Science.gov

Sample records for ho-1 expression reduces

  1. Cobalt Protoporphyrin Induces HO-1 Expression Mediated Partially by FOXO1 and Reduces Mitochondria-Derived Reactive Oxygen Species Production

    PubMed Central

    Li, Meixia; Xu, Haifeng; Zuo, Jin; Fang, Fude; Chang, Yongsheng

    2013-01-01

    Background Reactive oxygen species arise in the mitochondria as byproducts of respiration and oxidase activity and have important roles in many physiological and pathophysiological conditions. The level of reactive oxygen species is regulated by a number of enzymes and physiological antioxidants, including HO-1, Sod2, catalase and COX-2, etc. And HO-1 against oxidative stress requires an increase in stress-responsive genes, such as Sod2 and catalase. Especially for the activity of HO-1, cobalt protoporphyrin is known to be a potent and effective inducer in many tissues. The transcription factor, FOXO1 is resistant to oxidative stress through downregulating reactive oxygen species production. Previous study showed that FOXO1 induces HO-1 expression by binding to HO-1 promoter. The question whether cobalt protoporphyrin induces HO-1 expression mediated by FOXO1 and subsequently lessens reactive oxygen species production remains to be elucidated. Results Cobalt protoporphyrin enhances the expression of FOXO1 and facilitates FOXO1 binding to HO-1 promoter and increasing its transcriptional activity without influencing the FOXO1 protein stability. CoPP induces HO-1 and other oxidative stress-responsive genes expression, such as catalase, cytochrome c, Sod2, and COX-2, and decreases mitochondria-derived reactive oxygen species production, which are mediated partially by FOXO1. Conclusions Cobalt protoporphyrin induces HO-1 and other oxidative stress-responsive genes expression mediated partially by FOXO1, and has an important role in reducing cellular reactive oxygen species level. Cobalt protoporphyrin may be a more promising therapeutic agent to upregulate some antioxidantive genes. PMID:24255720

  2. Salidroside Reduces High-Glucose-Induced Podocyte Apoptosis and Oxidative Stress via Upregulating Heme Oxygenase-1 (HO-1) Expression.

    PubMed

    Lu, Hua; Li, Ying; Zhang, Tao; Liu, Maodong; Chi, Yanqing; Liu, Shuxia; Shi, Yonghong

    2017-08-23

    BACKGROUND Hyperglycemia is one of the most dangerous factors causing diabetic nephropathy. Salidroside is considered to have the effects of reducing oxidative stress damage and improving cell viability. This study was performed to investigate whether and how salidroside reduces high-glucose (HG)-induced apoptosis in mouse podocytes. MATERIAL AND METHODS We examined whether salidroside could decrease HG-induced podocyte oxidative stress and podocyte apoptosis in vitro. The potential signaling pathways were also investigated. Podocytes (immortalized mouse epithelial cells) were treated with normal glucose (5.5 mM) as control or HG (30 mM), and then exposed to salidroside treatment. RESULTS HG enhanced the generation of intracellular reactive oxygen species (ROS) and apoptosis in podocytes. Salidroside reduced HG-induced apoptosis-related consequences via promoting HO-1 expression. Salidroside increased the expression level of phosphorylated Akt (p-Akt) and phosphorylated ILK (p-ILK), p-JNK, and p-ERK and localization of Nrf-2. JNK inhibitor and ILK inhibitor decreased HO-1 expression to different degrees. Moreover, specific siRNAs of ILK, Nrf-2, and HO-1, and inhibitors of HO-1 and ILK significantly increased ROS generation and Caspase9/3 expression in the presence of salidroside and HG. CONCLUSIONS The results suggest that salidroside reduces HG-induced ROS generation and apoptosis and improves podocytes viability by upregulating HO-1 expression. ILK/Akt, JNK, ERK1/2, p38 MAPK, and Nrf-2 are involved in salidroside-decreased podocyte apoptosis in HG condition.

  3. HO-1 expression control in the rat glomerulus.

    PubMed

    Detsika, Maria G; Duann, Pu; Lianos, Elias A

    2015-05-08

    The differential localization of HO-1 in renal cells under conditions of injury, and the demonstration that exaggerated HO-1 expression can have detrimental rather than beneficial effects, raises the question of whether HO-1 expression in these cells is subject to control. The present study identifies a unique HO-1 expression pattern in the renal glomerulus indicative of presence of HO-1 expression control following prolonged HO-1 induction. HO-1 and HO-2 expression in response to the natural HO substrate/inducer Fe(++) protoporphyrin (PP) IX (hemin) was assessed in normal rat glomeruli. Following 18 h incubations with hemin (0-200 μM), HO-1 expression increased in a concentration-dependent manner and via a hemopexin (HPX) independent mechanism with no effect on HO-2. In incubations with higher hemin concentrations (400 μM), likely to be encountered in hemolytic disorders, HO-1 expression, decreased. This was preceded by a prolonged and sustained increase in HO-1 protein and was independent of the Fe(++) moiety as incubations with Cobalt protoporphyrin (CoPP) resulted in an identical expression pattern. The decrease of HO-1 protein could not be accounted for by proteasomal degradation since it was not reversed in co-incubations with hemin and the proteasome inhibitor, MG132, at concentrations sufficient to increase HO-1 glomerular content when used alone. Moreover, in the presence of MG132, a decrease of HO-1 expression also occurred at 100 and 200 μM hemin. The effect of MG132 was mimicked by two additional mechanistically different approaches which also raised HO-1 content: a) co-incubations of hemin with ZnPP which increased HO-1 protein when used alone, and b) glomerular HO-1 over expression achieved by SB transposon mediated transgenesis. In contrast, the decrease in HO-1 levels observed at high hemin concentrations was reversed in co-incubations with hemin and SnPP, which reduced HO-1 content when used alone. Expression of NF-E2 related factor 2 (Nrf2

  4. Extratumoral Heme Oxygenase-1 (HO-1) Expressing Macrophages Likely Promote Primary and Metastatic Prostate Tumor Growth.

    PubMed

    Halin Bergström, Sofia; Nilsson, Maria; Adamo, Hanibal; Thysell, Elin; Jernberg, Emma; Stattin, Pär; Widmark, Anders; Wikström, Pernilla; Bergh, Anders

    2016-01-01

    Aggressive tumors induce tumor-supporting changes in the benign parts of the prostate. One factor that has increased expression outside prostate tumors is hemoxygenase-1 (HO-1). To investigate HO-1 expression in more detail, we analyzed samples of tumor tissue and peritumoral normal prostate tissue from rats carrying cancers with different metastatic capacity, and human prostate cancer tissue samples from primary tumors and bone metastases. In rat prostate tumor samples, immunohistochemistry and quantitative RT-PCR showed that the main site of HO-1 synthesis was HO-1+ macrophages that accumulated in the tumor-bearing organ, and at the tumor-invasive front. Small metastatic tumors were considerably more effective in attracting HO-1+ macrophages than larger non-metastatic ones. In clinical samples, accumulation of HO-1+ macrophages was seen at the tumor invasive front, almost exclusively in high-grade tumors, and it correlated with the presence of bone metastases. HO-1+ macrophages, located at the tumor invasive front, were more abundant in bone metastases than in primary tumors. HO-1 expression in bone metastases was variable, and positively correlated with the expression of macrophage markers but negatively correlated with androgen receptor expression, suggesting that elevated HO-1 could be a marker for a subgroup of bone metastases. Together with another recent observation showing that selective knockout of HO-1 in macrophages reduced prostate tumor growth and metastatic capacity in animals, the results of this study suggest that extratumoral HO-1+ macrophages may have an important role in prostate cancer.

  5. EGR-1 regulates Ho-1 expression induced by cigarette smoke

    SciTech Connect

    Chen, Huaqun; Wang, Lijuan; Gong, Tao; Yu, Yang; Zhu, Chunhua; Li, Fen; Wang, Li; Li, Chaojun

    2010-05-28

    As an anti-oxidant molecule, heme oxygenase-1 (HO-1) has been implicated in the protection of lung injury by cigarette smoke (CS). The mechanisms regulating its expression have not been defined. In this report, the role of early growth response 1 (EGR-1) in the regulation of Ho-1 expression was investigated. In C57BL/6 mice with CS exposure, HO-1 was greatly increased in bronchial epithelial cells and alveolar inflammatory cells. In primary cultured mouse lung fibroblasts and RAW264.7 cells exposed to cigarette smoke water extract (CSE), an increase in HO-1 protein level was detected. In addition, CSE induced HO-1 expression was decreased in Egr-1 deficient mouse embryo fibroblasts (Egr-1{sup -/-} MEFs). Nuclear localization of EGR-1 was examined in mouse lung fibroblasts after exposure to CSE. Luciferase reporter activity assays showed that the enhancer region of the Ho-1 gene containing a proposed EGR-1 binding site was responsible for the induction of HO-1. A higher increase of alveolar mean linear intercept (Lm) was observed in lung tissues, and a larger increase in the number of total cells and monocytes/macrophages from bronchial alveolar lavage fluid was found in CS-exposed mice by loss of function of EGR-1 treatment. In summary, the present data demonstrate that EGR-1 plays a critical role in HO-1 production induced by CS.

  6. Agmatine Reduces Lipopolysaccharide-Mediated Oxidant Response via Activating PI3K/Akt Pathway and Up-Regulating Nrf2 and HO-1 Expression in Macrophages

    PubMed Central

    Chai, Jianshen; Luo, Li; Hou, Fengyan; Fan, Xia; Yu, Jing; Ma, Wei; Tang, Wangqi; Yang, Xue; Zhu, Junyu; Kang, Wenyuan; Yan, Jun; Liang, Huaping

    2016-01-01

    Macrophages are key responders of inflammation and are closely related with oxidative stress. Activated macrophages can enhance oxygen depletion, which causes an overproduction of reactive oxygen species (ROS) and leads to further excessive inflammatory response and tissue damage. Agmatine, an endogenous metabolite of L-arginine, has recently been shown to have neuroprotective effects based on its antioxidant properties. However, the antioxidant effects of agmatine in peripheral tissues and cells, especially macrophages, remain unclear. In this study we explored the role of agmatine in mediating antioxidant effects in RAW 264.7 cells and studied its antioxidant mechanism. Our data demonstrate that agmatine is an activator of Nrf2 signaling that markedly enhances Nrf2 nuclear translocation, increases nuclear Nrf2 protein level, up-regulates the expression of the Nrf2 downstream effector HO-1, and attenuates ROS generation induced by Lipopolysaccharide (LPS). We further demonstrated that the agmatine-induced activation of Nrf2 is likely through the PI3K/Akt pathway. LY294002, a specific PI3K/Akt inhibitor, abolished agmatine-induced HO-1 up-regulation and ROS suppression significantly. Inhibiting HO-1 pathway significantly attenuated the antioxidant effect of agmatine which the products of HO-1 enzymatic activity contributed to. Furthermore, the common membrane receptors of agmatine were evaluated, revealing that α2-adrenoceptor, I1-imidazoline receptor or I2-imidazoline receptor are not required by the antioxidant properties of agmatine. Taken together, our findings revealed that agmatine has antioxidant activity against LPS-induced ROS accumulation in RAW 264.7 cells involving HO-1 expression induced by Nrf2 via PI3K/Akt pathway activation. PMID:27685463

  7. Exogenous induction of HO-1 alleviates vincristine-induced neuropathic pain by reducing spinal glial activation in mice.

    PubMed

    Shen, Yan; Zhang, Zhi-Jun; Zhu, Ming-Di; Jiang, Bao-Chun; Yang, Tian; Gao, Yong-Jing

    2015-07-01

    Chemotherapy drugs such as vincristine can produce painful peripheral neuropathy for which is still lack of effective treatment. Recent studies have demonstrated that neuroinflammation plays an important role in the pathogenesis of neuropathic pain. Heme oxygenase 1 (HO-1) was shown to mediate the resolution of inflammation. In this study, we investigated the contribution of HO-1 in the modulation of vincristine-induced pain and the mechanisms implicated. Injection of vincristine induced persistent mechanical allodynia and thermal hyperalgesia in mice. The expression of HO-1 mRNA and protein was increased in 2 weeks in the spinal cord. Immunostaining showed that HO-1 was mainly expressed in neurons of spinal cord dorsal horn in naïve animals, but induced in astrocytes and microglia after vincristine injection. Intraperitoneal injection of HO-1 inducer increased HO-1 expression in the spinal cord and attenuated vincristine-induced pain. Persistent induction of HO-1 by intraspinal injection of HO-1-expressing lentivirus alleviated vincristine-induced pain for more than 2 weeks. Furthermore, vincristine induced activation of glial cells (astrocytes and microglia), phosphorylation of MAPKs (JNK, ERK, and p38), and production of TNF-α and monocyte chemoattractant protein-1 in the spinal cord, which were all reduced by intrathecal injection of HO-1 inducer. Taken together, our data provide the first evidence that induction of HO-1 attenuates vincristine-induced neuropathic pain via inhibition of glia-mediated neuroinflammation in the spinal cord. This suggests that exogenously induced HO-1 may have potential as therapy in chemotherapy-induced neuropathic pain.

  8. HO1 and Wnt expression is independently regulated in female mice brains following permanent ischemic brain injury.

    PubMed

    Tulsulkar, Jatin; Ward, Alicia; Shah, Zahoor A

    2017-05-01

    A gender difference in stroke is observed throughout epidemiologic studies, pathophysiology, treatment and outcomes. We investigated the neuroprotective role of hemeoxygenase (HO) enzyme, which catabolizes free heme to bilirubin, carbon monoxide and biliverdin in the female brain after permanent ischemia. We have previously reported in male mice that genetic deletion of HO1 exacerbates the brain damage after permanent ischemia, and the mechanism of neuroprotection is dependent on the HO1/Wnt pathway; however, the role of HO1/Wnt mediated neuroprotection in the female brain is yet to be investigated. We subjected ovary intact female mice, HO1(-/-) intact, HO1 inhibitor tin mesoporphyrin (SnMP) treated intact and/or ovariectomized female mice to permanent ischemia (pMCAO), and the animals were sacrificed after 7days. The SnMP treatment for 7days significantly reduced the HO1 enzyme activity as compared to that of vehicle treated group. Infarct volume analysis showed significantly lower infarct in intact, HO1(-/-) intact, and SnMP treated group as compared to the OVX group, suggesting the role of estrogen in neuroprotection. However, there were no differences in infarct volume observed between the intact, HO1(-/-) and SnMP treated group, suggesting a sexually dimorphic role of HO1 neuroprotection. Western blot analysis on intact and SnMP-treated groups subjected to pMCAO suggested no significant differences in Wnt expression. Together, these results suggest that HO1 neuroprotection is sexually dimorphic and Wnt expression is independently regulated in the female brain following permanent ischemia. Copyright © 2017 Elsevier B.V. All rights reserved.

  9. PGC-1 alpha regulates HO-1 expression, mitochondrial dynamics and biogenesis: Role of epoxyeicosatrienoic acid.

    PubMed

    Singh, Shailendra P; Schragenheim, Joseph; Cao, Jian; Falck, John R; Abraham, Nader G; Bellner, Lars

    2016-09-01

    Obesity is a risk factor in the development of type 2 diabetes mellitus (DM2), which is associated with increased morbidity and mortality, predominantly as a result of cardiovascular complications. Increased adiposity is a systemic condition characterized by increased oxidative stress (ROS), increased inflammation, inhibition of anti-oxidant genes such as HO-1 and increased degradation of epoxyeicosatrienoic acids (EETs). We previously demonstrated that EETs attenuate mitochondrial ROS. We postulate that EETs increase peroxisome proliferator-activated receptor gamma coactivator 1-alpha (PGC-1α), which controls mitochondrial function, oxidative metabolism and induction of HO-1. Cultured murine adipocytes and mice fed a high fat (HF) diet were used to assess functional relationship between EETs, HO-1 and (PGC-1α) using an EET analogue (EET-A) and lentivirus to knock down the PPARGC1A gene. EET-A increased PGC-1α and HO-1 in cultured adipocytes and increased the expression of genes involved in thermogenesis and adipocyte browning (UCP1 and PRDM16, respectively). PGC-1α knockdown prevented EET-A-induced HO-1expression, suggesting that PGC-1α is upstream of HO-1. MRI data obtained from fat tissues showed that EET-A administration to mice on a HF diet significantly reduced total body fat content, subcutaneous and visceral fat deposits and reduced the VAT: SAT ratio. Moreover EET-A normalized the VO2 and RQ (VCO2/VO2) in mice fed a HF diet, an effect that was completely prevented in PGC-1α deficient mice. In addition, EET-A increased mitochondrial biogenesis and function as measured by OPA1, MnSOD, Mfn1, Mfn2, and SIRT3, an effect that was inhibited by knockdown of PGC-1α. Taken together, our findings show that EET-A increased PGC-1α thereby increasing mitochondrial viability, increased fusion potential thereby providing metabolic protection and increased VO2 consumption in HF-induced obesity in mice, thus demonstrating that the EET-mediated increase in HO-1

  10. Taxol prevents myocardial ischemia-reperfusion injury by inducing JNK-mediated HO-1 expression.

    PubMed

    Cao, Huaming; Wang, Yiping; Wang, Qiang; Wang, Ruxing; Guo, Suxia; Zhao, Xiaoxi; Zhang, Yu; Tong, Debing; Yang, Zhenyu

    2016-01-01

    Ischemia/hypoxia and reperfusion impair mitochondria and produce a large amount of reactive oxygen species (ROS), which lead to mitochondrial and brain damage. Furthermore, heme oxygenase-1 (HO-1) as a cytoprotective gene protects cells against ROS-induced cell death in ischemia-reperfusion injury. Induction of HO-1 is involved in cytoprotective effects of taxol. We hypothesize that taxol protects cardiac myocytes possibly by preserving myocardial mitochondrial function and inducing HO-1 expression through the JNK pathway. In this project, the perfused Langendorff hearts isolated from rats were randomly divided into five groups: control, ischemic, ischemic + taxol (0.1 μM), ischemic + taxol (0.3 μM), and ischemic + taxol (1 μM). Briefly, following a 15 min equilibration period, the control group was subject to normoxic perfusion for 120 min; the ischemia group, normoxic reperfusion for 120 min after 30 min ischemia; the taxol groups, normoxic reperfusion for 120 min after 30-min ischemia with taxol (0.1, 0.3, or 1 μM). The microtubule disruption score, ROS levels, and the activity of mitochondrial electron transport chain complexes I and III were examined by using immunohistochemical methods and free radical detection kits. Western blot assay was employed to study the underlying mechanisms. After Taxol treatment (0.1 µM), the ischemic microtubule disruption score was reduced to 9.8 ± 1.9%. The study revealed that 0.1, 0.3, and 1 μM taxol reduced the level of ROS by 33, 46 and 51%, respectively (p < 0.05). In additional, 0.3 and 1 μM taxol dramatically increased the activity of mitochondrial electron transport chain complex I (99.11 ± 2.59, 103.49 ± 3.89) and mitochondrial electron transport chain complex III (877.82 ± 12.08; 907.42 ± 16.21; 914.73 ± 19.39, *p < 0.05). Additionally, phosphorylation levels of JNK1 were significantly increased in the taxol group. Furthermore, the

  11. Substance P Induces HO-1 Expression in RAW 264.7 Cells Promoting Switch towards M2-Like Macrophages

    PubMed Central

    Montana, Giovanna

    2016-01-01

    Substance P (SP) is a neuropeptide that mediates many physiological as well as inflammatory responses. Recently, SP has been implicated in the resolution of inflammation through induction of M2 macrophages phenotype. The shift between M1-like and M2-like, allowing the resolution of inflammatory processes, also takes place by means of hemeoxygenase-1 (HO-1). HO-1 is induced in response to oxidative stress and inflammatory stimuli and modulates the immune response through macrophages polarisation. SP induces HO-1 expression in human periodontal ligament (PDL), the latter potentially plays a role in cytoprotection. We demonstrated that SP promotes M2-like phenotype from resting as well as from M1 macrophages. Indeed, SP triggers the production of interleukine-10 (IL-10), interleukine-4 (IL-4) and arginase-1 (Arg1) without nitric oxide (NO) generation. In addition, SP increases HO-1 expression in a dose- and time-dependent manner. Here we report that SP, without affecting cell viability, significantly reduces the production of pro-inflammatory cytokines and enzymes, such as tumor necrosis factor-alpha (TNF-α), interleukine-6 (IL-6), inducible nitric oxide synthase (iNOS) and cyclooxygenase-2 (COX-2), and ameliorates migration and phagocytic properties in LPS-stimulated RAW 264.7 cells. M2-like conversion required retention of NF-κB p65 into the cytoplasm and HO-1 induced expression. Silencing of the HO-1 mRNA expression reversed the induction of pro-inflammatory cytokines in RAW 264.7 stimulated by LPS and down-regulated anti-inflammatory hallmarks of M2 phenotype. In conclusion, our data show that SP treatment might be associated with anti-inflammatory effects in LPS-stimulated RAW 264.7 cells by suppressing NF-κB activation and inducing HO-1 expression. PMID:27907187

  12. HO-1 and VEGF gene expressions are time dependant during exposure to welding fumes.

    PubMed

    Stark, M; Zubareb, J; Jacovovitz, R; Schwartz, Y; Lerman, Y; Grinberg, N; Fireman, E

    2009-05-01

    Hemeoxygenase-1 (HO-1) is a defensive enzyme against oxidative stress. Vascular epithelial growth factor (VEGF) is a potent cytokine which promotes angiogenesis. We used induced sputum (IS) technology to study HO-1 and VEGF expressions in neutrophilic inflammation in asymptomatic welders. Aircraft plant employees were divided into three groups: Welders 1 (n=30) had short-term exposure to aluminum/iron, Welders 2 (n=16) had long-term exposure to cadmium/chromium/iron/nickel, and controls (n=27 non-exposed individuals). Participants underwent pulmonary function tests (PFTs), IS, differential cell counts, and determination of particle size distribution in IS samples. HO-1 and VEGF gene expressions were analyzed by real-time polymerase chain reaction, and protein levels were measured by bilirubin reductase-dependant reaction and ELISA, respectively. All subjects had normal PFTs. Welders 2 had neutrophilic inflammation and higher percentages of particles between 2-5 micron than the other groups. HO-1 inversely correlated with VEGF gene expression: HO-1 was significantly higher and VEGF was significantly lower in the Welders 1 group than in the other groups. There was a correlation between HO-1 expression and protein activity (r=0.33, P=0.05). Particulate matters significantly influenced HO-1 and VEGF gene expressions, caused neutrophilic inflammation and promoted oxidative stress in welders with long-term exposure.

  13. tBHQ-induced HO-1 expression is mediated by calcium through regulation of Nrf2 binding to enhancer and polymerase II to promoter region of HO-1.

    PubMed

    Cheung, Ka Lung; Yu, Siwang; Pan, Zui; Ma, Jianjie; Wu, Tien Yuan; Kong, Ah-Ng Tony

    2011-05-16

    Induction of Nrf2-mediated detoxifying/antioxidant enzymes is an effective strategy for cancer chemoprevention. The goal of this study was to examine the role of calcium [Ca(2+)] in regulating a well-known phenolic chemopreventive compound tertiary-butylhydroquinone (tBHQ) activation of Nrf2 and induction of Nrf2 downstream target gene heme-oxygenase (HO-1). tBHQ alone caused Nrf2 nuclear localization and induced HO-1 mRNA and protein expression in a dose-dependent manner. Using RT-PCR and Western blotting, we showed that tBHQ-induced transcription of HO-1 is Ca(2+)-dependent. Chelation of [Ca(2+)](ext) or [Ca(2+)](intra) by EGTA or BAPTA attenuated tBHQ-induced HO-1. Cotreatment of tBHQ with inhibitors of [Ca(2+)]-sensitive protein kinase C and camodulin kinase did not attenuate HO-1 induction. Nuclear translocation of Nrf2 induced by tBHQ was also not affected by treatment of EGTA or BAPTA. Additionally, EGTA and BAPTA treatments decreased basal nuclear phosphorylation of CREB and decreased tBHQ-induced Nrf2-CBP binding and Nrf2 binding to enhancer as well as polymerase II binding to the promoter of HO-1 gene. Furthermore, tBHQ in combination with higher [Ca(2+)](ext) augmented HO-1 induction both in vitro and in vivo, indicating that the modulation of [Ca(2+)](int) could be used as an adjuvant to increase the efficacy of chemopreventive agents. Taken together, our results indicated that in addition to tBHQ-induced oxidative stress-mediated Nrf2 translocation, HO-1 induction by tBHQ also appears to be dependent on a series of Ca(2+)-regulated mechanisms.

  14. Glycyrrhizin reduces HMGB1 secretion in lipopolysaccharide-activated RAW 264.7 cells and endotoxemic mice by p38/Nrf2-dependent induction of HO-1.

    PubMed

    Kim, Young Min; Kim, Hye Jung; Chang, Ki Churl

    2015-05-01

    High mobility group box 1 (HMGB1) is now recognized as a late mediator of sepsis. Although glycyrrhizin was known as inhibitor of HMGB1, it is not yet clear underlying mechanism(s). We found that glycyrrhizin activates translocation of Nrf2 from cytosol to nucleus and induces heme oxygenase (HO)-1 expression in RAW 264.7 cells. In addition, deletion of Nrf2 by siRNA significantly reduced mRNA expression of NQO1 and HO-1 suggesting that glycyrrhizin targets Nrf2 gene. The expression of iNOS protein and release of HMGB1 in LPS activated cells were significantly reduced by glycyrrhizin and cells transfected with mouse HO-1 expression vector. The p38MAPK inhibitor (SB203580) but not JNK inhibitor (SP600125) or ERK inhibitor (PD98059) significantly inhibited HO-1 induction by glycyrrhizin, which was confirmed by showing that siP38 transfected cells significantly reduced HO-1 induction. Pretreatment with SB203580 significantly reversed the expression of iNOS and release of NO and HMGB1 in LPS-activated cells. Most importantly, administration of glycyrrhizin (200mg/kg, i.p) significantly reduced hepatic injury and serum HMGB1 in a ZnPPIX-sensitive manner. Thus, it is concluded that glycyrrhizin reduces HMGB1 secretion in lipopolysaccharide-activated RAW 264.7 cells and endotoxemic mice by p38/Nrf2-dependent induction of HO-1. Copyright © 2015 Elsevier B.V. All rights reserved.

  15. Anti-Inflammatory Effect of Angelica gigas via Heme Oxygenase (HO)-1 Expression.

    PubMed

    Cho, Joon Hyeong; Kwon, Jung Eun; Cho, Youngmi; Kim, Inhye; Kang, Se Chan

    2015-06-15

    Angelica gigas (AG) is effective against various medical conditions such as bacterial infection, inflammation, and cancer. It contains a number of coumarin compounds and the group of interest is the pyranocoumarin, which comprises decursin and decursinol angelate. This group has an effect on controlling inflammation, which is caused by excessive nitric oxide (NO) production. Heme oxygenases (HOs), particularly HO-1, play a role in regulating the production of NO. Thus, this study aimed to investigate the anti-inflammatory effects of AG by measuring HO-1 expression. Treatments with CH2Cl2 layer and Angelica gigas extract (AGE) showed the highest NO inhibition effects. Decursin, decursinol angelate, and nodakenin were isolated from the CH2Cl2 layer of AGE. Decursin also demonstrated the highest anti-oxidative effect among the coumarins. Although decursin had the best NO inhibition and anti-oxidative effects, the effects of AGE treatment far surpassed that of decursin. This is owing to the combination effect of the coumarins present within AGE, which is a solvent extract of AG. The expression of HO-1 is an effective indicator of the anti-inflammatory effects of AG. Based on the results of the coumarin compounds, HO-1 expression was found to be dose dependent and specific to decursin.

  16. Anti-Inflammatory Effect of Angelica gigas via Heme Oxygenase (HO)-1 Expression

    PubMed Central

    Cho, Joon Hyeong; Kwon, Jung Eun; Cho, Youngmi; Kim, Inhye; Kang, Se Chan

    2015-01-01

    Angelica gigas (AG) is effective against various medical conditions such as bacterial infection, inflammation, and cancer. It contains a number of coumarin compounds and the group of interest is the pyranocoumarin, which comprises decursin and decursinol angelate. This group has an effect on controlling inflammation, which is caused by excessive nitric oxide (NO) production. Heme oxygenases (HOs), particularly HO-1, play a role in regulating the production of NO. Thus, this study aimed to investigate the anti-inflammatory effects of AG by measuring HO-1 expression. Treatments with CH2Cl2 layer and Angelica gigas extract (AGE) showed the highest NO inhibition effects. Decursin, decursinol angelate, and nodakenin were isolated from the CH2Cl2 layer of AGE. Decursin also demonstrated the highest anti-oxidative effect among the coumarins. Although decursin had the best NO inhibition and anti-oxidative effects, the effects of AGE treatment far surpassed that of decursin. This is owing to the combination effect of the coumarins present within AGE, which is a solvent extract of AG. The expression of HO-1 is an effective indicator of the anti-inflammatory effects of AG. Based on the results of the coumarin compounds, HO-1 expression was found to be dose dependent and specific to decursin. PMID:26083119

  17. Heme Oxygenase-1 (HO-1) Expression in Prostate Cancer Cells Modulates the Oxidative Response in Bone Cells

    PubMed Central

    Ferrando, Mercedes; Wan, Xinhai; Meiss, Roberto; Yang, Jun; De Siervi, Adriana; Navone, Nora; Vazquez, Elba

    2013-01-01

    Prostate cancer (PCa) is a leading cause of death among males. It is currently estimated that inflammatory responses are linked to 15-20% of all deaths from cancer worldwide. PCa is dominated by complications arising from metastasis to the bone where the tumor cells interact with the bone microenvironment impairing the balance between bone formation and degradation. However, the molecular nature of this interaction is not completely understood. Heme oxygenase-1 (HO-1) counteracts oxidative damage and inflammation. Previous studies from our laboratory showed that HO-1 is implicated in PCa, demonstrating that endogenous HO-1 inhibits bone derived-prostate cancer cells proliferation, invasion and migration and decreases tumor growth and angiogenesis in vivo. The aim of this work was to analyze the impact of HO-1 modulated PCa cells on osteoblasts proliferation in vitro and on bone remodeling in vivo. Using a co-culture system of PC3 cells with primary mice osteoblasts (PMOs), we demonstrated that HO-1 pharmacological induction (hemin treatment) abrogated the diminution of PMOs proliferation induced by PCa cells and decreased the expression of osteoclast-modulating factors in osteoblasts. No changes were detected in the expression of genes involved in osteoblasts differentiation. However, co-culture of hemin pre-treated PC3 cells (PC3 Hem) with PMOs provoked an oxidative status and activated FoxO signaling in osteoblasts. The percentage of active osteoblasts positive for HO-1 increased in calvarias explants co-cultured with PC3 Hem cells. Nuclear HO-1 expression was detected in tumors generated by in vivo bone injection of HO-1 stable transfected PC3 (PC3HO-1) cells in the femur of SCID mice. These results suggest that HO-1 has the potential to modify the bone microenvironment impacting on PCa bone metastasis. PMID:24224047

  18. Characterization of docosahexaenoic acid (DHA)-induced heme oxygenase-1 (HO-1) expression in human cancer cells: the importance of enhanced BTB and CNC homology 1 (Bach1) degradation.

    PubMed

    Wang, Shuai; Hannafon, Bethany N; Wolf, Roman F; Zhou, Jundong; Avery, Jori E; Wu, Jinchang; Lind, Stuart E; Ding, Wei-Qun

    2014-05-01

    The effect of docosahexaenoic acid (DHA) on heme oxygenase-1 (HO-1) expression in cancer cells has never been characterized. This study examines DHA-induced HO-1 expression in human cancer cell model systems. DHA enhanced HO-1 gene expression in a time- and concentration-dependent manner, with maximal induction at 21 h of treatment. This induction of HO-1 expression was confirmed in vivo using a xenograft nude mouse model fed a fish-oil-enriched diet. The increase in HO-1 gene transcription induced by DHA was significantly attenuated by the antioxidant N-acetyl cysteine, suggesting the involvement of oxidative stress. This was supported by direct measurement of lipid peroxide levels after DHA treatment. Using a human HO-1 gene promoter reporter construct, we identified two antioxidant response elements (AREs) that mediate the DHA-induced increase in HO-1 gene transcription. Knockdown of nuclear factor (erythroid-derived 2)-like 2 (Nrf2) expression compromised the DHA-induced increase in HO-1 gene transcription, indicating the importance of the Nrf2 pathway in this event. However, the nuclear protein levels of Nrf2 remained unchanged upon DHA treatment. Further studies demonstrated that DHA reduces nuclear Bach1 protein expression by promoting its degradation and attenuates Bach1 binding to the AREs in the HO-1 gene promoter. In contrast, DHA enhanced Nrf2 binding to the AREs without affecting nuclear Nrf2 expression levels, indicating a new cellular mechanism that mediates DHA's induction of HO-1 gene transcription. To our knowledge, this is the first characterization of DHA-induced HO-1 expression in human malignant cells. Copyright © 2014 Elsevier Inc. All rights reserved.

  19. Characterization of docosahexaenoic acid (DHA)-induced heme oxygenase -1 (HO-1) expression in human cancer cells: the importance of enhanced BTB and CNC homology 1 (Bach1) degradation

    PubMed Central

    Wang, Shuai; Hannafon, Bethany N.; Wolf, Roman F.; Zhou, Jundong; Avery, Jori E.; Wu, Jinchang; Lind, Stuart E.; Ding, Wei-Qun

    2014-01-01

    The effect of DHA on HO-1 expression in cancer cells has never been characterized. This study examines DHA-induced HO-1 expression in human cancer cell model systems. DHA enhanced HO-1 gene expression in a time- and concentration-dependent manner, with maximal induction at 21 hours of treatment. This induction of HO-1 expression was confirmed in vivo using a xenograft nude mouse model fed a fish oil-enriched diet. The increase in HO-1 gene transcription induced by DHA was significantly attenuated by the antioxidant N-Acetyl Cysteine (NAC), suggesting the involvement of oxidative stress. This was supported by direct measurement of lipid peroxide levels after DHA treatment. Using a human HO-1 gene promoter reporter construct, we identified two antioxidant response elements (AREs) that mediate the DHA-induced increase in HO-1 gene transcription. Knockdown of nuclear factor (erythroid-derived 2)-like 2 (Nrf2) expression compromised the DHA-induced increase in HO-1 gene transcription, indicating the importance of the Nrf2 pathway in this event. However, the protein levels of Nrf2 remained unchanged upon DHA treatment. Further studies demonstrated that DHA reduces nuclear Bach1 protein expression by promoting its degradation and attenuates Bach1 binding to the AREs in the HO-1 gene promoter. In contrast, DHA enhanced Nrf2 binding to the AREs without affecting nuclear Nrf2 expression levels, indicating a new cellular mechanism that mediates DHA’s induction of HO-1 gene transcription. To our knowledge, this is the first characterization of DHA induced HO-1 expression in human malignant cells. PMID:24613086

  20. Fermented Brown Rice Extract Stimulates BDNF Gene Transcription in C6 Glioma Cells: Possible Connection with HO-1 Expression.

    PubMed

    Morita, Kyoji; Nishibori, Naoyoshi; Kishibuchi, Reina; Itoh, Mari; Horie, Yukiko; Nemoto, Hideyuki

    2017-03-04

    Fermented brown rice with Aspergillus oryzae, designated as FBRA, is known to be commercially available dietary fiber-rich food, which is appreciated as prebiotics to improve intestinal microflora, and also shown to contain various biologically active substances including polyphenolic compounds. On the other hand, polyphenolic compounds have been suggested to stimulate the expression of brain-derived neurotrophic factor (BDNF) gene in connection with the expression of heme oxidase-1 (HO-1) gene in glial cells, thus resulting in the augmentation of BDNF production in the brain, thereby being anticipated to have a putative effect on the brain function. Then, the effect of FBRA extract on HO-1 and BDNF messenger ribonucleic acid (mRNA) levels in C6 glioma cells was examined, and the extract was shown to stimulate both HO-1 and BDNF gene transcription in the glioma cells. Further studies showed that the stimulatory effect of FBRA extract on BDNF gene transcription was almost completely suppressed by silencing HO-1 gene expression with an HO-1 antisense oligodeoxynucleotide and also inhibiting HO-1 activity with an inhibitor zinc protoporphyrin, thus suggesting that FBRA might have a potential ability to induce BDNF gene expression through HO-1 activity in glial cells.

  1. Activation of the complement cascade enhances motility of leukemic cells by downregulating expression of HO-1

    PubMed Central

    Abdelbaset-Ismail, A; Borkowska-Rzeszotek, S; Kubis, E; Bujko, K; Brzeźniakiewicz-Janus, K; Bolkun, L; Kloczko, J; Moniuszko, M; Basak, G W; Wiktor-Jedrzejczak, W; Ratajczak, M Z

    2017-01-01

    As a crucial arm of innate immunity, the complement cascade (ComC) is involved both in mobilization of normal hematopoietic stem/progenitor cells (HSPCs) from bone marrow (BM) into peripheral blood and in their homing to BM. Despite the fact that ComC cleavage fragments alone do not chemoattract normal HSPCs, we found that leukemia cell lines as well as clonogenic blasts from chronic myeloid leukemia and acute myeloid leukemia patients respond robustly to C3 and C5 cleavage fragments by chemotaxis and increased adhesion. This finding was supported by the detection of C3a and C5a receptors in cells from human malignant hematopoietic cell lines and patient blasts at the mRNA (reverse transcriptase-polymerase chain reaction) and protein level (fluorescence-activated cell sorting), and by the demonstration that these receptors respond to stimulation by C3a and C5a by phosphorylation of p42/44 and p38 mitogen-activated protein kinases (MAPK), and protein kinase B (PKB/AKT). We also found that inducible heme oxygenase 1 (HO-1) is a negative regulator of ComC-mediated trafficking of leukemic cells, and that stimulation of leukemic cells by C3 or C5 cleavage fragments activates p38 MAPK, which downregulates HO-1 expression, rendering cells more mobile. We conclude that activation of the ComC in leukemia/lymphoma patients (for example, as a result of accompanying infections) enhances the motility of malignant cells and contributes to their spread in a p38 MAPK–HO-1-dependent manner. Therefore, inhibition of p38 MAPK or upregulation of HO-1 by small-molecule modulators would have a beneficial effect on ameliorating cell migration-mediated expansion of leukemia/lymphoma cells when the ComC becomes activated. PMID:27451975

  2. Activation of the complement cascade enhances motility of leukemic cells by downregulating expression of HO-1.

    PubMed

    Abdelbaset-Ismail, A; Borkowska-Rzeszotek, S; Kubis, E; Bujko, K; Brzeźniakiewicz-Janus, K; Bolkun, L; Kloczko, J; Moniuszko, M; Basak, G W; Wiktor-Jedrzejczak, W; Ratajczak, M Z

    2017-02-01

    As a crucial arm of innate immunity, the complement cascade (ComC) is involved both in mobilization of normal hematopoietic stem/progenitor cells (HSPCs) from bone marrow (BM) into peripheral blood and in their homing to BM. Despite the fact that ComC cleavage fragments alone do not chemoattract normal HSPCs, we found that leukemia cell lines as well as clonogenic blasts from chronic myeloid leukemia and acute myeloid leukemia patients respond robustly to C3 and C5 cleavage fragments by chemotaxis and increased adhesion. This finding was supported by the detection of C3a and C5a receptors in cells from human malignant hematopoietic cell lines and patient blasts at the mRNA (reverse transcriptase-polymerase chain reaction) and protein level (fluorescence-activated cell sorting), and by the demonstration that these receptors respond to stimulation by C3a and C5a by phosphorylation of p42/44 and p38 mitogen-activated protein kinases (MAPK), and protein kinase B (PKB/AKT). We also found that inducible heme oxygenase 1 (HO-1) is a negative regulator of ComC-mediated trafficking of leukemic cells, and that stimulation of leukemic cells by C3 or C5 cleavage fragments activates p38 MAPK, which downregulates HO-1 expression, rendering cells more mobile. We conclude that activation of the ComC in leukemia/lymphoma patients (for example, as a result of accompanying infections) enhances the motility of malignant cells and contributes to their spread in a p38 MAPK-HO-1-dependent manner. Therefore, inhibition of p38 MAPK or upregulation of HO-1 by small-molecule modulators would have a beneficial effect on ameliorating cell migration-mediated expansion of leukemia/lymphoma cells when the ComC becomes activated.

  3. Resolvin D1 reduces deterioration of tight junction proteins by upregulating HO-1 in LPS-induced mice.

    PubMed

    Xie, Wanli; Wang, Huiqing; Wang, Lei; Yao, Chengye; Yuan, Ruixia; Wu, Qingping

    2013-09-01

    Acute lung injury (ALI) and acute respiratory distress syndrome (ARDS) is characterized by increased pulmonary permeability with high mortality. Resolvin D1 (RvD1), which has potent anti-inflammatory and pro-resolving activity, can attenuate pulmonary edema in the animal model of ALI. However, the mechanism underlying the protection of RvD1 on pulmonary edema is still unknown. Here we explore the effects and mechanism of RvD1 on the disruption of tight junction protein that results in the permeability edema in a model of lipopolysaccharide (LPS)-induced ALI. The severity of pulmonary edema was assessed by wet-to-dry rate and Evans blue infiltration; expressions of tight junction (TJ) proteins occludin and zona occludin-1 (ZO-1) were examined by immunofluorescence staining and western blot; mRNA in lung tissue was studied by real time-PCR; the TUNEL kit was performed for the detection of apoptosis of pulmonary barrier. Twenty-four hours after LPS inhalation by mice, wet-to-dry rate and Evans blue infiltration indicated that pretreatment with RvD1 relieved the pulmonary edema and pulmonary capillary permeability. Moreover, RvD1 attenuated the LPS-induced deterioration of TJ protein ZO-1 and occludin significantly. And we found that RvD1 increased heme oxygenase-1 (HO-1) expression contributed to the protection on the deterioration of TJs. In addition, we found that RvD1 could reduce pulmonary cellular apoptosis in LPS-induced mice. In conclusion, RvD1 possesses the ability that relieves the pulmonary edema and restores pulmonary capillary permeability and reduces disruption of TJs in LPS-induced ALI of mice, at least in part, by upregulating HO-1 expression.

  4. The antioxidant effects of isorhamnetin contribute to inhibit COX-2 expression in response to inflammation: a potential role of HO-1.

    PubMed

    Seo, Kyuhwa; Yang, Ji Hye; Kim, Sang Chan; Ku, Sae Kwang; Ki, Sung Hwan; Shin, Sang Mi

    2014-06-01

    Previously, we reported that isorhamnentin, a 3'-O-methylated metabolite of quercetin, reduced inducible nitric oxide synthase (iNOS) expression and NO production. The present study further investigated the underlying mechanism of anti-inflammatory and antioxidant effects of isorhamnentin. Administration of isorhamnetin decreased the number of cyclooxygenase-2 (COX-2) positive cells in rats with carrageenan-induced paw edema. Isorhamnetin also suppressed lipopolysaccharide (LPS)-induced expression of COX-2 in cells. It is well known that LPS-induced reactive oxygen species (ROS) production leads to COX-2 induction. Isorhamnetin decreased LPS-induced ROS production and apoptosis. In addition, the basal expression of heme oxygenase-1 (HO-1) was increased by isorhamnetin treatment in agreement with the increase in nuclear translocation of NF-E2-related factor-2 (Nrf2), an essential transcription factor for the regulation of HO-1 expression. Moreover, pretreatment of tin protoporphyrin IX (SnPP), a chemical inhibitor of HO-1, reversed the ability of isothamnetin to inhibit COX-2 expression. These results demonstrate that induction of HO-1 by isorhamnetin leads to a reduction in ROS production and its antioxidant property might contribute to the inhibition of COX-2 expression in response to inflammation.

  5. Berberine Hydrochloride Protects C2C12 Myoblast Cells Against Oxidative Stress-Induced Damage via Induction of Nrf-2-Mediated HO-1 Expression.

    PubMed

    Choi, Yung Hyun

    2016-09-01

    Preclinical Research The aim of the present study was to evaluate the effects of berberine hydrochloride (BBH), an isoquinoline alkaloid that can be isolated from a variety of herbs, on hydrogen peroxide (H2 O2 )-induced oxidative stress in C2C12 myoblasts and to investigate the molecular mechanisms involved in this process, especially the expression of the Nrf2/HO-1 pathway. BBH preconditioning attenuated H2 O2 -induced growth inhibition and DNA damage as well as apoptosis in C2C12 cells via suppression of the accumulation of intracellular reactive oxygen species (ROS). Treatment with BBHride alone effectively upregulated the expression of nuclear factor-erythroid 2-related factor 2 (Nrf2) and heme oxygenase-1 (HO-1) and elevated HO-1 activity. However, the protective effects of BBH against H2 O2 -induced ROS generation and cell growth reduction were abolished by an HO-1 inhibitor. Moreover, BBH-mediated induction and activation of HO-1 were reduced by genetic silencing of Nrf2 using small interfering RNA (siRNA). In addition, the effects of BBH against H2 O2 -induced ROS accumulation and growth inhibition were abrogated in C2C12 cells transfected with Nrf2 siRNA. Therefore, the present study demonstrated that BBH could protect C2C12 cells against oxidative stress-induced injury and this effect involved activation of the Nrf2/HO-1 pathway. Drug Dev Res, 2016. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  6. Higenamine promotes M2 macrophage activation and reduces Hmgb1 production through HO-1 induction in a murine model of spinal cord injury.

    PubMed

    Zhang, Zhenyu; Li, Mingchao; Wang, Yan; Wu, Jian; Li, Jiaping

    2014-12-01

    Spinal cord injury (SCI) is considered to be primarily associated with loss of motor function and leads to the activation of diverse cellular mechanisms in the central nervous system to attempt to repair the damaged spinal cord tissue. Higenamine (HG) (1-[(4-hydroxyphenyl) methyl]-1,2,3,4-tetrahydroisoquinoline-6,7-diol), an active ingredient of Aconiti Lateralis Radix Praeparata, has been traditionally used as a heart stimulant and anti-inflammatory agent in oriental countries. However, the function and related mechanism of HG on SCI have never been investigated. In our current study, HG treatment displayed increased myelin sparring and enhanced spinal cord repair process. The numbers of CD4(+) T cells, CD8(+) T cells, Ly6G(+) neutrophils and CD11b(+) macrophages were all significantly lower in the HG-treated group than that in the control group after SCI. HG administration increased the expression of IL-4 and IL-10 and promoted M2 macrophage activation. Significantly reduced Hmgb1 expression was also observed in HG-treated mice with SCI. Furthermore, HG treatment promoted HO-1 production. The increased number of M2 macrophages, decreased expression of Hmgb1 and promoted locomotor recovery induced by HG were all reversed with additional HO-1 inhibitor treatment. In conclusion, HG promotes M2 macrophage activation and reduces Hmgb1 expression dependent on HO-1 induction and then promotes locomotor function after SCI.

  7. High expression of HO-1 predicts poor prognosis of ovarian cancer patients and promotes proliferation and aggressiveness of ovarian cancer cells.

    PubMed

    Zhao, Z; Xu, Y; Lu, J; Xue, J; Liu, P

    2017-08-14

    HO-1 has been proved to be associated with tumor aggressivity and poor prognosis in various cancers. Our study provides the first study to demonstrate the relationship of HO-1 expression and clinical characteristics in ovarian cancer patients. Immunohistochemistry and western blotting were used to examine the expression of HO-1 in tissue species and fresh tissues. CCK-8 was used to investigate cell viability. Transwell chamber was performed to estimate migration and invasion capacities in A2780 and Skov-3 cells. Immunohistochemistry and western blotting showed that the expression of HO-1 was higher in ovarian cancer tissues than normal ovarian tissues. High expression of HO-1 was significantly associated with serous ovarian cancer, high FIGO stage, lymph node metastasis, and non-optimal debulking. Patients with high expression of HO-1 exhibited an unfavorable prognosis. In vitro inducing the expression of HO-1 promoted the proliferation and metastasis of A2780 and Skov-3 cells, with the increased expressions of mesenchymal marker (Vimentin), epithelial-mesenchymal transition-associated transcript factor (Zeb-1), anti-apoptotic protein (Bcl-2), and the decreased expressions of epithelial marker (Keratin) and pro-apoptotic protein (Bax). Meanwhile, after incubating A2780 and Skov-3 together with HO-1 inhibitor, above results could be reversed. HO-1 might be a potential marker for prediction of ovarian cancer prognosis and a target for ovarian cancer treatment.

  8. Molecular cloning, characterization, and expression of an alfalfa (Medicago sativa L.) heme oxygenase-1 gene, MsHO1, which is pro-oxidants-regulated.

    PubMed

    Fu, Guang-Qing; Xu, Sheng; Xie, Yan-Jie; Han, Bin; Nie, Li; Shen, Wen-Biao; Wang, Ren

    2011-07-01

    It has been documented that plant heme oxygenase-1 (HO-1; EC 1.14.99.3) is both development- and stress-regulated, thus it plays a vital role in light signalling and stress responses. In this study, an alfalfa (Medica sativa L.) HO-1 gene MsHO1 was isolated and sequenced. It contains four exons and three introns within genomic DNA sequence and encodes a polypeptide with 283 amino acids. MsHO1 had a conserved HO signature sequence and showed high similarity to other HOs in plants, especially HO-1 isoform. The MsHO1:GFP fusion protein was localized in the chloroplast. Further biochemical activity analysis of mature MsHO1, which was expressed in Escherichia coli, showed that the Vmax was 48.78 nmol biliverdin-IXα (BV) h⁻¹ nmol⁻¹ protein with an apparent Km value for hemin of 2.33 μM, and the optimum Tm and pH were 37 °C and 7.2, respectively. Results of semi-quantitative RT-PCR and western blot showed that the expressions of MsHO1 were higher in alfalfa stems and leaves than those in germinating seeds and roots. Importantly, MsHO1 gene expression and protein level were induced significantly by some pro-oxidant compounds, including hemin and nitric oxide (NO) donor sodium nitroprusside (SNP). In conclusion, MsHO1 may play an important role in oxidative responses.

  9. Hawthorn Fruit Extract Elevates Expression of Nrf2/HO-1 and Improves Lipid Profiles in Ovariectomized Rats.

    PubMed

    Yoo, Jeong-Hyun; Liu, Yanan; Kim, Hyun-Sook

    2016-05-13

    The purpose of this study was to investigate the effects of hawthorn (Crataegus pinnatifida Bunge) extract on the lipid profiles and antioxidant properties in ovariectomized (OVX) rats. After ovariectomy, the rats were randomly divided into four groups: the non-OVX control (Sham), the OVX-control (OVX), the OVX + 100 mg/kg b.w. of hawthorn extract (OL), and the OVX + 200 mg/kg b.w. of hawthorn extract (OH). The final body weights of the OVX group were significantly increased, but the increment was significantly decreased in hawthorn groups (p < 0.05). The serum total and low-density lipoprotein (LDL) cholesterol levels were significantly elevated in the OVX group, whereas the hawthorn groups showed a significant decrease in these levels (p < 0.05). The hepatic triglyceride (TG) and malondialdehyde (MDA) levels were significantly reduced in the hawthorn groups compared with the OVX group (p < 0.05). The mRNA expression of nuclear factor erythroid 2-related factor (Nrf2), heme oxygenase-1 (HO-1), and glutathione peroxidase (GPx) were significantly decreased in the OVX group, whereas the hawthorn groups exhibited a significant increase in expression (p < 0.05). The protein expressions of Nrf2, HO-1, and GPx were lower in the OVX group than the Sham group (p < 0.05). The oral administration of hawthorn extract reversed the suppression of protein levels. These results suggest that hawthorn extract could have protective effects in OVX rats by improving lipid profiles, decreasing oxidative stress, and improving the antioxidant defense system.

  10. Hawthorn Fruit Extract Elevates Expression of Nrf2/HO-1 and Improves Lipid Profiles in Ovariectomized Rats

    PubMed Central

    Yoo, Jeong-Hyun; Liu, Yanan; Kim, Hyun-Sook

    2016-01-01

    The purpose of this study was to investigate the effects of hawthorn (Crataegus pinnatifida Bunge) extract on the lipid profiles and antioxidant properties in ovariectomized (OVX) rats. After ovariectomy, the rats were randomly divided into four groups: the non-OVX control (Sham), the OVX-control (OVX), the OVX + 100 mg/kg b.w. of hawthorn extract (OL), and the OVX + 200 mg/kg b.w. of hawthorn extract (OH). The final body weights of the OVX group were significantly increased, but the increment was significantly decreased in hawthorn groups (p < 0.05). The serum total and low-density lipoprotein (LDL) cholesterol levels were significantly elevated in the OVX group, whereas the hawthorn groups showed a significant decrease in these levels (p < 0.05). The hepatic triglyceride (TG) and malondialdehyde (MDA) levels were significantly reduced in the hawthorn groups compared with the OVX group (p < 0.05). The mRNA expression of nuclear factor erythroid 2–related factor (Nrf2), heme oxygenase-1 (HO-1), and glutathione peroxidase (GPx) were significantly decreased in the OVX group, whereas the hawthorn groups exhibited a significant increase in expression (p < 0.05). The protein expressions of Nrf2, HO-1, and GPx were lower in the OVX group than the Sham group (p < 0.05). The oral administration of hawthorn extract reversed the suppression of protein levels. These results suggest that hawthorn extract could have protective effects in OVX rats by improving lipid profiles, decreasing oxidative stress, and improving the antioxidant defense system. PMID:27187458

  11. Molecular cloning and expression of a cucumber (Cucumis sativus L.) heme oxygenase-1 gene, CsHO1, which is involved in adventitious root formation.

    PubMed

    Li, Mei-Yue; Cao, Ze-Yu; Shen, Wen-Biao; Cui, Jin

    2011-10-15

    Our previous work showed that in cucumber (Cucumis sativus), auxin rapidly induces heme oxygenase (HO) activity and the product of HO action, carbon monoxide (CO), then triggers the signal transduction events leading to adventitious root formation. In this study, the cucumber HO-1 gene (named as CsHO1) was isolated and sequenced. It contains four exons and three introns and encodes a polypeptide of 291 amino acids. Further results show that CsHO1 shares a high homology with plant HO-1 proteins and codes a 33.3 kDa protein with a 65-amino transit peptide, predicting a mature protein of 26.1 kDa. The mature CsHO1 was expressed in Escherichia coli to produce a fusion protein, which exhibits HO activity. The CsHO1:GFP fusion protein was localized in the chloroplast. Related biochemical analyses of mature CsHO1, including Vmax, Km, Topt and pHopt, were also investigated. CsHO1 mRNA was found in germinating seeds, roots, stem, and especially in leaf tissues. Several well-known adventitious root inducers, including auxin, ABA, hemin, nitric oxide donor sodium nitroprusside (SNP), CaCl(2), and sodium hydrosulfide (NaHS), differentially up-regulate CsHO1 transcripts and corresponding protein levels. These results suggest that CsHO1 may be involved in cucumber adventitious rooting.

  12. Evaluation of HO-1 expression, cellular ROS production, cellular proliferation and cellular apoptosis in human esophageal squamous cell carcinoma tumors and cell lines.

    PubMed

    Ren, Quan-Guang; Yang, Sheng-Li; Hu, Jian-Li; Li, Pin-Dong; Chen, Ye-Shan; Wang, Qiu-Shuang

    2016-04-01

    Patients with esophageal squamous cell carcinoma (ESCC) have a poor prognosis. However, the related mechanisms are unclear, thus we investigated the expression of HO-1 in ESCC tissue and explored possible mechanisms of tumor progression. Expression of HO-1 was examined by immunohistochemistry in 143 ESCC tumors. The correlation of HO-1 with clinicopathological characteristics was also examined. Two human ESCC cell lines, TE-13 and Eca109 were studied. Silencing of cell line HO-1 by specific small interfering RNA (siRNA) was evaluated using real-time quantitative PCR. Cell line viability, apoptosis and intracellular levels of reactive oxygen species (ROS) after transfection were determined using MTT and flow cytometry, respectively. HO-1, Bax, Bcl-2 and A-caspase-3/-9 expression was evaluated using western blot analyses. We found that HO-1 was expressed in 58 of 143 ESCC tumors, mainly in the cytoplasm. There was a significant association between HO-1 expression and tumor grade (P<0.001). Knockdown of HO-1 expression in cell lines was associated with significantly decreased cellular proliferation (P<0.05) and a higher rate of apoptosis (P<0.001) 48 h after treatment. Treatment of the cell lines with the ROS inhibitor N-acetylcysteine abrogated this effect. Knockdown of HO-1 was associated with increased A-caspase-3 and -9 expression, but no change in Bax or Bcl-2 expression or Bax/Bcl-2 ratio was observed. Thus, the present study identified that ESCC tumors frequently expressed HO-1. Knockdown of HO-1 promoted apoptosis through activation of a ROS-mediated caspase apoptosis pathway.

  13. Fasting-Mimicking Diet Reduces HO-1 to Promote T Cell-Mediated Tumor Cytotoxicity.

    PubMed

    Di Biase, Stefano; Lee, Changhan; Brandhorst, Sebastian; Manes, Brianna; Buono, Roberta; Cheng, Chia-Wei; Cacciottolo, Mafalda; Martin-Montalvo, Alejandro; de Cabo, Rafael; Wei, Min; Morgan, Todd E; Longo, Valter D

    2016-07-11

    Immune-based interventions are promising strategies to achieve long-term cancer-free survival. Fasting was previously shown to differentially sensitize tumors to chemotherapy while protecting normal cells, including hematopoietic stem and immune cells, from its toxic side effects. Here, we show that the combination of chemotherapy and a fasting-mimicking diet (FMD) increases the levels of bone marrow common lymphoid progenitor cells and cytotoxic CD8(+) tumor-infiltrating lymphocytes (TILs), leading to a major delay in breast cancer and melanoma progression. In breast tumors, this effect is partially mediated by the downregulation of the stress-responsive enzyme heme oxygenase-1 (HO-1). These data indicate that FMD cycles combined with chemotherapy can enhance T cell-dependent targeted killing of cancer cells both by stimulating the hematopoietic system and by enhancing CD8(+)-dependent tumor cytotoxicity.

  14. 15d-PGJ{sub 2} stimulates HO-1 expression through p38 MAP kinase and Nrf-2 pathway in rat vascular smooth muscle cells

    SciTech Connect

    Lim, Hyun-Joung; Lee, Kuy-Sook; Lee, Seahyoung; Park, Jin-Hee; Choi, Hye-Eun; Go, Sang Hee; Kwak, Hyun-Jeong; Park, Hyun-Young

    2007-08-15

    15d-PGJ{sub 2}, a potent endogenous ligand for peroxisome proliferators activated receptor-{gamma}, is a cyclopentenone-type prostaglandin produced by many different types of cells. Pertinent to its effect on vascular smooth muscle cell (VSMC), antiproliferative effects have been most frequently reported. In the present study, we investigated the effect of 15d-PGJ{sub 2} on HO-1 expression that has been reported to inhibit VSMC proliferation. According to our data, 15d-PGJ{sub 2} significantly induced ROS/NO production and HO-1 expression in rVSMCs. We also observed 15d-PGJ{sub 2}-induced translocation of Nrf-2. In addition, ROS scavenger pretreatment suppressed 15d-PGJ{sub 2}-induced HO-1 expression while PPAR{gamma} antagonist did not, suggesting nuclear translocation of Nrf-2 and subsequent HO-1 expression was ROS dependent rather than PPAR{gamma} dependent. Furthermore, an inhibitor of p38 MAPK abolished 15d-PGJ{sub 2}-induced HO-1 expression. These data suggest that 15d-PGJ{sub 2}-induced up-regulation of HO-1 is independent of PPAR{gamma} but dependent of ROS and p38 MAPK pathway. The present study reports for the first time that 15d-PGJ{sub 2} induces HO-1 expression possibly using Nrf-2 pathway as a response to ROS in VSMCs.

  15. Antioxidant efficacy and the upregulation of Nrf2-mediated HO-1 expression by (+)-lariciresinol, a lignan isolated from Rubia philippinensis, through the activation of p38

    PubMed Central

    Bajpai, Vivek K.; Alam, Md Badrul; Quan, Khong Trong; Kwon, Kyoo-Ri; Ju, Mi-Kyoung; Choi, Hee-Jeong; Lee, Jong Sung; Yoon, Jung-In; Majumder, Rajib; Rather, Irfan A.; Kim, Kangmin; Lee, Sang-Han; Na, MinKyun

    2017-01-01

    The aim of the present study was to examine the antioxidative activity of (+)-lariciresinol (LRSL), an optically active lignan isolated from Rubia philippinensis in several in vitro assays. LRSL was also subjected to evaluate its inhibitory effect against the generation of reactive oxygen species (ROS) in murine macrophage (RAW 264.7) cells. The results showed that LRSL possessed very strong radical scavenging activity and reducing power, as well as inhibited ROS generation in a dose-dependent manner without showing any cytotoxicity. The transcriptional and translational levels of superoxide dismutase (SOD), glutathione peroxidase (GPx) and catalase (CAT) were markedly higher in the sample treated group. LRSL treatment also increased the transcriptional and translational activities of NF-E2-related factor-2 (Nrf-2) with a corresponding increase in the transcriptional and translational activities of the heme oxygenase-1 (HO-1). LRSL activated p38 and treatments with SB239063 (a p38 inhibitor) suppressed the LRSL-induced activation of Nrf2, resulting in a decrease in HO-1 expression. Collectively, the data demonstrated that LRSL has potent antioxidative activity, decreasing ROS generation in RAW 264.7 cells and increasing the transcriptional and translational levels of antioxidant enzymes by activating Nrf2-mediated HO-1 induction via p38 signaling. PMID:28378774

  16. Targeting HO-1 by Epigallocatechin-3-Gallate Reduces Contrast-Induced Renal Injury via Anti-Oxidative Stress and Anti-Inflammation Pathways

    PubMed Central

    Hu, Yunhui; Wu, Xiaoyan; Wang, Yongbin; Zhang, Xiaoqun; Fu, Jinjuan; Zou, Xue; Zhang, Jun; Chen, Xiongwen; Jose, Pedro A.; Lu, Xi; Zeng, Chunyu

    2016-01-01

    Both oxidative stress and inflammation are involved in the pathogenesis of contrast-induced nephropathy (CIN). Epigallocatechin-3-gallate (EGCG), a purified catechin from green tea, has antioxidant and anti-inflammatory effects. However, it is unknown whether or not EGCG is effective in treating CIN. Our present study found that intravenous administration of EGCG, either before or just after the establishment of CIN, had a protective effect, determined by normalization of serum creatinine and blood urea nitrogen levels, improvement in renal histopathological scoring and alleviation of apoptosis, accompanied by decreased oxidative stress and inflammation. Because EGCG is a potent inducer of the antioxidant heme oxygenase-1 (HO-1), we studied HO-1 signaling in CIN. HO-1 levels were increased in CIN; treatment with EGCG further increased HO-1 levels, accompanied by an increase in Nrf2, a regulator of antioxidant proteins. Interestingly, blockade of HO-1 with protoporphyrin IX zinc(II) (ZnPP) prevented the protective effect of EGCG on CIN. ZnPP also blocked the ability of EGCG to increase the activity of an antioxidant (superoxide dismutase), and decrease markers of oxidative stress (myeloperoxidase and malondialdehyde) and inflammation (myeloperoxidase and IL-1β), indicating that HO-1 is the upstream molecule that regulates the EGCG-mediated protection. To determine further the role of HO-1 on the EGCG-mediated inhibition of inflammation, we studied the effect of EGCG on the NLRP3 inflammasome, an upstream signaling of IL-1β. EGCG down-regulated NLRP3 expression, which was blocked by ZnPP, indicating that HO-1 links EGCG with NLRP3. Therefore, EGCG, via up-regulation of HO-1, protects against CIN by amelioration of oxidative stress and inflammation. PMID:26866373

  17. Targeting HO-1 by Epigallocatechin-3-Gallate Reduces Contrast-Induced Renal Injury via Anti-Oxidative Stress and Anti-Inflammation Pathways.

    PubMed

    Gao, Zhao; Han, Yu; Hu, Yunhui; Wu, Xiaoyan; Wang, Yongbin; Zhang, Xiaoqun; Fu, Jinjuan; Zou, Xue; Zhang, Jun; Chen, Xiongwen; Jose, Pedro A; Lu, Xi; Zeng, Chunyu

    2016-01-01

    Both oxidative stress and inflammation are involved in the pathogenesis of contrast-induced nephropathy (CIN). Epigallocatechin-3-gallate (EGCG), a purified catechin from green tea, has antioxidant and anti-inflammatory effects. However, it is unknown whether or not EGCG is effective in treating CIN. Our present study found that intravenous administration of EGCG, either before or just after the establishment of CIN, had a protective effect, determined by normalization of serum creatinine and blood urea nitrogen levels, improvement in renal histopathological scoring and alleviation of apoptosis, accompanied by decreased oxidative stress and inflammation. Because EGCG is a potent inducer of the antioxidant heme oxygenase-1 (HO-1), we studied HO-1 signaling in CIN. HO-1 levels were increased in CIN; treatment with EGCG further increased HO-1 levels, accompanied by an increase in Nrf2, a regulator of antioxidant proteins. Interestingly, blockade of HO-1 with protoporphyrin IX zinc(II) (ZnPP) prevented the protective effect of EGCG on CIN. ZnPP also blocked the ability of EGCG to increase the activity of an antioxidant (superoxide dismutase), and decrease markers of oxidative stress (myeloperoxidase and malondialdehyde) and inflammation (myeloperoxidase and IL-1β), indicating that HO-1 is the upstream molecule that regulates the EGCG-mediated protection. To determine further the role of HO-1 on the EGCG-mediated inhibition of inflammation, we studied the effect of EGCG on the NLRP3 inflammasome, an upstream signaling of IL-1β. EGCG down-regulated NLRP3 expression, which was blocked by ZnPP, indicating that HO-1 links EGCG with NLRP3. Therefore, EGCG, via up-regulation of HO-1, protects against CIN by amelioration of oxidative stress and inflammation.

  18. CYP2E1-mediated oxidative stress regulates HO-1 and GST expression in maneb- and paraquat-treated rat polymorphonuclear leukocytes.

    PubMed

    Ahmad, Israr; Shukla, Smriti; Singh, Deepali; Chauhan, Amit Kumar; Kumar, Vinod; Singh, Brajesh Kumar; Patel, Devendra Kumar; Pandey, Haushila Prasad; Singh, Chetna

    2014-08-01

    Cytochrome P4502E1 (CYP2E1), glutathione-S-transferase A4-4 (GSTA4-4), and inducible nitric oxide synthase (iNOS) are implicated in maneb- and paraquat-induced toxicity leading to various pathological conditions. The study aimed to investigate the role of CYP2E1 in maneb- and paraquat-induced oxidative stress in rat polymorphonuclear leukocytes (PMNs) and its crosstalk with iNOS-mediated nitrosative stress and GSTA4-4-linked protective effect, if any and their consequent links with the nuclear factor erythoid 2-related factor 2 (Nrf2) activation and heme oxygenase-1 (HO-1) expression. Rats were treated with/without maneb and/or paraquat for 1, 2, and 3 weeks along with vehicle controls. Subsets of rats were also treated with diallyl sulfide (DAS) or aminoguanidine (AG) along with the respective controls. Maneb and paraquat augmented the reactive oxygen species (ROS), lipid peroxidation (LPO) and 4-hydroxy nonenal (4-HNE) contents, and superoxide dismutase (SOD) activity in the PMNs. However, maneb and paraquat attenuated the reduced glutathione (GSH) level and the expression/activity of total GST and GST-pi. Maneb and paraquat increased the expression/activity of CYP2E1, GSTA4-4, iNOS, Nrf2 and HO-1, and nitrite content. CYP2E1 inhibitor, DAS noticeably alleviated maneb- and paraquat-induced ROS, LPO, 4-HNE, SOD, Nrf2 and HO-1, GST, GSH, and GST-pi while iNOS, nitrite content and GSTA4-4 levels were unchanged. Conversely, AG, an iNOS inhibitor, attenuated maneb- and paraquat-directed changes in nitrite, LPO, iNOS but it did not alter ROS, GSH, SOD, GST, GST-pi, Nrf2, HO-1, CYP2E1, and GSTA4-4. The results demonstrate that CYP2E1 induces iNOS-independent free radical generation and subsequently modulates the Nrf2-dependent HO-1 and 4-HNE-mediated GST expression in maneb- and paraquat-treated PMNs.

  19. Cardioprotective effect of resveratrol via HO-1 expression involves p38 map kinase and PI-3-kinase signaling, but does not involve NFkappaB.

    PubMed

    Das, Samarjit; Fraga, Cesar G; Das, Dipak K

    2006-10-01

    Recent studies have demonstrated that resveratrol (trans-3,4',5-trihydroxy stilbene), a phytoalexin found in the skin and seeds of grapes, can pharmacologically precondition (PC) the heart through a nitric oxide (NO)-dependent and adenosine receptors-mediated mechanism. Since NO can induce the expression of heme oxygenase-1 (HO-1), we examined if HO-1 induction has a direct role in resveratrol-preconditioning of the heart. Eight groups of rats were studied during 7 days: (i) control rats; (ii) rats receiving resveratrol (gavage, 2.5 mg/kg); (iii) rats injected tin protoporphyrin (SnPP), a HO-1 inhibitor, i.p. on days 1, 3 and 6; (iv) rats injected 202190 (SB), a p38MAPK inhibitor, i.p. for 7 days; (v) rats injected 294002 (LY), a Akt inhibitor, i.p. for 7days; (vi) rats receiving resveratrol and SnPP; (vii) rats receiving resveratrol and SB; and (viii) rats receiving resveratrol and LY. After the treatments, the rats were sacrificed, and the hearts isolated and subjected to 30 min global ischemia followed by 2 h of reperfusion. The results shown a significant cardioprotection with resveratrol as evidenced by superior post-ischemic ventricular recovery, reduced myocardial infarct size, and decreased number of apoptotic cardiomyocytes. SnPP treatment abolished the cardioprotective effect of resveratrol. Resveratrol induced the activation of nuclear factor kappa-beta(NFkappaB), the phosphorylation of p38MAP kinase beta and Akt, as well as the inhibition of p38 MAP kinase alpha; all these effects but the activation of NFkappaB, were completely reversed by treatment with SnPP. These results indicate that resveratrol generates cardioprotection by preconditioning the heart by HO-1-mediated mechanisms, which are regulated by p38MAP kinase and Akt survival signaling, but non-dependent on NFkappaB activation.

  20. Beneficial effects of the transgenic expression of human sTNF-αR-Fc and HO-1 on pig-to-mouse islet xenograft survival.

    PubMed

    Yan, Ji-Jing; Yeom, Hye-Jeong; Jeong, Jong Cheol; Lee, Jae-Ghi; Lee, Eun Won; Cho, Bumrae; Lee, Han Sin; Kim, Su Jin; Hwang, Jong-Ik; Kim, Sung Joo; Lee, Byeong-Chun; Ahn, Curie; Yang, Jaeseok

    2016-02-01

    Both human soluble tumor necrosis factor-α receptor-Fc (sTNF-αR-Fc) and heme oxygenase-1 (HO-1) transgenic pigs have been generated previously for xenotransplantation. Here, we investigated whether overexpression of sTNF-αR-Fc or HO-1 in pig islets prolongs islet xenograft survival. Adult porcine islets were isolated from human sTNF-αR-Fc or HO-1 transgenic and wild type pigs, and were transplanted into diabetic nude mice. Effects of the expression of both genes on islet apoptosis, chemokine expression, cellular infiltration, antibody production, and islet xenograft survival were analyzed. Human sTNF-αR-Fc transgenic pigs successfully expressed sTNF-αR-Fc in the islets; human HO-1 transgenic pigs expressed significant levels of HO-1 in the islets. Pig-to-mouse islet xenograft survival was significantly prolonged in both the sTNF-αR-Fc and HO-1 groups compared with that in the wild type group. Both the sTNF-αR-Fc and HO-1 groups exhibited suppressed intragraft expression of monocyte chemoattractant protein-1 (MCP-1) and decreased perigraft infiltration of immune cells. However, there was no difference in the anti-pig antibody levels between the groups. Apoptosis of islet cells during the early engraftment was suppressed only in the HO-1 group. Porcine islets from both sTNF-αR-Fc and HO-1 transgenic pigs prolonged xenograft survival by suppressing islet cell apoptosis or secondary inflammatory responses following islet death, indicating that these transgenic pigs might have applications in successful islet xenotransplantation. Copyright © 2016 Elsevier B.V. All rights reserved.

