice

    SciTech Connect

    Verreth, Wim; Verhamme, Peter; Pelat, Michael; Ganame, Javier; Bielicki, John K.; Mertens, Ann; Quarck, Rozenn; Benhabiles, Nora; Marguerie, Gerard; Mackness, Bharti; Mackness, Mike; Ninio, Ewa; Herregods, Marie-Christine; Balligand, Jean-Luc; Holvoet, Paul

    2003-09-01

    Weight-loss in obese insulin-resistant, but not in insulin-sensitive, persons reduces CHD risk. It is not known to what extent changes in the adipose gene expression profile are important for reducing CHD risk. We studied the effect of diet restriction-induced weight-loss on gene expression in adipose tissue, atherosclerosis and cardiovascular function in mice with combined leptin and LDL-receptor deficiency. Obesity, hypertriglyceridemia and insulin-resistance are associated with hypertension, impaired left ventricle function and accelerated atherosclerosis in those mice. Diet restriction during 12 weeks caused a 45% weight-loss and changes in the gene expression in adipose tissue of PPARa and PPAR? and of key genes regulating glucose transport and insulin sensitivity, lipid metabolism, oxidative stress and inflammation, most of which are under the transcriptional control of PPARs. These changes were associated with increased insulin-sensitivity, decreased hypertriglyceridemia, reduced mean 24-hour blood pressure and heart rate, restored circadian variations of blood pressure and heart rate, increased ejection fraction, and reduced atherosclerosis. Thus, induction of PPARa and PPAR? in adipose tissue is a key mechanism for reducing atherosclerosis and improving cardiovascular function resulting from weight-loss. Our observations point to the critical role of PPARs in the pathogenesis of cardiovascular features of the metabolic syndrome.

  19. MicroRNA-142 Reduces Monoamine Oxidase A Expression and Activity in Neuronal Cells by Downregulating SIRT1

    PubMed Central

    Datta Chaudhuri, Amrita; Yelamanchili, Sowmya V.; Fox, Howard S.

    2013-01-01

    Aberrant expression of microRNAs (miRs) has been implicated in the pathogenesis of several neurodegenerative disorders. In HIV-associated neurocognitive disorders (HAND), miR-142 was found to be upregulated in neurons and myeloid cells in the brain. We investigated the downstream effects of chronic miR-142 upregulation in neuronal cells by comparing gene expression in stable clones of the human neuroblastoma cell line BE(2)M17 expressing miR-142 to controls. Microarray analysis revealed that miR-142 expression led to a reduction in monoamine oxidase (MAO) A mRNA, which was validated by qRT-PCR. In addition to the mRNA, the MAOA protein level and enzyme activity were also reduced. Examination of primary human neurons revealed that miR-142 expression indeed resulted in a downregulation of MAOA protein level. Although MAOA is not a direct target of miR-142, SIRT1, a key transcriptional upregulator of MAOA is, thus miR-142 downregulation of MAOA expression is indirect. MiR-142 induced decrease in MAOA expression and activity may contribute to the changes in dopaminergic neurotransmission reported in HAND. PMID:24244526

  20. Maternal High-Fat Feeding Increases Placental Lipoprotein Lipase Activity by Reducing SIRT1 Expression in Mice

    PubMed Central

    Qiao, Liping; Guo, Zhuyu; Bosco, Chris; Guidotti, Stefano; Wang, Yunfeng; Wang, Mingyong; Parast, Mana; Schaack, Jerome; Hay, William W.; Moore, Thomas R.

    2015-01-01

    This study investigated how maternal overnutrition and obesity regulate expression and activation of proteins that facilitate lipid transport in the placenta. To create a maternal overnutrition and obesity model, primiparous C57BL/6 mice were fed a high-fat (HF) diet throughout gestation. Fetuses from HF-fed dams had significantly increased serum levels of free fatty acid and body fat. Despite no significant difference in placental weight, lipoprotein lipase (LPL) protein levels and activity were remarkably elevated in placentas from HF-fed dams. Increased triglyceride content and mRNA levels of CD36, VLDLr, FABP3, FABPpm, and GPAT2 and -3 were also found in placentas from HF-fed dams. Although both peroxisome proliferator–activated receptor-γ (PPARγ) and CCAAT/enhancer binding protein-α protein levels were significantly increased in placentas of the HF group, only PPARγ exhibited a stimulative effect on LPL expression in cultured JEG-3 human trophoblasts. Maternal HF feeding remarkably decreased SIRT1 expression in placentas. Through use of an SIRT1 activator and inhibitor and cultured trophoblasts, an inhibitory effect of SIRT1 on LPL expression was demonstrated. We also found that SIRT1 suppresses PPARγ expression in trophoblasts. Most importantly, inhibition of PPARγ abolished the SIRT1-mediated regulatory effect on LPL expression. Together, these results indicate that maternal overnutrition induces LPL expression in trophoblasts by reducing the inhibitory effect of SIRT1 on PPARγ. PMID:25948680

  1. Methoxychlor and fenvalerate induce neuronal death by reducing GluR2 expression.

    PubMed

    Umeda, Kanae; Kotake, Yaichiro; Miyara, Masatsugu; Ishida, Keishi; Sanoh, Seigo; Ohta, Shigeru

    2016-04-01

    GluR2, an α-amino-3-hydroxy-5-methylisoxazole-4-propionic acid (AMPA) receptor subunit, plays important roles in neuronal survival. We previously showed that exposure of cultured rat cortical neurons to several chemicals decreases GluR2 protein expression, leading to neuronal toxicity. Methoxychlor, the bis-p-methoxy derivative of dichlorodiphenyltrichloroethane, and fenvalerate, a synthetic pyrethroid chemical, have been used commercially as agricultural pesticides in several countries. In this study, we investigated the effects of long-term methoxychlor and fenvalerate exposure on neuronal glutamate receptors. Treatment of cultured rat cortical neurons with 1 or 10 µM methoxychlor and fenvalerate for 9 days selectively decreased GluR2 protein expression; the expression of other AMPA receptor subunits GluR1, GluR3, and GluR4 did not change under the same conditions. Importantly, the decreases in GluR2 protein expression were also observed on the cell surface membrane where AMPA receptors typically function. In addition, both chemicals decreased neuronal viability, which was blocked by pretreatment with 1-naphtylacetylspermine, an antagonist of GluR2-lacking AMPA receptors, and MK-801, an N-methyl-d-aspartate (NMDA) receptor antagonist. These results suggest that long-term exposure to methoxychlor and fenvalerate decreases GluR2 protein expression, leading to neuronal death via overactivation of GluR2-lacking AMPA and NMDA receptors.

  2. Reduced Susceptibility to Xanthomonas citri in Transgenic Citrus Expressing the FLS2 Receptor From Nicotiana benthamiana.

