Science.gov

Sample records for ho-1 expression reduces

  1. EGR-1 regulates Ho-1 expression induced by cigarette smoke

    SciTech Connect

    Chen, Huaqun; Wang, Lijuan; Gong, Tao; Yu, Yang; Zhu, Chunhua; Li, Fen; Wang, Li; Li, Chaojun

    2010-05-28

    As an anti-oxidant molecule, heme oxygenase-1 (HO-1) has been implicated in the protection of lung injury by cigarette smoke (CS). The mechanisms regulating its expression have not been defined. In this report, the role of early growth response 1 (EGR-1) in the regulation of Ho-1 expression was investigated. In C57BL/6 mice with CS exposure, HO-1 was greatly increased in bronchial epithelial cells and alveolar inflammatory cells. In primary cultured mouse lung fibroblasts and RAW264.7 cells exposed to cigarette smoke water extract (CSE), an increase in HO-1 protein level was detected. In addition, CSE induced HO-1 expression was decreased in Egr-1 deficient mouse embryo fibroblasts (Egr-1{sup -/-} MEFs). Nuclear localization of EGR-1 was examined in mouse lung fibroblasts after exposure to CSE. Luciferase reporter activity assays showed that the enhancer region of the Ho-1 gene containing a proposed EGR-1 binding site was responsible for the induction of HO-1. A higher increase of alveolar mean linear intercept (Lm) was observed in lung tissues, and a larger increase in the number of total cells and monocytes/macrophages from bronchial alveolar lavage fluid was found in CS-exposed mice by loss of function of EGR-1 treatment. In summary, the present data demonstrate that EGR-1 plays a critical role in HO-1 production induced by CS.

  2. Agmatine Reduces Lipopolysaccharide-Mediated Oxidant Response via Activating PI3K/Akt Pathway and Up-Regulating Nrf2 and HO-1 Expression in Macrophages

    PubMed Central

    Chai, Jianshen; Luo, Li; Hou, Fengyan; Fan, Xia; Yu, Jing; Ma, Wei; Tang, Wangqi; Yang, Xue; Zhu, Junyu; Kang, Wenyuan; Yan, Jun; Liang, Huaping

    2016-01-01

    Macrophages are key responders of inflammation and are closely related with oxidative stress. Activated macrophages can enhance oxygen depletion, which causes an overproduction of reactive oxygen species (ROS) and leads to further excessive inflammatory response and tissue damage. Agmatine, an endogenous metabolite of L-arginine, has recently been shown to have neuroprotective effects based on its antioxidant properties. However, the antioxidant effects of agmatine in peripheral tissues and cells, especially macrophages, remain unclear. In this study we explored the role of agmatine in mediating antioxidant effects in RAW 264.7 cells and studied its antioxidant mechanism. Our data demonstrate that agmatine is an activator of Nrf2 signaling that markedly enhances Nrf2 nuclear translocation, increases nuclear Nrf2 protein level, up-regulates the expression of the Nrf2 downstream effector HO-1, and attenuates ROS generation induced by Lipopolysaccharide (LPS). We further demonstrated that the agmatine-induced activation of Nrf2 is likely through the PI3K/Akt pathway. LY294002, a specific PI3K/Akt inhibitor, abolished agmatine-induced HO-1 up-regulation and ROS suppression significantly. Inhibiting HO-1 pathway significantly attenuated the antioxidant effect of agmatine which the products of HO-1 enzymatic activity contributed to. Furthermore, the common membrane receptors of agmatine were evaluated, revealing that α2-adrenoceptor, I1-imidazoline receptor or I2-imidazoline receptor are not required by the antioxidant properties of agmatine. Taken together, our findings revealed that agmatine has antioxidant activity against LPS-induced ROS accumulation in RAW 264.7 cells involving HO-1 expression induced by Nrf2 via PI3K/Akt pathway activation. PMID:27685463

  3. Exogenous induction of HO-1 alleviates vincristine-induced neuropathic pain by reducing spinal glial activation in mice.

    PubMed

    Shen, Yan; Zhang, Zhi-Jun; Zhu, Ming-Di; Jiang, Bao-Chun; Yang, Tian; Gao, Yong-Jing

    2015-07-01

    Chemotherapy drugs such as vincristine can produce painful peripheral neuropathy for which is still lack of effective treatment. Recent studies have demonstrated that neuroinflammation plays an important role in the pathogenesis of neuropathic pain. Heme oxygenase 1 (HO-1) was shown to mediate the resolution of inflammation. In this study, we investigated the contribution of HO-1 in the modulation of vincristine-induced pain and the mechanisms implicated. Injection of vincristine induced persistent mechanical allodynia and thermal hyperalgesia in mice. The expression of HO-1 mRNA and protein was increased in 2 weeks in the spinal cord. Immunostaining showed that HO-1 was mainly expressed in neurons of spinal cord dorsal horn in naïve animals, but induced in astrocytes and microglia after vincristine injection. Intraperitoneal injection of HO-1 inducer increased HO-1 expression in the spinal cord and attenuated vincristine-induced pain. Persistent induction of HO-1 by intraspinal injection of HO-1-expressing lentivirus alleviated vincristine-induced pain for more than 2 weeks. Furthermore, vincristine induced activation of glial cells (astrocytes and microglia), phosphorylation of MAPKs (JNK, ERK, and p38), and production of TNF-α and monocyte chemoattractant protein-1 in the spinal cord, which were all reduced by intrathecal injection of HO-1 inducer. Taken together, our data provide the first evidence that induction of HO-1 attenuates vincristine-induced neuropathic pain via inhibition of glia-mediated neuroinflammation in the spinal cord. This suggests that exogenously induced HO-1 may have potential as therapy in chemotherapy-induced neuropathic pain.

  4. Substance P Induces HO-1 Expression in RAW 264.7 Cells Promoting Switch towards M2-Like Macrophages

    PubMed Central

    Montana, Giovanna

    2016-01-01

    Substance P (SP) is a neuropeptide that mediates many physiological as well as inflammatory responses. Recently, SP has been implicated in the resolution of inflammation through induction of M2 macrophages phenotype. The shift between M1-like and M2-like, allowing the resolution of inflammatory processes, also takes place by means of hemeoxygenase-1 (HO-1). HO-1 is induced in response to oxidative stress and inflammatory stimuli and modulates the immune response through macrophages polarisation. SP induces HO-1 expression in human periodontal ligament (PDL), the latter potentially plays a role in cytoprotection. We demonstrated that SP promotes M2-like phenotype from resting as well as from M1 macrophages. Indeed, SP triggers the production of interleukine-10 (IL-10), interleukine-4 (IL-4) and arginase-1 (Arg1) without nitric oxide (NO) generation. In addition, SP increases HO-1 expression in a dose- and time-dependent manner. Here we report that SP, without affecting cell viability, significantly reduces the production of pro-inflammatory cytokines and enzymes, such as tumor necrosis factor-alpha (TNF-α), interleukine-6 (IL-6), inducible nitric oxide synthase (iNOS) and cyclooxygenase-2 (COX-2), and ameliorates migration and phagocytic properties in LPS-stimulated RAW 264.7 cells. M2-like conversion required retention of NF-κB p65 into the cytoplasm and HO-1 induced expression. Silencing of the HO-1 mRNA expression reversed the induction of pro-inflammatory cytokines in RAW 264.7 stimulated by LPS and down-regulated anti-inflammatory hallmarks of M2 phenotype. In conclusion, our data show that SP treatment might be associated with anti-inflammatory effects in LPS-stimulated RAW 264.7 cells by suppressing NF-κB activation and inducing HO-1 expression. PMID:27907187

  5. Anti-Inflammatory Effect of Angelica gigas via Heme Oxygenase (HO)-1 Expression.

    PubMed

    Cho, Joon Hyeong; Kwon, Jung Eun; Cho, Youngmi; Kim, Inhye; Kang, Se Chan

    2015-06-15

    Angelica gigas (AG) is effective against various medical conditions such as bacterial infection, inflammation, and cancer. It contains a number of coumarin compounds and the group of interest is the pyranocoumarin, which comprises decursin and decursinol angelate. This group has an effect on controlling inflammation, which is caused by excessive nitric oxide (NO) production. Heme oxygenases (HOs), particularly HO-1, play a role in regulating the production of NO. Thus, this study aimed to investigate the anti-inflammatory effects of AG by measuring HO-1 expression. Treatments with CH2Cl2 layer and Angelica gigas extract (AGE) showed the highest NO inhibition effects. Decursin, decursinol angelate, and nodakenin were isolated from the CH2Cl2 layer of AGE. Decursin also demonstrated the highest anti-oxidative effect among the coumarins. Although decursin had the best NO inhibition and anti-oxidative effects, the effects of AGE treatment far surpassed that of decursin. This is owing to the combination effect of the coumarins present within AGE, which is a solvent extract of AG. The expression of HO-1 is an effective indicator of the anti-inflammatory effects of AG. Based on the results of the coumarin compounds, HO-1 expression was found to be dose dependent and specific to decursin.

  6. Anti-Inflammatory Effect of Angelica gigas via Heme Oxygenase (HO)-1 Expression

    PubMed Central

    Cho, Joon Hyeong; Kwon, Jung Eun; Cho, Youngmi; Kim, Inhye; Kang, Se Chan

    2015-01-01

    Angelica gigas (AG) is effective against various medical conditions such as bacterial infection, inflammation, and cancer. It contains a number of coumarin compounds and the group of interest is the pyranocoumarin, which comprises decursin and decursinol angelate. This group has an effect on controlling inflammation, which is caused by excessive nitric oxide (NO) production. Heme oxygenases (HOs), particularly HO-1, play a role in regulating the production of NO. Thus, this study aimed to investigate the anti-inflammatory effects of AG by measuring HO-1 expression. Treatments with CH2Cl2 layer and Angelica gigas extract (AGE) showed the highest NO inhibition effects. Decursin, decursinol angelate, and nodakenin were isolated from the CH2Cl2 layer of AGE. Decursin also demonstrated the highest anti-oxidative effect among the coumarins. Although decursin had the best NO inhibition and anti-oxidative effects, the effects of AGE treatment far surpassed that of decursin. This is owing to the combination effect of the coumarins present within AGE, which is a solvent extract of AG. The expression of HO-1 is an effective indicator of the anti-inflammatory effects of AG. Based on the results of the coumarin compounds, HO-1 expression was found to be dose dependent and specific to decursin. PMID:26083119

  7. Heme Oxygenase-1 (HO-1) Expression in Prostate Cancer Cells Modulates the Oxidative Response in Bone Cells

    PubMed Central

    Ferrando, Mercedes; Wan, Xinhai; Meiss, Roberto; Yang, Jun; De Siervi, Adriana; Navone, Nora; Vazquez, Elba

    2013-01-01

    Prostate cancer (PCa) is a leading cause of death among males. It is currently estimated that inflammatory responses are linked to 15-20% of all deaths from cancer worldwide. PCa is dominated by complications arising from metastasis to the bone where the tumor cells interact with the bone microenvironment impairing the balance between bone formation and degradation. However, the molecular nature of this interaction is not completely understood. Heme oxygenase-1 (HO-1) counteracts oxidative damage and inflammation. Previous studies from our laboratory showed that HO-1 is implicated in PCa, demonstrating that endogenous HO-1 inhibits bone derived-prostate cancer cells proliferation, invasion and migration and decreases tumor growth and angiogenesis in vivo. The aim of this work was to analyze the impact of HO-1 modulated PCa cells on osteoblasts proliferation in vitro and on bone remodeling in vivo. Using a co-culture system of PC3 cells with primary mice osteoblasts (PMOs), we demonstrated that HO-1 pharmacological induction (hemin treatment) abrogated the diminution of PMOs proliferation induced by PCa cells and decreased the expression of osteoclast-modulating factors in osteoblasts. No changes were detected in the expression of genes involved in osteoblasts differentiation. However, co-culture of hemin pre-treated PC3 cells (PC3 Hem) with PMOs provoked an oxidative status and activated FoxO signaling in osteoblasts. The percentage of active osteoblasts positive for HO-1 increased in calvarias explants co-cultured with PC3 Hem cells. Nuclear HO-1 expression was detected in tumors generated by in vivo bone injection of HO-1 stable transfected PC3 (PC3HO-1) cells in the femur of SCID mice. These results suggest that HO-1 has the potential to modify the bone microenvironment impacting on PCa bone metastasis. PMID:24224047

  8. Activation of the complement cascade enhances motility of leukemic cells by downregulating expression of HO-1

    PubMed Central

    Abdelbaset-Ismail, A; Borkowska-Rzeszotek, S; Kubis, E; Bujko, K; Brzeźniakiewicz-Janus, K; Bolkun, L; Kloczko, J; Moniuszko, M; Basak, G W; Wiktor-Jedrzejczak, W; Ratajczak, M Z

    2017-01-01

    As a crucial arm of innate immunity, the complement cascade (ComC) is involved both in mobilization of normal hematopoietic stem/progenitor cells (HSPCs) from bone marrow (BM) into peripheral blood and in their homing to BM. Despite the fact that ComC cleavage fragments alone do not chemoattract normal HSPCs, we found that leukemia cell lines as well as clonogenic blasts from chronic myeloid leukemia and acute myeloid leukemia patients respond robustly to C3 and C5 cleavage fragments by chemotaxis and increased adhesion. This finding was supported by the detection of C3a and C5a receptors in cells from human malignant hematopoietic cell lines and patient blasts at the mRNA (reverse transcriptase-polymerase chain reaction) and protein level (fluorescence-activated cell sorting), and by the demonstration that these receptors respond to stimulation by C3a and C5a by phosphorylation of p42/44 and p38 mitogen-activated protein kinases (MAPK), and protein kinase B (PKB/AKT). We also found that inducible heme oxygenase 1 (HO-1) is a negative regulator of ComC-mediated trafficking of leukemic cells, and that stimulation of leukemic cells by C3 or C5 cleavage fragments activates p38 MAPK, which downregulates HO-1 expression, rendering cells more mobile. We conclude that activation of the ComC in leukemia/lymphoma patients (for example, as a result of accompanying infections) enhances the motility of malignant cells and contributes to their spread in a p38 MAPK–HO-1-dependent manner. Therefore, inhibition of p38 MAPK or upregulation of HO-1 by small-molecule modulators would have a beneficial effect on ameliorating cell migration-mediated expansion of leukemia/lymphoma cells when the ComC becomes activated. PMID:27451975

  9. Resolvin D1 reduces deterioration of tight junction proteins by upregulating HO-1 in LPS-induced mice.

    PubMed

    Xie, Wanli; Wang, Huiqing; Wang, Lei; Yao, Chengye; Yuan, Ruixia; Wu, Qingping

    2013-09-01

    Acute lung injury (ALI) and acute respiratory distress syndrome (ARDS) is characterized by increased pulmonary permeability with high mortality. Resolvin D1 (RvD1), which has potent anti-inflammatory and pro-resolving activity, can attenuate pulmonary edema in the animal model of ALI. However, the mechanism underlying the protection of RvD1 on pulmonary edema is still unknown. Here we explore the effects and mechanism of RvD1 on the disruption of tight junction protein that results in the permeability edema in a model of lipopolysaccharide (LPS)-induced ALI. The severity of pulmonary edema was assessed by wet-to-dry rate and Evans blue infiltration; expressions of tight junction (TJ) proteins occludin and zona occludin-1 (ZO-1) were examined by immunofluorescence staining and western blot; mRNA in lung tissue was studied by real time-PCR; the TUNEL kit was performed for the detection of apoptosis of pulmonary barrier. Twenty-four hours after LPS inhalation by mice, wet-to-dry rate and Evans blue infiltration indicated that pretreatment with RvD1 relieved the pulmonary edema and pulmonary capillary permeability. Moreover, RvD1 attenuated the LPS-induced deterioration of TJ protein ZO-1 and occludin significantly. And we found that RvD1 increased heme oxygenase-1 (HO-1) expression contributed to the protection on the deterioration of TJs. In addition, we found that RvD1 could reduce pulmonary cellular apoptosis in LPS-induced mice. In conclusion, RvD1 possesses the ability that relieves the pulmonary edema and restores pulmonary capillary permeability and reduces disruption of TJs in LPS-induced ALI of mice, at least in part, by upregulating HO-1 expression.

  10. The antioxidant effects of isorhamnetin contribute to inhibit COX-2 expression in response to inflammation: a potential role of HO-1.

    PubMed

    Seo, Kyuhwa; Yang, Ji Hye; Kim, Sang Chan; Ku, Sae Kwang; Ki, Sung Hwan; Shin, Sang Mi

    2014-06-01

    Previously, we reported that isorhamnentin, a 3'-O-methylated metabolite of quercetin, reduced inducible nitric oxide synthase (iNOS) expression and NO production. The present study further investigated the underlying mechanism of anti-inflammatory and antioxidant effects of isorhamnentin. Administration of isorhamnetin decreased the number of cyclooxygenase-2 (COX-2) positive cells in rats with carrageenan-induced paw edema. Isorhamnetin also suppressed lipopolysaccharide (LPS)-induced expression of COX-2 in cells. It is well known that LPS-induced reactive oxygen species (ROS) production leads to COX-2 induction. Isorhamnetin decreased LPS-induced ROS production and apoptosis. In addition, the basal expression of heme oxygenase-1 (HO-1) was increased by isorhamnetin treatment in agreement with the increase in nuclear translocation of NF-E2-related factor-2 (Nrf2), an essential transcription factor for the regulation of HO-1 expression. Moreover, pretreatment of tin protoporphyrin IX (SnPP), a chemical inhibitor of HO-1, reversed the ability of isothamnetin to inhibit COX-2 expression. These results demonstrate that induction of HO-1 by isorhamnetin leads to a reduction in ROS production and its antioxidant property might contribute to the inhibition of COX-2 expression in response to inflammation.

  11. Higenamine promotes M2 macrophage activation and reduces Hmgb1 production through HO-1 induction in a murine model of spinal cord injury.

    PubMed

    Zhang, Zhenyu; Li, Mingchao; Wang, Yan; Wu, Jian; Li, Jiaping

    2014-12-01

    Spinal cord injury (SCI) is considered to be primarily associated with loss of motor function and leads to the activation of diverse cellular mechanisms in the central nervous system to attempt to repair the damaged spinal cord tissue. Higenamine (HG) (1-[(4-hydroxyphenyl) methyl]-1,2,3,4-tetrahydroisoquinoline-6,7-diol), an active ingredient of Aconiti Lateralis Radix Praeparata, has been traditionally used as a heart stimulant and anti-inflammatory agent in oriental countries. However, the function and related mechanism of HG on SCI have never been investigated. In our current study, HG treatment displayed increased myelin sparring and enhanced spinal cord repair process. The numbers of CD4(+) T cells, CD8(+) T cells, Ly6G(+) neutrophils and CD11b(+) macrophages were all significantly lower in the HG-treated group than that in the control group after SCI. HG administration increased the expression of IL-4 and IL-10 and promoted M2 macrophage activation. Significantly reduced Hmgb1 expression was also observed in HG-treated mice with SCI. Furthermore, HG treatment promoted HO-1 production. The increased number of M2 macrophages, decreased expression of Hmgb1 and promoted locomotor recovery induced by HG were all reversed with additional HO-1 inhibitor treatment. In conclusion, HG promotes M2 macrophage activation and reduces Hmgb1 expression dependent on HO-1 induction and then promotes locomotor function after SCI.

  12. Hawthorn Fruit Extract Elevates Expression of Nrf2/HO-1 and Improves Lipid Profiles in Ovariectomized Rats

    PubMed Central

    Yoo, Jeong-Hyun; Liu, Yanan; Kim, Hyun-Sook

    2016-01-01

    The purpose of this study was to investigate the effects of hawthorn (Crataegus pinnatifida Bunge) extract on the lipid profiles and antioxidant properties in ovariectomized (OVX) rats. After ovariectomy, the rats were randomly divided into four groups: the non-OVX control (Sham), the OVX-control (OVX), the OVX + 100 mg/kg b.w. of hawthorn extract (OL), and the OVX + 200 mg/kg b.w. of hawthorn extract (OH). The final body weights of the OVX group were significantly increased, but the increment was significantly decreased in hawthorn groups (p < 0.05). The serum total and low-density lipoprotein (LDL) cholesterol levels were significantly elevated in the OVX group, whereas the hawthorn groups showed a significant decrease in these levels (p < 0.05). The hepatic triglyceride (TG) and malondialdehyde (MDA) levels were significantly reduced in the hawthorn groups compared with the OVX group (p < 0.05). The mRNA expression of nuclear factor erythroid 2–related factor (Nrf2), heme oxygenase-1 (HO-1), and glutathione peroxidase (GPx) were significantly decreased in the OVX group, whereas the hawthorn groups exhibited a significant increase in expression (p < 0.05). The protein expressions of Nrf2, HO-1, and GPx were lower in the OVX group than the Sham group (p < 0.05). The oral administration of hawthorn extract reversed the suppression of protein levels. These results suggest that hawthorn extract could have protective effects in OVX rats by improving lipid profiles, decreasing oxidative stress, and improving the antioxidant defense system. PMID:27187458

  13. Hawthorn Fruit Extract Elevates Expression of Nrf2/HO-1 and Improves Lipid Profiles in Ovariectomized Rats.

    PubMed

    Yoo, Jeong-Hyun; Liu, Yanan; Kim, Hyun-Sook

    2016-05-13

    The purpose of this study was to investigate the effects of hawthorn (Crataegus pinnatifida Bunge) extract on the lipid profiles and antioxidant properties in ovariectomized (OVX) rats. After ovariectomy, the rats were randomly divided into four groups: the non-OVX control (Sham), the OVX-control (OVX), the OVX + 100 mg/kg b.w. of hawthorn extract (OL), and the OVX + 200 mg/kg b.w. of hawthorn extract (OH). The final body weights of the OVX group were significantly increased, but the increment was significantly decreased in hawthorn groups (p < 0.05). The serum total and low-density lipoprotein (LDL) cholesterol levels were significantly elevated in the OVX group, whereas the hawthorn groups showed a significant decrease in these levels (p < 0.05). The hepatic triglyceride (TG) and malondialdehyde (MDA) levels were significantly reduced in the hawthorn groups compared with the OVX group (p < 0.05). The mRNA expression of nuclear factor erythroid 2-related factor (Nrf2), heme oxygenase-1 (HO-1), and glutathione peroxidase (GPx) were significantly decreased in the OVX group, whereas the hawthorn groups exhibited a significant increase in expression (p < 0.05). The protein expressions of Nrf2, HO-1, and GPx were lower in the OVX group than the Sham group (p < 0.05). The oral administration of hawthorn extract reversed the suppression of protein levels. These results suggest that hawthorn extract could have protective effects in OVX rats by improving lipid profiles, decreasing oxidative stress, and improving the antioxidant defense system.

  14. Molecular cloning, characterization, and expression of an alfalfa (Medicago sativa L.) heme oxygenase-1 gene, MsHO1, which is pro-oxidants-regulated.

    PubMed

    Fu, Guang-Qing; Xu, Sheng; Xie, Yan-Jie; Han, Bin; Nie, Li; Shen, Wen-Biao; Wang, Ren

    2011-07-01

    It has been documented that plant heme oxygenase-1 (HO-1; EC 1.14.99.3) is both development- and stress-regulated, thus it plays a vital role in light signalling and stress responses. In this study, an alfalfa (Medica sativa L.) HO-1 gene MsHO1 was isolated and sequenced. It contains four exons and three introns within genomic DNA sequence and encodes a polypeptide with 283 amino acids. MsHO1 had a conserved HO signature sequence and showed high similarity to other HOs in plants, especially HO-1 isoform. The MsHO1:GFP fusion protein was localized in the chloroplast. Further biochemical activity analysis of mature MsHO1, which was expressed in Escherichia coli, showed that the Vmax was 48.78 nmol biliverdin-IXα (BV) h⁻¹ nmol⁻¹ protein with an apparent Km value for hemin of 2.33 μM, and the optimum Tm and pH were 37 °C and 7.2, respectively. Results of semi-quantitative RT-PCR and western blot showed that the expressions of MsHO1 were higher in alfalfa stems and leaves than those in germinating seeds and roots. Importantly, MsHO1 gene expression and protein level were induced significantly by some pro-oxidant compounds, including hemin and nitric oxide (NO) donor sodium nitroprusside (SNP). In conclusion, MsHO1 may play an important role in oxidative responses.

  15. Molecular cloning and expression of a cucumber (Cucumis sativus L.) heme oxygenase-1 gene, CsHO1, which is involved in adventitious root formation.

    PubMed

    Li, Mei-Yue; Cao, Ze-Yu; Shen, Wen-Biao; Cui, Jin

    2011-10-15

    Our previous work showed that in cucumber (Cucumis sativus), auxin rapidly induces heme oxygenase (HO) activity and the product of HO action, carbon monoxide (CO), then triggers the signal transduction events leading to adventitious root formation. In this study, the cucumber HO-1 gene (named as CsHO1) was isolated and sequenced. It contains four exons and three introns and encodes a polypeptide of 291 amino acids. Further results show that CsHO1 shares a high homology with plant HO-1 proteins and codes a 33.3 kDa protein with a 65-amino transit peptide, predicting a mature protein of 26.1 kDa. The mature CsHO1 was expressed in Escherichia coli to produce a fusion protein, which exhibits HO activity. The CsHO1:GFP fusion protein was localized in the chloroplast. Related biochemical analyses of mature CsHO1, including Vmax, Km, Topt and pHopt, were also investigated. CsHO1 mRNA was found in germinating seeds, roots, stem, and especially in leaf tissues. Several well-known adventitious root inducers, including auxin, ABA, hemin, nitric oxide donor sodium nitroprusside (SNP), CaCl(2), and sodium hydrosulfide (NaHS), differentially up-regulate CsHO1 transcripts and corresponding protein levels. These results suggest that CsHO1 may be involved in cucumber adventitious rooting.

  16. Fasting-Mimicking Diet Reduces HO-1 to Promote T Cell-Mediated Tumor Cytotoxicity.

    PubMed

    Di Biase, Stefano; Lee, Changhan; Brandhorst, Sebastian; Manes, Brianna; Buono, Roberta; Cheng, Chia-Wei; Cacciottolo, Mafalda; Martin-Montalvo, Alejandro; de Cabo, Rafael; Wei, Min; Morgan, Todd E; Longo, Valter D

    2016-07-11

    Immune-based interventions are promising strategies to achieve long-term cancer-free survival. Fasting was previously shown to differentially sensitize tumors to chemotherapy while protecting normal cells, including hematopoietic stem and immune cells, from its toxic side effects. Here, we show that the combination of chemotherapy and a fasting-mimicking diet (FMD) increases the levels of bone marrow common lymphoid progenitor cells and cytotoxic CD8(+) tumor-infiltrating lymphocytes (TILs), leading to a major delay in breast cancer and melanoma progression. In breast tumors, this effect is partially mediated by the downregulation of the stress-responsive enzyme heme oxygenase-1 (HO-1). These data indicate that FMD cycles combined with chemotherapy can enhance T cell-dependent targeted killing of cancer cells both by stimulating the hematopoietic system and by enhancing CD8(+)-dependent tumor cytotoxicity.

  17. Targeting HO-1 by Epigallocatechin-3-Gallate Reduces Contrast-Induced Renal Injury via Anti-Oxidative Stress and Anti-Inflammation Pathways

    PubMed Central

    Hu, Yunhui; Wu, Xiaoyan; Wang, Yongbin; Zhang, Xiaoqun; Fu, Jinjuan; Zou, Xue; Zhang, Jun; Chen, Xiongwen; Jose, Pedro A.; Lu, Xi; Zeng, Chunyu

    2016-01-01

    Both oxidative stress and inflammation are involved in the pathogenesis of contrast-induced nephropathy (CIN). Epigallocatechin-3-gallate (EGCG), a purified catechin from green tea, has antioxidant and anti-inflammatory effects. However, it is unknown whether or not EGCG is effective in treating CIN. Our present study found that intravenous administration of EGCG, either before or just after the establishment of CIN, had a protective effect, determined by normalization of serum creatinine and blood urea nitrogen levels, improvement in renal histopathological scoring and alleviation of apoptosis, accompanied by decreased oxidative stress and inflammation. Because EGCG is a potent inducer of the antioxidant heme oxygenase-1 (HO-1), we studied HO-1 signaling in CIN. HO-1 levels were increased in CIN; treatment with EGCG further increased HO-1 levels, accompanied by an increase in Nrf2, a regulator of antioxidant proteins. Interestingly, blockade of HO-1 with protoporphyrin IX zinc(II) (ZnPP) prevented the protective effect of EGCG on CIN. ZnPP also blocked the ability of EGCG to increase the activity of an antioxidant (superoxide dismutase), and decrease markers of oxidative stress (myeloperoxidase and malondialdehyde) and inflammation (myeloperoxidase and IL-1β), indicating that HO-1 is the upstream molecule that regulates the EGCG-mediated protection. To determine further the role of HO-1 on the EGCG-mediated inhibition of inflammation, we studied the effect of EGCG on the NLRP3 inflammasome, an upstream signaling of IL-1β. EGCG down-regulated NLRP3 expression, which was blocked by ZnPP, indicating that HO-1 links EGCG with NLRP3. Therefore, EGCG, via up-regulation of HO-1, protects against CIN by amelioration of oxidative stress and inflammation. PMID:26866373

  18. Antioxidant efficacy and the upregulation of Nrf2-mediated HO-1 expression by (+)-lariciresinol, a lignan isolated from Rubia philippinensis, through the activation of p38

    PubMed Central

    Bajpai, Vivek K.; Alam, Md Badrul; Quan, Khong Trong; Kwon, Kyoo-Ri; Ju, Mi-Kyoung; Choi, Hee-Jeong; Lee, Jong Sung; Yoon, Jung-In; Majumder, Rajib; Rather, Irfan A.; Kim, Kangmin; Lee, Sang-Han; Na, MinKyun

    2017-01-01

    The aim of the present study was to examine the antioxidative activity of (+)-lariciresinol (LRSL), an optically active lignan isolated from Rubia philippinensis in several in vitro assays. LRSL was also subjected to evaluate its inhibitory effect against the generation of reactive oxygen species (ROS) in murine macrophage (RAW 264.7) cells. The results showed that LRSL possessed very strong radical scavenging activity and reducing power, as well as inhibited ROS generation in a dose-dependent manner without showing any cytotoxicity. The transcriptional and translational levels of superoxide dismutase (SOD), glutathione peroxidase (GPx) and catalase (CAT) were markedly higher in the sample treated group. LRSL treatment also increased the transcriptional and translational activities of NF-E2-related factor-2 (Nrf-2) with a corresponding increase in the transcriptional and translational activities of the heme oxygenase-1 (HO-1). LRSL activated p38 and treatments with SB239063 (a p38 inhibitor) suppressed the LRSL-induced activation of Nrf2, resulting in a decrease in HO-1 expression. Collectively, the data demonstrated that LRSL has potent antioxidative activity, decreasing ROS generation in RAW 264.7 cells and increasing the transcriptional and translational levels of antioxidant enzymes by activating Nrf2-mediated HO-1 induction via p38 signaling. PMID:28378774

  19. Protective effect of zerumbone reduces lipopolysaccharide-induced acute lung injury via antioxidative enzymes and Nrf2/HO-1 pathway.

    PubMed

    Leung, Wai-Shing; Yang, Ming-Ling; Lee, Shiuan-Shinn; Kuo, Chi-Wen; Ho, Yung-Chyuan; Huang-Liu, Rosa; Lin, Hui-Wen; Kuan, Yu-Hsiang

    2017-05-01

    Acute lung injury (ALI) is a serious disease with high morbidity and mortality rate. Although there are effective strategies for treatment of ALI; a widely accepted specific pharmacotherapy has not yet established. Zerumbone, the major active phytochemical compound from Zingiber zerumbet Smith, exhibits various beneficial biological and pharmacological activities, such as antioxidation, anti-inflammation, immunomodulation, and anti-cancer. We aimed to study the potential protective effects and mechanisms of zerumbone in mouse model of lipopolysaccharide (LPS)-induced ALI. Pretreatment with zerumbone inhibited the histopatholgical changes such as neutrophils infiltration, increased in alveolar barrier thickness, hemorrhage, and hyaline membrane formation occurred in lungs in LPS-induced ALI. In addition, not only LPS-induced activation of myeloperoxidase (MPO) and metallopeptidase-9 (MMP-9) was suppressed by zerumbone, but also lipid peroxidation in lungs was inhibited as well. Moreover, pretreatment with zerumbone reversed the antioxidative enzymes activities, including superoxide dismutase, catalase, and glutathione peroxidase, decreased by LPS and enhanced the expression of nuclear factor erythroid 2-related factor (Nrf2) and heme oxygenase (HO-1) induced by LPS. These results from present study suggested that the protective mechanisms of zerumbone on LPS-induced ALI were via up-regulation of antioxidative enzymes and Nrf2/HO-1 pathway.

  20. Beneficial effects of the transgenic expression of human sTNF-αR-Fc and HO-1 on pig-to-mouse islet xenograft survival.

    PubMed

    Yan, Ji-Jing; Yeom, Hye-Jeong; Jeong, Jong Cheol; Lee, Jae-Ghi; Lee, Eun Won; Cho, Bumrae; Lee, Han Sin; Kim, Su Jin; Hwang, Jong-Ik; Kim, Sung Joo; Lee, Byeong-Chun; Ahn, Curie; Yang, Jaeseok

    2016-02-01

    Both human soluble tumor necrosis factor-α receptor-Fc (sTNF-αR-Fc) and heme oxygenase-1 (HO-1) transgenic pigs have been generated previously for xenotransplantation. Here, we investigated whether overexpression of sTNF-αR-Fc or HO-1 in pig islets prolongs islet xenograft survival. Adult porcine islets were isolated from human sTNF-αR-Fc or HO-1 transgenic and wild type pigs, and were transplanted into diabetic nude mice. Effects of the expression of both genes on islet apoptosis, chemokine expression, cellular infiltration, antibody production, and islet xenograft survival were analyzed. Human sTNF-αR-Fc transgenic pigs successfully expressed sTNF-αR-Fc in the islets; human HO-1 transgenic pigs expressed significant levels of HO-1 in the islets. Pig-to-mouse islet xenograft survival was significantly prolonged in both the sTNF-αR-Fc and HO-1 groups compared with that in the wild type group. Both the sTNF-αR-Fc and HO-1 groups exhibited suppressed intragraft expression of monocyte chemoattractant protein-1 (MCP-1) and decreased perigraft infiltration of immune cells. However, there was no difference in the anti-pig antibody levels between the groups. Apoptosis of islet cells during the early engraftment was suppressed only in the HO-1 group. Porcine islets from both sTNF-αR-Fc and HO-1 transgenic pigs prolonged xenograft survival by suppressing islet cell apoptosis or secondary inflammatory responses following islet death, indicating that these transgenic pigs might have applications in successful islet xenotransplantation.

  1. Baicalein inhibition of oxidative-stress-induced apoptosis via modulation of ERKs activation and induction of HO-1 gene expression in rat glioma cells C6

    SciTech Connect

    Chen, Y.-C. . E-mail: yc3270@tmu.edu.tw; Chow, J.-M.; Lin, C.-W.; Wu, C.-Y.; Shen, S.-C.

    2006-10-15

    In the present study, we examined the protective mechanism of baicalein (BE) and its glycoside, baicalin (BI), on hydrogen-peroxide (H{sub 2}O{sub 2})-induced cell death in rat glioma C6 cells. Results of the MTT assay, LDH release assay, and morphological observation showed that H{sub 2}O{sub 2} addition reduced the viability of C6 cells, and this was prevented by the addition of BE but not BI. Incubation of C6 cells with BE significantly decreased the intracellular peroxide level induced by H{sub 2}O{sub 2} according to flow cytometric analysis using DCHF-DA as a fluorescent substrate. Suppression of H{sub 2}O{sub 2}-induced apoptotic events including DNA ladders, hypodiploid cells, and activation of caspases 3, 8, and, 9 by BE but not BI was identified in C6 cells. The cytotoxicity and phosphorylation of ERK proteins induced by H{sub 2}O{sub 2} were blocked by the ERK inhibitor PD98059. Catalase addition prevented H{sub 2}O{sub 2}-induced ROS production, ERKs protein phosphorylation, and cell death, and BE dose-dependently inhibited H{sub 2}O{sub 2}-induced ERK protein phosphorylation in C6 cells. These data suggest that ROS-scavenging activity is involved in BE prevention of H{sub 2}O{sub 2}-induced cell death via blocking ERKs activation. Additionally, BE but not BI induced heat shock protein 32 (HSP32; HO-1) protein expression in both time- and dose-dependent manners, but not heme oxygenase 2 (HO-2), heat shock protein 70 (HSP70), or heat shock protein 90 (HSP90) protein expression. In the absence of H{sub 2}O{sub 2}, BE induces ERKs protein phosphorylation, and HO-1 protein expression induced by BE was blocked by the addition of cycloheximide, actinomycin D, and the ERK inhibitor PD98059. The addition of the HO inhibitor ZnPP inhibited the protective effect of BE against H{sub 2}O{sub 2}-induced cytotoxicity in C6 cells according to the MTT assay and apoptotic morphology under microscopic observation, accompanied by blocking the ROS-scavenging activity of BE

  2. Long-term aerobic exercise protects against cisplatin-induced nephrotoxicity by modulating the expression of IL-6 and HO-1.

    PubMed

    Miyagi, Mariana Yasue Saito; Seelaender, Marilia; Castoldi, Angela; de Almeida, Danilo Candido; Bacurau, Aline Villa Nova; Andrade-Oliveira, Vinicius; Enjiu, Lucas Maceratesi; Pisciottano, Marcus; Hayashida, Caroline Yuri; Hiyane, Meire Ioshie; Brum, Patricia Chakur; Camara, Niels Olsen Saraiva; Amano, Mariane Tami

    2014-01-01

    Nephrotoxicity is substantial side effect for 30% of patients undergoing cancer therapy with cisplatin and may force them to change or even abandon the treatment. Studies regarding aerobic exercise have shown its efficacy for the treatment of many types of diseases and its capacity to reduce tumors. However, little is known about the impact of physical exercise on cisplatin-induced acute kidney injury (AKI). In the present study, our aim was to investigate the role of physical exercise in AKI induced by cisplatin. We submitted C57Bl6 male mice to seven weeks of chronic exercise on a training treadmill and treated them with single i.p. injection of cisplatin (20 mg/kg) in the last week. Exercise efficacy was confirmed by an increased capillary-to-fiber ratio in the gastrocnemius muscle of exercised groups (EX and CIS-EX). The group submitted to exercise before cisplatin administration (CIS-EX) exhibited less weight loss and decreased serum urea levels compared to the cisplatin group (CIS). Exercise also showed a protective role against cisplatin-induced cell death in the kidney. The CIS-EX group showed a lower inflammatory response, with less TNF and IL-10 expression in the kidney and serum. In the same group, we observed an increase of IL-6 and HO-1 expression in the kidney. Taken together, our results indicate that chronic aerobic exercise is able to attenuate AKI by inducing IL-6 and HO-1 production, which results in lower inflammatory and apoptotic profiles in the kidney.

  3. Protection of chlorophyllin against oxidative damage by inducing HO-1 and NQO1 expression mediated by PI3K/Akt and Nrf2.

    PubMed

    Zhang, Yanlin; Guan, Li; Wang, Xifu; Wen, Tao; Xing, Junjie; Zhao, Jinyuan

    2008-04-01

    Green vegetables are thought to have a chemoprotective effect on the basis of epidemiologic evidence. This study investigated whether chlorophyllin (CHL) could induce antioxidant enzymes and confer protection against oxidative damage. The results showed that CHL could induce HO-1 and NQO1 expression in human umbilical vein endothelial cell (HUVEC) in a time- and dose-dependent manner and protect them against hydrogen peroxide caused oxidative damage. The induction of HO-1 and NQO1 by CHL was accompanied with the accumulation of transcription factor Nrf2 in nucleus and the activation of PI3K/Akt signalling pathway. Additionally, the specific inhibitor of PI3K/Akt could obviously decrease not only the induced expression of HO-1 and NQO1 but also the antioxidant effect of CHL. In conclusion, this study proved that CHL exerts antioxidant effect by inducing HO-1 and NQO1 expression mediated by PI3K/Akt and Nrf2. One thinks CHL may have promise to be prophylactic pharmaceuticals without adverse effects.

  4. Hirsutenone reduces deterioration of tight junction proteins through EGFR/Akt and ERK1/2 pathway both converging to HO-1 induction.

    PubMed

    Seo, Geom Seog; Jiang, Wen-Yi; Park, Pil-Hoon; Sohn, Dong Hwan; Cheon, Jae Hee; Lee, Sung Hee

    2014-07-15

    Oxidative stress-induced disruption of epithelial tight junctions (TJ) plays a critical role in the pathogenesis of intestinal disorders, including inflammatory bowel disease (IBD). The current study investigated the protective effect of hirsutenone against disruption of the intestinal barrier in vitro and in a mouse model of colitis. Caco-2 cells were stimulated with tert-butyl hydroperoxide (t-BH). Hirsutenone prevented the t-BH-induced increase in permeability by inhibiting the reduction in zonula occludens-1 (ZO-1) expression, and rapidly stimulated tyrosine phosphorylation of the epidermal growth factor receptor (EGFR). Hirsutenone-mediated protection against the loss of ZO-1 depends on the activation of both ERK1/2 and Akt signaling pathways. Interestingly, hirsutenone-mediated activation of Akt, but not ERK1/2, signaling was EGFR-dependent. Hirsutenone increased heme oxygenase-1 (HO-1) expression through both EGFR/Akt- and ERK1/2-dependent pathways, contributing to the protective effects against TJ dysfunction. Colitis was induced in mice by intrarectal administration of 2,4,6,-trinitrobenzene sulfonic acid (TNBS). Hirsutenone administration improved the clinical parameters and tissue histological appearance, increased HO-1 expression, attenuated reduction of ZO-1 and occludin mRNA, and promoted BrdU incorporation in the colonic epithelium of TNBS-treated mice. Taken together, our results demonstrate that hirsutenone reverse disordered intestinal permeability by activating EGFR/Akt and ERK1/2 pathways, which are involved in the regulation of HO-1 expression. These findings highlight the potential of hirsutenone for clinical applications in the treatment of IBD.

  5. Deciphering an underlying mechanism of differential cellular effects of nanoparticles: an example of Bach-1 dependent induction of HO-1 expression by gold nanorod.

    PubMed

    Fan, Zhenlin; Yang, Xiao; Li, Yiye; Li, Suping; Niu, Shiwen; Wu, Xiaochun; Wei, Jingyan; Nie, Guangjun

    2012-12-01

    Gold nanoparticles are extensively investigated for their potential biomedical applications. Therefore, it is pertinent to thoroughly evaluate their biological effects at different levels and their underlying molecular mechanism. Frequently, there are discrepancies about the biological effects of various gold nanoparticles among the reports dealing with different models. Most of the studies focused on the different biological effects of various nano-properties of the nanomaterials. We hypothesize that the biological models with different metabolic processes would be taken into account to explain the observed discrepancies of biological effects of nanomaterials. Herein, by using mouse embryo fibroblast cell line (MEF-1) and human embryonal lung fibroblast cell line (MRC-5) as in vitro models, we studied the cellular effects of gold nanorods (AuNRs) coated with poly (diallyldimethyl ammonium chloride) (PDDAC), polyethylene glycol and polystyrene sulfonae (PSS). We found that all three AuNRs had no effects on cellular viability at the concentration of 1 nM; however, AuNRs that coated with PDDAC and PSS induced significant up-regulation of heme oxygenase-1 (HO-1) which was believed to be involved in cellular defense activities in MEF-1 but not in MRC-5 cells. Further study showed that the low fundamental expression of transcription factor Bach-1, the major regulator of HO-1 expression, in MEF-1 was responsible for the up-regulation of HO-1 induced by the AuNRs. Our results indicate that although AuNRs we used are non-cytotoxic, they cell-specifically induce change of gene expression, such as HO-1. Our current study provides a good example to explain the molecular mechanisms of differential biological effects of nanomaterials in different cellular models. This finding raises a concern on evaluation of cellular effects of nanoparticles where the cell models should be critically considered.

  6. Casein Glycomacropeptide Hydrolysates Exert Cytoprotective Effect against Cellular Oxidative Stress by Up-Regulating HO-1 Expression in HepG2 Cells

    PubMed Central

    Li, Tiange; Chen, Bin; Du, Min; Song, Jiajia; Cheng, Xue; Wang, Xu; Mao, Xueying

    2017-01-01

    Oxidative stress is considered as an important mediator in the progression of metabolic disorders. The objective of this study was to investigate the potential hepatoprotective effects and mechanisms of bovine casein glycomacropeptide hydrolysates (GHP) on hydrogen peroxide (H2O2)-induced oxidative damage in HepG2 cells. Results showed that GHP significantly blocked H2O2-induced intracellular reactive oxygen species (ROS) generation and cell viability reduction in a dose-dependent manner. Further, GHP concentration-dependently induced heme oxygenase-1 (HO-1) expression and increased nuclear factor-erythroid 2-related factor 2 (Nrf2) nuclear translocation. Moreover, pretreatment of GHP increased the activation of p38 mitogen-activated protein kinase (p38 MAPK) and extracellular signal-regulated protein kinase 1/2 (ERK1/2), which were shown to contribute to Nrf2-mediated HO-1 expression. Taken together, GHP protected HepG2 cells from oxidative stress by activation of Nrf2 and HO-1 via p38 MAPK and ERK1/2 signaling pathways. Our findings indicate that bovine casein glycomacropeptide hydrolysates might be a potential ingredient in the treatment of oxidative stress-related disorders and further studies are needed to investigate the protective effects in vivo. PMID:28098837

  7. Novel roles of c-Met in the survival of renal cancer cells through the regulation of HO-1 and PD-L1 expression.

    PubMed

    Balan, Murugabaskar; Mier y Teran, Eduardo; Waaga-Gasser, Ana Maria; Gasser, Martin; Choueiri, Toni K; Freeman, Gordon; Pal, Soumitro

    2015-03-27

    The receptor tyrosine kinase c-Met is overexpressed in renal cancer cells and can play major role in the growth and survival of tumor. We investigated how the c-Met-mediated signaling through binding to its ligand hepatocyte growth factor (HGF) can modulate the apoptosis and immune escape mechanism(s) of renal cancer cells by the regulations of novel molecules heme oxygenase-1 (HO-1) and programmed death-1 ligand 1 (PD-L1). We found that HGF/c-Met-mediated signaling activated the Ras/Raf pathway and down-regulated cancer cell apoptosis; and it was associated with the overexpression of cytoprotective HO-1 and anti-apoptotic Bcl-2/Bcl-xL. c-Met-induced HO-1 overexpression was regulated at the transcriptional level. Next, we observed that c-Met induction markedly up-regulated the expression of the negative co-stimulatory molecule PD-L1, and this can be prevented following treatment of the cells with pharmacological inhibitors of c-Met. Interestingly, HGF/c-Met-mediated signaling could not induce PD-L1 at the optimum level when either Ras or HO-1 was knocked down. To study the functional significance of c-Met-induced PD-L1 expression, we performed a co-culture assay using mouse splenocytes (expressing PD-L1 receptor PD-1) and murine renal cancer cells (RENCA, expressing high PD-L1). We observed that the splenocyte-mediated apoptosis of cancer cells during co-culture was markedly increased in the presence of either c-Met inhibitor or PD-L1 neutralizing antibody. Finally, we found that both c-Met and PD-L1 are significantly up-regulated and co-localized in human renal cancer tissues. Together, our study suggests a novel mechanism(s) by which c-Met can promote increased survival of renal cancer cells through the regulation of HO-1 and PD-L1.

  8. Novel Roles of c-Met in the Survival of Renal Cancer Cells through the Regulation of HO-1 and PD-L1 Expression*

    PubMed Central

    Balan, Murugabaskar; Mier y Teran, Eduardo; Waaga-Gasser, Ana Maria; Gasser, Martin; Choueiri, Toni K.; Freeman, Gordon; Pal, Soumitro

    2015-01-01

    The receptor tyrosine kinase c-Met is overexpressed in renal cancer cells and can play major role in the growth and survival of tumor. We investigated how the c-Met-mediated signaling through binding to its ligand hepatocyte growth factor (HGF) can modulate the apoptosis and immune escape mechanism(s) of renal cancer cells by the regulations of novel molecules heme oxygenase-1 (HO-1) and programmed death-1 ligand 1 (PD-L1). We found that HGF/c-Met-mediated signaling activated the Ras/Raf pathway and down-regulated cancer cell apoptosis; and it was associated with the overexpression of cytoprotective HO-1 and anti-apoptotic Bcl-2/Bcl-xL. c-Met-induced HO-1 overexpression was regulated at the transcriptional level. Next, we observed that c-Met induction markedly up-regulated the expression of the negative co-stimulatory molecule PD-L1, and this can be prevented following treatment of the cells with pharmacological inhibitors of c-Met. Interestingly, HGF/c-Met-mediated signaling could not induce PD-L1 at the optimum level when either Ras or HO-1 was knocked down. To study the functional significance of c-Met-induced PD-L1 expression, we performed a co-culture assay using mouse splenocytes (expressing PD-L1 receptor PD-1) and murine renal cancer cells (RENCA, expressing high PD-L1). We observed that the splenocyte-mediated apoptosis of cancer cells during co-culture was markedly increased in the presence of either c-Met inhibitor or PD-L1 neutralizing antibody. Finally, we found that both c-Met and PD-L1 are significantly up-regulated and co-localized in human renal cancer tissues. Together, our study suggests a novel mechanism(s) by which c-Met can promote increased survival of renal cancer cells through the regulation of HO-1 and PD-L1. PMID:25645920

  9. Agrimonolide and Desmethylagrimonolide Induced HO-1 Expression in HepG2 Cells through Nrf2-Transduction and p38 Inactivation

    PubMed Central

    Chen, Lei; Teng, Hui; Zhang, Kalin Yanbo; Skalicka-Woźniak, Krystyna; Georgiev, Milen I.; Xiao, Jianbo

    2017-01-01

    Agrimonolide and desmethylagrimonolide are the main bioactive polyphenols in agrimony with well-documented antioxidant, anti-diabetic, and anti-inflammatory potential. We report here for the first time that agrimonolide and desmethylagrimonolide stimulate the expression of phase II detoxifying enzymes through the Nrf2-dependent signaling pathway. Agrimonolide and desmethylagrimonolide also possess considerable protective activity from oxidative DNA damage. In order to explore the cytoprotective potential of agrimonolide and desmethylagrimonolide on oxidative stress in liver, we developed an oxidative stress model in HepG2 cells, and check the hypothesis whether Nrf2 pathway is involved. Western blotting and luciferase assay revealed that exposure of HepG2 cells to agrimonolide or desmethylagrimonolide leads to increased heme oxygenase-1 (HO-1) expression by activating ARE through induction of Nrf2 and suppression of Kelch-like ECH-associated protein 1 (Keap1). Moreover, agrimonolide and desmethylagrimonolide also activated ERK signaling pathways and significantly attenuated individual p38 MAPK expression, subsequently leading to Nrf2 nuclear translocation. In conclusion, our results indicated that transcriptional activation of Nrf2/ARE is critical in agrimonolide and desmethylagrimonolide-mediated HO-1 induction, which can be regulated partially by the blockade of p38 MAPK signaling pathway and inhibiting nuclear translocation of Nrf2. PMID:28119605

  10. Protective effect of Xuebijing injection on D-galactosamine- and lipopolysaccharide-induced acute liver injury in rats through the regulation of p38 MAPK, MMP-9 and HO-1 expression by increasing TIPE2 expression.

    PubMed

    Liu, Ming-Wei; Liu, Rong; Wu, Hai-Yin; Zhang, Wei; Xia, Jing; Dong, Min-Na; Yu, Wen; Wang, Qiang; Xie, Feng-Mei; Wang, Rui; Huang, Yun-Qiao; Qian, Chuan-Yun

    2016-11-01

    Xuebijing injection (XBJ) has long been used to treat infectious diseases in China. The therapeutic effect of XBJ is probably associated with anti-inflammatory effects. However, the precise mechanisms responsible for the effects of XBJ remain unknown. The present study was conducted in order to evaluate the protective effects of XBJ in a rat model of D-galactosamine (D-Gal)- and lipopolysaccharide (LPS)‑induced acute liver injury. In the present study, the rats were injected with D-Gal and LPS intraperitoneally to induce acute liver injury. Two hours prior to D-Gal and LPS administration, the treatment group was administered XBJ by intravenous infusion. The effects of XBJ on D-Gal- and LPS-induced expression of tumor necrosis factor (TNF)‑alpha‑induced protein 8-like 2 (TIPE2), nuclear factor-κB (NF-κB), matrix metalloproteinase-9 (MMP-9) and heme oxygenase-1 (HO-1) as well as mitogen-activated protein kinase (MAPK) signaling was examined using reverse transcription-quantitative polymerase chain reaction (RT-qPCR), western blot analysis, immunofluorescence, as well as by analysing the serum levels of pro-inflammatory cytokines and the transaminases, alanine aminotransferase (ALT) and aspartate aminotransferase (AST). Myeloperoxidase (MPO), malondialdehyde (MDA) and superoxide dismutase (SOD) levels in the rat liver tissues were also measured. For histological analysis, hematoxylin and eosin (H&E)-stained liver samples were evaluated. The results showed that XBJ upregulated TIPE2 and HO-1 expression, reduced the expression of NF-κB65 and MMP-9, inhibited the LPS-induced gene expression of c-jun N-terminal kinase (JNK) and p38 MAPK, decreased the generation of pro-inflammatory cytokines [interleukin (IL)-6, IL-13 and TNF-α], inhibited ALT and AST activity, and ameliorated D-Gal- and LPS-induced liver injury. The histological results also demonstrated that XBJ attenuated D-Gal- and LPS-induced liver inflammation. It was found that XBJ may

  11. Protective effect of Xuebijing injection on D-galactosamine- and lipopolysaccharide-induced acute liver injury in rats through the regulation of p38 MAPK, MMP-9 and HO-1 expression by increasing TIPE2 expression

    PubMed Central

    Liu, Ming-Wei; Liu, Rong; Wu, Hai-Yin; Zhang, Wei; Xia, Jing; Dong, Min-Na; Yu, Wen; Wang, Qiang; Xie, Feng-Mei; Wang, Rui; Huang, Yun-Qiao; Qian, Chuan-Yun

    2016-01-01

    Xuebijing injection (XBJ) has long been used to treat infectious diseases in China. The therapeutic effect of XBJ is probably associated with anti-inflammatory effects. However, the precise mechanisms responsible for the effects of XBJ remain unknown. The present study was conducted in order to evaluate the protective effects of XBJ in a rat model of D-galactosamine (D-Gal)- and lipopolysaccharide (LPS)-induced acute liver injury. In the present study, the rats were injected with D-Gal and LPS intraperitoneally to induce acute liver injury. Two hours prior to D-Gal and LPS administration, the treatment group was administered XBJ by intravenous infusion. The effects of XBJ on D-Gal- and LPS-induced expression of tumor necrosis factor (TNF)-alpha-induced protein 8-like 2 (TIPE2), nuclear factor-κB (NF-κB), matrix metalloproteinase-9 (MMP-9) and heme oxygenase-1 (HO-1) as well as mitogen-activated protein kinase (MAPK) signaling was examined using reverse transcription-quantitative polymerase chain reaction (RT-qPCR), western blot analysis, immunofluorescence, as well as by analysing the serum levels of pro-inflammatory cytokines and the transaminases, alanine aminotransferase (ALT) and aspartate aminotransferase (AST). Myeloperoxidase (MPO), malondialdehyde (MDA) and superoxide dismutase (SOD) levels in the rat liver tissues were also measured. For histological analysis, hematoxylin and eosin (H&E)-stained liver samples were evaluated. The results showed that XBJ upregulated TIPE2 and HO-1 expression, reduced the expression of NF-κB65 and MMP-9, inhibited the LPS-induced gene expression of c-jun N-terminal kinase (JNK) and p38 MAPK, decreased the generation of pro-inflammatory cytokines [interleukin (IL)-6, IL-13 and TNF-α], inhibited ALT and AST activity, and ameliorated D-Gal- and LPS-induced liver injury. The histological results also demonstrated that XBJ attenuated D-Gal- and LPS-induced liver inflammation. It was found that XBJ may prevent LPS-induced pro

  12. Lannea coromandelica (Houtt.) Merr. Induces Heme Oxygenase 1 (HO-1) Expression and Reduces Oxidative Stress via the p38/c-Jun N-Terminal Kinase–Nuclear Factor Erythroid 2-Related Factor 2 (p38/JNK–NRF2)-Mediated Antioxidant Pathway

    PubMed Central

    Alam, Md Badrul; Kwon, Kyoo-Ri; Lee, Seok-Hyun; Lee, Sang-Han

    2017-01-01

    The leaves of Lannea coromandelica (Houtt.) Merr. are used in the Garo, Pahan, and Teli tribal communities of Bangladesh as a traditional medicinal plant to treat hepatitis, diabetes, ulcers, heart disease, and dysentery. However, there have been limited phytochemical and biological studies on the bark of L. coromandelica. This study aimed to investigate the antioxidant activities of L. coromandelica bark extract (LCBE) and the underlying mechanism using RAW 264.7 cells. The LCBE was analysed by high-pressure liquid chromatography (HPLC) to detect its key polyphenolic compounds. Various in vitro antioxidant assays were performed using RAW 264.7 cells to assess the antioxidant effects of the LCBE and to understand the underlying molecular mechanism. HPLC revealed the presence of gallic acid, (−)-epigallocatechin-3-gallate, catechin, chlorogenic acid, and caffeic acid in the LCBE. The extract showed a very potent capacity to scavenge numerous free radicals through hydrogen atom transfer and/or electron donation and also quenched cellular reactive oxygen species (ROS) generation without showing any toxicity. The LCBE was found to combat the oxidative stress by enhancing the expression, at both transcriptional and translational levels, of primary antioxidant enzymes as well as phase II detoxifying enzymes, especially heme oxygenase 1, through the upregulation of the nuclear factor erythroid 2-related factor 2 (NRF2)-mediated pathway in RAW 264.7 cells via the phosphorylation of p38 kinase and c-Jun N-terminal kinase (JNK). The LCBE exhibited strong antioxidant activities and mitigated the cellular ROS production. These results provide scientific evidence of its potential as an ideal applicant for a cost-effective, readily available, and natural phytochemical, as well as a strategy for preventing diseases associated with oxidative stress and attenuating disease progress. PMID:28146074

  13. α-Dihydroxychalcone-glycoside (α-DHC) isolated from the heartwood of Pterocarpus marsupium inhibits LPS induced MAPK activation and up regulates HO-1 expression in murine RAW 264.7 macrophage

    SciTech Connect

    Chakraborty, Prarthana; Saraswat, Ghungroo; Kabir, Syed N.

    2014-05-15

    Three phenolic glycosides isolated from the heartwood of Pterocarpus marsupium showed significant free radical and superoxide ion scavenging activity and antioxidant potential that were comparable to, or several folds higher than those of standard antioxidants, trolox and ascorbic acid. The effective concentrations of these compounds were far below their cytotoxic levels. Compound 3, which was characterized to be α-dihydroxychalcone-glycoside (α-DHC), was the most potent one. Subsequent studies demonstrated that α-DHC effectively reduced nitric oxide and cytokine production by the LPS stimulated RAW 264.7 mouse macrophage cell line. The compound effectively attenuated the expression of inflammation-mediating enzymes COX-2 and iNOS at the mRNA as well as protein levels in a concentration dependent manner. It prevented phosphorylation of all the three MAPKs (JNK, ERK, p38) and eventually blocked the activation of downstream elements contributing to inflammation. Phosphorylation of IκB-α and subsequent translocation of NF-κB into the nucleus were restricted, while the expression of stress responsive gene HO-1 was up-regulated. α-DHC targeted Keap-1 by modifying its cysteine thiols, dissociating it from Nrf-2 and facilitating nuclear entry of the latter; and this in turn induced HO-1 expression. Thus α-DHC exerts its anti-inflammatory activity in a dual manner: by down regulating MAPKs and restricting nuclear stabilization of NF-κB at one end, and by disrupting Nrf-2–Keap-1 complex on the other. In conclusion, the anti-inflammatory potential together with its high therapeutic index envisages α-DHC as a prospective candidate molecule for the development of therapeutic strategy against inflammatory disorders. - Highlights: • α-DHC isolated from Pterocarpus marsupium has significant antioxidant potential. • α-DHC inhibits NO, IL-6, IL-1β, TNF-α production in LPS-stimulated RAW 264.7 cells. • α-DHC down-regulates of COX-2, iNOS expression in LPS

  14. Aprotinin Inhibits Vascular Smooth Muscle Cell Inflammation and Proliferation via Induction of HO-1

    PubMed Central

    Lee, Dong Hyup; Choi, Hyoung Chul; Lee, Kwang Youn

    2009-01-01

    Aprotinin is used clinically in cardiopulmonary bypass surgery to reduce transfusion requirements and the inflammatory response. The mechanism of action for the anti-inflammatory effects of aprotinin is still unclear. We examined our hypothesis whether inhibitory effects of aprotinin on cytokine-induced inducible nitric oxide synthase (iNOS) expression (IL-1β plus TNF-α), reactive oxygen species (ROS) generation, and vascular smooth muscle cell (VSMC) proliferation were due to HO-1 induction in rat VSMCs. Aprotinin induced HO-1 protein expression in a dose-dependent manner, which was potentiated during inflammatory condition. Aprotinin reduced cytokine mixture (CM)-induced iNOS expression in a dose dependent manner. Furthermore, aprotinin reduced CM-induced ROS generation, cell proliferation, and phosphorylation of JNK but not of P38 and ERK1/2 kinases. Aprotinin effects were reversed by pre-treatment with the HO-1 inhibitor, tin protoporphyrin IX (SnPPIX). HO-1 is therefore closely involved in inflammatory-stimulated VSMC proliferation through the regulation of ROS generation and JNK phosphorylation. Our results suggest a new molecular basis for aprotinin anti-inflammatory properties. PMID:19885007

  15. HO-1 inhibits preadipocyte proliferation and differentiation at the onset of obesity via ROS dependent activation of Akt2

    PubMed Central

    Wagner, Gabriel; Lindroos-Christensen, Josefine; Einwallner, Elisa; Husa, Julia; Zapf, Thea-Christin; Lipp, Katharina; Rauscher, Sabine; Gröger, Marion; Spittler, Andreas; Loewe, Robert; Gruber, Florian; Duvigneau, J. Catharina; Mohr, Thomas; Sutterlüty-Fall, Hedwig; Klinglmüller, Florian; Prager, Gerhard; Huppertz, Berthold; Yun, Jeanho; Wagner, Oswald; Esterbauer, Harald; Bilban, Martin

    2017-01-01

    Excessive accumulation of white adipose tissue (WAT) is a hallmark of obesity. The expansion of WAT in obesity involves proliferation and differentiation of adipose precursors, however, the underlying molecular mechanisms remain unclear. Here, we used an unbiased transcriptomics approach to identify the earliest molecular underpinnings occuring in adipose precursors following a brief HFD in mice. Our analysis identifies Heme Oxygenase-1 (HO-1) as strongly and selectively being upregulated in the adipose precursor fraction of WAT, upon high-fat diet (HFD) feeding. Specific deletion of HO-1 in adipose precursors of Hmox1fl/flPdgfraCre mice enhanced HFD-dependent visceral adipose precursor proliferation and differentiation. Mechanistically, HO-1 reduces HFD-induced AKT2 phosphorylation via ROS thresholding in mitochondria to reduce visceral adipose precursor proliferation. HO-1 influences adipogenesis in a cell-autonomous way by regulating events early in adipogenesis, during the process of mitotic clonal expansion, upstream of Cebpα and PPARγ. Similar effects on human preadipocyte proliferation and differentiation in vitro were observed upon modulation of HO-1 expression. This collectively renders HO-1 as an essential factor linking extrinsic factors (HFD) with inhibition of specific downstream molecular mediators (ROS & AKT2), resulting in diminished adipogenesis that may contribute to hyperplastic adipose tissue expansion. PMID:28102348

  16. Tomato powder impedes the development of azoxymethane-induced colorectal cancer in rats through suppression of COX-2 expression via NF-κB and regulating Nrf2/HO-1 pathway.

    PubMed

    Tuzcu, Mehmet; Aslan, Abdullah; Tuzcu, Zeynep; Yabas, Mehmet; Bahcecioglu, Ibrahim Halil; Ozercan, Ibrahim Hanifi; Kucuk, Omer; Sahin, Kazim

    2012-09-01

    Cancer is one of the leading causes of death worldwide. Since dietary factors have been connected to a reduced risk of a diversity of human cancers, in this study we investigated the effects of tomato powder (TP) on the development of azoxymethane (AOM)-induced colorectal cancer in Wistar rats, and possible mechanism(s) by which TP shows its chemopreventive activity. Here we show that TP added to feed at 5% rate decreases the rate of aberrant crypt foci (ACF) and reduces the development of adenocarcinoma and growth of AOM-induced colorectal cancer in rats. In addition, we demonstrate that TP supplementation shows its chemopreventive activities through inhibition of cyclooxygenase-2 (COX-2) expression via NF-κB pathway and promotion of apoptosis, as well as regulating Nrf2/HO-1 signaling pathway in colorectal tissue of AOM-treated rats. Our findings identify an intimate connection between dietary supplementation of TP and the decreased risk of colorectal cancer in rats, and suggest that consumption of TP would be a natural candidate for the prevention of colorectal cancer in men.

  17. The effect of moderate-intensity exercise on the expression of HO-1 mRNA and activity of HO in cardiac and vascular smooth muscle of spontaneously hypertensive rats.

    PubMed

    Ren, Cailing; Qi, Jie; Li, Wanwei; Zhang, Jun

    2016-04-01

    The objective of this study was to observe the effects of moderate-intensity training on the activity of heme oxygenase (HO) and expression of HO-1 mRNA in the aorta and the cardiac muscle of spontaneously hypertensive rats (SHRs). After 9 weeks of swimming exercise, the activity of HO and expression of HO-1 mRNA in the SHRs were measured. The resting blood pressure in the exercise group was increased by 1.7% (P > 0.05), whereas it was significantly elevated by 10.3% (P < 0.01) in the SHR rats. Compared with animals in the control and sedentary groups, the expression level of HO-1 mRNA of aorta and cardiac muscle in the exercise group was significantly enhanced (P < 0.01). The HO activity and the content of plasma carbon monoxide (CO) in the sedentary group were dramatically decreased (P < 0.05 and P < 0.01, respectively) compared with the control group. HO activity and content of plasma CO in the exercise group were significantly higher compared with those in the sedentary group (P < 0.05 and P < 0.01, respectively). The HO/CO metabolic pathway might be involved in the regulation of blood pressure of the SHR models.

  18. Acute toxicity of a commercial glyphosate formulation on European sea bass juveniles (Dicentrarchus labrax L.): gene expressions of heme oxygenase-1 (ho-1), acetylcholinesterase (AChE) and aromatases (cyp19a and cyp19b).

    PubMed

    Prevot-D'Alvise, N; Richard, S; Coupé, S; Bunet, R; Grillasca, J P

    2013-12-31

    Acute toxicity of Roundup, a commercial glyphosate--based herbicide, was evaluated in a teleost marine fish, the European sea bass, after 96 h of exposure. The LC50 96-h value of Roundup was 529 mg/L. Juveniles (Dicentrarchus labrax L.) were exposed to a sublethal concentration (35% of the LC50, i.e. 193 mg/L) of Roundup for 96-h. The study of heme oxygenase-1 (ho-1) gene expression was performed in four tissues (liver, gills, brain and gonads) and highlighted the disruption of antioxidant defence system. Results showed that ho-1 mRNA levels in liver and gills significantly decreased (p<0.001 and p<0.01 respectively) in fish exposed to 193 mg/L of Roundup, whereas in brain and gonads, ho-1 mRNA level was not altered. The analysis of acetylcholinesterase expression was used to evaluate the overall neurotoxicity of the herbicide and aromatase genes to assess the alteration of the endocrine system. Results showed that AChE and cyp19b gene transcriptions significantly increased (p<0.01) in brain of sea bass, whereas aromatase gene expression (cyp19a) in gonads was not significantly altered. Our results showed complex tissue-specific transcriptional responses after 96 h of exposure to a sublethal concentration. All these disruptions confirmed the deleterious effects of this glyphosate-based herbicide in a marine species.

  19. Resveratrol pretreatment attenuates injury and promotes proliferation of neural stem cells following oxygen-glucose deprivation/reoxygenation by upregulating the expression of Nrf2, HO-1 and NQO1 in vitro

    PubMed Central

    Shen, Changbo; Cheng, Wei; Yu, Pingping; Wang, Li; Zhou, Lulin; Zeng, Li; Yang, Qin

    2016-01-01

    There is considerable interest in the use of drugs and other methods for protecting implanted neural stem cells (NSCs) from the adverse environment of injured tissue for successful cell therapy. Resveratrol can modify cardiac stem cells to enhance their survival and differentiation, however, its effect and the mechanism underlying its neuroprotective effect on NSCs following stroke remain to be fully elucidated. Nuclear factor erythroid 2-related factor 2 (Nrf-2) signaling is important in antioxidative stress, and the role of Nrf-2 signaling in the enhanced neuroprotection of NSCs by resveratrol following stroke also remains to be elucidated. In the present study, NSCs were pretreated with resveratrol prior to oxygen-glucose deprivation/reoxygenation (OGD/R) in vitro. The survival, apoptosis and proliferation of the NSCs were assessed using an MTT assay, Hoechst 33258 staining of nuclei and flow cytometry, respectively. In addition, the activity of superoxide dismutase (SOD), level of malondiadehyde (MDA) and content of glutathione (GSH) were determined. The protein expressions levels of Nrf-2, NAD(P)H:quinone oxidoreductase 1 (NQO-1), and heme oxygenase 1 (HO-1) were detected using western blot analysis. It was found that resveratrol markedly enhanced NSC survival and proliferation, decreased apoptosis and the levels of MDA, and increased the activity of SOD and content of GSH in a concentration-dependent manner following OGD/R injury in vitro. In addition, the protein expression levels of Nrf2, HO-1 and NQO1 were significantly upregulated. These findings suggested that resveratrol attenuated injury and promoted proliferation of the NSCs, at least in part, by upregulating the expression of Nrf2, HO-1 and NQO1 following OGD/R injury in vitro. PMID:27573874

  20. Activated AMPK boosts the Nrf2/HO-1 signaling axis—A role for the unfolded protein response

    PubMed Central

    Zimmermann, Kristin; Baldinger, Johannes; Mayerhofer, Barbara; Atanasov, Atanas G.; Dirsch, Verena M.; Heiss, Elke H.

    2015-01-01

    In light of the emerging interplay between redox and metabolic signaling pathways we investigated the potential cross talk between nuclear factor E2-related factor 2 (Nrf2) and AMP-activated kinase (AMPK), central regulators of the cellular redox and energy balance, respectively. Making use of xanthohumol (XN) as an activator of both the AMPK and the Nrf2 signaling pathway we show that AMPK exerts a positive influence on Nrf2/heme oxygenase (HO)-1 signaling in mouse embryonic fibroblasts. Genetic ablation and pharmacological inhibition of AMPK blunts Nrf2-dependent HO-1 expression by XN already at the mRNA level. XN leads to AMPK activation via interference with mitochondrial function and activation of liver kinase B1 as upstream AMPK kinase. The subsequent AMPK-mediated enhancement of the Nrf2/HO-1 response does not depend on inhibition of the mammalian target of rapamycin, inhibition of glycogen synthase kinase 3β, or altered abundance of Nrf2 (total and nuclear). However, reduced endoplasmic reticulum stress was identified and elaborated as a step in the AMPK-augmented Nrf2/HO-1 response. Overall, we shed more light on the hitherto incompletely understood cross talk between the LKB1/AMPK and the Nrf2/HO-1 axis revealing for the first time involvement of the unfolded protein response as an additional player and suggesting tight cooperation between signaling pathways controlling cellular redox, energy, or protein homeostasis. PMID:25843659

  1. MP4CO, a pegylated hemoglobin saturated with carbon monoxide, is a modulator of HO-1, inflammation, and vaso-occlusion in transgenic sickle mice.

    PubMed

    Belcher, John D; Young, Mark; Chen, Chunsheng; Nguyen, Julia; Burhop, Kenneth; Tran, Phuc; Vercellotti, Gregory M

    2013-10-10

    Transgenic sickle mice expressing β(S) hemoglobin have activated vascular endothelium in multiple organs that exhibits enhanced expression of NF-ĸB and adhesion molecules and promotes microvascular stasis in sickle, but not normal, mice in response to hypoxia/reoxygenation (H/R), or heme. Induction of heme oxygenase-1 (HO-1) or administration of its products, carbon monoxide (CO) or biliverdin, inhibits microvascular stasis in sickle mice. Infusion of human hemoglobin conjugated with polyethylene glycol and saturated with CO (MP4CO) markedly induced hepatic HO-1 activity and inhibited NF-ĸB activation and H/R-induced microvascular stasis in sickle mice. These effects were mediated by CO; saline or MP4 saturated with O2 (MP4OX) had little to no effect on H/R-induced stasis, though unmodified oxyhemoglobin exacerbated stasis. The HO-1 inhibitor, tin protoporphyrin, blocked MP4CO protection, consistent with HO-1 involvement in the protection afforded by MP4CO. MP4CO also induced nuclear factor-erythroid 2 p45-related factor 2 (Nrf2), an important transcriptional regulator of HO-1 and other antioxidant genes. In a heterozygous (hemoglobin-AS) sickle mouse model, intravenous hemin induced cardiovascular collapse and mortality within 120 minutes, which was significantly reduced by MP4CO, but not MP4OX. These data demonstrate that MP4CO induces cytoprotective Nrf2 and HO-1 and decreases NF-ĸB activation, microvascular stasis, and mortality in transgenic sickle mouse models.

  2. Luteolin protects mice from severe acute pancreatitis by exerting HO-1-mediated anti-inflammatory and antioxidant effects

    PubMed Central

    Xiong, Jie; Wang, Kezhou; Yuan, Chunxiao; Xing, Rong; Ni, Jianbo; Hu, Guoyong; Chen, Fengling; Wang, Xingpeng

    2017-01-01

    Reseda odorata L. has long been used in traditional Asian medicine for the treatment of diseases associated with oxidative injury and acute inflammation, such as endotoxemia, acute lung injury, acute myocardial infarction and hepatitis. Luteolin, the main component of Reseda odorata L., which is also widely found in many natural herbs and vege tables, has been shown to induce heme oxygenase-1 (HO-1) expression to exert anti-inflammatory and antioxidant effects. In this study, we aimed to examine the effects of luteolin on mice with severe acute pancreatitis (SAP), and to explore the underlying mechanisms. Cerulein and lipopolysaccharide were used to induce SAP in male Institute of Cancer Research (ICR) mice in the SAP group. The SAP group was divided into 4 subgroups, as follows: the vehicle, luteolin, zinc protoporphyrin (ZnPP) only, and luteolin (Lut) + ZnPP (luteolin plus zinc protoporphyrin treatment) groups. The wet/dry weight ratios, hematoxylin and eosin staining and pathological scores of pancreatic tissues were assessed and compared to those of the control mice. Amylase, lipase, nuclear factor-κB (NF-κB) and myeloperoxidase activities, and malondialdehyde, tumor necrosis factor α (TNFα), interleukin (IL)-6, IL-10 and HO-1 levels, as well as the expression of HO-1 were determined in serum and/or pancreatic tissue samples. SAP was successfully induced in male mice compared to normal control mice. The wet/dry weight ratios, pathological scores, and amylase and lipase activity, as well as the levels of TNFα and IL-6 were significantly reduced in the pancreatic tissues of the mice in the Lut group compared with those of the mice in the vehicle group. The Lut group exhibited a significant increase in HO-1 expression in the pancreas and enhanced serum HO-1 and IL-10 levels compared with the vehicle group. The suppression of HO-1 activity in the ZnPP group significantly abolished the protective effects of luteolin. NF-κB expression in the pancreatic tissues

  3. Mechanism of phytoestrogen puerarin-mediated cytoprotection following oxidative injury: Estrogen receptor-dependent up-regulation of PI3K/Akt and HO-1

    SciTech Connect

    Hwang, Yong Pil; Jeong, Hye Gwang

    2008-12-15

    Phytoestrogens are polyphenolic non-steroidal plant compounds with estrogen-like biological activity. The phytoestrogen puerarin, the main isoflavone glycoside found in the root of Pueraria lobata, has been used for various medicinal purposes in traditional Chinese medicines for thousands of years. Recent studies have indicated that the estrogen receptor (ER), through interaction with p85, regulates phosphoinositide 3-kinase (PI3K) activity, revealing a physiologic, non-nuclear function of ER that may be relevant in cytoprotection. In this study, we demonstrate that the phytoestrogen puerarin inhibits tert-butyl hydroperoxide (t-BHP)-induced oxidative injury via an ER-dependent G{beta}1/PI3K/Akt and heme oxygenase-1 (HO-1) pathway. Pretreatment of Hepa1c1c7 and HepG2 cells with puerarin significantly reduced t-BHP-induced caspase-3 activation and subsequent cell death. Also, puerarin up-regulated HO-1 expression and this expression conferred cytoprotection against oxidative injury induced by t-BHP. Moreover, puerarin induced Nrf2 nuclear translocation, which is upstream of puerarin-induced HO-1 expression, and PI3K activation, a pathway that is involved in induced Nrf2 nuclear translocation, HO-1 expression and cytoprotection. Puerarin-induced up-regulation of HO-1 and cytoprotection against t-BHP were abolished by silencing Nrf2 expression with specific siRNA. Also, puerarin-mediated increases in PI3K activation and HO-1 induction were reversed by co-treatment with ICI 182,780 and pertussis toxin. Taken together, these results suggest that puerarin augments cellular antioxidant defense capacity through ER-dependent HO-1 induction via the G{beta}1/PI3K/Akt-Nrf2 signaling pathway, thereby protecting cells from oxidative stress.

  4. Sex-Dependent Effects of HO-1 Deletion from Adipocytes in Mice

    PubMed Central

    Hosick, Peter A.; Weeks, Mary Frances; Hankins, Michael W.; Moore, Kyle H.; Stec, David E.

    2017-01-01

    Induction of heme oxygenase-1 (HO-1) has been demonstrated to decrease body weight and improve insulin sensitivity in several models of obesity in rodents. To further study the role of HO-1 in adipose tissue, we created an adipose-specific HO-1 knockout mouse model. Male and female mice were fed either a control or a high-fat diet for 30 weeks. Body weights were measured weekly and body composition, fasting blood glucose and insulin levels were determined every six weeks. Adipocyte-specific knockout of HO-1 had no significant effect on body weight in mice fed a high-fat diet but increased body weight in female mice fed a normal-fat diet. Although body weights were not different in females fed a high fat diet, loss of HO-1 in adipocytes resulted in significant alterations in body composition. Adipose-specific HO-1 knockout resulted in increased fasting hyperglycemia and insulinemia in female but not male mice on both diets. Adipose-specific knockout of HO-1 resulted in a significant loss of HO activity and a decrease in the protein levels of adiponectin in adipose tissue. These results demonstrate that loss of HO-1 in adipocytes has greater effects on body fat and fasting hyperglycemia in a sex-dependent fashion and that expression of HO-1 in adipose tissue may have a greater protective role in females as compared to males. PMID:28287466

  5. Relationships between NOS2 and HO-1 in liver of rats with chronic bile duct ligation.

    PubMed

    Flores, Olga; Criado, Manuela; Sánchez-Rodríguez, Angel; Hidalgo, Froilán; Collía, Francisco; López-Novoa, José Miguel; Esteller, Alejandro

    2005-05-01

    An increased expression and activity of the heme oxygenase-1 (HO-1) in the liver has been observed in models of hepatic damage. Nitric oxide (NO) seems to be involved in HO-1 regulation. The aim of this work is to assess HO-1 induction and heme oxygenase (HO) activity in rats with bile duct ligation (BDL). We have assessed the effect of chronic inhibition of the NO synthesis by N(G)-nitro-l-arginine methyl ester (l-NAME) on HO-1 induction and HO activity. In the BDL animals, compared with sham-operated ones, we found an increased plasma nitrite and bilirubin concentration, and a marked liver expression of inducible nitric oxide synthase and HO-1, assessed by both Western blot and immunohistochemistry. Chronic l-NAME treatment prevented plasma nitrite increase in animals subjected to BDL. BDL animals treated with l-NAME, compared with untreated BDL rats, showed an important decrease in HO-1 expression and in HO activity (assessed as a decreased plasma bilirubin and bilirubin excretion). In conclusion, our experiments show parallel changes in expression and activity of HO-1 and NOS2 activity in the BDL model of liver damage and suggest that increased NO production is involved in HO-1 overexpression.

  6. Catalytic inactive heme oxygenase-1 protein regulates its own expression in oxidative stress.

    PubMed

    Lin, Qing S; Weis, Sebastian; Yang, Guang; Zhuang, Tiangang; Abate, Aida; Dennery, Phyllis A

    2008-03-01

    Heme oxygenase-1 (HO-1) catalyzes the degradation of heme and forms antioxidant bile pigments as well as the signaling molecule carbon monoxide. HO-1 is inducible in response to a variety of chemical and physical stress conditions to function as a cytoprotective molecule. Therefore, it is important to maintain the basal level of HO-1 expression even when substrate availability is limited. We hypothesized that the HO-1 protein itself could regulate its own expression in a positive feedback manner, and that this positive feedback was important in the HO-1 gene induction in response to oxidative stress. In cultured NIH 3T3 cells, transfection of HO-1 cDNA or intracellular delivery of pure HO-1 protein resulted in activation of a 15-kb HO-1 promoter upstream of luciferase as visualized by bioluminescent technology and increased HO-1 mRNA and protein levels. These effects were independent of HO activity because an enzymatically inactive mutant form of HO-1 similarly activated the HO-1 promoter and incubation with HO inhibitor metalloporphyrin SnPP did not affect the promoter activation. In addition, HO-1-specific siRNA significantly reduced hemin and cadmium chloride-mediated HO-1 induction. Furthermore, deletion analyses demonstrated that the E1 and E2 distal enhancers of the HO-1 promoter are required for this HO-1 autoregulation. These experiments document feed-forward autoregulation of HO-1 in oxidative stress and suggest that HO-1 protein has a role in the induction process. We speculate that this mechanism may be useful for maintaining HO-1 expression when substrate is limited and may also serve to up-regulate other genes to promote cytoprotection and to modulate cell proliferation.

  7. Protocatechualdehyde Protects Against Cerebral Ischemia-Reperfusion-Induced Oxidative Injury Via Protein Kinase Cε/Nrf2/HO-1 Pathway.