  1. Protective effect of zerumbone reduces lipopolysaccharide-induced acute lung injury via antioxidative enzymes and Nrf2/HO-1 pathway.

    PubMed

    Leung, Wai-Shing; Yang, Ming-Ling; Lee, Shiuan-Shinn; Kuo, Chi-Wen; Ho, Yung-Chyuan; Huang-Liu, Rosa; Lin, Hui-Wen; Kuan, Yu-Hsiang

    2017-05-01

    Acute lung injury (ALI) is a serious disease with high morbidity and mortality rate. Although there are effective strategies for treatment of ALI; a widely accepted specific pharmacotherapy has not yet established. Zerumbone, the major active phytochemical compound from Zingiber zerumbet Smith, exhibits various beneficial biological and pharmacological activities, such as antioxidation, anti-inflammation, immunomodulation, and anti-cancer. We aimed to study the potential protective effects and mechanisms of zerumbone in mouse model of lipopolysaccharide (LPS)-induced ALI. Pretreatment with zerumbone inhibited the histopatholgical changes such as neutrophils infiltration, increased in alveolar barrier thickness, hemorrhage, and hyaline membrane formation occurred in lungs in LPS-induced ALI. In addition, not only LPS-induced activation of myeloperoxidase (MPO) and metallopeptidase-9 (MMP-9) was suppressed by zerumbone, but also lipid peroxidation in lungs was inhibited as well. Moreover, pretreatment with zerumbone reversed the antioxidative enzymes activities, including superoxide dismutase, catalase, and glutathione peroxidase, decreased by LPS and enhanced the expression of nuclear factor erythroid 2-related factor (Nrf2) and heme oxygenase (HO-1) induced by LPS. These results from present study suggested that the protective mechanisms of zerumbone on LPS-induced ALI were via up-regulation of antioxidative enzymes and Nrf2/HO-1 pathway.

  2. Oregonin inhibits lipopolysaccharide-induced iNOS gene transcription and upregulates HO-1 expression in macrophages and microglia

    PubMed Central

    Lee, Cheng-Jui; Lee, Shoei-Sheng; Chen, Su-Chung; Ho, Feng-Ming; Lin, Wan-Wan

    2005-01-01

    Oregonin isolated from Alnus formosana is a diarylheptanoid derivative, which appears to have antioxidative and anti-inflammatory activities. In this study, our data demonstrated inhibitory actions of oregonin on the LPS-induced iNOS protein in RAW264.7 macrophages and BV-2 microglial cells. We also suggested that HO-1 induction by oregonin might contribute to this action. Oregonin is able to dose-dependently reduce NO production, iNOS protein and iNOS promoter activity stimulated by LPS in RAW264.7 and BV-2 cells. Oregonin also showed inhibition of LPS-mediated NF-κB promoter activity and DNA-binding ability, as well as p65 nuclear translocation and phosphorylation. However, oregonin had no effect on IKK activity. AP-1 promoter activity and p38 MAPK activation but not PKC, ERK and JNK activation induced by LPS were attenuated by oregonin. Accompanying with iNOS protein reduction, moreover, we found that oregonin was able to induce HO-1 protein level. Results using a CO donor, [Ru(CO)3Cl2]2 further showed the ability of CO in reduction of iNOS protein level induced by LPS through the blockade of NF-κB and AP-1. Taken together, these results provide new evidences into the anti-inflammatory actions of oregonin, which include the inhibition of iNOS gene transcription via suppressing transcriptional activity of NF-κB and AP-1, as well as the upregulation of anti-inflammatory molecule HO-1. The HO-1-derived CO may also be involved in the suppressive effect on iNOS gene regulation. PMID:16025135

  3. Ablation of adipose-HO-1 expression increases white fat over beige fat through inhibition of mitochondrial fusion and of PGC1α in female mice.

    PubMed

    Singh, Shailendra P; Grant, Ilana; Meissner, Aliza; Kappas, Attallah; Abraham, Nader G

    2017-08-01

    Background Hmox1 plays an important role in the regulation of mitochondrial bioenergetics and function by regulating cellular heme-derived CO and bilirubin. Previous studies have demonstrated that global disruption of HO-1 in humans and mice resulted in severe organ dysfunction. Methods We investigated the potential role of adipose-specific-HO-1 genetic ablation on adipose tissue function, mitochondrial quality control and energy expenditure by generating an adipo-HO-1 knockout mouse model (Adipo-HO-1-/-) and, in vitro, adipocyte cells in which HO activity was inhibited. Adiposity, signaling proteins, fasting glucose and oxygen consumption were determined and compared to adipocyte cultures with depressed levels of both HO-1/HO-2. Results Adipo-HO-1-/- female mice exhibited increased adipocyte size, and decreases in the mitochondrial fusion to fission ratio, PGC1, and SIRT3. Importantly, ablation of HO-1 in adipose tissue resulted in fat acquiring many properties of visceral fat such as decreases in thermogenic genes including pAMPK and PRDM16. Deletion of HO-1 in mouse adipose tissue led to complete metabolic dysfunction, an increase in white adipose tissue, a reduction of beige fat and associated increases in FAS, aP2 and hyperglycemia. Mechanistically, genetic deletion of HO-1 in adipose tissues decreased the mitochondrial fusion to fission ratio; disrupted the activity of the PGC1 transcriptional axis and thermogenic genes both in vitro and in vivo. Conclusion Ablation of adipose tissue-HO-1 abridged PGC1 expression promoted mitochondrial dysfunction and contributed to an increase of pro-inflammatory visceral fat and abrogated beige-cell like phenotype.

  4. Induction of HO-1 by carbon monoxide releasing molecule-2 attenuates thrombin-induced COX-2 expression and hypertrophy in primary human cardiomyocytes.

    PubMed

    Chien, Peter Tzu-Yu; Lin, Chih-Chung; Hsiao, Li-Der; Yang, Chuen-Mao

    2015-12-01

    Carbon monoxide (CO) is one of the cytoprotective byproducts of heme oxygenase (HO)-1 and exerts anti-inflammatory action in various models. However, the detailed mechanisms underlying CO-induced HO-1 expression in primary human cardiomyocytes remain largely unidentified. We used primary left ventricle myocytes as a model and applied CO releasing molecule (CORM)-2 to investigate the relationship of CO and HO-1 expression. We herein used Western blot, real-time PCR, promoter activity and EIA to investigate the role of HO-1 expression protecting against thrombin-mediated responses. We found that thrombin-induced COX-2 expression, PGE2 release and cardiomyocyte hypertrophy markers (increase in ANF/BNP, α-actin expression and cell surface area) was attenuated by pretreatment with CORM-2 which was partially reversed by hemoglobin (Hb) or ZnPP (an inhibitor of HO-1 activity), suggesting that HO-1/CO system may be of clinical importance to ameliorate heart failure through inhibition of inflammatory responses. CORM-2-induced HO-1 protein expression, mRNA and promoter was attenuated by pretreatment with the inhibitors of Pyk2 (PF431396), PDGFR (AG1296), PI3K (LY294002), Akt (SH-5), p38 (SB202530), JNK1/2 (SP600125), FoxO1 (AS1842856) and Sp1 (mithramycin A). The involvement of these signaling components was further confirmed by transfection with respective siRNAs, consistent with those of pharmacological inhibitors. These results suggested that CORM-2-induced HO-1 expression is mediated through a Pyk2/PDGFR/PI3K/Akt/FoxO1/Sp1-dependent manner and exerts a cytoprotective effect in human cardiomyocytes. Copyright © 2015 Elsevier Inc. All rights reserved.

  5. Baicalein inhibition of oxidative-stress-induced apoptosis via modulation of ERKs activation and induction of HO-1 gene expression in rat glioma cells C6

    SciTech Connect

    Chen, Y.-C. . E-mail: yc3270@tmu.edu.tw; Chow, J.-M.; Lin, C.-W.; Wu, C.-Y.; Shen, S.-C.

    2006-10-15

    In the present study, we examined the protective mechanism of baicalein (BE) and its glycoside, baicalin (BI), on hydrogen-peroxide (H{sub 2}O{sub 2})-induced cell death in rat glioma C6 cells. Results of the MTT assay, LDH release assay, and morphological observation showed that H{sub 2}O{sub 2} addition reduced the viability of C6 cells, and this was prevented by the addition of BE but not BI. Incubation of C6 cells with BE significantly decreased the intracellular peroxide level induced by H{sub 2}O{sub 2} according to flow cytometric analysis using DCHF-DA as a fluorescent substrate. Suppression of H{sub 2}O{sub 2}-induced apoptotic events including DNA ladders, hypodiploid cells, and activation of caspases 3, 8, and, 9 by BE but not BI was identified in C6 cells. The cytotoxicity and phosphorylation of ERK proteins induced by H{sub 2}O{sub 2} were blocked by the ERK inhibitor PD98059. Catalase addition prevented H{sub 2}O{sub 2}-induced ROS production, ERKs protein phosphorylation, and cell death, and BE dose-dependently inhibited H{sub 2}O{sub 2}-induced ERK protein phosphorylation in C6 cells. These data suggest that ROS-scavenging activity is involved in BE prevention of H{sub 2}O{sub 2}-induced cell death via blocking ERKs activation. Additionally, BE but not BI induced heat shock protein 32 (HSP32; HO-1) protein expression in both time- and dose-dependent manners, but not heme oxygenase 2 (HO-2), heat shock protein 70 (HSP70), or heat shock protein 90 (HSP90) protein expression. In the absence of H{sub 2}O{sub 2}, BE induces ERKs protein phosphorylation, and HO-1 protein expression induced by BE was blocked by the addition of cycloheximide, actinomycin D, and the ERK inhibitor PD98059. The addition of the HO inhibitor ZnPP inhibited the protective effect of BE against H{sub 2}O{sub 2}-induced cytotoxicity in C6 cells according to the MTT assay and apoptotic morphology under microscopic observation, accompanied by blocking the ROS-scavenging activity of BE

  6. MiR-1254 suppresses HO-1 expression through seed region-dependent silencing and non-seed interaction with TFAP2A transcript to attenuate NSCLC growth

    PubMed Central

    Qi, Xinming; Chen, Jing; Wang, Yizheng; Gao, Lulu; Miao, Lingling; Ren, Jin

    2017-01-01

    MicroRNAs (miRNAs) are a class of small non-coding RNAs, which direct post-transcriptional gene silencing (PTGS) and function in a vast range of biological events including cancer development. Most miRNAs pair to the target sites through seed region near the 5’ end, leading to mRNA cleavage and/or translation repression. Here, we demonstrated a miRNA-induced dual regulation of heme oxygenase-1 (HO-1) via seed region and non-seed region, consequently inhibited tumor growth of NSCLC. We identified miR-1254 as a negative regulator inhibiting HO-1 translation by directly targeting HO-1 3’UTR via its seed region, and suppressing HO-1 transcription via non-seed region-dependent inhibition of transcriptional factor AP-2 alpha (TFAP2A), a transcriptional activator of HO-1. MiR-1254 induced cell apoptosis and cell cycle arrest in human non-small cell lung carcinoma (NSCLC) cells by inhibiting the expression of HO-1, consequently suppressed NSCLC cell growth. Consistently with the in vitro studies, mouse xenograft studies validated that miR-1254 suppressed NSCLC tumor growth in vivo. Moreover, we found that HO-1 expression was inversely correlated with miR-1254 level in human NSCLC tumor samples and cell lines. Overall, these findings identify the dual inhibition of HO-1 by miR-1254 as a novel functional mechanism of miRNA, which results in a more effective inhibition of oncogenic mRNA, and leads to a tumor suppressive effect. PMID:28749936

  7. MiR-1254 suppresses HO-1 expression through seed region-dependent silencing and non-seed interaction with TFAP2A transcript to attenuate NSCLC growth.

    PubMed

    Pu, Mengfan; Li, Chenggang; Qi, Xinming; Chen, Jing; Wang, Yizheng; Gao, Lulu; Miao, Lingling; Ren, Jin

    2017-07-01

    MicroRNAs (miRNAs) are a class of small non-coding RNAs, which direct post-transcriptional gene silencing (PTGS) and function in a vast range of biological events including cancer development. Most miRNAs pair to the target sites through seed region near the 5' end, leading to mRNA cleavage and/or translation repression. Here, we demonstrated a miRNA-induced dual regulation of heme oxygenase-1 (HO-1) via seed region and non-seed region, consequently inhibited tumor growth of NSCLC. We identified miR-1254 as a negative regulator inhibiting HO-1 translation by directly targeting HO-1 3'UTR via its seed region, and suppressing HO-1 transcription via non-seed region-dependent inhibition of transcriptional factor AP-2 alpha (TFAP2A), a transcriptional activator of HO-1. MiR-1254 induced cell apoptosis and cell cycle arrest in human non-small cell lung carcinoma (NSCLC) cells by inhibiting the expression of HO-1, consequently suppressed NSCLC cell growth. Consistently with the in vitro studies, mouse xenograft studies validated that miR-1254 suppressed NSCLC tumor growth in vivo. Moreover, we found that HO-1 expression was inversely correlated with miR-1254 level in human NSCLC tumor samples and cell lines. Overall, these findings identify the dual inhibition of HO-1 by miR-1254 as a novel functional mechanism of miRNA, which results in a more effective inhibition of oncogenic mRNA, and leads to a tumor suppressive effect.

  8. Long-term aerobic exercise protects against cisplatin-induced nephrotoxicity by modulating the expression of IL-6 and HO-1.

    PubMed

    Miyagi, Mariana Yasue Saito; Seelaender, Marilia; Castoldi, Angela; de Almeida, Danilo Candido; Bacurau, Aline Villa Nova; Andrade-Oliveira, Vinicius; Enjiu, Lucas Maceratesi; Pisciottano, Marcus; Hayashida, Caroline Yuri; Hiyane, Meire Ioshie; Brum, Patricia Chakur; Camara, Niels Olsen Saraiva; Amano, Mariane Tami

    2014-01-01

    Nephrotoxicity is substantial side effect for 30% of patients undergoing cancer therapy with cisplatin and may force them to change or even abandon the treatment. Studies regarding aerobic exercise have shown its efficacy for the treatment of many types of diseases and its capacity to reduce tumors. However, little is known about the impact of physical exercise on cisplatin-induced acute kidney injury (AKI). In the present study, our aim was to investigate the role of physical exercise in AKI induced by cisplatin. We submitted C57Bl6 male mice to seven weeks of chronic exercise on a training treadmill and treated them with single i.p. injection of cisplatin (20 mg/kg) in the last week. Exercise efficacy was confirmed by an increased capillary-to-fiber ratio in the gastrocnemius muscle of exercised groups (EX and CIS-EX). The group submitted to exercise before cisplatin administration (CIS-EX) exhibited less weight loss and decreased serum urea levels compared to the cisplatin group (CIS). Exercise also showed a protective role against cisplatin-induced cell death in the kidney. The CIS-EX group showed a lower inflammatory response, with less TNF and IL-10 expression in the kidney and serum. In the same group, we observed an increase of IL-6 and HO-1 expression in the kidney. Taken together, our results indicate that chronic aerobic exercise is able to attenuate AKI by inducing IL-6 and HO-1 production, which results in lower inflammatory and apoptotic profiles in the kidney.

  9. Brg1-mediated Nrf2/HO-1 pathway activation alleviates hepatic ischemia-reperfusion injury.

    PubMed

    Ge, Mian; Yao, Weifeng; Yuan, Dongdong; Zhou, Shaoli; Chen, Xi; Zhang, Yihan; Li, Haobo; Xia, Zhengyuan; Hei, Ziqing

    2017-06-01

    Cytoprotective gene heme oxygenase 1 (HO-1) could be induced by nuclear factor E2-related factor 2 (Nrf2) nuclear translocation. The purpose of this study was to determine the role of Brahma-related gene 1 (Brg1), a catalytic subunit of SWI2/SNF2-like chromatin remodeling complexes, in Nrf2/HO-1 pathway activation during hepatic ischemia-reperfusion (HIR). Our results showed that hepatic Brg1 was inhibited during early HIR while Brg1 overexpression reduced oxidative injury in CMV-Brg1 mice subjected to HIR. Moreover, promoter-driven luciferase assay showed that overexpression of Brg1 by adenovirus transfection in AML12 cells selectively enhanced HO-1 gene expression after hypoxia/reoxygenation (H/R) treatment but did not affect the other Nrf2 target gene NQO1. Furthermore, inhibition of HO-1 by the selective HO-1 inhibitor zinc protoporphyria could partly reverse the hepatic protective effects of Brg1 overexpression while HO-1-Adv attenuated AML12 cells H/R damage. Further, chromatin immunoprecipitation analysis revealed that Brg1 overexpression, which could significantly increase the recruitment of Brg1 protein to HO-1 but not NQO1 promoter, was recruited by Nrf2 to the HO-1 regulatory regions in AML12 hepatocytes subjected to H/R. In conclusion, our results demonstrated that restoration of Brg1 during reperfusion could enhance Nrf2-mediated inducible expression of HO-1 during HIR to effectively increase antioxidant ability to combat against hepatocytes damage.

  10. Protection of chlorophyllin against oxidative damage by inducing HO-1 and NQO1 expression mediated by PI3K/Akt and Nrf2.

    PubMed

    Zhang, Yanlin; Guan, Li; Wang, Xifu; Wen, Tao; Xing, Junjie; Zhao, Jinyuan

    2008-04-01

    Green vegetables are thought to have a chemoprotective effect on the basis of epidemiologic evidence. This study investigated whether chlorophyllin (CHL) could induce antioxidant enzymes and confer protection against oxidative damage. The results showed that CHL could induce HO-1 and NQO1 expression in human umbilical vein endothelial cell (HUVEC) in a time- and dose-dependent manner and protect them against hydrogen peroxide caused oxidative damage. The induction of HO-1 and NQO1 by CHL was accompanied with the accumulation of transcription factor Nrf2 in nucleus and the activation of PI3K/Akt signalling pathway. Additionally, the specific inhibitor of PI3K/Akt could obviously decrease not only the induced expression of HO-1 and NQO1 but also the antioxidant effect of CHL. In conclusion, this study proved that CHL exerts antioxidant effect by inducing HO-1 and NQO1 expression mediated by PI3K/Akt and Nrf2. One thinks CHL may have promise to be prophylactic pharmaceuticals without adverse effects.

  11. Atractylenolide I restores HO-1 expression and inhibits Ox-LDL-induced VSMCs proliferation, migration and inflammatory responses in vitro.

    PubMed

    Li, Weifeng; Zhi, Wenbing; Liu, Fang; He, Zehong; Wang, Xiuei; Niu, Xiaofeng

    2017-04-01

    Pathogenesis of atherosclerosis is characterized by the proliferation and migration of vascular smooth muscle cells (VSMCs) and inflammatory lesions. The aim of this study is to elucidate the effect of atractylenolide I (AO-I) on smooth muscle cell inflammation, proliferation and migration induced by oxidized modified low density lipoprotein (Ox-LDL). Here, We found that atractylenolide I inhibited Ox-LDL-induced VSMCs proliferation and migration in a dose-dependent manner, and decreased the production of inflammatory cytokines and the expression of monocyte chemoattractant protein-1 (MCP-1) in VSMCs. The study also identified that AO-I prominently inhibited p38-MAPK and NF-κB activation. More importantly, the specific heme oxygenase-1 (HO-1) inhibitor zinc protoporphyrin (ZnPP) IX partially abolished the beneficial effects of atractylenolide I on Ox-LDL-induced VSMCs. Furthermore, atractylenolide I blocked the foam cell formation in macrophages induced by Ox-LDL. In summary, inhibitory roles of AO-I in VSMCs proliferation and migration, lipid peroxidation and subsequent inflammatory responses might contribute to the anti-atherosclerotic property of AO-I. Copyright © 2017 Elsevier Inc. All rights reserved.

  12. Modulation of HO-1 by Ferulic Acid Attenuates Adipocyte Differentiation in 3T3-L1 Cells.

    PubMed

    Koh, Eun-Jeong; Kim, Kui-Jin; Seo, Young-Jin; Choi, Jia; Lee, Boo-Yong

    2017-05-05

    Ferulic acid (FA) is phenolic compound found in fruits. Many studies have reported that FA has diverse therapeutic effects against metabolic diseases. However, the mechanism by which FA modulates adipogenesis via the expression of heme oxygenase-1 (HO-1) implicated in suppression of adipocyte differentiation is not fully understood. We investigated whether HO-1 can be activated by FA and suppress adipogenic factors in 3T3-L1. Our results showed that FA suppresses triglyceride-synthesizing enzymes, fatty acid synthase (FASN) and acetyl-CoA carboxylase (ACC). We observed that the expression of CCAAT/enhancer binding protein α (C/EBPα) and peroxisome proliferator-activated receptor γ (PPARγ) were suppressed by FA. In addition, HO-1 inhibitor stimulated lipid accumulation, while FA attenuated lipid accumulation in 3T3-L1 treated with HO-1 inhibitor. We also observed that the expression of HO-1 had the same tendency as C/EBP homologous protein 10 (CHOP10) during the mitotic clonal expansion (MCE) of adipogenesis. We next employed siRNA against HO-1 to clarify whether HO-1 regulates CHOP10. The results indicated that CHOP10 is downstream of HO-1. Furthermore, FA-mediated HO-1/CHOP10 axis activation prevented the initiation of MCE. Therefore, we demonstrated that FA is a positive regulator of HO-1 in 3T3-L1, and may be an effective bioactive compound to reduce adipocyte tissue mass.

  13. Hirsutenone reduces deterioration of tight junction proteins through EGFR/Akt and ERK1/2 pathway both converging to HO-1 induction.

    PubMed

    Seo, Geom Seog; Jiang, Wen-Yi; Park, Pil-Hoon; Sohn, Dong Hwan; Cheon, Jae Hee; Lee, Sung Hee

    2014-07-15

    Oxidative stress-induced disruption of epithelial tight junctions (TJ) plays a critical role in the pathogenesis of intestinal disorders, including inflammatory bowel disease (IBD). The current study investigated the protective effect of hirsutenone against disruption of the intestinal barrier in vitro and in a mouse model of colitis. Caco-2 cells were stimulated with tert-butyl hydroperoxide (t-BH). Hirsutenone prevented the t-BH-induced increase in permeability by inhibiting the reduction in zonula occludens-1 (ZO-1) expression, and rapidly stimulated tyrosine phosphorylation of the epidermal growth factor receptor (EGFR). Hirsutenone-mediated protection against the loss of ZO-1 depends on the activation of both ERK1/2 and Akt signaling pathways. Interestingly, hirsutenone-mediated activation of Akt, but not ERK1/2, signaling was EGFR-dependent. Hirsutenone increased heme oxygenase-1 (HO-1) expression through both EGFR/Akt- and ERK1/2-dependent pathways, contributing to the protective effects against TJ dysfunction. Colitis was induced in mice by intrarectal administration of 2,4,6,-trinitrobenzene sulfonic acid (TNBS). Hirsutenone administration improved the clinical parameters and tissue histological appearance, increased HO-1 expression, attenuated reduction of ZO-1 and occludin mRNA, and promoted BrdU incorporation in the colonic epithelium of TNBS-treated mice. Taken together, our results demonstrate that hirsutenone reverse disordered intestinal permeability by activating EGFR/Akt and ERK1/2 pathways, which are involved in the regulation of HO-1 expression. These findings highlight the potential of hirsutenone for clinical applications in the treatment of IBD.

  14. Deciphering an underlying mechanism of differential cellular effects of nanoparticles: an example of Bach-1 dependent induction of HO-1 expression by gold nanorod.

    PubMed

    Fan, Zhenlin; Yang, Xiao; Li, Yiye; Li, Suping; Niu, Shiwen; Wu, Xiaochun; Wei, Jingyan; Nie, Guangjun

    2012-12-01

    Gold nanoparticles are extensively investigated for their potential biomedical applications. Therefore, it is pertinent to thoroughly evaluate their biological effects at different levels and their underlying molecular mechanism. Frequently, there are discrepancies about the biological effects of various gold nanoparticles among the reports dealing with different models. Most of the studies focused on the different biological effects of various nano-properties of the nanomaterials. We hypothesize that the biological models with different metabolic processes would be taken into account to explain the observed discrepancies of biological effects of nanomaterials. Herein, by using mouse embryo fibroblast cell line (MEF-1) and human embryonal lung fibroblast cell line (MRC-5) as in vitro models, we studied the cellular effects of gold nanorods (AuNRs) coated with poly (diallyldimethyl ammonium chloride) (PDDAC), polyethylene glycol and polystyrene sulfonae (PSS). We found that all three AuNRs had no effects on cellular viability at the concentration of 1 nM; however, AuNRs that coated with PDDAC and PSS induced significant up-regulation of heme oxygenase-1 (HO-1) which was believed to be involved in cellular defense activities in MEF-1 but not in MRC-5 cells. Further study showed that the low fundamental expression of transcription factor Bach-1, the major regulator of HO-1 expression, in MEF-1 was responsible for the up-regulation of HO-1 induced by the AuNRs. Our results indicate that although AuNRs we used are non-cytotoxic, they cell-specifically induce change of gene expression, such as HO-1. Our current study provides a good example to explain the molecular mechanisms of differential biological effects of nanomaterials in different cellular models. This finding raises a concern on evaluation of cellular effects of nanoparticles where the cell models should be critically considered.

  15. Casein Glycomacropeptide Hydrolysates Exert Cytoprotective Effect against Cellular Oxidative Stress by Up-Regulating HO-1 Expression in HepG2 Cells

    PubMed Central

    Li, Tiange; Chen, Bin; Du, Min; Song, Jiajia; Cheng, Xue; Wang, Xu; Mao, Xueying

    2017-01-01

    Oxidative stress is considered as an important mediator in the progression of metabolic disorders. The objective of this study was to investigate the potential hepatoprotective effects and mechanisms of bovine casein glycomacropeptide hydrolysates (GHP) on hydrogen peroxide (H2O2)-induced oxidative damage in HepG2 cells. Results showed that GHP significantly blocked H2O2-induced intracellular reactive oxygen species (ROS) generation and cell viability reduction in a dose-dependent manner. Further, GHP concentration-dependently induced heme oxygenase-1 (HO-1) expression and increased nuclear factor-erythroid 2-related factor 2 (Nrf2) nuclear translocation. Moreover, pretreatment of GHP increased the activation of p38 mitogen-activated protein kinase (p38 MAPK) and extracellular signal-regulated protein kinase 1/2 (ERK1/2), which were shown to contribute to Nrf2-mediated HO-1 expression. Taken together, GHP protected HepG2 cells from oxidative stress by activation of Nrf2 and HO-1 via p38 MAPK and ERK1/2 signaling pathways. Our findings indicate that bovine casein glycomacropeptide hydrolysates might be a potential ingredient in the treatment of oxidative stress-related disorders and further studies are needed to investigate the protective effects in vivo. PMID:28098837

  16. Quercetin and tin protoporphyrin attenuate hepatic ischemia reperfusion injury: role of HO-1.

    PubMed

    Atef, Yara; El-Fayoumi, Hassan M; Abdel-Mottaleb, Yousra; Mahmoud, Mona F

    2017-06-06

    Ischemia reperfusion (IR) injury occurs in many clinical situations such as organ transplantation and hepatectomies resulting in oxidative stress and immune activation. Heme oxygenase-1(HO-1) is the rate-limiting step in the heme-degradation pathway and has a critical cytoprotective role. Induction of HO-1 improves liver I/R injury. Quercetin, a plant pigment (flavonoid), is an antioxidant and HO-1 inducer. Tin protoporphyrin (SnPP) is a HO-1 inhibitor. This study was designed to investigate the protective effect of quercetin in hepatic I/R injury and the role of HO-1. Wister rats were randomly divided into four groups (sham, I/R, quercetin, and SnPP). Liver ischemia was induced for 45 min then reperfusion was allowed for 1 h. Quercetin and surprisingly SnPP ameliorate the deleterious effect of I/R by reducing the oxidative stress and hepatocyte degeneration. Both agents decreased the elevated inflammatory cytokines and improved the inhibition of the antiapoptotic marker, Bcl2. They induced HO-1 content and expression. Quercetin has better cytoprotective effect than SnPP. These findings suggest that quercetin has a hepatoprotective effect against I/R injury via HO-1 induction and unexpectedly, SnPP showed the similar effect. Quercetin has more prominent protective effect than SnPP because of its superior ability to induce HO-1.

  17. Novel roles of c-Met in the survival of renal cancer cells through the regulation of HO-1 and PD-L1 expression.

    PubMed

    Balan, Murugabaskar; Mier y Teran, Eduardo; Waaga-Gasser, Ana Maria; Gasser, Martin; Choueiri, Toni K; Freeman, Gordon; Pal, Soumitro

    2015-03-27

    The receptor tyrosine kinase c-Met is overexpressed in renal cancer cells and can play major role in the growth and survival of tumor. We investigated how the c-Met-mediated signaling through binding to its ligand hepatocyte growth factor (HGF) can modulate the apoptosis and immune escape mechanism(s) of renal cancer cells by the regulations of novel molecules heme oxygenase-1 (HO-1) and programmed death-1 ligand 1 (PD-L1). We found that HGF/c-Met-mediated signaling activated the Ras/Raf pathway and down-regulated cancer cell apoptosis; and it was associated with the overexpression of cytoprotective HO-1 and anti-apoptotic Bcl-2/Bcl-xL. c-Met-induced HO-1 overexpression was regulated at the transcriptional level. Next, we observed that c-Met induction markedly up-regulated the expression of the negative co-stimulatory molecule PD-L1, and this can be prevented following treatment of the cells with pharmacological inhibitors of c-Met. Interestingly, HGF/c-Met-mediated signaling could not induce PD-L1 at the optimum level when either Ras or HO-1 was knocked down. To study the functional significance of c-Met-induced PD-L1 expression, we performed a co-culture assay using mouse splenocytes (expressing PD-L1 receptor PD-1) and murine renal cancer cells (RENCA, expressing high PD-L1). We observed that the splenocyte-mediated apoptosis of cancer cells during co-culture was markedly increased in the presence of either c-Met inhibitor or PD-L1 neutralizing antibody. Finally, we found that both c-Met and PD-L1 are significantly up-regulated and co-localized in human renal cancer tissues. Together, our study suggests a novel mechanism(s) by which c-Met can promote increased survival of renal cancer cells through the regulation of HO-1 and PD-L1.

  18. Novel Roles of c-Met in the Survival of Renal Cancer Cells through the Regulation of HO-1 and PD-L1 Expression*

    PubMed Central

    Balan, Murugabaskar; Mier y Teran, Eduardo; Waaga-Gasser, Ana Maria; Gasser, Martin; Choueiri, Toni K.; Freeman, Gordon; Pal, Soumitro

    2015-01-01

    The receptor tyrosine kinase c-Met is overexpressed in renal cancer cells and can play major role in the growth and survival of tumor. We investigated how the c-Met-mediated signaling through binding to its ligand hepatocyte growth factor (HGF) can modulate the apoptosis and immune escape mechanism(s) of renal cancer cells by the regulations of novel molecules heme oxygenase-1 (HO-1) and programmed death-1 ligand 1 (PD-L1). We found that HGF/c-Met-mediated signaling activated the Ras/Raf pathway and down-regulated cancer cell apoptosis; and it was associated with the overexpression of cytoprotective HO-1 and anti-apoptotic Bcl-2/Bcl-xL. c-Met-induced HO-1 overexpression was regulated at the transcriptional level. Next, we observed that c-Met induction markedly up-regulated the expression of the negative co-stimulatory molecule PD-L1, and this can be prevented following treatment of the cells with pharmacological inhibitors of c-Met. Interestingly, HGF/c-Met-mediated signaling could not induce PD-L1 at the optimum level when either Ras or HO-1 was knocked down. To study the functional significance of c-Met-induced PD-L1 expression, we performed a co-culture assay using mouse splenocytes (expressing PD-L1 receptor PD-1) and murine renal cancer cells (RENCA, expressing high PD-L1). We observed that the splenocyte-mediated apoptosis of cancer cells during co-culture was markedly increased in the presence of either c-Met inhibitor or PD-L1 neutralizing antibody. Finally, we found that both c-Met and PD-L1 are significantly up-regulated and co-localized in human renal cancer tissues. Together, our study suggests a novel mechanism(s) by which c-Met can promote increased survival of renal cancer cells through the regulation of HO-1 and PD-L1. PMID:25645920

  19. Induction of heme-oxygenase-1 (HO-1) does not enhance adiponectin production in human adipocytes: Evidence against a direct HO-1 - Adiponectin axis.

    PubMed

    Yang, Mengliu; Kimura, Masaki; Ng, Choaping; He, Jingjing; Keshvari, Sahar; Rose, Felicity J; Barclay, Johanna L; Whitehead, Jonathan P

    2015-09-15

    Adiponectin is a salutary adipokine and hypoadiponectinemia is implicated in the aetiology of obesity-related inflammation and cardiometabolic disease making therapeutic strategies to increase adiponectin attractive. Emerging evidence, predominantly from preclinical studies, suggests induction of heme-oxygenase-1 (HO-1) increases adiponectin production and reduces inflammatory tone. Here, we aimed to test whether induction of HO-1 enhanced adiponectin production from mature adipocytes. Treatment of human adipocytes with cobalt protoporphyrin (CoPP) or hemin for 24-48 h increased HO-1 expression and activity without affecting adiponectin expression and secretion. Treatment of adipocytes with TNFα reduced adiponectin secretion and increased expression and secretion of additional pro-inflammatory cytokines, IL-6 and MCP-1, as well as expression of sXBP-1, a marker of ER stress. HO-1 induction failed to reverse these effects. These results demonstrate that induction of HO-1 does not directly enhance adiponectin production or ameliorate the pro-inflammatory effects of TNFα and argue against a direct HO-1 - adiponectin axis. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  20. [Influence of tert-butylhydroquinone on the islets function and expression of HO-1 and VEGF in retina of type 2 diabetic rats].

    PubMed

    Zhang, Siyuan; Tian, Min; Li, Jingyan; Han, Peiyan; Huang, Qi; Lyu, Hongbin

    2016-05-01

    To observe the effect of tert-butylhydroquinone (tBHQ) on the islets function and expression of HO-1 and VEGF in retina of type 2 diabetic rats. Experimental study. Forty healthy male Sprague-Dawley rats with 6 weeks old were given high-fat and high-sugar diet for 4 weeks and then intraperitoneal injection with streptozotocin(STZ) 30mg/kg to induce diabetic model. Model group were further randomly divided into normal group and model group. Ten age matched health rats were chosen as control group. 4 and 12 weeks later, weight of rats , fasting blood glucose (FBG), fasting serum insulin (FINS), the levels of serum liqids were measured. The HO-1 and vascular endothelial growth factor (VEGF) expression in retina were determined by immunohistochmistry and quantitative real-time PCR. The differences of the mean values among the three groups were analyzed by one-factor analysis of variance. The multiple comparisons of the mean values among the three groups were analyzed by LSD-t analysis. Type 2 diabetic model was successfully established in 32 rats, the success rate was 80.0%. Compared with normal gourp, plasma triglyceride (TG), plasma total cholesterol (TC) and plasma low density lipoprotein (LDL-C) of diabetic rats increased dramatically, and plasma high density lipoprotein (HDL-C) decreased. FBG was significant different between all groups(χ(2)4w=10.631, P4W=0.005; χ(2)12w=15.053, P12w=0.001), and was significantly increased in tBHQ intervention group than that in diabetic group at the end of 12 week. The levels of FINS and homeostasis model assessment for insulin resistance (HOMA-IR) were significantly higher , and insulin sensitivity index (ISI) was significantly lower in diabetic and tBHQ intervention group compared with normal group(P<0.05), but there is no significantly difference between diabetic and tBHQ intervention group(P>0.05). The immunohistochemistry staining results showed the protein leveI of retinal HO-1 (F4w=689.535, P4w=0.000; F12w=287.988, P12w=0

  1. Nrf2-driven CD36 and HO-1 gene expression in circulating monocytes correlates with favourable clinical outcome in pregnancy-associated malaria.

    PubMed

    Aubouy, Agnès; Olagnier, David; Bertin, Gwladys; Ezinmegnon, Sem; Majorel, Clarisse; Mimar, Saliha; Massougbodji, Achille; Deloron, Philippe; Pipy, Bernard; Coste, Agnès

    2015-09-18

    Pregnancy-associated malaria (PAM) constitutes one of the most severe forms of malaria infection leading to fetal growth restriction and high risk of infant death. The severity of the pathology is largely attributed to the recruitment of monocytes and macrophages in the placenta which is evidenced by dysregulated inflammation found in placental blood. Importantly, CD36(+) monocytes/macrophages are also thought to participate in the tight control of the pro- and anti-inflammatory responses following Plasmodium detection through elimination of apoptotic cells and malaria-infected erythrocytes, internalization and recycling of oxidized forms of low-density lipoprotein and collaboration with TLR2 in pro-inflammatory response. Interestingly, previous work demonstrated that CD36 expression was upregulated on inflammatory macrophages following stimulation of the Nrf2 transcription factor, whilst the PPARγ pathway was inhibited and non-functional in the same inflammatory conditions. This current study examined the possible role of Nrf2-driven gene expression, CD36 and Haem-Oxygenase-1 (HO-1), in PAM clinical outcomes. Clinical data and biological samples including peripheral blood mononuclear cells were collected from 27 women presenting PAM. Polychromatic flow cytometry was used to characterize innate immune cell subpopulations and quantify CD36 protein expression level on monocytes. mRNA levels of CD36, PPARγ, Nrf2 and HO-1 were determined by qPCR and related to clinical outcomes. Finally, the capacity of monocytes to modulate CD36 expression upon rosiglitazone or sulforaphane treatment, two respective PPARγ or Nrf2 activators, was also investigated. The CD36 receptor, mostly expressed by CD14(+) circulating monocytes, statistically correlated with increased infant birth weights. Interestingly, mRNA levels of the transcription factor Nrf2 and the enzyme HO-1 also correlated with lower parasitaemia and increased infant birth weight, while PPARγ mRNA levels did not

  2. Baicalein protects rat insulinoma INS-1 cells from palmitate-induced lipotoxicity by inducing HO-1.

    PubMed

    Kwak, Hyun Jeong; Yang, Dongki; Hwang, Yongha; Jun, Hee-Sook; Cheon, Hyae Gyeong

    2017-01-01

    β-Cell dysfunction plays a central role in the pathogenesis of type 2 diabetes (T2D), and the identification of novel approaches to improve β-cell function is essential to treat this disease. Baicalein, a flavonoid originally isolated from the root of Scutellaria Baicalensis, has been shown to have beneficial effects on β-cell function. Here, the authors investigated the molecular mechanism responsible for the protective effects of baicalein against palmitate (PA)-induced impaired β-cell function, and placed focus on the role of heme oxygenase (HO)-1. Rat pancreatic β-cell line INS-1 cells or mouse pancreatic islets were cultured with PA (500 μM) to induce lipotoxicity in the presence or absence of baicalein (50 μM), and the expressions of the ER stress markers, ATF-3, CHOP and GRP78 were detected by Western blotting and/or qPCR. The involvement of HO-1 was evaluated by HO-1 siRNA transfection and using the HO-1 inhibitor ZnPP. Baicalein reduced PA-induced ER stress and inflammation and enhanced insulin secretion, and these effects were associated with the induction of HO-1. Furthermore, these protective effects were attenuated by ZnPP and by HO-1 siRNA. Pretreatment of PD98059 (an ERK inhibitor) significantly inhibited the protective effects of baicalein and blocked HO-1 induction. On the other hand, CO production by RuCO (a CO donor) ameliorated PA-induced ER stress, suggesting that CO production followed by HO-1 induction may contribute to the protective effects of baicalein against PA-induced β-cell dysfunction. Baicalein protects pancreatic β-cells from PA-induced ER stress and inflammation via an ERK-HO-1 dependent pathway. The authors suggest HO-1 induction in pancreatic β-cells appears to be a promising therapeutic strategy for T2D.

  3. Agrimonolide and Desmethylagrimonolide Induced HO-1 Expression in HepG2 Cells through Nrf2-Transduction and p38 Inactivation

    PubMed Central

    Chen, Lei; Teng, Hui; Zhang, Kalin Yanbo; Skalicka-Woźniak, Krystyna; Georgiev, Milen I.; Xiao, Jianbo

    2017-01-01

    Agrimonolide and desmethylagrimonolide are the main bioactive polyphenols in agrimony with well-documented antioxidant, anti-diabetic, and anti-inflammatory potential. We report here for the first time that agrimonolide and desmethylagrimonolide stimulate the expression of phase II detoxifying enzymes through the Nrf2-dependent signaling pathway. Agrimonolide and desmethylagrimonolide also possess considerable protective activity from oxidative DNA damage. In order to explore the cytoprotective potential of agrimonolide and desmethylagrimonolide on oxidative stress in liver, we developed an oxidative stress model in HepG2 cells, and check the hypothesis whether Nrf2 pathway is involved. Western blotting and luciferase assay revealed that exposure of HepG2 cells to agrimonolide or desmethylagrimonolide leads to increased heme oxygenase-1 (HO-1) expression by activating ARE through induction of Nrf2 and suppression of Kelch-like ECH-associated protein 1 (Keap1). Moreover, agrimonolide and desmethylagrimonolide also activated ERK signaling pathways and significantly attenuated individual p38 MAPK expression, subsequently leading to Nrf2 nuclear translocation. In conclusion, our results indicated that transcriptional activation of Nrf2/ARE is critical in agrimonolide and desmethylagrimonolide-mediated HO-1 induction, which can be regulated partially by the blockade of p38 MAPK signaling pathway and inhibiting nuclear translocation of Nrf2. PMID:28119605

  4. HO-1/CO system in tumor growth, angiogenesis and metabolism - Targeting HO-1 as an anti-tumor therapy.

    PubMed

    Loboda, Agnieszka; Jozkowicz, Alicja; Dulak, Jozef

    2015-11-01

    Heme oxygenase-1 (HO-1, hmox-1) catalyzes the rate-limiting step in the heme degradation processes. Out of three by-products of HO-1 activity, biliverdin, iron ions and carbon monoxide (CO), the latter was mostly shown to mediate many beneficial HO-1 effects, including protection against oxidative injury, regulation of apoptosis, modulation of inflammation as well as contribution to angiogenesis. Mounting evidence suggests that HO-1/CO systemmay be of special benefit in protection inmany pathological conditions, like atherosclerosis or myocardial infarction. By contrast, the augmented expression of HO-1 in tumor tissues may have detrimental effect as HO-1 accelerates the formation of tumor neovasculature and provides the selective advantage for tumor cells to overcome the increased oxidative stress during tumorigenesis and during treatment. The inhibition of HO-1 has been proposed as an anti-cancer therapy, however, because of non-specific effects of known HO-1 inhibitors, the discovery of ideal drug lowering HO-1 expression/activity is still an open question. Importantly, in several types of cancer HO-1/CO system exerts opposite activities, making the possible treatment more complicated. All together indicates the complex role for HO-1/CO in various in vitro and in vivo conditions.

  5. Pre-emptive hypoxia-regulated HO-1 gene therapy improves post-ischaemic limb perfusion and tissue regeneration in mice.

    PubMed

    Jazwa, Agnieszka; Stepniewski, Jacek; Zamykal, Martin; Jagodzinska, Jolanta; Meloni, Marco; Emanueli, Costanza; Jozkowicz, Alicja; Dulak, Jozef

    2013-01-01

    Haem oxygenase-1 (HO-1) is a haem-degrading enzyme that generates carbon monoxide, bilirubin, and iron ions. Through these compounds, HO-1 mitigates cellular injury by exerting antioxidant, anti-apoptotic, and anti-inflammatory effects. Here, we examined the influence of HO-1 deficiency and transient hypoxia/ischaemia-induced HO-1 overexpression on post-injury hindlimb recovery. Mice lacking functional HO-1 (HO-1(-/-)) showed reduced reparative neovascularization in ischaemic skeletal muscles, impaired blood flow (BF) recovery, and increased muscle cell death compared with their wild-type littermates. Human microvascular endothelial cells (HMEC-1) transfected with plasmid vector (pHRE-HO-1) carrying human HO-1 driven by three hypoxia response elements (HREs) and cultured in 0.5% oxygen demonstrated markedly increased expression of HO-1. Such upregulated HO-1 levels were effective in conferring protection against H(2)O(2)-induced cell death and in promoting the proangiogenic phenotype of HMEC-1 cells. More importantly, when delivered in vivo, pHRE-HO-1 significantly improved the post-ischaemic foot BF in mice subjected to femoral artery ligation. These effects were associated with reduced levels of pro-inflammatory cytokines (IL-6 and CXCL1) and lower numbers of transferase-mediated dUTP nick-end labelling-positive cells. Moreover, HO-1 delivered into mouse skeletal muscles seems to influence the regenerative potential of myocytes as it significantly changed the expression of transcriptional (Pax7, MyoD, myogenin) and post-transcriptional (miR-146a, miR-206) regulators of skeletal muscle regeneration. Our results suggest the therapeutic potential of HO-1 for prevention of adverse effects in critical limb ischaemia.

  6. Statement of retraction. Cardioprotective effect of resveratrol via HO-1 expression involves p38 map kinase and PI-3-kinase signaling, but does not involve NFkB.

    PubMed

    Davies, Michael; Roulleau, Joris

    2012-03-01

    Free Radical Research, October 2006; 40(10): 1066-1075 (Received 30 March 2006) The Editor, Editorial Board and Publisher of Free Radical Research hereby retract the following article from publication in the journal: SAMARJIT DAS, CESAR G. FRAGA & DIPAK K. DAS. 2006. Cardioprotective effect of resveratrol via HO-1 expression involves p38 map kinase and PI-3-kinase signaling, but does not involve NFkB. Free Radical Research, October 2006; 40(10): 1066-1075. This article has been found to contain fabricated data during a research misconduct investigation by the University of Connecticut Health Center. Specifically, the institution has determined that images appearing in Figure 4 of that paper contain instances of data fabrication. As a consequence, and as per accepted best practice, the article is withdrawn from all print and electronic editions.

  7. Protective effect of Xuebijing injection on D-galactosamine- and lipopolysaccharide-induced acute liver injury in rats through the regulation of p38 MAPK, MMP-9 and HO-1 expression by increasing TIPE2 expression.

    PubMed

    Liu, Ming-Wei; Liu, Rong; Wu, Hai-Yin; Zhang, Wei; Xia, Jing; Dong, Min-Na; Yu, Wen; Wang, Qiang; Xie, Feng-Mei; Wang, Rui; Huang, Yun-Qiao; Qian, Chuan-Yun

    2016-11-01

    Xuebijing injection (XBJ) has long been used to treat infectious diseases in China. The therapeutic effect of XBJ is probably associated with anti-inflammatory effects. However, the precise mechanisms responsible for the effects of XBJ remain unknown. The present study was conducted in order to evaluate the protective effects of XBJ in a rat model of D-galactosamine (D-Gal)- and lipopolysaccharide (LPS)‑induced acute liver injury. In the present study, the rats were injected with D-Gal and LPS intraperitoneally to induce acute liver injury. Two hours prior to D-Gal and LPS administration, the treatment group was administered XBJ by intravenous infusion. The effects of XBJ on D-Gal- and LPS-induced expression of tumor necrosis factor (TNF)‑alpha‑induced protein 8-like 2 (TIPE2), nuclear factor-κB (NF-κB), matrix metalloproteinase-9 (MMP-9) and heme oxygenase-1 (HO-1) as well as mitogen-activated protein kinase (MAPK) signaling was examined using reverse transcription-quantitative polymerase chain reaction (RT-qPCR), western blot analysis, immunofluorescence, as well as by analysing the serum levels of pro-inflammatory cytokines and the transaminases, alanine aminotransferase (ALT) and aspartate aminotransferase (AST). Myeloperoxidase (MPO), malondialdehyde (MDA) and superoxide dismutase (SOD) levels in the rat liver tissues were also measured. For histological analysis, hematoxylin and eosin (H&E)-stained liver samples were evaluated. The results showed that XBJ upregulated TIPE2 and HO-1 expression, reduced the expression of NF-κB65 and MMP-9, inhibited the LPS-induced gene expression of c-jun N-terminal kinase (JNK) and p38 MAPK, decreased the generation of pro-inflammatory cytokines [interleukin (IL)-6, IL-13 and TNF-α], inhibited ALT and AST activity, and ameliorated D-Gal- and LPS-induced liver injury. The histological results also demonstrated that XBJ attenuated D-Gal- and LPS-induced liver inflammation. It was found that XBJ may

  8. Protective effect of Xuebijing injection on D-galactosamine- and lipopolysaccharide-induced acute liver injury in rats through the regulation of p38 MAPK, MMP-9 and HO-1 expression by increasing TIPE2 expression

    PubMed Central

    Liu, Ming-Wei; Liu, Rong; Wu, Hai-Yin; Zhang, Wei; Xia, Jing; Dong, Min-Na; Yu, Wen; Wang, Qiang; Xie, Feng-Mei; Wang, Rui; Huang, Yun-Qiao; Qian, Chuan-Yun

    2016-01-01

    Xuebijing injection (XBJ) has long been used to treat infectious diseases in China. The therapeutic effect of XBJ is probably associated with anti-inflammatory effects. However, the precise mechanisms responsible for the effects of XBJ remain unknown. The present study was conducted in order to evaluate the protective effects of XBJ in a rat model of D-galactosamine (D-Gal)- and lipopolysaccharide (LPS)-induced acute liver injury. In the present study, the rats were injected with D-Gal and LPS intraperitoneally to induce acute liver injury. Two hours prior to D-Gal and LPS administration, the treatment group was administered XBJ by intravenous infusion. The effects of XBJ on D-Gal- and LPS-induced expression of tumor necrosis factor (TNF)-alpha-induced protein 8-like 2 (TIPE2), nuclear factor-κB (NF-κB), matrix metalloproteinase-9 (MMP-9) and heme oxygenase-1 (HO-1) as well as mitogen-activated protein kinase (MAPK) signaling was examined using reverse transcription-quantitative polymerase chain reaction (RT-qPCR), western blot analysis, immunofluorescence, as well as by analysing the serum levels of pro-inflammatory cytokines and the transaminases, alanine aminotransferase (ALT) and aspartate aminotransferase (AST). Myeloperoxidase (MPO), malondialdehyde (MDA) and superoxide dismutase (SOD) levels in the rat liver tissues were also measured. For histological analysis, hematoxylin and eosin (H&E)-stained liver samples were evaluated. The results showed that XBJ upregulated TIPE2 and HO-1 expression, reduced the expression of NF-κB65 and MMP-9, inhibited the LPS-induced gene expression of c-jun N-terminal kinase (JNK) and p38 MAPK, decreased the generation of pro-inflammatory cytokines [interleukin (IL)-6, IL-13 and TNF-α], inhibited ALT and AST activity, and ameliorated D-Gal- and LPS-induced liver injury. The histological results also demonstrated that XBJ attenuated D-Gal- and LPS-induced liver inflammation. It was found that XBJ may prevent LPS-induced pro

  9. The cytoprotective effects of ethanol extract of Ecklonia cava against oxidative stress are associated with upregulation of Nrf2-mediated HO-1 and NQO-1 expression through activation of the MAPK pathway.

    PubMed

    Choi, Yung Hyun

    2016-01-01

    The aim of the present study was to examine the cytoprotective effect of Ecklonia cava against oxidative stress in C2C12 myoblasts. The ethanol extract of E. cava (EEEC) prevented hydrogen peroxide (H₂O₂)-induced inhibition of the growth of C2C12 myoblasts and exhibited scavenging activity against intracellular reactive oxygen species (ROS) induced by H₂O₂. EEEC treatment attenuated H2O2-induced comet tail formation and phospho-histone γH2A.X expression. Furthermore, EEEC treatment enhanced the level of the phosphorylated form of nuclear factor erythroid 2- related factor 2 (Nrf2) and its nuclear translocation, which was associated with the induction of heme oxygenase-1 (HO-1) and NADPH-quinone oxidoreductase 1 (NQO-1). Zinc protoporphyrin IX, a HO-1 competitive inhibitor, significantly abolished the protective effects of EEEC against H₂O₂-induced ROS generation and growth inhibition in C2C12 myoblasts. Transient transfection with Nrf2-specific small interfering RNA restored the elevated HO-1 and NQO-1 expression and the phosphorylation of Nrf2 to near normal levels. The EEEC treatment also induced the activation of mitogen-activated protein kinases (MAPKs), and specific inhibitors of MAPKs abolished upregulated HO-1 and NQO-1, as well as the phosphorylation of Nrf2. Taken together, these data suggest that EEEC attenuates oxidative stress by activating Nrf2-mediated HO-1 and inducing NQO-1 via the activation of MAPK signaling pathways.

  10. α-Dihydroxychalcone-glycoside (α-DHC) isolated from the heartwood of Pterocarpus marsupium inhibits LPS induced MAPK activation and up regulates HO-1 expression in murine RAW 264.7 macrophage.

    PubMed

    Chakraborty, Prarthana; Saraswat, Ghungroo; Kabir, Syed N

    2014-05-15

    Three phenolic glycosides isolated from the heartwood of Pterocarpus marsupium showed significant free radical and superoxide ion scavenging activity and antioxidant potential that were comparable to, or several folds higher than those of standard antioxidants, trolox and ascorbic acid. The effective concentrations of these compounds were far below their cytotoxic levels. Compound 3, which was characterized to be α-dihydroxychalcone-glycoside (α-DHC), was the most potent one. Subsequent studies demonstrated that α-DHC effectively reduced nitric oxide and cytokine production by the LPS stimulated RAW 264.7 mouse macrophage cell line. The compound effectively attenuated the expression of inflammation-mediating enzymes COX-2 and iNOS at the mRNA as well as protein levels in a concentration dependent manner. It prevented phosphorylation of all the three MAPKs (JNK, ERK, p38) and eventually blocked the activation of downstream elements contributing to inflammation. Phosphorylation of IκB-α and subsequent translocation of NF-κB into the nucleus were restricted, while the expression of stress responsive gene HO-1 was up-regulated. α-DHC targeted Keap-1 by modifying its cysteine thiols, dissociating it from Nrf-2 and facilitating nuclear entry of the latter; and this in turn induced HO-1 expression. Thus α-DHC exerts its anti-inflammatory activity in a dual manner: by down regulating MAPKs and restricting nuclear stabilization of NF-κB at one end, and by disrupting Nrf-2-Keap-1 complex on the other. In conclusion, the anti-inflammatory potential together with its high therapeutic index envisages α-DHC as a prospective candidate molecule for the development of therapeutic strategy against inflammatory disorders. Copyright © 2014 Elsevier Inc. All rights reserved.

  11. Lannea coromandelica (Houtt.) Merr. Induces Heme Oxygenase 1 (HO-1) Expression and Reduces Oxidative Stress via the p38/c-Jun N-Terminal Kinase–Nuclear Factor Erythroid 2-Related Factor 2 (p38/JNK–NRF2)-Mediated Antioxidant Pathway

    PubMed Central

    Alam, Md Badrul; Kwon, Kyoo-Ri; Lee, Seok-Hyun; Lee, Sang-Han

    2017-01-01

    The leaves of Lannea coromandelica (Houtt.) Merr. are used in the Garo, Pahan, and Teli tribal communities of Bangladesh as a traditional medicinal plant to treat hepatitis, diabetes, ulcers, heart disease, and dysentery. However, there have been limited phytochemical and biological studies on the bark of L. coromandelica. This study aimed to investigate the antioxidant activities of L. coromandelica bark extract (LCBE) and the underlying mechanism using RAW 264.7 cells. The LCBE was analysed by high-pressure liquid chromatography (HPLC) to detect its key polyphenolic compounds. Various in vitro antioxidant assays were performed using RAW 264.7 cells to assess the antioxidant effects of the LCBE and to understand the underlying molecular mechanism. HPLC revealed the presence of gallic acid, (−)-epigallocatechin-3-gallate, catechin, chlorogenic acid, and caffeic acid in the LCBE. The extract showed a very potent capacity to scavenge numerous free radicals through hydrogen atom transfer and/or electron donation and also quenched cellular reactive oxygen species (ROS) generation without showing any toxicity. The LCBE was found to combat the oxidative stress by enhancing the expression, at both transcriptional and translational levels, of primary antioxidant enzymes as well as phase II detoxifying enzymes, especially heme oxygenase 1, through the upregulation of the nuclear factor erythroid 2-related factor 2 (NRF2)-mediated pathway in RAW 264.7 cells via the phosphorylation of p38 kinase and c-Jun N-terminal kinase (JNK). The LCBE exhibited strong antioxidant activities and mitigated the cellular ROS production. These results provide scientific evidence of its potential as an ideal applicant for a cost-effective, readily available, and natural phytochemical, as well as a strategy for preventing diseases associated with oxidative stress and attenuating disease progress. PMID:28146074

  12. Diabetes blocks the cardioprotective effects of sevoflurane postconditioning by impairing Nrf2/Brg1/HO-1 signaling.

    PubMed

    Gao, Sumin; Yang, Zhengchao; Shi, Ruili; Xu, Dan; Li, Haobo; Xia, Zhengyuan; Wu, Qing-Ping; Yao, Shanglong; Wang, Tingting; Yuan, Shiying

    2016-05-15

    Sevofluane postconditioning (SPostC) protects heart against ischemia/reperfusion injury. However, SPostC cardioprotection is lost in diabetes whose cardiac heme oxygenase-1 (HO-1) is reduced. Brahma-related gene 1 (Brg1) facilitates nuclear factor-erythroid-2-related factor-2 (Nrf2) to activate HO-1 to increase myocardial antioxidant capacity in response to oxidative stress. However, cardiac Brg1 is reduced in diabetes. We hypothesized that SPostC confers cardioprotection by activating HO-1 through Nrf2/Brg1 and that impaired Nrf2/Brg1/HO-1 in diabetes is responsible for the loss of SPostC. Control and streptozotocin-induced diabetic mice were subjected to 45min coronary artery occlusion followed by 2h reperfusion with or without SPostC achieved by exposing the mice to 2% sevoflurane for 15min at the onset of reperfusion. In invitro study, H9c2 cells were exposed to normal or high glucose and subjected to 3h hypoxia followed by 6h reoxygenation. Diabetic mice displayed larger post-ischemic infarct size, severer cardiomyocytes apoptosis, and increased oxidative stress concomitant with reduced HO-1, nuclear Nrf2 and Brg1 protein expression. These changes were prevented/reversed by SPostC in control but not in diabetic mice, and these beneficial effects of SPostC were abolished by HO-1 inhibition. In H9c2 cells exposed to normal glucose but not high glucose, SPostC significantly attenuated hypoxia/reoxygenation-induced cellular injury and oxidative stress with increased HO-1 and nuclear Nrf2. These SPostC beneficial effects were canceled by HO-1 inhibition. In conclusion, SPostC protects against myocardial ischemia/reperfusion injury through activation of Nrf2/Brg1/HO-1 signaling and impairment of this signaling may be responsible for the loss of SPostC cardioprotection in diabetes. Copyright © 2016 Elsevier B.V. All rights reserved.

  13. α-Dihydroxychalcone-glycoside (α-DHC) isolated from the heartwood of Pterocarpus marsupium inhibits LPS induced MAPK activation and up regulates HO-1 expression in murine RAW 264.7 macrophage

    SciTech Connect

    Chakraborty, Prarthana; Saraswat, Ghungroo; Kabir, Syed N.

    2014-05-15

    Three phenolic glycosides isolated from the heartwood of Pterocarpus marsupium showed significant free radical and superoxide ion scavenging activity and antioxidant potential that were comparable to, or several folds higher than those of standard antioxidants, trolox and ascorbic acid. The effective concentrations of these compounds were far below their cytotoxic levels. Compound 3, which was characterized to be α-dihydroxychalcone-glycoside (α-DHC), was the most potent one. Subsequent studies demonstrated that α-DHC effectively reduced nitric oxide and cytokine production by the LPS stimulated RAW 264.7 mouse macrophage cell line. The compound effectively attenuated the expression of inflammation-mediating enzymes COX-2 and iNOS at the mRNA as well as protein levels in a concentration dependent manner. It prevented phosphorylation of all the three MAPKs (JNK, ERK, p38) and eventually blocked the activation of downstream elements contributing to inflammation. Phosphorylation of IκB-α and subsequent translocation of NF-κB into the nucleus were restricted, while the expression of stress responsive gene HO-1 was up-regulated. α-DHC targeted Keap-1 by modifying its cysteine thiols, dissociating it from Nrf-2 and facilitating nuclear entry of the latter; and this in turn induced HO-1 expression. Thus α-DHC exerts its anti-inflammatory activity in a dual manner: by down regulating MAPKs and restricting nuclear stabilization of NF-κB at one end, and by disrupting Nrf-2–Keap-1 complex on the other. In conclusion, the anti-inflammatory potential together with its high therapeutic index envisages α-DHC as a prospective candidate molecule for the development of therapeutic strategy against inflammatory disorders. - Highlights: • α-DHC isolated from Pterocarpus marsupium has significant antioxidant potential. • α-DHC inhibits NO, IL-6, IL-1β, TNF-α production in LPS-stimulated RAW 264.7 cells. • α-DHC down-regulates of COX-2, iNOS expression in LPS

  14. Aprotinin Inhibits Vascular Smooth Muscle Cell Inflammation and Proliferation via Induction of HO-1

    PubMed Central

    Lee, Dong Hyup; Choi, Hyoung Chul; Lee, Kwang Youn

    2009-01-01

    Aprotinin is used clinically in cardiopulmonary bypass surgery to reduce transfusion requirements and the inflammatory response. The mechanism of action for the anti-inflammatory effects of aprotinin is still unclear. We examined our hypothesis whether inhibitory effects of aprotinin on cytokine-induced inducible nitric oxide synthase (iNOS) expression (IL-1β plus TNF-α), reactive oxygen species (ROS) generation, and vascular smooth muscle cell (VSMC) proliferation were due to HO-1 induction in rat VSMCs. Aprotinin induced HO-1 protein expression in a dose-dependent manner, which was potentiated during inflammatory condition. Aprotinin reduced cytokine mixture (CM)-induced iNOS expression in a dose dependent manner. Furthermore, aprotinin reduced CM-induced ROS generation, cell proliferation, and phosphorylation of JNK but not of P38 and ERK1/2 kinases. Aprotinin effects were reversed by pre-treatment with the HO-1 inhibitor, tin protoporphyrin IX (SnPPIX). HO-1 is therefore closely involved in inflammatory-stimulated VSMC proliferation through the regulation of ROS generation and JNK phosphorylation. Our results suggest a new molecular basis for aprotinin anti-inflammatory properties. PMID:19885007

  15. HO-1 inhibits preadipocyte proliferation and differentiation at the onset of obesity via ROS dependent activation of Akt2

    PubMed Central

    Wagner, Gabriel; Lindroos-Christensen, Josefine; Einwallner, Elisa; Husa, Julia; Zapf, Thea-Christin; Lipp, Katharina; Rauscher, Sabine; Gröger, Marion; Spittler, Andreas; Loewe, Robert; Gruber, Florian; Duvigneau, J. Catharina; Mohr, Thomas; Sutterlüty-Fall, Hedwig; Klinglmüller, Florian; Prager, Gerhard; Huppertz, Berthold; Yun, Jeanho; Wagner, Oswald; Esterbauer, Harald; Bilban, Martin

    2017-01-01

    Excessive accumulation of white adipose tissue (WAT) is a hallmark of obesity. The expansion of WAT in obesity involves proliferation and differentiation of adipose precursors, however, the underlying molecular mechanisms remain unclear. Here, we used an unbiased transcriptomics approach to identify the earliest molecular underpinnings occuring in adipose precursors following a brief HFD in mice. Our analysis identifies Heme Oxygenase-1 (HO-1) as strongly and selectively being upregulated in the adipose precursor fraction of WAT, upon high-fat diet (HFD) feeding. Specific deletion of HO-1 in adipose precursors of Hmox1fl/flPdgfraCre mice enhanced HFD-dependent visceral adipose precursor proliferation and differentiation. Mechanistically, HO-1 reduces HFD-induced AKT2 phosphorylation via ROS thresholding in mitochondria to reduce visceral adipose precursor proliferation. HO-1 influences adipogenesis in a cell-autonomous way by regulating events early in adipogenesis, during the process of mitotic clonal expansion, upstream of Cebpα and PPARγ. Similar effects on human preadipocyte proliferation and differentiation in vitro were observed upon modulation of HO-1 expression. This collectively renders HO-1 as an essential factor linking extrinsic factors (HFD) with inhibition of specific downstream molecular mediators (ROS & AKT2), resulting in diminished adipogenesis that may contribute to hyperplastic adipose tissue expansion. PMID:28102348

  16. Spinal Heme Oxygenase-1 (HO-1) Exerts Antinociceptive Effects Against Neuropathic Pain in a Mouse Model of L5 Spinal Nerve Ligation.

    PubMed

    Liu, Xiaoming; Zhang, Zhijun; Cheng, Zhuqiang; Zhang, Jie; Xu, Shuangshuang; Liu, Hongjun; Jia, Hongbin; Jin, Yi

    2016-02-01

    Heme oxygenase-1 (HO-1) exerts protective effects against ischemia and inflammation in the central nervous system. However, its role in neuropathic pain is still unclear. This study was undertaken to explore the distribution and possible mechanism of HO-1 in a mouse model of peripheral nerve injury. The experiment was conducted using a mouse model of L5 spinal nerve ligation (SNL). Mice received repeated intraperitoneal injection of Carbon monoxide-releasing molecule-2 (CO-RM-2), HO-1 inducer cobalt protoporphyrin IX (CoPP) or single intraspinal injection of lentivirus (LV) over-expressing HO-1. The behavior analyses were conducted. The distribution and expression of HO-1 in the spinal cord were analyzed. HO-1 but not HO-2 was upregulated in spinal cord microglia cells after nerve injury, and the repeated intraperitoneal administration of CORM-2 (10 mg/kg/d) or CoPP (5 mg/kg/d) both significantly reduced the mechanical allodynia and thermal hyperalgesia induced by SNL (P < 0.01). Intraspinal injection of LV-HO-1 persistently suppresses SNL-induced neuropathic pain (P < 0.01 or P < 0.05), significantly induced the spinal HO-1 protein content (P < 0.01) and inhibited the microglia activation (P < 0.01) 7 days after SNL. HO-1 upregulation could elicit potent analgesic effects against neuropathic pain, which might partly be attributed to inhibition of spinal microglia activation. HO-1 signaling pathway may present a novel strategy for the treatment of neuropathic pain.

  17. Acute toxicity of a commercial glyphosate formulation on European sea bass juveniles (Dicentrarchus labrax L.): gene expressions of heme oxygenase-1 (ho-1), acetylcholinesterase (AChE) and aromatases (cyp19a and cyp19b).

    PubMed

    Prevot-D'Alvise, N; Richard, S; Coupé, S; Bunet, R; Grillasca, J P

    2013-12-31

    Acute toxicity of Roundup, a commercial glyphosate--based herbicide, was evaluated in a teleost marine fish, the European sea bass, after 96 h of exposure. The LC50 96-h value of Roundup was 529 mg/L. Juveniles (Dicentrarchus labrax L.) were exposed to a sublethal concentration (35% of the LC50, i.e. 193 mg/L) of Roundup for 96-h. The study of heme oxygenase-1 (ho-1) gene expression was performed in four tissues (liver, gills, brain and gonads) and highlighted the disruption of antioxidant defence system. Results showed that ho-1 mRNA levels in liver and gills significantly decreased (p<0.001 and p<0.01 respectively) in fish exposed to 193 mg/L of Roundup, whereas in brain and gonads, ho-1 mRNA level was not altered. The analysis of acetylcholinesterase expression was used to evaluate the overall neurotoxicity of the herbicide and aromatase genes to assess the alteration of the endocrine system. Results showed that AChE and cyp19b gene transcriptions significantly increased (p<0.01) in brain of sea bass, whereas aromatase gene expression (cyp19a) in gonads was not significantly altered. Our results showed complex tissue-specific transcriptional responses after 96 h of exposure to a sublethal concentration. All these disruptions confirmed the deleterious effects of this glyphosate-based herbicide in a marine species.

  18. The effect of moderate-intensity exercise on the expression of HO-1 mRNA and activity of HO in cardiac and vascular smooth muscle of spontaneously hypertensive rats.

    PubMed

    Ren, Cailing; Qi, Jie; Li, Wanwei; Zhang, Jun

    2016-04-01

    The objective of this study was to observe the effects of moderate-intensity training on the activity of heme oxygenase (HO) and expression of HO-1 mRNA in the aorta and the cardiac muscle of spontaneously hypertensive rats (SHRs). After 9 weeks of swimming exercise, the activity of HO and expression of HO-1 mRNA in the SHRs were measured. The resting blood pressure in the exercise group was increased by 1.7% (P > 0.05), whereas it was significantly elevated by 10.3% (P < 0.01) in the SHR rats. Compared with animals in the control and sedentary groups, the expression level of HO-1 mRNA of aorta and cardiac muscle in the exercise group was significantly enhanced (P < 0.01). The HO activity and the content of plasma carbon monoxide (CO) in the sedentary group were dramatically decreased (P < 0.05 and P < 0.01, respectively) compared with the control group. HO activity and content of plasma CO in the exercise group were significantly higher compared with those in the sedentary group (P < 0.05 and P < 0.01, respectively). The HO/CO metabolic pathway might be involved in the regulation of blood pressure of the SHR models.

  19. Tomato powder impedes the development of azoxymethane-induced colorectal cancer in rats through suppression of COX-2 expression via NF-κB and regulating Nrf2/HO-1 pathway.

    PubMed

    Tuzcu, Mehmet; Aslan, Abdullah; Tuzcu, Zeynep; Yabas, Mehmet; Bahcecioglu, Ibrahim Halil; Ozercan, Ibrahim Hanifi; Kucuk, Omer; Sahin, Kazim

    2012-09-01

    Cancer is one of the leading causes of death worldwide. Since dietary factors have been connected to a reduced risk of a diversity of human cancers, in this study we investigated the effects of tomato powder (TP) on the development of azoxymethane (AOM)-induced colorectal cancer in Wistar rats, and possible mechanism(s) by which TP shows its chemopreventive activity. Here we show that TP added to feed at 5% rate decreases the rate of aberrant crypt foci (ACF) and reduces the development of adenocarcinoma and growth of AOM-induced colorectal cancer in rats. In addition, we demonstrate that TP supplementation shows its chemopreventive activities through inhibition of cyclooxygenase-2 (COX-2) expression via NF-κB pathway and promotion of apoptosis, as well as regulating Nrf2/HO-1 signaling pathway in colorectal tissue of AOM-treated rats. Our findings identify an intimate connection between dietary supplementation of TP and the decreased risk of colorectal cancer in rats, and suggest that consumption of TP would be a natural candidate for the prevention of colorectal cancer in men.

  20. Effect of CXCR3/HO-1 genes modified bone marrow mesenchymal stem cells on small bowel transplant rejection.

    PubMed

    Yin, Ming-Li; Song, Hong-Li; Yang, Yang; Zheng, Wei-Ping; Liu, Tao; Shen, Zhong-Yang

    2017-06-14

    To investigate whether bone marrow mesenchymal stem cells (BMMSCs) modified with the HO-1 and CXCR3 genes can augment the inhibitory effect of BMMSCs on small bowel transplant rejection. Lewis rat BMMSCs were cultured in vitro. Third-passage BMMSCs were transduced with the CXCR3/HO-1 genes or the HO-1 gene alone. The rats were divided into six groups and rats in the experimental group were pretreated with BMMSCs 7 d prior to small bowel transplant. Six time points (instant, 1 d, 3 d, 7 d, 10 d, and 14 d) (n = 6) were chosen for each group. Hematoxylin-eosin staining was used to observe pathologic rejection, while immunohistochemistry and Western blot were used to detect protein expression. Flow cytometry was used to detect T lymphocytes and enzyme linked immunosorbent assay was used to detect cytokines. The median survival time of BMMSCs from the CXCR3/HO-1 modified group (53 d) was significantly longer than that of the HO-1 modified BMMSCs group (39 d), the BMMSCs group (26 d), and the NS group (control group) (16 d) (P < 0.05). Compared with BMMSCs from the HO-1 modified BMMSCs, BMMSCs, and NS groups, rejection of the small bowel in the CXCR3/HO-1 modified group was significantly reduced, while the weight of transplant recipients was also significantly decreased (P < 0.05). Furthermore, IL-2, IL-6, IL-17, IFN-γ, and TNF-α levels were significantly decreased and the levels of IL-10 and TGF-β were significantly increased (P < 0.05). BMMSCs modified with the CXCR3 and HO-1 genes can abrogate the rejection of transplanted small bowel more effectively and significantly increase the survival time of rats that receive a small bowel transplant.