    PubMed

    Hao, Guixia; Pitino, Marco; Duan, Yongping; Stover, Ed

    2016-02-01

    Overexpression of plant pattern-recognition receptors by genetic engineering provides a novel approach to enhance plant immunity and broad-spectrum disease resistance. Citrus canker disease associated with Xanthomonas citri is one of the most important diseases damaging citrus production worldwide. In this study, we cloned the FLS2 gene from Nicotiana benthamiana cDNA and inserted it into the binary vector pBinPlus/ARS to transform Hamlin sweet orange and Carrizo citrange. Transgene presence was confirmed by polymerase chain reaction (PCR) and gene expression of NbFLS2 was compared by reverse transcription quantitative PCR. Reactive oxygen species (ROS) production in response to flg22Xcc was detected in transgenic Hamlin but not in nontransformed controls. Low or no ROS production was detected from nontransformed Hamlin seedlings challenged with flg22Xcc. Transgenic plants highly expressing NbFLS2 were selected and were evaluated for resistance to canker incited by X. citri 3213. Our results showed that the integration and expression of the NbFLS2 gene in citrus can increase canker resistance and defense-associated gene expression when challenged with X. citri. These results suggest that canker-susceptible Citrus genotypes lack strong basal defense induced by X. citri flagellin and the resistance of these genotypes can be enhanced by transgenic expression of the flagellin receptor from a resistant species. PMID:26554734

  3. Fish oil dietary supplementation reduces Ia expression in rat and mouse peritoneal macrophages.

    PubMed

    Mosquera, J; Rodríguez-Iturbe, B; Parra, G

    1990-07-01

    Preliminary studies suggest that administration of fish oil fatty acids may be beneficial in several immunological diseases; therefore, we studied the effect of fish oil dietary supplementation on the expression of Ia in stimulated murine peritoneal macrophages. Rats (n = 19) and mice (n = 27) on standard rodent feeding were separated in experimental (E) and control (C) groups that received fish oil or saline solution, respectively, daily for 4 weeks by esophageal gavage. Cholesterol serum levels were significantly lowered by fish oil (E vs C, P less than 0.01). E and C groups were injected intraperitoneally with Listeria monocytogenes (LM) and peritoneal cells were harvested 4 and 7 days after infection. Decreased expression of Ia induced by LM was found in rats (C = 49.68 +/- 5.09%, E = 16.95 +/- 4.3%, P less than 0.01) and mice (C = 47.38 +/- 7.63%, E = 26.66 +/- 1.92%, P less than 0.01). Animals with a more pronounced depression of serum cholesterol (reduction of 44.04 +/- 1.52% of baseline levels) had more depression of Ia expression (6.47 +/- 1.22%, P less than 0.001 vs control). Reduction of Ia expression was not related to PGE2 production by peritoneal cells. Reduction of Ia expression by fish oil could induce down-regulation of antigen presentation and alloreactivity.

  4. Reduced Expression of GDF-15 Is Associated With Atrophic Inflammatory Lesions of the Prostate

    PubMed Central

    Lambert, James R.; Whitson, Ramon J.; Iczkowski, Kenneth A.; La Rosa, Francisco G.; Smith, Maxwell L.; Wilson, R. Storey; Smith, Elizabeth E.; Torkko, Kathleen C.; Gari, Hamid H.; Lucia, M. Scott

    2015-01-01

    BACKGROUND Accumulating evidence suggests that chronic prostatic inflammation may lead to prostate cancer development. Growth differentiation factor-15 (GDF-15) is highly expressed in the prostate and has been associated with inflammation and tumorigenesis. METHODS To examine the relationship between GDF-15 and prostatic inflammation, GDF-15 expression was measured by immunohistochemical (IHC) staining in human prostatectomy specimens containing inflammation. The relationship between GDF-15 and specific inflammatory cells was determined using non-biased computer image analysis. To provide insight into a potential suppressive role for GDF-15 in inflammation, activation of inflammatory mediator nuclear factor of kappa B (NFκB) was measured in PC3 cells. RESULTS GDF-15 expression in luminal epithelial cells was decreased with increasing inflammation severity, suggesting an inverse association between GDF-15 and inflammation. Quantification of IHC staining by image analysis for GDF-15 and inflammatory cell markers revealed an inverse correlation between GDF-15 and CD3+, CD4+, CD8+, CD68+, and inos+ leukocytes. GDF-15 suppressed NFκB activity in luciferase reporter assays. Expression of the NFκB target, interleukin 8 (IL-8), was downregulated by GDF-15. CONCLUSIONS The inverse relationship between GDF-15 and inflammation demonstrates a novel expression pattern for GDF-15 in the human prostate and suppression of NFκB activity may shed light on a potential mechanism for this inverse correlation. PMID:25327758

  5. Reduced Susceptibility to Xanthomonas citri in Transgenic Citrus Expressing the FLS2 Receptor From Nicotiana benthamiana.

    PubMed

    Hao, Guixia; Pitino, Marco; Duan, Yongping; Stover, Ed

    2016-02-01

    Overexpression of plant pattern-recognition receptors by genetic engineering provides a novel approach to enhance plant immunity and broad-spectrum disease resistance. Citrus canker disease associated with Xanthomonas citri is one of the most important diseases damaging citrus production worldwide. In this study, we cloned the FLS2 gene from Nicotiana benthamiana cDNA and inserted it into the binary vector pBinPlus/ARS to transform Hamlin sweet orange and Carrizo citrange. Transgene presence was confirmed by polymerase chain reaction (PCR) and gene expression of NbFLS2 was compared by reverse transcription quantitative PCR. Reactive oxygen species (ROS) production in response to flg22Xcc was detected in transgenic Hamlin but not in nontransformed controls. Low or no ROS production was detected from nontransformed Hamlin seedlings challenged with flg22Xcc. Transgenic plants highly expressing NbFLS2 were selected and were evaluated for resistance to canker incited by X. citri 3213. Our results showed that the integration and expression of the NbFLS2 gene in citrus can increase canker resistance and defense-associated gene expression when challenged with X. citri. These results suggest that canker-susceptible Citrus genotypes lack strong basal defense induced by X. citri flagellin and the resistance of these genotypes can be enhanced by transgenic expression of the flagellin receptor from a resistant species.

  6. Reduced expression of exocytotic proteins caused by anti-cholinesterase pesticides in Brachionus calyciflorus (Rotifera: Monogononta).

    PubMed

    Pérez-Legaspi, I A; Rico-Martínez, R; Quintanar, J L

    2015-08-01

    The organophosphate and carbamate pesticides methyl-parathion and carbaryl have a common action mechanism: they inhibit acetylcholinesterase enzyme by blocking the transmission of nerve impulses. However, they can alter the expression of exocytotic membrane proteins (SNARE), by modifying release of neurotransmitters and other substances. This study evaluated the adverse effects of the pesticides methyl-parathion and carbaryl on expression of SNARE proteins: Syntaxin-1, Syntaxin-4 and SNAP-23 in freshwater rotifer Brachionus calyciflorus. Protein expression of these three proteins was analyzed before and after exposure to these two pesticides by Western Blot. The expression of Syntaxin-1, Syntaxin-4 and SNAP-23 proteins in B. calyciflorussignificantly decreases with increasing concentration of either pesticides. This suggests that organophosphates and carbamates have adverse effects on expression of membrane proteins of exocytosis by altering the recognition, docking and fusion of presynaptic and vesicular membranes involved in exocytosis of neurotransmitters. Our results demonstrate that the neurotoxic effect of anticholinesterase pesticides influences the interaction of syntaxins and SNAP-25 and the proper assembly of the SNARE complex.