    PubMed

    Guo, Chao; Wang, Shiquan; Duan, Jialin; Jia, Na; Zhu, Yanrong; Ding, Yi; Guan, Yue; Wei, Guo; Yin, Ying; Xi, Miaomaio; Wen, Aidong

    2017-03-01

    Oxidative stress is closely related to the pathogenesis of ischemic stroke. Protocatechualdehyde (PCA) is a phenolic acid compound that has the putative antioxidant activities. The present study was aimed to investigate the molecular mechanisms involved in the antioxidative effect of PCA against cerebral ischemia/reperfusion (I/R) injury. The experiment stroke model was produced in Sprague-Dawley rats via middle cerebral artery occlusion (MCAO). To model ischemia-like conditions in vitro, differentiated SH-SY5Y cells were exposed to transient oxygen and glucose deprivation (OGD). Treatment with PCA significantly improved neurologic score, reduced infarct volume and necrotic neurons, and also decreased reactive oxygen species (ROS) production, 4-hydroxynonenal (4-HNE), and 8-hydroxy-2'-deoxyguanosine (8-OHdG) contents at 24 h after reperfusion. Meanwhile, PCA significantly increased the transcription nuclear factor erythroid 2-related factor 2 (Nrf2) and heme oxygenase-1 (HO-1) expressions in the ischemic cerebral cortex as shown by immunofluorescence staining and Western blot analysis. In vitro experiment showed that PCA protected differentiated SH-SY5Y cells against OGD-induced injury. Likewise, PCA also increased markedly the Nrf2 and HO-1 expressions in a dose-dependent manner. The neuroprotection effect of PCA was abolished by knockdown of Nrf2 and HO-1. Moreover, knockdown of protein kinase Cε (PKCε) also blocked PCA-induced Nfr2 nuclear translocation, HO-1 expression, and neuroprotection. Taken together, these results provide evidences that PCA can protect against cerebral ischemia-reperfusion-induced oxidative injury, and the neuroprotective effect involves the PKCε/Nrf2/HO-1 pathway.

  8. Epigallocatechin-3-gallate (EGCG) protects skin cells from ionizing radiation via heme oxygenase-1 (HO-1) overexpression.

    PubMed

    Zhu, Wei; Xu, Jing; Ge, Yangyang; Cao, Han; Ge, Xin; Luo, Judong; Xue, Jiao; Yang, Hongying; Zhang, Shuyu; Cao, Jianping

    2014-11-01

    Epigallocatechin-3-gallate (EGCG), the major polyphenolic constituent of green tea, is a potent antioxidant and free radical scavenger that may have therapeutic applications for the treatment of many disorders. Radiation therapy is widely used for the treatment of various types of cancers; however, radiation-induced skin injury remains a serious concern. EGCG has not yet been reported as protecting skin cells against ionizing radiation. In the present study, we investigated whether EGCG confers cytoprotection against ionizing radiation. We found that, compared with the control, pretreatment with EGCG significantly enhanced the viability of human skin cells that were irradiated with X-rays, and decreased apoptosis induced by X-ray irradiation. Mito-Tracker assay showed that EGCG suppressed the damage to mitochondria induced by ionizing radiation via upregulation of SOD2. Reactive oxygen species (ROS) in HaCaT cells were significantly reduced when pretreated with EGCG before irradiation. Radiation-induced γH2AX foci, which are representative of DNA double-strand breaks, were decreased by pretreatment with EGCG. Furthermore, EGCG induced the expression of the cytoprotective molecule heme oxygenase-1 (HO-1) in a dose-dependent manner via transcriptional activation. HO-1 knockdown or treatment with the HO-1 inhibitor tin protoporphyrin (SnPPIX) reversed the protective role of EGCG, indicating an important role for HO-1. These results suggest that EGCG offers a new strategy for protecting skin against ionizing radiation.

  9. The ubiquitous PM component Zn2+ induces HO-1 expression through multiple targets in the Nrf2/Keap1 signaling pathway

    EPA Science Inventory

    Oxidant stress can play an important role in particulate matter (PM)–mediated toxicity in the respiratory tract. Zinc (Zn2+) is a ubiquitous component of ambient PM that induces adverse responses such as inflammatory and adaptive gene expression in human airway epithelial c...

  10. Mechanical Stress Changes the Complex Interplay Between HO-1, Inflammation and Fibrosis, During Excisional Wound Repair.

    PubMed

    Cremers, Niels A J; Suttorp, Maarten; Gerritsen, Marlous M; Wong, Ronald J; van Run-van Breda, Coby; van Dam, Gooitzen M; Brouwer, Katrien M; Kuijpers-Jagtman, Anne Marie; Carels, Carine E L; Lundvig, Ditte M S; Wagener, Frank A D T G

    2015-01-01

    Mechanical stress following surgery or injury can promote pathological wound healing and fibrosis, and lead to functional loss and esthetic problems. Splinted excisional wounds can be used as a model for inducing mechanical stress. The cytoprotective enzyme heme oxygenase-1 (HO-1) is thought to orchestrate the defense against inflammatory and oxidative insults that drive fibrosis. Here, we investigated the activation of the HO-1 system in a splinted and non-splinted full-thickness excisional wound model using HO-1-luc transgenic mice. Effects of splinting on wound closure, HO-1 promoter activity, and markers of inflammation and fibrosis were assessed. After seven days, splinted wounds were more than three times larger than non-splinted wounds, demonstrating a delay in wound closure. HO-1 promoter activity rapidly decreased following removal of the (epi)dermis, but was induced in both splinted and non-splinted wounds during skin repair. Splinting induced more HO-1 gene expression in 7-day wounds; however, HO-1 protein expression remained lower in the epidermis, likely due to lower numbers of keratinocytes in the re-epithelialization tissue. Higher numbers of F4/80-positive macrophages, αSMA-positive myofibroblasts, and increased levels of the inflammatory genes IL-1β, TNF-α, and COX-2 were present in 7-day splinted wounds. Surprisingly, mRNA expression of newly formed collagen (type III) was lower in 7-day wounds after splinting, whereas, VEGF and MMP-9 were increased. In summary, these data demonstrate that splinting delays cutaneous wound closure and HO-1 protein induction. The pro-inflammatory environment following splinting may facilitate higher myofibroblast numbers and increase the risk of fibrosis and scar formation. Therefore, inducing HO-1 activity against mechanical stress-induced inflammation and fibrosis may be an interesting strategy to prevent negative effects of surgery on growth and function in patients with orofacial clefts or in patients with

  11. Mechanical Stress Changes the Complex Interplay Between HO-1, Inflammation and Fibrosis, During Excisional Wound Repair

    PubMed Central

    Cremers, Niels A. J.; Suttorp, Maarten; Gerritsen, Marlous M.; Wong, Ronald J.; van Run-van Breda, Coby; van Dam, Gooitzen M.; Brouwer, Katrien M.; Kuijpers-Jagtman, Anne Marie; Carels, Carine E. L.; Lundvig, Ditte M. S.; Wagener, Frank A. D. T. G.

    2015-01-01

    Mechanical stress following surgery or injury can promote pathological wound healing and fibrosis, and lead to functional loss and esthetic problems. Splinted excisional wounds can be used as a model for inducing mechanical stress. The cytoprotective enzyme heme oxygenase-1 (HO-1) is thought to orchestrate the defense against inflammatory and oxidative insults that drive fibrosis. Here, we investigated the activation of the HO-1 system in a splinted and non-splinted full-thickness excisional wound model using HO-1-luc transgenic mice. Effects of splinting on wound closure, HO-1 promoter activity, and markers of inflammation and fibrosis were assessed. After seven days, splinted wounds were more than three times larger than non-splinted wounds, demonstrating a delay in wound closure. HO-1 promoter activity rapidly decreased following removal of the (epi)dermis, but was induced in both splinted and non-splinted wounds during skin repair. Splinting induced more HO-1 gene expression in 7-day wounds; however, HO-1 protein expression remained lower in the epidermis, likely due to lower numbers of keratinocytes in the re-epithelialization tissue. Higher numbers of F4/80-positive macrophages, αSMA-positive myofibroblasts, and increased levels of the inflammatory genes IL-1β, TNF-α, and COX-2 were present in 7-day splinted wounds. Surprisingly, mRNA expression of newly formed collagen (type III) was lower in 7-day wounds after splinting, whereas, VEGF and MMP-9 were increased. In summary, these data demonstrate that splinting delays cutaneous wound closure and HO-1 protein induction. The pro-inflammatory environment following splinting may facilitate higher myofibroblast numbers and increase the risk of fibrosis and scar formation. Therefore, inducing HO-1 activity against mechanical stress-induced inflammation and fibrosis may be an interesting strategy to prevent negative effects of surgery on growth and function in patients with orofacial clefts or in patients with

  12. The cytoprotective effect of isorhamnetin against oxidative stress is mediated by the upregulation of the Nrf2-dependent HO-1 expression in C2C12 myoblasts through scavenging reactive oxygen species and ERK inactivation.

    PubMed

    Choi, Yung Hyun

    2016-04-01

    This study was designed to confirm the protective effects of isorhamnetin against oxidative stress-induced cellular damage. Our results indicated that isorhamnetin inhibited the hydrogen peroxide (H2O2)-induced growth inhibition and exhibited scavenging activity against the intracellular reactive oxygen species (ROS) in mouse-derived C2C12 myoblasts. Isorhamnetin also significantly attenuated H2O2-induced DNA damage and apoptosis, and increased the levels of the nuclear factor erythroid 2-related factor 2 (Nrf2) and its phosphorylation associated with the induction of heme oxygenase-1 (HO-1). However, the protective effects of isorhamnetin on H2O2-induced ROS and growth inhibition were significantly abolished by an HO-1 competitive inhibitor. Moreover, the potential of isorhamnetin to mediate HO-1 induction and protect against H2O2-mediated growth inhibition was abrogated by transient transfection with Nrf2-specific small interfering RNA. Additionally, isorhamnetin induced the activation of mitogen-activated protein kinases (MAPKs), such as extracellular signal-regulated kinase (ERK), c-Jun N-terminal kinase (JNK), and p38 MAPK. However, the specific inhibitor of ERK, but not JNK and p38 MAPK, was able to abolish the HO-1 upregulation and the Nrf2 phosphorylation. Collectively, these results demonstrate that isorhamnetin augments the cellular antioxidant defense capacity by activating the Nrf2/HO-1 pathway involving the activation of the ERK pathway, thus protecting the C2C12 cells from H2O2-induced cytotoxicity.

  13. Omega-3 polyunsaturated fatty acid has an anti-oxidant effect via the Nrf-2/HO-1 pathway in 3T3-L1 adipocytes

    SciTech Connect

    Kusunoki, Chisato; Yang, Liu; Yoshizaki, Takeshi; Nakagawa, Fumiyuki; Ishikado, Atsushi; Kondo, Motoyuki; Morino, Katsutaro; Sekine, Osamu; Ugi, Satoshi; Nishio, Yoshihiko; Kashiwagi, Atsunori; Maegawa, Hiroshi

    2013-01-04

    Highlights: Black-Right-Pointing-Pointer Omega-3 PUFA has a direct anti-oxidant effect in adipocytes. Black-Right-Pointing-Pointer EPA and DHA induce HO-1 expression in 3T3-L1 adipocytes. Black-Right-Pointing-Pointer Omega-3 PUFA and its end-product, 4-HHE, activates the Nrf-2/HO-1 pathway. Black-Right-Pointing-Pointer Omega-3 PUFA protects against oxidative stress-induced cytotoxicity. -- Abstract: Oxidative stress is produced in adipose tissue of obese subjects and has been associated with obesity-related disorders. Recent studies have shown that omega-3 polyunsaturated fatty acid ({omega}3-PUFA) has beneficial effects in preventing atherosclerotic diseases and insulin resistance in adipose tissue. However, the role of {omega}3-PUFA on adipocytes has not been elucidated. In this study, 3T3-L1 adipocytes were treated with {omega}3-PUFA and its metabolites, eicosapentaenoic acid (EPA), docosahexaenoic acid (DHA), or 4-hydroxy hexenal (4-HHE). {omega}3-PUFA and its metabolites dose-dependently increased mRNA and protein levels of the anti-oxidative enzyme, heme oxygenase-1 (HO-1); whereas no changes in the well-known anti-oxidant molecules, superoxide dismutase, catalase, and glutathione peroxidase, were observed. Knockdown of nuclear factor erythroid 2-related factor 2 (Nrf-2) significantly reduced EPA, DHA or 4-HHE-induced HO-1 mRNA and protein expression. Also, pretreatment with {omega}3-PUFA prevented H{sub 2}O{sub 2}-induced cytotoxicity in a HO-1 dependent manner. In conclusion, treatment with EPA and DHA induced HO-1 through the activation of Nrf-2 and prevented oxidative stress in 3T3-L1 adipocytes. This anti-oxidant defense may be of high therapeutic value for clinical conditions associated with systemic oxidative stress.

  14. Heme Oxygenase-1 Deficiency Diminishes Methicillin-Resistant Staphylococcus aureus Clearance Due to Reduced TLR9 Expression in Pleural Mesothelial Cells

    PubMed Central

    Gahlot, Satindra; Nasreen, Najmunnisa; Johnson, Judith A.; Sahn, Steven A.; Mohammed, Kamal A.

    2017-01-01

    Methicillin Resistant Staphylococcus aureus (MRSA) cause pneumonia and empyema thoraces. TLR9 activation provides protection against bacterial infections and Heme oxygenase-1 (HO-1) is known to enhance host innate immunity against bacterial infections. However, it is still unclear whether HO-1 regulates TLR-9 expression in the pleura and modulates the host innate defenses during MRSA empyema. In order to determine if HO-1 regulates host innate immune functions via modulating TLR expression, in MRSA empyema, HO-1+/+ and HO-1-/- mouse pleural mesothelial cells (PMCs) were infected with MRSA (1:10, MOI) in the presence or absence of Cobalt Protoporphyrin (CoPP) and Zinc Protoporphyrin (ZnPP) or CORM-2 (a Carbon monoxide donor) and the expression of mTLR9 and mBD14 was assessed by RT-PCR. In vivo, HO-1+/+ and HO-1-/- mice were inoculated with MRSA (5x106 CFU) intra-pleurally and host bacterial load was measured by CFU, and TLR9 expression in the pleura was determined by histochemical-immunostaining. We noticed MRSA inducing differential expression of TLR9 in HO-1+/+ and HO-1 -/- PMCs. In MRSA infected HO-1+/+ PMCs, TLR1, TLR4, and TLR9 expression was several fold higher than MRSA infected HO-1-/- PMCs. Particularly TLR9 expression was very low in MRSA infected HO-1-/- PMCs both in vivo and in vitro. Bacterial clearance was significantly higher in HO-1+/+ PMCs than compared to HO-1-/- PMCs in vitro, and blocking TLR9 activation diminished MRSA clearance significantly. In addition, HO-1-/- mice were unable to clear the MRSA bacterial load in vivo. MRSA induced TLR9 and mBD14 expression was significantly high in HO-1+/+ PMCs and it was dependent on HO-1 activity. Our findings suggest that HO-1 by modulating TLR9 expression in PMCs promotes pleural innate immunity in MRSA empyema. PMID:28052108

  15. Mechanistic study on the biological effects of silver and gold nanoparticles in Caco-2 cells--induction of the Nrf2/HO-1 pathway by high concentrations of silver nanoparticles.

    PubMed

    Aueviriyavit, Sasitorn; Phummiratch, Duangkamol; Maniratanachote, Rawiwan

    2014-01-03

    The most commonly used metal nanoparticles (NPs) across diverse applications, including in agro-food applications, include silver (AgNPs) and gold (AuNPs). In the present study, we aimed to investigate the biological responses and possible toxicological effects of AgNPs and AuNPs in the Caco-2 cells as an in vitro human GI tract model. Both AgNPs and AuNPs were internalized into the cytoplasm of Caco-2 cells, but not within the nucleus and only exposure to high concentrations of AgNPs, but not AuNPs, caused acute cytotoxicity and depolarization of the mitochondrial membrane potential. In addition, only AgNPs significantly depleted the total intracellular glutathione level, induced the activation of the stress-responsive gene, Nrf2, and dramatically increased the expression of heme oxygenase-1 (HO-1). Furthermore, siRNA silencing of Nrf2 transcripts significantly reduced the AgNP-induced HO-1 mRNA induction, suggesting a key role for Nrf2 in the control of HO-1 expression. Taken together, AgNPs but not AuNPs induced acute cytotoxicity and cellular responses via the oxidative stress-related activation of Nrf2/HO-1 signaling pathway in Caco-2 cells. The expression of HO-1 transcripts may be useful as a sensitive marker for safety evaluation of AgNPs in the GI tract of humans.

  16. Ethanol Extract of Ganoderma lucidum Augments Cellular Anti-oxidant Defense through Activation of Nrf2/HO-1

    PubMed Central

    Lee, Yoo-hwan; Kim, Jung-hee; Song, Choon-ho; Jang, Kyung-jeon; kim, Cheol-hong; Kang, Ji- Sook; Choi, Yung-hyun

    2016-01-01

    Objectives: The mushroom Ganoderma lucidum has been widely used as a traditional herbal medicine for many years. Although several studies have focused on the anti-oxidative activity of this mushroom, the molecular mechanisms underlying its activity have not yet been clearly established. The present study investigated the cytoprotective effect of ethanol extract of Ganoderma lucidum (EGL) against oxidative stress (hydrogen peroxide, H2O2) and elucidated the underlying mechanisms in a C2C12 myoblast cell line. Methods: Oxidative stress markers were determined by using the comet assay to measure reactive oxygen species (ROS) generation and deoxyribonucleic acid (DNA) damage. Cell viability and Western blotting analyses were employed to evaluate the cellular response to EGL and H2O2 in C2C12 cells. Transfection with nuclear factor erythroid 2-related factor 2 (Nrf2)-specific small interfering ribonucleic acid (siRNA) was conducted to understand the relationship between Nrf2 expression and H2O2-induced growth inhibition. Results: The results showed that EGL effectively inhibited H2O2-induced growth and the generation of ROS. EGL markedly suppressed H2O2-induced comet-like DNA formation and phosphorylation of histone H2AX at serine 139 (p-γH2AX), a widely used marker of DNA damage, suggesting that EGL prevented H2O2-induced DNA damage. Furthermore, the EGL treatment effectively induced the expression of Nrf2, as well as heme oxygenase-1 (HO-1), with parallel phosphorylation and nuclear translocation of Nrf2 in the C2C12 myoblasts. However, zinc protoporphyrin IX, a HO-1 inhibitor, significantly abolished the protective effects of EGL against H2O2-induced accumulation of ROS and reduced cell growth. Notably, transient transfection with Nrf2-specific siRNA attenuated the cytoprotective effects and HO-1 induction by EGL, indicating that EGL induced the expression of HO-1 in an Nrf2-dependent manner. Conclusion: Collectively, these results demonstrate that EGL augments the

  17. HO-1, RET and PML as possible markers for risk stratification of acute myelocytic leukemia and prognostic evaluation.

    PubMed

    Yu, Meisheng; Wang, Jishi; Ma, Dan; Chen, Shuya; Lin, Xiaojing; Fang, Qin; Zhe, Nana

    2015-11-01

    Heme oxygenase-1 (HO-1) is an inducible isoform of HO that is activated in response to oxidative stress and has anti-apoptotic and pro-proliferative effects on leukemia cells. RET, a tyrosine kinase receptor; its expression levels are associated with the differentiation degree of acute myelocytic leukemia (AML) cells. The promyelocytic leukemia (PML) gene inhibits cell proliferation and tumor growth, participates in the differentiation of hematopoietic progenitor cells and induces cell apoptosis. However, the association between the expression levels of HO-1, RET and PML genes and the risk stratification of AML and prognosis have not previously been reported. In the present study, HO-1 was expressed in the human AML Kasumi-1, HL-60 and THP-1 cell lines, and HO-1 expression was regulated by Hemin (20 µmol/l) and ZnPPIX (10 µmol/l). Reverse transcription-quantitative polymerase chain reaction (RT-qPCR) analysis demonstrated that expression of RET and PML were positively and negatively correlated with HO-1 expression, respectively. Bone marrow samples (18 favorable, 55 intermediate, 15 adverse and 2 unknown karyotype AML cases and 20 healthy donors) were collected from 90 randomly selected AML patients upon their first visit. The mRNA and protein expression of HO-1, RET and PML in samples was detected by RT-qPCR and western blot analysis. At the mRNA level, the adverse group expressed significantly higher levels of HO-1 and RET compared with the levels in the favorable and normal groups. The PML mRNA expression levels in adverse patient samples was lower compared with those of the intermediate group and favorable group. Western blot analysis demonstrated that the expression levels of HO-1, RET and PML proteins in all risk groups exhibited the same pattern of expression as was observed for the mRNA levels. The overall survival and relapse-free survival rates were shortest in AML patients with high HO-1 expression (Kaplan-Meier; log-rank, P<0.01). The results of the

  18. Knockout of ho-1 protects the striatum from ferrous iron-induced injury in a male-specific manner in mice

    PubMed Central

    Wang, Li-Fang; Yokoyama, Kazunari K.; Lin, Chih-Lung; Chen, Tzu-Yin; Hsiao, Hsiu-Wen; Chiang, Pei-Chi; Hsu, Chin

    2016-01-01

    Men have worse survival than premenopausal women after intracerebral hemorrhage (ICH). After ICH, overproduction of iron associated with induction of heme oxygenase-1 (HO-1) in brain was observed. Rodent ICH model using ferrous citrate (FC)-infusion into the striatum to simulate iron overload, showed a higher degree of injury severity in males than in females. However, the participation of HO-1 in sex-differences of iron-induced brain injury remains unknown. The present results showed a higher level of HO-1 expression associated with more severe injury in males compared with females after FC-infusion. Estradiol (E2) contributed to lower levels of FC-induced HO-1 expression in females compared with males. Heterozygote ho-1 KO decreased the levels of FC-induced injury severity, histological lesions, behavioral deficits, autophagy and autophagic cell death in the striatum of males but not in females. Moreover, ho-1 deficiency enhanced the neuroprotection by E2 only in males. These results suggested that over induction of HO-1 plays a harmful role in FC-induced brain injury in a male-specific manner. Suppression of HO-1 combined with E2 exhibits a synergistic effect on neuroprotection against FC-induced striatal injury in males. These findings open up the prospect for male-specific neuroprotection targeting HO-1 suppression for patients suffering from striatal iron overload. PMID:27198537

  19. Unveiling the Association of STAT3 and HO-1 in Prostate Cancer: Role beyond Heme Degradation1

    PubMed Central

    Elguero, Belen; Gueron, Geraldine; Giudice, Jimena; Toscani, Martin A; De Luca, Paola; Zalazar, Florencia; Coluccio-Leskow, Federico; Meiss, Roberto; Navone, Nora; De Siervi, Adriana; Vazquez, Elba

    2012-01-01

    Activation of the androgen receptor (AR) is a key step in the development of prostate cancer (PCa). Several mechanisms have been identified in AR activation, among them signal transducer and activator of transcription 3 (STAT3) signaling. Disruption of STAT3 activity has been associated to cancer progression. Recent studies suggest that heme oxygenase 1 (HO-1) may play a key role in PCa that may be independent of its catalytic function. We sought to explore whether HO-1 operates on AR transcriptional activity through the STAT3 axis. Our results display that HO-1 induction in PCa cells represses AR activation by decreasing the prostate-specific antigen (PSA) promoter activity and mRNA levels. Strikingly, this is the first report to show by chromatin immunoprecipitation analysis that HO-1 associates to gene promoters, revealing a novel function for HO-1 in the nucleus. Furthermore, HO-1 and STAT3 directly interact as determined by co-immunoprecipitation studies. Forced expression of HO-1 increases STAT3 cytoplasmic retention. When PCa cells were transfected with a constitutively active STAT3 mutant, PSA and STAT3 downstream target genes were abrogated under hemin treatment. Additionally, a significant decrease in pSTAT3 protein levels was detected in the nuclear fraction of these cells. Confocal microscopy images exhibit a decreased rate of AR/STAT3 nuclear co-localization under hemin treatment. In vivo studies confirmed that STAT3 nuclear delimitation was significantly decreased in PC3 tumors overexpressing HO-1 grown as xenografts in nude mice. These results provide a novel function for HO-1 down-modulating AR transcriptional activity in PCa, interfering with STAT3 signaling, evidencing its role beyond heme degradation. PMID:23226098

  20. Role of HO-1 in protective effect of electro-acupuncture against endotoxin shock-induced acute lung injury in rabbits.

    PubMed

    Yu, Jian-Bo; Jianbo, Yu; Dong, Shu-An; Shuan, Dong; Luo, Xiao-Qing; Xiaoqing, Luo; Gong, Li-Rong; Lirong, Gong; Zhang, Yuan; Yuan, Zhang; Wang, Man; Man, Wang; Cao, Xin-Shun; Xinshun, Cao; Liu, Da-Quan; Daquan, Liu

    2013-06-01

    Heme oxygenase (HO)-1 has been reported to play a great role in attenuating lung injury during endotoxic shock in our previous research. Although electro-acupuncture has been explored to reduce oxidative stress and decrease inflammatory reaction in animals with endotoxic shock, the mechanism of this effect is still unclear. The aim of this study was to determine whether HO-1 is involved in the effect of electro-acupuncture on the injured lung during endotoxic shock in rabbits. Sixty New England white rabbits were randomly divided into groups C, Z, ES, EA, AP, and EAZ. Before inducing endotoxic shock, group ES received no electro-acupuncture, while group EA received electro-acupuncture at ST36 (zusanli) and BL13 (feishu) acupoints on both sides for five days and group AP received electro-acupuncture (EA) stimulation at a non-acupoint. Groups ES, AP, EA, and EAZ received LPS to replicate the experimental model of injured lung induced by endotoxic shock, and electro-acupuncture was performed throughout the procedure with the same parameter. Groups EAZ and Z received the HO-1 inhibitor, ZnPP-IX, intraperitoneally. The animals were sacrificed by blood-letting at 6 h after LPS administration. The blood samples were collected for serum examination, and the lungs were removed for pathology examination, detection of alveolaer epithelial cell apoptosis by terminal deoxynucleotidyl transferase-mediated dUTP-biotin nick end labeling assay (TUNEL assay), determination of wet to dry ratio, measurement of Evans blue (EB) contents, and determination of HO-1protein and mRNA expression. According to the results, EA at ST36 and BL13 could increase the expression of HO-1. At the same time, index of quantitative assessment (IQA) score and the number of TUNEL-positive cells decreased, while electro-acupuncture at the other points did not exert this effect, and pretreatment with ZnPP-IX in group EAZ suppressed the efficacy of electro-acupuncture preconditioning. In summary, electro

  1. NO counterbalances HO-1 overexpression-induced acceleration of hepatocyte proliferation in mice.

    PubMed

    Schuett, Harald; Eipel, Christian; Maletzki, Claudia; Menger, Michael D; Vollmar, Brigitte

    2007-06-01

    The trigger for liver regeneration, including shear stress, has been the subject of ongoing debate. Blood vessel-derived gaseous molecules carbon monoxide (CO) and nitric oxide (NO) regulate vascular tone and play an important role in liver regeneration. In heme oxygenase-1 (HO-1) transgenic mice, it has been shown that CO-mediated impairment of vasorelaxation is an NO-dependent event. We therefore studied liver regeneration in HO-1 overexpressing animals in dependency of NO availability. Mice were subjected to (2/3) hepatectomy and were treated with either cobalt protoporphyrin-IX for induction of CO-liberating HO-1, N(omega)-nitro-L-arginine methyl ester (L-NAME) for blockade of NO synthase (NOS) or both. Application of molsidomine in L-NAME treated animals served for resubstitution of NO. Vehicle-treated animals served as respective control animals. We examined 5-bromo-2'-deoxyuridine incorporation and proliferating cell nuclear antigen expression as well as HO-1 and NOS-2 protein levels. Intrahepatic red blood cell velocity and volumetric blood flow were evaluated by in vivo fluorescence microscopy as indicators for microvascular shear stress. Hepatic regeneration remained unaffected by L-NAME application for NOS blockade. However, NOS blockade in HO-1 induced animals caused increased 5-bromo-2'-deoxyuridine and proliferating cell nuclear antigen measures of liver regeneration. In parallel, these animals revealed increased velocities and volumetric blood flow in the terminal afferent vessels and postsinusoidal venules. These local hemodynamic changes including enhanced hepatocyte proliferation could be reversed by NO liberation via molsidomine. The present findings stress the role of NO to counterbalance vascular tone in HO-1 overexpressing animals for maintenance of adequate perfusion and salutary shear force within the hepatic microvasculature upon liver resection.

  2. Catalase prevents maternal diabetes-induced perinatal programming via the Nrf2-HO-1 defense system.

    PubMed

    Chang, Shiao-Ying; Chen, Yun-Wen; Zhao, Xin-Ping; Chenier, Isabelle; Tran, Stella; Sauvé, Alexandre; Ingelfinger, Julie R; Zhang, Shao-Ling

    2012-10-01

    We investigated whether overexpression of catalase (CAT) in renal proximal tubular cells (RPTCs) could prevent the programming of hypertension and kidney disease in the offspring of dams with maternal diabetes. Male offspring of nondiabetic and diabetic dams from two transgenic (Tg) lines (Hoxb7-green fluorescent protein [GFP]-Tg [controls] and Hoxb7/CAT-GFP-Tg, which overexpress CAT in RPTCs) were studied from the prenatal period into adulthood. Nephrogenesis, systolic blood pressure, renal hyperfiltration, kidney injury, and reactive oxygen species (ROS) generation were assessed. Gene expression of transforming growth factor-β1 (TGF-β1), nuclear factor erythroid 2p45-related factor-2 (Nrf2), and heme oxygenase-1 (HO-1) was tested in both in vitro and in vivo studies. Renal dysmorphogenesis was observed in offspring of Hoxb7-GFP-Tg dams with severe maternal diabetes; the affected male offspring displayed higher renal ROS generation and developed hypertension and renal hyperfiltration as well as renal injury with heightened TGF-β1 expression in adulthood. These changes were ameliorated in male offspring of diabetic Hoxb7/CAT-GFP-Tg dams via the Nrf2-HO-1 defense system. CAT promoted Nrf2 nuclear translocation and HO-1 gene expression, seen in both in vitro and in vivo studies. In conclusion, CAT overexpression in the RPTCs ameliorated maternal diabetes-induced perinatal programming, mediated, at least in part, by triggering the Nrf2-HO-1 defense system.

  3. Melatonin prevents hemorrhagic shock-induced liver injury in rats through an Akt-dependent HO-1 pathway.

    PubMed

    Hsu, Jun-Te; Kuo, Chia-Jung; Chen, Tsung-Hsing; Wang, Frank; Lin, Chun-Jun; Yeh, Ta-Sen; Hwang, Tsann-Long; Jan, Yi-Yin

    2012-11-01

    Although melatonin treatment following trauma-hemorrhage or ischemic reperfusion prevents organs from dysfunction and injury, the precise mechanism remains unknown. This study tested whether melatonin prevents liver injury following trauma-hemorrhage involved the protein kinase B (Akt)-dependent heme oxygenase (HO)-1 pathway. After a 5-cm midline laparotomy, male rats underwent hemorrhagic shock (mean blood pressure approximately 40 mmHg for 90 min) followed by fluid resuscitation. At the onset of resuscitation, rats were treated with vehicle, melatonin (2 mg/kg), or melatonin plus phosphoinositide 3-kinase (PI3K) inhibitor wortmannin (1 mg/kg). At 2 hr after trauma-hemorrhage, the liver tissue myeloperoxidase activity, malondialdehyde, adenosine triphosphate, serum alanine aminotransferase, and aspartate aminotransferase levels were significantly increased compared with sham-operated control. Trauma-hemorrhage resulted in a significant decrease in the Akt activation in comparison with the shams (relative density, 0.526 ± 0.031 versus 1.012 ± 0.066). Administration of melatonin following trauma-hemorrhage normalized liver Akt phosphorylation (0.993 ± 0.061), further increased mammalian target of rapamycin (mTOR) activation (5.263 ± 0.338 versus 2.556 ± 0.225) and HO-1 expression (5.285 ± 0.325 versus 2.546 ± 0.262), and reduced cleaved caspase-3 levels (2.155 ± 0.297 versus 5.166 ± 0.309). Coadministration of wortmannin abolished the melatonin-mediated attenuation of the shock-induced liver injury markers. Our results collectively suggest that melatonin prevents hemorrhagic shock-induced liver injury in rats through an Akt-dependent HO-1 pathway.

  4. Antrodia camphorata Potentiates Neuroprotection against Cerebral Ischemia in Rats via Downregulation of iNOS/HO-1/Bax and Activated Caspase-3 and Inhibition of Hydroxyl Radical Formation

    PubMed Central

    Yang, Po-Sheng; Lin, Po-Yen; Chang, Chao-Chien; Yu, Meng-Che; Yen, Ting-Lin; Lan, Chang-Chou; Jayakumar, Thanasekaran; Yang, Chih-Hao

    2015-01-01

    Antrodia camphorata (A. camphorata) is a fungus generally used in Chinese folk medicine for treatment of viral hepatitis and cancer. Our previous study found A. camphorata has neuroprotective properties and could reduce stroke injury in cerebral ischemia animal models. In this study, we sought to investigate the molecular mechanisms of neuroprotective effects of A. camphorata in middle cerebral artery occlusion (MCAO) rats. A selective occlusion of the middle cerebral artery (MCA) with whole blood clots was used to induce ischemic stroke in rats and they were orally treated with A. camphorata (0.25 and 0.75 g/kg/day) alone or combined with aspirin (5 mg/kg/day). To provide insight into the functions of A. camphorata mediated neuroprotection, the expression of Bax, inducible nitric oxide synthase (iNOS), haem oxygenase-1 (HO-1), and activated caspase-3 was determined by Western blot assay. Treatment of aspirin alone significantly reduced the expressions of HO-1 (P < 0.001), iNOS (P < 0.001), and Bax (P < 0.01) in ischemic regions. The reduction of these expressions was more potentiated when rats treated by aspirin combined with A. camphorata (0.75 g/kg/day). Combination treatment also reduced apoptosis as measured by a significant reduction in active caspase-3 expression in the ischemic brain compared to MCAO group (P < 0.01). Moreover, treatment of A. camphorata significantly (P < 0.05) reduced fenton reaction-induced hydroxyl radical (OH•) formation at a dose of 40 mg/mL. Taken together, A. camphorata has shown neuroprotective effects in embolic rats, and the molecular mechanisms may correlate with the downregulation of Bax, iNOS, HO-1, and activated caspase-3 and the inhibition of OH• signals. PMID:26379739

  5. Antrodia camphorata Potentiates Neuroprotection against Cerebral Ischemia in Rats via Downregulation of iNOS/HO-1/Bax and Activated Caspase-3 and Inhibition of Hydroxyl Radical Formation.

    PubMed

    Yang, Po-Sheng; Lin, Po-Yen; Chang, Chao-Chien; Yu, Meng-Che; Yen, Ting-Lin; Lan, Chang-Chou; Jayakumar, Thanasekaran; Yang, Chih-Hao

    2015-01-01

    Antrodia camphorata (A. camphorata) is a fungus generally used in Chinese folk medicine for treatment of viral hepatitis and cancer. Our previous study found A. camphorata has neuroprotective properties and could reduce stroke injury in cerebral ischemia animal models. In this study, we sought to investigate the molecular mechanisms of neuroprotective effects of A. camphorata in middle cerebral artery occlusion (MCAO) rats. A selective occlusion of the middle cerebral artery (MCA) with whole blood clots was used to induce ischemic stroke in rats and they were orally treated with A. camphorata (0.25 and 0.75 g/kg/day) alone or combined with aspirin (5 mg/kg/day). To provide insight into the functions of A. camphorata mediated neuroprotection, the expression of Bax, inducible nitric oxide synthase (iNOS), haem oxygenase-1 (HO-1), and activated caspase-3 was determined by Western blot assay. Treatment of aspirin alone significantly reduced the expressions of HO-1 (P < 0.001), iNOS (P < 0.001), and Bax (P < 0.01) in ischemic regions. The reduction of these expressions was more potentiated when rats treated by aspirin combined with A. camphorata (0.75 g/kg/day). Combination treatment also reduced apoptosis as measured by a significant reduction in active caspase-3 expression in the ischemic brain compared to MCAO group (P < 0.01). Moreover, treatment of A. camphorata significantly (P < 0.05) reduced fenton reaction-induced hydroxyl radical (OH(•)) formation at a dose of 40 mg/mL. Taken together, A. camphorata has shown neuroprotective effects in embolic rats, and the molecular mechanisms may correlate with the downregulation of Bax, iNOS, HO-1, and activated caspase-3 and the inhibition of OH(•) signals.

  6. Protective Effect of Decursin Extracted from Angelica gigas in Male Infertility via Nrf2/HO-1 Signaling Pathway.

    PubMed

    Bae, Woong Jin; Ha, U Syn; Choi, Jin Bong; Kim, Kang Sup; Kim, Su Jin; Cho, Hyuk Jin; Hong, Sung Hoo; Lee, Ji Youl; Wang, Zhiping; Hwang, Sung Yeoun; Kim, Sae Woong

    2016-01-01

    Higher testicular temperature results in altered spermatogenesis due to heat-related oxidative stress. We examined the effects of decursin extracted from Angelica gigas Nakai on antioxidant activity in vitro and in a cryptorchidism-induced infertility rat model. TM3 Leydig cell viability was measured based on oxidative stress according to treatment. Either distilled water or AG 400 mg/kg of A. gigas extract was administered orally for 4 weeks after unilateral cryptorchidism was induced. After 1, 2, and 4 weeks, six rats from the control group and six rats from treatment group were sacrificed. Testicular weight, semen quality, antioxidant activities, nuclear factor erythroid 2-related factor 2 (Nrf2) protein, and mRNA expression of Nrf2-regulated genes were analyzed. Treatment with A. gigas extract (1) protected TM3 cells against oxidative stress in a dose-dependent manner, (2) improved the mean weight of the cryptorchid testis, (3) maintained sperm counts, motility, and spermatogenic cell density, (4) decreased levels of 8-hydroxy-2-deoxyguanosine (8-OHdG) and increased levels of superoxide dismutase (SOD), (5) significantly increased Nrf2 and heme oxygenase-1 (HO-1), and (6) significantly decreased apoptosis. This study suggests that decursin extracted from A. gigas is a supplemental agent that can reduce oxidative stress by Nrf2-mediated upregulation of HO-1 in rat experimentally induced unilateral cryptorchidism and may improve cryptorchidism-induced infertility.

  7. Expression level and subcellular localization of heme oxygenase-1 modulates its cytoprotective properties in response to lung injury: a mouse model.

    PubMed

    Namba, Fumihiko; Go, Hayato; Murphy, Jennifer A; La, Ping; Yang, Guang; Sengupta, Shaon; Fernando, Amal P; Yohannes, Mekdes; Biswas, Chhanda; Wehrli, Suzanne L; Dennery, Phyllis A

    2014-01-01

    Premature infants exposed to hyperoxia suffer acute and long-term pulmonary consequences. Nevertheless, neonates survive hyperoxia better than adults. The factors contributing to neonatal hyperoxic tolerance are not fully elucidated. In contrast to adults, heme oxygenase (HO)-1, an endoplasmic reticulum (ER)-anchored protein, is abundant in the neonatal lung but is not inducible in response to hyperoxia. The latter may be important, because very high levels of HO-1 overexpression are associated with significant oxygen cytotoxicity in vitro. Also, in contrast to adults, HO-1 localizes to the nucleus in neonatal mice exposed to hyperoxia. To understand the mechanisms by which HO-1 expression levels and subcellular localization contribute to hyperoxic tolerance in neonates, lung-specific transgenic mice expressing high or low levels of full-length HO-1 (cytoplasmic, HO-1-FL(H) or HO-1-FL(L)) or C-terminally truncated HO-1 (nuclear, Nuc-HO-1-TR) were generated. In HO-1-FL(L), the lungs had a normal alveolar appearance and lesser oxidative damage after hyperoxic exposure. In contrast, in HO-1-FL(H), alveolar wall thickness with type II cell hyperproliferation was observed as well worsened pulmonary function and evidence of abnormal lung cell hyperproliferation in recovery from hyperoxia. In Nuc-HO-1-TR, the lungs had increased DNA oxidative damage, increased poly (ADP-ribose) polymerase (PARP) protein expression, and reduced poly (ADP-ribose) (PAR) hydrolysis as well as reduced pulmonary function in recovery from hyperoxia. These data indicate that low cytoplasmic HO-1 levels protect against hyperoxia-induced lung injury by attenuating oxidative stress, whereas high cytoplasmic HO-1 levels worsen lung injury by increasing proliferation and decreasing apoptosis of alveolar type II cells. Enhanced lung nuclear HO-1 levels impaired recovery from hyperoxic lung injury by disabling PAR-dependent regulation of DNA repair. Lastly both high cytoplasmic and nuclear expression of

  8. HO-1 attenuates hippocampal neurons injury via the activation of BDNF-TrkB-PI3K/Akt signaling pathway in stroke.

    PubMed

    Qi, Dashi; Ouyang, Changjie; Wang, Yulan; Zhang, Shichun; Ma, Xijuan; Song, YuanJian; Yu, HongLi; Tang, Jiali; Fu, Wei; Sheng, Lei; Yang, Lihua; Wang, Mei; Zhang, Weihao; Miao, Lei; Li, Tengteng; Huang, Xiaojing; Dong, Hongyan

    2014-08-19

    Although recent studies have found that HO-1 plays an important role in neuronal survival, little is known about the precise mechanisms occurring during cerebral ischemia/reperfusion (I/R). Therefore, the aim of this study was to investigate the neuroprotective mechanisms of HO-1 against ischemic brain injury induced by cerebral I/R and to explore whether the BDNF-TrkB-PI3K/Akt signaling pathway contributed to the protection provided by HO-1. Over-expressed HO-1 plasmids were employed to induce the overexpression of HO-1 through hippocampi CA1 injection 5 days before the cerebral I/R animal model was induced by four-vessel occlusion for 15 min transient ischemia and followed by reperfusion in Sprague-Dawley rats. Immunoblotting was carried out to examine the expression of the related proteins, and HE-staining was used to detect the percentage of living neurons in the hippocampal CA1 region. The results showed that over-expressed HO-1 could significantly protect neurons against cerebral I/R. Furthermore, the protein expression of BDNF, TrkB and p-Akt also increased in the rats treated with over-expressed HO-1 plasmids. However, treatment with tropomyosin receptor kinase B (TrkB) receptor antagonist (K252a) reversed the HO-1-induced increase in BDNF and p-Akt protein levels and decreased the level of cleaved caspase-3 protein in I/R rats. In summary, our results imply that HO-1 can decrease cell apoptosis in the I/R rat brain and that the mechanism may be related to the activation of the BDNF-TrkB-PI3K/Akt signaling pathway.

  9. Heme oxygenase 1 defects lead to reduced chlorophyll in Brassica napus.

    PubMed

    Zhu, Lixia; Yang, Zonghui; Zeng, Xinhua; Gao, Jie; Liu, Jie; Yi, Bin; Ma, Chaozhi; Shen, Jinxiong; Tu, Jinxing; Fu, Tingdong; Wen, Jing

    2017-04-01

    We previously described a Brassica napus chlorophyll-deficient mutant (ygl) with yellow-green seedling leaves and mapped the related gene, BnaC.YGL, to a 0.35 cM region. However, the molecular mechanisms involved in this chlorophyll defect are still unknown. In this study, the BnaC07.HO1 gene (equivalent to BnaC.YGL) was isolated by the candidate gene approach, and its function was confirmed by genetic complementation. Comparative sequencing analysis suggested that BnaC07.HO1 was lost in the mutant, while a long noncoding-RNA was inserted into the promoter of the homologous gene BnaA07.HO1. This insert was widely present in B. napus cultivars and down-regulated BnaA07.HO1 expression. BnaC07.HO1 was highly expressed in the seedling leaves and encoded heme oxygenase 1, which was localized in the chloroplast. Biochemical analysis showed that BnaC07.HO1 can catalyze heme conversion to form biliverdin IXα. RNA-seq analysis revealed that the loss of BnaC07.HO1 impaired tetrapyrrole metabolism, especially chlorophyll biosynthesis. According, the levels of chlorophyll intermediates were reduced in the ygl mutant. In addition, gene expression in multiple pathways was affected in ygl. These findings provide molecular evidences for the basis of the yellow-green leaf phenotype and further insights into the crucial role of HO1 in B. napus.

  10. Modification of Caffeic Acid with Pyrrolidine Enhances Antioxidant Ability by Activating AKT/HO-1 Pathway in Heart

    PubMed Central

    Ku, Hui-Chun; Lee, Shih-Yi; Yang, Kai-Chien; Kuo, Yueh-Hsiung; Su, Ming-Jai

    2016-01-01

    Overproduction of free radicals during ischemia/reperfusion (I/R) injury leads to an interest in using antioxidant therapy. Activating an endogenous antioxidant signaling pathway is more important due to the fact that the free radical scavenging behavior in vitro does not always correlate with a cytoprotection effect in vivo. Caffeic acid (CA), an antioxidant, is a major phenolic constituent in nature. Pyrrolidinyl caffeamide (PLCA), a derivative of CA, was compared with CA for their antioxidant and cytoprotective effects. Our results indicate that CA and PLCA exert the same ability to scavenge DPPH in vitro. In response to myocardial I/R stress, PLCA was shown to attenuate lipid peroxydation and troponin release more than CA. These responses were accompanied with a prominent elevation in AKT and HO-1 expression and a preservation of mnSOD expression and catalase activity. PLCA also improved cell viability and alleviated the intracellular ROS level more than CA in cardiomyocytes exposed to H2O2. When inhibiting the AKT or HO-1 pathways, PLCA lost its ability to recover mnSOD expression and catalase activity to counteract with oxidative stress, suggesting AKT/HO-1 pathway activation by PLCA plays an important role. In addition, inhibition of AKT signaling further abolished HO-1 activity, while inhibition of HO-1 signaling attenuated AKT expression, indicating cross-talk between the AKT and HO-1 pathways. These protective effects may contribute to the cardiac function improvement by PLCA. These findings provide new insight into therapeutic approaches using a modified natural compound against oxidative stress from myocardial injuries. PMID:26845693

  11. t-BHQ Provides Protection against Lead Neurotoxicity via Nrf2/HO-1 Pathway

    PubMed Central

    Ye, Fang; Li, Xiaoyi; Li, Lili; Yuan, Jing; Chen, Jun

    2016-01-01

    The neurotoxicity of lead has been well established, and oxidative stress is strongly associated with lead-induced neurotoxicity. Nrf2 is important for protection against oxidative stress in many disease models. We applied t-BHQ, which is an Nrf2 activator, to investigate the possible role of Nrf2 in the protection against lead neurotoxicity. t-BHQ significantly attenuated the oxidative stress in developmental rats by decreasing MDA level, as well as by increasing SOD activity and GSH content, in the hippocampus and frontal cortex. Furthermore, neuronal apoptosis was detected by Nissl staining, and Bax expression was inhibited in the t-BHQ-treated group. Results showed that t-BHQ suppressed ROS production and caspase 3/7 activity but increased intracellular GSH content, in SH-SY5Y cells under lead exposure. Moreover, in vivo and in vitro, t-BHQ enhanced the nuclear translocation of Nrf2 and binding to ARE areas but did not induce Nrf2 transcription. These phenomena were confirmed using RT-PCR, EMSA, Western blot, and immunofluorescence analyses. Subsequent upregulation of the expression of HO-1, NQO1, and GCLC was observed. However, knockdown of Nrf2 or HO-1 adversely affected the protective effects of t-BHQ against lead toxicity in SH-SY5Y cells. Thus, t-BHQ can protect against lead neurotoxicity, depending on the Nrf2/HO-1 pathway. PMID:26798413

  12. Heme oxygenase-1 expression is down-regulated by angiotensin II and under hypertension in human neutrophils.

    PubMed

    Alba, Gonzalo; El Bekay, Rajaa; Chacón, Pedro; Reyes, M Edith; Ramos, Eladio; Oliván, Josefina; Jiménez, Juan; López, José M; Martín-Nieto, José; Pintado, Elízabeth; Sobrino, Francisco

    2008-08-01

    Angiotensin II (Ang II) is a peptide hormone able to elicit a strong production of reactive oxygen species by human neutrophils. In this work, we have addressed whether expression of heme oxygenase-1 (HO-1), an antioxidant enzyme, becomes altered in these cells upon Ang II treatment or under hypertension conditions. In neutrophils from healthy and hypertensive subjects, induction of HO-1 mRNA and protein expression with a parallel increase in enzyme activity took place upon treatment with 15-deoxy-Delta12,14-PGJ2 (15dPGJ2). However, Ang II prevented HO-1 synthesis by normal neutrophils in vitro, and HO-1 expression was depressed in neutrophils from hypertensive patients in comparison with cells from healthy subjects. In addition, Ang II treatment led to a reduced HO-1 enzyme activity to levels similar to those found in neutrophils from hypertensive patients. NO donors reversed the inhibition of 15dPGJ2-dependent HO-1 expression in neutrophils from hypertensive patients, and conversely, inhibition of inducible NO synthase (NOS2) activity counteracted the stimulatory effect of 15dPGJ2 on HO-1 expression in normal human neutrophils. Moreover, Ang II canceled 15dPGJ2-dependent induction of NOS2 mRNA synthesis. Present findings indicate that down-regulation of HO-1 expression in neutrophils from hypertensive subjects is likely exerted through the inhibition of NOS2 expression. Additionally, they underscore the potential usefulness of NO donors as new, therapeutic agents against hypertension.

  13. (GT)n Repeat Polymorphism in Heme Oxygenase-1 (HO-1) Correlates with Clinical Outcome after Myeloablative or Nonmyeloablative Allogeneic Hematopoietic Cell Transplantation

    PubMed Central

    Køllgaard, Tania; Kornblit, Brian; Petersen, Jesper; Klausen, Tobias Wirenfeldt; Mortensen, Bo Kok; Brændstrup, Peter; Sengeløv, Henrik; Høgdall, Estrid; Müller, Klaus; Vindeløv, Lars; Andersen, Mads Hald; thor Straten, Per

    2016-01-01

    Allogeneic hematopoietic cell transplantation (HCT) is a treatment for various hematologic diseases where efficacy of treatment is in part based on the graft versus tumour (GVT) activity of cells in the transplant. The cytoprotective enzyme heme oxygenase-1 (HO-1) is a rate-limiting enzyme in heme degradation and it has been shown to exert anti-inflammatory functions. In humans a (GT)n repeat polymorphism regulates the expression of HO-1. We conducted fragment length analyses of the (GT)n repeat in the promotor region of the gene for HO-1 in DNA from donors and recipients receiving allogeneic myeloablative- (MA) (n = 110) or nonmyeloablative- (NMA-) (n = 250) HCT. Subsequently, we compared the length of the (GT)n repeat with clinical outcome after HCT. We demonstrated that transplants from a HO-1high donor after MA-conditioning (n = 13) is associated with higher relapse incidence at 3 years (p = 0.01, n = 110). In the NMA-conditioning setting transplantation of HO-1low donor cells into HO-1low recipients correlated significantly with decreased relapse related mortality (RRM) and longer progression free survival (PFS) (p = 0.03 and p = 0.008, respectively). Overall, our findings suggest that HO-1 may play a role for the induction of GVT effect after allogeneic HCT. PMID:27997582

  14. Nadroparin sodium activates Nrf2/HO-1 pathway in acetic acid-induced colitis in rats.

    PubMed

    Yalniz, Mehmet; Demirel, Ulvi; Orhan, Cemal; Bahcecioglu, Ibrahim Halil; Ozercan, Ibrahim Hanefi; Aygun, Cem; Tuzcu, Mehmet; Sahin, Kazim

    2012-06-01

    Effects of nadroparin sodium, a low molecular weight heparin, in colitis was investigated by analyzing proteins implicated in nuclear factor E2-related factor-2/heme oxygenase-1 (Nrf2/HO-1) and nuclear factor kappa B (NF-κB) pathways. Twenty-eight rats were used. Colitis was induced by acetic acid (AA). Nadroparin sodium was given to prevention and treatment groups in addition to AA. Colitis was assessed histologically and levels of proteins were analyzed with Western blot. Nadroparin not only prevented and ameliorated the AA-induced colitis histopathologically but also decreased expression of colon NF-κB, activator protein-1, cyclooxygenase-2, tumor necrosis factor-alpha, and IL-6, which were significantly increased in group AA compared to control. The accumulation of Nrf2 in nuclear fraction and HO-1 found low in group AA was increased with nadroparin (p < 0.05). The mean malondialdehyde level increased with AA and was decreased significantly with nadroparin prevention and treatment (p < 0.001). Nadroparin sodium has both protective and therapeutic effects against colonic inflammation via exerting anti-oxidative and anti-inflammatory effects by modulating Nrf2/HO-1 and NF-κB pathways.

  15. Nutritional control of IL-23/Th17-mediated autoimmune disease through HO-1/STAT3 activation

    PubMed Central

    Brück, Jürgen; Holstein, Julia; Glocova, Ivana; Seidel, Ursula; Geisel, Julia; Kanno, Toshio; Kumagai, Jin; Mato, Naoko; Sudowe, Stephan; Widmaier, Katja; Sinnberg, Tobias; Yazdi, Amir S.; Eberle, Franziska C.; Hirahara, Kiyoshi; Nakayama, Toshinori; Röcken, Martin; Ghoreschi, Kamran

    2017-01-01

    The nutritional curcumin (CUR) is beneficial in cell-mediated autoimmune diseases. The molecular mechanisms underlying this food-mediated silencing of inflammatory immune responses are poorly understood. By investigating antigen-specific immune responses we found that dietary CUR impairs the differentiation of Th1/Th17 cells in vivo during encephalomyelitis and instead promoted Th2 cells. In contrast, feeding CUR had no inhibitory effect on ovalbumin-induced airway inflammation. Mechanistically, we found that CUR induces an anti-inflammatory phenotype in dendritic cells (DC) with enhanced STAT3 phosphorylation and suppressed expression of Il12b and Il23a. On the molecular level CUR readily induced NRF2-sensitive heme oxygenase 1 (HO-1) mRNA and protein in LPS-activated DC. HO-1 enhanced STAT3 phosphorylation, which enriched to Il12b and Il23a loci and negatively regulated their transcription. These findings demonstrate the underlying mechanism through which a nutritional can interfere with the immune response. CUR silences IL-23/Th17-mediated pathology by enhancing HO-1/STAT3 interaction in DC. PMID:28290522

  16. NRF2 activation is involved in ozonated human serum upregulation of HO-1 in endothelial cells

    SciTech Connect

    Pecorelli, Alessandra; Bocci, Velio; Acquaviva, Alessandra; Belmonte, Giuseppe; Gardi, Concetta; Virgili, Fabio; Ciccoli, Lucia; Valacchi, Giuseppe

    2013-02-15

    During the last decade, it has been shown that the activation of NRF2 and the binding to electrophile-responsive element (EpREs), stimulates the expression of a great number of genes responsible for the synthesis of phase I and phase II proteins, including antioxidants enzymes and heme oxygenase-1 (HO-1). This critical cell response occurs in cardiovascular, degenerative and chronic infective diseases aggravated by a chronic oxidative stress. In our previous reports we have shown that ozonated plasma is able to up-regulate HO-1 expression in endothelial cells. In the present work we investigated a candidate mechanism involved in this process. After treatment with increasing doses of ozonated serum (20, 40 and 80 μg/mL O{sub 3} per mL of serum), a clear dose dependent activation of NRF2 and the subsequent induction of HO-1 and NAD(P)H quinone oxidoreductase 1(NQO1) was observed. This effect was also present when cells were treated with serum and hydrogen peroxide (H{sub 2}O{sub 2}) or serum and 4-hydroxynonenal (4HNE). Moreover, the treatment with ozonated serum was associated with a dose-dependent activation of extracellular-signal-regulated kinases (ERK1/2) and p38 MAP kinases (p38), not directly involved in NRF2 activation. These data, provide a new insight on the mechanism responsible for the induction of HO-1 expression by ozonated serum in the endothelium, and have a practical importance as an expedient approach to the treatment of patients with both effective orthodox drugs and ozonated autohemotherapy, targeted to the restoration of redox homeostasis. - Highlights: ► Endothelial HO1 is upregulated by ozonated plasma ► This activation is induced by NRF2 and it is ERK independent. ► 4HNE and H{sub 2}O{sub 2} are the main molecules involved in this process. ► Ozonated plasma induced a hormetic effect ► Combination of orthodox medicine and ozonated plasma can be a useful treatment.

  17. Regulation of hemeoxygenase-1 gene expression by Nrf2 and c-Jun in tertiary butylhydroquinone-stimulated rat primary astrocytes

    SciTech Connect

    Park, Jin-Sun; Kim, Hee-Sun

    2014-05-16

    Highlights: • tBHQ increased HO-1 mRNA and protein levels in rat primary astrocytes. • tBHQ enhanced HO-1 gene transcription in an ARE-dependent manner. • tBHQ increased the nuclear translocation and DNA binding of Nrf2 and c-Jun to ARE. • Nrf2 and c-Jun are involved in the differential modulation of HO-1 expression. • Nrf2 and c-Jun regulate HO-1 expression via their coordinated interaction. - Abstract: Hemeoxygenase-1 (HO-1) is a phase II antioxidant enzyme that is primarily involved in detoxification and cytoprotection in a variety of tissues. However, the mechanism underlying HO-1 gene expression remains unclear. In the present study, we investigated the regulation of HO-1 expression in primary cultured astrocytes by using the natural antioxidant compound tertiary butylhydroquinone (tBHQ). We found that tBHQ increased HO-1 mRNA and protein levels. Promoter analysis revealed that tBHQ enhanced HO-1 gene transcription in an antioxidant response element (ARE)-dependent manner. In addition, tBHQ increased the nuclear translocation and DNA binding of Nrf2 and c-Jun to ARE. Small interfering RNA (siRNA) experiments demonstrated that Nrf2 and c-Jun are involved in the differential modulation of HO-1 expression. Thus, Nrf2 knockdown reduced the basal level of HO-1 expression but did not affect the fold induction by tBHQ. On the other hand, knockdown of c-Jun diminished tBHQ-mediated induction of HO-1 without affecting basal expression. The data suggest that Nrf2 generally modulates the basal expression of HO-1, while c-Jun mediates HO-1 induction in response to tBHQ. The results of co-immunoprecipitation assays demonstrated a physical interaction between Nrf2 and c-Jun in tBHQ-treated astrocytes. The results suggest that Nrf2 and c-Jun regulate HO-1 expression via their coordinated interaction in tBHQ-treated rat primary astrocytes.

  18. Curcumin reduces cold storage-induced damage in human cardiac myoblasts.

    PubMed

    Abuarqoub, Hadil; Green, Colin J; Foresti, Roberta; Motterlini, Roberto

    2007-04-30

    Curcumin is a polyphenolic compound possessing interesting anti-inflammatory and antioxidant properties and has the ability to induce the defensive protein heme oxygenase-1 (HO-1). The objective of this study was to investigate whether curcumin protects against cold storage-mediated damage of human adult atrial myoblast cells (Girardi cells) and to assess the potential involvement of HO-1 in this process. Girardi cells were exposed to either normothermic or hypothermic conditions in Celsior preservation solution in the presence or absence of curcumin. HO-1 protein expression and heme oxygenase activity as well as cellular damage were assessed after cold storage or cold storage followed by re-warming. In additional experiments, an inhibitor of heme oxygenase activity (tin protoporphyrin IX, 10 microM) or siRNA for HO-1 were used to investigate the participation of HO-1 as a mediator of curcumin-induced effects. Treatment with curcumin produced a marked induction of cardiac HO-1 in normothermic condition but cells were less responsive to the polyphenolic compound at low temperature. Cold storage-induced damage was markedly reduced in the presence of curcumin and HO-1 contributed to some extent to this effect. Thus, curcumin added to Celsior preservation solution effectively prevents the damage caused by cold-storage; this effect involves the protective enzyme HO-1 but also other not yet identified mechanisms.

  19. Synergistic cardioprotective effects of Danshensu and hydroxysafflor yellow A against myocardial ischemia-reperfusion injury are mediated through the Akt/Nrf2/HO-1 pathway

    PubMed Central

    HU, TIANXIN; WEI, GUO; XI, MIAOMIAO; YAN, JIAJIA; WU, XIAOXIAO; WANG, YANHUA; ZHU, YANRONG; WANG, CHAO; WEN, AIDONG

    2016-01-01

    In clinical practice, the traditional Chinese medicinal herbs, Radix Salvia Miltiorrhiza and Carthamus tinctorius L., are usually prescribed in combination due to their significant cardioprotective effects. However, the mechanisms responsible for these combined effects remain unknown. Thus, in this study, we investigated the mechanisms responsible for the combined effects of Danshensu (DSS) and hydroxysafflor yellow A (HSYA) by establishing a rat model of myocardial ischemia/reperfusion (MI/R), as well as a model of hypoxia/reoxygenation (H/R) using H9c2 cells. The combination index (CI) was calculated using the median-effect method. DSS and HSYA in combination led to a CI value of <1 as regards infarct size in vivo and cell viability in vitro. The rats with MI/R injury that were treated with DSS and/or HSYA were found to have significantly lower levels of creatine kinase-MB (CK-MB) and cardiac troponin I (cTnI) and malondialdehyde (MDA), and a lower expressoin of 8-hydroxydeoxyguanosine (8-OHdG), and markedly enhanced superoxide dismutase (SOD) activity. Our in vitro experiments revealed that the cells treated with DSS and/or HSYA had a reduced lactate dehydrogenase (LDH) activity and a decreased percentage of cell apoptosis (increased Bcl-2/Bax ratio, decreased expression of cleaved caspase-3). DSS and HSYA increased the expression of heme oxygenase-1 (HO-1), the phosphorylation of Akt and the trans-location of nuclear factor erythroid 2-related factor 2 (Nrf2). Furthermore, the Akt inhibitor, LY294002, partially hampered the expression of Nrf2 and HO-1. The HO-1 inhibitor, zinc protoporphyrin IX (ZnPP-IX), did not decrease the expression of p-Akt and Nrf2, although it abolished the anti-apoptotic and antioxidant effects of DSS and HSYA. The findings of our study thus demonstrate that DSS and HSYA confer synergistic cardioprotective effects through the Akt/Nrf2/HO-1 signaling pathway, to certain extent, by enhancing the antioxidant defense system and exerting

  20. Anti-Fibrotic Effect of Losartan, an Angiotensin II Receptor Blocker, Is Mediated through Inhibition of ER Stress via Up-Regulation of SIRT1, Followed by Induction of HO-1 and Thioredoxin

    PubMed Central

    Kim, Hyosang; Baek, Chung Hee; Lee, Raymond Bok; Chang, Jai Won; Yang, Won Seok; Lee, Sang Koo

    2017-01-01

    Endoplasmic reticulum (ER) stress is increasingly identified as modulator of fibrosis. Losartan, an angiotensin II receptor blocker, has been widely used as the first choice of treatment in chronic renal diseases. We postulated that anti-fibrotic effect of losartan is mediated through inhibition of ER stress via SIRT1 (silent mating type information regulation 2 homolog 1) hemeoxygenase-1 (HO-1)/thioredoxin pathway. Renal tubular cells, tunicamycin (TM)-induced ER stress, and unilateral ureteral obstruction (UUO) mouse model were used. Expression of ER stress was assessed by Western blot analysis and immunohistochemical stain. ER stress was induced by chemical ER stress inducer, tunicamycin, and non-chemical inducers such as TGF-β, angiotensin II, high glucose, and albumin. Losartan suppressed the TM-induced ER stress, as shown by inhibition of TM-induced expression of GRP78 (glucose related protein 78) and p-eIF2α (phosphospecific-eukaryotic translation initiation factor-2α), through up-regulation of SIRT1 via HO-1 and thioredoxin. Losartan also suppressed the ER stress by non-chemical inducers. In both animal models, losartan reduced the tubular expression of GRP78, which were abolished by pretreatment with sirtinol (SIRT1 inhibitor). Sirtinol also blocked the inhibitory effect of losartan on the UUO-induced renal fibrosis. These findings provide new insights into renoprotective effects of losartan and suggest that SIRT1, HO-1, and thioredoxin may be potential pharmacological targets in kidney diseases under excessive ER stress condition. PMID:28146117

  1. Glabridin Alleviates the Toxic Effects of Methylglyoxal on Osteoblastic MC3T3-E1 Cells by Increasing Expression of the Glyoxalase System and Nrf2/HO-1 Signaling and Protecting Mitochondrial Function.

    PubMed

    Choi, Eun Mi; Suh, Kwang Sik; Kim, Yu Jin; Hong, Soo Min; Park, So Yong; Chon, Suk

    2016-01-13

    Methylglyoxal (MG) contributes to the pathogenesis of age- and diabetes-associated complications. The present study investigated the effects of glabridin on MG-induced cytotoxicity in MC3T3-E1 osteoblastic cells. MC3T3-E1 cells were treated with glabridin in the presence of MG, and markers of mitochondrial function and oxidative damage were examined. Pretreatment of MC3T3-E1 osteoblastic cells with glabridin prevented MG-induced cell death, the production of intracellular reactive oxygen species and mitochondrial superoxides, cardiolipin peroxidation, and the production of inflammatory cytokines. The soluble form of receptor for advanced glycation end products (sRAGEs)/RAGE ratio increased upon MG treatment, but less so after pretreatment with glabridin, which also increased the level of reduced glutathione and the activities of glyoxalase I and heme oxygenase-1, all of which were reduced by MG. In addition, glabridin elevated the level of nuclear factor erythroid 2-related factor 2. These findings suggest that glabridin protects against MG-induced cell damage by inhibiting oxidative stress and increasing MG detoxification. Pretreatment of MC3T3-E1 osteoblastic cells with glabridin reduced MG-induced mitochondrial dysfunction. Additionally, the nitric oxide level significantly increased upon glabridin pretreatment. Together, these data show that glabridin may potentially serve to prevent the development of diabetic bone disease associated with MG-induced oxidative stress.

  2. Butein induction of HO-1 by p38 MAPK/Nrf2 pathway in adipocytes attenuates high-fat diet induced adipose hypertrophy in mice.

    PubMed

    Wang, Zheng; Ka, Sun-O; Lee, Youngyi; Park, Byung-Hyun; Bae, Eun Ju

    2017-03-15

    Adipose tissue inflammation and oxidative stress are key components in the development of obesity and insulin resistance. Heme oxygenase (HO)-1 in adipocytes protects against obesity and adipose dysfunction. In this study, we report the identification of butein, a flavonoid chalcone, as a novel inducer of HO-1 expression in adipocytes in vitro and in vivo. Butein upregulated HO-1 mRNA and protein expression in 3T3-L1 adipocytes, accompanied by Kelch-Like ECH-Associated Protein (Keap) 1 degradation and increase in the nuclear level of nuclear factor erythroid 2-related factor 2 (Nrf2). Butein modulation of Keap1 and Nrf2 as well as HO-1 upregulation was reversed by pretreatment with p38 MAPK inhibitor SB203580, indicating the involvement of p38 MAPK in butein activation of Nrf2 in adipocytes. In addition, HO-1 activation by butein led to the inhibitions of reactive oxygen species and adipocyte differentiation, as evidenced by the fact that butein repression of reactive oxygen species and adipogenesis was reversed by pretreatment with HO-1 inhibitor SnPP. Induction of HO-1 expression by butein was also demonstrated in the adipose tissue of C57BL/6 mice fed a high-fat diet administered along with butein for three weeks, and correlated with the inhibitions of adiposity and adipose tissue inflammation, which were reversed by co-administration of SnPP. Altogether, our results demonstrate that butein activates the p38 MAPK/Nrf2/HO-1 pathway to act as a potent inhibitor of adipose hypertrophy and inflammation in a diet-induced obesity model and thus has potential for suppressing obesity-linked metabolic syndrome.

  3. AN ENZYME LINKED IMMUNOSORBENT ASSAY FOR THE HO-1 ISOFORM OF HEME OXYGENASE

    EPA Science Inventory

    AN ENZYME LINKED IMMUNOSORBENT ASSAY FOR THE HO-1 ISOFORM OF HEME OXYGENASE

    Heme oxygenase (HO) occurs in biological tissues as two major isoforms HO-1 and HO-2. HO-1 is inducible by many treatments, particularly oxidative stress-related conditions such as depletion of gl...

  4. Heme oxygenase (HO)-1 induction prevents Endoplasmic Reticulum stress-mediated endothelial cell death and impaired angiogenic capacity.

    PubMed

    Maamoun, Hatem; Zachariah, Matshediso; McVey, John H; Green, Fiona R; Agouni, Abdelali

    2017-03-01

    Most of diabetic cardiovascular complications are attributed to endothelial dysfunction and impaired angiogenesis. Endoplasmic Reticulum (ER) and oxidative stresses were shown to play a pivotal role in the development of endothelial dysfunction in diabetes. Hemeoxygenase-1 (HO-1) was shown to protect against oxidative stress in diabetes; however, its role in alleviating ER stress-induced endothelial dysfunction remains not fully elucidated. We aim here to test the protective role of HO-1 against high glucose-mediated ER stress and endothelial dysfunction and understand the underlying mechanisms with special emphasis on oxidative stress, inflammation and cell death. Human Umbilical Vein Endothelial Cells (HUVECs) were grown in either physiological or intermittent high concentrations of glucose for 5days in the presence or absence of Cobalt (III) Protoporphyrin IX chloride (CoPP, HO-1 inducer) or 4-Phenyl Butyric Acid (PBA, ER stress inhibitor). Using an integrated cellular and molecular approach, we then assessed ER stress and inflammatory responses, in addition to apoptosis and angiogenic capacity in these cells. Our results show that HO-1 induction prevented high glucose-mediated increase of mRNA and protein expression of key ER stress markers. Cells incubated with high glucose exhibited high levels of oxidative stress, activation of major inflammatory and apoptotic responses [nuclear factor (NF)-κB and c-Jun N-terminal kinase (JNK)] and increased rate of apoptosis; however, cells pre-treated with CoPP or PBA were fully protected. In addition, high glucose enhanced caspases 3 and 7 cleavage and activity and augmented cleaved poly ADP ribose polymerase (PARP) expression whereas HO-1 induction prevented these effects. Finally, HO-1 induction and ER stress inhibition prevented high glucose-induced reduction in NO release and impaired the angiogenic capacity of HUVECs, and enhanced vascular endothelial growth factor (VEGF)-A expression. Altogether, we show here the

  5. Cerium oxide nanoparticles alleviate oxidative stress and decreases Nrf-2/HO-1 in D-GALN/LPS induced hepatotoxicity.

    PubMed

    Hashem, Reem M; Rashd, Laila A; Hashem, Khalid S; Soliman, Hatem M

    2015-07-01

    Translocation of the master regulator of antioxidant-response element-driven antioxidant gene, nuclear factor erythroid 2 (Nrf-2) from the cytoplasm into the nucleus and triggering the transcription of hemoxygenase-1 (HO-1) to counteract the oxidative stress is a key feature in D-galactoseamine and lipopolysaccharide (D-GALN/LPS) induced hepatotoxicity. We mainly aimed to study the effect of cerium oxide (CeO2) nanoparticles on Nrf-2/HO-1 pathway whereas; it has previously shown to have an antioxidant effect in liver models. Administration of CeO2 nanoparticles significantly decreased the translocation of the cytoplasmic Nrf-2 with a concomitant decrement in the gene expression of HO-1 as it reveals a powerful antioxidative effect as indicated by the significant increase in the levels of glutathione (GSH), glutathione peroxidase (GPX1), glutathione reductase (GR), superoxide dismutase (SOD) and catalase. In synchronization, a substantial decrement in the levels of inducible nitric oxide synthase (iNOS), TBARS and percentage of DNA fragmentation was established. These results were confirmed by histopathology examination which showed a severe degeneration, haemorrhages, widened sinusoids and focal leukocyte infiltration in D-GALN/LPS treatment and these features were alleviated with CeO2 administration. In conclusion, CeO2 is a potential antioxidant that can effectively decrease the translocation of the cytoplasmic Nrf-2 into the nucleus and decrease HO-1 in D-GALN/LPS induced hepatotoxicity.

  6. Heme oxygenase-1 promotes migration and β-epithelial Na+ channel expression in cytotrophoblasts and ischemic placentas.

    PubMed

    Warrington, Junie P; Coleman, Kayla; Skaggs, Courtney; Hosick, Peter A; George, Eric M; Stec, David E; Ryan, Michael J; Granger, Joey P; Drummond, Heather A

    2014-05-01

    Preeclampsia is thought to arise from inadequate cytotrophoblast migration and invasion of the maternal spiral arteries, resulting in placental ischemia and hypertension. Evidence suggests that altered expression of epithelial Na(+) channel (ENaC) proteins may be a contributing mechanism for impaired cytotrophoblast migration. ENaC activity is required for normal cytotrophoblast migration. Moreover, β-ENaC, the most robustly expressed placental ENaC message, is reduced in placentas from preeclamptic women. We recently demonstrated that heme oxygenase-1 (HO-1) protects against hypertension in a rat model of placental ischemia; however, whether HO-1 regulation of β-ENaC contributes to the beneficial effects of HO-1 is unknown. The purpose of this study was to determine whether β-ENaC mediates cytotrophoblast migration and whether HO-1 enhances ENaC-mediated migration. We showed that placental ischemia, induced by reducing uterine perfusion suppressed, and HO-1 induction restored, β-ENaC expression in ischemic placentas. Using an in vitro model, we found that HO-1 induction, using cobalt protoporphyrin, stimulates cytotrophoblast β-ENaC expression by 1.5- and 1.8-fold (10 and 50 μM). We then showed that silencing of β-ENaC in cultured cytotrophoblasts (BeWo cells), by expression of dominant-negative constructs, reduced migration to 56 ± 13% (P < 0.05) of control. Importantly, HO-1 induction enhanced migration (43 ± 5% of control, P < 0.05), but the enhanced migratory response was entirely blocked by ENaC inhibition with amiloride (10 μM). Taken together, our results suggest that β-ENaC mediates cytotrophoblast migration and increasing β-ENaC expression by HO-1 induction enhances migration. HO-1 regulation of cytotrophoblast β-ENaC expression and migration may be a potential therapeutic target in preeclamptic patients.

  7. Molecular hydrogen protects mice against polymicrobial sepsis by ameliorating endothelial dysfunction via an Nrf2/HO-1 signaling pathway.

    PubMed

    Chen, Hongguang; Xie, Keliang; Han, Huanzhi; Li, Yuan; Liu, Lingling; Yang, Tao; Yu, Yonghao

    2015-09-01

    Endothelial injury is a primary cause of sepsis and sepsis-induced organ damage. Heme oxygenase-1 (HO-1) plays an essential role in endothelial cellular defenses against inflammation by activating nuclear factor E2-related factor-2 (Nrf2). We found that molecular hydrogen (H2) exerts an anti-inflammatory effect. Here, we hypothesized that H2 attenuates endothelial injury and inflammation via an Nrf2-mediated HO-1 pathway during sepsis. First, we detected the effects of H2 on cell viability and cell apoptosis in human umbilical vein endothelial cells (HUVECs) stimulated by LPS. Then, we measured cell adhesion molecules and inflammatory factors in HUVECs stimulated by LPS and in a cecal ligation and puncture (CLP)-induced sepsis mouse model. Next, the role of Nrf2/HO-1 was investigated in activated HUVECs, as well as in wild-type and Nrf(-/-) mice with sepsis. We found that both 0.3 mmol/L and 0.6 mmol/L (i.e., saturated) H2-rich media improved cell viability and cell apoptosis in LPS-activated HUVECs and that 0.6mmol/L (i.e., saturated) H2-rich medium exerted an optimal effect. H2 could suppress the release of cell adhesion molecules, such as vascular cell adhesion molecule-1 (VCAM-1) and intercellular cell adhesion molecule-1 (ICAM-1), and pro-inflammatory cytokines, such as tumor necrosis factor (TNF)-α, interleukin (IL)-1β and high-mobility group box 1 protein (HMGB1). Furthermore, H2 could elevate anti-inflammatory cytokine IL-10 levels in LPS-stimulated HUVECs and in lung tissue from CLP mice. H2 enhanced HO-1 expression and activity in vitro and in vivo. HO-1 inhibition reversed the regulatory effects of H2 on cell adhesion molecules and inflammatory factors. H2 regulated endothelial injury and the inflammatory response via Nrf2-mediated HO-1 levels. These results suggest that H2 could suppress excessive inflammatory responses and endothelial injury via an Nrf2/HO-1 pathway.

  8. Activation of the Nrf2/HO-1 Antioxidant Pathway Contributes to the Protective Effects of Lycium Barbarum Polysaccharides in the Rodent Retina after Ischemia-Reperfusion-Induced Damage

    PubMed Central

    Chang, Raymond Chuen-Chung; So, Kwok-Fai; Brecha, Nicholas C.; Pu, Mingliang

    2014-01-01

    Lycium barbarum polysaccharides (LBP), extracts from the wolfberries, are protective to retina after ischemia-reperfusion (I/R). The antioxidant response element (ARE)–mediated antioxidant pathway plays an important role in maintaining the redox status of the retina. Heme oxygenase-1 (HO-1), combined with potent AREs in its promoter, is a highly effective therapeutic target for the protection against neurodegenerative diseases, including I/R-induced retinal damage. The aim of our present study was to investigate whether the protective effect of LBP after I/R damage was mediated via activation of the Nrf2/HO-1-antioxidant pathway in the retina. Retinal I/R was induced by an increase in intraocular pressure to 130 mm Hg for 60 minutes. Prior to the induction of ischemia, rats were orally treated with either vehicle (PBS) or LBP (1 mg/kg) once a day for 1 week. For specific experiments, zinc protoporphyrin (ZnPP, 20 mg/kg), an HO-1 inhibitor, was intraperitoneally administered at 24 h prior to ischemia. The protective effects of LBP were evaluated by quantifying ganglion cell and amacrine cell survival, and by measuring cell apoptosis in the retinal layers. In addition, HO-1 expression was examined using Western blotting and immunofluorescence analyses. Cytosolic and nuclear Nrf2 was measured using immunofluorescent staining. LBP treatment significantly increased Nrf2 nuclear accumulation and HO-1 expression in the retina after I/R injury. Increased apoptosis and a decrease in the number of viable cells were observed in the ganglion cell layer (GCL) and inner nuclear layer (INL) in the I/R retina, which were reversed by LBP treatment. The HO-1 inhibitor, ZnPP, diminished the LBP treatment-induced protective effects in the retina after I/R. Taken together, these results suggested that LBP partially exerted its beneficial neuroprotective effects via the activation of Nrf2 and an increase in HO-1 protein expression. PMID:24400114

  9. Epigallocatechin Gallate Induces Expression of Heme Oxygenase-1 in Endothelial Cells via p38 MAPK and Nrf-2 that Suppresses Pro-inflammatory Actions of TNF-α

    PubMed Central

    Pullikotil, Philomena; Chen, Hui; Muniyappa, Ranganath; Greenberg, Cynthia C.; Yang, Shutong; Reiter, Chad E. N.; Lee, Ji-Won; Chung, Jay H.; Quon, Michael J.

    2011-01-01

    Epigallocatechin gallate (EGCG), the major polyphenol in green tea, acutely stimulates production of nitric oxide (NO) from vascular endothelium to reduce hypertension, and improve endothelial dysfunction in SHR rats. Herein, we explored additional mechanisms whereby EGCG may mediate beneficial cardiovascular actions. When compared with vehicle-treated controls, EGCG treatment (2.5 μM, 8 h) of human aortic endothelial cells (HAEC) caused a ~3-fold increase in hemeoxygenase-1 (HO-1) mRNA and protein with comparable increases in HO-1 activity. This was unaffected by pre-treatment of cells with wortmannin, LY294002, PD98059, or L-NAME (PI 3-kinase, MEK, and NO synthase inhibitors, respectively). Pre-treatment of HAEC with SB203580 (p38 MAPK inhibitor) or siRNA knockdown of p38 MAPK completely blocked EGCG-stimulated induction of HO-1. EGCG treatment also inhibited TNF-α-stimulated expression of VCAM-1 and decreased adhesion of monocytes to HAEC. siRNA knockdown of HO-1, p38 MAPK, or Nrf-2 blocked these inhibitory actions of EGCG. In HAEC transiently transfected with a human HO-1 promoter luciferase reporter (or an isolated Nrf-2 responsive region), luciferase activity increased in response to EGCG. This was inhibitable by SB203580 pre-treatment. EGCG-stimulated expression of HO-1 and Nrf-2 was blocked by siRNA knockdown of Nrf-2 or p38 MAPK. Finally, liver from mice chronically treated with EGCG had increased HO-1 and decreased VCAM-1 expression. Thus, in vascular endothelium, EGCG requires p38 MAPK to increase expression of Nrf-2 that drives expression of HO-1 resulting in increased HO-1 activity. Increased HO-1 expression may underlie anti-inflammatory actions of EGCG in vascular endothelium that may help mediate beneficial cardiovascular actions of green tea. PMID:22137262

  10. 20C, a bibenzyl compound isolated from Gastrodia elata, protects PC12 cells against rotenone-induced apoptosis via activation of the Nrf2/ARE/HO-1 signaling pathway

    PubMed Central

    Huang, Ju-yang; Yuan, Yu-he; Yan, Jia-qing; Wang, Ya-nan; Chu, Shi-feng; Zhu, Cheng-gen; Guo, Qing-lan; Shi, Jian-gong; Chen, Nai-hong

    2016-01-01

    Aim: Our preliminary study shows that a bibenzyl compound isolated from Gastrodia elata, 2-[4-hydroxy-3-(4-hydroxybenzyl)benzyl]-4-(4-hydroxybenzyl)phenol (designated 20C), protects PC12 cells against H2O2-induced injury. In this study we investigated whether 20C exerted neuroprotective action in a cell model of Parkinson's disease. Methods: A cell model of Parkinson's disease was established in PC12 cells by exposure to rotenone (4 μmol/L) for 48 h. Cell viability and apoptosis were assessed, and intracellular ROS level and the mitochondrial membrane potential (MMP) were detected. The expression of apoptosis-related proteins Bax, Bcl-2, cytochrome c, cleaved caspase-3, and oxidative stress-related proteins Nrf2, HO-1 and NQO1 were examined using Western blotting. The mRNA levels of HO-1 and NQO1 were determined with RT-PCR. The nuclear translocation of Nrf2 was observed with immunofluorescence staining. Results: Treatment with rotenone significantly increased the number of apoptotic cells, accompanied by marked increases in the Bax/Bcl-2 ratio, cytochrome c release and caspase-3 activation. Rotenone also increased ROS accumulation, reduced MMP, and increased the nuclear translocation of Nrf2 as well as the mRNA and protein levels of the Nrf2 downstream target genes HO-1 and NQO1 in PC12 cells. Co-treatment with 20C (0.01–1 μmol/L) dose-dependently attenuated rotenone-induced apoptosis and oxidative stress in PC12 cells. Nrf2 knockdown by siRNA partially reversed the protective effects of 20C in rotenone-treated PC12 cells. Conclusion: The bibenzyl compound 20C protects PC12 cells from rotenone-induced apoptosis, at least in part, via activation of the Nrf2/ARE/HO-1 signaling pathway. PMID:27180985

  11. Involvement of PKA and HO-1 signaling in anti-inflammatory effects of surfactin in BV-2 microglial cells

    SciTech Connect

    Park, Sun Young; Kim, Ji-Hee; Lee, Sang Joon; Kim, YoungHee

    2013-04-01

    Surfactin, one of the most powerful biosurfactants, is a bacterial cyclic lipopeptide. Here, we investigated the anti-neuroinflammatory properties of surfactin in lipoteichoic acid (LTA)-stimulated BV-2 microglial cells. Surfactin significantly inhibited excessive production of the pro-inflammatory mediators TNF-α, IL-1β, IL-6, monocyte chemoattractant protein-1 (MCP-1), prostaglandin E{sub 2} (PGE{sub 2}), nitric oxide (NO) and reactive oxygen species (ROS), and suppressed the expression of matrix metalloproteinase-9 (MMP-9), inducible NO synthase (iNOS) and cyclooxygenase-2 (COX-2). Subsequent mechanistic studies revealed that surfactin inhibited LTA-induced nuclear factor-kappaB (NF-κB) and signal transducer and activator of transcription-1 (STAT-1) activation. However, surfactin increases the phosphorylation of the STAT-3, a component of the homeostatic mechanism causing anti-inflammatory events. We also demonstrated that surfactin induces heme oxygenase-1 (HO-1) expression and nuclear factor-regulated factor-2 (Nrf-2) activation, and that the anti-inflammatory effects of surfactin are abrogated by small interfering RNA-mediated knock-down of HO-1 or Nrf-2. Interestingly, we found that surfactin increased the level of cAMP and induced phosphorylation of cAMP responsive element binding protein (CREB) in microglial cells. Furthermore, treatment with the protein kinase A (PKA) inhibitor, H-89, blocked HO-1 induction by surfactin and abolished surfactin's suppressive effects on ROS and NO production. These results indicate that HO-1 and its upstream effector, PKA, play a pivotal role in the anti-neuroinflammatory response of surfactin in LTA-stimulated microglia. Therefore, surfactin might have therapeutic potential for neuroprotective agents to treat inflammatory and neurodegenerative diseases. - Highlights: ► Surfactin inhibits proinflammatory mediator synthesis in LTA-activated BV-2 cells. ► Surfactin suppresses NF-κB and STAT-1, but potentiates

  12. BnHO1, a haem oxygenase-1 gene from Brassica napus, is required for salinity and osmotic stress-induced lateral root formation.