  1. RhGLP-1 (7-36) protects diabetic rats against cerebral ischemia-reperfusion injury via up-regulating expression of Nrf2/HO-1 and increasing the activities of SOD.

    PubMed

    Fang, Yi; Liu, Xiaofang; Zhao, Libo; Wei, Zhongna; Jiang, Daoli; Shao, Hua; Zang, Yannan; Xu, Jia; Wang, Qian; Liu, Yang; Peng, Ye; Yin, Xiaoxing

    2017-09-01

    The present study aimed to explore the neuroprotective effect and possible mechanisms of rhGLP-1 (7-36) against transient ischemia/reperfusion injuries induced by middle cerebral artery occlusion (MCAO) in type 2 diabetic rats. First, diabetic rats were established by a combination of a high-fat diet and low-dose streptozotocin (STZ) (30 mg/kg, intraperitoneally). Second, they were subjected to MCAO for 2 h, then treated with rhGLP-1 (7-36) (10, 20, 40 µg/kg i.p.) at the same time of reperfusion. In the following 3 days, they were injected with rhGLP-1 (7-36) at the same dose and route for three times each day. After 72 h, hypoglycemic effects were assessed by blood glucose changes, and neuroprotective effects were evaluated by neurological deficits, infarct volume and histomorphology. Mechanisms were investigated by detecting the distribution and expression of the nuclear factor erythroid-derived factor 2 related factor 2 (Nrf2) in ischemic brain tissue, the levels of phospho-PI3 kinase (PI3K)/PI3K ratio and heme-oxygenase-1 (HO-l), as well as the activities of superoxide dismutase (SOD) and the contents of malondialdehyde (MDA). Our results showed that rhGLP-1 (7-36) significantly reduced blood glucose and infarction volume, alleviated neurological deficits, enhanced the density of surviving neurons and vascular proliferation. The nuclear positive cells ratio and expression of Nrf2, the levels of P-PI3K/PI3K ratio and HO-l increased, the activities of SOD increased and the contents of MDA decreased. The current results indicated the protective effect of rhGLP-1 (7-36) in diabetic rats following MCAO/R that may be concerned with reducing blood glucose, up-regulating expression of Nrf2/HO-1 and increasing the activities of SOD.

  2. Antioxidant and cytoprotective effects of morin against hydrogen peroxide-induced oxidative stress are associated with the induction of Nrf-2‑mediated HO-1 expression in V79-4 Chinese hamster lung fibroblasts.

    PubMed

    Lee, Moon Hee; Cha, Hee-Jae; Choi, Eun Ok; Han, Min Ho; Kim, Sung Ok; Kim, Gi-Young; Hong, Su Hyun; Park, Cheol; Moon, Sung-Kwon; Jeong, Soon-Jeong; Jeong, Moon-Jin; Kim, Wun-Jae; Choi, Yung Hyun

    2017-03-01

    Natural phytochemicals of plant origin, including flavonoids, have been found to be potent antioxidants providing beneficial effects against oxidative stress-related diseases. The present study was carried out to investigate the antioxidant properties of morin, a flavonoid originally isolated from the flowering plants of the Moraceae family. Superoxide dismutase (SOD)‑like activity and 2,2'‑azino‑bis‑(3‑ethylbenzothiazoline‑6‑sulfonic acid) (ABTS•+) radical scavenging activity were determined. We also investigated the cytoprotective effects of morin against hydrogen peroxide (H2O2)‑induced DNA damage and apoptosis in V79‑4 Chinese hamster lung fibroblasts. Our results demonstrated that morin had strong scavenging effects against ABTS•+ radicals with enhanced SOD activity, which varied in a dose-dependent manner. Morin was found to reduce H2O2‑induced intracellular reactive oxygen species generation and nuclear DNA damage, and it recovered cell viability damaged by H2O2 via inhibition of mitochondrial dysfunction‑mediated apoptosis. Notably, the treatment of V79‑4 cells with morin markedly enhanced the expression of heme oxygenase‑1 (HO‑1) but not quinone oxidoreductase-1, which was associated with the increased expression and phosphorylation of nuclear factor-erythroid 2-related factor 2 (Nrf2) and the downregulation of Kelch‑like ECH‑associated protein 1 expression. Based on our findings, we conclude that morin effectively ameliorated oxidative stress‑induced DNA damage through intrinsic free radical scavenging activity and activation of the Nrf2/HO-1 pathway.

  3. Overexpression of HO-1 assisted PM2.5-induced apoptosis failure and autophagy-related cell necrosis.

    PubMed

    Zhou, Wei; Yuan, Xiaoyan; Zhang, Li; Su, Baoting; Tian, Dongdong; Li, Yang; Zhao, Jun; Wang, Yimei; Peng, Shuangqing

    2017-11-01

    Severe smog/haze events accompanied by extremely high concentrations of airborne fine particulate matter (PM2.5) have emerged frequently in China and the potential health risks have attracted ever-growing attention. During these episodes, a surge in hospital visits for acute respiratory symptoms and respiratory diseases exacerbation has been reported to be associated with acute exposure to high-levels of particulate matters. To investigate cell fate determination and the underlying pathogenic mechanisms during severe haze episodes or smog events, we exposed human lung epithelial cells (BEAS-2B) to PM2.5 (0-400μg/mL) for 24h and found that high doses of PM2.5 caused cell necrosis and autophagy dysfunction, while co-treatment with the autophagy inhibitor 3-MA could partially reduce PM2.5-induced cell necrosis. Exposure to PM2.5 also increased the expression and mitochondrial transposition of heme oxygenase 1 (HO-1), which consequently reduced the release of cytochrome C from mitochondria to cytosol. Knockdown of HO-1 by siRNA attenuated the mitochondrial accumulation of HO-1, reversed HO-1-induced the reduction of cytochrome C release and promoted PM2.5-induced cell apoptosis. In contrast to necrosis, PM2.5-induced autophagy was independent of HO-1. In conclusion, our results demonstrate that acute exposure to high PM2.5 concentrations causes autophagy-related cell necrosis. The decrease in cytochrome C release and apoptosis by upregulation of HO-1 maybe assist PM2.5-induced autophagy-related cell necrosis. Further, this study reveals dual roles for HO-1 in PM2.5-induced cytotoxicity and presents a possible explanation for the onset of acute respiratory symptoms under extreme particulate air pollution. Copyright © 2017. Published by Elsevier Inc.

  4. Morin exerts cytoprotective effects against oxidative stress in C2C12 myoblasts via the upregulation of Nrf2-dependent HO-1 expression and the activation of the ERK pathway.

    PubMed

    Lee, Moon Hee; Han, Min Ho; Lee, Dae-Sung; Park, Cheol; Hong, Su-Hyun; Kim, Gi-Young; Hong, Sang Hoon; Song, Kyoung Seob; Choi, Il-Whan; Cha, Hee-Jae; Choi, Yung Hyun

    2017-02-01

    In the present study, we investigated the cytoprotective efficacy of morin, a natural flavonoid, against oxidative stress and elucidated the underlying mechanisms in C2C12 myoblasts. Our results indicated that morin treatment prior to hydrogen peroxide (H2O2) exposure significantly increased cell viability and prevented the generation of reactive oxygen species. H2O2-induced comet-like DNA formation and γH2AX phosphorylation were also markedly suppressed by morin with a parallel inhibition of apoptosis in C2C12 myoblasts, suggesting that morin prevented H2O2-induced cellular DNA damage. Furthermore, morin markedly enhanced the expression of heme oxygenase-1 (HO-1) associated with the induction and phosphorylation of nuclear factor-erythroid 2-related factor 2 (Nrf2) and the inhibition of Kelch-like ECH-associated protein 1 (Keap1) expression. Notably, these events were eliminated by transient transfection with Nrf2‑specific small interfering RNA. Additional experiments demonstrated that the activation of the Nrf2/HO-1 pathway by morin was mediated by the extracellular signal‑regulated kinase (ERK) signaling cascade. This phenomenon was confirmed with suppressed Nrf2 phosphorylation and consequently diminished HO-1 expression in cells treated with a pharmacological inhibitor of ERK. Collectively, these results demonstrated that morin augments the cellular antioxidant defense capacity through the activation of Nrf2/HO‑1 signaling, which involves the activation of the ERK pathway, thereby protecting C2C12 myoblasts from H2O2-induced oxidative cytotoxicity.

  5. Resveratrol pretreatment attenuates injury and promotes proliferation of neural stem cells following oxygen-glucose deprivation/reoxygenation by upregulating the expression of Nrf2, HO-1 and NQO1 in vitro

    PubMed Central

    Shen, Changbo; Cheng, Wei; Yu, Pingping; Wang, Li; Zhou, Lulin; Zeng, Li; Yang, Qin

    2016-01-01

    There is considerable interest in the use of drugs and other methods for protecting implanted neural stem cells (NSCs) from the adverse environment of injured tissue for successful cell therapy. Resveratrol can modify cardiac stem cells to enhance their survival and differentiation, however, its effect and the mechanism underlying its neuroprotective effect on NSCs following stroke remain to be fully elucidated. Nuclear factor erythroid 2-related factor 2 (Nrf-2) signaling is important in antioxidative stress, and the role of Nrf-2 signaling in the enhanced neuroprotection of NSCs by resveratrol following stroke also remains to be elucidated. In the present study, NSCs were pretreated with resveratrol prior to oxygen-glucose deprivation/reoxygenation (OGD/R) in vitro. The survival, apoptosis and proliferation of the NSCs were assessed using an MTT assay, Hoechst 33258 staining of nuclei and flow cytometry, respectively. In addition, the activity of superoxide dismutase (SOD), level of malondiadehyde (MDA) and content of glutathione (GSH) were determined. The protein expressions levels of Nrf-2, NAD(P)H:quinone oxidoreductase 1 (NQO-1), and heme oxygenase 1 (HO-1) were detected using western blot analysis. It was found that resveratrol markedly enhanced NSC survival and proliferation, decreased apoptosis and the levels of MDA, and increased the activity of SOD and content of GSH in a concentration-dependent manner following OGD/R injury in vitro. In addition, the protein expression levels of Nrf2, HO-1 and NQO1 were significantly upregulated. These findings suggested that resveratrol attenuated injury and promoted proliferation of the NSCs, at least in part, by upregulating the expression of Nrf2, HO-1 and NQO1 following OGD/R injury in vitro. PMID:27573874

  6. Hydroxysafflor yellow A promotes neovascularization and cardiac function recovery through HO-1/VEGF-A/SDF-1α cascade.

    PubMed

    Wei, Guo; Yin, Ying; Duan, Jialin; Guo, Chao; Zhu, Yanrong; Wang, Yanhua; Xi, Miaomiao; Wen, Aidong

    2017-04-01

    The present study was to investigate the proangiogenic and cardioprotective effects of hydroxysafflor yellow A (HSYA) against myocardial infarction (MI) injury and the underlying mechanisms. MI model was induced by ligation of the left coronary artery in normal and heme oxygenase-1 (HO-1) knockout mice and the ones receiving vascular endothelial growth factor-A (VEGF-A) or stromal cell-derived factor-1α (SDF-1α) antagonists. They were treated with three doses or single dose of HSYA for 28days. The cardiac function, endothelial progenitor cells (EPCs) mobilization, angiogenesis, the expression of HO-1, VEGF-A, SDF-1α and apoptosis or fibrosis related proteins in the peri-infarct area were evaluated at respective times. We further examined the effect of HSYA on EPCs CXC chemokiner receptor 4 (CXCR4) expression and the role of SDF-1α on EPCs function in vitro. HSYA could dose dependently reduce left ventricular function impairment, myocardial apoptosis and fibrosis, and promote EPCs mobilization and myocardial neovascularization. Further, HO-1 knockout abolished HSYA-induced up-regulation of HO-1, VEGF-A and SDF-1α. VEGF antagonist significantly reduced HSYA-increased VEGF-A and SDF-1α levels and SDF-1 antagonist abolished HSYA-simulated up-regulation of SDF-1α. Meanwhile, HO-1 knockout, administration of VEGF and SDF-1 antibodies abrogated HSYA-promoted expression of the marker proteins of newborn microvessels and cardiac functional recovery. In vitro, HSYA dose dependently promoted (CXCR4) expression on EPCs. SDF-1α significantly accelerated EPCs function which was reversed by CXCR4 antagonist. HSYA could promote EPCs function through the HO-1/VEGF-A/SDF-1α signaling cascade, which contributed largely to myocardial neovascularization and further improved cardiac function in MI mice. Copyright © 2017 Elsevier Masson SAS. All rights reserved.

  7. 5-aminolevulinic acid combined with sodium ferrous citrate ameliorates H2O2-induced cardiomyocyte hypertrophy via activation of the MAPK/Nrf2/HO-1 pathway.

    PubMed

    Zhao, Mingyi; Guo, Huiming; Chen, Jimei; Fujino, M; Ito, H; Takahashi, K; Abe, F; Nakajima, M; Tanaka, T; Wang, Jinju; Huang, Huanlei; Zheng, Shaoyi; Hei, Mingyan; Li, Jiaxin; Huang, Shuai; Li, Jiani; Ma, Xiaotang; Chen, Yanfang; Zhao, Lingling; Zhuang, Jian; Zhu, Ping; Li, X K

    2015-04-15

    Hydrogen peroxide (H2O2) causes cell damage via oxidative stress. Heme oxygenase-1 (HO-1) is an antioxidant enzyme that can protect cardiomyocytes against oxidative stress. In this study, we investigated whether the heme precursor 5-aminolevulinic acid (5-ALA) with sodium ferrous citrate (SFC) could protect cardiomyocytes from H2O2-induced hypertrophy via modulation of HO-1 expression. HL-1 cells pretreated with/without 5-ALA and SFC were exposed to H2O2 to induce a cardiomyocyte hypertrophy model. Hypertrophy was evaluated by planar morphometry, (3)H-leucine incorporation, and RT-PCR analysis of hypertrophy-related gene expressions. Reactive oxygen species (ROS) production was assessed by 5/6-chloromethyl-2',7'-ichlorodihydrofluorescein diacetate acetylester. HO-1 and nuclear factor erythroid 2-related factor 2 (Nrf2) protein expressions were analyzed by Western blot. In our experiments, HL-1 cells were transfected with Nrf2 siRNA or treated with a signal pathway inhibitor. We found several results. 1) ROS production, cell surface area, protein synthesis, and expressions of hypertrophic marker genes, including atrial natriuretic peptide, brain natriuretic peptide, atrial natriuretic factor, and β-myosin heavy chain, were decreased in HL-1 cells pretreated with 5-ALA and SFC. 2) 5-ALA and SFC increased HO-1 expression in a dose- and time-dependent manner, associated with upregulation of Nrf2. Notably, Nrf2 siRNA dramatically reduced HO-1 expression in HL-1 cells. 3) ERK1/2, p38, and SAPK/JNK signaling pathways were activated and modulate 5-ALA- and SFC-enhanced HO-1 expression. SB203580 (p38 kinase), PD98059 (ERK), or SP600125 (JNK) inhibitors significantly reduced this effect. In conclusion, our data suggest that 5-ALA and SFC protect HL-1 cells from H2O2-induced cardiac hypertrophy via activation of the MAPK/Nrf2/HO-1 signaling pathway.

  8. Activated AMPK boosts the Nrf2/HO-1 signaling axis—A role for the unfolded protein response

    PubMed Central

    Zimmermann, Kristin; Baldinger, Johannes; Mayerhofer, Barbara; Atanasov, Atanas G.; Dirsch, Verena M.; Heiss, Elke H.

    2015-01-01

    In light of the emerging interplay between redox and metabolic signaling pathways we investigated the potential cross talk between nuclear factor E2-related factor 2 (Nrf2) and AMP-activated kinase (AMPK), central regulators of the cellular redox and energy balance, respectively. Making use of xanthohumol (XN) as an activator of both the AMPK and the Nrf2 signaling pathway we show that AMPK exerts a positive influence on Nrf2/heme oxygenase (HO)-1 signaling in mouse embryonic fibroblasts. Genetic ablation and pharmacological inhibition of AMPK blunts Nrf2-dependent HO-1 expression by XN already at the mRNA level. XN leads to AMPK activation via interference with mitochondrial function and activation of liver kinase B1 as upstream AMPK kinase. The subsequent AMPK-mediated enhancement of the Nrf2/HO-1 response does not depend on inhibition of the mammalian target of rapamycin, inhibition of glycogen synthase kinase 3β, or altered abundance of Nrf2 (total and nuclear). However, reduced endoplasmic reticulum stress was identified and elaborated as a step in the AMPK-augmented Nrf2/HO-1 response. Overall, we shed more light on the hitherto incompletely understood cross talk between the LKB1/AMPK and the Nrf2/HO-1 axis revealing for the first time involvement of the unfolded protein response as an additional player and suggesting tight cooperation between signaling pathways controlling cellular redox, energy, or protein homeostasis. PMID:25843659

  9. (S)-1-α-naphthylmethyl-6,7-dihydroxy-1,2,3,4-tetrahydroisoquinoline (CKD712), promotes wound closure by producing VEGF through HO-1 induction in human dermal fibroblasts and mouse skin.

    PubMed

    Jang, Hwa Jin; Tsoyi, Konstantin; Kim, Young Min; Park, Eun Jung; Park, Sang Won; Kim, Hye Jung; Lee, Jae Heun; Chang, Ki Churl

    2013-03-01

    Given the importance of VEGF and haem oxygenase (HO)-1 in wound healing, the present study tested the hypothesis that CKD712, a synthetic tetrahydroisoquinoline alkaloid, activated VEGF production through the induction of HO-1 in human dermal fibroblasts (HDFs) and in mouse skin to stimulate wound healing. Using HDFs, the effects of CKD712 on the production of VEGF and migration were evaluated. The mechanisms responsible were investigated using various signal inhibitors and small interfering RNA techniques. The ability of CKD712 to promote wound healing was also investigated in full-thickness skin-wounded mice. CKD712 treatment of HDFs increased VEGF production and accelerated migration, which was antagonized by anti-VEGF antibodies. Both an AMPK inhibitor (compound C) and a HO-1 activity inhibitor (SnPPIX) but not inhibitors of MAPKs, PI3K and PKC reduced the production of VEGF by CKD712. Interestingly, SnPPIX inhibited HO-1 expression but not p-AMPK, whereas compound C inhibited both p-AMPK and HO-1 induction by CKD712. Moreover, CKD712 decreased HO-1 expression without affecting the expression of p-AMPK by siHO-1 transfection, but it failed to induce HO-1 in siAMPKα1-transfected cells, suggesting that AMPK is involved in HO-1 induction by CKD712 in HDFs. Also, CKD712 shortened the time of wound closure in an SnPPIX-sensitive manner in a full-thickness skin-wounded mouse model. CKD712 accelerated cutaneous wound healing, at least in part, by the production of VEGF through HO-1 induction in HDFs and mouse skin. © 2012 The Authors. British Journal of Pharmacology © 2012 The British Pharmacological Society.

  10. MP4CO, a pegylated hemoglobin saturated with carbon monoxide, is a modulator of HO-1, inflammation, and vaso-occlusion in transgenic sickle mice.

    PubMed

    Belcher, John D; Young, Mark; Chen, Chunsheng; Nguyen, Julia; Burhop, Kenneth; Tran, Phuc; Vercellotti, Gregory M

    2013-10-10

    Transgenic sickle mice expressing β(S) hemoglobin have activated vascular endothelium in multiple organs that exhibits enhanced expression of NF-ĸB and adhesion molecules and promotes microvascular stasis in sickle, but not normal, mice in response to hypoxia/reoxygenation (H/R), or heme. Induction of heme oxygenase-1 (HO-1) or administration of its products, carbon monoxide (CO) or biliverdin, inhibits microvascular stasis in sickle mice. Infusion of human hemoglobin conjugated with polyethylene glycol and saturated with CO (MP4CO) markedly induced hepatic HO-1 activity and inhibited NF-ĸB activation and H/R-induced microvascular stasis in sickle mice. These effects were mediated by CO; saline or MP4 saturated with O2 (MP4OX) had little to no effect on H/R-induced stasis, though unmodified oxyhemoglobin exacerbated stasis. The HO-1 inhibitor, tin protoporphyrin, blocked MP4CO protection, consistent with HO-1 involvement in the protection afforded by MP4CO. MP4CO also induced nuclear factor-erythroid 2 p45-related factor 2 (Nrf2), an important transcriptional regulator of HO-1 and other antioxidant genes. In a heterozygous (hemoglobin-AS) sickle mouse model, intravenous hemin induced cardiovascular collapse and mortality within 120 minutes, which was significantly reduced by MP4CO, but not MP4OX. These data demonstrate that MP4CO induces cytoprotective Nrf2 and HO-1 and decreases NF-ĸB activation, microvascular stasis, and mortality in transgenic sickle mouse models.

  11. Heme oxygenase-1 (HO-1) protects human lens epithelial cells (SRA01/04) against hydrogen peroxide (H2O2)-induced oxidative stress and apoptosis.

    PubMed

    Ma, Tianju; Chen, Tingjun; Li, Peng; Ye, Zi; Zhai, Wei; Jia, Liang; Chen, Wenqian; Sun, Ang; Huang, Yang; Wei, Shihui; Li, Zhaohui

    2016-05-01

    This study aimed to investigate the protective role of heme oxygenase-1 (HO-1) in H2O2-induced oxidative stress and apoptosis in human lens epithelial cells (hLEC; SRA01/04). SRA01/04 cells were exposed to a hydrogen peroxide (H2O2) concentration gradient and inducers of HO-1 such as cobalt protoporphyrin (CoPP) and zinc protoporphyrin (ZnPP), respectively. In addition, an RNA silencing experiment was conducted to investigate the HO-1 function in this study. A Cell Counting Kit-8 (CCK-8) assay was used to measure cell viability. Western blot and ELISA were used to detect the level of HO-1 expression. In our study, hLECs were exposed to 400 μM hydrogen peroxide (H2O2) for 24 h with or without pretreatment with 10μΜ CoPP or 10μΜ ZnPP, respectively. Double immunofluorescence staining was used for cell identification and the qualitative expression of HO-1. Expression of HO-1 was monitored using Western blot and ELISA. Intracellular reactive oxygen species (ROS) were detected by flow cytometry analyses; commercial enzymatic kits were used to measure the levels of glutathione (GSH), as well as superoxide dismutase (SOD). The proportion of cell apoptosis was quantified by annexin V-fluorescein isothiocyanate (FITC)/propidium iodide (PI) staining. The expression of caspase family (-8, -3) proteins was measured by Western blot analysis. HO-1 significantly restored the cell viability under H2O2 injury via reducing the generation of ROS and increasing the levels of SOD and GSH activity. Moreover, HO-1 also inhibited H2O2-induced caspase-8 and caspase-3 proteins, thus significantly reducing the apoptosis of SRA01/04. An RNA silencing experiment demonstrated the increased resistance of LECs to oxidative stress specifically for increased levels of HO-1. These findings suggested that HO-1 protects human lens epithelial cells from H2O2-induced oxidant stress by upregulating antioxidant enzyme activity, reducing ROS generation, and thus inhibiting caspase family

  12. Luteolin protects mice from severe acute pancreatitis by exerting HO-1-mediated anti-inflammatory and antioxidant effects.

    PubMed

    Xiong, Jie; Wang, Kezhou; Yuan, Chunxiao; Xing, Rong; Ni, Jianbo; Hu, Guoyong; Chen, Fengling; Wang, Xingpeng

    2017-01-01

    Reseda odorata L. has long been used in traditional Asian medicine for the treatment of diseases associated with oxidative injury and acute inflammation, such as endotoxemia, acute lung injury, acute myocardial infarction and hepatitis. Luteolin, the main component of Reseda odorata L., which is also widely found in many natural herbs and vege-tables, has been shown to induce heme oxygenase-1 (HO-1) expression to exert anti-inflammatory and antioxidant effects. In this study, we aimed to examine the effects of luteolin on mice with severe acute pancreatitis (SAP), and to explore the underlying mechanisms. Cerulein and lipopolysaccharide were used to induce SAP in male Institute of Cancer Research (ICR) mice in the SAP group. The SAP group was divided into 4 subgroups, as follows: the vehicle, luteolin, zinc protoporphyrin (ZnPP) only, and luteolin (Lut) + ZnPP (luteolin plus zinc protoporphyrin treatment) groups. The wet/dry weight ratios, hematoxylin and eosin staining and pathological scores of pancreatic tissues were assessed and compared to those of the control mice. Amylase, lipase, nuclear factor-κB (NF-κB) and myeloperoxidase activities, and malondialdehyde, tumor necrosis factor α (TNFα), interleukin (IL)-6, IL-10 and HO-1 levels, as well as the expression of HO-1 were determined in serum and/or pancreatic tissue samples. SAP was successfully induced in male mice compared to normal control mice. The wet/dry weight ratios, pathological scores, and amylase and lipase activity, as well as the levels of TNFα and IL-6 were significantly reduced in the pancreatic tissues of the mice in the Lut group compared with those of the mice in the vehicle group. The Lut group exhibited a significant increase in HO-1 expression in the pancreas and enhanced serum HO-1 and IL-10 levels compared with the vehicle group. The suppression of HO-1 activity in the ZnPP group significantly abolished the protective effects of luteolin. NF-κB expression in

  13. Luteolin protects mice from severe acute pancreatitis by exerting HO-1-mediated anti-inflammatory and antioxidant effects

    PubMed Central

    Xiong, Jie; Wang, Kezhou; Yuan, Chunxiao; Xing, Rong; Ni, Jianbo; Hu, Guoyong; Chen, Fengling; Wang, Xingpeng

    2017-01-01

    Reseda odorata L. has long been used in traditional Asian medicine for the treatment of diseases associated with oxidative injury and acute inflammation, such as endotoxemia, acute lung injury, acute myocardial infarction and hepatitis. Luteolin, the main component of Reseda odorata L., which is also widely found in many natural herbs and vege tables, has been shown to induce heme oxygenase-1 (HO-1) expression to exert anti-inflammatory and antioxidant effects. In this study, we aimed to examine the effects of luteolin on mice with severe acute pancreatitis (SAP), and to explore the underlying mechanisms. Cerulein and lipopolysaccharide were used to induce SAP in male Institute of Cancer Research (ICR) mice in the SAP group. The SAP group was divided into 4 subgroups, as follows: the vehicle, luteolin, zinc protoporphyrin (ZnPP) only, and luteolin (Lut) + ZnPP (luteolin plus zinc protoporphyrin treatment) groups. The wet/dry weight ratios, hematoxylin and eosin staining and pathological scores of pancreatic tissues were assessed and compared to those of the control mice. Amylase, lipase, nuclear factor-κB (NF-κB) and myeloperoxidase activities, and malondialdehyde, tumor necrosis factor α (TNFα), interleukin (IL)-6, IL-10 and HO-1 levels, as well as the expression of HO-1 were determined in serum and/or pancreatic tissue samples. SAP was successfully induced in male mice compared to normal control mice. The wet/dry weight ratios, pathological scores, and amylase and lipase activity, as well as the levels of TNFα and IL-6 were significantly reduced in the pancreatic tissues of the mice in the Lut group compared with those of the mice in the vehicle group. The Lut group exhibited a significant increase in HO-1 expression in the pancreas and enhanced serum HO-1 and IL-10 levels compared with the vehicle group. The suppression of HO-1 activity in the ZnPP group significantly abolished the protective effects of luteolin. NF-κB expression in the pancreatic tissues

  14. Mechanism of phytoestrogen puerarin-mediated cytoprotection following oxidative injury: Estrogen receptor-dependent up-regulation of PI3K/Akt and HO-1

    SciTech Connect

    Hwang, Yong Pil; Jeong, Hye Gwang

    2008-12-15

    Phytoestrogens are polyphenolic non-steroidal plant compounds with estrogen-like biological activity. The phytoestrogen puerarin, the main isoflavone glycoside found in the root of Pueraria lobata, has been used for various medicinal purposes in traditional Chinese medicines for thousands of years. Recent studies have indicated that the estrogen receptor (ER), through interaction with p85, regulates phosphoinositide 3-kinase (PI3K) activity, revealing a physiologic, non-nuclear function of ER that may be relevant in cytoprotection. In this study, we demonstrate that the phytoestrogen puerarin inhibits tert-butyl hydroperoxide (t-BHP)-induced oxidative injury via an ER-dependent G{beta}1/PI3K/Akt and heme oxygenase-1 (HO-1) pathway. Pretreatment of Hepa1c1c7 and HepG2 cells with puerarin significantly reduced t-BHP-induced caspase-3 activation and subsequent cell death. Also, puerarin up-regulated HO-1 expression and this expression conferred cytoprotection against oxidative injury induced by t-BHP. Moreover, puerarin induced Nrf2 nuclear translocation, which is upstream of puerarin-induced HO-1 expression, and PI3K activation, a pathway that is involved in induced Nrf2 nuclear translocation, HO-1 expression and cytoprotection. Puerarin-induced up-regulation of HO-1 and cytoprotection against t-BHP were abolished by silencing Nrf2 expression with specific siRNA. Also, puerarin-mediated increases in PI3K activation and HO-1 induction were reversed by co-treatment with ICI 182,780 and pertussis toxin. Taken together, these results suggest that puerarin augments cellular antioxidant defense capacity through ER-dependent HO-1 induction via the G{beta}1/PI3K/Akt-Nrf2 signaling pathway, thereby protecting cells from oxidative stress.

  15. Sex-Dependent Effects of HO-1 Deletion from Adipocytes in Mice

    PubMed Central

    Hosick, Peter A.; Weeks, Mary Frances; Hankins, Michael W.; Moore, Kyle H.; Stec, David E.

    2017-01-01

    Induction of heme oxygenase-1 (HO-1) has been demonstrated to decrease body weight and improve insulin sensitivity in several models of obesity in rodents. To further study the role of HO-1 in adipose tissue, we created an adipose-specific HO-1 knockout mouse model. Male and female mice were fed either a control or a high-fat diet for 30 weeks. Body weights were measured weekly and body composition, fasting blood glucose and insulin levels were determined every six weeks. Adipocyte-specific knockout of HO-1 had no significant effect on body weight in mice fed a high-fat diet but increased body weight in female mice fed a normal-fat diet. Although body weights were not different in females fed a high fat diet, loss of HO-1 in adipocytes resulted in significant alterations in body composition. Adipose-specific HO-1 knockout resulted in increased fasting hyperglycemia and insulinemia in female but not male mice on both diets. Adipose-specific knockout of HO-1 resulted in a significant loss of HO activity and a decrease in the protein levels of adiponectin in adipose tissue. These results demonstrate that loss of HO-1 in adipocytes has greater effects on body fat and fasting hyperglycemia in a sex-dependent fashion and that expression of HO-1 in adipose tissue may have a greater protective role in females as compared to males. PMID:28287466

  16. Sex-Dependent Effects of HO-1 Deletion from Adipocytes in Mice.

    PubMed

    Hosick, Peter A; Weeks, Mary Frances; Hankins, Michael W; Moore, Kyle H; Stec, David E

    2017-03-11

    Induction of heme oxygenase-1 (HO-1) has been demonstrated to decrease body weight and improve insulin sensitivity in several models of obesity in rodents. To further study the role of HO-1 in adipose tissue, we created an adipose-specific HO-1 knockout mouse model. Male and female mice were fed either a control or a high-fat diet for 30 weeks. Body weights were measured weekly and body composition, fasting blood glucose and insulin levels were determined every six weeks. Adipocyte-specific knockout of HO-1 had no significant effect on body weight in mice fed a high-fat diet but increased body weight in female mice fed a normal-fat diet. Although body weights were not different in females fed a high fat diet, loss of HO-1 in adipocytes resulted in significant alterations in body composition. Adipose-specific HO-1 knockout resulted in increased fasting hyperglycemia and insulinemia in female but not male mice on both diets. Adipose-specific knockout of HO-1 resulted in a significant loss of HO activity and a decrease in the protein levels of adiponectin in adipose tissue. These results demonstrate that loss of HO-1 in adipocytes has greater effects on body fat and fasting hyperglycemia in a sex-dependent fashion and that expression of HO-1 in adipose tissue may have a greater protective role in females as compared to males.

  17. Relationships between NOS2 and HO-1 in liver of rats with chronic bile duct ligation.

    PubMed

    Flores, Olga; Criado, Manuela; Sánchez-Rodríguez, Angel; Hidalgo, Froilán; Collía, Francisco; López-Novoa, José Miguel; Esteller, Alejandro

    2005-05-01

    An increased expression and activity of the heme oxygenase-1 (HO-1) in the liver has been observed in models of hepatic damage. Nitric oxide (NO) seems to be involved in HO-1 regulation. The aim of this work is to assess HO-1 induction and heme oxygenase (HO) activity in rats with bile duct ligation (BDL). We have assessed the effect of chronic inhibition of the NO synthesis by N(G)-nitro-l-arginine methyl ester (l-NAME) on HO-1 induction and HO activity. In the BDL animals, compared with sham-operated ones, we found an increased plasma nitrite and bilirubin concentration, and a marked liver expression of inducible nitric oxide synthase and HO-1, assessed by both Western blot and immunohistochemistry. Chronic l-NAME treatment prevented plasma nitrite increase in animals subjected to BDL. BDL animals treated with l-NAME, compared with untreated BDL rats, showed an important decrease in HO-1 expression and in HO activity (assessed as a decreased plasma bilirubin and bilirubin excretion). In conclusion, our experiments show parallel changes in expression and activity of HO-1 and NOS2 activity in the BDL model of liver damage and suggest that increased NO production is involved in HO-1 overexpression.

  18. 5-Aminolevulinic acid with sodium ferrous citrate induces autophagy and protects cardiomyocytes from hypoxia-induced cellular injury through MAPK-Nrf-2-HO-1 signaling cascade.

    PubMed

    Zhao, Mingyi; Zhu, Ping; Fujino, Masayuki; Nishio, Yoshiaki; Chen, Jimei; Ito, Hidenori; Takahashi, Kiwamu; Nakajima, Motowo; Tanaka, Tohru; Zhao, Lingling; Zhuang, Jian; Li, Xiao-Kang

    2016-10-28

    Hypoxia causes cardiac disease via oxidative stress and mitochondrial dysfunction. 5-Aminolevulinic acid in combination with sodium ferrous citrate (ALA/SFC) has been shown to up-regulate heme oxygenase-1 (HO-1) and decrease macrophage infiltration and renal cell apoptosis in renal ischemia injury mice. However, its underlying mechanism remains largely unknown. The aim of this study was to investigate whether ALA/SFC could protect cardiomyocytes from hypoxia-induced apoptosis by autophagy via HO-1 signaling. Murine atrial cardiomyocyte HL-1 cells were pretreated with ALA/SFC and then exposed to hypoxia. ALA/SFC pretreatment significantly attenuated hypoxia-induced cardiomyocyte apoptosis, reactive oxygen species production, and mitochondrial injury, while it increased cell viability and autophagy levels. HO-1 expression by ALA/SFC was associated with up-regulation and nuclear translocation of Nrf-2, whereas Nrf-2 siRNA dramatically reduced HO-1 expression. ERK1/2, p38, and SAPK/JNK pathways were activated by ALA/SFC and their specific inhibitors significantly reduced ALA/SFC-mediated HO-1 upregulation. Silencing of either Nrf-2 or HO-1and LY294002, inhibitor of autophagy, abolished the protective ability of ALA/AFC against hypoxia-induced injury and reduced ALA/SFC-induced autophagy. Taken together, our data suggest that ALA/SFC induces autophagy via activation of MAPK/Nrf-2/HO-1 signaling pathway to protect cardiomyocytes from hypoxia-induced apoptosis. Copyright © 2016 Elsevier Inc. All rights reserved.

  19. Propofol post-conditioning alleviates hepatic ischaemia reperfusion injury via BRG1-mediated Nrf2/HO-1 transcriptional activation in human and mice.

    PubMed

    Ge, Mian; Chen, Huixin; Zhu, Qianqian; Cai, Jun; Chen, Chaojin; Yuan, Dongdong; Jin, Yi; Yao, Weifeng; Hei, Ziqing

    2017-07-27

    To explore the effects of propofol post-conditioning (PPC) on hepatic ischaemia/reperfusion injury (HIRI) and the potential mechanisms that might be involved in the interaction of Brahma-related gene1(BRG1) and Nuclear-related factor 2(Nrf2). Patients were randomized into PPC(n = 16) and non-PPC(NPC)( n = 21) groups. Propofol(2 mg/kg) was infused within 10 min. of the onset of liver reperfusion during liver transplantation in the PPC group. Liver function tests, as well as Brg1, Nrf2, Heme oxygenase-1(HO-1) and NADPH:quinone oxidoreductase1(NQO1) expression levels were evaluated. CMV-Brg1 mice were designed to investigate the role of Brg1 overexpression during HIRI. Brg1 and Nrf2 siRNA were used to examine the relationship between Brg1 and Nrf2/HO-1 pathways in propofol-mediated effects in a human hepatocyte(L02) hypoxia/reoxygenation(H/R) model. In patients, PPC attenuated both donor liver pathological and function injury, and reducing oxidative stress markers, compared to the NPC group, 24 hrs after surgery. PPC increased liver Brg1, Nrf2, HO-1 and NQO1 expression. In mice, PPC reduced HIRI by decreasing liver oxidative stress and activating Nrf2/HO-1 pathway, accompanied by up-regulation of BRG1 expression. BRG1 overexpression activated Nrf2/HO-1 transcription in CMV-BRG1 mice during HIRI. In vitro, PPC significantly elevated expression of Nrf2, HO-1 and NQO1, resulting in a reduction of cell DCFH-DA and 8-isoprostane levels and decreased lactate dehydrogenase levels, leading to an overall increase in cell viability. Moreover, the protective effects of propofol were partially abrogated in Nrf2-knock-down or BRG1-knock-down hepatocytes. Nrf2-knock-down drastically reduced protein expression of HO-1 and NQO1, while Brg1-knock-down decreased HO-1 expression. Propofol post-conditioning alleviates HIRI through BRG1-mediated Nrf2/HO-1 transcriptional activation. © 2017 The Authors. Journal of Cellular and Molecular Medicine published by John Wiley & Sons Ltd and

  20. Catalytic inactive heme oxygenase-1 protein regulates its own expression in oxidative stress.

    PubMed

    Lin, Qing S; Weis, Sebastian; Yang, Guang; Zhuang, Tiangang; Abate, Aida; Dennery, Phyllis A

    2008-03-01

    Heme oxygenase-1 (HO-1) catalyzes the degradation of heme and forms antioxidant bile pigments as well as the signaling molecule carbon monoxide. HO-1 is inducible in response to a variety of chemical and physical stress conditions to function as a cytoprotective molecule. Therefore, it is important to maintain the basal level of HO-1 expression even when substrate availability is limited. We hypothesized that the HO-1 protein itself could regulate its own expression in a positive feedback manner, and that this positive feedback was important in the HO-1 gene induction in response to oxidative stress. In cultured NIH 3T3 cells, transfection of HO-1 cDNA or intracellular delivery of pure HO-1 protein resulted in activation of a 15-kb HO-1 promoter upstream of luciferase as visualized by bioluminescent technology and increased HO-1 mRNA and protein levels. These effects were independent of HO activity because an enzymatically inactive mutant form of HO-1 similarly activated the HO-1 promoter and incubation with HO inhibitor metalloporphyrin SnPP did not affect the promoter activation. In addition, HO-1-specific siRNA significantly reduced hemin and cadmium chloride-mediated HO-1 induction. Furthermore, deletion analyses demonstrated that the E1 and E2 distal enhancers of the HO-1 promoter are required for this HO-1 autoregulation. These experiments document feed-forward autoregulation of HO-1 in oxidative stress and suggest that HO-1 protein has a role in the induction process. We speculate that this mechanism may be useful for maintaining HO-1 expression when substrate is limited and may also serve to up-regulate other genes to promote cytoprotection and to modulate cell proliferation.

  1. ZmHO-1, a maize haem oxygenase-1 gene, plays a role in determining lateral root development.

    PubMed

    Han, Bin; Xu, Sheng; Xie, Yan-Jie; Huang, Jing-Jing; Wang, Li-Juan; Yang, Zheng; Zhang, Chang-He; Sun, Ya; Shen, Wen-Biao; Xie, Gui-Shui

    2012-03-01

    Previous results revealed that haem oxygenase-1 (HO-1)/carbon monoxide (CO) system is involved in auxin-induced adventitious root formation. In this report, a cDNA for the gene ZmHO-1, encoding an HO-1 protein, was cloned from Zea mays seedlings. ZmHO-1 has a conserved HO signature sequence and shares highest homology with rice SE5 (OsHO-1) protein. We further discovered that N-1-naphthylacetic acid (NAA), haemin, and CO aqueous solution, led to the induction of ZmHO-1 expression as well as the thereafter promotion of lateral root development. These effects were specific for ZmHO-1 since the potent HO-1 inhibitor zinc protoporphyrin IX (ZnPPIX) differentially blocked the above actions. The addition of haemin and CO were able to reverse the auxin depletion-triggered inhibition of lateral root formation as well as the decreased ZmHO-1 transcripts. Molecular evidence showed that the haemin- or CO-mediated the modulation of target genes responsible for lateral root formation, including ZmCDK and ZmCKI2, could be blocked by ZnPPIX. Overexpression of ZmHO-1 in transgenic Arabidopsis plants resulted in promotion of lateral root development as well as the modulation of cell cycle regulatory gene expressions. Overall, our results suggested that a maize HO-1 gene is required for the lateral root formation. Copyright © 2011 Elsevier Ireland Ltd. All rights reserved.

  2. Neural HO-1/sterol interactions in vivo: implications for Alzheimer's disease.

    PubMed

    Hascalovici, J R; Song, W; Liberman, A; Vaya, J; Khatib, S; Holcroft, C; Laferla, F; Schipper, H M

    2014-11-07

    Up-regulation of heme oxygenase-1 (HO-1) and altered cholesterol (CH) metabolism are characteristic of Alzheimer-diseased (AD) neural tissues. We previously provided evidence of significant HO-1/sterol interactions in vitro (cultured rat astroglia) and in post-mortem human AD brain (Religious Orders Study). The current experiments were designed to further delineate these interactions in vivo by comparing the behavior of HO-1/sterol interactions in two mouse models; (1) a novel HO-1 transgenic mouse (GFAP.HMOX1) engineered to selectively express human HO-1 in the astrocytic compartment and (2) the previously described triple transgenic AD mouse (3xTg-AD). In samples of frontal cortex, total CH, CH precursors and relevant oxysterols were quantified by gas chromatography-mass spectrometry (GC-MS) and HO-1 protein expression was assessed by ELISA. The relationships of HO-1 expression to total CH, CH precursors and total oxysterols were determined for both mouse models using linear regression analysis. HO-1 expression is increased in GFAP.HMOX1 mice relative to wild type and in 11-12-month-old 3xTg-AD mice (with AD-like phenotype) relative to control mice and 5-6-month-old 3xTg-AD mice (no AD-like phenotype). Total oxysterols significantly decreased as HO-1 expression increased in GFAP.HMOX1 mice expressing high levels of HO-1, whereas total oxysterols increased as HO-1 expression increased in aged 3xTg-AD mice. Total CH and total CH precursors increased as HO-1 protein expression increased in 11-12-month-old 3xTg-AD mice relative to 5-6-month old 3xTg-AD mice. Our findings indicate a differential impact of HO-1 on patterns of brain sterol and redox homeostasis that is contingent on the presence or absence of AD-like neuropathology. These data provide fresh insight concerning the regulation of sterol homeostasis within the aging and degenerating CNS which may inform the development of novel therapeutic and preventive strategies for the management of AD and related

  3. Protocatechualdehyde Protects Against Cerebral Ischemia-Reperfusion-Induced Oxidative Injury Via Protein Kinase Cε/Nrf2/HO-1 Pathway.

    PubMed

    Guo, Chao; Wang, Shiquan; Duan, Jialin; Jia, Na; Zhu, Yanrong; Ding, Yi; Guan, Yue; Wei, Guo; Yin, Ying; Xi, Miaomaio; Wen, Aidong

    2017-03-01

    Oxidative stress is closely related to the pathogenesis of ischemic stroke. Protocatechualdehyde (PCA) is a phenolic acid compound that has the putative antioxidant activities. The present study was aimed to investigate the molecular mechanisms involved in the antioxidative effect of PCA against cerebral ischemia/reperfusion (I/R) injury. The experiment stroke model was produced in Sprague-Dawley rats via middle cerebral artery occlusion (MCAO). To model ischemia-like conditions in vitro, differentiated SH-SY5Y cells were exposed to transient oxygen and glucose deprivation (OGD). Treatment with PCA significantly improved neurologic score, reduced infarct volume and necrotic neurons, and also decreased reactive oxygen species (ROS) production, 4-hydroxynonenal (4-HNE), and 8-hydroxy-2'-deoxyguanosine (8-OHdG) contents at 24 h after reperfusion. Meanwhile, PCA significantly increased the transcription nuclear factor erythroid 2-related factor 2 (Nrf2) and heme oxygenase-1 (HO-1) expressions in the ischemic cerebral cortex as shown by immunofluorescence staining and Western blot analysis. In vitro experiment showed that PCA protected differentiated SH-SY5Y cells against OGD-induced injury. Likewise, PCA also increased markedly the Nrf2 and HO-1 expressions in a dose-dependent manner. The neuroprotection effect of PCA was abolished by knockdown of Nrf2 and HO-1. Moreover, knockdown of protein kinase Cε (PKCε) also blocked PCA-induced Nfr2 nuclear translocation, HO-1 expression, and neuroprotection. Taken together, these results provide evidences that PCA can protect against cerebral ischemia-reperfusion-induced oxidative injury, and the neuroprotective effect involves the PKCε/Nrf2/HO-1 pathway.

  4. HO-1 Induction in Cancer Progression: A Matter of Cell Adaptation.

    PubMed

    Nitti, Mariapaola; Piras, Sabrina; Marinari, Umberto M; Moretta, Lorenzo; Pronzato, Maria A; Furfaro, Anna Lisa

    2017-05-05

    The upregulation of heme oxygenase-1 (HO-1) is one of the most important mechanisms of cell adaptation to stress. Indeed, the redox sensitive transcription factor Nrf2 is the pivotal regulator of HO-1 induction. Through the antioxidant, antiapoptotic, and antinflammatory properties of its metabolic products, HO-1 plays a key role in healthy cells in maintaining redox homeostasis and in preventing carcinogenesis. Nevertheless, several lines of evidence have highlighted the role of HO-1 in cancer progression and its expression correlates with tumor growth, aggressiveness, metastatic and angiogenetic potential, resistance to therapy, tumor escape, and poor prognosis, even though a tumor- and tissue-specific activity has been observed. In this review, we summarize the current literature regarding the pro-tumorigenic role of HO-1 dependent tumor progression as a promising target in anticancer strategy.

  5. Epigallocatechin-3-gallate (EGCG) protects skin cells from ionizing radiation via heme oxygenase-1 (HO-1) overexpression.

    PubMed

    Zhu, Wei; Xu, Jing; Ge, Yangyang; Cao, Han; Ge, Xin; Luo, Judong; Xue, Jiao; Yang, Hongying; Zhang, Shuyu; Cao, Jianping

    2014-11-01

    Epigallocatechin-3-gallate (EGCG), the major polyphenolic constituent of green tea, is a potent antioxidant and free radical scavenger that may have therapeutic applications for the treatment of many disorders. Radiation therapy is widely used for the treatment of various types of cancers; however, radiation-induced skin injury remains a serious concern. EGCG has not yet been reported as protecting skin cells against ionizing radiation. In the present study, we investigated whether EGCG confers cytoprotection against ionizing radiation. We found that, compared with the control, pretreatment with EGCG significantly enhanced the viability of human skin cells that were irradiated with X-rays, and decreased apoptosis induced by X-ray irradiation. Mito-Tracker assay showed that EGCG suppressed the damage to mitochondria induced by ionizing radiation via upregulation of SOD2. Reactive oxygen species (ROS) in HaCaT cells were significantly reduced when pretreated with EGCG before irradiation. Radiation-induced γH2AX foci, which are representative of DNA double-strand breaks, were decreased by pretreatment with EGCG. Furthermore, EGCG induced the expression of the cytoprotective molecule heme oxygenase-1 (HO-1) in a dose-dependent manner via transcriptional activation. HO-1 knockdown or treatment with the HO-1 inhibitor tin protoporphyrin (SnPPIX) reversed the protective role of EGCG, indicating an important role for HO-1. These results suggest that EGCG offers a new strategy for protecting skin against ionizing radiation.

  6. The Chinese herbal formula Free and Easy Wanderer ameliorates oxidative stress through KEAP1-NRF2/HO-1 pathway.

    PubMed

    Hong, Chunlan; Cao, Jingming; Wu, Ching-Fen; Kadioglu, Onat; Schüffler, Anja; Kauhl, Ulrich; Klauck, Sabine M; Opatz, Till; Thines, Eckhard; Paul, Norbert W; Efferth, Thomas

    2017-09-14

    Posttraumatic stress disorder (PTSD) gains a lot of attention due to high prevalence and strong psychological upset, but the etiology remains undefined and effective treatment is quite limited. Growing studies demonstrated the involvement of oxidative stress in various psychiatry diseases, suggesting anti-oxidation therapy might be a strategy for PTSD treatment. Free and Easy Wanderer (FAEW) is a poly-herbal drug clinically used in China for hundreds of years in the treatment of psychiatric disorder. We hypothesized that FAEW exerts clinical effects through the activity against oxidative stress with fluoxetine as antidepressant control drug. Our results revealed that FAEW significantly reduced both endogenous and H2O2-induced exogenous ROS levels in the human glioblastoma T98G and neuroblastoma SH-SY5Y cell lines. Transcriptome-wide microarray analysis indicated NRF2/HO-1 as the common target of FAEW and fluoxetine. Western blotting assay proved that the two drugs promoted NRF2 release from KEAP1 in the cytoplasm and translocation to the nuclei in a KEAP1-dependent manner, the expression of the protein HO-1 increased accordingly, suggesting the participation of KEAP1-NRF2/HO-1 pathway. The chemical constituents of FAEW (i.e. paeoniflorin, baicalin) bound to KEAP1 in silico, which hence might be the effective substances of FAEW. In conclusion, FAEW counteracted H2O2-induced oxidative stress through KEAP1-NRF2/HO-1 pathway.

  7. HIF-regulated HO-1 gene transfer improves the post-ischemic limb recovery and diminishes TLR-triggered immune responses - Effects modified by concomitant VEGF overexpression.

    PubMed

    Jazwa, Agnieszka; Stoszko, Mateusz; Tomczyk, Mateusz; Bukowska-Strakova, Karolina; Pichon, Chantal; Jozkowicz, Alicja; Dulak, Jozef

    2015-08-01

    Heme oxygenase-1 (HO-1) mitigates cellular injury by antioxidant, anti-apoptotic, anti-inflammatory and proangiogenic effects. Vascular endothelial growth factor (VEGF) is a critical regulator of blood vessel growth. Their coordinated action was analyzed in a model of femoral artery ligation (FAL) in mice lacking HO-1 gene (HO-1 KO). Gastrocnemius skeletal muscles of HO-1 KO mice were preemptively injected with plasmids containing hypoxia-response element (HRE) driving the expression of only HO-1 (pHRE-HO1) or both HO-1 and VEGF (pHRE-HO1-VEGF). At day 14th the pHRE-HO1 vector increased an impaired post-ischemic blood flow recovery in HO-1 KO mice to the level observed in wild-type (WT) mice subjected to FAL and pHRE-HO1-VEGF restored it already at day 7. The pHRE-HO1 gene therapy diminished, when compared to control pHRE-empty-treated HO-1 KO mice, the expression of toll-like receptors (TLR4 and TLR9) and inflammatory cytokines (IL-1β, IL-6 and TNFα) at day 3, whereas opposite effects were observed following concomitant HO-1 and VEGF gene transfer. Moreover, HO-1 diminished ischemia-induced expression of MyoD involved in satellite cell differentiation in HO-1 KO mice. Our results confirm the therapeutic potential of HO-1 and VEGF against critical limb ischemia although, their concomitant delivery may have contradictory actions on the resolution of inflammation. Copyright © 2015 Elsevier Inc. All rights reserved.

  8. The ubiquitous PM component Zn2+ induces HO-1 expression through multiple targets in the Nrf2/Keap1 signaling pathway

    EPA Science Inventory

    Oxidant stress can play an important role in particulate matter (PM)–mediated toxicity in the respiratory tract. Zinc (Zn2+) is a ubiquitous component of ambient PM that induces adverse responses such as inflammatory and adaptive gene expression in human airway epithelial c...

  9. The ubiquitous PM component Zn2+ induces HO-1 expression through multiple targets in the Nrf2/Keap1 signaling pathway

    EPA Science Inventory

    Oxidant stress can play an important role in particulate matter (PM)–mediated toxicity in the respiratory tract. Zinc (Zn2+) is a ubiquitous component of ambient PM that induces adverse responses such as inflammatory and adaptive gene expression in human airway epithelial c...

  10. Penehyclidine Hydrochloride Pretreatment Ameliorates Rhabdomyolysis-Induced AKI by Activating the Nrf2/HO-1 Pathway and Allevi-ating Endoplasmic Reticulum Stress in Rats

    PubMed Central

    Zhao, Wei; Huang, XuDong; Zhang, LiXia; Yang, XinJun; Wang, LiHui; Chen, YunShuang; Wang, JingHua; Wu, GuangLi

    2016-01-01

    Acute kidney injury (AKI) is one of the most severe complications of rhabdomyolysis (RM). The underlying mechanisms and potential preventions need to be investigated. Penehyclidine hydrochloride (PHC) was reported to ameliorate renal ischemia-reperfusion injury, but the effect of PHC on RM-reduced AKI is unknown. In this study, we established a rat model of RM-induced AKI using an intramuscular glycerol injection in the hind limbs. Rats were pretreated with PHC before the glycerol injection, and the heme oxygenase-1 (HO-1) inhibitor ZnPP was introduced to evaluate the effect of HO-1 on RM-induced AKI. PHC pretreatment ameliorated the pathological renal injury and renal dysfunction, and decreased the renal apoptosis rate in RM-induced AKI. PHC significantly up-regulated HO-1 expression, increased HO-1 enzymatic activity and decreased the accumulation of myoglobin in renal tissues. This effect was partly inhibited by ZnPP. PHC pretreatment also effectively up-regulated nuclear factor erythroid 2-related factor 2 (Nrf2) and down-regulated glucose regulated protein 78 (GRP78) and caspase-12 at both the gene and protein levels. These results suggest that the protective effects of PHC pretreatment on RM-induced AKI occur at least in part through activating the Nrf2/HO-1 pathway and alleviating endoplasmic reticulum stress (ERS) in rat renal tissues. PMID:26987113

  11. Mechanical Stress Changes the Complex Interplay Between HO-1, Inflammation and Fibrosis, During Excisional Wound Repair

    PubMed Central

    Cremers, Niels A. J.; Suttorp, Maarten; Gerritsen, Marlous M.; Wong, Ronald J.; van Run-van Breda, Coby; van Dam, Gooitzen M.; Brouwer, Katrien M.; Kuijpers-Jagtman, Anne Marie; Carels, Carine E. L.; Lundvig, Ditte M. S.; Wagener, Frank A. D. T. G.

    2015-01-01

    Mechanical stress following surgery or injury can promote pathological wound healing and fibrosis, and lead to functional loss and esthetic problems. Splinted excisional wounds can be used as a model for inducing mechanical stress. The cytoprotective enzyme heme oxygenase-1 (HO-1) is thought to orchestrate the defense against inflammatory and oxidative insults that drive fibrosis. Here, we investigated the activation of the HO-1 system in a splinted and non-splinted full-thickness excisional wound model using HO-1-luc transgenic mice. Effects of splinting on wound closure, HO-1 promoter activity, and markers of inflammation and fibrosis were assessed. After seven days, splinted wounds were more than three times larger than non-splinted wounds, demonstrating a delay in wound closure. HO-1 promoter activity rapidly decreased following removal of the (epi)dermis, but was induced in both splinted and non-splinted wounds during skin repair. Splinting induced more HO-1 gene expression in 7-day wounds; however, HO-1 protein expression remained lower in the epidermis, likely due to lower numbers of keratinocytes in the re-epithelialization tissue. Higher numbers of F4/80-positive macrophages, αSMA-positive myofibroblasts, and increased levels of the inflammatory genes IL-1β, TNF-α, and COX-2 were present in 7-day splinted wounds. Surprisingly, mRNA expression of newly formed collagen (type III) was lower in 7-day wounds after splinting, whereas, VEGF and MMP-9 were increased. In summary, these data demonstrate that splinting delays cutaneous wound closure and HO-1 protein induction. The pro-inflammatory environment following splinting may facilitate higher myofibroblast numbers and increase the risk of fibrosis and scar formation. Therefore, inducing HO-1 activity against mechanical stress-induced inflammation and fibrosis may be an interesting strategy to prevent negative effects of surgery on growth and function in patients with orofacial clefts or in patients with

  12. Mechanical Stress Changes the Complex Interplay Between HO-1, Inflammation and Fibrosis, During Excisional Wound Repair.

    PubMed

    Cremers, Niels A J; Suttorp, Maarten; Gerritsen, Marlous M; Wong, Ronald J; van Run-van Breda, Coby; van Dam, Gooitzen M; Brouwer, Katrien M; Kuijpers-Jagtman, Anne Marie; Carels, Carine E L; Lundvig, Ditte M S; Wagener, Frank A D T G

    2015-01-01

    Mechanical stress following surgery or injury can promote pathological wound healing and fibrosis, and lead to functional loss and esthetic problems. Splinted excisional wounds can be used as a model for inducing mechanical stress. The cytoprotective enzyme heme oxygenase-1 (HO-1) is thought to orchestrate the defense against inflammatory and oxidative insults that drive fibrosis. Here, we investigated the activation of the HO-1 system in a splinted and non-splinted full-thickness excisional wound model using HO-1-luc transgenic mice. Effects of splinting on wound closure, HO-1 promoter activity, and markers of inflammation and fibrosis were assessed. After seven days, splinted wounds were more than three times larger than non-splinted wounds, demonstrating a delay in wound closure. HO-1 promoter activity rapidly decreased following removal of the (epi)dermis, but was induced in both splinted and non-splinted wounds during skin repair. Splinting induced more HO-1 gene expression in 7-day wounds; however, HO-1 protein expression remained lower in the epidermis, likely due to lower numbers of keratinocytes in the re-epithelialization tissue. Higher numbers of F4/80-positive macrophages, αSMA-positive myofibroblasts, and increased levels of the inflammatory genes IL-1β, TNF-α, and COX-2 were present in 7-day splinted wounds. Surprisingly, mRNA expression of newly formed collagen (type III) was lower in 7-day wounds after splinting, whereas, VEGF and MMP-9 were increased. In summary, these data demonstrate that splinting delays cutaneous wound closure and HO-1 protein induction. The pro-inflammatory environment following splinting may facilitate higher myofibroblast numbers and increase the risk of fibrosis and scar formation. Therefore, inducing HO-1 activity against mechanical stress-induced inflammation and fibrosis may be an interesting strategy to prevent negative effects of surgery on growth and function in patients with orofacial clefts or in patients with

  13. SERPINB1 ameliorates acute lung injury in liver transplantation through ERK1/2-mediated STAT3-dependent HO-1 induction.

    PubMed

    Yao, Weifeng; Li, Haobo; Luo, Gangjian; Li, Xiang; Chen, Chaojin; Yuan, Dongdong; Chi, Xinjin; Xia, Zhengyuan; Hei, Ziqing

    2017-07-01

    Postoperative acute lung injury (ALI) is a severe complication after liver transplantation, which severely affects postoperative patients' survival. The underlying mechanism is largely unknown and effective treatment limited. We explored the role of serpin protease inhibitor B1 (SERPINB1), a potent inhibitor of neutrophil serine proteases, in ALI in liver transplantation and its interplay with signal transducer and activator of transcription 3 (STAT3) and heme oxygenase-1 (HO-1). Sprague-Dawley rats underwent orthotopic autologous liver transplantation (OALT) were treated with recombinant SB1 (rSB1) in the absence or presence of STAT3 specific inhibitor, WP1066. Then SB1-siRNA was used to knockdown endogenous SERPINB1. Also, alveolar epithelial cells RLE-6TN and BEAS-2B were exposed to TNF-α without or with SERPINB1 and the roles of STAT3 and HO-1 were examined by respective gene knockdown. Finally, rats were treated with ERK1/2 inhibitor U0126, p38 MAPK inhibitor SB20358, or JNK inhibitor SP600125 after rSB1 pretreatment and then subjected to OALT. OALT resulted in increased pulmonary inflammation and oxidative stress, accompanied by severe lung injury that was coincident with increased pulmonary SERPINB1, HO-1, and STAT3. SERPINB1 gene knockdown increased post-OALT lung injury and pulmonary inflammation. rSB1 administration dose-dependently reduced post-OALT lung injury and decreased pulmonary inflammation and oxidative stress with concomitant enhanced HO-1 and STAT3 protein expression. These protective effects of SERPINB1 were abolished by STAT3 inhibition. Similarly, in RLE-6TN cells and BEAS-2B cells, TNF-α induced cell injury and increased HO-1 and STAT3. SERPINB1 further increased HO-1 and STAT3 protein expression and attenuated TNF-α-induced cellular oxidative stress, apoptotic cells, and mitochondria damage, which were cancelled by STAT3 or HO-1 gene knockdown. Furthermore, these SERPINB1-mediated STAT3/HO-1 activation and pulmonary protective effects

  14. Neurotherapeutic effects of novel HO-1 inhibitors in vitro and in a transgenic mouse model of Alzheimer's disease.

    PubMed

    Gupta, Ajay; Lacoste, Baptiste; Pistell, Paul J; Pistel, Paul J; Ingram, Donald K; Hamel, Edith; Alaoui-Jamali, Moulay A; Szarek, Walter A; Vlahakis, Jason Z; Jie, Su; Song, Wei; Schipper, Hyman M

    2014-12-01

    Heme oxygenase-1 (HO-1) encoded by the HMOX1 gene is a 32-kDa stress protein that catabolizes heme to biliverdin, free iron, and carbon monoxide (CO). Glial HO-1 is over-expressed in the CNS of subjects with Alzheimer's disease (AD), Parkinson's disease (PD), and multiple sclerosis (MS). The HMOX1 gene is exquisitely sensitive to oxidative stress and is induced in brain and other tissues in various models of disease and trauma. Induction of the glial HMOX1 gene may lead to pathological brain iron deposition, intracellular oxidative damage, and bioenergetic failure in AD and other human CNS disorders such as PD and MS. Therefore, targeted suppression of glial HO-1 hyperactivity may prove to be a rational and effective therapeutic intervention in AD and related neurodegenerative disorders. In this study, we report the effects of QC-47, QC-56, and OB-28, novel azole-based competitive and reversible inhibitors of HO-1, on oxidative damage to whole-cell and mitochondrial compartments in rat astrocytes transfected with the HMOX1 gene. We also report the effect of OB-28 on the behavior and neuropathology of APP(swe)/PS1(∆E9) mice. OB-28 was found to reduce oxidative damage to whole-cell and mitochondrial compartments in rat astrocytes transfected with the HMOX1 gene. Moreover, OB-28 was found to significantly counter behavioral deficits and neuropathological alterations in APP(swe)/PS1(∆E9) mice. Attenuation of AD-associated behavioral deficits and neuropathological changes suggests that HO-1 may be a promising target for neuroprotective intervention in AD and other neurodegenerative diseases. We propose that the targeted suppression of glial heme oxygenase-1 (HO-1) hyperactivity may prove to be a rational and effective therapeutic intervention in Alzheimer's disease (AD) and related neurodegenerative disorders. We report attenuation by a selective HO-1 inhibitor of oxidative damage to whole-cell and mitochondrial compartments in astrocytes in vitro and amelioration

  15. Sustained treatment of sickle cell mice with haptoglobin increases HO-1 and H-ferritin expression and decreases iron deposition in the kidney without improvement in kidney function.

    PubMed

    Shi, Patricia A; Choi, Erika; Chintagari, Narendranath R; Nguyen, Julia; Guo, Xinhua; Yazdanbakhsh, Karina; Mohandas, Narla; Alayash, Abdu I; Manci, Elizabeth A; Belcher, John D; Vercellotti, Gregory M

    2016-11-01

    There is growing evidence that extracellular haemoglobin and haem mediate inflammatory and oxidative damage in sickle cell disease. Haptoglobin (Hp), the scavenger for free haemoglobin, is depleted in most patients with sickle cell disease due to chronic haemolysis. Although single infusions of Hp can ameliorate vaso-occlusion in mouse models of sickle cell disease, prior studies have not examined the therapeutic benefits of more chronic Hp dosing on sickle cell disease manifestations. In the present study, we explored the effect of Hp treatment over a 3-month period in sickle mice at two dosing regimens: the first at a moderate dose of 200 mg/kg thrice weekly and the second at a higher dose of 400 mg/kg thrice weekly. We found that only the higher dosing regimen resulted in increased haem-oxygenase-1 and heavy chain ferritin (H-ferritin) expression and decreased iron deposition in the kidney. Despite the decreased kidney iron deposition following Hp treatment, there was no significant improvement in kidney function. However, there was a nearly significant trend towards decreased liver infarction. © 2016 John Wiley & Sons Ltd.

  16. The cytoprotective effect of isorhamnetin against oxidative stress is mediated by the upregulation of the Nrf2-dependent HO-1 expression in C2C12 myoblasts through scavenging reactive oxygen species and ERK inactivation.

    PubMed

    Choi, Yung Hyun

    2016-04-01

    This study was designed to confirm the protective effects of isorhamnetin against oxidative stress-induced cellular damage. Our results indicated that isorhamnetin inhibited the hydrogen peroxide (H2O2)-induced growth inhibition and exhibited scavenging activity against the intracellular reactive oxygen species (ROS) in mouse-derived C2C12 myoblasts. Isorhamnetin also significantly attenuated H2O2-induced DNA damage and apoptosis, and increased the levels of the nuclear factor erythroid 2-related factor 2 (Nrf2) and its phosphorylation associated with the induction of heme oxygenase-1 (HO-1). However, the protective effects of isorhamnetin on H2O2-induced ROS and growth inhibition were significantly abolished by an HO-1 competitive inhibitor. Moreover, the potential of isorhamnetin to mediate HO-1 induction and protect against H2O2-mediated growth inhibition was abrogated by transient transfection with Nrf2-specific small interfering RNA. Additionally, isorhamnetin induced the activation of mitogen-activated protein kinases (MAPKs), such as extracellular signal-regulated kinase (ERK), c-Jun N-terminal kinase (JNK), and p38 MAPK. However, the specific inhibitor of ERK, but not JNK and p38 MAPK, was able to abolish the HO-1 upregulation and the Nrf2 phosphorylation. Collectively, these results demonstrate that isorhamnetin augments the cellular antioxidant defense capacity by activating the Nrf2/HO-1 pathway involving the activation of the ERK pathway, thus protecting the C2C12 cells from H2O2-induced cytotoxicity.

  17. Cordycepin, 3'-deoxyadenosine, prevents rat hearts from ischemia/reperfusion injury via activation of Akt/GSK-3β/p70S6K signaling pathway and HO-1 expression.

    PubMed

    Park, Eun-Seok; Kang, Do-Hyun; Yang, Min-Kyu; Kang, Jun Chul; Jang, Yong Chang; Park, Jong Seok; Kim, Si-Kwan; Shin, Hwa-Sup

    2014-03-01

    Cordycepin (3'-deoxyadenosine) isolated from Cordyceps militaris, a species of the fungal genus Cordyceps, has been shown to exhibit many pharmacological functions, such as anticancer, anti-inflammatory, and antioxidant activities. In this study, we investigated the preventive role of cordycepin in ischemic/reperfusion (I/R) injury of isolated rat hearts and anesthetized rats. After Sprague-Dawley rats received cordycepin (3, 10, and 30 mg/kg) or control (0.5 % carboxyl methylcellulose) orally once a day for a week, hearts were isolated and mounted on Langendorff heart perfusion system. Isolated hearts were perfused with Krebs-Henseleit buffer for 15-min pre-ischemic stabilization period and subjected to 30-min global ischemia and 30-min reperfusion. Cordycepin administration (10 mg/kg, p.o.) significantly increased left ventricular developed pressure during the reperfusion period compared to that in the control group, but without any effect on coronary flow. Cordycepin (10 mg/kg, p.o.) significantly increased the phosphorylation of Akt/GSK-3β/p70S6K pathways, which are known to modulate multiple survival pathways. In addition, cordycepin decreased Bax and cleaved caspase-3 expression while increasing Bcl-2 expression, Bcl-2/Bax ratio, and heme oxygenase (HO-1) expression in isolated rat hearts. In anesthetized rats subjected to 30 min occlusion of left anterior descending coronary artery/2.5-h reperfusion, cordycepin (1, 3, and 10 mg/kg, i.v.) administered 15 min before the onset of ischemia dose-dependently decreased the infarct size in left ventricle. In conclusion, cordycepin could be an attractive therapeutic candidate with oral activity against I/R-associated heart diseases such as myocardial infarction.

  18. MP4CO, a pegylated hemoglobin saturated with carbon monoxide, is a modulator of HO-1, inflammation, and vaso-occlusion in transgenic sickle mice

    PubMed Central

    Young, Mark; Chen, Chunsheng; Nguyen, Julia; Burhop, Kenneth; Tran, Phuc; Vercellotti, Gregory M.

    2013-01-01

    Transgenic sickle mice expressing βS hemoglobin have activated vascular endothelium in multiple organs that exhibits enhanced expression of NF-ĸB and adhesion molecules and promotes microvascular stasis in sickle, but not normal, mice in response to hypoxia/reoxygenation (H/R), or heme. Induction of heme oxygenase-1 (HO-1) or administration of its products, carbon monoxide (CO) or biliverdin, inhibits microvascular stasis in sickle mice. Infusion of human hemoglobin conjugated with polyethylene glycol and saturated with CO (MP4CO) markedly induced hepatic HO-1 activity and inhibited NF-ĸB activation and H/R-induced microvascular stasis in sickle mice. These effects were mediated by CO; saline or MP4 saturated with O2 (MP4OX) had little to no effect on H/R-induced stasis, though unmodified oxyhemoglobin exacerbated stasis. The HO-1 inhibitor, tin protoporphyrin, blocked MP4CO protection, consistent with HO-1 involvement in the protection afforded by MP4CO. MP4CO also induced nuclear factor-erythroid 2 p45-related factor 2 (Nrf2), an important transcriptional regulator of HO-1 and other antioxidant genes. In a heterozygous (hemoglobin-AS) sickle mouse model, intravenous hemin induced cardiovascular collapse and mortality within 120 minutes, which was significantly reduced by MP4CO, but not MP4OX. These data demonstrate that MP4CO induces cytoprotective Nrf2 and HO-1 and decreases NF-ĸB activation, microvascular stasis, and mortality in transgenic sickle mouse models. PMID:23908468

  19. Omega-3 polyunsaturated fatty acid has an anti-oxidant effect via the Nrf-2/HO-1 pathway in 3T3-L1 adipocytes

    SciTech Connect

    Kusunoki, Chisato; Yang, Liu; Yoshizaki, Takeshi; Nakagawa, Fumiyuki; Ishikado, Atsushi; Kondo, Motoyuki; Morino, Katsutaro; Sekine, Osamu; Ugi, Satoshi; Nishio, Yoshihiko; Kashiwagi, Atsunori; Maegawa, Hiroshi

    2013-01-04

    Highlights: Black-Right-Pointing-Pointer Omega-3 PUFA has a direct anti-oxidant effect in adipocytes. Black-Right-Pointing-Pointer EPA and DHA induce HO-1 expression in 3T3-L1 adipocytes. Black-Right-Pointing-Pointer Omega-3 PUFA and its end-product, 4-HHE, activates the Nrf-2/HO-1 pathway. Black-Right-Pointing-Pointer Omega-3 PUFA protects against oxidative stress-induced cytotoxicity. -- Abstract: Oxidative stress is produced in adipose tissue of obese subjects and has been associated with obesity-related disorders. Recent studies have shown that omega-3 polyunsaturated fatty acid ({omega}3-PUFA) has beneficial effects in preventing atherosclerotic diseases and insulin resistance in adipose tissue. However, the role of {omega}3-PUFA on adipocytes has not been elucidated. In this study, 3T3-L1 adipocytes were treated with {omega}3-PUFA and its metabolites, eicosapentaenoic acid (EPA), docosahexaenoic acid (DHA), or 4-hydroxy hexenal (4-HHE). {omega}3-PUFA and its metabolites dose-dependently increased mRNA and protein levels of the anti-oxidative enzyme, heme oxygenase-1 (HO-1); whereas no changes in the well-known anti-oxidant molecules, superoxide dismutase, catalase, and glutathione peroxidase, were observed. Knockdown of nuclear factor erythroid 2-related factor 2 (Nrf-2) significantly reduced EPA, DHA or 4-HHE-induced HO-1 mRNA and protein expression. Also, pretreatment with {omega}3-PUFA prevented H{sub 2}O{sub 2}-induced cytotoxicity in a HO-1 dependent manner. In conclusion, treatment with EPA and DHA induced HO-1 through the activation of Nrf-2 and prevented oxidative stress in 3T3-L1 adipocytes. This anti-oxidant defense may be of high therapeutic value for clinical conditions associated with systemic oxidative stress.