  7. Enhanced expression of multidrug resistance-associated protein 2 and reduced expression of aquaglyceroporin 3 in an arsenic-resistant human cell line.

    PubMed

    Lee, Te-Chang; Ho, I-Ching; Lu, Wen-Jen; Huang, Jin-ding

    2006-07-01

    Arsenic-resistant cells (R15), derived from a human lung adenocarcinoma cell line (CL3), were 10-fold more resistant to sodium arsenite (As(III)). Because R15 cells accumulated less arsenic than parental CL3 cells, this arsenic resistance may be due to higher efflux and/or lower uptake of As(III). We therefore compared expression of the multidrug resistance-associated proteins MRP1, MRP2, and MRP3 in these two cell lines. MRP2 expression was 5-fold higher in R15 cells than in CL3 cells, whereas MRP1 and MRP3 expression levels were similar. Furthermore, verapamil and cyclosporin A, inhibitors of multidrug resistance transporters, significantly reduced the efflux of arsenic from R15. Thus, increased arsenic extrusion by MRP2 may contribute to arsenic resistance in R15 cells. We also examined the expression of several aquaglyceroporins (AQPs), which mediate As(III) uptake by cells. Little AQP7 or AQP9 mRNA was detected by reverse transcription-PCR in either cell line, whereas AQP3 mRNA expression was 2-fold lower in R15 cells than in CL3 cells. When AQP3 expression in CL3 cells was knocked down by RNA interference, CL3 cells accumulated less arsenic and became more resistant to As(III). Conversely, overexpression of AQP3 in human embryonic kidney 293T cells increased arsenic accumulation, and the cells were more susceptible to As(III) than 293T cells transfected with vector alone. These results suggest that AQP3 is involved in As(III) accumulation. Taken together, our results suggest that enhanced expression of MRP2 and lower expression of AQP3 are responsible for lower arsenic accumulation in arsenic-resistant R15 cells.

  8. Reducing acetate excretion from E. coli K-12 by over-expressing the small RNA SgrS.

    PubMed

    Negrete, Alejandro; Majdalani, Nadim; Phue, Je-Nie; Shiloach, Joseph

    2013-01-25

    When exposed to the nonmetabolized glucose derivative alpha methyl glucoside (αMG), both Escherichia coli K-12 (JM109 and MG1655) and E. coli B (BL21) respond by reducing the concentration of the mRNA of the ptsG gene which is responsible for the biosynthesis of the glucose transporter EIICB(glu). This occurs through the over-expression of the noncoding small RNA SgrS, which interacts specifically with the mRNA of the ptsG gene and prevents its translation. However, when these bacteria are exposed to a glucose concentration of 40 g/L, over-expression of SgrS is observed only in E. coli B (BL21). Unlike E. coli K-12 (JM109 and MG1655), which are affected by high glucose concentration and produce higher levels of acetate, E. coli B (BL21) is not affected. Based on this information, it was assumed that over-expression of SgrS enables E. coli B (BL21) to reduce its acetate excretion by controlling the glucose transport. When SgrS was over-expressed in both E. coli K-12 strains from a multicopy plasmid, it was possible to reduce their acetate excretion levels to those seen in E. coli B. This observation opens a new approach towards controlling bacterial metabolism through the use of noncoding RNA.

  9. Reduced SOD2 expression is associated with mortality of hepatocellular carcinoma patients in a mutant p53-dependent manner

    PubMed Central

    Yang, Xian-Zi; Yang, Yang; Zhang, Mei-Yin; Wang, Hui-Yun; Zheng, X.F. Steven

    2016-01-01

    The development and progression of hepatocellular carcinoma (HCC) is accompanied with persistent oxidative stress, but the molecular basis is not well defined. Superoxide dismutase 2 (SOD2) is an important mitochondrial antioxidant and a key aging factor. Here we investigated the expression and clinical significance of SOD2 in a large cohort of HBV-positive HCC tumors. Both SOD2 mRNA and protein are reduced in human primary HCCs compared with matching liver tissues. Consistently, the SOD2 DNA copy numbers are decreased in HCCs, providing a genetic basis for the decrease in SOD2 mRNA expression. Reduced SOD2 expression in HCCs is correlated with older age, larger tumor size, multiple tumor nodules and tumor emboli, and cancer recurrence. Moreover, low SOD2 expression is strongly associated with poor overall survival (OS) and recurrence-free survival (RFS). Univariate and multivariate Cox regression analyses indicates that SOD2 is an independent prognostic predictor for OS and RFS. Intriguingly, reduced SOD2 mRNA is strongly associated with poor survival in a separate cohort of HCC patients carrying mutant p53. Altogether, our results provide clinical evidence for the importance of SOD2 in tumor progression and mortality, and the close relationship of SOD2 and p53 in HCC. PMID:27221200

  10. Reduced expression of plasma membrane calcium ATPase 2 and collapsin response mediator protein 1 promotes death of spinal cord neurons.

    PubMed

    Kurnellas, M P; Li, H; Jain, M R; Giraud, S N; Nicot, A B; Ratnayake, A; Heary, R F; Elkabes, S

    2010-09-01

    The mechanisms underlying neuronal pathology and death in the spinal cord (SC) during inflammation remain elusive. We previously showed the important role of plasma membrane calcium ATPases (PMCAs) in the survival of SC neurons, in vitro. We also postulated that a decrease in PMCA2 expression could cause neuronal death during experimental autoimmune encephalomyelitis (EAE), an animal model of multiple sclerosis. The current studies were undertaken to define the specific contribution of PMCA2 to degeneration of SC neurons, the effectors downstream to PMCA2 mediating neuronal death and the triggers that reduce PMCA2 expression. We report that knockdown of PMCA2 in SC neurons decreases collapsin response mediator protein 1 (CRMP1) levels. This is followed by cell death. Silencing of CRMP1 expression also leads to neuronal loss. Kainic acid reduces both PMCA2 and CRMP1 levels and induces neuronal death. Administration of an alpha-amino-3-hydroxyl-5-methyl-4-isoxazole-propionate (AMPA)/kainate receptor antagonist, at onset or peak of EAE, restores the decreased PMCA2 and CRMP1 levels to control values and ameliorates clinical deficits. Thus, our data link the reduction in PMCA2 expression with perturbations in the expression of CRMP1 and the ensuing death of SC neurons. This represents an additional mechanism underlying AMPA/kainate receptor-mediated excitotoxicity with relevance to neurodegeneration in EAE. PMID:20489728