    PubMed

    Cao, Zeyu; Geng, Beibei; Xu, Sheng; Xuan, Wei; Nie, Li; Shen, Wenbiao; Liang, Yongchao; Guan, Rongzhan

    2011-08-01

    In this report, a rapeseed (Brassica napus) haem oxygenase-1 gene BnHO1 was cloned and sequenced. It shared high homology with Arabidopsis HY1 proteins, and encodes a 32.6 kDa protein with a 54-amino-acid transit peptide, predicting the mature protein of 25.1 kDa. The mature BnHO1 expressed in Escherichia coli exhibits haem oxygenase (HO) activity. Furthermore, the application of lower doses of NaCl (10 mM) and polyethylene glycol (PEG) (2%) mimicked the inducible effects of naphthylacetic acid and the HO-1 inducer haemin on the up-regulation of BnHO1 and subsequent lateral root (LR) formation. Contrasting effects were observed when a higher dose of NaCl or PEG was applied. The above inducible and inhibitory responses were blocked significantly when the HO-1 inhibitor zinc protoporphyrin IX (ZnPPIX) or haemin was applied, both of which were reversed by the application of carbon monoxide or ZnPPIX, respectively. Moreover, the addition of ZnPPIX at different time points during LR formation indicated that BnHO1 might be involved in the early stages of LR formation. The auxin response factor transcripts and the auxin content in seedling roots were clearly induced by lower doses of salinity or osmotic stress. However, treatment with the inhibitor of polar auxin transport N-1-naphthylphthalamic acid prevented the above inducible responses conferred by lower doses of NaCl and PEG, which were further rescued when the treatments were combined with haemin. Taken together, these results suggested a novel role of the rapeseed HO-1 gene in salinity and osmotic stress-induced LR formation, with a possible interaction with auxin signalling.

  13. Upregulation of heme oxygenase-1 expression by dehydrodiconiferyl alcohol (DHCA) through the AMPK–Nrf2 dependent pathway

    SciTech Connect

    Lee, Junghun; Kim, Sunyoung

    2014-11-15

    Oxidative stress is induced by the accumulation of free radicals, resulting in an imbalanced cellular redox state, which has been implicated in a variety of human diseases. Dehydrodiconiferyl alcohol (DHCA), a lignan compound isolated from Cucurbita moschata, has previously been reported to contain anti-adipogenic and anti-lipogenic effects on 3T3-L1 cells and primary MEFs (Abraham and Kappas, 2008). In this study, it was tested whether DHCA could affect the expression of HO-1, using Raw264.7 mouse macrophage cell line. DHCA increased the protein and RNA levels of HO-1 and upregulated its promoter activity. Data from transient transfection assays indicated that ARE located in the E1 region of the HO-1 promoter are important in this DHCA-mediated induction of HO-1 expression. DHCA was also shown to enhance the nuclear translocation and binding of Nrf2 to the respective DNA sequences. The upregulation of HO-1 expression by DHCA was also observed in primary macrophages derived from wild type animals, but not in those from Nrf2 KO mice. Effects of DHCA on HO-1 and Nrf2 were reduced when cells were treated with an AMPK inhibitor, Compound C, but not by PI3K/Akt or MAPK inhibitors. Data from an experiment using a specific siRNA or chemical inhibitor for HO-1 suggested that the DHCA-mediated induction of the HO-1 protein could suppress the LPS-stimulated production of NO. Taken together, our data suggest that DHCA induces the expression of HO-1 by controlling its promoter activity through the AMPK–Nrf2 pathway, eventually leading to the reduction of NO production, and may thus have potential as an effective antioxidant. - Highlights: • Dehydrodiconiferyl alcohol (DHCA) induced the expression of heme oxygenase (HO)-1. • The AMPK–Nrf2 pathway is critically involved in the DHCA-mediated induction of HO-1. • DHCA increased the expression of HO-1, Gclc and Gclm in primary macrophages. • DHCA-mediated induction of HO-1 contributed to the suppression of NO production.

  14. Statins inhibit pulmonary artery smooth muscle cell proliferation by upregulation of HO-1 and p21WAF1.

    PubMed

    Li, Manxiang; Liu, Yuan; Shi, Hongyang; Zhang, Yonghong; Wang, Guizuo; Xu, Jing; Lu, Jiamei; Zhang, Dexin; Xie, Xinming; Han, Dong; Wu, Yuanyuan; Li, Shaojun

    2012-10-01

    Simvastatin is a 3-hydroxy-3-methylglutaryl-CoA reductase inhibitor, which has been shown to ameliorate the development of pulmonary hypertension in animal model by suppression of pulmonary artery smooth muscle cells (PASMCs) proliferation, yet its underlying molecular mechanisms are not completely understood. In this study, we show that simvastatin dose-dependently inhibited serotonin-stimulated PASMCs proliferation. This was accompanied with the parallel induction of heme oxyganase-1 (HO-1) and upregulation of p21(WAF1). More importantly, we found that Tin-protoporphyrin (SnPP), a selective inhibitor of HO-1, could block the effect of simvastatin on inhibition of cell proliferation in response to serotonin and abolish simvastatin-induced p21(WAF1) expression. The inhibitive effect of simvastatin on cell proliferation was also significantly suppressed by silencing p21(WAF1) with siRNA transfection. The extent of effect of SnPP on inhibition of cell proliferation was similar to that of lack of p21(WAF1) by siRNA transfection. Taken together, our study suggests that simvastatin inhibits PASMCs proliferation by sequential upregulation of HO-1 and p21(WAF1) to benefit pulmonary hypertension.

  15. Sulforaphane Protects Rodent Retinas against Ischemia-Reperfusion Injury through the Activation of the Nrf2/HO-1 Antioxidant Pathway

    PubMed Central

    Liu, Ruixing; Brecha, Nicholas C.; Yu, Albert Cheung Hoi; Pu, Mingliang

    2014-01-01

    Retinal ischemia-reperfusion (I/R) injury induces oxidative stress, leukocyte infiltration, and neuronal cell death. Sulforaphane (SF), which can be obtained in cruciferous vegetables such as broccoli, exerts protective effects in response to oxidative stress in various tissues. These effects can be initiated through nuclear factor E2-related factor 2 (Nrf2)-mediated induction of heme oxygenase-1 (HO-1). This investigation was designed to elucidate the neural protective mechanisms of SF in the retinal I/R rat model. Animals were intraperitoneally (i.p.) injected with SF (12.5 mg/kg) or vehicle (corn oil) once a day for 7 consecutive days. Then, retinal I/R was made by elevating the intraocular pressure (IOP) to 130 mmHg for 1 h. To determine if HO-1 was involved in the Nrf2 antioxidant pathway, rats were subjected to protoporphyrin IX zinc (II) (ZnPP, 30 mg/kg, i.p.) treatments at 24 h before retinal ischemia. The neuroprotective effects of SF were assessed by determining the morphology of the retina, counting the infiltrating inflammatory cells and the surviving retinal ganglion cells (RGCs) and amacrine cells, and measuring apoptosis in the retinal layers. The expression of Nrf2 and HO-1 was studied by immunofluorescence analysis and western blotting. I/R induced a marked increase of ROS generation, caused pronounced inflammation, increased the apoptosis of RGCs and amacrine cells and caused the thinning of the inner retinal layer (IRL), and these effects were diminished or abolished by SF pretreatment. Meanwhile, SF pretreatment significantly elevated the nuclear accumulation of Nrf2 and the level of HO-1 expression in the I/R retinas; however, ZnPP reversed the protective effects of SF on I/R retinas. Together, we offer direct evidence that SF had protective effects on I/R retinas, which could be attributed, at least in part, to the activation of the Nrf2/HO-1 antioxidant pathway. PMID:25470382

  16. Mechanism of estrogen-mediated attenuation of hepatic injury following trauma-hemorrhage: Akt-dependent HO-1 up-regulation.

    PubMed

    Hsu, Jun-Te; Kan, Wen-Hong; Hsieh, Chi-Hsun; Choudhry, Mashkoor A; Schwacha, Martin G; Bland, Kirby I; Chaudry, Irshad H

    2007-10-01

    Protein kinase B (Akt) is known to be involved in proinflammatory and chemotactic events in response to injury. Akt activation also leads to the induction of heme oxygenase (HO)-1. Up-regulation of HO-1 mediates potent, anti-inflammatory effects and attenuates organ injury. Although studies have shown that 17beta-estradiol (E2) prevents organ damage following trauma-hemorrhage, it remains unknown whether Akt/HO-1 plays any role in E2-mediated attenuation of hepatic injury following trauma-hemorrhage. To study this, male rats underwent trauma-hemorrhage (mean blood pressure, approximately 40 mmHg for 90 min), followed by fluid resuscitation. At the onset of resuscitation, rats were treated with vehicle, E2 (1 mg/kg body weight), E2 plus the PI-3K inhibitor (Wortmannin), or the estrogen receptor (ER) antagonist (ICI 182,780). At 2 h after sham operation or trauma-hemorrhage, plasma alpha-GST and hepatic tissue myeloperoxidase (MPO) activity, IL-6, TNF-alpha, ICAM-1, cytokine-induced neutrophil chemoattractant-1, and MIP-2 levels were measured. Hepatic Akt and HO-1 protein levels were also determined. Trauma-hemorrhage increased hepatic injury markers (alpha-GST and MPO activity), cytokines, ICAM-1, and chemokine levels. These parameters were markedly improved in the E2-treated rats following trauma-hemorrhage. E2 treatment also increased hepatic Akt activation and HO-1 expression compared with vehicle-treated, trauma-hemorrhage rats, which were abolished by coadministration of Wortmannin or ICI 182,780. These results suggest that the salutary effects of E2 on hepatic injury following trauma-hemorrhage are in part mediated via an ER-related, Akt-dependent up-regulation of HO-1.

  17. Preconditioning with low concentration NO attenuates subsequent NO-induced apoptosis in vascular smooth muscle cells via HO-1-dependent mitochondrial death pathway

    SciTech Connect

    Kwak, Hyun-Jeong; Park, Kyoung-Mi; Lee, Seahyoung; Lim, Hyun-Joung; Go, Sang-Hee; Eom, Sang-Mi; Park, Hyun-Young . E-mail: hypark65@nih.go.kr

    2006-12-01

    Nitric oxide (NO) signaling pathways are important in both the maintenance of vascular homeostasis and disease progression. Overproduction of NO has been associated with ischemia/reperfusion (I/R) injury. Growing evidences suggest that NO preconditioning has cytoprotective effects against I/R injury. However, the mechanism with which NO mediates these effects remains to be elucidated. The purpose of this study was to examine the mechanism of how NO preconditioning inhibits subsequent NO-induced apoptosis in vascular smooth muscle cells (VSMC), specifically focusing on heme oxygenase-1 (HO-1). According to our data, sodium nitroprusside (SNP) increased HO-1 expression in a concentration dependent manner. Preconditioning with low concentration SNP (0.3 mM) inhibited subsequent high concentration SNP (1.5 mM)-induced apoptosis, and this effect was reversed by the HO-1 inhibitor SnPP. Low concentration SNP-mediated protection involved p38 kinase inactivation and increased Bcl-2 expression. Furthermore, mitochondrial membrane potential was concomitantly increased with decreased expressions of Bax, Apaf-1, and activity of caspase-3, which was reversed by SnPP treatment. Our results show that low concentration SNP preconditioning suppresses subsequent high concentration SNP-induced apoptosis by inhibiting p38 kinase and mitochondrial death pathway via HO-1-dependent mechanisms in VSMC.

  18. Nrf2-Mediated HO-1 Induction Contributes to Antioxidant Capacity of a Schisandrae Fructus Ethanol Extract in C2C12 Myoblasts

    PubMed Central

    Kang, Ji Sook; Han, Min Ho; Kim, Gi-Young; Kim, Cheol Min; Kim, Byung Woo; Hwang, Hye Jin; Choi, Yung Hyun

    2014-01-01

    This study was designed to confirm the protective effect of Schisandrae Fructus, which are the dried fruits of Schisandra chinensis (Turcz.) Baill, against oxidative stress-induced cellular damage and to elucidate the underlying mechanisms in C2C12 myoblasts. Preincubating C2C12 cells with a Schisandrae Fructus ethanol extract (SFEE) significantly attenuated hydrogen peroxide (H2O2)-induced inhibition of growth and induced scavenging activity against intracellular reactive oxygen species (ROS) induced by H2O2. SFEE also inhibited comet tail formation and phospho-histone γH2A.X expression, suggesting that it prevents H2O2-induced cellular DNA damage. Furthermore, treating C2C12 cells with SFEE significantly induced heme oxygenase-1 (HO-1) and phosphorylation of nuclear factor-erythroid 2 related factor 2 (Nrf2). However, zinc protoporphyrin IX, a potent inhibitor of HO-1 activity, significantly reversed the protective effects of SFEE against H2O2-induced growth inhibition and ROS generation in C2C12 cells. Additional experiments revealed that the potential of the SFEE to induce HO-1 expression and protect against H2O2-mediated cellular damage was abrogated by transient transfection with Nrf2-specific small interfering RNA, suggesting that the SFEE protected C2C12 cells against oxidative stress-induced injury through the Nrf2/HO-1 pathway. PMID:25493944

  19. Enhanced expression of haem oxygenase-1 by nitric oxide and antiinflammatory drugs in NIH 3T3 fibroblasts.

    PubMed

    Alcaraz, M J; Habib, A; Lebret, M; Créminon, C; Lévy-Toledano, S; Maclouf, J

    2000-05-01

    1. Haem oxygenase-1 (HO-1) can exert protective effects against oxidative stress and inflammation. Fibroblasts participate in inflammatory responses where they produce high levels of prostaglandins (PGs) and nitric oxide (NO). However, little is known of the presence of HO-1 in these cells and the possible interactions among these pathways. Incubation of cells with NO donors, spermine nonoate (SPNO) and S-nitroso-N-acetylpenicillamine (SNAP), induced a dose- and time-dependent expression of HO-1 protein. 2. NO donors increased basal PGE(2) release although they reduced PGE(2) accumulated in the medium and cyclo-oxygenase (COX) activity when cells were stimulated with lipopolysaccharide (LPS). COX-2 protein was weakly induced by SPNO in basal conditions and in the presence of LPS a synergy for HO-1 and COX-2 protein expression was observed. 3. Our results indicate that reactive oxygen species participate in the inductive effect of NO donors or LPS on HO-1 expression, whereas endogenous NO production may play a role in the mechanism of the synergy exhibited by SPNO and LPS on HO-1 and COX-2 expression. In this system, zinc protoporphyrin IX did not affect nitrite levels but reduced COX activity. 4. The selective COX-2 inhibitors SC58125 and NS398 as well as the non-selective COX inhibitor, indomethacin, strongly reduced PGE(2) synthesis and showed a synergy with NO donors in HO-1 and COX-2 induction. Addition of PGE(2) had no effect, suggesting a mechanism independent of PGs formation. 5. In inflammatory conditions a number of factors could cooperate to induce HO-1 and COX-2, with a positive regulation by COX inhibitors.

  20. Sulforaphane Ameliorates Okadaic Acid-Induced Memory Impairment in Rats by Activating the Nrf2/HO-1 Antioxidant Pathway.

    PubMed

    Dwivedi, Subhash; Rajasekar, N; Hanif, Kashif; Nath, Chandishwar; Shukla, Rakesh

    2016-10-01

    Okadaic acid (OKA) causes memory impairment and attenuates nuclear factor erythroid 2-related factor 2 (Nrf2) along with oxidative stress and neuroinflammation in rats. Sulforaphane (dietary isothiocyanate compound), an activator of Nrf2 signaling, exhibits neuroprotective effects. However, the protective effect of sulforaphane in OKA-induced neurotoxicity remains uninvestigated. Therefore, in the present study, the role of sulforaphane in OKA-induced memory impairment in rats was explored. A significant increased Nrf2 expression in the hippocampus and cerebral cortex was observed in trained (Morris water maze) rats, and a significant decreased Nrf2 expression in memory-impaired (OKA, 200 ng icv) rats indicated its involvement in memory function. Sulforaphane administration (5 and 10 mg/kg, ip, days 1 and 2) ameliorates OKA-induced memory impairment in rats. The treatment also restored Nrf2 and its downstream antioxidant protein expression (GCLC, HO-1) and attenuated oxidative stress (ROS, nitrite, GSH), neuroinflammation (NF-κB, TNF-α, IL-10), and neuronal apoptosis in the cerebral cortex and hippocampus of OKA-treated rats. Further, to determine whether modulation of Nrf2 signaling is responsible for the protective effect of sulforaphane, in vitro, Nrf2 siRNA and its downstream HO-1 inhibition studies were carried out in a rat astrocytoma cell line (C6). The protective effects of sulforaphane were abolished with Nrf2 siRNA and HO-1 inhibition in astrocytes. The results suggest that Nrf2-dependent activation of cellular antioxidant machinery results in sulforaphane-mediated protection against OKA-induced memory impairment in rats. Graphical Abstract ᅟ.

  1. Micro-RNA-155-mediated control of heme oxygenase 1 (HO-1) is required for restoring adaptively tolerant CD4+ T-cell function in rodents.

    PubMed

    Zhang, Jinyu; Vandevenne, Patricia; Hamdi, Haifa; Van Puyvelde, Merry; Zucchi, Alessandro; Bettonville, Marie; Weatherly, Kathleen; Braun, Michel Y

    2015-03-01

    T cells chronically stimulated by a persistent antigen often become dysfunctional and lose effector functions and proliferative capacity. To identify the importance of micro-RNA-155 (miR-155) in this phenomenon, we analyzed mouse miR-155-deficient CD4(+) T cells in a model where the chronic exposure to a systemic antigen led to T-cell functional unresponsiveness. We found that miR-155 was required for restoring function of T cells after programmed death receptor 1 blockade. Heme oxygenase 1 (HO-1) was identified as a specific target of miR-155 and inhibition of HO-1 activity restored the expansion and tissue migration capacity of miR-155(-/-) CD4(+) T cells. Moreover, miR-155-mediated control of HO-1 expression in CD4(+) T cells was shown to sustain in vivo antigen-specific expansion and IL-2 production. Thus, our data identify HO-1 regulation as a mechanism by which miR-155 promotes T-cell-driven inflammation.

  2. The Anti-Inflammatory Activity of Eucommia ulmoides Oliv. Bark. Involves NF-κB Suppression and Nrf2-Dependent HO-1 Induction in BV-2 Microglial Cells

    PubMed Central

    Kwon, Seung-Hwan; Ma, Shi-Xun; Hwang, Ji-Young; Ko, Yong-Hyun; Seo, Ji-Yeon; Lee, Bo-Ram; Lee, Seok-Yong; Jang, Choon-Gon

    2016-01-01

    In the present study, we investigated the anti-inflammatory properties of Eucommia ulmoides Oliv. Bark. (EUE) in lipopolysaccharide (LPS)-stimulated microglial BV-2 cells and found that EUE inhibited LPS-mediated up-regulation of pro-inflammatory response factors. In addition, EUE inhibited the elevated production of pro-inflammatory cytokines, mediators, and reactive oxygen species (ROS) in LPS-stimulated BV-2 microglial cells. Subsequent mechanistic studies revealed that EUE suppressed LPS-induced phosphorylation of mitogen-activated protein kinases (MAPKs), phosphoinositide-3-kinase (PI3K)/Akt, glycogen synthase kinase-3β (GSK-3β), and their downstream transcription factor, nuclear factor-kappa B (NF-κB). EUE also blocked the nuclear translocation of NF-κB and inhibited its binding to DNA. We next demonstrated that EUE induced the nuclear translocation of nuclear factor erythroid 2-related factor 2 (Nrf2) and upregulated heme oxygenase-1 (HO-1) expression. We determined that the significant up-regulation of HO-1 expression by EUE was a consequence of Nrf2 nuclear translocation; furthermore, EUE increased the DNA binding of Nrf2. In contrast, zinc protoporphyrin (ZnPP), a specific HO-1 inhibitor, blocked the ability of EUE to inhibit NO and PGE2 production, indicating the vital role of HO-1. Overall, our results indicate that EUE inhibits pro-inflammatory responses by modulating MAPKs, PI3K/Akt, and GSK-3β, consequently suppressing NF-κB activation and inducing Nrf2-dependent HO-1 activation. PMID:27068259

  3. Electroacupuncture Ameliorates Acute Renal Injury in Lipopolysaccharide-Stimulated Rabbits via Induction of HO-1 through the PI3K/Akt/Nrf2 Pathways

    PubMed Central

    Gong, Li-rong; Dong, Shu-an; Cao, Xin-shun; Wu, Li-li; Wu, Li-na

    2015-01-01

    Electroacupuncture at select acupoints have been verified to protect against organ dysfunctions during endotoxic shock. And, heme oxygenase (HO)-1 as a phase II enzyme and antioxidant contributed to the protection of kidney in septic shock rats. The phosphatidylinositol 3-kinase (PI3K)-Akt pathway mediated the activation of NF-E2 related factor-2 (Nrf2), which was involved in HO-1 induction. To understand the efficacy of electroacupuncture stimulation in ameliorating acute kidney injury (AKI) through the PI3K/Akt/Nrf2 pathway and subsequent HO-1 upregulation, a dose of LPS 5mg/kg was administered intravenously to replicate the rabbit model of AKI induced by endotoxic shock. Electroacupuncture pretreatment was handled bilaterally at Zusanli and Neiguan acupoints for five consecutive days while sham electroacupuncture at non-acupoints as control. Results displayed that electroacupuncture stimulation significantly alleviated the morphologic renal damage, attenuated renal tubular apoptosis, suppressed the elevated biochemical indicators of AKI caused by LPS, enhanced the expressions of phospho-Akt, HO-1protein, Nrf2 total and nucleoprotein, and highlighted the proportions of Nrf2 nucleoprotein as a parallel. Furthermore, partial protective effects of elecroacupuncture were counteracted by preconditioning with wortmannin (the selective PI3K inhibitor), indicating a direct involvement of PI3K/Akt pathway. Inconsistently, wortmannin pretreatment made little difference to the expressions of HO-1, Nrf2 nucleoprotein and total protein, which indicated that PI3K/Akt may be not the only pathway responsible for electroacupuncture-afforded protection against LPS-induced AKI. These findings provide new insights into the potential future clinical applications of electroacupuncture for AKI induced by endotoxic shock instead of traditional remedies. PMID:26524181

  4. ATF3-mediated NRF2/HO-1 signaling regulates TLR4 innate immune responses in mouse liver ischemia/reperfusion injury.

    PubMed

    Rao, J; Qian, X; Li, G; Pan, X; Zhang, C; Zhang, F; Zhai, Y; Wang, X; Lu, L

    2015-01-01

    Activating transcription factor 3 (ATF3) is a stress-induced transcription factor that has been shown to repress inflammatory gene expression in multiple cell types and diseases. However, little is known about the roles and mechanisms of ATF3 in liver ischemia/reperfusion injury (IRI). In warm and cold liver IRI models, we showed that ATF3 deficiency significantly increased ischemia/reperfusion (IR)-stressed liver injury, as evidenced by increased serum alanine aminotransferase levels, histological liver damage, and hepatocellular apoptosis. These may correlate with inhibition of the intrahepatic nuclear factor erythroid-derived 2-related factor 2/heme oxygenase-1 (NRF2/HO-1) signaling pathway leading to enhancing Toll-like receptor 4/nuclear factor kappa beta (TLR4/NF-κB) activation, pro-inflammatory programs and macrophage/neutrophil trafficking, while simultaneously repressing anti-apoptotic molecules in ischemic liver. Interestingly, activation of NRF2/HO-1 signaling using an NRF2 activator, oltipraz (M2), during hepatic IRI-rescued ATF3 anti-inflammatory functions in ATF3-deficient mice. For in vitro studies, ATF3 ablation in lipopolysaccharide (LPS)-stimulated bone marrow-derived macrophages (BMMs) depressed levels of NRF2/HO-1 and PI3K/AKT, resulting in enhanced TLR4/NF-κB activation. Pretreatment of LPS-stimulated BMMs with M2 increased NRF2/HO-1 expression, promoted PI3K/AKT, which in turn suppressed TLR4/NF-κB-mediated proinflammatory mediators. Thus, our results first demonstrate ATF3-mediated NRF2/HO-1 signaling in the regulation of TLR4-driven inflammatory responses in IR-stressed livers. Our findings provide a rationale for a novel therapeutic strategy for managing IR-induced liver injury.

  5. Prunella vulgaris suppresses HG-induced vascular inflammation via Nrf2/HO-1/eNOS activation.

    PubMed

    Hwang, Sun Mi; Lee, Yun Jung; Yoon, Jung Joo; Lee, So Min; Kim, Jin Sook; Kang, Dae Gill; Lee, Ho Sub

    2012-01-01

    Vascular inflammation is an important factor which can promote diabetic complications. In this study, the inhibitory effects of aqueous extract from Prunella vulgaris (APV) on high glucose (HG)-induced expression of cell adhesion molecules in human umbilical vein endothelial cells (HUVEC) are reported. APV decreased HG-induced expression of intercellular adhesion molecule-1 (ICAM-1), vascular cell adhesion molecule-1 (VCAM-1), and E-selectin. APV also dose-dependently inhibited HG-induced adhesion of HL-60 monocytic cells. APV suppressed p65 NF-κB activation in HG-treated cells. APV significantly inhibited the formation of intracellular reactive oxygen species (ROS). HG-stimulated HUVEC secreted gelatinases, however, APV inhibited it. APV induced Akt phosphorylation as well as activation of heme oxygenase-1 (HO-1), eNOS, and nuclear factor E2-related factor 2 (Nrf2), which may protect vascular inflammation caused by HG. In conclusion, APV exerts anti-inflammatory effect via inhibition of ROS/NF-κB pathway by inducing HO-1 and eNOS expression mediated by Nrf2, thereby suggesting that Prunella vulgaris may be a possible therapeutic approach to the inhibition of diabetic vascular diseases.

  6. Protective action of nipradilol mediated through S-nitrosylation of Keap1 and HO-1 induction in retinal ganglion cells.

    PubMed

    Koriyama, Yoshiki; Kamiya, Marie; Takadera, Tsuneo; Arai, Kunizo; Sugitani, Kayo; Ogai, Kazuhiro; Kato, Satoru

    2012-12-01

    Nipradilol (Nip), which has α1- and β-adrenoceptor antagonist and nitric oxide (NO)-donating properties, has clinically been used as an anti-glaucomatous agent in Japan. NO mediates cellular signaling pathways that regulate physiological functions. The major signaling mechanisms mediated by NO are cGMP-dependent signaling and protein S-nitrosylation-dependent signalings. Nip has been described as having neuroprotective effects through cGMP-dependent pathway in retinal ganglion cells (RGCs). However, the effect seems to be partial. On the other hand, whether Nip can prevent cell death through S-nitrosylation is not yet clarified. In this study, we therefore focused on the neuroprotective mechanism of Nip through S-nitrosylation. Nip showed a dramatic neuroprotective effect against oxidative stress-induced death of RGC-5 cells. However, denitro-nipradilol, which does not have NO-donating properties, was not protective against oxidative stress. Furthermore, an NO scavenger significantly reversed the protective action of Nip against oxidative stress. In addition, we demonstrated that α1- or β-adrenoceptor antagonists (prazosin or timolol) did not show any neuroprotective effect against oxidative stress in RGC-5 cells. We also demonstrated that Nip induced the expression of the NO-dependent antioxidant enzyme, heme oxygenase-1 (HO-1). S-nitrosylation of Kelch-like ECH-associated protein by Nip was shown to contribute to the translocation of NF-E2-related factor 2 to the nucleus, and triggered transcriptional activation of HO-1. Furthermore, RGC death and levels of 4-hydroxy-2-nonenal (4HNE) were increased after optic nerve injury in vivo. Pretreatment with Nip significantly suppressed RGC death and accumulation of 4HNE after injury through an HO-1 activity-dependent mechanism. These data demonstrate a novel neuroprotective action of Nip against oxidative stress-induced RGC death in vitro and in vivo.

  7. Arctigenin Protects against Lipopolysaccharide-Induced Pulmonary Oxidative Stress and Inflammation in a Mouse Model via Suppression of MAPK, HO-1, and iNOS Signaling.

    PubMed

    Zhang, Wen-zhou; Jiang, Zheng-kui; He, Bao-xia; Liu, Xian-ben

    2015-08-01

    Arctigenin, a bioactive component of Arctium lappa (Nubang), has anti-inflammatory activity. Here, we investigated the effects of arctigenin on lipopolysaccharide (LPS)-induced acute lung injury. Mice were divided into four groups: control, LPS, LPS + DMSO, and LPS + Arctigenin. Mice in the LPS + Arctigenin group were injected intraperitoneally with 50 mg/kg of arctigenin 1 h before an intratracheal administration of LPS (5 mg/kg). Lung tissues and bronchoalveolar lavage fluids (BALFs) were collected. Histological changes of the lung were analyzed by hematoxylin and eosin staining. Arctigenin decreased LPS-induced acute lung inflammation, infiltration of inflammatory cells into BALF, and production of pro-inflammatory cytokines. Moreover, arctigenin pretreatment reduced the malondialdehyde level and increased superoxide dismutase and catalase activities and glutathione peroxidase/glutathione disulfide ratio in the lung. Mechanically, arctigenin significantly reduced the production of nitric oxygen and inducible nitric oxygen synthase (iNOS) expression, enhanced the expression of heme oxygenase-1, and decreased the phosphorylation of mitogen-activated protein kinases (MAPKs). Arctigenin has anti-inflammatory and antioxidative effects on LPS-induced acute lung injury, which are associated with modulation of MAPK, HO-1, and iNOS signaling.

  8. Isorhamnetin Attenuates Atherosclerosis by Inhibiting Macrophage Apoptosis via PI3K/AKT Activation and HO-1 Induction

    PubMed Central

    Luo, Yun; Sun, Guibo; Dong, Xi; Wang, Min; Qin, Meng; Yu, Yingli; Sun, Xiaobo

    2015-01-01

    Background and Purpose Isorhamnetin (Iso) is a flavonoid compound extracted from the Chinese herb Hippophae rhamnoides L. Previous studies have revealed its anti-cancer, anti-inflammatory, and anti-oxidant activities. This study investigated the ability of Iso to inhibit oxidized low-density lipoprotein (ox-LDL)-induced cell apoptosis in THP-1-derived macrophages. The effects of Iso on atherosclerosis in vivo were also evaluated in apolipoprotein E knockout (ApoE-/-) mice fed a high fat diet. Methods and Results Iso showed significant inhibitory effects on ox-LDL-induced THP-1-derived macrophage injuries via decreasing reactive oxygen species levels, lipid deposition, and caspase-3 activation, restoring mitochondrial membrane potential, reducing the number of terminal deoxynucleotidyl transferase-mediated dUTP nick end-labeling (TUNEL)-positive cells, and regulating apoptosis-related proteins. We also determined the protective effects of Iso by PI3K/AKT activation and HO-1 induction. Iso reduced the atherosclerotic plaque size in vivo in ApoE-/- mice as assessed by oil red O, Sudan IV staining, and CD68-positive cells, and reduced macrophage apoptosis as assessed by caspase-3 and TUNEL assays in lesions. Conclusion In conclusion, our results show that Iso inhibited atherosclerotic plaque development in ApoE-/- mice by PI3K/AKT activation and HO-1 induction. PMID:25799286

  9. Developmental Hypothyroidism Reduces the Expression of ...

    EPA Pesticide Factsheets

    Disruption of thyroid hormone (TH) is a known effect of environmental contaminants. Neurotrophins including brain-derived neurotrophic factor (BDNF) and nerve growth factor (NGF) have been implicated in brain dysfunction resulting from severe developmental TH insufficiency. Neurotrophins are also implicated in activity-dependent plasticity, a process critical for appropriate use-dependent connectivity in the developing brain and for memory formation in the adult. This study examined activity-induced expression of neurotrophin gene products in the hippocampus using the long-term potentiation (LTP) after developmental hypothyroidism induced by propylthiouracil (PTU). Pregnant rats were exposed to PTU (0 or I0ppm) via the drinking water from early gestation to weaning. Adult male offspring were anesthetized with urethane and implanted with electrodes in the dentate gyrus (00) and perforant path (PP). LTP was induced by PP stimulation and responses from 00 were monitored at 15m intervals until sacrifice of the animals 5 h later. The 00 was dissected from the stimulated and nonstimulated hemispheres for rtPCR analysis of the neurotrophins Bdnf, Ngf, Ntf3 and related genes Egrl, Arc, Klf9. We found no PTU-induced difference in basal levels of expression of any of these genes in the nonstimulated 00. LTP increased expression of Bdnf, Ngf, Arc and Klj9 in the control DG, and reduced expression of Ntf3. LTP in DG from PTU animals failed to increase expression of Bdnf,

  10. Salvianolic acid A ameliorates the integrity of blood-spinal cord barrier via miR-101/Cul3/Nrf2/HO-1 signaling pathway.

    PubMed

    Yu, De-Shui; Wang, Yan-Song; Bi, Yun-Long; Guo, Zhan-Peng; Yuan, Ya-Jiang; Tong, Song-Ming; Su, Rui-Chao; Ge, Li-Hao; Wang, Jian; Pan, Ya-Li; Guan, Ting-Ting; Cao, Yang

    2017-02-15

    Salvianolic acid A (Sal A), a bioactive compound isolated from the Chinese medicinal herb Danshen, is used for the prevention and treatment of cardiovascular diseases. However, the protective function of Sal A on preserving the role of blood-spinal cord barrier (BSCB) after spinal cord injury (SCI) is unclear. The present study investigated the effects and mechanisms of Sal A (2.5, 5, 10mg/kg, i.p.) on BSCB permeability at different time-points after compressive SCI in rats. Compared to the SCI group, treatment with Sal A decreased the content of the Evans blue in the spinal cord tissue at 24h post-SCI. The expression levels of tight junction proteins and HO-1 were remarkably increased, and that of p-caveolin-1 protein was greatly decreased after SCI Sal A. The effect of Sal A on the expression level of ZO-1, occluding, and p-caveolin-1 after SCI was blocked by the HO-1 inhibitor, zinc protoporphyrin IX (ZnPP). Also, Sal A inhibited the level of apoptosis-related proteins and improved the motor function until 21days after SCI. In addition, Sal A significantly increased the expression of microRNA-101 (miR-101) in the RBMECs under hypoxia. AntagomiR-101 markedly increased the RBMECs permeability and the expression of the Cul3 protein by targeting with 3'-UTR of its mRNA. The expression of nuclear factor erythroid 2-related factor 2 (Nrf2) and HO-1 was significantly increased after agomiR-101 treatment. Therefore, Sal A could improve the recovery of neurological function after SCI, which could be correlated with the repair of BSCB integrity by the miR-101/Cul3/Nrf2/HO-1 signaling pathway.

  11. Andrographolide Activates Keap1/Nrf2/ARE/HO-1 Pathway in HT22 Cells and Suppresses Microglial Activation by Aβ42 through Nrf2-Related Inflammatory Response

    PubMed Central

    Seo, Ji Yeon; Pyo, Euisun; An, Jin-Pyo; Kim, Jinwoong; Sung, Sang Hyun

    2017-01-01

    Therapeutic approach of Alzheimer's disease (AD) has been gradually diversified. We examined the therapeutic and preventive potential of andrographolide, which is a lactone diterpenoid from Andrographis paniculata, and focused on the Kelch-like ECH-associated protein 1 (Keap1)/nuclear factor (erythroid-derived 2)-like 2 (Nrf2)-mediated heme oxygenase (HO)-1-inducing effects and the inhibitory activity of amyloid beta (Aβ)42-induced microglial activation related to Nrf2 and nuclear factor κB (NF-κB)-mediated inflammatory responses. Andrographolide induced the expression and translocation of Nrf2 from the cytoplasm to the nucleus, thereby activating antioxidant response element (ARE) gene transcription and HO-1 expression in murine hippocampal HT22 cells. Andrographolide eliminated intracellular Aβ42 in BV-2 cells and decreased the production of interleukin (IL)-6, IL-1β, prostaglandin (PG)E2, and nitric oxide (NO) because of artificial phagocytic Aβ42. It decreased pNF-κB accumulation in the nucleus and the expression of inducible nitric oxide synthase (i-NOS) and cyclooxygenase II (COX-II) in the microglial BV-2 cell line. In summary, andrographolide activates Nrf2-mediated HO-1 expression and inhibits Aβ42-overexpressed microglial BV-2 cell activation. These results suggested that andrographolide might have the potential for further examination of the therapeutics of AD. PMID:28373747

  12. The role of heme oxygenase-1 (HO-1) in the regulation of inflammatory reaction, neuronal cell proliferation and apoptosis in rats after intracerebral hemorrhage (ICH)

    PubMed Central

    Fan, Xuezheng; Mu, Linshen

    2017-01-01

    Objective To investigate the role of heme oxygenase-1 (HO-1) in the regulation of inflammatory reaction, neuronal cell proliferation and apoptosis in rats after intracerebral hemorrhage (ICH). Methods Thirty-six adult Sprague Dawley (SD) male rats were randomly divided into sham operation, ICH and zinc protoporphyrin (ZPP) group. Rats (except for the sham operation group) were given 50 μL stereotactic injection of autologous blood from the femoral artery into the caudate nucleus, to establish an ICH model. In addition, rats in the ZPP group were given 10 mg/kg intraperitoneal injection of ZPP. At day 3 postoperative, neurobehavioral changes and brain water content were evaluated, brain tissue HO-1 expression was detected with immunohistochemistry and reverse transcription polymerase chain reaction (RT-PCR), brain tissue apoptosis was evaluated with TUNEL method, Caspase 3, Caspase 8 and Caspase 9 activity were detected with colorimetric method, level of TNF-α, IL-1β, IL-6 and IL-8 were measured with the enzyme-linked immunosorbent assay (ELISA), while Bcl-2, Bax, p-NF-κB p65 and p-IκBα protein expression were detected with Western blot. Results ICH group compared to sham operation: HO-1 positive rate and mRNA expression were increased, neurological deficit score and cell apoptosis rate were increased, Caspase 3, Caspase 8 and Caspase 9 activity were increased, level of TNF-α, IL-1β, IL-6 and IL-8 were increased, Bcl-2 expression was downregulated, Bax, p-NF-κB p65 and p-IκBα expression were upregulated. The differences were statistically significant (P<0.01). ZPP group compared to ICH: HO-1 positive rate and mRNA expression were decreased, neurological deficit score and cell apoptosis rate were decreased, Caspase 3, Caspase 8, Caspase 9 activity were decreased, level of TNF-α, IL-1β, IL-6 and IL-8 were decreased, Bcl-2 expression was upregulated, Bax, p-NF-κB p65 and p-IκBα expression were downregulated, and the differences were statistically

  13. The alpha-methylene-gamma-butyrolactone moiety in dehydrocostus lactone is responsible for cytoprotective heme oxygenase-1 expression through activation of the nuclear factor E2-related factor 2 in HepG2 cells.

    PubMed

    Jeong, Gil-Saeng; Pae, Hyun-Ock; Jeong, Sun-Oh; Kim, Youn-Chul; Kwon, Tae-Oh; Lee, Ho Sub; Kim, Nam-Song; Park, Seok Don; Chung, Hun-Taeg

    2007-06-22

    Inducible heme oxygenase (HO)-1 acts against oxidants that are thought to play a major role in the pathogenesis of several diseases. The alpha-methylene-gamma-butyrolactone (CH2-BL) structural unit, which characterizes a group of naturally occurring sesquiterpene lactones, is known to possess numerous biological activities. In the present study, we evaluated dehydrocostus lactone possessing CH2-BL moiety, one of the bioactive constituents of the medicinal plant Saussurea lappa, as an inducer of cytoprotective HO-1. In HepG2 cells, treatment with dehydrocostus lactone induced HO-1 expression and increased HO activity in a concentration-dependent manner. Similar results were also observed when the cells were incubated with CH2-BL, a parent structure of dehydrocostus lactone. In contrast, mokko lactone, a reduced product of dehydrocostus lactone, and alpha-methyl-gamma-butyrolactone (CH3-BL), a parent structure of mokko lactone, did not induce HO-1 expression. Pretreatment with either dehydrocostus lactone or CH2-BL for 6 h protected the cells from hydrogen peroxide-mediated toxicity, whereas mokko lactone or CH3-BL failed to exert a cytoprotective action. Inhibition of HO-1 expression by HO-1 small interfering RNA (siRNA) abrogated cellular protection afforded by dehydrocostus lactone or CH2-BL. In addition, dehydrocostus lactone caused the nuclear accumulation of the nuclear factor E2-related factor 2 (Nrf2) and increased the promoter activity of antioxidant response element (ARE). Using Nrf2 siRNA, Nrf2 activation was confirmed to contribute to cytoprotective HO-1 expression by dehydrocostus lactone or CH2-BL. Collectively, our findings suggest that CH2-BL moiety in dehydrocostus lactone increases cellular resistance to oxidant injury in HepG2 cells, presumably through Nrf2/ARE-dependent HO-1 expression.

  14. Haem oxygenase 1 expression is altered in monocytes from patients with systemic lupus erythematosus

    PubMed Central

    Herrada, Andrés A; Llanos, Carolina; Mackern-Oberti, Juan P; Carreño, Leandro J; Henriquez, Carla; Gómez, Roberto S; Gutierrez, Miguel A; Anegon, Ignacio; Jacobelli, Sergio H; Kalergis, Alexis M

    2012-01-01

    Systemic lupus erythematosus (SLE) is an autoimmune disease characterized by multiple functional alterations affecting immune cells, such as B cells, T cells, dendritic cells (DCs) and monocytes. During SLE, the immunogenicity of monocytes and DCs is significantly up-regulated, promoting the activation of self-reactive T cells. Accordingly, it is important to understand the contribution of these cells to the pathogenesis of SLE and the mechanisms responsible for their altered functionality during disease. One of the key enzymes that control monocyte and DC function is haem oxygenase-1 (HO-1), which catalyses the degradation of the haem group into biliverdin, carbon monoxide and free iron. These products possess immunosuppressive and anti-inflammatory capacities. The main goal of this work was to determine HO-1 expression in monocytes and DCs from patients with SLE and healthy controls. Hence, peripheral blood mononuclear cells were obtained from 43 patients with SLE and 30 healthy controls. CD14+ monocytes and CD4+ T cells were sorted by FACS and HO-1 expression was measured by RT-PCR. In addition, HO-1 protein expression was determined by FACS. HO-1 levels in monocytes were significantly reduced in patients with SLE compared with healthy controls. These results were confirmed by flow cytometry. No differences were observed in other cell types, such as DCs or CD4+ T cells, although decreased MHC-II levels were observed in DCs from patients with SLE. In conclusion, we found a significant decrease in HO-1 expression, specifically in monocytes from patients with SLE, suggesting that an imbalance of monocyte function could be partly the result of a decrease in HO-1 expression. PMID:22587389

  15. Methamphetamine induces heme oxygenase-1 expression in cortical neurons and glia to prevent its toxicity.

    PubMed

    Huang, Ya-Ni; Wu, Ching-Hsiang; Lin, Tzu-Chao; Wang, Jia-Yi

    2009-11-01

    The impairment of cognitive and motor functions in humans and animals caused by methamphetamine (METH) administration underscores the importance of METH toxicity in cortical neurons. The heme oxygenase-1 (HO-1) exerts a cytoprotective effect against various neuronal injures; however, it remains unclear whether HO-1 is involved in METH-induced toxicity. We used primary cortical neuron/glia cocultures to explore the role of HO-1 in METH-induced toxicity. Exposure of cultured cells to various concentrations of METH (0.1, 0.5, 1, 3, 5, and 10 mM) led to cytotoxicity in a concentration-dependent manner. A METH concentration of 5 mM, which caused 50% of neuronal death and glial activation, was chosen for subsequent experiments. RT-PCR and Western blot analysis revealed that METH significantly induced HO-1 mRNA and protein expression, both preceded cell death. Double and triple immunofluorescence staining further identified HO-1-positive cells as activated astrocytes, microglia, and viable neurons, but not dying neurons. Inhibition of the p38 mitogen-activated protein kinase pathway significantly blocked HO-1 induction by METH and aggravated METH neurotoxicity. Inhibition of HO activity using tin protoporphyrine IX significantly reduced HO activity and exacerbated METH neurotoxicity. However, prior induction of HO-1 using cobalt protoporphyrine IX partially protected neurons from METH toxicity. Taken together, our results suggest that induction of HO-1 by METH via the p38 signaling pathway may be protective, albeit insufficient to completely protect cortical neurons from METH toxicity.

  16. Methamphetamine induces heme oxygenase-1 expression in cortical neurons and glia to prevent its toxicity

    SciTech Connect

    Huang, Y.-N.; Wu, C.-H.; Lin, T.-C.; Wang, J.-Y.

    2009-11-01

    The impairment of cognitive and motor functions in humans and animals caused by methamphetamine (METH) administration underscores the importance of METH toxicity in cortical neurons. The heme oxygenase-1 (HO-1) exerts a cytoprotective effect against various neuronal injures; however, it remains unclear whether HO-1 is involved in METH-induced toxicity. We used primary cortical neuron/glia cocultures to explore the role of HO-1 in METH-induced toxicity. Exposure of cultured cells to various concentrations of METH (0.1, 0.5, 1, 3, 5, and 10 mM) led to cytotoxicity in a concentration-dependent manner. A METH concentration of 5 mM, which caused 50% of neuronal death and glial activation, was chosen for subsequent experiments. RT-PCR and Western blot analysis revealed that METH significantly induced HO-1 mRNA and protein expression, both preceded cell death. Double and triple immunofluorescence staining further identified HO-1-positive cells as activated astrocytes, microglia, and viable neurons, but not dying neurons. Inhibition of the p38 mitogen-activated protein kinase pathway significantly blocked HO-1 induction by METH and aggravated METH neurotoxicity. Inhibition of HO activity using tin protoporphyrine IX significantly reduced HO activity and exacerbated METH neurotoxicity. However, prior induction of HO-1 using cobalt protoporphyrine IX partially protected neurons from METH toxicity. Taken together, our results suggest that induction of HO-1 by METH via the p38 signaling pathway may be protective, albeit insufficient to completely protect cortical neurons from METH toxicity.

  17. High expression of heme oxygenase-1 in target organs may attenuate acute graft-versus-host disease through regulation of immune balance of TH17/Treg.

    PubMed

    Yu, Meisheng; Wang, Jishi; Fang, Qin; Liu, Ping; Chen, Shuya; Zhe, Nana; Lin, Xiaojing; Zhang, Yaming; Zhao, Jiangyuan; Zhou, Zhen

    2016-07-01

    The high incidence of acute graft-versus-host disease (aGVHD) is a serious complication of allogeneic hematopoietic stem cell transplantation (allo-HSCT). Grades III and IV aGVHD are the leading causes of death in allo-HSCT recipients. Heme oxygenase-1(HO-1) has anti-inflammatory and immune-regulatory functions. In this study, we evaluated the none GVHD and grade I-IV patients samples which were collected at the first re-examination after successful allo-HSCT, we found that expressions of HO-1 mRNA in the bone marrow and peripheral blood mononuclear cells of allo-HSCT recipients who had subsequent non-GVHD and grade I aGVHD were significantly higher than those in patients with Grade III-IV aGVHD. We then demonstrated that enhanced expression of HO-1 in target organs by infusing HO-1-gene-modified Mesenchymal stem cells (MSCs) alleviated the clinical and histopathological severity of aGVHD in experimental mice. Flow cytometry revealed a higher expression of Treg cells and a lower expression of TH17 cells in splenic and lymph node tissues of mice with enhanced HO-1 expression, as compared to that in the aGVHD mice. This was further substantiated by lower expression levels of ROR-Υt and IL-17A mRNA, and higher levels of Foxp3 mRNA in the splenic tissue of mice with enhanced HO-1 expression. Our results indicate that high expression of HO-1 may reduce the severity of aGVHD by regulation of the TH17/Treg balance.

  18. Ginsenoside Rb1 protects against 6-hydroxydopamine-induced oxidative stress by increasing heme oxygenase-1 expression through an estrogen receptor-related PI3K/Akt/Nrf2-dependent pathway in human dopaminergic cells

    SciTech Connect

    Hwang, Yong Pil; Jeong, Hye Gwang

    2010-01-01

    Phytoestrogens are polyphenolic non-steroidal plant compounds with estrogen-like biological activity. Ginseng, the root of Panax ginseng C.A. Meyer (Araliaceae), is a popular traditional herbal medicine. Ginsenoside Rb1 (Rb1), an active component commonly found in ginseng root, is a phytoestrogen that exerts estrogen-like activity. In this study, we demonstrate that the phytoestrogen Rb1 inhibits 6-hydroxydopamine (6-OHDA)-induced oxidative injury via an ER-dependent Gbeta1/PI3K/Akt and heme oxygenase-1 (HO-1) pathway. Pretreatment of SH-SY5Y cells with Rb1 significantly reduced 6-OHDA-induced caspase-3 activation and subsequent cell death. Rb1 also up-regulated HO-1 expression, which conferred cytoprotection against 6-OHDA-induced oxidative injury. Moreover, Rb1 induced both Nrf2 nuclear translocation, which is upstream of HO-1 expression and PI3K activation, a pathway that is involved in induced Nrf2 nuclear translocation, HO-1 expression and cytoprotection. Also, Rb1-mediated increases in PI3K activation and HO-1 induction were reversed by co-treatment with ICI 182,780 and pertussis toxin. Taken together, these results suggest that Rb1 augments the cellular antioxidant defenses through ER-dependent HO-1 induction via the Gbeta1/PI3K/Akt-Nrf2 signaling pathway, thereby protecting cells from oxidative stress. Thus our study indicates that Rb1 has a partial cytoprotective role in dopaminergic cell culture systems.

  19. Lycopene attenuates colistin-induced nephrotoxicity in mice via activation of the Nrf2/HO-1 pathway.

    PubMed

    Dai, Chongshan; Tang, Shusheng; Deng, Sijun; Zhang, Shen; Zhou, Yan; Velkov, Tony; Li, Jian; Xiao, Xilong

    2015-01-01

    Nephrotoxicity is the major dose-limiting factor for the clinical use of colistin against multidrug-resistant (MDR) Gram-negative bacteria. This study aimed to investigate the protective effect of lycopene on colistin-induced nephrotoxicity in a mouse model. Fifty mice were randomly divided into 5 groups: the control group (saline solution), the lycopene group (20 mg/kg of body weight/day administered orally), the colistin group (15 mg/kg/day administered intravenously), the colistin (15 mg/kg/day) plus lycopene (5 mg/kg/day) group, and the colistin (15 mg/kg/day) plus lycopene (20 mg/kg/day) group; all mice were treated for 7 days. At 12 h after the last dose, blood was collected for measurements of blood urea nitrogen (BUN) and serum creatinine levels. The kidney tissue samples were obtained for examination of biomarkers of oxidative stress and apoptosis, histopathological assessment, and quantitative reverse transcription-PCR (qRT-PCR) analysis. Colistin treatment significantly increased concentrations of BUN and serum creatinine, tubular apoptosis/necrosis, lipid peroxidation, and heme oxygenase 1 (HO-1) activity, while the treatment decreased the levels of endogenous antioxidant biomarkers glutathione (GSH), catalase (CAT), and superoxide dismutase (SOD). Notably, the changes in the levels of all biomarkers were attenuated in the kidneys of mice treated with colistin by lycopene (5 or 20 mg/kg). Lycopene treatment, especially in the colistin plus lycopene (20 mg/kg) group, significantly downregulated the expression of NF-κB mRNA (P < 0.01) but upregulated the expression of nuclear factor erythroid 2-related factor 2 (Nrf2) and HO-1 mRNA (both P < 0.01) in the kidney compared with the results seen with the colistin group. Our data demonstrated that coadministration of 20 mg/kg/day lycopene can protect against colistin-induced nephrotoxicity in mice. This effect may be attributed to the antioxidative property of lycopene and its ability to activate the Nrf2/HO

  20. Fenofibrate Increases Heme Oxygenase 1 Expression and Astrocyte Proliferation While Limits Neuronal Injury During Intracerebral Hemorrhage.

    PubMed

    Wang, Yan; Yu, Min; Ma, Yue; Wang, Ruoping; Liu, Wei; Xia, Wei; Guan, Aili; Xing, Conghui; Lu, Fei; Ji, Xiaoping

    2017-01-01

    Peroxisome proliferator-activated receptors alpha (PPARα) is a therapy target in atherosclerosis and cardiovascular diseases. However, anti-inflammatory effects of PPARα in intracerebral hemorrhage (ICH) remain unknown. We investigated the anti-inflammatory effects of fenofibrate, a ligand of PPARα, in ICH rat model. We found that engagement of fenofibrate increased nissl body and astrocytes, and reduced the neuronal damage, which was observed in paraffin section of ICH rat brain. Fenofibrate also promoted the proliferation of astrocytes that were isolated from adult rat brain. Fenofibrate significantly upregulated heme oxygenase 1 (HO-1) at protein and mRNA levels in human glioblastoma LN-18 cells and rat brain astrocytes respectively, but nuclear factor kappalight- chain-enhancer of activated B cells (NFκB) was downregulated after fenofibrate treatment. Results showed that fenofibrate-induced upregulation of HO-1 expression were inhibited after LN-18 cells were transfected with 50nM small interfering RNA (siRNAs) for 48 hours to knockdown PPARα. Further studies in rat astrocytes confirmed the rescue effects of PPARα silence against fenofibrate induced upregulation of HO-1 expression. Our data indicated that fenofibrate benefits neuronal protection through increasing HO-1 expression level and decreasing NFκB expression in PPARα-dependent manner. In conclusion, PPARα and HO-1 may function as significant targets to protect the brain during ICH.

  1. Nrf2-Mediated HO-1 Induction Coupled with the ERK Signaling Pathway Contributes to Indirect Antioxidant Capacity of Caffeic Acid Phenethyl Ester in HepG2 Cells

    PubMed Central

    Kim, Jin-Kyoung; Jang, Hae-Dong

    2014-01-01

    The objective of this study is to investigate the contributing effect of the nuclear transcription factor-erythroid 2-related factor 2 (Nrf2)-mediated signaling pathway on the indirect antioxidant capacity of caffeic acid phenethyl ester (CAPE) against oxidative stress in HepG2 cells. The result of an antioxidant response element (ARE)-luciferase assay showed that CAPE stimulated ARE promoter activity resulting in increased transcriptional and translational activities of heme oxygenase-1 (HO-1). In addition, CAPE treatment enhanced Nrf2 accumulation in the nucleus and the post-translational phosphorylation level of extracellular signal-regulated kinase (ERK) among several protein kinases tested. Treatment with ERK inhibitor U126 completely suppressed CAPE-induced ERK phosphorylation and HO-1 expression, but it only partly inhibited CAPE-induced Nrf2 accumulation and ARE promoter. Using the 2',7'-dichlorofluorescein-diacetate (DCFH-DA) method, the cellular antioxidant capacity of CAPE against 2,2'-azobis (2-amidinopropane) dihydrochloride (AAPH)- or H2O2-induced oxidative stress also was shown to be partially suppressed by the ERK inhibitor. From the overall results it is proposed that the indirect antioxidant activity of CAPE against oxidative stress in HepG2 cells is partially attributed to induction of HO-1, which is regulated by Kelch-like erythroid-cell-derived protein with CNC homology (ECH)-associated protein 1 (Keap1)-independent Nrf2 activation relying on post-translational phosphorylation of ERK. PMID:25007817

  2. Carnosic Acid Induces Anti-Inflammatory Effects in Paraquat-Treated SH-SY5Y Cells Through a Mechanism Involving a Crosstalk Between the Nrf2/HO-1 Axis and NF-κB.

    PubMed

    de Oliveira, Marcos Roberto; de Souza, Izabel Cristina Custódio; Fürstenau, Cristina Ribas

    2017-01-12

    Carnosic acid (CA) is a phenolic diterpene obtained from Rosmarinus officinalis L. and has demonstrated cytoprotective properties in several experimental models. CA exerts antioxidant effects by upregulating the transcription factor nuclear factor erythroid 2-related factor 2 (Nrf2), which controls the expression of antioxidant and phase II detoxification enzymes. Heme oxygenase-1 (HO-1) expression is modulated by Nrf2 and has been demonstrated as part of the mechanism underlying the CA-induced cytoprotection. Nonetheless, it remains to be studied whether and how HO-1 would mediate CA-elicited anti-inflammatory effects. Therefore, we have investigated here whether and how CA would prevent paraquat (PQ)-induced inflammation-related alterations in human neuroblastoma SH-SY5Y cells. SH-SY5Y cells were pretreated for 12 h with CA at 1 μM before exposure to PQ for further 24 h. CA suppressed the PQ-induced alterations on the levels of interleukin-1β (IL-1β), tumor necrosis factor-α (TNF-α), and cyclooxygenase-2 (COX-2) through a mechanism involving the activation of the Nrf2/HO-1 axis. Furthermore, we observed a crosstalk between the Nrf2/HO-1 signaling pathway and the activation of the nuclear factor-κB (NF-κB) transcription factor, since administration of ZnPP IX (specific inhibitor of HO-1) or Nrf2 knockdown using small interfering RNA (siRNA) abolished the anti-inflammatory effects induced by CA. Moreover, administration of SN50 (specific inhibitor of NF-κB) inhibited the PQ-induced inflammation-related effects in SH-SY5Y cells. Therefore, CA exerted anti-inflammatory effects in SH-SY5Y cells through an Nrf2/HO-1 axis-dependent manner associated with downregulation of NF-κB.

  3. Prevention of cold ischemia/rewarming-induced ERK 1/2, p38 kinase and HO-1 activation by trophic factor supplementation of UW solution.

    PubMed

    Kwon, Young Sam; Foley, John D; Russell, Paul; McAnulty, Jonathan F; Murphy, Christopher J

    2008-08-01

    We have previously shown that trophic factor supplementation (TFS) of University of Wisconsin (UW) solution reduced early apoptotic changes in vascular endothelial cells. Here, we examine the effect of TFS on cell signaling pathways related to cell growth, differentiation, and apoptosis after cold ischemic storage. In this study, the effect of TFS on the phosphorylation of signaling molecules ERK (extracellular regulated-signaling kinase) 1/2 and p38 MAPK (mitogen activated protein kinases) and of HO-1 (hemeoxygenase-1), relative to changes seen in unmodified UW solution, were determined by Western blot in cells stored under cold ischemic conditions. Primary cultures of canine kidney proximal tubule cells (CKPTC) and human umbilical vein endothelial cells (HUVEC) were used in this study. There was a significant decrease, relative to UW solution, after 1 min rewarming in ERK 1 and 2 activity in CKPTCs. For p38 MAPK, a significant decrease after 5 min rewarming was seen in CKPTC (p<0.05) while significant reductions relative to UW solution were seen in HUVECs after both 1 and 5 min rewarming (p<0.05). Phosphorylated HO-1 was also decreased by 43% and 50% in HUVECs, relative to UW solution, after 1 and 5 min rewarming (p<0.05 at each time point). Collectively, TFS not only limits ERK 1/2 and p38 MAPK activity induced by cold ischemic injury and subsequent rewarming, but also substantially restricted increases in HO-1 phosphorylation.

  4. Heme Oxygenase-1 Expression Affects Murine Abdominal Aortic Aneurysm Progression

    PubMed Central

    Azuma, Junya; Wong, Ronald J.; Morisawa, Takeshi; Hsu, Mark; Maegdefessel, Lars; Zhao, Hui; Kalish, Flora; Kayama, Yosuke; Wallenstein, Matthew B.; Deng, Alicia C.; Spin, Joshua M.; Stevenson, David K.; Dalman, Ronald L.; Tsao, Philip S.

    2016-01-01

    Heme oxygenase-1 (HO-1), the rate-limiting enzyme in heme degradation, is a cytoprotective enzyme upregulated in the vasculature by increased flow and inflammatory stimuli. Human genetic data suggest that a diminished HO-1 expression may predispose one to abdominal aortic aneurysm (AAA) development. In addition, heme is known to strongly induce HO-1 expression. Utilizing the porcine pancreatic elastase (PPE) model of AAA induction in HO-1 heterozygous (HO-1+/-, HO-1 Het) mice, we found that a deficiency in HO-1 leads to augmented AAA development. Peritoneal macrophages from HO-1+/- mice showed increased gene expression of pro-inflammatory cytokines, including MCP-1, TNF-alpha, IL-1-beta, and IL-6, but decreased expression of anti-inflammatory cytokines IL-10 and TGF-beta. Furthermore, treatment with heme returned AAA progression in HO-1 Het mice to a wild-type profile. Using a second murine AAA model (Ang II-ApoE-/-), we showed that low doses of the HMG-CoA reductase inhibitor rosuvastatin can induce HO-1 expression in aortic tissue and suppress AAA progression in the absence of lipid lowering. Our results support those studies that suggest that pleiotropic statin effects might be beneficial in AAA, possibly through the upregulation of HO-1. Specific targeted therapies designed to induce HO-1 could become an adjunctive therapeutic strategy for the prevention of AAA disease. PMID:26894432

  5. Heme Oxygenase-1 Expression Affects Murine Abdominal Aortic Aneurysm Progression.

    PubMed

    Azuma, Junya; Wong, Ronald J; Morisawa, Takeshi; Hsu, Mark; Maegdefessel, Lars; Zhao, Hui; Kalish, Flora; Kayama, Yosuke; Wallenstein, Matthew B; Deng, Alicia C; Spin, Joshua M; Stevenson, David K; Dalman, Ronald L; Tsao, Philip S

    2016-01-01

    Heme oxygenase-1 (HO-1), the rate-limiting enzyme in heme degradation, is a cytoprotective enzyme upregulated in the vasculature by increased flow and inflammatory stimuli. Human genetic data suggest that a diminished HO-1 expression may predispose one to abdominal aortic aneurysm (AAA) development. In addition, heme is known to strongly induce HO-1 expression. Utilizing the porcine pancreatic elastase (PPE) model of AAA induction in HO-1 heterozygous (HO-1+/-, HO-1 Het) mice, we found that a deficiency in HO-1 leads to augmented AAA development. Peritoneal macrophages from HO-1+/- mice showed increased gene expression of pro-inflammatory cytokines, including MCP-1, TNF-alpha, IL-1-beta, and IL-6, but decreased expression of anti-inflammatory cytokines IL-10 and TGF-beta. Furthermore, treatment with heme returned AAA progression in HO-1 Het mice to a wild-type profile. Using a second murine AAA model (Ang II-ApoE-/-), we showed that low doses of the HMG-CoA reductase inhibitor rosuvastatin can induce HO-1 expression in aortic tissue and suppress AAA progression in the absence of lipid lowering. Our results support those studies that suggest that pleiotropic statin effects might be beneficial in AAA, possibly through the upregulation of HO-1. Specific targeted therapies designed to induce HO-1 could become an adjunctive therapeutic strategy for the prevention of AAA disease.

  6. Dual protective role of HO-1 in transplanted liver grafts: A review of experimental and clinical studies

    PubMed Central

    Wang, Chun-Feng; Wang, Zhen-Yu; Li, Ji-Yu

    2011-01-01

    Liver transplantation is considered as the most effective treatment for end-stage liver disease. However, serious complications still exist, particularly in two aspects: ischemia and subsequent reperfusion of the liver, causing postoperative hepatic dysfunction and even failure; and acute and chronic graft rejections, affecting the allograft survival. Heme oxygenase (HO), a stress-response protein, is believed to exert a protective function on both the development of ischemia-reperfusion injury (IRI) and graft rejection. In this review of current researches on allograft protection, we focused on the HO-1. We conjecture that HO-1 may link these two main factors affecting the prognosis of liver transplantations. In this review, the following aspects were emphasized: the basic biological functions of HO-1, its roles in IRI and allograft rejection, as well as methods to induce HO-1 and the prospects of a therapeutic application of HO-1 in liver transplantation. PMID:21912452

  7. Antioxidant N-Acetylcysteine Attenuates the Reduction of Brg1 Protein Expression in the Myocardium of Type 1 Diabetic Rats

    PubMed Central

    Xu, Jinjin; Lei, Shaoqing; Liu, Yanan; Gao, Xia; Irwin, Michael G.; Xia, Zhong-yuan; Hei, Ziqing; Gan, Xiaoliang; Wang, Tingting; Xia, Zhengyuan

    2013-01-01

    Brahma-related gene 1 (Brg1) is a key gene in inducing the expression of important endogenous antioxidant enzymes, including heme oxygenase-1 (HO-1) which is central to cardioprotection, while cardiac HO-1 expression is reduced in diabetes. It is unknown whether or not cardiac Brg1 expression is reduced in diabetes. We hypothesize that cardiac Brg1 expression is reduced in diabetes which can be restored by antioxidant treatment with N-acetylcysteine (NAC). Control (C) and streptozotocin-induced diabetic (D) rats were treated with NAC in drinking water or placebo for 4 weeks. Plasma and cardiac free15-F2t-isoprostane in diabetic rats were increased, accompanied with increased plasma levels of tumor necrosis factor-alpha (TNF-alpha) and interleukin 6 (IL-6), while cardiac Brg1, p-STAT3 and HO-1 protein expression levels were significantly decreased. Left ventricle weight/body weight ratio was higher, while the peak velocities of early (E) and late (A) flow ratio was lower in diabetic than in C rats. NAC normalized tissue and plasma levels of 15-F2t-isoprostane, significantly increased cardiac Brg1, HO-1 and p-STAT3 protein expression levels and reduced TNF-alpha and IL-6, resulting in improved cardiac function. In conclusion, myocardial Brg1 is reduced in diabetes and enhancement of cardiac Brg1 expression may represent a novel mechanism whereby NAC confers cardioprotection. PMID:23853776

  8. L-F001, a Multifunction ROCK Inhibitor Prevents 6-OHDA Induced Cell Death Through Activating Akt/GSK-3beta and Nrf2/HO-1 Signaling Pathway in PC12 Cells and Attenuates MPTP-Induced Dopamine Neuron Toxicity in Mice.

    PubMed

    Luo, Liting; Chen, Jingkao; Su, Dan; Chen, Meihui; Luo, Bingling; Pi, Rongbiao; Wang, Lan; Shen, Wei; Wang, Rikang

    2017-02-01

    Amounting evidences demonstrated that Rho/Rho-associated kinase (ROCK) might be a novel target for the therapy of Parkinson's disease (PD). Recently, we synthesized L-F001 and revealed it was a potent ROCK inhibitor with multifunctional effects. Here we investigated the effects of L-F001 in PD models. We found that L-F001 potently attenuated 6-OHDA-induced cytotoxicity in PC12 cells and significantly decreased intracellular reactive oxygen species (ROS), prevented the 6-OHDA-induced decline of mitochondrial membrane potential and intracellular GSH levels. In addition, L-F001 increased Akt and GSK-3beta phosphorylation and induced the nuclear Nrf2 and HO-1 expression in a time- and concentration-dependent manner. Moreover, L-F001 restored the levels of p-Akt and p-GSK-3beta (Ser9) as well as HO-1 expression reduced by 6-OHDA. Those effects were blocked by the specific PI3K inhibitor, LY294002, indicating the involvement of Akt/GSK-3beta pathway in the neuroprotective effect of L-F001. In addition, L-F001 significantly attenuated the tyrosinehydroxylase immunoreactive cell loss in 1-methyl-4-phenyl-1,2,3,6 tetrahydropyridine (MPTP)-induced mice PD model. Together, our findings suggest that L-F001 prevents 6-OHDA-induced cell death through activating Akt/GSK-3beta and Nrf2/HO-1 signaling pathway and attenuates MPTP-induced dopaminergic neuron toxicity in mice. L-F001 might be a promising drug candidate for PD.

  9. Iron Supplementation Alters Heme and Heme Oxygenase 1 (HO-1) Levels In Pregnant Women in Ghana

    PubMed Central

    Salifu, Hassana; Wilson, Nana O.; Liu, Mingli; Dickinson-Copeland, Carmen; Yatich, Nelly; Keenan, John; Turpin, Cornelius; Jolly, Pauline; Gyasi, Richard; Adjei, Andrew A.; Stiles, Jonathan K.

    2016-01-01

    Background Iron supplementation is recommended for pregnant women to meet their iron requirement for a healthy pregnancy. The benefits and risks of universal iron supplementation during pregnancy in malaria endemic countries are currently being debated. As part of a broader study that focused on the effect of heme/HO-1 on pregnancy outcomes in malaria in pregnancy, we determined the association between iron supplementation and free heme levels in blood of pregnant women with and without malaria in Ghana. We hypothesized that pregnant women with malaria who took iron supplements will have higher levels of Heme/HO-1 than those who did not take iron supplements. Methods A total of 337 women were recruited for this study. Blood samples were collected for malaria diagnosis and heme/HO-1 measurement. Quantification of heme was done using a heme colorimetric assay kit and HO-1 levels were performed using Enzyme-Linked Immunosorbent Assay (ELISA) on plasma samples. Results Malaria positive iron supplemented women, in their third trimester, had significantly higher median levels of heme 59.3(43.1 – 60.4) than non-malaria iron supplemented women 35.7(33.0 – 62.2), p = 0.026. Also, malaria positive iron supplemented women had significant higher median levels of HO-16.2(IQR 4.9 – 8.1) than pregnant women who did not take iron supplements 2.9 (IQR 2.1 – 3.8), p = <0.001 Conclusion Although iron supplementation may be highly beneficial and improve pregnancy outcomes for iron deficient or anemic mothers, it is also likely that iron supplementation for pregnant women who are not iron deficient may put this group of women at risk for adverse pregnancy outcomes. Findings from this study sheds light on the effect of iron supplementation on malaria derived heme in pregnancy, which may inform how iron supplementation is recommended for pregnant women who are not iron deficient. PMID:28124024

  10. Long-term effect of heme oxygenase (HO)-1 induction in glomerular immune injury.

    PubMed

    Datta, Prasun K; Duann, Pu; Lianos, Elias A

    2006-03-01

    In a rat model of macrophage-dependent glomerular immune injury induced by administration of antibody against the glomerular basement membrane (anti-GBM), the authors assessed the anti-proteinuric effect of Heme Oxygenase-1 (HO-1) induction. Rats received anti-GBM antibody alone, anti-GBM antibody and treatment with the HO-1 inducer, hemin, or non-immune serum (controls). Urine protein, creatinine, and nitrite/nitrate excretion were measured on days 5, 7, and 14 after administration of the anti-GBM antibody. In hemin-treated animals with anti-GBM antibody-induced immune injury, HO-1 immunolocalized in macrophages infiltrating glomeruli and in tubular epithelial cells. In these animals, proteinuria was decreased. There was also a decrease in blood urea nitrogen (BUN) levels without a change in serum creatinine or systemic blood pressure. The observations establish the anti-proteinuric effect of hemin induction. This effect could be mechanistically linked to blunting of the ability of infiltrating macrophages to cause injury or to changes in tubular handling of filtered protein.

  11. Mitochondrial quality-control dysregulation in conditional HO-1–/– mice

    PubMed Central

    Suliman, Hagir B.; Keenan, Jeffrey E.; Piantadosi, Claude A.

    2017-01-01

    The heme oxygenase-1 (Hmox1; HO-1) pathway was tested for defense of mitochondrial quality control in cardiomyocyte-specific Hmox1 KO mice (HO-1[CM]–/–) exposed to oxidative stress (100% O2). After 48 hours of exposure, these mice showed persistent cardiac inflammation and oxidative tissue damage that caused sarcomeric disruption, cardiomyocyte death, left ventricular dysfunction, and cardiomyopathy, while control hearts showed minimal damage. After hyperoxia, HO-1(CM)–/– hearts showed suppression of the Pgc-1α/nuclear respiratory factor-1 (NRF-1) axis, swelling, low electron density mitochondria by electron microscopy (EM), increased cell death, and extensive collagen deposition. The damage mechanism involves structurally deficient autophagy/mitophagy, impaired LC3II processing, and failure to upregulate Pink1- and Park2-mediated mitophagy. The mitophagy pathway was suppressed through loss of NRF-1 binding to proximal promoter sites on both genes. These results indicate that cardiac Hmox1 induction not only prevents heme toxicity, but also regulates the timing and registration of genetic programs for mitochondrial quality control that limit cell death, pathological remodeling, and cardiac fibrosis. PMID:28194437

  12. Transport properties of Ho1- x Lu x B12 solid solutions

    NASA Astrophysics Data System (ADS)

    Gabáni, S.; Bat'ko, I.; Bat'ková, M.; Flachbart, K.; Gaz̆o, E.; Pristás̆, G.; Takác̆ová, I.; Bogach, A. V.; Sluchanko, N. E.; Shitsevalova, N. Yu.

    2013-05-01

    Our studies of Ho1- x Lu x B12 solid solutions have shown that the temperature of antiferromagnetic (AF) order in geometrically frustrated system of HoB12 ( T N = 7.4 K) is linearly suppressed to zero temperature, i.e. T N → 0, as lutetium concentration increases to x→ x c ≈ 0.9. In this contribution, we present original results of electrical resistivity measurements on Ho1- x Lu x B12 single crystalline samples with x = 0, 0.2, 0.5, 0.7, 0.9, 1 in the temperature range 0.06-300 K and in magnetic fields ( B) up to 8 T. Complex B vs T N phase diagrams were received from precise temperature ρ( T) and field ρ( B) dependences of resistivity with several AF phases for x ≤ 0.5 pointing to a possibility of quantum critical point at x c ≈ 0.9. The scattering of conduction electrons in the AF phase and in the paramagnetic phase as well as Hall effect results are analyzed and discussed for various concentrations x, when magnetic dilution increases with the increasing content of nonmagnetic Lu ions in the Ho1- x Lu x B12 system.

  13. Molecular cloning and characterization of a heme oxygenase1 gene from sunflower and its expression profiles in salinity acclimation.

    PubMed

    Zhu, Kaikai; Jin, Qijiang; Samma, Muhammad Kaleem; Lin, Guoqing; Shen, Wenbiao

    2014-06-01

    Heme oxygenase1 (HO1) is involved in protecting plants from environmental stimuli. In this study, a sunflower (Helianthus annuus L.) HO1 gene (HaHO1) was cloned and sequenced. It was confirmed that HaHO1 encodes a precursor protein of 32.93 kDa with an N-terminal plastid transit peptide which was validated by subcellular localization. The amino acid sequence of HaHO1 shared high homology with other plant HO1s. The predicted three-dimensional structure showed a high degree of structural conservation as compared to the known HO1 crystal structures. Phylogenetic analysis revealed that HaHO1 clearly grouped with the plant HO1-like sequences. Moreover, the purified recombinant mature HaHO1 expressed in Escherichia coli exhibits HO activity. Thus, it was concluded that HaHO1 encodes a functional HO1 in sunflower. Additionally, HaHO1 gene was ubiquitously expressed in all tested tissues, and induced differentially during different growth stages after germination, and could be differentially induced by several stresses and hemin treatment. For example, a pretreatment with a low concentration of NaCl (25 mM) could lead to the induction of HaHO1 gene expression and thereafter a salinity acclamatory response. Above cytoprotective effect could be impaired by the potent HO1 inhibitor zinc protoporphyrin IX (ZnPPIX), which was further rescued by the addition of 50% carbon monoxide aqueous solution (in particular) or bilirubin, two catalytic by-products of HO1, respectively. Similarly, a HO1 inducer, hemin, could mimic the salinity acclamatory response. Together, these findings strongly suggested that the up-regulation of HaHO1 might be required for the observed salinity acclimation in sunflower plants.

  14. Hydrogen sulfide inhibits nitric oxide production and nuclear factor-kappaB via heme oxygenase-1 expression in RAW264.7 macrophages stimulated with lipopolysaccharide.

    PubMed

    Oh, Gi-Su; Pae, Hyun-Ock; Lee, Bok-Soo; Kim, Byeong-Nam; Kim, Jong-Moon; Kim, Hyung-Ryong; Jeon, Seon Bok; Jeon, Woo Kyu; Chae, Han-Jung; Chung, Hun-Taeg

    2006-07-01

    Hydrogen sulfide (H(2)S), a regulatory gaseous molecule that is endogenously synthesized by cystathionine gamma-lyase (CSE) and/or cystathionine beta-synthase (CBS) from L-cysteine (L-Cys) metabolism, is a putative vasodilator, and its role in nitric oxide (NO) production is unexplored. Here, we show that at noncytotoxic concentrations, H(2)S was able to inhibit NO production and inducible NO synthase (iNOS) expression via heme oxygenase (HO-1) expression in RAW264.7 macrophages stimulated with lipopolysaccharide (LPS). Both H(2)S solution prepared by bubbling pure H(2)S gas and NaSH, a H(2)S donor, dose dependently induced HO-1 expression through the activation of the extracellular signal-regulated kinase (ERK). Pretreatment with H(2)S or NaHS significantly inhibited LPS-induced iNOS expression and NO production. Moreover, NO production in LPS-stimulated macrophages that are expressing CSE mRNA was significantly reduced by the addition of L-Cys, a substrate for H(2)S, but enhanced by the selective CSE inhibitor beta-cyano-L-alanine but not by the CBS inhibitor aminooxyacetic acid. While either blockage of HO activity by the HO inhibitor, tin protoporphyrin IX, or down-regulation of HO-1 expression by HO-1 small interfering RNA (siRNA) reversed the inhibitory effects of H(2)S on iNOS expression and NO production, HO-1 overexpression produced the same inhibitory effects of H(2)S. In addition, LPS-induced nuclear factor (NF)-kappaB activation was diminished in RAW264.7 macrophages preincubated with H(2)S. Interestingly, the inhibitory effect of H(2)S on NF-kappaB activation was reversed by the transient transfection with HO-1 siRNA, but was mimicked by either HO-1 gene transfection or treatment with carbon monoxide (CO), an end product of HO-1. CO treatment also inhibited LPS-induced NO production and iNOS expression via its inactivation of NF-kappaB. Collectively, our results suggest that H(2)S can inhibit NO production and NF-kappaB activation in LPS

  15. 5-Aminolevulinic acid combined with ferrous iron enhances the expression of heme oxygenase-1.

    PubMed

    Nishio, Yoshiaki; Fujino, Masayuki; Zhao, Mingyi; Ishii, Takuya; Ishizuka, Masahiro; Ito, Hidenori; Takahashi, Kiwamu; Abe, Fuminori; Nakajima, Motowo; Tanaka, Tohru; Taketani, Shigeru; Nagahara, Yukitoshi; Li, Xiao-Kang

    2014-04-01

    5-Aminolevulinic acid (5-ALA) is the naturally occurring metabolic precursor of heme. Heme negatively regulates the Maf recognition element (MARE) binding- and repressing-activity of the Bach1 transcription factor through its direct binding to Bach1. Heme oxygenase (HO)-1 is an inducible enzyme that catalyzes the rate-limiting step in the oxidative degradation of heme to free iron, biliverdin and carbon monoxide. These metabolites of heme protect against apoptosis, inflammation and oxidative stress. Monocytes and macrophages play a critical role in the initiation, maintenance and resolution of inflammation. Therefore, the regulation of inflammation in macrophages is an important target under various pathophysiological conditions. In order to address the question of what is responsible for the anti-inflammatory effects of 5-ALA, the induction of HO-1 expression by 5-ALA and sodium ferrous citrate (SFC) was examined in macrophage cell line (RAW264 cells). HO-1 expression induced by 5-ALA combined with SFC (5-ALA/SFC) was partially inhibited by MEK/ERK and p38 MAPK inhibitor. The NF-E2-related factor 2 (Nrf2) was activated and translocated from the cytosol to the nucleus in response to 5-ALA/SFC. Nrf2-specific siRNA reduced the HO-1 expression. In addition, 5-ALA/SFC increased the intracellular levels of heme in cells. The increased heme indicated that the inactivation of Bach1 by heme supports the upregulation of HO-1 expression. Taken together, our data suggest that the exposure of 5-ALA/SFC to RAW264 cells enhances the HO-1 expression via MAPK activation along with the negative regulation of Bach1.

  16. Metallothionein-III protects against 6-hydroxydopamine-induced oxidative stress by increasing expression of heme oxygenase-1 in a PI3K and ERK/Nrf2-dependent manner

    SciTech Connect

    Hwang, Yong Pil; Kim, Hyung Gyun; Han, Eun Hee; Jeong, Hye Gwang

    2008-09-15

    The zinc-binding protein metallothionein-III (MT-III) is associated with resistance to neuronal injury. However, the underlying mechanism for its effects is unclear. In this study, we demonstrate that MT-III prevents the accumulation of reactive oxygen species (ROS) in dopaminergic SH-SY5Y cells challenged with the Parkinson's disease-related neurotoxin 6-hydroxydopamine (6-OHDA) by a mechanism that involves phosphatidylinositol 3-kinase (PI3K) and ERK kinase/NF-E2-related factor 2 (Nrf2) dependent induction of the stress response protein heme oxygenase-1 (HO-1). Pretreatment of SH-SY5Y cells with MT-III significantly reduced 6-OHDA-induced generation of ROS, caspase-3 activation, and subsequent cell death. Also, MT-III up-regulates HO-1 expression and this expression confers neuroprotection against oxidative injury induced by 6-OHDA. Moreover, MT-III induces Nrf2 nuclear translocation, which is upstream of MT-III-induced HO-1 expression, and PI3K and ERK1/2 activation, a pathway that is involved in induced Nrf2 nuclear translocation, HO-1 expression and neuroprotection. Taken together, these results suggest that the PI3K and ERK/Nrf2 signaling pathway controls the intracellular levels of ROS by regulating the expression of the antioxidant enzyme HO-1.