  20. Association of HO-1 and BRCA1 Is Critical for the Maintenance of Cellular Homeostasis in Prostate Cancer.

    PubMed

    Labanca, Estefanía; De Luca, Paola; Gueron, Geraldine; Paez, Alejandra; Moiola, Cristian P; Massillo, Cintia; Porretti, Juliana; Giudice, Jimena; Zalazar, Florencia; Navone, Nora; Vazquez, Elba; De Siervi, Adriana

    2015-11-01

    Prostate cancer is the second leading cause of cancer-related death in men worldwide. Many factors that participate in the development of prostate cancer promote imbalance in the redox state of the cell. Accumulation of reactive oxygen species causes injury to cell structures, ultimately leading to cancer development. The antioxidant enzyme heme oxygenase 1 (HMOX1/HO-1) is responsible for the maintenance of the cellular homeostasis, playing a critical role in the oxidative stress and the regulation of prostate cancer development and progression. In the present study, the transcriptional regulation of HO-1 was investigated in prostate cancer. Interestingly, the tumor suppressor BRCA1 binds to the HO-1 promoter and modulates HO-1, inducing its protein levels through both the increment of its promoter activity and the induction of its transcriptional activation. In addition, in vitro and in vivo analyses show that BRCA1 also controls HO-1-negative targets: MMP9, uPA, and Cyclin D1. HO-1 transcriptional regulation is also modulated by oxidative and genotoxic agents. Induction of DNA damage by mitoxantrone and etoposide repressed HO-1 transcription, whereas hydrogen peroxide and doxorubicin induced its expression. Xenograft studies showed that HO-1 regulation by doxorubicin also occurs in vivo. Immunofluorescence analysis revealed that BRCA1 overexpression and/or doxorubicin exposure induced the cytoplasmic retention of HO-1. Finally, the transcription factor NRF2 cooperates with BRCA1 protein to activate HO-1 promoter activity. In summary, these results show that the activation of BRCA1-NRF2/HO-1 axis defines a new mechanism for the maintenance of the cellular homeostasis in prostate cancer. Oxidative and genotoxic stress converge on HO-1 transcriptional activity through the combined actions of BRCA1 and NRF2. ©2015 American Association for Cancer Research.

  1. Ginsenoside Rd mitigates myocardial ischemia-reperfusion injury via Nrf2/HO-1 signaling pathway

    PubMed Central

    Zeng, Xiaofeng; Li, Juan; Li, Zhen

    2015-01-01

    Ginsenoside Rd (GsRd) reportedly protects the heart against ischemia-reperfusion (I/R) injury. Nrf2/HO-1 signaling plays a key role in attenuating oxidative stress. However, it remains unclear whether GsRd protects against myocardial I/R injury via Nrf2/HO-1 signaling. This study aimed to investigate the role of Nrf2/HO-1 signaling in the cardioprotective effect of GsRd. Rats received 30 min ischemia followed by 2 h reperfusion. Cardiac function, infarct size and serum CK, LDH, cTnI levels were detected. The expression of Nrf2 and HO-1 was detected by western blot. The results suggested that GsRd attenuated myocardial I/R injury as evidenced by improved cardiac function, decreased infarct size and decreased levels of serum CK, LDH and cTnI. In addition, GsRd administration enhanced the expression of Nrf2 and HO-1. In conclusion, the present study shows that GsRd protects against myocardial I/R injury via Nrf2/HO-1 signaling. PMID:26550440

  2. Amelioration of radiation-induced skin injury by adenovirus-mediated heme oxygenase-1 (HO-1) overexpression in rats

    PubMed Central

    2012-01-01

    Objective Radiation-induced skin injury remains a serious concern for radiation therapy. Heme oxygenase-1 (HO-1), the rate-limiting enzyme in heme catabolism, has been reported to have potential antioxidant and anti-apoptotic properties. However, the role of HO-1 in radiation-induced skin damage remains unclear. This study aims to elucidate the effects of HO-1 on radiation-induced skin injury in rats. Methods A control adenovirus (Ad-EGFP) and a recombinant adenovirus (Ad-HO1-EGFP) were constructed. Rats were irradiated to the buttock skin with a single dose of 45 Gy followed by a subcutaneous injection of PBS, 5 × 109 genomic copies of Ad-EGFP or Ad-HO1-EGFP (n = 8). After treatment, the skin MDA concentration, SOD activity and apoptosis were measured. The expression of antioxidant and pro-apoptotic genes was determined by RT-PCR and real-time PCR. Skin reactions were measured at regular intervals using the semi-quantitative skin injury score. Results Subcutaneous injection of Ad-HO1-EGFP infected both epidermal and dermal cells and could spread to the surrounding regions. Radiation exposure upregulated the transcription of the antioxidant enzyme genes, including SOD-1, GPx2 and endogenous HO-1. HO-1 overexpression decreased lipid peroxidation and inhibited the induction of ROS scavenging proteins. Moreover, HO-1 exerted an anti-apoptotic effect by suppressing FAS and FASL expression. Subcutaneous injection of Ad-HO1-EGFP demonstrated significant improvement in radiation-induced skin injury. Conclusions The present study provides evidences for the protective role of HO-1 in alleviating radiation-induced skin damage in rats, which is helpful for the development of therapy for radiation-induced skin injury. PMID:22247972

  3. Heme Oxygenase-1 Deficiency Diminishes Methicillin-Resistant Staphylococcus aureus Clearance Due to Reduced TLR9 Expression in Pleural Mesothelial Cells

    PubMed Central

    Gahlot, Satindra; Nasreen, Najmunnisa; Johnson, Judith A.; Sahn, Steven A.; Mohammed, Kamal A.

    2017-01-01

    Methicillin Resistant Staphylococcus aureus (MRSA) cause pneumonia and empyema thoraces. TLR9 activation provides protection against bacterial infections and Heme oxygenase-1 (HO-1) is known to enhance host innate immunity against bacterial infections. However, it is still unclear whether HO-1 regulates TLR-9 expression in the pleura and modulates the host innate defenses during MRSA empyema. In order to determine if HO-1 regulates host innate immune functions via modulating TLR expression, in MRSA empyema, HO-1+/+ and HO-1-/- mouse pleural mesothelial cells (PMCs) were infected with MRSA (1:10, MOI) in the presence or absence of Cobalt Protoporphyrin (CoPP) and Zinc Protoporphyrin (ZnPP) or CORM-2 (a Carbon monoxide donor) and the expression of mTLR9 and mBD14 was assessed by RT-PCR. In vivo, HO-1+/+ and HO-1-/- mice were inoculated with MRSA (5x106 CFU) intra-pleurally and host bacterial load was measured by CFU, and TLR9 expression in the pleura was determined by histochemical-immunostaining. We noticed MRSA inducing differential expression of TLR9 in HO-1+/+ and HO-1 -/- PMCs. In MRSA infected HO-1+/+ PMCs, TLR1, TLR4, and TLR9 expression was several fold higher than MRSA infected HO-1-/- PMCs. Particularly TLR9 expression was very low in MRSA infected HO-1-/- PMCs both in vivo and in vitro. Bacterial clearance was significantly higher in HO-1+/+ PMCs than compared to HO-1-/- PMCs in vitro, and blocking TLR9 activation diminished MRSA clearance significantly. In addition, HO-1-/- mice were unable to clear the MRSA bacterial load in vivo. MRSA induced TLR9 and mBD14 expression was significantly high in HO-1+/+ PMCs and it was dependent on HO-1 activity. Our findings suggest that HO-1 by modulating TLR9 expression in PMCs promotes pleural innate immunity in MRSA empyema. PMID:28052108

  4. Honokiol inhibits c-Met-HO-1 tumor-promoting pathway and its cross-talk with calcineurin inhibitor-mediated renal cancer growth.

    PubMed

    Balan, Murugabaskar; Chakraborty, Samik; Flynn, Evelyn; Zurakowski, David; Pal, Soumitro

    2017-07-19

    Honokiol (HNK) is a small molecule with potent anti-inflammatory and anti-tumorigenic properties; yet the molecular targets of HNK are not well studied. Hyperactivation of the receptor tyrosine kinase c-Met and overexpression of the cytoprotective enzyme heme oxygenase-1 (HO-1) play a critical role in the growth and progression of renal cell carcinoma (RCC). Interestingly, the calcineurin inhibitor (CNI) cyclosporine A (CsA), an immunosuppressant used to prevent allograft rejection, can also increase the risk of RCC in transplant patients. We studied the potential role of c-Met signaling axis on CNI-induced renal tumor growth and tested the anti-tumor efficacy of HNK. Importantly, CNI treatment promoted c-Met induction and enhanced c-Met-induced Ras activation. We found that HNK treatment effectively down-regulated both c-Met phosphorylation and Ras activation in renal cancer cells. It inhibited the expression of both c-Met- and CNI-induced HO-1, and promoted cancer cell apoptosis. In vivo, HNK markedly inhibited CNI-induced renal tumor growth; and it decreased the expression of phospho-c-Met and HO-1 and reduced blood vessel density in tumor tissues. Our results suggest a novel mechanism(s) by which HNK exerts its anti-tumor activity through the inhibition of c-Met-Ras-HO-1 axis; and it can have significant therapeutic potential to prevent post-transplantation cancer in immunosuppressed patients.

  5. Therapeutic potential of HO-1 in autoimmune diseases.

    PubMed

    Li, Bao-Zhu; Guo, Biao; Zhang, Hai-Yan; Liu, Juan; Tao, Sha-Sha; Pan, Hai-Feng; Ye, Dong-Qing

    2014-10-01

    Heme oxygenase-1 (HO-1), the inducible isoform of heme oxygenase (HO), has raised a lot of concerns in recent years due to its multiple functions. HO-1 was found to be a pivotal cytoprotective, antioxidant, anti-apoptotic, immunosuppressive, as well as anti-inflammatory molecule. Recent studies have clarified its significant functions in many diseases with substantial findings. In autoimmune diseases, HO-1 may have promising therapeutic potential. Here, we briefly reviewed recent advances in this field, aiming at hopefully exploring the potential therapeutic roles of HO-1, and design HO-1-based strategies for the treatment of autoimmune diseases.

  6. Mechanistic study on the biological effects of silver and gold nanoparticles in Caco-2 cells--induction of the Nrf2/HO-1 pathway by high concentrations of silver nanoparticles.

    PubMed

    Aueviriyavit, Sasitorn; Phummiratch, Duangkamol; Maniratanachote, Rawiwan

    2014-01-03

    The most commonly used metal nanoparticles (NPs) across diverse applications, including in agro-food applications, include silver (AgNPs) and gold (AuNPs). In the present study, we aimed to investigate the biological responses and possible toxicological effects of AgNPs and AuNPs in the Caco-2 cells as an in vitro human GI tract model. Both AgNPs and AuNPs were internalized into the cytoplasm of Caco-2 cells, but not within the nucleus and only exposure to high concentrations of AgNPs, but not AuNPs, caused acute cytotoxicity and depolarization of the mitochondrial membrane potential. In addition, only AgNPs significantly depleted the total intracellular glutathione level, induced the activation of the stress-responsive gene, Nrf2, and dramatically increased the expression of heme oxygenase-1 (HO-1). Furthermore, siRNA silencing of Nrf2 transcripts significantly reduced the AgNP-induced HO-1 mRNA induction, suggesting a key role for Nrf2 in the control of HO-1 expression. Taken together, AgNPs but not AuNPs induced acute cytotoxicity and cellular responses via the oxidative stress-related activation of Nrf2/HO-1 signaling pathway in Caco-2 cells. The expression of HO-1 transcripts may be useful as a sensitive marker for safety evaluation of AgNPs in the GI tract of humans. Crown Copyright © 2013. Published by Elsevier Ireland Ltd. All rights reserved.

  7. Ethanol Extract of Ganoderma lucidum Augments Cellular Anti-oxidant Defense through Activation of Nrf2/HO-1

    PubMed Central

    Lee, Yoo-hwan; Kim, Jung-hee; Song, Choon-ho; Jang, Kyung-jeon; kim, Cheol-hong; Kang, Ji- Sook; Choi, Yung-hyun

    2016-01-01

    Objectives: The mushroom Ganoderma lucidum has been widely used as a traditional herbal medicine for many years. Although several studies have focused on the anti-oxidative activity of this mushroom, the molecular mechanisms underlying its activity have not yet been clearly established. The present study investigated the cytoprotective effect of ethanol extract of Ganoderma lucidum (EGL) against oxidative stress (hydrogen peroxide, H2O2) and elucidated the underlying mechanisms in a C2C12 myoblast cell line. Methods: Oxidative stress markers were determined by using the comet assay to measure reactive oxygen species (ROS) generation and deoxyribonucleic acid (DNA) damage. Cell viability and Western blotting analyses were employed to evaluate the cellular response to EGL and H2O2 in C2C12 cells. Transfection with nuclear factor erythroid 2-related factor 2 (Nrf2)-specific small interfering ribonucleic acid (siRNA) was conducted to understand the relationship between Nrf2 expression and H2O2-induced growth inhibition. Results: The results showed that EGL effectively inhibited H2O2-induced growth and the generation of ROS. EGL markedly suppressed H2O2-induced comet-like DNA formation and phosphorylation of histone H2AX at serine 139 (p-γH2AX), a widely used marker of DNA damage, suggesting that EGL prevented H2O2-induced DNA damage. Furthermore, the EGL treatment effectively induced the expression of Nrf2, as well as heme oxygenase-1 (HO-1), with parallel phosphorylation and nuclear translocation of Nrf2 in the C2C12 myoblasts. However, zinc protoporphyrin IX, a HO-1 inhibitor, significantly abolished the protective effects of EGL against H2O2-induced accumulation of ROS and reduced cell growth. Notably, transient transfection with Nrf2-specific siRNA attenuated the cytoprotective effects and HO-1 induction by EGL, indicating that EGL induced the expression of HO-1 in an Nrf2-dependent manner. Conclusion: Collectively, these results demonstrate that EGL augments the

  8. Melatonin enhances mitochondrial ATP synthesis, reduces reactive oxygen species formation, and mediates translocation of the nuclear erythroid 2-related factor 2 resulting in activation of phase-2 antioxidant enzymes (γ-GCS, HO-1, NQO1) in ultraviolet radiation-treated normal human epidermal keratinocytes (NHEK).

    PubMed

    Kleszczyński, Konrad; Zillikens, Detlef; Fischer, Tobias W

    2016-09-01

    Melatonin is an ubiquitous molecule with a variety of functions including potent antioxidative properties. Due to its lipophilic character, it easily crosses cellular and intracellular membranes and reaches all subcellular organelles. Because of its ability to scavenge free radicals, melatonin protects against oxidative stress, for example, induced by ultraviolet radiation (UVR). Here, we investigated, in a dose-dependent (0, 10, 25, and 50 mJ/cm(2) ) and time-dependent (0, 4, 24, 48 hr post-UVR) manner, whether melatonin prevents the UVR-mediated alterations in ATP synthesis and the generation of reactive oxygen species (ROS) in normal human epidermal keratinocytes (NHEK). Additionally, we evaluated the molecular mechanism of action of melatonin with regard to activation of phase-2 antioxidative enzymes via nuclear erythroid 2-related factor (Nrf2). We found that (i) melatonin counteracted UVR-induced alterations in the ATP synthesis and reduced free radical formation; (ii) melatonin induced the translocation of Nrf2 transcription factor from the cytosol into the nucleus resulting in, (iii) melatonin enhanced gene expression of phase-2 antioxidative enzymes including γ-glutamylcysteine synthetase (γ-GCS), heme oxygenase-1 (HO-1), and NADPH: quinone dehydrogenase-1 (NQO1) representing an elevated antioxidative response of keratinocytes. These results suggest that melatonin not only directly scavenges ROS, but also significantly induces the activation of phase-2 antioxidative enzymes via the Nrf2 pathway uncovering a new action mechanism that supports the ability of keratinocytes to protect themselves from UVR-mediated oxidative stress. © 2016 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  9. The anti-inflammatory effects of E-α-(p-methoxyphenyl)-2',3,4,4'-tetramethoxychalcone are mediated via HO-1 induction.

    PubMed

    Kaufmann, Kai B; Gothwal, Monika; Schallner, Nils; Ulbrich, Felix; Rücker, Hannelore; Amslinger, Sabine; Goebel, Ulrich

    2016-06-01

    Inflammation plays a central role in the pathophysiology of many diseases. The inducible enzyme heme oxygenase-1 (HO-1) protects cells against inflammation and can be induced by electrophilic compounds like the chalcones (1,3-diphenylprop-2-enones) from the class of α,β-unsaturated carbonyl compounds. We hypothesized that the synthetic chalcone E-α-(p-methoxyphenyl)-2',3,4,4'-tetramethoxychalcone (E-α-p-OMe-C6H4-TMC) exerts anti-inflammatory effects in RAW264.7, Jurkat lymphocytes and HK-2 cells via HO-1 induction. RAW264.7 cells were treated with lipopolysaccharide prior to E-α-p-OMe-C6H4-TMC treatment. Subsequently, HO-1 protein induction and activity were analyzed, as well as expression of pro- and anti-inflammatory mediators, transcription factors and mitogen-activated protein kinases to evaluate the possible molecular mechanism. These results were confirmed in human cell lines (Jurkat T-lymphocytes and HK-2 epithelial cells). We found that the E-α-p-OMe-C6H4-TMC exerts significant anti-inflammatory effects in a dose dependent manner, showing no toxic effects in LPS-treated RAW264.7 macrophages. E-α-p-OMe-C6H4-TMC induced HO-1 and SOD-1 protein expression and HO-1 enzyme activity, reduced the upregulation of COX-2 and iNOS, while inducing the translocation of Nrf2. NF-κB activity was attenuated following E-α-p-OMe-C6H4-TMC treatment accompanied by the downregulation of proinflammatory cytokines IL-1β, IL-6 and MCP-1. Pretreatment with E-α-p-OMe-C6H4-TMC revealed significant changes in phosphorylation of ERK and p38, but not JNK. These anti-inflammatory effects of E-α-p-OMe-C6H4-TMC were approved in Jurkat and HK-2 cells, furthermore revealing a downregulation of IL-8 and IL-10. In conclusion, it is tempting to speculate about E-α-p-OMe-C6H4-TMC as a new and non-toxic agent, inducing HO-1 in cells. This opens up new opportunities regarding the development of therapeutic agents using beneficial effects of HO-1 and its products. Copyright © 2016

  10. The role of HO-1 in protection against lead-induced neurotoxicity.

    PubMed

    Li, Xiaoyi; Ye, Fang; Li, Lili; Chang, Wei; Wu, Xiongwen; Chen, Jun

    2016-01-01

    Lead is a pervasive and persistent environmental pollutant that exerts deleterious effects on all living organisms and continues to threaten public health on a global scale. Heme oxygenase-1 (HO-1) is a stress-inducible enzyme that mediates antioxidative and cytoprotective effects to maintain cellular redox homeostasis and protect cells from oxidative stress. This study was designed to explore the role of HO-1 in protection against lead neurotoxicity and the signaling pathways involved. Lead acetate (PbAc) exposure resulted in increased HO-1 expression in primary rat hippocampal neurons and SH-SY5Y cells. PbAc-induced intracellular reactive oxygen species (ROS) also increased, and cell viability decreased in SH-SY5Y cells. We further demonstrated that HO-1 could be induced by PbAc through the P38, ERK1/2, and PI3K/AKT signaling pathways in a ROS-dependent manner and through the JNK pathway in a ROS-independent manner. Further investigation revealed that HO-1 overexpression significantly restrained cell apoptosis and ROS production induced by PbAc in SH-SY5Y cells. Moreover, HO-1 knockdown aggravated PbAc-induced cell apoptosis and ROS production. Our results indicated that HO-1 was a novel protective factor that could efficiently inhibit PbAc-induced oxidative stress and cell death in the nervous system, thereby providing the potential therapeutic strategies for the prevention and treatment of lead-related diseases. Copyright © 2015 Elsevier Inc. All rights reserved.

  11. Diallyl-disulfide, an organosulfur compound of garlic, attenuates airway inflammation via activation of the Nrf-2/HO-1 pathway and NF-kappaB suppression.

    PubMed

    Shin, In-Sik; Hong, Jumi; Jeon, Chan-Mi; Shin, Na-Rae; Kwon, Ok-Kyoung; Kim, Hui-Seong; Kim, Jong-Choon; Oh, Sei-Ryang; Ahn, Kyung-Seop

    2013-12-01

    Diallyl disulfide (DADS) is a major organosulfur compound found in garlic oil that is widely used as a flavoring agent. In this study, we evaluated the effects of DADS on airway inflammation using an ovalbumin-induced model of allergic asthma and RAW264.7 cells. DADS decreased nitric oxide production with a reduction in the levels of interleukins (IL)-1β and IL-6 in RAW264.7 cells stimulated with LPS. DADS also reduced the expression of proinflammatory proteins including inducible nitric oxide synthase (iNOS), nuclear factor (NF)-κB, and matrix metalloproteinase (MMP)-9, and it enhanced the expression of antioxidant proteins including Nrf-2 and hemeoxygenase (HO)-1. In in vivo experiments, DADS decreased the inflammatory cell count in the bronchoalveolar lavage fluid (BALF) with IL-4, IL-5, IL-13, and immunoglobulin (Ig) E. These results were consistent with the histological analysis. DADS attenuated the airway inflammation and mucus hypersecretion induced by OVA challenge. In addition, DADS induced the activation of Nrf-2 and the expression of HO-1. In contrast, DADS reduced the activation of NF-κB, iNOS and MMP-9. In conclusion, DADS reduced the airway inflammation via regulation of Nrf-2/HO-1 and NF-κB. These results suggest that DADS might represent a useful new oral therapy to treat allergic asthma. Copyright © 2013 Elsevier Ltd. All rights reserved.

  12. HO-1, RET and PML as possible markers for risk stratification of acute myelocytic leukemia and prognostic evaluation.

    PubMed

    Yu, Meisheng; Wang, Jishi; Ma, Dan; Chen, Shuya; Lin, Xiaojing; Fang, Qin; Zhe, Nana

    2015-11-01

    Heme oxygenase-1 (HO-1) is an inducible isoform of HO that is activated in response to oxidative stress and has anti-apoptotic and pro-proliferative effects on leukemia cells. RET, a tyrosine kinase receptor; its expression levels are associated with the differentiation degree of acute myelocytic leukemia (AML) cells. The promyelocytic leukemia (PML) gene inhibits cell proliferation and tumor growth, participates in the differentiation of hematopoietic progenitor cells and induces cell apoptosis. However, the association between the expression levels of HO-1, RET and PML genes and the risk stratification of AML and prognosis have not previously been reported. In the present study, HO-1 was expressed in the human AML Kasumi-1, HL-60 and THP-1 cell lines, and HO-1 expression was regulated by Hemin (20 µmol/l) and ZnPPIX (10 µmol/l). Reverse transcription-quantitative polymerase chain reaction (RT-qPCR) analysis demonstrated that expression of RET and PML were positively and negatively correlated with HO-1 expression, respectively. Bone marrow samples (18 favorable, 55 intermediate, 15 adverse and 2 unknown karyotype AML cases and 20 healthy donors) were collected from 90 randomly selected AML patients upon their first visit. The mRNA and protein expression of HO-1, RET and PML in samples was detected by RT-qPCR and western blot analysis. At the mRNA level, the adverse group expressed significantly higher levels of HO-1 and RET compared with the levels in the favorable and normal groups. The PML mRNA expression levels in adverse patient samples was lower compared with those of the intermediate group and favorable group. Western blot analysis demonstrated that the expression levels of HO-1, RET and PML proteins in all risk groups exhibited the same pattern of expression as was observed for the mRNA levels. The overall survival and relapse-free survival rates were shortest in AML patients with high HO-1 expression (Kaplan-Meier; log-rank, P<0.01). The results of the

  13. Knockout of ho-1 protects the striatum from ferrous iron-induced injury in a male-specific manner in mice

    PubMed Central

    Wang, Li-Fang; Yokoyama, Kazunari K.; Lin, Chih-Lung; Chen, Tzu-Yin; Hsiao, Hsiu-Wen; Chiang, Pei-Chi; Hsu, Chin

    2016-01-01

    Men have worse survival than premenopausal women after intracerebral hemorrhage (ICH). After ICH, overproduction of iron associated with induction of heme oxygenase-1 (HO-1) in brain was observed. Rodent ICH model using ferrous citrate (FC)-infusion into the striatum to simulate iron overload, showed a higher degree of injury severity in males than in females. However, the participation of HO-1 in sex-differences of iron-induced brain injury remains unknown. The present results showed a higher level of HO-1 expression associated with more severe injury in males compared with females after FC-infusion. Estradiol (E2) contributed to lower levels of FC-induced HO-1 expression in females compared with males. Heterozygote ho-1 KO decreased the levels of FC-induced injury severity, histological lesions, behavioral deficits, autophagy and autophagic cell death in the striatum of males but not in females. Moreover, ho-1 deficiency enhanced the neuroprotection by E2 only in males. These results suggested that over induction of HO-1 plays a harmful role in FC-induced brain injury in a male-specific manner. Suppression of HO-1 combined with E2 exhibits a synergistic effect on neuroprotection against FC-induced striatal injury in males. These findings open up the prospect for male-specific neuroprotection targeting HO-1 suppression for patients suffering from striatal iron overload. PMID:27198537

  14. Knockout of ho-1 protects the striatum from ferrous iron-induced injury in a male-specific manner in mice.

    PubMed

    Wang, Li-Fang; Yokoyama, Kazunari K; Lin, Chih-Lung; Chen, Tzu-Yin; Hsiao, Hsiu-Wen; Chiang, Pei-Chi; Hsu, Chin

    2016-05-20

    Men have worse survival than premenopausal women after intracerebral hemorrhage (ICH). After ICH, overproduction of iron associated with induction of heme oxygenase-1 (HO-1) in brain was observed. Rodent ICH model using ferrous citrate (FC)-infusion into the striatum to simulate iron overload, showed a higher degree of injury severity in males than in females. However, the participation of HO-1 in sex-differences of iron-induced brain injury remains unknown. The present results showed a higher level of HO-1 expression associated with more severe injury in males compared with females after FC-infusion. Estradiol (E2) contributed to lower levels of FC-induced HO-1 expression in females compared with males. Heterozygote ho-1 KO decreased the levels of FC-induced injury severity, histological lesions, behavioral deficits, autophagy and autophagic cell death in the striatum of males but not in females. Moreover, ho-1 deficiency enhanced the neuroprotection by E2 only in males. These results suggested that over induction of HO-1 plays a harmful role in FC-induced brain injury in a male-specific manner. Suppression of HO-1 combined with E2 exhibits a synergistic effect on neuroprotection against FC-induced striatal injury in males. These findings open up the prospect for male-specific neuroprotection targeting HO-1 suppression for patients suffering from striatal iron overload.

  15. Unveiling the Association of STAT3 and HO-1 in Prostate Cancer: Role beyond Heme Degradation1

    PubMed Central

    Elguero, Belen; Gueron, Geraldine; Giudice, Jimena; Toscani, Martin A; De Luca, Paola; Zalazar, Florencia; Coluccio-Leskow, Federico; Meiss, Roberto; Navone, Nora; De Siervi, Adriana; Vazquez, Elba

    2012-01-01

    Activation of the androgen receptor (AR) is a key step in the development of prostate cancer (PCa). Several mechanisms have been identified in AR activation, among them signal transducer and activator of transcription 3 (STAT3) signaling. Disruption of STAT3 activity has been associated to cancer progression. Recent studies suggest that heme oxygenase 1 (HO-1) may play a key role in PCa that may be independent of its catalytic function. We sought to explore whether HO-1 operates on AR transcriptional activity through the STAT3 axis. Our results display that HO-1 induction in PCa cells represses AR activation by decreasing the prostate-specific antigen (PSA) promoter activity and mRNA levels. Strikingly, this is the first report to show by chromatin immunoprecipitation analysis that HO-1 associates to gene promoters, revealing a novel function for HO-1 in the nucleus. Furthermore, HO-1 and STAT3 directly interact as determined by co-immunoprecipitation studies. Forced expression of HO-1 increases STAT3 cytoplasmic retention. When PCa cells were transfected with a constitutively active STAT3 mutant, PSA and STAT3 downstream target genes were abrogated under hemin treatment. Additionally, a significant decrease in pSTAT3 protein levels was detected in the nuclear fraction of these cells. Confocal microscopy images exhibit a decreased rate of AR/STAT3 nuclear co-localization under hemin treatment. In vivo studies confirmed that STAT3 nuclear delimitation was significantly decreased in PC3 tumors overexpressing HO-1 grown as xenografts in nude mice. These results provide a novel function for HO-1 down-modulating AR transcriptional activity in PCa, interfering with STAT3 signaling, evidencing its role beyond heme degradation. PMID:23226098

  16. Role of HO-1 in protective effect of electro-acupuncture against endotoxin shock-induced acute lung injury in rabbits.

    PubMed

    Yu, Jian-Bo; Jianbo, Yu; Dong, Shu-An; Shuan, Dong; Luo, Xiao-Qing; Xiaoqing, Luo; Gong, Li-Rong; Lirong, Gong; Zhang, Yuan; Yuan, Zhang; Wang, Man; Man, Wang; Cao, Xin-Shun; Xinshun, Cao; Liu, Da-Quan; Daquan, Liu

    2013-06-01

    Heme oxygenase (HO)-1 has been reported to play a great role in attenuating lung injury during endotoxic shock in our previous research. Although electro-acupuncture has been explored to reduce oxidative stress and decrease inflammatory reaction in animals with endotoxic shock, the mechanism of this effect is still unclear. The aim of this study was to determine whether HO-1 is involved in the effect of electro-acupuncture on the injured lung during endotoxic shock in rabbits. Sixty New England white rabbits were randomly divided into groups C, Z, ES, EA, AP, and EAZ. Before inducing endotoxic shock, group ES received no electro-acupuncture, while group EA received electro-acupuncture at ST36 (zusanli) and BL13 (feishu) acupoints on both sides for five days and group AP received electro-acupuncture (EA) stimulation at a non-acupoint. Groups ES, AP, EA, and EAZ received LPS to replicate the experimental model of injured lung induced by endotoxic shock, and electro-acupuncture was performed throughout the procedure with the same parameter. Groups EAZ and Z received the HO-1 inhibitor, ZnPP-IX, intraperitoneally. The animals were sacrificed by blood-letting at 6 h after LPS administration. The blood samples were collected for serum examination, and the lungs were removed for pathology examination, detection of alveolaer epithelial cell apoptosis by terminal deoxynucleotidyl transferase-mediated dUTP-biotin nick end labeling assay (TUNEL assay), determination of wet to dry ratio, measurement of Evans blue (EB) contents, and determination of HO-1protein and mRNA expression. According to the results, EA at ST36 and BL13 could increase the expression of HO-1. At the same time, index of quantitative assessment (IQA) score and the number of TUNEL-positive cells decreased, while electro-acupuncture at the other points did not exert this effect, and pretreatment with ZnPP-IX in group EAZ suppressed the efficacy of electro-acupuncture preconditioning. In summary, electro

  17. NO counterbalances HO-1 overexpression-induced acceleration of hepatocyte proliferation in mice.

    PubMed

    Schuett, Harald; Eipel, Christian; Maletzki, Claudia; Menger, Michael D; Vollmar, Brigitte

    2007-06-01

    The trigger for liver regeneration, including shear stress, has been the subject of ongoing debate. Blood vessel-derived gaseous molecules carbon monoxide (CO) and nitric oxide (NO) regulate vascular tone and play an important role in liver regeneration. In heme oxygenase-1 (HO-1) transgenic mice, it has been shown that CO-mediated impairment of vasorelaxation is an NO-dependent event. We therefore studied liver regeneration in HO-1 overexpressing animals in dependency of NO availability. Mice were subjected to (2/3) hepatectomy and were treated with either cobalt protoporphyrin-IX for induction of CO-liberating HO-1, N(omega)-nitro-L-arginine methyl ester (L-NAME) for blockade of NO synthase (NOS) or both. Application of molsidomine in L-NAME treated animals served for resubstitution of NO. Vehicle-treated animals served as respective control animals. We examined 5-bromo-2'-deoxyuridine incorporation and proliferating cell nuclear antigen expression as well as HO-1 and NOS-2 protein levels. Intrahepatic red blood cell velocity and volumetric blood flow were evaluated by in vivo fluorescence microscopy as indicators for microvascular shear stress. Hepatic regeneration remained unaffected by L-NAME application for NOS blockade. However, NOS blockade in HO-1 induced animals caused increased 5-bromo-2'-deoxyuridine and proliferating cell nuclear antigen measures of liver regeneration. In parallel, these animals revealed increased velocities and volumetric blood flow in the terminal afferent vessels and postsinusoidal venules. These local hemodynamic changes including enhanced hepatocyte proliferation could be reversed by NO liberation via molsidomine. The present findings stress the role of NO to counterbalance vascular tone in HO-1 overexpressing animals for maintenance of adequate perfusion and salutary shear force within the hepatic microvasculature upon liver resection.

  18. Catalase prevents maternal diabetes-induced perinatal programming via the Nrf2-HO-1 defense system.

    PubMed

    Chang, Shiao-Ying; Chen, Yun-Wen; Zhao, Xin-Ping; Chenier, Isabelle; Tran, Stella; Sauvé, Alexandre; Ingelfinger, Julie R; Zhang, Shao-Ling

    2012-10-01

    We investigated whether overexpression of catalase (CAT) in renal proximal tubular cells (RPTCs) could prevent the programming of hypertension and kidney disease in the offspring of dams with maternal diabetes. Male offspring of nondiabetic and diabetic dams from two transgenic (Tg) lines (Hoxb7-green fluorescent protein [GFP]-Tg [controls] and Hoxb7/CAT-GFP-Tg, which overexpress CAT in RPTCs) were studied from the prenatal period into adulthood. Nephrogenesis, systolic blood pressure, renal hyperfiltration, kidney injury, and reactive oxygen species (ROS) generation were assessed. Gene expression of transforming growth factor-β1 (TGF-β1), nuclear factor erythroid 2p45-related factor-2 (Nrf2), and heme oxygenase-1 (HO-1) was tested in both in vitro and in vivo studies. Renal dysmorphogenesis was observed in offspring of Hoxb7-GFP-Tg dams with severe maternal diabetes; the affected male offspring displayed higher renal ROS generation and developed hypertension and renal hyperfiltration as well as renal injury with heightened TGF-β1 expression in adulthood. These changes were ameliorated in male offspring of diabetic Hoxb7/CAT-GFP-Tg dams via the Nrf2-HO-1 defense system. CAT promoted Nrf2 nuclear translocation and HO-1 gene expression, seen in both in vitro and in vivo studies. In conclusion, CAT overexpression in the RPTCs ameliorated maternal diabetes-induced perinatal programming, mediated, at least in part, by triggering the Nrf2-HO-1 defense system.

  19. EET intervention on Wnt1, NOV, and HO-1 signaling prevents obesity-induced cardiomyopathy in obese mice.

    PubMed

    Cao, Jian; Singh, Shailendra P; McClung, John A; Joseph, Gregory; Vanella, Luca; Barbagallo, Ignazio; Jiang, Houli; Falck, John R; Arad, Michael; Shapiro, Joseph I; Abraham, Nader G

    2017-08-01

    We have previously reported that epoxyeicosatrienoic acid (EET) has multiple beneficial effects on vascular function; in addition to its antiapoptotic action, it increases insulin sensitivity and inhibits inflammation. To uncover the signaling mechanisms by which EET reduces cardiomyopathy, we hypothesized that EET infusion might ameliorate obesity-induced cardiomyopathy by improving heme oxygenase (HO)-1, Wnt1, thermogenic gene levels, and mitochondrial integrity in cardiac tissues and improved pericardial fat phenotype. EET reduced levels of fasting blood glucose and proinflammatory adipokines, including nephroblastoma overexpressed (NOV) signaling, while increasing echocardiographic fractional shortening and O2 consumption. Of interest, we also noted a marked improvement in mitochondrial integrity, thermogenic genes, and Wnt 1 and HO-1 signaling mechanisms. Knockout of peroxisome proliferator-activated receptor-γ coactivator-1α (PGC-1α) in EET-treated mice resulted in a reversal of these beneficial effects including a decrease in myocardial Wnt1 and HO-1 expression and an increase in NOV. To further elucidate the effects of EET on pericardial adipose tissues, we observed EET treatment increases in adiponectin, PGC-1α, phospho-AMP-activated protein kinase, insulin receptor phosphorylation, and thermogenic genes, resulting in a "browning" pericardial adipose phenotype under high-fat diets. Collectively, these experiments demonstrate that an EET agonist increased Wnt1 and HO-1 signaling while decreasing NOV pathways and the progression of cardiomyopathy. Furthermore, this report presents a portal into potential therapeutic approaches for the treatment of heart failure and metabolic syndrome.NEW & NOTEWORTHY The mechanism by which EET acts on obesity-induced cardiomyopathy is unknown. Here, we describe a previously unrecognized function of EET infusion that inhibits nephroblastoma overexpressed (NOV) levels and activates Wnt1, hence identifying NOV inhibition

  20. Sulforaphane preconditioning of the Nrf2/HO-1 defense pathway protects the cerebral vasculature against blood-brain barrier disruption and neurological deficits in stroke.

    PubMed

    Alfieri, Alessio; Srivastava, Salil; Siow, Richard C M; Cash, Diana; Modo, Michel; Duchen, Michael R; Fraser, Paul A; Williams, Steven C R; Mann, Giovanni E

    2013-12-01

    Disruption of the blood-brain barrier (BBB) and cerebral edema are the major pathogenic mechanisms leading to neurological dysfunction and death after ischemic stroke. The brain protects itself against infarction via activation of endogenous antioxidant defense mechanisms, and we here report the first evidence that sulforaphane-mediated preactivation of nuclear factor erythroid 2-related factor 2 (Nrf2) and its downstream target heme oxygenase-1 (HO-1) in the cerebral vasculature protects the brain against stroke. To induce ischemic stroke, Sprague-Dawley rats were subjected to 70 min middle cerebral artery occlusion (MCAo) followed by 4, 24, or 72 h reperfusion. Nrf2 and HO-1 protein expression was upregulated in cerebral microvessels of peri-infarct regions after 4-72 h, with HO-1 preferentially associated with perivascular astrocytes rather than the cerebrovascular endothelium. In naïve rats, treatment with sulforaphane increased Nrf2 expression in cerebral microvessels after 24h. Upregulation of Nrf2 by sulforaphane treatment prior to transient MCAo (1h) was associated with increased HO-1 expression in perivascular astrocytes in peri-infarct regions and cerebral endothelium in the infarct core. BBB disruption, lesion progression, as analyzed by MRI, and neurological deficits were reduced by sulforaphane pretreatment. As sulforaphane pretreatment led to a moderate increase in peroxynitrite generation, we suggest that hormetic preconditioning underlies sulforaphane-mediated protection against stroke. In conclusion, we propose that pharmacological or dietary interventions aimed to precondition the brain via activation of the Nrf2 defense pathway in the cerebral microvasculature provide a novel therapeutic approach for preventing BBB breakdown and neurological dysfunction in stroke. Crown Copyright © 2013. Published by Elsevier Inc. All rights reserved.

  1. Ginkgolide B protects against cisplatin-induced ototoxicity: enhancement of Akt-Nrf2-HO-1 signaling and reduction of NADPH oxidase.

    PubMed

    Ma, Weijun; Hu, Juan; Cheng, Ying; Wang, Junli; Zhang, Xiaotong; Xu, Min

    2015-05-01

    Cisplatin is a widely used chemotherapeutic drug for the treatment of various cancers. However, the ototoxicity severely limited its maximum dose. The present study was designed to evaluate the effect of Ginkgolide B (GB), a major component of Ginkgo biloba extracts, on cisplatin-induced ototoxicity and to elucidate the molecular mechanism in vitro and in vivo. In HEI-OC1 auditory cells, GB concentration-dependently inhibited the reduction of cell viability and increase in apoptosis exerted by cisplatin. Cisplatin-activated mitochondrial apoptotic molecular events were significantly inhibited by GB. In addition, GB notably suppressed the increase in NOX2 and p47(phox) expression and the decrease in nuclear factor erythroid 2-related factor 2 (Nrf2) and heme oxygenase-1 (HO-1) expression in cisplatin-exposed cells. Inhibition of Nrf2 using SiRNA and blockage of HO-1 by zinc protoporphyrin IX (ZnPP) suppressed the protective effects of GB. Moreover, GB prevented cisplatin-induced reduction of Akt phosphorylation and LY294002, an inhibitor of PI3 K/Akt signaling, blocked the anti-apoptotic effect of GB in cisplatin-treated cells. Furthermore, the protective effect of GB was tested in cisplatin-exposed rats. GB treatment markedly protected animals against cisplatin-induced hearing loss and vestibular dysfunction. Inhibition of Akt and HO-1 significantly suppressed the improvement in hearing loss and vestibular dysfunction in GB-treated rats. We demonstrate that GB decreases ROS generation through reducing NOX2 expression and enhancing activity through Akt-Nrf2-HO-1 pathway, resulting in inhibition of mitochondrial apoptosis and final reduction of cisplatin-induced ototoxicity in vitro and in vivo. Our findings have gained an insight into the mechanism of GB-exerted protective effect against cisplatin-induced ototoxicity.

  2. Zinc mesoporphyrin induces rapid and marked degradation of the transcription factor Bach1 and up-regulates HO-1.

    PubMed

    Hou, Weihong; Shan, Ying; Zheng, Jianyu; Lambrecht, Richard W; Donohue, Susan E; Bonkovsky, Herbert L

    2008-03-01

    Heme oxygenase 1 (HO-1) is the first and rate-controlling enzyme in heme degradation. Bach1 is a mammalian transcriptional repressor of HO-1. To understand how zinc mesoporphyrin (ZnMP) induces the expression of HO-1, we investigated the effects of ZnMP on Bach1 mRNA and protein levels in human hepatoma Huh-7 cells by quantitative RT-PCR and Western blots. We found that ZnMP markedly up-regulated HO-1 mRNA and protein levels, and rapidly and significantly decreased Bach1 protein levels by increasing degradation of Bach1 protein [half life (t(1/2)) from 19 h to 45 min], whereas ZnMP did not influence Bach1 mRNA levels. The proteasome inhibitors, epoxomicin and MG132, significantly inhibited degradation of Bach1 by ZnMP in a dose-dependent fashion, indicating that the degradation of Bach1 by ZnMP is proteasome-dependent. Purified Bach1 C-terminal fragment bound heme, but there was no evidence for binding of ZnMP to the heme-binding region of Bach1. In conclusion, ZnMP produces profound post-transcriptional down-regulation of Bach1 protein levels and transcriptional up-regulation of HO-1. Our results indicate that ZnMP up-regulates HO-1 gene expression by markedly increasing Bach1 protein degradation in a proteasome-dependent manner.

  3. Melatonin prevents hemorrhagic shock-induced liver injury in rats through an Akt-dependent HO-1 pathway.

    PubMed

    Hsu, Jun-Te; Kuo, Chia-Jung; Chen, Tsung-Hsing; Wang, Frank; Lin, Chun-Jun; Yeh, Ta-Sen; Hwang, Tsann-Long; Jan, Yi-Yin

    2012-11-01

    Although melatonin treatment following trauma-hemorrhage or ischemic reperfusion prevents organs from dysfunction and injury, the precise mechanism remains unknown. This study tested whether melatonin prevents liver injury following trauma-hemorrhage involved the protein kinase B (Akt)-dependent heme oxygenase (HO)-1 pathway. After a 5-cm midline laparotomy, male rats underwent hemorrhagic shock (mean blood pressure approximately 40 mmHg for 90 min) followed by fluid resuscitation. At the onset of resuscitation, rats were treated with vehicle, melatonin (2 mg/kg), or melatonin plus phosphoinositide 3-kinase (PI3K) inhibitor wortmannin (1 mg/kg). At 2 hr after trauma-hemorrhage, the liver tissue myeloperoxidase activity, malondialdehyde, adenosine triphosphate, serum alanine aminotransferase, and aspartate aminotransferase levels were significantly increased compared with sham-operated control. Trauma-hemorrhage resulted in a significant decrease in the Akt activation in comparison with the shams (relative density, 0.526 ± 0.031 versus 1.012 ± 0.066). Administration of melatonin following trauma-hemorrhage normalized liver Akt phosphorylation (0.993 ± 0.061), further increased mammalian target of rapamycin (mTOR) activation (5.263 ± 0.338 versus 2.556 ± 0.225) and HO-1 expression (5.285 ± 0.325 versus 2.546 ± 0.262), and reduced cleaved caspase-3 levels (2.155 ± 0.297 versus 5.166 ± 0.309). Coadministration of wortmannin abolished the melatonin-mediated attenuation of the shock-induced liver injury markers. Our results collectively suggest that melatonin prevents hemorrhagic shock-induced liver injury in rats through an Akt-dependent HO-1 pathway.

  4. Nelumbo nucifera leaves protect hydrogen peroxide-induced hepatic damage via antioxidant enzymes and HO-1/Nrf2 activation.

    PubMed

    Je, Jae-Young; Lee, Da-Bin

    2015-06-01

    Naturally occurring phenolic compounds are widely found in plants. Here, the phenolic composition and hepatoprotective effect of the butanolic extract (BE) from Nelumbo nucifera leaves against H2O2-induced hepatic damage in cultured hepatocytes were investigated. BE showed high total phenol and flavonoid contents, and major phenolic compounds are quercetin, catechin, ferulic acid, rutin, and protocatechuic acid by HPLC analysis. BE effectively scavenged 2,2-diphenyl-1-picrylhydrazyl (DPPH) and 2,2-azino-bis(3-ethylbenzthiazoline)-6-sulfonic acid (ABTS) cation radicals (IC50 values of 5.21 μg mL(-1) for DPPH and 6.22 μg mL(-1) for ABTS(+)) and showed strong reducing power. Pretreatment of BE prior to 650 μM H2O2 exposure markedly increased cell viability and suppressed H2O2-induced intracellular reactive oxygen species generation and AAPH-induced cell membrane lipid peroxidation. In addition, BE up-regulated intracellular glutathione levels under normal and oxidative stress conditions. Notably, the hepatoprotective effect of BE was directly correlated with the increased expression of superoxide dismutase-1 (SOD-1) by 0.62-fold, catalase (CAT) by 0.42-fold, and heme oxygenase-1 (HO-1) by 2.4-fold. Pretreatment of BE also increased the nuclear accumulation of Nrf2 by 8.1-fold indicating that increased SOD-1, CAT, and HO-1 expressions are Nrf2-mediated.

  5. Antrodia camphorata Potentiates Neuroprotection against Cerebral Ischemia in Rats via Downregulation of iNOS/HO-1/Bax and Activated Caspase-3 and Inhibition of Hydroxyl Radical Formation

    PubMed Central

    Yang, Po-Sheng; Lin, Po-Yen; Chang, Chao-Chien; Yu, Meng-Che; Yen, Ting-Lin; Lan, Chang-Chou; Jayakumar, Thanasekaran; Yang, Chih-Hao

    2015-01-01

    Antrodia camphorata (A. camphorata) is a fungus generally used in Chinese folk medicine for treatment of viral hepatitis and cancer. Our previous study found A. camphorata has neuroprotective properties and could reduce stroke injury in cerebral ischemia animal models. In this study, we sought to investigate the molecular mechanisms of neuroprotective effects of A. camphorata in middle cerebral artery occlusion (MCAO) rats. A selective occlusion of the middle cerebral artery (MCA) with whole blood clots was used to induce ischemic stroke in rats and they were orally treated with A. camphorata (0.25 and 0.75 g/kg/day) alone or combined with aspirin (5 mg/kg/day). To provide insight into the functions of A. camphorata mediated neuroprotection, the expression of Bax, inducible nitric oxide synthase (iNOS), haem oxygenase-1 (HO-1), and activated caspase-3 was determined by Western blot assay. Treatment of aspirin alone significantly reduced the expressions of HO-1 (P < 0.001), iNOS (P < 0.001), and Bax (P < 0.01) in ischemic regions. The reduction of these expressions was more potentiated when rats treated by aspirin combined with A. camphorata (0.75 g/kg/day). Combination treatment also reduced apoptosis as measured by a significant reduction in active caspase-3 expression in the ischemic brain compared to MCAO group (P < 0.01). Moreover, treatment of A. camphorata significantly (P < 0.05) reduced fenton reaction-induced hydroxyl radical (OH•) formation at a dose of 40 mg/mL. Taken together, A. camphorata has shown neuroprotective effects in embolic rats, and the molecular mechanisms may correlate with the downregulation of Bax, iNOS, HO-1, and activated caspase-3 and the inhibition of OH• signals. PMID:26379739

  6. Antrodia camphorata Potentiates Neuroprotection against Cerebral Ischemia in Rats via Downregulation of iNOS/HO-1/Bax and Activated Caspase-3 and Inhibition of Hydroxyl Radical Formation.

    PubMed

    Yang, Po-Sheng; Lin, Po-Yen; Chang, Chao-Chien; Yu, Meng-Che; Yen, Ting-Lin; Lan, Chang-Chou; Jayakumar, Thanasekaran; Yang, Chih-Hao

    2015-01-01

    Antrodia camphorata (A. camphorata) is a fungus generally used in Chinese folk medicine for treatment of viral hepatitis and cancer. Our previous study found A. camphorata has neuroprotective properties and could reduce stroke injury in cerebral ischemia animal models. In this study, we sought to investigate the molecular mechanisms of neuroprotective effects of A. camphorata in middle cerebral artery occlusion (MCAO) rats. A selective occlusion of the middle cerebral artery (MCA) with whole blood clots was used to induce ischemic stroke in rats and they were orally treated with A. camphorata (0.25 and 0.75 g/kg/day) alone or combined with aspirin (5 mg/kg/day). To provide insight into the functions of A. camphorata mediated neuroprotection, the expression of Bax, inducible nitric oxide synthase (iNOS), haem oxygenase-1 (HO-1), and activated caspase-3 was determined by Western blot assay. Treatment of aspirin alone significantly reduced the expressions of HO-1 (P < 0.001), iNOS (P < 0.001), and Bax (P < 0.01) in ischemic regions. The reduction of these expressions was more potentiated when rats treated by aspirin combined with A. camphorata (0.75 g/kg/day). Combination treatment also reduced apoptosis as measured by a significant reduction in active caspase-3 expression in the ischemic brain compared to MCAO group (P < 0.01). Moreover, treatment of A. camphorata significantly (P < 0.05) reduced fenton reaction-induced hydroxyl radical (OH(•)) formation at a dose of 40 mg/mL. Taken together, A. camphorata has shown neuroprotective effects in embolic rats, and the molecular mechanisms may correlate with the downregulation of Bax, iNOS, HO-1, and activated caspase-3 and the inhibition of OH(•) signals.

  7. Protective Effect of Decursin Extracted from Angelica gigas in Male Infertility via Nrf2/HO-1 Signaling Pathway.

    PubMed

    Bae, Woong Jin; Ha, U Syn; Choi, Jin Bong; Kim, Kang Sup; Kim, Su Jin; Cho, Hyuk Jin; Hong, Sung Hoo; Lee, Ji Youl; Wang, Zhiping; Hwang, Sung Yeoun; Kim, Sae Woong

    2016-01-01

    Higher testicular temperature results in altered spermatogenesis due to heat-related oxidative stress. We examined the effects of decursin extracted from Angelica gigas Nakai on antioxidant activity in vitro and in a cryptorchidism-induced infertility rat model. TM3 Leydig cell viability was measured based on oxidative stress according to treatment. Either distilled water or AG 400 mg/kg of A. gigas extract was administered orally for 4 weeks after unilateral cryptorchidism was induced. After 1, 2, and 4 weeks, six rats from the control group and six rats from treatment group were sacrificed. Testicular weight, semen quality, antioxidant activities, nuclear factor erythroid 2-related factor 2 (Nrf2) protein, and mRNA expression of Nrf2-regulated genes were analyzed. Treatment with A. gigas extract (1) protected TM3 cells against oxidative stress in a dose-dependent manner, (2) improved the mean weight of the cryptorchid testis, (3) maintained sperm counts, motility, and spermatogenic cell density, (4) decreased levels of 8-hydroxy-2-deoxyguanosine (8-OHdG) and increased levels of superoxide dismutase (SOD), (5) significantly increased Nrf2 and heme oxygenase-1 (HO-1), and (6) significantly decreased apoptosis. This study suggests that decursin extracted from A. gigas is a supplemental agent that can reduce oxidative stress by Nrf2-mediated upregulation of HO-1 in rat experimentally induced unilateral cryptorchidism and may improve cryptorchidism-induced infertility.

  8. Protective Effect of Decursin Extracted from Angelica gigas in Male Infertility via Nrf2/HO-1 Signaling Pathway

    PubMed Central

    Bae, Woong Jin; Ha, U. Syn; Choi, Jin Bong; Kim, Kang Sup; Kim, Su Jin; Cho, Hyuk Jin; Hong, Sung Hoo; Lee, Ji Youl; Wang, Zhiping; Hwang, Sung Yeoun; Kim, Sae Woong

    2016-01-01

    Higher testicular temperature results in altered spermatogenesis due to heat-related oxidative stress. We examined the effects of decursin extracted from Angelica gigas Nakai on antioxidant activity in vitro and in a cryptorchidism-induced infertility rat model. TM3 Leydig cell viability was measured based on oxidative stress according to treatment. Either distilled water or AG 400 mg/kg of A. gigas extract was administered orally for 4 weeks after unilateral cryptorchidism was induced. After 1, 2, and 4 weeks, six rats from the control group and six rats from treatment group were sacrificed. Testicular weight, semen quality, antioxidant activities, nuclear factor erythroid 2-related factor 2 (Nrf2) protein, and mRNA expression of Nrf2-regulated genes were analyzed. Treatment with A. gigas extract (1) protected TM3 cells against oxidative stress in a dose-dependent manner, (2) improved the mean weight of the cryptorchid testis, (3) maintained sperm counts, motility, and spermatogenic cell density, (4) decreased levels of 8-hydroxy-2-deoxyguanosine (8-OHdG) and increased levels of superoxide dismutase (SOD), (5) significantly increased Nrf2 and heme oxygenase-1 (HO-1), and (6) significantly decreased apoptosis. This study suggests that decursin extracted from A. gigas is a supplemental agent that can reduce oxidative stress by Nrf2-mediated upregulation of HO-1 in rat experimentally induced unilateral cryptorchidism and may improve cryptorchidism-induced infertility. PMID:27034737

  9. Expression level and subcellular localization of heme oxygenase-1 modulates its cytoprotective properties in response to lung injury: a mouse model.

    PubMed

    Namba, Fumihiko; Go, Hayato; Murphy, Jennifer A; La, Ping; Yang, Guang; Sengupta, Shaon; Fernando, Amal P; Yohannes, Mekdes; Biswas, Chhanda; Wehrli, Suzanne L; Dennery, Phyllis A

    2014-01-01

    Premature infants exposed to hyperoxia suffer acute and long-term pulmonary consequences. Nevertheless, neonates survive hyperoxia better than adults. The factors contributing to neonatal hyperoxic tolerance are not fully elucidated. In contrast to adults, heme oxygenase (HO)-1, an endoplasmic reticulum (ER)-anchored protein, is abundant in the neonatal lung but is not inducible in response to hyperoxia. The latter may be important, because very high levels of HO-1 overexpression are associated with significant oxygen cytotoxicity in vitro. Also, in contrast to adults, HO-1 localizes to the nucleus in neonatal mice exposed to hyperoxia. To understand the mechanisms by which HO-1 expression levels and subcellular localization contribute to hyperoxic tolerance in neonates, lung-specific transgenic mice expressing high or low levels of full-length HO-1 (cytoplasmic, HO-1-FL(H) or HO-1-FL(L)) or C-terminally truncated HO-1 (nuclear, Nuc-HO-1-TR) were generated. In HO-1-FL(L), the lungs had a normal alveolar appearance and lesser oxidative damage after hyperoxic exposure. In contrast, in HO-1-FL(H), alveolar wall thickness with type II cell hyperproliferation was observed as well worsened pulmonary function and evidence of abnormal lung cell hyperproliferation in recovery from hyperoxia. In Nuc-HO-1-TR, the lungs had increased DNA oxidative damage, increased poly (ADP-ribose) polymerase (PARP) protein expression, and reduced poly (ADP-ribose) (PAR) hydrolysis as well as reduced pulmonary function in recovery from hyperoxia. These data indicate that low cytoplasmic HO-1 levels protect against hyperoxia-induced lung injury by attenuating oxidative stress, whereas high cytoplasmic HO-1 levels worsen lung injury by increasing proliferation and decreasing apoptosis of alveolar type II cells. Enhanced lung nuclear HO-1 levels impaired recovery from hyperoxic lung injury by disabling PAR-dependent regulation of DNA repair. Lastly both high cytoplasmic and nuclear expression of

  10. Coniferaldehyde inhibits LPS-induced apoptosis through the PKC α/β II/Nrf-2/HO-1 dependent pathway in RAW264.7 macrophage cells.

    PubMed

    Kim, Ki Mo; Heo, Deok Rim; Kim, Young-A; Lee, Jun; Kim, No Soo; Bang, Ok-Sun

    2016-12-01

    Coniferaldehyde (CA) exerts anti-inflammatory properties by inducing heme oxygenase-1 (HO-1). To define the regulation mechanism by which CA induces a cytoprotective function and HO-1 expression, the up-stream regulations involved in the activation of nuclear transcription factor-erythroid 2-related factor (Nrf)-2/HO-1 pathway were investigated. CA dramatically increased the Nrf-2 nuclear translocation and HO-1 expression. Lipopolysaccharide (LPS)-induced expression of inducible nitric oxide synthase (iNOS) and cyclooxygenase (COX)-2, and cell death were down-regulated by CA, which were reversed by inhibition of HO-1 activity. Furthermore, CA specifically enhanced the phosphorylation of protein kinase C (PKC) α/β II. Selective inhibition of PKC α/β II using Go6976 or siRNA abolished the CA-induced Nrf-2/HO-1 signaling, and consequently suppressed the cytoprotective activity of CA on the LPS-induced cell death. Together, our results elucidate the regulatory mechanism of PKC α/β II as the upstream molecule of Nrf-2 required for HO-1 expression during CA-induced anti-inflammatory cytoprotective function in LPS stimulated macrophages. Copyright © 2016 Elsevier B.V. All rights reserved.

  11. HO-1 attenuates hippocampal neurons injury via the activation of BDNF-TrkB-PI3K/Akt signaling pathway in stroke.

    PubMed

    Qi, Dashi; Ouyang, Changjie; Wang, Yulan; Zhang, Shichun; Ma, Xijuan; Song, YuanJian; Yu, HongLi; Tang, Jiali; Fu, Wei; Sheng, Lei; Yang, Lihua; Wang, Mei; Zhang, Weihao; Miao, Lei; Li, Tengteng; Huang, Xiaojing; Dong, Hongyan

    2014-08-19

    Although recent studies have found that HO-1 plays an important role in neuronal survival, little is known about the precise mechanisms occurring during cerebral ischemia/reperfusion (I/R). Therefore, the aim of this study was to investigate the neuroprotective mechanisms of HO-1 against ischemic brain injury induced by cerebral I/R and to explore whether the BDNF-TrkB-PI3K/Akt signaling pathway contributed to the protection provided by HO-1. Over-expressed HO-1 plasmids were employed to induce the overexpression of HO-1 through hippocampi CA1 injection 5 days before the cerebral I/R animal model was induced by four-vessel occlusion for 15 min transient ischemia and followed by reperfusion in Sprague-Dawley rats. Immunoblotting was carried out to examine the expression of the related proteins, and HE-staining was used to detect the percentage of living neurons in the hippocampal CA1 region. The results showed that over-expressed HO-1 could significantly protect neurons against cerebral I/R. Furthermore, the protein expression of BDNF, TrkB and p-Akt also increased in the rats treated with over-expressed HO-1 plasmids. However, treatment with tropomyosin receptor kinase B (TrkB) receptor antagonist (K252a) reversed the HO-1-induced increase in BDNF and p-Akt protein levels and decreased the level of cleaved caspase-3 protein in I/R rats. In summary, our results imply that HO-1 can decrease cell apoptosis in the I/R rat brain and that the mechanism may be related to the activation of the BDNF-TrkB-PI3K/Akt signaling pathway.

  12. HO-1 Signaling Activation by Pterostilbene Treatment Attenuates Mitochondrial Oxidative Damage Induced by Cerebral Ischemia Reperfusion Injury.

    PubMed

    Yang, Yang; Wang, Jiayi; Li, Yue; Fan, Chongxi; Jiang, Shuai; Zhao, Lei; Di, Shouyin; Xin, Zhenlong; Wang, Bodong; Wu, Guiling; Li, Xia; Li, Zhiqing; Gao, Xu; Dong, Yushu; Qu, Yan

    2016-05-01

    reducing IR-induced mitochondrial oxidative damage through the activation of HO-1 signaling.

  13. Heme oxygenase 1 defects lead to reduced chlorophyll in Brassica napus.

    PubMed

    Zhu, Lixia; Yang, Zonghui; Zeng, Xinhua; Gao, Jie; Liu, Jie; Yi, Bin; Ma, Chaozhi; Shen, Jinxiong; Tu, Jinxing; Fu, Tingdong; Wen, Jing

    2017-04-01

    We previously described a Brassica napus chlorophyll-deficient mutant (ygl) with yellow-green seedling leaves and mapped the related gene, BnaC.YGL, to a 0.35 cM region. However, the molecular mechanisms involved in this chlorophyll defect are still unknown. In this study, the BnaC07.HO1 gene (equivalent to BnaC.YGL) was isolated by the candidate gene approach, and its function was confirmed by genetic complementation. Comparative sequencing analysis suggested that BnaC07.HO1 was lost in the mutant, while a long noncoding-RNA was inserted into the promoter of the homologous gene BnaA07.HO1. This insert was widely present in B. napus cultivars and down-regulated BnaA07.HO1 expression. BnaC07.HO1 was highly expressed in the seedling leaves and encoded heme oxygenase 1, which was localized in the chloroplast. Biochemical analysis showed that BnaC07.HO1 can catalyze heme conversion to form biliverdin IXα. RNA-seq analysis revealed that the loss of BnaC07.HO1 impaired tetrapyrrole metabolism, especially chlorophyll biosynthesis. According, the levels of chlorophyll intermediates were reduced in the ygl mutant. In addition, gene expression in multiple pathways was affected in ygl. These findings provide molecular evidences for the basis of the yellow-green leaf phenotype and further insights into the crucial role of HO1 in B. napus.

  14. Heme oxygenase-1 expression is down-regulated by angiotensin II and under hypertension in human neutrophils.

    PubMed

    Alba, Gonzalo; El Bekay, Rajaa; Chacón, Pedro; Reyes, M Edith; Ramos, Eladio; Oliván, Josefina; Jiménez, Juan; López, José M; Martín-Nieto, José; Pintado, Elízabeth; Sobrino, Francisco

    2008-08-01

    Angiotensin II (Ang II) is a peptide hormone able to elicit a strong production of reactive oxygen species by human neutrophils. In this work, we have addressed whether expression of heme oxygenase-1 (HO-1), an antioxidant enzyme, becomes altered in these cells upon Ang II treatment or under hypertension conditions. In neutrophils from healthy and hypertensive subjects, induction of HO-1 mRNA and protein expression with a parallel increase in enzyme activity took place upon treatment with 15-deoxy-Delta12,14-PGJ2 (15dPGJ2). However, Ang II prevented HO-1 synthesis by normal neutrophils in vitro, and HO-1 expression was depressed in neutrophils from hypertensive patients in comparison with cells from healthy subjects. In addition, Ang II treatment led to a reduced HO-1 enzyme activity to levels similar to those found in neutrophils from hypertensive patients. NO donors reversed the inhibition of 15dPGJ2-dependent HO-1 expression in neutrophils from hypertensive patients, and conversely, inhibition of inducible NO synthase (NOS2) activity counteracted the stimulatory effect of 15dPGJ2 on HO-1 expression in normal human neutrophils. Moreover, Ang II canceled 15dPGJ2-dependent induction of NOS2 mRNA synthesis. Present findings indicate that down-regulation of HO-1 expression in neutrophils from hypertensive subjects is likely exerted through the inhibition of NOS2 expression. Additionally, they underscore the potential usefulness of NO donors as new, therapeutic agents against hypertension.

  15. Modification of Caffeic Acid with Pyrrolidine Enhances Antioxidant Ability by Activating AKT/HO-1 Pathway in Heart

    PubMed Central

    Ku, Hui-Chun; Lee, Shih-Yi; Yang, Kai-Chien; Kuo, Yueh-Hsiung; Su, Ming-Jai

    2016-01-01

    Overproduction of free radicals during ischemia/reperfusion (I/R) injury leads to an interest in using antioxidant therapy. Activating an endogenous antioxidant signaling pathway is more important due to the fact that the free radical scavenging behavior in vitro does not always correlate with a cytoprotection effect in vivo. Caffeic acid (CA), an antioxidant, is a major phenolic constituent in nature. Pyrrolidinyl caffeamide (PLCA), a derivative of CA, was compared with CA for their antioxidant and cytoprotective effects. Our results indicate that CA and PLCA exert the same ability to scavenge DPPH in vitro. In response to myocardial I/R stress, PLCA was shown to attenuate lipid peroxydation and troponin release more than CA. These responses were accompanied with a prominent elevation in AKT and HO-1 expression and a preservation of mnSOD expression and catalase activity. PLCA also improved cell viability and alleviated the intracellular ROS level more than CA in cardiomyocytes exposed to H2O2. When inhibiting the AKT or HO-1 pathways, PLCA lost its ability to recover mnSOD expression and catalase activity to counteract with oxidative stress, suggesting AKT/HO-1 pathway activation by PLCA plays an important role. In addition, inhibition of AKT signaling further abolished HO-1 activity, while inhibition of HO-1 signaling attenuated AKT expression, indicating cross-talk between the AKT and HO-1 pathways. These protective effects may contribute to the cardiac function improvement by PLCA. These findings provide new insight into therapeutic approaches using a modified natural compound against oxidative stress from myocardial injuries. PMID:26845693

  16. Preconditioning with the BKCa Channel Activator NS-1619 Prevents Ischemia/Reperfusion-Induced Inflammation and Mucosal Barrier Dysfunction: ROS and HO-1.

    PubMed

    Dai, Hongyan; Wang, Meifang; Patel, Parag N; Kalogeris, Theodore J; Liu, Yajun; Durante, William; Korthuis, Ronald J

    2017-08-19

    Activation of large conductance, calcium-activated potassium (BKCa) channels evokes cell survival programs that mitigate intestinal ischemia and reperfusion (I/R) inflammation and injury 24 hours later. The goal of the current study was to determine the role of reactive oxygen species (ROS) and heme oxygenase (HO)-1 in delayed acquisition of tolerance to I/R induced by pretreatment with the BKCa channel opener NS-1619. Superior mesentery arteries were occluded for 45 min followed by reperfusion for 70 min in wild type (WT) or HO-1 null (HO-1(-/-)) mice that were pretreated with NS-1619 or saline vehicle 24 hrs earlier. Intravital microscopy was used to quantify the numbers of rolling and adherent leukocytes. Tumor necrosis factor-α (TNFα) levels and HO-1 expression in jejunum were also determined. I/R induced leukocyte rolling and adhesion and increased intestinal TNFα levels in WT mice, effects that were largely abolished by pretreatment with NS-1619. The anti-inflammatory effects of NS-1619 were prevented by coincident treatment with the HO-1 inhibitor tin protoporphyrin-IX or a cell-permeant SOD mimetic MnTBAP in WT mice. NS-1619 also upregulated jejunal HO-1 expression in WT animals, an effect that was attenuated by treatment with BKCa channel antagonist paxilline or MnTBAP. I/R also increased postischemic leukocyte rolling and adhesion and intestinal TNFα levels in HO-1(-/-) mice to levels comparable to that noted in WT animals. However, NS-1619 was ineffective in preventing these effects in HO-1-deficient mice. Our data indicate that NS-1619 induces the development of an anti-inflammatory phenotype by a mechanism that may involve ROS-dependent HO-1 expression. Copyright © 2016, American Journal of Physiology-Heart and Circulatory Physiology.

  17. HO-1 inhibits IL-13-induced goblet cell hyperplasia associated with CLCA1 suppression in normal human bronchial epithelial cells.

    PubMed

    Mishina, Kei; Shinkai, Masaharu; Shimokawaji, Tadasuke; Nagashima, Akimichi; Hashimoto, Yusuke; Inoue, Yoriko; Inayama, Yoshiaki; Rubin, Bruce K; Ishigatsubo, Yoshiaki; Kaneko, Takeshi

    2015-12-01

    Mucus hypersecretion and goblet cell hyperplasia are common features that characterize asthma. IL-13 increases mucin (MUC) 5AC, the major component of airway mucus, in airway epithelial cells. According to the literature, IL-13 receptor activation leads to STAT6 activation and consequent induction of chloride channel accessory 1 (CLCA1) gene expression, associated with the induction of MUC5AC. Heme oxygenase-1 (HO-1) is an enzyme that catalyzes oxidation of heme to biliverdin, and has anti-inflammatory and anti-oxidant properties. We examined the effects of HO-1 on mucin production and goblet cell hyperplasia induced by IL-13. Moreover, we assessed the cell signaling intermediates that appear to be responsible for mucin production. Normal human bronchial epithelial (NHBE) cells were grown at air liquid interface (ALI) in the presence or absence of IL-13 and hemin, a HO-1 inducer, for 14 days. Protein concentration was analyzed using ELISA, and mRNA expression was examined by real-time PCR. Histochemical analysis was performed using HE staining, andWestern blotting was performed to evaluate signaling transduction pathway. Hemin (4 μM) significantly increased HO-1 protein expression (p b 0.01) and HO-1 mRNA expression (p b 0.001). IL-13 significantly increased goblet cells, MUC5AC protein secretion (p b 0.01) and MUC5AC mRNA (p b 0.001), and these were decreased by hemin by way of HO-1. Tin protoporphyrin (SnPP)-IX, a HO-1 inhibitor, blocked the effect of hemin restoring MUC5AC protein secretion (p b 0.05) and goblet cell hyperplasia. Hemin decreased the expression of CLCA1 mRNA (p b 0.05) and it was reversed by SnPP-IX, but could not suppress IL-13-induced phosphorylation of STAT6 or SAM pointed domain-containing ETS transcription factor (SPDEF) and Forkhead box A2 (FOXA2) mRNA expression. In summary, HO-1 overexpression suppressed IL-13-induced goblet cell hyperplasia and MUC5AC production, and involvement of CLCA1 in the mechanism was suggested.

  18. t-BHQ Provides Protection against Lead Neurotoxicity via Nrf2/HO-1 Pathway

    PubMed Central

    Ye, Fang; Li, Xiaoyi; Li, Lili; Yuan, Jing; Chen, Jun

    2016-01-01

    The neurotoxicity of lead has been well established, and oxidative stress is strongly associated with lead-induced neurotoxicity. Nrf2 is important for protection against oxidative stress in many disease models. We applied t-BHQ, which is an Nrf2 activator, to investigate the possible role of Nrf2 in the protection against lead neurotoxicity. t-BHQ significantly attenuated the oxidative stress in developmental rats by decreasing MDA level, as well as by increasing SOD activity and GSH content, in the hippocampus and frontal cortex. Furthermore, neuronal apoptosis was detected by Nissl staining, and Bax expression was inhibited in the t-BHQ-treated group. Results showed that t-BHQ suppressed ROS production and caspase 3/7 activity but increased intracellular GSH content, in SH-SY5Y cells under lead exposure. Moreover, in vivo and in vitro, t-BHQ enhanced the nuclear translocation of Nrf2 and binding to ARE areas but did not induce Nrf2 transcription. These phenomena were confirmed using RT-PCR, EMSA, Western blot, and immunofluorescence analyses. Subsequent upregulation of the expression of HO-1, NQO1, and GCLC was observed. However, knockdown of Nrf2 or HO-1 adversely affected the protective effects of t-BHQ against lead toxicity in SH-SY5Y cells. Thus, t-BHQ can protect against lead neurotoxicity, depending on the Nrf2/HO-1 pathway. PMID:26798413

  19. Therapeutic effects of a reducible poly (oligo-D-arginine) carrier with the heme oxygenase-1 gene in the treatment of hypoxic-ischemic brain injury.