  11. Suberoylanilide Hydroxamic Acid Restores Estrogen Reduced-cTnI Expression in Neonatal Hearts of Mice.

    PubMed

    Peng, Chang; Luo, Xiaomei; Xing, Qianlu; Sun, Huichao; Huang, Xupei

    2016-10-01

    Diastolic cardiac dysfunction can be caused by abnormality in cTnI expression during cardiogenesis. In this study, we investigated the effects of estrogen on the abnormal expression of cTnI in the hearts of neonatal mice and its potential epigenetic mechanisms. We then evaluated suberoylanilide hydroxamic acid (SAHA), a HDAC inhibitor, as a new target treatment of diastolic cardiac dysfunction. Postnatal day 0.5 C57BL/6 mice were injected with estrogen for 1 week, then the hearts of 7-day-old neonatal mice were retrieved for examination. The activities of HDAC and HAT were assayed by colorimetry, and the interaction of cTnI with HDAC5 in mice hearts were examined using chromatin immunoprecipitation assays. The expression of cTnI was tested by quantitative real-time RT-PCR and Western blot. Estrogen treated groups displayed a significantly increased HDAC activity in the hearts of neonatal mice while HAT activity remained unchanged. Additionally, HDAC5 was higher at the cTnI promoter, as compared to the saline treated control groups. The acetylation of histone H3K9ac on cTnI promoter significantly decreased in the hearts of neonatal mice treated with estrogen, and the expression of cTnI at transcriptional and protein levels also decreased. SAHA was shown to increase the acetylation of histone H3K9ac and upregulate the expression of cTnI. The data demonstrated that SAHA can correct cTnI expression abnormality caused by estrogen through inhibiting the binding of HDAC5 to the promoter of cTnI. J. Cell. Biochem. 117: 2377-2384, 2016. © 2016 Wiley Periodicals, Inc. PMID:27379430

  12. Anti-interleukin-33 Reduces Ovalbumin-Induced Nephrotoxicity and Expression of Kidney Injury Molecule-1

    PubMed Central

    2016-01-01

    Purpose: To evaluate the effect of anti-interleukin-33 (anti-IL-33) on a mouse model of ovalbumin (OVA)-induced acute kidney injury (AKI). Methods: Twenty-four female BALB/c mice were assigned to 4 groups: group A (control, n=6) was administered sterile saline intraperitoneally (i.p.) and intranasally (i.n.); group B (allergic, n=6) was administered i.p./i.n. OVA challenge; group C (null treatment, n=6) was administered control IgG i.p. before OVA challenge; and group D (anti-IL-33, n=6) was pretreated with 3.6 µg of anti-IL-33 i.p. before every OVA challenge. The following were evaluated after sacrifice: serum blood urea nitrogen and creatinine levels, Kidney injury molecule-1 gene (Kim-1) and protein (KIM-1) expression in renal parenchyma, and expression of cyclooxygenase-2 (COX-2), inducible nitric oxide synthase (iNOS), phosphorylated endothelial NOS (p-eNOS), and phosphorylated AMP kinase (p-AMPK) proteins in renal parenchyma. Results: After OVA injection and intranasal challenge, mice in groups B and C showed significant increases in the expression of Kim-1 at both the mRNA and protein levels. After anti-IL-33 treatment, mice in group D showed significant Kim-1 down-regulation at the mRNA and protein levels. Group D also showed significantly lower COX-2 protein expression, marginally lesser iNOS expression than groups B and C, and p-eNOS and p-AMPK expression at baseline levels. Conclusions: Kim-1 could be a useful marker for detecting early-stage renal injury in mouse models of OVA-induced AKI. Further, anti-IL-33 might have beneficial effects on these mouse models. PMID:27377943

  13. High salt-diet reduces SLC14A1 gene expression in the choroid plexus of Dahl salt sensitive rats.

    PubMed

    Guo, Lirong; Meng, Jie; Xuan, Chengluan; Ge, Jingyan; Sun, Wenzhu; O'Rourke, Stephen T; Sun, Chengwen

    2015-05-29

    Elevated Na(+) concentration ([Na(+)]) in the cerebrospinal fluid (CSF) contributes to the development of salt-sensitive hypertension. CSF is formed by the choroid plexus (CP) in cerebral ventricles, and [Na(+)] in CSF is controlled by transporters in CP. Here, we examined the effect of high salt diet on the expression of urea transporters (UTs) in the CP of Dahl S vs Dahl R rats using real time PCR. High salt intake (8%, for 2 weeks) did not alter the mRNA levels of UT-A (encoded by SLC14A2 gene) in the CP of either Dahl S or Dahl R rats. In contrast, the mRNA levels of UT-B (encoded by SLC14A1 gene) were significantly reduced in the CP of Dahl S rats on high salt diet as compared with Dahl R rats or Dahl S rats on normal salt diet. Reduced UT-B expression was associated with increased [Na(+)] in the CSF and elevated mean arterial pressure (MAP) in Dahl S rats treated with high salt diet, as measured by radiotelemetry. High salt diet-induced reduction in UT-B protein expression in the CP of Dahl S rats was confirmed by Western blot. Immunohistochemistry using UT-B specific antibodies demonstrated that UT-B protein was expressed on the epithelial cells in the CP. These data indicate that high salt diet induces elevations in CSF [Na(+)] and in MAP, both of which are associated with reduced UT-B expression in the CP of Dahl S rats, as compared with Dahl R rats. The results suggest that altered UT-B expression in the CP may contribute to an imbalance of water and electrolytes in the CSF of Dahl S rats on high salt diet, thereby leading to alterations in MAP.

  14. [Topical application of vitamins, phytosterols and ceramides. Protection against increased expression of interstital collagenase and reduced collagen-I expression after single exposure to UVA irradiation].

    PubMed

    Grether-Beck, S; Mühlberg, K; Brenden, H; Krutmann, J

    2008-07-01

    Photoaged skin is characterized by a decrease of dermal collagen fibers, resulting from an increased breakdown and a diminished de novo synthesis. The increased breakdown results from an increased expression of matrix metalloproteinases (MMPs). The main building blocks involved in de novo synthesis of collagen fibers are collagen 1A1 and 1A2, the expression of which is reduced in photoaged skin. We studied the effect of topical application of vitamins, phytosterols and ceramides on UV-induced up-regulation of the expression of MMP-1 and on UV-induced down-regulation of COL1A1 and COL1A2. The study was conducted with 10 subjects with healthy skin who were comparatively treated for 10 days with (i) a basic preparation containing jojoba oil, (ii) the basic preparation supplemented with vitamins, (iii) the basic preparation supplemented with phytosterols and ceramides, and (iv) the basic preparation supplemented with vitamins, phytosterols and ceramides. All four preparations inhibited the UV induced up-regulation of MMP-1. Neither the basic product nor that supplemented with vitamins inhibited down-regulation of COL1A1 and COL1A2, but addition of phytosterols and ceramides caused a decreased down-regulation of the expression of these genes. Our results indicate that phytosterols and ceramides are effective in blocking the reduced collagen synthesis after UV irradiation and even stimulating synthesis. They may be useful additions to anti-aging products.

  15. Reduced thermal sensitivity and Nav1.8 and TRPV1 channel expression in sensory neurons of aged mice.

    PubMed

    Wang, Shuying; Davis, Brian M; Zwick, Melissa; Waxman, Stephen G; Albers, Kathryn M

    2006-06-01

    Sensory neurons in aging mammals undergo changes in anatomy, physiology and gene expression that correlate with reduced sensory perception. In this study we compared young and aged mice to identify proteins that might contribute to this loss of sensation. We first show using behavioral testing that thermal sensitivity in aged male and female mice is reduced. Expression of sodium channel (Nav1.8 and Nav1.9) and transient receptor potential vanilloid (TRPV) channels in DRG and peripheral nerves of young and old male mice was then examined. Immunoblotting and RT-PCR assays showed reduced Nav1.8 levels in aged mice. No change was measured in TRPV1 mRNA levels in DRG though TRPV1 protein appeared reduced in the DRG and peripheral nerves. The GFRalpha3 receptor, which binds the growth factor artemin and is expressed by TRPV1-positive neurons, was also decreased in the DRG of aged animals. These findings indicate that loss of thermal sensitivity in aging animals may result from a decreased level of TRPV1 and Nav1.8 and decreased trophic support that inhibits efficient transport of channel proteins to peripheral afferents. PMID:15979214

  16. Reduced expression of polymeric immunoglobulin receptor (pIgR) in nasopharyngeal carcinoma and its correlation with prognosis.