  17. Induction of heme oxygenase-1 with dietary quercetin reduces obesity-induced hepatic inflammation through macrophage phenotype switching

    PubMed Central

    Kim, Chu-Sook; Choi, Hye-Seon; Joe, Yeonsoo; Chung, Hun Taeg

    2016-01-01

    BACKGROUND/OBJECTIVES Obesity-induced steatohepatitis accompanied by activated hepatic macrophages/Kupffer cells facilitates the progression of hepatic fibrinogenesis and exacerbates metabolic derangements such as insulin resistance. Heme oxyganase-1 (HO-1) modulates tissue macrophage phenotypes and thus is implicated in protection against inflammatory diseases. Here, we show that the flavonoid quercetin reduces obesity-induced hepatic inflammation by inducing HO-1, which promotes hepatic macrophage polarization in favor of the M2 phenotype. MATERIALS/METHODS Male C57BL/6 mice were fed a regular diet (RD), high-fat diet (HFD), or HFD supplemented with quercetin (HF+Que, 0.5g/kg diet) for nine weeks. Inflammatory cytokines and macrophage markers were measured by ELISA and RT-PCR, respectively. HO-1 protein was measured by Western blotting. RESULTS Quercetin supplementation decreased levels of inflammatory cytokines (TNFα, IL-6) and increased that of the anti-inflammatory cytokine (IL-10) in the livers of HFD-fed mice. This was accompanied by upregulation of M2 macrophage marker genes (Arg-1, Mrc1) and downregulation of M1 macrophage marker genes (TNFα, NOS2). In co-cultures of lipid-laden hepatocytes and macrophages, treatment with quercetin induced HO-1 in the macrophages, markedly suppressed expression of M1 macrophage marker genes, and reduced release of MCP-1. Moreover, these effects of quercetin were blunted by an HO-1 inhibitor and deficiency of nuclear factor E2-related factor 2 (Nrf2) in macrophages. CONCLUSIONS Quercetin reduces obesity-induced hepatic inflammation by promoting macrophage phenotype switching. The beneficial effect of quercetin is associated with Nrf2-mediated HO-1 induction. Quercetin may be a useful dietary factor for protecting against obesity-induced steatohepatitis. PMID:27909560

  18. Anti-Inflammatory Effect of Rhapontici Radix Ethanol Extract via Inhibition of NF-κB and MAPK and Induction of HO-1 in Macrophages

    PubMed Central

    Oh, You-Chang; Cho, Won-Kyung; Yim, Nam-Hui

    2016-01-01

    Rhapontici Radix (RR) has been used in traditional medicine in East Asia and has been shown to have various beneficial effects. However, its biological properties or mechanism on inflammation-related diseases is unknown. The goal of this study was to determine the anti-inflammatory activity and underlying molecular mechanisms of Rhapontici Radix ethanol extract (RRE). The inhibitory effect of RRE on the production of NO, cytokines, inflammatory-related proteins, and mRNAs in LPS-stimulated macrophages was determined by the Griess assay, ELISA, Western blot analysis, and real-time RT-PCR, respectively. Our results indicate that treatment with RRE significantly inhibited the secretion of NO and inflammatory cytokines in RAW 264.7 cells and mouse peritoneal macrophages without cytotoxicity. We also found that RRE strongly suppressed the expression of iNOS and COX-2 and induced HO-1 expression. It also prevented nuclear translocation of NF-κB by inhibiting the phosphorylation and degradation of IκBα. Furthermore, the phosphorylation of MAPKs in LPS-stimulated RAW 264.7 cells was significantly inhibited by RRE. These findings suggest that RRE may operate as an effective anti-inflammatory agent by inhibiting the activation of NF-κB and MAPK signaling pathways and inducing HO-1 expression in macrophages. Our results suggest that RRE has potential value as candidate to inflammatory therapeutic phytomedicine. PMID:27524868

  19. Delayed treatment with oleanolic acid attenuates tubulointerstitial fibrosis in chronic cyclosporine nephropathy through Nrf2/HO-1 signaling

    PubMed Central

    2014-01-01

    Background Nuclear factor erythroid-2-related factor-2 (Nrf2) is known to protect against tissue injury by orchestrating antioxidant and detoxification responses to oxidative stress. This study investigated whether upregulation of Nrf2-dependent signaling by oleanolic acid (OA), which is known to activate Nrf2, could attenuate renal inflammation and fibrosis in cyclosporine (CsA)-induced kidney injury. Methods Male ICR mice were divided into four treatment groups: Vehicle (VH, n = 6), VH + OA (n = 6), CsA (n = 8), and CsA + OA (n = 8). For the OA-treated groups, OA (25 mg/kg/day) was administered by intraperitoneal injection for the final week of the 4-week experimental period. Renal function, morphologies and signaling were evaluated at the end of the study. Results Treatment with CsA resulted in decreased kidney function and urine osmolality and increased urine volume and urinary albumin levels. The CsA-induced changes were improved by OA treatment. Specifically, administration of OA decreased tubulointerstitial fibrosis and inflammation scores that were increased in CsA-treated mice. Furthermore, OA treatment decreased urinary 8-hydroxy-2′-deoxyguanosine (8-OHdG) and 8-epi-prostaglandin F2α (8-iso-PGF2α) levels. The beneficial effects of OA were attributed to an increased ratio of nuclear/total Nrf2 and subsequently enhanced expression of heme oxygenase (HO)-1, as well as a stable level of Kelch-like ECH-associated protein 1 (Keap1) expression, indicating that OA enhanced nuclear translocation of Nrf2. Increased apoptotic cell death and a high ratio of B cell leukaemia/lymphoma 2 (Bcl-2)-associated X protein (Bax) to Bcl-2 in CsA-treated mice were also significantly ameliorated by OA treatment. Conclusion Our results suggest that OA activates Nrf2/HO-1 signaling in chronic CsA nephropathy, which may have beneficial effects on inflammation and oxidative stress. PMID:24559268

  20. The HO-1/CO system regulates mitochondrial-capillary density relationships in human skeletal muscle.

    PubMed

    Pecorella, Shelly R H; Potter, Jennifer V F; Cherry, Anne D; Peacher, Dionne F; Welty-Wolf, Karen E; Moon, Richard E; Piantadosi, Claude A; Suliman, Hagir B

    2015-10-15

    The heme oxygenase-1 (HO-1)/carbon monoxide (CO) system induces mitochondrial biogenesis, but its biological impact in human skeletal muscle is uncertain. The enzyme system generates CO, which stimulates mitochondrial proliferation in normal muscle. Here we examined whether CO breathing can be used to produce a coordinated metabolic and vascular response in human skeletal muscle. In 19 healthy subjects, we performed vastus lateralis muscle biopsies and tested one-legged maximal O2 uptake (V̇o2max) before and after breathing air or CO (200 ppm) for 1 h daily for 5 days. In response to CO, there was robust HO-1 induction along with increased mRNA levels for nuclear-encoded mitochondrial transcription factor A (Tfam), cytochrome c, cytochrome oxidase subunit IV (COX IV), and mitochondrial-encoded COX I and NADH dehydrogenase subunit 1 (NDI). CO breathing did not increase V̇o2max (1.96 ± 0.51 pre-CO, 1.87 ± 0.50 post-CO l/min; P = not significant) but did increase muscle citrate synthase, mitochondrial density (139.0 ± 34.9 pre-CO, 219.0 ± 36.2 post-CO; no. of mitochondrial profiles/field), myoglobin content and glucose transporter (GLUT4) protein level and led to GLUT4 localization to the myocyte membrane, all consistent with expansion of the tissue O2 transport system. These responses were attended by increased cluster of differentiation 31 (CD31)-positive muscle capillaries (1.78 ± 0.16 pre-CO, 2.37 ± 0.59 post-CO; capillaries/muscle fiber), implying the enrichment of microvascular O2 reserve. The findings support that induction of the HO-1/CO system by CO not only improves muscle mitochondrial density, but regulates myoglobin content, GLUT4 localization, and capillarity in accordance with current concepts of skeletal muscle plasticity.

  1. The HO-1/CO system regulates mitochondrial-capillary density relationships in human skeletal muscle

    PubMed Central

    Pecorella, Shelly R. H.; Potter, Jennifer V. F.; Cherry, Anne D.; Peacher, Dionne F.; Welty-Wolf, Karen E.; Moon, Richard E.; Suliman, Hagir B.

    2015-01-01

    The heme oxygenase-1 (HO-1)/carbon monoxide (CO) system induces mitochondrial biogenesis, but its biological impact in human skeletal muscle is uncertain. The enzyme system generates CO, which stimulates mitochondrial proliferation in normal muscle. Here we examined whether CO breathing can be used to produce a coordinated metabolic and vascular response in human skeletal muscle. In 19 healthy subjects, we performed vastus lateralis muscle biopsies and tested one-legged maximal O2 uptake (V̇o2max) before and after breathing air or CO (200 ppm) for 1 h daily for 5 days. In response to CO, there was robust HO-1 induction along with increased mRNA levels for nuclear-encoded mitochondrial transcription factor A (Tfam), cytochrome c, cytochrome oxidase subunit IV (COX IV), and mitochondrial-encoded COX I and NADH dehydrogenase subunit 1 (NDI). CO breathing did not increase V̇o2max (1.96 ± 0.51 pre-CO, 1.87 ± 0.50 post-CO l/min; P = not significant) but did increase muscle citrate synthase, mitochondrial density (139.0 ± 34.9 pre-CO, 219.0 ± 36.2 post-CO; no. of mitochondrial profiles/field), myoglobin content and glucose transporter (GLUT4) protein level and led to GLUT4 localization to the myocyte membrane, all consistent with expansion of the tissue O2 transport system. These responses were attended by increased cluster of differentiation 31 (CD31)-positive muscle capillaries (1.78 ± 0.16 pre-CO, 2.37 ± 0.59 post-CO; capillaries/muscle fiber), implying the enrichment of microvascular O2 reserve. The findings support that induction of the HO-1/CO system by CO not only improves muscle mitochondrial density, but regulates myoglobin content, GLUT4 localization, and capillarity in accordance with current concepts of skeletal muscle plasticity. PMID:26186946

  2. Metformin inhibits heme oxygenase-1 expression in cancer cells through inactivation of Raf-ERK-Nrf2 signaling and AMPK-independent pathways

    SciTech Connect

    Do, Minh Truong; Kim, Hyung Gyun; Khanal, Tilak; Choi, Jae Ho; Kim, Dong Hee; Jeong, Tae Cheon; Jeong, Hye Gwang

    2013-09-01

    Resistance to therapy is the major obstacle to more effective cancer treatment. Heme oxygenase-1 (HO-1) is often highly up-regulated in tumor tissues, and its expression is further increased in response to therapies. It has been suggested that inhibition of HO-1 expression is a potential therapeutic approach to sensitize tumors to chemotherapy and radiotherapy. In this study, we tested the hypothesis that the anti-tumor effects of metformin are mediated by suppression of HO-1 expression in cancer cells. Our results indicate that metformin strongly suppresses HO-1 mRNA and protein expression in human hepatic carcinoma HepG2, cervical cancer HeLa, and non-small-cell lung cancer A549 cells. Metformin also markedly reduced Nrf2 mRNA and protein levels in whole cell lysates and suppressed tert-butylhydroquinone (tBHQ)-induced Nrf2 protein stability and antioxidant response element (ARE)-luciferase activity in HepG2 cells. We also found that metformin regulation of Nrf2 expression is mediated by a Keap1-independent mechanism and that metformin significantly attenuated Raf-ERK signaling to suppress Nrf2 expression in cancer cells. Inhibition of Raf-ERK signaling by PD98059 decreased Nrf2 mRNA expression in HepG2 cells, confirming that the inhibition of Nrf2 expression is mediated by an attenuation of Raf-ERK signaling in cancer cells. The inactivation of AMPK by siRNA, DN-AMPK or the pharmacological AMPK inhibitor compound C, revealed that metformin reduced HO-1 expression in an AMPK-independent manner. These results highlight the Raf-ERK-Nrf2 axis as a new molecular target in anticancer therapy in response to metformin treatment. - Highlights: • Metformin inhibits HO-1 expression in cancer cells. • Metformin attenuates Raf-ERK-Nrf2 signaling. • Suppression of HO-1 by metformin is independent of AMPK. • HO-1 inhibition contributes to anti-proliferative effects of metformin.

  3. AmeriFlux US-Ho1 Howland Forest (main tower)

    DOE Data Explorer

    Hollinger, David [USDA Forest Service; Hollinger, David [USDA Forest Service

    2016-01-01

    This is the AmeriFlux version of the carbon flux data for the site US-Ho1 Howland Forest (main tower). Site Description - Closed conifer forest, minimal disturbance. References: Fernandez et al. (1993), Canadian Journal of Soil Science 73 317-328. Hollinger et al. (1999), Global Change Biology 5: 891-902. Savage KE, Davidson EA (2001), Global Biogeochemical Cycles 15 337-350. Scott et al. (2004), Environmental Management, Vol. 33, Supplement 1, pp. S9-S22. Hollinger et al. (2004), Global Change Biology 10: 1689-1706.

  4. Fatty aldehyde dehydrogenases in Acinetobacter sp. strain HO1-N: role in hexadecanol metabolism.

    PubMed Central

    Singer, M E; Finnerty, W R

    1985-01-01

    The role of fatty aldehyde dehydrogenases (FALDHs) in hexadecane and hexadecanol metabolism was studied in Acinetobacter sp. strain HO1-N. Two distinct FALDHs were demonstrated in Acinetobacter sp. strain HO1-N: a membrane-bound, NADP-dependent FALDH activity induced 5-, 15-, and 9-fold by growth on hexadecanol, dodecyl aldehyde, and hexadecane, respectively, and a constitutive, NAD-dependent, membrane-localized FALDH. The NADP-dependent FALDH exhibited apparent Km and Vmax values for decyl aldehyde of 5.0, 13.0, 18.0, and 18.3 microM and 537.0, 500.0, 25.0, and 38.0 nmol/min in hexadecane-, hexadecanol-, ethanol-, palmitate-grown cells, respectively. FALDH isozymes ald-a, ald-b, and ald-c were demonstrated by gel electrophoresis in extracts of hexadecane- and hexadecanol-grown cells. ald-a, ald-b, and ald-d were present in dodecyl aldehyde-grown cells, while palmitate-grown control cells contained ald-b and ald-d. Dodecyl aldehyde-negative mutants were isolated and grouped into two phenotypic classes based on growth: class 1 mutants were hexadecane and hexadecanol negative and class 2 mutants were hexadecane and hexadecanol positive. Specific activity of NADP-dependent FALDH in Ald21 (class 1 mutant) was 85% lower than that of wild-type FALDH, while the specific activity of Ald24 (class 2 mutant) was 55% greater than that of wild-type FALDH. Ald21R, a dodecyl aldehyde-positive revertant able to grow on hexadecane, hexadecanol, and dodecyl aldehyde, exhibited a 100% increase in the specific activity of the NADP-dependent FALDH. The oxidation of [3H]hexadecane byAld21 yielded the accumulation of 61% more fatty aldehyde than the wild type, while Ald24 accumulated 27% more fatty aldehyde, 95% more fatty alcohol, and 65% more wax ester than the wild type. This study provides genetic and physiological evidence for the role of fatty aldehyde as an essential metabolic intermediate and NADP-dependent FALDH as a key enzyme in the dissimilation of hexadecane, hexadecanol

  5. Effect of curcumin on hepatic heme oxygenase 1 expression in high fat diet fed rats: is there a triangular relationship?

    PubMed

    Öner-İyidoğan, Yildiz; Tanrıkulu-Küçük, Sevda; Seyithanoğlu, Muhammed; Koçak, Hikmet; Doğru-Abbasoğlu, Semra; Aydin, A Fatih; Beyhan-Özdaş, Şule; Yapişlar, Hande; Koçak-Toker, Necla

    2014-10-01

    High fat diet (HFD) is associated with oxidative stress induced fatty liver. Curcumin, an extract of Curcuma longa, has been shown to possess potent antioxidant and hypolipidemic properties. In this study, we investigated the effect of curcumin treatment on hepatic heme oxygenase-1 (HO-1) expression along with pro-oxidant-antioxidant status and lipid accumulation in rats fed an HFD. Male Sprague-Dawley rats were distributed among 4 groups: Group 1, which was fed the control diet (10% of total calories from fat); Group 2, which was fed the HFD (60% of total calories from fat); and groups 3 and 4, which received the HFD supplemented with curcumin and the control diet supplemented with curcumin (1 g/kg diet; w/w), respectively, for 16 weeks. HFD caused increases in hepatic lipid levels, production of reactive oxygen species, and lipid peroxidation. Further, HO-1 expression was significantly decreased. Histopathological examination showed hepatic fat accumulation and slight fibrotic changes. Curcumin treatment reduced hepatic lipids and oxidative stress parameters, and HO-1 expression was significantly increased. These findings suggest that increased HO-1 expression, along with suppressed oxidative stress as well as reduced hepatic fat accumulation and fibrotic changes, contribute to the beneficial effects of curcumin in attenuating the pathogenesis of fatty liver induced metabolic diseases.

  6. Silencing heme oxygenase-1 gene expression in retinal pigment epithelial cells inhibits proliferation, migration and tube formation of cocultured endothelial cells

    SciTech Connect

    Zhang, Wenjie; Zhang, Xiaomei; Lu, Hong; Matsukura, Makoto; Zhao, Jien; Shinohara, Makoto

    2013-05-10

    Highlights: •HO-1 is highly induced in RPE cells by hypoxia. •Inhibition of HO-1 activity and knockdown of HO-1 expression inhibit VEGF expression in RPE cells under hypoxia. •Knockdown of HO-1 in RPE cells inhibits angiogenesis of endothelial cells in vitro. -- Abstract: Heme oxygenase-1 (HO-1) plays an important role in the vasculature and in the angiogenesis of tumors, wounds and other environments. Retinal pigment epithelial (RPE) cells and choroidal endothelial cells (CECs) are the main cells involved in choroidal neovascularization (CNV), a process in which hypoxia plays an important role. Our aim was to evaluate the role of human RPE-cell HO-1 in the angiogenic activities of cocultured endothelial cells under hypoxia. Small interfering RNA (siRNA) for HO-1 was transfected into human RPE cell line ARPE-19, and zinc protoporphyrin (ZnPP) was used to inhibit HO-1 activity. Knockdown of HO-1 expression and inhibition of HO-1 activity resulted in potent reduction of the expression of vascular endothelial growth factor (VEGF) under hypoxia. Furthermore, knockdown of HO-1 suppressed the proliferation, migration and tube formation of cocultured endothelial cells. These findings indicated that HO-1 might have an angiogenic effect in CNV through modulation of VEGF expression and might be a potential target for treating CNV.

  7. Ellagic acid exerts protective effect in intrastriatal 6-hydroxydopamine rat model of Parkinson's disease: Possible involvement of ERβ/Nrf2/HO-1 signaling.

    PubMed

    Baluchnejadmojarad, Tourandokht; Rabiee, Nafiseh; Zabihnejad, Sedigheh; Roghani, Mehrdad

    2017-02-23

    Parkinson's disease (PD) is a prevalent movement disorder in the elderly with progressive loss of mesencephalic dopaminergic neurons and incapacitating motor and non-motor complications. Ellagic acid is a natural phenolic compound with potent antioxidant and anti-inflammatory properties. In this study, we investigated its possible neuroprotective effect in 6-hydroxydopamine (6-OHDA) rat model of PD. Intrastriatal 6-OHDA-lesioned rats were pretreated with ellagic acid at a dose of 50 mg/kg/day for 1 week. Results showed that ellagic acid attenuates apomorphine-induced rotational bias and lowers the latency to initiate and the total time in the narrow beam task and this beneficial effect was partially abrogated following intracerebroventricular microinjection of estrogen receptor β (ERβ) antagonist. Furthermore, ellagic acid reduced striatal malondialdehyde (MDA), reactive oxygen species (ROS), and DNA fragmentation, and improved monoamine oxidase B (MAO-B), nuclear factor (erythroid-derived 2)-like 2 (Nrf2), and heme oxygenase 1 (HO-1). Meanwhile, ellagic acid prevented loss of tyrosine hydroxylase (TH)-positive neurons within substantia nigra pars compacta (SNC). These findings indicate neuroprotective potential of ellagic acid in 6-OHDA rat model of PD via amelioration of apoptosis and oxidative stress, suppression of MAO-B, and its favorable influence is partly reliant on ERβ/Nrf2/HO-1 signaling cascade.

  8. Magnetic properties of Ho1- x Lu x B12 solid solutions

    NASA Astrophysics Data System (ADS)

    Gabáni, S.; Gaz̆o, E.; Pristás̆, G.; Takác̆ová, I.; Flachbart, K.; Shitsevalova, N.; Siemensmeyer, K.; Sluchanko, N.

    2013-05-01

    Magnetic properties of the geometrically frustrated antiferromagnet HoB12 (with T N = 7.4 K) modified by substitution of magnetic Ho atoms through non-magnetic Lu ones are presented and discussed. In this case, in Ho1- x Lu x B12 solid solutions, both chemical pressure resulting from different Lu3+ and Ho3+ radii and magnetic dilution take place with increasing Lu content ( x) that change properties of the system. The received results show strong indication for the existence of a quantum critical point near x = 0.9, which separates the region of magnetic order (starting with HoB12 for x = 0) and the nonmagnetic region (ending with superconducting LuB12 for x = 1).

  9. Acute enteral glutamine infusion enhances heme oxygenase-1 expression in human duodenal mucosa.

    PubMed

    Coëffier, Moïse; Le Pessot, Florence; Leplingard, Antony; Marion, Rachel; Lerebours, Eric; Ducrotté, Philippe; Déchelotte, Pierre

    2002-09-01

    The heat shock protein, heme oxygenase-1 (HO-1), contributes to the protection of the intestine. Some experimental models suggest that induction of HO-1 by glutamine may contribute to the preservation of intestinal mucosa. The effect of an enteral infusion of glutamine for 6 h on HO-1 expression in duodenal mucosa was studied in healthy men and women and compared with an isonitrogenous mixture of amino acids. After enteral infusion, endoscopic duodenal biopsies were performed and either fixed in formalin for immunohistochemistry or frozen for HO-1 mRNA analysis by reverse transcriptase-polymerase chain reaction. Histologic examination revealed that HO-1 was constitutively expressed in intestinal epithelial cells (IEC), and that glutamine increased the grade of HO-1 immunostaining (P HO-1 immunoreactive lamina propria cells (LPC, 10.5 vs. 7.5%, P HO-1 mRNA expression compared with control amino acids: median (range) 156 (102-182) vs. 100 (68-179)%, P HO-1 was correlated with the percentage of immunoreactive LPC (r = 0.55, P = 0.017) and the grade of immunostaining in IEC (r = 0.51, P = 0.030). In conclusion, glutamine enhanced HO-1 mRNA and protein expression in human duodenal mucosa. These data support further evaluation of the effects of glutamine on intestinal HO-1 during states of intestinal inflammation.

  10. Nuclear Heme Oxygenase-1 (HO-1) Modulates Subcellular Distribution and Activation of Nrf2, Impacting Metabolic and Anti-oxidant Defenses*

    PubMed Central

    Biswas, Chhanda; Shah, Nidhi; Muthu, Manasa; La, Ping; Fernando, Amal P.; Sengupta, Shaon; Yang, Guang; Dennery, Phyllis A.

    2014-01-01

    With oxidative injury as well as in some solid tumors and myeloid leukemia cells, heme oxygenase-1 (HO-1), the anti-oxidant, anti-inflammatory, and anti-apoptotic microsomal stress protein, migrates to the nucleus in a truncated and enzymatically inactive form. However, the function of HO-1 in the nucleus is not completely clear. Nuclear factor erythroid 2-related factor 2 (Nrf2), a transcription factor and master regulator of numerous antioxidants and anti-apoptotic proteins, including HO-1, also accumulates in the nucleus with oxidative injury and in various types of cancer. Here we demonstrate that in oxidative stress, nuclear HO-1 interacts with Nrf2 and stabilizes it from glycogen synthase kinase 3β (GSK3β)-mediated phosphorylation coupled with ubiquitin-proteasomal degradation, thereby prolonging its accumulation in the nucleus. This regulation of Nrf2 post-induction by nuclear HO-1 is important for the preferential transcription of phase II detoxification enzymes such as NQO1 as well as glucose-6-phosphate dehydrogenase (G6PDH), a regulator of the pentose phosphate pathway. Using Nrf2 knock-out cells, we further demonstrate that nuclear HO-1-associated cytoprotection against oxidative stress depends on an HO-1/Nrf2 interaction. Although it is well known that Nrf2 induces HO-1 leading to mitigation of oxidant stress, we propose a novel mechanism by which HO-1, by modulating the activation of Nrf2, sets an adaptive reprogramming that enhances antioxidant defenses. PMID:25107906

  11. Preconditioning with Gua Lou Gui Zhi decoction enhances H2O2-induced Nrf2/HO-1 activation in PC12 cells.

    PubMed

    Mao, Jingjie; Li, Zuanfang; Lin, Ruhui; Zhu, Xiaoqin; Lin, Jiumao; Peng, Jun; Chen, Lidian

    2015-09-01

    Spasticity is common in various central neurological conditions, including after a stroke. Such spasticity may cause additional problems, and often becomes a primary concern for afflicted individuals. A number of studies have identified nuclear factor (erythroid-derived 2)-like 2 (Nrf2) as a key regulator in the adaptive survival response to oxidative stress. Elevated expression of Nrf2, combined with heme oxygenase 1 (HO-1) resistance, in the central nervous system is known to elicit key internal and external oxidation protection. Gua Lou Gui Zhi decoction (GLGZD) is a popular traditional Chinese formula with a long history of clinical use in China for the treatment of muscular spasticity following a stroke, epilepsy or a spinal cord injury. However, the mechanism underlying the efficacy of the medicine remains unclear. In the present study, the antioxidative effects of GLGZD were evaluated and the underlying molecular mechanisms were investigated, using hydrogen peroxide (H2O2)-induced rat pheochromocytoma cells (PC12 cells) as an in vitro oxidative stress model of neural cells. Upon application of different concentrations of GLGZD, a 3-(4,5-dimethyl-2-thiazolyl)-2,5-diphenyltetrazolium bromide (MTT) assay and ATP measurement were conducted to assess the impact on PC12 cell proliferation. In addition, inverted microscopy observations, and the MTT and ATP assessments, revealed that GLGZD attenuated H2O2-induced oxidative damage and signaling repression in PC12 cells. Furthermore, the mRNA and protein expression levels of Nrf2 and HO-1, which are associated with oxidative stress, were analyzed using reverse transcription quantitative polymerase chain reaction (PCR) and confocal microscopy. Confocal microscopy observations, as well as the quantitative PCR assay, revealed that GLGZD exerted a neuroprotective function against H2O2-induced oxidative damage in PC12 cells. Therefore, the results demonstrated that GLGZD protected PC12 cells injured by H2O2, which may be

  12. Emotional facial expressions reduce neural adaptation to face identity.

    PubMed

    Gerlicher, Anna M V; van Loon, Anouk M; Scholte, H Steven; Lamme, Victor A F; van der Leij, Andries R

    2014-05-01

    In human social interactions, facial emotional expressions are a crucial source of information. Repeatedly presented information typically leads to an adaptation of neural responses. However, processing seems sustained with emotional facial expressions. Therefore, we tested whether sustained processing of emotional expressions, especially threat-related expressions, would attenuate neural adaptation. Neutral and emotional expressions (happy, mixed and fearful) of same and different identity were presented at 3 Hz. We used electroencephalography to record the evoked steady-state visual potentials (ssVEP) and tested to what extent the ssVEP amplitude adapts to the same when compared with different face identities. We found adaptation to the identity of a neutral face. However, for emotional faces, adaptation was reduced, decreasing linearly with negative valence, with the least adaptation to fearful expressions. This short and straightforward method may prove to be a valuable new tool in the study of emotional processing.

  13. Lithospermic acid B protects beta-cells from cytokine-induced apoptosis by alleviating apoptotic pathways and activating anti-apoptotic pathways of Nrf2-HO-1 and Sirt1

    SciTech Connect

    Lee, Byung-Wan; Chun, Sung Wan; Kim, Soo Hyun; Lee, Yongho; Kang, Eun Seok; Cha, Bong-Soo; Lee, Hyun Chul

    2011-04-01

    Lithospermic acid B (LAB) has been reported to protect OLETF rats, an established type 2 diabetic animal model, from the development of diabetes-related vascular complications. We investigated whether magnesium lithospermate B (LAB) has a protective role under cytokine-induced apoptosis in INS-1 cells in vitro and whether it slows the development of diabetes in OLETF rats in vivo. Pretreatment with 50 {mu}M LAB significantly reduced the 1000 U/mL INF-{gamma} and 100 U/mL IL-1{beta}-induced INS-1 cell death. LAB significantly alleviated cytokine-induced phosphorylations of p38 and JNK in accordance with a decrease in cleaved caspase-3 activity in beta-cells. LAB also protected against the cytokine-induced caspase-3 apoptotic pathway via significant activation of Nrf2-HO (heme-oxigenase)-1 and Sirt1 expression. OLETF rats treated with 40 mg/kg/day LAB showed a significant improvement in glucose tolerance compared to untreated OLETF control rats in vivo. Our results suggest that the cytoprotective effects of LAB on pancreatic {beta}-cells are related with both alleviating apoptotic pathways and activating anti-apoptotic pathways of Nrf2-HO-1 and Sirt1.

  14. Effects of dexmedetomidine pretreatment on heme oxygenase-1 expression and oxidative stress during one-lung ventilation

    PubMed Central

    Gao, Shenqiang; Wang, Yuelan; Zhao, Jun; Su, Aiping

    2015-01-01

    Purpose: This study aimed to explore effects of dexmedetomidine pretreatment on heme oxygenase-1 (HO-1) expression and oxidative stress during one-lung ventilation (OLV) in lung cancer patients. Methods: Fifty patients with lung carcinoma (ASA I-II, 40-65 years old, body mass index [BMI] < 30 kg/m2) undergoing pulmonary lobectomy were enrolled. They were divided randomly into two equal groups before anaesthesia induction to receive either intravenous injection of 1 μg/kg dexmedetomidine for 20 min (Dexmedetomidine) or not (Control). Results: The results showed no difference in heart rate (HR), mean arterial pressure (MAP) and bispectral index (BIS) between the two groups, as well as liquid intake and output volume (LIO), duration of OLV and time from surgery beginning to excision of pathological tissues (P > 0.05). Levels of tumor necrosis factor (TNF-α) and malondialdehyde (MDA) in Dexmedetomidine group were lower than that of Control at OLV 60 and 90 (P < 0.05). Superoxide dismutase (SOD) activity and the expression level of HO-1 were higher in Dexmedetomidine group than in Control (P < 0.05). Conclusions: Dexmedetomidine pretreatment could upregulated expression of HO-1 in lung tissue and reduce oxidative stress and inflammation during OLV. Thus dexmedetomidine played a role in protecting lung injury by promoting HO-1 expression. PMID:26045831

  15. The processing of coreference for reduced expressions in discourse integration.

    PubMed

    Yang, C L; Gordon, P C; Hendrick, R; Wu, J T; Chou, T L

    2001-01-01

    Three reading-time experiments in Chinese are reported that test contrasting views of how pronominal coreference is achieved. On the one hand, studies of reading time and eye tracking suggest that reduced expressions, such as the pronoun he, serve as critical links to integrate separate utterances into a coherent model of discourse. On the other hand, probe-word recognition studies indicate that full anaphoric expressions, such as a repeated name, are more readily interpreted than reduced expressions due to their rich lexical information, which provides effective cues to match the representation of the appropriate referent in memory. The results indicate that the ease of integrating the critical referent into a model of discourse is a function of the congruence of lexical, semantic, and discourse features conveyed by a syntactically prominent reduced expression within linguistic input. This pattern supports the view that a reduced expression is interpreted on-line and indeed plays a critical role in promoting discourse coherence by facilitating the semantic integration of separate utterances.

  16. 4-Ketopinoresinol, a novel naturally occurring ARE activator, induces the Nrf2/HO-1 axis and protects against oxidative stress-induced cell injury via activation of PI3K/AKT signaling.

    PubMed

    Chen, Huang-Hui; Chen, Yu-Tsen; Huang, Yen-Wen; Tsai, Hui-Ju; Kuo, Ching-Chuan

    2012-03-15

    The Nrf2/ARE pathway plays an important role in inducing phase II detoxifying enzymes and antioxidant proteins and has been considered a potential target for cancer chemoprevention because it eliminates harmful reactive oxygen species or reactive intermediates generated from carcinogens. The objectives of this study were to identify novel Nrf2/ARE activators and to investigate the mechanistic signaling pathway involved in the activation of Nrf2-mediated cytoprotective effects against oxidative-induced cell injury. A stable ARE-driven luciferase reporter cell line was established to screen a potentially cytoprotective compound. 4-Ketopinoresinol (4-KPR), the (α-γ) double-cyclized type of lignan obtained from adlay (Coix lachryma-jobi L. var. ma-yuen Stapf), activates ARE-driven luciferase activity more effectively than the classical ARE activator tert-butylhydroquinone. 4-KPR treatment resulted in a transient increase in AKT phosphorylation and subsequent phosphorylation and nuclear translocation of Nrf2, along with increased expression of ARE-dependent cytoprotective genes, such as heme oxygenase-1 (HO-1), aldo-keto reductases, and glutathione synthetic enzyme. 4-KPR suppresses oxidative stress-induced DNA damage and cell death via upregulation of HO-1. Inhibition of PI3K/AKT signaling by chemical inhibitors or RNA interference not only suppressed 4-KPR-induced Nrf2/HO-1 activation, but also eliminated the cytoprotective effect against oxidative damage. These observations in an ARE-regulated gene system suggest that 4-KPR is a novel Nrf2/ARE-mediated transcription activator, activates the Nrf2/HO-1 axis, and protects against oxidative stress-induced cell injury via activation of PI3K/AKT signaling.

  17. Lycopene ameliorates atrazine-induced oxidative damage in adrenal cortex of male rats by activation of the Nrf2/HO-1 pathway.

    PubMed

    Abass, Marwa Ahmed; Elkhateeb, Shereen Ahmed; Abd El-Baset, Samia Adel; Kattaia, Asmaa Alhosiny; Mohamed, Eman Mosallam; Atteia, Hebatallah Husseini

    2016-08-01

    Atrazine (ATZ) is one of the most commonly used herbicides contaminating plants, soil and water resources. Several strategies have been used to counteract ATZ toxicity. Here, we tested the hypothesis that lycopene could ameliorate ATZ-induced toxicity in the adrenal cortex. For this purpose, 35 adult male albino rats were randomized into five equal groups: untreated control, vehicle control (received 0.5 mL corn oil/day), lycopene (treated with lycopene dissolved in 0.5 mL corn oil, 10 mg/kg b.w./day), ATZ (received ATZ dissolved in 0.5 mL corn oil 300 mg/kg b.w./day), and ATZ + lycopene (treated with ATZ and lycopene at the same previously mentioned doses). All treatments were given by oral gavage for 4 weeks. We found that ATZ exposure significantly increased relative adrenal weight, plasma ACTH levels, and adrenal oxidative stress as manifested by elevated malondialdehyde levels, decreased reduced glutathione content and depressed antioxidant enzyme activities in adrenal cortex tissues with respect to control groups. Furthermore, the transcription of adrenal cortex nuclear factor erythroid 2-related factor 2 (Nrf2), heme oxygenase-1 (HO-1), nuclear factor kappa B, and caspase-3 genes was increased significantly compared with the control groups. This was accompanied with DNA fragmentation and structural and ultrastructural changes in zona glomerulosa and zona fasiculata of the adrenal cortex. Notably, all these changes were partially ameliorated in rats treated concomitantly with ATZ and lycopene. Our results showed that lycopene exerts protective effects against ATZ-induced toxicity in rat adrenal cortex. These effects may be attributed to the antioxidative property of lycopene and its ability to activate the Nrf2/HO-1 pathway.

  18. Garcinia vilersiana bark extract activates the Nrf2/HO-1 signaling pathway in RAW264.7 cells.

    PubMed

    Shinkai, Yasuhiro; Yamanaka, Ichiro; Duong, Ho Huynh Thuy; Quynh, Nguyen Thi; Kanaho, Yasunori; Kumagai, Yoshito

    2013-01-01

    Garcinia vilersiana is a traditional medicinal plant in Vietnam. The petroleum ether extract of stem bark of Garcinia vilersiana (GVE) was prepared to evaluate its potential to activate Nrf2, a transcription factor of antioxidant and detoxifying enzymes. Exposure of mouse macrophage RAW264.7 cells to GVE (0.625-2.5 µg/ml) resulted in a significant activation of Nrf2, as evaluated by nuclear accumulation of this transcription factor, and increased antioxidant response element (ARE) binding activity in a time- and concentration-dependent manner. As a result, GVE caused ARE-dependent up-regulation of heme oxygenase-1 (HO-1) in the cells. These results suggest that GVE contains components that have the ability to activate the Nrf2/ARE/HO-1 signaling pathway, leading to cellular protection.

  19. Nitric oxide sets off an antioxidant response in adrenal cells: involvement of sGC and Nrf2 in HO-1 induction.

    PubMed

    Astort, F; Mercau, M; Giordanino, E; Degese, M S; Caldareri, L; Coso, O; Cymeryng, C B

    2014-02-15

    Induction of microsomal heme oxygenase 1 (HO-1) activity is considered a cytoprotective mechanism in different cell types. In adrenal cells, HO-1 induction by ACTH exerts a modulatory effect on steroid production as well. As nitric oxide (NO) has been also regarded as an autocrine/paracrine modulator of adrenal steroidogenesis we sought to study the effects of NO on the induction of HO-1 and the mechanism involved. We hereby analyzed the time and dose-dependent effect of a NO-donor (DETA/NO) on HO-1 induction in a murine adrenocortical cell line. We showed that this effect is mainly exerted at a transcriptional level as it is inhibited by actinomycin D and HO-1 mRNA degradation rates were not affected by DETA/NO treatment. HO-1 induction by NO does not appear to involve the generation of oxidative stress as it was not affected by antioxidant treatment. We also demonstrated that NO-treatment results in the nuclear translocation of the nuclear factor-erythroid 2-related factor (Nrf2), an effect that is attenuated by transfecting the cells with a dominant negative isoform of Nrf2. We finally show that the effects of the NO-donor are reproduced by a permeable analog of cGMP and that a soluble guanylate cyclase specific inhibitor blocked both the induction of HO-1 by NO and the nuclear translocation of Nrf2.

  20. Reciprocal effects of miR-122 on expression of heme oxygenase-1 and hepatitis C virus genes in human hepatocytes

    PubMed Central

    Shan, Ying; Zheng, Jianyu; Lambrecht, Richard W.; Bonkovsky, Herbert L.

    2007-01-01

    Background & Aims Heme oxygenase-1 (HO-1) is an antioxidant defense and key cytoprotective enzyme, which is repressed by Bach1. MicroRNA-122 (miR-122) is specifically expressed and highly abundant in human liver and required for replication of hepatitis C virus (HCV) RNA. This study was to assess whether a specific miR-122 antagomir down-regulates HCV protein replication and up-regulates HO-1. Methods We transfected antagomir of miR-122, 2′-O-methyl-mimic miR-122, or non-specific-control antagomir (NSCA) into wild type Huh-7 cells or Huh-7 stably replicating HCV subgenomic core-NS3 (CNS3 replicon cells), or NS3-5B (9–13 replicon cells). Results Antagomir of miR-122 reduced the abundance of HCV-RNA by 64% in CNS3, and by 84% in 9–13 cells. In contrast, transfection with 2′-O-methlyl-mimic miR-122 increased HCV levels up to 2.5-fold; transfection with NSCA did not change the level of HCV. Antagomir of miR-122 also decreased Bach1 and increased HO-1 mRNA levels in CNS3, 9–13, and WT Huh-7 cells. Increasing HO-1 by silencing Bach1 with 50 nM Bach1-siRNA or by treatment with 5 μM cobalt protoporphyrin or heme (known inducers of HO-1) decreased HCV RNA and protein by 50% in HCV replicon cells. Conclusions Down-regulation of HCV replication using an antagomir targeted to miR-122 is effective, specific, and selective. Increasing HO-1, by silencing the Bach1 gene or by treatment with cobalt protoporphyrin or heme, decreases HCV replication. Thus, miR-122 plays an important role in the regulation of HCV replication and HO-1/Bach1 expression in hepatocytes. Down-regulation of miR-122 and up-regulation of HO-1 may be new strategies for anti-HCV intervention and cytoprotection. PMID:17919492

  1. Transdermal 17-beta estradiol replacement therapy reduces megakaryocyte GPVI expression.

    PubMed

    Geng, Hongquan; Zhang, Hui; Zhang, Wei; Nieswandt, Bernhard; Bray, Paul F; Leng, Xinghong

    2008-01-01

    The platelet-collagen interaction is a critical early event in arterial thrombus formation, and platelet GPVI is the major activating receptor for collagen. We have previously used a mouse model to demonstrate that the estrogen effects on platelets depend upon the agonist, estrogen formulation and route of administration. In the current study we used a model of transdermal estradiol (E2) administration to ovariectomized mice to address the potential inhibitory effects of E2 on platelet GPVI. Platelet GPVI expression was reduced after transdermal E2 replacement therapy (p reduced GPVI-mediated fibrinogen binding and aggregation were observed in platelets from mice subjected to 9 days or longer of in vivo E2 treatment, but not in platelets from mice treated for 3 days or shorter, suggesting an indirect pathway. Studies with mouse bone marrow revealed that E2 replacement in ovariectomized mice reduces megakaryocyte GPVI expression. This data suggest that transdermal E2 is able to affect centrally on megakaryocyte GPVI to regulate platelet GPVI and function.

  2. Heme oxygenase-1 expression protects the heart from acute injury caused by inducible Cre recombinase.

    PubMed

    Hull, Travis D; Bolisetty, Subhashini; DeAlmeida, Angela C; Litovsky, Silvio H; Prabhu, Sumanth D; Agarwal, Anupam; George, James F

    2013-08-01

    The protective effect of heme oxygenase-1 (HO-1) expression in cardiovascular disease has been previously demonstrated using transgenic animal models in which HO-1 is constitutively overexpressed in the heart. However, the temporal requirements for protection by HO-1 induction relative to injury have not been investigated, but are essential to employ HO-1 as a therapeutic strategy in human cardiovascular disease states. Therefore, we generated mice with cardiac-specific, tamoxifen (TAM)-inducible overexpression of a human HO-1 (hHO-1) transgene (myosin heavy chain (MHC)-HO-1 mice) by breeding mice with cardiac-specific expression of a TAM-inducible Cre recombinase (MHC-Cre mice), with mice containing an hHO-1 transgene preceded by a floxed-stop signal. MHC-HO-1 mice overexpress HO-1 mRNA and the enzymatically active protein following TAM administration (40 mg/kg body weight on 2 consecutive days). In MHC-Cre controls, TAM administration leads to severe, acute cardiac toxicity, cardiomyocyte necrosis, and 80% mortality by day 3. This cardiac toxicity is accompanied by a significant increase in inflammatory cells in the heart that are predominantly neutrophils. In MHC-HO-1 mice, HO-1 overexpression ameliorates the depression of cardiac function and high mortality rate observed in MHC-Cre mice following TAM administration and attenuates cardiomyocyte necrosis and neutrophil infiltration. These results highlight that HO-1 induction is sufficient to prevent the depression of cardiac function observed in mice with TAM-inducible Cre recombinase expression by protecting the heart from necrosis and neutrophil infiltration. These findings are important because MHC-Cre mice are widely used in cardiovascular research despite the limitations imposed by Cre-induced cardiac toxicity, and also because inflammation is an important pathological component of many human cardiovascular diseases.

  3. Salvianolic acid B protects against acetaminophen hepatotoxicity by inducing Nrf2 and phase II detoxification gene expression via activation of the PI3K and PKC signaling pathways.

    PubMed

    Lin, Musen; Zhai, Xiaohan; Wang, Guangzhi; Tian, Xiaofeng; Gao, Dongyan; Shi, Lei; Wu, Hang; Fan, Qing; Peng, Jinyong; Liu, Kexin; Yao, Jihong

    2015-02-01

    Acetaminophen (APAP) is used drugs worldwide for treating pain and fever. However, APAP overdose is the principal cause of acute liver failure in Western countries. Salvianolic acid B (SalB), a major water-soluble compound extracted from Radix Salvia miltiorrhiza, has well-known antioxidant and anti-inflammatory actions. We aimed to evaluate the ability of SalB to protect against APAP-induced acute hepatotoxicity by inducing nuclear factor-erythroid-2-related factor 2 (Nrf2) expression. SalB pretreatment ameliorated acute liver injury caused by APAP, as indicated by blood aspartate transaminase levels and histological findings. Moreover, SalB pretreatment increased the expression of Nrf2, Heme oxygenase-1 (HO-1) and glutamate-l-cysteine ligase catalytic subunit (GCLC). Furthermore, the HO-1 inhibitor zinc protoporphyrin and the GCLC inhibitor buthionine sulfoximine reversed the protective effect of SalB. Additionally, siRNA-mediated depletion of Nrf2 reduced the induction of HO-1 and GCLC by SalB, and SalB pretreatment activated the phosphatidylinositol-3-kinase (PI3K) and protein kinase C (PKC) signaling pathways. Both inhibitors (PI3K and PKC) blocked the protective effect of SalB against APAP-induced cell death, abolishing the SalB-induced Nrf2 activation and decreasing HO-1 and GCLC expression. These results indicated that SalB induces Nrf2, HO-1 and GCLC expression via activation of the PI3K and PKC pathways, thereby protecting against APAP-induced liver injury.

  4. The neoflavonoid latifolin isolated from MeOH extract of Dalbergia odorifera attenuates inflammatory responses by inhibiting NF-κB activation via Nrf2-mediated heme oxygenase-1 expression.

    PubMed

    Lee, Dong-Sung; Kim, Kyoung-Su; Ko, Wonmin; Li, Bin; Keo, Samell; Jeong, Gil-Saeng; Oh, Hyuncheol; Kim, Youn-Chul

    2014-08-01

    In Korea and China, the heartwood of Dalbergia odorifera T. Chen is an important traditional medicine used to treat blood disorders, ischemia, swelling, and epigastric pain. In this study, we investigated the inhibitory effects of latifolin, a major neoflavonoid component isolated from the MeOH extract of D. odorifera, on the inflammatory reaction of thioglycollate-elicited peritoneal macrophages exposed to lipopolysaccharide, with a particular focus on heme oxygenase-1 (HO-1) expression and nuclear factor-κB (NF-κB) signaling. Latifolin significantly inhibited the protein and mRNA expression of inducible nitric oxide synthase and COX-2, reduced NO, prostaglandins E2, tumor necrosis factor-α, and interleukin-1β production in primary murine peritoneal macrophages exposed to lipopolysaccharide. Latifolin also suppressed inhibitor κB-α levels, NF-κB nuclear translocation, and NF-κB DNA-binding activity. Furthermore, latifolin upregulated HO-1 expression via nuclear transcription factor-E2-related factor 2 (Nrf2) nuclear translocation. In addition, using inhibitor tin protoporphyrin IX (SnPP), an inhibitor of HO-1, it was verified that the inhibitory effects of latifolin on the proinflammatory mediators and NF-κB DNA-binding activity were associated with the HO-1 expression. These results suggested that the latifolin-mediated up-regulation of HO-1 expression played a critical role in anti-inflammatory effects in macrophages. This study therefore identified potent therapeutic effects of latifolin, which warrants further investigation as a potential treatment for inflammatory diseases.

  5. Expressive writing as a brief intervention for reducing drinking intentions.

    PubMed

    Young, Chelsie M; Rodriguez, Lindsey M; Neighbors, Clayton

    2013-12-01

    The present study examined the effectiveness of expressive writing in reducing drinking behavior. We expected that students prompted to write about negative drinking experiences would show greater decreases in future drinking intentions compared to the neutral and the positive writing conditions. We also expected that decreases in drinking intentions following the writing prompts might differ based on current drinking and AUDIT scores. Participants included 200 (76% female) undergraduates who completed measures of their current drinking behavior. They were then randomly assigned to either write about: a time when they had a lot to drink that was a good time (Positive); a time when they had a lot to drink that was a bad time (Negative); or their first day of college (Neutral), followed by measures assessing intended drinking over the next three months. Results revealed that participants intended to drink significantly fewer drinks per week and engage in marginally fewer heavy drinking occasions after writing about a negative drinking occasion when compared to control. Interactions provided mixed findings suggesting that writing about a positive event was associated with higher drinking intentions for heavier drinkers. Writing about a negative event was associated with higher intentions among heavier drinkers, but lower intentions among those with higher AUDIT scores. This research builds on previous expressive writing interventions by applying this technique to undergraduate drinkers. Preliminary results provide some support for this innovative strategy but also suggest the need for further refinement, especially with heavier drinkers.

  6. Reduced expression of TANGO in colon and hepatocellular carcinomas.

    PubMed

    Arndt, Stephanie; Bosserhoff, Anja K

    2007-10-01

    The TANGO gene was originally identified as a new family member of the MIA gene family. The gene codes for a 14-kDa protein of so far unknown function. Recently, we identified TANGO as a tumor suppressor in malignant melanoma. In this study we evaluated TANGO transcription in different colon and hepatocellular carcinoma cell lines and tissue samples, to analyze whether loss of TANGO expression is a more general process in tumor development. TANGO was down-regulated or lost in all hepatocellular and colon cell lines compared to primary human hepatocytes or normal colon epithelial cells, respectively, and in most of the tumor samples compared to non-tumorous tissue. These results were confirmed in situ by immunohistochemistry on paraffin-embedded sections of colon and hepatocellular tumors. Functional assays with exogenous TANGO treatment of colon and hepatoma cell lines revealed reduced motility and invasion capacity. Our studies present for the first time the down-regulation of TANGO in colon and hepatocellular carcinoma and provide the first indications for a tumor suppressor role of the TANGO gene in human colon and hepatocellular carcinoma. Thus, functional relevant loss of TANGO expression may contribute to general tumor development and progression, and may provide a new target for therapeutic strategies.

  7. Lectin from Abelmoschus esculentus reduces zymosan-induced temporomandibular joint inflammatory hypernociception in rats via heme oxygenase-1 pathway integrity and tnf-α and il-1β suppression.

    PubMed

    Freitas, Raul Sousa; do Val, Danielle Rocha; Fernandes, Maria Ester Frota; Gomes, Francisco Isaac Fernandes; de Lacerda, José Thalles Jocelino Gomes; SantiGadelha, Tatiane; de Almeida Gadelha, Carlos Alberto; de Paulo Teixeira Pinto, Vicente; Cristino-Filho, Gerardo; Pereira, Karuza Maria Alves; de Castro Brito, Gerly Anne; Bezerra, Mirna Marques; Chaves, Hellíada Vasconcelos

    2016-09-01

    Temporomandibular joint (TMJ) disorders show inflammatory components, heavily impacting on quality of life. Abelmoschus esculentus is largely cultivated in Northeastern Brazil for medicinal purposes, having it shown anti-inflammatory activity. We evaluated A. esculentus lectin (AEL) efficacy in reducing zymosan-induced temporomandibular joint inflammatory hypernociception in rats along with the mechanism of action through which it exerts anti-inflammatory activity. Animals were pre-treated with AEL (0.01, 0.1 or 1mg/kg) before zymosan (Zy) injection in the TMJ to determine anti-inflammatory activity. To analyse the possible effect of the hemeoxygenase-1 (HO-1) and the nitric oxide (NO) pathways on AEL efficacy, animals were pre-treated with ZnPP-IX (3mg/kg), a specific HO-1 inhibitor, or aminoguanidine (30mg/kg), a selective iNOS inhibitor, before AEL administration. Von Frey test evaluated inflammatory hypernociception, synovial fluid collection was performed to determine leukocyte counting and myeloperoxidase (MPO) activity 6h after Zy injection, and Evans Blue extravasation determined vascular permeability. TMJ tissue was collected for histopathological analysis (H&E) and immunohistochemistry (TNF-α, IL-1β, HO-1). In addition, TMJ tissue and trigeminal ganglion collection was performed for TNF-α and IL-1β dosage (ELISA). AEL increased inflammatory nociceptive threshold, reduced leukocyte influx along with MPO activity, leukocyte influx into the synovial membrane, and Evans Blue extravasation. It promoted HO-1 overexpression whilst decreased TNF-α and IL-1β expression in the TMJ tissue. AEL reduced TNF-α and IL-1β levels in TMJ tissue and trigeminal ganglion. AEL effects, however, were not observed in the presence of ZnPP-IX. These findings suggest that AEL efficacy depends on TNF-α/IL-1β inhibition and HO-1 pathway integrity.

  8. Grape seed extract inhibits VEGF expression via reducing HIF-1α protein expression

    PubMed Central

    Lu, Jianming; Zhang, Keqiang; Chen, Shiuan; Wen, Wei

    2009-01-01

    Grape seed extract (GSE) is a widely consumed dietary supplement that has antitumor activity. Here, we have investigated the inhibitory effect of GSE on the expression of vascular endothelial growth factor (VEGF) and the mechanism underlying this action. We found that GSE inhibited VEGF messenger RNA (mRNA) and protein expression in U251 human glioma cells and MDA-MB-231 human breast cancer cells. GSE inhibited transcriptional activation of the VEGF gene through reducing protein but not mRNA expression of hypoxia-inducible factor (HIF) 1α. The inhibitory effect of GSE on HIF-1α expression was mainly through inhibiting HIF-1α protein synthesis rather than promoting protein degradation. Consistent with this result, GSE-suppressed phosphorylation of several important components involved in HIF-1α protein synthesis, such as Akt, S6 kinase and S6 protein. Furthermore, in the MDA-MB-231 tumor, we found that GSE treatment inhibited the expression of VEGF and HIF-1α and the phosphorylation of S6 kinase without altering the subcellular localization of HIF-1α, correlating with reduced vessel density and tumor size. Depletion of polyphenol with polyvinylpyrrolidone abolished the inhibitory activity of GSE, suggesting a water-soluble fraction of polyphenol in GSE is responsible for the inhibitory activity. Taken together, our results indicate that GSE inhibits VEGF expression by reducing HIF-1α protein synthesis through blocking Akt activation. This finding provides new insight into the mechanisms of anticancer activity of GSE and reveals a novel molecular mechanism underlying the antiangiogenic action of GSE. PMID:19131542

  9. Grape seed proanthocyanidins protects against cadmium induced oxidative pancreatitis in rats by attenuating oxidative stress, inflammation and apoptosis via Nrf-2/HO-1 signaling.

    PubMed

    Bashir, Nazima; Manoharan, Vaihundam; Miltonprabu, Selvaraj

    2016-06-01

    The present study has been designed and carried out to explore the role of grape seed proanthocyanidins (GSP) in the pancreas of cadmium (Cd)-induced cellular oxidative stress-mediated toxicity in rats. Four groups of healthy rats were given oral doses of Cd (5-mg/kg BW) and to identify the possible mechanism of action of GSP 100-mg/kg BW was selected and was given 90 min before Cd intoxication. The causative molecular and cellular mechanism of Cd was determined using various biochemical assays, histology, western blotting and ELISA. Cd intoxication revealed increased levels of proinflammatory cytokines (TNF-α, IL1β and IFN-γ), reduced levels of cellular defense proteins (Nrf-2 and HO-1) and glucose transporter (GLUT-2 and GLUT-4) along with the enhanced levels of signaling molecules of apoptosis (cleaved Caspase-12/9/8/3) in the pancreas of Cd-intoxicated rats. Results suggested that the treatment with GSP reduced blood glucose level, increased plasma insulin and mitigated oxidative stress-related markers. GSP protects pancreatic tissue by attenuated inflammatory responses and inhibited apoptosis. This uniqueness and absence of any detectable adverse effect of GSP proposes the possibility of using it as an effective protector in the oxidative stress-mediated pancreatic dysfunction in rats.

  10. 4,7-Dimethoxy-5-methyl-1,3-benzodioxole from Antrodia camphorata inhibits LPS-induced inflammation via suppression of NF-κB and induction HO-1 in RAW264.7 cells.

    PubMed

    Shie, Pei-Hsin; Wang, Sheng-Yang; Lay, Horng-Liang; Huang, Guan-Jhong

    2016-02-01

    Several benzenoid compounds have been isolated from Antrodia camphorata are known to have excellent anti-inflammatory activity. In this study, we investigated the anti-inflammatory potential of 4,7-dimethoxy-5-methyl-1,3-benzodioxole (DMB), one of the major benzenoid compounds isolated from the mycelia of A. camphorata. DMB significantly decreased the LPS-induced production of pro-inflammatory molecules, such as nitric oxide (NO), interleukin-1β (IL-1β), and tumor necrosis factor-α (TNF-α) in RAW264.7 cells. In addition, DMB suppressed the protein levels of inducible nitric oxide synthase (iNOS) and cyclooxygenase-2 (COX-2) in a dose dependent manner. Moreover, DMB significantly suppressed LPS-induced nuclear translocation of nuclear factor-κB (NF-κB), and this inhibition was found to be associated with decreases in the phosphorylation and degradation of its inhibitor, inhibitory κB-α (IκB-α). Moreover, we found that DMB markedly inhibited the protein expression level of Toll-like receptor 4 (TLR4). Furthermore, treatment with DMB significantly increased hemoxygenase-1 (HO-1) expression in RAW264.7 cells, which is further confirmed by hemin, a HO-1 enhancer, significantly attenuated the LPS-induced pro-inflammatory molecules and iNOS and TLR4 protein levels. Taken together, the present study suggests that DMB may have therapeutic potential for the treatment of inflammatory diseases.

  11. Sulforaphane exerts its anti-inflammatory effect against amyloid-β peptide via STAT-1 dephosphorylation and activation of Nrf2/HO-1 cascade in human THP-1 macrophages.

    PubMed

    An, Ye Won; Jhang, Kyoung A; Woo, So-Youn; Kang, Jihee Lee; Chong, Young Hae

    2016-02-01

    Alzheimer's disease (AD) is the most common neurodegenerative disorder worldwide, accounting for most cases of dementia in elderly individuals, and effective therapies are still lacking. This study was designed to investigate the anti-inflammatory properties of sulforaphane against Aβ1-42 monomers in human THP-1 microglia-like cells. The results showed that sulforaphane preferentially inhibited cathepsin B- and caspase-1-dependent NLRP3 inflammasome activation induced by mostly Aβ1-42 monomers, an effect that potently reduced excessive secretion of the proinflammatory cytokine interleukin-1β (IL-1β). Subsequent mechanistic studies revealed that sulforaphane mitigated the activation of signal transducer and activator of transcription-1 induced by Aβ1-42 monomers. Sulforaphane also increased nuclear factor erythroid 2-related factor 2 (Nrf2) nuclear translocation, which was followed by upregulation of heme-oxygenase 1 (HO-1). The anti-inflammatory effect of sulforaphane on Aβ1-42-induced IL-1β production was diminished by small interfering RNA-mediated knockdown of Nrf2 or HO-1. Moreover, sulforaphane significantly attenuated the levels of microRNA-146a, which is selectively upregulated in the temporal cortex and hippocampus of AD brains. The aforementioned effects of sulforaphane were replicated by the tyrosine kinase inhibitor, herbimycin A, and Nrf2 activator. These results indicate that signal transducer and activator of transcription-1 dephosphorylation, HO-1 and its upstream effector, Nrf2, play a pivotal role in triggering an anti-inflammatory signaling cascade of sulforaphane that results in decreases of IL-1β release and microRNA-146a production in Aβ1-42-stimulated human microglia-like cells. These findings suggest that the phytochemical sulforaphane has a potential application in AD therapeutics.

  12. Low concentration of 4-hydroxy hexenal increases heme oxygenase-1 expression through activation of Nrf2 and antioxidative activity in vascular endothelial cells

    SciTech Connect

    Ishikado, Atsushi; Nishio, Yoshihiko; Morino, Katsutaro; Ugi, Satoshi; Kondo, Hajime; Makino, Taketoshi; Kashiwagi, Atsunori; Maegawa, Hiroshi

    2010-11-05

    Research highlights: {yields} Low doses of 4-HHE and 4-HNE induce HO-1 expression in vascular endothelial cells. {yields} 4-HHE and 4-HNE increase the intranuclear expression and DNA binding of Nrf2. {yields} 4-HHE and 4-HNE-induced HO-1 expression depends on the activation of Nrf2. {yields} Pretreatment with 4-HHE and 4-HNE prevents oxidative stress-induced cytotoxicity. -- Abstract: Large-scale clinical studies have shown that n-3 polyunsaturated fatty acids (n-3 PUFAs) such as eicosapentaenoic and docosahexaenoic acids reduce cardiovascular events without improving classical risk factors for atherosclerosis. Recent studies have proposed that direct actions of n-3 PUFAs themselves, or of their enzymatic metabolites, have antioxidative and anti-inflammatory effects on vascular cells. Although a recent study showed that plasma 4-hydroxy hexenal (4-HHE), a peroxidation product of n-3 PUFA, increased after supplementation of docosahexaenoic acid, the antiatherogenic effects of 4-HHE in vascular cells remain unclear. In the present study, we tested the hypothesis that 4-HHE induces the antioxidative enzyme heme oxygenase-1 (HO-1) through activation of nuclear factor erythroid 2-related factor 2 (Nrf2), a master regulatory transcriptional factor, and prevents oxidative stress-induced cytotoxicity in vascular endothelial cells. This mechanism could partly explain the cardioprotective effects of n-3 PUFAs. Human umbilical vein endothelial cells were stimulated with 1-10 {mu}M 4-HHE or 4-hydroxy nonenal (4-HNE), a peroxidation product of n-6 PUFAs. Both 4-HHE and 4-HNE dose-dependently increased HO-1 mRNA and protein expression, and intranuclear expression and DNA binding of Nrf2 at 5 {mu}M. Small interfering RNA for Nrf2 significantly reduced 4-HHE- or 4-HNE-induced HO-1 mRNA and protein expression. Furthermore, pretreatment with 4-HHE or 4-HNE prevented tert-butyl hydroperoxide-induced cytotoxicity. In conclusion, 4-HHE, a peroxidation product of n-3 PUFAs, stimulated

  13. Tryptanthrin Suppresses the Activation of the LPS-Treated BV2 Microglial Cell Line via Nrf2/HO-1 Antioxidant Signaling

    PubMed Central

    Kwon, Young-Won; Cheon, So Yeong; Park, Sung Yun; Song, Juhyun; Lee, Ju-Hee

    2017-01-01

    Microglia are the resident macrophages in the central nervous system (CNS) and play essential roles in neuronal homeostasis and neuroinflammatory pathologies. Recently, microglia have been shown to contribute decisively to neuropathologic processes after ischemic stroke. Furthermore, natural compounds have been reported to attenuate inflammation and pathologies associated with neuroinflammation. Tryptanthrin (indolo[2,1-b]quinazoline-6,12-dione) is a phytoalkaloid with known anti-inflammatory effects in cells. In present study, the authors confirmed middle cerebral artery occlusion (MCAO) injury triggers the activation of microglia in brain tissue, and investigated whether tryptanthrin influences the function of mouse murine BV2 microglia under LPS-induced inflammatory conditions in vitro. It was found tryptanthrin protected BV2 microglia cells against LPS-induced inflammation and inhibited the induction of M1 phenotype microglia under inflammatory conditions. In addition, tryptanthrin reduced the production of pro-inflammatory cytokines in BV2 microglia cells via nuclear factor erythroid 2-related factor 2 (Nrf2)/heme oxygenase 1 (HO-1) signaling and NF-κB signaling. The authors suggest that tryptanthrin might alleviate the progress of neuropathologies by controlling microglial functions under neuroinflammatory conditions. PMID:28210215

  14. Inhibition of microRNA-153 protects neurons against ischemia/reperfusion injury in an oxygen-glucose deprivation and reoxygenation cellular model by regulating Nrf2/HO-1 signaling.

    PubMed

    Ji, Qiong; Gao, Jianbo; Zheng, Yan; Liu, Xueli; Zhou, Qiangqiang; Shi, Canxia; Yao, Meng; Chen, Xia

    2017-02-28

    MicroRNAs are emerging as critical regulators in cerebral ischemia/reperfusion injury; however, their exact roles remain poorly understood. miR-153 is reported to be a neuron-related miRNA involved in neuroprotection. In this study, we aimed to investigate the precise role of miR-153 in regulating neuron survival during cerebral ischemia/reperfusion injury using an oxygen-glucose deprivation and reoxygenation (OGD/R) cellular model. We found that miR-153 was significantly upregulated in neurons subjected to OGD/R treatment. Inhibition of miR-153 significantly attenuated OGD/R-induced injury and oxidative stress in neurons. Nuclear factor erythroid 2-related factor 2 (Nrf2) was identified as a target gene of miR-153. Inhibition of miR-153 significantly promoted the expression of Nrf2 and heme oxygenase-1 (HO-1). However, silencing of Nrf2 significantly blocked the protective effects of miR-153 inhibition. Our study indicates that the inhibition of miR-153 protects neurons against OGD/R-induced injury by regulating Nrf2/HO-1 signaling and suggests a potential therapeutic target for cerebral ischemia/reperfusion injury.

  15. Salvianolic Acid B Reducing Portal Hypertension Depends on Macrophages in Isolated Portal Perfused Rat Livers with Chronic Hepatitis

    PubMed Central

    Zhao, Xin; Jia, Hongmei; Yang, Shijun; Liu, Yuetao; Deng, Bo; Xu, Xueyan; Zhang, Tao; Zhou, Hang; Zu, Chengzhe; Yin, He; Li, Ting; Song, Yijun; Wang, Yueqi; Li, Pengtao; Zou, Zhongmei; Cai, Dayong

    2012-01-01

    This study is aimed to investigate the effects of Sal B on portal hypertension (PH). PH with chronic hepatitis was induced by carbon tetrachloride (CCl4) in rats. The model was confirmed with elevated portal pressures and increased serum CD163 levels. The inducible nitric oxide synthase (iNOS) or heme oxygenase-1 (HO-1) in portal triads was assessed. The isolated portal perfused rat liver (IPPRL) was performed at d0, d28, d56 , and d84 in the progression of chronic hepatitis. After constricting with phenylephrine, the portal veins were relaxed with Sal B. The EC50 of Sal B for relaxing portal veins was −2.04 × 10−9, 7.28 × 10−11, 1.52 × 10−11, and 8.44 × 10−11 mol/L at d0, d28, d56, and d84, respectively. More macrophages infiltrated in portal triads and expressed more iNOS or HO-1 as PH advanced. The areas under the curve (AUCs) of Sal B for reducing PH were positively correlated with the levels of iNOS or HO-1 in portal triads, and so did with serum CD163 levels. Sal B reduces PH in IPPRL with chronic hepatitis, via promoting portal relaxation due to macrophage-originated NO or CO in portal triads, partly at least. PMID:23118797

  16. Beneficial effects of Camellia Oil (Camellia oleifera Abel.) on ketoprofen-induced gastrointestinal mucosal damage through upregulation of HO-1 and VEGF.

    PubMed

    Cheng, Yu-Ting; Wu, Shu-Li; Ho, Cheng-Ying; Huang, Shang-Ming; Cheng, Chun-Lung; Yen, Gow-Chin

    2014-01-22

    Nonsteroidal anti-inflammatory drugs, such as ketoprofen, are generally used to treat pain and inflammation and as pyretic agents in clinical medicine. However, the usage of these drugs may lead to oxidative injury to the gastrointestinal mucosa. Camellia oil ( Camellia oleifera Abel.) is commonly used in Taiwan and China as cooking oil. Traditional remedies containing this oil exert beneficial health effects on the bowel, stomach, liver, and lungs. However, the effects of camellia oil on ketoprofen-induced oxidative gastrointestinal mucosal lesions remain unknown. The objective of this study was to evaluate the effect of camellia oil on ketoprofen-induced acute gastrointestinal ulcers. The results showed that treatment of Int-407 cells with camellia oil (50-75 μg/mL) not only increased the levels of heme oxygenase-1 (HO-1), glutathione peroxidase (GPx), and superoxide dismutase (SOD) mRNA expression but also increased vascular endothelial growth factor (VEGF) and prostaglandin E2 (PGE2) protein secretion, which served as a mucosal barrier against gastrointestinal oxidative injury. Moreover, Sprague-Dawley (SD) rats treated with camellia oil (2 mL/kg/day) prior to the administration of ketoprofen (50 mg/kg/day) successfully inhibited COX-2 protein expression, inhibited the production of interleukin-6 (IL-6) and nitrite oxide (NO), reversed the impairment of the antioxidant system, and decreased oxidative damage in the gastrointestinal mucosa. More importantly, pretreatment of SD rats with camellia oil strongly inhibited gastrointestinal mucosal injury induced by ketoprofen, which was proved by the histopathological staining of gastrointestinal tissues. Our data suggest that camellia oil exerts potent antiulcer effects against oxidative damage in the stomach and intestine induced by ketoprofen.

  17. Forsythiae Fructus Inhibits B16 Melanoma Growth Involving MAPKs/Nrf2/HO-1 Mediated Anti-Oxidation and Anti-Inflammation.

    PubMed

    Bao, Jiaolin; Ding, Renbo; Zou, Lidi; Zhang, Chao; Wang, Kai; Liu, Fang; Li, Peng; Chen, Meiwan; Wan, Jian-Bo; Su, Huanxing; Wang, Yitao; He, Chengwei

    2016-01-01

    Forsythiae Fructus, the fruits of Forsythia suspensa (Thunb.) Vahl, Lianqiao in Chinese, is one of the most fundamental herbs in traditional Chinese medicine (TCM). It is a typical heat-clearing and detoxicating herb, according to TCM theory. In this study, we investigated the antitumor effect of Forsythiae Fructus aqueous extract (FAE) on B16-F10 melanoma cells in vivo. The transplanted B16-F10 melanoma in C57BL/6 mice was established and used for the evaluation of the in vivo antitumor effect of FAE. FAE strongly inhibited the growth of B16-F10 cells in vitro and the tumor in vivo. The survival time of tumor-bearing mice was significantly prolonged by FAE. FAE inhibited cancer cell proliferation and angiogenesis in the tumor, as indicated by the decreased expressions of Ki67 and CD31. The levels of ROS, MDA, TNF-[Formula: see text] and IL-6 decreased, while GSH increased in the FAE treatment group, indicating FAE possesses strong anti-oxidative and anti-inflammatory activity. The expression of anti-oxidant proteins Nrf-2 and HO-1, tumor suppressors P53 and p-PTEN, and the MAPK pathways in tumor tissues were upregulated by FAE treatment. These data demonstrated that FAE exhibited strong antitumor activity against B16-F10 murine melanoma both in vitro and in vivo. The antitumor effect of FAE involved decreases in oxidative stress and inflammation in the tumor, which is closely related to the heat-clearing and detoxicating properties of FAE.

  18. Alkaloids from Piper nigrum Exhibit Antiinflammatory Activity via Activating the Nrf2/HO-1 Pathway.

    PubMed

    Ngo, Quynh Mai Thi; Tran, Phuong Thao; Tran, Manh Hung; Kim, Jeong Ah; Rho, Seong Soo; Lim, Chi-Hwan; Kim, Jin-Cheol; Woo, Mi Hee; Choi, Jae Sui; Lee, Jeong-Hyung; Min, Byung Sun

    2017-04-01

    In the present study, ten alkaloids, namely chabamide (1), pellitorine (2), retrofractamide A (3), pyrroperine (4), isopiperolein B (5), piperamide C9:1 (8E) (6), 6,7-dehydrobrachyamide B (7), 4,5-dihydropiperine (8), dehydropipernonaline (9), and piperine (10), were isolated from the fruits of Piper nigrum. Among these, chabamide (1), pellitorine (2), retrofractamide A (3), isopiperolein B (5), and 6,7-dehydrobrachyamide B (7) exhibited significant inhibitory activity on lipopolysaccharide-induced nitric oxide (NO) production in RAW264.7 cells, with IC50 values of 6.8, 14.5, 30.2, 23.7, and 38.5 μM, respectively. Furthermore, compound 1 inhibited lipopolysaccharide-induced NO production in bone marrow-derived macrophages with IC50 value of 9.5 μM. Consistent with NO inhibition, treatment of RAW264.7 cells with chabamide (1), pellitorine (2), and 6,7-dehydrobrachyamide B (7) suppressed expression of inducible NO synthase and cyclooxygenase-2. Chabamide (1), pellitorine (2), and 6,7-dehydrobrachyamide B (7) induced heme-oxygenase-1 expression at the transcriptional level. In addition, compound 1 induced the nuclear translocation of nuclear factor-E2-related factor 2 (Nrf2) and upregulated the expression of Nrf2 target genes, NAD(P)H:quinone oxidoreductase 1 and γ-glutamyl cysteine synthetase catalytic subunit, in a concentration-dependent manner in RAW264.7 cells. These findings suggest that chabamide (1) from P. nigrum exert antiinflammatory effects via the activation of the Nrf2/heme-oxygenase-1 pathway; hence, it might be a promising candidate for the treatment of inflammatory diseases. Copyright © 2017 John Wiley & Sons, Ltd.

  19. Reduced Expression of SARM in Mouse Spleen during Polymicrobial Sepsis.

    PubMed

    Gong, Yu; Zou, Lin; Cen, Dongzhi; Chao, Wei; Chen, Dunjin

    2016-12-01

    Objective Immune dysfunction, including prominent apoptosis of immune cells and decreased functioning of the remaining immune cells, plays a central role in the pathogenesis of sepsis. Sterile α and HEAT/armadillo motif-containing protein (SARM) is implicated in the regulation of immune cell apoptosis. This study aimed to elucidate SARM contributes to sepsis-induced immune cell death and immunosuppression. Methods A mouse model of polymicrobial sepsis was generated by cecum ligation and puncture (CLP). SARM gene and protein expression, caspase 3 cleavage and intracellular ATP production were measured in the mouse spleens. Results CLP-induced polymicrobial sepsis specifically attenuated both the gene and protein expression of SARM in the spleens. Moreover, the attenuation of SARM expression synchronized with splenocyte apoptosis, as evidenced by increased caspase 3 cleavage and ATP depletion. Conclusions These findings suggest that SARM is a potential regulator of sepsis-induced splenocyte apoptosis.

  20. Reduced immunohistochemical expression of adhesion molecules in vitiligo skin biopsies.

    PubMed

    Reichert Faria, Adriane; Jung, Juliana Elizabeth; Silva de Castro, Caio César; de Noronha, Lucia

    2017-03-01

    Because defects in adhesion impairment seem to be involved in the etiopathogenesis of vitiligo, this study aimed to compare the immunohistochemical expression of several adhesion molecules in the epidermis of vitiligo and non lesional vitiligo skin. Sixty-six specimens of lesional and non lesional skin from 33 volunteers with vitiligo were evaluated by immunohistochemistry using anti-beta-catenin, anti-E-cadherin, anti-laminin, anti-beta1 integrin, anti-collagen IV, anti-ICAM-1 and anti-VCAM-1 antibodies. Biopsies of vitiligo skin demonstrated a significant reduction in the expression of laminin and integrin. The average value of the immunohistochemically positive reaction area of the vitiligo specimens was 3053.2μm(2), compared with the observed value of 3431.8μm(2) in non vitiligo skin (p=0.003) for laminin. The immuno-positive area was 7174.6μm(2) (vitiligo) and 8966.7μm(2) (non lesional skin) for integrin (p=0.042). A reduction in ICAM-1 and VCAM-1 expression in the basal layer of the epidermis in vitiligo samples was also observed (p=0.001 and p<0.001, respectively). However, no significant differences were observed with respect to the expression of beta-catenin, E-cadherin, and collagen IV between vitiligo and non lesional skin. Our results suggest that an impairment in adhesion exists in vitiligo skin, which is supported by the diminished immunohistochemical expression of laminin, beta1 integrin, ICAM-1 and VCAM-1.

  1. Aged garlic extract enhances heme oxygenase-1 and glutamate-cysteine ligase modifier subunit expression via the nuclear factor erythroid 2-related factor 2-antioxidant response element signaling pathway in human endothelial cells.

    PubMed

    Hiramatsu, Kei; Tsuneyoshi, Tadamitsu; Ogawa, Takahiro; Morihara, Naoaki

    2016-02-01

    The nuclear factor erythroid 2-related factor 2 (Nrf2)-antioxidant response element (ARE) pathway defends cells against oxidative stress and regulates the cellular redox balance. Activation of this pathway induces a variety of antioxidant enzymes, resulting in the protection of our bodies against oxidative damage. It has been reported that aged garlic extract (AGE), a garlic preparation that is rich in water-soluble cysteinyl moieties, reduces oxidative stress and helps to ameliorate of cardiovascular, renal and hepatic diseases. We hypothesized that AGE enhances the expression of antioxidant enzymes via the Nrf2-ARE pathway in human umbilical vein endothelial cells in culture. Gene expression of antioxidant enzymes was measured using real-time polymerase chain reaction. Nuclear accumulation of Nrf2 and antioxidant enzymes expression were evaluated using western blotting analyses. We found that AGE promoted the accumulation of Nrf2 into the nucleus in a time- and dose-dependent manner and increased the gene expression and polypeptide level of heme oxygenase-1 (HO-1) and glutamate-cysteine ligase modifier subunit (GCLM). Moreover, the effect of AGE in elevating the gene expression of HO-1 and GCLM was found to be mediated via Nrf2 activation in human umbilical vein endothelial cells. Taken together, these observations suggest that AGE induces the expression of HO-1 and GCLM, which are antioxidant enzymes, via activation of the Nrf2-ARE signaling pathway.

  2. DIESEL EXHAUST PARTICLE CHEMICALS ACTIVATE HO-1 GENE EXPRESSION VIA THE STABILIZATION OF NRF2 PROTEIN. (R827352C008)

    EPA Science Inventory

    The perspectives, information and conclusions conveyed in research project abstracts, progress reports, final reports, journal abstracts and journal publications convey the viewpoints of the principal investigator and may not represent the views and policies of ORD and EPA. Concl...

  3. Saccharomyces cerevisiae expressing bacteriophage endolysins reduce Lactobacillus contamination during fermentation

    Technology Transfer Automated Retrieval System (TEKTRAN)

    One of the challenges facing the fuel ethanol industry is the management of bacterial contamination during fermentation. Lactobacillus species are the predominant contaminants that decrease the profitability of biofuel production by reducing ethanol yields and causing “stuck” fermentations, which i...

  4. Reduced caveolin-1 promotes hyper-inflammation due to abnormal heme oxygenase-1 localizationin LPS challenged macrophages with dysfunctional CFTR

    PubMed Central

    Zhang, Ping-Xia; Murray, Thomas S.; Villella, Valeria Rachela; Ferrari, Eleonora; Esposito, Speranza; D'Souza, Anthony; Raia, Valeria; Maiuri, Luigi; Krause, Diane S.; Egan, Marie E.; Bruscia, Emanuela M.

    2013-01-01

    We have previously reported that TLR4 signaling is increased in lipopolysaccharide (LPS) -stimulated Cystic Fibrosis (CF) macrophages (MΦs), contributing to the robust production of pro-inflammatory cytokines. The heme oxygenase (HO-1)/carbon monoxide (CO) pathway modulates cellular redox status, inflammatory responses, and cell survival. The HO-1 enzyme, together with the scaffold protein caveolin 1 (CAV-1), also acts as a negative regulator of TLR4 signaling in MΦs. Here, we demonstrate that in LPS-challenged CF MΦs, HO-1 does not compartmentalize normally to the cell surface and instead accumulates intracellularly. The abnormal HO-1 localization in CF MΦs in response to LPS is due to decreased CAV-1 expression, which is controlled by the cellular oxidative state, and is required for HO-1 delivery to the cell surface. Overexpression of HO-1 or stimulating the pathway with CO-releasing molecules (CORM2)enhancesCAV-1 expression in CF MΦs, suggesting a positive-feed forward loop between HO-1/CO induction and CAV-1 expression. These manipulations reestablished HO-1 and CAV-1 cell surface localization in CF MΦ's. Consistent with restoration of HO-1/CAV-1 negative regulation of TLR4 signaling, genetic or pharmacological (CORM2)-induced enhancement of this pathway decreased the inflammatory response of CF MΦs and CF mice treated with LPS. In conclusion, our results demonstrate that the counter-regulatory HO-1/CO pathway, which is critical in balancing and limiting the inflammatory response, is defective in CF MΦs through a CAV-1-dependent mechanism, exacerbating the CF MΦ's response to LPS. This pathway could be a potential target for therapeutic intervention for CF lung disease. PMID:23606537

  5. Physiological capillary regression is not dependent on reducing VEGF expression

    PubMed Central

    Olfert, I. Mark

    2015-01-01

    Investigations into physiologically-controlled capillary regression report the provocative finding that microvessel regression occurs in the face of persistent elevation of skeletal muscle vascular endothelial growth factor-A (VEGF) expression. Thrombospondin-1 (TSP-1), a negative angiogenic regulator, is increasingly being observed to temporally correlate with capillary regression, suggesting that increased TSP-1 (and not reduction in VEGF per se) is needed to initiate, and likely regulate, capillary regression. Based on evidence being gleaned from physiologically-mediated regression of capillaries, it needs to be recognized that capillary regression (and perhaps capillary rarefaction with disease) is not simply the reversal of factors used to stimulate angiogenesis. Rather, the conceptual understanding that angiogenesis and capillary regression each have specific and unique requirements that are biologically constrained to opposite sides of the balance between positive and negative angioregulatory factors may shed light on why anti-VEGF therapies have not lived up to the promise in reversing angiogenesis and providing the cure that many had hoped toward fighting cancer. Emerging evidence from physiological controlled angiogenesis suggest that cases involving excessive or uncontrolled capillary expansion may be best treated by therapies designed to increase expression of negative angiogenic regulators, whereas those involving capillary rarefaction may benefit from inhibiting negative regulators (like TSP-1). PMID:26660949

  6. The Successive Component-separated Magnetic-Transitions on Pseudoternary Compounds Ho1-xGdxRh2Si2

    NASA Astrophysics Data System (ADS)

    Shigeoka, Toru; Morita, Tetsuhiro; Fujiwara, Tetsuya; Matsubayashi, Kazuyuki; Uwatoko, Yoshiya

    Magnetic measurements on pseudoternary compounds Ho1-xGdxRh2Si2, which substitute Gd having no quadrupole for Ho, were performed. They exhibit a successive component-separated magnetic transition; the c- and ab-components of magnetic moments independently order at different temperatures TN1 and TN2, respectively. The partial ordered state, a frustration appears for TN1 >T >TN2: for the phase II in the magnetic phase diagrams. In the ordered phase, step-like metamagnetic processes appear for TN2 >T; two-step ones appear along the [001] and [100] directions, and a one-step one appears along the [110] direction. The B-T magnetic phase diagrams were constructed. There are six, four and three ordered phases in the B001-T, B100-T and B110-T phase diagram, respectively. Two diagrams of the basal plane directions, B100-T and B110-T, resemble each other. Some interesting or peculiar phase boundaries appear. The Gd composition x dependence of transition temperatures is determined. The transition temperatures TN1 and TN2 increase with increasing x. The x-dependency of TN1 is well scaled by the de Gennes factor: (g-1)2J(J+1) whereas the transition of TN2 is not scaled. Some magnetic features declare that quadrupole interactions play an important role in this compound system.

  7. Magnetism of Ho1-xTbxAl₂ alloys: Critical dependence of a first-order transition on Tb concentration

    DOE PAGES

    Khan, Mahmud; Mudryk, Ya.; Gschneidner, K. A.; ...

    2011-12-27

    HoAl₂ exhibits a first-order spin reorientation transition at 20 K, which is manifested as a sharp peak in the heat capacity. When Ho is partially replaced by only 5% of Tb, the sharp heat-capacity peak in Ho1-xTbxAl₂ (x = 0.05) disappears, and then reappears again for x ≥ 0.07. For x = 0.05, the anomaly corresponding to the spin reorientation transition is barely seen in the heat capacity, but as x exceeds 0.07 the weak anomaly transforms to a sharp peak. The spin reorientation transition temperature increases to 29 K for x = 0.05, and as x increases further themore » transition shifts to lower temperature and returns to ~20 K for x = 0.25. The transition is no longer observed when x exceeds 0.60. Temperature-dependent x-ray powder-diffraction data confirm the first-order nature of the spin reorientation transition for the alloy with x = 0.40, and indicate that the compound retains the room-temperature cubic structure within the sensitivity of the technique. Experimental observations are discussed considering the easy magnetization directions of HoAl₂ and TbAl₂.« less

  8. Prostaglandins as negative regulators against lipopolysaccharide, lipoteichoic acid, and peptidoglycan-induced inducible nitric oxide synthase/nitric oxide production through reactive oxygen species-dependent heme oxygenase 1 expression in macrophages.