    PubMed

    Hyun, Hyesun; Won, Young-Wook; Kim, Kyung-Min; Lee, Jiyoung; Lee, Minhyung; Kim, Yong-Hee

    2010-12-01

    Non-viral carriers for gene therapy have been developed to minimize carrier cytotoxicity and to enhance transfection efficiency. Previously, we synthesized a 9-arginine-based reducible high molecular weight peptide for gene delivery. For the reducible poly(oligo-D-arginines) (rPOA), 9-arginine oligopeptides are connected by internal disulfide linkages to produce a high molecular weight peptide. In this study, rPOA was evaluated as a carrier of the heme oxygenase-1 (HO-1) gene for the treatment of ischemia/reperfusion (I/R) -induced brain stroke. An in vitro transfection assay showed that rPOA had higher transfection efficiency and lower toxicity than polyethylenimine (PEI). For in vivo evaluation, I/R rat models were produced by middle cerebral artery occlusion (MCAO). rPOA/HO-1 expression plasmid (pHO-1) polyplexes were injected into the brain at 1 h before MCAO, and HO-1 expression levels in the brain were then measured by ELISA. The results indicated that rPOA/pHO-1 polyplexes had higher transfection efficiencies than PEI/pHO-1 polyplexes. The rPOA/pHO-1 polyplexes significantly reduced infarct volumes. In addition, tumor necrosis factor-alpha (TNF-α) was reduced in the rPOA/pHO-1 polyplex injection group, suggesting that HO-1 had an anti-inflammatory effect, while the PEI/pHO-1 polyplex did not show this effect. These results suggest that rPOA is a potential non-viral vector for HO-1 gene therapy to protect brain cells from I/R-related neuronal injury including stroke. Copyright © 2010 Elsevier Ltd. All rights reserved.

  20. Sclareol ameliorate lipopolysaccharide-induced acute lung injury through inhibition of MAPK and induction of HO-1 signaling.

    PubMed

    Hsieh, Yung-Hung; Deng, Jeng-Shyan; Pan, Hsin-Pao; Liao, Jung-Chun; Huang, Shyh-Shyun; Huang, Guan-Jhong

    2017-03-01

    Sclareol is a natural fragrance compound that is used widely in the cosmetic and food industries. This study examined the effect of sclareol on lipopolysaccharide (LPS)-induced acute lung injury (ALI) in mice. Mice were treated with sclareol 1h before an intratracheal (I.T.) LPS challenge to induce an ALI model. The effects on lung tissue and lung injury were evaluated 6h after LPS induction. Pretreatment with sclareol noticeably improved the LPS-induced histological alterations and edema in lung tissue. Sclareol also inhibited the release of pro-inflammatory mediators. Differences in nitric oxide (NO), tumor necrosis factor alpha (TNF-α), interleukin-1 beta (IL-1β), IL-6, and IL-10 were found in the bronchoalveolar lavage fluid (BALF) 6h after LPS-induced lung injury. This study also found a reduced number of total cells and reduced protein concentrations in the BALF. There were also changes in the pulmonary wet/dry (W/D) weight ratio, antioxidant enzyme activity, and myeloperoxidase activity in lung tissues. Sclareol effectively blocked the phosphorylation of mitogen-activated protein kinases (MAPKs) and impeded the protein expression of inducible nitric oxide synthase (iNOS) and cyclooxygenase-2 (COX-2). The compound boosted the expression of heme oxygenase-1 (HO-1) and inhibited the breakdown of nuclear factor-kappa B (NF-κB) and inhibitor of kappa B (IκBα). To the best of the authors' knowledge, this study is the first to demonstrate that sclareol effectively inhibits acute lung edema, and the results suggest that sclareol may be a potential agent for the treatment of ALI. The potential therapeutic benefits may include the attenuation of LPS-induced pulmonary inflammation due to sclareol's effects on several pathways, including NF-κB, MAPKs and HO-1, as well as the regulation of antioxidant enzyme activity. Copyright © 2016. Published by Elsevier B.V.

  1. Regulation of hemeoxygenase-1 gene expression by Nrf2 and c-Jun in tertiary butylhydroquinone-stimulated rat primary astrocytes.

    PubMed

    Park, Jin-Sun; Kim, Hee-Sun

    2014-05-16

    Hemeoxygenase-1 (HO-1) is a phase II antioxidant enzyme that is primarily involved in detoxification and cytoprotection in a variety of tissues. However, the mechanism underlying HO-1 gene expression remains unclear. In the present study, we investigated the regulation of HO-1 expression in primary cultured astrocytes by using the natural antioxidant compound tertiary butylhydroquinone (tBHQ). We found that tBHQ increased HO-1 mRNA and protein levels. Promoter analysis revealed that tBHQ enhanced HO-1 gene transcription in an antioxidant response element (ARE)-dependent manner. In addition, tBHQ increased the nuclear translocation and DNA binding of Nrf2 and c-Jun to ARE. Small interfering RNA (siRNA) experiments demonstrated that Nrf2 and c-Jun are involved in the differential modulation of HO-1 expression. Thus, Nrf2 knockdown reduced the basal level of HO-1 expression but did not affect the fold induction by tBHQ. On the other hand, knockdown of c-Jun diminished tBHQ-mediated induction of HO-1 without affecting basal expression. The data suggest that Nrf2 generally modulates the basal expression of HO-1, while c-Jun mediates HO-1 induction in response to tBHQ. The results of co-immunoprecipitation assays demonstrated a physical interaction between Nrf2 and c-Jun in tBHQ-treated astrocytes. The results suggest that Nrf2 and c-Jun regulate HO-1 expression via their coordinated interaction in tBHQ-treated rat primary astrocytes.

  2. (GT)n Repeat Polymorphism in Heme Oxygenase-1 (HO-1) Correlates with Clinical Outcome after Myeloablative or Nonmyeloablative Allogeneic Hematopoietic Cell Transplantation

    PubMed Central

    Køllgaard, Tania; Kornblit, Brian; Petersen, Jesper; Klausen, Tobias Wirenfeldt; Mortensen, Bo Kok; Brændstrup, Peter; Sengeløv, Henrik; Høgdall, Estrid; Müller, Klaus; Vindeløv, Lars; Andersen, Mads Hald; thor Straten, Per

    2016-01-01

    Allogeneic hematopoietic cell transplantation (HCT) is a treatment for various hematologic diseases where efficacy of treatment is in part based on the graft versus tumour (GVT) activity of cells in the transplant. The cytoprotective enzyme heme oxygenase-1 (HO-1) is a rate-limiting enzyme in heme degradation and it has been shown to exert anti-inflammatory functions. In humans a (GT)n repeat polymorphism regulates the expression of HO-1. We conducted fragment length analyses of the (GT)n repeat in the promotor region of the gene for HO-1 in DNA from donors and recipients receiving allogeneic myeloablative- (MA) (n = 110) or nonmyeloablative- (NMA-) (n = 250) HCT. Subsequently, we compared the length of the (GT)n repeat with clinical outcome after HCT. We demonstrated that transplants from a HO-1high donor after MA-conditioning (n = 13) is associated with higher relapse incidence at 3 years (p = 0.01, n = 110). In the NMA-conditioning setting transplantation of HO-1low donor cells into HO-1low recipients correlated significantly with decreased relapse related mortality (RRM) and longer progression free survival (PFS) (p = 0.03 and p = 0.008, respectively). Overall, our findings suggest that HO-1 may play a role for the induction of GVT effect after allogeneic HCT. PMID:27997582

  3. Nadroparin sodium activates Nrf2/HO-1 pathway in acetic acid-induced colitis in rats.

    PubMed

    Yalniz, Mehmet; Demirel, Ulvi; Orhan, Cemal; Bahcecioglu, Ibrahim Halil; Ozercan, Ibrahim Hanefi; Aygun, Cem; Tuzcu, Mehmet; Sahin, Kazim

    2012-06-01

    Effects of nadroparin sodium, a low molecular weight heparin, in colitis was investigated by analyzing proteins implicated in nuclear factor E2-related factor-2/heme oxygenase-1 (Nrf2/HO-1) and nuclear factor kappa B (NF-κB) pathways. Twenty-eight rats were used. Colitis was induced by acetic acid (AA). Nadroparin sodium was given to prevention and treatment groups in addition to AA. Colitis was assessed histologically and levels of proteins were analyzed with Western blot. Nadroparin not only prevented and ameliorated the AA-induced colitis histopathologically but also decreased expression of colon NF-κB, activator protein-1, cyclooxygenase-2, tumor necrosis factor-alpha, and IL-6, which were significantly increased in group AA compared to control. The accumulation of Nrf2 in nuclear fraction and HO-1 found low in group AA was increased with nadroparin (p < 0.05). The mean malondialdehyde level increased with AA and was decreased significantly with nadroparin prevention and treatment (p < 0.001). Nadroparin sodium has both protective and therapeutic effects against colonic inflammation via exerting anti-oxidative and anti-inflammatory effects by modulating Nrf2/HO-1 and NF-κB pathways.

  4. Nutritional control of IL-23/Th17-mediated autoimmune disease through HO-1/STAT3 activation

    PubMed Central

    Brück, Jürgen; Holstein, Julia; Glocova, Ivana; Seidel, Ursula; Geisel, Julia; Kanno, Toshio; Kumagai, Jin; Mato, Naoko; Sudowe, Stephan; Widmaier, Katja; Sinnberg, Tobias; Yazdi, Amir S.; Eberle, Franziska C.; Hirahara, Kiyoshi; Nakayama, Toshinori; Röcken, Martin; Ghoreschi, Kamran

    2017-01-01

    The nutritional curcumin (CUR) is beneficial in cell-mediated autoimmune diseases. The molecular mechanisms underlying this food-mediated silencing of inflammatory immune responses are poorly understood. By investigating antigen-specific immune responses we found that dietary CUR impairs the differentiation of Th1/Th17 cells in vivo during encephalomyelitis and instead promoted Th2 cells. In contrast, feeding CUR had no inhibitory effect on ovalbumin-induced airway inflammation. Mechanistically, we found that CUR induces an anti-inflammatory phenotype in dendritic cells (DC) with enhanced STAT3 phosphorylation and suppressed expression of Il12b and Il23a. On the molecular level CUR readily induced NRF2-sensitive heme oxygenase 1 (HO-1) mRNA and protein in LPS-activated DC. HO-1 enhanced STAT3 phosphorylation, which enriched to Il12b and Il23a loci and negatively regulated their transcription. These findings demonstrate the underlying mechanism through which a nutritional can interfere with the immune response. CUR silences IL-23/Th17-mediated pathology by enhancing HO-1/STAT3 interaction in DC. PMID:28290522

  5. NRF2 activation is involved in ozonated human serum upregulation of HO-1 in endothelial cells

    SciTech Connect

    Pecorelli, Alessandra; Bocci, Velio; Acquaviva, Alessandra; Belmonte, Giuseppe; Gardi, Concetta; Virgili, Fabio; Ciccoli, Lucia; Valacchi, Giuseppe

    2013-02-15

    During the last decade, it has been shown that the activation of NRF2 and the binding to electrophile-responsive element (EpREs), stimulates the expression of a great number of genes responsible for the synthesis of phase I and phase II proteins, including antioxidants enzymes and heme oxygenase-1 (HO-1). This critical cell response occurs in cardiovascular, degenerative and chronic infective diseases aggravated by a chronic oxidative stress. In our previous reports we have shown that ozonated plasma is able to up-regulate HO-1 expression in endothelial cells. In the present work we investigated a candidate mechanism involved in this process. After treatment with increasing doses of ozonated serum (20, 40 and 80 μg/mL O{sub 3} per mL of serum), a clear dose dependent activation of NRF2 and the subsequent induction of HO-1 and NAD(P)H quinone oxidoreductase 1(NQO1) was observed. This effect was also present when cells were treated with serum and hydrogen peroxide (H{sub 2}O{sub 2}) or serum and 4-hydroxynonenal (4HNE). Moreover, the treatment with ozonated serum was associated with a dose-dependent activation of extracellular-signal-regulated kinases (ERK1/2) and p38 MAP kinases (p38), not directly involved in NRF2 activation. These data, provide a new insight on the mechanism responsible for the induction of HO-1 expression by ozonated serum in the endothelium, and have a practical importance as an expedient approach to the treatment of patients with both effective orthodox drugs and ozonated autohemotherapy, targeted to the restoration of redox homeostasis. - Highlights: ► Endothelial HO1 is upregulated by ozonated plasma ► This activation is induced by NRF2 and it is ERK independent. ► 4HNE and H{sub 2}O{sub 2} are the main molecules involved in this process. ► Ozonated plasma induced a hormetic effect ► Combination of orthodox medicine and ozonated plasma can be a useful treatment.

  6. Regulation of hemeoxygenase-1 gene expression by Nrf2 and c-Jun in tertiary butylhydroquinone-stimulated rat primary astrocytes

    SciTech Connect

    Park, Jin-Sun; Kim, Hee-Sun

    2014-05-16

    Highlights: • tBHQ increased HO-1 mRNA and protein levels in rat primary astrocytes. • tBHQ enhanced HO-1 gene transcription in an ARE-dependent manner. • tBHQ increased the nuclear translocation and DNA binding of Nrf2 and c-Jun to ARE. • Nrf2 and c-Jun are involved in the differential modulation of HO-1 expression. • Nrf2 and c-Jun regulate HO-1 expression via their coordinated interaction. - Abstract: Hemeoxygenase-1 (HO-1) is a phase II antioxidant enzyme that is primarily involved in detoxification and cytoprotection in a variety of tissues. However, the mechanism underlying HO-1 gene expression remains unclear. In the present study, we investigated the regulation of HO-1 expression in primary cultured astrocytes by using the natural antioxidant compound tertiary butylhydroquinone (tBHQ). We found that tBHQ increased HO-1 mRNA and protein levels. Promoter analysis revealed that tBHQ enhanced HO-1 gene transcription in an antioxidant response element (ARE)-dependent manner. In addition, tBHQ increased the nuclear translocation and DNA binding of Nrf2 and c-Jun to ARE. Small interfering RNA (siRNA) experiments demonstrated that Nrf2 and c-Jun are involved in the differential modulation of HO-1 expression. Thus, Nrf2 knockdown reduced the basal level of HO-1 expression but did not affect the fold induction by tBHQ. On the other hand, knockdown of c-Jun diminished tBHQ-mediated induction of HO-1 without affecting basal expression. The data suggest that Nrf2 generally modulates the basal expression of HO-1, while c-Jun mediates HO-1 induction in response to tBHQ. The results of co-immunoprecipitation assays demonstrated a physical interaction between Nrf2 and c-Jun in tBHQ-treated astrocytes. The results suggest that Nrf2 and c-Jun regulate HO-1 expression via their coordinated interaction in tBHQ-treated rat primary astrocytes.

  7. Adoptive transfer of heme oxygenase-1 (HO-1)-modified macrophages rescues the nuclear factor erythroid 2-related factor (Nrf2) antiinflammatory phenotype in liver ischemia/reperfusion injury.

    PubMed

    Huang, Jing; Shen, Xiu-Da; Yue, Shi; Zhu, Jianjun; Gao, Feng; Zhai, Yuan; Busuttil, Ronald W; Ke, Bibo; Kupiec-Weglinski, Jerzy W

    2014-10-14

    Macrophages are instrumental in the pathophysiology of liver ischemia/reperfusion injury (IRI). Although Nrf2 regulates macrophage-specific heme oxygenase-1 (HO-1) antioxidant defense, it remains unknown whether HO-1 induction might rescue macrophage Nrf2-dependent antiinflammatory functions. This study explores the mechanisms by which the Nrf2-HO-1 axis regulates sterile hepatic inflammation responses after adoptive transfer of ex vivo modified HO-1 overexpressing bone marrow-derived macrophages (BMMs). Livers in Nrf2-deficient mice preconditioned with Ad-HO-1 BMMs, but not Ad-β-Gal-BMMs, ameliorated liver IRI (at 6 h of reperfusion after 90 min of warm ischemia), evidenced by improved hepatocellular function (serum alanine aminotransferase [sALT] levels) and preserved hepatic architecture (Suzuki histological score). Treatment with Ad-HO-1 BMMs decreased neutrophil accumulation, proinflammatory mediators and hepatocellular necrosis/apoptosis in ischemic livers. Moreover, Ad-HO-1 transfection of Nrf2-deficient BMMs suppressed M1 (Nos2(+)) while promoting the M2 (Mrc-1/Arg-1(+)) phenotype. Unlike in controls, Ad-HO-1 BMMs increased the expression of Notch1, Hes1, phosphorylation of Stat3 and Akt in IR-stressed Nrf2-deficient livers as well as in lipopolysaccharide (LPS)-stimulated BMMs. Thus, adoptive transfer of ex vivo generated Ad-HO-1 BMMs rescued Nrf2-dependent antiinflammatory phenotype by promoting Notch1/Hes1/Stat3 signaling and reprogramming macrophages toward the M2 phenotype. These findings provide the rationale for a novel clinically attractive strategy to manage IR liver inflammation/damage.

  8. Zinc L-carnosine suppresses inflammatory responses in lipopolysaccharide-induced RAW 264.7 murine macrophages cell line via activation of Nrf2/HO-1 signaling pathway.

    PubMed

    Ooi, Theng Choon; Chan, Kok Meng; Sharif, Razinah

    2017-10-01

    Zinc L-carnosine (ZnC) is a chelate of Zn and L-carnosine and is used clinically in the treatment of peptic ulcer. In this study, we aim to investigate the involvement of heme oxygenase-1 (HO-1) in the anti-inflammatory effects of ZnC in lipopolysaccharide (LPS)-induced RAW 264.7 murine macrophages. We used immunoblotting analysis to evaluate the involvement of HO-1 in the anti-inflammatory effects of ZnC and the signaling pathway involved was measured using Dual luciferase reporter assay. Results from immunoblotting analysis demonstrated that pretreatment of cells with ZnC enhanced the expression of HO-1 in RAW 264.7 cells. Pretreatment of cells with HO-1 inhibitor (tin protoporphyrin IX dichloride) significantly attenuated the inhibitory effects of ZnC on nitric oxide (NO) production, inducible nitric oxide synthase (iNOS) expression and NF-κB activation in LPS-induced RAW 264.7 cells, suggesting that HO-1 play an important role in the suppression of inflammatory responses induced by ZnC. Furthermore, results from co-immunoprecipitation of Nrf2 and Keap1 and dual luciferase reporter assay showed that pretreatment of ZnC was able to activate the Nrf2 signaling pathway. Treatment of cells with p38 inhibitor (SB203580), c-Jun N-terminal kinase inhibitor (SP600125), and MEK 1/2 inhibitor (U0126) did not significantly suppress the induction of HO-1 by ZnC. Moreover, our present findings suggest that the effects of ZnC on NO production, HO-1 expression, and Nrf2 activation were attributed to its Zn subcomponent, but not l-carnosine. Pretreatment with ZnC was able to activate Nrf2/HO-1 signaling pathway, thus suppressing the expression of inflammatory mediators, such as NO and iNOS in LPS-induced RAW 264.7 cells.

  9. Curcumin reduces cold storage-induced damage in human cardiac myoblasts.

    PubMed

    Abuarqoub, Hadil; Green, Colin J; Foresti, Roberta; Motterlini, Roberto

    2007-04-30

    Curcumin is a polyphenolic compound possessing interesting anti-inflammatory and antioxidant properties and has the ability to induce the defensive protein heme oxygenase-1 (HO-1). The objective of this study was to investigate whether curcumin protects against cold storage-mediated damage of human adult atrial myoblast cells (Girardi cells) and to assess the potential involvement of HO-1 in this process. Girardi cells were exposed to either normothermic or hypothermic conditions in Celsior preservation solution in the presence or absence of curcumin. HO-1 protein expression and heme oxygenase activity as well as cellular damage were assessed after cold storage or cold storage followed by re-warming. In additional experiments, an inhibitor of heme oxygenase activity (tin protoporphyrin IX, 10 microM) or siRNA for HO-1 were used to investigate the participation of HO-1 as a mediator of curcumin-induced effects. Treatment with curcumin produced a marked induction of cardiac HO-1 in normothermic condition but cells were less responsive to the polyphenolic compound at low temperature. Cold storage-induced damage was markedly reduced in the presence of curcumin and HO-1 contributed to some extent to this effect. Thus, curcumin added to Celsior preservation solution effectively prevents the damage caused by cold-storage; this effect involves the protective enzyme HO-1 but also other not yet identified mechanisms.

  10. Combination of quercetin, cinnamaldehyde and hirudin protects rat dorsal root ganglion neurons against high glucose-induced injury through Nrf-2/HO-1 activation and NF-κB inhibition.

    PubMed

    Shi, Yue; Liang, Xiao-Chun; Zhang, Hong; Sun, Qing; Wu, Qun-Li; Qu, Ling

    2017-09-01

    To examine the effects of the combination of quercetin (Q), cinnamaldehyde (C) and hirudin (H), a Chinese medicine formula on high glucose (HG)-induced apoptosis of cultured dorsal root ganglion (DRG) neurons. DRG neurons exposed to HG (45 mmol/L) for 24 h were employed as an in vitro model of diabetic neuropathy. Cell viability, reactive oxygen species (ROS) level and apoptosis were determined. The expression of nuclear factor of Kappa B (NF-κB), inhibitory kappa Bα(IκBα), phosphorylated IκBα and Nf-E2 related factor 2 (Nrf2) were examined using reverse transcription-polymerase chain reaction (RT-PCR) and Western blot assay. The expression of hemeoxygenase-1 (HO-1), interleukin-6 (IL-6), tumor necrosis factor (TNF-α) and caspase-3 were also examined by RT-PCR and Western blot assay. HG treatment markedly increased DRG neuron apoptosis via increasing intracellular ROS level and activating the NF-κB signaling pathway (P<0.05). Co-treatment with Q, C, H and their combination decreased HG-induced caspase-3 activation and apoptosis (P<0.05 or P<0.01). The expressions of NF-κB, IL-6 and TNF-α were down-regulated, and Nrf2/HO-1 expression was up-regulated (P<0.05 or P<0.01). QCH has better effect in scavenging ROS, activating Nrf-2/HO-1, and down-regulating the NF-κB pathway than other treatment group. DRG neurons' apoptosis was increased in diabetic conditions, which was reduced by QCH formula treatment. The possible reason could be activating Nrf-2/HO-1 pathway, scavenging ROS, and inhibition of NF-κB activation. The effect of QCH combination was better than each monomer or the combination of the two monomers.

  11. The Nrf2/HO-1 Pathway Mediates the Antagonist Effect of L-Arginine On Renal Ischemia/Reperfusion Injury in Rats.

    PubMed

    Tong, Fei; Zhou, Xinmei

    2017-08-30

    Ischemia/reperfusion (I/R) is the most common cause of acute renal injury. I/R-induced oxidative stress is involved in the development of acute renal injury, which can be reversed by supplementation with L-arginine, a precursor of nitric oxide (NO). This study was conducted to evaluate alterations in the expression of transcription factors [nuclear factor kappa B (NF-κB), nuclear factor-E2-related factor-2 (Nrf2), and heme oxygenase 1 (HO-1)] and heat shock protein 70 (HSP70) in the kidney of I/R-induced injury rats. Sprague-Dawley (SD) rats were subjected to bilateral renal ischemia for 45 min followed by reperfusion for 24 h. Group 1, Sham; group 2, I/R; group 3, L-arginine; and group 4, L-arginine+zinc protoporphyrin (ZnPP). The levels of serum creatinine (Scr), blood urea nitrogen (BUN), serum nitric oxide (NO), histic malondialdehyde (MDA) and reactive oxygen species (ROS) and superoxide dismutase (SOD) activity were determined, and the expression levels of Nrf2, HO-1, NF-κB, and HSP70 were evaluated. The treatment of rats with L-arginine produced a significant reduction in the levels of BUN, Scr, MDA and a significant enhancement in the level of NO and in the activity of SOD compared to renal I/R groups. The expression levels of Nrf2, HO-1, and HSP70 were strongly increased, and the expression of NF-κB and production of ROS were significantly decreased in the L-arginine group compared to that of the I/R group. ZnPP increased renal damage and displayed effects opposite to those of L-arginine. These findings suggested that L-arginine/NO reduces renal dysfunction associated with I/R of the kidney and may act as a trigger to regulate the NF-κB, HSP70 and Nrf2/HO-1 signaling cascades. © 2017 The Author(s). Published by S. Karger AG, Basel.

  12. Synergistic cardioprotective effects of Danshensu and hydroxysafflor yellow A against myocardial ischemia-reperfusion injury are mediated through the Akt/Nrf2/HO-1 pathway

    PubMed Central

    HU, TIANXIN; WEI, GUO; XI, MIAOMIAO; YAN, JIAJIA; WU, XIAOXIAO; WANG, YANHUA; ZHU, YANRONG; WANG, CHAO; WEN, AIDONG

    2016-01-01

    In clinical practice, the traditional Chinese medicinal herbs, Radix Salvia Miltiorrhiza and Carthamus tinctorius L., are usually prescribed in combination due to their significant cardioprotective effects. However, the mechanisms responsible for these combined effects remain unknown. Thus, in this study, we investigated the mechanisms responsible for the combined effects of Danshensu (DSS) and hydroxysafflor yellow A (HSYA) by establishing a rat model of myocardial ischemia/reperfusion (MI/R), as well as a model of hypoxia/reoxygenation (H/R) using H9c2 cells. The combination index (CI) was calculated using the median-effect method. DSS and HSYA in combination led to a CI value of <1 as regards infarct size in vivo and cell viability in vitro. The rats with MI/R injury that were treated with DSS and/or HSYA were found to have significantly lower levels of creatine kinase-MB (CK-MB) and cardiac troponin I (cTnI) and malondialdehyde (MDA), and a lower expressoin of 8-hydroxydeoxyguanosine (8-OHdG), and markedly enhanced superoxide dismutase (SOD) activity. Our in vitro experiments revealed that the cells treated with DSS and/or HSYA had a reduced lactate dehydrogenase (LDH) activity and a decreased percentage of cell apoptosis (increased Bcl-2/Bax ratio, decreased expression of cleaved caspase-3). DSS and HSYA increased the expression of heme oxygenase-1 (HO-1), the phosphorylation of Akt and the trans-location of nuclear factor erythroid 2-related factor 2 (Nrf2). Furthermore, the Akt inhibitor, LY294002, partially hampered the expression of Nrf2 and HO-1. The HO-1 inhibitor, zinc protoporphyrin IX (ZnPP-IX), did not decrease the expression of p-Akt and Nrf2, although it abolished the anti-apoptotic and antioxidant effects of DSS and HSYA. The findings of our study thus demonstrate that DSS and HSYA confer synergistic cardioprotective effects through the Akt/Nrf2/HO-1 signaling pathway, to certain extent, by enhancing the antioxidant defense system and exerting

  13. Anti-Fibrotic Effect of Losartan, an Angiotensin II Receptor Blocker, Is Mediated through Inhibition of ER Stress via Up-Regulation of SIRT1, Followed by Induction of HO-1 and Thioredoxin

    PubMed Central

    Kim, Hyosang; Baek, Chung Hee; Lee, Raymond Bok; Chang, Jai Won; Yang, Won Seok; Lee, Sang Koo

    2017-01-01

    Endoplasmic reticulum (ER) stress is increasingly identified as modulator of fibrosis. Losartan, an angiotensin II receptor blocker, has been widely used as the first choice of treatment in chronic renal diseases. We postulated that anti-fibrotic effect of losartan is mediated through inhibition of ER stress via SIRT1 (silent mating type information regulation 2 homolog 1) hemeoxygenase-1 (HO-1)/thioredoxin pathway. Renal tubular cells, tunicamycin (TM)-induced ER stress, and unilateral ureteral obstruction (UUO) mouse model were used. Expression of ER stress was assessed by Western blot analysis and immunohistochemical stain. ER stress was induced by chemical ER stress inducer, tunicamycin, and non-chemical inducers such as TGF-β, angiotensin II, high glucose, and albumin. Losartan suppressed the TM-induced ER stress, as shown by inhibition of TM-induced expression of GRP78 (glucose related protein 78) and p-eIF2α (phosphospecific-eukaryotic translation initiation factor-2α), through up-regulation of SIRT1 via HO-1 and thioredoxin. Losartan also suppressed the ER stress by non-chemical inducers. In both animal models, losartan reduced the tubular expression of GRP78, which were abolished by pretreatment with sirtinol (SIRT1 inhibitor). Sirtinol also blocked the inhibitory effect of losartan on the UUO-induced renal fibrosis. These findings provide new insights into renoprotective effects of losartan and suggest that SIRT1, HO-1, and thioredoxin may be potential pharmacological targets in kidney diseases under excessive ER stress condition. PMID:28146117

  14. The Stress-responsive Heme Oxygenase (HO)-1 Isoenzyme is Increased in Labouring Myometrium where it Regulates Contraction-associated Proteins.

    PubMed

    Liong, Stella; Lappas, Martha

    2015-07-01

    Sterile inflammation through activation of cytokine receptor signalling pathways and viral or bacterial infection via activation of Toll-like receptors (TLRs) induces a cascade of events that leads to myometrial contractions and spontaneous preterm delivery. In non-pregnant tissues, heme oxygenase-1 (HO-1) is thought to play a central role in regulating the inflammatory response. Thus, the aims of this study were to determine the effect of human term labour on HO-1 expression in human myometrium and to investigate the role of HO-1 in myometrial primary cells in response to cytokine- and TLR ligand-induced inflammation. Localization and expression of HO-1 protein in human myometrial tissues were determined using IHC. Western blot analysis and qRT-PCR were also used to determine HO-1 protein and gene expression, respectively, in human myometrium. siRNA knock-down of HO-1 in myometrial primary cells was used to determine its role in response to inflammatory stimuli. HO-1 gene expression and protein expression were increased in term labouring myometrium compared with non-labouring myometrium. Bacterial flagellin (TLR5 ligand), viral dsRNA analogue polyinosinic polycytidylic acid (poly(I:C)) (TLR3 ligand) and pro-inflammatory cytokines IL-1β and TNF-α induced pro-inflammatory cytokine (IL-6 and IL-8) mRNA expression and release in myometrial cells. IL-1β also induced COX-2 mRNA expression and prostaglandin release. HO-1 siRNA knock-down significantly decreased the expression and secretion of these prolabour mediators. Additionally, flagellin, poly(I:C), IL-1β, and TNF-α-induced NF-κB transcriptional activity were suppressed in HO-1-deficient myometrial cells. Collectively, these findings in myometrium indicate HO-1 expression is increased with labour and exerts pro-inflammatory effects via NF-κB during cytokine- and TLR ligand-induced inflammation. © 2015 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  15. Butein induction of HO-1 by p38 MAPK/Nrf2 pathway in adipocytes attenuates high-fat diet induced adipose hypertrophy in mice.

    PubMed

    Wang, Zheng; Ka, Sun-O; Lee, Youngyi; Park, Byung-Hyun; Bae, Eun Ju

    2017-03-15

    Adipose tissue inflammation and oxidative stress are key components in the development of obesity and insulin resistance. Heme oxygenase (HO)-1 in adipocytes protects against obesity and adipose dysfunction. In this study, we report the identification of butein, a flavonoid chalcone, as a novel inducer of HO-1 expression in adipocytes in vitro and in vivo. Butein upregulated HO-1 mRNA and protein expression in 3T3-L1 adipocytes, accompanied by Kelch-Like ECH-Associated Protein (Keap) 1 degradation and increase in the nuclear level of nuclear factor erythroid 2-related factor 2 (Nrf2). Butein modulation of Keap1 and Nrf2 as well as HO-1 upregulation was reversed by pretreatment with p38 MAPK inhibitor SB203580, indicating the involvement of p38 MAPK in butein activation of Nrf2 in adipocytes. In addition, HO-1 activation by butein led to the inhibitions of reactive oxygen species and adipocyte differentiation, as evidenced by the fact that butein repression of reactive oxygen species and adipogenesis was reversed by pretreatment with HO-1 inhibitor SnPP. Induction of HO-1 expression by butein was also demonstrated in the adipose tissue of C57BL/6 mice fed a high-fat diet administered along with butein for three weeks, and correlated with the inhibitions of adiposity and adipose tissue inflammation, which were reversed by co-administration of SnPP. Altogether, our results demonstrate that butein activates the p38 MAPK/Nrf2/HO-1 pathway to act as a potent inhibitor of adipose hypertrophy and inflammation in a diet-induced obesity model and thus has potential for suppressing obesity-linked metabolic syndrome.

  16. Glabridin Alleviates the Toxic Effects of Methylglyoxal on Osteoblastic MC3T3-E1 Cells by Increasing Expression of the Glyoxalase System and Nrf2/HO-1 Signaling and Protecting Mitochondrial Function.

    PubMed

    Choi, Eun Mi; Suh, Kwang Sik; Kim, Yu Jin; Hong, Soo Min; Park, So Yong; Chon, Suk

    2016-01-13

    Methylglyoxal (MG) contributes to the pathogenesis of age- and diabetes-associated complications. The present study investigated the effects of glabridin on MG-induced cytotoxicity in MC3T3-E1 osteoblastic cells. MC3T3-E1 cells were treated with glabridin in the presence of MG, and markers of mitochondrial function and oxidative damage were examined. Pretreatment of MC3T3-E1 osteoblastic cells with glabridin prevented MG-induced cell death, the production of intracellular reactive oxygen species and mitochondrial superoxides, cardiolipin peroxidation, and the production of inflammatory cytokines. The soluble form of receptor for advanced glycation end products (sRAGEs)/RAGE ratio increased upon MG treatment, but less so after pretreatment with glabridin, which also increased the level of reduced glutathione and the activities of glyoxalase I and heme oxygenase-1, all of which were reduced by MG. In addition, glabridin elevated the level of nuclear factor erythroid 2-related factor 2. These findings suggest that glabridin protects against MG-induced cell damage by inhibiting oxidative stress and increasing MG detoxification. Pretreatment of MC3T3-E1 osteoblastic cells with glabridin reduced MG-induced mitochondrial dysfunction. Additionally, the nitric oxide level significantly increased upon glabridin pretreatment. Together, these data show that glabridin may potentially serve to prevent the development of diabetic bone disease associated with MG-induced oxidative stress.

  17. The apolipoprotein A-I mimetic peptide, D-4F, alleviates ox-LDL-induced oxidative stress and promotes endothelial repair through the eNOS/HO-1 pathway.

    PubMed

    Liu, Donghui; Ding, Zhenzhen; Wu, Mengzhang; Xu, Wenqi; Qian, Mingming; Du, Qian; Zhang, Le; Cui, Ye; Zheng, Jianlan; Chang, He; Huang, Caihua; Lin, Donghai; Wang, Yan

    2017-04-01

    Apolipoprotein A-I (apoA-I) mimetic peptide exerts many anti-atherogenic properties. However, the underlying mechanisms related to the endothelial protective effects remain elusive. In this study, the apoA-I mimetic peptide, D-4F, was used. Proliferation assay, wound healing, and transwell migration experiments showed that D-4F improved the impaired endothelial proliferation and migration resulting from ox-LDL. Endothelial adhesion molecules expression and monocyte adhesion assay demonstrated that D-4F inhibited endothelial inflammation. Caspase-3 activation and TUNEL stain indicated that D-4F reduced endothelial cell apoptosis. A pivotal anti-oxidant enzyme, heme oxygenase-1 (HO-1) was upregulated by D-4F. The Akt/AMPK/eNOS pathways were involved in the expression of HO-1 induced by D-4F. Moreover, the anti-oxidation, pro-proliferation, and pro-migration capacities of D-4F were diminished by the inhibitors of both eNOS (L-NAME) and HO-1 (Znpp). Additionally, downregulation of ATP-binding cassette transporter A1 (ABCA1) by siRNA abolished the activation of Akt, AMPK and eNOS, and reduced the upregulation of HO-1 triggered by D-4F. Furthermore, D-4F promoted the reendothelialization of injured intima in carotid artery injury model of C57BL/6J mice in vivo. In summary, these findings suggested that D-4F might be a powerful candidate in the protection of endothelial cells and the prevention of cardiovascular disease (CVD). Copyright © 2017. Published by Elsevier Ltd.

  18. Endothelial HO-1 induction by model TG-rich lipoproteins is regulated through a NOX4-Nrf2 pathway.

    PubMed

    Latham Birt, Sally H; Purcell, Robert; Botham, Kathleen M; Wheeler-Jones, Caroline P D

    2016-07-01

    Circulating levels of chylomicron remnants (CMRs) increase postprandially and their composition directly reflects dietary lipid intake. These TG-rich lipoproteins likely contribute to the development of endothelial dysfunction, albeit via unknown mechanisms. Here, we investigated how the FA composition of CMRs influences their actions on human aortic endothelial cells (HAECs) by comparing the effects of model CMRs-artificial TG-rich CMR-like particles (A-CRLPs)-containing TGs extracted from fish, DHA-rich algal, corn, or palm oils. HAECs responded with distinct transcriptional programs according to A-CRLP TG content and oxidation status, with genes involved in antioxidant defense and cytoprotection most prominently affected by n-3 PUFA-containing A-CRLPs. These particles were significantly more efficacious inducers of heme oxygenase-1 (HO-1) than n-6 PUFA corn or saturated FA-rich palm CRLPs. Mechanistically, HO-1 induction by all CRLPs requires NADPH oxidase 4, with PUFA-containing particles additionally dependent upon mitochondrial reactive oxygen species. Activation of both p38 MAPK and PPARβ/δ culminates in increased nuclear factor erythroid 2-related factor 2 (Nrf2) expression/nuclear translocation and HO-1 induction. These studies define new molecular pathways coupling endothelial cell activation by model CMRs with adaptive regulation of Nrf2-dependent HO-1 expression and may represent key mechanisms through which dietary FAs differentially impact progression of endothelial dysfunction. Copyright © 2016 by the American Society for Biochemistry and Molecular Biology, Inc.

  19. AN ENZYME LINKED IMMUNOSORBENT ASSAY FOR THE HO-1 ISOFORM OF HEME OXYGENASE

    EPA Science Inventory

    AN ENZYME LINKED IMMUNOSORBENT ASSAY FOR THE HO-1 ISOFORM OF HEME OXYGENASE

    Heme oxygenase (HO) occurs in biological tissues as two major isoforms HO-1 and HO-2. HO-1 is inducible by many treatments, particularly oxidative stress-related conditions such as depletion of gl...

  20. AN ENZYME LINKED IMMUNOSORBENT ASSAY FOR THE HO-1 ISOFORM OF HEME OXYGENASE

    EPA Science Inventory

    AN ENZYME LINKED IMMUNOSORBENT ASSAY FOR THE HO-1 ISOFORM OF HEME OXYGENASE

    Heme oxygenase (HO) occurs in biological tissues as two major isoforms HO-1 and HO-2. HO-1 is inducible by many treatments, particularly oxidative stress-related conditions such as depletion of gl...

  1. Epoxyeicosatrienoic acid agonist regulates human mesenchymal stem cell-derived adipocytes through activation of HO-1-pAKT signaling and a decrease in PPARγ.

    PubMed

    Kim, Dong Hyun; Vanella, Luca; Inoue, Kazuyoshi; Burgess, Angela; Gotlinger, Katherine; Manthati, Vijaya Lingam; Koduru, Sreenivasulu Reddy; Zeldin, Darryl C; Falck, John R; Schwartzman, Michal L; Abraham, Nader G

    2010-12-01

    Human mesenchymal stem cells (MSCs) expressed substantial levels of CYP2J2, a major CYP450 involved in epoxyeicosatrienoic acid (EET) formation. MSCs synthesized significant levels of EETs (65.8 ± 5.8 pg/mg protein) and dihydroxyeicosatrienoic acids (DHETs) (15.83 ± 1.62 pg/mg protein), suggesting the presence of soluble epoxide hydrolase (sEH). The addition of an sEH inhibitor to MSC culture decreased adipogenesis. EETs decreased MSC-derived adipocytes in a concentration-dependent manner, 8,9- and 14,15-EET having the maximum reductive effect on adipogenesis. We examined the effect of 12-(3-hexylureido)dodec-8(Z)-enoic acid, an EET agonist, on MSC-derived adipocytes and demonstrated an increased number of healthy small adipocytes, attenuated fatty acid synthase (FAS) levels (P < 0.01), and reduced PPARγ, C/EBPα, FAS, and lipid accumulation (P < 0.05). These effects were accompanied by increased levels of heme oxygenase (HO)-1 and adiponectin (P < 0.05), and increased glucose uptake (P < 0.05). Inhibition of HO activity or AKT by tin mesoporphyrin (SnMP) and LY2940002, respectively, reversed EET-induced inhibition of adipogenesis, suggesting that activation of the HO-1-adiponectin axis underlies EET effect in MSCs. These findings indicate that EETs decrease MSC-derived adipocyte stem cell differentiation by upregulation of HO-1-adiponectin-AKT signaling and play essential roles in the regulation of adipocyte differentiation by inhibiting PPARγ, C/EBPα, and FAS and in stem cell development. These novel observations highlight the seminal role of arachidonic acid metabolism in MSCs and suggest that an EET agonist may have potential therapeutic use in the treatment of dyslipidemia, diabetes, and the metabolic syndrome.

  2. Heme oxygenase (HO)-1 induction prevents Endoplasmic Reticulum stress-mediated endothelial cell death and impaired angiogenic capacity.

    PubMed

    Maamoun, Hatem; Zachariah, Matshediso; McVey, John H; Green, Fiona R; Agouni, Abdelali

    2017-03-01

    Most of diabetic cardiovascular complications are attributed to endothelial dysfunction and impaired angiogenesis. Endoplasmic Reticulum (ER) and oxidative stresses were shown to play a pivotal role in the development of endothelial dysfunction in diabetes. Hemeoxygenase-1 (HO-1) was shown to protect against oxidative stress in diabetes; however, its role in alleviating ER stress-induced endothelial dysfunction remains not fully elucidated. We aim here to test the protective role of HO-1 against high glucose-mediated ER stress and endothelial dysfunction and understand the underlying mechanisms with special emphasis on oxidative stress, inflammation and cell death. Human Umbilical Vein Endothelial Cells (HUVECs) were grown in either physiological or intermittent high concentrations of glucose for 5days in the presence or absence of Cobalt (III) Protoporphyrin IX chloride (CoPP, HO-1 inducer) or 4-Phenyl Butyric Acid (PBA, ER stress inhibitor). Using an integrated cellular and molecular approach, we then assessed ER stress and inflammatory responses, in addition to apoptosis and angiogenic capacity in these cells. Our results show that HO-1 induction prevented high glucose-mediated increase of mRNA and protein expression of key ER stress markers. Cells incubated with high glucose exhibited high levels of oxidative stress, activation of major inflammatory and apoptotic responses [nuclear factor (NF)-κB and c-Jun N-terminal kinase (JNK)] and increased rate of apoptosis; however, cells pre-treated with CoPP or PBA were fully protected. In addition, high glucose enhanced caspases 3 and 7 cleavage and activity and augmented cleaved poly ADP ribose polymerase (PARP) expression whereas HO-1 induction prevented these effects. Finally, HO-1 induction and ER stress inhibition prevented high glucose-induced reduction in NO release and impaired the angiogenic capacity of HUVECs, and enhanced vascular endothelial growth factor (VEGF)-A expression. Altogether, we show here the

  3. Cerium oxide nanoparticles alleviate oxidative stress and decreases Nrf-2/HO-1 in D-GALN/LPS induced hepatotoxicity.

    PubMed

    Hashem, Reem M; Rashd, Laila A; Hashem, Khalid S; Soliman, Hatem M

    2015-07-01

    Translocation of the master regulator of antioxidant-response element-driven antioxidant gene, nuclear factor erythroid 2 (Nrf-2) from the cytoplasm into the nucleus and triggering the transcription of hemoxygenase-1 (HO-1) to counteract the oxidative stress is a key feature in D-galactoseamine and lipopolysaccharide (D-GALN/LPS) induced hepatotoxicity. We mainly aimed to study the effect of cerium oxide (CeO2) nanoparticles on Nrf-2/HO-1 pathway whereas; it has previously shown to have an antioxidant effect in liver models. Administration of CeO2 nanoparticles significantly decreased the translocation of the cytoplasmic Nrf-2 with a concomitant decrement in the gene expression of HO-1 as it reveals a powerful antioxidative effect as indicated by the significant increase in the levels of glutathione (GSH), glutathione peroxidase (GPX1), glutathione reductase (GR), superoxide dismutase (SOD) and catalase. In synchronization, a substantial decrement in the levels of inducible nitric oxide synthase (iNOS), TBARS and percentage of DNA fragmentation was established. These results were confirmed by histopathology examination which showed a severe degeneration, haemorrhages, widened sinusoids and focal leukocyte infiltration in D-GALN/LPS treatment and these features were alleviated with CeO2 administration. In conclusion, CeO2 is a potential antioxidant that can effectively decrease the translocation of the cytoplasmic Nrf-2 into the nucleus and decrease HO-1 in D-GALN/LPS induced hepatotoxicity.

  4. Heme oxygenase-1 promotes migration and β-epithelial Na+ channel expression in cytotrophoblasts and ischemic placentas.

    PubMed

    Warrington, Junie P; Coleman, Kayla; Skaggs, Courtney; Hosick, Peter A; George, Eric M; Stec, David E; Ryan, Michael J; Granger, Joey P; Drummond, Heather A

    2014-05-01

    Preeclampsia is thought to arise from inadequate cytotrophoblast migration and invasion of the maternal spiral arteries, resulting in placental ischemia and hypertension. Evidence suggests that altered expression of epithelial Na(+) channel (ENaC) proteins may be a contributing mechanism for impaired cytotrophoblast migration. ENaC activity is required for normal cytotrophoblast migration. Moreover, β-ENaC, the most robustly expressed placental ENaC message, is reduced in placentas from preeclamptic women. We recently demonstrated that heme oxygenase-1 (HO-1) protects against hypertension in a rat model of placental ischemia; however, whether HO-1 regulation of β-ENaC contributes to the beneficial effects of HO-1 is unknown. The purpose of this study was to determine whether β-ENaC mediates cytotrophoblast migration and whether HO-1 enhances ENaC-mediated migration. We showed that placental ischemia, induced by reducing uterine perfusion suppressed, and HO-1 induction restored, β-ENaC expression in ischemic placentas. Using an in vitro model, we found that HO-1 induction, using cobalt protoporphyrin, stimulates cytotrophoblast β-ENaC expression by 1.5- and 1.8-fold (10 and 50 μM). We then showed that silencing of β-ENaC in cultured cytotrophoblasts (BeWo cells), by expression of dominant-negative constructs, reduced migration to 56 ± 13% (P < 0.05) of control. Importantly, HO-1 induction enhanced migration (43 ± 5% of control, P < 0.05), but the enhanced migratory response was entirely blocked by ENaC inhibition with amiloride (10 μM). Taken together, our results suggest that β-ENaC mediates cytotrophoblast migration and increasing β-ENaC expression by HO-1 induction enhances migration. HO-1 regulation of cytotrophoblast β-ENaC expression and migration may be a potential therapeutic target in preeclamptic patients.

  5. Epigallocatechin Gallate Induces Expression of Heme Oxygenase-1 in Endothelial Cells via p38 MAPK and Nrf-2 that Suppresses Pro-inflammatory Actions of TNF-α

    PubMed Central

    Pullikotil, Philomena; Chen, Hui; Muniyappa, Ranganath; Greenberg, Cynthia C.; Yang, Shutong; Reiter, Chad E. N.; Lee, Ji-Won; Chung, Jay H.; Quon, Michael J.

    2011-01-01

    Epigallocatechin gallate (EGCG), the major polyphenol in green tea, acutely stimulates production of nitric oxide (NO) from vascular endothelium to reduce hypertension, and improve endothelial dysfunction in SHR rats. Herein, we explored additional mechanisms whereby EGCG may mediate beneficial cardiovascular actions. When compared with vehicle-treated controls, EGCG treatment (2.5 μM, 8 h) of human aortic endothelial cells (HAEC) caused a ~3-fold increase in hemeoxygenase-1 (HO-1) mRNA and protein with comparable increases in HO-1 activity. This was unaffected by pre-treatment of cells with wortmannin, LY294002, PD98059, or L-NAME (PI 3-kinase, MEK, and NO synthase inhibitors, respectively). Pre-treatment of HAEC with SB203580 (p38 MAPK inhibitor) or siRNA knockdown of p38 MAPK completely blocked EGCG-stimulated induction of HO-1. EGCG treatment also inhibited TNF-α-stimulated expression of VCAM-1 and decreased adhesion of monocytes to HAEC. siRNA knockdown of HO-1, p38 MAPK, or Nrf-2 blocked these inhibitory actions of EGCG. In HAEC transiently transfected with a human HO-1 promoter luciferase reporter (or an isolated Nrf-2 responsive region), luciferase activity increased in response to EGCG. This was inhibitable by SB203580 pre-treatment. EGCG-stimulated expression of HO-1 and Nrf-2 was blocked by siRNA knockdown of Nrf-2 or p38 MAPK. Finally, liver from mice chronically treated with EGCG had increased HO-1 and decreased VCAM-1 expression. Thus, in vascular endothelium, EGCG requires p38 MAPK to increase expression of Nrf-2 that drives expression of HO-1 resulting in increased HO-1 activity. Increased HO-1 expression may underlie anti-inflammatory actions of EGCG in vascular endothelium that may help mediate beneficial cardiovascular actions of green tea. PMID:22137262

  6. Molecular hydrogen protects mice against polymicrobial sepsis by ameliorating endothelial dysfunction via an Nrf2/HO-1 signaling pathway.

    PubMed

    Chen, Hongguang; Xie, Keliang; Han, Huanzhi; Li, Yuan; Liu, Lingling; Yang, Tao; Yu, Yonghao

    2015-09-01

    Endothelial injury is a primary cause of sepsis and sepsis-induced organ damage. Heme oxygenase-1 (HO-1) plays an essential role in endothelial cellular defenses against inflammation by activating nuclear factor E2-related factor-2 (Nrf2). We found that molecular hydrogen (H2) exerts an anti-inflammatory effect. Here, we hypothesized that H2 attenuates endothelial injury and inflammation via an Nrf2-mediated HO-1 pathway during sepsis. First, we detected the effects of H2 on cell viability and cell apoptosis in human umbilical vein endothelial cells (HUVECs) stimulated by LPS. Then, we measured cell adhesion molecules and inflammatory factors in HUVECs stimulated by LPS and in a cecal ligation and puncture (CLP)-induced sepsis mouse model. Next, the role of Nrf2/HO-1 was investigated in activated HUVECs, as well as in wild-type and Nrf(-/-) mice with sepsis. We found that both 0.3 mmol/L and 0.6 mmol/L (i.e., saturated) H2-rich media improved cell viability and cell apoptosis in LPS-activated HUVECs and that 0.6mmol/L (i.e., saturated) H2-rich medium exerted an optimal effect. H2 could suppress the release of cell adhesion molecules, such as vascular cell adhesion molecule-1 (VCAM-1) and intercellular cell adhesion molecule-1 (ICAM-1), and pro-inflammatory cytokines, such as tumor necrosis factor (TNF)-α, interleukin (IL)-1β and high-mobility group box 1 protein (HMGB1). Furthermore, H2 could elevate anti-inflammatory cytokine IL-10 levels in LPS-stimulated HUVECs and in lung tissue from CLP mice. H2 enhanced HO-1 expression and activity in vitro and in vivo. HO-1 inhibition reversed the regulatory effects of H2 on cell adhesion molecules and inflammatory factors. H2 regulated endothelial injury and the inflammatory response via Nrf2-mediated HO-1 levels. These results suggest that H2 could suppress excessive inflammatory responses and endothelial injury via an Nrf2/HO-1 pathway.

  7. Heme oxygenase-1 (HO-1) upregulation delays morphological and oxidative damage induced in an excitotoxic/pro-oxidant model in the rat striatum.

    PubMed

    Colín-González, A L; Orozco-Ibarra, M; Chánez-Cárdenas, M E; Rangel-López, E; Santamaría, A; Pedraza-Chaverri, J; Barrera-Oviedo, D; Maldonado, P D

    2013-02-12

    Quinolinic acid (QA)-induced overactivation of N-methyl-d-aspartate receptors yields excitotoxicity, oxidative stress and mitochondrial dysfunction, which altogether contribute to trigger a wide variety of toxic pathways with biochemical, behavioral and neuropathological alterations similar to those observed in Huntington's disease. Noteworthy, in the brains of these patients, increased expression of heme oxygenase-1 (HO-1) levels can be found. It has been proposed that this enzyme can exert a dual role, as it can be either protective or deleterious to the CNS. While some evidence indicates that its overexpression affords cellular anti-oxidant protection due to decreased concentrations of its pro-oxidative substrate heme group, and increased bilirubin levels, other reports established that high HO-1 expression and activity may result in a pro-oxidizing atmosphere due to a release of Fe(2+). In this work, we examined the temporal evolution of oxidative damage to proteins, HO-1 expression, immunoreactivity, total activity, and cell death after 1, 3, 5 and 7 days of an intrastriatal QA infusion (240 nmol/μl). QA was found to induce cellular degeneration, increasing carbonylated proteins and generating a transitory response in HO-1 mRNA, protein content, and immunoreactivity and activity in nerve cells. In order to study the role of HO-1 in the QA-induced cellular death, the tin protoporphyrin IX (SnPP), a well-known HO inhibitor, was administered to rats (30 μmol/kg, i.p.). The administration of SnPP to animals treated with QA inhibited the HO activation, and exacerbated the striatal cell damage induced by QA. Our findings reveal a potential modulatory role of HO-1 in the toxic paradigm evoked by QA in rats. This evidence provides a valuable tool for further approaches on HO-1 regulation in neurotoxic paradigms. Copyright © 2012 IBRO. Published by Elsevier Ltd. All rights reserved.

  8. Activation of the Nrf2/HO-1 Antioxidant Pathway Contributes to the Protective Effects of Lycium Barbarum Polysaccharides in the Rodent Retina after Ischemia-Reperfusion-Induced Damage

    PubMed Central

    Chang, Raymond Chuen-Chung; So, Kwok-Fai; Brecha, Nicholas C.; Pu, Mingliang

    2014-01-01

    Lycium barbarum polysaccharides (LBP), extracts from the wolfberries, are protective to retina after ischemia-reperfusion (I/R). The antioxidant response element (ARE)–mediated antioxidant pathway plays an important role in maintaining the redox status of the retina. Heme oxygenase-1 (HO-1), combined with potent AREs in its promoter, is a highly effective therapeutic target for the protection against neurodegenerative diseases, including I/R-induced retinal damage. The aim of our present study was to investigate whether the protective effect of LBP after I/R damage was mediated via activation of the Nrf2/HO-1-antioxidant pathway in the retina. Retinal I/R was induced by an increase in intraocular pressure to 130 mm Hg for 60 minutes. Prior to the induction of ischemia, rats were orally treated with either vehicle (PBS) or LBP (1 mg/kg) once a day for 1 week. For specific experiments, zinc protoporphyrin (ZnPP, 20 mg/kg), an HO-1 inhibitor, was intraperitoneally administered at 24 h prior to ischemia. The protective effects of LBP were evaluated by quantifying ganglion cell and amacrine cell survival, and by measuring cell apoptosis in the retinal layers. In addition, HO-1 expression was examined using Western blotting and immunofluorescence analyses. Cytosolic and nuclear Nrf2 was measured using immunofluorescent staining. LBP treatment significantly increased Nrf2 nuclear accumulation and HO-1 expression in the retina after I/R injury. Increased apoptosis and a decrease in the number of viable cells were observed in the ganglion cell layer (GCL) and inner nuclear layer (INL) in the I/R retina, which were reversed by LBP treatment. The HO-1 inhibitor, ZnPP, diminished the LBP treatment-induced protective effects in the retina after I/R. Taken together, these results suggested that LBP partially exerted its beneficial neuroprotective effects via the activation of Nrf2 and an increase in HO-1 protein expression. PMID:24400114

  9. 20C, a bibenzyl compound isolated from Gastrodia elata, protects PC12 cells against rotenone-induced apoptosis via activation of the Nrf2/ARE/HO-1 signaling pathway.

    PubMed

    Huang, Ju-Yang; Yuan, Yu-He; Yan, Jia-Qing; Wang, Ya-Nan; Chu, Shi-Feng; Zhu, Cheng-Gen; Guo, Qing-Lan; Shi, Jian-Gong; Chen, Nai-Hong

    2016-06-01

    Our preliminary study shows that a bibenzyl compound isolated from Gastrodia elata, 2-[4-hydroxy-3-(4-hydroxybenzyl)benzyl]-4-(4-hydroxybenzyl)phenol (designated 20C), protects PC12 cells against H2O2-induced injury. In this study we investigated whether 20C exerted neuroprotective action in a cell model of Parkinson's disease. A cell model of Parkinson's disease was established in PC12 cells by exposure to rotenone (4 μmol/L) for 48 h. Cell viability and apoptosis were assessed, and intracellular ROS level and the mitochondrial membrane potential (MMP) were detected. The expression of apoptosis-related proteins Bax, Bcl-2, cytochrome c, cleaved caspase-3, and oxidative stress-related proteins Nrf2, HO-1 and NQO1 were examined using Western blotting. The mRNA levels of HO-1 and NQO1 were determined with RT-PCR. The nuclear translocation of Nrf2 was observed with immunofluorescence staining. Treatment with rotenone significantly increased the number of apoptotic cells, accompanied by marked increases in the Bax/Bcl-2 ratio, cytochrome c release and caspase-3 activation. Rotenone also increased ROS accumulation, reduced MMP, and increased the nuclear translocation of Nrf2 as well as the mRNA and protein levels of the Nrf2 downstream target genes HO-1 and NQO1 in PC12 cells. Co-treatment with 20C (0.01-1 μmol/L) dose-dependently attenuated rotenone-induced apoptosis and oxidative stress in PC12 cells. Nrf2 knockdown by siRNA partially reversed the protective effects of 20C in rotenone-treated PC12 cells. The bibenzyl compound 20C protects PC12 cells from rotenone-induced apoptosis, at least in part, via activation of the Nrf2/ARE/HO-1 signaling pathway.

  10. 20C, a bibenzyl compound isolated from Gastrodia elata, protects PC12 cells against rotenone-induced apoptosis via activation of the Nrf2/ARE/HO-1 signaling pathway

    PubMed Central

    Huang, Ju-yang; Yuan, Yu-he; Yan, Jia-qing; Wang, Ya-nan; Chu, Shi-feng; Zhu, Cheng-gen; Guo, Qing-lan; Shi, Jian-gong; Chen, Nai-hong

    2016-01-01

    Aim: Our preliminary study shows that a bibenzyl compound isolated from Gastrodia elata, 2-[4-hydroxy-3-(4-hydroxybenzyl)benzyl]-4-(4-hydroxybenzyl)phenol (designated 20C), protects PC12 cells against H2O2-induced injury. In this study we investigated whether 20C exerted neuroprotective action in a cell model of Parkinson's disease. Methods: A cell model of Parkinson's disease was established in PC12 cells by exposure to rotenone (4 μmol/L) for 48 h. Cell viability and apoptosis were assessed, and intracellular ROS level and the mitochondrial membrane potential (MMP) were detected. The expression of apoptosis-related proteins Bax, Bcl-2, cytochrome c, cleaved caspase-3, and oxidative stress-related proteins Nrf2, HO-1 and NQO1 were examined using Western blotting. The mRNA levels of HO-1 and NQO1 were determined with RT-PCR. The nuclear translocation of Nrf2 was observed with immunofluorescence staining. Results: Treatment with rotenone significantly increased the number of apoptotic cells, accompanied by marked increases in the Bax/Bcl-2 ratio, cytochrome c release and caspase-3 activation. Rotenone also increased ROS accumulation, reduced MMP, and increased the nuclear translocation of Nrf2 as well as the mRNA and protein levels of the Nrf2 downstream target genes HO-1 and NQO1 in PC12 cells. Co-treatment with 20C (0.01–1 μmol/L) dose-dependently attenuated rotenone-induced apoptosis and oxidative stress in PC12 cells. Nrf2 knockdown by siRNA partially reversed the protective effects of 20C in rotenone-treated PC12 cells. Conclusion: The bibenzyl compound 20C protects PC12 cells from rotenone-induced apoptosis, at least in part, via activation of the Nrf2/ARE/HO-1 signaling pathway. PMID:27180985

  11. Pro-Inflammatory and Pro-Oxidant Status of Pancreatic Islet In Vitro Is Controlled by TLR-4 and HO-1 Pathways

    PubMed Central

    Vivot, Kevin; Langlois, Allan; Bietiger, William; Dal, Stéphanie; Seyfritz, Elodie; Pinget, Michel; Jeandidier, Nathalie; Maillard, Elisa; Gies, Jean-Pierre; Sigrist, Séverine

    2014-01-01

    Since their isolation until implantation, pancreatic islets suffer a major stress leading to the activation of inflammatory reactions. The maintenance of controlled inflammation is essential to preserve survival and function of the graft. Identification and targeting of pathway(s) implicated in post-transplant detrimental inflammatory events, is mandatory to improve islet transplantation success. We sought to characterize the expression of the pro-inflammatory and pro-oxidant mediators during islet culture with a focus on Heme oxygenase (HO-1) and Toll-like receptors-4 signaling pathways. Rat pancreatic islets were isolated and pro-inflammatory and pro-oxidant status were evaluated after 0, 12, 24 and 48 hours of culture through TLR-4, HO-1 and cyclooxygenase-2 (COX-2) expression, CCL-2 and IL-6 secretion, ROS (Reactive Oxygen Species) production (Dihydroethidine staining, DHE) and macrophages migration. To identify the therapeutic target, TLR4 inhibition (CLI-095) and HO-1 activation (cobalt protoporphyrin,CoPP) was performed. Activation of NFκB signaling pathway was also investigated. After isolation and during culture, pancreatic islet exhibited a proinflammatory and prooxidant status (increase levels of TLR-4, COX-2, CCL-2, IL-6, and ROS). Activation of HO-1 or inhibition of TLR-4 decreased inflammatory status and oxidative stress of islets. Moreover, the overexpression of HO-1 induced NFκB phosphorylation while the inhibition of TLR-4 had no effect NFκB activation. Finally, inhibition of pro-inflammatory pathway induced a reduction of macrophages migration. These data demonstrated that the TLR-4 signaling pathway is implicated in early inflammatory events leading to a pro-inflammatory and pro-oxidant status of islets in vitro. Moreover, these results provide the mechanism whereby the benefits of HO-1 target in TLR-4 signaling pathway. HO-1 could be then an interesting target to protect islets before transplantation. PMID:25343247

  12. Cytoprotective effect exerted by geraniin in HepG2 cells is through microRNA mediated regulation of BACH-1 and HO-1.

    PubMed

    Aayadi, Hoda; Mittal, Smriti P K; Deshpande, Anjali; Gore, Makarand; Ghaskadbi, Saroj S

    2017-06-12

    Geraniin, a hydrolysable tannin, used in traditional medicine in Southeast Asia, is known to exhibit various biological activities. As an antioxidant it is known to up-regulate phase II enzyme Heme oxygenase-1 (HO-1). However its mechanism is not clearly understood. Nuclear factor erythroid-derived 2 related factor 2 (Nrf-2) is transcriptionally up-regulated by Extracellular signal-regulated kinase (ERK) 1/2 and retained in nucleus due to inactivated Glycogen synthase kinase 3 beta (GSK-3β). Geraniin additionally down-regulates expression of microRNA 217 and 377 (miR-217 and miR-377) which target HO-1 mRNA. Expression of BTB and CNC homolog 1 (BACH-1), another regulator of HO-1, is also down-regulated by up-regulating microRNA 98 (miR-98), a negative regulator of BACH-1. Thus, geraniin up-regulates HO-1 expression both through activating its positive regulator Nrf-2 and by down-regulating its negative regulator BACH-1. Up-regulation of HO-1 also confers protection to HepG2 cells from tertiary butyl hydroperoxide (TBH) induced cytotoxicity.

  13. Involvement of PKA and HO-1 signaling in anti-inflammatory effects of surfactin in BV-2 microglial cells

    SciTech Connect

    Park, Sun Young; Kim, Ji-Hee; Lee, Sang Joon; Kim, YoungHee

    2013-04-01

    Surfactin, one of the most powerful biosurfactants, is a bacterial cyclic lipopeptide. Here, we investigated the anti-neuroinflammatory properties of surfactin in lipoteichoic acid (LTA)-stimulated BV-2 microglial cells. Surfactin significantly inhibited excessive production of the pro-inflammatory mediators TNF-α, IL-1β, IL-6, monocyte chemoattractant protein-1 (MCP-1), prostaglandin E{sub 2} (PGE{sub 2}), nitric oxide (NO) and reactive oxygen species (ROS), and suppressed the expression of matrix metalloproteinase-9 (MMP-9), inducible NO synthase (iNOS) and cyclooxygenase-2 (COX-2). Subsequent mechanistic studies revealed that surfactin inhibited LTA-induced nuclear factor-kappaB (NF-κB) and signal transducer and activator of transcription-1 (STAT-1) activation. However, surfactin increases the phosphorylation of the STAT-3, a component of the homeostatic mechanism causing anti-inflammatory events. We also demonstrated that surfactin induces heme oxygenase-1 (HO-1) expression and nuclear factor-regulated factor-2 (Nrf-2) activation, and that the anti-inflammatory effects of surfactin are abrogated by small interfering RNA-mediated knock-down of HO-1 or Nrf-2. Interestingly, we found that surfactin increased the level of cAMP and induced phosphorylation of cAMP responsive element binding protein (CREB) in microglial cells. Furthermore, treatment with the protein kinase A (PKA) inhibitor, H-89, blocked HO-1 induction by surfactin and abolished surfactin's suppressive effects on ROS and NO production. These results indicate that HO-1 and its upstream effector, PKA, play a pivotal role in the anti-neuroinflammatory response of surfactin in LTA-stimulated microglia. Therefore, surfactin might have therapeutic potential for neuroprotective agents to treat inflammatory and neurodegenerative diseases. - Highlights: ► Surfactin inhibits proinflammatory mediator synthesis in LTA-activated BV-2 cells. ► Surfactin suppresses NF-κB and STAT-1, but potentiates

  14. Upregulation of heme oxygenase-1 expression by dehydrodiconiferyl alcohol (DHCA) through the AMPK–Nrf2 dependent pathway

    SciTech Connect

    Lee, Junghun; Kim, Sunyoung

    2014-11-15

    Oxidative stress is induced by the accumulation of free radicals, resulting in an imbalanced cellular redox state, which has been implicated in a variety of human diseases. Dehydrodiconiferyl alcohol (DHCA), a lignan compound isolated from Cucurbita moschata, has previously been reported to contain anti-adipogenic and anti-lipogenic effects on 3T3-L1 cells and primary MEFs (Abraham and Kappas, 2008). In this study, it was tested whether DHCA could affect the expression of HO-1, using Raw264.7 mouse macrophage cell line. DHCA increased the protein and RNA levels of HO-1 and upregulated its promoter activity. Data from transient transfection assays indicated that ARE located in the E1 region of the HO-1 promoter are important in this DHCA-mediated induction of HO-1 expression. DHCA was also shown to enhance the nuclear translocation and binding of Nrf2 to the respective DNA sequences. The upregulation of HO-1 expression by DHCA was also observed in primary macrophages derived from wild type animals, but not in those from Nrf2 KO mice. Effects of DHCA on HO-1 and Nrf2 were reduced when cells were treated with an AMPK inhibitor, Compound C, but not by PI3K/Akt or MAPK inhibitors. Data from an experiment using a specific siRNA or chemical inhibitor for HO-1 suggested that the DHCA-mediated induction of the HO-1 protein could suppress the LPS-stimulated production of NO. Taken together, our data suggest that DHCA induces the expression of HO-1 by controlling its promoter activity through the AMPK–Nrf2 pathway, eventually leading to the reduction of NO production, and may thus have potential as an effective antioxidant. - Highlights: • Dehydrodiconiferyl alcohol (DHCA) induced the expression of heme oxygenase (HO)-1. • The AMPK–Nrf2 pathway is critically involved in the DHCA-mediated induction of HO-1. • DHCA increased the expression of HO-1, Gclc and Gclm in primary macrophages. • DHCA-mediated induction of HO-1 contributed to the suppression of NO production.

  15. BnHO1, a haem oxygenase-1 gene from Brassica napus, is required for salinity and osmotic stress-induced lateral root formation.

    PubMed

    Cao, Zeyu; Geng, Beibei; Xu, Sheng; Xuan, Wei; Nie, Li; Shen, Wenbiao; Liang, Yongchao; Guan, Rongzhan

    2011-08-01

    In this report, a rapeseed (Brassica napus) haem oxygenase-1 gene BnHO1 was cloned and sequenced. It shared high homology with Arabidopsis HY1 proteins, and encodes a 32.6 kDa protein with a 54-amino-acid transit peptide, predicting the mature protein of 25.1 kDa. The mature BnHO1 expressed in Escherichia coli exhibits haem oxygenase (HO) activity. Furthermore, the application of lower doses of NaCl (10 mM) and polyethylene glycol (PEG) (2%) mimicked the inducible effects of naphthylacetic acid and the HO-1 inducer haemin on the up-regulation of BnHO1 and subsequent lateral root (LR) formation. Contrasting effects were observed when a higher dose of NaCl or PEG was applied. The above inducible and inhibitory responses were blocked significantly when the HO-1 inhibitor zinc protoporphyrin IX (ZnPPIX) or haemin was applied, both of which were reversed by the application of carbon monoxide or ZnPPIX, respectively. Moreover, the addition of ZnPPIX at different time points during LR formation indicated that BnHO1 might be involved in the early stages of LR formation. The auxin response factor transcripts and the auxin content in seedling roots were clearly induced by lower doses of salinity or osmotic stress. However, treatment with the inhibitor of polar auxin transport N-1-naphthylphthalamic acid prevented the above inducible responses conferred by lower doses of NaCl and PEG, which were further rescued when the treatments were combined with haemin. Taken together, these results suggested a novel role of the rapeseed HO-1 gene in salinity and osmotic stress-induced LR formation, with a possible interaction with auxin signalling.