    PubMed

    Qi, Xuanchang; Li, Xuechang; Sun, Xiuxia

    2016-08-01

    Polymeric immunoglobulin receptor (pIgR) is a key component of the mucosal immune system that mediates epithelial transcytosis of immunoglobulins. The expression of pIgR was reported to be up-regulated and related to the prognosis of several human cancers. However, the clinical significance of pIgR in nasopharyngeal carcinoma (NPC) remains unclear. The purpose of this study was to detect the pIgR expression and its prognostic value in NPC. The expression of serum pIgR was measured in NPC patients and healthy controls by real-time quantitative reverse transcriptase-polymerase chain reaction (qRT-PCR) and western blotting analyses. The relationship between its expression and clinical factors was analyzed by chi-square test. Then, the overall survival of patients was assessed by Kaplan-Meier analysis while the prognostic value of serum pIgR was estimated using univariate and multivariate analyses with cox regression analysis. Serum pIgR was down-regulated in NPC patients compared to that in healthy controls both at messenger RNA (mRNA) and protein levels. Especially, its expression was also significantly lower in patients at advantage stages (III-IV) than those at early stages (I-II). And, the low pIgR expression was strongly associated with advanced clinical stages, T stage, N stage, and distant metastasis. Kaplan-Meier analysis demonstrated that patients with low pIgR expression had a significantly shorter overall survival than those with high expression at any stages. Cox regression analysis suggested that pIgR was closely related to the prognosis of NPC. Serum pIgR expression was reduced in NPC, and it could be an independent prognostic predictor for patients with this cancer. PMID:26910773

  17. Long term exendin-4 treatment reduces food intake and body weight and alters expression of brain homeostatic and reward markers.

    PubMed

    Yang, Yan; Moghadam, Alexander A; Cordner, Zachary A; Liang, Nu-Chu; Moran, Timothy H

    2014-09-01

    Repeated administration of the long-acting glucagon-like peptide 1 receptor agonist exendin-4 (EX-4) has been shown to reduce food intake and body weight and do so without a rebound increase in food intake after treatment termination. The current study examines the neural mechanisms underlying these actions. After 6 weeks of maintenance on a standard chow or a high-fat (HF) diet, male Sprague Dawley rats were treated with EX-4 (3.2 μg/kg, i.p., twice a day) or vehicle for 9 consecutive days. Food intake and body weight (BW) were monitored daily. Expression of the genes for the hypothalamic arcuate nucleus (ARC) peptides proopiomelanocortin (POMC), neuropeptide Y (NPY), and agouti gene-related protein was determined. Expression of the dopamine precursor tyrosine hydroxylase (TH) gene in the ventral tegmental area and genes for dopamine receptors 1 (D1R) and dopamine receptor 2 in the nucleus accumbens were also determined. Pair-fed groups were included to control for the effects of reduced food intake and BW. Treatment with EX-4 significantly decreased food intake and BW over the 9-day period in both the standard chow and HF groups. HF feeding decreased POMC without changing NPY/agouti gene-related protein gene expression in the ARC. Treatment with EX-4 increased POMC and decreased NPY expression independent of the reduction of food intake and BW. Mesolimbic TH and D1R gene expression were decreased significantly in chronic HF diet-fed rats, and these changes were reversed in both EX-4 and pair-fed conditions. These results suggest a role for increased POMC and decreased NPY expression in the ARC in the effects of EX-4 on food intake and BW. Our findings also suggest that EX-4 induced the recovery of mesolimbic TH and D1R expression in HF diet-fed rats may be secondary to HF intake reduction and/or weight loss.

  18. Curcumin inhibits srebp-2 expression in activated hepatic stellate cells in vitro by reducing the activity of specificity protein-1.

    PubMed

    Kang, Qiaohua; Chen, Anping

    2009-12-01

    Elevated levels of cholesterol/low-density lipoprotein (LDL) are a risk factor for the development of nonalcoholic steatohepatitis and its associated hepatic fibrosis. However, underlying mechanisms remain elusive. We previously reported that curcumin induced gene expression of peroxisome proliferator-activated receptor (PPAR)-gamma and stimulated its activity, leading to the inhibition of the activation of hepatic stellate cells (HSCs), the major effector cells during hepatic fibrogenesis. We recently showed that curcumin suppressed gene expression of LDL receptor in activated HSCs in vitro by repressing gene expression of the transcription factor sterol regulatory element binding protein-2 (SREBP-2), leading to the reduction in the level of intracellular cholesterol in HSCs and to the attenuation of the stimulatory effects of LDL on HSCs activation. The current study aimed at exploring molecular mechanisms by which curcumin inhibits srebp-2 expression in HSCs. Promoter deletion assays, mutagenesis assays, and EMSAs localize a specificity protein-1 (SP-1) binding GC-box in the srebp-2 promoter, which is responsible for enhancing the promoter activity and responding to curcumin in HSCs. Curcumin suppresses gene expression of SP-1 and reduces its trans-activation activity, which are mediated by the activation of PPARgamma. The inhibitory effect of curcumin on SP-1 binding to the GC-box is confirmed by chromatin immuno-precipitation. In summary, our results demonstrate that curcumin inhibits srebp-2 expression in cultured HSCs by activating PPARgamma and reducing the SP-1 activity, leading to the repression of ldlr expression. These results provide novel insights into molecular mechanisms by which curcumin inhibits LDL-induced HSC activation.

  19. Expression of a foreign Rubisco small subunit in tobacco with reduced levels of the native protein

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The cDNA, ArRbcS3, for the small subunit of Rubisco from Amaranthus retroflexus (pigweed) was expressed in tobacco (Nicotiana tabacum) under the control of a strong leaf-specific Lhcb promoter. The coding region of the ArRbcS3 was fused to the plastid targeting sequence of the native tobacco rbcS to...