    PubMed

    Chien, Chih-Chiang; Shen, Shing-Chuan; Yang, Liang-Yo; Chen, Yen-Chou

    2012-11-01

    Although prostaglandins (PGs) were reported to exert proinflammatory and anti-inflammatory effects in macrophages, their action mechanisms remain unclear. The effects of PGs including PGJ2 (J2), Δ-PGJ2 (Δ), 15-deoxy-Δ PGJ2 (15d), PGE2 (E2), and PGF2α (F2α) on lipopolysaccharide (LPS)-, lipoteichoic acid (LTA)-, and peptidoglycan (PGN)-induced inducible nitric oxide (NO) synthase (iNOS)/NO production by RAW264.7 macrophages were investigated. First, we found that induction of cyclooxygenase 2 (COX-2) protein occurred at a time earlier than that of heme oxygenase 1 (HO-1) protein, and the addition of the COX-2 inhibitor NS398 reduced HO-1 protein expression in LPS-, LTA-, and PGN-treated RAW264.7 macrophages. Incubation of RAW264.7 macrophages with the indicated PGs showed that J2, Δ, and 15d significantly induced HO-1 protein expression; however, E2 and F2α did not. Heme oxygenase 1 protein induced by J2, Δ, and 15d was inhibited by the transcriptional inhibitor, actinomycin (Act) D; the translational inhibitor, cycloheximide; and the antioxidant, N-acetyl cysteine (NAC). Increases in intracellular peroxide levels by J2, Δ, and 15d were detected via a 2',7'™-dichlorofluorescein diacetate (DCFH-DA) analysis, and they were prevented by the addition of NAC. In addition, J2, Δ, and 15d produced significant inhibition of LPS-, LTA-, and PGN-induced iNOS protein and NO production by RAW264.7 cells, in accordance with increased HO-1 protein expression. Reductions of LPS-, LTA-, and PGN-induced phosphorylated c-Jun N-terminal kinase, c-Jun protein, and activator protein 1 luciferase activity by J2, Δ, and 15d were identified, and the addition of the HO-1 inhibitor, tin protoporphyrin, reversed the inhibitory effects of Δ and 15d on LPS- and LTA-induced iNOS/NO, phosphorylated c-Jun N-terminal kinase, and c-Jun protein expressions by macrophages. Knockdown of HO-1 protein expression by HO-1 small interfering RNA blocked Δ and 15d inhibition of LPS- and LTA

  9. Expression of the RNase III enzyme DROSHA is reduced during progression of human cutaneous melanoma

    PubMed Central

    Jafarnejad, Seyed Mehdi; Sjoestroem, Cecilia; Martinka, Magdalena; Li, Gang

    2016-01-01

    Aberrant expression of miRNAs and their biogenesis factors has been frequently observed in different types of cancer. We recently reported that expression of DICER1 is reduced in metastatic melanoma. Nevertheless, so far very little is known about the expression pattern of other miRNA biogenesis factors in this type of malignancy. Here, we investigated the expression pattern of DROSHA in a large set of melanocytic lesions by tissue microarray and immunohistochemistry (n = 409). We found that nuclear expression of DROSHA is markedly reduced in the early stages of melanoma progression (P = 0.0001) and is inversely correlated with melanoma thickness (P = 0.0001), AJCC stages (P = 0.0001), and ulceration status (P = 0.002). We also confirmed the reduced expression of nuclear DROSHA by a second specific antibody raised against a different region of the DROSHA protein. In addition, we observed that the reduced nuclear expression of DROSHA during melanoma progression is accompanied by an increased cytoplasmic expression of this protein (P = 0.0001). Finally, we found that expression pattern of DROSHA varies from that of DICER1 and concomitant loss of expression of both DICER1 and DROSHA confers the worse outcome for melanoma patients. Our results demonstrate a reduced nuclear expression of DROSHA which further highlights a perturbed miRNA biogenesis pathway in melanoma. In addition, the aberrant subcellular localization of DROSHA indicates possible deregulation in the mechanisms responsible for its proper localization in the nucleus. PMID:23370771

  10. Haem arginate infusion stimulates haem oxygenase-1 expression in healthy subjects

    PubMed Central

    Doberer, D; Haschemi, A; Andreas, M; Zapf, T-C; Clive, B; Jeitler, M; Heinzl, H; Wagner, O; Wolzt, M; Bilban, M

    2010-01-01

    BACKGROUND AND PURPOSE Haem oxygenase 1 (HO-1) is an inducible protein that plays a major protective role in conditions such as ischaemia-reperfusion injury and inflammation. In this study, we have investigated the role of haem arginate (HA) in human male subjects in the modulation of HO-1 expression and its correlation with the GT length polymorphism (GTn) in the promoter of the HO-1 gene. EXPERIMENTAL APPROACH In a dose-escalation, randomized, placebo-controlled trial, seven healthy male subjects with a homozygous short (S/S) and eight with a long (L/L) GTn genotype received intravenous HA. HO-1 protein expression and mRNA levels in peripheral blood monocytes, bilirubin, haptoglobin, haemopexin and haem levels were analysed over a 48 h observation period. KEY RESULTS We found that the baseline mRNA levels of HO-1 were higher in L/L subjects, while protein levels were higher in S/S subjects. HA induced a dose-dependent increase in the baseline corrected area under the curve values of HO-1 mRNA and protein over 48 h. The response of HO-1 mRNA was more pronounced in L/L subjects but the protein level was similar across the groups. CONCLUSIONS AND IMPLICATION HA is an effective inducer of HO-1 in humans irrespective of the GTn genotype. The potential therapeutic application of HA needs to be evaluated in clinical trials. PMID:20718734

  11. Effects of Remote Ischemic Preconditioning on Heme Oxygenase-1 Expression and Cutaneous Wound Repair

    PubMed Central

    Cremers, Niels A. J.; Wever, Kimberley E.; Wong, Ronald J.; van Rheden, René E. M.; Vermeij, Eline A.; van Dam, Gooitzen M.; Carels, Carine E.; Lundvig, Ditte M. S.; Wagener, Frank A. D. T. G.

    2017-01-01

    Skin wounds may lead to scar formation and impaired functionality. Remote ischemic preconditioning (RIPC) can induce the anti-inflammatory enzyme heme oxygenase-1 (HO-1) and protect against tissue injury. We aim to improve cutaneous wound repair by RIPC treatment via induction of HO-1. RIPC was applied to HO-1-luc transgenic mice and HO-1 promoter activity and mRNA expression in skin and several other organs were determined in real-time. In parallel, RIPC was applied directly or 24h prior to excisional wounding in mice to investigate the early and late protective effects of RIPC on cutaneous wound repair, respectively. HO-1 promoter activity was significantly induced on the dorsal side and locally in the kidneys following RIPC treatment. Next, we investigated the origin of this RIPC-induced HO-1 promoter activity and demonstrated increased mRNA in the ligated muscle, heart and kidneys, but not in the skin. RIPC did not change HO-1 mRNA and protein levels in the wound 7 days after cutaneous injury. Both early and late RIPC did not accelerate wound closure nor affect collagen deposition. RIPC induces HO-1 expression in several organs, but not the skin, and did not improve excisional wound repair, suggesting that the skin is insensitive to RIPC-mediated protection. PMID:28218659

  12. Santamarin, a sesquiterpene lactone isolated from Saussurea lappa, represses LPS-induced inflammatory responses via expression of heme oxygenase-1 in murine macrophage cells.

    PubMed

    Choi, Hyun-Gyu; Lee, Dong-Sung; Li, Bin; Choi, Yeon Ho; Lee, Seung-Ho; Kim, Youn-Chul

    2012-07-01

    Saussurea lappa C.B. Clarke (Compositae) is indigenous to India and Pakistan. The dried root of S. lappa has been traditionally used for alleviating pain in abdominal distention and tenesmus, indigestion with anorexia, dysentery, nausea, and vomiting. Santamarin is a sesquiterpene lactone isolated from S. lappa. In the present study, santamarin inhibited inducible nitric oxide synthase (iNOS) protein, reduced iNOS-derived nitric oxide (NO), suppressed COX-2 protein and reduced COX-derived PGE(2) production in lipopolysaccharide (LPS)-stimulated RAW264.7 cells and murine peritoneal macrophages. Similarly, santamarin reduced tumor necrosis factor-α (TNF-α) and interleukin-1β (IL-1β) production. In addition, santamarin suppressed the phosphorylation and degradation of IκB-α as well as the nuclear translocation of p65 in response to LPS in RAW264.7 cells. Furthermore, santamarin induced heme oxygenase (HO)-1 expression mRNA and protein level that plays a cytoprotective role against inflammation. The induction of HO-1 is primarily regulated at the transcriptional level, and its induction by various agents is mediated by the nuclear transcription factor E2-related factor 2 (Nrf2), master regulator of antioxidant responses. Unbound Nrf2 translocates into the nucleus and binds to the antioxidant response element (ARE) in the upstream promoter region of many antioxidative genes, where it initiates their transcription. The effects of santamarin on LPS-induced NO, PGE(2), TNF-α, and IL-1β production were partially reversed by the HO-1 inhibitor, tin protoporphyrin (SnPP). Therefore, our data suggest that the anti-inflammatory effect of santamarin in macrophages may be exerted through a novel mechanism that involves HO-1 expression.

  13. Sildenafil induces angiogenic response in human coronary arteriolar endothelial cells through the expression of thioredoxin, hemeoxygenase and vascular endothelial growth factor.

    PubMed

    Vidavalur, Ramesh; Penumathsa, Suresh Varma; Zhan, Lijun; Thirunavukkarasu, Mahesh; Maulik, Nilanjana

    2006-08-01

    This study was undertaken to investigate the effect of phosphodiesterase-5 (PDE5) inhibitor, sildenafil, on angiogenic response in human coronary arteriolar endothelial cells (HCAEC). The cells exposed to sildenafil (1-20 microM) demonstrated significantly accelerated tubular morphogenesis with the induction of thioredoxin-1 (Trx-1), hemeoxygenase-1 (HO-1) and VEGF. Sildenafil induced VEGF and angiopoietin specific receptors such as KDR, Tie-1 and Tie-2. This angiogenic response was repressed by tinprotoporphyrin IX (SnPP), an inhibitor of HO-1 enzyme activity. Sildenafil below 1 muM has no angiogenic effect as evidenced by reduced tuborogenesis. Sildenafil along with SnPP inhibited both VEGF and Angiopoietin-1 (Ang-1) protein expression. Therefore our results demonstrated for the first time that sildenafil is a very potent pro-angiogenic factor.

  14. Pathological significance and prognostic implications of heme oxygenase 1 expression in non-muscle-invasive bladder cancer: Correlation with cell proliferation, angiogenesis, lymphangiogenesis and expression of VEGFs and COX-2

    PubMed Central

    Matsuo, Tomohiro; Miyata, Yasuyoshi; Mitsunari, Kensuke; Yasuda, Takuji; Ohba, Kojiro; Sakai, Hideki

    2017-01-01

    Heme oxygenase 1 (HO-1) is a stress-response protein and its expression is associated with malignant potential and poor prognosis in several types of cancer. The present study investigated the association between HO-1 expression levels and the pathological features, clinical outcomes and other associated factors in patients with non-muscle-invasive bladder cancer (NMIBC). HO-1 expression was evaluated using immunohistochemistry in 147 formalin-fixed tissue specimens. The proliferation index, microvessel density, lymph vessel density and expression of cyclooxygenase (COX)-2 and vascular endothelial growth factor (VEGF)-A, -C, and -D were also investigated. Correlations among variables were analyzed by multivariate analysis. Survival was assessed using Kaplan-Meier survival curves and multivariate statistics. HO-1 expression levels in high-grade and pT1 tumors were significantly higher compared with low-grade and pTa tumors, and were correlated with the proliferation index (P<0.001), lymph vessel density (P=0.021) and COX-2 expression levels (P=0.003). The proliferation index and COX-2 expression levels were also identified as independent contributing factors in multivariate models. Kaplan-Meier survival curves associated HO-1 expression with a poor prognosis in metastasis-free (P=0.047) and cause-specific survival (P=0.017), but not with urinary tract recurrence (P=0.231). Furthermore, HO-1 expression was identified by multivariate analysis to be a significant predictor for cause-specific survival (hazard ratio, 4.08; 95% confidence interval, 1.06–15.66; P=0.004). HO-1 has an important role in the malignant aggressiveness of NMIBC and its expression is associated with cause-specific survival. HO-1-associated activities are regulated by cancer cell proliferation, lymphangiogenesis and COX-2. The results suggest that HO-1 may be a potential therapeutic target and a useful predictive prognostic factor in patients with NMIBC. PMID:28123555

  15. Face in profile view reduces perceived facial expression intensity: an eye-tracking study.

    PubMed

    Guo, Kun; Shaw, Heather

    2015-02-01

    Recent studies measuring the facial expressions of emotion have focused primarily on the perception of frontal face images. As we frequently encounter expressive faces from different viewing angles, having a mechanism which allows invariant expression perception would be advantageous to our social interactions. Although a couple of studies have indicated comparable expression categorization accuracy across viewpoints, it is unknown how perceived expression intensity and associated gaze behaviour change across viewing angles. Differences could arise because diagnostic cues from local facial features for decoding expressions could vary with viewpoints. Here we manipulated orientation of faces (frontal, mid-profile, and profile view) displaying six common facial expressions of emotion, and measured participants' expression categorization accuracy, perceived expression intensity and associated gaze patterns. In comparison with frontal faces, profile faces slightly reduced identification rates for disgust and sad expressions, but significantly decreased perceived intensity for all tested expressions. Although quantitatively viewpoint had expression-specific influence on the proportion of fixations directed at local facial features, the qualitative gaze distribution within facial features (e.g., the eyes tended to attract the highest proportion of fixations, followed by the nose and then the mouth region) was independent of viewpoint and expression type. Our results suggest that the viewpoint-invariant facial expression processing is categorical perception, which could be linked to a viewpoint-invariant holistic gaze strategy for extracting expressive facial cues.

  16. Oxidative stress suppression by luteolin-induced heme oxygenase-1 expression

    SciTech Connect

    Sun, Gui-bo; Sun, Xiao; Wang, Min; Ye, Jing-xue; Si, Jian-yong; Xu, Hui-bo; Meng, Xiang-bao; Qin, Meng; Sun, Jing; Wang, Hong-wei; Sun, Xiao-bo

    2012-12-01

    Luteolin, a flavonoid that exhibits antioxidative properties, exerts myocardial protection effects. However, the underlying molecular mechanisms are not yet fully understood. To investigate the effects of luteolin on myocardial injury protection and its possible mechanisms, a myocardial injury model was established with intragastric administration of 4 mg/kg isoproterenol (ISO) to male Sprague–Dawley rats (200–220 g) daily for 2 days. We found that pretreatment of luteolin (160, 80 and 40 mg/kg, i.g., respectively) daily for 15 days can prevent ISO-induced myocardial damage, including decrease of serum cardiac enzymes, improvement electrocardiography and heart vacuolation. Luteolin also improved the free radical scavenging and antioxidant potential, suggesting one possible mechanism of luteolin-induced cardio-protection is mediated by blocking the oxidative stress. To clarify the mechanisms, we performed the in vitro study by hydrogen peroxide (H{sub 2}O{sub 2})-induced cytotoxicty model in H9c2 cells. We found that luteolin pretreatment prevented apoptosis, increased the expression of heme oxygenase-1 (HO-1), and enhanced the binding of Nrf2 to the antioxidant response element, providing an adaptive survival response against H{sub 2}O{sub 2}-derived oxidative cytotoxicity. The addition of Znpp, a selective HO-1 competitive inhibitor, reduced the cytoprotective ability of luteolin, indicating the vital role of HO-1 on these effects. Luteolin also activated Akt and ERK, whereas the addition of LY294002 and U0126, the pharmacologic inhibitors of PI3K and ERK, attenuated luteolin-induced HO-1 expression and cytoprotective effect. Taken together, the above findings suggest that luteolin protects against myocardial injury and enhances cellular antioxidant defense capacity through the activation of Akt and ERK signal pathways that leads to Nrf2 activation, and subsequently HO-1 induction. -- Highlights: ► Luteolin prevents isoproterenol-induced myocardial damage.

  17. Reduced COX-2 Expression in Aged Mice Is Associated With Impaired Fracture Healing

    PubMed Central

    Naik, Amish A; Xie, Chao; Zuscik, Michael J; Kingsley, Paul; Schwarz, Edward M; Awad, Hani; Guldberg, Robert; Drissi, Hicham; Puzas, J Edward; Boyce, Brendan; Zhang, Xinping; O'Keefe, Regis J

    2009-01-01

    The cellular and molecular events responsible for reduced fracture healing with aging are unknown. Cyclooxygenase 2 (COX-2), the inducible regulator of prostaglandin E2 (PGE2) synthesis, is critical for normal bone repair. A femoral fracture repair model was used in mice at either 7–9 or 52–56 wk of age, and healing was evaluated by imaging, histology, and gene expression studies. Aging was associated with a decreased rate of chondrogenesis, decreased bone formation, reduced callus vascularization, delayed remodeling, and altered expression of genes involved in repair and remodeling. COX-2 expression in young mice peaked at 5 days, coinciding with the transition of mesenchymal progenitors to cartilage and the onset of expression of early cartilage markers. In situ hybridization and immunohistochemistry showed that COX-2 is expressed primarily in early cartilage precursors that co-express col-2. COX-2 expression was reduced by 75% and 65% in fractures from aged mice compared with young mice on days 5 and 7, respectively. Local administration of an EP4 agonist to the fracture repair site in aged mice enhanced the rate of chondrogenesis and bone formation to levels observed in young mice, suggesting that the expression of COX-2 during the early inflammatory phase of repair regulates critical subsequent events including chondrogenesis, bone formation, and remodeling. The findings suggest that COX-2/EP4 agonists may compensate for deficient molecular signals that result in the reduced fracture healing associated with aging. PMID:18847332

  18. Reduced expression of Autographa californica nucleopolyhedrovirus ORF34, an essential gene, enhances heterologous gene expression

    SciTech Connect

    Salem, Tamer Z.; Zhang, Fengrui; Thiem, Suzanne M.

    2013-01-20

    Autographa californica multiple nucleopolyhedrovirus ORF34 is part of a transcriptional unit that includes ORF32, encoding a viral fibroblast growth factor (FGF) and ORF33. We identified ORF34 as a candidate for deletion to improve protein expression in the baculovirus expression system based on enhanced reporter gene expression in an RNAi screen of virus genes. However, ORF34 was shown to be an essential gene. To explore ORF34 function, deletion (KO34) and rescue bacmids were constructed and characterized. Infection did not spread from primary KO34 transfected cells and supernatants from KO34 transfected cells could not infect fresh Sf21 cells whereas the supernatant from the rescue bacmids transfection could recover the infection. In addition, budded viruses were not observed in KO34 transfected cells by electron microscopy, nor were viral proteins detected from the transfection supernatants by western blots. These demonstrate that ORF34 is an essential gene with a possible role in infectious virus production.

  19. Functional expression of human heme oxygenase-1 gene in renal structure of spontaneously hypertensive rats.

    PubMed

    Goodman, Alvin I; Quan, Shou; Yang, Liming; Synghal, Arika; Abraham, Nader G

    2003-05-01

    Heme oxygenase (HO), by catabolizing heme to bile pigments, regulates the levels and activity of cellular hemoprotein and HO activity. We examined the effect of delivery of the human HO-1 gene on cellular heme in renal tissue using a retroviral vector. We used a single intracardiac injection of the concentrated infectious viral particles in 5-day-old spontaneously hypertensive rats; 25 were transduced with empty vector and 25 were transduced with the human HO-1 gene. Functional expression of human and rat HO-1 was measured after 2 and 4 weeks. Reverse transcription polymerase chain reaction showed that human HO-1 mRNA was expressed as early as 2 weeks, with the highest levels in the kidney. Western blot analysis showed distribution of human HO-1 protein in rat kidney structures, predominantly in the thick ascending limb of the loop of Henle as well as in proximal tubules and preglomerular arterioles. These areas also demonstrated higher HO activity as measured by increased conversion of heme to bilirubin and carbon monoxide. Functional expression of the human HO-1 gene was associated with a decrease in blood pressure in 4- and 8-week-old spontaneously hypertensive rats. Compared with nontransduced rats, human HO-1 gene overexpression in transduced rats was associated with a 35% decrease in urinary 20-hydroxyeicosatetraenoic acid, a potent vasoconstrictor and an inhibitor of tubular Na(+) transport, which may be related to the decrease in blood pressure.

  20. The Heme Oxygenase-1 Inducer THI-56 Negatively Regulates iNOS Expression and HMGB1 Release in LPS-Activated RAW 264.7 Cells and CLP-Induced Septic Mice

    PubMed Central

    Kim, Young Min; Park, Sang Won; Kim, Hye Jung; Lee, Jae Heun; Chang, Ki Churl

    2013-01-01

    The nuclear DNA binding protein high mobility group box 1 (HMGB1) has recently been suggested to act as a late mediator of septic shock. The effect of ((S)-6,7-dihydroxy-1-(4-hydroxynaphthylmethyl)-1,2,3,4-tetrahydroisoquinoline alkaloid, also known as THI-56, in an experimental model of sepsis was investigated. THI-56 exhibited potent anti-inflammatory properties in response to LPS in RAW 264.7 cells. In particular, THI-56 significantly inhibited the expression of inducible nitric oxide synthase (iNOS) and the release of HMGB1 in activated macrophages. THI-56 activated NE-F2-regulated factor 2 (Nrf-2)/heme oxygenase 1 (HO-1). The specific knockdown of the HO-1 gene by HO-1 siRNA significantly reversed the inhibitory effects of THI-56 on iNOS expression and HMGB1 release in LPS-stimulated macrophages. Importantly, THI-56 administration protected animals from death induced by either a lethal dose of LPS or cecal ligation and puncture (CLP). Furthermore, the ALT, AST, BUN, creatinine, and HMGB1 levels in the blood were significantly increased in CLP-induced septic mice, and the administration of THI-56 reduced these levels in a concentration-dependent and zinc protoporphyrin IX (ZnPPIX)-sensitive manner. In addition, the administration of THI-56 significantly ameliorated not only lung damage but also macrophage infiltration in the livers of CLP-induced septic mice, and these effects were also abrogated in the presence of ZnPPIX. Thus, we conclude that THI-56 significantly attenuates the proinflammatory response induced by LPS and reduces organ damage in a CLP-induced sepsis model through the upregulation of Nrf-2/HO-1. PMID:24098466

  1. Reduced Duodenal Cytochrome P450 3A Protein Expression and Catalytic Activity in Patients with Cirrhosis

    PubMed Central

    McConn, Donavon J.; Lin, Yvonne S.; Mathisen, Terri L.; Blough, David K.; Xu, Yang; Hashizume, Takanori; Taylor, Shari L.; Thummel, Kenneth E.; Shuhart, Margaret C.

    2009-01-01

    The small intestine and liver express high levels of cytochrome P450 3A (CYP3A), an enzyme subfamily contributing significantly to drug metabolism. In patients with cirrhosis, reduced metabolism of drugs is typically attributed to decreased liver function, but it is unclear whether intestinal drug metabolism is also compromised. In this study, we compared CYP3A protein expression and in vitro midazolam hydroxylation in duodenal mucosal biopsies from subjects with normal liver function (controls; n=20) and subjects with varying severity of cirrhosis (n=23). Compared to samples from controls, duodenal CYP3A expression and total midazolam hydroxylation was reduced by 47% and 34%, respectively in samples from subjects with cirrhosis. Greater decreases in CYP3A expression were seen in subjects with increasing severity of cirrhosis. Thus, patients with advanced cirrhosis may have increased drug exposure following oral dosing as a result of both impaired liver function and decreased intestinal CYP3A expression and activity. PMID:19212316

  2. Cyclosporin A reduces expression of adhesion molecules in the kidney of rats with chronic serum sickness

    PubMed Central

    Rincón, J; Parra, G; Quiroz, Y; Benatuil, L; Rodríguez-Iturbe, B

    2000-01-01

    Treatment with cyclosporin A (CsA) improves proteinuria and reduces renal cellular infiltration in chronic serum sickness (CSS). We examined if these effects were associated with a reduced renal expression of CD54 and its ligands, interferon-gamma (IFN-γ), tumour necrosis factor-alpha (TNF-α) and MHC class II molecules. We studied two groups of rats in which CSS was induced by daily injections of ovalbumin (OVA): a group treated with CsA (OVA.CsA group, n = 11) and a group that received no treatment (OVA.CSS group, n = 11). An additional group of five rats (control group) received only phosphate buffer. Immunostaining techniques were used to follow CSS and to study the expression of CD54, CD18, CD11b/c, IFN-γ, TNF-α and MHC class molecules. Proteinuria (mg/24 h) was reduced from 248·2 ± 73·1 (OVA.CCS group) to 14·5 ± 13·1 with CsA treatment (P < 0·0001). The renal expression of CD54 and its ligands (CD18 and CD11b/c) was reduced by 50% to 75%. Correspondingly, there was a 60% to 85% reduction in the number of infiltrating leucocytes. The number of cells expressing TNF-α, IFN-γ and MHC II molecules was also reduced. CsA reduces expression of CD54 and its ligands. This effect is associated with a reduction of cellular infiltration, IFN-γ, TNF-α-producing cells and with MHC II expression in the kidney. These findings suggest that expression of adhesion molecules plays a critical role in CSS and underline the importance of cellular immunity in this experimental model. PMID:10931158

  3. Enhancement of the Effect of Methyl Pyropheophorbide-a-Mediated Photodynamic Therapy was Achieved by Increasing ROS via Inhibition of Nrf2-HO-1 or Nrf2-ABCG2 Signaling.

    PubMed

    Tian, Si; Yong, Min; Zhu, Jiang; Zhang, Li; Pan, Li; Chen, Qing; Li, Kai-Ting; Kong, Yu-Han; Jiang, Yuan; Yu, Ting-He; Yu, Le-Hua; Bai, Ding-Qun

    2017-03-27

    Emerging evidence indicates that the transcription factor nuclear factor-E2-related factor 2 (-NRF2) plays an essential role in cellular defense against oxidative stress; its activation has been related to cytoprotection. Here, we investigated the role of Nrf2 in improving the efficacy of methyl pyropheophorbide-a-mediated photodynamic therapy (Mppa-PDT) via the downregulation of Nrf2 in human ovarian cancer A2780 cells and SKOV3 cells. We found that Nrf2 translocated from the cytoplasm to the nucleus in vitro and in vivo, and the expression of Nrf2 and P-Nrf2 increased through a possible mechanism regulated by mitogen-activated protein kinase (MAPK) after Mppa-PDT treatment. Furthermore, cytotoxicity and apoptosis induced by Mppa-PDT increased after Nrf2down-regulation. Nrf2 down -regulation increased reactive oxygen species (ROS) levels by attenuating antioxidants or pumping Mppa out of cells, which resulted from the inhibition of Nrf2-HO-1 or Nrf2-ABCG2 signaling. In addition, SKOV3 cells exhibited increased resistance to Mppa-PDT, and the expression levels of P-Nrf2 and ABCG2 were higher in SKOV3 cells than in A2780 cells, suggesting that Nrf2-ABCG2 signaling might be involved in the intrinsic resistanceto Mppa-PDT. Taken together, these results provided evidence that Nrf2 down-regulation can enhance the effect of Mppa-PDT.

  4. The Anti-inflammatory Activities of Two Major Withanolides from Physalis minima Via Acting on NF-κB, STAT3, and HO-1 in LPS-Stimulated RAW264.7 Cells.

    PubMed

    Li, Rui-Jun; Gao, Cai-Yun; Guo, Chao; Zhou, Miao-Miao; Luo, Jun; Kong, Ling-Yi

    2016-12-02

    Physalis minima has been traditionally used as a folk herbal medicine in China for the treatment of many inflammatory diseases. However, little is known about its anti-inflammatory constituents and associated molecular mechanisms. In our study, withaphysalin A (WA) and 2, 3-dihydro-withaphysalin C (WC), two major withanolide-type compounds, were obtained from the anti-inflammatory fraction of P. minima. Both WA and WC significantly inhibited the production of nitrite oxide (NO), prostaglandin E2 (PGE2), and several pro-inflammatory cytokines, such as interleukin-1β (IL-1β), IL-6, and tumor necrosis factor-α (TNF-α) in lipopolysaccharide (LPS)-activated RAW264.7 macrophages. Further research indicated that they downregulated the LPS-induced expression of inducible nitric oxide synthase (iNOS) and cyclooxygenase-2 (COX-2) at the mRNA and protein levels. In addition, they also suppressed nuclear translocation of NF-κB p65, phosphorylation of STAT3, and upregulated HO-1 expression. Intriguingly, the activation of MAPKs was suppressed by WA but was not altered by WC. Taken together, these data provide scientific evidence for elucidating the major bioactive constituents and related molecular mechanisms for the traditional use of P. minima and suggest that WA and WC can be attractive therapeutic candidates for various inflammatory diseases.

  5. Increased NY-ESO-1 expression and reduced infiltrating CD3+ T cells in cutaneous melanoma.

    PubMed

    Giavina-Bianchi, Mara; Giavina-Bianchi, Pedro; Sotto, Mirian Nacagami; Muzikansky, Alona; Kalil, Jorge; Festa-Neto, Cyro; Duncan, Lyn M

    2015-01-01

    NY-ESO-1 is a cancer-testis antigen aberrantly expressed in melanomas, which may serve as a robust and specific target in immunotherapy. NY-ESO-1 antigen expression, tumor features, and the immune profile of tumor infiltrating lymphocytes were assessed in primary cutaneous melanoma. NY-ESO-1 protein was detected in 20% of invasive melanomas (16/79), rarely in in situ melanoma (1/10) and not in benign nevi (0/20). Marked intratumoral heterogeneity of NY-ESO-1 protein expression was observed. NY-ESO-1 expression was associated with increased primary tumor thickness (P = 0.007) and inversely correlated with superficial spreading melanoma (P < 0.02). NY-ESO-1 expression was also associated with reduced numbers and density of CD3+ tumor infiltrating lymphocytes (P = 0.017). When NY-ESO-1 protein was expressed, CD3+ T cells were less diffusely infiltrating the tumor and were more often arranged in small clusters (P = 0.010) or as isolated cells (P = 0.002) than in large clusters of more than five lymphocytes. No correlation of NY-ESO-1 expression with gender, age, tumor site, ulceration, lymph node sentinel status, or survival was observed. NY-ESO-1 expression in melanoma was associated with tumor progression, including increased tumor thickness, and with reduced tumor infiltrating lymphocytes.

  6. Pinocembrin Suppresses H2O2-Induced Mitochondrial Dysfunction by a Mechanism Dependent on the Nrf2/HO-1 Axis in SH-SY5Y Cells.

    PubMed

    de Oliveira, Marcos Roberto; da Costa Ferreira, Gustavo; Brasil, Flávia Bittencourt; Peres, Alessandra

    2017-01-13

    Mitochondria are susceptible to redox impairment, which has been associated with neurodegeneration. These organelles are both a source and target of reactive species. In that context, there is increasing interest in finding natural compounds that modulate mitochondrial function and mitochondria-related signaling in order to prevent or to treat diseases involving mitochondrial impairment. Herein, we investigated whether and how pinocembrin (PB) would prevent mitochondrial dysfunction elicited by the exposure of human neuroblastoma SH-SY5Y cells to hydrogen peroxide (H2O2). PB (25 μM) was administrated for 4 h before H2O2 treatment (300 μM for 24 h). PB prevented H2O2-induced loss of cell viability mitochondrial depolarization in SH-SY5Y cells. PB also attenuated redox impairment in mitochondrial membranes. The production of superoxide anion radical (O2(-•)) and nitric oxide (NO(•)) was alleviated by PB in cells exposed to H2O2. PB suppressed the H2O2-induced inhibition of the tricarboxylic acid (TCA) cycle enzymes aconitase, α-ketoglutarate dehydrogenase, and succinate dehydrogenase. Furthermore, PB induced anti-inflammatory effects by abolishing the H2O2-dependent activation of the nuclear factor-κB (NF-κB) and upregulation of interleukin-1β (IL-1β) and tumor necrosis factor-α (TNF-α). The PB-induced antioxidant and anti-inflammatory effects are dependent on the heme oxygenate-1 (HO-1) enzyme and on the activation of the transcription factor nuclear factor erythroid 2-related factor 2 (Nrf2), since HO-1 inhibition (with 0.5 μM ZnPP IX) or Nrf2 silencing (with small interfering RNA (siRNA)) abolished the effects of PB. Overall, PB afforded cytoprotection by the Nrf2/HO-1 axis in H2O2-treated SH-SY5Y cells.

  7. Heat shock proteins in the brain: role of Hsp70, Hsp 27, and HO-1 (Hsp32) and their therapeutic potential.

    PubMed

    Sharp, Frank R; Zhan, Xinhua; Liu, Da-Zhi

    2013-12-01

    Heat shock proteins (Hsps) are induced by heat shock via heat shock factor proteins binding to heat shock elements in their promoters. Hsp70 is massively induced in response to misfolded proteins following cerebral ischemia in all cell types but is induced mainly in neurons in the ischemic penumbra. Overexpression of Hsp70 via transgenes and viruses or systemic administration of Hsp70 fusion proteins that allow it to cross the blood brain barrier protects the brain against ischemia in most reported studies. Hsp27 can exist as unphosphorylated large oligomers that prevent misfolded protein aggregates and improve cell survival. P-Hsp27 small oligomers bind specific protein targets to improve survival. In the brain, protein kinase D phosphorylates Hsp27 following ischemia which then binds apoptosis signal-regulating kinase 1 to prevent MKK4/7, c-Jun NH(2)-terminal kinase, and Jun-induced apoptosis, and decrease infarct volumes following focal cerebral ischemia. Heme oxygenase-1 (HO-1) metabolizes heme to carbon monoxide, ferrous ion, and biliverdin. CO activates cGMP to promote vasodilation, and biliverdin is converted to bilirubin which can serve as an anti-oxidant, both of which may contribute to the reported protective role of HO-1 in cerebral ischemia and subarachnoid hemorrhage. However, ferrous ion can react with hydrogen peroxide to produce pro-oxidant hydroxyl radicals which may explain the harmful role of HO-1 in intracerebral hemorrhage. Heat shock proteins as a class have great potential as treatments for cerebrovascular disease and have yet to be tested in the clinic.

  8. Atorvastatin increases lipopolysaccharide-induced expression of tumour necrosis factor-α-induced protein 8-like 2 in RAW264.7 cells

    PubMed Central

    LIU, MING-WEI; SU, MEI-XIAN; ZHANG, WEI; WANG, LI; QIAN, CHUAN-YUN

    2014-01-01

    RAW264.7 cells are one of the major sources of productive inflammatory biomediators, including tumour necrosis factor-α (TNF-α) and interleukin (IL)-6. TNF-α-induced protein 8-like 2 (TIPE2) is an essential negative regulator of Toll-like and T-cell receptors, and the selective expression in the immune system prevents hyper-responsiveness and maintains immune homeostasis. The aim of the present study was to investigate whether atorvastatin upregulates the expression of TIPE2 and further regulates the inflammatory response and oxidation emergency response in RAW264.7 cells. RAW264.7 cells were incubated in Dulbecco’s modified Eagle’s medium containing lipopolysaccharide (LPS) in the presence or absence of atorvastatin. Following incubation, the medium was collected and the levels of TNF-α and IL-6 were measured using an enzyme-linked immunosorbent assay. The cells were harvested, and the mRNA and protein expression levels of TIPE2, macrophage migration inhibitory factor (MIF), IκB and nuclear factor (NF-κB)-κB were analysed using quantitative polymerase chain reaction and western blotting analysis, respectively, the expression of NOS, COX-2 and HO-1 protein were essayed by western blotting analysis, NO and ROS activities were determined. The results revealed that LPS increased the mRNA and protein expression levels of TIPE2, MIF and NF-κB, as well as the production of IL-6 and TNF-α, in a dose and time dependent manner in RAW264.7 cells. Meanwhile, LPS enhanced the expression of NOS and COX-2 protein, blocked HO-1 protein expression, increased NO and PGE2 production and ROS activity in a dose dependent manner in RAW264.7 cells. Atorvastatin significantly increased LPS induced expression of TIPE2, downregulated the expression of NOS, COX-2, MIF and NF-κB and the production of PGE2, NO, IL-6 and TNF-α in a time and dose dependent manner, and increased HO-1 protein expression, reduced ROS production in a dose dependent manner. The observations indicated

  9. Epigallocatechin activates haem oxygenase-1 expression via protein kinase Cδ and Nrf2

    PubMed Central

    Ogborne, Richard M.; Rushworth, Stuart A.; O’Connell, Maria A.

    2008-01-01

    The Nrf2/anti-oxidant response element (ARE) pathway plays an important role in regulating cellular anti-oxidants, including haem oxygenase-1 (HO-1). Various kinases have been implicated in the pathways leading to Nrf2 activation. Here, we investigated the effect of epigallocatechin (EGC) on ARE-mediated gene expression in human monocytic cells. EGC time and dose dependently increased HO-1 mRNA and protein expression but had minimal effect on expression of other ARE-regulated genes, including NAD(P)H:quinone oxidoreductase 1, glutathione cysteine ligase and ferritin. siRNA knock down of Nrf2 significantly inhibited EGC-induced HO-1 expression. Furthermore, inhibition of PKC by Ro-31-8220 dose dependently decreased EGC-induced HO-1 mRNA expression, whereas MAP kinase and phosphatidylinositol-3-kinase pathway inhibitors had no significant effect. EGC stimulated phosphorylation of PKCαβ and δ in THP-1 cells. PKCδ inhibition significantly decreased EGC-induced HO-1 mRNA expression, whereas PKCα- and β-specific inhibitors had no significant effect. These results demonstrate for the first time that EGC-induced HO-1 expression occurs via PKCδ and Nrf2. PMID:18586007

  10. Hepatic expression of heme oxygenase-1 and antioxidant response element-mediated genes following administration of ethinyl estradiol to rats

    SciTech Connect

    Morio, Lisa A.; Leone, Angelique; Sawant, Sharmilee P.; Nie, Alex Y.; Brandon Parker, J.; Taggart, Peter; Barron, Alfred M.; McMillian, Michael K. . E-mail: mmcmilli@prdus.jnj.com; Lord, Peter

    2006-11-01

    Heme oxygenase-1 (HO-1) is one of several enzymes induced by hepatotoxicants, and is thought to have an important protective role against cellular stress during liver inflammation and injury. The objective of the present study was to evaluate the role of HO-1 in estradiol-induced liver injury. A single dose of ethinyl estradiol (500 mg/kg, po) resulted in mild liver injury. Repeated administration of ethinyl estradiol (500 mg/kg/day for 4 days, po) resulted in no detectable liver injury or dysfunction. Using RT-PCR analysis, we demonstrate that HO-1 gene expression in whole liver tissue is elevated (> 20-fold) after the single dose of ethinyl estradiol. The number and intensity of HO-1 immunoreactive macrophages were increased after the single dose of ethinyl estradiol. HO-1 expression was undetectable in hepatic parenchymal cells from rats receiving Methocel control or a single dose of ethinyl estradiol, however cytosolic HO-1 immunoreactivity in these cells after repeated dosing of ethinyl estradiol was pronounced. The increases in HO-1 mRNA and HO-1 immunoreactivity following administration of a single dose of ethinyl estradiol suggested that this enzyme might be responsible for the observed protection of the liver during repeated dosing. To investigate the effect of HO-1 expression on ethinyl estradiol-induced hepatotoxicity, rats were pretreated with hemin (50 {mu}mol/kg, ip, a substrate and inducer of HO-1), with tin protoporphyrin IX (60 {mu}mol/kg, ip, an HO-1 inhibitor), or with gadolinium chloride (10 mg/kg, iv, an inhibitor/toxin of Kupffer cells) 24 h before ethinyl estradiol treatment. Pretreatment with modulators of HO-1 expression and activity had generally minimal effects on ethinyl estradiol-induced liver injury. These data suggest that HO-1 plays a limited role in antioxidant defense against ethinyl estradiol-induced oxidative stress and hepatotoxicity, and suggests that other coordinately induced enzymes are responsible for protection observed

  11. Endothelial microparticles reduce ICAM-1 expression in a microRNA-222-dependent mechanism.

    PubMed

    Jansen, Felix; Yang, Xiaoyan; Baumann, Katharina; Przybilla, David; Schmitz, Theresa; Flender, Anna; Paul, Kathrin; Alhusseiny, Adil; Nickenig, Georg; Werner, Nikos

    2015-09-01

    Endothelial microparticles (EMP) are released from activated or apoptotic endothelial cells (ECs) and can be taken up by adjacent ECs, but their effect on vascular inflammation after engulfment is largely unknown. We sought to determine the role of EMP in EC inflammation. In vitro, EMP treatment significantly reduced tumour necrosis factor-α-induced endothelial intercellular adhesion molecule (ICAM)-1 expression on mRNA and protein level, whereas there was no effect on vascular cell adhesion molecule-1 expression. Reduced ICAM-1 expression after EMP treatment resulted in diminished monocyte adhesion in vitro. In vivo, systemic treatment of ApoE-/- mice with EMP significantly reduced murine endothelial ICAM-1 expression. To explore the underlying mechanisms, Taqman microRNA array was performed and microRNA (miR)-222 was identified as the strongest regulated miR between EMP and ECs. Following experiments demonstrated that miR-222 was transported into recipient ECs by EMP and functionally regulated expression of its target protein ICAM-1 in vitro and in vivo. After simulating diabetic conditions, EMP derived from glucose-treated ECs contained significantly lower amounts of miR-222 and showed reduced anti-inflammatory capacity in vitro and in vivo. Finally, circulating miR-222 level was diminished in patients with coronary artery disease (CAD) compared to patients without CAD. EMPs promote anti-inflammatory effects in vitro and in vivo by reducing endothelial ICAM-1 expression via the transfer of functional miR-222 into recipient cells. In pathological hyperglycaemic conditions, EMP-mediated miR-222-dependent anti-inflammatory effects are reduced.

  12. Peripherally expressed neprilysin reduces brain amyloid burden: A novel approach for treating Alzheimer’s disease

    PubMed Central

    Guan, Hanjun; Liu, Yinxing; Daily, Abigail; Police, Sara; Kim, Myung-Hee; Oddo, Salvatore; LaFerla, Frank M.; Pauly, James R.; Murphy, M. Paul; Hersh, Louis B.

    2009-01-01

    A number of therapeutic strategies for treating Alzheimer’s disease have focused on reducing amyloid burden in the brain. Amongst these approaches, the expression of amyloid β peptide (Aβ)-degrading enzymes in the brain has been shown to be effective, but to date not practical for treating patients. We report here a novel strategy for lowering amyloid burden in the brain by peripherally expressing the Aβ-degrading enzyme neprilysin on leukocytes in the 3×Tg-AD mouse model of Alzheimer’s disease. Through transplantation of lentivirus transduced bone marrow cells, the Aβ-degrading protease neprilysin was expressed on the surface of leukocytes. This peripheral neprilysin reduced soluble brain amyloid β peptide levels by ~30% and lowered the accumulation of amyloid β peptides by 50–60% when transplantation was performed at both young and early adult age. In addition, peripheral neprilysin expression reduced amyloid dependent performance deficits as measured by the Morris Water Maze. Unlike other methods designed to lower amyloid β peptide levels in blood, which cause a net increase in peptide, neprilysin expression results in the catabolism of the amyloid β peptide to small innocuous peptide fragments. These findings demonstrate that peripherally expressed neprilysin, and likely other amyloid β peptide degrading enzymes, has the potential for being utilized as a therapeutic approach to prevent and treat Alzheimer’s disease and suggest this approach should be further explored. PMID:19021293

  13. Introduced Amino Terminal Epitopes Can Reduce Surface Expression of Neuronal Nicotinic Receptors

    PubMed Central

    Bracamontes, John R.; Akk, Gustav; Steinbach, Joe Henry

    2016-01-01

    Epitopes accessible on the surface of intact cells are extremely valuable in studies of membrane proteins, allowing quantification and determination of the distribution of proteins as well as identification of cells expressing large numbers of proteins. However for many membrane proteins there are no suitable antibodies to native sequences, due to lack of availability, low affinity or lack of specificity. In these cases the use of an introduced epitope at specific sites in the protein of interest can often provide a suitable tool for studies. However, the introduction of the epitope sequence has the potential to affect protein expression, the assembly of multisubunit proteins or transport to the surface membrane. We find that surface expression of heteromeric neuronal nicotinic receptors containing the α4 and β4 subunits can be affected by introduced epitopes when inserted near the amino terminus of a subunit. The FLAG epitope greatly reduces surface expression when introduced into either α4 or β4 subunits, the V5 epitope has little effect when placed in either, while the Myc epitope reduces expression more when inserted into β4 than α4. These results indicate that the extreme amino terminal region is important for assembly of these receptors, and demonstrate that some widely used introduced epitopes may severely reduce surface expression. PMID:26963253

  14. PROX1 Gene is Differentially Expressed in Oral Cancer and Reduces Cellular Proliferation

    PubMed Central

    Rodrigues, Maria F.S.D.; de Oliveira Rodini, Camila; de Aquino Xavier, Flávia C.; Paiva, Katiúcia B.; Severino, Patrícia; Moyses, Raquel A.; López, Rossana M.; DeCicco, Rafael; Rocha, Lília A.; Carvalho, Marcos B.; Tajara, Eloiza H.; Nunes, Fabio D.

    2014-01-01

    Abstract Homeobox genes are a family of transcription factors that play a pivotal role in embryogenesis. Prospero homeobox 1 (PROX1) has been shown to function as a tumor suppressor gene or oncogene in various types of cancer, including oral squamous cell carcinoma (OSCC). We have previously identified PROX1 as a downregulated gene in OSCC. The aim of this study is to clarify the underlying mechanism by which PROX1 regulates tumorigenicity of OSCC cells. PROX1 mRNA and protein expression levels were first investigated in 40 samples of OSCC and in nontumor margins. Methylation and amplification analysis was also performed to assess the epigenetic and genetic mechanisms involved in controlling PROX1 expression. OSCC cell line SCC9 was also transfected to stably express the PROX1 gene. Next, SCC9-PROX1-overexpressing cells and controls were subjected to proliferation, differentiation, apoptosis, migration, and invasion assays in vitro. OSCC samples showed reduced PROX1 expression levels compared with nontumor margins. PROX1 amplification was associated with better overall survival. PROX1 overexpression reduces cell proliferation and downregulates cyclin D1. PROX1-overexpressing cells also exhibited reduced CK18 and CK19 expression and transcriptionally altered the expression of WISP3, GATA3, NOTCH1, and E2F1. Our results suggest that PROX1 functions as a tumor suppressor gene in oral carcinogenesis. PMID:25526434

  15. Sulfonylurea receptors inhibit the epithelial sodium channel (ENaC) by reducing surface expression.

    PubMed

    Konstas, A A; Bielfeld-Ackermann, A; Korbmacher, C

    2001-08-01

    In the kidney the epithelial Na+ channel (ENaC) is co-expressed with the sulfonylurea receptor (SUR), an ABC protein that shares a high degree of homology with the cystic fibrosis transmembrane conductance regulator (CFTR) and reportedly modifies ENaC in various preparations. To investigate a possible regulatory relationship between SUR and ENaC, we performed co-expression studies on Xenopus laevis oocytes, which were assayed for amiloride-sensitive currents (DeltaIami). Moreover, a chemiluminescence assay was used to investigate the surface expression of extracellular hemagglutinin-tagged SUR1 (SUR1-HA) or HA-tagged ENaC (ENaC-HA). In oocytes co-injected with SUR1/ENaC (or SUR2B/ENaC) DeltaIami was reduced by congruent with 53% (or congruent with 45%) compared to DeltaIami measured in matched control oocytes injected with ENaC alone. The inhibitory effect of SUR on DeltaIami was preserved in oocytes expressing ENaC with C-terminally truncated subunits. Co-expression of SURs did not confer sensitivity of DeltaIami to diazoxide, pinacidil, tolbutamide, or glibenclamide. ENaC does not facilitate the surface expression of SUR1-HA, which is known to be retained in the endoplasmatic reticulum (ER) by an ER-retention/retrieval signal. SUR1-HAAAA, a mutant that lacks this signal, still inhibits ENaC currents. Chemiluminescence was reduced by congruent with 49% in oocytes co-expressing ENaC-HA/SUR1 compared to that in control oocytes expressing ENaC-HA alone. We conclude that SUR does not interact with ENaC at the level of the plasma membrane but that it inhibits DeltaIami by reducing surface expression of the channel.

  16. Cinnamaldehyde inhibits the tumor necrosis factor-alpha-induced expression of cell adhesion molecules in endothelial cells by suppressing NF-kappaB activation: effects upon IkappaB and Nrf2.

    PubMed

    Liao, Being-Chyuan; Hsieh, Chia-Wen; Liu, Yen-Chin; Tzeng, Tsai-Teng; Sun, Yung-Wei; Wung, Being-Sun

    2008-06-01

    The production of adhesion molecules and subsequent attachment of leukocytes to endothelial cells (ECs) are critical early events in atherogenesis. These adhesion molecules thus play an important role in the development of this disease. Recent studies have highlighted the chemoprotective and anti-inflammatory effects of cinnamaldehyde, a Cinnamomum cassia Presl-specific diterpene. In our current study, we have examined the effects of both cinnamaldehyde and extracts of C. cassia on cytokine-induced monocyte/human endothelial cell interactions. We find that these compounds inhibit the adhesion of TNFalpha-induced monocytes to endothelial cells and suppress the expression of the cell adhesion molecules, VCAM-1 and ICAM-1, at the transcriptional level. Moreover, in TNFalpha-treated ECs, the principal downstream signal of VCAM-1 and ICAM-1, NF-kappaB, was also found to be abolished in a time-dependent manner. Interestingly, cinnamaldehyde exerts its anti-inflammatory effects by blocking the degradation of the inhibitory protein IkappaB-alpha, but only in short term pretreatments, whereas it does so via the induction of Nrf2-related genes, including heme-oxygenase-1 (HO-1), over long term pretreatments. Treating ECs with zinc protoporphyrin, a HO-1 inhibitor, partially blocks the anti-inflammatory effects of cinnamaldehyde. Elevated HO-1 protein levels were associated with the inhibition of TNFalpha-induced ICAM-1 expression. In addition to HO-1, we also found that cinnamaldehyde can upregulate Nrf2 in nuclear extracts, and can increase ARE-luciferase activity and upregulate thioredoxin reductase-1, another Nrf2-related gene. Moreover, cinnamaldehyde exposure rapidly reduces the cellular GSH levels in ECs over short term treatments but increases these levels after 9 h exposure. Hence, our present findings indicate that cinnamaldehyde suppresses TNF-induced singling pathways via two distinct mechanisms that are activated by different pretreatment periods.

  17. Metabolite and gene expression responses in juvenile flounder Paralichthys olivaceus exposed to reduced salinities.

    PubMed

    Wu, Huifeng; Liu, Jialin; Lu, Zhen; Xu, Lanlan; Ji, Chenglong; Wang, Qing; Zhao, Jianmin

    2017-04-01

    Seawater salinity is one of the most important changeable environmental factors influencing the behavior, survival, growth and production of marine organisms. In this work, metabolite and gene expression profiles were used to elucidate the biological effects of reduced salinities in juvenile flounder Paralichthys olivaceus. Metabolic profiling indicated that both reduced salinities (23.3‰ and 15.6‰) enhanced proteolysis and disturbed osmotic regulation and energy metabolism in juvenile flounder P. olivaceus. Furthermore, the low salinity (15.6‰) enhanced anaerobic metabolism indicated by the elevated lactate in flounder tissue extracts. Gene expression profiles exhibited that reduced salinities could induce immune stress and oxidative stress and disturb energy metabolism in juvenile flounder P. olivaceus. In addition, reduced salinities might promote the growth and gonadal differentiation in juvenile flounder P. olivaceus.

  18. Recovery from Friend disease in mice with reduced major histocompatibility complex class I expression.

    PubMed Central

    Hasenkrug, K J; Sprangrude, G J; Nishio, J; Brooks, D M; Chesebro, B

    1994-01-01

    Mice homozygous for the b allele of the MHC gene, H-2D, have a high incidence of recovery from Friend virus infections, while mice heterozygous for the b allele at H-2D have a very low incidence of recovery. Previous experiments indicated that the low recovery rates associated with heterozygosity at H-2D might be related to a gene dosage effect requiring the expression of two H-2Db alleles for high recovery. We investigated the effects of reduced H-2Db expression on recovery from Friend disease by using H-2b homozygous mice carrying a single beta 2-microglobulin gene disruption. These mice had reductions in cell surface H-2Db expression comparable to those of H-2Da/b heterozygotes. Numerous cell types with various levels of H-2Db expression were examined, and in each case, the expression levels in the beta 2-microglobulin mutants closely reflected those observed in the H-2Da/b heterozygotes. We found, however, that reduced expression did not affect recovery from Friend disease, indicating that heterozygous levels of H-2Db expression are sufficient for the high-recovery phenotype previously associated only with H-2Db homozygotes. PMID:8138991

  19. Heme oxygenase-1 inhibits the expression of adhesion molecules associated with endothelial cell activation via inhibition of NF-kappaB RelA phosphorylation at serine 276.

    PubMed

    Seldon, Mark P; Silva, Gabriela; Pejanovic, Nadja; Larsen, Rasmus; Gregoire, Isabel Pombo; Filipe, Josina; Anrather, Josef; Soares, Miguel P

    2007-12-01

    Heme oxygenase-1 (HO-1; encoded by the Hmox1 gene) catalyzes the degradation of free heme into biliverdin, via a reaction that releases iron (Fe) and carbon monoxide. We report that HO-1 down-regulates the proinflammatory phenotype associated with endothelial cell (EC) activation by reducing intracellular nonprotein-bound Fe (labile Fe). EC isolated from Hmox1(-/-) mice have higher levels of intracellular labile Fe and reactive oxygen species (ROS) as compared with EC isolated from Hmox1(+/+) mice. Basal and TNF-induced expression of VCAM-1, ICAM-1, and E-selectin were increased in Hmox1(-/-) vs Hmox1(+/+) EC, an effect reversed by Fe chelation using deferoxamine mesylate (DFO). Fe chelation inhibits TNF-driven transcription of Vcam-1, Icam-1, and E-selectin, as assessed using luciferase reporter assays. This effect is associated with inhibition of the transcription factor NF-kappaB via a mechanism that is not associated with the inhibition of IkappaBalpha phosphorylation/degradation or NF-kappaB (i.e., RelA) nuclear translocation, although it affects very modestly NF-kappaB binding to DNA kappaB consensus sequences in the Vcam-1 and E-selectin promoters. HO-1 inhibits NF-kappaB (i.e., RelA) phosphorylation at Ser(276), a phosphoacceptor that is critical to sustain TNF-driven NF-kappaB activity in EC. This effect was mimicked by Fe chelation as well as by antioxidants (N-acetylcysteine). In conclusion, we demonstrate a novel mechanism via which HO-1 down-modulates the proinflammatory phenotype of activated EC, i.e., the inhibition of RelA phosphorylation at Ser(276).

  20. Overt expression of AP-1 reduces alpha myosin heavy chain expression and contributes to heart failure from chronic volume overload.

    PubMed

    Freire, Grace; Ocampo, Catherina; Ilbawi, Nadim; Griffin, Andrew J; Gupta, Madhu

    2007-10-01

    Reduced expression of alpha-MHC plays a significant role in cardiac contractile dysfunction from hemodynamic overload. Previously, Pur proteins and YY1 have been shown to play a role in alpha-MHC repression during heart failure induced by pressure overload and by spontaneous hypertension, respectively. This was not observed in volume-overload-induced heart failure, suggesting additional regulatory mechanisms for alpha-MHC repression. The present study was performed to identify volume overload responsive transcription factors involved in alpha-MHC gene regulation. DNA binding activity of several transcription factors was evaluated in a functionally characterized rat model of heart failure induced by aorto-caval shunt. After 10 weeks of shunt, severe LV dilatation and reduced LV function were accompanied by increased expression of ANF and beta-MHC, and decreased expression of alpha-MHC. This was associated with dramatic (10-fold) activation of AP-1 together with increased expression of c-fos and c-jun. AP-1 activation was not observed following 4 weeks of shunt when cardiac function was preserved. In cultured cardiomyocytes, induction of AP-1 by PMA attenuated alpha-MHC mRNA by 60%. Transient transfection assays mapped PMA responsive sequence to -582 to -588 bp of alpha-MHC promoter. Deletion or mutation of these nucleotides had minimal effect on basal promoter activity but played a dominant role in PMA-mediated repression of alpha-MHC promoter activity. Over-expression of c-fos and c-jun in cardiomyocytes inhibited alpha-MHC promoter activity in a concentration dependent manner. Data suggest a repressive role of AP-1 in alpha-MHC expression and its possible involvement in the transition from compensatory hypertrophy to heart failure in chronic volume overload.

  1. Novel imidazole derivatives as heme oxygenase-1 (HO-1) and heme oxygenase-2 (HO-2) inhibitors and their cytotoxic activity in human-derived cancer cell lines.

    PubMed

    Salerno, Loredana; Pittalà, Valeria; Romeo, Giuseppe; Modica, Maria N; Marrazzo, Agostino; Siracusa, Maria A; Sorrenti, Valeria; Di Giacomo, Claudia; Vanella, Luca; Parayath, Neha N; Greish, Khaled

    2015-01-01

    Heme oxygenase (HO) is a cytoprotective enzyme that can be overexpressed in some pathological conditions, including certain cancers. In this work, novel imidazole derivatives were designed and synthesized as inhibitors of heme oxygenase-1 (HO-1) and heme oxygenase-2 (HO-2). In these compounds the imidazole ring, crucial for the activity, is connected to a hydrophobic group, represented by aryloxy, benzothiazole, or benzoxazole moieties, by means of alkyl or thioalkyl chains of different length. Many of the tested compounds were potent and/or selective against one of the two isoforms of HO. Furthermore, most of the pentyl derivatives showed to be better inhibitors of HO-2 with respect to HO-1, revealing a critical role of the alkyl chain in discriminating between the two isoenzymes. Compounds which showed the better profile of HO inhibition were selected and tested to evaluate their cytotoxic properties in prostate and breast cancer cell lines (DU-145, PC3, LnCap, MDA-MB-231, and MCF-7). In these assays, aryloxyalkyl derivatives resulted more cytotoxic than benzothiazolethioalkyl ones; in particular compound 31 was active against all the cell lines tested, confirming the anti-proliferative properties of HO inhibitors and their potential use in the treatment of specific cancers.

  2. Modulation of Mcl-1 expression reduces age-related cochlear degeneration.

    PubMed

    Yang, Wei Ping; Xu, Yang; Guo, Wei Wei; Liu, Hui Zhan; Hu, Bo Hua

    2013-11-01

    Mcl-1 is an anti-apoptotic member of the Bcl-2 family that modulates apoptosis-related signaling pathways and promotes cell survival. We have previously demonstrated a reduction of Mcl-1 expression in aging cochleae. To investigate whether restoring Mcl-1 expression would reduce aging-related cochlear degeneration, we developed a rat model of Mcl-1 overexpression. A plasmid encoding human Mcl-1/enhanced green fluorescent protein was applied to the round window of the cochlea. This in vivo treatment transfected both the sensory and supporting cells of the cochlear sensory epithelium and enhanced Mcl-1 expression at both the mRNA and the protein level. The upregulation of Mcl-1 expression reduced the progression of age-related cochlear dysfunction and sensory cell death. Furthermore, the transfection of Mcl-1 exerted its protective effect by suppressing cochlear apoptosis at the mitochondrial level. This study demonstrates that the genetic modulation of Mcl-1 expression reduces the progression of age-related cochlear degeneration.

  3. Acute leptin exposure reduces megalin expression and upregulates TGFβ1 in cultured renal proximal tubule cells.

    PubMed

    Briffa, Jessica F; Grinfeld, Esther; Mathai, Michael L; Poronnik, Phillip; McAinch, Andrew J; Hryciw, Deanne H

    2015-02-05

    Increased leptin concentrations observed in obesity can lead to proteinuria, suggesting that leptin may play a role in obesity-related kidney disease. Obesity reduces activation of AMP-activated protein kinase (AMPK) and increases transforming growth factor-β1 (TGF-β1) expression in the kidney, leading to albuminuria. Thus we investigated if elevated leptin altered AMPK and TGF-β1 signaling in proximal tubule cells (PTCs). In opossum kidney (OK) PTCs Western blot analysis demonstrated that leptin upregulates TGF-β1 secretion (0.50 µg/ml) and phosphorylated AMPKα (at 0.25, and 0.50 µg/ml), and downregulates megalin expression at all concentrations (0.05-0.50 µg/ml). Using the AMPK inhibitor, Compound C, leptin exposure regulated TGF-β1 expression and secretion in PTCs via an AMPK mediated pathway. In addition, elevated leptin exposure (0.50 µg/ml) reduced albumin handling in OK cells independently of megalin expression. This study demonstrates that leptin upregulates TGF-β1, reduces megalin, and reduces albumin handling in PTCs by an AMPK mediated pathway.

  4. An Acceptance-Based Psychoeducation Intervention to Reduce Expressed Emotion in Relatives of Bipolar Patients

    ERIC Educational Resources Information Center

    Eisner, Lori R.; Johnson, Sheri L.

    2008-01-01

    Expressed emotion (EE) is a robust predictor of outcome in bipolar disorder. Despite decades of research, interventions to reduce EE levels have had only modest effects. This study used an expanded model of EE to develop an intervention. Research has demonstrated a strong link between attributions and EE in families of patients with psychiatric…

  5. Reduced expression of monocyte CD200R is associated with enhanced proinflammatory cytokine production in sarcoidosis

    PubMed Central

    Fraser, Simon D.; Sadofsky, Laura R.; Kaye, Paul M.; Hart, Simon P.

    2016-01-01

    In sarcoidosis, the proinflammatory cytokines interferon gamma, tumour necrosis factor and interleukin-6 are released by monocyte-derived macrophages and lymphocytes in the lungs and other affected tissues. Regulatory receptors expressed on monocytes and macrophages act to suppress cytokine production, and reduced expression of regulatory receptors may thus promote tissue inflammation. The aim of this study was to characterise the role of regulatory receptors on blood monocytes in patients with sarcoidosis. Cytokine release in response to stimulation of whole blood was measured in healthy controls and Caucasian non-smoking patients with sarcoidosis who were not taking disease modifying therapy. Expression of the regulatory molecules IL-10R, SIRP-α/β, CD47, CD200R, and CD200L was measured by flow cytometry, and functional activity was assessed using blocking antibodies. Stimulated whole blood and monocytes from patients with sarcoidosis produced more TNF and IL-6 compared with healthy controls. 52.9% of sarcoidosis patients had monocytes characterised by low expression of CD200R, compared with 11.7% of controls (p < 0.0001). Patients with low monocyte CD200R expression produced higher levels of proinflammatory cytokines. In functional studies, blocking the CD200 axis increased production of TNF and IL-6. Reduced expression of CD200R on monocytes may be a mechanism contributing to monocyte and macrophage hyper-activation in sarcoidosis. PMID:27929051

  6. Oxygen impairs oligodendroglial development via oxidative stress and reduced expression of HIF-1α

    PubMed Central

    Brill, Christina; Scheuer, Till; Bührer, Christoph; Endesfelder, Stefanie; Schmitz, Thomas

    2017-01-01

    The premature increase of oxygen tension may contribute to oligodendroglial precursor cell (OPC) damage in preterm infants. Fetal OPCs are exposed to low oxygen tissue tensions not matched when cells are cultured in room air. Maturation (A2B5, O4, O1, MBP, CNP, arborization), oxidative stress (nitrotyrosine Western blot, NRF2 and SOD2 expression), apoptosis (TUNEL), proliferation (Ki67), and expression of transcription factors regulated by Hypoxia-Inducible-Factor-1-alpha (Hif-1α) expressed in OPCs (Olig1, Olig2, Sox9, Sox10) were assessed in rat OPCs and OLN93 cells cultured at 5% O2 and 21% O2. Influences of Hif-1α were investigated by Hif-1α luciferase reporter assays and Hif-1α-knockdown experiments. At 21% O2, cell proliferation was decreased and process arborization of OPCs was reduced. Expression of MBP, CNP, Olig1, Sox9 and Sox10 was lower at 21% O2, while Nrf2, SOD2, nitrotyrosine were increased. Apoptosis was unchanged. Luciferease reporter assay in OLN93 cells indicated increased Hif-1α activity at 5% O2. In OLN93 cells at 5% O2, Hif-1α knockdown decreased the expression of MBP and CNP, similar to that observed at 21% O2. These data indicate that culturing OPCs at 21% O2 negatively affects development and maturation. Both enhanced oxidative stress and reduced expression of Hif-1α-regulated genes contribute to these hyperoxia-induced changes. PMID:28230075

  7. Reduced expression of pain mediators and pain sensitivity in amyloid precursor protein over-expressing CRND8 transgenic mice.

    PubMed

    Shukla, M; Quirion, R; Ma, W

    2013-10-10

    β-Amyloid (Aβ) peptides are derived from the sequential cleavage of the amyloid precursor protein (APP). They are enriched in plaques present in Alzheimer's brains and thus play important roles in the pathogenesis of this disease. APP is also known to be expressed in the neurons of dorsal root ganglion (DRG) and contributes to neuronal survival and axonal growth during development. However, whether APP and Aβ peptides are involved in nociception and pathological pain states is mostly unknown. In the present study, we have used behavioral, biochemical and morphological approaches to address this issue in both adult rats and APP over-expressing CRND8 transgenic mice. We observed that the Aβ peptide (17-24) was predominantly expressed in small-sized DRG neurons of rats. Following intraplantar (i.pl.) injection of complete Freud's adjuvant (CFA), the levels of APP and Aβ peptides were significantly reduced in the ipsilateral lumbar 4-6 rat DRG. In 3-, 12- and 24-month-old CRND8 mice, pain sensitivity in response to heat and mechanical stimulation was significantly dampened compared to their age-matched wild-type littermates. In parallel with reduced pain sensitivity, the expression of pain mediators such as substance P, calcitonin gene-related peptide and transient receptor potential vanilloid-1 was significantly reduced in L4-6 DRG of CRND8 mice. Although i.pl. injection of CFA induced a rather similar pattern of inflammatory pain in 3-month-old CRND8 mice and their wild-type littermates, recovery from inflammatory pain seemed faster in 12-month-old CRND8 mice than wild-type mice. These findings suggest that APP and Aβ peptides suppress both nociception and inflammatory pain and are likely involved in blunt pain perception of Alzheimer's patients in clinical settings.

  8. Changes in Gene Expression of E. coli under Conditions of Modeled Reduced Gravity

    NASA Astrophysics Data System (ADS)

    Vukanti, Raja; Mintz, Eric; Leff, Laura

    2008-06-01

    Relatively few studies have examined bacterial responses to the reduced gravity conditions that are experienced by bacteria grown in space. In this study, whole genome expression of Escherichia coli K12 under clinorotation (which models some of the conditions found under reduced gravity) was analyzed. We hypothesized that phenotypic differences at cellular and population levels under clinorotation (hereafter referred to as modeled reduced gravity) are directly coupled to changes in gene expression. Further, we hypothesized that these responses may be due to indirect effects of these environmental conditions on nutrient accessibility for bacteria. Overall, 430 genes were identified as significantly different between modeled reduced gravity conditions and controls. Up-regulated genes included those involved in the starvation response ( csiD, cspD, ygaF, gabDTP, ygiG, fliY, cysK) and redirecting metabolism under starvation ( ddpX, acs, actP, gdhA); responses to multiple stresses, such as acid stress ( asr, yhiW), osmotic stress ( yehZYW), oxidative stress ( katE, btuDE); biofilm formation ( lldR, lamB, yneA, fadB, ydeY); curli biosynthesis ( csgDEF), and lipid biosynthesis ( yfbEFG). Our results support the previously proposed hypothesis that under conditions of modeled reduced gravity, zones of nutrient depletion develop around bacteria eliciting responses similar to entrance into stationary phase which is generally characterized by expression of starvation inducible genes and genes associated with multiple stress responses.

  9. Aquaporin-4 expression is severely reduced in human sarcoglycanopathies and dysferlinopathies.

    PubMed

    Assereto, Stefania; Mastrototaro, Mauro; Stringara, Silvia; Gazzerro, Elisabetta; Broda, Paolo; Nicchia, Grazia Paola; Svelto, Maria; Bruno, Claudio; Nigro, Vincenzo; Lisanti, M P; Frigeri, Antonio; Minetti, Carlo

    2008-07-15

    Aquaporin-4 (AQP4) is the major water channel expressed in fast-twitch skeletal muscle fibers. AQP4 is reduced in Duchenne and Becker Muscular Dystrophies, but not in caveolinopathies, thus suggesting an interaction with dystrophin or with members of the dystrophin-glycoprotein complex (DGC) rather than a nonspecific effect due to muscle membrane damage. To establish the role of sarcoglycans in AQP4 decrease occurring in muscular dystrophy, AQP4 expression was analyzed in muscle biopsies from patients affected by Limb Girdle Muscular Dystrophies (LGMDs) 2C-F genetically confirmed. In all the LGMD 2C-F (2alpha-, 1beta-, 2gamma-, 1delta-deficiency), AQP4 was severely decreased. This effect was associated to a marked reduction in alpha1-syntrophin levels. In control muscle AQP4 did not show a direct interaction with any of the four sarcoglycans but, it co-immunoprecipitated with alpha1-syntrophin, indicating that this modular protein may link AQP4 levels with the DGC complex. To determine whether AQP4 expression could be affected in other LGMDs due to the defect of a membrane protein not associated to the dystrophin complex, we examined AQP4 expression in 6 patients affected by dysferlin deficiency genetically confirmed. All the patients displayed a reduction of the water channel, and AQP4 expression appeared to correlate with the severity of the muscle histopathological lesions. However, differently from what observed in the sarcoglycans, alpha1-syntrophin expression was normal or just slightly reduced. These results seem to indicate an additional mechanism of regulation of AQP4 levels in muscle cells. In accordance with a specific effect of membrane muscle disorders, AQP4 protein levels were not changed in 3 mitochondrial and 3 metabolic myopathies. In conclusion, AQP4 expression and membrane localization are markedly reduced in LGMD 2B-2F. The role of AQP4 in the degenerative mechanism occurring in these diseases will be the object of our future research.

  10. Norlichexanthone Reduces Virulence Gene Expression and Biofilm Formation in Staphylococcus aureus

    PubMed Central

    Bojer, Martin S.; Zhao, Yu; Friberg, Cathrine; Ifrah, Dan; Glasser Heede, Nina; Larsen, Thomas O.; Frøkiær, Hanne; Frees, Dorte; Zhang, Lixin; Dai, Huanqin

    2016-01-01

    Staphylococcus aureus is a serious human pathogen and antibiotic resistant, community-associated strains, such as the methicillin resistant S. aureus (MRSA) strain USA300, continue to spread. To avoid resistance, anti-virulence therapy has been proposed where toxicity is targeted rather than viability. Previously we have shown that norlichexanthone, a small non-reduced tricyclic polyketide produced by fungi and lichens, reduces expression of hla encoding α-hemolysin as well as the regulatory RNAIII of the agr quorum sensing system in S. aureus 8325–4. The aim of the present study was to further characterise the mode of action of norlichexanthone and its effect on biofilm formation. We find that norlichexanthone reduces expression of both hla and RNAIII also in strain USA300. Structurally, norlichexanthone resembles ω-hydroxyemodin that recently was shown to bind the agr two component response regulator, AgrA, which controls expression of RNAIII and the phenol soluble modulins responsible for human neutrophil killing. We show that norlichexanthone reduces S. aureus toxicity towards human neutrophils and interferes directly with AgrA binding to its DNA target. In contrast to ω-hydroxyemodin however, norlichexanthone reduces staphylococcal biofilm formation. Transcriptomic analysis revealed that genes regulated by the SaeRS two-component system are repressed by norlichexanthone when compared to untreated cells, an effect that was mitigated in strain Newman carrying a partially constitutive SaeRS system. Our data show that norlichexanthone treatment reduces expression of key virulence factors in CA-MRSA strain USA300 via AgrA binding and represses biofilm formation. PMID:28005941

  11. Hypothermia reduces VEGF-165 expression, but not osteogenic differentiation of human adipose stem cells under hypoxia

    PubMed Central

    Bakker, Astrid D.; Hogervorst, Jolanda M. A.; Nolte, Peter A.; Klein-Nulend, Jenneke

    2017-01-01

    Cryotherapy is successfully used in the clinic to reduce pain and inflammation after musculoskeletal damage, and might prevent secondary tissue damage under the prevalent hypoxic conditions. Whether cryotherapy reduces mesenchymal stem cell (MSC) number and differentiation under hypoxic conditions, causing impaired callus formation is unknown. We aimed to determine whether hypothermia modulates proliferation, apoptosis, nitric oxide production, VEGF gene and protein expression, and osteogenic/chondrogenic differentiation of human MSCs under hypoxia. Human adipose MSCs were cultured under hypoxia (37°C, 1% O2), hypothermia and hypoxia (30°C, 1% O2), or control conditions (37°C, 20% O2). Total DNA, protein, nitric oxide production, alkaline phosphatase activity, gene expression, and VEGF protein concentration were measured up to day 8. Hypoxia enhanced KI67 expression at day 4. The combination of hypothermia and hypoxia further enhanced KI67 gene expression compared to hypoxia alone, but was unable to prevent the 1.2-fold reduction in DNA amount caused by hypoxia at day 4. Addition of hypothermia to hypoxic cells did not alter the effect of hypoxia alone on BAX-to-BCL-2 ratio, alkaline phosphatase activity, gene expression of SOX9, COL1, or osteocalcin, or nitric oxide production. Hypothermia decreased the stimulating effect of hypoxia on VEGF-165 gene expression by 6-fold at day 4 and by 2-fold at day 8. Hypothermia also decreased VEGF protein expression under hypoxia by 2.9-fold at day 8. In conclusion, hypothermia decreased VEGF-165 gene and protein expression, but did not affect differentiation, or apoptosis of MSCs cultured under hypoxia. These in vitro results implicate that hypothermia treatment in vivo, applied to alleviate pain and inflammation, is not likely to harm early stages of callus formation. PMID:28166273

  12. Evolution of the insect body plan as revealed by the Sex combs reduced expression pattern.

    PubMed

    Rogers, B T; Peterson, M D; Kaufman, T C

    1997-01-01

    The products of the HOM/Hox homeotic genes form a set of evolutionarily conserved transcription factors that control elaborate developmental processes and specify cell fates in many metazoans. We examined the expression of the ortholog of the homeotic gene Sex combs reduced (Scr) of Drosophila melanogaster in insects of three divergent orders: Hemiptera, Orthoptera and Thysanura. Our data reflect how the conservation and variation of Scr expression has affected the morphological evolution of insects. Whereas the anterior epidermal expression of Scr, in a small part of the posterior maxillary and all of the labial segment, is found to be in common among all four insect orders, the posterior (thoracic) expression domains vary. Unlike what is observed in flies, the Scr orthologs of other insects are not expressed broadly over the first thoracic segment, but are restricted to small patches. We show here that Scr is required for suppression of wings on the prothorax of Drosophila. Moreover, Scr expression at the dorsal base of the prothoracic limb in two other winged insects, crickets (Orthoptera) and milkweed bugs (Hemiptera), is consistent with Scr acting as a suppressor of prothoracic wings in these insects. Scr is also expressed in a small patch of cells near the basitarsal-tibial junction of milkweed bugs, precisely where a leg comb develops, suggesting that Scr promotes comb formation, as it does in Drosophila. Surprisingly, the dorsal prothoracic expression of Scr is also present in the primitively wingless firebrat (Thysanura) and the leg patch is seen in crickets, which have no comb. Mapping both gene expression patterns and morphological characters onto the insect phylogenetic tree demonstrates that in the cases of wing suppression and comb formation the appearance of expression of Scr in the prothorax apparently precedes these specific functions.

  13. Inducing a concurrent motor load reduces categorization precision for facial expressions.

    PubMed

    Ipser, Alberta; Cook, Richard

    2016-05-01

    Motor theories of expression perception posit that observers simulate facial expressions within their own motor system, aiding perception and interpretation. Consistent with this view, reports have suggested that blocking facial mimicry induces expression labeling errors and alters patterns of ratings. Crucially, however, it is unclear whether changes in labeling and rating behavior reflect genuine perceptual phenomena (e.g., greater internal noise associated with expression perception or interpretation) or are products of response bias. In an effort to advance this literature, the present study introduces a new psychophysical paradigm for investigating motor contributions to expression perception that overcomes some of the limitations inherent in simple labeling and rating tasks. Observers were asked to judge whether smiles drawn from a morph continuum were sincere or insincere, in the presence or absence of a motor load induced by the concurrent production of vowel sounds. Having confirmed that smile sincerity judgments depend on cues from both eye and mouth regions (Experiment 1), we demonstrated that vowel production reduces the precision with which smiles are categorized (Experiment 2). In Experiment 3, we replicated this effect when observers were required to produce vowels, but not when they passively listened to the same vowel sounds. In Experiments 4 and 5, we found that gender categorizations, equated for difficulty, were unaffected by vowel production, irrespective of the presence of a smiling expression. These findings greatly advance our understanding of motor contributions to expression perception and represent a timely contribution in light of recent high-profile challenges to the existing evidence base.

  14. Signal peptide peptidase-mediated nuclear localization of heme oxygenase-1 promotes cancer cell proliferation and invasion independent of its enzymatic activity.

    PubMed

    Hsu, F-F; Yeh, C-T; Sun, Y-J; Chiang, M-T; Lan, W-M; Li, F-A; Lee, W-H; Chau, L-Y

    2015-04-30

    Heme oxygenase-1 (HO-1) is a heme-degrading enzyme anchored in the endoplasmic reticulum by a carboxyl-terminal transmembrane segment (TMS). HO-1 is highly expressed in various cancers and its nuclear localization is associated with the progression of some cancers. Nevertheless, the mechanism underlying HO-1 nuclear translocation and its pathological significance remain elusive. Here we show that the signal peptide peptidase (SPP) catalyzes the intramembrane cleavage of HO-1. Coexpression of HO-1 with wild-type SPP, but not a dominant-negative SPP, promoted the nuclear localization of HO-1 in cells. Mass spectrometry analysis of cytosolic HO-1 isolated from HeLa cells overexpressing HO-1 and SPP revealed two adjacent intramembrane cleavage sites located after S275 and F276 within the TMS. Mutations of S275F276 to A275L276 significantly hindered SPP-mediated HO-1 cleavage and nuclear localization. Nuclear HO-1 was detected in A549 and DU145 cancer cell lines expressing high levels of endogenous HO-1 and SPP. SPP knockdown or inhibition significantly reduced nuclear HO-1 localization in A549 and DU145 cells. The positive nuclear HO-1 stain was also evident in lung cancer tissues expressing high levels of HO-1 and SPP. Overexpression of a truncated HO-1 (t-HO-1) lacking the TMS in HeLa and H1299 cells promoted cell proliferation and migration/invasion. The effect of t-HO-1 was not affected by a mutation in the catalytic site. However, blockade of t-HO-1 nuclear localization abolished t-HO-1-mediated effect. The tumorigenic effect of t-HO-1 was also demonstrated in the mouse model. These findings disclose that SPP-mediated intramembrane cleavage of HO-1 promotes HO-1 nuclear localization and cancer progression independent of HO-1 enzymatic activity.

  15. Shear stress reduces protease activated receptor-1 expression in human endothelial cells

    NASA Technical Reports Server (NTRS)

    Nguyen, K. T.; Eskin, S. G.; Patterson, C.; Runge, M. S.; McIntire, L. V.

    2001-01-01

    Shear stress has been shown to regulate several genes involved in the thrombotic and proliferative functions of endothelial cells. Thrombin receptor (protease-activated receptor-1: PAR-1) increases at sites of vascular injury, which suggests an important role for PAR-1 in vascular diseases. However, the effect of shear stress on PAR-1 expression has not been previously studied. This work investigates effects of shear stress on PAR-1 gene expression in both human umbilical vein endothelial cells (HUVECs) and microvascular endothelial cells (HMECs). Cells were exposed to different shear stresses using a parallel plate flow system. Northern blot and flow cytometry analysis showed that shear stress down-regulated PAR-1 messenger RNA (mRNA) and protein levels in both HUVECs and HMECs but with different thresholds. Furthermore, shear-reduced PAR-1 mRNA was due to a decrease of transcription rate, not increased mRNA degradation. Postshear stress release of endothelin-1 in response to thrombin was reduced in HUVECs and HMECs. Moreover, inhibitors of potential signaling pathways applied during shear stress indicated mediation of the shear-decreased PAR-1 expression by protein kinases. In conclusion, shear stress exposure reduces PAR-1 gene expression in HMECs and HUVECs through a mechanism dependent in part on protein kinases, leading to altered endothelial cell functional responses to thrombin.

  16. Reduced seed germination in Arabidopsis over-expressing SWI/SNF2 ATPase genes.

    PubMed

    Leeggangers, Hendrika A C F; Folta, Adam; Muras, Aleksandra; Nap, Jan-Peter; Mlynarova, Ludmila

    2015-02-01

    In the life of flowering plants, seed germination is a critical step to ensure survival into the next generation. Generally the seed prior to germination has been in a dormant state with a low rate of metabolism. In the transition from a dormant seed to a germinating seed, various epigenetic mechanisms play a regulatory role. Here, we demonstrate that the over-expression of chromatin remodeling ATPase genes (AtCHR12 or AtCHR23) reduced the frequency of seed germination in Arabidopsis thaliana up to 30% relative to the wild-type seeds. On the other hand, single loss-of-function mutations of the two genes did not affect seed germination. The reduction of germination in over-expressing mutants was more pronounced in stress conditions (salt or high temperature), showing the impact of the environment. Reduced germinations upon over-expression coincided with increased transcript levels of seed maturation genes and with reduced degradation of their mRNAs stored in dry seeds. Our results indicate that repression of AtCHR12/23 gene expression in germinating wild-type Arabidopsis seeds is required for full germination. This establishes a functional link between chromatin modifiers and regulatory networks towards seed maturation and germination.