  16. HO1 mRNA and Protein do not Change in Parallel in Bronchial Biopsies of Patients After Long Term Exposure to Sulfur Mustard

    PubMed Central

    Nourani, Mohammad Reza; Yazdani, Samaneh; Roudkenar, Mehryar Habibi; Ebrahimi, Majid; Halabian, Raheleh; Mirbagheri, Leila; Ghanei, Mostafa; Fooladi, Abbas Ali Imani

    2010-01-01

    Sulfur mustard (SM), is an alkylating agent and has been emerged as a chemical weapon in various battlefields. More recently, SM was employed in the Iraq conflict against Iranian military forces and civilians. Nowadays there are more than 40,000 people suffering from pulmonary lesions special chronic obstructive pulmonary disease (COPD) due to mustard gas in Iran. SM causes the endogenous production of reactive oxygen species (ROS). Heme oxygenases (HOs) are the rate-limiting enzyme for heme metabolism. Numerous studies have confirmed that HOs are concerned in diverse biological processes such as anti-oxidation. The present study was undertaken to consider the regulation of HO-1 and HO-2 n the human airway wall, and to suggest a probable role that HOs may play in cellular defense against oxidative stress due to SM. In this research ten unexposed SM individuals and twenty SM exposed patients were included. Evaluation of HO-1& HO -2 expressions in unexposed and SM exposed patients samples was performed by semiquantitative RT-PCR, real-time RT-PCR and Immunohistochemistry analysis. While unexposed SM samples expressed same levels of HOs, expression level of HO-1 was upregulated about 3.58 ± 1.93 folds in SM exposed patients in comparison with unexposed ones, we could not find any difference in expression of HO-2 n two groups. In contrast, Immunohistochemistry results showed negative HO-1 protein expression in SM injured patients. Our results revealed that HO1 may plays an important role in cellular protection against oxidative stress due to mustard gas toxicity in airway wall of SM exposed patients at mRNA level, but translational modifications might cause decrease in the amount of HO1 protein. PMID:20981135

  17. Irradiation inhibits the maturation and mineralization of osteoblasts via the activation of Nrf2/HO-1 pathway.

    PubMed

    Kook, Sung-Ho; Kim, Kyoung-A; Ji, Hyeok; Lee, Daewoo; Lee, Jeong-Chae

    2015-12-01

    Nuclear factor (erythroid-derived 2)-like 2 (Nrf2) regulates the induction of antioxidant gene expression and protects cells against oxidative injury. However, there are controversial findings regarding the roles of Nrf2 on bone metabolism under oxidative stress. The role of Nrf2 on the differentiation of radiation-exposed osteoblasts is also unclear. We investigated whether Nrf2 negatively or positively affects osteoblast differentiation in response to irradiation. Irradiation inhibited osteoblast differentiation of MC3T3-E1 cells in a dose-dependent manner. This inhibition was evidenced by the irradiation-mediated decreases in bone-like nodule formation, alkaline phosphatase (ALP) activity, calcium accumulation, and expression of osteoblast markers, such as ALP, osteocalcin, osteopontin, bone sialoprotein, osterix, and Runx2. These reductions were accompanied by increased induction of Nrf2 and heme oxygenase-1 (HO-1), accumulation of cellular oxidants, and depletion of antioxidant defense enzymes. siRNA-mediated silencing of Nrf2 markedly reversed the negative effect of irradiation on osteoblast differentiation of the cells, leading to a decrease in HO-1 and an increase in Runx2 levels. Irradiation-mediated decreases in the levels of Runx2 and osteocalcin mRNA, but not of Nrf2 protein, were also significantly inhibited by HO-1 inhibitor, zinc protoporphyrin IX. Furthermore, N-acetyl cysteine restored all of the changes induced by irradiation to near-normal levels in the cells. These results demonstrate that irradiation inhibits osteoblast differentiation and mineralization of MC3T3-E1 cells through the oxidative stress-mediated activation of Nrf2/HO-1 pathway.

  18. Overexpression of HO-1 Contributes to Sepsis-Induced Immunosuppression by Modulating the Th1/Th2 Balance and Regulatory T-Cell Function.

    PubMed

    Yoon, Seong-Jin; Kim, So-Jin; Lee, Sun-Mee

    2017-05-15

    Countervailing anti-inflammatory response and immunosuppression can cause death in late sepsis. Depletion and dysfunction of T cells are critical for developing sepsis-induced immunosuppression. Heme oxygenase-1 (HO-1) has a regulatory effect on differentiation and function of T cells and anti-inflammatory properties. We therefore investigated the immunosuppressive role of HO-1 in sepsis with a focus on its effects on helper T-cell (Th) differentiation and regulatory T cells (Treg). Sepsis was induced by cecal ligation and puncture (CLP). Mice were intraperitoneally injected with zinc protoporphyrin (ZnPP; 25 mg/kg), an HO-1 inhibitor, or hemin (20 mg/kg), an HO-1 inducer, at 24 and 36 hours post-CLP. Splenocytes were isolated 48 hours post-CLP. Mice were intranasally infected with Pseudomonas aeruginosa 4 days post-CLP as a secondary pneumonia infection model. ZnPP improved survival and bacterial clearance, whereas hemin had the opposite effect in septic mice. CLP induced lymphocyte apoptosis and a proinflammatory Th1 to anti-inflammatory Th2 shift, which was attenuated by ZnPP. ZnPP attenuated the CLP-induced Treg population and protein expression of inhibitory costimulatory molecules. Furthermore, ZnPP improved survival in the secondary pneumonia infection model. Our findings suggest that HO-1 overexpression contributes to sepsis-induced immunosuppression during late phase sepsis by promoting Th2 polarization and Treg function.

  19. Mangiferin Mitigates Gastric Ulcer in Ischemia/ Reperfused Rats: Involvement of PPAR-γ, NF-κB and Nrf2/HO-1 Signaling Pathways.

    PubMed

    Mahmoud-Awny, Magdy; Attia, Ahmed S; Abd-Ellah, Mohamed F; El-Abhar, Hanan Salah

    2015-01-01

    Mangiferin (MF), a xanthonoid from Mangifera indica, has been proved to have antisecretory and antioxidant gastroprotective effects against different gastric ulcer models; however, its molecular mechanism has not been previously elucidated. Therefore, the aim of this study was to test its modulatory effect on several signaling pathways using the ischemia/reperfusion model for the first time. Animals were treated with MF, omeprazole (OMP), and the vehicle. The mechanistic studies revealed that MF mediated its gastroprotective effect partly via inducing the expression of Nrf2, HO-1 and PPAR-γ along with downregulating that of NF-κB. Surprisingly, the effect of MF, especially the high dose, exceeded that mediated by OMP except for Nrf2. The molecular results were reflected on the biomarkers measured, where the antioxidant effect of MF was manifested by increasing total antioxidant capacity and glutathione, besides normalizing malondialdehyde level. Additionally, MF decreased the I/R-induced nitric oxide elevation, an effect that was better than that of OMP. In the serum, MF, dose dependently, enhanced endothelial nitric oxide synthase, while reduced the inducible isoform. Regarding the anti-inflammatory effect of MF, it reduced serum level of IL-1β and sE-selectin, effects that were mirrored on the tissue level of myeloperoxidase, the neutrophil infiltration marker. In addition, MF possessed an antiapoptotic character evidenced by elevating Bcl-2 level and reducing that of caspase-3 in a dose related order. As a conclusion, the intimated gastroprotective mechanisms of MF are mediated, partially, by modulation of oxidative stress, inflammation and apoptosis possibly via the Nrf2/HO-1, PPAR-γ/NF-κB signaling pathways.

  20. Heat Shock Proteins in Brain: Role of Hsp70, Hsp 27 and HO-1 (Hsp32) and Their Therapeutic Potential

    PubMed Central

    Sharp, Frank R; Zhan, Xinhua; Liu, DaZhi

    2013-01-01

    Heat shock proteins are induced by heat shock via HSF proteins binding to heat shock elements in their promoters. Hsp70 is massively induced in response to misfolded proteins following cerebral ischemia in all cell types, but is induced mainly in neurons in the ischemic penumbra. Over expression of Hsp70 via transgenes and viruses or systemic administration of Hsp70 fusion proteins that allow it to cross the blood brain barrier protect brain against ischemia in most reported studies. Hsp27 can exist as unphosphorylated large oligomers that prevent misfolded protein aggregates and improve cell survival. P-Hsp27 small oligomers bind specific protein targets to improve survival. In brain Protein Kinase D phosphorylates Hsp27 following ischemia which then binds ASK1 to prevent MKK4/7, JNK, Jun induced apoptosis and decrease infarct volumes following focal cerebral ischemia. Heme oxygenase-1 (HO-1) metabolizes heme to carbon monoxide, ferrous ion and biliverdin. CO activates cGMP to promote vasodilation, and biliverdin is converted to bilirubin which can serve as an anti-oxidant both of which may contribute to the reported protective role of HO-1 in cerebral ischemia and subarachnoid hemorrhage. However, ferrous ion can react with hydrogen peroxide to produce pro-oxidant hydroxyl radicals which may explain the harmful role of HO-1 in intracerebral hemorrhage. Heat shock proteins as a class have great potential as treatments for cerebrovascular disease and have yet to be tested in the clinic. PMID:24323422

  1. Statins inhibit pulmonary artery smooth muscle cell proliferation by upregulation of HO-1 and p21WAF1.

    PubMed

    Li, Manxiang; Liu, Yuan; Shi, Hongyang; Zhang, Yonghong; Wang, Guizuo; Xu, Jing; Lu, Jiamei; Zhang, Dexin; Xie, Xinming; Han, Dong; Wu, Yuanyuan; Li, Shaojun

    2012-10-01

    Simvastatin is a 3-hydroxy-3-methylglutaryl-CoA reductase inhibitor, which has been shown to ameliorate the development of pulmonary hypertension in animal model by suppression of pulmonary artery smooth muscle cells (PASMCs) proliferation, yet its underlying molecular mechanisms are not completely understood. In this study, we show that simvastatin dose-dependently inhibited serotonin-stimulated PASMCs proliferation. This was accompanied with the parallel induction of heme oxyganase-1 (HO-1) and upregulation of p21(WAF1). More importantly, we found that Tin-protoporphyrin (SnPP), a selective inhibitor of HO-1, could block the effect of simvastatin on inhibition of cell proliferation in response to serotonin and abolish simvastatin-induced p21(WAF1) expression. The inhibitive effect of simvastatin on cell proliferation was also significantly suppressed by silencing p21(WAF1) with siRNA transfection. The extent of effect of SnPP on inhibition of cell proliferation was similar to that of lack of p21(WAF1) by siRNA transfection. Taken together, our study suggests that simvastatin inhibits PASMCs proliferation by sequential upregulation of HO-1 and p21(WAF1) to benefit pulmonary hypertension.

  2. [Genistein attenuates monocrotaline-induced pulmonary arterial hypertension in rats by up-regulating heme oxygenase-1 expression].

    PubMed

    Zhang, Yukun; Wang, Daoxin; Zhu, Tao; Li, Changyi

    2012-02-01

    To study the effect of genistein on the expression of heme oxygenase-1 (HO-1) in rats with pulmonary arterial hypertension (PAH) induced by monocrotaline (MCT). Sixty male Sprague-Dawley rats were randomly divided into 4 groups (n=15), namely the control group, model group, low-dose (20 µg/kg) genistein group and high-dose (80 µg/kg) genistein group. The hemodynamic parameters were measured and the remodeling of pulmonary small arteries was observed by electron microscope (EM). The expression of HO-1 in the lung tissues were detected by Western blotting. Compared with the model group, genistein treatment significantly reduced the elevated mean pulmonary arterial pressure, improved the right ventricular hypertrophy index, and increased the expression of HO-1 in a dose-dependent manner. Genistein attentuates pulmonary arterial hypertension in MCT-treated rats possibly by up-regulation of HO-1 in the lung tissues.

  3. Involvement of Nrf2-mediated heme oxygenase-1 expression in anti-inflammatory action of chitosan oligosaccharides through MAPK activation in murine macrophages.

    PubMed

    Hyung, Jun-Ho; Ahn, Chang-Bum; Il Kim, Boo; Kim, Kyunghoi; Je, Jae-Young

    2016-12-15

    Chitosan and its derivatives have been reported to have anti-inflammatory effects in vitro and in vivo. It is also suggested that chitosan and its derivatives could be up-regulating heme oxygenase-1 (HO-1) in different models. However, the up-regulation of HO-1 by chitosan oligosaccharides (COS) remains unexplored in regard to anti-inflammatory action in lipopolysaccharide (LPS)-stimulated murine macrophages (RAW264.7 cells). Treatment with COS induced HO-1 expression in LPS-stimulated RAW264.7 cells, whereas the expression of inducible nitric oxide synthase (iNOS) and cyclooxygenase-2 (COX-2) was decreased. Pretreatment with ZnPP, a HO-1 inhibitor, reduced the COS-mediated anti-inflammatory action. HO-1 induction is mediated by activating the nuclear translocation of NF-E2-related factor 2 (Nrf2) using COS. Moreover, COS increased the phosphorylation of extracellular signal regulated kinase (ERK1/2), c-Jun N-terminal kinase/stress-activated protein kinase (JNK), and p38 MAPK. However, specific inhibitors of ERK, JNK, and p38 reduced COS-mediated nuclear translocation of Nrf2. Therefore, HO-1 induction also decreased in RAW264.7 cells. Collectively, COS exert an anti-inflammatory effect through Nrf2/MAPK-mediated HO-1 induction.

  4. Hemeoxygenase-1 expression in response to arecoline-induced oxidative stress in human umbilical vein endothelial cells.

    PubMed

    Hung, Thu-Ching; Huang, Li-Wen; Su, Shu-Jem; Hsieh, Bau-Shan; Cheng, Hsiao-Ling; Hu, Yu-Chen; Chen, Yen-Hui; Hwang, Chi-Ching; Chang, Kee-Lung

    2011-09-01

    Arecoline, the most abundant areca alkaloid, has been reported to stimulate reactive oxygen species (ROS) production in several cell types. Overproduction of ROS has been implicated in atherogenesis. Hemeoxygenase-1 (HO-1) has cytoprotective activities in vascular tissues. This study investigated the effect of arecoline on adhesion molecule expression and explored the role of HO-1 in this process. Human umbilical vein endothelial cells (HUVECs) were treated with arecoline, then ROS levels and the expression of adhesion molecules and HO-1 were analyzed and potential signaling pathways investigated. After 2h of arecoline treatment, ROS production was stimulated and reached a maximum at 12h. Expression of the adhesion molecules ICAM and VCAM was also induced. Glutathione pretreatment completely blocked arecoline-stimulated ROS production and VCAM expression, but not ICAM expression. Arecoline also induced HO-1 expression and this effect was partly due by ROS stimulation. Inhibition of c-jun N-terminal kinase (JNK) by SP600125, p38 by SB 203580, or tyrosine kinase by genistein reduced arecoline-induced HO-1 expression. In contrast, inhibition of ERK (extracellular signal-related MAP kinase) by PD98059 had no effect. Transfection of HUVECs with the GFP/HO-1 gene, which resulted in a 5-fold increase in HO-1 activity, markedly, but not completely, inhibited the decrease in cell viability caused by arecoline. This study demonstrates that, in HUVECs, arecoline stimulates ROS production and ICAM and VCAM expression. HO-1 expression is also upregulated through the ROS, tyrosine kinase, and MAPK (JNK and p38) signaling pathways. Crown Copyright © 2010. Published by Elsevier Ireland Ltd. All rights reserved.

  5. Sulforaphane Protects Rodent Retinas against Ischemia-Reperfusion Injury through the Activation of the Nrf2/HO-1 Antioxidant Pathway

    PubMed Central

    Liu, Ruixing; Brecha, Nicholas C.; Yu, Albert Cheung Hoi; Pu, Mingliang

    2014-01-01

    Retinal ischemia-reperfusion (I/R) injury induces oxidative stress, leukocyte infiltration, and neuronal cell death. Sulforaphane (SF), which can be obtained in cruciferous vegetables such as broccoli, exerts protective effects in response to oxidative stress in various tissues. These effects can be initiated through nuclear factor E2-related factor 2 (Nrf2)-mediated induction of heme oxygenase-1 (HO-1). This investigation was designed to elucidate the neural protective mechanisms of SF in the retinal I/R rat model. Animals were intraperitoneally (i.p.) injected with SF (12.5 mg/kg) or vehicle (corn oil) once a day for 7 consecutive days. Then, retinal I/R was made by elevating the intraocular pressure (IOP) to 130 mmHg for 1 h. To determine if HO-1 was involved in the Nrf2 antioxidant pathway, rats were subjected to protoporphyrin IX zinc (II) (ZnPP, 30 mg/kg, i.p.) treatments at 24 h before retinal ischemia. The neuroprotective effects of SF were assessed by determining the morphology of the retina, counting the infiltrating inflammatory cells and the surviving retinal ganglion cells (RGCs) and amacrine cells, and measuring apoptosis in the retinal layers. The expression of Nrf2 and HO-1 was studied by immunofluorescence analysis and western blotting. I/R induced a marked increase of ROS generation, caused pronounced inflammation, increased the apoptosis of RGCs and amacrine cells and caused the thinning of the inner retinal layer (IRL), and these effects were diminished or abolished by SF pretreatment. Meanwhile, SF pretreatment significantly elevated the nuclear accumulation of Nrf2 and the level of HO-1 expression in the I/R retinas; however, ZnPP reversed the protective effects of SF on I/R retinas. Together, we offer direct evidence that SF had protective effects on I/R retinas, which could be attributed, at least in part, to the activation of the Nrf2/HO-1 antioxidant pathway. PMID:25470382

  6. Mechanism of estrogen-mediated attenuation of hepatic injury following trauma-hemorrhage: Akt-dependent HO-1 up-regulation.

    PubMed

    Hsu, Jun-Te; Kan, Wen-Hong; Hsieh, Chi-Hsun; Choudhry, Mashkoor A; Schwacha, Martin G; Bland, Kirby I; Chaudry, Irshad H

    2007-10-01

    Protein kinase B (Akt) is known to be involved in proinflammatory and chemotactic events in response to injury. Akt activation also leads to the induction of heme oxygenase (HO)-1. Up-regulation of HO-1 mediates potent, anti-inflammatory effects and attenuates organ injury. Although studies have shown that 17beta-estradiol (E2) prevents organ damage following trauma-hemorrhage, it remains unknown whether Akt/HO-1 plays any role in E2-mediated attenuation of hepatic injury following trauma-hemorrhage. To study this, male rats underwent trauma-hemorrhage (mean blood pressure, approximately 40 mmHg for 90 min), followed by fluid resuscitation. At the onset of resuscitation, rats were treated with vehicle, E2 (1 mg/kg body weight), E2 plus the PI-3K inhibitor (Wortmannin), or the estrogen receptor (ER) antagonist (ICI 182,780). At 2 h after sham operation or trauma-hemorrhage, plasma alpha-GST and hepatic tissue myeloperoxidase (MPO) activity, IL-6, TNF-alpha, ICAM-1, cytokine-induced neutrophil chemoattractant-1, and MIP-2 levels were measured. Hepatic Akt and HO-1 protein levels were also determined. Trauma-hemorrhage increased hepatic injury markers (alpha-GST and MPO activity), cytokines, ICAM-1, and chemokine levels. These parameters were markedly improved in the E2-treated rats following trauma-hemorrhage. E2 treatment also increased hepatic Akt activation and HO-1 expression compared with vehicle-treated, trauma-hemorrhage rats, which were abolished by coadministration of Wortmannin or ICI 182,780. These results suggest that the salutary effects of E2 on hepatic injury following trauma-hemorrhage are in part mediated via an ER-related, Akt-dependent up-regulation of HO-1.

  7. Preconditioning with low concentration NO attenuates subsequent NO-induced apoptosis in vascular smooth muscle cells via HO-1-dependent mitochondrial death pathway

    SciTech Connect

    Kwak, Hyun-Jeong; Park, Kyoung-Mi; Lee, Seahyoung; Lim, Hyun-Joung; Go, Sang-Hee; Eom, Sang-Mi; Park, Hyun-Young . E-mail: hypark65@nih.go.kr

    2006-12-01

    Nitric oxide (NO) signaling pathways are important in both the maintenance of vascular homeostasis and disease progression. Overproduction of NO has been associated with ischemia/reperfusion (I/R) injury. Growing evidences suggest that NO preconditioning has cytoprotective effects against I/R injury. However, the mechanism with which NO mediates these effects remains to be elucidated. The purpose of this study was to examine the mechanism of how NO preconditioning inhibits subsequent NO-induced apoptosis in vascular smooth muscle cells (VSMC), specifically focusing on heme oxygenase-1 (HO-1). According to our data, sodium nitroprusside (SNP) increased HO-1 expression in a concentration dependent manner. Preconditioning with low concentration SNP (0.3 mM) inhibited subsequent high concentration SNP (1.5 mM)-induced apoptosis, and this effect was reversed by the HO-1 inhibitor SnPP. Low concentration SNP-mediated protection involved p38 kinase inactivation and increased Bcl-2 expression. Furthermore, mitochondrial membrane potential was concomitantly increased with decreased expressions of Bax, Apaf-1, and activity of caspase-3, which was reversed by SnPP treatment. Our results show that low concentration SNP preconditioning suppresses subsequent high concentration SNP-induced apoptosis by inhibiting p38 kinase and mitochondrial death pathway via HO-1-dependent mechanisms in VSMC.

  8. Increase of IFN-γ and TNF-α production in CD107a + NK-92 cells co-cultured with cervical cancer cell lines pre-treated with the HO-1 inhibitor.

    PubMed

    Gómez-Lomelí, Paulina; Bravo-Cuellar, Alejandro; Hernández-Flores, Georgina; Jave-Suárez, Luis Felipe; Aguilar-Lemarroy, Adriana; Lerma-Díaz, José Manuel; Domínguez-Rodríguez, Jorge Ramiro; Sánchez-Reyes, Karina; Ortiz-Lazareno, Pablo Cesar

    2014-01-01

    Natural killer (NK) cells eliminate virus-infected and tumor cells through the release of perforins and granzymes; they also produce Interferon gamma (IFN-γ) and Tumor necrosis factor alpha (TNF-α), which induce apoptosis in target cells. Many tumors express Heme oxygenase 1 (HO-1), and this expression has been associated with avoiding immunosuppression and apoptosis. In this work, HO-1+ Cervical cancer cell (CCC) lines were pre-treated with HO-1 inhibitor and we assessed whether this inhibition enhanced the sensitivity of CCC to NK cell activity. We assessed the expression of HO-1 in HeLa, SiHa, and C-33A CCC by Flow cytometry (FC). CCC were pre-treated with SnPP or ZnPP HO-1 inhibitors. After that, NK-92 cells were co-cultured with HeLa, SiHa, and C-33A CCC pre-treated or not with HO-1 inhibitors, and the expression of IFN-γ, TNF-α, CD107a, Granzyme B, NKp44, NKp46, NKp30, and NKG2D was evaluated by FC. CCC lines HeLa, SiHa, and C-33A expressed HO-1. Inhibition of HO-1 in these cells increased the expression of IFN-γ and TNF-α in CD107a + NK-92 cells. We observed a reduction in the expression of NKG2D, NKp46, and NKp30 in NK cells co-cultured with HeLa and SiHa cells, and when HeLa and SiHa cells were pre-treated with the HO-1 inhibitors, the expression of NKG2D and NKp30 in NK cells was restored. We observed a similar effect in NK cells co-cultured with C-33A cells in NKp30 expression. Inhibition of HO-1 in CCC induces an increase in IFN-γ and TNF-α production in CD107a + NK-92 cells and restores NKG2D, NKp46 and NKp30 downmodulation in NK cells.

  9. Baicalein protects against retinal ischemia by antioxidation, antiapoptosis, downregulation of HIF-1α, VEGF, and MMP-9 and upregulation of HO-1.

    PubMed

    Chao, Hsiao-Ming; Chuang, Min-Jay; Liu, Jorn-Hon; Liu, Xiao-Qian; Ho, Li-Kang; Pan, Wynn H T; Zhang, Xiu-Mei; Liu, Chi-Ming; Tsai, Shen-Kou; Kong, Chi-Woon; Lee, Shou-Dong; Chen, Mi-Mi; Chao, Fang-Ping

    2013-01-01

    Retinal ischemia-associated ocular disorders are vision threatening. This study examined whether the flavonoid baicalein is able to protect against retinal ischemia/reperfusion. Using rats, the intraocular pressure was raised to 120 mmHg for 60 min to induce retinal ischemia. In vitro, an ischemic-like insult, namely oxidative stress, was established by incubating dissociated retinal cells with 100 μM ascorbate and 5 μM FeSO4 (iron) for 1 h. The rats or the dissociated cells had been pretreated with baicalein (in vivo: 0.05 or 0.5 nmol; in vitro: 100 μM), vehicle (1% ethanol), or trolox (in vivo: 5 nmol; in vitro: 100 μM or 1 mM). The effects of these treatments on the retina or the retinal cells were evaluated by electrophysiology, immunohistochemistry, terminal deoxynucleotidyl-transferase-mediated dUTP nick end-labeling (TUNEL) staining, Western blotting, or in vitro dichlorofluorescein assay. In addition, real-time-polymerase chain reaction was used to assess the retinal expression of hypoxia-inducible factor-1α (HIF-1α), matrix metalloproteinase-9 (MMP-9), vascular endothelium growth factor (VEGF), and heme oxygenase-1 (HO-1). The retinal changes after ischemia included a decrease in the electroretinogram b-wave amplitude, a loss of choline acetyltransferase immunolabeling amacrine cell bodies/neuronal processes, an increase in vimentin immunoreactivity, which is a marker for Müller cells, an increase in apoptotic cells in the retinal ganglion cell layer linked to a decrease in the Bcl-2 protein, and changes in the mRNA levels of HIF-1α, VEGF, MMP-9, and HO-1. Of clinical importance, the ischemic detrimental effects were concentration dependently and/or significantly (0.05 nmol and/or 0.5 nmol) altered when baicalein was applied 15 min before retinal ischemia. Most of all, 0.5 nmol baicalein significantly reduced the upregulation of MMP-9; in contrast, 5 nmol trolox only had a weak attenuating effect. In dissociated retinal cells subjected to ascorbate

  10. Involvement of the activation of Nrf2/HO-1, p38 MAPK signaling pathways and endoplasmic reticulum stress in furazolidone induced cytotoxicity and S phase arrest in human hepatocyte L02 cells: modulation of curcumin.

    PubMed

    Dai, Chongshan; Lei, Lei; Li, Bin; Lin, Yang; Xiao, Xilong; Tang, Shusheng

    2017-03-01

    Furazolidone (FZD) is extensively used as the antiprotozoal and antibacterial drug in clinic. The previous study has shown that curcumin pretreatment could improve FZD induced cytotoxicity by inhibiting oxidative stress and mitochondrial apoptotic pathway. The current study aimed to investigate the potential roles of endoplasmic reticulum (ER) stress, p38 mitogen-activated protein kinases (p38 MAPK) signaling pathway in curcumin against FZD cytotoxicity by using human hepatocyte L02 cells. The results showed that curcumin could markedly attenuate FZD induced cytotoxicity. Compared with FZD alone group, curcumin pretreatment significantly reduced the expression of phospho (p)-p38, cyclin D1, p-checkpoint kinase 1 (ChK1) and breast cancer associated gene 1 (BRCA1) protein, followed to attenuate S phase arrest. Meanwhile, curcumin pretreatment prevented FZD induced ER stress, evidenced by the inhibition of glucose-regulated protein 78 and DNA damage inducible gene 153/C/EBP-homologous protein (GADD153/CHOP) protein expression. Moreover, compared with the control, FZD exposure activated the protein and mRNA expression levels of nuclear factor erythroid 2-related factor 2 (Nrf2) and heme oxygenase 1 (HO-1), which were further activated by curcumin treatment. These results reveal that curcumin could prevent FZD induced cytotoxicity and S phase arrest, which may involve the activation of Nrf2/HO-1 pathway and the inhibition of p38 MAPK pathway and ER stress.

  11. Enhanced expression of haem oxygenase-1 by nitric oxide and antiinflammatory drugs in NIH 3T3 fibroblasts.

    PubMed

    Alcaraz, M J; Habib, A; Lebret, M; Créminon, C; Lévy-Toledano, S; Maclouf, J

    2000-05-01

    1. Haem oxygenase-1 (HO-1) can exert protective effects against oxidative stress and inflammation. Fibroblasts participate in inflammatory responses where they produce high levels of prostaglandins (PGs) and nitric oxide (NO). However, little is known of the presence of HO-1 in these cells and the possible interactions among these pathways. Incubation of cells with NO donors, spermine nonoate (SPNO) and S-nitroso-N-acetylpenicillamine (SNAP), induced a dose- and time-dependent expression of HO-1 protein. 2. NO donors increased basal PGE(2) release although they reduced PGE(2) accumulated in the medium and cyclo-oxygenase (COX) activity when cells were stimulated with lipopolysaccharide (LPS). COX-2 protein was weakly induced by SPNO in basal conditions and in the presence of LPS a synergy for HO-1 and COX-2 protein expression was observed. 3. Our results indicate that reactive oxygen species participate in the inductive effect of NO donors or LPS on HO-1 expression, whereas endogenous NO production may play a role in the mechanism of the synergy exhibited by SPNO and LPS on HO-1 and COX-2 expression. In this system, zinc protoporphyrin IX did not affect nitrite levels but reduced COX activity. 4. The selective COX-2 inhibitors SC58125 and NS398 as well as the non-selective COX inhibitor, indomethacin, strongly reduced PGE(2) synthesis and showed a synergy with NO donors in HO-1 and COX-2 induction. Addition of PGE(2) had no effect, suggesting a mechanism independent of PGs formation. 5. In inflammatory conditions a number of factors could cooperate to induce HO-1 and COX-2, with a positive regulation by COX inhibitors.

  12. Downregulation of Heme Oxygenase 1 (HO-1) Activity in Hematopoietic Cells Enhances Their Engraftment After Transplantation.

    PubMed

    Adamiak, Mateusz; Moore, Joseph B; Zhao, John; Abdelbaset-Ismail, Ahmed; Grubczak, Kamil; Rzeszotek, Sylwia; Wysoczynski, Marcin; Ratajczak, Mariusz Z

    2016-01-01

    Heme oxygenase 1 (HO-1) is an inducible stress-response enzyme that not only catalyzes the degradation of heme (e.g., released from erythrocytes) but also has an important function in various physiological and pathophysiological states associated with cellular stress, such as ischemic/reperfusion injury. HO-1 has a well-documented anti-inflammatory potential, and HO-1 has been reported to have a negative effect on adhesion and migration of neutrophils in acute inflammation in a model of peritonitis. This finding is supported by our recent observation that hematopoietic stem progenitor cells (HSPCs) from HO-1 KO mice are easy mobilizers, since they respond better to peripheral blood chemotactic gradients than wild-type littermates. Based on these findings, we hypothesized that transient inhibition of HO-1 by nontoxic small-molecule inhibitors would enhance migration of HSPCs in response to bone marrow chemoattractants and thereby facilitate their homing. To directly address this issue, we generated several human hematopoietic cell lines in which HO-1 was upregulated or downregulated. We also exposed murine and human BM-derived cells to small-molecule activators and inhibitors of HO-1. Our results indicate that HO-1 is an inhibitor of hematopoietic cell migration in response to crucial BM homing chemoattractants such as stromal-derived factor 1 (SDF-1) and sphingosine-1-phosphate (S1P). Most importantly, our in vitro and in vivo animal experiments demonstrate for the first time that transiently inhibiting HO-1 activity in HSPCs by small-molecule inhibitors improves HSPC engraftment. We propose that this simple and inexpensive strategy could be employed in the clinical setting to improve engraftment of HSPCs, particularly in those situations in which the number of HSPCs available for transplant is limited (e.g., when transplanting umbilical cord blood).

  13. Nrf2-Mediated HO-1 Induction Contributes to Antioxidant Capacity of a Schisandrae Fructus Ethanol Extract in C2C12 Myoblasts

    PubMed Central

    Kang, Ji Sook; Han, Min Ho; Kim, Gi-Young; Kim, Cheol Min; Kim, Byung Woo; Hwang, Hye Jin; Choi, Yung Hyun

    2014-01-01

    This study was designed to confirm the protective effect of Schisandrae Fructus, which are the dried fruits of Schisandra chinensis (Turcz.) Baill, against oxidative stress-induced cellular damage and to elucidate the underlying mechanisms in C2C12 myoblasts. Preincubating C2C12 cells with a Schisandrae Fructus ethanol extract (SFEE) significantly attenuated hydrogen peroxide (H2O2)-induced inhibition of growth and induced scavenging activity against intracellular reactive oxygen species (ROS) induced by H2O2. SFEE also inhibited comet tail formation and phospho-histone γH2A.X expression, suggesting that it prevents H2O2-induced cellular DNA damage. Furthermore, treating C2C12 cells with SFEE significantly induced heme oxygenase-1 (HO-1) and phosphorylation of nuclear factor-erythroid 2 related factor 2 (Nrf2). However, zinc protoporphyrin IX, a potent inhibitor of HO-1 activity, significantly reversed the protective effects of SFEE against H2O2-induced growth inhibition and ROS generation in C2C12 cells. Additional experiments revealed that the potential of the SFEE to induce HO-1 expression and protect against H2O2-mediated cellular damage was abrogated by transient transfection with Nrf2-specific small interfering RNA, suggesting that the SFEE protected C2C12 cells against oxidative stress-induced injury through the Nrf2/HO-1 pathway. PMID:25493944

  14. Sulforaphane Ameliorates Okadaic Acid-Induced Memory Impairment in Rats by Activating the Nrf2/HO-1 Antioxidant Pathway.

    PubMed

    Dwivedi, Subhash; Rajasekar, N; Hanif, Kashif; Nath, Chandishwar; Shukla, Rakesh

    2016-10-01

    Okadaic acid (OKA) causes memory impairment and attenuates nuclear factor erythroid 2-related factor 2 (Nrf2) along with oxidative stress and neuroinflammation in rats. Sulforaphane (dietary isothiocyanate compound), an activator of Nrf2 signaling, exhibits neuroprotective effects. However, the protective effect of sulforaphane in OKA-induced neurotoxicity remains uninvestigated. Therefore, in the present study, the role of sulforaphane in OKA-induced memory impairment in rats was explored. A significant increased Nrf2 expression in the hippocampus and cerebral cortex was observed in trained (Morris water maze) rats, and a significant decreased Nrf2 expression in memory-impaired (OKA, 200 ng icv) rats indicated its involvement in memory function. Sulforaphane administration (5 and 10 mg/kg, ip, days 1 and 2) ameliorates OKA-induced memory impairment in rats. The treatment also restored Nrf2 and its downstream antioxidant protein expression (GCLC, HO-1) and attenuated oxidative stress (ROS, nitrite, GSH), neuroinflammation (NF-κB, TNF-α, IL-10), and neuronal apoptosis in the cerebral cortex and hippocampus of OKA-treated rats. Further, to determine whether modulation of Nrf2 signaling is responsible for the protective effect of sulforaphane, in vitro, Nrf2 siRNA and its downstream HO-1 inhibition studies were carried out in a rat astrocytoma cell line (C6). The protective effects of sulforaphane were abolished with Nrf2 siRNA and HO-1 inhibition in astrocytes. The results suggest that Nrf2-dependent activation of cellular antioxidant machinery results in sulforaphane-mediated protection against OKA-induced memory impairment in rats. Graphical Abstract ᅟ.

  15. Micro-RNA-155-mediated control of heme oxygenase 1 (HO-1) is required for restoring adaptively tolerant CD4+ T-cell function in rodents.

    PubMed

    Zhang, Jinyu; Vandevenne, Patricia; Hamdi, Haifa; Van Puyvelde, Merry; Zucchi, Alessandro; Bettonville, Marie; Weatherly, Kathleen; Braun, Michel Y

    2015-03-01

    T cells chronically stimulated by a persistent antigen often become dysfunctional and lose effector functions and proliferative capacity. To identify the importance of micro-RNA-155 (miR-155) in this phenomenon, we analyzed mouse miR-155-deficient CD4(+) T cells in a model where the chronic exposure to a systemic antigen led to T-cell functional unresponsiveness. We found that miR-155 was required for restoring function of T cells after programmed death receptor 1 blockade. Heme oxygenase 1 (HO-1) was identified as a specific target of miR-155 and inhibition of HO-1 activity restored the expansion and tissue migration capacity of miR-155(-/-) CD4(+) T cells. Moreover, miR-155-mediated control of HO-1 expression in CD4(+) T cells was shown to sustain in vivo antigen-specific expansion and IL-2 production. Thus, our data identify HO-1 regulation as a mechanism by which miR-155 promotes T-cell-driven inflammation. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. HO-1 Is Essential for Tetrahydroxystilbene Glucoside Mediated Mitochondrial Biogenesis and Anti-Inflammation Process in LPS-Treated RAW264.7 Macrophages

    PubMed Central

    Yu, Weihua; Zhang, Xiaodi; Liu, Jiangzheng

    2017-01-01

    2,3,5,4′-Tetrahydroxystilbene-2-O-β-D-glucoside (TSG), an important monomer extracted from Polygonum multiflorum, can prevent a number of inflammation associated chronic diseases. However, the mechanism involved in TSG inducing anti-inflammatory role remains unclear. As an inducible antioxidant enzyme, Heme oxygenase-1 (HO-1), is crucial for protecting the mammalian cells against adverse stimuli. Here, we found that the TSG treatment strongly induces the expression of HO-1 in an NRF2-depended manner. Meanwhile, TSG increased the mitochondrial mass through upregulation of the mitochondrial biogenesis activators (PGC-1α, NRF1, and TFAM) as well as the mitochondrial complex IV. Furthermore, TSG attenuated Lipopolysaccharide (LPS) mediated RAW264.7 cells activation and secretion of proinflammatory cytokines, including interleukin-6 (IL-6) and tumor necrosis factor-α (TNF-α). Zinc Protoporphyrin (ZnPP), a selective inhibitor of HO-1 activity, was able to attenuate TSG mediated mitochondrial biogenesis and anti-inflammatory process. Finally, we observed that LPS induced obvious mtDNA depletion and ATP deficiency, which indicated a severe damage of mitochondria. TSG restored the LPS induced mitochondrial dysfunction via activation of the mitochondrial biogenesis. ZnPP treatment markedly reversed the inhibitory effects of TSG on mitochondrial damage and oxidative stress in LPS stimulated macrophages. Taken together, these findings suggest that TSG enhances mitochondrial biogenesis and function mainly via activation the HO-1. TSG can be developed as a potential drug for treatment of inflammatory diseases. PMID:28473878

  17. HO-1 Is Essential for Tetrahydroxystilbene Glucoside Mediated Mitochondrial Biogenesis and Anti-Inflammation Process in LPS-Treated RAW264.7 Macrophages.

    PubMed

    Yu, Weihua; Zhang, Xiaodi; Wu, Hao; Zhou, Qingbiao; Wang, Zhao; Liu, Rui; Liu, Jiangzheng; Wang, Xin; Hai, Chunxu

    2017-01-01

    2,3,5,4'-Tetrahydroxystilbene-2-O-β-D-glucoside (TSG), an important monomer extracted from Polygonum multiflorum, can prevent a number of inflammation associated chronic diseases. However, the mechanism involved in TSG inducing anti-inflammatory role remains unclear. As an inducible antioxidant enzyme, Heme oxygenase-1 (HO-1), is crucial for protecting the mammalian cells against adverse stimuli. Here, we found that the TSG treatment strongly induces the expression of HO-1 in an NRF2-depended manner. Meanwhile, TSG increased the mitochondrial mass through upregulation of the mitochondrial biogenesis activators (PGC-1α, NRF1, and TFAM) as well as the mitochondrial complex IV. Furthermore, TSG attenuated Lipopolysaccharide (LPS) mediated RAW264.7 cells activation and secretion of proinflammatory cytokines, including interleukin-6 (IL-6) and tumor necrosis factor-α (TNF-α). Zinc Protoporphyrin (ZnPP), a selective inhibitor of HO-1 activity, was able to attenuate TSG mediated mitochondrial biogenesis and anti-inflammatory process. Finally, we observed that LPS induced obvious mtDNA depletion and ATP deficiency, which indicated a severe damage of mitochondria. TSG restored the LPS induced mitochondrial dysfunction via activation of the mitochondrial biogenesis. ZnPP treatment markedly reversed the inhibitory effects of TSG on mitochondrial damage and oxidative stress in LPS stimulated macrophages. Taken together, these findings suggest that TSG enhances mitochondrial biogenesis and function mainly via activation the HO-1. TSG can be developed as a potential drug for treatment of inflammatory diseases.

  18. Andrographolide protects liver cells from H2O2 induced cell death by upregulation of Nrf-2/HO-1 mediated via adenosine A2a receptor signalling.

    PubMed

    Mittal, Smriti P K; Khole, Swati; Jagadish, Nidhi; Ghosh, Debjani; Gadgil, Vijay; Sinkar, Vilas; Ghaskadbi, Saroj S

    2016-11-01

    Andrographolide, principle constituent of Andrographis paniculata Nees is used in traditional medicine in Southeast Asia and is known to exhibit various biological activities. Its antioxidant activity is due to its ability to activate one of the antioxidant enzymes, heme oxygenase-1 (HO-1) which is regulated transcriptionally through Nrf-2. However, molecular mechanism underlying activation of Nrf-2/HO-1 has not yet been clearly understood. Protective effect of andrographolide against H2O2 induced cell death, reactive oxygen species and lipid peroxidation was observed in HepG2 cells. Ability of andrographolide to modulate G-protein coupled receptor (GPCR) mediated signalling was determined using in silico docking and gene expression was analyzed by qRT-PCR, confocal microscopy and western blot analysis. We clearly show that andrographolide via adenosine A2A receptor signalling leads to activation of p38 MAP kinase, resulting in upregulation of Nrf-2, its translocation to nucleus and activation of HO-1. Additionally, it activates adenylate cyclase resulting in cAMP formation which in turn activates protein kinase A leading to inhibition of GSK-3β by phosphorylation. Inactivated GSK-3β leads to retention of Nrf-2 in the nucleus leading to sustained expression of HO-1 by binding to its antioxidant response element (ARE). Thus, andrographolide probably by binding to adenosine A2a receptor activates Nrf-2 transcription and also inhibits its exclusion from the nucleus by inactivating GSK-3β, together resulting in activation of HO-1. We speculate that andrographolide can be used as a therapeutic drug to combat oxidative stress implicated in pathogenesis of various diseases such as diabetes, osteoporosis, neurodegenerative diseases etc. Copyright © 2016 Elsevier B.V. All rights reserved.

  19. Electroacupuncture Ameliorates Acute Renal Injury in Lipopolysaccharide-Stimulated Rabbits via Induction of HO-1 through the PI3K/Akt/Nrf2 Pathways.

    PubMed

    Yu, Jian-Bo; Shi, Jia; Zhang, Yuan; Gong, Li-Rong; Dong, Shu-An; Cao, Xin-Shun; Wu, Li-Li; Wu, Li-Na

    2015-01-01

    Electroacupuncture at select acupoints have been verified to protect against organ dysfunctions during endotoxic shock. And, heme oxygenase (HO)-1 as a phase II enzyme and antioxidant contributed to the protection of kidney in septic shock rats. The phosphatidylinositol 3-kinase (PI3K)-Akt pathway mediated the activation of NF-E2 related factor-2 (Nrf2), which was involved in HO-1 induction. To understand the efficacy of electroacupuncture stimulation in ameliorating acute kidney injury (AKI) through the PI3K/Akt/Nrf2 pathway and subsequent HO-1 upregulation, a dose of LPS 5mg/kg was administered intravenously to replicate the rabbit model of AKI induced by endotoxic shock. Electroacupuncture pretreatment was handled bilaterally at Zusanli and Neiguan acupoints for five consecutive days while sham electroacupuncture at non-acupoints as control. Results displayed that electroacupuncture stimulation significantly alleviated the morphologic renal damage, attenuated renal tubular apoptosis, suppressed the elevated biochemical indicators of AKI caused by LPS, enhanced the expressions of phospho-Akt, HO-1protein, Nrf2 total and nucleoprotein, and highlighted the proportions of Nrf2 nucleoprotein as a parallel. Furthermore, partial protective effects of elecroacupuncture were counteracted by preconditioning with wortmannin (the selective PI3K inhibitor), indicating a direct involvement of PI3K/Akt pathway. Inconsistently, wortmannin pretreatment made little difference to the expressions of HO-1, Nrf2 nucleoprotein and total protein, which indicated that PI3K/Akt may be not the only pathway responsible for electroacupuncture-afforded protection against LPS-induced AKI. These findings provide new insights into the potential future clinical applications of electroacupuncture for AKI induced by endotoxic shock instead of traditional remedies.

  20. ATF3-mediated NRF2/HO-1 signaling regulates TLR4 innate immune responses in mouse liver ischemia/reperfusion injury.

    PubMed

    Rao, J; Qian, X; Li, G; Pan, X; Zhang, C; Zhang, F; Zhai, Y; Wang, X; Lu, L

    2015-01-01

    Activating transcription factor 3 (ATF3) is a stress-induced transcription factor that has been shown to repress inflammatory gene expression in multiple cell types and diseases. However, little is known about the roles and mechanisms of ATF3 in liver ischemia/reperfusion injury (IRI). In warm and cold liver IRI models, we showed that ATF3 deficiency significantly increased ischemia/reperfusion (IR)-stressed liver injury, as evidenced by increased serum alanine aminotransferase levels, histological liver damage, and hepatocellular apoptosis. These may correlate with inhibition of the intrahepatic nuclear factor erythroid-derived 2-related factor 2/heme oxygenase-1 (NRF2/HO-1) signaling pathway leading to enhancing Toll-like receptor 4/nuclear factor kappa beta (TLR4/NF-κB) activation, pro-inflammatory programs and macrophage/neutrophil trafficking, while simultaneously repressing anti-apoptotic molecules in ischemic liver. Interestingly, activation of NRF2/HO-1 signaling using an NRF2 activator, oltipraz (M2), during hepatic IRI-rescued ATF3 anti-inflammatory functions in ATF3-deficient mice. For in vitro studies, ATF3 ablation in lipopolysaccharide (LPS)-stimulated bone marrow-derived macrophages (BMMs) depressed levels of NRF2/HO-1 and PI3K/AKT, resulting in enhanced TLR4/NF-κB activation. Pretreatment of LPS-stimulated BMMs with M2 increased NRF2/HO-1 expression, promoted PI3K/AKT, which in turn suppressed TLR4/NF-κB-mediated proinflammatory mediators. Thus, our results first demonstrate ATF3-mediated NRF2/HO-1 signaling in the regulation of TLR4-driven inflammatory responses in IR-stressed livers. Our findings provide a rationale for a novel therapeutic strategy for managing IR-induced liver injury.

  1. Electroacupuncture Ameliorates Acute Renal Injury in Lipopolysaccharide-Stimulated Rabbits via Induction of HO-1 through the PI3K/Akt/Nrf2 Pathways

    PubMed Central

    Gong, Li-rong; Dong, Shu-an; Cao, Xin-shun; Wu, Li-li; Wu, Li-na

    2015-01-01

    Electroacupuncture at select acupoints have been verified to protect against organ dysfunctions during endotoxic shock. And, heme oxygenase (HO)-1 as a phase II enzyme and antioxidant contributed to the protection of kidney in septic shock rats. The phosphatidylinositol 3-kinase (PI3K)-Akt pathway mediated the activation of NF-E2 related factor-2 (Nrf2), which was involved in HO-1 induction. To understand the efficacy of electroacupuncture stimulation in ameliorating acute kidney injury (AKI) through the PI3K/Akt/Nrf2 pathway and subsequent HO-1 upregulation, a dose of LPS 5mg/kg was administered intravenously to replicate the rabbit model of AKI induced by endotoxic shock. Electroacupuncture pretreatment was handled bilaterally at Zusanli and Neiguan acupoints for five consecutive days while sham electroacupuncture at non-acupoints as control. Results displayed that electroacupuncture stimulation significantly alleviated the morphologic renal damage, attenuated renal tubular apoptosis, suppressed the elevated biochemical indicators of AKI caused by LPS, enhanced the expressions of phospho-Akt, HO-1protein, Nrf2 total and nucleoprotein, and highlighted the proportions of Nrf2 nucleoprotein as a parallel. Furthermore, partial protective effects of elecroacupuncture were counteracted by preconditioning with wortmannin (the selective PI3K inhibitor), indicating a direct involvement of PI3K/Akt pathway. Inconsistently, wortmannin pretreatment made little difference to the expressions of HO-1, Nrf2 nucleoprotein and total protein, which indicated that PI3K/Akt may be not the only pathway responsible for electroacupuncture-afforded protection against LPS-induced AKI. These findings provide new insights into the potential future clinical applications of electroacupuncture for AKI induced by endotoxic shock instead of traditional remedies. PMID:26524181

  2. The Anti-Inflammatory Activity of Eucommia ulmoides Oliv. Bark. Involves NF-κB Suppression and Nrf2-Dependent HO-1 Induction in BV-2 Microglial Cells

    PubMed Central

    Kwon, Seung-Hwan; Ma, Shi-Xun; Hwang, Ji-Young; Ko, Yong-Hyun; Seo, Ji-Yeon; Lee, Bo-Ram; Lee, Seok-Yong; Jang, Choon-Gon

    2016-01-01

    In the present study, we investigated the anti-inflammatory properties of Eucommia ulmoides Oliv. Bark. (EUE) in lipopolysaccharide (LPS)-stimulated microglial BV-2 cells and found that EUE inhibited LPS-mediated up-regulation of pro-inflammatory response factors. In addition, EUE inhibited the elevated production of pro-inflammatory cytokines, mediators, and reactive oxygen species (ROS) in LPS-stimulated BV-2 microglial cells. Subsequent mechanistic studies revealed that EUE suppressed LPS-induced phosphorylation of mitogen-activated protein kinases (MAPKs), phosphoinositide-3-kinase (PI3K)/Akt, glycogen synthase kinase-3β (GSK-3β), and their downstream transcription factor, nuclear factor-kappa B (NF-κB). EUE also blocked the nuclear translocation of NF-κB and inhibited its binding to DNA. We next demonstrated that EUE induced the nuclear translocation of nuclear factor erythroid 2-related factor 2 (Nrf2) and upregulated heme oxygenase-1 (HO-1) expression. We determined that the significant up-regulation of HO-1 expression by EUE was a consequence of Nrf2 nuclear translocation; furthermore, EUE increased the DNA binding of Nrf2. In contrast, zinc protoporphyrin (ZnPP), a specific HO-1 inhibitor, blocked the ability of EUE to inhibit NO and PGE2 production, indicating the vital role of HO-1. Overall, our results indicate that EUE inhibits pro-inflammatory responses by modulating MAPKs, PI3K/Akt, and GSK-3β, consequently suppressing NF-κB activation and inducing Nrf2-dependent HO-1 activation. PMID:27068259

  3. Uric Acid-Induced Adipocyte Dysfunction Is Attenuated by HO-1 Upregulation: Potential Role of Antioxidant Therapy to Target Obesity

    PubMed Central

    Sodhi, Komal; Hilgefort, Jordan; Banks, George; Gilliam, Chelsea; Stevens, Sarah; Ansinelli, Hayden A.; Getty, Morghan; Abraham, Nader G.; Shapiro, Joseph I.

    2016-01-01

    Increased uric acid levels have been implicated in the pathogenesis of metabolic syndrome. To examine the mechanisms by which this occurs, we hypothesized that an increase in heme oxygenase 1, a potent antioxidant gene, will decrease uric acid levels and adipocyte dysfunction via suppression of ROS and xanthine oxidase (XO) levels. We examined the effect of uric acid on adipogenesis in human mesenchymal stem cells (MSCs) in the presence and absence of cobalt protoporphyrin (CoPP), an HO-1 inducer, and tin mesoporphyrin (SnMP), an HO activity inhibitor. Uric acid increased adipogenesis by increasing NADPH oxidase expression and elevation in the adipogenesis markers C/EBPα, PPARγ, and Mest, while decreasing small lipid droplets and Wnt10b levels. We treated MSCs with fructose, a fuel source that increases uric acid levels. Our results showed that fructose increased XO expression as compared to the control and concomitant treatment with CoPP significantly decreased XO expression and uric acid levels. These beneficial effects of CoPP were reversed by SnMP, supporting a role for HO activity in mediating these effects. These findings demonstrate that increased levels of HO-1 appear crucial in modulating the phenotype of adipocytes exposed to uric acid and in downregulating XO and NADPH oxidase levels. PMID:26681956

  4. Prunella vulgaris suppresses HG-induced vascular inflammation via Nrf2/HO-1/eNOS activation.

    PubMed

    Hwang, Sun Mi; Lee, Yun Jung; Yoon, Jung Joo; Lee, So Min; Kim, Jin Sook; Kang, Dae Gill; Lee, Ho Sub

    2012-01-01

    Vascular inflammation is an important factor which can promote diabetic complications. In this study, the inhibitory effects of aqueous extract from Prunella vulgaris (APV) on high glucose (HG)-induced expression of cell adhesion molecules in human umbilical vein endothelial cells (HUVEC) are reported. APV decreased HG-induced expression of intercellular adhesion molecule-1 (ICAM-1), vascular cell adhesion molecule-1 (VCAM-1), and E-selectin. APV also dose-dependently inhibited HG-induced adhesion of HL-60 monocytic cells. APV suppressed p65 NF-κB activation in HG-treated cells. APV significantly inhibited the formation of intracellular reactive oxygen species (ROS). HG-stimulated HUVEC secreted gelatinases, however, APV inhibited it. APV induced Akt phosphorylation as well as activation of heme oxygenase-1 (HO-1), eNOS, and nuclear factor E2-related factor 2 (Nrf2), which may protect vascular inflammation caused by HG. In conclusion, APV exerts anti-inflammatory effect via inhibition of ROS/NF-κB pathway by inducing HO-1 and eNOS expression mediated by Nrf2, thereby suggesting that Prunella vulgaris may be a possible therapeutic approach to the inhibition of diabetic vascular diseases.

  5. Protective action of nipradilol mediated through S-nitrosylation of Keap1 and HO-1 induction in retinal ganglion cells.

    PubMed

    Koriyama, Yoshiki; Kamiya, Marie; Takadera, Tsuneo; Arai, Kunizo; Sugitani, Kayo; Ogai, Kazuhiro; Kato, Satoru

    2012-12-01

    Nipradilol (Nip), which has α1- and β-adrenoceptor antagonist and nitric oxide (NO)-donating properties, has clinically been used as an anti-glaucomatous agent in Japan. NO mediates cellular signaling pathways that regulate physiological functions. The major signaling mechanisms mediated by NO are cGMP-dependent signaling and protein S-nitrosylation-dependent signalings. Nip has been described as having neuroprotective effects through cGMP-dependent pathway in retinal ganglion cells (RGCs). However, the effect seems to be partial. On the other hand, whether Nip can prevent cell death through S-nitrosylation is not yet clarified. In this study, we therefore focused on the neuroprotective mechanism of Nip through S-nitrosylation. Nip showed a dramatic neuroprotective effect against oxidative stress-induced death of RGC-5 cells. However, denitro-nipradilol, which does not have NO-donating properties, was not protective against oxidative stress. Furthermore, an NO scavenger significantly reversed the protective action of Nip against oxidative stress. In addition, we demonstrated that α1- or β-adrenoceptor antagonists (prazosin or timolol) did not show any neuroprotective effect against oxidative stress in RGC-5 cells. We also demonstrated that Nip induced the expression of the NO-dependent antioxidant enzyme, heme oxygenase-1 (HO-1). S-nitrosylation of Kelch-like ECH-associated protein by Nip was shown to contribute to the translocation of NF-E2-related factor 2 to the nucleus, and triggered transcriptional activation of HO-1. Furthermore, RGC death and levels of 4-hydroxy-2-nonenal (4HNE) were increased after optic nerve injury in vivo. Pretreatment with Nip significantly suppressed RGC death and accumulation of 4HNE after injury through an HO-1 activity-dependent mechanism. These data demonstrate a novel neuroprotective action of Nip against oxidative stress-induced RGC death in vitro and in vivo.

  6. Arctigenin Protects against Lipopolysaccharide-Induced Pulmonary Oxidative Stress and Inflammation in a Mouse Model via Suppression of MAPK, HO-1, and iNOS Signaling.

    PubMed

    Zhang, Wen-zhou; Jiang, Zheng-kui; He, Bao-xia; Liu, Xian-ben

    2015-08-01

    Arctigenin, a bioactive component of Arctium lappa (Nubang), has anti-inflammatory activity. Here, we investigated the effects of arctigenin on lipopolysaccharide (LPS)-induced acute lung injury. Mice were divided into four groups: control, LPS, LPS + DMSO, and LPS + Arctigenin. Mice in the LPS + Arctigenin group were injected intraperitoneally with 50 mg/kg of arctigenin 1 h before an intratracheal administration of LPS (5 mg/kg). Lung tissues and bronchoalveolar lavage fluids (BALFs) were collected. Histological changes of the lung were analyzed by hematoxylin and eosin staining. Arctigenin decreased LPS-induced acute lung inflammation, infiltration of inflammatory cells into BALF, and production of pro-inflammatory cytokines. Moreover, arctigenin pretreatment reduced the malondialdehyde level and increased superoxide dismutase and catalase activities and glutathione peroxidase/glutathione disulfide ratio in the lung. Mechanically, arctigenin significantly reduced the production of nitric oxygen and inducible nitric oxygen synthase (iNOS) expression, enhanced the expression of heme oxygenase-1, and decreased the phosphorylation of mitogen-activated protein kinases (MAPKs). Arctigenin has anti-inflammatory and antioxidative effects on LPS-induced acute lung injury, which are associated with modulation of MAPK, HO-1, and iNOS signaling.

  7. Vascular Protective Role of Samul-Tang in HUVECs: Involvement of Nrf2/HO-1 and NO

    PubMed Central

    Choi, Eun Sik; Lee, Yun Jung; Seo, Chang Seob; Yoon, Jung Joo; Han, Byung Hyuk; Park, Min Cheol; Kang, Dae Gill; Lee, Ho Sub

    2016-01-01

    Samul-Tang (Si-Wu-Tang, SMT), composed of four medicinal herbs, is a well-known herbal formula treating hematological disorder or gynecologic disease. However, vascular protective effects of SMT and its molecular mechanisms on the vascular endothelium, known as the central spot of vascular inflammatory process, are not reported. The aim of this study was to investigate vascular protective effects of SMT water extract in human umbilical vein endothelial cells (HUVECs). Water extract of SMT was prepared and identified by HPLC-PDA analysis. Expression of cell adhesion molecules (CAMs) and heme oxygenase-1 (HO-1) and translocation of nuclear factor-kappa B (NF-κB) and nuclear factor-erythroid 2-related factor 2 (Nrf2) were determined by western blot. Nuclear localization of NF-κB and Nrf2 was visualized by immunofluorescence and DNA binding activity of NF-κB was measured. ROS production, HL-60 monocyte adhesion, and intracellular nitric oxide (NO) were also measured using a fluorescent indicator. SMT suppressed NF-κB translocation and activation as well as expression of CAMs, monocyte adhesion, and ROS production induced by TNF-α in HUVECs. SMT treated HUVECs showed upregulation of HO-1 and NO which are responsible for vascular protective action. Our study suggests that SMT, a traditionally used herbal formula, protects the vascular endothelium from inflammation and might be used as a promising vascular protective drug. PMID:27366195

  8. Isorhamnetin Attenuates Atherosclerosis by Inhibiting Macrophage Apoptosis via PI3K/AKT Activation and HO-1 Induction

    PubMed Central

    Luo, Yun; Sun, Guibo; Dong, Xi; Wang, Min; Qin, Meng; Yu, Yingli; Sun, Xiaobo

    2015-01-01

    Background and Purpose Isorhamnetin (Iso) is a flavonoid compound extracted from the Chinese herb Hippophae rhamnoides L. Previous studies have revealed its anti-cancer, anti-inflammatory, and anti-oxidant activities. This study investigated the ability of Iso to inhibit oxidized low-density lipoprotein (ox-LDL)-induced cell apoptosis in THP-1-derived macrophages. The effects of Iso on atherosclerosis in vivo were also evaluated in apolipoprotein E knockout (ApoE-/-) mice fed a high fat diet. Methods and Results Iso showed significant inhibitory effects on ox-LDL-induced THP-1-derived macrophage injuries via decreasing reactive oxygen species levels, lipid deposition, and caspase-3 activation, restoring mitochondrial membrane potential, reducing the number of terminal deoxynucleotidyl transferase-mediated dUTP nick end-labeling (TUNEL)-positive cells, and regulating apoptosis-related proteins. We also determined the protective effects of Iso by PI3K/AKT activation and HO-1 induction. Iso reduced the atherosclerotic plaque size in vivo in ApoE-/- mice as assessed by oil red O, Sudan IV staining, and CD68-positive cells, and reduced macrophage apoptosis as assessed by caspase-3 and TUNEL assays in lesions. Conclusion In conclusion, our results show that Iso inhibited atherosclerotic plaque development in ApoE-/- mice by PI3K/AKT activation and HO-1 induction. PMID:25799286

  9. Salvianolic acid A ameliorates the integrity of blood-spinal cord barrier via miR-101/Cul3/Nrf2/HO-1 signaling pathway.

    PubMed

    Yu, De-Shui; Wang, Yan-Song; Bi, Yun-Long; Guo, Zhan-Peng; Yuan, Ya-Jiang; Tong, Song-Ming; Su, Rui-Chao; Ge, Li-Hao; Wang, Jian; Pan, Ya-Li; Guan, Ting-Ting; Cao, Yang

    2017-02-15

    Salvianolic acid A (Sal A), a bioactive compound isolated from the Chinese medicinal herb Danshen, is used for the prevention and treatment of cardiovascular diseases. However, the protective function of Sal A on preserving the role of blood-spinal cord barrier (BSCB) after spinal cord injury (SCI) is unclear. The present study investigated the effects and mechanisms of Sal A (2.5, 5, 10mg/kg, i.p.) on BSCB permeability at different time-points after compressive SCI in rats. Compared to the SCI group, treatment with Sal A decreased the content of the Evans blue in the spinal cord tissue at 24h post-SCI. The expression levels of tight junction proteins and HO-1 were remarkably increased, and that of p-caveolin-1 protein was greatly decreased after SCI Sal A. The effect of Sal A on the expression level of ZO-1, occluding, and p-caveolin-1 after SCI was blocked by the HO-1 inhibitor, zinc protoporphyrin IX (ZnPP). Also, Sal A inhibited the level of apoptosis-related proteins and improved the motor function until 21days after SCI. In addition, Sal A significantly increased the expression of microRNA-101 (miR-101) in the RBMECs under hypoxia. AntagomiR-101 markedly increased the RBMECs permeability and the expression of the Cul3 protein by targeting with 3'-UTR of its mRNA. The expression of nuclear factor erythroid 2-related factor 2 (Nrf2) and HO-1 was significantly increased after agomiR-101 treatment. Therefore, Sal A could improve the recovery of neurological function after SCI, which could be correlated with the repair of BSCB integrity by the miR-101/Cul3/Nrf2/HO-1 signaling pathway.

  10. Andrographolide Activates Keap1/Nrf2/ARE/HO-1 Pathway in HT22 Cells and Suppresses Microglial Activation by Aβ42 through Nrf2-Related Inflammatory Response

    PubMed Central

    Seo, Ji Yeon; Pyo, Euisun; An, Jin-Pyo; Kim, Jinwoong; Sung, Sang Hyun

    2017-01-01

    Therapeutic approach of Alzheimer's disease (AD) has been gradually diversified. We examined the therapeutic and preventive potential of andrographolide, which is a lactone diterpenoid from Andrographis paniculata, and focused on the Kelch-like ECH-associated protein 1 (Keap1)/nuclear factor (erythroid-derived 2)-like 2 (Nrf2)-mediated heme oxygenase (HO)-1-inducing effects and the inhibitory activity of amyloid beta (Aβ)42-induced microglial activation related to Nrf2 and nuclear factor κB (NF-κB)-mediated inflammatory responses. Andrographolide induced the expression and translocation of Nrf2 from the cytoplasm to the nucleus, thereby activating antioxidant response element (ARE) gene transcription and HO-1 expression in murine hippocampal HT22 cells. Andrographolide eliminated intracellular Aβ42 in BV-2 cells and decreased the production of interleukin (IL)-6, IL-1β, prostaglandin (PG)E2, and nitric oxide (NO) because of artificial phagocytic Aβ42. It decreased pNF-κB accumulation in the nucleus and the expression of inducible nitric oxide synthase (i-NOS) and cyclooxygenase II (COX-II) in the microglial BV-2 cell line. In summary, andrographolide activates Nrf2-mediated HO-1 expression and inhibits Aβ42-overexpressed microglial BV-2 cell activation. These results suggested that andrographolide might have the potential for further examination of the therapeutics of AD. PMID:28373747

  11. Trimetazidine protects retinal ganglion cells from acute glaucoma via the Nrf2/Ho-1 pathway.

    PubMed

    Wan, Peixing; Su, Wenru; Zhang, Yingying; Li, Zhidong; Deng, Caibin; Zhuo, Yehong

    2017-09-15

    Acute glaucoma is one of the leading causes of irreversible vision impairment characterized by the rapid elevation of intraocular pressure (IOP) and consequent retinal ganglion cell (RGC) death. Oxidative stress and neuroinflammation have been considered critical for the pathogenesis of RGC death in acute glaucoma. Trimetazidine (TMZ), an anti-ischemic drug, possesses antioxidative and anti-inflammatory properties, contributing to its therapeutic potential in tissue damage. However, the role of TMZ in acute glaucoma and the underlying molecular mechanisms remain elusive. Here, we report that treatment with TMZ significantly attenuated retinal damage and RGC death in mice with acute glaucoma, with a significant decrease in reactive oxygen species (ROS) and inflammatory cytokine production in the retina. Furthermore, TMZ treatment directly decreased ROS production and rebalanced the intracellular redox state, thus contributing to the survival of RGCs in vitro TMZ treatment also reduced the production of inflammatory cytokines in vitro Mechanistically, the TMZ-mediated inhibition of apoptosis and inflammatory cytokine production in RGCs occurred via the regulation of the nuclear factor erythroid 2-related factor 2/heme oxygenase 1/caspase-8 pathway. Moreover, the TMZ-mediated neuroprotection in acute glaucoma was abrogated when an HO-1 inhibitor, SnPP, was used. Our findings identify potential mechanisms of RGC apoptosis and propose a novel therapeutic agent, TMZ, which exerts a precise neuroprotective effect against acute glaucoma. © 2017 The Author(s).

  12. H2S confers colonoprotection against TNBS-induced colitis by HO-1 upregulation in rats.

    PubMed

    Kupai, Krisztina; Almási, Nikoletta; Kósa, Magdolna; Nemcsók, János; Murlasits, Zsolt; Török, Szilvia; Al-Awar, Amin; Baráth, Zoltán; Pósa, Anikó; Varga, Csaba

    2017-08-02

    Hydrogen sulfide (H2S) is an endogenous mediator that contributes to many important physiological processes including vasodilation and vascular smooth muscle relaxation; in turn, preventing tissue damage and reducing inflammation. Heme oxygenase (HO) enzymes, of which HO-1 is inducible by harmful stimuli, were found to regulate intestinal inflammation in experimental animal models of colitis. We aimed to investigate the protective effects of H2S against 2,4,6-trinitrobenzenesulfonic acid (TNBS)-induced colitis in rats, and whether HO enzyme system is involved in the H2S-induced colonic cytoprotection. Male Wistar rats were treated with TNBS to induce colitis, and H2S donor (Lawesson's reagent) was prepared two times/day at different concentrations, and delivered per os (from day 1 to day 3). Our results suggest that daily treatment (2 times/day) with H2S donor, could significantly decrease the extent of colonic inflammation compared to vehicle treatment, and the most effective daily dose of H2S donor against inflammation was 18.75 µM/kg/day. Per os administration of H2S donor increased the colonic HO enzyme activity; on the contrary, the protective effect of H2S was abolished by the co-treatment with HO inhibitor. Our findings suggest that H2S confers colonoprotection, probably by modulation of anti-inflammatory parameters and HO enzyme activity.

  13. Methionine sulfoxide reductase B3 deficiency stimulates heme oxygenase-1 expression via ROS-dependent and Nrf2 activation pathways

    SciTech Connect

    Kwak, Geun-Hee; Kim, Ki Young; Kim, Hwa-Young

    2016-05-13

    Methionine sulfoxide reductase B3 (MsrB3), which is primarily found in the endoplasmic reticulum (ER), is an important protein repair enzyme that stereospecifically reduces methionine-R-sulfoxide residues. We previously found that MsrB3 deficiency arrests the cell cycle at the G{sub 1}/S stage through up-regulation of p21 and p27. In this study, we report a critical role of MsrB3 in gene expression of heme oxygenase-1 (HO-1), which has an anti-proliferative effect associated with p21 up-regulation. Depletion of MsrB3 elevated HO-1 expression in mammalian cells, whereas MsrB3 overexpression had no effect. MsrB3 deficiency increased cellular reactive oxygen species (ROS), particularly in the mitochondria. ER stress, which is associated with up-regulation of HO-1, was also induced by depletion of MsrB3. Treatment with N-acetylcysteine as an ROS scavenger reduced augmented HO-1 levels in MsrB3-depleted cells. MsrB3 deficiency activated Nrf2 transcription factor by enhancing its expression and nuclear import. The activation of Nrf2 induced by MsrB3 depletion was confirmed by increased expression levels of its other target genes, such as γ-glutamylcysteine ligase. Taken together, these data suggest that MsrB3 attenuates HO-1 induction by inhibiting ROS production, ER stress, and Nrf2 activation. -- Highlights: •MsrB3 depletion induces HO-1 expression. •MsrB3 deficiency increases cellular ROS and ER stress. •MsrB3 deficiency activates Nrf2 by increasing its expression and nuclear import. •MsrB3 attenuates HO-1 induction by inhibiting ROS production and Nrf2 activation.

  14. Hydrogen gas reduces hyperoxic lung injury via the Nrf2 pathway in vivo

    PubMed Central

    Kawamura, Tomohiro; Wakabayashi, Nobunao; Shigemura, Norihisa; Huang, Chien-Sheng; Masutani, Kosuke; Tanaka, Yugo; Noda, Kentaro; Peng, Ximei; Takahashi, Toru; Billiar, Timothy R.; Okumura, Meinoshin; Toyoda, Yoshiya; Kensler, Thomas W.

    2013-01-01

    Hyperoxic lung injury is a major concern in critically ill patients who receive high concentrations of oxygen to treat lung diseases. Successful abrogation of hyperoxic lung injury would have a huge impact on respiratory and critical care medicine. Hydrogen can be administered as a therapeutic medical gas. We recently demonstrated that inhaled hydrogen reduced transplant-induced lung injury and induced heme oxygenase (HO)-1. To determine whether hydrogen could reduce hyperoxic lung injury and investigate the underlying mechanisms, we randomly assigned rats to four experimental groups and administered the following gas mixtures for 60 h: 98% oxygen (hyperoxia), 2% nitrogen; 98% oxygen (hyperoxia), 2% hydrogen; 98% balanced air (normoxia), 2% nitrogen; and 98% balanced air (normoxia), 2% hydrogen. We examined lung function by blood gas analysis, extent of lung injury, and expression of HO-1. We also investigated the role of NF-E2-related factor (Nrf) 2, which regulates HO-1 expression, by examining the expression of Nrf2-dependent genes and the ability of hydrogen to reduce hyperoxic lung injury in Nrf2-deficient mice. Hydrogen treatment during exposure to hyperoxia significantly improved blood oxygenation, reduced inflammatory events, and induced HO-1 expression. Hydrogen did not mitigate hyperoxic lung injury or induce HO-1 in Nrf2-deficient mice. These findings indicate that hydrogen gas can ameliorate hyperoxic lung injury through induction of Nrf2-dependent genes, such as HO-1. The findings suggest a potentially novel and applicable solution to hyperoxic lung injury and provide new insight into the molecular mechanisms and actions of hydrogen. PMID:23475767

  15. The role of heme oxygenase-1 (HO-1) in the regulation of inflammatory reaction, neuronal cell proliferation and apoptosis in rats after intracerebral hemorrhage (ICH)

    PubMed Central

    Fan, Xuezheng; Mu, Linshen

    2017-01-01

    Objective To investigate the role of heme oxygenase-1 (HO-1) in the regulation of inflammatory reaction, neuronal cell proliferation and apoptosis in rats after intracerebral hemorrhage (ICH). Methods Thirty-six adult Sprague Dawley (SD) male rats were randomly divided into sham operation, ICH and zinc protoporphyrin (ZPP) group. Rats (except for the sham operation group) were given 50 μL stereotactic injection of autologous blood from the femoral artery into the caudate nucleus, to establish an ICH model. In addition, rats in the ZPP group were given 10 mg/kg intraperitoneal injection of ZPP. At day 3 postoperative, neurobehavioral changes and brain water content were evaluated, brain tissue HO-1 expression was detected with immunohistochemistry and reverse transcription polymerase chain reaction (RT-PCR), brain tissue apoptosis was evaluated with TUNEL method, Caspase 3, Caspase 8 and Caspase 9 activity were detected with colorimetric method, level of TNF-α, IL-1β, IL-6 and IL-8 were measured with the enzyme-linked immunosorbent assay (ELISA), while Bcl-2, Bax, p-NF-κB p65 and p-IκBα protein expression were detected with Western blot. Results ICH group compared to sham operation: HO-1 positive rate and mRNA expression were increased, neurological deficit score and cell apoptosis rate were increased, Caspase 3, Caspase 8 and Caspase 9 activity were increased, level of TNF-α, IL-1β, IL-6 and IL-8 were increased, Bcl-2 expression was downregulated, Bax, p-NF-κB p65 and p-IκBα expression were upregulated. The differences were statistically significant (P<0.01). ZPP group compared to ICH: HO-1 positive rate and mRNA expression were decreased, neurological deficit score and cell apoptosis rate were decreased, Caspase 3, Caspase 8, Caspase 9 activity were decreased, level of TNF-α, IL-1β, IL-6 and IL-8 were decreased, Bcl-2 expression was upregulated, Bax, p-NF-κB p65 and p-IκBα expression were downregulated, and the differences were statistically

  16. The alpha-methylene-gamma-butyrolactone moiety in dehydrocostus lactone is responsible for cytoprotective heme oxygenase-1 expression through activation of the nuclear factor E2-related factor 2 in HepG2 cells.