  20. Thymoquinone inhibits cancer metastasis by downregulating TWIST1 expression to reduce epithelial to mesenchymal transition

    PubMed Central

    Khan, Md. Asaduzzaman; Tania, Mousumi; Wei, Chunli; Mei, Zhiqiang; Fu, Shelly; Cheng, Jingliang; Xu, Jianming; Fu, Junjiang

    2015-01-01

    Proteins that promote epithelial to mesenchymal transition (EMT) are associated with cancer metastasis. Inhibition of EMT regulators may be a promising approach in cancer therapy. In this study, Thymoquinone (TQ) was used to treat cancer cell lines to investigate its effects on EMT-regulatory proteins and cancer metastasis. We show that TQ inhibited cancer cell growth, migration and invasion in a dose-dependent manner. At the molecular level, TQ treatment decreased the transcriptional activity of the TWIST1 promoter and the mRNA expression of TWIST1, an EMT-promoting transcription factor. Accordingly, TQ treatment also decreased the expression of TWIST1-upregulated genes such as N-Cadherin and increased the expression of TWIST1-repressed genes such as E-Cadherin, resulting in a reduction of cell migration and invasion. TQ treatment also inhibited the growth and metastasis of cancer cell-derived xenograft tumors in mice but partially attenuated the migration and invasion in TWIST1-overexpressed cell lines. Furthermore, we found that TQ treatment enhanced the promoter DNA methylation of the TWIST1 gene in BT 549 cells. Together, these results demonstrate that TQ treatment inhibits TWIST1 promoter activity and decreases its expression, leading to the inhibition of cancer cell migration, invasion and metastasis. These findings suggest TQ as a potential small molecular inhibitor of cancer growth and metastasis. PMID:26023736

  1. SRC Inhibition Reduces NR2B Surface Expression and Synaptic Plasticity in the Amygdala

    ERIC Educational Resources Information Center

    Sinai, Laleh; Duffy, Steven; Roder, John C.

    2010-01-01

    The Src protein tyrosine kinase plays a central role in the regulation of N-methyl-d-aspartate receptor (NMDAR) activity by regulating NMDAR subunit 2B (NR2B) surface expression. In the amygdala, NMDA-dependent synaptic plasticity resulting from convergent somatosensory and auditory inputs contributes to emotional memory; however, the role of Src…

  2. Eriodictyol Protects Endothelial Cells against Oxidative Stress-Induced Cell Death through Modulating ERK/Nrf2/ARE-Dependent Heme Oxygenase-1 Expression

    PubMed Central

    Lee, Seung Eun; Yang, Hana; Son, Gun Woo; Park, Hye Rim; Park, Cheung-Seog; Jin, Young-Ho; Park, Yong Seek

    2015-01-01

    The pathophysiology of cardiovascular diseases is complex and may involve oxidative stress-related pathways. Eriodictyol is a flavonoid present in citrus fruits that demonstrates anti-inflammatory, anti-cancer, neurotrophic, and antioxidant effects in a range of pathophysiological conditions including vascular diseases. Because oxidative stress plays a key role in the pathogenesis of cardiovascular disease, the present study was designed to verify whether eriodictyol has therapeutic potential. Upregulation of heme oxygenase-1 (HO-1), a phase II detoxifying enzyme, in endothelial cells is considered to be helpful in cardiovascular disease. In this study, human umbilical vein endothelial cells (HUVECs) treated with eriodictyol showed the upregulation of HO-1 through extracellular-regulated kinase (ERK)/nuclear factor erythroid 2-related factor 2 (Nrf2)/antioxidant response element (ARE) signaling pathways. Further, eriodictyol treatment provided protection against hydrogen peroxide-provoked cell death. This protective effect was eliminated by treatment with a specific inhibitor of HO-1 and RNA interference-mediated knockdown of HO-1 expression. These data demonstrate that eriodictyol induces ERK/Nrf2/ARE-mediated HO-1 upregulation in human endothelial cells, which is directly associated with its vascular protection against oxidative stress-related endothelial injury, and propose that targeting the upregulation of HO-1 is a promising approach for therapeutic intervention in cardiovascular disease. PMID:26132561

  3. Eriodictyol Protects Endothelial Cells against Oxidative Stress-Induced Cell Death through Modulating ERK/Nrf2/ARE-Dependent Heme Oxygenase-1 Expression.

    PubMed

    Lee, Seung Eun; Yang, Hana; Son, Gun Woo; Park, Hye Rim; Park, Cheung-Seog; Jin, Young-Ho; Park, Yong Seek

    2015-01-01

    The pathophysiology of cardiovascular diseases is complex and may involve oxidative stress-related pathways. Eriodictyol is a flavonoid present in citrus fruits that demonstrates anti-inflammatory, anti-cancer, neurotrophic, and antioxidant effects in a range of pathophysiological conditions including vascular diseases. Because oxidative stress plays a key role in the pathogenesis of cardiovascular disease, the present study was designed to verify whether eriodictyol has therapeutic potential. Upregulation of heme oxygenase-1 (HO-1), a phase II detoxifying enzyme, in endothelial cells is considered to be helpful in cardiovascular disease. In this study, human umbilical vein endothelial cells (HUVECs) treated with eriodictyol showed the upregulation of HO-1 through extracellular-regulated kinase (ERK)/nuclear factor erythroid 2-related factor 2 (Nrf2)/antioxidant response element (ARE) signaling pathways. Further, eriodictyol treatment provided protection against hydrogen peroxide-provoked cell death. This protective effect was eliminated by treatment with a specific inhibitor of HO-1 and RNA interference-mediated knockdown of HO-1 expression. These data demonstrate that eriodictyol induces ERK/Nrf2/ARE-mediated HO-1 upregulation in human endothelial cells, which is directly associated with its vascular protection against oxidative stress-related endothelial injury, and propose that targeting the upregulation of HO-1 is a promising approach for therapeutic intervention in cardiovascular disease. PMID:26132561

  4. Vitamin A supplementation reduces IL-17 and RORc gene expression in atherosclerotic patients.

    PubMed

    Mottaghi, A; Ebrahimof, S; Angoorani, P; Saboor-Yaraghi, A-A

    2014-08-01

    Vitamin A is a potential mediator of T helper cells in atherosclerosis. The purpose of this study was to evaluate the effect of vitamin A supplementation on expression of Th17 cells-related IL-17 and RORc genes in atherosclerotic patients. Thirty one atherosclerotic patients and 15 healthy controls were studied for 4 months. Atherosclerotic patients were randomly divided into vitamin A or placebo groups. Healthy controls and patients in vitamin A group received 25,000 IU retinyl palmitate per day. Peripheral blood mononuclear cells were isolated, cultured and divided into three groups including fresh cells, phytohemagglutinin (PHA)-activated T cells and ox-LDL-activated T cells. Gene expressions of T cells were studied by real-time PCR. In atherosclerotic patients, vitamin A supplementation resulted in significant decrease in IL-17 gene expression by 0.63-fold in fresh cell, 0.82-fold in PHA-activated cells and 0.65-fold in ox-LDL-activated cells (P < 0.05 for all). RORc gene expression in fresh cells as well as ox-LDL-activated cells decreased significantly after vitamin A supplementation in atherosclerotic patients (P = 0.0001 for both). In PHA-activated cells, vitamin A supplementation significantly decreased RORc gene in both atherosclerotic patients and healthy subjects by 0.87-fold and 0.72, respectively, while in placebo group, the RORc gene expression significantly increased by 1.17-fold (P < 0.05 for all). Findings of this study suggest that vitamin A supplementation may be an effective approach to slow progression of atherosclerosis. PMID:24845870

  5. Reduced expression of microenvironmental Th1 cytokines accompanies adenomas-carcinomas sequence of colorectum.

    PubMed

    Cui, Guanglin; Goll, Rasmus; Olsen, Trine; Steigen, Sonja Eriksson; Husebekk, Anne; Vonen, Barthold; Florholmen, Jon