  17. Defective erythropoiesis in a mouse model of reduced Fbxo7 expression due to decreased p27 expression

    PubMed Central

    Randle, Suzanne J; Nelson, David E; Patel, Shachi P; Laman, Heike

    2015-01-01

    During the final stages of erythropoiesis, lineage-restricted progenitors mature over three to five cell divisions, culminating with withdrawal from the cell cycle and the loss of most organelles, including mitochondria and nuclei. Recent genome-wide association studies in human populations have associated several SNPs near or within FBXO7 with erythrocyte phenotypes. Fbxo7 encodes a multi-functional F-box protein known to bind p27 and participate in selective mitophagy. One SNP causes an amino acid substitution (Met115Ile) and is associated with smaller erythrocytes. We find that the less common IIe115 allele of Fbxo7 binds less efficiently to p27, and cells expressing this allele proliferate faster than cells expressing Met115. We show that an erythroleukaemic cell line with reduced Fbxo7 expression fails to stabilize p27 levels, exit the cell cycle, and produce haemoglobin. In addition, mice deficient in Fbxo7 expression are anaemic due to a reduction in erythrocyte numbers, and this is associated with lower p27 levels, increased numbers of late-stage erythroblasts with greater than 2N DNA content, and delayed mitophagy during terminal differentiation. Collectively, these data support an important physiological, cell cycle regulatory role for Fbxo7 during erythropoiesis. © 2015 Authors. Journal of Pathology published by John Wiley & Sons Ltd on behalf of Pathological Society of Great Britain and Ireland. PMID:26095538

  18. A Complex Interaction Between Reduced Reelin Expression and Prenatal Organophosphate Exposure Alters Neuronal Cell Morphology

    PubMed Central

    Mullen, Brian R.; Ross, Brennan; Chou, Joan Wang; Khankan, Rana; Khialeeva, Elvira; Bui, Kimberly

    2016-01-01

    Genetic and environmental factors are both likely to contribute to neurodevelopmental disorders including schizophrenia, autism spectrum disorders, and major depressive disorders. Prior studies from our laboratory and others have demonstrated that the combinatorial effect of two factors—reduced expression of reelin protein and prenatal exposure to the organophosphate pesticide chlorpyrifos oxon—gives rise to acute biochemical effects and to morphological and behavioral phenotypes in adolescent and young adult mice. In the current study, we examine the consequences of these factors on reelin protein expression and neuronal cell morphology in adult mice. While the cell populations that express reelin in the adult brain appear unchanged in location and distribution, the levels of full length and cleaved reelin protein show persistent reductions following prenatal exposure to chlorpyrifos oxon. Cell positioning and organization in the hippocampus and cerebellum are largely normal in animals with either reduced reelin expression or prenatal exposure to chlorpyrifos oxon, but cellular complexity and dendritic spine organization is altered, with a skewed distribution of immature dendritic spines in adult animals. Paradoxically, combinatorial exposure to both factors appears to generate a rescue of the dendritic spine phenotypes, similar to the mitigation of behavioral and morphological changes observed in our prior study. Together, our observations support an interaction between reelin expression and chlorpyrifos oxon exposure that is not simply additive, suggesting a complex interplay between genetic and environmental factors in regulating brain morphology. PMID:27364165

  19. Reduced WIF-1 expression stimulates skin hyperpigmentation in patients with melasma.

    PubMed

    Kim, Ji-Young; Lee, Tae-Ryong; Lee, Ai-Young

    2013-01-01

    The expression of Wnt inhibitory factor-1 (WIF-1) gene, which was detected by a microarray analysis of hyperpigmented and normally pigmented skin sets of melasma patients, was significantly reduced in the hyperpigmented skin from melasma patients, but not in healthy controls, regardless of UV irradiation. Wnt signals regulate skin pigmentation; however, WIF-1 is expressed in cultured skin keratinocytes and fibroblasts, but not in melanocytes. Therefore, we examined whether WIF-1 knockdown in neighboring keratinocytes and fibroblasts plays a role in melasma. Additionally, the effect of WIF-1 overexpression on the amelioration of hyperpigmentation was examined. WIF-1 knockdown, either in fibroblasts or in keratinocytes, significantly stimulated tyrosinase expression and melanosome transfer, whereas melanocytes with WIF-1 overexpression significantly reduced those parameters. The WIF-1 knockdown decreased glycogen synthase kinase-3β (GSK-3β), β-catenin, and NFATc2 (nuclear factor of activated T cells, cytoplasmic, calcineurin-dependent 2) phosphorylation and increased microphthalmia-associated transcription factor (MITF) expression as in melanocytes with Wnt-1 overexpression, whereas the WIF-1 overexpression reversed the results. Expression of Wnts, both canonical and noncanonical, was increased in the hyperpigmented skin of melasma patients. Collectively, WIF-1 downregulation, which may occur in epidermal keratinocytes and in dermal fibroblasts, is involved in melasma development because of the stimulation of melanogenesis and melanosome transfer through upregulation of the canonical and the noncanonical Wnt signaling pathway.

  20. Lycopene inhibits cyclic strain-induced endothelin-1 expression through the suppression of reactive oxygen species generation and induction of heme oxygenase-1 in human umbilical vein endothelial cells.

    PubMed

    Sung, Li-Chin; Chao, Hung-Hsing; Chen, Cheng-Hsien; Tsai, Jen-Chen; Liu, Ju-Chi; Hong, Hong-Jye; Cheng, Tzu-Hurng; Chen, Jin-Jer

    2015-06-01

    Lycopene is the most potent active antioxidant among the major carotenoids, and its use has been associated with a reduced risk for cardiovascular disease (CVD). Endothelin-1 (ET-1) is a powerful vasopressor synthesized by endothelial cells and plays a crucial role in the pathophysiology of CVD. However, the direct effects of lycopene on vascular endothelial cells have not been fully described. This study investigated the effects of lycopene on cyclic strain-induced ET-1 gene expression in human umbilical vein endothelial cells (HUVECs) and identified the signal transduction pathways that are involved in this process. Cultured HUVECs were exposed to cyclic strain (20% in length, 1 Hz) in the presence or absence of lycopene. Lycopene inhibited strain-induced ET-1 expression through the suppression of reactive oxygen species (ROS) generation through attenuation of p22(phox) mRNA expression and NAD(P)H oxidase activity. Furthermore, lycopene inhibited strain-induced ET-1 secretion by reducing ROS-mediated extrace-llular signal-regulated kinase (ERK) phosphorylation. Conversely, lycopene treatment enhanced heme oxygenase-1 (HO-1) gene expression through the activation of phosphoinositide 3-kinase (PI3K)/Akt pathway, followed by induction of the nuclear factor erythroid 2-related factor 2 (Nrf2) nuclear translocation; in addition, HO-1 silencing partially inhibited the repressive effects of lycopene on strain-induced ET-1 expression. In summary, our study showed, for the first time, that lycopene inhibits cyclic strain-induced ET-1 gene expression through the suppression of ROS generation and induction of HO-1 in HUVECs. Therefore, this study provides new valuable insight into the molecular pathways that may contribute to the proposed beneficial effects of lycopene on the cardiovascular system.

  1. Betaine reduces the expression of inflammatory adipokines caused by hypoxia in human adipocytes.

    PubMed

    Olli, K; Lahtinen, S; Rautonen, N; Tiihonen, K

    2013-01-14

    Obesity is characterised by a state of chronic low-grade inflammation and the elevated circulating and tissue levels of inflammatory markers, including inflammation-related adipokines, released from white adipose tissue. The expression and release of these adipokines generally rises as the adipose tissue expands and hypoxic conditions start to develop within the tissue. Here, the effect of betaine, a trimethylglycine having a biological role as an osmolyte and a methyl donor, on the expression of inflammation-related markers was tested in human adipocytes under hypoxia. Differentiated adipocytes were cultivated under low (1 %) oxygen tension for 8-20 h. The expression of different adipokines, including IL-6, leptin, PPARγ, TNF-α and adiponectin, was measured by quantitative PCR by determining the relative mRNA level from the adipocytes. Hypoxia, in general, led to a decrease in the expression of PPARγ mRNA in human adipocytes, whereas the expression levels of leptin and IL-6 mRNA were substantially increased by hypoxia. The cultivation of adipocytes under hypoxia also led to a reduction in the expression of TNF-α mRNA. The results showed that hypoxia increased the relative quantification of leptin gene transcription, and that betaine (250 μmol/l) reduced this effect, caused by low oxygen conditions. Under hypoxia, betaine also reduced the mRNA level of the pro-inflammatory markers IL-6 and TNF-α. These results demonstrate that the extensive changes in the expression of inflammation-related adipokines in human adipocytes caused by hypoxia can be diminished by the presence of physiologically relevant concentrations of betaine.

  2. Reduced retinoids and retinoid receptors' expression in pancreatic cancer: A link to patient survival.

    PubMed

    Bleul, Tim; Rühl, Ralph; Bulashevska, Svetlana; Karakhanova, Svetlana; Werner, Jens; Bazhin, Alexandr V

    2015-09-01

    Pancreatic ductal adenocarcinoma (PDAC) represents one of the deadliest cancers in the world. All-trans retinoic acid (ATRA) is the major physiologically active form of vitamin A, regulating expression of many genes. Disturbances of vitamin A metabolism are prevalent in some cancer cells. The main aim of this work was to investigate deeply the components of retinoid signaling in PDAC compared to in the normal pancreas and to prove the clinical importance of retinoid receptor expression. For the study, human tumor tissues obtained from PDAC patients and murine tumors from the orthotopic Panc02 model were used for the analysis of retinoids, using high performance liquid chromatography mass spectrometry and real-time RT-PCR gene expression analysis. Survival probabilities in univariate analysis were estimated using the Kaplan-Meier method and the Cox proportional hazards model was used for the multivariate analysis. In this work, we showed for the first time that the ATRA and all-trans retinol concentration is reduced in PDAC tissue compared to their normal counterparts. The expression of RARα and β as well as RXRα and β are down-regulated in PDAC tissue. This reduced expression of retinoid receptors correlates with the expression of some markers of differentiation and epithelial-to-mesenchymal transition as well as of cancer stem cell markers. Importantly, the expression of RARα and RXRβ is associated with better overall survival of PDAC patients. Thus, reduction of retinoids and their receptors is an important feature of PDAC and is associated with worse patient survival outcomes.

  3. Klotho expression is reduced in COPD airway epithelial cells: effects on inflammation and oxidant injury.

    PubMed

    Gao, Wei; Yuan, Cheng; Zhang, Jingying; Li, Lingling; Yu, Like; Wiegman, Coen H; Barnes, Peter J; Adcock, Ian M; Huang, Mao; Yao, Xin

    2015-12-01

    COPD (chronic obstructive pulmonary disease) is associated with sustained inflammation, excessive injury, and accelerated lung aging. Human Klotho (KL) is an anti-aging protein that protects cells against inflammation and damage. In the present study, we quantified KL expression in the lungs of COPD patients and in an ozone-induced mouse model of COPD, and investigated the mechanisms that control KL expression and function in the airways. KL distribution and levels in human and mouse airways were measured by immunohistochemistry and Western blotting. The effect of CSE (cigarette smoke extract) on KL expression was detected in human bronchial epithelial cells. Moreover, the effect of KL on CSE-mediated inflammation and hydrogen peroxide-induced cellular injury/apoptosis was determined using siRNAs. KL expression was decreased in the lungs of smokers and further reduced in patients with COPD. Similarly, 6 weeks of exposure to ozone decreased KL levels in airway epithelial cells. CSE and TNFα (tumour necrosis factor α) decreased KL expression and release from airway epithelial cells, which was associated with enhanced pro-inflammatory cytokine expression. Moreover, KL depletion increased cell sensitivity to cigarette smoke-induced inflammation and oxidative stress-induced cell damage. These effects involved the NF-κB (nuclear factor κB), MAPK (mitogen-activated protein kinase) and Nrf2 (nuclear factor erythroid 2-related factor 2) pathways. Reduced KL expression in COPD airway epithelial cells was associated with increased oxidative stress, inflammation and apoptosis. These data provide new insights into the mechanisms associated with the accelerated lung aging in COPD development.

  4. Klotho expression is reduced in COPD airway epithelial cells: effects on inflammation and oxidant injury

    PubMed Central

    Gao, Wei; Yuan, Cheng; Zhang, Jingying; Li, Lingling; Yu, Like; Wiegman, Coen H.; Barnes, Peter J.; Adcock, Ian M.; Huang, Mao

    2015-01-01

    COPD (chronic obstructive pulmonary disease) is associated with sustained inflammation, excessive injury, and accelerated lung aging. Human Klotho (KL) is an anti-aging protein that protects cells against inflammation and damage. In the present study, we quantified KL expression in the lungs of COPD patients and in an ozone-induced mouse model of COPD, and investigated the mechanisms that control KL expression and function in the airways. KL distribution and levels in human and mouse airways were measured by immunohistochemistry and Western blotting. The effect of CSE (cigarette smoke extract) on KL expression was detected in human bronchial epithelial cells. Moreover, the effect of KL on CSE-mediated inflammation and hydrogen peroxide-induced cellular injury/apoptosis was determined using siRNAs. KL expression was decreased in the lungs of smokers and further reduced in patients with COPD. Similarly, 6 weeks of exposure to ozone decreased KL levels in airway epithelial cells. CSE and TNFα (tumour necrosis factor α) decreased KL expression and release from airway epithelial cells, which was associated with enhanced pro-inflammatory cytokine expression. Moreover, KL depletion increased cell sensitivity to cigarette smoke-induced inflammation and oxidative stress-induced cell damage. These effects involved the NF-κB (nuclear factor κB), MAPK (mitogen-activated protein kinase) and Nrf2 (nuclear factor erythroid 2-related factor 2) pathways. Reduced KL expression in COPD airway epithelial cells was associated with increased oxidative stress, inflammation and apoptosis. These data provide new insights into the mechanisms associated with the accelerated lung aging in COPD development. PMID:26201096

  5. Brain SERT Expression of Male Rats Is Reduced by Aging and Increased by Testosterone Restitution

    PubMed Central

    Herrera-Pérez, José Jaime; Fernández-Guasti, Alonso; Martínez-Mota, Lucía

    2013-01-01

    In preclinical and clinical studies aging has been associated with a deteriorated response to antidepressant treatment. We hypothesize that such impairment is explained by an age-related decrease in brain serotonin transporter (SERT) expression associated with low testosterone (T) levels. The objectives of this study were to establish (1) if brain SERT expression is reduced by aging and (2) if the SERT expression in middle-aged rats is increased by T-restitution. Intact young rats (3–5 months) and gonad-intact middle-aged rats with or without T-restitution were used. The identification of the brain SERT expression was done by immunofluorescence in prefrontal cortex, lateral septum, hippocampus, and raphe nuclei. An age-dependent reduction of SERT expression was observed in all brain regions examined, while T-restitution recovered the SERT expression only in the dorsal raphe of middle-aged rats. This last action seems relevant since dorsal raphe plays an important role in the antidepressant action of selective serotonin reuptake inhibitors. All data suggest that this mechanism accounts for the T-replacement usefulness to improve the response to antidepressants in the aged population. PMID:26317087

  6. Systemic RNAi Delivery to the Muscles of ROSA26 Mice Reduces lacZ Expression

    PubMed Central

    Wei, Jessica; Chamberlain, Joel R.

    2014-01-01

    RNAi has potential for therapeutically downregulating the expression of dominantly inherited genes in a variety of human genetic disorders. Here we used the ROSA26 mouse, which constitutively expresses the bacterial lacZ gene in tissues body wide, as a model to test the ability to downregulate gene expression in striated muscles. Recombinant adeno-associated viral vectors (rAAVs) were generated that express short hairpin RNAs (shRNAs) able to target the lacZ mRNA. Systemic delivery of these rAAV6 vectors led to a decrease of β-galactosidase expression of 30–50-fold in the striated muscles of ROSA26 mice. However, high doses of vectors expressing 21 nucleotide shRNA sequences were associated with significant toxicity in both liver and cardiac muscle. This toxicity was reduced in cardiac muscle using lower vector doses. Furthermore, improved knockdown in the absence of toxicity was obtained by using a shorter (19 nucleotide) shRNA guide sequence. These results support the possibility of using rAAV vectors to deliver RNAi sequences systemically to treat dominantly inherited disorders of striated muscle. PMID:25127128

  7. Atorvastatin suppresses glioma invasion and migration by reducing microglial MT1-MMP expression.

    PubMed

    Yongjun, Yi; Shuyun, Huang; Lei, Chen; Xiangrong, Chen; Zhilin, Yang; Yiquan, Ke

    2013-07-15

    Microglia, the immune cells of the brain, often present in large numbers in gliomas, where they promote tumor growth and invasiveness. This study found that atorvastatin reduced the pro-tumorigenic effects of microglia on glioma migration and invasion by reducing the microglial expression of membrane type 1 metalloproteinase (MT1-MMP). The results suggest that down-regulation of MT1-MMP is controlled by a p38 MAPK pathway in microglia. Taken together, the results support further research on atorvastatin as a candidate for glioma therapy by targeting microglia.

  8. MD2 expression is reduced in large airways of smokers and COPD smokers.

    PubMed

    Pace, Elisabetta; Ferraro, Maria; Chiappara, Giuseppina; Vitulo, Patrizio; Pipitone, Loredana; Di Vincenzo, Serena; Gjomarkaj, Mark

    2015-09-01

    Toll-like receptor 4 (TLR4) signaling requires a number of accessory proteins to initiate a signal. MD-2 is one of the accessory proteins with a relevant role in lipopolysaccharide responses. Although cigarette smoke increases TLR4 expression, TLR4 signaling is altered in smokers and in smokers COPD patients. The main aims of this study were to explore whether MD2 is altered in large and small airways of COPD and of smokers without COPD. The expression of MD2 ex vivo was assessed by immunohistochemistry in surgical specimens from current smokers COPD (s-COPD; n = 14), smokers without COPD (S; n = 7), and from non-smoker non-COPD subjects (C; n = 11. The in vitro effects of cigarette smoke extracts on the MD2 expression in a human bronchial epithelial cell line (16-HBE) were also assessed by flow cytometry. MD2 is reduced in the epithelium and in the submucosa in large airways but not in the epithelium and in the submucosa in small airways of smokers and of s-COPD. The expression of MD2 in the submucosa of the large airways is significantly higher in comparison to the submucosa of the small airways in all the studied groups. In vitro, cigarette smoke is able to increase TLR4 but it reduces MD2 in a dose-dependent manner in bronchial epithelial cells. Cigarette smoke may alter innate immune responses reducing the expression of the MD2, a molecule with an important role in TLR4 signaling.

  9. Reduced mycorrhizal colonization (rmc) tomato mutant lacks expression of SymRK signaling pathway genes

    PubMed Central

    Nair, Aswathy; Bhargava, Sujata

    2012-01-01

    Comparison of the expression of 13 genes involved in arbuscular mycorrhizal (AM) symbiosis was performed in a wild type tomato (Solanum lycopersicum cv 76R) and its reduced mycorrhizal colonization mutant rmc in response to colonization with Glomus fasiculatum. Four defense-related genes were induced to a similar extent in the mutant and wild type AM colonized plants, indicating a systemic response to AM colonization. Genes related to nutrient exchange between the symbiont partners showed higher expression in the AM roots of wild type plants than the mutant plants, which correlated with their arbuscular frequency. A symbiosis receptor kinase that is involved in both nodulation and AM symbiosis was not expressed in the rmc mutant. The fact that some colonization was observed in rmc was suggestive of the existence of an alternate colonization signaling pathway for AM symbiosis in this mutant. PMID:23221680

  10. Interleukin-18 deficiency reduces neuropeptide gene expressions in the mouse amygdala related with behavioral change.

    PubMed

    Yamamoto, Yuta; Tanahashi, Toshihito; Katsuura, Sakurako; Kurokawa, Ken; Nishida, Kensei; Kuwano, Yuki; Kawai, Tomoko; Teshima-Kondo, Shigetada; Chikahisa, Sachiko; Tsuruo, Yoshihiro; Sei, Hiroyoshi; Rokutan, Kazuhito

    2010-12-15

    In this study, we examined the effects of IL-18 deficiency on behaviors and gene expression profiles in 6 brain regions. IL-18(-/-) mice reduced depressive-like behavior and changed gene expressions predominantly in the amygdala compared with wild-type mice. Pathway analysis of the differentially expressed genes ranked behavior as the top-scored biological function. Of note, the absence of IL-18 decreased Avp, Hcrt, Oxt, and Pmch mRNA levels and the number of arginine vasopressin- and oxytocin-positive cells in the amygdala, but not in the hypothalamus. Our results suggest that IL-18-dependent vasopressinergic and oxytocinergic circuitry in the amygdala may regulate depressive-like behaviors in mice.

  11. Nandrolone reduces activation of Notch signaling in denervated muscle associated with increased Numb expression.

    PubMed

    Liu, Xin-Hua; Yao, Shen; Qiao, Rui-Fang; Levine, Alice C; Kirschenbaum, Alexander; Pan, Jiangping; Wu, Yong; Qin, Weiping; Bauman, William A; Cardozo, Christopher P

    2011-10-14

    Nandrolone, an anabolic steroid, slows denervation-atrophy in rat muscle. The molecular mechanisms responsible for this effect are not well understood. Androgens and anabolic steroids activate Notch signaling in animal models of aging and thereby mitigate sarcopenia. To explore the molecular mechanisms by which nandrolone prevents denervation-atrophy, we investigated the effects of nandrolone on Notch signaling in denervated rat gastrocnemius muscle. Denervation significantly increased Notch activity reflected by elevated levels of nuclear Notch intracellular domain (NICD) and expression of Hey1 (a Notch target gene). Activation was greatest at 7 and 35 days after denervation but remained present at 56 days after denervation. Activation of Notch in denervated muscle was prevented by nandrolone associated with upregulated expression of Numb mRNA and protein. These data demonstrate that denervation activates Notch signaling, and that nandrolone abrogates this response associated with increased expression of Numb, suggesting a potential mechanism by which nandrolone reduces denervation-atrophy.

  12. Contactin-1 reduces E-cadherin expression via activating AKT in lung cancer.

    PubMed

    Yan, Judy; Wong, Nicholas; Hung, Claudia; Chen, Wendy Xin-Yi; Tang, Damu

    2013-01-01

    Contactin-1 has been shown to promote cancer metastasis. However, the underlying mechanisms remain unclear. We report here that knockdown of contactin-1 in A549 lung cancer cells reduced A549 cell invasion and the cell's ability to grow in soft agar without affecting cell proliferation. Reduction of contactin-1 resulted in upregulation of E-cadherin, consistent with E-cadherin being inhibitive of cancer cell invasion. In an effort to investigate the mechanisms whereby contactin-1 reduces E-cadherin expression, we observed that contactin-1 plays a role in AKT activation, as knockdown of contactin-1 attenuated AKT activation. Additionally, inhibition of AKT activation significantly enhanced E-cadherin expression, an observation that mimics the situation observed in contactin-1 knockdown, suggesting that activation of AKT plays a role in contactin-1-mediated downregulation of E-cadherin. In addition, we were able to show that knockdown of contactin-1 did not further reduce A549 cell's invasion ability, when AKT activation was inhibited by an AKT inhibitor. To further support our findings, we overexpressed CNTN-1 in two CNTN-1 null breast cancer cell lines expressing E-cadherin. Upon overexpression, CNTN-1 reduced E-cadherin levels in one cell line and increased AKT activation in the other. Furthermore, in our study of 63 primary lung cancers, we observed 65% of primary lung cancers being contactin-1 positive and in these carcinomas, 61% were E-cadherin negative. Collectively, we provide evidence that contactin-1 plays a role in the downregulation of E-cadherin in lung cancer and that AKT activation contributes to this process. In a study of mechanisms responsible for contactin-1 to activate AKT, we demonstrated that knockdown of CNTN-1 in A549 cells did not enhance PTEN expression but upregulated PHLPP2, a phosphatase that dephosphorylates AKT. These observations thus suggest that contactin-1 enhances AKT activation in part by preventing PHLPP2-mediated AKT

  13. Increased Serotonin Transporter Expression Reduces Fear and Recruitment of Parvalbumin Interneurons of the Amygdala.

    PubMed

    Bocchio, Marco; Fucsina, Giulia; Oikonomidis, Lydia; McHugh, Stephen B; Bannerman, David M; Sharp, Trevor; Capogna, Marco

    2015-12-01

    Genetic association studies suggest that variations in the 5-hydroxytryptamine (5-HT; serotonin) transporter (5-HTT) gene are associated with susceptibility to psychiatric disorders such as anxiety or posttraumatic stress disorder. Individuals carrying high 5-HTT-expressing gene variants display low amygdala reactivity to fearful stimuli. Mice overexpressing the 5-HTT (5-HTTOE), an animal model of this human variation, show impaired fear, together with reduced fear-evoked theta oscillations in the basolateral amygdala (BLA). However, it is unclear how variation in 5-HTT gene expression impacts on the microcircuitry of the BLA to change behavior. We addressed this issue by investigating the activity of parvalbumin (PV)-expressing interneurons (PVINs), the biggest IN population in the basal amygdala (BA). We found that increased 5-HTT expression impairs the recruitment of PVINs (measured by their c-Fos immunoreactivity) during fear. Ex vivo patch-clamp recordings demonstrated that the depolarizing effect of 5-HT on PVINs was mediated by 5-HT2A receptor. In 5-HTTOE mice, 5-HT-evoked depolarization of PVINs and synaptic inhibition of principal cells, which provide the major output of the BA, were impaired. This deficit was because of reduced 5-HT2A function and not because of increased 5-HT uptake. Collectively, these findings provide novel cellular mechanisms that are likely to contribute to differences in emotional behaviors linked with genetic variations of the 5-HTT.

  14. Reduced CD73 Expression by IL-1β Programmed Th17 Cells Improves Tumor Control

    PubMed Central

    Chatterjee, Shilpak; Thyagarajan, Krishnamurthy; Kesarwani, Pravin; Song, Jin H.; Soloshchenko, Myroslawa; Fu, Jianing; Bailey, Stefanie; Vasu, Chenthamarkshan; Kraft, Andrew; Paulos, Chrystal M.; Yu, Xue-Zhong; Mehrotra, Shikhar

    2014-01-01

    T helper (Th)-17 subsets hold promise in adoptive T cell transfer therapy for cancer. However, ex vivo programming of Th17 cells in presence of TGF-β increases cell surface expression of ectonucleotidases CD39 and CD73, that in turn increases susceptibility to immunosuppression and reduces effector functions. Our data shows that ATP mediated suppression of IFN-γ production by Th17 cells can be overcome either by genetic ablation of CD73 or by generating TGF-β independent Th17 in presence of IL-1β. Th17 cells cultured in IL-1β are also highly polyfunctional, express high level of effector molecules and exhibit better short-term control of B16-F10 murine melanoma, despite reduced stem cell like properties. Adding TGF-β at low dose that does not up regulate CD73 expression, but induces stemness, drastically improves anti-tumor function of IL-1β cultured Th17 cells. It is likely that effector property of IL-1β dependent Th17 is due to their high glycolytic capacity, since generating IL-1β dependent Th17 cells in pyruvate containing media impaired glycolysis and its anti-tumor potential. Thus, our data suggests that due to induction of ectonucleotidase expression by TGF-β, ex vivo culture conditions for generating Th17 cells need to be reconsidered for exploiting their full potential in adoptive T cell therapy. PMID:25205101

  15. Benzylglucosinolate Derived Isothiocyanate from Tropaeolum majus Reduces Gluconeogenic Gene and Protein Expression in Human Cells

    PubMed Central

    Guzmán-Pérez, Valentina; Bumke-Vogt, Christiane; Schreiner, Monika; Mewis, Inga; Borchert, Andrea; Pfeiffer, Andreas F. H.

    2016-01-01

    Nasturtium (Tropaeolum majus L.) contains high concentrations of benzylglcosinolate. We found that a hydrolysis product of benzyl glucosinolate—the benzyl isothiocyanate (BITC)—modulates the intracellular localization of the transcription factor Forkhead box O 1 (FOXO1). FoxO transcription factors can antagonize insulin effects and trigger a variety of cellular processes involved in tumor suppression, longevity, development and metabolism. The current study evaluated the ability of BITC—extracted as intact glucosinolate from nasturtium and hydrolyzed with myrosinase—to modulate i) the insulin-signaling pathway, ii) the intracellular localization of FOXO1 and, iii) the expression of proteins involved in gluconeogenesis, antioxidant response and detoxification. Stably transfected human osteosarcoma cells (U-2 OS) with constitutive expression of FOXO1 protein labeled with GFP (green fluorescent protein) were used to evaluate the effect of BITC on FOXO1. Human hepatoma HepG2 cell cultures were selected to evaluate the effect on gluconeogenic, antioxidant and detoxification genes and protein expression. BITC reduced the phosphorylation of protein kinase B (AKT/PKB) and FOXO1; promoted FOXO1 translocation from cytoplasm into the nucleus antagonizing the insulin effect; was able to down-regulate the gene and protein expression of gluconeogenic enzymes; and induced the gene expression of antioxidant and detoxification enzymes. Knockdown analyses with specific siRNAs showed that the expression of gluconeogenic genes was dependent on nuclear factor (erythroid derived)-like2 (NRF2) and independent of FOXO1, AKT and NAD-dependent deacetylase sirtuin-1 (SIRT1). The current study provides evidence that BITC might have a role in type 2 diabetes T2D by reducing hepatic glucose production and increasing antioxidant resistance. PMID:27622707

  16. Testosterone reduces AGTR1 expression to prevent β-cell and islet apoptosis from glucotoxicity.

    PubMed

    Kooptiwut, Suwattanee; Hanchang, Wanthanee; Semprasert, Namoiy; Junking, Mutita; Limjindaporn, Thawornchai; Yenchitsomanus, Pa-thai

    2015-03-01

    Hypogonadism in men is associated with an increased incidence of type 2 diabetes. Supplementation with testosterone has been shown to protect pancreatic β-cell against apoptosis due to toxic substances including streptozotocin and high glucose. One of the pathological mechanisms of glucose-induced pancreatic β-cell apoptosis is the induction of the local rennin-angiotensin-aldosterone system (RAAS). The role of testosterone in regulation of the pancreatic RAAS is still unknown. This study aims to investigate the protective action of testosterone against glucotoxicity-induced pancreatic β-cell apoptosis via alteration of the pancreatic RAAS pathway. Rat insulinoma cell line (INS-1) cells or isolated male mouse islets were cultured in basal and high-glucose media in the presence or absence of testosterone, losartan, and angiotensin II (Ang II), then cell apoptosis, cleaved caspase 3 expression, oxidative stress, and expression of angiotensin II type 1 receptor (AGTR1) and p47(phox) mRNA and protein were measured. Testosterone and losartan showed similar effects in reducing pancreatic β-cell apoptosis. Testosterone significantly reduced expression of AGTR1 protein in INS-1 cells cultured in high-glucose medium or high-glucose medium with Ang II. Testosterone decreased the expression of AGTR1 and p47(phox) mRNA and protein in comparison with levels in cells cultured in high-glucose medium alone. Furthermore, testosterone attenuated superoxide production when co-cultured with high-glucose medium. In contrast, when cultured in basal glucose, supplementation of testosterone did not have any effect on cell apoptosis, oxidative stress, and expression of AGT1R and p47(phox). In addition, high-glucose medium did not increase cleaved caspase 3 in AGTR1 knockdown experiments. Thus, our results indicated that testosterone prevents pancreatic β-cell apoptosis due to glucotoxicity through reduction of the expression of ATGR1 and its signaling pathway.

  17. Differential effects of heme oxygenase isoforms on heme mediation of endothelial intracellular adhesion molecule 1 expression.

    PubMed

    Wagener, F A; da Silva, J L; Farley, T; de Witte, T; Kappas, A; Abraham, N G

    1999-10-01

    Heme oxygenase (HO), by catabolizing heme to bile pigments, down-regulates cellular hemoprotein, hemoglobin, and heme; the latter generates pro-oxidant products, including free radicals. Two HO isozymes, the products of distinct genes, have been described; HO-1 is the inducible isoform, whereas HO-2 is suggested to be constitutively expressed. We studied the inducing effect of several metal compounds (CoCl(2), stannic mesoporphyrin, and heme) on HO activity. Additionally, we studied HO-1 expression in experimental models of adhesion molecule expression produced by heme in endothelial cells, and the relationship of HO-1 expression to the induced adhesion molecules. Flow cytometry analysis showed that heme induces intracellular adhesion molecule 1 (ICAM-1) expression in a concentration (10-100 microM)- and time (1-24 h)-dependent fashion in human umbilical vein endothelial cells. Pretreatment with stannic mesoporphyrin, an inhibitor of HO activity, caused a 2-fold increase in heme-induced ICAM-1 expression. In contrast, HO induction by CoCl(2) decreased heme-induced ICAM-1 expression by 33%. To examine the contribution of HO-1 and HO-2 to endothelial HO activity, specific antisense oligonucleotides (ODNs) of each isoform were tested for their specificity to inhibit HO activity in cells exposed to heme. Endothelial cells exposed to heme elicited increased HO activity, which was prevented (70%) by HO-1 antisense ODNs. HO-2 antisense ODN inhibited heme-induced HO activity by 21%. Addition of HO-1 antisense ODNs prevented heme degradation and resulted in elevation of microsomal heme. Western blot analysis showed that HO-1 antisense ODNs selectively inhibited HO-1 protein and failed to inhibit HO-2 protein. Incubation of endothelial cells with HO-1 antisense enhanced heme-dependent increase of ICAM-1. In contrast, addition of HO-2 antisense to endothelial cells failed to increase adhesion molecules. The role of glutathione, an important antioxidant, was examined on heme

  18. Reduced ubiquitin C-terminal hydrolase-1 expression levels in dementia with Lewy bodies.

    PubMed

    Barrachina, Marta; Castaño, Esther; Dalfó, Esther; Maes, Tamara; Buesa, Carlos; Ferrer, Isidro

    2006-05-01

    Parkinson disease (PD) and dementia with Lewy bodies (DLB) are characterized by the accumulation of abnormal alpha-synuclein and ubiquitin in protein aggregates conforming Lewy bodies and Lewy neurites. Ubiquitin C-terminal hydrolase-1 (UCHL-1) disassembles polyubiquitin chains to increase the availability of free monomeric ubiquitin to the ubiquitin proteasome system (UPS) thus favoring protein degradation. Since mutations in the UCHL-1 gene, reducing UPS activity by 50%, have been reported in autosomal dominant PD, and UCHL-1 inhibition results in the formation of alpha-synuclein aggregates in mesencephalic cultured neurons, the present study was initiated to test UCHL-1 mRNA and protein levels in post-mortem frontal cortex (area 8) of PD and DLB cases, compared with age-matched controls. TaqMan PCR assays, and Western blots demonstrated down-regulation of UCHL-1 mRNA and UCHL-1 protein in the cerebral cortex in DLB (either in pure forms, not associated with Alzheimer disease: AD, and in common forms, with accompanying AD changes), but not in PD, when compared with age-matched controls. Interestingly, UCHL-1 mRNA and protein expressions were reduced in the medulla oblongata in the same PD cases. Moreover, UCHL-1 protein was decreased in the substantia nigra in cases with Lewy body pathology. UCHL-1 down-regulation was not associated with reduced protein levels of several proteasomal subunits, including 20SX, 20SY, 19S and 11Salpha. Yet UCHL-3 expression was reduced in the cerebral cortex of PD and DLB patients. Together, these observations show reduced UCHL-1 expression as a contributory factor in the abnormal protein aggregation in DLB, and points UCHL-1 as a putative therapeutic target in the treatment of DLB.

  19. Increased expression of the diabetes gene SOX4 reduces insulin secretion by impaired fusion pore expansion

    PubMed Central

    Collins, Stephan C.; Do, Hyun Woong; Hastoy, Benoit; Hugill, Alison; Adam, Julie; Chibalina, Margarita V.; Galvanovskis, Juris; Godazgar, Mahdieh; Lee, Sheena; Goldsworthy, Michelle; Salehi, Albert; Tarasov, Andrei I.; Rosengren, Anders H.; Cox, Roger; Rorsman, Patrik

    2016-01-01

    The transcription factor Sox4 has been proposed to underlie the increased type-2 diabetes risk linked to an intronic SNP in CDKAL1. In a mouse model expressing a mutant form of Sox4, glucose-induced insulin secretion is reduced by 40% despite normal intracellular Ca2+ signalling and depolarization-evoked exocytosis. This paradox is explained by a 4-fold increase in kiss-and-run exocytosis (as determined by single-granule exocytosis measurements), in which the fusion pore connecting the granule lumen to the exterior only expands to a diameter of 2 nm that does not allow the exit of insulin. Microarray analysis indicated that this correlated with an increased expression of the exocytosis-regulating protein Stxbp6. In a large collection of human islet preparations (n=63), STXBP6 expression and GIIS correlated positively and negatively with SOX4 expression, respectively. Overexpression of SOX4 in the human insulin-secreting cell EndoC-βH2 interfered with granule emptying and inhibited hormone release, the latter effect was reversed by silencing of STXBP6. These data suggest that increased SOX4 expression inhibits insulin secretion and increased diabetes risk by upregulation of STXBP6 and an increase in kiss-and-run exocytosis at the expense of full fusion. We propose that pharmacological interventions promoting fusion pore expansion may be effective in diabetes therapy. PMID:26993066

  20. Expression and production of staphylococcal enterotoxin C is substantially reduced in milk.

    PubMed

    Valihrach, Lukas; Alibayov, Babek; Zdenkova, Kamila; Demnerova, Katerina

    2014-12-01

    Staphylococcal food poisoning is a global problem. The gene encoding enterotoxin C (sec) has been reported several times as the most frequent enterotoxin gene identified in food poisoning cases caused by contaminated milk. In this study, the expression of sec was examined during the growth of Staphylococcus aureus in milk compared to routinely used laboratory media. Additionally, expression of several regulatory genes (sarA, saeS, codY, srrA, rot, hld, agrA, sigB) and other five enterotoxin genes (sea, seg, seh, sek, sel) were observed. It has been well established for that S. aureus is able to grow in milk and we found significantly reduced expression of sec in milk compared to the laboratory medium (P < 0.05). Here, we report the first study providing a comprehensive view on the expression of enterotoxin genes and its regulation in milk. The milk environment dramatically changed the expression profiles of several enterotoxin genes although staphylococcal growth was not affected at all. The mechanism of the reduction may be explained by downregulation of the agr system, although other factors are expected to be involved. The constituent of milk causing the inhibitory effect remains unidentified.

  1. Acute Heat Stress and Reduced Nutrient Intake Alter Intestinal Proteomic Profile and Gene Expression in Pigs

    PubMed Central

    Pearce, Sarah C.; Lonergan, Steven M.; Huff-Lonergan, Elisabeth; Baumgard, Lance H.; Gabler, Nicholas K.

    2015-01-01

    Heat stress and reduced feed intake negatively affect intestinal integrity and barrier function. Our objective was to compare ileum protein profiles of pigs subjected to 12 hours of HS, thermal neutral ad libitum feed intake, or pair-fed to heat stress feed intake under thermal neutral conditions (pair-fed thermal neutral). 2D-Differential In Gel Electrophoresis and gene expression were performed. Relative abundance of 281 and 138 spots differed due to heat stress, compared to thermal neutral and pair-fed thermal neutral pigs, respectively. However, only 20 proteins were different due to feed intake (thermal neutral versus pair-fed thermal neutral). Heat stress increased mRNA expression of heat shock proteins and protein abundance of heat shock proteins 27, 70, 90-α and β were also increased. Heat stress reduced ileum abundance of several metabolic enzymes, many of which are involved in the glycolytic or TCA pathways, indicating a change in metabolic priorities. Stress response enzymes peroxiredoxin-1 and peptidyl-prolyl cis-trans isomerase A were decreased in pair-fed thermal neutral and thermal neutral pigs compared to heat stress. Heat stress increased mRNA abundance markers of ileum hypoxia. Altogether, these data show that heat stress directly alters intestinal protein and mRNA profiles largely independent of reduced feed intake. These changes may be related to the reduced intestinal integrity associated with heat stress. PMID:26575181

  2. Inducing a Concurrent Motor Load Reduces Categorization Precision for Facial Expressions

    PubMed Central

    2015-01-01

    Motor theories of expression perception posit that observers simulate facial expressions within their own motor system, aiding perception and interpretation. Consistent with this view, reports have suggested that blocking facial mimicry induces expression labeling errors and alters patterns of ratings. Crucially, however, it is unclear whether changes in labeling and rating behavior reflect genuine perceptual phenomena (e.g., greater internal noise associated with expression perception or interpretation) or are products of response bias. In an effort to advance this literature, the present study introduces a new psychophysical paradigm for investigating motor contributions to expression perception that overcomes some of the limitations inherent in simple labeling and rating tasks. Observers were asked to judge whether smiles drawn from a morph continuum were sincere or insincere, in the presence or absence of a motor load induced by the concurrent production of vowel sounds. Having confirmed that smile sincerity judgments depend on cues from both eye and mouth regions (Experiment 1), we demonstrated that vowel production reduces the precision with which smiles are categorized (Experiment 2). In Experiment 3, we replicated this effect when observers were required to produce vowels, but not when they passively listened to the same vowel sounds. In Experiments 4 and 5, we found that gender categorizations, equated for difficulty, were unaffected by vowel production, irrespective of the presence of a smiling expression. These findings greatly advance our understanding of motor contributions to expression perception and represent a timely contribution in light of recent high-profile challenges to the existing evidence base. PMID:26618622

  3. Irradiation of rat brain reduces P-glycoprotein expression and function.

    PubMed

    Bart, J; Nagengast, W B; Coppes, R P; Wegman, T D; van der Graaf, W T A; Groen, H J M; Vaalburg, W; de Vries, E G E; Hendrikse, N H

    2007-08-06

    The blood-brain barrier (BBB) hampers delivery of several drugs including chemotherapeutics to the brain. The drug efflux pump P-glycoprotein (P-gp), expressed on brain capillary endothelial cells, is part of the BBB. P-gp expression on capillary endothelium decreases 5 days after brain irradiation, which may reduce P-gp function and increase brain levels of P-gp substrates. To elucidate whether radiation therapy reduces P-gp expression and function in the brain, right hemispheres of rats were irradiated with single doses of 2-25 Gy followed by 10 mg kg(-1) of the P-gp substrate cyclosporine A (CsA) intravenously (i.v.), with once 15 Gy followed by CsA (10, 15 or 20 mg kg(-1)), or with fractionated irradiation (4 x 5 Gy) followed by CsA (10 mg kg(-1)) 5 days later. Additionally, four groups of three rats received 25 Gy once and were killed 10, 15, 20 or 25 days later. The brains were removed and P-gp detected immunohistochemically. P-gp function was assessed by [(11)C]carvedilol uptake using quantitative autoradiography. Irradiation increased [(11)C]carvedilol uptake dose-dependently, to a maximum of 20% above non irradiated hemisphere. CsA increased [(11)C]carvedilol uptake dose-dependently in both hemispheres, but more (P<0.001) in the irradiated hemisphere. Fractionated irradiation resulted in a lost P-gp expression 10 days after start irradiation, which coincided with increased [(11)C]carvedilol uptake. P-gp expression decreased between day 15 and 20 after single dose irradiation, and increased again thereafter. Rat brain irradiation results in a temporary decreased P-gp function.

  4. Thin microelectrodes reduce GFAP expression in the implant site in rodent somatosensory cortex

    NASA Astrophysics Data System (ADS)

    Stice, Paula; Gilletti, Aaron; Panitch, Alyssa; Muthuswamy, Jit

    2007-06-01

    The objective of this study was to test the hypothesis that neural implants with reduced cross-sectional areas will have less glial scarring associated with implantation injury in long-term experiments. In this study, we implanted nine adult rats with two different implants of 12 µm (n = 6), and 25 µm (n = 6) diameters (cross-sectional areas of 68 µm2, 232 µm2 respectively) and the expression of glial fibrilliary acidic protein (GFAP) was assessed after 2 weeks and 4 weeks of implantation. In order to facilitate implantation, the 12 µm diameter implants were coated with poly-glycolic acid (PGA), a biodegradable polymer that degraded within minutes of implantation. In n = 3 animals, 25 µm diameter implants also coated with PGA were implanted and assessed for GFAP expression at the end of 4 weeks of implantation. Statistical analysis of the GFAP expression around the different implants demonstrated that after 2 weeks of implantation there is no statistically significant difference in GFAP expression between the 12 µm and the 25 µm diameter implants. However, after 4 weeks of implantation the implant site of 12 µm diameter implants exhibited a statistically significant reduction in GFAP expression when compared to the implant sites of the 25 µm diameter implants (both with and without the PGA coating). We conclude that in neural implants that are tethered to the skull, implant cross-sectional areas of 68 µm2 and smaller could lead to a reduced glial scarring under chronic conditions. Future studies with longer implant durations can confirm if this observation remains consistent beyond 4 weeks.

  5. Expression of a bacterial 3-dehydroshikimate dehydratase reduces lignin content and improves biomass saccharification efficiency.

    PubMed

    Eudes, Aymerick; Sathitsuksanoh, Noppadon; Baidoo, Edward E K; George, Anthe; Liang, Yan; Yang, Fan; Singh, Seema; Keasling, Jay D; Simmons, Blake A; Loqué, Dominique

    2015-12-01

    Lignin confers recalcitrance to plant biomass used as feedstocks in agro-processing industries or as source of renewable sugars for the production of bioproducts. The metabolic steps for the synthesis of lignin building blocks belong to the shikimate and phenylpropanoid pathways. Genetic engineering efforts to reduce lignin content typically employ gene knockout or gene silencing techniques to constitutively repress one of these metabolic pathways. Recently, new strategies have emerged offering better spatiotemporal control of lignin deposition, including the expression of enzymes that interfere with the normal process for cell wall lignification. In this study, we report that expression of a 3-dehydroshikimate dehydratase (QsuB from Corynebacterium glutamicum) reduces lignin deposition in Arabidopsis cell walls. QsuB was targeted to the plastids to convert 3-dehydroshikimate - an intermediate of the shikimate pathway - into protocatechuate. Compared to wild-type plants, lines expressing QsuB contain higher amounts of protocatechuate, p-coumarate, p-coumaraldehyde and p-coumaryl alcohol, and lower amounts of coniferaldehyde, coniferyl alcohol, sinapaldehyde and sinapyl alcohol. 2D-NMR spectroscopy and pyrolysis-gas chromatography/mass spectrometry (pyro-GC/MS) reveal an increase of p-hydroxyphenyl units and a reduction of guaiacyl units in the lignin of QsuB lines. Size-exclusion chromatography indicates a lower degree of lignin polymerization in the transgenic lines. Therefore, our data show that the expression of QsuB primarily affects the lignin biosynthetic pathway. Finally, biomass from these lines exhibits more than a twofold improvement in saccharification efficiency. We conclude that the expression of QsuB in plants, in combination with specific promoters, is a promising gain-of-function strategy for spatiotemporal reduction of lignin in plant biomass.

  6. Ammonia-induced miRNA expression changes in cultured rat astrocytes

    PubMed Central

    Oenarto, Jessica; Karababa, Ayse; Castoldi, Mirco; Bidmon, Hans J.; Görg, Boris; Häussinger, Dieter

    2016-01-01

    Hepatic encephalopathy is a neuropsychiatric syndrome evolving from cerebral osmotic disturbances and oxidative/nitrosative stress. Ammonia, the main toxin of hepatic encephalopathy, triggers astrocyte senescence in an oxidative stress-dependent way. As miRNAs are critically involved in cell cycle regulation and their expression may be regulated by oxidative stress, we analysed, whether astrocyte senescence is a consequence of ammonia-induced miRNA expression changes. Using a combined miRNA and gene microarray approach, 43 miRNA species which were downregulated and 142 genes which were upregulated by NH4Cl (5 mmol/l, 48 h) in cultured rat astrocytes were found. Ammonia-induced miRNA and gene expression changes were validated by qPCR and 43 potential miRNA target genes, including HO-1, were identified by matching upregulated mRNA species with predicted targets of miRNA species downregulated by ammonia. Inhibition of HO-1 targeting miRNAs which were downregulated by NH4Cl strongly upregulated HO-1 mRNA and protein levels and inhibited astrocyte proliferation in a HO-1-dependent way. Preventing ammonia-induced upregulation of HO-1 by taurine (5 mmol/l) as well as blocking HO-1 activity by tin-protoporphyrine IX fully prevented ammonia-induced proliferation inhibition and senescence. The data suggest that ammonia induces astrocyte senescence through NADPH oxidase-dependent downregulation of HO-1 targeting miRNAs and concomitant upregulation of HO-1 at both mRNA and protein level. PMID:26755400

  7. Drought response transcriptomes are altered in poplar with reduced tonoplast sucrose transporter expression

    PubMed Central

    Xue, Liang-Jiao; Frost, Christopher J.; Tsai, Chung-Jui; Harding, Scott A.

    2016-01-01

    Transgenic Populus tremula x alba (717-1B4) plants with reduced expression of a tonoplast sucrose efflux transporter, PtaSUT4, exhibit reduced shoot growth compared to wild type (WT) under sustained mild drought. The present study was undertaken to determine whether SUT4-RNAi directly or indirectly altered poplar predisposition and/or response to changes in soil water availability. While sucrose and hexose levels were constitutively elevated in shoot organs, expression responses to drought were most altered in the root tips of SUT4-RNAi plants. Prior to any drought treatment, constitutively elevated transcript levels of abscisic acid biosynthetic genes and bark/vegetative storage proteins suggested altered metabolism in root tips of RNAi plants. Stronger drought-stimulation of stress-inducible genes encoding late-embryogenesis-abundant proteins in transgenic roots was consistent with increased vulnerability to soil drying. Transcript evidence suggested an RNAi effect on intercellular water trafficking by aquaporins in stem xylem during soil drying and recovery. Co-expression network analysis predicted altered integration of abscisic acid sensing/signaling with ethylene and jasmonate sensing/signaling in RNAi compared to WT roots. The overall conclusion is that steepened shoot-root sugar gradient in RNAi plants increased sensitivity of root tips to decreasing soil water availability. PMID:27641356

  8. Reduced expression of citrate synthase leads to excessive superoxide formation and cell apoptosis.

    PubMed

    Cai, Quanxiang; Zhao, Mengmeng; Liu, Xiang; Wang, Xiaochun; Nie, Yao; Li, Ping; Liu, Tingyan; Ge, Ruli; Han, Fengchan

    2017-02-16

    A/J mice are a mouse model of age-related hearing loss. It has been demonstrated that a mutation in gene of citrate synthase (CS) contributes to the early onset of hearing loss occurring at about one month of age. To understand the effects of a decreased CS activity that results from the mutation in Cs gene on hearing loss in A/J mice, human kidney cell line (293T) was transiently transfected with short hairpin RNA for Cs (shRNA-Cs) to reduce expression of CS. In comparison with those of cells transfected with a scrambled sequence (shRNA-NC), the oxygen consumption rate and adenosine trisphosphate (ATP) production level were decreased in 293T cells transfected with shRNA-Cs. Meanwhile, excessive superoxide production was induced as determined by mitochondrial superoxide formation assay (MitoSOX) and superoxide dismutase 2 (SOD2) detection. Moreover, the expression levels of BIP (binding immunoglobulin protein) and CHOP (CCAAT/enhancer-binding protein-homologous protein), markers of endoplasmic reticulum stress, were upregulated. Furthermore, apoptosis related molecule caspase-3 and the mitochondrial membrane potential were reduced. It is therefore concluded that downregulation of Cs expression in 293T cells leads to low level of ATP production, excessive superoxide formation and cell apoptosis, which implies a possible mechanism for hearing loss in A/J mice.

  9. Side-stream smoking reduces intestinal inflammation and increases expression of tight junction proteins

    PubMed Central

    Wang, Hui; Zhao, Jun-Xing; Hu, Nan; Ren, Jun; Du, Min; Zhu, Mei-Jun

    2012-01-01

    AIM: To investigate the effect of side-stream smoking on gut microflora composition, intestinal inflammation and expression of tight junction proteins. METHODS: C57BL/6 mice were exposed to side-stream cigarette smoking for one hour daily over eight weeks. Cecal contents were collected for microbial composition analysis. Large intestine was collected for immunoblotting and quantitative reverse transcriptase polymerase chain reaction analyses of the inflammatory pathway and tight junction proteins. RESULTS: Side-stream smoking induced significant changes in the gut microbiota with increased mouse intestinal bacteria, Clostridium but decreased Fermicutes (Lactoccoci and Ruminococcus), Enterobacteriaceae family and Segmented filamentous baceteria compared to the control mice. Meanwhile, side-stream smoking inhibited the nuclear factor-κB pathway with reduced phosphorylation of p65 and IκBα, accompanied with unchanged mRNA expression of tumor necrosis factor-α or interleukin-6. The contents of tight junction proteins, claudin3 and ZO2 were up-regulated in the large intestine of mice exposed side-stream smoking. In addition, side-stream smoking increased c-Jun N-terminal kinase and p38 MAPK kinase signaling, while inhibiting AMP-activated protein kinase in the large intestine. CONCLUSION: Side-stream smoking altered gut microflora composition and reduced the inflammatory response, which was associated with increased expression of tight junction proteins. PMID:22611310

  10. Reduced effects of thyroid hormone on gene expression and metamorphosis in a paedomorphic plethodontid salamander.

    PubMed

    Aran, Robert P; Steffen, Michael A; Martin, Samuel D; Lopez, Olivia I; Bonett, Ronald M

    2014-07-01

    It has been over a century since Gudernatsch (1912, Wilhelm Roux Arch Entwickl Mech Org 35:457-483) demonstrated that mammalian thyroid gland extracts can stimulate tadpole metamorphosis. Despite the tremendous developmental diversity of amphibians, mechanisms of metamorphosis have mostly been studied in a few model systems. This limits our understanding of the processes that influence the evolution of developmental aberrations. Here we isolated thyroid hormone receptors alpha (TRα) and beta (TRβ) from Oklahoma salamanders (Eurycea tynerensis), which exhibit permanently aquatic (paedomorphic) or biphasic (metamorphic) developmental modes in different populations. We found that TRα and TRβ were upregulated by thyroid hormone (T3 ) in tail tissues of larvae from metamorphic populations, but basal levels of TR expression and T3 responsiveness were reduced in larvae from paedomorphic populations. Likewise, we found that T3 treatment resulted in complete loss of larval epibranchials in larvae from metamorphic populations, but little to no epibranchial remodeling occurred in larvae from paedomorphic populations over the same duration. This is the first study to directly demonstrate reduced gene expression and metamorphic responses to T3 in a paedomorphic plethodontid compared to metamorphic conspecifics, and the first salamander system to show differential expression of thyroid hormone receptors associated with alternative developmental patterns.

  11. Lower expression of Nrdp1 in human glioma contributes tumor progression by reducing apoptosis.

    PubMed

    Shi, Hengliang; Du, Jin; Wang, Lei; Zheng, Bao; Gong, Hui; Wu, Yuxuan; Tang, Yuan; Gao, Yong; Yu, Rutong

    2014-10-01

    Ubiquitin ligase Nrdp1 (neuregulin receptor degradation protein 1) plays important roles in multiple physiological process because it can ubiquitinate various substrates such as ErbB3, BRUCE, MyD88, C/EBPβ, and Parkin, and so forth. In addition to the physiological function, it was also found to be involved in tumor progression. It has been shown that loss of Nrdp1 enhances breast cancer cell growth. Up to now, the role of Nrdp1 in glioma has not been elucidated. Here, we reported that Nrdp1 as well as cleaved caspase 3 was lower expressed in human glioma tissues comparing with the nontumorous. And then we found that the expression of Nrdp1 and cleaved caspase 3 was increased in the treatment of Temozolomide (TMZ), a drug for glioma chemotherapy. Further investigation indicated that transient transfection of Nrdp1 significantly promoted cell apoptosis by aggravating the degradation of BRUCE and activation of caspase 3. In addition, overexpression of Nrdp1 augmented TMZ induced apoptosis by evaluating the degradation of BRUCE and the activation of caspase 3, while silencing of Nrdp1 reduced the sensitivity to the TMZ by inhibiting the degradation of BRUCE and the activation of caspase 3 in human glioma cells. These observations show that Nrdp1 is a pro-apoptotic protein in human glioma and lower expression of Nrdp1 in human glioma may promote tumor progression by reducing apoptosis, suggesting that Nrdp1 may be an important regulator in the development of human glioma.

  12. Reduced expression of PNUTS leads to activation of Rb-phosphatase and caspase-mediated apoptosis.

    PubMed

    De Leon, Gabriel; Sherry, Tara C; Krucher, Nancy A

    2008-06-01

    There is abundant evidence that Retinoblastoma (Rb) activity is important in the control of cell proliferation and apoptosis. Reversible phosphorylation of the Rb protein that is carried out by cyclin dependent kinases and Protein phosphatase 1 (PP1) regulates its functions. A PP1 interacting protein, PNUTS (Phosphatase Nuclear Targeting Subunit) is proposed to be a regulator of Rb phosphorylation. In this study, PNUTS knockdown in MCF7, SKA and HCT116 cancer cells causes a reduction in viability due to increased apoptosis. However, normal cells (MCF10A breast and CCD-18Co colon) do not exhibit reduced viability when PNUTS expression is diminished. PNUTS knockdown has no effect in Rb-null Saos-2 cells. However, when Rb is stably expressed in Saos-2 cells, PNUTS knockdown reduces cell number. Knockdown of PNUTS in p53-/- HCT116 cells indicates that p53 is dispensable for the induction of apoptosis. Loss of PNUTS expression results in increased Rb-phosphatase activity and Rb dephosphorylation. E2F1 dissociates from Rb in cells depleted of PNUTS and the resulting apoptosis is dependent on caspase-8. These results indicate that Rb phosphorylation state can be manipulated by targeting Rb phosphatase activity and suggest that PNUTS may be a potential target for therapeutic pro-apoptotic strategies.

  13. MCT8 expression in human fetal cerebral cortex is reduced in severe intrauterine growth restriction.

    PubMed

    Chan, Shiao Y; Hancox, Laura A; Martín-Santos, Azucena; Loubière, Laurence S; Walter, Merlin N M; González, Ana-Maria; Cox, Phillip M; Logan, Ann; McCabe, Christopher J; Franklyn, Jayne A; Kilby, Mark D

    2014-02-01

    The importance of the thyroid hormone (TH) transporter, monocarboxylate transporter 8 (MCT8), to human neurodevelopment is highlighted by findings of severe global neurological impairment in subjects with MCT8 (SLC16A2) mutations. Intrauterine growth restriction (IUGR), usually due to uteroplacental failure, is associated with milder neurodevelopmental deficits, which have been partly attributed to dysregulated TH action in utero secondary to reduced circulating fetal TH concentrations and decreased cerebral thyroid hormone receptor expression. We postulate that altered MCT8 expression is implicated in this pathophysiology; therefore, in this study, we sought to quantify changes in cortical MCT8 expression with IUGR. First, MCT8 immunohistochemistry was performed on occipital and parietal cerebral cortex sections obtained from appropriately grown for gestational age (AGA) human fetuses between 19 weeks of gestation and term. Secondly, MCT8 immunostaining in the occipital cortex of stillborn IUGR human fetuses at 24-28 weeks of gestation was objectively compared with that in the occipital cortex of gestationally matched AGA fetuses. Fetuses demonstrated widespread MCT8 expression in neurons within the cortical plate and subplate, in the ventricular and subventricular zones, in the epithelium of the choroid plexus and ependyma, and in microvessel wall. When complicated by IUGR, fetuses showed a significant fivefold reduction in the percentage area of cortical plate immunostained for MCT8 compared with AGA fetuses (P<0.05), but there was no significant difference in the proportion of subplate microvessels immunostained. Cortical MCT8 expression was negatively correlated with the severity of IUGR indicated by the brain:liver weight ratios (r(2)=0.28; P<0.05) at post-mortem. Our results support the hypothesis that a reduction in MCT8 expression in the IUGR fetal brain could further compromise TH-dependent brain development.

  14. MCT8 expression in human fetal cerebral cortex is reduced in severe intrauterine growth restriction

    PubMed Central

    Chan, Shiao Y; Hancox, Laura A; Martín-Santos, Azucena; Loubière, Laurence S; Walter, Merlin N M; González, Ana-Maria; Cox, Phillip M; Logan, Ann; McCabe, Christopher J; Franklyn, Jayne A; Kilby, Mark D

    2014-01-01

    The importance of the thyroid hormone (TH) transporter, monocarboxylate transporter 8 (MCT8), to human neurodevelopment is highlighted by findings of severe global neurological impairment in subjects with MCT8 (SLC16A2) mutations. Intrauterine growth restriction (IUGR), usually due to uteroplacental failure, is associated with milder neurodevelopmental deficits, which have been partly attributed to dysregulated TH action in utero secondary to reduced circulating fetal TH concentrations and decreased cerebral thyroid hormone receptor expression. We postulate that altered MCT8 expression is implicated in this pathophysiology; therefore, in this study, we sought to quantify changes in cortical MCT8 expression with IUGR. First, MCT8 immunohistochemistry was performed on occipital and parietal cerebral cortex sections obtained from appropriately grown for gestational age (AGA) human fetuses between 19 weeks of gestation and term. Secondly, MCT8 immunostaining in the occipital cortex of stillborn IUGR human fetuses at 24–28 weeks of gestation was objectively compared with that in the occipital cortex of gestationally matched AGA fetuses. Fetuses demonstrated widespread MCT8 expression in neurons within the cortical plate and subplate, in the ventricular and subventricular zones, in the epithelium of the choroid plexus and ependyma, and in microvessel wall. When complicated by IUGR, fetuses showed a significant fivefold reduction in the percentage area of cortical plate immunostained for MCT8 compared with AGA fetuses (P<0.05), but there was no significant difference in the proportion of subplate microvessels immunostained. Cortical MCT8 expression was negatively correlated with the severity of IUGR indicated by the brain:liver weight ratios (r2=0.28; P<0.05) at post-mortem. Our results support the hypothesis that a reduction in MCT8 expression in the IUGR fetal brain could further compromise TH-dependent brain development. PMID:24204008

  15. Lactobacilli Reduce Helicobacter pylori Attachment to Host Gastric Epithelial Cells by Inhibiting Adhesion Gene Expression

    PubMed Central

    de Klerk, Nele; Maudsdotter, Lisa; Gebreegziabher, Hanna; Saroj, Sunil D.; Eriksson, Beatrice; Eriksson, Olaspers Sara; Roos, Stefan; Lindén, Sara; Sjölinder, Hong

    2016-01-01

    The human gastrointestinal tract, including the harsh environment of the stomach, harbors a large variety of bacteria, of which Lactobacillus species are prominent members. The molecular mechanisms by which species of lactobacilli interfere with pathogen colonization are not fully characterized. In this study, we aimed to study the effect of lactobacillus strains upon the initial attachment of Helicobacter pylori to host cells. Here we report a novel mechanism by which lactobacilli inhibit adherence of the gastric pathogen H. pylori. In a screen with Lactobacillus isolates, we found that only a few could reduce adherence of H. pylori to gastric epithelial cells. Decreased attachment was not due to competition for space or to lactobacillus-mediated killing of the pathogen. Instead, we show that lactobacilli act on H. pylori directly by an effector molecule that is released into the medium. This effector molecule acts on H. pylori by inhibiting expression of the adhesin-encoding gene sabA. Finally, we verified that inhibitory lactobacilli reduced H. pylori colonization in an in vivo model. In conclusion, certain Lactobacillus strains affect pathogen adherence by inhibiting sabA expression and thereby reducing H. pylori binding capacity. PMID:26930708

  16. Nuclear protein import is reduced in cells expressing nuclear envelopathy-causing lamin A mutants

    SciTech Connect

    Busch, Albert; Kiel, Tilman; Heupel, Wolfgang-M.; Wehnert, Manfred; Huebner, Stefan

    2009-08-15

    Lamins, which form the nuclear lamina, not only constitute an important determinant of nuclear architecture, but additionally play essential roles in many nuclear functions. Mutations in A-type lamins cause a wide range of human genetic disorders (laminopathies). The importance of lamin A (LaA) in the spatial arrangement of nuclear pore complexes (NPCs) prompted us to study the role of LaA mutants in nuclear protein transport. Two mutants, causing prenatal skin disease restrictive dermopathy (RD) and the premature aging disease Hutchinson Gilford progeria syndrome, were used for expression in HeLa cells to investigate their impact on the subcellular localization of NPC-associated proteins and nuclear protein import. Furthermore, dynamics of the LaA mutants within the nuclear lamina were studied. We observed affected localization of NPC-associated proteins, diminished lamina dynamics for both LaA mutants and reduced nuclear import of representative cargo molecules. Intriguingly, both LaA mutants displayed similar effects on nuclear morphology and functions, despite their differences in disease severity. Reduced nuclear protein import was also seen in RD fibroblasts and impaired lamina dynamics for the nucleoporin Nup153. Our data thus represent the first study of a direct link between LaA mutant expression and reduced nuclear protein import.

  17. Lactobacilli Reduce Helicobacter pylori Attachment to Host Gastric Epithelial Cells by Inhibiting Adhesion Gene Expression.

    PubMed

    de Klerk, Nele; Maudsdotter, Lisa; Gebreegziabher, Hanna; Saroj, Sunil D; Eriksson, Beatrice; Eriksson, Olaspers Sara; Roos, Stefan; Lindén, Sara; Sjölinder, Hong; Jonsson, Ann-Beth

    2016-05-01

    The human gastrointestinal tract, including the harsh environment of the stomach, harbors a large variety of bacteria, of which Lactobacillus species are prominent members. The molecular mechanisms by which species of lactobacilli interfere with pathogen colonization are not fully characterized. In this study, we aimed to study the effect of lactobacillus strains upon the initial attachment of Helicobacter pylori to host cells. Here we report a novel mechanism by which lactobacilli inhibit adherence of the gastric pathogen H. pylori In a screen with Lactobacillus isolates, we found that only a few could reduce adherence of H. pylori to gastric epithelial cells. Decreased attachment was not due to competition for space or to lactobacillus-mediated killing of the pathogen. Instead, we show that lactobacilli act on H. pylori directly by an effector molecule that is released into the medium. This effector molecule acts on H. pylori by inhibiting expression of the adhesin-encoding gene sabA Finally, we verified that inhibitory lactobacilli reduced H. pylori colonization in an in vivo model. In conclusion, certain Lactobacillus strains affect pathogen adherence by inhibiting sabA expression and thereby reducing H. pylori binding capacity.

  18. Decreased adrenoceptor stimulation in heart failure rats reduces NGF expression by cardiac parasympathetic neurons.

    PubMed

    Hasan, Wohaib; Smith, Peter G

    2014-04-01

    Postganglionic cardiac parasympathetic and sympathetic nerves are physically proximate in atrial cardiac tissue allowing reciprocal inhibition of neurotransmitter release, depending on demands from central cardiovascular centers or reflex pathways. Parasympathetic cardiac ganglion (CG) neurons synthesize and release the sympathetic neurotrophin nerve growth factor (NGF), which may serve to maintain these close connections. In this study we investigated whether NGF synthesis by CG neurons is altered in heart failure, and whether norepinephrine from sympathetic neurons promotes NGF synthesis. NGF and proNGF immunoreactivity in CG neurons in heart failure rats following chronic coronary artery ligation was investigated. NGF immunoreactivity was decreased significantly in heart failure rats compared to sham-operated animals, whereas proNGF expression was unchanged. Changes in neurochemistry of CG neurons included attenuated expression of the cholinergic marker vesicular acetylcholine transporter, and increased expression of the neuropeptide vasoactive intestinal polypeptide. To further investigate norepinephrine's role in promoting NGF synthesis, we cultured CG neurons treated with adrenergic receptor (AR) agonists. An 82% increase in NGF mRNA levels was detected after 1h of isoproterenol (β-AR agonist) treatment, which increased an additional 22% at 24h. Antagonist treatment blocked isoproterenol-induced increases in NGF transcripts. In contrast, the α-AR agonist phenylephrine did not alter NGF mRNA expression. These results are consistent with β-AR mediated maintenance of NGF synthesis in CG neurons. In heart failure, a decrease in NGF synthesis by CG neurons may potentially contribute to reduced connections with adjacent sympathetic nerves.

  19. Nandrolone reduces activation of Notch signaling in denervated muscle associated with increased Numb expression

    SciTech Connect

    Liu, Xin-Hua; Yao, Shen; Qiao, Rui-Fang; Levine, Alice C.; Kirschenbaum, Alexander; Pan, Jiangping; Wu, Yong; Qin, Weiping; Bauman, William A.; Cardozo, Christopher P.

    2011-10-14

    Highlights: {yields} Nerve transection increased Notch signaling in paralyzed muscle. {yields} Nandrolone prevented denervation-induced Notch signaling. {yields} Nandrolone induced the expression of an inhibitor of the Notch signaling, Numb. {yields} Reduction of denervation-induced Notch signaling by nandrolone is likely through upregulation of Numb. -- Abstract: Nandrolone, an anabolic steroid, slows denervation-atrophy in rat muscle. The molecular mechanisms responsible for this effect are not well understood. Androgens and anabolic steroids activate Notch signaling in animal models of aging and thereby mitigate sarcopenia. To explore the molecular mechanisms by which nandrolone prevents denervation-atrophy, we investigated the effects of nandrolone on Notch signaling in denervated rat gastrocnemius muscle. Denervation significantly increased Notch activity reflected by elevated levels of nuclear Notch intracellular domain (NICD) and expression of Hey1 (a Notch target gene). Activation was greatest at 7 and 35 days after denervation but remained present at 56 days after denervation. Activation of Notch in denervated muscle was prevented by nandrolone associated with upregulated expression of Numb mRNA and protein. These data demonstrate that denervation activates Notch signaling, and that nandrolone abrogates this response associated with increased expression of Numb, suggesting a potential mechanism by which nandrolone reduces denervation-atrophy.

  20. The Inflammatory Cytokines TWEAK and TNFα Reduce Renal Klotho Expression through NFκB

    PubMed Central

    Moreno, Juan A.; Izquierdo, Maria C.; Sanchez-Niño, Maria D.; Suárez-Alvarez, Beatriz; Lopez-Larrea, Carlos; Jakubowski, Aniela; Blanco, Julia; Ramirez, Rafael; Selgas, Rafael; Ruiz-Ortega, Marta; Egido, Jesus; Sanz, Ana B.

    2011-01-01

    Proinflammatory cytokines contribute to renal injury, but the downstream effectors within kidney cells are not well understood. One candidate effector is Klotho, a protein expressed by renal cells that has antiaging properties; Klotho-deficient mice have an accelerated aging-like phenotype, including vascular injury and renal injury. Whether proinflammatory cytokines, such as TNF and TNF-like weak inducer of apoptosis (TWEAK), modulate Klotho is unknown. In mice, exogenous administration of TWEAK decreased expression of Klotho in the kidney. In the setting of acute kidney injury induced by folic acid, the blockade or absence of TWEAK abrogated the injury-related decrease in renal and plasma Klotho levels. TWEAK, TNFα, and siRNA-mediated knockdown of IκBα all activated NFκB and reduced Klotho expression in the MCT tubular cell line. Furthermore, inhibition of NFκB with parthenolide prevented TWEAK- or TNFα-induced downregulation of Klotho. Inhibition of histone deacetylase reversed TWEAK-induced downregulation of Klotho, and chromatin immunoprecipitation showed that TWEAK promotes RelA binding to the Klotho promoter, inducing its deacetylation. In conclusion, inflammatory cytokines, such as TWEAK and TNFα, downregulate Klotho expression through an NFκB-dependent mechanism. These results may partially explain the relationship between inflammation and diseases characterized by accelerated aging of organs, including CKD. PMID:21719790

  1. Expression of Arabidopsis Hexokinase in Citrus Guard Cells Controls Stomatal Aperture and Reduces Transpiration.

    PubMed

    Lugassi, Nitsan; Kelly, Gilor; Fidel, Lena; Yaniv, Yossi; Attia, Ziv; Levi, Asher; Alchanatis, Victor; Moshelion, Menachem; Raveh, Eran; Carmi, Nir; Granot, David

    2015-01-01

    Hexokinase (HXK) is a sugar-phosphorylating enzyme involved in sugar-sensing. It has recently been shown that HXK in guard cells mediates stomatal closure and coordinates photosynthesis with transpiration in the annual species tomato and Arabidopsis. To examine the role of HXK in the control of the stomatal movement of perennial plants, we generated citrus plants that express Arabidopsis HXK1 (AtHXK1) under KST1, a guard cell-specific promoter. The expression of KST1 in the guard cells of citrus plants has been verified using GFP as a reporter gene. The expression of AtHXK1 in the guard cells of citrus reduced stomatal conductance and transpiration with no negative effect on the rate of photosynthesis, leading to increased water-use efficiency. The effects of light intensity and humidity on stomatal behavior were examined in rooted leaves of the citrus plants. The optimal intensity of photosynthetically active radiation and lower humidity enhanced stomatal closure of AtHXK1-expressing leaves, supporting the role of sugar in the regulation of citrus stomata. These results suggest that HXK coordinates photosynthesis and transpiration and stimulates stomatal closure not only in annual species, but also in perennial species.

  2. Reduced folate carrier (RFC-1) gene expression in normal and psoriatic skin.

    PubMed

    Sprecher, E; Bergman, R; Sprecher, H; Maor, G; Reiter, I; Krivoy, N; Drori, S; Assaraf, Y G; Friedman-Birnbaum, R

    1998-12-01

    Methotrexate is widely used in the treatment of severe psoriasis. However, little is currently known about the mechanisms underlying its therapeutic activity in the skin. Methotrexate has been shown to be carried into cells through the reduced folate carrier (RFC-1). The recent cloning and characterization of the human gene encoding this transmembranal carrier enabled us to investigate RFC-1 gene expression in human skin. Biopsies were obtained from the skin of healthy and psoriatic volunteers. RNA extracted from these biopsies was analyzed by the reverse transcriptase-polymerase chain reaction technique. While RFC-1 gene expression was barely detectable in the uninvolved skin of psoriatic patients and in the skin of healthy volunteers, high levels of RFC-1 transcripts were found in biopsies obtained from psoriatic plaques. To further investigate this pattern of gene expression, we studied skin biopsies by in situ hybridization with a labeled antisense riboprobe specific for the RFC-1 gene. The RFC-1 gene was found to be weakly expressed in the epidermis, in biopsies obtained from the skin of healthy subjects as well as in those from the uninvolved skin of psoriatic patients. In contrast, in biopsies obtained from psoriatic plaques, high levels of RFC-1 gene transcripts were found mostly in the spinous layer of the epidermis. These results suggest the existence of a specific methotrexate carrier in the human epidermis, and may bear relevance to the cutaneous manifestations of methotrexate toxicity.

  3. Huoxue Rongluo Tablet reduces matrix metalloproteinase-9 expression in infarcted brain tissue.

    PubMed

    Zhou, Desheng; Li, Mei; Hu, Hua; Chen, Yao; Yang, Yang; Zhong, Jie; Liu, Lijuan

    2013-12-05

    Huoxue Rongluo Tablet was made of tall gastrodis tuber, dahurian angelica root, honeysuckle stem, grassleaf sweetflag rhizome, common flowering quince fruit, figwort root, red peony root and peach seed at a ratio of 3:2:6:2:3:3:3:3. Huoxue Rongluo Tablet is a well-established and common pre-scription for the treatment of cerebral infarction. In this study, a rat model of cerebral ischemia was established and the animals were intragastrically administered Huoxue Rongluo Tablet. This treat-ment reduced infarct volume, decreased matrix metalloproteinase-9 expression, and improved neurological function. Moreover, the effects of Huoxue Rongluo Tablet were better than those of buflomedil pyridoxal phosphate. These results indicate that Huoxue Rongluo Tablet is effective in treating cerebral infarction by regulating matrix metalloproteinase-9 protein expression.

  4. Huoxue Rongluo Tablet reduces matrix metalloproteinase-9 expression in infarcted brain tissue

    PubMed Central

    Zhou, Desheng; Li, Mei; Hu, Hua; Chen, Yao; Yang, Yang; Zhong, Jie; Liu, Lijuan

    2013-01-01

    Huoxue Rongluo Tablet was made of tall gastrodis tuber, dahurian angelica root, honeysuckle stem, grassleaf sweetflag rhizome, common flowering quince fruit, figwort root, red peony root and peach seed at a ratio of 3:2:6:2:3:3:3:3. Huoxue Rongluo Tablet is a well-established and common pre-scription for the treatment of cerebral infarction. In this study, a rat model of cerebral ischemia was established and the animals were intragastrically administered Huoxue Rongluo Tablet. This treat-ment reduced infarct volume, decreased matrix metalloproteinase-9 expression, and improved neurological function. Moreover, the effects of Huoxue Rongluo Tablet were better than those of buflomedil pyridoxal phosphate. These results indicate that Huoxue Rongluo Tablet is effective in treating cerebral infarction by regulating matrix metalloproteinase-9 protein expression. PMID:25206642

  5. Neurotransplantation of stem cells genetically modified to express human dopamine transporter reduces alcohol consumption

    PubMed Central

    2010-01-01

    Introduction Regulated neurotransmitter actions in the mammalian central nervous system determine brain function and control peripheral organs and behavior. Although drug-seeking behaviors, including alcohol consumption, depend on central neurotransmission, modification of neurotransmitter actions in specific brain nuclei remains challenging. Herein, we report a novel approach for neurotransmission modification in vivo by transplantation of stem cells engineered to take up the neurotransmitter dopamine (DA) efficiently through the action of the human dopamine transporter (hDAT). As a functional test in mice, we used voluntary alcohol consumption, which is known to release DA in nucleus accumbens (NAC), an event hypothesized to help maintain drug-seeking behavior. We reasoned that reducing extracellular DA levels, by engrafting into NAC DA-sequestering stem cells expressing hDAT, would alter alcohol intake. Methods We have generated a neural stem cell line stably expressing the hDAT. Uptake kinetics of DA were determined to select a clone for transplantation. These genetically modified stem cells (or cells transfected with a construct lacking the hDAT sequence) were transplanted bilaterally into the NAC of wild-type mice trained to consume 10% alcohol in a two-bottle free-choice test for alcohol consumption. Alcohol intake was then ascertained for 1 week after transplantation, and brain sections through the NAC were examined for surviving grafted cells. Results Modified stem cells expressed hDAT and uptaken DA selectively via hDAT. Mice accustomed to drinking 10% ethanol by free choice reduced their alcohol consumption after being transplanted with hDAT-expressing stem cells. By contrast, control stem cells lacked that effect. Histologic examination revealed surviving stem cells in the NAC of all engrafted brains. Conclusions Our findings represent proof of principle suggesting that genetically engineered stem cells can be useful for exploring the role of

  6. Tomatidine inhibits invasion of human lung adenocarcinoma cell A549 by reducing matrix metalloproteinases expression.

    PubMed

    Yan, Kun-Huang; Lee, Liang-Ming; Yan, Shao-Han; Huang, Hsiang-Ching; Li, Chia-Chen; Lin, Hui-Ting; Chen, Pin-Shern

    2013-05-25

    Tomatidine is an aglycone of glycoalkaloid tomatine in tomato. Tomatidine is found to possess anti-inflammatory properties and may serve as a chemosensitizer in multidrug-resistant tumor cells. However, the effect of tomatidine on cancer cell metastasis remains unclear. This study examines the effect of tomatidine on the migration and invasion of human lung adenocarcinoma A549 cell in vitro. The data demonstrates that tomatidine does not effectively inhibit the viability of A549 cells. When treated with non-toxic doses of tomatidine, cell invasion is markedly suppressed by Boyden chamber invasion assay, while cell migration is not affected. Tomatidine reduces the mRNA level of matrix metalloproteinase-2 (MMP-2), MMP-9 and increases the expression of reversion-inducing cysteine-rich protein with kazal motifs (RECK), as well as tissue inhibitor of metalloproteinase-1 (TIMP-1). The immunoblotting assays indicate that tomatidine is very effective in suppressing the phosphorylation of Akt and extracellular signal regulating kinase (ERK). In addition, tomatidine significantly decreases the nuclear level of nuclear factor kappa B (NF-κB), which suggests that tomatidine inhibits NF-κB activity. Furthermore, the treatment of inhibitors specific for PI3K/Akt (LY294002), ERK (U0126), or NF-κB (pyrrolidine dithiocarbamate) to A549 cells reduced cell invasion and MMP-2/9 expression. The results suggest that tomatidine inhibits the invasion of A549 cells by reducing the expression of MMPs. It also inhibits ERK and Akt signaling pathways and NF-κB activity. These findings demonstrate a new therapeutic potential for tomatidine in anti-metastatic therapy.

  7. Green tea extracts reduce adipogenesis by decreasing expression of transcription factors C/EBPα and PPARγ

    PubMed Central

    Yang, Xiuling; Yin, Lei; Li, Tang; Chen, Zhihong

    2014-01-01

    Objectives: This study is to determine if green tea (Camellia sinensis) extracts (GTE) affects adipogenesis and further investigate the related molecular mechanisms. Methods: Patients with metabolic syndrome were recruited in this study. Of them, 70 patients received GTE and 64 received water to serve as the control group. The human serum adiponectin, visfatin, and leptin concentrations were determined by enzyme-linked immunosorbent assay. Adipogenesis of 3T3-L1 preadipocytes was induced with reagents and then the cells were treated with GTE. The lipids were stained with Oil Red O for analysis of adipogenesis of 3T3-L1 preadipocytes. The 3T3-L1 preadipocytes were treated with increasing concentrations (0.2-0.5%, w/v) of GTE for 2 days and the cell viability was determined by MTT assay. Reverse transcription real-time PCR and immunoblotting assays were performed to determine RNA and protein levels of relative molecules. Results: GTE increases the serum concentrations of adiponectin but decreases visfatin levels in patients received GTE. The leptin concentrations in serum were not significantly affected. The GTE reduces the adipogenesis-induced lipid accumulation in 3T3-L1 preadipocytes. GTE decreases the mRNA and protein expression of adipogenic transcription factors C/EBPα and PPARγ in 3T3-L1 cells. Expression levels of the adipocyte-specific genes encoding adipocyte protein 2, lipoprotein lipase, and glucose transporter 4 were also decreased by GTE. Furthermore, it was found that GTE reduces phosphorylation of Akt during adipocyte differentiation. Conclusions: GTE reduces adipogenesis by decreasing expression of transcription factors C/EBPα and PPARγ by reduction of phosphorylation of Akt during adipocyte differentiation. PMID:25663987

  8. 1,25-Dihydroxyvitamin D(3) Inhibits Podocyte uPAR Expression and Reduces Proteinuria

    PubMed Central

    Liu, Shuangxin; Xie, Shaoting; Yang, Yun; Ma, Juan; Deng, Yujun; Wang, Wenjian; Xu, Lixia; Li, Ruizhao; Zhang, Li; Yu, Chunping; Shi, Wei

    2013-01-01

    Background Accumulating studies have demonstrated that 1,25-Dihydroxyvitamin D(3) (1,25(OH)2D3) reduces proteinuria and protects podocytes from injury. Recently, urokinase receptor (uPAR) and its soluble form have been shown to cause podocyte injury and focal segmental glomerulosclerosis (FSGS). Here, our findings showed that 1,25(OH)2D3 did inhibit podocyte uPAR expression and attenuate proteinuria and podocyte injury. Methodology/Principal Findings In this study, the antiproteinuric effect of 1,25(OH)2D3 was examined in the lipopolysaccharide mice model of transient proteinuria (LPS mice) and in the 5/6 nephrectomy rat FSGS model(NTX rats). uPAR protein expression were tested by flow cytometry, immune cytochemistry and western blot analysis, and uPAR mRNA expression by real-time quantitative PCR in cultured podocytes and kidney glomeruli isolated from mice and rats. Podocyte motility was observed by transwell migration assay and wound healing assay. Podocyte foot processes effacement was identified by transmission electron microscopy. We found that 1,25(OH)2D3 inhibited podocyte uPAR mRNA and protein synthesis in LPS-treated podocytes, LPS mice and NTX rats, along with 1,25(OH)2D3 reducing proteinuria in NTX rats and LPS mice.1,25(OH)2D3 reduced glomerulosclerosis in NTX rats and alleviated podocyte foot processes effacement in LPS mice. Transwell migration assay and wound healing assay showed that LPS-induced podocyte motility, irrespective of random or directed motility, were substantially reduced by 1,25(OH)2D3. Conclusions/Significance Our results demonstrated that 1,25(OH)2D3 inhibited podocyte uPAR expression in vitro and in vivo, which may be an unanticipated off target effect of 1,25(OH)2D3 and explain its antiproteinuric effect in the 5/6 nephrectomy rat FSGS model and the LPS mouse model of transient proteinuria. PMID:23741418

  9. Over-expression of TRESK K(+) channels reduces the excitability of trigeminal ganglion nociceptors.

    PubMed

    Guo, Zhaohua; Cao, Yu-Qing

    2014-01-01

    TWIK-related spinal cord K(+) (TRESK) channel is abundantly expressed in trigeminal ganglion (TG) and dorsal root ganglion neurons and is one of the major background K(+) channels in primary afferent neurons. Mutations in TRESK channels are associated with familial and sporadic migraine. In rats, both chronic nerve injury and inflammation alter the expression level of TRESK mRNA. Functional studies indicate that reduction of endogenous TRESK channel activity results in hyper-excitation of primary afferent neurons, suggesting that TRESK is a potential target for the development of new analgesics. However, whether and how enhancing TRESK channel activity would decrease the excitability of primary afferent neurons has not been directly tested. Here, we over-expressed TRESK subunits in cultured mouse TG neurons by lipofectamine-mediated transfection and investigated how this altered the membrane properties and the excitability of the small-diameter TG population. To account for the heterogeneity of neurons, we further divided small TG neurons into two groups, based on their ability to bind to fluorescently-labeled isolectin B (IB4). The transfected TG neurons showed a 2-fold increase in the level of TRESK proteins. This was accompanied by a significant increase in the fraction of lamotrigine-sensitive persistent K(+) currents as well as the size of total background K(+) currents. Consequently, both IB4-positive and IB4-negative TG neurons over-expressing TRESK subunits exhibited a lower input resistance and a 2-fold increase in the current threshold for action potential initiation. IB4-negative TG neurons over-expressing TRESK subunits also showed a significant reduction of the spike frequency in response to supra-threshold stimuli. Importantly, an increase in TRESK channel activity effectively inhibited capsaicin-evoked spikes in TG neurons. Taken together, our results suggest that potent and specific TRESK channel openers likely would reduce the excitability of

  10. Deafness and permanently reduced potassium channel gene expression and function in hypothyroid Pit1dw mutants.

    PubMed

    Mustapha, Mirna; Fang, Qing; Gong, Tzy-Wen; Dolan, David F; Raphael, Yehoash; Camper, Sally A; Duncan, R Keith

    2009-01-28

    The absence of thyroid hormone (TH) during late gestation and early infancy can cause irreparable deafness in both humans and rodents. A variety of rodent models have been used in an effort to identify the underlying molecular mechanism. Here, we characterize a mouse model of secondary hypothyroidism, pituitary transcription factor 1 (Pit1(dw)), which has profound, congenital deafness that is rescued by oral TH replacement. These mutants have tectorial membrane abnormalities, including a prominent Hensen's stripe, elevated beta-tectorin composition, and disrupted striated-sheet matrix. They lack distortion product otoacoustic emissions and cochlear microphonic responses, and exhibit reduced endocochlear potentials, suggesting defects in outer hair cell function and potassium recycling. Auditory system and hair cell physiology, histology, and anatomy studies reveal novel defects of hormone deficiency related to deafness: (1) permanently impaired expression of KCNJ10 in the stria vascularis of Pit1(dw) mice, which likely contributes to the reduced endocochlear potential, (2) significant outer hair cell loss in the mutants, which may result from cellular stress induced by the lower KCNQ4 expression and current levels in Pit1(dw) mutant outer hair cells, and (3) sensory and strial cell deterioration, which may have implications for thyroid hormone dysregulation in age-related hearing impairment. In summary, we suggest that these defects in outer hair cell and strial cell function are important contributors to the hearing impairment in Pit1(dw) mice.