    PubMed

    Jeong, Gil-Saeng; Pae, Hyun-Ock; Jeong, Sun-Oh; Kim, Youn-Chul; Kwon, Tae-Oh; Lee, Ho Sub; Kim, Nam-Song; Park, Seok Don; Chung, Hun-Taeg

    2007-06-22

    Inducible heme oxygenase (HO)-1 acts against oxidants that are thought to play a major role in the pathogenesis of several diseases. The alpha-methylene-gamma-butyrolactone (CH2-BL) structural unit, which characterizes a group of naturally occurring sesquiterpene lactones, is known to possess numerous biological activities. In the present study, we evaluated dehydrocostus lactone possessing CH2-BL moiety, one of the bioactive constituents of the medicinal plant Saussurea lappa, as an inducer of cytoprotective HO-1. In HepG2 cells, treatment with dehydrocostus lactone induced HO-1 expression and increased HO activity in a concentration-dependent manner. Similar results were also observed when the cells were incubated with CH2-BL, a parent structure of dehydrocostus lactone. In contrast, mokko lactone, a reduced product of dehydrocostus lactone, and alpha-methyl-gamma-butyrolactone (CH3-BL), a parent structure of mokko lactone, did not induce HO-1 expression. Pretreatment with either dehydrocostus lactone or CH2-BL for 6 h protected the cells from hydrogen peroxide-mediated toxicity, whereas mokko lactone or CH3-BL failed to exert a cytoprotective action. Inhibition of HO-1 expression by HO-1 small interfering RNA (siRNA) abrogated cellular protection afforded by dehydrocostus lactone or CH2-BL. In addition, dehydrocostus lactone caused the nuclear accumulation of the nuclear factor E2-related factor 2 (Nrf2) and increased the promoter activity of antioxidant response element (ARE). Using Nrf2 siRNA, Nrf2 activation was confirmed to contribute to cytoprotective HO-1 expression by dehydrocostus lactone or CH2-BL. Collectively, our findings suggest that CH2-BL moiety in dehydrocostus lactone increases cellular resistance to oxidant injury in HepG2 cells, presumably through Nrf2/ARE-dependent HO-1 expression.

  17. Developmental Hypothyroidism Reduces the Expression of ...

    EPA Pesticide Factsheets

    Disruption of thyroid hormone (TH) is a known effect of environmental contaminants. Neurotrophins including brain-derived neurotrophic factor (BDNF) and nerve growth factor (NGF) have been implicated in brain dysfunction resulting from severe developmental TH insufficiency. Neurotrophins are also implicated in activity-dependent plasticity, a process critical for appropriate use-dependent connectivity in the developing brain and for memory formation in the adult. This study examined activity-induced expression of neurotrophin gene products in the hippocampus using the long-term potentiation (LTP) after developmental hypothyroidism induced by propylthiouracil (PTU). Pregnant rats were exposed to PTU (0 or I0ppm) via the drinking water from early gestation to weaning. Adult male offspring were anesthetized with urethane and implanted with electrodes in the dentate gyrus (00) and perforant path (PP). LTP was induced by PP stimulation and responses from 00 were monitored at 15m intervals until sacrifice of the animals 5 h later. The 00 was dissected from the stimulated and nonstimulated hemispheres for rtPCR analysis of the neurotrophins Bdnf, Ngf, Ntf3 and related genes Egrl, Arc, Klf9. We found no PTU-induced difference in basal levels of expression of any of these genes in the nonstimulated 00. LTP increased expression of Bdnf, Ngf, Arc and Klj9 in the control DG, and reduced expression of Ntf3. LTP in DG from PTU animals failed to increase expression of Bdnf,

  18. Curcumin attenuates quinocetone induced apoptosis and inflammation via the opposite modulation of Nrf2/HO-1 and NF-kB pathway in human hepatocyte L02 cells.

    PubMed

    Dai, Chongshan; Li, Bin; Zhou, Yan; Li, Daowen; Zhang, Shen; Li, Hui; Xiao, Xilong; Tang, Shusheng

    2016-09-01

    The potential toxicity of quinocetone (QCT) has raised widely concern, but its mechanism is still unclear. This study aimed to investigate the protective effect of curcumin on QCT induced apoptosis and the underlying mechanism in human hepatocyte L02 cells. The results showed that QCT treatment significantly decreased the cell viability of L02 cell and increased the release of lactate dehydrogenase (LDH), which was attenuated by curcumin pre-treatment at 1.25, 2.5 and 5 μM. Compared to the QCT alone group, curcumin pre-treatment significantly attenuated QCT induced oxidative stress, mitochondrial dysfunction and apoptosis. In addition, curcumin pretreatment markedly attenuated QCT-induced increase of iNOS activity and NO production in a dose-dependent manner. Meanwhile, curcumin pretreatment markedly down-regulated the expression of nuclear factor -kB (NF-kB) and iNOS mRNAs, but up-regulated the expressions of Nrf2 and HO-1 mRNAs, compared to the QCT alone group. Zinc protoporphyrin IX, a HO-1 inhibitor, markedly partly abolished the cytoprotective effect of curcumin against QCT-induced caspase activation, NF-kB mRNA expression. These results indicate that curcumin could effectively inhibit QCT induced apoptosis and inflammatory response in L02 cells, which may involve the activation of Nrf2/HO-1 and inhibition of NF-kB pathway.

  19. Haem oxygenase 1 expression is altered in monocytes from patients with systemic lupus erythematosus

    PubMed Central

    Herrada, Andrés A; Llanos, Carolina; Mackern-Oberti, Juan P; Carreño, Leandro J; Henriquez, Carla; Gómez, Roberto S; Gutierrez, Miguel A; Anegon, Ignacio; Jacobelli, Sergio H; Kalergis, Alexis M

    2012-01-01

    Systemic lupus erythematosus (SLE) is an autoimmune disease characterized by multiple functional alterations affecting immune cells, such as B cells, T cells, dendritic cells (DCs) and monocytes. During SLE, the immunogenicity of monocytes and DCs is significantly up-regulated, promoting the activation of self-reactive T cells. Accordingly, it is important to understand the contribution of these cells to the pathogenesis of SLE and the mechanisms responsible for their altered functionality during disease. One of the key enzymes that control monocyte and DC function is haem oxygenase-1 (HO-1), which catalyses the degradation of the haem group into biliverdin, carbon monoxide and free iron. These products possess immunosuppressive and anti-inflammatory capacities. The main goal of this work was to determine HO-1 expression in monocytes and DCs from patients with SLE and healthy controls. Hence, peripheral blood mononuclear cells were obtained from 43 patients with SLE and 30 healthy controls. CD14+ monocytes and CD4+ T cells were sorted by FACS and HO-1 expression was measured by RT-PCR. In addition, HO-1 protein expression was determined by FACS. HO-1 levels in monocytes were significantly reduced in patients with SLE compared with healthy controls. These results were confirmed by flow cytometry. No differences were observed in other cell types, such as DCs or CD4+ T cells, although decreased MHC-II levels were observed in DCs from patients with SLE. In conclusion, we found a significant decrease in HO-1 expression, specifically in monocytes from patients with SLE, suggesting that an imbalance of monocyte function could be partly the result of a decrease in HO-1 expression. PMID:22587389

  20. Methamphetamine induces heme oxygenase-1 expression in cortical neurons and glia to prevent its toxicity.

    PubMed

    Huang, Ya-Ni; Wu, Ching-Hsiang; Lin, Tzu-Chao; Wang, Jia-Yi

    2009-11-01

    The impairment of cognitive and motor functions in humans and animals caused by methamphetamine (METH) administration underscores the importance of METH toxicity in cortical neurons. The heme oxygenase-1 (HO-1) exerts a cytoprotective effect against various neuronal injures; however, it remains unclear whether HO-1 is involved in METH-induced toxicity. We used primary cortical neuron/glia cocultures to explore the role of HO-1 in METH-induced toxicity. Exposure of cultured cells to various concentrations of METH (0.1, 0.5, 1, 3, 5, and 10 mM) led to cytotoxicity in a concentration-dependent manner. A METH concentration of 5 mM, which caused 50% of neuronal death and glial activation, was chosen for subsequent experiments. RT-PCR and Western blot analysis revealed that METH significantly induced HO-1 mRNA and protein expression, both preceded cell death. Double and triple immunofluorescence staining further identified HO-1-positive cells as activated astrocytes, microglia, and viable neurons, but not dying neurons. Inhibition of the p38 mitogen-activated protein kinase pathway significantly blocked HO-1 induction by METH and aggravated METH neurotoxicity. Inhibition of HO activity using tin protoporphyrine IX significantly reduced HO activity and exacerbated METH neurotoxicity. However, prior induction of HO-1 using cobalt protoporphyrine IX partially protected neurons from METH toxicity. Taken together, our results suggest that induction of HO-1 by METH via the p38 signaling pathway may be protective, albeit insufficient to completely protect cortical neurons from METH toxicity.

  1. Methamphetamine induces heme oxygenase-1 expression in cortical neurons and glia to prevent its toxicity

    SciTech Connect

    Huang, Y.-N.; Wu, C.-H.; Lin, T.-C.; Wang, J.-Y.

    2009-11-01

    The impairment of cognitive and motor functions in humans and animals caused by methamphetamine (METH) administration underscores the importance of METH toxicity in cortical neurons. The heme oxygenase-1 (HO-1) exerts a cytoprotective effect against various neuronal injures; however, it remains unclear whether HO-1 is involved in METH-induced toxicity. We used primary cortical neuron/glia cocultures to explore the role of HO-1 in METH-induced toxicity. Exposure of cultured cells to various concentrations of METH (0.1, 0.5, 1, 3, 5, and 10 mM) led to cytotoxicity in a concentration-dependent manner. A METH concentration of 5 mM, which caused 50% of neuronal death and glial activation, was chosen for subsequent experiments. RT-PCR and Western blot analysis revealed that METH significantly induced HO-1 mRNA and protein expression, both preceded cell death. Double and triple immunofluorescence staining further identified HO-1-positive cells as activated astrocytes, microglia, and viable neurons, but not dying neurons. Inhibition of the p38 mitogen-activated protein kinase pathway significantly blocked HO-1 induction by METH and aggravated METH neurotoxicity. Inhibition of HO activity using tin protoporphyrine IX significantly reduced HO activity and exacerbated METH neurotoxicity. However, prior induction of HO-1 using cobalt protoporphyrine IX partially protected neurons from METH toxicity. Taken together, our results suggest that induction of HO-1 by METH via the p38 signaling pathway may be protective, albeit insufficient to completely protect cortical neurons from METH toxicity.

  2. High expression of heme oxygenase-1 in target organs may attenuate acute graft-versus-host disease through regulation of immune balance of TH17/Treg.

    PubMed

    Yu, Meisheng; Wang, Jishi; Fang, Qin; Liu, Ping; Chen, Shuya; Zhe, Nana; Lin, Xiaojing; Zhang, Yaming; Zhao, Jiangyuan; Zhou, Zhen

    2016-07-01

    The high incidence of acute graft-versus-host disease (aGVHD) is a serious complication of allogeneic hematopoietic stem cell transplantation (allo-HSCT). Grades III and IV aGVHD are the leading causes of death in allo-HSCT recipients. Heme oxygenase-1(HO-1) has anti-inflammatory and immune-regulatory functions. In this study, we evaluated the none GVHD and grade I-IV patients samples which were collected at the first re-examination after successful allo-HSCT, we found that expressions of HO-1 mRNA in the bone marrow and peripheral blood mononuclear cells of allo-HSCT recipients who had subsequent non-GVHD and grade I aGVHD were significantly higher than those in patients with Grade III-IV aGVHD. We then demonstrated that enhanced expression of HO-1 in target organs by infusing HO-1-gene-modified Mesenchymal stem cells (MSCs) alleviated the clinical and histopathological severity of aGVHD in experimental mice. Flow cytometry revealed a higher expression of Treg cells and a lower expression of TH17 cells in splenic and lymph node tissues of mice with enhanced HO-1 expression, as compared to that in the aGVHD mice. This was further substantiated by lower expression levels of ROR-Υt and IL-17A mRNA, and higher levels of Foxp3 mRNA in the splenic tissue of mice with enhanced HO-1 expression. Our results indicate that high expression of HO-1 may reduce the severity of aGVHD by regulation of the TH17/Treg balance.

  3. Ginsenoside Rb1 protects against 6-hydroxydopamine-induced oxidative stress by increasing heme oxygenase-1 expression through an estrogen receptor-related PI3K/Akt/Nrf2-dependent pathway in human dopaminergic cells

    SciTech Connect

    Hwang, Yong Pil; Jeong, Hye Gwang

    2010-01-01

    Phytoestrogens are polyphenolic non-steroidal plant compounds with estrogen-like biological activity. Ginseng, the root of Panax ginseng C.A. Meyer (Araliaceae), is a popular traditional herbal medicine. Ginsenoside Rb1 (Rb1), an active component commonly found in ginseng root, is a phytoestrogen that exerts estrogen-like activity. In this study, we demonstrate that the phytoestrogen Rb1 inhibits 6-hydroxydopamine (6-OHDA)-induced oxidative injury via an ER-dependent Gbeta1/PI3K/Akt and heme oxygenase-1 (HO-1) pathway. Pretreatment of SH-SY5Y cells with Rb1 significantly reduced 6-OHDA-induced caspase-3 activation and subsequent cell death. Rb1 also up-regulated HO-1 expression, which conferred cytoprotection against 6-OHDA-induced oxidative injury. Moreover, Rb1 induced both Nrf2 nuclear translocation, which is upstream of HO-1 expression and PI3K activation, a pathway that is involved in induced Nrf2 nuclear translocation, HO-1 expression and cytoprotection. Also, Rb1-mediated increases in PI3K activation and HO-1 induction were reversed by co-treatment with ICI 182,780 and pertussis toxin. Taken together, these results suggest that Rb1 augments the cellular antioxidant defenses through ER-dependent HO-1 induction via the Gbeta1/PI3K/Akt-Nrf2 signaling pathway, thereby protecting cells from oxidative stress. Thus our study indicates that Rb1 has a partial cytoprotective role in dopaminergic cell culture systems.

  4. A Novel Danshensu-Tetramethylpyrazine Conjugate DT-010 Provides Cardioprotection through the PGC-1α/Nrf2/HO-1 Pathway.

    PubMed

    Zhang, Xiaojing; Hu, Huihui; Luo, Jingxiong; Deng, Huixing; Yu, Pei; Zhang, Zaijun; Zhang, Gaoxiao; Shan, Luchen; Wang, Yuqiang

    2017-09-01

    In this study, we investigated the cardioprotective mechanisms of action of DT-010, a novel danshensu-tetramethylpyrazine conjugate. DT-010 significantly preserved cell viability and suppressed cell apoptosis in H9c2 cells injured by tert-butylhydroperoxide (t-BHP), iodoacetic acid (IAA) and hypoxia-reoxygenation. In addition, DT-010 pre-treatment reduced the intracellular level of free radicals including superoxide anion (·O2(-)), hydroxyl radical (·OH) and peroxynitrite anion (ONOO(-)) after t-BHP exposure. Moreover, DT-010 up-regulated the protein expression of peroxisome proliferator-activated receptor gamma coactivator 1 alpha (PGC-1α) and nuclear factor-E2-related factor 2 (Nrf2) as well as mitochondrial transcription factor A (Tfam) and heme oxygenase-1 (HO-1) in H9c2 cells. DT-010 also triggered Nrf2 nuclear translocation. In a rat myocardial ischemia-reperfusion model, DT-010 significantly alleviated myocardial infarction. The results indicated that DT-010 may be a promising candidate for the treatment of cardiovascular diseases, particularly myocardial ischemia and reperfusion injury.

  5. Lycopene attenuates colistin-induced nephrotoxicity in mice via activation of the Nrf2/HO-1 pathway.

    PubMed

    Dai, Chongshan; Tang, Shusheng; Deng, Sijun; Zhang, Shen; Zhou, Yan; Velkov, Tony; Li, Jian; Xiao, Xilong

    2015-01-01

    Nephrotoxicity is the major dose-limiting factor for the clinical use of colistin against multidrug-resistant (MDR) Gram-negative bacteria. This study aimed to investigate the protective effect of lycopene on colistin-induced nephrotoxicity in a mouse model. Fifty mice were randomly divided into 5 groups: the control group (saline solution), the lycopene group (20 mg/kg of body weight/day administered orally), the colistin group (15 mg/kg/day administered intravenously), the colistin (15 mg/kg/day) plus lycopene (5 mg/kg/day) group, and the colistin (15 mg/kg/day) plus lycopene (20 mg/kg/day) group; all mice were treated for 7 days. At 12 h after the last dose, blood was collected for measurements of blood urea nitrogen (BUN) and serum creatinine levels. The kidney tissue samples were obtained for examination of biomarkers of oxidative stress and apoptosis, histopathological assessment, and quantitative reverse transcription-PCR (qRT-PCR) analysis. Colistin treatment significantly increased concentrations of BUN and serum creatinine, tubular apoptosis/necrosis, lipid peroxidation, and heme oxygenase 1 (HO-1) activity, while the treatment decreased the levels of endogenous antioxidant biomarkers glutathione (GSH), catalase (CAT), and superoxide dismutase (SOD). Notably, the changes in the levels of all biomarkers were attenuated in the kidneys of mice treated with colistin by lycopene (5 or 20 mg/kg). Lycopene treatment, especially in the colistin plus lycopene (20 mg/kg) group, significantly downregulated the expression of NF-κB mRNA (P < 0.01) but upregulated the expression of nuclear factor erythroid 2-related factor 2 (Nrf2) and HO-1 mRNA (both P < 0.01) in the kidney compared with the results seen with the colistin group. Our data demonstrated that coadministration of 20 mg/kg/day lycopene can protect against colistin-induced nephrotoxicity in mice. This effect may be attributed to the antioxidative property of lycopene and its ability to activate the Nrf2/HO

  6. Fenofibrate Increases Heme Oxygenase 1 Expression and Astrocyte Proliferation While Limits Neuronal Injury During Intracerebral Hemorrhage.

    PubMed

    Wang, Yan; Yu, Min; Ma, Yue; Wang, Ruoping; Liu, Wei; Xia, Wei; Guan, Aili; Xing, Conghui; Lu, Fei; Ji, Xiaoping

    2017-01-01

    Peroxisome proliferator-activated receptors alpha (PPARα) is a therapy target in atherosclerosis and cardiovascular diseases. However, anti-inflammatory effects of PPARα in intracerebral hemorrhage (ICH) remain unknown. We investigated the anti-inflammatory effects of fenofibrate, a ligand of PPARα, in ICH rat model. We found that engagement of fenofibrate increased nissl body and astrocytes, and reduced the neuronal damage, which was observed in paraffin section of ICH rat brain. Fenofibrate also promoted the proliferation of astrocytes that were isolated from adult rat brain. Fenofibrate significantly upregulated heme oxygenase 1 (HO-1) at protein and mRNA levels in human glioblastoma LN-18 cells and rat brain astrocytes respectively, but nuclear factor kappalight- chain-enhancer of activated B cells (NFκB) was downregulated after fenofibrate treatment. Results showed that fenofibrate-induced upregulation of HO-1 expression were inhibited after LN-18 cells were transfected with 50nM small interfering RNA (siRNAs) for 48 hours to knockdown PPARα. Further studies in rat astrocytes confirmed the rescue effects of PPARα silence against fenofibrate induced upregulation of HO-1 expression. Our data indicated that fenofibrate benefits neuronal protection through increasing HO-1 expression level and decreasing NFκB expression in PPARα-dependent manner. In conclusion, PPARα and HO-1 may function as significant targets to protect the brain during ICH.

  7. Nrf2-Mediated HO-1 Induction Coupled with the ERK Signaling Pathway Contributes to Indirect Antioxidant Capacity of Caffeic Acid Phenethyl Ester in HepG2 Cells

    PubMed Central

    Kim, Jin-Kyoung; Jang, Hae-Dong

    2014-01-01

    The objective of this study is to investigate the contributing effect of the nuclear transcription factor-erythroid 2-related factor 2 (Nrf2)-mediated signaling pathway on the indirect antioxidant capacity of caffeic acid phenethyl ester (CAPE) against oxidative stress in HepG2 cells. The result of an antioxidant response element (ARE)-luciferase assay showed that CAPE stimulated ARE promoter activity resulting in increased transcriptional and translational activities of heme oxygenase-1 (HO-1). In addition, CAPE treatment enhanced Nrf2 accumulation in the nucleus and the post-translational phosphorylation level of extracellular signal-regulated kinase (ERK) among several protein kinases tested. Treatment with ERK inhibitor U126 completely suppressed CAPE-induced ERK phosphorylation and HO-1 expression, but it only partly inhibited CAPE-induced Nrf2 accumulation and ARE promoter. Using the 2',7'-dichlorofluorescein-diacetate (DCFH-DA) method, the cellular antioxidant capacity of CAPE against 2,2'-azobis (2-amidinopropane) dihydrochloride (AAPH)- or H2O2-induced oxidative stress also was shown to be partially suppressed by the ERK inhibitor. From the overall results it is proposed that the indirect antioxidant activity of CAPE against oxidative stress in HepG2 cells is partially attributed to induction of HO-1, which is regulated by Kelch-like erythroid-cell-derived protein with CNC homology (ECH)-associated protein 1 (Keap1)-independent Nrf2 activation relying on post-translational phosphorylation of ERK. PMID:25007817

  8. Commiphora molmol Modulates Glutamate-Nitric Oxide-cGMP and Nrf2/ARE/HO-1 Pathways and Attenuates Oxidative Stress and Hematological Alterations in Hyperammonemic Rats

    PubMed Central

    Alqahtani, Sultan; Othman, Sarah I.; Germoush, Mousa O.; Hussein, Omnia E.; Al-Basher, Gadh; Khim, Jong Seong; Al-Qaraawi, Maha A.; Al-Harbi, Hanan M.; Fadel, Abdulmannan; Allam, Ahmed A.

    2017-01-01

    Hyperammonemia is a serious complication of liver disease and may lead to encephalopathy and death. This study investigated the effects of Commiphora molmol resin on oxidative stress, inflammation, and hematological alterations in ammonium chloride- (NH4Cl-) induced hyperammonemic rats, with an emphasis on the glutamate-NO-cGMP and Nrf2/ARE/HO-1 signaling pathways. Rats received NH4Cl and C. molmol for 8 weeks. NH4Cl-induced rats showed significant increase in blood ammonia, liver function markers, and tumor necrosis factor-alpha (TNF-α). Concurrent supplementation of C. molmol significantly decreased circulating ammonia, liver function markers, and TNF-α in hyperammonemic rats. C. molmol suppressed lipid peroxidation and nitric oxide and enhanced the antioxidant defenses in the liver, kidney, and cerebrum of hyperammonemic rats. C. molmol significantly upregulated Nrf2 and HO-1 and decreased glutamine and nitric oxide synthase, soluble guanylate cyclase, and Na+/K+-ATPase expression in the cerebrum of NH4Cl-induced hyperammonemic rats. Hyperammonemia was also associated with hematological and coagulation system alterations. These alterations were reversed by C. molmol. Our findings demonstrated that C. molmol attenuates ammonia-induced liver injury, oxidative stress, inflammation, and hematological alterations. This study points to the modulatory effect of C. molmol on glutamate-NO-cGMP and Nrf2/ARE/HO-1 pathways in hyperammonemia. Therefore, C. molmol might be a promising protective agent against hyperammonemia. PMID:28744340

  9. Ginkgo biloba Extract Prevents Female Mice from Ischemic Brain Damage and the Mechanism Is Independent of the HO1/Wnt Pathway.

    PubMed

    Tulsulkar, Jatin; Glueck, Bryan; Hinds, Terry D; Shah, Zahoor A

    2016-04-01

    It is well known that gender differences exist in experimental or clinical stroke with respect to brain damage and loss of functional outcome. We have previously reported neuroprotective properties of Ginkgo biloba/EGb 761® (EGb 761) in transient and permanent mouse models of brain ischemia using male mice, and the mechanism of action was attributed to the upregulation of the heme oxygenase 1 (HO1)/Wnt pathway. Here, we sought to investigate whether EGb 761's protective effect in ovariectomized female mice following stroke is also mediated by the HO1/Wnt pathway. Female mice were ovariectomized (OVX) to remove the protective effect of estrogen and were treated with EGb 761 for 7 days prior to inducing permanent middle cerebral artery occlusion (pMCAO) and allowed to survive for an additional 7 days. At day 8, animals were sacrificed, and the brains were harvested for infarct volume analysis, western blots, and immunohistochemistry. The OVX female mice treated with EGb 761 showed significantly lower infarct size as compared to Veh/OVX animals. EGb 761 treatment in female mice inhibited apoptosis by preventing caspase-3 cleavage and blocking the extrinsic apoptotic pathway. EGb 761 pretreatment significantly enhanced neurogenesis in OVX mice as compared to the Veh/OVX group and significantly upregulated androgen receptor expression with no changes in HO1/Wnt signaling. These results suggest that EGb 761 prevented brain damage in OVX female mice by improving grip strength and neurological deficits, and the mechanism of action is not through HO1/Wnt but via blocking the extrinsic apoptotic pathway.

  10. Baicalein Protects Against Retinal Ischemia by Antioxidation, Antiapoptosis, Downregulation of HIF-1α, VEGF, and MMP-9 and Upregulation of HO-1

    PubMed Central

    Chuang, Min-Jay; Liu, Xiao-Qian; Ho, Li-Kang; Pan, Wynn H.T.; Zhang, Xiu-Mei; Liu, Chi-Ming; Tsai, Shen-Kou; Kong, Chi-Woon; Lee, Shou-Dong; Chen, Mi-Mi; Chao, Fang-Ping

    2013-01-01

    Abstract Purpose Retinal ischemia-associated ocular disorders are vision threatening. This study examined whether the flavonoid baicalein is able to protect against retinal ischemia/reperfusion. Methods Using rats, the intraocular pressure was raised to 120 mmHg for 60 min to induce retinal ischemia. In vitro, an ischemic-like insult, namely oxidative stress, was established by incubating dissociated retinal cells with 100 μM ascorbate and 5 μM FeSO4 (iron) for 1 h. The rats or the dissociated cells had been pretreated with baicalein (in vivo: 0.05 or 0.5 nmol; in vitro: 100 μM), vehicle (1% ethanol), or trolox (in vivo: 5 nmol; in vitro: 100 μM or 1 mM). The effects of these treatments on the retina or the retinal cells were evaluated by electrophysiology, immunohistochemistry, terminal deoxynucleotidyl-transferase-mediated dUTP nick end-labeling (TUNEL) staining, Western blotting, or in vitro dichlorofluorescein assay. In addition, real-time-polymerase chain reaction was used to assess the retinal expression of hypoxia-inducible factor-1α (HIF-1α), matrix metalloproteinase-9 (MMP-9), vascular endothelium growth factor (VEGF), and heme oxygenase-1 (HO-1). Results The retinal changes after ischemia included a decrease in the electroretinogram b-wave amplitude, a loss of choline acetyltransferase immunolabeling amacrine cell bodies/neuronal processes, an increase in vimentin immunoreactivity, which is a marker for Müller cells, an increase in apoptotic cells in the retinal ganglion cell layer linked to a decrease in the Bcl-2 protein, and changes in the mRNA levels of HIF-1α, VEGF, MMP-9, and HO-1. Of clinical importance, the ischemic detrimental effects were concentration dependently and/or significantly (0.05 nmol and/or 0.5 nmol) altered when baicalein was applied 15 min before retinal ischemia. Most of all, 0.5 nmol baicalein significantly reduced the upregulation of MMP-9; in contrast, 5 nmol trolox only had a weak

  11. Carnosic Acid Induces Anti-Inflammatory Effects in Paraquat-Treated SH-SY5Y Cells Through a Mechanism Involving a Crosstalk Between the Nrf2/HO-1 Axis and NF-κB.

    PubMed

    de Oliveira, Marcos Roberto; de Souza, Izabel Cristina Custódio; Fürstenau, Cristina Ribas

    2017-01-12

    Carnosic acid (CA) is a phenolic diterpene obtained from Rosmarinus officinalis L. and has demonstrated cytoprotective properties in several experimental models. CA exerts antioxidant effects by upregulating the transcription factor nuclear factor erythroid 2-related factor 2 (Nrf2), which controls the expression of antioxidant and phase II detoxification enzymes. Heme oxygenase-1 (HO-1) expression is modulated by Nrf2 and has been demonstrated as part of the mechanism underlying the CA-induced cytoprotection. Nonetheless, it remains to be studied whether and how HO-1 would mediate CA-elicited anti-inflammatory effects. Therefore, we have investigated here whether and how CA would prevent paraquat (PQ)-induced inflammation-related alterations in human neuroblastoma SH-SY5Y cells. SH-SY5Y cells were pretreated for 12 h with CA at 1 μM before exposure to PQ for further 24 h. CA suppressed the PQ-induced alterations on the levels of interleukin-1β (IL-1β), tumor necrosis factor-α (TNF-α), and cyclooxygenase-2 (COX-2) through a mechanism involving the activation of the Nrf2/HO-1 axis. Furthermore, we observed a crosstalk between the Nrf2/HO-1 signaling pathway and the activation of the nuclear factor-κB (NF-κB) transcription factor, since administration of ZnPP IX (specific inhibitor of HO-1) or Nrf2 knockdown using small interfering RNA (siRNA) abolished the anti-inflammatory effects induced by CA. Moreover, administration of SN50 (specific inhibitor of NF-κB) inhibited the PQ-induced inflammation-related effects in SH-SY5Y cells. Therefore, CA exerted anti-inflammatory effects in SH-SY5Y cells through an Nrf2/HO-1 axis-dependent manner associated with downregulation of NF-κB.

  12. Heme Oxygenase-1 Expression Affects Murine Abdominal Aortic Aneurysm Progression.

    PubMed

    Azuma, Junya; Wong, Ronald J; Morisawa, Takeshi; Hsu, Mark; Maegdefessel, Lars; Zhao, Hui; Kalish, Flora; Kayama, Yosuke; Wallenstein, Matthew B; Deng, Alicia C; Spin, Joshua M; Stevenson, David K; Dalman, Ronald L; Tsao, Philip S

    2016-01-01

    Heme oxygenase-1 (HO-1), the rate-limiting enzyme in heme degradation, is a cytoprotective enzyme upregulated in the vasculature by increased flow and inflammatory stimuli. Human genetic data suggest that a diminished HO-1 expression may predispose one to abdominal aortic aneurysm (AAA) development. In addition, heme is known to strongly induce HO-1 expression. Utilizing the porcine pancreatic elastase (PPE) model of AAA induction in HO-1 heterozygous (HO-1+/-, HO-1 Het) mice, we found that a deficiency in HO-1 leads to augmented AAA development. Peritoneal macrophages from HO-1+/- mice showed increased gene expression of pro-inflammatory cytokines, including MCP-1, TNF-alpha, IL-1-beta, and IL-6, but decreased expression of anti-inflammatory cytokines IL-10 and TGF-beta. Furthermore, treatment with heme returned AAA progression in HO-1 Het mice to a wild-type profile. Using a second murine AAA model (Ang II-ApoE-/-), we showed that low doses of the HMG-CoA reductase inhibitor rosuvastatin can induce HO-1 expression in aortic tissue and suppress AAA progression in the absence of lipid lowering. Our results support those studies that suggest that pleiotropic statin effects might be beneficial in AAA, possibly through the upregulation of HO-1. Specific targeted therapies designed to induce HO-1 could become an adjunctive therapeutic strategy for the prevention of AAA disease.

  13. Heme Oxygenase-1 Expression Affects Murine Abdominal Aortic Aneurysm Progression

    PubMed Central

    Azuma, Junya; Wong, Ronald J.; Morisawa, Takeshi; Hsu, Mark; Maegdefessel, Lars; Zhao, Hui; Kalish, Flora; Kayama, Yosuke; Wallenstein, Matthew B.; Deng, Alicia C.; Spin, Joshua M.; Stevenson, David K.; Dalman, Ronald L.; Tsao, Philip S.

    2016-01-01

    Heme oxygenase-1 (HO-1), the rate-limiting enzyme in heme degradation, is a cytoprotective enzyme upregulated in the vasculature by increased flow and inflammatory stimuli. Human genetic data suggest that a diminished HO-1 expression may predispose one to abdominal aortic aneurysm (AAA) development. In addition, heme is known to strongly induce HO-1 expression. Utilizing the porcine pancreatic elastase (PPE) model of AAA induction in HO-1 heterozygous (HO-1+/-, HO-1 Het) mice, we found that a deficiency in HO-1 leads to augmented AAA development. Peritoneal macrophages from HO-1+/- mice showed increased gene expression of pro-inflammatory cytokines, including MCP-1, TNF-alpha, IL-1-beta, and IL-6, but decreased expression of anti-inflammatory cytokines IL-10 and TGF-beta. Furthermore, treatment with heme returned AAA progression in HO-1 Het mice to a wild-type profile. Using a second murine AAA model (Ang II-ApoE-/-), we showed that low doses of the HMG-CoA reductase inhibitor rosuvastatin can induce HO-1 expression in aortic tissue and suppress AAA progression in the absence of lipid lowering. Our results support those studies that suggest that pleiotropic statin effects might be beneficial in AAA, possibly through the upregulation of HO-1. Specific targeted therapies designed to induce HO-1 could become an adjunctive therapeutic strategy for the prevention of AAA disease. PMID:26894432

  14. Associations of proteins relevant to MAPK signaling pathway (p38MAPK-1,HIF-1 and HO-1) with coronary lesion characteristics and prognosis of peri-menopausal women.

    PubMed

    Yan, Liqiu; Cao, Xufen; Zeng, Saitian; Li, Zhe; Lian, Zheng; Wang, Jiawang; Lv, Fengfeng; Wang, Yunfei; Li, Yanshen

    2016-11-08

    The present study was intended to explore whether three proteins within MAPK signaling pathway (i.e. p38MAPK-1, HIF-1 and HO-1) were correlated with peri-menopausal women's coronary lesion features and prognosis. Altogether 1449 peri-menopausal women were divided into non-coronary artery disease (CAD) group (n = 860) and CAD group (n = 589), including 167 pre-menopausal CAD populations and 422 post-menopausal CAD populations. General information about CAD risk parameters were gathered, including age, family history of CAD or hypertension or diabetes mellitus, bilirubin, cholesterol, triglyceride, high-density lipoprotein cholesterol (HDL-C) and low-density lipoprotein cholesterol (LDL-C) and so on. Coronary angiography results were judged, and CAD score was calculated with application of Genisin scoring method. Besides, detection of MAPK-1 levels was implemented with Strept Avidin-Biotin Complex (SABC) method, while HIF-1 and HO-1 expressions in the serum were determined utilizing ELISA detection kit. Correlations among protein expressions, characteristics of coronary lesions and prognosis of CAD populations were finally evaluated. Hypertension, hyperlipoidemia, diabetes and smoking history were more prevalent among postmenopausal CAD women than premenopausal CAD women (P < 0.05). Furthermore, postmenopausal women seemed to be significantly associated with multiple (i.e. double and triple) vessel lesions and severe lesion types (type B and C), when compared with premenopausal CAD group (P < 0.05). Similarly, remarkably elevated expressions of p38MAPK-1, HIF-1 and HO-1 were found within postmenopausal CAD populations in comparison to premenopausal ones (P < 0.05). The internal CysC, hs-CRP, TG and LDL-C concentrations all accorded with the following tendency: postmenopausal CAD women > premenopausal CAD women > non-CAD women. Moreover, p38MAPK-1, HIF-1 and HO-1 expressions were up-regulated with increasing number of vessel lesions and

  15. HO-1 induction in motor cortex and intestinal dysfunction in TDP-43 A315T transgenic mice.

    PubMed

    Guo, Yansu; Wang, Qian; Zhang, Kunxi; An, Ting; Shi, Pengxiao; Li, Zhongyao; Duan, Weisong; Li, Chunyan

    2012-06-15

    TAR DNA-binding protein 43 (TDP-43) has been found to be related to the pathogenesis of amyotrophic lateral sclerosis (ALS). TDP-43 A315T transgenic mice develop degeneration of specific motor neurons, and accumulation of ubiquitinated proteins has been observed in the pyramidal cells of motor cortex of these mice. In this study, we found stress-responsive HO-1 induction and no autophagic alteration in motor cortex of TDP-43 A315T transgenic mice. Glial activation, especially astrocytic proliferation, occurred in cortical layer 5 and sub-meningeal region. Interestingly, we noticed that progressively thinned colon, swollen small intestine and reduced food intake, rather than severe muscle weakness, contributed to the death of TDP-43 A315T transgenic mice. Increased TDP-43 accumulation in the myenteric nerve plexus and increased thickness of muscular layer of colon were related to the intestinal dysfunction. Copyright © 2012 Elsevier B.V. All rights reserved.

  16. Prevention of cold ischemia/rewarming-induced ERK 1/2, p38 kinase and HO-1 activation by trophic factor supplementation of UW solution.

    PubMed

    Kwon, Young Sam; Foley, John D; Russell, Paul; McAnulty, Jonathan F; Murphy, Christopher J

    2008-08-01

    We have previously shown that trophic factor supplementation (TFS) of University of Wisconsin (UW) solution reduced early apoptotic changes in vascular endothelial cells. Here, we examine the effect of TFS on cell signaling pathways related to cell growth, differentiation, and apoptosis after cold ischemic storage. In this study, the effect of TFS on the phosphorylation of signaling molecules ERK (extracellular regulated-signaling kinase) 1/2 and p38 MAPK (mitogen activated protein kinases) and of HO-1 (hemeoxygenase-1), relative to changes seen in unmodified UW solution, were determined by Western blot in cells stored under cold ischemic conditions. Primary cultures of canine kidney proximal tubule cells (CKPTC) and human umbilical vein endothelial cells (HUVEC) were used in this study. There was a significant decrease, relative to UW solution, after 1 min rewarming in ERK 1 and 2 activity in CKPTCs. For p38 MAPK, a significant decrease after 5 min rewarming was seen in CKPTC (p<0.05) while significant reductions relative to UW solution were seen in HUVECs after both 1 and 5 min rewarming (p<0.05). Phosphorylated HO-1 was also decreased by 43% and 50% in HUVECs, relative to UW solution, after 1 and 5 min rewarming (p<0.05 at each time point). Collectively, TFS not only limits ERK 1/2 and p38 MAPK activity induced by cold ischemic injury and subsequent rewarming, but also substantially restricted increases in HO-1 phosphorylation.

  17. Antioxidant N-Acetylcysteine Attenuates the Reduction of Brg1 Protein Expression in the Myocardium of Type 1 Diabetic Rats

    PubMed Central

    Xu, Jinjin; Lei, Shaoqing; Liu, Yanan; Gao, Xia; Irwin, Michael G.; Xia, Zhong-yuan; Hei, Ziqing; Gan, Xiaoliang; Wang, Tingting; Xia, Zhengyuan

    2013-01-01

    Brahma-related gene 1 (Brg1) is a key gene in inducing the expression of important endogenous antioxidant enzymes, including heme oxygenase-1 (HO-1) which is central to cardioprotection, while cardiac HO-1 expression is reduced in diabetes. It is unknown whether or not cardiac Brg1 expression is reduced in diabetes. We hypothesize that cardiac Brg1 expression is reduced in diabetes which can be restored by antioxidant treatment with N-acetylcysteine (NAC). Control (C) and streptozotocin-induced diabetic (D) rats were treated with NAC in drinking water or placebo for 4 weeks. Plasma and cardiac free15-F2t-isoprostane in diabetic rats were increased, accompanied with increased plasma levels of tumor necrosis factor-alpha (TNF-alpha) and interleukin 6 (IL-6), while cardiac Brg1, p-STAT3 and HO-1 protein expression levels were significantly decreased. Left ventricle weight/body weight ratio was higher, while the peak velocities of early (E) and late (A) flow ratio was lower in diabetic than in C rats. NAC normalized tissue and plasma levels of 15-F2t-isoprostane, significantly increased cardiac Brg1, HO-1 and p-STAT3 protein expression levels and reduced TNF-alpha and IL-6, resulting in improved cardiac function. In conclusion, myocardial Brg1 is reduced in diabetes and enhancement of cardiac Brg1 expression may represent a novel mechanism whereby NAC confers cardioprotection. PMID:23853776

  18. In vitro evaluation of mitochondrial-chloroplast subcellular localization of heme oxygenase1 (HO1) in Glycine max.

    PubMed

    Dixit, Shubham; Verma, Khushbu; Shekhawat, Gyan Singh

    2014-05-01

    Heme oxygenase1 (HO1) catalyzes the degradation of heme in to biliverdin, carbon monoxide, and ferrous ions. Its role in higher plants has been found as an antioxidant and precursor of phytochrome synthesis. The present study focuses on subcellular localization of HO1 in leaves of soybean has been investigated. Most activity appeared to be located within chloroplast due to its role in phytochrome synthesis but mitochondria also share its localization. Mitochondrial location of HO1 might be on its inner membranous space due to its role in the synthesis of electron donor species which facilitates HO1 catalyzed reaction. Study reports the co-localization of HO1 in both chloroplast and mitochondria.

  19. Dual protective role of HO-1 in transplanted liver grafts: A review of experimental and clinical studies

    PubMed Central

    Wang, Chun-Feng; Wang, Zhen-Yu; Li, Ji-Yu

    2011-01-01

    Liver transplantation is considered as the most effective treatment for end-stage liver disease. However, serious complications still exist, particularly in two aspects: ischemia and subsequent reperfusion of the liver, causing postoperative hepatic dysfunction and even failure; and acute and chronic graft rejections, affecting the allograft survival. Heme oxygenase (HO), a stress-response protein, is believed to exert a protective function on both the development of ischemia-reperfusion injury (IRI) and graft rejection. In this review of current researches on allograft protection, we focused on the HO-1. We conjecture that HO-1 may link these two main factors affecting the prognosis of liver transplantations. In this review, the following aspects were emphasized: the basic biological functions of HO-1, its roles in IRI and allograft rejection, as well as methods to induce HO-1 and the prospects of a therapeutic application of HO-1 in liver transplantation. PMID:21912452

  20. L-F001, a Multifunction ROCK Inhibitor Prevents 6-OHDA Induced Cell Death Through Activating Akt/GSK-3beta and Nrf2/HO-1 Signaling Pathway in PC12 Cells and Attenuates MPTP-Induced Dopamine Neuron Toxicity in Mice.

    PubMed

    Luo, Liting; Chen, Jingkao; Su, Dan; Chen, Meihui; Luo, Bingling; Pi, Rongbiao; Wang, Lan; Shen, Wei; Wang, Rikang

    2017-02-01

    Amounting evidences demonstrated that Rho/Rho-associated kinase (ROCK) might be a novel target for the therapy of Parkinson's disease (PD). Recently, we synthesized L-F001 and revealed it was a potent ROCK inhibitor with multifunctional effects. Here we investigated the effects of L-F001 in PD models. We found that L-F001 potently attenuated 6-OHDA-induced cytotoxicity in PC12 cells and significantly decreased intracellular reactive oxygen species (ROS), prevented the 6-OHDA-induced decline of mitochondrial membrane potential and intracellular GSH levels. In addition, L-F001 increased Akt and GSK-3beta phosphorylation and induced the nuclear Nrf2 and HO-1 expression in a time- and concentration-dependent manner. Moreover, L-F001 restored the levels of p-Akt and p-GSK-3beta (Ser9) as well as HO-1 expression reduced by 6-OHDA. Those effects were blocked by the specific PI3K inhibitor, LY294002, indicating the involvement of Akt/GSK-3beta pathway in the neuroprotective effect of L-F001. In addition, L-F001 significantly attenuated the tyrosinehydroxylase immunoreactive cell loss in 1-methyl-4-phenyl-1,2,3,6 tetrahydropyridine (MPTP)-induced mice PD model. Together, our findings suggest that L-F001 prevents 6-OHDA-induced cell death through activating Akt/GSK-3beta and Nrf2/HO-1 signaling pathway and attenuates MPTP-induced dopaminergic neuron toxicity in mice. L-F001 might be a promising drug candidate for PD.

  1. Carbon Monoxide Preserves Circadian Rhythm to Reduce the Severity of Subarachnoid Hemorrhage in Mice.

    PubMed

    Schallner, Nils; Lieberum, Judith-Lisa; Gallo, David; LeBlanc, Robert H; Fuller, Patrick M; Hanafy, Khalid A; Otterbein, Leo E

    2017-09-01

    Subarachnoid hemorrhage (SAH) is associated with a temporal pattern of stroke incidence. We hypothesized that natural oscillations in gene expression controlling circadian rhythm affect the severity of neuronal injury. We moreover predict that heme oxygenase-1 (HO-1/Hmox1) and its product carbon monoxide (CO) contribute to the restoration of rhythm and neuroprotection. Murine SAH model was used where blood was injected at various time points of the circadian cycle. Readouts included circadian clock gene expression, locomotor activity, vasospasm, neuroinflammatory markers, and apoptosis. In addition, cerebrospinal fluid and peripheral blood leukocytes from SAH patients and controls were analyzed for clock gene expression. Significant elevations in the clock genes Per-1, Per-2, and NPAS-2 were observed in the hippocampus, cortex, and suprachiasmatic nucleus in mice subjected to SAH at zeitgeber time (ZT) 12 when compared with ZT2. Clock gene expression amplitude correlated with basal expression of HO-1, which was also significantly greater at ZT12. SAH animals showed a significant reduction in cerebral vasospasm, neuronal apoptosis, and microglial activation at ZT12 compared with ZT2. In animals with myeloid-specific HO-1 deletion (Lyz-Cre-Hmox1(fl/fl) ), Per-1, Per-2, and NPAS-2 expression was reduced in the suprachiasmatic nucleus, which correlated with increased injury. Treatment with low-dose CO rescued Lyz-Cre-Hmox1(fl/fl) mice, restored Per-1, Per-2, and NPAS-2 expression, and reduced neuronal apoptosis. Clock gene expression regulates, in part, the severity of SAH and requires myeloid HO-1 activity to clear the erythrocyte burden and inhibit neuronal apoptosis. Exposure to CO rescues the loss of HO-1 and thus merits further investigation in patients with SAH. © 2017 American Heart Association, Inc.

  2. Iron Supplementation Alters Heme and Heme Oxygenase 1 (HO-1) Levels In Pregnant Women in Ghana

    PubMed Central

    Salifu, Hassana; Wilson, Nana O.; Liu, Mingli; Dickinson-Copeland, Carmen; Yatich, Nelly; Keenan, John; Turpin, Cornelius; Jolly, Pauline; Gyasi, Richard; Adjei, Andrew A.; Stiles, Jonathan K.

    2016-01-01

    Background Iron supplementation is recommended for pregnant women to meet their iron requirement for a healthy pregnancy. The benefits and risks of universal iron supplementation during pregnancy in malaria endemic countries are currently being debated. As part of a broader study that focused on the effect of heme/HO-1 on pregnancy outcomes in malaria in pregnancy, we determined the association between iron supplementation and free heme levels in blood of pregnant women with and without malaria in Ghana. We hypothesized that pregnant women with malaria who took iron supplements will have higher levels of Heme/HO-1 than those who did not take iron supplements. Methods A total of 337 women were recruited for this study. Blood samples were collected for malaria diagnosis and heme/HO-1 measurement. Quantification of heme was done using a heme colorimetric assay kit and HO-1 levels were performed using Enzyme-Linked Immunosorbent Assay (ELISA) on plasma samples. Results Malaria positive iron supplemented women, in their third trimester, had significantly higher median levels of heme 59.3(43.1 – 60.4) than non-malaria iron supplemented women 35.7(33.0 – 62.2), p = 0.026. Also, malaria positive iron supplemented women had significant higher median levels of HO-16.2(IQR 4.9 – 8.1) than pregnant women who did not take iron supplements 2.9 (IQR 2.1 – 3.8), p = <0.001 Conclusion Although iron supplementation may be highly beneficial and improve pregnancy outcomes for iron deficient or anemic mothers, it is also likely that iron supplementation for pregnant women who are not iron deficient may put this group of women at risk for adverse pregnancy outcomes. Findings from this study sheds light on the effect of iron supplementation on malaria derived heme in pregnancy, which may inform how iron supplementation is recommended for pregnant women who are not iron deficient. PMID:28124024

  3. Hydrogen sulfide upregulates heme oxygenase-1 expression in rats with volume overload-induced heart failure

    PubMed Central

    ZHANG, CHAO-YING; LI, XIAO-HUI; ZHANG, TING; FU, JIN; CUI, XIAO-DAI

    2013-01-01

    The present study investigated the role of hydrogen sulfide (H2S), a novel gaseous transmitter, in chronic heart failure (CHF) induced by left-to-right shunt, leading to volume overload. Thirty male Sprague-Dawley rats were randomly divided into four groups: the shunt group, the sham group, the shunt + sodium hydrosulfide (NaHS) group and the sham + NaHS group. CHF was induced in the rats by abdominal aorta-inferior vena cava shunt operation. Rats in the shunt + NaHS and sham + NaHS groups were injected intraperitoneally with NaHS (H2S donor). Haemodynamic parameters were measured 8 weeks after surgery. In addition, left ventricular heme oxygenase (HO)-1 mRNA expression was measured by real-time PCR. Protein expression of HO-1 was evaluated by western blot analysis. Eight weeks after surgery, compared to the sham group, the left ventricular systolic pressure (LVSP) and left ventricular peak rate of contraction and relaxation (LV±dp/dtmax) were significantly reduced; the left ventricular end-diastolic pressure (LVEDP) was significantly increased in the shunt group (all P<0.05). However, NaHS increased LVSP and LV±dp/dtmax (all P<0.05) and decreased LVEDP (P<0.05). Protein expression of HO-1 was significantly decreased in the shunt group compared to that in the sham group (P<0.05). NaHS increased protein expression of HO-1 compared to that in the shunt group (P<0.05). HO-1 mRNA expression was significantly increased in the shunt + NaHS group compared to that in the shunt group (P<0.01). The present study demonstrated that H2S may play a protective role in volume overload-induced CHF by upregulating protein and mRNA expression of HO-1. PMID:24648967

  4. Molecular cloning and characterization of a heme oxygenase1 gene from sunflower and its expression profiles in salinity acclimation.

    PubMed

    Zhu, Kaikai; Jin, Qijiang; Samma, Muhammad Kaleem; Lin, Guoqing; Shen, Wenbiao

    2014-06-01

    Heme oxygenase1 (HO1) is involved in protecting plants from environmental stimuli. In this study, a sunflower (Helianthus annuus L.) HO1 gene (HaHO1) was cloned and sequenced. It was confirmed that HaHO1 encodes a precursor protein of 32.93 kDa with an N-terminal plastid transit peptide which was validated by subcellular localization. The amino acid sequence of HaHO1 shared high homology with other plant HO1s. The predicted three-dimensional structure showed a high degree of structural conservation as compared to the known HO1 crystal structures. Phylogenetic analysis revealed that HaHO1 clearly grouped with the plant HO1-like sequences. Moreover, the purified recombinant mature HaHO1 expressed in Escherichia coli exhibits HO activity. Thus, it was concluded that HaHO1 encodes a functional HO1 in sunflower. Additionally, HaHO1 gene was ubiquitously expressed in all tested tissues, and induced differentially during different growth stages after germination, and could be differentially induced by several stresses and hemin treatment. For example, a pretreatment with a low concentration of NaCl (25 mM) could lead to the induction of HaHO1 gene expression and thereafter a salinity acclamatory response. Above cytoprotective effect could be impaired by the potent HO1 inhibitor zinc protoporphyrin IX (ZnPPIX), which was further rescued by the addition of 50% carbon monoxide aqueous solution (in particular) or bilirubin, two catalytic by-products of HO1, respectively. Similarly, a HO1 inducer, hemin, could mimic the salinity acclamatory response. Together, these findings strongly suggested that the up-regulation of HaHO1 might be required for the observed salinity acclimation in sunflower plants.

  5. Long-term effect of heme oxygenase (HO)-1 induction in glomerular immune injury.

    PubMed

    Datta, Prasun K; Duann, Pu; Lianos, Elias A

    2006-03-01

    In a rat model of macrophage-dependent glomerular immune injury induced by administration of antibody against the glomerular basement membrane (anti-GBM), the authors assessed the anti-proteinuric effect of Heme Oxygenase-1 (HO-1) induction. Rats received anti-GBM antibody alone, anti-GBM antibody and treatment with the HO-1 inducer, hemin, or non-immune serum (controls). Urine protein, creatinine, and nitrite/nitrate excretion were measured on days 5, 7, and 14 after administration of the anti-GBM antibody. In hemin-treated animals with anti-GBM antibody-induced immune injury, HO-1 immunolocalized in macrophages infiltrating glomeruli and in tubular epithelial cells. In these animals, proteinuria was decreased. There was also a decrease in blood urea nitrogen (BUN) levels without a change in serum creatinine or systemic blood pressure. The observations establish the anti-proteinuric effect of hemin induction. This effect could be mechanistically linked to blunting of the ability of infiltrating macrophages to cause injury or to changes in tubular handling of filtered protein.

  6. Transport properties of Ho1- x Lu x B12 solid solutions

    NASA Astrophysics Data System (ADS)

    Gabáni, S.; Bat'ko, I.; Bat'ková, M.; Flachbart, K.; Gaz̆o, E.; Pristás̆, G.; Takác̆ová, I.; Bogach, A. V.; Sluchanko, N. E.; Shitsevalova, N. Yu.

    2013-05-01

    Our studies of Ho1- x Lu x B12 solid solutions have shown that the temperature of antiferromagnetic (AF) order in geometrically frustrated system of HoB12 ( T N = 7.4 K) is linearly suppressed to zero temperature, i.e. T N → 0, as lutetium concentration increases to x→ x c ≈ 0.9. In this contribution, we present original results of electrical resistivity measurements on Ho1- x Lu x B12 single crystalline samples with x = 0, 0.2, 0.5, 0.7, 0.9, 1 in the temperature range 0.06-300 K and in magnetic fields ( B) up to 8 T. Complex B vs T N phase diagrams were received from precise temperature ρ( T) and field ρ( B) dependences of resistivity with several AF phases for x ≤ 0.5 pointing to a possibility of quantum critical point at x c ≈ 0.9. The scattering of conduction electrons in the AF phase and in the paramagnetic phase as well as Hall effect results are analyzed and discussed for various concentrations x, when magnetic dilution increases with the increasing content of nonmagnetic Lu ions in the Ho1- x Lu x B12 system.

  7. Mitochondrial quality-control dysregulation in conditional HO-1–/– mice

    PubMed Central

    Suliman, Hagir B.; Keenan, Jeffrey E.; Piantadosi, Claude A.

    2017-01-01

    The heme oxygenase-1 (Hmox1; HO-1) pathway was tested for defense of mitochondrial quality control in cardiomyocyte-specific Hmox1 KO mice (HO-1[CM]–/–) exposed to oxidative stress (100% O2). After 48 hours of exposure, these mice showed persistent cardiac inflammation and oxidative tissue damage that caused sarcomeric disruption, cardiomyocyte death, left ventricular dysfunction, and cardiomyopathy, while control hearts showed minimal damage. After hyperoxia, HO-1(CM)–/– hearts showed suppression of the Pgc-1α/nuclear respiratory factor-1 (NRF-1) axis, swelling, low electron density mitochondria by electron microscopy (EM), increased cell death, and extensive collagen deposition. The damage mechanism involves structurally deficient autophagy/mitophagy, impaired LC3II processing, and failure to upregulate Pink1- and Park2-mediated mitophagy. The mitophagy pathway was suppressed through loss of NRF-1 binding to proximal promoter sites on both genes. These results indicate that cardiac Hmox1 induction not only prevents heme toxicity, but also regulates the timing and registration of genetic programs for mitochondrial quality control that limit cell death, pathological remodeling, and cardiac fibrosis. PMID:28194437

  8. Hydrogen sulfide inhibits nitric oxide production and nuclear factor-kappaB via heme oxygenase-1 expression in RAW264.7 macrophages stimulated with lipopolysaccharide.

    PubMed

    Oh, Gi-Su; Pae, Hyun-Ock; Lee, Bok-Soo; Kim, Byeong-Nam; Kim, Jong-Moon; Kim, Hyung-Ryong; Jeon, Seon Bok; Jeon, Woo Kyu; Chae, Han-Jung; Chung, Hun-Taeg

    2006-07-01

    Hydrogen sulfide (H(2)S), a regulatory gaseous molecule that is endogenously synthesized by cystathionine gamma-lyase (CSE) and/or cystathionine beta-synthase (CBS) from L-cysteine (L-Cys) metabolism, is a putative vasodilator, and its role in nitric oxide (NO) production is unexplored. Here, we show that at noncytotoxic concentrations, H(2)S was able to inhibit NO production and inducible NO synthase (iNOS) expression via heme oxygenase (HO-1) expression in RAW264.7 macrophages stimulated with lipopolysaccharide (LPS). Both H(2)S solution prepared by bubbling pure H(2)S gas and NaSH, a H(2)S donor, dose dependently induced HO-1 expression through the activation of the extracellular signal-regulated kinase (ERK). Pretreatment with H(2)S or NaHS significantly inhibited LPS-induced iNOS expression and NO production. Moreover, NO production in LPS-stimulated macrophages that are expressing CSE mRNA was significantly reduced by the addition of L-Cys, a substrate for H(2)S, but enhanced by the selective CSE inhibitor beta-cyano-L-alanine but not by the CBS inhibitor aminooxyacetic acid. While either blockage of HO activity by the HO inhibitor, tin protoporphyrin IX, or down-regulation of HO-1 expression by HO-1 small interfering RNA (siRNA) reversed the inhibitory effects of H(2)S on iNOS expression and NO production, HO-1 overexpression produced the same inhibitory effects of H(2)S. In addition, LPS-induced nuclear factor (NF)-kappaB activation was diminished in RAW264.7 macrophages preincubated with H(2)S. Interestingly, the inhibitory effect of H(2)S on NF-kappaB activation was reversed by the transient transfection with HO-1 siRNA, but was mimicked by either HO-1 gene transfection or treatment with carbon monoxide (CO), an end product of HO-1. CO treatment also inhibited LPS-induced NO production and iNOS expression via its inactivation of NF-kappaB. Collectively, our results suggest that H(2)S can inhibit NO production and NF-kappaB activation in LPS

  9. 5-Aminolevulinic acid combined with ferrous iron enhances the expression of heme oxygenase-1.

    PubMed

    Nishio, Yoshiaki; Fujino, Masayuki; Zhao, Mingyi; Ishii, Takuya; Ishizuka, Masahiro; Ito, Hidenori; Takahashi, Kiwamu; Abe, Fuminori; Nakajima, Motowo; Tanaka, Tohru; Taketani, Shigeru; Nagahara, Yukitoshi; Li, Xiao-Kang

    2014-04-01

    5-Aminolevulinic acid (5-ALA) is the naturally occurring metabolic precursor of heme. Heme negatively regulates the Maf recognition element (MARE) binding- and repressing-activity of the Bach1 transcription factor through its direct binding to Bach1. Heme oxygenase (HO)-1 is an inducible enzyme that catalyzes the rate-limiting step in the oxidative degradation of heme to free iron, biliverdin and carbon monoxide. These metabolites of heme protect against apoptosis, inflammation and oxidative stress. Monocytes and macrophages play a critical role in the initiation, maintenance and resolution of inflammation. Therefore, the regulation of inflammation in macrophages is an important target under various pathophysiological conditions. In order to address the question of what is responsible for the anti-inflammatory effects of 5-ALA, the induction of HO-1 expression by 5-ALA and sodium ferrous citrate (SFC) was examined in macrophage cell line (RAW264 cells). HO-1 expression induced by 5-ALA combined with SFC (5-ALA/SFC) was partially inhibited by MEK/ERK and p38 MAPK inhibitor. The NF-E2-related factor 2 (Nrf2) was activated and translocated from the cytosol to the nucleus in response to 5-ALA/SFC. Nrf2-specific siRNA reduced the HO-1 expression. In addition, 5-ALA/SFC increased the intracellular levels of heme in cells. The increased heme indicated that the inactivation of Bach1 by heme supports the upregulation of HO-1 expression. Taken together, our data suggest that the exposure of 5-ALA/SFC to RAW264 cells enhances the HO-1 expression via MAPK activation along with the negative regulation of Bach1.

  10. Metallothionein-III protects against 6-hydroxydopamine-induced oxidative stress by increasing expression of heme oxygenase-1 in a PI3K and ERK/Nrf2-dependent manner

    SciTech Connect

    Hwang, Yong Pil; Kim, Hyung Gyun; Han, Eun Hee; Jeong, Hye Gwang

    2008-09-15

    The zinc-binding protein metallothionein-III (MT-III) is associated with resistance to neuronal injury. However, the underlying mechanism for its effects is unclear. In this study, we demonstrate that MT-III prevents the accumulation of reactive oxygen species (ROS) in dopaminergic SH-SY5Y cells challenged with the Parkinson's disease-related neurotoxin 6-hydroxydopamine (6-OHDA) by a mechanism that involves phosphatidylinositol 3-kinase (PI3K) and ERK kinase/NF-E2-related factor 2 (Nrf2) dependent induction of the stress response protein heme oxygenase-1 (HO-1). Pretreatment of SH-SY5Y cells with MT-III significantly reduced 6-OHDA-induced generation of ROS, caspase-3 activation, and subsequent cell death. Also, MT-III up-regulates HO-1 expression and this expression confers neuroprotection against oxidative injury induced by 6-OHDA. Moreover, MT-III induces Nrf2 nuclear translocation, which is upstream of MT-III-induced HO-1 expression, and PI3K and ERK1/2 activation, a pathway that is involved in induced Nrf2 nuclear translocation, HO-1 expression and neuroprotection. Taken together, these results suggest that the PI3K and ERK/Nrf2 signaling pathway controls the intracellular levels of ROS by regulating the expression of the antioxidant enzyme HO-1.

  11. Isolation of basal membrane proteins from BeWo cells and their expression in placentas from fetal growth-restricted pregnancies.

    PubMed

    Oh, Soo-Young; Hwang, Jae Ryoung; Lee, Yoonna; Choi, Suk-Joo; Kim, Jung-Sun; Kim, Jong-Hwa; Sadovsky, Yoel; Roh, Cheong-Rae

    2016-03-01

    The syncytiotrophoblast, a key barrier between the mother and fetus, is a polarized epithelium composed of a microvillus and basal membrane (BM). We sought to characterize BM proteins of BeWo cells in relation to hypoxia and to investigate their expression in placentas from pregnancies complicated by fetal growth restriction (FGR). We isolated the BM fraction of BeWo cells by the cationic colloidal silica method and identified proteins enriched in this fraction by mass spectrometry. We evaluated the effect of hypoxia on the expression and intracellular localization of identified proteins and compared their expression in BM fractions of FGR placentas to those from normal pregnancies. We identified BM proteins from BeWo cells. Among BM proteins, we further characterized heme oxygenase-1 (HO-1), voltage-dependent anion channel-1 (VDAC1), and ribophorin II (RPN2), based on their relevance to placental biology. Hypoxia enhanced the localization of these proteins to the BM of BeWo cells. HO-1, VDAC1, and RPN2 were selectively expressed in the human placental BM fraction. C-terminally truncated HO-1 was identified in placental BM fractions, and its BM expression was significantly reduced in FGR placentas than in normal placentas. Interestingly, a truncated HO-1 construct was predominantly localized in the BM in response to hypoxia and co-localized with VDAC1 in BeWo cells. Hypoxia increased the BM localization of HO-1, VDAC1, and RPN2 proteins. FGR significantly reduced the expression of truncated HO-1, which was surmised to co-localize with VDAC1 in hypoxic BeWo cells. Copyright © 2016 Elsevier Ltd. All rights reserved.

  12. Suppression of Lipopolysaccharide-Induced Neuroinflammation by Morin via MAPK, PI3K/Akt, and PKA/HO-1 Signaling Pathway Modulation.

    PubMed

    Jung, Ji-Sun; Choi, Min-Ji; Lee, Yu Young; Moon, Byung-In; Park, Jin-Sun; Kim, Hee-Sun

    2017-01-18

    Morin is a flavonoid isolated from certain fruits and Chinese herbs and is known to possess various medicinal properties. In this study, we investigated the anti-inflammatory effects of morin on lipopolysaccharide (LPS)-induced microglial activation, both in vitro and in vivo. We found that morin inhibited inducible nitric oxide synthase (iNOS) and pro-inflammatory cytokines in LPS-stimulated BV2 microglial cells. Furthermore, morin suppressed the microglial activation and cytokine expression in the brains of LPS-stimulated mice. Subsequent mechanistic studies revealed that morin inhibited the action of LPS-activated mitogen-activated protein kinases (MAPKs), protein kinase B (Akt) phosphorylation, nuclear factor-κB (NF-κB), and activating protein-1 (AP-1). Further, the phosphorylation and DNA binding activity of cAMP responsive element binding protein (CREB) was enhanced by morin. Moreover, morin suppressed the LPS-induced expression of nicotinamide adenine dinucleotide phosphate (NADPH) oxidase subunits, while it increased heme oxygenase-1 (HO-1) expression and nuclear factor erythroid 2-related factor 2 (Nrf2) activation. Therefore, our data suggest that morin exerts anti-inflammatory effects in LPS-stimulated microglia by downregulating MAPK and phosphatidylinositol 3-kinase (PI3K)/Akt signaling pathways while upregulating protein kinase A (PKA)/CREB and Nrf2/HO-1 signaling pathways.

  13. Anti-Inflammatory Effect of Rhapontici Radix Ethanol Extract via Inhibition of NF-κB and MAPK and Induction of HO-1 in Macrophages

    PubMed Central

    Oh, You-Chang; Cho, Won-Kyung; Yim, Nam-Hui

    2016-01-01

    Rhapontici Radix (RR) has been used in traditional medicine in East Asia and has been shown to have various beneficial effects. However, its biological properties or mechanism on inflammation-related diseases is unknown. The goal of this study was to determine the anti-inflammatory activity and underlying molecular mechanisms of Rhapontici Radix ethanol extract (RRE). The inhibitory effect of RRE on the production of NO, cytokines, inflammatory-related proteins, and mRNAs in LPS-stimulated macrophages was determined by the Griess assay, ELISA, Western blot analysis, and real-time RT-PCR, respectively. Our results indicate that treatment with RRE significantly inhibited the secretion of NO and inflammatory cytokines in RAW 264.7 cells and mouse peritoneal macrophages without cytotoxicity. We also found that RRE strongly suppressed the expression of iNOS and COX-2 and induced HO-1 expression. It also prevented nuclear translocation of NF-κB by inhibiting the phosphorylation and degradation of IκBα. Furthermore, the phosphorylation of MAPKs in LPS-stimulated RAW 264.7 cells was significantly inhibited by RRE. These findings suggest that RRE may operate as an effective anti-inflammatory agent by inhibiting the activation of NF-κB and MAPK signaling pathways and inducing HO-1 expression in macrophages. Our results suggest that RRE has potential value as candidate to inflammatory therapeutic phytomedicine. PMID:27524868

  14. Induction of heme oxygenase-1 with dietary quercetin reduces obesity-induced hepatic inflammation through macrophage phenotype switching

    PubMed Central

    Kim, Chu-Sook; Choi, Hye-Seon; Joe, Yeonsoo; Chung, Hun Taeg

    2016-01-01

    BACKGROUND/OBJECTIVES Obesity-induced steatohepatitis accompanied by activated hepatic macrophages/Kupffer cells facilitates the progression of hepatic fibrinogenesis and exacerbates metabolic derangements such as insulin resistance. Heme oxyganase-1 (HO-1) modulates tissue macrophage phenotypes and thus is implicated in protection against inflammatory diseases. Here, we show that the flavonoid quercetin reduces obesity-induced hepatic inflammation by inducing HO-1, which promotes hepatic macrophage polarization in favor of the M2 phenotype. MATERIALS/METHODS Male C57BL/6 mice were fed a regular diet (RD), high-fat diet (HFD), or HFD supplemented with quercetin (HF+Que, 0.5g/kg diet) for nine weeks. Inflammatory cytokines and macrophage markers were measured by ELISA and RT-PCR, respectively. HO-1 protein was measured by Western blotting. RESULTS Quercetin supplementation decreased levels of inflammatory cytokines (TNFα, IL-6) and increased that of the anti-inflammatory cytokine (IL-10) in the livers of HFD-fed mice. This was accompanied by upregulation of M2 macrophage marker genes (Arg-1, Mrc1) and downregulation of M1 macrophage marker genes (TNFα, NOS2). In co-cultures of lipid-laden hepatocytes and macrophages, treatment with quercetin induced HO-1 in the macrophages, markedly suppressed expression of M1 macrophage marker genes, and reduced release of MCP-1. Moreover, these effects of quercetin were blunted by an HO-1 inhibitor and deficiency of nuclear factor E2-related factor 2 (Nrf2) in macrophages. CONCLUSIONS Quercetin reduces obesity-induced hepatic inflammation by promoting macrophage phenotype switching. The beneficial effect of quercetin is associated with Nrf2-mediated HO-1 induction. Quercetin may be a useful dietary factor for protecting against obesity-induced steatohepatitis. PMID:27909560

  15. Simvastatin Inhibits Epithelial-to-Mesenchymal Transition Through Induction of HO-1 in Cultured Renal Proximal Tubule Cells.

    PubMed

    Clark, Jeb S; Carter, Anthony J; Dixit, Mehul; Arany, Istvan

    2016-01-01

    Studies have shown that simvastatin (SIM) inhibits epithelial-mesenchymal transition (EMT), a key step in fibrosis, and activates the anti-fibrotic heme oxygenase-1 (HO-1) gene in renal proximal tubule cells independent of its lipid-lowering. We tested the hypothesis that SIM inhibits EMT via HO-1-dependent suppression of reactive oxygen species (ROS) release. Renal proximal tubule cells were treated with either 10 μM SIM or 10 ng/ml transforming growth factor-β1 (TGFβ1) or with their combination and promoter activity of the alpha-smooth muscle actin (α-SMA) gene, stress fiber formation (markers of EMT), as well as ROS production were determined. HO-1 was manipulated via genetic and pharmacologic means. SIM prevented TGFβ1-dependent EMT and ROS production. Inhibition/knockdown of HO-1 reversed, while induction/overexpression of HO-1 emulated beneficial effects of SIM. SIM, via HO-1, suppresses TGFβ1-dependent ROS production and, hence, EMT. Further evaluation of the anti-fibrotic nature of SIM in the kidney would be useful in the treatment of chronic kidney disease. Copyright © 2016 International Institute of Anticancer Research (Dr. John G. Delinassios), All rights reserved.

  16. Metformin inhibits heme oxygenase-1 expression in cancer cells through inactivation of Raf-ERK-Nrf2 signaling and AMPK-independent pathways

    SciTech Connect

    Do, Minh Truong; Kim, Hyung Gyun; Khanal, Tilak; Choi, Jae Ho; Kim, Dong Hee; Jeong, Tae Cheon; Jeong, Hye Gwang

    2013-09-01

    Resistance to therapy is the major obstacle to more effective cancer treatment. Heme oxygenase-1 (HO-1) is often highly up-regulated in tumor tissues, and its expression is further increased in response to therapies. It has been suggested that inhibition of HO-1 expression is a potential therapeutic approach to sensitize tumors to chemotherapy and radiotherapy. In this study, we tested the hypothesis that the anti-tumor effects of metformin are mediated by suppression of HO-1 expression in cancer cells. Our results indicate that metformin strongly suppresses HO-1 mRNA and protein expression in human hepatic carcinoma HepG2, cervical cancer HeLa, and non-small-cell lung cancer A549 cells. Metformin also markedly reduced Nrf2 mRNA and protein levels in whole cell lysates and suppressed tert-butylhydroquinone (tBHQ)-induced Nrf2 protein stability and antioxidant response element (ARE)-luciferase activity in HepG2 cells. We also found that metformin regulation of Nrf2 expression is mediated by a Keap1-independent mechanism and that metformin significantly attenuated Raf-ERK signaling to suppress Nrf2 expression in cancer cells. Inhibition of Raf-ERK signaling by PD98059 decreased Nrf2 mRNA expression in HepG2 cells, confirming that the inhibition of Nrf2 expression is mediated by an attenuation of Raf-ERK signaling in cancer cells. The inactivation of AMPK by siRNA, DN-AMPK or the pharmacological AMPK inhibitor compound C, revealed that metformin reduced HO-1 expression in an AMPK-independent manner. These results highlight the Raf-ERK-Nrf2 axis as a new molecular target in anticancer therapy in response to metformin treatment. - Highlights: • Metformin inhibits HO-1 expression in cancer cells. • Metformin attenuates Raf-ERK-Nrf2 signaling. • Suppression of HO-1 by metformin is independent of AMPK. • HO-1 inhibition contributes to anti-proliferative effects of metformin.