    2007-07-01

    Cytokines have been suggested to be key factors in modulating immune response against tumorigenesis in the microenvironment. Therefore, characterization of cytokine expression along the colorectal adenoma-carcinoma sequence may add important information for understanding the immune-related mechanisms of the development of colorectal carcinoma (CRC). In this study, biopsies from 32 patients with colorectal adenoma (CRA), 20 patients with CRC and 18 healthy controls were examined. Cytokine gene expressions of interleukin-4 (IL-4), IL-10, tumor necrosis factor (TNF)-alpha, interferon (IFN)-gamma and its upstream inducers (IL-12A and IL-18) were measured at messenger RNA (mRNA) level with quantitative real-time PCR (Q-PCR). Cytokine expressing cells were characterized using immunohistochemistry (IHC). A distinct different cytokine profile between adenoma and CRC was observed: the Th1 cytokines (IFN-gamma, TNF-alpha, IL-12A and IL-18) were increased in local tissues of CRA and decreased in CRC. Consistent with the quantitative cytokine data, IHC examinations revealed slightly increased densities of Th1 cytokine-expressing cells in CRA and a remarkably decreased density of the Th1 cells in CRC. In CRA, the cytokine-expressing cells were highly polarized to the subepithelial stroma while the cells were evenly distributed through the stroma in CRC. In conclusion, distinct changes in the Th1 cytokine profile appear along the colorectal adenoma-carcinoma sequence. This may reflect a change in the host immune regulatory function in the adenoma-carcinoma sequence. PMID:17160410

  6. Reduced proximal tubule angiotensin II receptor expression in streptozotocin-induced diabetes mellitus.

    PubMed

    Cheng, H F; Burns, K D; Harris, R C

    1994-12-01

    Diabetes mellitus is characterized by alterations in the intrarenal renin-angiotensin system, including decreases in glomerular angiotensin II (Ang II) receptor density. Since Ang II regulates proximal tubule transport function, the present studies examined whether diabetes altered expression of proximal tubule receptors. In basolateral membranes from 14 day streptozotocin-induced diabetic rats, specific binding of 125I Ang II was decreased to 53 +/- 8% of control (3.2 +/- 0.5 vs. 1.5 +/- 0.2 fmol/mg protein; N = 7; P < 0.02). Similarly, in proximal tubule brush border membranes from diabetic animals, specific binding was decreased to 63 +/- 11% of control (1.1 +/- 0.2 vs 0.6 +/- 0.1 fmol/mg protein; N = 9; P < 0.05). Concomitant insulin treatment reversed the decrease in specific binding of 125I Ang II to basolateral membranes (109 +/- 26% of control; N = 3) and to brush border membranes (85 +/- 17% of control; N = 6). In order to determine if changes in expression of type-1 Ang II receptors (AT1R) accompanied the changes in binding, quantitative polymerase chain reaction of AT1R mRNA was performed and expressed as the ratio of the amplified AT1R to that of an Msc1/Msc1 internal deletion mutant and normalized to that of beta-actin. In total RNA from proximal tubule suspensions of diabetic animals, AT1R mRNA expression decreased by 38% (21 +/- 3 vs. 13 +/- 2 cpm AT1R/cpm deletion mutant/cpm beta actin/10(6); N = 4; P < 0.0025). Insulin treatment reverted AT1R mRNA expression to control levels (22 +/- 3 cpm AT1R/cpm deletion mutant/cpm beta actin/10(6); P < 0.001 compared to the untreated group).(ABSTRACT TRUNCATED AT 250 WORDS) PMID:7700017

  7. Resistance to pathologic cardiac hypertrophy and reduced expression of CaV1.2 in Trpc3-depleted mice.

    PubMed

    Han, Jung Woo; Lee, Young Ho; Yoen, Su-In; Abramowitz, Joel; Birnbaumer, Lutz; Lee, Min Goo; Kim, Joo Young

    2016-10-01

    Sustained elevation of intracellular Ca(2+) concentration ([Ca(2+)]i) reprograms cardiovascular cell fate, leading to cellular hypertrophy via Ca(2+)-calmodulin/calcineurin (Cn)/NFAT activation. Accumulating evidence suggests that transient receptor potential canonical (Trpc) channels play important roles in the development of pathologic cardiac hypertrophy. Here, we demonstrated that Trpc3 mediates pathologic cardiac hypertrophy in neurohumoral elevation via direct regulation of CaV1.2 expressions. Elevated PE (phenylephrine) was maintained in mice by continuous infusion using an osmotic pump. Wild-type (WT) mice, but not Trpc3 (-/-) showed a sudden decrease in blood pressure (BP) or death following elevation of BP under conditions of elevated PE. Trpc3 (-/-) mesenteric artery showed decreased PE-stimulated vasoconstriction. Analysis of morphology, function, and pathologic marker expression revealed that PE elevation caused pathologic cardiac hypertrophy in WT mice, which was prevented by deletion of Trpc3. Interestingly, protection by Trpc3 deletion seemed to be a result of reduced cardiac CaV1.2 expressions. Basal and PE induced increased expression of protein and mRNA of CaV1.2 was decreased in Trpc3 (-/-) heart. Accordingly, altered expression of CaV1.2 was observed by knockdown or stimulation of Trpc3 in cardiomyocytes. These findings suggest that Trpc3 is a mediator of pathologic cardiac hypertrophy not only through mediating part of the Ca(2+) influx, but also through control of CaV1.2 expressions.

  8. Cognitive decline is associated with reduced surface GluR1 expression in the hippocampus of aged rats.

    PubMed

    Yang, Yuan-Jian; Chen, Hai-Bo; Wei, Bo; Wang, Wei; Zhou, Ping-Liang; Zhan, Jin-Qiong; Hu, Mao-Rong; Yan, Kun; Hu, Bin; Yu, Bin

    2015-03-30

    Individual differences in cognitive aging exist in humans and in rodent populations, yet the underlying mechanisms remain largely unclear. Activity-dependent delivery of GluR1-containing AMPA receptor (AMPARs) plays an essential role in hippocampal synaptic plasticity, learning and memory. We hypothesize that alterations of surface GluR1 expression in the hippocampus might correlate with age-related cognitive decline. To test this hypothesis, the present study evaluated the cognitive function of young adult and aged rats using Morris water maze. After the behavioral test, the surface expression of GluR1 protein in hippocampal CA1 region of rats was determined using Western blotting. The results showed that the surface expression of GluR1 in the hippocampus of aged rats that are cognitively impaired was much lower than that of young adults and aged rats with preserved cognitive abilities. The phosphorylation levels of GluR1 at Ser845 and Ser831 sites, which promote the synaptic delivery of GluR1, were also selectively decreased in the hippocampus of aged-impaired rats. Correlation analysis reveals that greater decrease in surface GluR1 expression was associated with worse behavioral performance. These results suggest that reduced surface GluR1 expression may contribute to cognitive decline that occurs in normal aging, and different pattern of surface GluR1 expression might be responsible for the individual differences in cognitive aging. PMID:25697598

  9. Suppressing male spermatogenesis-associated protein 5-like gene expression reduces vitellogenin gene expression and fecundity in Nilaparvata lugens Stål