  11. A 3 base pair deletion in TBX1 leads to reduced protein expression and transcriptional activity

    PubMed Central

    Xu, Yuejuan; Fang, Shaohai; Zhang, Erge; Pu, Tian; Cao, Ruixue; Fu, Qihua; Li, Fen; Chen, Sun; Sun, Kun; Xu, Rang

    2017-01-01

    Transcription factor TBX1 plays a pivotal role in heart development and has been implicated in 22q11.2 deletion syndrome. The structure of this protein has been elucidated, and several mutations have been identified that disrupt TBX1 localization, DNA/protein-binding, or mRNA expression. This study reports a mutation in the TBX1 gene that leads to significantly reduced expression of the mutant protein. A total of 773 conotruncal heart defect patients and 516 unrelated healthy control individuals were enrolled, none of which harbored a 22q11.2 deletion or duplication. We identified a mutation, c.303-305delGAA, located in the third exon of TBX1 that does not disrupt TBX1 mRNA expression or DNA binding activity, but results in decreased TBX1 protein levels and transcriptional activity. Through protein degradation studies we demonstrated that TBX1 is degraded primarily in proteasomes. Although the c.303-305delGAA mutation leads to low levels of the mutant protein, we found that increased protein degradation was not the cause, and we hypothesize that an alternate mechanism, such as translational inhibition, may be the cause. PMID:28272434

  12. Influences of reduced expression of maternal bone morphogenetic protein 2 on mouse embryonic development.

    PubMed

    Singh, A P; Castranio, T; Scott, G; Guo, D; Harris, M A; Ray, M; Harris, S E; Mishina, Y

    2008-01-01

    Bone morphogenetic protein 2 (BMP2) was originally found by its osteoinductive ability, and recent genetic analyses have revealed that it plays critical roles during early embryogenesis, cardiogenesis, decidualization as well as skeletogenesis. In the course of evaluation of the conditional allele for Bmp2, we found that the presence of a neo cassette, a selection marker needed for gene targeting events in embryonic stem cells, in the 3' untranslated region of exon 3 of Bmp2, reduced the expression levels of Bmp2 both in embryonic and maternal mouse tissues. Some of the embryos that were genotyped as transheterozygous for the floxed allele with the neo cassette over the conventional null allele (fn/-) showed a lethal phenotype including defects in cephalic neural tube closure and ventral abdominal wall closure. The number of embryos exhibiting these abnormalities was increased when, due to different genotypes, expression levels of Bmp2 in maternal tissues were lower. These results suggest that the expression levels of Bmp2 in both embryonic and maternal tissues influence the normal neural tube closure and body wall closure with different thresholds.

  13. Reduced expression of glycolate oxidase leads to enhanced disease resistance in rice.

    PubMed

    Chern, Mawsheng; Bai, Wei; Chen, Xuewei; Canlas, Patrick E; Ronald, Pamela C

    2013-01-01

    Glycolate oxidase (GLO) is a key enzyme in photorespiration, catalyzing the oxidation of glycolate to glyoxylate. Arabidopsis GLO is required for nonhost defense responses to Pseudomonas syringae and for tobacco Pto/AvrPto-mediated defense responses. We previously described identification of rice GLO1 that interacts with a glutaredoxin protein, which in turn interacts with TGA transcription factors. TGA transcription factors are well known to participate in NPR1/NH1-mediated defense signaling, which is crucial to systemic acquired resistance in plants. Here we demonstrate that reduction of rice GLO1 expression leads to enhanced resistance to Xanthomonas oryzae pv oryzae (Xoo). Constitutive silencing of GLO1 leads to programmed cell death, resulting in a lesion-mimic phenotype and lethality or reduced plant growth and development, consistent with previous reports. Inducible silencing of GLO1, employing a dexamethasone-GVG (Gal4 DNA binding domain-VP16 activation domain-glucocorticoid receptor fusion) inducible system, alleviates these detrimental effects. Silencing of GLO1 results in enhanced resistance to Xoo, increased expression of defense regulators NH1, NH3, and WRKY45, and activation of PR1 expression.

  14. Early hypermethylation of hepatic Igfbp2 results in its reduced expression preceding fatty liver in mice

    PubMed Central

    Kammel, Anne; Saussenthaler, Sophie; Jähnert, Markus; Jonas, Wenke; Stirm, Laura; Hoeflich, Andreas; Staiger, Harald; Fritsche, Andreas; Häring, Hans-Ulrich; Joost, Hans-Georg; Schürmann, Annette; Schwenk, Robert W.

    2016-01-01

    Obesity and ectopic fat disposition are risk factors for metabolic disease. Recent data indicate that IGFBP2 expression in liver is epigenetically inhibited during hepatic steatosis. The aim of this study was to investigate if epigenetic de-regulation of hepatic Igfbp2 occurs already early in life and is associated with increased risk for diet-induced obesity (DIO) during adolescence. Male C57BL/6J mice received a high-fat diet. After 3 weeks on this diet (age of 6 weeks), DIO-susceptible (responder, Resp) and DIO-resistant (non-responder, nResp) mice were identified by early weight gain. At the age of 6 weeks, Resp mice exhibited elevated blood glucose (p < 0.05), plasma insulin (p < 0.01), HOMA-IR and leptin/adiponectin ratio, whereas liver triglycerides were identical but significantly increased (p < 0.01) in Resp mice at 20 weeks of age. Igfbp2 expression was reduced in young Resp compared with nResp mice (p < 0.01), an effect that correlated with elevated DNA methylation of intronic CpG2605 (p < 0.01). The epigenetic inhibition of Igfbp2 was stable over time and preceded DIO and hepatosteatosis in adult mice. In vitro studies demonstrated that selective methylation of CpG2605 significantly reduced reporter activity by ∼85%, indicating that Igfbp2 expression is modulated by methylation. In human whole blood cells, methylation of IGFBP2 at the homologous CpG site was increased in obese men with impaired glucose tolerance. In conclusion, our data show that increased methylation of hepatic Igfbp2 during infancy predicts the development of fatty liver later in life and is linked to deterioration of glucose metabolism. PMID:27126637

  15. Semaphorin 3F expression is reduced in pregnancy complicated by preeclampsia. An observational clinical study

    PubMed Central

    Stallone, Giovanni; Matteo, Maria; Netti, Giuseppe Stefano; Infante, Barbara; Di Lorenzo, Adelaide; Prattichizzo, Clelia; Carlucci, Stefania; Trezza, Federica; Gesualdo, Loreto; Greco, Pantaleo

    2017-01-01

    Background and objective Preeclampsia is a systemic disorder, affecting 2–10% of pregnancies, characterized by a deregulated pro- and anti-angiogenic balance. Semaphorin 3F is an angiogenesis inhibitor. We aimed to investigate whether semaphorin 3F expression is modulated in preeclampsia. Design, setting, participants, and measurements We performed two observational single center cohort studies between March 2013 and August 2014. In the first we enrolled 110 consecutive women, undergoing an elective cesarean section; in the second we included 150 consecutive women undergoing amniocentesis for routine clinical indications at 16–18 week of gestation. Semaphorin 3F concentration was evaluated in maternal peripheral blood, venous umbilical blood and amniotic fluid, along with its placenta protein expression at the time of delivery in the first study group and in the amniotic fluid at 16–18 weeks of gestation in the second study group. Results In the first study 19 patients presented at delivery with preeclampsia. Semaphorin 3F placenta tissue expression was significantly reduced in preeclampsia. In addition, semaphorin 3F level at delivery was significantly lower in serum, amniotic fluid and venous umbilical blood of preeclamptic patients compared with normal pregnant women. In the prospective cohort study 14 women developed preeclampsia. In this setting, semaphorin 3F amniotic level at 16–18 weeks of gestation was reduced in women who subsequently developed preeclampsia compared to women with a normal pregnancy. ROC curve analysis showed that semaphorin 3F amniotic levels could identify women at higher risk of preeclampsia. Conclusions Semaphorin 3F might represent a predictive biomarker of preeclampsia. PMID:28350837

  16. Chemical Inhibition of Kynureninase Reduces Pseudomonas aeruginosa Quorum Sensing and Virulence Factor Expression.

    PubMed

    Kasper, Stephen H; Bonocora, Richard P; Wade, Joseph T; Musah, Rabi Ann; Cady, Nathaniel C

    2016-04-15

    The opportunistic pathogen Pseudomonas aeruginosa utilizes multiple quorum sensing (QS) pathways to coordinate an arsenal of virulence factors. We previously identified several cysteine-based compounds inspired by natural products from the plant Petiveria alliacea which are capable of antagonizing multiple QS circuits as well as reducing P. aeruginosa biofilm formation. To understand the global effects of such compounds on virulence factor production and elucidate their mechanism of action, RNA-seq transcriptomic analysis was performed on P. aeruginosa PAO1 exposed to S-phenyl-l-cysteine sulfoxide, the most potent inhibitor from the prior study. Exposure to this inhibitor down-regulated expression of several QS-regulated virulence operons (e.g., phenazine biosynthesis, type VI secretion systems). Interestingly, many genes that were differentially regulated pertain to the related metabolic pathways that yield precursors of pyochelin, tricarboxylic acid cycle intermediates, phenazines, and Pseudomonas quinolone signal (PQS). Activation of the MexT-regulon was also indicated, including the multidrug efflux pump encoded by mexEF-oprN, which has previously been shown to inhibit QS and pathogenicity. Deeper investigation of the metabolites involved in these systems revealed that S-phenyl-l-cysteine sulfoxide has structural similarity to kynurenine, a precursor of anthranilate, which is critical for P. aeruginosa virulence. By supplementing exogenous anthranilate, the QS-inhibitory effect was reversed. Finally, it was shown that S-phenyl-l-cysteine sulfoxide competitively inhibits P. aeruginosa kynureninase (KynU) activity in vitro and reduces PQS production in vivo. The kynurenine pathway has been implicated in P. aeruginosa QS and virulence factor expression; however, this is the first study to show that targeted inhibition of KynU affects P. aeruginosa gene expression and QS, suggesting a potential antivirulence strategy.

  17. An Anacardiaceae preparation reduces the expression of inflammation-related genes in murine macrophages.

    PubMed

    Leiro, J; García, D; Arranz, J A; Delgado, R; Sanmartín, M L; Orallo, F

    2004-08-01

    This study investigated the effects of an aqueous extract of the stem bark of Mangifera indica L. (Anacardiaceae; Vimang), which contains a defined mixture of components including polyphenols (principally mangiferin, MA), triterpenes, phytosteroids, fatty acids and microelements, on expression of inflammation mediators in inflammatory murine macrophages after stimulation in vitro with lipopolysaccharide (LPS) and interferon-gamma (IFN-gamma). In vitro treatment with Vimang at 4 microg/ml reduced levels of NOS-2 mRNA and NOS-2, while treatment at 40 microg/ml also reduced levels of COX-2 mRNA, COX-2, and prostaglandin E2 (PGE2). Results suggested that MA is involved in these effects. In vitro treatment with Vimang at 40 microg/ml also inhibited mRNA levels of the proinflammatory cytokines interleukin 1beta (IL-1beta), tumor necrosis factor alpha (TNF-alpha) and colony-stimulating factor (GM-CSF), but did not affect mRNA levels of IL-6 or tumor growth factor-beta (TGF-beta). Extracellular release of TNF-alpha by inflammatory macrophages was inhibited by in vitro treatment with Vimang at the same concentrations that showed inhibition of TNF-alpha mRNA levels. The inhibition of TNF-alpha production appears to be at least partially attributable to MA. Vimang at 4 microg/ml decreased mRNA levels of nuclear factor-kappaB (NF-kappaB) but did not affect expression of the NF-kappaB inhibitor (IkappaB). These data indicate that the potent anti-inflammatory effects of Vimang are due to selective modulation of the expression of inflammation-related genes, leading to attenuation of macrophage activation.

  18. Reduced Connexin 43 expression is associated with tumor malignant behaviors and biochemical recurrence-free survival of prostate cancer

    PubMed Central

    Xu, Ning; Chen, Hui-Jun; Chen, Shao-Hao; Xue, Xue-Yi; Chen, Hong; Zheng, Qing-Shui; Wei, Yong; Li, Xiao-Dong; Huang, Jin-Bei; Cai, Hai; Sun, Xiong-Lin

    2016-01-01

    Connexin 43, a gap junction protein, coordinates cell-to-cell communication and adhesion. Altered Connexin 43 expression associated with cancer development and progression. In this study, we assessed Connexin 43 expression for association with clinicopathological features and biochemical recurrence of prostate cancer after radical prostatectomy. Pathological specimens were collected from 243 patients who underwent radical prostatectomy and from 60 benign prostatic hyperplasia (BPH) patients to construct tissue microarrays and immunohistochemical analysis of Connexin 43 expression. Kaplan-Meier curves and multivariable Cox proportion hazard model were performed to associate Connexin 43 expression with postoperative biochemical recurrence-free survival (BFS). Connexin 43 expression was significantly reduced or lost in tumor tissues compared to that of BPHs (39.1% vs. 96.7%, P<0.001). Reduced Connexin 43 expression was associated with high levels of preoperative PSA, high Gleason score, advanced pT stage, positive surgical margin, extracapsular extension, and seminal vesicle invasion (P < 0.05, for all). Kaplan–Meier curves showed that reduced Connexin 43 expression was associated with shortened postoperative BFS (P < 0.001). Multivariate analysis showed that reduced Connexin 43 expression, high Gleason score and advanced pT stage were independent predictors for BFS of patients (P < 0.05). Connexin 43 expression was significantly reduced or lost in prostate cancer tissues, which was associated with advanced clinicopathological features and poor BFS of patients after radical prostatectomy. PMID:27623212

  19. Arctigenin Increases Hemeoxygenase-1 Gene Expression by Modulating PI3K/AKT Signaling Pathway in Rat Primary Astrocytes.

    PubMed

    Jeong, Yeon-Hui; Park, Jin-Sun; Kim, Dong-Hyun; Kim, Hee-Sun

    2014-11-01

    In the present study, we found that the natural compound arctigenin inhibited hydrogen peroxide-induced reactive oxygen species (ROS) production in rat primary astrocytes. Since hemeoxygenase-1 (HO-1) plays a critical role as an antioxidant defense factor in the brain, we examined the effect of arctigenin on HO-1 expression in rat primary astrocytes. We found that arctigenin increased HO-1 mRNA and protein levels. Arctigenin also increases the nuclear translocation and DNA binding of Nrf2/c-Jun to the antioxidant response element (ARE) on HO-1 promoter. In addition, arctigenin increased ARE-mediated transcriptional activities in rat primary astrocytes. Further mechanistic studies revealed that arctigenin increased the phosphorylation of AKT, a downstream substrate of phosphatidylinositol 3-kinase (PI3K). Treatment of cells with a PI3K-specific inhibitor, LY294002, suppressed the HO-1 expression, Nrf2 DNA binding and ARE-mediated transcriptional activities in arctigenin-treated astrocyte cells. The results collectively suggest that PI3K/AKT signaling pathway is at least partly involved in HO-1 expression by arctigenin via modulation of Nrf2/ARE axis in rat primary astrocytes.

  20. Heme Oxygenase-1-Expressing Dendritic Cells Promote Foxp3+ Regulatory T Cell Differentiation and Induce Less Severe Airway Inflammation in Murine Models

    PubMed Central

    Gau, Rung-Jiun; Yen, Jeng-Hsien; Suen, Jau-Ling

    2016-01-01

    Dendritic cells (DCs) are critical for instructing immune responses toward inflammatory or anti-inflammatory status. Heme oxygenase-1 (HO-1) is known for its cytoprotective effect against oxidative stress and inflammation, suggesting its immune regulatory role in allergic lung inflammation. HO-1 has been implicated in affecting DC maturation; however, its role in DC-mediated T-cell differentiation is unclear. In this study, we demonstrated that HO-1-expressing bone marrow-derived dendritic cells (BM-DCs) displayed tolerogenic phenotypes, including their resistance to lipopolysaccharide (LPS)-induced maturation, high level expression of IL-10, and low T-cell stimulatory activity. In addition, HO-1-expressing DCs were able to induce antigen-specific Foxp3+ regulatory T cells (Treg) differentiation in vitro and in vivo. Also, HO-1-expressing DCs modulated the severity of lung inflammatory responses in two murine models of airway inflammation. This study provided evidence supporting the role of HO-1-expressing DCs in tolerance induction and as a potential therapeutic target for allergic asthma as well as other inflammatory diseases. PMID:28033400

  1. Carboxymethylated chitin reduces MMP-1 expression in rabbit ACLT osteoarthritic cartilage

    PubMed Central

    Hongbin, W; Jingyuan, D; Linyun, C; Yuming, D

    2004-01-01

    Objective: To examine the in vivo effects of carboxymethylated chitin (CMC), intra-articularly administered, on cartilage degradation and the level and distribution of cartilage matrix metalloproteinase-1 (MMP-1). Methods: Osteoarthritis (OA) was induced in 20 rabbits by unilateral anterior cruciate ligament transection (ACLT). The experimental group, comprising 10 rabbits randomly selected, was given an intra-articular injection of 0.3 ml of 2% CMC solution at 1, 3, and 5 weeks after ACLT. A further 10 rabbits that received an intra-articular injection of 0.3 ml normal saline at the same time served as controls. All knees were harvested at 6 weeks after surgery. Cartilage degradation of femoral condyles was evaluated at two levels: macroscopic and light microscopic. Tissue level and distribution of MMP-1 was documented by reverse transcriptase-polymerase chain reaction (RT-PCR) and immunohistochemistry. Results: Cartilage degradation in the control group was significantly more severe than that in the experimental group both on the macroscopic grading scale and on Mankin's grading scale. In RT-PCR the amount of MMP-1 was significantly reduced by the treatment of CMC. Immunohistochemical study showed that in the experimental group MMP-1 was predominantly expressed in the superficial and upper intermediate layers of cartilage, and the amount of MMP-1 in the experimental group was also lower than that in control group. Conclusion: CMC significantly reduces the severity of cartilage degradation and reduces the expression of MMP-1 in cartilage, both at the mRNA and the protein level, and thus may be a potential drug for the treatment of OA. PMID:15020329

  2. Corticosteroids Mediate Heart Failure-Induced Depression through Reduced σ1-Receptor Expression

    PubMed Central

    Bhuiyan, Md. Shenuarin; Hasegawa, Hideyuki; Kanai, Hiroshi; Zhang, Chen; Han, Feng; Fukunaga, Kohji

    2016-01-01

    Cardiovascular diseases are risk factors for depression in humans. We recently proposed that σ1 receptor (σ1R) stimulation rescued cardiac hypertrophy and heart failure induced by transverse aortic constriction (TAC) in mice. Importantly, σ1R stimulation reportedly ameliorates depression-like behaviors in rodents. Thus, we hypothesized that impaired σ1R activity in brain triggers depression-like behaviors in animals with cardiovascular disease. Indeed, here we found that cardiac hypertrophy and heart failure induced by TAC were associated with depression-like behaviors concomitant with downregulation of σ1R expression in brain 6 weeks after surgery. σ1R levels significantly decreased in astrocytes in both the hippocampal CA1 region and dentate gyrus. Oral administration of the specific σ1R agonist SA4503 (0.3–1.0mg/kg) significantly improved TAC-induced depression-like behaviors concomitant with rescued astrocytic σ1R expression in CA1 and the dentate gyrus. Plasma corticosterone levels significantly increased 6 weeks after TAC, and chronic treatment of mice with corticosterone for 3 weeks elicited depression-like behaviors concomitant with reduced astrocytic σ1R expression in hippocampus. Furthermore, the glucocorticoid receptor antagonist mifepristone antagonized depressive-like behaviors and ameliorated decreased hippocampal σ1R expression in TAC mice. We conclude that elevated corticosterone levels trigger hippocampal σ1R downregulation and that σ1R stimulation with SA4503 is an attractive therapy to improve not only cardiac dysfunction but depression-like behaviors associated with heart failure. PMID:27741227

  3. Hypertonic saline reduces lipopolysaccharide-induced mouse brain edema through inhibiting aquaporin 4 expression

    PubMed Central

    2012-01-01

    Introduction Three percent sodium chloride (NaCl) treatment has been shown to reduce brain edema and inhibited brain aquaporin 4 (AQP4) expression in bacterial meningitis induced by Escherichia coli. Lipopolysaccharide (LPS) is the main pathogenic component of E. coli. We aimed to explore the effect of 3% NaCl in mouse brain edema induced by LPS, as well as to elucidate the potential mechanisms of action. Methods Three percent NaCl was used to treat cerebral edema induced by LPS in mice in vivo. Brain water content, IL-1β, TNFα, immunoglobulin G (IgG), AQP4 mRNA and protein were measured in brain tissues. IL-1β, 3% NaCl and calphostin C (a specific inhibitor of protein kinase C) were used to treat the primary astrocytes in vitro. AQP4 mRNA and protein were measured in astrocytes. Differences in various groups were determined by one-way analysis of variance. Results Three percent NaCl attenuated the increase of brain water content, IL-1β, TNFα, IgG, AQP4 mRNA and protein in brain tissues induced by LPS. Three percent NaCl inhibited the increase of AQP4 mRNA and protein in astrocytes induced by IL-1β in vitro. Calphostin C blocked the decrease of AQP4 mRNA and protein in astrocytes induced by 3% NaCl in vitro. Conclusions Osmotherapy with 3% NaCl ameliorated LPS-induced cerebral edema in vivo. In addition to its osmotic force, 3% NaCl exerted anti-edema effects possibly through down-regulating the expression of proinflammatory cytokines (IL-1β and TNFα) and inhibiting the expression of AQP4 induced by proinflammatory cytokines. Three percent NaCl attenuated the expression of AQP4 through activation of protein kinase C in astrocytes. PMID:23036239

  4. Subinhibitory concentrations of punicalagin reduces expression of virulence-related exoproteins by Staphylococcus aureus.

    PubMed

    Mun, Su-Hyun; Kong, Ryong; Seo, Yun-Soo; Zhou, Tian; Kang, Ok-Hwa; Shin, Dong-Won; Kwon, Dong-Yeul

    2016-11-01

    Staphylococcus aureus produces a number of virulence factors. The major virulence factors exhibited by S aureus include various antigens, enzymes, cytotoxins and exotoxins (e.g. hemolysins, enterotoxins and toxic shock syndrome toxin). In this report, we show the influence of punicalagin on the secretion of exoprotein from S aureus by western blotting, tumor necrosis factor (TNF) release assay and quantitative RT-PCR. When added to S aureus cultures at an OD600 of 0.9, graded subinhibitory concentrations of punicalagin reduced the production of α-toxin, SEA and SEB in methicillin-resistant Staphylococcus aureus in a dose-dependent manner. Consistently, punicalagin reduced TNF-inducing activity by S aureus culture supernatants. Here, the transcriptional level of agr (accessory gene regulator) in S aureus was inhibited by punicalagin, suggesting that the reduced transcription may affect the secretion of exotoxins. These findings suggest that the expression of α-toxin and enterotoxins in S aureus is sensitive to the action of punicalagin, which may be an advantageous candidate in the treatment of toxigenic staphylococcal disease.

  5. Heme Oxygenase-1 Regulation of Matrix Metalloproteinase-1 Expression Underlies Distinct Disease Profiles in Tuberculosis

    PubMed Central

    Andrade, Bruno B.; Kumar, Nathella Pavan; Amaral, Eduardo P.; Riteau, Nicolas; Mayer-Barber, Katrin D.; Tosh, Kevin W.; Maier, Nolan; Conceição, Elisabete L.; Kubler, Andre; Sridhar, Rathinam; Banurekha, Vaithilingam V.; Jawahar, Mohideen S.; Barbosa, Theolis; Manganiello, Vincent C.; Moss, Joel; Fontana, Joseph R.; Marciano, Beatriz E.; Sampaio, Elizabeth P.; Olivier, Kenneth N.; Holland, Steven M.; Jackson, Sharon H.; Moayeri, Mahtab; Leppla, Stephen; Sereti, Irini; Barber, Daniel L.; Nutman, Thomas B.; Babu, Subash; Sher, Alan

    2015-01-01

    Pulmonary tuberculosis (TB) is characterized by oxidative stress and lung tissue destruction by matrix metalloproteinases (MMP). The interplay between these distinct pathological processes and the implications for TB diagnosis and disease staging are poorly understood. Heme oxygenase-1 (HO-1) levels have been shown to distinguish active from latent as well as successfully treated Mycobacterium tuberculosis (Mtb) infection. MMP-1 expression is also associated with active TB. Here, we measured plasma levels of these two important biomarkers in distinct TB cohorts from India and Brazil. Patients with active TB expressed either very high levels of HO-1 and low levels of MMP-1 or the converse. Moreover, TB patients with either high HO-1 or MMP-1 levels displayed distinct clinical presentations as well as plasma inflammatory marker profiles. In contrast, in an exploratory North American study, inversely correlated expression of HO-1 and MMP-1 was not observed in patients with other non-tuberculous lung diseases. To assess possible regulatory interactions in the biosynthesis of these two enzymes at the cellular level, we studied expression of HO-1 and MMP-1 in Mtb-infected human and murine macrophages. We found that infection of macrophages with live virulent Mtb is required for robust induction of high levels of HO-1, but not MMP-1. In addition, we observed that carbon monoxide, a product of Mtb induced HO-1 activity, inhibits MMP-1 expression by suppressing c-Jun/AP-1 activation. These findings reveal a mechanistic link between oxidative stress and tissue remodeling that may find applicability in the clinical staging of TB patients. PMID:26268658

  6. Paeonol and danshensu combination attenuates apoptosis in myocardial infarcted rats by inhibiting oxidative stress: Roles of Nrf2/HO-1 and PI3K/Akt pathway

    PubMed Central

    Li, Hua; Song, Fan; Duan, Lin-Rui; Sheng, Juan-Juan; Xie, Yan-Hua; Yang, Qian; Chen, Ying; Dong, Qian-Qian; Zhang, Bang-Le; Wang, Si-Wang

    2016-01-01

    Paeonol and danshensu is the representative active ingredient of traditional Chinese medicinal herbs Cortex Moutan and Radix Salviae Milthiorrhizae, respectively. Paeonol and danshensu combination (PDSS) has putative cardioprotective effects in treating ischemic heart disease (IHD). However, the evidence for the protective effect is scarce and the pharmacological mechanisms of the combination remain unclear. The present study was designed to investigate the protective effect of PDSS on isoproterenol (ISO)-induced myocardial infarction in rats and to elucidate the potential mechanism. Assays of creatine kinase-MB, cardiac troponin I and T and histopathological analysis revealed PDSS significantly prevented myocardial injury induced by ISO. The ISO-induced profound elevation of oxidative stress was also suppressed by PDSS. TUNEL and caspase-3 activity assay showed that PDSS significantly inhibited apoptosis in myocardia. In exploring the underlying mechanisms of PDSS, we found PDSS enhanced the nuclear translocation of Nrf2 in myocardial injured rats. Furthermore, PDSS increased phosphorylated PI3K and Akt, which may in turn activate antioxidative and antiapoptotic signaling events in rat. These present findings demonstrated that PDSS exerts significant cardioprotective effects against ISO-induced myocardial infarction in rats. The protective effect is, at least partly, via activation of Nrf2/HO-1 signaling and involvement of the PI3K/Akt cell survival signaling pathway. PMID:27021411

  7. Nifurtimox reduces N-Myc expression and aerobic glycolysis in neuroblastoma

    PubMed Central

    Cabanillas Stanchi, Karin Melanie; Bruchelt, Gernot; Handgretinger, Rupert; Holzer, Ursula

    2015-01-01

    Neuroblastoma is one of the most common solid tumors in childhood and usually accompanied with poor prognosis and rapid tumor progression when diagnosed with amplification of the proto-oncogene N-Myc. The amplification of N-Myc has major influence on the maintenance of aerobic glycolysis, also known as the Warburg effect. This specific switch in the conversion of pyruvate to lactate instead of the conversion of pyruvate to acetyl-coenzyme A even in the presence of oxygen has important benefits for the tumor, e.g. increased production of enzymes and enzyme substrates that are involved in tumor progression, angiogenesis and inhibition of apoptosis. The antiprotozoal drug nifurtimox, which is generally used for the treatment of infections with the parasitic protozoan Trypanosoma cruzi, has been reported to have cytotoxic properties in the therapy of neuroblastoma. However, its action of mechanism has not been described in detail yet. The presented in vitro study on the neuroblastoma cell lines LA-N-1, IMR-32, LS and SK-N-SH shows an increased production of oxidative stress, a reduced lactate dehydrogenase enzyme activity and reduced lactate production after nifurtimox treatment. Furthermore, nifurtimox leads to reduced mRNA and protein levels of the proto-oncogene protein N-Myc. Thus, the current work gives new insights into the effect of nifurtimox on tumor metabolism revealing a shifted glucose metabolism from production of lactate to oxidative phosphorylation and a reduced expression of the major molecular prognostic factor in neuroblastoma N-Myc, presenting nifurtimox as a possible adjuvant therapeutic agent against (high risk) neuroblastoma. PMID:26177922

  8. Adverse effects of reduced oxygen tension on the proliferative capacity of rat kidney and insulin-secreting cell lines involve DNA damage and stress responses

    SciTech Connect

    Chen Jianhua Jones, R. Huw; Tarry-Adkins, Jane; Smith, Noel H.; Ozanne, Susan E.

    2008-10-01

    Standard cell culture conditions do not reflect the physiological environment in terms of oxygen tension (20% vs 3%). The effects of lowering oxygen tension on cell proliferation in culture can be beneficial as well as detrimental depending on the cell line studied, but the molecular mechanism underlying such effects is not fully understood. We observed that the proliferative capacity of the rat cell lines NRK and INS-1 was inhibited when cultured under 3% oxygen as compared to 20% oxygen. Suppression of proliferation in NRK cells was accompanied by induction of DNA double strand breaks whereas in INS-1 cells it was accompanied by up-regulation of p53 and p27. Although Sirt1 was up-regulated in both cell lines by 3% oxygen the effects on antioxidant enzymes (MnSOD, CuZnSOD and catalase) were cell line specific. Marked up-regulation of heme oxygenase-1 (HO-1) was detected in both NRK and INS-1 cells when cultured in 3% oxygen. HO-1 expression can be readily induced by exposure to hydrogen peroxide in culture. These results suggest that reduced oxygen tension suppresses the proliferative capacity of these two cell lines through a stress response that is similar to an oxidative stress response but the molecular events that lead to the reduced cell proliferation are cell line specific.

  9. Over-Expression of TRESK K+ Channels Reduces the Excitability of Trigeminal Ganglion Nociceptors

    PubMed Central

    Guo, Zhaohua; Cao, Yu-Qing

    2014-01-01

    TWIK-related spinal cord K+ (TRESK) channel is abundantly expressed in trigeminal ganglion (TG) and dorsal root ganglion neurons and is one of the major background K+ channels in primary afferent neurons. Mutations in TRESK channels are associated with familial and sporadic migraine. In rats, both chronic nerve injury and inflammation alter the expression level of TRESK mRNA. Functional studies indicate that reduction of endogenous TRESK channel activity results in hyper-excitation of primary afferent neurons, suggesting that TRESK is a potential target for the development of new analgesics. However, whether and how enhancing TRESK channel activity would decrease the excitability of primary afferent neurons has not been directly tested. Here, we over-expressed TRESK subunits in cultured mouse TG neurons by lipofectamine-mediated transfection and investigated how this altered the membrane properties and the excitability of the small-diameter TG population. To account for the heterogeneity of neurons, we further divided small TG neurons into two groups, based on their ability to bind to fluorescently-labeled isolectin B (IB4). The transfected TG neurons showed a 2-fold increase in the level of TRESK proteins. This was accompanied by a significant increase in the fraction of lamotrigine-sensitive persistent K+ currents as well as the size of total background K+ currents. Consequently, both IB4-positive and IB4-negative TG neurons over-expressing TRESK subunits exhibited a lower input resistance and a 2-fold increase in the current threshold for action potential initiation. IB4-negative TG neurons over-expressing TRESK subunits also showed a significant reduction of the spike frequency in response to supra-threshold stimuli. Importantly, an increase in TRESK channel activity effectively inhibited capsaicin-evoked spikes in TG neurons. Taken together, our results suggest that potent and specific TRESK channel openers likely would reduce the excitability of primary

  10. Flunitrazepam rapidly reduces GABAA receptor subunit protein expression via a protein kinase C-dependent mechanism

    PubMed Central

    Johnston, Jonathan D; Price, Sally A; Bristow, David R

    1998-01-01

    Acute flunitrazepam (1 μM) exposure for 1 h reduced GABAA receptor α1 (22±4%, mean±s.e.mean) and β2/3 (21±4%) subunit protein levels in cultured rat cerebellar granule cells. This rapid decrease in subunit proteins was completely prevented by bisindolymaleimide 1 (1 μM), an inhibitor of protein kinase C, but not by N-[2-((p-bromocinnamyl)amino)ethyl]-5-isoquinolinesulfonamide (H-89, 4.8 μM), an inhibitor of protein kinases A and G. These results suggest the existence of a benzodiazepine-induced mechanism to rapidly alter GABAA receptor protein expression, that appears to be dependent on protein kinase C activity. PMID:9723942

  11. Room-temperature, atmospheric plasma needle reduces adenovirus gene expression in HEK 293A host cells

    NASA Astrophysics Data System (ADS)

    Xiong, Z.; Lu, X.; Cao, Y.; Ning, Q.; Ostrikov, K.; Lu, Y.; Zhou, X.; Liu, J.

    2011-12-01

    Room-temperature, atmospheric-pressure plasma needle treatment is used to effectively minimize the adenovirus (AdV) infectivity as quantified by the dramatic reduction of its gene expression in HEK 293A primary human embryonic kidney cells studied by green fluorescent protein imaging. The AdV titer is reduced by two orders of magnitude within only 8 min of the plasma exposure. This effect is due to longer lifetimes and higher interaction efficacy of the plasma-generated reactive species in confined space exposed to the plasma rather than thermal effects commonly utilized in pathogen inactivation. This generic approach is promising for the next-generation anti-viral treatments and imunotherapies.

  12. In vitro culture of mouse embryos reduces differential gene expression between inner cell mass and trophectoderm.

    PubMed

    Giritharan, G; Delle Piane, L; Donjacour, A; Esteban, F J; Horcajadas, J A; Maltepe, E; Rinaudo, P

    2012-03-01

    Differences in gene expression and imprinting have been reported, comparing in vivo versus in vitro generated preimplantation embryos. Furthermore, mouse studies have shown that placenta development is altered following in vitro culture. However, the molecular mechanisms underlying these findings are unknown. We therefore isolated trophectoderm (TE) and inner cell mass (ICM) cells from in vivo and in vitro fertilization (IVF) embryos and evaluated their transcriptome using microarrays. We found that the transcriptomes of in vitro produced ICM and TE cells showed remarkably few differences compared to ICM and TE cells of in vivo generated embryos. In vitro fertilization embryos showed a reduced number of TE cells compared to in vivo embryos. In addition, TE of IVF embryos showed significant downregulation of solute transporter genes and of genes involved in placenta formation (Eomesodermin, Socs3) or implantation (Hbegf). In summary, IVF and embryo culture significantly affects the transcriptome of ICM and TE cells.

  13. In Vitro Culture of Mouse Embryos Reduces Differential Gene Expression Between Inner Cell Mass and Trophectoderm

    PubMed Central

    Giritharan, G.; Piane, L. Delle; Donjacour, A.; Esteban, F. J.; Horcajadas, J. A.; Maltepe, E.; Rinaudo, P.

    2012-01-01

    Differences in gene expression and imprinting have been reported, comparing in vivo versus in vitro generated preimplantation embryos. Furthermore, mouse studies have shown that placenta development is altered following in vitro culture. However, the molecular mechanisms underlying these findings are unknown. We therefore isolated trophectoderm (TE) and inner cell mass (ICM) cells from in vivo and in vitro fertilization (IVF) embryos and evaluated their transcriptome using microarrays. We found that the transcriptomes of in vitro produced ICM and TE cells showed remarkably few differences compared to ICM and TE cells of in vivo generated embryos. In vitro fertilization embryos showed a reduced number of TE cells compared to in vivo embryos. In addition, TE of IVF embryos showed significant downregulation of solute transporter genes and of genes involved in placenta formation (Eomesodermin, Socs3) or implantation (Hbegf). In summary, IVF and embryo culture significantly affects the transcriptome of ICM and TE cells. PMID:22383776

  14. Targeted expression of heme oxygenase-1 prevents the pulmonary inflammatory and vascular responses to hypoxia

    NASA Astrophysics Data System (ADS)

    Minamino, Tohru; Christou, Helen; Hsieh, Chung-Ming; Liu, Yuxiang; Dhawan, Vijender; Abraham, Nader G.; Perrella, Mark A.; Mitsialis, S. Alex; Kourembanas, Stella

    2001-07-01

    Chronic hypoxia causes pulmonary hypertension with smooth muscle cell proliferation and matrix deposition in the wall of the pulmonary arterioles. We demonstrate here that hypoxia also induces a pronounced inflammation in the lung before the structural changes of the vessel wall. The proinflammatory action of hypoxia is mediated by the induction of distinct cytokines and chemokines and is independent of tumor necrosis factor- signaling. We have previously proposed a crucial role for heme oxygenase-1 (HO-1) in protecting cardiomyocytes from hypoxic stress, and potent anti-inflammatory properties of HO-1 have been reported in models of tissue injury. We thus established transgenic mice that constitutively express HO-1 in the lung and exposed them to chronic hypoxia. HO-1 transgenic mice were protected from the development of both pulmonary inflammation as well as hypertension and vessel wall hypertrophy induced by hypoxia. Significantly, the hypoxic induction of proinflammatory cytokines and chemokines was suppressed in HO-1 transgenic mice. Our findings suggest an important protective function of enzymatic products of HO-1 activity as inhibitors of hypoxia-induced vasoconstrictive and proinflammatory pathways.

  15. Hyperglycemia Reduces Functional Expression of Astrocytic Kir4.1 Channels and Glial Glutamate Uptake

    PubMed Central

    Rivera-Aponte, David E.; Méndez-González, Miguel P.; Rivera-Pagán, Aixa F.; Kucheryavykh, Yuriy V.; Kucheryavykh, Lilia Y.; Skatchkov, Serguei N.; Eaton, Misty J.

    2015-01-01

    Diabetics are at risk for a number of serious health complications including an increased incidence of epilepsy and poorer recovery after ischemic stroke. Astrocytes play a critical role in protecting neurons by maintaining extracellular homeostasis and preventing neurotoxicity through glutamate uptake and potassium buffering. These functions are aided by the presence of potassium channels, such as Kir4.1 inwardly rectifying potassium channels, in the membranes of astrocytic glial cells. The purpose of the present study was to determine if hyperglycemia alters Kir4.1 potassium channel expression and homeostatic functions of astrocytes. We used q-PCR, Western blot, patch-clamp electrophysiology studying voltage and potassium step responses and a colorimetric glutamate clearance assay to assess Kir4.1 channel levels and homeostatic functions of astrocytes grown in normal and high glucose conditions. We found that astrocytes grown in high glucose (25 mM) had an approximately 50% reduction in Kir4.1 mRNA and protein expression as compared with those grown in normal glucose (5 mM). These reductions occurred within 4 to 7 days of exposure to hyperglycemia, whereas reversal occurred between 7 to 14 days after return to normal glucose. The decrease in functional Kir channels in the astrocytic membrane was confirmed using barium to block Kir channels. In the presence of 100 μm barium, the currents recorded from astrocytes in response to voltage steps were reduced by 45%. Furthermore, inward currents induced by stepping extracellular [K+]o from 3 to 10 mM (reflecting potassium uptake) were 50% reduced in astrocytes grown in high glucose. In addition, glutamate clearance by astrocytes grown in high glucose was significantly impaired. Taken together, our results suggest that down-regulation of astrocytic Kir4.1 channels by elevated glucose may contribute to the underlying pathophysiology of diabetes-induced CNS disorders and contribute to the poor prognosis after stroke. PMID

  16. GALNT2 expression is reduced in patients with Type 2 diabetes: possible role of hyperglycemia.

    PubMed

    Marucci, Antonella; di Mauro, Lazzaro; Menzaghi, Claudia; Prudente, Sabrina; Mangiacotti, Davide; Fini, Grazia; Lotti, Giuseppe; Trischitta, Vincenzo; Di Paola, Rosa

    2013-01-01

    Impaired insulin action plays a major role in the pathogenesis of type 2 diabetes, a chronic metabolic disorder which imposes a tremendous burden to morbidity and mortality worldwide. Unraveling the molecular mechanisms underlying insulin resistance would improve setting up preventive and treatment strategies of type 2 diabetes. Down-regulation of GALNT2, an UDPN-acetyl-alpha-D-galactosamine polypeptideN-acetylgalactosaminyltransferase-2 (ppGalNAc-T2), causes impaired insulin signaling and action in cultured human liver cells. In addition, GALNT2 mRNA levels are down-regulated in liver of spontaneously insulin resistant, diabetic Goto-Kakizaki rats. To investigate the role of GALNT2 in human hyperglycemia, we measured GALNT2 mRNA expression levels in peripheral whole blood cells of 84 non-obese and 46 obese non-diabetic individuals as well as of 98 obese patients with type 2 diabetes. We also measured GALNT2 mRNA expression in human U937 cells cultured under different glucose concentrations. In vivo studies indicated that GALNT2 mRNA levels were significantly reduced from non obese control to obese non diabetic and to obese diabetic individuals (p<0.001). In vitro studies showed that GALNT2 mRNA levels was reduced in U937 cells exposed to high glucose concentrations (i.e. 25 mmol/l glucose) as compared to cells exposed to low glucose concentration (i.e. 5.5 mmol/l glucose +19.5 mmol/l mannitol). In conclusion, our data indicate that GALNT2 is down-regulated in patients with type 2 diabetes and suggest that this association is, at least partly, secondary to hyperglycemia. Further studies are needed to understand whether GALNT2 down-regulation plays a pathogenic role in maintaining and/or aggravating the metabolic abnormalities of diabetic milieu.

  17. VIP and CRF reduce ADAMTS expression and function in osteoarthritis synovial fibroblasts.

    PubMed

    Pérez-García, Selene; Carrión, Mar; Gutiérrez-Cañas, Irene; González-Álvaro, Isidoro; Gomariz, Rosa P; Juarranz, Yasmina

    2016-04-01

    ADAMTS (a disintegrin and metalloproteinase with thrombospondin motifs) family is known to play an important role in the pathogenesis of osteoarthritis (OA), working on aggrecan degradation or altering the integrity of extracellular matrix (ECM). Thus, the main purpose of our study was to define the role of vasoactive intestinal peptide (VIP) and corticotrophin-releasing factor (CRF), as immunoregulatory neuropeptides, on ADAMTS production in synovial fibroblasts (SF) from OA patients and healthy donors (HD). OA- and HD-SF were stimulated with pro-inflammatory mediators and treated with VIP or CRF. Both neuropeptides decreased ADAMTS-4, -5, -7 and -12 expressions, aggrecanase activity, glycosaminoglycans (GAG), and cartilage oligomeric matrix protein (COMP) degradation after stimulation with fibronectin fragments (Fn-fs) in OA-SF. After stimulation with interleukin-1β, VIP reduced ADAMTS-4 and -5, and both neuropeptides decreased ADAMTS-7 production and COMP degradation. Moreover, VIP and CRF reduced Runx2 and β-catenin activation in OA-SF. Our data suggest that the role of VIP and CRF on ADAMTS expression and cartilage degradation could be related to the OA pathology since scarce effects were produced in HD-SF. In addition, their effects might be greater when a degradation loop has been established, given that they were higher after stimulation with Fn-fs. Our results point to novel OA therapies based on the use of neuropeptides, since VIP and CRF are able to stop the first critical step, the loss of cartilage aggrecan and the ECM destabilization during joint degradation.

  18. Anti-oxidizing effect of the dichloromethane and hexane fractions from Orostachys japonicus in LPS-stimulated RAW 264.7 cells via upregulation of Nrf2 expression and activation of MAPK signaling pathway

    PubMed Central

    Lee, Hyeong-Seon; Lee, Gyeong-Seon; Kim, Seon-Hee; Kim, Hyun-Kyung; Suk, Dong-Hee; Lee, Dong-Seok

    2014-01-01

    Orostachys japonicus shows various biological activities. However, the molecular mechanisms remain unknown in LPS-stimulated macrophages. Here, we investigated the anti-oxidizing effect of the dichloromethane (DCM) and hexane fractions from O. japonicus (OJD and OJH) against oxidative stress in RAW 264.7 cells stimulated by LPS. OJD and OJH significantly increased the expression of heme oxygenase-1 (HO-1) in a dose- and time-dependent manner. Additionally, it was found that the expression of HO-1 was stimulated by Nrf2 activated via degradation of Keap1. ERK and p38 inhibitors repressed HO-1 induced by OJD and OJH in LPS-stimulated cells, respectively. In conclusion, these results suggest that OJD and OJH may block oxidative damage stimulated by LPS, via increasing the expression of HO-1 and Nrf2, and MAPK signaling pathway. [BMB Reports 2014; 47(2): 98-103] PMID:24219867

  19. Insecticides reduce survival and the expression of traits associated with carnivory of carnivorous plants.

    PubMed

    Jennings, David E; Congelosi, Alexandra M; Rohr, Jason R

    2012-03-01

    While agrochemical pollution is thought to be an important conservation threat to carnivorous plants, the effects of insecticides on these taxa have not been quantified previously. Using a combination of lab- and field-based experiments, we tested the effects of commercial and technical grades of three widely used insecticides (carbaryl, lambda-cyhalothrin, and malathion) on survival and the expression of traits associated with carnivory of pink sundews (Drosera capillaris) and Venus flytraps (Dionaea muscipula). Commercial grades were generally more harmful than technical grades under lab and field conditions, but all three insecticides were capable of reducing both survival and the expression of traits associated with carnivory within recommended application rates. However, pink sundews appeared to be more susceptible to insecticides than Venus flytraps, perhaps because of larger numbers of digestive glands on the leaf surfaces. We make several recommendations for future research directions, such as examining the long-term effects of insecticides on carnivorous plant populations, for example in terms of growth rates and fitness. Additionally, future research should include representative species from a wider-range of carnivorous plant growth forms, and explore the mechanism by which insecticides are harming the plants. Given the effects we observed in the present study, we suggest that the use of insecticides should be carefully managed in areas containing vulnerable carnivorous plant species.

  20. Expression of pro-inflammatory interleukin-8 is reduced by ayurvedic decoctions.

    PubMed

    Guerrini, Alessandra; Mancini, Irene; Maietti, Silvia; Rossi, Damiano; Poli, Ferruccio; Sacchetti, Gianni; Gambari, Roberto; Borgatti, Monica

    2014-08-01

    Eleven decoctions, obtained from indian plants widely used in ayurvedic medicine, have been investigated as a possible source of molecules exhibiting biological activity on the interaction between DNA and NF-kB, a transcription factor involved in the expression of proinflammatory genes. Cystic fibrosis (CF) cell line stimulated by TNF-α has been used as inflammatory cellular model to determinate interleukin-8 (IL-8), one of the most relevant pro-inflammatory mediator in CF regulated by the NF-kB. The chemical characterization of these 11 decoctions by spectrophotometric analysis and NMR fingerprinting highlighted that sugars and polyphenols seemed to be the main compounds. Our results demonstrated that Azadirachta indica, Terminalia bellerica, Terminalia chebula, Hemidesmus indicus, Emblica officinalis and Swertia chirata are the most active decoctions in inhibiting NF-kB/DNA interactions by EMSA assay and in reducing pro-inflammatory IL- 8 expression in CF cells at IC50 concentrations by Real-Time and Bio-plex analyses. Finally, we observed the increase of all inhibitory activities with the rise of total polyphenols, procyanidins and flavonoids, except for the levels of IL-8 mRNA accumulation, that were as high as flavonoid content grown up by the statistical multivariate analyses. In conclusion, these six decoctions might be interesting to explore new anti-inflammatory treatments for diseases, such as CF.

  1. Reduced expression of galectin-1 and galectin-9 by leucocytes in asthma patients.

    PubMed

    Sanchez-Cuellar, S; de la Fuente, H; Cruz-Adalia, A; Lamana, A; Cibrian, D; Giron, R M; Vara, A; Sanchez-Madrid, F; Ancochea, J

    2012-12-01

    Accumulating evidence shows that galectins play roles in the initiation and resolution phases of inflammatory responses by promoting anti- or proinflammatory effects. This study investigated the presence of three members of the galectin family (galectin-1, -3 and -9) in induced sputum samples of asthma patients, as well as their possible implication in the immunopathogenesis of human asthma. Levels of interleukin (IL)-5, IL-13, and galectins were determined in leucocytes isolated from induced sputum samples by reverse transcription-polymerase chain reaction (RT-PCR) immunofluorescence and flow cytometry. High levels of IL-5 and IL-13 mRNA were detected in sputum cells from asthma patients. In parallel, immunoregulatory proteins galectin-1 and galectin-9 showed a reduced expression on macrophages from sputum samples compared with cells from healthy donors. In-vitro immunoassays showed that galectin-1 and galectin-9, but not galectin-3, are able to induce the production of IL-10 by peripheral blood mononuclear cells from healthy donors. These findings indicate that macrophages from sputum samples of asthma patients express low levels of galectin-1 and galectin-9, favouring the exacerbated immune response observed in this disease.

  2. Bromelain treatment reduces CD25 expression on activated CD4+ T cells in vitro✩

    PubMed Central

    Secor, Eric R.; Singh, Anurag; Guernsey, Linda A.; McNamara, Jeff T.; Zhan, Lijun; Maulik, Nilanjana; Thrall, Roger S.

    2009-01-01

    Bromelain (Br), an extract from pineapple stem with cysteine protease activity, exerts anti-inflammatory effects in a number of inflammatory models. We have previously shown that Br treatment decreased activated CD4+ T cells and has a therapeutic role in an ovalbumin-induced murine model of allergic airway disease. The current study was designed to determine the effect of Br on CD4+ T cell activation, specifically the expression of CD25 in vitro. CD25 is up regulated upon T cell activation, found as a soluble fraction (sCD25) and is a therapeutic target in inflammation, autoimmunity and allergy. Br treatment of anti-CD3 stimulated CD4+ T cells reduced CD25 expression in a dose and time dependent manner. This reduction of CD25 was dependent on the proteolytic action of Br as the addition of E64 (a cysteine protease inhibitor) abrogated this response. The concentration of sCD25 was increased in supernatants of Br treated activated CD4+ T cells as compared to control cells, suggesting that Br proteolytically cleaved cell-surface CD25. This novel mechanism of action identifies how Br may exert its therapeutic benefits in inflammatory conditions. PMID:19162239

  3. Reduced expression of C5a receptors on neutrophils from cord blood

    PubMed Central

    Nybo, M.; Sorensen, O.; Leslie, R; Wang, P.

    1998-01-01

    AIM—To describe further functional deficiencies of neonatal neutrophils by measuring the expression of C5a receptors.
METHODS—C5a uptake was measured using flow cytometry with fluorescein isothiocynate labelled recombinant C5a. The response of neutrophils to stimulation with C5a and fMLP was tested by measuring migration and exocytosis of myeloperoxidase and lactoferrin.
RESULTS—C5a mean fluorescence on neutrophils from neonates was significantly lower (22.4 (SD 3.5)) than in adult controls (31.5 (3.1)). Neutrophils from neonates migrated poorly towards both C5a and fMLP compared with those from adult controls. Exocytosis of myeloperoxidase, but not lactoferrin from neonatal neutrophils stimulated with C5a, was significantly lower than in adult controls. fMLP stimulation, on the other hand, resulted in significantly higher exocytosis in neonates.
CONCLUSION—The lower expression of C5a receptors on neutrophils from neonates could be related to reduced C5a mediated exocytosis of myeloperoxidase.

 PMID:9577284

  4. Disrupting Protein Expression with Peptide Nucleic Acids Reduces Infection by Obligate Intracellular Rickettsia

    PubMed Central

    Pelc, Rebecca S.; McClure, Jennifer C.; Kaur, Simran J.; Sears, Khandra T.; Rahman, M. Sayeedur; Ceraul, Shane M.

    2015-01-01

    Peptide Nucleic Acids (PNAs) are single-stranded synthetic nucleic acids with a pseudopeptide backbone in lieu of the phosphodiester linked sugar and phosphate found in traditional oligos. PNA designed complementary to the bacterial Shine-Dalgarno or start codon regions of mRNA disrupts translation resulting in the transient reduction in protein expression. This study examines the use of PNA technology to interrupt protein expression in obligate intracellular Rickettsia sp. Their historically intractable genetic system limits characterization of protein function. We designed PNA targeting mRNA for rOmpB from Rickettsia typhi and rickA from Rickettsia montanensis, ubiquitous factors important for infection. Using an in vitro translation system and competitive binding assays, we determined that our PNAs bind target regions. Electroporation of R. typhi and R. montanensis with PNA specific to rOmpB and rickA, respectively, reduced the bacteria’s ability to infect host cells. These studies open the possibility of using PNA to suppress protein synthesis in obligate intracellular bacteria. PMID:25781160

  5. Axin expression reduces staurosporine-induced mitochondria-mediated cell death in HeLa cells.

    PubMed

    Shin, Jee-Hye; Kim, Hyun-wook; Rhyu, Im Joo; Song, Ki-Joon; Kee, Sun-Ho

    2012-10-01

    Cytoplasmic axin expression frequently produces punctuate structures in cells, but the nature of axin puncta has not been fully elucidated. In an effort to analyze cytoplasmic axin puncta, we established HeLa cells expressing axin in a doxycycline-inducible manner (HeLa-Axin). We observed that axin accumulated in an aggregate-like pattern in perinuclear areas and appeared to be associated with mitochondria, Golgi apparatus, and endoplasmic reticulum (ER), but not lysosomes. Further biochemical analysis suggested that some part of the cytoplasmic axin pool was associated with mitochondria. In addition, mitochondrial proteins [i.e., cytochrome oxidase IV (CoxIV) and cytochrome c] were slightly higher in HeLa-Axin cells than in HeLa-EV cells, suggesting altered mitochondrial degradation. HeLa-Axin cells were then treated with staurosporine (STS) to determine if the mitochondria-induced apoptosis pathway was altered. Compared to STS-treated control cells (HeLa-EV), HeLa-Axin cells had less STS-induced cytotoxicity and reduced caspase-3 activation and PARP cleavage. Given that mitochondria outer membrane potential was unchanged, HeLa-Axin cells might be relatively resistant to STS-mediated mitochondrial damage. Mitochondria associated with axin aggregates were resistant to detergent-mediated permeabilization. These results suggest that axin forms aggregate-like structures in association with mitochondria, which render mitochondria resistant to STS-induced membrane damage and cytotoxicity.

  6. Cognitive flexibility impairment and reduced frontal cortex BDNF expression in the ouabain model of mania.

    PubMed

    Amodeo, Dionisio A; Grospe, Gena; Zang, Hui; Dwivedi, Yogesh; Ragozzino, Michael E

    2017-03-14

    Central infusion of the Na+/K+-ATPase inhibitor, ouabain in rats serves as an animal model of mania because it leads to hyperactivity, as well as reproduces ion dysregulation and reduced brain-derived neurotrophic factor (BDNF) levels similar to that observed in bipolar disorder. Bipolar disorder is also associated with cognitive inflexibility and working memory deficits. It is unknown whether ouabain treatment in rats leads to similar cognitive flexibility and working memory deficits. The present study examined the effects of an intracerebral ventricular infusion of ouabain in rats on spontaneous alternation, probabilistic reversal learning and BDNF expression levels in the frontal cortex. Ouabain treatment significantly increased locomotor activity, but did not affect alternation performance in a Y-maze. Ouabain treatment selectively impaired reversal learning in a spatial discrimination task using an 80/20 probabilistic reinforcement procedure. The reversal learning deficit in ouabain-treated rats resulted from an impaired ability to maintain a new choice pattern (increased regressive errors). Ouabain treatment also decreased sensitivity to negative feedback during the initial phase of reversal learning. Expression of BDNF mRNA and protein levels was downregulated in the frontal cortex which also negatively correlated with regressive errors. These findings suggest that the ouabain model of mania may be useful in understanding the neuropathophysiology that contributes to cognitive flexibility deficits and test potential treatments to alleviate cognitive deficits in bipolar disorder.

  7. Expression of Multiple Stress Response Genes by Escherichia Coli Under Modeled Reduced Gravity

    NASA Astrophysics Data System (ADS)

    Vukanti, Raja; Leff, Laura G.

    2012-09-01

    Bacteria, in response to changes in their environment, quickly regulate gene expression; hence, transcriptional profiling has been widely used to characterize bacterial responses to various environmental conditions. In this study, we used clinorotation to grow bacteria under low-sedimentation, -shear, and -turbulence conditions (referred to as modeled reduced gravity, MRG, below) which profoundly impacts bacteria including causing elevated resistance to multiple environmental stresses. To explore potential mechanisms behind the multiple stress resistance response to MRG, we assessed expression levels of E. coli genes, using reverse transcription followed by real-time-PCR, involved in specific stress and general stress responses under MRG and normal gravity (NG) in nutritionally rich and minimal media, and during exponential and stationary phases of growth. In addition, growth rates as well as physico-chemical parameters of culture media were examined. Over-expression of stress response genes (csiD, cstA, katE, otsA, treA) occurred under MRG compared to NG controls, but only during the later stages of growth in rich medium demonstrating that bacterial response to MRG varies with growth-medium and -phase. At stationary phase in rich medium under MRG and NG, E. coli had similar growth rates (based on rRNA-leader abundance) and yields (cell mass and numbers); this coupled, with observations of simultaneous induction of starvation response genes (csiD and cstA) suggests the multiple stress resistance phenotype under MRG could be attributable to microzones of nutrient unavailability around cells. Overall, in rich medium, the response resembled the general stress response (GSR) that E. coli develops during stationary phase of growth. Along these same lines, induction of genes coding for GSR was reversed by improving nutritional conditions under MRG. The reversal of GSR under MRG suggests that the multiple stress response exhibited is not specific to MRG but may result

  8. Reduced kynurenine pathway metabolism and cytokine expression in the prefrontal cortex of depressed individuals

    PubMed Central

    Clark, Sarah M.; Pocivavsek, Ana; Nicholson, James D.; Notarangelo, Francesca M.; Langenberg, Patricia; McMahon, Robert P.; Kleinman, Joel E.; Hyde, Thomas M.; Stiller, John; Postolache, Teodor T.; Schwarcz, Robert; Tonelli, Leonardo H.

    2016-01-01

    Background Neuroinflammatory processes are increasingly believed to participate in the pathophysiology of a number of major psychiatric diseases, including depression. Immune activation stimulates the conversion of the amino acid tryptophan to kynurenine, leading to the formation of neuroactive metabolites, such as quinolinic acid and kynurenic acid. These compounds affect glutamatergic neurotransmission, which plays a prominent role in depressive pathology. Increased tryptophan degradation along the kynurenine pathway (KP) has been proposed to contribute to disease etiology. Methods We used postmortem brain tissue from the ventrolateral prefrontal cortex (VLPFC) to assess tissue levels of tryptophan and KP metabolites, the expression of several KP enzymes and a series of cytokines as well as tissue pathology, including microglial activation. Tissue samples came from nonpsychiatric controls (n = 36) and individuals with depressive disorder not otherwise specified (DD-NOS, n = 45) who died of natural causes, homicide, accident, or suicide. Results We found a reduction in the enzymatic conversion of tryptophan to kynurenine, determined using the kynurenine:tryptophan ratio, and reduced messenger RNA expression of the enzymes indoleamine-2,3-dioxygenase 1 and 2 and tryptophan-2,3-dioxygenase in depressed individuals irrespective of the cause of death. These findings correlated with reductions in the expression of several cytokines, including interferon-γ and tumour necrosis factor-α. Notably, quinolinic acid levels were also lower in depressed individuals than controls. Limitations Information on the use of antidepressants and other psychotropic medications was insufficient for statistical comparisons. Conclusion Contrary to expectations, the present results indicate that depression, in the absence of medical illness or an overt inflammatory process, is associated with compromised, rather than increased, KP metabolism in the VLPFC. PMID:27070351

  9. Fraxetin Induces Heme Oxygenase-1 Expression by Activation of Akt/Nrf2 or AMP-activated Protein Kinase α/Nrf2 Pathway in HaCaT Cells

    PubMed Central

    Kundu, Juthika; Chae, In Gyeong; Chun, Kyung-Soo

    2016-01-01

    Background Fraxetin (7,8-dihydroxy-6-methoxy coumarin), a coumarin derivative, has been reported to possess antioxidative, anti-inflammatory and neuroprotective effects. A number of recent observations suggest that the induction of heme oxygenase-1 (HO-1) inhibits inflammation and tumorigenesis. In the present study, we determined the effect of fraxetin on HO-1 expression in HaCaT human keratinocytes and investigated its underlying molecular mechanisms. Methods Reverse transcriptase-PCR and Western blot analysis were performed to detect HO-1 mRNA and protein expression, respectively. Cell viability was measured by the MTS test. The induction of intracellular reactive oxygen species (ROS) by fraxetin was evaluated by 2′,7′-dichlorofluorescin diacetate staining. Results Fraxetin upregulated mRNA and protein expression of HO-1. Incubation with fraxetin induced the localization of nuclear factor-erythroid-2-related factor-2 (Nrf2) in the nucleus and increased the antioxidant response element-reporter gene activity. Fraxetin also induced the phosphorylation of Akt and AMP-activated protein kinase (AMPK)α and diminished the expression of phosphatase and tensin homolog, a negative regulator of Akt. Pharmacological inhibition of Akt and AMPKα abrogated fraxetin-induced expression of HO-1 and nuclear localization of Nrf2. Furthermore, fraxetin generated ROS in a concentration-dependent manner. Conclusions Fraxetin induces HO-1 expression through activation of Akt/Nrf2 or AMPKα/Nrf2 pathway in HaCaT cells. PMID:27722139

  10. Effects of biocides on gene expression in the sulfate-reducing bacterium Desulfovibrio vulgaris Hildenborough.

    PubMed

    Lee, Meng-Hsin Phoebe; Caffrey, Sean M; Voordouw, Johanna K; Voordouw, Gerrit

    2010-07-01

    Although sulfate-reducing bacteria (SRB), such as Desulfovibrio vulgaris Hildenborough (DvH) are often eradicated in oil and gas operations with biocides, such as glutaraldehyde (Glut), tetrakis (hydroxymethyl) phosphonium sulfate (THPS), and benzalkonium chloride (BAC), their response to these agents is not well known. Whole genome microarrays of D. vulgaris treated with biocides well below the minimum inhibitory concentration showed that 256, 96, and 198 genes were responsive to Glut, THPS, and BAC, respectively, and that these three commonly used biocides affect the physiology of the cell quite differently. Glut induces expression of genes required to degrade or refold proteins inactivated by either chemical modification or heat shock, whereas BAC appears to target ribosomal structure. THPS appears to primarily affect energy metabolism of SRB. Mutants constructed for genes strongly up-regulated by Glut, were killed by Glut to a similar degree as the wild type. Hence, it is difficult to achieve increased sensitivity to this biocide by single gene mutations, because Glut affects so many targets. Our results increase understanding of the biocide's mode of action, allowing a more intelligent combination of mechanistically different agents. This can reduce stress on budgets for chemicals and on the environment.

  11. Reduced FOXO1 expression accelerates skin wound healing and attenuates scarring.

    PubMed

    Mori, Ryoichi; Tanaka, Katsuya; de Kerckhove, Maiko; Okamoto, Momoko; Kashiyama, Kazuya; Tanaka, Katsumi; Kim, Sangeun; Kawata, Takuya; Komatsu, Toshimitsu; Park, Seongjoon; Ikematsu, Kazuya; Hirano, Akiyoshi; Martin, Paul; Shimokawa, Isao

    2014-09-01

    The forkhead box O (FOXO) family has been extensively investigated in aging and metabolism, but its role in tissue-repair processes remains largely unknown. Herein, we clarify the molecular aspect of the FOXO family in skin wound healing. We demonstrated that Foxo1 and Foxo3a were both up-regulated during murine skin wound healing. Partial knockout of Foxo1 in Foxo1(+/-) mice throughout the body led to accelerated skin wound healing with enhanced keratinocyte migration, reduced granulation tissue formation, and decreased collagen density, accompanied by an attenuated inflammatory response, but we observed no wound phenotype in Foxo3a(-/-) mice. Fibroblast growth factor 2, adiponectin, and notch1 genes were significantly increased at wound sites in Foxo1(+/-) mice, along with markedly altered extracellular signal-regulated kinase 1/2 and AKT phosphorylation. Similarly, transient knockdown of Foxo1 at the wound site by local delivery of antisense oligodeoxynucleotides enhanced skin wound healing. The link between FOXO1 and scarring extends to patients, in particular keloid scars, where we see FOXO1 expression markedly increased in fibroblasts and inflammatory cells within the otherwise normal dermis. This occurs in the immediate vicinity of the keloid by comparison to the center of the mature keloid, indicating that FOXO1 is associated with the overgrowth of this fibrotic response into adjacent normal skin. Overall, our data indicate that molecular targeting of FOXO1 may improve the quality of healing and reduce pathological scarring.

  12. Heme oxygenase-1 gene expression in human alveolar epithelial cells (A549) following exposure to whole cigarette smoke on a direct in vitro exposure system.

    PubMed

    Fukano, Yasuo; Yoshimura, Hiroyuki; Yoshida, Takemi

    2006-07-01

    Many in vitro studies have employed cigarette smoke condensates or soluble smoke components to investigate the biological effects of cigarette smoke. However, neither of these methods evaluates the biological effects of fresh whole cigarette smoke. It is most desirable to conduct in vitro biological studies under conditions which accommodate the dynamic physicochemical character of fresh cigarette smoke. Previously we reported the development of a whole smoke exposure system to assess the biological effects of mainstream cigarette smoke. The exposure system design was based on a combination of the sedimentation procedure and the CULTEX cultivation technique, which includes a systemized air/liquid interface methodology and exposes the cells to fresh smoke at every puff. The aim of this study was to adopt the other biological endpoint to our whole smoke exposure system. We focused on heme oxygenase (HO)-1 mRNA gene expression, an enzyme which has recently been shown to be highly responsible for oxidative stress. In the present study, a dose-response relationship between the HO-1 mRNA expression based on the reverse transcription real-time PCR method and total exposure to cigarette smoke was observed. When a Cambridge filter pad was placed between the cigarette and exposure module, to ensure the cells were only exposed to the gas/vapor phase, the latter, as well as the whole smoke, induced HO-1 mRNA dose dependently. For the next step, acetate plain and charcoal filters with the same pressure drop were prepared to assess the potential ability of charcoal filters with regard to the vapor phase performance. The results revealed reduced HO-1 mRNA gene expression when a charcoal filter was used. Direct whole smoke exposure is a significant approach and may reflect the conditions of exposure essentially resulting from direct contact between cells and a dynamic mixture of gaseous and particulate constituents. We were able to adopt a gene expression assay for oxidative

  13. Baicalein reduces angiogenesis in the inflammatory microenvironment via inhibiting the expression of AP-1

    PubMed Central

    Huang, Yujie; Miao, Zhaorui; Hu, Yang; Yuan, Yang; Zhou, Yuxin; Wei, Libin; Zhao, Kai; Guo, Qinglong; Lu, Na

    2017-01-01

    Increasing clinical and experimental studies have demonstrated that refractory chronic inflammation will result in malignant tumor and anti-angiogenic therapy may be an effective way to thwart the progression. Baicalein, one of the major active flavanoids found in Scutellaria baicalensis Georgi, has been exhibited potent anti-inflammation and anti-tumor effects by reducing angiogenesis. However, the exact mechanism of baicalein on endothelial cells in inflammatory microenvironment was not clear yet. Here, we investigated the anti-angiogenic effect of baicalein by incubating human umbilical vein endothelial cells (HUVECs) with THP-1 conditioned medium in vitro. The tube formation of HUVECs and microvessel outgrowth of rat aorta were attenuated, as well as the number of newly formed blood vessels in chicken chorioallantoic membrane (CAM) was reduced by baicalein. This anti-angiogenic effect was mainly on account of the inhibited motility, migration and invasion of HUVECs. In addition, mechanistic studies showed that baicalein could bind to AP-1 directly and the expression of c-Jun and c-Fos in HUVECs was reduced, accompanied by their increased proteasomal degradation. Besides, baicalein suppressed the nuclear translation, heterodimer formation and DNA binding affinity of c-Jun and c-Fos. What's more, the anti-angiogenic effect of baicalein was further confirmed by matrigel plug assay in vivo. Taken together, our study demonstrated that baicalein could exert its anti-angiogenic effect in the inflammation microenvironment via inhibiting the transcriptional activity of AP-1, which suggested that baicalein might be an alternative treatment against refractory chronic inflammation. PMID:27903990

  14. MicroRNA-194 Modulates Glucose Metabolism and Its Skeletal Muscle Expression Is Reduced in Diabetes

    PubMed Central

    Latouche, Celine; Natoli, Alaina; Reddy-Luthmoodoo, Medini; Heywood, Sarah E.; Armitage, James A.; Kingwell, Bronwyn A.

    2016-01-01

    Background The regulation of microRNAs (miRNAs) at different stages of the progression of type 2 diabetes mellitus (T2DM) and their role in glucose homeostasis was investigated. Methods Microarrays were used to assess miRNA expression in skeletal muscle biopsies taken from healthy individuals and patients with pre-diabetes or T2DM, and insulin resistant offspring of rat dams fed a high fat diet during pregnancy. Results Twenty-three miRNAs were differentially expressed in patients with T2DM, and 7 in the insulin resistant rat offspring compared to their controls. Among these, only one miRNA was similarly regulated: miR-194 expression was significantly reduced by 25 to 50% in both the rat model and in human with pre-diabetes and established diabetes. Knockdown of miR-194 in L6 skeletal muscle cells induced an increase in basal and insulin-stimulated glucose uptake and glycogen synthesis. This occurred in conjunction with an increased glycolysis, indicated by elevated lactate production. Moreover, oxidative capacity was also increased as we found an enhanced glucose oxidation in presence of the mitochondrial uncoupler FCCP. When miR-194 was down-regulated in vitro, western blot analysis showed an increased phosphorylation of AKT and GSK3β in response to insulin, and an increase in expression of proteins controlling mitochondrial oxidative phosphorylation. Conclusions Type 2 diabetes mellitus is associated with regulation of several miRNAs in skeletal muscle. Interestingly, miR-194 was a unique miRNA that appeared regulated across different stages of the disease progression, from the early stages of insulin resistance to the development of T2DM. We have shown miR-194 is involved in multiple aspects of skeletal muscle glucose metabolism from uptake, through to glycolysis, glycogenesis and glucose oxidation, potentially via mechanisms involving AKT, GSK3 and oxidative phosphorylation. MiR-194 could be down-regulated in patients with early features of diabetes as an

  15. Mechanical vibration inhibits osteoclast formation by reducing DC-STAMP receptor expression in osteoclast precursor cells.

    PubMed

    Kulkarni, Rishikesh N; Voglewede, Philip A; Liu, Dawei

    2013-12-01

    It is well known that physical inactivity leads to loss of muscle mass, but it also causes bone loss. Mechanistically, osteoclastogenesis and bone resorption have recently been shown to be regulated by vibration. However, the underlying mechanism behind the inhibition of osteoclast formation is yet unknown. Therefore, we investigated whether mechanical vibration of osteoclast precursor cells affects osteoclast formation by the involvement of fusion-related molecules such as dendritic cell-specific transmembrane protein (DC-STAMP) and P2X7 receptor (P2X7R). RAW264.7 (a murine osteoclastic-like cell line) cells were treated with 20ng/ml receptor activator of NF-κB ligand (RANKL). For 3 consecutive days, the cells were subjected to 1h of mechanical vibration with 20μm displacement at a frequency of 4Hz and compared to the control cells that were treated under the same condition but without the vibration. After 5days of culture, osteoclast formation was determined. Gene expression of DC-STAMP and P2X7R by RAW264.7 cells was determined after 1h of mechanical vibration, while protein production of the DC-STAMP was determined after 6h of postincubation after vibration. As a result, mechanical vibration of RAW264.7 cells inhibited the formation of osteoclasts. Vibration down-regulated DC-STAMP gene expression by 1.6-fold in the presence of RANKL and by 1.4-fold in the absence of RANKL. Additionally, DC-STAMP protein production was also down-regulated by 1.4-fold in the presence of RANKL and by 1.2-fold in the absence of RANKL in RAW264.7 cells in response to mechanical vibration. However, vibration did not affect P2X7R gene expression. Mouse anti-DC-STAMP antibody inhibited osteoclast formation in the absence of vibration. Our results suggest that mechanical vibration of osteoclast precursor cells reduces DC-STAMP expression in osteoclast precursor cells leading to the inhibition of osteoclast formation.

  16. Involvement of aberrant DNA methylation on reduced expression of lysophosphatidic acid receptor-1 gene in rat tumor cell lines

    SciTech Connect

    Tsujiuchi, Toshifumi . E-mail: ttujiuch@life.kindai.ac.jp; Shimizu, Kyoko; Onishi, Mariko; Sugata, Eriko; Fujii, Hiromasa; Mori, Toshio; Honoki, Kanya; Fukushima, Nobuyuki

    2006-10-27

    Lysophosphatidic acid (LPA) is a bioactive phospholipid that stimulates cell proliferation, migration, and protects cells from apoptosis. It interacts with specific G protein-coupled transmembrane receptors. Recently, it has been reported that alterations of LPA receptor expression might be important in the malignant transformation of tumor cells. Therefore, to assess an involvement of DNA methylation in reduced expression of the LPA receptor-1 (lpa1) gene, we investigated the expression of the lpa1 gene and its DNA methylation patterns in rat tumor cell lines. Both rat brain-derived neuroblastoma B103 and liver-derived hepatoma RH7777 cells used in this study indicated no expression of lpa1. For the analysis of methylation status, bisulfite sequencing was performed with B103 and RH7777 cells, comparing with other lpa1 expressed cells and normal tissues of brain and liver. The lpa1 expressed cells and tissues were all unmethylated in this region of lpa1. In contrast, both B103 and RH7777 cells were highly methylated, correlating with reduced expression of the lpa1. Treatment with 5-aza 2'-deoxycytidine induced expression of lpa1 gene in B103 and RH7777 cells after 24 h. In RH7777 cells treated with 5-aza 2'-deoxycytidine, stress fiber formation was also observed in response to LPA in RH7777 cells, but not in untreated RH7777 cells. These results suggest that aberrant DNA methylation of the lpa1 gene may be involved in its reduced expression in rat tumor cells.

  17. Developmental expression of heme oxygenase in the rat lung.

    PubMed

    Dennery, Phyllis A; Lee, Christen S; Ford, Berendera S; Weng, Yi-Hao; Yang, Guang; Rodgers, Pamela A

    2003-01-01

    Heme oxygenase (HO), the rate-limiting enzyme in the formation of bilirubin, is expressed in the lung and may serve as an antioxidant. This enzyme results in the formation of antioxidant bile pigments and the degradation of pro-oxidant heme. We wanted to evaluate the differences in expression of HO-1, the inducible form, and HO-2, the constitutive isoenzyme, during lung maturation and document whether lung HO expression was similar to that of other antioxidant enzymes. Lung total HO activity and HO-1 and HO-2 proteins as well as HO-1 and HO-2 mRNA were evaluated in animals from 16 d of gestation (e(16.5)) to 2 mo of age. Heme content was also evaluated because heme is the substrate of the reaction. HO-1 mRNA was maximal at e(19.5) and e(20.5), whereas HO-2 mRNA was not changed throughout maturation. Lung HO-1 protein was highest on the first days of life and lowest in adults, whereas HO-2 protein was maximally expressed at postnatal d 5 and then declined to reach adult values. As to HO activity, there was a prenatal peak at e(20.5), a second lesser peak at d 5, and thereafter a decline to adult values. Lung heme content was inversely correlated with HO activity or protein as the highest heme values were seen in adults with the lowest HO activity. In response to hyperoxia, HO-1 mRNA was induced only in the adult lungs. A better understanding of the maturational regulation of lung HO will define a role for HO in newborns at risk for oxygen toxicity.

  18. Reduced phototropism in pks mutants may be due to altered auxin-regulated gene expression or reduced lateral auxin transport.

    PubMed

    Kami, Chitose; Allenbach, Laure; Zourelidou, Melina; Ljung, Karin; Schütz, Frédéric; Isono, Erika; Watahiki, Masaaki K; Yamamoto, Kotaro T; Schwechheimer, Claus; Fankhauser, Christian

    2014-02-01

    Phototropism allows plants to orient their photosynthetic organs towards the light. In Arabidopsis, phototropins 1 and 2 sense directional blue light such that phot1 triggers phototropism in response to low fluence rates, while both phot1 and phot2 mediate this response under higher light conditions. Phototropism results from asymmetric growth in the hypocotyl elongation zone that depends on an auxin gradient across the embryonic stem. How phototropin activation leads to this growth response is still poorly understood. Members of the phytochrome kinase substrate (PKS) family may act early in this pathway, because PKS1, PKS2 and PKS4 are needed for a normal phototropic response and they associate with phot1 in vivo. Here we show that PKS proteins are needed both for phot1- and phot2-mediated phototropism. The phototropic response is conditioned by the developmental asymmetry of dicotyledonous seedlings, such that there is a faster growth reorientation when cotyledons face away from the light compared with seedlings whose cotyledons face the light. The molecular basis for this developmental effect on phototropism is unknown; here we show that PKS proteins play a role at the interface between development and phototropism. Moreover, we present evidence for a role of PKS genes in hypocotyl gravi-reorientation that is independent of photoreceptors. pks mutants have normal levels of auxin and normal polar auxin transport, however they show altered expression patterns of auxin marker genes. This situation suggests that PKS proteins are involved in auxin signaling and/or lateral auxin redistribution.

  19. Cobalt alleviates GA-induced programmed cell death in wheat aleurone layers via the regulation of H2O2 production and heme oxygenase-1 expression.

    PubMed

    Wu, Mingzhu; Li, Jiale; Wang, Fangquan; Li, Feng; Yang, Jun; Shen, Wenbiao

    2014-11-14

    Heme oxygenase-1 (HO-1) and hydrogen peroxide (H2O2) are key signaling molecules that are produced in response to various environmental stimuli. Here, we demonstrate that cobalt is able to delay gibberellic acid (GA)-induced programmed cell death (PCD) in wheat aleurone layers. A similar response was observed when samples were pretreated with carbon monoxide (CO) or bilirubin (BR), two end-products of HO catalysis. We further observed that increased HO-1 expression played a role in the cobalt-induced alleviation of PCD. The application of HO-1-specific inhibitor, zinc protoporphyrin-IX (ZnPPIX), substantially prevented the increases of HO-1 activity and the alleviation of PCD triggered by cobalt. The stimulation of HO-1 expression, and alleviation of PCD might be caused by the initial H2O2 production induced by cobalt. qRT-PCR and enzymatic assays revealed that cobalt-induced gene expression and the corresponding activities of superoxide dismutase (SOD), catalase (CAT) and ascorbate peroxidase (APX), three enzymes that metabolize reactive oxygen species, were consistent with the H2O2 accumulation during GA treatment. These cobalt responses were differentially blocked by co-treatment with ZnPPIX. We therefore suggest that HO-1 functions in the cobalt-triggered alleviation of PCD in wheat aleurone layers, which is also dependent on the enhancement of the activities of antioxidant enzymes.

  20. Cadmium-induced heme oxygenase-1 gene expression is associated with the depletion of glutathione in the roots of Medicago sativa.

    PubMed

    Cui, Weiti; Fu, Guangqing; Wu, Honghong; Shen, Wenbiao

    2011-02-01

    Following previous findings that cadmium (Cd) induces heme oxygenase-1 (HO1) gene expression in alfalfa seedling roots, we now show that the decreased glutathione (GSH) and ascorbic acid (AsA) contents, induction of HO-1 gene expression and its protein level by Cd was mimicked by a GSH depletor diethylmaleate (DEM). Meanwhile, above Cd- or DEM-induced decreased GSH content followed by HO-1 up-regulation could be strengthened or reversed differentially by the application of a selective inhibitor of GSH biosynthesis L: -buthionine-sulfoximine (BSO), or exogenous GSH and AsA, respectively. The antioxidative behavior of HO-1 induction was further confirmed by histochemical staining for the detection of loss of membrane integrity in a short period of treatment time. Additionally, the induction of HO-1 transcript was inhibited by the transcriptional inhibitor actinomycin D (ActD) or protein synthesis inhibitor cycloheximide (CX, especially). In contrast, the level of HO-2 transcript did not change upon various treatments. Together, above results suggested that Cd-induced up-regulation of HO-1 gene expression is associated with GSH depletion, which is at least existing transcriptional regulation level, thus leading to enhanced antioxidative capability transiently.