    PubMed Central

    Ge, Lin-Quan; Xia, Ting; Huang, Bo; Song, Qi-Sheng; Zhang, Hong-Wei; Stanley, David; Yang, Guo-Qing; Wu, Jin-Cai

    2016-01-01

    In our previous study with the brown planthopper (BPH), Nilaparvata lugens, triazophos (tzp) treatments led to substantial up-regulation of a male spermatogenesis-associated protein 5-like gene (NlSPATA5) compared to untreated controls. Mating with tzp-treated males significantly increased fecundity (as numbers of eggs laid), relative to females mated with untreated males. Because SPATA5 acts in mammalian sperm development and is expressed in testes, we posed the hypothesis that NlSPATA5 occurs in BPH seminal fluid and it operates in fecundity via mating. We tested the hypothesis by investigating the influence of suppressing NlSPATA5 expression in BPH males on fecundity. Reduced expression of NlSPATA5 led to decreased male accessory gland protein content and reproductive system development compared to controls. These changes in males led to prolonged pre-oviposition periods and decreased fecundity in females. For both genders, we recorded no difference in the body weight, oviposition periods, and longevity compared to controls. NlSPATA5 suppression in males also led to decreased fat body and ovarian protein content, yeast-like symbionts abundance and ovarian development as well as vitellogenin gene expression in their mating partners. We infer that increased NlSPATA5 expression may be one molecular mechanism of tzp-driven reproduction and population increases in BPH. PMID:27305948

  10. Suppressing male spermatogenesis-associated protein 5-like gene expression reduces vitellogenin gene expression and fecundity in Nilaparvata lugens Stål.

    PubMed

    Ge, Lin-Quan; Xia, Ting; Huang, Bo; Song, Qi-Sheng; Zhang, Hong-Wei; Stanley, David; Yang, Guo-Qing; Wu, Jin-Cai

    2016-01-01

    In our previous study with the brown planthopper (BPH), Nilaparvata lugens, triazophos (tzp) treatments led to substantial up-regulation of a male spermatogenesis-associated protein 5-like gene (NlSPATA5) compared to untreated controls. Mating with tzp-treated males significantly increased fecundity (as numbers of eggs laid), relative to females mated with untreated males. Because SPATA5 acts in mammalian sperm development and is expressed in testes, we posed the hypothesis that NlSPATA5 occurs in BPH seminal fluid and it operates in fecundity via mating. We tested the hypothesis by investigating the influence of suppressing NlSPATA5 expression in BPH males on fecundity. Reduced expression of NlSPATA5 led to decreased male accessory gland protein content and reproductive system development compared to controls. These changes in males led to prolonged pre-oviposition periods and decreased fecundity in females. For both genders, we recorded no difference in the body weight, oviposition periods, and longevity compared to controls. NlSPATA5 suppression in males also led to decreased fat body and ovarian protein content, yeast-like symbionts abundance and ovarian development as well as vitellogenin gene expression in their mating partners. We infer that increased NlSPATA5 expression may be one molecular mechanism of tzp-driven reproduction and population increases in BPH. PMID:27305948

  11. Long-term controlled GDNF over-expression reduces dopamine transporter activity without affecting tyrosine hydroxylase expression in the rat mesostriatal system.

    PubMed

    Barroso-Chinea, Pedro; Cruz-Muros, Ignacio; Afonso-Oramas, Domingo; Castro-Hernández, Javier; Salas-Hernández, Josmar; Chtarto, Abdelwahed; Luis-Ravelo, Diego; Humbert-Claude, Marie; Tenenbaum, Liliane; González-Hernández, Tomás

    2016-04-01

    The dopamine (DA) transporter (DAT) is a plasma membrane glycoprotein expressed in dopaminergic (DA-) cells that takes back DA into presynaptic neurons after its release. DAT dysfunction has been involved in different neuro-psychiatric disorders including Parkinson's disease (PD). On the other hand, numerous studies support that the glial cell line-derived neurotrophic factor (GDNF) has a protective effect on DA-cells. However, studies in rodents show that prolonged GDNF over-expression may cause a tyrosine hydroxylase (TH, the limiting enzyme in DA synthesis) decline. The evidence of TH down-regulation suggests that another player in DA handling, DAT, may also be regulated by prolonged GDNF over-expression, and the possibility that this effect is induced at GDNF expression levels lower than those inducing TH down-regulation. This issue was investigated here using intrastriatal injections of a tetracycline-inducible adeno-associated viral vector expressing human GDNF cDNA (AAV-tetON-GDNF) in rats, and doxycycline (DOX; 0.01, 0.03, 0.5 and 3mg/ml) in the drinking water during 5weeks. We found that 3mg/ml DOX promotes an increase in striatal GDNF expression of 12× basal GDNF levels and both DA uptake decrease and TH down-regulation in its native and Ser40 phosphorylated forms. However, 0.5mg/ml DOX promotes a GDNF expression increase of 3× basal GDNF levels with DA uptake decrease but not TH down-regulation. The use of western-blot under non-reducing conditions, co-immunoprecipitation and in situ proximity ligation assay revealed that the DA uptake decrease is associated with the formation of DAT dimers and an increase in DAT-α-synuclein interactions, without changes in total DAT levels or its compartmental distribution. In conclusion, at appropriate GDNF transduction levels, DA uptake is regulated through DAT protein-protein interactions without interfering with DA synthesis. PMID:26777664

  12. Liver-specific expression of carboxylesterase 1g/esterase-x reduces hepatic steatosis, counteracts dyslipidemia and improves insulin signaling.

    PubMed

    Bahitham, Wesam; Watts, Russell; Nelson, Randal; Lian, Jihong; Lehner, Richard

    2016-05-01

    Ces1g/Es-x deficiency in mice results in weight gain, insulin resistance, fatty liver and hyperlipidemia through upregulation of de novo lipogenesis and oversecretion of triacylglycerol (TG)-rich lipoproteins. Here, we show that restoration of Ces1g/Es-x expression only in the liver significantly reduced hepatic TG concentration accompanied by decreased size of lipid droplets, reduced secretion of very low-density lipoproteins and improved insulin-mediated signal transduction in the liver. Collectively, these results demonstrate that hepatic Ces1g/Es-x plays a critical role in limiting hepatic steatosis, very low-density lipoprotein assembly and in augmenting insulin sensitivity.

  13. Liver-specific expression of carboxylesterase 1g/esterase-x reduces hepatic steatosis, counteracts dyslipidemia and improves insulin signaling.

    PubMed

    Bahitham, Wesam; Watts, Russell; Nelson, Randal; Lian, Jihong; Lehner, Richard

    2016-05-01

    Ces1g/Es-x deficiency in mice results in weight gain, insulin resistance, fatty liver and hyperlipidemia through upregulation of de novo lipogenesis and oversecretion of triacylglycerol (TG)-rich lipoproteins. Here, we show that restoration of Ces1g/Es-x expression only in the liver significantly reduced hepatic TG concentration accompanied by decreased size of lipid droplets, reduced secretion of very low-density lipoproteins and improved insulin-mediated signal transduction in the liver. Collectively, these results demonstrate that hepatic Ces1g/Es-x plays a critical role in limiting hepatic steatosis, very low-density lipoprotein assembly and in augmenting insul