  1. Reduced expression of 15-hydroxy prostaglandin dehydrogenase in chorion during labor is associated with decreased PRB and increased PRA and GR expression.

    PubMed

    Li, Yuan; He, Ping; Sun, Qianqian; Liu, Jie; Gao, Lu; You, Xingji; Gu, Hang; Ni, Xin

    2013-05-01

    The chorion laeve controls the levels of active prostaglandins within the uterus by NAD-dependent 15-hydroxy prostaglandin dehydrogenase (PGDH). The expression of PGDH in chorion is modulated by glucocorticoids and progesterone. In this study, we investigated glucocorticoid receptor (GR) and progesterone receptor A and B (PRA and PRB) in the regulation of PGDH expression in chorion, and we determined whether reduced PGDH expression in chorion during labor is associated with the changes in GR and PR expression by real-time RT-PCR and Western blot analysis. Dexamethasone (DEX) inhibited PGDH expression whereas progesterone stimulated PGDH expression in chorionic trophoblasts. DEX suppressed PGDH expression in GR overexpression and PR knockdown cells. The inhibitory effect of DEX did not occur in GR knockdown cells. Progesterone inhibited PGDH in GR overexpression and PR knockdown cells and it stimulated PGDH in PRB overexpression cells whereas it suppressed PGDH in PRA overexpression cells. Knockdown of c-Jun resulted in a loss of progesterone- and DEX-induced effects. PGDH was down-regulated in chorion tissues during labor. PRB was decreased whereas PRA and GR were increased in chorion during labor. Glucocorticoids inhibit PGDH expression via GR in chorionic trophoblasts. Progesterone enhances PGDH expression through PRB, whereas it inhibits PGDH expression via GR and PRA. Decreased PGDH expression is associated with increased GR and PRA, although decreased PRB, in chorion during labor.

  2. Reduced O-GlcNAcase expression promotes mitotic errors and spindle defects.

    PubMed

    Lanza, Chris; Tan, Ee Phie; Zhang, Zhen; Machacek, Miranda; Brinker, Amanda E; Azuma, Mizuki; Slawson, Chad

    2016-05-18

    Alterations in O-GlcNAc cycling, the addition and removal of O-GlcNAc, lead to mitotic defects and increased aneuploidy. Herein, we generated stable O-GlcNAcase (OGA, the enzyme that removes O-GlcNAc) knockdown HeLa cell lines and characterized the effect of the reduction in OGA activity on cell cycle progression. After release from G1/S, the OGA knockdown cells progressed normally through S phase but demonstrated mitotic exit defects. Cyclin A was increased in the knockdown cells while Cyclin B and D expression was reduced. Retinoblastoma protein (RB) phosphorylation was also increased in the knockdown compared to control. At M phase, the knockdown cells showed more compact spindle chromatids than control cells and had a greater percentage of cells with multipolar spindles. Furthermore, the timing of the inhibitory tyrosine phosphorylation of Cyclin Dependent Kinase 1 (CDK1) was altered in the OGA knockdown cells. Although expression and localization of the chromosomal passenger protein complex (CPC) was unchanged, histone H3 threonine 3 phosphorylation was decreased in one of the OGA knockdown cell lines. The Ewing Sarcoma Breakpoint Region 1 Protein (EWS) participates in organizing the CPC at the spindle and is a known substrate for O-GlcNAc transferase (OGT, the enzyme that adds O-GlcNAc). EWS O-GlcNAcylation was significantly increased in the OGA knockdown cells promoting uneven localization of the mitotic midzone. Our data suggests that O-GlcNAc cycling is an essential mechanism for proper mitotic signaling and spindle formation, and alterations in the rate of O-GlcNAc cycling produces aberrant spindles and promotes aneuploidy.

  3. Prolonged High Fat Diet Reduces Dopamine Reuptake without Altering DAT Gene Expression

    PubMed Central

    Cone, Jackson J.; Chartoff, Elena H.; Potter, David N.; Ebner, Stephanie R.; Roitman, Mitchell F.

    2013-01-01

    The development of diet-induced obesity (DIO) can potently alter multiple aspects of dopamine signaling, including dopamine transporter (DAT) expression and dopamine reuptake. However, the time-course of diet-induced changes in DAT expression and function and whether such changes are dependent upon the development of DIO remains unresolved. Here, we fed rats a high (HFD) or low (LFD) fat diet for 2 or 6 weeks. Following diet exposure, rats were anesthetized with urethane and striatal DAT function was assessed by electrically stimulating the dopamine cell bodies in the ventral tegmental area (VTA) and recording resultant changes in dopamine concentration in the ventral striatum using fast-scan cyclic voltammetry. We also quantified the effect of HFD on membrane associated DAT in striatal cell fractions from a separate group of rats following exposure to the same diet protocol. Notably, none of our treatment groups differed in body weight. We found a deficit in the rate of dopamine reuptake in HFD rats relative to LFD rats after 6 but not 2 weeks of diet exposure. Additionally, the increase in evoked dopamine following a pharmacological challenge of cocaine was significantly attenuated in HFD relative to LFD rats. Western blot analysis revealed that there was no effect of diet on total DAT protein. However, 6 weeks of HFD exposure significantly reduced the 50 kDa DAT isoform in a synaptosomal membrane-associated fraction, but not in a fraction associated with recycling endosomes. Our data provide further evidence for diet-induced alterations in dopamine reuptake independent of changes in DAT production and demonstrates that such changes can manifest without the development of DIO. PMID:23516454

  4. Nell1-deficient mice have reduced expression of extracellular matrix proteins causing cranial and vertebral defects

    SciTech Connect

    Desai, Jayashree; Shannon, Mark E.; Johnson, Mahlon D.; Ruff, David W.; Hughes, Lori A; Kerley, Marilyn K; Carpenter, D A; Johnson, Dabney K; Rinchik, Eugene M.; Culiat, Cymbeline T

    2006-01-01

    The mammalian Nell1 gene encodes a protein kinase C-b1 (PKC-b1) binding protein that belongs to a new class of cell-signaling molecules controlling cell growth and differentiation. Over-expression of Nell1 in the developing cranial sutures in both human and mouse induces craniosynostosis, the premature fusion of the growing cranial bone fronts. Here, we report the generation, positional cloning and characterization of Nell16R, a recessive, neonatal-lethal point mutation in the mouse Nell1 gene, induced by N-ethyl-N-nitrosourea. Nell16R has a T!A base change that converts a codon for cysteine into a premature stop codon [Cys(502)Ter], resulting in severe truncation of the predicted protein product and marked reduction in steady-state levels of the transcript. In addition to the expected alteration of cranial morphology, Nell16R mutants manifest skeletal defects in the vertebral column and ribcage, revealing a hitherto undefined role for Nell1 in signal transduction in endochondral ossification. Real-time quantitative reverse transcription-PCR assays of 219 genes showed an association between the loss of Nell1 function and reduced expression of genes for extracellular matrix (ECM) proteins critical for chondrogenesis and osteogenesis. Several affected genes are involved in the human cartilage disorder Ehlers-Danlos Syndrome and other disorders associated with spinal curvature anomalies. Nell16R mutant mice are a new tool for elucidating basic mechanisms in osteoblast and chrondrocyte differentiation in the developing skull and vertebral column and understanding how perturbations in the production of ECM proteins can lead to anomalies in these structures.

  5. MiR-134 regulates the proliferation and invasion of glioblastoma cells by reducing Nanog expression.

    PubMed

    Niu, Chao Shi; Yang, Yang; Cheng, Chuan-Dong

    2013-05-01

    MiR-134 is a brain-enriched miRNA that plays an essential role in the development of the embryonic stem cell-orientated differentiation to central nervous system by suppression of Nanog and neural development (including neurons, cylindraxile and dendrites) and has been shown to be downregulated in oligodendrogliomas (ODG) and glioblastomas (GBM), suggesting its possible involvement in brain tumor progression. In this study, we defined the expression and function of miR-134, which we found to be downregulated in glioma samples and the glioblastoma cell line U87 by SYBR green real-time quantitative reverse transcription-PCR (real-time PCR). Early reports have characterized Nanog as a direct target of miR-134 by a dual-luciferase reporter assay in 293T cells. In our study, overexpression of miR-134 in U87 glioblastoma cells resulted in significant downregulation of Nanog mRNA levels as well as protein levels. miR-134 overexpression reduced the proliferation, invasiveness and migration capability of U87 cells while promoted apoptosis of these cells in vitro and suppressed the growth of tumor xenografts in vivo. These findings demonstrated that miR-134 deregulation is common in human gliomas. Restoration of its function inhibits cell proliferation, invasion and migration capability and promotes apoptosis, which could be partly due to its inhibitory effect on Nanog protein expression in glioblastoma cells. MiR-134 could play an important role as a tumor suppressor relying on its direct translational attenuation of Nanog.

  6. NeuN expression correlates with reduced mitotic index of neoplastic cells in central neurocytomas.

    PubMed

    Englund, C; Alvord, E C; Folkerth, R D; Silbergeld, D; Born, D E; Small, R; Hevner, R F

    2005-08-01

    In the developing brain, neuronal differentiation is associated with permanent exit from the mitotic cycle. This raises the possibility that neuronal differentiation may suppress proliferative activity, even in neoplastic cells. As a first step towards understanding the relation between neuronal differentiation and mitotic cycling in brain tumours, we studied the expression of NeuN (a neuronal marker) and Ki-67 (a mitotic marker) by double-labelling immuno-fluorescence in 16 brain tumours with neuronal differentiation. The tumours included a series of 11 central neurocytomas, and five single cases of other tumour types. In the central neurocytomas, NeuN(+) cells had a 15-fold lower Ki-67 labelling index, on average, than did NeuN(-) cells (P < 0.01). In the other tumours (one extraventricular neurocytoma, one desmoplastic medulloblastoma, one olfactory neuroblastoma, one ganglioglioma and one anaplastic ganglioglioma), the Ki-67 labelling index was always at least fourfold lower in NeuN(+) cells than in NeuN(-) cells. These results indicate that neuronal differentiation is associated with a substantial decrease of proliferative activity in neoplastic cells of central neurocytomas, and suggest that the same may be true across diverse types of brain tumours. However, tumours with extensive neuronal differentiation may nevertheless have a high overall Ki-67 labelling index, if the mitotic activity of NeuN(-) cells is high. The correlation between NeuN expression and reduced mitotic activity in neurocytoma cells is consistent with the hypothesis that neuronal differentiation suppresses proliferation, but further studies will be necessary to determine causality and investigate underlying mechanisms.

  7. Reactive Oxygen Species-Dependent c-Fos/Activator Protein 1 Induction Upregulates Heme Oxygenase-1 Expression by Bradykinin in Brain Astrocytes.

    PubMed

    Hsieh, Hsi-Lung; Wang, Hui-Hsin; Wu, Cheng-Ying; Yang, Chuen-Mao

    2010-12-15

    Heme oxygenase-1 (HO-1) plays a crucial role in tissue pathological changes such as brain injuries. Our previous studies have demonstrated that bradykinin (BK) induces the expression of several inflammatory proteins, including matrix metalloproteinase-9 and COX-2, via mitogen-activated protein kinases and nuclear factor-κB (NF-κB) in rat brain astrocytes (RBA-1). However, the molecular mechanisms underlying BK-induced HO-1 expression in RBA-1 cells remain poorly defined. Here we demonstrated that BK induced HO-1 expression and enzymatic activity via a B(2) BK receptor-activated reactive oxygen species (ROS)-dependent signaling pathway. NADPH oxidase (Nox)-dependent ROS generation led to activation of extracellular signal-regulated kinase 1/2 (ERK1/2) and c-Jun-N-terminal kinase (JNK) and then activated the downstream molecules NF-κB and c-Jun, respectively. The c-Fos, an activator protein 1 (AP-1) subunit, was upregulated by activation of NF-κB and c-Jun, which bound to HO-1 promoter and thereby turned on transcription of HO-1 gene. The rat HO-1 promoter containing a putative AP-1 cis-binding site was identified as a crucial domain linking to BK action. Taken together, these results suggested that in RBA-1 cells, activation of ERK/NF-κB and JNK/c-Jun cascades by a Nox/ROS-dependent event enhancing c-Fos/AP-1 activity is essential for HO-1 upregulation and activation induced by BK. Moreover, ROS-dependent NF-E2-related factor 2 activation also contributes to HO-1 induction by BK in astrocytes.

  8. Potent Anti-inflammatory and Analgesic Actions of the Chloroform Extract of Dendropanax morbifera Mediated by the Nrf2/HO-1 Pathway.

    PubMed

    Akram, Muhammad; Kim, Kyeong-A; Kim, Eun-Sun; Syed, Ahmed Shah; Kim, Chul Young; Lee, Jong Soo; Bae, Ok-Nam

    2016-01-01

    Dendropanax morbifera LEVEILLE (DP) has been used in traditional Korean medicines to treat a variety of inflammatory diseases. Although the in vitro anti-inflammatory potential of this plant is understood, its in vivo efficacy and underlying molecular mechanism of anti-inflammatory effects are largely unknown. We elucidated the anti-inflammatory and analgesic activities and the underlying molecular mechanisms of DP using in vitro and in vivo models. Lipopolysaccharide (LPS)-stimulated murine macrophages were used to analyze the in vitro anti-inflammatory potential of DP extract and to elucidate the underlying mechanisms. In vivo animal models of phorbol 12-myristate 13-acetate (TPA)-induced ear edema and acetic acid-induced writhing response tests were used to analyze the in vivo anti-inflammatory effects and anti-nociceptive effects of DP extract, respectively. Methanolic extract of DP (DPME) significantly inhibited the release of nitric oxide (NO) and prostaglandin E2 (PGE2) in LPS-activated macrophages. Among the five sub-fractions, the chloroform fraction (DP-C) showed the most potent suppressive effects against pro-inflammatory mediators and cytokines in LPS-stimulated macrophages. These effects were attributed to inhibition of nuclear factor-κB (NF-κB) nuclear translocation and c-Jun N terminal kinase (JNK) 1/2 phosphorylation and to activation of NF-E2-related factor 2/heme oxygenase-1 (Nrf2/HO-1) signaling. DP-C exhibited strong protective in vivo effects in TPA-induced ear edema mouse model and acetic acid-induced writhing response test. Our data suggest that DP-C has potent anti-inflammatory and analgesic activities and may be a promising treatment against a variety of inflammatory diseases.

  9. Reducing premature KCC2 expression rescues seizure susceptibility and spine morphology in atypical febrile seizures.

    PubMed

    Awad, Patricia N; Sanon, Nathalie T; Chattopadhyaya, Bidisha; Carriço, Josianne Nunes; Ouardouz, Mohamed; Gagné, Jonathan; Duss, Sandra; Wolf, Daniele; Desgent, Sébastien; Cancedda, Laura; Carmant, Lionel; Di Cristo, Graziella

    2016-07-01

    Atypical febrile seizures are considered a risk factor for epilepsy onset and cognitive impairments later in life. Patients with temporal lobe epilepsy and a history of atypical febrile seizures often carry a cortical malformation. This association has led to the hypothesis that the presence of a cortical dysplasia exacerbates febrile seizures in infancy, in turn increasing the risk for neurological sequelae. The mechanisms linking these events are currently poorly understood. Potassium-chloride cotransporter KCC2 affects several aspects of neuronal circuit development and function, by modulating GABAergic transmission and excitatory synapse formation. Recent data suggest that KCC2 downregulation contributes to seizure generation in the epileptic adult brain, but its role in the developing brain is still controversial. In a rodent model of atypical febrile seizures, combining a cortical dysplasia and hyperthermia-induced seizures (LHS rats), we found a premature and sustained increase in KCC2 protein levels, accompanied by a negative shift of the reversal potential of GABA. In parallel, we observed a significant reduction in dendritic spine size and mEPSC amplitude in CA1 pyramidal neurons, accompanied by spatial memory deficits. To investigate whether KCC2 premature overexpression plays a role in seizure susceptibility and synaptic alterations, we reduced KCC2 expression selectively in hippocampal pyramidal neurons by in utero electroporation of shRNA. Remarkably, KCC2 shRNA-electroporated LHS rats show reduced hyperthermia-induced seizure susceptibility, while dendritic spine size deficits were rescued. Our findings demonstrate that KCC2 overexpression in a compromised developing brain increases febrile seizure susceptibility and contribute to dendritic spine alterations.

  10. Hemophagocytic macrophages constitute a major compartment of heme oxygenase expression in sepsis

    PubMed Central

    Schaer, Dominik J; Schaer, Christian A; Schoedon, Gabriele; Imhof, Alexander; Kurrer, Michael O

    2006-01-01

    Schaer DJ, Schaer CA, Schoedon G, Imhof A, Kurrer MO. Hemophagocytic macrophages constitute a major compartment of heme oxygenase expression in sepsis. Objectives: Uncontrolled macrophage activation with hemophagocytosis is a distinctive feature of hemophagocytic syndromes (HPS). We examined whether lympho-histiocytic infiltration of the bone marrow and liver, as well as hemo-/erythrophagocytosis also occurs during sepsis and whether this process could account for the increased production of anti-inflammatory heme-oxygenase (HO-1) products observed during sepsis. Methods: Hemophagocytosis and expression of CD163, HO-1, ferritin as well as CD8 and granzyme-B were examined in post-mortem bone marrow samples from 28 patients with sepsis and from eight control patients. Results: Comparison of samples from non-septic patients with samples from patients with fatal sepsis revealed that the latter group displayed dense lympho-histiocytic bone marrow infiltration with CD163+/HO-1+/ferritin+ macrophages as well as with CD8+ and granzyme-B+ T-cells. Hemophagocytosis with prominent phagocytosis of erythroid cells was readily apparent in septic patients, implying that this process is a likely stimulus for the up-regulation of macrophage HO-1 expression. Conclusions: Lympho-histiocytic activation with hemophagocytosis is a shared pathophysiologic mechanism in HPS and sepsis. Furthermore, the association of hemophagocytosis with an increase in HO-1 expression may indicate a novel role for this apparently futile process as a negative regulator of inflammation. PMID:17044836

  11. Systemic but not topical TRAIL-expressing mesenchymal stem cells reduce tumour growth in malignant mesothelioma.

    PubMed

    Sage, Elizabeth K; Kolluri, Krishna K; McNulty, Katrina; Lourenco, Sofia Da Silva; Kalber, Tammy L; Ordidge, Katherine L; Davies, Derek; Gary Lee, Y C; Giangreco, Adam; Janes, Sam M

    2014-07-01

    Malignant pleural mesothelioma is a rare but devastating cancer of the pleural lining with no effective treatment. The tumour is often diffusely spread throughout the chest cavity, making surgical resection difficult, while systemic chemotherapy offers limited benefit. Bone marrow-derived mesenchymal stem cells (MSCs) home to and incorporate into tumour stroma, making them good candidates to deliver anticancer therapies. Tumour necrosis factor-related apoptosis-inducing ligand (TRAIL) is a pro-apoptotic molecule that selectively induces apoptosis in cancer cells, leaving healthy cells unaffected. We hypothesised that human MSCs expressing TRAIL (MSCTRAIL) would home to an in vivo model of malignant pleural mesothelioma and reduce tumour growth. Human MSCs transduced with a lentiviral vector encoding TRAIL were shown in vitro to kill multiple malignant mesothelioma cell lines as predicted by sensitivity to recombinant TRAIL (rTRAIL). In vivo MSC homing was delineated using dual fluorescence and bioluminescent imaging, and we observed that higher levels of MSC engraftment occur after intravenous delivery compared with intrapleural delivery of MSCs. Finally, we show that intravenous delivery of MSCTRAIL results in a reduction in malignant pleural mesothelioma tumour growth in vivo via an increase in tumour cell apoptosis.

  12. Embryo Microinjection of Selenomethionine Reduces Hatchability and Modifies Oxidant Responsive Gene Expression in Zebrafish

    PubMed Central

    Thomas, J. K.; Janz, D. M.

    2016-01-01

    In previous studies we demonstrated that exposure to selenomethionine (SeMet) causes developmental toxicities in zebrafish (Danio rerio). The objectives of this study were to establish a dose-response relationship for developmental toxicities in zebrafish after embryo microinjection of Se (8, 16 or 32 μg/g dry mass of eggs) in the form of SeMet, and to investigate potential underlying mechanism(s) of SeMet-induced developmental toxicities. A dose-dependent increase in frequencies of mortality and total deformities, and reduced hatchability were observed in zebrafish exposed to excess Se via embryo microinjection. The egg Se concentration causing 20% mortality was then used to investigate transcript abundance of proteins involved in antioxidant protection and methylation. Excess Se exposure modified gene expression of oxidant-responsive transcription factors (nuclear factor erythroid 2-related factor nrf2a and nrf2b), and enzymes involved in cellular methylation (methionine adenosyltransferase mat1a and mat2ab) in zebrafish larvae. Notably, excess Se exposure up-regulated transcript abundance of aryl hydrocarbon receptor 2 (ahr2), a signalling pathway involved in the toxicity of dioxin-related compounds. Our findings suggest that oxidative stress or modification of methylation, or a combination of these mechanisms, might be responsible for Se-induced developmental toxicities in fishes. PMID:27210033

  13. Familial clustering of medullary sponge kidney is autosomal dominant with reduced penetrance and variable expressivity.

    PubMed

    Fabris, Antonia; Lupo, Antonio; Ferraro, Pietro M; Anglani, Franca; Pei, York; Danza, Francesco M; Gambaro, Giovanni

    2013-02-01

    Medullary sponge kidney (MSK) is a renal malformation typically associated with nephrocalcinosis and recurrent calcium nephrolithiasis. Approximately 12% of recurrent stone formers have MSK, which is generally considered a sporadic disorder. Since its discovery, three pedigrees have been described in which an apparently autosomal dominant inheritance was suggested. Here, family members of 50 patients with MSK were systematically investigated by means of interviews, renal imaging, and biochemical studies in an effort to establish whether MSK is an inheritable disorder. Twenty-seven MSK probands had 59 first- and second-degree relatives of both genders with MSK in all generations. There were progressively lower mean levels of serum calcium, urinary sodium, pH, and volume, combined with higher serum phosphate and potassium from probands to relatives with bilateral, to those with unilateral, and to those unaffected by MSK. This suggests that most affected relatives have a milder form of MSK than the probands, which would explain why they had not been so diagnosed. Thus, our study provides strong evidence that familial clustering of MSK is common, and has an autosomal dominant inheritance, a reduced penetrance, and variable expressivity.

  14. Embryo Microinjection of Selenomethionine Reduces Hatchability and Modifies Oxidant Responsive Gene Expression in Zebrafish

    NASA Astrophysics Data System (ADS)

    Thomas, J. K.; Janz, D. M.

    2016-05-01

    In previous studies we demonstrated that exposure to selenomethionine (SeMet) causes developmental toxicities in zebrafish (Danio rerio). The objectives of this study were to establish a dose-response relationship for developmental toxicities in zebrafish after embryo microinjection of Se (8, 16 or 32 μg/g dry mass of eggs) in the form of SeMet, and to investigate potential underlying mechanism(s) of SeMet-induced developmental toxicities. A dose-dependent increase in frequencies of mortality and total deformities, and reduced hatchability were observed in zebrafish exposed to excess Se via embryo microinjection. The egg Se concentration causing 20% mortality was then used to investigate transcript abundance of proteins involved in antioxidant protection and methylation. Excess Se exposure modified gene expression of oxidant-responsive transcription factors (nuclear factor erythroid 2-related factor nrf2a and nrf2b), and enzymes involved in cellular methylation (methionine adenosyltransferase mat1a and mat2ab) in zebrafish larvae. Notably, excess Se exposure up-regulated transcript abundance of aryl hydrocarbon receptor 2 (ahr2), a signalling pathway involved in the toxicity of dioxin-related compounds. Our findings suggest that oxidative stress or modification of methylation, or a combination of these mechanisms, might be responsible for Se-induced developmental toxicities in fishes.

  15. Protein-poor diet reduces host-specific immune gene expression in Bombus terrestris

    PubMed Central

    Brunner, Franziska S.; Schmid-Hempel, Paul; Barribeau, Seth M.

    2014-01-01

    Parasites infect hosts non-randomly as genotypes of hosts vary in susceptibility to the same genotypes of parasites, but this specificity may be modulated by environmental factors such as nutrition. Nutrition plays an important role for any physiological investment. As immune responses are costly, resource limitation should negatively affect immunity through trade-offs with other physiological requirements. Consequently, nutritional limitation should diminish immune capacity in general, but does it also dampen differences among hosts? We investigated the effect of short-term pollen deprivation on the immune responses of our model host Bombus terrestris when infected with the highly prevalent natural parasite Crithidia bombi. Bumblebees deprived of pollen, their protein source, show reduced immune responses to infection. They failed to upregulate a number of genes, including antimicrobial peptides, in response to infection. In particular, they also showed less specific immune expression patterns across individuals and colonies. These findings provide evidence for how immune responses on the individual-level vary with important elements of the environment and illustrate how nutrition can functionally alter not only general resistance, but also alter the pattern of specific host–parasite interactions. PMID:24850921

  16. Hypersocial behavior and biological redundancy in mice with reduced expression of PSD95 or PSD93.

    PubMed

    Winkler, Daniela; Daher, Fernanda; Wüstefeld, Liane; Hammerschmidt, Kurt; Poggi, Giulia; Seelbach, Anna; Krueger-Burg, Dilja; Vafadari, Behnam; Ronnenberg, Anja; Liu, Yanling; Kaczmarek, Leszek; Schlüter, Oliver M; Ehrenreich, Hannelore; Dere, Ekrem

    2017-02-09

    The postsynaptic density proteins 95 (PSD95) and 93 (PSD93) belong to a family of scaffolding proteins, the membrane-associated guanylate kinases (MAGUKs), which are highly enriched in synapses and responsible for organizing the numerous protein complexes required for synaptic development and plasticity. Genetic studies have associated MAGUKs with diseases like autism and schizophrenia, but knockout mice show severe, complex defects with difficult-to-interpret behavioral abnormalities due to major motor dysfunction which is atypical for psychiatric phenotypes. Therefore, rather than studying loss-of-function mutants, we comprehensively investigated the behavioral consequences of reduced PSD95 expression, using heterozygous PSD95 knockout mice (PSD95(+/-)). Specifically, we asked whether heterozygous PSD95 deficient mice would exhibit alterations in the processing of social stimuli and social behavior. Additionally, we investigated whether PSD95 and PSD93 would reveal any indication of functional or biological redundancy. Therefore, homozygous and heterozygous PSD93 deficient mice were examined in a similar behavioral battery as PSD95 mutants. We found robust hypersocial behavior in the dyadic interaction test in both PSD95(+/-) males and females. Additionally, male PSD95(+/-) mice exhibited higher levels of aggression and territoriality, while female PSD95(+/-) mice showed increased vocalization upon exposure to an anesthetized female mouse. Both male and female PSD95(+/-) mice revealed mild hypoactivity in the open field but no obvious motor deficit. Regarding PSD93 mutants, homozygous (but not heterozygous) knockout mice displayed prominent hypersocial behavior comparable to that observed in PSD95(+/-) mice, despite a more severe motor phenotype, which precluded several behavioral tests or their interpretation. Considering that PSD95 and PSD93 reduction provoke strikingly similar behavioral consequences, we explored a potential substitution effect and found

  17. Desferrioxamine reduces ultrahigh-molecular-weight polyethylene-induced osteolysis by restraining inflammatory osteoclastogenesis via heme oxygenase-1

    PubMed Central

    Kang, Hui; Yan, Yufei; Jia, Peng; Yang, Kai; Guo, Changjun; Chen, Hao; Qi, Jin; Qian, Niandong; Xu, Xing; Wang, Fei; Li, Changwei; Guo, Lei; Deng, Lianfu

    2016-01-01

    As wear particles-induced osteolysis still remains the leading cause of early implant loosening in endoprosthetic surgery, and promotion of osteoclastogenesis by wear particles has been confirmed to be responsible for osteolysis. Therapeutic agents targeting osteoclasts formation are considered for the treatment of wear particles-induced osteolysis. In the present study, we demonstrated for the first time that desferrioxamine (DFO), a powerful iron chelator, could significantly alleviate osteolysis in an ultrahigh-molecular-weight polyethylene (UHMWPE) particles-induced mice calvaria osteolysis model. Furthermore, DFO attenuated calvaria osteolysis by restraining enhanced inflammatory osteoclastogenesis induced by UHMWPE particles. Consistent with the in vivo results, we found DFO was also able to inhibit osteoclastogenesis in a dose-dependent manner in vitro, as evidenced by reduction of osteoclasts formation and suppression of osteoclast specific genes expression. In addition, DFO dampened osteoclasts differentiation and formation at early stage but not at late stage. Mechanistically, the reduction of osteoclastogenesis by DFO was due to increased heme oxygenase-1 (HO-1) expression, as decreased osteoclasts formation induced by DFO was significantly restored after HO-1 was silenced by siRNA, while HO-1 agonist COPP treatment enhanced DFO-induced osteoclastogenesis inhibition. In addition, blocking of p38 mitogen-activated protein kinase (p38MAPK) signaling pathway promoted DFO-induced HO-1 expression, implicating that p38 signaling pathway was involved in DFO-mediated HO-1 expression. Taken together, our results suggested that DFO inhibited UHMWPE particles-induced osteolysis by restraining inflammatory osteoclastogenesis through upregulation of HO-1 via p38MAPK pathway. Thus, DFO might be used as an innovative and safe therapeutic alternative for treating wear particles-induced aseptic loosening. PMID:27787522

  18. Rosiglitazone ameliorates diffuse axonal injury by reducing loss of tau and up-regulating caveolin-1 expression

    PubMed Central

    Zhao, Yong-lin; Song, Jin-ning; Ma, Xu-dong; Zhang, Bin-fei; Li, Dan-dong; Pang, Hong-gang

    2016-01-01

    Rosiglitazone up-regulates caveolin-1 levels and has neuroprotective effects in both chronic and acute brain injury. Therefore, we postulated that rosiglitazone may ameliorate diffuse axonal injury via its ability to up-regulate caveolin-1, inhibit expression of amyloid-beta precursor protein, and reduce the loss and abnormal phosphorylation of tau. In the present study, intraperitoneal injection of rosiglitazone significantly reduced the levels of amyloid-beta precursor protein and hyperphosphorylated tau (phosphorylated at Ser404(p-tau (S404)), and it increased the expression of total tau and caveolin-1 in the rat cortex. Our results show that rosiglitazone inhibits the expression of amyloid-beta precursor protein and lowers p-tau (S404) levels, and it reduces the loss of total tau, possibly by up-regulating caveolin-1. These actions of rosiglitazone may underlie its neuroprotective effects in the treatment of diffuse axonal injury. PMID:27482223

  19. Heme Oxygenase-1 Protects Neurons from Ischemic Damage by Upregulating Expression of Cu,Zn-Superoxide Dismutase, Catalase, and Brain-Derived Neurotrophic Factor in the Rabbit Spinal Cord.

    PubMed

    Jung, Hyo Young; Kim, Dae Won; Yim, Hee Sun; Yoo, Dae Young; Kim, Jong Whi; Won, Moo-Ho; Yoon, Yeo Sung; Choi, Soo Young; Hwang, In Koo

    2016-04-01

    In the present study, we investigated the protective effects of heme oxygenase (HO-1) against ischemic damage in motor neurons of the rabbit spinal cord. A PEP-1-HO-1 fusion protein was made to and confirmed the effective the penetration of HO-1 into spinal cord neurons at 8 h after treatment. Transient spinal cord ischemia was induced by occlusion of the abdominal aorta for 15 min. Vehicle (glycerol) or 0.375 mg/kg PEP-1-HO-1 was administered intraperitoneally to rabbits immediately after ischemia/reperfusion. Animals were sacrificed 15 min after reperfusion to measure lactate levels; 24 h after reperfusion to measure caspase 3 and myeloperoxidase levels, lipid peroxidation, and the activity of Cu,Zn-superoxide dismutase (SOD1) and catalase (CAT); or 72 h after reperfusion to assess neuronal survival and measure the levels of brain-derived neurotrophic factor (BDNF) in spinal cord homogenates. Administration of PEP-1-HO-1 did not significantly alter arterial blood gases (PaCO2 and PaO2), pH, or blood glucose levels before ischemia, 10 min after occlusion, or 10 min after reperfusion. Mean arterial pressure was selectively reduced 10 min after occlusion. Administration of PEP-1-HO-1 improved the rabbit Tarlov scores, and increased neuronal survival, as assessed by NeuN immunohistochemical staining 72 h after ischemia/reperfusion. In addition, administration of PEP-1-HO-1 significantly ameliorated lactate accumulation 15 min after reperfusion, and the increases in caspase 3, myeloperoxidase, and lipid peroxidation 24 h after reperfusion. PEP-1-HO-1 administration significantly mitigated the decrease in SOD1 and CAT 24 h after reperfusion, and reversed the decrease in BDNF levels in spinal cord homogenates 72 h after ischemia/reperfusion. These results suggest that PEP-1-HO-1 can protect against neuronal damage after transient spinal cord ischemia by limiting early lactic acidosis and increasing SOD1, CAT, and BDNF levels.

  20. Reduced expression of regeneration associated genes in chronically axotomized facial motoneurons.

    PubMed

    Gordon, T; You, S; Cassar, S L; Tetzlaff, W

    2015-02-01

    Chronically axotomized motoneurons progressively fail to regenerate their axons. Since axonal regeneration is associated with the increased expression of tubulin, actin and GAP-43, we examined whether the regenerative failure is due to failure of chronically axotomized motoneurons to express and sustain the expression of these regeneration associated genes (RAGs). Chronically axotomized facial motoneurons were subjected to a second axotomy to mimic the clinical surgical procedure of refreshing the proximal nerve stump prior to nerve repair. Expression of α1-tubulin, actin and GAP-43 was analyzed in axotomized motoneurons using in situ hybridization followed by autoradiography and silver grain quantification. The expression of these RAGs by acutely axotomized motoneurons declined over several months. The chronically injured motoneurons responded to a refreshment axotomy with a re-increase in RAG expression. However, this response to a refreshment axotomy of chronically injured facial motoneurons was less than that seen in acutely axotomized facial motoneurons. These data demonstrate that the neuronal RAG expression can be induced by injury-related signals and does not require acute deprivation of target derived factors. The transient expression is consistent with a transient inflammatory response to the injury. We conclude that transient RAG expression in chronically axotomized motoneurons and the weak response of the chronically axotomized motoneurons to a refreshment axotomy provides a plausible explanation for the progressive decline in regenerative capacity of chronically axotomized motoneurons.

  1. Interactions between NF-κB and SP3 connect inflammatory signaling with reduced FGF-10 expression.

    PubMed

    Carver, Billy J; Plosa, Erin J; Stinnett, Amanda M; Blackwell, Timothy S; Prince, Lawrence S

    2013-05-24

    Inflammation inhibits normal lung morphogenesis in preterm infants. Soluble inflammatory mediators present in the lungs of patients developing bronchopulmonary dysplasia disrupt expression of multiple genes critical for development. However, the mechanisms linking innate immune signaling and developmental programs are not clear. NF-κB activation inhibits expression of the critical morphogen FGF-10. Here, we show that interactions between the RELA subunit of NF-κB and SP3 suppress SP1-mediated FGF-10 expression. SP3 co-expression reduced SP1-mediated Fgf-10 promoter activity, suggesting antagonistic interactions between SP1 and SP3. Chromatin immunoprecipitation of LPS-treated primary mouse fetal lung mesenchymal cells detected increased interactions between SP3, RELA, and the Fgf-10 promoter. Expression of a constitutively active IκB kinase β mutant not only decreased Fgf-10 promoter activity but also increased RELA-SP3 nuclear interactions. Expression of a dominant-negative IκB, which blocks NF-κB nuclear translocation, prevented inhibition of FGF-10 by SP3. The inhibitory functions of SP3 required sequences located in the N-terminal region of the protein. These data suggested that inhibition of FGF-10 by inflammatory signaling involves the NF-κB-dependent interactions between RELA, SP3, and the Fgf-10 promoter. NF-κB activation may therefore lead to reduced gene expression by recruiting inhibitory factors to specific gene promoters following exposure to inflammatory stimuli.

  2. Teneligliptin Decreases Uric Acid Levels by Reducing Xanthine Dehydrogenase Expression in White Adipose Tissue of Male Wistar Rats

    PubMed Central

    2016-01-01

    We investigated the effects of teneligliptin on uric acid metabolism in male Wistar rats and 3T3-L1 adipocytes. The rats were fed with a normal chow diet (NCD) or a 60% high-fat diet (HFD) with or without teneligliptin for 4 weeks. The plasma uric acid level was not significantly different between the control and teneligliptin groups under the NCD condition. However, the plasma uric acid level was significantly decreased in the HFD-fed teneligliptin treated rats compared to the HFD-fed control rats. The expression levels of xanthine dehydrogenase (Xdh) mRNA in liver and epididymal adipose tissue of NCD-fed rats were not altered by teneligliptin treatment. On the other hand, Xdh expression was reduced significantly in the epididymal adipose tissue of the HFD-fed teneligliptin treated rats compared with that of HFD-fed control rats, whereas Xdh expression in liver did not change significantly in either group. Furthermore, teneligliptin significantly decreased Xdh expression in 3T3-L1 adipocytes. DPP-4 treatment significantly increased Xdh expression in 3T3-L1 adipocytes. With DPP-4 pretreatment, teneligliptin significantly decreased Xdh mRNA expression compared to the DPP-4-treated 3T3-L1 adipocytes. In conclusion, our studies suggest that teneligliptin reduces uric acid levels by suppressing Xdh expression in epididymal adipose tissue of obese subjects. PMID:27652270

  3. Expression and actions of heme oxygenase in the renal medulla of rats.

    PubMed

    Zou, A P; Billington, H; Su, N; Cowley, A W

    2000-01-01

    Recent studies have shown that the heme oxygenase (HO) product, carbon monoxide (CO), induces vasodilation and that inhibition of HO produces a sustained hypertension in rats. Given the importance of renal medullary blood flow (MBF) in the long-term control of arterial blood pressure, we hypothesized that the HO/CO system may play an important role in maintaining the constancy of blood flow to the renal medulla, which in turn contributes to the antihypertensive effects of the renal medulla. To test this hypothesis, we first determined the expression of 2 isoforms of HO (HO-1 and HO-2) in the different kidney regions. By Northern blot analyses, the abundance of both isozyme mRNAs was found highest in the renal inner medulla and lowest in the renal cortex. The transcripts for HO-1 in the renal outer medulla and inner medulla were 2.5 and 3.7 times that expressed in the renal cortex and those for HO-2 in the outer medulla and inner medulla were 1.3 and 1.6 times that expressed in the renal cortex, respectively. Western blot analyses of both enzymes showed the same expression pattern in these kidney regions as the mRNAs. To determine the role that HO plays in the control of renal MBF, we examined the effect of the HO inhibitor zinc deuteroporphyrin 2,4-bis glycol (ZnDPBG) on cortical blood flow and MBF in anesthetized rats. ZnDPBG was given by renal medullary interstitial infusion, and cortical blood flow and MBF were measured by laser Doppler flowmetry. Renal medullary interstitial infusion of ZnDPBG at a dose of 60 nmol/kg per minute produced a 31% decrease in MBF over a period of 60 minutes as measured by laser Doppler flow signal (0.62+/-0.02 vs 0.43+/-0.04 V in control vs ZnDPBG). With the use of an in vivo microdialysis technique, ZnDPBG was found to significantly reduce renal medullary cGMP concentrations when infused into the renal medullary interstitial space. These results suggest that both HO-1 and HO-2 are highly expressed in the renal medulla, that HO and

  4. Constitutively active RAS signaling reduces 1,25 dihydroxyvitamin D-mediated gene transcription in intestinal epithelial cells by reducing vitamin D receptor expression.

    PubMed

    DeSmet, Marsha L; Fleet, James C

    2017-01-16

    High vitamin D status is associated with reduced colon cancer risk but these studies ignore the diversity in the molecular etiology of colon cancer. RAS activating mutations are common in colon cancer and they activate pro-proliferative signaling pathways. We examined the impact of RAS activating mutations on 1,25 dihydroxyvitamin D (1,25(OH)2D)-mediated gene expression in cultured colon and intestinal cell lines. Transient transfection of Caco-2 cells with a constitutively active mutant K-RAS (G12 V) significantly reduced 1,25(OH)2D-induced activity of both a human 25-hydroxyvitamin D, 24 hydroxyase (CYP24A1) promoter-luciferase and an artificial 3X vitamin D response element (VDRE) promoter-luciferase reporter gene. Young Adult Mouse Colon (YAMC) and Rat Intestinal Epithelial (RIE) cell lines with stable expression of mutant H-RAS had suppressed 1,25(OH)2D-mediated induction of CYP24A1 mRNA. The RAS effects were associated with lower Vitamin D receptor (VDR) mRNA and protein levels in YAMC and RIE cells and they could be partially reversed by VDR overexpression. RAS-mediated suppression of VDR levels was not due to either reduced VDR mRNA stability or increased VDR gene methylation. However, chromatin accessibility to the VDR gene at the proximal promoter (-300bp), an enhancer region at -6kb, and an enhancer region located in exon 3 was significantly reduced in RAS transformed YAMC cells (YAMC-RAS). These data show that constitutively active RAS signaling suppresses 1,25(OH)2D-mediated gene transcription in colon epithelial cells by reducing VDR gene transcription but the mechanism for this suppression is not yet known. These data suggest that cancers with RAS-activating mutations may be less responsive to vitamin D mediated treatment or chemoprevention.

  5. The Hedgehog Inhibitor Cyclopamine Reduces β-Catenin-Tcf Transcriptional Activity, Induces E-Cadherin Expression, and Reduces Invasion in Colorectal Cancer Cells

    PubMed Central

    Qualtrough, David; Rees, Phil; Speight, Beverley; Williams, Ann C.; Paraskeva, Christos

    2015-01-01

    Colorectal cancer is a major global health problem resulting in over 600,000 deaths world-wide every year with the majority of these due to metastatic disease. Wnt signalling, and more specifically β-catenin-related transcription, has been shown to drive both tumorigenesis and the metastatic process in colorectal neoplasia, yet its complex interactions with other key signalling pathways, such as hedgehog, remain to be elucidated. We have previously shown that the Hedgehog (HH) signalling pathway is active in cells from colorectal tumours, and that inhibition of the pathway with cyclopamine induces apoptosis. We now show that cyclopamine treatment reduces β-catenin related transcription in colorectal cancer cell lines, and that this effect can be reversed by addition of Sonic Hedgehog protein. We also show that cyclopamine concomitantly induces expression of the tumour suppressor and prognostic indicator E-cadherin. Consistent with a role for HH in regulating the invasive potential we show that cyclopamine reduces the expression of transcription factors (Slug, Snail and Twist) associated with the epithelial-mesenchymal transition and reduces the invasiveness of colorectal cancer cells in vitro. Taken together, these data show that pharmacological inhibition of the hedgehog pathway has therapeutic potential in the treatment of colorectal cancer. PMID:26393651

  6. The prognostic role and reduced expression of FOXJ2 in human hepatocellular carcinoma

    PubMed Central

    ZHANG, ZHONGBAO; MENG, GUANGJU; WANG, LIANG; MA, YINGYING; GUAN, ZHONGZHENG

    2016-01-01

    The current study aimed to investigate the potential role of the FOXJ2 (forkhead box J2) protein in the pathology of hepatocellular carcinoma (HCC). Western blotting was performed to determine the expression levels of FOXJ2 in HCC tissues and HCC cells. Specimens from 110 patients with HCC undergoing hepatic resection were evaluated for FOXJ2 expression using an immunohistochemical assay. The correlation between FOXJ2 expression and clinicopathological factors of the patients was determined by statistical analysis to determine the prognostic merit of FOXJ2 expression in HCC. The detailed involvement of FOXJ2 in the regulation of HCC proliferation was further investigated using FOXJ2-targeting small interfering RNA (siRNA). FOXJ2 protein was identified to be significantly downregulated in HCC tissues compared with adjacent normal liver tissues. Immunohistochemical analysis demonstrated that the expression of FOXJ2 was negatively correlated with Ki-67 levels in HCC specimens (r=−0.679, P<0.001). Furthermore, statistical analysis indicated FOXJ2 expression was significantly associated with histological differentiation (P=0.005), the size of largest tumor (P=0.002) and metastasis (P=0.036). Using Kaplan-Meier analysis, it was demonstrated that high FOXJ2 expression levels predicted significantly improved patient survival rates compared with low FOXJ2 expression levels (P<0.001). In addition, it was observed that interference of FOXJ2 expression using siRNA oligos led to the promotion of proliferation of HepG2 cells. FOXJ2 was markedly downregulated in HCC tissues. The expression of FOXJ2 was correlated with tumor size, histological differentiation and metastasis. Low expression levels of FOXJ2 predicted poor prognosis for patients with HCC, suggesting that FOXJ2 may be a candidate prognostic marker of HCC. Depletion of FOXJ2 caused the promotion of HCC cell proliferation, implicating that FOXJ2 may serve an inhibitory role in the regulation of HCC cell proliferation

  7. Tobacco-smoke-inducible human haem oxygenase-1 gene expression: role of distinct transcription factors and reactive oxygen intermediates.

    PubMed Central

    Favatier, F; Polla, B S

    2001-01-01

    Exposure of eukaryotic cells to a variety of reactive-oxygen-intermediate (ROI)-mediated sources of cellular injury, including heavy metals and UV radiation, induces the expression of heat-shock (HS) and stress-related genes among which is a 32-34 kDa protein identified as inducible haem oxygenase-1 (HO-1). We previously showed that tobacco smoke (TS), a potent source of oxidants leading to oxidative stress, induces both HS proteins (HSPs) and HO-1 in normal human monocytes. Here we investigated the induction mechanisms of human HO-1 gene expression by TS in the human premonocytic line U937. Northern blotting and flow cytometry revealed a dose- and time-dependent induction of HO-1 mRNA and protein by TS. In order to clarify the role of transacting factors in this induction, electrophoretic mobility-shift analysis was performed with nuclear extracts from control, TS-, cadmium (Cd)- or H(2)O(2)-exposed cells, incubated with consensus elements and binding sites of the promoter region of HO-1[heat-shock factor (HSF), nuclear factor kappaB (NF-kappaB) and activator protein-1 (AP-1)] and the cadmium-responsive element (CdRE) isolated by Takeda, Ishizawa, Sato, Yoshida and Shibahara [(1994) J. Biol. Chem. 269, 22858-22867]. We report an inhibition of NF-kappaB activation by TS, no effect on AP-1 and a strong activation of CdRE-binding activity, whereas cadmium chelation from TS only partially prevented HO-1 induction. H(2)O(2) also activated the CdRE-binding activity, and pretreatment with N-acetyl-L-cysteine, which replenishes the intracellular levels of GSH, suppressed, in TS-treated cells, both the CdRE-binding activity and the increased HO-1 expression. PMID:11171043

  8. High expression of Lifeact in Arabidopsis thaliana reduces dynamic reorganization of actin filaments but does not affect plant development.

    PubMed

    van der Honing, Hannie S; van Bezouwen, Laura S; Emons, Anne Mie C; Ketelaar, Tijs

    2011-10-01

    Lifeact is a novel probe that labels actin filaments in a wide range of organisms. We compared the localization and reorganization of Lifeact:Venus-labeled actin filaments in Arabidopsis root hairs and root epidermal cells of lines that express different levels of Lifeact: Venus with that of actin filaments labeled with GFP:FABD2, a commonly used probe in plants. Unlike GFP:FABD2, Lifeact:Venus labeled the highly dynamic fine F-actin in the subapical region of tip-growing root hairs. Lifeact:Venus expression at varying levels was not observed to affect plant development. However, at expression levels comparable to those of GFP:FABD2 in a well-characterized marker line, Lifeact:Venus reduced reorganization rates of bundles of actin filaments in root epidermal cells. Reorganization rates of cytoplasmic strands, which reflect the reorganization of the actin cytoskeleton, were also reduced in these lines. Moreover, in the same line, Lifeact:Venus-decorated actin filaments were more resistant to depolymerization by latrunculin B than those in an equivalent GFP:FABD2-expressing line. In lines where Lifeact: Venus is expressed at lower levels, these effects are less prominent or even absent. We conclude that Lifeact: Venus reduces remodeling of the actin cytoskeleton in Arabidopsis in a concentration-dependent manner. Since this reduction occurs at expression levels that do not cause defects in plant development, selection of normally growing plants is not sufficient to determine optimal Lifeact expression levels. When correct expression levels of Lifeact have been determined, it is a valuable probe that labels dynamic populations of actin filaments such as fine F-actin, better than FABD2 does.

  9. The effects of chromium picolinate and chromium histidinate administration on NF-κB and Nrf2/HO-1 pathway in the brain of diabetic rats.

    PubMed

    Sahin, Kazim; Tuzcu, Mehmet; Orhan, Cemal; Gencoglu, Hasan; Ulas, Mustafa; Atalay, Mustafa; Sahin, Nurhan; Hayirli, Armagan; Komorowski, James R

    2012-12-01

    The objective of this experiment was to investigate the effects of supplemental chromium picolinate (CrPic) and chromium histidinate (CrHis) on nuclear factor-kappa B (NF-κB p65) and nuclear factor (erythroid-derived 2)-like 2 (Nrf2) signaling pathway in diabetic rat brain. Nondiabetic (n = 45) and diabetic (n = 45) male Wistar rats were either not supplemented or supplemented with CrPic or CrHis via drinking water to consume 8 μg elemental chromium (Cr) per day for 12 weeks. Diabetes was induced by streptozotocin injection (40 mg/kg i.p., for 2 weeks) and maintained by high-fat feeding (40 %). Diabetes was associated with increases in cerebral NF-κB and 4-hydroxynonenal (4-HNE) protein adducts and decreased in cerebral nuclear factor of kappa light polypeptide gene enhancer in B cells inhibitor, alpha (IκBα) and Nrf2 levels. Both Cr chelates were effective to decrease levels of NF-κB and 4-HNE protein adducts and to increase levels of IκBα and Nrf2 in the brain of diabetic rats. However, responses of these increases and decreases were more notable when Cr was supplemented as CrHis than as CrPic. In conclusion, Cr may play a protective role in cerebral antioxidant defense system in diabetic subjects via the Nrf2 pathway by reducing inflammation through NF-κB p65 inhibition. Histidinate form of Cr was superior to picolinate form of Cr in reducing NF-κB expression and increasing Nrf2 expression in the brain of diabetic rats.

  10. Overwintering Is Associated with Reduced Expression of Immune Genes and Higher Susceptibility to Virus Infection in Honey Bees.

    PubMed

    Steinmann, Nadja; Corona, Miguel; Neumann, Peter; Dainat, Benjamin

    2015-01-01

    The eusocial honey bee, Apis mellifera, has evolved remarkable abilities to survive extreme seasonal differences in temperature and availability of resources by dividing the worker caste into two groups that differ in physiology and lifespan: summer and winter bees. Most of the recent major losses of managed honey bee colonies occur during the winter, suggesting that winter bees may have compromised immune function and higher susceptibility to diseases. We tested this hypothesis by comparing the expression of eight immune genes and naturally occurring infection levels of deformed wing virus (DWV), one of the most widespread viruses in A. mellifera populations, between summer and winter bees. Possible interactions between immune response and physiological activity were tested by measuring the expression of vitellogenin and methyl farnesoate epoxidase, a gene coding for the last enzyme involved in juvenile hormone biosynthesis. Our data show that high DWV loads in winter bees correlate with reduced expression of genes involved in the cellular immune response and physiological activity and high expression of humoral immune genes involved in antibacterial defense compared with summer bees. This expression pattern could reflect evolutionary adaptations to resist bacterial pathogens and economize energy during the winter under a pathogen landscape with reduced risk of pathogenic viral infections. The outbreak of Varroa destructor infestation could have overcome these adaptations by promoting the transmission of viruses. Our results suggest that reduced cellular immune function during the winter may have increased honey bee's susceptibility to DWV. These results contribute to our understanding of honey bee colony losses in temperate regions.

  11. Heparanase Overexpression Reduces Hepcidin Expression, Affects Iron Homeostasis and Alters the Response to Inflammation

    PubMed Central

    Asperti, Michela; Stuemler, Tanja; Poli, Maura; Gryzik, Magdalena; Lifshitz, Lena; Meyron-Holtz, Esther G.; Vlodavsky, Israel

    2016-01-01

    Hepcidin is the key regulator of systemic iron availability that acts by controlling the degradation of the iron exporter ferroportin. It is expressed mainly in the liver and regulated by iron, inflammation, erythropoiesis and hypoxia. The various agents that control its expression act mainly via the BMP6/SMAD signaling pathway. Among them are exogenous heparins, which are strong hepcidin repressors with a mechanism of action not fully understood but that may involve the competition with the structurally similar endogenous Heparan Sulfates (HS). To verify this hypothesis, we analyzed how the overexpression of heparanase, the HS degrading enzyme, modified hepcidin expression and iron homeostasis in hepatic cell lines and in transgenic mice. The results showed that transient and stable overexpression of heparanase in HepG2 cells caused a reduction of hepcidin expression and of SMAD5 phosphorylation. Interestingly, the clones showed also altered level of TfR1 and ferritin, indices of a modified iron homeostasis. The heparanase transgenic mice showed a low level of liver hepcidin, an increase of serum and liver iron with a decrease in spleen iron content. The hepcidin expression remained surprisingly low even after treatment with the inflammatory LPS. The finding that modification of HS structure mediated by heparanase overexpression affects hepcidin expression and iron homeostasis supports the hypothesis that HS participate in the mechanisms controlling hepcidin expression. PMID:27711215

  12. miR-145 promotes osteosarcoma growth by reducing expression of the transcription factor friend leukemia virus integration 1

    PubMed Central

    Wu, Panfeng; Liang, Jieyu; Yu, Fang; Zhou, Zhengbing; Tang, Juyu; Li, Kanghua

    2016-01-01

    Osteosarcoma (OS) is the most common malignant bone tumor in children and young adults. miR-145 is a microRNA highly expressed in vascularized tissues and has been widely studied in cancers. In this study, we explored the expression and function of miR-145 in OS. We found that miR-145 was consistently under-expressed in OS tissues and cell lines as compared to normal bone tissues and osteoblast cells. Ectopic expression of miR-145 in OS cells inhibited their proliferation and migration and induced apoptosis. miR-145 targets a putative microRNA regulatory element (MRE) in the 3′-UTR of friend leukemia virus integration 1 gene (FLI-1), and its abundance was inversely related to FLI-1 expression in OS tissues and cell lines. miR-145 decreased expression FLI-1 protein and mRNA, but mutation of the miR-145 MRE sequence in the FLI-1 3′-UTR abolished the activity of miR-145 in a reporter assay. Restored expression of FLI-1 diminished miR-145-mediated suppression of tumor progression. These results suggest that miR-145 acts as a tumor suppressor by directly reducing expression of FLI-1, and that the miR-145/FLI-1 pathway is important for tumor progression in OS. PMID:27304058

  13. Reversing the reduced level of endometrial GLUT4 expression in polycystic ovary syndrome: a mechanistic study of metformin action

    PubMed Central

    Li, Xin; Cui, Peng; Jiang, Hong-Yuan; Guo, Yan-Rong; Pishdari, Bano; Hu, Min; Feng, Yi; Billig, Håkan; Shao, Ruijin

    2015-01-01

    Conflicting results have been reported regarding whether or not insulin-regulated glucose transporter 4 (GLUT4) is expressed in human and rodent endometria. There is an inverse relationship between androgen levels and insulin-dependent glucose metabolism in women. Hyperandrogenemia, hyperinsulinemia, and insulin resistance are believed to contribute to endometrial abnormalities in women with polycystic ovary syndrome (PCOS). However, it has been unclear in previous studies if endometrial GLUT4 expression is regulated by androgen-dependent androgen receptors (ARs) and/or the insulin receptor/Akt/mTOR signaling network. In this study, we demonstrate that GLUT4 is expressed in normal endometrial cells (mainly in the epithelial cells) and is down-regulated under conditions of hyperandrogenemia in tissues from PCOS patients and in a 5α-dihydrotestosterone-induced PCOS-like rat model. Western blot analysis revealed reduced endometrial GLUT4 expression and increased AR expression in PCOS patients. However, the reduced GLUT4 level was not always associated with an increase in AR in PCOS patients when comparing non-hyperplasia with hyperplasia. Using a human tissue culture system, we investigated the molecular basis by which GLUT4 regulation in endometrial hyperplasia tissues is affected by metformin in PCOS patients. We show that specific endogenous organic cation transporter isoforms are regulated by metformin, and this suggests a direct effect of metformin on endometrial hyperplasia. Moreover, we demonstrate that metformin induces GLUT4 expression and inhibits AR expression and blocks insulin receptor/PI3K/Akt/mTOR signaling in the same hyperplasia human tissues. These findings indicate that changes in endometrial GLUT4 expression in PCOS patients involve the androgen-dependent alteration of AR expression and changes in the insulin receptor/PI3K/Akt/mTOR signaling network. PMID:26045896

  14. Reversing the reduced level of endometrial GLUT4 expression in polycystic ovary syndrome: a mechanistic study of metformin action.

    PubMed

    Li, Xin; Cui, Peng; Jiang, Hong-Yuan; Guo, Yan-Rong; Pishdari, Bano; Hu, Min; Feng, Yi; Billig, Håkan; Shao, Ruijin

    2015-01-01

    Conflicting results have been reported regarding whether or not insulin-regulated glucose transporter 4 (GLUT4) is expressed in human and rodent endometria. There is an inverse relationship between androgen levels and insulin-dependent glucose metabolism in women. Hyperandrogenemia, hyperinsulinemia, and insulin resistance are believed to contribute to endometrial abnormalities in women with polycystic ovary syndrome (PCOS). However, it has been unclear in previous studies if endometrial GLUT4 expression is regulated by androgen-dependent androgen receptors (ARs) and/or the insulin receptor/Akt/mTOR signaling network. In this study, we demonstrate that GLUT4 is expressed in normal endometrial cells (mainly in the epithelial cells) and is down-regulated under conditions of hyperandrogenemia in tissues from PCOS patients and in a 5α-dihydrotestosterone-induced PCOS-like rat model. Western blot analysis revealed reduced endometrial GLUT4 expression and increased AR expression in PCOS patients. However, the reduced GLUT4 level was not always associated with an increase in AR in PCOS patients when comparing non-hyperplasia with hyperplasia. Using a human tissue culture system, we investigated the molecular basis by which GLUT4 regulation in endometrial hyperplasia tissues is affected by metformin in PCOS patients. We show that specific endogenous organic cation transporter isoforms are regulated by metformin, and this suggests a direct effect of metformin on endometrial hyperplasia. Moreover, we demonstrate that metformin induces GLUT4 expression and inhibits AR expression and blocks insulin receptor/PI3K/Akt/mTOR signaling in the same hyperplasia human tissues. These findings indicate that changes in endometrial GLUT4 expression in PCOS patients involve the androgen-dependent alteration of AR expression and changes in the insulin receptor/PI3K/Akt/mTOR signaling network.

  15. Reduced Chrna7 expression in mice is associated with decreases in hippocampal markers of inhibitory function: implications for neuropsychiatric diseases

    PubMed Central

    Adams, Catherine E.; Yonchek, Joan C.; Schulz, Kalynn M.; Graw, Sharon L.; Stitzel, Jerry; Teschke, Patricia U.; Stevens, Karen E.

    2012-01-01

    The α7* nicotinic acetylcholine receptor encoded by CHRNA7 (human)/Chrna7 (mice) regulates the release of both the inhibitory neurotransmitter γ-aminobutyric acid (GABA) and the excitatory neurotransmitter glutamate in the hippocampal formation. A heterozygous deletion at 15q13.3 containing CHRNA7 is associated with increased risk for schizophrenia, autism and epilepsy. Each of these diseases is characterized by abnormalities in excitatory and inhibitory hippocampal circuit function. Reduced Chrna7 expression results in decreased hippocampal α7* receptor density, abnormal hippocampal auditory sensory processing and increased hippocampal CA3 pyramidal neuron activity in C3H mice heterozygous for a null mutation in Chrna7. These abnormalities demonstrate that decreased Chrna7 expression alters hippocampal inhibitory circuit function. The current study examined the specific impact of reduced Chrna7 expression on hippocampal inhibitory circuits by measuring the levels of GABA, GABAA receptors, the GABA synthetic enzyme glutamate decarboxylase-65 (GAD-65) and the vesicular GABA transporter GAT-1 in wild type (Chrna7 +/+) and heterozygous (Chrna7 +/−) C3H α7 mice of both genders. GAD-65 levels were significantly decreased in male and female heterozygous C3H α7 mice while GABAA receptors were significantly reduced only in male heterozygous C3H α7 mice. No changes in GABA and GAT-1 levels were detected. These data suggest that reduced CHRNA7 expression may contribute to the abnormalities in hippocampal inhibitory circuits observed in schizophrenia, autism and/or epilepsy. PMID:22314319

  16. PHTHALATE ESTER-INDUCED GUBERNACULAR LESIONS ARE ASSOCIATED WITH REDUCED INSL-3 GENE EXPRESSION IN THE FETAL RAT TESTIS

    EPA Science Inventory

    Phthalate ester-induced gubernacular ligament lesions are associated with reduced Insl3 gene expression in the fetal rat testis during sexual differentiation.
    VS Wilson, C Lambright, J Furr, J Ostby, C Wood, G Held, LE Gray Jr.
    U.S. EPA, ORD, NHEERL, Reproductive Toxicology...

  17. Ovarian Hormone Deprivation Reduces Oxytocin Expression in Paraventricular Nucleus Preautonomic Neurons and Correlates with Baroreflex Impairment in Rats

    PubMed Central

    De Melo, Vitor U.; Saldanha, Rayssa R. M.; Dos Santos, Carla R.; De Campos Cruz, Josiane; Lira, Vitor A.; Santana-Filho, Valter J.; Michelini, Lisete C.

    2016-01-01

    The prevalence of cardiovascular diseases including hypertension increases dramatically in women after menopause, however the mechanisms involved remain incompletely understood. Oxytocinergic (OTergic) neurons are largely present within the paraventricular nucleus of the hypothalamus (PVN). Several studies have shown that OTergic drive from PVN to brainstem increases baroreflex sensitivity and improves autonomic control of the circulation. Since preautonomic PVN neurons express different types of estrogen receptors, we hypothesize that ovarian hormone deprivation causes baroreflex impairment, autonomic imbalance and hypertension by negatively impacting OTergic drive and oxytocin levels in pre-autonomic neurons. Here, we assessed oxytocin gene and protein expression (qPCR and immunohistochemistry) within PVN subnuclei in sham-operated and ovariectomized Wistar rats. Conscious hemodynamic recordings were used to assess resting blood pressure and heart rate and the autonomic modulation of heart and vessels was estimated by power spectral analysis. We observed that the ovarian hormone deprivation in ovariectomized rats decreased baroreflex sensitivity, increased sympathetic and reduced vagal outflows to the heart and augmented the resting blood pressure. Of note, ovariectomized rats had reduced PVN oxytocin mRNA and protein expression in all pre-autonomic PVN subnuclei. Furthermore, reduced PVN oxytocin protein levels were positively correlated with decreased baroreflex sensitivity and negatively correlated with increased LF/HF ratio. These findings suggest that reduced oxytocin expression in OTergic neurons of the PVN contributes to the baroreflex dysfunction and autonomic dysregulation observed with ovarian hormone deprivation. PMID:27790154

  18. Hypoxia reduces constitutive and TNF-{alpha}-induced expression of monocyte chemoattractant protein-1 in human proximal renal tubular cells

    SciTech Connect

    Li Xuan; Kimura, Hideki . E-mail: hkimura@fmsrsa.fukui-med.ac.jp; Hirota, Kiichi; Sugimoto, Hidehiro; Yoshida, Haruyoshi

    2005-10-07

    Chronic hypoxia has been reported to be associated with macrophage infiltration in progressive forms of kidney disease. Here, we investigated the regulatory effects of hypoxia on constitutive and TNF-{alpha}-stimulated expression of monocyte chemoattractant protein-1 (MCP-1) in cultured human proximal renal tubular cells (HPTECs). Hypoxia reduced constitutive MCP-1 expression at the mRNA and protein levels in a time-dependent fashion for up to 48 h. Hypoxia also inhibited MCP-1 up-regulation by TNF-{alpha}. Treatment with actinomycin D showed that hypoxic down-regulation of MCP-1 expression resulted mainly from a decrease in the transcription but not the mRNA stability. Immunoblot and immunofluorescence analyses revealed that treatment with hypoxia or an iron chelator, desferrioxamine, induced nuclear accumulation of hypoxia-inducible factor-1{alpha} (HIF-1{alpha}) in HPTECs. Desferrioxamine mimicked hypoxia in the reduction of MCP-1 expression. However, overexpression of a dominant negative form of HIF-1{alpha} did not abolish the hypoxia-induced reduction of MCP-1 expression in HPTECs. These results suggest that hypoxia is an important negative regulator of monocyte chemotaxis to the renal inflamed interstitium, by reducing MCP-1 expression partly via hypoxia-activated signals other than the HIF-1 pathway.

  19. Reduced expression of AMPK-β1 during tumor progression enhances the oncogenic capacity of advanced ovarian cancer

    PubMed Central

    2014-01-01

    AMP-activated protein kinase (AMPK) is a key energy sensor that is involved in regulating cell metabolism. Our previous study revealed that the subunits of the heterotimeric AMPK enzyme are diversely expressed during ovarian cancer progression. However, the impact of the variable expression of these AMPK subunits in ovarian cancer oncogenesis remains obscure. Here, we provide evidence to show that reduced expression of the AMPK-β1 subunit during tumor progression is associated with the increased oncogenic capacity of advanced ovarian cancer cells. Immunohistochemical analysis revealed that AMPK-β1 levels were reduced in advanced-stage (P = 0.008), high-grade (P = 0.013) and metastatic ovarian cancers (P = 0.008). Intriguingly, down-regulation of AMPK-β1 was progressively reduced from tumor stages 1 to 3 of ovarian cancer. Functionally, enforced expression of AMPK-β1 inhibited ovarian-cancer-cell proliferation, anchorage-independent cell growth, cell migration and invasion. Conversely, depletion of AMPK-β1 by siRNA enhanced the oncogenic capacities of ovarian cancer cells, suggesting that the loss of AMPK-β1 favors the aggressiveness of ovarian cancer. Mechanistically, enforced expression of AMPK-β1 increased AMPK activity, which, in turn, induced cell-cycle arrest via inhibition of AKT/ERK signaling activity as well as impaired cell migration/invasion through the suppression of JNK signaling in ovarian cancer cells. Taken together, these findings suggest that the reduced expression of AMPK-β1 confers lower AMPK activity, which enhances the oncogenic capacity of advanced-stage ovarian cancer. PMID:24602453

  20. DNA Methyl Transferase 1 Reduces Expression of SRD5A2 in the Aging Adult Prostate

    PubMed Central

    Ge, Rongbin; Wang, Zongwei; Bechis, Seth K.; Otsetov, Alexander G.; Hua, Shengyu; Wu, Shulin; Wu, Chin-Lee; Tabatabaei, Shahin; Olumi, Aria F.

    2016-01-01

    5-α Reductase type 2 (SRD5A2) is a critical enzyme for prostatic development and growth. Inhibition of SRD5A2 by finasteride is used commonly for the management of urinary obstruction caused by benign prostatic hyperplasia. Contrary to common belief, we have found that expression of SRD5A2 is variable and absent in one third of benign adult prostates. In human samples, absent SRD5A2 expression is associated with hypermethylation of the SRD5A2 promoter, and in vitro SRD5A2 promoter activity is suppressed by methylation. We show that methylation of SRD5A2 is regulated by DNA methyltransferase 1, and inflammatory mediators such as tumor necrosis factor α, NF-κB, and IL-6 regulate DNA methyltransferase 1 expression and thereby affect SRD5A2 promoter methylation and gene expression. Furthermore, we show that increasing age in mice and humans is associated with increased methylation of the SRD5A2 promoter and concomitantly decreased protein expression. Artificial induction of inflammation in prostate primary epithelial cells leads to hypermethylation of the SRD5A2 promoter and silencing of SRD5A2, whereas inhibition with tumor necrosis factor α inhibitor reactivates SRD5A2 expression. Therefore, expression of SRD5A2 is not static and ubiquitous in benign adult prostate tissues. Methylation and expression of SRD5A2 may be used as a gene signature to tailor therapies for more effective treatment of prostatic diseases. PMID:25700986

  1. Weight-loss changes PPAR expression, reduces atherosclerosis and improves cardiovascular function in obese insulin-resistant mice

    SciTech Connect

    Verreth, Wim; Verhamme, Peter; Pelat, Michael; Ganame, Javier; Bielicki, John K.; Mertens, Ann; Quarck, Rozenn; Benhabiles, Nora; Marguerie, Gerard; Mackness, Bharti; Mackness, Mike; Ninio, Ewa; Herregods, Marie-Christine; Balligand, Jean-Luc; Holvoet, Paul

    2003-09-01

    Weight-loss in obese insulin-resistant, but not in insulin-sensitive, persons reduces CHD risk. It is not known to what extent changes in the adipose gene expression profile are important for reducing CHD risk. We studied the effect of diet restriction-induced weight-loss on gene expression in adipose tissue, atherosclerosis and cardiovascular function in mice with combined leptin and LDL-receptor deficiency. Obesity, hypertriglyceridemia and insulin-resistance are associated with hypertension, impaired left ventricle function and accelerated atherosclerosis in those mice. Diet restriction during 12 weeks caused a 45% weight-loss and changes in the gene expression in adipose tissue of PPARa and PPAR? and of key genes regulating glucose transport and insulin sensitivity, lipid metabolism, oxidative stress and inflammation, most of which are under the transcriptional control of PPARs. These changes were associated with increased insulin-sensitivity, decreased hypertriglyceridemia, reduced mean 24-hour blood pressure and heart rate, restored circadian variations of blood pressure and heart rate, increased ejection fraction, and reduced atherosclerosis. Thus, induction of PPARa and PPAR? in adipose tissue is a key mechanism for reducing atherosclerosis and improving cardiovascular function resulting from weight-loss. Our observations point to the critical role of PPARs in the pathogenesis of cardiovascular features of the metabolic syndrome.

  2. Association of NDRG1 gene promoter methylation with reduced NDRG1 expression in gastric cancer cells and tissue specimens.

    PubMed

    Chang, Xiaojing; Zhang, Shuanglong; Ma, Jinguo; Li, Zhenhua; Zhi, Yu; Chen, Jing; Lu, Yao; Dai, Dongqiu

    2013-05-01

    NDRG1 (N-myc downstream-regulated gene 1) plays a role in cell differentiation and suppression of tumor metastasis. This study aims to determine the expression of NDRG1 mRNA and protein in gastric cancer cell lines and tissue specimens and then assess the possible cause of its aberrant expression. Six gastric cancer cell lines and 20 pairs of normal and gastric cancer tissue samples were used to assess NDRG1 expression using Real-time PCR and Western blot. High-resolution melting analysis (HRM) and methylation-specific PCR (MSP) were performed to detect gene mutation and methylation, respectively, in cell lines and tissues samples. Expression of NDRG1 mRNA and protein was downregulated in gastric cancer cell lines and tissues. Specifically, expression of NDRG1 mRNA and protein was lower in all six gastric cancer cell lines than that of normal gastric cells, while 15 out of 20 cases of gastric cancer tissues had the reduced levels of NDRG1 mRNA and protein. HRM data showed that there was no mutation in NDRG1 gene, but MSP data showed high levels of NDRG1 gene promoter methylation in the CpG islands in both cell lines and tissue samples. Moreover, treatment with the DNA methyltransferase inhibitor 5-Aza-2'-deoxycytidine upregulated NDRG1 expression in gastric cancer HGC27 cells, but not in the histone deacetylase inhibitor trichostatin A-treated HGC27 cells. In conclusion, this study has shown that expression of NDRG1 mRNA and protein was reduced in gastric cancer cell lines and tissues, which is due to methylation of NDRG1 gene promoter. Further study will unearth the clinical significance of the reduced NDRG1 protein in gastric cancer.

  3. Heavy Water Reduces GFP Expression in Prokaryotic Cell-Free Assays at the Translation Level While Stimulating Its Transcription

    PubMed Central

    Hohlefelder, Luisa S.; Opitz, Madeleine; Bayerl, Thomas M.; Rädler, Joachim O.

    2013-01-01

    The in vitro proliferation of prokaryotic and eukaryotic cells is remarkably hampered in the presence of heavy water (D2O). Impairment of gene expression at the transcription or translation level can be the base for this effect. However, insights into the underlying mechanisms are lacking. Here, we employ a cell-free expression system for the quantitative analysis of the effect of increasing percentages of D2O on the kinetics of in-vitro GFP expression. Experiments are designed to discriminate the rates of transcription, translation, and protein folding using pDNA and mRNA vectors, respectively. We find that D2O significantly stimulates GFP expression at the transcription level but acts as a suppressor at translation and maturation (folding) in a linear dose-dependent manner. At a D2O concentration of 60%, the GFP expression rate was reduced to 40% of an undisturbed sample. We observed a similar inhibition of GFP expression by D2O in a recombinant Escherichia coli strain, although the inhibitory effect is less pronounced. These results demonstrate the suitability of cell-free systems for quantifying the impact of heavy water on gene expression and establish a platform to further assess the potential therapeutic use of heavy water as antiproliferative agent. PMID:24455706

  4. Reduced expression of exocytotic proteins caused by anti-cholinesterase pesticides in Brachionus calyciflorus (Rotifera: Monogononta).

    PubMed

    Pérez-Legaspi, I A; Rico-Martínez, R; Quintanar, J L

    2015-08-01

    The organophosphate and carbamate pesticides methyl-parathion and carbaryl have a common action mechanism: they inhibit acetylcholinesterase enzyme by blocking the transmission of nerve impulses. However, they can alter the expression of exocytotic membrane proteins (SNARE), by modifying release of neurotransmitters and other substances. This study evaluated the adverse effects of the pesticides methyl-parathion and carbaryl on expression of SNARE proteins: Syntaxin-1, Syntaxin-4 and SNAP-23 in freshwater rotifer Brachionus calyciflorus. Protein expression of these three proteins was analyzed before and after exposure to these two pesticides by Western Blot. The expression of Syntaxin-1, Syntaxin-4 and SNAP-23 proteins in B. calyciflorussignificantly decreases with increasing concentration of either pesticides. This suggests that organophosphates and carbamates have adverse effects on expression of membrane proteins of exocytosis by altering the recognition, docking and fusion of presynaptic and vesicular membranes involved in exocytosis of neurotransmitters. Our results demonstrate that the neurotoxic effect of anticholinesterase pesticides influences the interaction of syntaxins and SNAP-25 and the proper assembly of the SNARE complex.

  5. Reduced beta 2-microglobulin mRNA levels in transgenic mice expressing a designed hammerhead ribozyme.

    PubMed Central

    Larsson, S; Hotchkiss, G; Andäng, M; Nyholm, T; Inzunza, J; Jansson, I; Ahrlund-Richter, L

    1994-01-01

    We have generated three artificial hammerhead ribozymes, denoted 'Rz-b', 'Rz-c' and 'Rz-d', with different specificities for exon II of the mouse beta-2-microglobulin (beta 2M) mRNA. In this study we tested for ribozyme mediated reduction of beta 2M mRNA in a cell line and in transgenic mice. Transfections of either of the Rz-b, Rz-c or Rz-d plasmids into a mouse cell-line (NIH/3T3) revealed reductions of beta 2M mRNA substrate in each case. Ribozyme expression in individual transfected clones was accompanied with an up to 80% reduction of beta 2M mRNA levels. Rz-c was selected for a transgenic study. Seven Rz-c transgenic founder animals were identified from which three ribozyme expressing families were established and analysed. Expression of the ribozyme transgene was tested for and detected in lung, kidney and spleen. Expression was accompanied with reduction of the beta 2M mRNA levels of heterozygous (Rz+/-) animals compared to non-transgenic litter mates. The effect was most pronounced in lung with more than 90% beta 2M mRNA reduction in individual mice. In summary, expression of our ribozymes in a cell free system, in a cell-line and in transgenic mice were all accompanied with reductions of beta 2M mRNA levels. Images PMID:8036151

  6. Stem cell transplantation upregulates Sirt1 and antioxidant expression, ameliorating fatty liver in type 2 diabetic mice.

    PubMed

    Li, Ming; Guo, Kequan; Vanella, Luca; Taketani, Shigeru; Adachi, Yasushi; Ikehara, Susumu

    2015-01-01

    Nonalcoholic fatty liver disease (NAFLD) is associated with insulin resistance, oxidative stress, and obesity. The db/db mouse model displays increased levels of insulin resistance, obesity, and an over-accumulation of hepatic triglycerides, making it an excellent model for studying NAFLD. In db/db mice, intra-bone marrow-bone marrow transplantation plus thymus transplantation (IBM-BMT+TT) improves type 2 diabetes mellitus (T2 DM) by normalizing the T-cell imbalance. We hypothesized that this approach would improve Sirt1 expression in the liver and benefit liver development. The db/db mice were treated with IBM-BMT+TT, and plasma MCP-1, IL-6, adiponection, LDL, Sirt1, and HO-1 levels were then assessed. Stem cell transplantation decreased the levels of plasma inflammatory cytokines and LDL while it increased the expression of Sirt1 and HO-1, resulting in decreased progression of fatty liver. Moreover, Sirt1 and HO-1 expression were both detected in the thymus and many HO-1-positive cells were observed in the bone marrow. This is the first report of stem cell transplantation improving the antioxidant function in the liver, thymus, and bone marrow of db/db mice by increasing the levels of Sirt1 and HO-1. This approach may prove useful in the treatment of nonalcoholic steatohepatitis and its clinical manifestations.

  7. Transgenic Leucaena leucocephala expressing the Rhizobium gene pydA encoding a meta-cleavage dioxygenase shows reduced mimosine content.

    PubMed

    Jube, Sandro L R; Borthakur, Dulal

    2010-04-01

    The use of the tree-legume Leucaena leucocephala (leucaena), which contains high levels of proteins in its foliage, is limited due to the presence of the toxic free amino acid mimosine. The goal of this research was to develop transgenic leucaena with reduced mimosine content. Two genes, pydA and pydB, encoding a meta-cleavage dioxygenase (EC 1.13.11.2) and a pyruvate hydrolase (EC 3.7.1.6), respectively, from the mimosine-degrading leucaena symbiont Rhizobium sp. strain TAL1145, were used to transform leucaena. These bacterial genes were sequence-optimized for expression in leucaena and cloned into the plant binary vector pCAMBIA3201 for Agrobacterium tumefaciens-mediated transformation. Using immature zygotic embryos as the start explant material, six pydA and three pydB transgenic lines were developed. The presence and expression of the bacterial genes in the transgenic lines were verified by PCR, reverse transcriptase PCR, and Southern analyses. HPLC analyses of the transgenic plants determined that the mimosine contents of the pydA-expressing lines were reduced up to 22.5% in comparison to the wild-type. No significant reduction in mimosine content was observed in the pydB-expressing lines. This is the first example of using a gene from a bacterial symbiont to reduce the toxicity of a tree-legume.

  8. Reduced SOD2 expression is associated with mortality of hepatocellular carcinoma patients in a mutant p53-dependent manner.

    PubMed

    Wang, Ren; Yin, Chen; Li, Xiao-Xing; Yang, Xian-Zi; Yang, Yang; Zhang, Mei-Yin; Wang, Hui-Yun; Zheng, X F Steven

    2016-06-01

    The development and progression of hepatocellular carcinoma (HCC) is accompanied with persistent oxidative stress, but the molecular basis is not well defined. Superoxide dismutase 2 (SOD2) is an important mitochondrial antioxidant and a key aging factor. Here we investigated the expression and clinical significance of SOD2 in a large cohort of HBV-positive HCC tumors. Both SOD2 mRNA and protein are reduced in human primary HCCs compared with matching liver tissues. Consistently, the SOD2 DNA copy numbers are decreased in HCCs, providing a genetic basis for the decrease in SOD2 mRNA expression. Reduced SOD2 expression in HCCs is correlated with older age, larger tumor size, multiple tumor nodules and tumor emboli, and cancer recurrence. Moreover, low SOD2 expression is strongly associated with poor overall survival (OS) and recurrence-free survival (RFS). Univariate and multivariate Cox regression analyses indicates that SOD2 is an independent prognostic predictor for OS and RFS. Intriguingly, reduced SOD2 mRNA is strongly associated with poor survival in a separate cohort of HCC patients carrying mutant p53. Altogether, our results provide clinical evidence for the importance of SOD2 in tumor progression and mortality, and the close relationship of SOD2 and p53 in HCC.

  9. Reducing saturated fatty acids in Arabidopsis seeds by expression of a Caenorhabditis elegans 16:0-specific desaturase.

    PubMed

    Fahy, Deirdre; Scheer, Barbara; Wallis, James G; Browse, John

    2013-05-01

    Plant oilseeds are a major source of nutritional oils. Their fatty acid composition, especially the proportion of saturated and unsaturated fatty acids, has important effects on human health. Because intake of saturated fats is correlated with the incidence of cardiovascular disease and diabetes, a goal of metabolic engineering is to develop oils low in saturated fatty acids. Palmitic acid (16:0) is the most abundant saturated fatty acid in the seeds of many oilseed crops and in Arabidopsis thaliana. We expressed FAT-5, a membrane-bound desaturase cloned from Caenorhabditis elegans, in Arabidopsis using a strong seed-specific promoter. The FAT-5 enzyme is highly specific to 16:0 as substrate, converting it to 16:1∆9; expression of fat-5 reduced the 16:0 content of the seed by two-thirds. Decreased 16:0 and elevated 16:1 levels were evident both in the storage and membrane lipids of seeds. Regiochemical analysis of phosphatidylcholine showed that 16:1 was distributed at both positions on the glycerolipid backbone, unlike 16:0, which is predominately found at the sn-1 position. Seeds from a plant line homozygous for FAT-5 expression were comparable to wild type with respect to seed set and germination, while oil content and weight were somewhat reduced. These experiments demonstrate that targeted heterologous expression of a desaturase in oilseeds can reduce the level of saturated fatty acids in the oil, significantly improving its nutritional value.

  10. Reduced Mid1 Expression and Delayed Neuromotor Development in daDREAM Transgenic Mice

    PubMed Central

    Dierssen, Mara; Fedrizzi, Laura; Gomez-Villafuertes, Rosa; de Lagran, María Martinez; Gutierrez-Adan, Alfonso; Sahún, Ignasi; Pintado, Belen; Oliveros, Juan C.; Dopazo, Xose M.; Gonzalez, Paz; Brini, Marisa; Mellström, Britt; Carafoli, Ernesto; Naranjo, Jose R.

    2012-01-01

    Downstream regulatory element antagonist modulator (DREAM) is a Ca2+-binding protein that binds DNA and represses transcription in a Ca2+-dependent manner. Previous work has shown a role for DREAM in cerebellar function regulating the expression of the sodium/calcium exchanger 3 (NCX3) in cerebellar granular neurons to control Ca2+ homeostasis and survival of these neurons. To achieve a global view of the genes regulated by DREAM in the cerebellum, we performed a genome-wide analysis in transgenic cerebellum expressing a Ca2+-insensitive/CREB-independent dominant active mutant DREAM (daDREAM). Here we show that DREAM regulates