  17. Delayed treatment with oleanolic acid attenuates tubulointerstitial fibrosis in chronic cyclosporine nephropathy through Nrf2/HO-1 signaling

    PubMed Central

    2014-01-01

    Background Nuclear factor erythroid-2-related factor-2 (Nrf2) is known to protect against tissue injury by orchestrating antioxidant and detoxification responses to oxidative stress. This study investigated whether upregulation of Nrf2-dependent signaling by oleanolic acid (OA), which is known to activate Nrf2, could attenuate renal inflammation and fibrosis in cyclosporine (CsA)-induced kidney injury. Methods Male ICR mice were divided into four treatment groups: Vehicle (VH, n = 6), VH + OA (n = 6), CsA (n = 8), and CsA + OA (n = 8). For the OA-treated groups, OA (25 mg/kg/day) was administered by intraperitoneal injection for the final week of the 4-week experimental period. Renal function, morphologies and signaling were evaluated at the end of the study. Results Treatment with CsA resulted in decreased kidney function and urine osmolality and increased urine volume and urinary albumin levels. The CsA-induced changes were improved by OA treatment. Specifically, administration of OA decreased tubulointerstitial fibrosis and inflammation scores that were increased in CsA-treated mice. Furthermore, OA treatment decreased urinary 8-hydroxy-2′-deoxyguanosine (8-OHdG) and 8-epi-prostaglandin F2α (8-iso-PGF2α) levels. The beneficial effects of OA were attributed to an increased ratio of nuclear/total Nrf2 and subsequently enhanced expression of heme oxygenase (HO)-1, as well as a stable level of Kelch-like ECH-associated protein 1 (Keap1) expression, indicating that OA enhanced nuclear translocation of Nrf2. Increased apoptotic cell death and a high ratio of B cell leukaemia/lymphoma 2 (Bcl-2)-associated X protein (Bax) to Bcl-2 in CsA-treated mice were also significantly ameliorated by OA treatment. Conclusion Our results suggest that OA activates Nrf2/HO-1 signaling in chronic CsA nephropathy, which may have beneficial effects on inflammation and oxidative stress. PMID:24559268

  18. The HO-1/CO system regulates mitochondrial-capillary density relationships in human skeletal muscle.

    PubMed

    Pecorella, Shelly R H; Potter, Jennifer V F; Cherry, Anne D; Peacher, Dionne F; Welty-Wolf, Karen E; Moon, Richard E; Piantadosi, Claude A; Suliman, Hagir B

    2015-10-15

    The heme oxygenase-1 (HO-1)/carbon monoxide (CO) system induces mitochondrial biogenesis, but its biological impact in human skeletal muscle is uncertain. The enzyme system generates CO, which stimulates mitochondrial proliferation in normal muscle. Here we examined whether CO breathing can be used to produce a coordinated metabolic and vascular response in human skeletal muscle. In 19 healthy subjects, we performed vastus lateralis muscle biopsies and tested one-legged maximal O2 uptake (V̇o2max) before and after breathing air or CO (200 ppm) for 1 h daily for 5 days. In response to CO, there was robust HO-1 induction along with increased mRNA levels for nuclear-encoded mitochondrial transcription factor A (Tfam), cytochrome c, cytochrome oxidase subunit IV (COX IV), and mitochondrial-encoded COX I and NADH dehydrogenase subunit 1 (NDI). CO breathing did not increase V̇o2max (1.96 ± 0.51 pre-CO, 1.87 ± 0.50 post-CO l/min; P = not significant) but did increase muscle citrate synthase, mitochondrial density (139.0 ± 34.9 pre-CO, 219.0 ± 36.2 post-CO; no. of mitochondrial profiles/field), myoglobin content and glucose transporter (GLUT4) protein level and led to GLUT4 localization to the myocyte membrane, all consistent with expansion of the tissue O2 transport system. These responses were attended by increased cluster of differentiation 31 (CD31)-positive muscle capillaries (1.78 ± 0.16 pre-CO, 2.37 ± 0.59 post-CO; capillaries/muscle fiber), implying the enrichment of microvascular O2 reserve. The findings support that induction of the HO-1/CO system by CO not only improves muscle mitochondrial density, but regulates myoglobin content, GLUT4 localization, and capillarity in accordance with current concepts of skeletal muscle plasticity. Copyright © 2015 the American Physiological Society.

  19. The HO-1/CO system regulates mitochondrial-capillary density relationships in human skeletal muscle

    PubMed Central

    Pecorella, Shelly R. H.; Potter, Jennifer V. F.; Cherry, Anne D.; Peacher, Dionne F.; Welty-Wolf, Karen E.; Moon, Richard E.; Suliman, Hagir B.

    2015-01-01

    The heme oxygenase-1 (HO-1)/carbon monoxide (CO) system induces mitochondrial biogenesis, but its biological impact in human skeletal muscle is uncertain. The enzyme system generates CO, which stimulates mitochondrial proliferation in normal muscle. Here we examined whether CO breathing can be used to produce a coordinated metabolic and vascular response in human skeletal muscle. In 19 healthy subjects, we performed vastus lateralis muscle biopsies and tested one-legged maximal O2 uptake (V̇o2max) before and after breathing air or CO (200 ppm) for 1 h daily for 5 days. In response to CO, there was robust HO-1 induction along with increased mRNA levels for nuclear-encoded mitochondrial transcription factor A (Tfam), cytochrome c, cytochrome oxidase subunit IV (COX IV), and mitochondrial-encoded COX I and NADH dehydrogenase subunit 1 (NDI). CO breathing did not increase V̇o2max (1.96 ± 0.51 pre-CO, 1.87 ± 0.50 post-CO l/min; P = not significant) but did increase muscle citrate synthase, mitochondrial density (139.0 ± 34.9 pre-CO, 219.0 ± 36.2 post-CO; no. of mitochondrial profiles/field), myoglobin content and glucose transporter (GLUT4) protein level and led to GLUT4 localization to the myocyte membrane, all consistent with expansion of the tissue O2 transport system. These responses were attended by increased cluster of differentiation 31 (CD31)-positive muscle capillaries (1.78 ± 0.16 pre-CO, 2.37 ± 0.59 post-CO; capillaries/muscle fiber), implying the enrichment of microvascular O2 reserve. The findings support that induction of the HO-1/CO system by CO not only improves muscle mitochondrial density, but regulates myoglobin content, GLUT4 localization, and capillarity in accordance with current concepts of skeletal muscle plasticity. PMID:26186946

  20. AmeriFlux US-Ho1 Howland Forest (main tower)

    DOE Data Explorer

    Hollinger, David [USDA Forest Service; Hollinger, David [USDA Forest Service

    2016-01-01

    This is the AmeriFlux version of the carbon flux data for the site US-Ho1 Howland Forest (main tower). Site Description - Closed conifer forest, minimal disturbance. References: Fernandez et al. (1993), Canadian Journal of Soil Science 73 317-328. Hollinger et al. (1999), Global Change Biology 5: 891-902. Savage KE, Davidson EA (2001), Global Biogeochemical Cycles 15 337-350. Scott et al. (2004), Environmental Management, Vol. 33, Supplement 1, pp. S9-S22. Hollinger et al. (2004), Global Change Biology 10: 1689-1706.

  1. The flavanol (−)-epicatechin prevents stroke damage through the Nrf2/HO1 pathway

    PubMed Central

    Shah, Zahoor A; Li, Rung-chi; Ahmad, Abdullah S; Kensler, Thomas W; Yamamoto, Masayuki; Biswal, Shyam; Doré, Sylvain

    2010-01-01

    Epidemiologic studies have shown that foods rich in polyphenols, such as flavanols, can lower the risk of ischemic heart disease; however, the mechanism of protection has not been clearly established. In this study, we investigated whether epicatechin (EC), a flavanol in cocoa and tea, is protective against brain ischemic damage in mice. Wild-type mice pretreated orally with 5, 15, or 30 mg/kg EC before middle cerebral artery occlusion (MCAO) had significantly smaller brain infarcts and decreased neurologic deficit scores (NDS) than did the vehicle-treated group. Mice that were posttreated with 30 mg/kg of EC at 3.5 hours after MCAO also had significantly smaller brain infarcts and decreased NDS. Similarly, WT mice pretreated with 30 mg/kg of EC and subjected to N-methyl-aspartate (NMDA)-induced excitotoxicity had significantly smaller lesion volumes. Cell viability assays with neuronal cultures further confirmed that EC could protect neurons against oxidative insults. Interestingly, the EC-associated neuroprotection was mostly abolished in mice lacking the enzyme heme oxygenase 1 (HO1) or the transcriptional factor Nrf2, and in neurons derived from these knockout mice. These results suggest that EC exerts part of its beneficial effect through activation of Nrf2 and an increase in the neuroprotective HO1 enzyme. PMID:20442725

  2. Regulation of APC development, immune response, and autoimmunity by Bach1/HO-1 pathway in mice

    PubMed Central

    So, Alex Yick-Lun; Garcia-Flores, Yvette; Minisandram, Aarathi; Martin, Ayana; Taganov, Konstantin; Boldin, Mark

    2012-01-01

    APCs are essential for innate and adaptive immunity as well as self-immune tolerance. Here, we show that the Cap'n'collar member Bach1 regulates the generation of APCs, specifically macrophages and dendritic cells, in mice. The impaired APC development in Bach1−/− mice was accompanied by defects in downstream T-cell responses and partial protection from experimental autoimmune encephalomyelitis. Genomewide analyses identified a panel of Bach1 target genes and ablation of the direct Bach1 target gene HO-1 exacerbated the impaired APC development observed in Bach1−/− mice. This was attributed to the impaired ability of HO-1−/−Bach1−/− double mutants to produce upstream APC progenitor cells, including common myeloid progenitor (CMP)–Flk2+. By contrast, we observed an increase in hematopoietic stem-progenitor cells (HSPCs) in these mice, suggesting a developmental block in the progression of HSPCs to CMP-Flk2+ and subsequently APCs. PMID:22791292

  3. Aged red garlic extract reduces lipopolysaccharide-induced nitric oxide production in RAW 264.7 macrophages and acute pulmonary inflammation through haeme oxygenase-1 induction.

    PubMed

    Park, H-J; Jeon, B T; Kim, H C; Roh, G S; Shin, J-H; Sung, N-J; Han, J; Kang, D

    2012-05-01

    It is known that garlic has antioxidative and anti-inflammatory properties. Aged red garlic (ARG), a novel aged garlic formulation, has higher antioxidant effects than fresh raw garlic. This study was performed to examine the anti-inflammatory effects of ARG extract (ARGE). The anti-inflammatory effects of ARGE were evaluated in the lipopolysaccharide (LPS)-treated Raw 264.7 macrophages and acute lung inflammatory mice. NO production was determined by the Griess method, and iNOS, HO-1 and COX-2 expressions were measured using Western blot analysis. Histology and inflammation extent of lung were analysed using haematoxylin-eosin staining and immunohistochemistry. ARGE treatment markedly reduced LPS-induced nitrite production in RAW 264.7 macrophages and reduced inducible nitric oxide synthase (iNOS) expression. Treatment of cells with ARGE led to a significant increase in haeme oxygenase-1 (HO-1) protein expression, which was mediated by stimulating the expression of nuclear factor erythroid 2-related factor 2 (Nrf2). Treatment with zinc protoporphyrin, a selective inhibitor of HO-1, significantly reversed the ARGE-mediated inhibition of nitrite production (P < 0.05). In LPS-induced inflammatory mice, ARGE treatment down-regulated iNOS and COX-2 expressions, while it up-regulated HO-1 expression. These results show that ARGE reduces LPS-induced nitric oxide production in RAW 264.7 macrophages through HO-1 induction and suggest that ARGE may have potential effects on prevention and treatment of acute inflammatory lung injury. © 2012 The Authors Acta Physiologica © 2012 Scandinavian Physiological Society.

  4. Neolignans from Aristolochia fordiana Prevent Oxidative Stress-Induced Neuronal Death through Maintaining the Nrf2/HO-1 Pathway in HT22 Cells.

    PubMed

    Tang, Gui-Hua; Chen, Zi-Wei; Lin, Ting-Ting; Tan, Min; Gao, Xiao-Yun; Bao, Jing-Mei; Cheng, Zhong-Bin; Sun, Zhang-Hua; Huang, Gang; Yin, Sheng

    2015-08-28

    Bioassay-guided fractionation of the ethanolic extract of the stems of Aristolochia fordiana led to the isolation of six new dihydrobenzofuran neolignans (1-3 and 7-9), three new 2-aryldihydrobenzofurans (4-6), a new 8-O-4' neolignan (10), and 14 known analogues (11-24). The structures of compounds 1-10 were established by spectroscopic methods, and their absolute configurations were determined by analyses of the specific rotation and electronic circular dichroism data. The neuroprotective effects of compounds 1-24 against glutamate-induced cell death were tested in hippocampal neuronal cell line HT22. Compounds 17 and 20-24 exhibited moderate neuroprotective activity by increasing the endogenous antioxidant defense system. In addition, the neolignans activated the Nrf2 (nuclear factor E2-related factor 2) pathway, resulting in the increase of the expression of endogenous antioxidant protein HO-1 (heme oxygenase-1). The active compounds also preserved the levels of antiapoptotic protein Bcl-2 (B cell lymphoma/leukemia-2), which was decreased by glutamate. Collectively, these results suggested that the active neolignans protect neurons against glutamate-induced cell death through maintaining the Nrf2/HO-1 signaling pathway as well as preserving the Bcl-2 protein and might be promising novel beneficial agents for oxidative stress-associated diseases.

  5. Nrf2/HO-1 mediates the neuroprotective effect of mangiferin on early brain injury after subarachnoid hemorrhage by attenuating mitochondria-related apoptosis and neuroinflammation.

    PubMed

    Wang, Zefeng; Guo, Songxue; Wang, Junxing; Shen, Yuanyuan; Zhang, Jianmin; Wu, Qun

    2017-09-19

    Early brain injury (EBI) is involved in the process of cerebral tissue damage caused by subarachnoid hemorrhage (SAH), and multiple mechanisms, such as apoptosis and inflammation, participate in its development. Mangiferin (MF), a natural C-glucoside xanthone, has been reported to exert beneficial effects against several types of organ injury by influencing various biological progresses. The current study aimed to investigate the potential of MF to protect against EBI following SAH via histological and biological assessments. A rat perforation model of SAH was established, and MF was subsequently administered via intraperitoneal injection at a low and a high dose. High-dose MF significantly lowered the mortality of SAH animals and ameliorated their neurological deficits and brain edema. MF also dose-relatedly attenuated SAH-induced oxidative stress and decreased cortical cell apoptosis by influencing mitochondria-apoptotic proteins. In addition, MF downregulated the activation of the NLRP3 inflammasome and NF-κB as well as the production of inflammatory cytokines, and the expression of Nrf2 and HO-1 was upregulated by MF. The abovementioned findings indicate that MF is neuroprotective against EBI after SAH and Nrf2/HO-1 cascade may play a key role in mediating its effect through regulation of the mitochondrial apoptosis pathway and activation of the NLRP3 inflammasome and NF-κB.

  6. Silencing heme oxygenase-1 gene expression in retinal pigment epithelial cells inhibits proliferation, migration and tube formation of cocultured endothelial cells

    SciTech Connect

    Zhang, Wenjie; Zhang, Xiaomei; Lu, Hong; Matsukura, Makoto; Zhao, Jien; Shinohara, Makoto

    2013-05-10

    Highlights: •HO-1 is highly induced in RPE cells by hypoxia. •Inhibition of HO-1 activity and knockdown of HO-1 expression inhibit VEGF expression in RPE cells under hypoxia. •Knockdown of HO-1 in RPE cells inhibits angiogenesis of endothelial cells in vitro. -- Abstract: Heme oxygenase-1 (HO-1) plays an important role in the vasculature and in the angiogenesis of tumors, wounds and other environments. Retinal pigment epithelial (RPE) cells and choroidal endothelial cells (CECs) are the main cells involved in choroidal neovascularization (CNV), a process in which hypoxia plays an important role. Our aim was to evaluate the role of human RPE-cell HO-1 in the angiogenic activities of cocultured endothelial cells under hypoxia. Small interfering RNA (siRNA) for HO-1 was transfected into human RPE cell line ARPE-19, and zinc protoporphyrin (ZnPP) was used to inhibit HO-1 activity. Knockdown of HO-1 expression and inhibition of HO-1 activity resulted in potent reduction of the expression of vascular endothelial growth factor (VEGF) under hypoxia. Furthermore, knockdown of HO-1 suppressed the proliferation, migration and tube formation of cocultured endothelial cells. These findings indicated that HO-1 might have an angiogenic effect in CNV through modulation of VEGF expression and might be a potential target for treating CNV.

  7. Fatty aldehyde dehydrogenases in Acinetobacter sp. strain HO1-N: role in hexadecanol metabolism.

    PubMed Central

    Singer, M E; Finnerty, W R

    1985-01-01

    The role of fatty aldehyde dehydrogenases (FALDHs) in hexadecane and hexadecanol metabolism was studied in Acinetobacter sp. strain HO1-N. Two distinct FALDHs were demonstrated in Acinetobacter sp. strain HO1-N: a membrane-bound, NADP-dependent FALDH activity induced 5-, 15-, and 9-fold by growth on hexadecanol, dodecyl aldehyde, and hexadecane, respectively, and a constitutive, NAD-dependent, membrane-localized FALDH. The NADP-dependent FALDH exhibited apparent Km and Vmax values for decyl aldehyde of 5.0, 13.0, 18.0, and 18.3 microM and 537.0, 500.0, 25.0, and 38.0 nmol/min in hexadecane-, hexadecanol-, ethanol-, palmitate-grown cells, respectively. FALDH isozymes ald-a, ald-b, and ald-c were demonstrated by gel electrophoresis in extracts of hexadecane- and hexadecanol-grown cells. ald-a, ald-b, and ald-d were present in dodecyl aldehyde-grown cells, while palmitate-grown control cells contained ald-b and ald-d. Dodecyl aldehyde-negative mutants were isolated and grouped into two phenotypic classes based on growth: class 1 mutants were hexadecane and hexadecanol negative and class 2 mutants were hexadecane and hexadecanol positive. Specific activity of NADP-dependent FALDH in Ald21 (class 1 mutant) was 85% lower than that of wild-type FALDH, while the specific activity of Ald24 (class 2 mutant) was 55% greater than that of wild-type FALDH. Ald21R, a dodecyl aldehyde-positive revertant able to grow on hexadecane, hexadecanol, and dodecyl aldehyde, exhibited a 100% increase in the specific activity of the NADP-dependent FALDH. The oxidation of [3H]hexadecane byAld21 yielded the accumulation of 61% more fatty aldehyde than the wild type, while Ald24 accumulated 27% more fatty aldehyde, 95% more fatty alcohol, and 65% more wax ester than the wild type. This study provides genetic and physiological evidence for the role of fatty aldehyde as an essential metabolic intermediate and NADP-dependent FALDH as a key enzyme in the dissimilation of hexadecane, hexadecanol

  8. Effect of curcumin on hepatic heme oxygenase 1 expression in high fat diet fed rats: is there a triangular relationship?

    PubMed

    Öner-İyidoğan, Yildiz; Tanrıkulu-Küçük, Sevda; Seyithanoğlu, Muhammed; Koçak, Hikmet; Doğru-Abbasoğlu, Semra; Aydin, A Fatih; Beyhan-Özdaş, Şule; Yapişlar, Hande; Koçak-Toker, Necla

    2014-10-01

    High fat diet (HFD) is associated with oxidative stress induced fatty liver. Curcumin, an extract of Curcuma longa, has been shown to possess potent antioxidant and hypolipidemic properties. In this study, we investigated the effect of curcumin treatment on hepatic heme oxygenase-1 (HO-1) expression along with pro-oxidant-antioxidant status and lipid accumulation in rats fed an HFD. Male Sprague-Dawley rats were distributed among 4 groups: Group 1, which was fed the control diet (10% of total calories from fat); Group 2, which was fed the HFD (60% of total calories from fat); and groups 3 and 4, which received the HFD supplemented with curcumin and the control diet supplemented with curcumin (1 g/kg diet; w/w), respectively, for 16 weeks. HFD caused increases in hepatic lipid levels, production of reactive oxygen species, and lipid peroxidation. Further, HO-1 expression was significantly decreased. Histopathological examination showed hepatic fat accumulation and slight fibrotic changes. Curcumin treatment reduced hepatic lipids and oxidative stress parameters, and HO-1 expression was significantly increased. These findings suggest that increased HO-1 expression, along with suppressed oxidative stress as well as reduced hepatic fat accumulation and fibrotic changes, contribute to the beneficial effects of curcumin in attenuating the pathogenesis of fatty liver induced metabolic diseases.

  9. Ellagic acid exerts protective effect in intrastriatal 6-hydroxydopamine rat model of Parkinson's disease: Possible involvement of ERβ/Nrf2/HO-1 signaling.

    PubMed

    Baluchnejadmojarad, Tourandokht; Rabiee, Nafiseh; Zabihnejad, Sedigheh; Roghani, Mehrdad

    2017-02-23

    Parkinson's disease (PD) is a prevalent movement disorder in the elderly with progressive loss of mesencephalic dopaminergic neurons and incapacitating motor and non-motor complications. Ellagic acid is a natural phenolic compound with potent antioxidant and anti-inflammatory properties. In this study, we investigated its possible neuroprotective effect in 6-hydroxydopamine (6-OHDA) rat model of PD. Intrastriatal 6-OHDA-lesioned rats were pretreated with ellagic acid at a dose of 50 mg/kg/day for 1 week. Results showed that ellagic acid attenuates apomorphine-induced rotational bias and lowers the latency to initiate and the total time in the narrow beam task and this beneficial effect was partially abrogated following intracerebroventricular microinjection of estrogen receptor β (ERβ) antagonist. Furthermore, ellagic acid reduced striatal malondialdehyde (MDA), reactive oxygen species (ROS), and DNA fragmentation, and improved monoamine oxidase B (MAO-B), nuclear factor (erythroid-derived 2)-like 2 (Nrf2), and heme oxygenase 1 (HO-1). Meanwhile, ellagic acid prevented loss of tyrosine hydroxylase (TH)-positive neurons within substantia nigra pars compacta (SNC). These findings indicate neuroprotective potential of ellagic acid in 6-OHDA rat model of PD via amelioration of apoptosis and oxidative stress, suppression of MAO-B, and its favorable influence is partly reliant on ERβ/Nrf2/HO-1 signaling cascade.

  10. Acute enteral glutamine infusion enhances heme oxygenase-1 expression in human duodenal mucosa.

    PubMed

    Coëffier, Moïse; Le Pessot, Florence; Leplingard, Antony; Marion, Rachel; Lerebours, Eric; Ducrotté, Philippe; Déchelotte, Pierre

    2002-09-01

    The heat shock protein, heme oxygenase-1 (HO-1), contributes to the protection of the intestine. Some experimental models suggest that induction of HO-1 by glutamine may contribute to the preservation of intestinal mucosa. The effect of an enteral infusion of glutamine for 6 h on HO-1 expression in duodenal mucosa was studied in healthy men and women and compared with an isonitrogenous mixture of amino acids. After enteral infusion, endoscopic duodenal biopsies were performed and either fixed in formalin for immunohistochemistry or frozen for HO-1 mRNA analysis by reverse transcriptase-polymerase chain reaction. Histologic examination revealed that HO-1 was constitutively expressed in intestinal epithelial cells (IEC), and that glutamine increased the grade of HO-1 immunostaining (P HO-1 immunoreactive lamina propria cells (LPC, 10.5 vs. 7.5%, P HO-1 mRNA expression compared with control amino acids: median (range) 156 (102-182) vs. 100 (68-179)%, P HO-1 was correlated with the percentage of immunoreactive LPC (r = 0.55, P = 0.017) and the grade of immunostaining in IEC (r = 0.51, P = 0.030). In conclusion, glutamine enhanced HO-1 mRNA and protein expression in human duodenal mucosa. These data support further evaluation of the effects of glutamine on intestinal HO-1 during states of intestinal inflammation.

  11. Magnetic properties of Ho1- x Lu x B12 solid solutions

    NASA Astrophysics Data System (ADS)

    Gabáni, S.; Gaz̆o, E.; Pristás̆, G.; Takác̆ová, I.; Flachbart, K.; Shitsevalova, N.; Siemensmeyer, K.; Sluchanko, N.

    2013-05-01

    Magnetic properties of the geometrically frustrated antiferromagnet HoB12 (with T N = 7.4 K) modified by substitution of magnetic Ho atoms through non-magnetic Lu ones are presented and discussed. In this case, in Ho1- x Lu x B12 solid solutions, both chemical pressure resulting from different Lu3+ and Ho3+ radii and magnetic dilution take place with increasing Lu content ( x) that change properties of the system. The received results show strong indication for the existence of a quantum critical point near x = 0.9, which separates the region of magnetic order (starting with HoB12 for x = 0) and the nonmagnetic region (ending with superconducting LuB12 for x = 1).

  12. Ionized calcium-binding adaptor molecule 1 positive macrophages and HO-1 up-regulation in intestinal muscularis resident macrophages.

    PubMed

    Mikkelsen, Hanne B; Huizinga, Jan D; Larsen, Jytte O; Kirkeby, Svend

    2017-06-01

    Small intestinal muscularis externa macrophages have been associated with interstitial cells of Cajal. They have been proposed to play various roles in motility disorders and to take part in a microbiota-driven regulation of gastrointestinal motility. Our objective was to understand the reaction of resident macrophages of the musculature to a pro-inflammatory stimulator, lipopolysaccharide (LPS). Mice were injected with LPS or saline and sacrificed after 6 hr. Whole mounts were stained with antibodies toward CD169, ionized calcium-binding adaptor molecule 1 (iba1) (microglial/macrophage marker) and heme oxygenase-1 (HO-1). Cell densities were measured using unbiased stereology. iba1(pos) cells showed an overall higher density than CD169(pos) and HO-1(pos) cells. Most HO-1(pos) and iba1(pos) cells were positive for CD 169 in serosa and at Auerbach's plexus (AP). At the deep muscular plexus, mainly iba1(pos) cells were present, and were mostly CD169(neg) ; a few HO-1(pos) cells were present. A new subset of resident macrophages in the intestinal muscularis externa was discovered, identified as iba1(pos) CD169(neg) . HO-1 is constitutively present in most macrophages in serosa and at AP, suggesting a M2 phenotype. LPS-treatment results in an up-regulation of HO-1(pos) /CD169(neg) cells in serosa and at AP. Anat Rec, 300:1114-1122, 2017. © 2016 The Authors. The Anatomical Record published by Wiley Periodicals, Inc. on behalf of American Association of Anatomists. © 2016 The Authors. The Anatomical Record published by Wiley Periodicals, Inc. on behalf of American Association of Anatomists.

  13. Nuclear Heme Oxygenase-1 (HO-1) Modulates Subcellular Distribution and Activation of Nrf2, Impacting Metabolic and Anti-oxidant Defenses*

    PubMed Central

    Biswas, Chhanda; Shah, Nidhi; Muthu, Manasa; La, Ping; Fernando, Amal P.; Sengupta, Shaon; Yang, Guang; Dennery, Phyllis A.

    2014-01-01

    With oxidative injury as well as in some solid tumors and myeloid leukemia cells, heme oxygenase-1 (HO-1), the anti-oxidant, anti-inflammatory, and anti-apoptotic microsomal stress protein, migrates to the nucleus in a truncated and enzymatically inactive form. However, the function of HO-1 in the nucleus is not completely clear. Nuclear factor erythroid 2-related factor 2 (Nrf2), a transcription factor and master regulator of numerous antioxidants and anti-apoptotic proteins, including HO-1, also accumulates in the nucleus with oxidative injury and in various types of cancer. Here we demonstrate that in oxidative stress, nuclear HO-1 interacts with Nrf2 and stabilizes it from glycogen synthase kinase 3β (GSK3β)-mediated phosphorylation coupled with ubiquitin-proteasomal degradation, thereby prolonging its accumulation in the nucleus. This regulation of Nrf2 post-induction by nuclear HO-1 is important for the preferential transcription of phase II detoxification enzymes such as NQO1 as well as glucose-6-phosphate dehydrogenase (G6PDH), a regulator of the pentose phosphate pathway. Using Nrf2 knock-out cells, we further demonstrate that nuclear HO-1-associated cytoprotection against oxidative stress depends on an HO-1/Nrf2 interaction. Although it is well known that Nrf2 induces HO-1 leading to mitigation of oxidant stress, we propose a novel mechanism by which HO-1, by modulating the activation of Nrf2, sets an adaptive reprogramming that enhances antioxidant defenses. PMID:25107906

  14. Preconditioning with Gua Lou Gui Zhi decoction enhances H2O2-induced Nrf2/HO-1 activation in PC12 cells.

    PubMed

    Mao, Jingjie; Li, Zuanfang; Lin, Ruhui; Zhu, Xiaoqin; Lin, Jiumao; Peng, Jun; Chen, Lidian

    2015-09-01

    Spasticity is common in various central neurological conditions, including after a stroke. Such spasticity may cause additional problems, and often becomes a primary concern for afflicted individuals. A number of studies have identified nuclear factor (erythroid-derived 2)-like 2 (Nrf2) as a key regulator in the adaptive survival response to oxidative stress. Elevated expression of Nrf2, combined with heme oxygenase 1 (HO-1) resistance, in the central nervous system is known to elicit key internal and external oxidation protection. Gua Lou Gui Zhi decoction (GLGZD) is a popular traditional Chinese formula with a long history of clinical use in China for the treatment of muscular spasticity following a stroke, epilepsy or a spinal cord injury. However, the mechanism underlying the efficacy of the medicine remains unclear. In the present study, the antioxidative effects of GLGZD were evaluated and the underlying molecular mechanisms were investigated, using hydrogen peroxide (H2O2)-induced rat pheochromocytoma cells (PC12 cells) as an in vitro oxidative stress model of neural cells. Upon application of different concentrations of GLGZD, a 3-(4,5-dimethyl-2-thiazolyl)-2,5-diphenyltetrazolium bromide (MTT) assay and ATP measurement were conducted to assess the impact on PC12 cell proliferation. In addition, inverted microscopy observations, and the MTT and ATP assessments, revealed that GLGZD attenuated H2O2-induced oxidative damage and signaling repression in PC12 cells. Furthermore, the mRNA and protein expression levels of Nrf2 and HO-1, which are associated with oxidative stress, were analyzed using reverse transcription quantitative polymerase chain reaction (PCR) and confocal microscopy. Confocal microscopy observations, as well as the quantitative PCR assay, revealed that GLGZD exerted a neuroprotective function against H2O2-induced oxidative damage in PC12 cells. Therefore, the results demonstrated that GLGZD protected PC12 cells injured by H2O2, which may be

  15. Effects of dexmedetomidine pretreatment on heme oxygenase-1 expression and oxidative stress during one-lung ventilation

    PubMed Central

    Gao, Shenqiang; Wang, Yuelan; Zhao, Jun; Su, Aiping

    2015-01-01

    Purpose: This study aimed to explore effects of dexmedetomidine pretreatment on heme oxygenase-1 (HO-1) expression and oxidative stress during one-lung ventilation (OLV) in lung cancer patients. Methods: Fifty patients with lung carcinoma (ASA I-II, 40-65 years old, body mass index [BMI] < 30 kg/m2) undergoing pulmonary lobectomy were enrolled. They were divided randomly into two equal groups before anaesthesia induction to receive either intravenous injection of 1 μg/kg dexmedetomidine for 20 min (Dexmedetomidine) or not (Control). Results: The results showed no difference in heart rate (HR), mean arterial pressure (MAP) and bispectral index (BIS) between the two groups, as well as liquid intake and output volume (LIO), duration of OLV and time from surgery beginning to excision of pathological tissues (P > 0.05). Levels of tumor necrosis factor (TNF-α) and malondialdehyde (MDA) in Dexmedetomidine group were lower than that of Control at OLV 60 and 90 (P < 0.05). Superoxide dismutase (SOD) activity and the expression level of HO-1 were higher in Dexmedetomidine group than in Control (P < 0.05). Conclusions: Dexmedetomidine pretreatment could upregulated expression of HO-1 in lung tissue and reduce oxidative stress and inflammation during OLV. Thus dexmedetomidine played a role in protecting lung injury by promoting HO-1 expression. PMID:26045831

  16. Aerobic Exercise Program Reduces Anger Expression Among Overweight Children

    PubMed Central

    Tkacz, Joseph; Young-Hyman, Deborah; Boyle, Colleen A.; Davis, Catherine L.

    2009-01-01

    This study tested the effect of a structured aerobic exercise program on anger expression in healthy overweight children. Overweight, sedentary children were randomly assigned to an aerobic exercise program or a no-exercise control condition. All children completed the Pediatric Anger Expression Scale at baseline and posttest. Anger Out and Anger Expression scores were lower for the exercise condition at posttest. Fitness improvements contributed significantly to final models, and points earned for adherence correlated negatively with posttest Anger Out. An aerobic exercise program might be an effective strategy to reduce anger expression, including reduction of aggressive behavior, in overweight children. PMID:19168916

  17. Aerobic exercise program reduces anger expression among overweight children.

    PubMed

    Tkacz, Joseph; Young-Hyman, Deborah; Boyle, Collen A; Davis, Catherine L

    2008-11-01

    This study tested the effect of a structured aerobic exercise program on anger expression in healthy overweight children. Overweight sedentary children were randomly assigned to an aerobic exercise program or a no-exercise control condition. All children completed the Pediatric Anger Expression Scale at baseline and posttest. Anger Out and Anger Expression scores were lower for the exercise condition at posttest. Fitness improvements contributed significantly to final models, and points earned for adherence correlated negatively with posttest Anger Out. An aerobic exercise program might be an effective strategy to reduce anger expression, including reduction of aggressive behavior, in overweight children.

  18. Reduced facial expressiveness in Parkinson's disease: A pure motor disorder?

    PubMed

    Ricciardi, Lucia; Bologna, Matteo; Morgante, Francesca; Ricciardi, Diego; Morabito, Bruno; Volpe, Daniele; Martino, Davide; Tessitore, Alessandro; Pomponi, Massimiliano; Bentivoglio, Anna Rita; Bernabei, Roberto; Fasano, Alfonso

    2015-11-15

    Impaired emotional facial expressiveness is an important feature in Parkinson's disease (PD). Although there is evidence of a possible relationship between reduced facial expressiveness and altered emotion recognition or imagery in PD, it is unknown whether other aspects of the emotional processing, such as subjective emotional experience (alexithymia), might influence hypomimia in this condition. In this study wee aimed to investigate possible relationship between reduced facial expressiveness and altered emotion processing (including facial recognition and alexithymia) in patients with PD. Forty PD patients and seventeen healthy controls were evaluated. Facial expressiveness was rated on video recordings, according to the UPDRS-III item 19 and using an ad hoc scale assessing static and dynamic facial expression and posed emotions. Six blind raters evaluated the patients' videos. Emotion facial recognition was tested using the Ekman Test; alexithymia was assessed using Toronto Alexithymia Scale (TAS-20). PD patients had a significantly reduced static and dynamic facial expressiveness and a deficit in posing happiness and surprise. They performed significantly worse than healthy controls in recognizing surprise (p=0.03). The Ekman total score positively correlated with the global expressiveness (R^2=0.39, p=0.01) and with the expressiveness of disgust (R^2=0.32, p=0.01). The occurrence of alexithymia was not different between PD patients and HC; however, a significant negative correlation between the expressiveness of disgust was found for a subscore of TAS (R^2=-.447, p=0.007). Reduced facial expressiveness in PD may be in part related to difficulties with emotional recognition in a context of an unimpaired subjective emotional experience. Copyright © 2015 Elsevier B.V. All rights reserved.

  19. Lithospermic acid B protects beta-cells from cytokine-induced apoptosis by alleviating apoptotic pathways and activating anti-apoptotic pathways of Nrf2-HO-1 and Sirt1

    SciTech Connect

    Lee, Byung-Wan; Chun, Sung Wan; Kim, Soo Hyun; Lee, Yongho; Kang, Eun Seok; Cha, Bong-Soo; Lee, Hyun Chul

    2011-04-01

    Lithospermic acid B (LAB) has been reported to protect OLETF rats, an established type 2 diabetic animal model, from the development of diabetes-related vascular complications. We investigated whether magnesium lithospermate B (LAB) has a protective role under cytokine-induced apoptosis in INS-1 cells in vitro and whether it slows the development of diabetes in OLETF rats in vivo. Pretreatment with 50 {mu}M LAB significantly reduced the 1000 U/mL INF-{gamma} and 100 U/mL IL-1{beta}-induced INS-1 cell death. LAB significantly alleviated cytokine-induced phosphorylations of p38 and JNK in accordance with a decrease in cleaved caspase-3 activity in beta-cells. LAB also protected against the cytokine-induced caspase-3 apoptotic pathway via significant activation of Nrf2-HO (heme-oxigenase)-1 and Sirt1 expression. OLETF rats treated with 40 mg/kg/day LAB showed a significant improvement in glucose tolerance compared to untreated OLETF control rats in vivo. Our results suggest that the cytoprotective effects of LAB on pancreatic {beta}-cells are related with both alleviating apoptotic pathways and activating anti-apoptotic pathways of Nrf2-HO-1 and Sirt1.

  20. Identification of heme oxygenase 1 (HO-1) as a novel negative regulator of mobilization of hematopoietic stem/progenitor cells.

    PubMed

    Wysoczynski, Marcin; Ratajczak, Janina; Pedziwiatr, Daniel; Rokosh, Gregg; Bolli, Roberto; Ratajczak, Mariusz Z

    2015-02-01

    Activation of complement cascade (ComC) play and important role in mobilization of hematopoietic stem/progenitor cells (HSPCs) from bone marrow (BM) into peripheral blood (PB). While there are vast experimental data on the mechanisms and factors that induce or promote mobilization of HSPCs, there is relatively less data on negative regulators of this process. We demonstrate for the first time that heme oxygenase-1 (HO-1) that has a well-documented anti-inflammatory potential plays an important and heretofore unrecognized role in retention of HSPCs in BM niches by i) modulating negatively activation of mobilization promoting ComC, ii) maintaining stromal derived factor-1 (SDF-1) level in the BM microenvironment and iii) attenuating chemotactic responsiveness of HSPCs to SDF-1 and sphingosine-1 phosphate (S1P) gradients in PB. Furthermore, our data showing a positive mobilizing effect by a non-toxic small-molecule inhibitor of HO-1 (SnPP) suggest that blockade of HO-1 would be a promising strategy to facilitate mobilization of HSPCs. Further studies are also needed to evaluate better the molecular mechanisms responsible for the potential effect of HO-1 in homing of HSPCs after transplantation.

  1. Emotional facial expressions reduce neural adaptation to face identity.

    PubMed

    Gerlicher, Anna M V; van Loon, Anouk M; Scholte, H Steven; Lamme, Victor A F; van der Leij, Andries R

    2014-05-01

    In human social interactions, facial emotional expressions are a crucial source of information. Repeatedly presented information typically leads to an adaptation of neural responses. However, processing seems sustained with emotional facial expressions. Therefore, we tested whether sustained processing of emotional expressions, especially threat-related expressions, would attenuate neural adaptation. Neutral and emotional expressions (happy, mixed and fearful) of same and different identity were presented at 3 Hz. We used electroencephalography to record the evoked steady-state visual potentials (ssVEP) and tested to what extent the ssVEP amplitude adapts to the same when compared with different face identities. We found adaptation to the identity of a neutral face. However, for emotional faces, adaptation was reduced, decreasing linearly with negative valence, with the least adaptation to fearful expressions. This short and straightforward method may prove to be a valuable new tool in the study of emotional processing.

  2. 4-Ketopinoresinol, a novel naturally occurring ARE activator, induces the Nrf2/HO-1 axis and protects against oxidative stress-induced cell injury via activation of PI3K/AKT signaling.

    PubMed

    Chen, Huang-Hui; Chen, Yu-Tsen; Huang, Yen-Wen; Tsai, Hui-Ju; Kuo, Ching-Chuan

    2012-03-15

    The Nrf2/ARE pathway plays an important role in inducing phase II detoxifying enzymes and antioxidant proteins and has been considered a potential target for cancer chemoprevention because it eliminates harmful reactive oxygen species or reactive intermediates generated from carcinogens. The objectives of this study were to identify novel Nrf2/ARE activators and to investigate the mechanistic signaling pathway involved in the activation of Nrf2-mediated cytoprotective effects against oxidative-induced cell injury. A stable ARE-driven luciferase reporter cell line was established to screen a potentially cytoprotective compound. 4-Ketopinoresinol (4-KPR), the (α-γ) double-cyclized type of lignan obtained from adlay (Coix lachryma-jobi L. var. ma-yuen Stapf), activates ARE-driven luciferase activity more effectively than the classical ARE activator tert-butylhydroquinone. 4-KPR treatment resulted in a transient increase in AKT phosphorylation and subsequent phosphorylation and nuclear translocation of Nrf2, along with increased expression of ARE-dependent cytoprotective genes, such as heme oxygenase-1 (HO-1), aldo-keto reductases, and glutathione synthetic enzyme. 4-KPR suppresses oxidative stress-induced DNA damage and cell death via upregulation of HO-1. Inhibition of PI3K/AKT signaling by chemical inhibitors or RNA interference not only suppressed 4-KPR-induced Nrf2/HO-1 activation, but also eliminated the cytoprotective effect against oxidative damage. These observations in an ARE-regulated gene system suggest that 4-KPR is a novel Nrf2/ARE-mediated transcription activator, activates the Nrf2/HO-1 axis, and protects against oxidative stress-induced cell injury via activation of PI3K/AKT signaling.

  3. LIN28A expression reduces sickling of cultured human erythrocytes.

    PubMed

    de Vasconcellos, Jaira F; Fasano, Ross M; Lee, Y Terry; Kaushal, Megha; Byrnes, Colleen; Meier, Emily R; Anderson, Molly; Rabel, Antoinette; Braylan, Raul; Stroncek, David F; Miller, Jeffery L

    2014-01-01

    Induction of fetal hemoglobin (HbF) has therapeutic importance for patients with sickle cell disease (SCD) and the beta-thalassemias. It was recently reported that increased expression of LIN28 proteins or decreased expression of its target let-7 miRNAs enhances HbF levels in cultured primary human erythroblasts from adult healthy donors. Here LIN28A effects were studied further using erythrocytes cultured from peripheral blood progenitor cells of pediatric subjects with SCD. Transgenic expression of LIN28A was accomplished by lentiviral transduction in CD34(+) sickle cells cultivated ex vivo in serum-free medium. LIN28A over-expression (LIN28A-OE) increased HbF, reduced beta (sickle)-globin, and strongly suppressed all members of the let-7 family of miRNAs. LIN28A-OE did not affect erythroblast differentiation or prevent enucleation, but it significantly reduced or ameliorated the sickling morphologies of the enucleated erythrocytes.

  4. Differentiation impairs Bach1 dependent HO-1 activation and increases sensitivity to oxidative stress in SH-SY5Y neuroblastoma cells.

    PubMed

    Piras, Sabrina; Furfaro, Anna Lisa; Brondolo, Lorenzo; Passalacqua, Mario; Marinari, Umberto Maria; Pronzato, Maria Adelaide; Nitti, Mariapaola

    2017-08-08

    Neuronal adaptation to oxidative stress is crucially important in order to prevent degenerative diseases. The role played by the Nrf2/HO-1 system in favoring cell survival of neuroblastoma (NB) cells exposed to hydrogen peroxide (H2O2) has been investigated using undifferentiated or all-trans retinoic acid (ATRA) differentiated SH-SY5Y cells. While undifferentiated cells were basically resistant to the oxidative stimulus, ATRA treatment progressively decreased cell viability in response to H2O2. HO-1 silencing decreased undifferentiated cell viability when exposed to H2O2, proving the role of HO-1 in cell survival. Conversely, ATRA differentiated cells exposed to H2O2 showed a significantly lower induction of HO-1, and only the supplementation with low doses of bilirubin (0,5-1 μM) restored viability. Moreover, the nuclear level of Bach1, repressor of HO-1 transcription, strongly decreased in undifferentiated cells exposed to oxidative stress, while did not change in ATRA differentiated cells. Furthermore, Bach1 was displaced from HO-1 promoter in undifferentiated cells exposed to H2O2, enabling the binding of Nrf2. On the contrary, in ATRA differentiated cells treated with H2O2, Bach1 displacement was impaired, preventing Nrf2 binding and limiting HO-1 transcription. In conclusion, our findings highlight the central role of Bach1 in HO-1-dependent neuronal response to oxidative stress.

  5. The processing of coreference for reduced expressions in discourse integration.

    PubMed

    Yang, C L; Gordon, P C; Hendrick, R; Wu, J T; Chou, T L

    2001-01-01

    Three reading-time experiments in Chinese are reported that test contrasting views of how pronominal coreference is achieved. On the one hand, studies of reading time and eye tracking suggest that reduced expressions, such as the pronoun he, serve as critical links to integrate separate utterances into a coherent model of discourse. On the other hand, probe-word recognition studies indicate that full anaphoric expressions, such as a repeated name, are more readily interpreted than reduced expressions due to their rich lexical information, which provides effective cues to match the representation of the appropriate referent in memory. The results indicate that the ease of integrating the critical referent into a model of discourse is a function of the congruence of lexical, semantic, and discourse features conveyed by a syntactically prominent reduced expression within linguistic input. This pattern supports the view that a reduced expression is interpreted on-line and indeed plays a critical role in promoting discourse coherence by facilitating the semantic integration of separate utterances.

  6. Hormonal Fluctuations during the Estrous Cycle Modulate Heme Oxygenase-1 Expression in the Uterus

    PubMed Central

    Zenclussen, Maria Laura; Casalis, Pablo Ariel; Jensen, Federico; Woidacki, Katja; Zenclussen, Ana Claudia

    2014-01-01

    Deletion of the heme oxygenase-1 (HO-1) (Hmox1) locus in mice results in intrauterine lethality. The expression of the heme catabolizing enzyme encoded by this gene, namely HO-1, is required to successfully support reproductive events. We have previously observed that HO-1 acts at several key events in reproduction ensuring pregnancy. HO-1 defines ovulation, positively influences implantation and placentation, and ensures fetal growth and survival. Here, we embarked on a study aimed to determine whether hormonal changes during the estrous cycle in the mouse define HO-1 expression that may influence receptivity. We analyzed the serum levels of progesterone and estrogen by ELISA and HO-1 mRNA expression in uterus by real time RT-PCR at the metestrus, proestrus, estrus, and diestrus phases of the estrous cycle. Further, we studied the HO-1 protein expression by western blot upon hormone addition to cultured uterine AN3 cells. We observed that HO-1 variations in uterine tissue correlated to changes in hormonal levels at different phases of the estrus cycle. In vitro, HO-1 protein levels in AN3 cells augmented after the addition of physiological concentrations of progesterone and estradiol, which confirmed our in vivo observations. Our data suggest an important role for hormones in HO-1 regulation in uterus during receptivity, a process known to have a significant impact in receptivity and later on blastocyst implantation. PMID:24659985

  7. Reduced Ang2 expression in aging endothelial cells

    SciTech Connect

    Hohensinner, P.J.; Ebenbauer, B.; Kaun, C.; Maurer, G.; Huber, K.; Wojta, J.

    2016-06-03

    Aging endothelial cells are characterized by increased cell size, reduced telomere length and increased expression of proinflammatory cytokines. In addition, we describe here that aging reduces the migratory distance of endothelial cells. Furthermore, we observe an increase of the quiescence protein Ang1 and a decrease of the endothelial activation protein Ang2 upon aging. Supplementing Ang2 to aged endothelial cells restored their migratory capacity. We conclude that aging shifts the balance of the Ang1/Ang2 network favouring a quiescent state. Activation of endothelial cells in aging might be necessary to enhance wound healing capacities. -- Highlights: •Endothelial cells display signs of aging before reaching proliferative senescence. •Aging endothelial cells express more angiopoietin 1 and less angiopoietin 2 than young endothelial cells. •Migratory capacity is reduced in aging endothelial cells.

  8. Arsenic modulates heme oxygenase-1, interleukin-6, and vascular endothelial growth factor expression in endothelial cells: roles of ROS, NF-κB, and MAPK pathways.

    PubMed

    Wang, Lisu; Kou, Mei-Chun; Weng, Ching-Yi; Hu, Ling-Wei; Wang, Ying-Jan; Wu, Ming-Jiuan

    2012-06-01

    Chronic arsenic exposure has been linked to an increased risk of vascular diseases. To clarify the molecular mechanisms through which arsenic causes injuries to blood vessels, we analyzed the effects of arsenic trioxide on the cytotoxicity, intracellular reactive oxygen species (ROS), the expression of related genes, and signaling pathways involved in the SVEC4-10 mouse endothelial cells. Arsenic dose-dependently caused SVEC4-10 cell death, which is completely inhibited by α-lipoic acid (LA), a thioreductant, but partially ameliorated by Tiron, a potent superoxide scavenger. The mRNA levels of heme oxygenase-1 (HO-1), interleukin-6 (IL-6), monocyte chemoattractant protein-1 (MCP-1), and vascular endothelial growth factor (VEGF) were significantly increased by arsenic. The up-regulation of these can be blocked by LA instead of Tiron, suggesting ROS is not important in their increase. HO-1 competitive inhibitor zinc protoporphyrin improved the cytotoxicity of arsenic in an inverted-U dose-response curve, indicating the biphasic hormetic effect of HO-1. HO-1 siRNA decreased VEGF expression in response to arsenic. Arsenic exposure also enhanced NF-E2-related factor 2 (Nrf2) expression and increased activation of nuclear factor-κB (NF-κB). NF-κB inhibitor Bay 11-7082 reduced arsenic-mediated expression of HO-1 and IL-6. Selective blocking of the MAPK pathways with p38 inhibitor SB203580 significantly decreased arsenic-induced HO-1 and VEGF expression, while JNKs inhibitor SP600125 increased IL-6 expression. These results suggest that in arsenic-treated SVEC4-10 cells, HO-1 expression is mediated through Nrf2-, NF-κB-, and p38 MAPK-dependent signaling pathways and serves as an upstream regulator of VEGF. IL-6 expression is regulated by NF-κB and JNKs. In conclusion, oxidative stress may be associated with arsenic-induced cytotoxicity and endothelial gene up-regulation, but signaling transduction dominates the direct effects of ROS.

  9. Lycopene ameliorates atrazine-induced oxidative damage in adrenal cortex of male rats by activation of the Nrf2/HO-1 pathway.

    PubMed

    Abass, Marwa Ahmed; Elkhateeb, Shereen Ahmed; Abd El-Baset, Samia Adel; Kattaia, Asmaa Alhosiny; Mohamed, Eman Mosallam; Atteia, Hebatallah Husseini

    2016-08-01

    Atrazine (ATZ) is one of the most commonly used herbicides contaminating plants, soil and water resources. Several strategies have been used to counteract ATZ toxicity. Here, we tested the hypothesis that lycopene could ameliorate ATZ-induced toxicity in the adrenal cortex. For this purpose, 35 adult male albino rats were randomized into five equal groups: untreated control, vehicle control (received 0.5 mL corn oil/day), lycopene (treated with lycopene dissolved in 0.5 mL corn oil, 10 mg/kg b.w./day), ATZ (received ATZ dissolved in 0.5 mL corn oil 300 mg/kg b.w./day), and ATZ + lycopene (treated with ATZ and lycopene at the same previously mentioned doses). All treatments were given by oral gavage for 4 weeks. We found that ATZ exposure significantly increased relative adrenal weight, plasma ACTH levels, and adrenal oxidative stress as manifested by elevated malondialdehyde levels, decreased reduced glutathione content and depressed antioxidant enzyme activities in adrenal cortex tissues with respect to control groups. Furthermore, the transcription of adrenal cortex nuclear factor erythroid 2-related factor 2 (Nrf2), heme oxygenase-1 (HO-1), nuclear factor kappa B, and caspase-3 genes was increased significantly compared with the control groups. This was accompanied with DNA fragmentation and structural and ultrastructural changes in zona glomerulosa and zona fasiculata of the adrenal cortex. Notably, all these changes were partially ameliorated in rats treated concomitantly with ATZ and lycopene. Our results showed that lycopene exerts protective effects against ATZ-induced toxicity in rat adrenal cortex. These effects may be attributed to the antioxidative property of lycopene and its ability to activate the Nrf2/HO-1 pathway.

  10. Garcinia vilersiana bark extract activates the Nrf2/HO-1 signaling pathway in RAW264.7 cells.

    PubMed

    Shinkai, Yasuhiro; Yamanaka, Ichiro; Duong, Ho Huynh Thuy; Quynh, Nguyen Thi; Kanaho, Yasunori; Kumagai, Yoshito

    2013-01-01

    Garcinia vilersiana is a traditional medicinal plant in Vietnam. The petroleum ether extract of stem bark of Garcinia vilersiana (GVE) was prepared to evaluate its potential to activate Nrf2, a transcription factor of antioxidant and detoxifying enzymes. Exposure of mouse macrophage RAW264.7 cells to GVE (0.625-2.5 µg/ml) resulted in a significant activation of Nrf2, as evaluated by nuclear accumulation of this transcription factor, and increased antioxidant response element (ARE) binding activity in a time- and concentration-dependent manner. As a result, GVE caused ARE-dependent up-regulation of heme oxygenase-1 (HO-1) in the cells. These results suggest that GVE contains components that have the ability to activate the Nrf2/ARE/HO-1 signaling pathway, leading to cellular protection.

  11. Nitric oxide sets off an antioxidant response in adrenal cells: involvement of sGC and Nrf2 in HO-1 induction.

    PubMed

    Astort, F; Mercau, M; Giordanino, E; Degese, M S; Caldareri, L; Coso, O; Cymeryng, C B

    2014-02-15

    Induction of microsomal heme oxygenase 1 (HO-1) activity is considered a cytoprotective mechanism in different cell types. In adrenal cells, HO-1 induction by ACTH exerts a modulatory effect on steroid production as well. As nitric oxide (NO) has been also regarded as an autocrine/paracrine modulator of adrenal steroidogenesis we sought to study the effects of NO on the induction of HO-1 and the mechanism involved. We hereby analyzed the time and dose-dependent effect of a NO-donor (DETA/NO) on HO-1 induction in a murine adrenocortical cell line. We showed that this effect is mainly exerted at a transcriptional level as it is inhibited by actinomycin D and HO-1 mRNA degradation rates were not affected by DETA/NO treatment. HO-1 induction by NO does not appear to involve the generation of oxidative stress as it was not affected by antioxidant treatment. We also demonstrated that NO-treatment results in the nuclear translocation of the nuclear factor-erythroid 2-related factor (Nrf2), an effect that is attenuated by transfecting the cells with a dominant negative isoform of Nrf2. We finally show that the effects of the NO-donor are reproduced by a permeable analog of cGMP and that a soluble guanylate cyclase specific inhibitor blocked both the induction of HO-1 by NO and the nuclear translocation of Nrf2.

  12. Domestication reduces alternative splicing expression variations in sorghum.

    PubMed

    Ranwez, Vincent; Serra, Audrey; Pot, David; Chantret, Nathalie

    2017-01-01

    Domestication is known to strongly reduce genomic diversity through population bottlenecks. The resulting loss of polymorphism has been thoroughly documented in numerous cultivated species. Here we investigate the impact of domestication on the diversity of alternative transcript expressions using RNAseq data obtained on cultivated and wild sorghum accessions (ten accessions for each pool). In that aim, we focus on genes expressing two isoforms in sorghum and estimate the ratio between expression levels of those isoforms in each accession. Noticeably, for a given gene, one isoform can either be overexpressed or underexpressed in some wild accessions, whereas in the cultivated accessions, the balance between the two isoforms of the same gene appears to be much more homogenous. Indeed, we observe in sorghum significantly more variation in isoform expression balance among wild accessions than among domesticated accessions. The possibility exists that the loss of nucleotide diversity due to domestication could affect regulatory elements, controlling transcription or degradation of these isoforms. Impact on the isoform expression balance is discussed. As far as we know, this is the first time that the impact of domestication on transcript isoform balance has been studied at the genomic scale. This could pave the way towards the identification of key domestication genes with finely tuned isoform expressions in domesticated accessions while being highly variable in their wild relatives.

  13. Domestication reduces alternative splicing expression variations in sorghum

    PubMed Central

    Ranwez, Vincent; Serra, Audrey; Pot, David

    2017-01-01

    Domestication is known to strongly reduce genomic diversity through population bottlenecks. The resulting loss of polymorphism has been thoroughly documented in numerous cultivated species. Here we investigate the impact of domestication on the diversity of alternative transcript expressions using RNAseq data obtained on cultivated and wild sorghum accessions (ten accessions for each pool). In that aim, we focus on genes expressing two isoforms in sorghum and estimate the ratio between expression levels of those isoforms in each accession. Noticeably, for a given gene, one isoform can either be overexpressed or underexpressed in some wild accessions, whereas in the cultivated accessions, the balance between the two isoforms of the same gene appears to be much more homogenous. Indeed, we observe in sorghum significantly more variation in isoform expression balance among wild accessions than among domesticated accessions. The possibility exists that the loss of nucleotide diversity due to domestication could affect regulatory elements, controlling transcription or degradation of these isoforms. Impact on the isoform expression balance is discussed. As far as we know, this is the first time that the impact of domestication on transcript isoform balance has been studied at the genomic scale. This could pave the way towards the identification of key domestication genes with finely tuned isoform expressions in domesticated accessions while being highly variable in their wild relatives. PMID:28886042

  14. Reciprocal effects of miR-122 on expression of heme oxygenase-1 and hepatitis C virus genes in human hepatocytes

    PubMed Central

    Shan, Ying; Zheng, Jianyu; Lambrecht, Richard W.; Bonkovsky, Herbert L.

    2007-01-01

    Background & Aims Heme oxygenase-1 (HO-1) is an antioxidant defense and key cytoprotective enzyme, which is repressed by Bach1. MicroRNA-122 (miR-122) is specifically expressed and highly abundant in human liver and required for replication of hepatitis C virus (HCV) RNA. This study was to assess whether a specific miR-122 antagomir down-regulates HCV protein replication and up-regulates HO-1. Methods We transfected antagomir of miR-122, 2′-O-methyl-mimic miR-122, or non-specific-control antagomir (NSCA) into wild type Huh-7 cells or Huh-7 stably replicating HCV subgenomic core-NS3 (CNS3 replicon cells), or NS3-5B (9–13 replicon cells). Results Antagomir of miR-122 reduced the abundance of HCV-RNA by 64% in CNS3, and by 84% in 9–13 cells. In contrast, transfection with 2′-O-methlyl-mimic miR-122 increased HCV levels up to 2.5-fold; transfection with NSCA did not change the level of HCV. Antagomir of miR-122 also decreased Bach1 and increased HO-1 mRNA levels in CNS3, 9–13, and WT Huh-7 cells. Increasing HO-1 by silencing Bach1 with 50 nM Bach1-siRNA or by treatment with 5 μM cobalt protoporphyrin or heme (known inducers of HO-1) decreased HCV RNA and protein by 50% in HCV replicon cells. Conclusions Down-regulation of HCV replication using an antagomir targeted to miR-122 is effective, specific, and selective. Increasing HO-1, by silencing the Bach1 gene or by treatment with cobalt protoporphyrin or heme, decreases HCV replication. Thus, miR-122 plays an important role in the regulation of HCV replication and HO-1/Bach1 expression in hepatocytes. Down-regulation of miR-122 and up-regulation of HO-1 may be new strategies for anti-HCV intervention and cytoprotection. PMID:17919492

  15. Reduced Ang2 expression in aging endothelial cells.

    PubMed

    Hohensinner, P J; Ebenbauer, B; Kaun, C; Maurer, G; Huber, K; Wojta, J

    2016-06-03

    Aging endothelial cells are characterized by increased cell size, reduced telomere length and increased expression of proinflammatory cytokines. In addition, we describe here that aging reduces the migratory distance of endothelial cells. Furthermore, we observe an increase of the quiescence protein Ang1 and a decrease of the endothelial activation protein Ang2 upon aging. Supplementing Ang2 to aged endothelial cells restored their migratory capacity. We conclude that aging shifts the balance of the Ang1/Ang2 network favouring a quiescent state. Activation of endothelial cells in aging might be necessary to enhance wound healing capacities. Copyright © 2016 Elsevier Inc. All rights reserved.

  16. LIN28A Expression Reduces Sickling of Cultured Human Erythrocytes

    PubMed Central

    de Vasconcellos, Jaira F.; Fasano, Ross M.; Lee, Y. Terry; Kaushal, Megha; Byrnes, Colleen; Meier, Emily R.; Anderson, Molly; Rabel, Antoinette; Braylan, Raul; Stroncek, David F.; Miller, Jeffery L.

    2014-01-01

    Induction of fetal hemoglobin (HbF) has therapeutic importance for patients with sickle cell disease (SCD) and the beta-thalassemias. It was recently reported that increased expression of LIN28 proteins or decreased expression of its target let-7 miRNAs enhances HbF levels in cultured primary human erythroblasts from adult healthy donors. Here LIN28A effects were studied further using erythrocytes cultured from peripheral blood progenitor cells of pediatric subjects with SCD. Transgenic expression of LIN28A was accomplished by lentiviral transduction in CD34(+) sickle cells cultivated ex vivo in serum-free medium. LIN28A over-expression (LIN28A-OE) increased HbF, reduced beta (sickle)-globin, and strongly suppressed all members of the let-7 family of miRNAs. LIN28A-OE did not affect erythroblast differentiation or prevent enucleation, but it significantly reduced or ameliorated the sickling morphologies of the enucleated erythrocytes. PMID:25188417

  17. Preconditioning reduces myocardial complement gene expression in vivo.

    PubMed

    Tanhehco, E J; Yasojima, K; McGeer, P L; McGeer, E G; Lucchesi, B R

    2000-09-01

    This investigation examined the effect of preconditioning in an in vivo model of ischemia-reperfusion injury. Anesthetized New Zealand White rabbits underwent 30 min of regional myocardial ischemia followed by 2 h of reperfusion. Hearts preconditioned with two cycles of 5 min ischemia-10 min reperfusion (IPC) or with the ATP-sensitive K (K(ATP)) channel opener, diazoxide (10 mg/kg), exhibited significantly (P < 0.05) smaller infarcts compared with control. These treatments also significantly (P < 0.001 to P < 0.05) reduced C1q, C1r, C3, C8, and C9 mRNA in the areas at risk (AAR). The K(ATP) channel blocker 5-hydroxydecanoate (5-HD; 10 mg/kg) attenuated infarct size reduction elicited by IPC and diazoxide treatment. 5-HD partially reversed the decrease in complement expression caused by IPC but not diazoxide. There were no significant differences in complement gene expression in the nonrisk regions and livers of all groups. Western blot analysis revealed that IPC also reduced membrane attack complex expression in the AAR. The data demonstrate that preconditioning significantly decreases reperfusion-induced myocardial complement expression in vivo.

  18. Heme oxygenase-1 expression protects the heart from acute injury caused by inducible Cre recombinase.

    PubMed

    Hull, Travis D; Bolisetty, Subhashini; DeAlmeida, Angela C; Litovsky, Silvio H; Prabhu, Sumanth D; Agarwal, Anupam; George, James F

    2013-08-01

    The protective effect of heme oxygenase-1 (HO-1) expression in cardiovascular disease has been previously demonstrated using transgenic animal models in which HO-1 is constitutively overexpressed in the heart. However, the temporal requirements for protection by HO-1 induction relative to injury have not been investigated, but are essential to employ HO-1 as a therapeutic strategy in human cardiovascular disease states. Therefore, we generated mice with cardiac-specific, tamoxifen (TAM)-inducible overexpression of a human HO-1 (hHO-1) transgene (myosin heavy chain (MHC)-HO-1 mice) by breeding mice with cardiac-specific expression of a TAM-inducible Cre recombinase (MHC-Cre mice), with mice containing an hHO-1 transgene preceded by a floxed-stop signal. MHC-HO-1 mice overexpress HO-1 mRNA and the enzymatically active protein following TAM administration (40 mg/kg body weight on 2 consecutive days). In MHC-Cre controls, TAM administration leads to severe, acute cardiac toxicity, cardiomyocyte necrosis, and 80% mortality by day 3. This cardiac toxicity is accompanied by a significant increase in inflammatory cells in the heart that are predominantly neutrophils. In MHC-HO-1 mice, HO-1 overexpression ameliorates the depression of cardiac function and high mortality rate observed in MHC-Cre mice following TAM administration and attenuates cardiomyocyte necrosis and neutrophil infiltration. These results highlight that HO-1 induction is sufficient to prevent the depression of cardiac function observed in mice with TAM-inducible Cre recombinase expression by protecting the heart from necrosis and neutrophil infiltration. These findings are important because MHC-Cre mice are widely used in cardiovascular research despite the limitations imposed by Cre-induced cardiac toxicity, and also because inflammation is an important pathological component of many human cardiovascular diseases.

  19. Reduced scytonemin isolated from Nostoc commune suppresses LPS/IFNγ-induced NO production in murine macrophage RAW264 cells by inducing hemeoxygenase-1 expression via the Nrf2/ARE pathway.

    PubMed

    Itoh, Tomohiro; Koketsu, Mamoru; Yokota, Naoto; Touho, Shota; Ando, Masashi; Tsukamasa, Yasuyuki

    2014-07-01

    Reduced scytonemin (R-scy) and scytonemin (Scy) isolated from Nostoc commune exhibit anti-tumor and ultraviolet-absorbing properties. In this study, we examined the effects of R-scy and Scy on the induction of nitric oxide (NO) production by lipopolysaccharide (LPS) and interferon-γ (IFNγ) in murine macrophage RAW264 cells. While both R-scy and Scy suppressed LPS/IFNγ-induced NO production, R-scy exhibited a stronger inhibitory effect compared with Scy. To further elucidate the mechanisms underlying the anti-inflammatory effects of R-scy, we examined the changes in the intracellular signaling cascade after LPS/IFNγ stimulation in cells. In addition to the attenuation of LPS/IFNγ-induced upregulation of the inducible isoform of NO synthase, R-scy decreased the activity of nuclear factor-κB, phosphatidylinositol 3-kinase (PI3K)/Akt, and mitogen-activated protein kinases (MAPKs) after LPS/IFNγ stimulation. R-scy treatment increased heme oxygenase-1 (HO-1) expression by increasing the intracellular levels of reactive oxygen species and thereby activating nuclear factor erythroid 2-related factor 2 (Nrf2) and antioxidant response element signaling. The induction of HO-1 by R-scy was inhibited by pretreatment with an antioxidant, N-acetyl-cysteine (NAC), as well as SB203580 and LY294002, inhibitors for p38 MAPK and PI3K/Akt, respectively. Our findings suggest that the anti-inflammatory effects of R-scy could involve both the ROS/PI3K/Akt and the p38 MAPK/Nrf2 signaling pathways. Copyright © 2014 Elsevier Ltd. All rights reserved.

  20. Placental Dysferlin Expression is Reduced in Severe Preeclampsia

    PubMed Central

    Lang, Christopher T.; Markham, Kara B.; Behrendt, Nicholas J.; Suarez, Adrian A.; Samuels, Philip; Vandre, Dale D.; Robinson, John M.; Ackerman, William E.

    2009-01-01

    Dysferlin (DYSF) and myoferlin (MYOF), members of the ferlin family of membrane proteins, are co-expressed in human placental syncytiotrophoblast (STB). Although the role of these ferlin proteins in the placenta has yet to be established, it has been suggested that DYSF and MYOF may contribute to the stability of the apical STB plasma membrane. The release of STB-derived cellular debris increases in the setting of preeclampsia (PE), suggesting relative destabilization of the hemochorial interface. To test whether PE was associated with alterations in placental expression of DYSF and/or MYOF, a cross-sectional study was performed using specimens of villous placenta collected form women with severe PE (n = 10) and normotensive controls (n = 10). DYSF and MYOF expression were examined using quantitative real-time RT-PCR, immunoblotting, and immunofluorescence labeling of tissue specimens. Placental DYSF expression was 57% lower at the mRNA level (p = 0.03) and 38% lower at the protein level (p = 0.026) in severe PE as compared to normotensive subjects. There were no differences in placental MYOF protein or mRNA expression between these groups. No appreciable changes in the distribution of DYSF or MYOF within placental villli were observed in PE relative to control specimens. We conclude that DYSF expression is reduced in severe PE relative to gestational age-matched controls. As DYSF has a role in membrane repair, these data suggest a role for DYSF in the stability of the apical STB plasma membrane and may account, at least in part, for the increased shedding of microparticles from this membrane in PE. PMID:19545895

  1. Transdermal 17-beta estradiol replacement therapy reduces megakaryocyte GPVI expression.

    PubMed

    Geng, Hongquan; Zhang, Hui; Zhang, Wei; Nieswandt, Bernhard; Bray, Paul F; Leng, Xinghong

    2008-01-01

    The platelet-collagen interaction is a critical early event in arterial thrombus formation, and platelet GPVI is the major activating receptor for collagen. We have previously used a mouse model to demonstrate that the estrogen effects on platelets depend upon the agonist, estrogen formulation and route of administration. In the current study we used a model of transdermal estradiol (E2) administration to ovariectomized mice to address the potential inhibitory effects of E2 on platelet GPVI. Platelet GPVI expression was reduced after transdermal E2 replacement therapy (p reduced GPVI-mediated fibrinogen binding and aggregation were observed in platelets from mice subjected to 9 days or longer of in vivo E2 treatment, but not in platelets from mice treated for 3 days or shorter, suggesting an indirect pathway. Studies with mouse bone marrow revealed that E2 replacement in ovariectomized mice reduces megakaryocyte GPVI expression. This data suggest that transdermal E2 is able to affect centrally on megakaryocyte GPVI to regulate platelet GPVI and function.

  2. Salvianolic acid B protects against acetaminophen hepatotoxicity by inducing Nrf2 and phase II detoxification gene expression via activation of the PI3K and PKC signaling pathways.

    PubMed

    Lin, Musen; Zhai, Xiaohan; Wang, Guangzhi; Tian, Xiaofeng; Gao, Dongyan; Shi, Lei; Wu, Hang; Fan, Qing; Peng, Jinyong; Liu, Kexin; Yao, Jihong

    2015-02-01

    Acetaminophen (APAP) is used drugs worldwide for treating pain and fever. However, APAP overdose is the principal cause of acute liver failure in Western countries. Salvianolic acid B (SalB), a major water-soluble compound extracted from Radix Salvia miltiorrhiza, has well-known antioxidant and anti-inflammatory actions. We aimed to evaluate the ability of SalB to protect against APAP-induced acute hepatotoxicity by inducing nuclear factor-erythroid-2-related factor 2 (Nrf2) expression. SalB pretreatment ameliorated acute liver injury caused by APAP, as indicated by blood aspartate transaminase levels and histological findings. Moreover, SalB pretreatment increased the expression of Nrf2, Heme oxygenase-1 (HO-1) and glutamate-l-cysteine ligase catalytic subunit (GCLC). Furthermore, the HO-1 inhibitor zinc protoporphyrin and the GCLC inhibitor buthionine sulfoximine reversed the protective effect of SalB. Additionally, siRNA-mediated depletion of Nrf2 reduced the induction of HO-1 and GCLC by SalB, and SalB pretreatment activated the phosphatidylinositol-3-kinase (PI3K) and protein kinase C (PKC) signaling pathways. Both inhibitors (PI3K and PKC) blocked the protective effect of SalB against APAP-induced cell death, abolishing the SalB-induced Nrf2 activation and decreasing HO-1 and GCLC expression. These results indicated that SalB induces Nrf2, HO-1 and GCLC expression via activation of the PI3K and PKC pathways, thereby protecting against APAP-induced liver injury.

  3. The neoflavonoid latifolin isolated from MeOH extract of Dalbergia odorifera attenuates inflammatory responses by inhibiting NF-κB activation via Nrf2-mediated heme oxygenase-1 expression.

    PubMed

    Lee, Dong-Sung; Kim, Kyoung-Su; Ko, Wonmin; Li, Bin; Keo, Samell; Jeong, Gil-Saeng; Oh, Hyuncheol; Kim, Youn-Chul

    2014-08-01

    In Korea and China, the heartwood of Dalbergia odorifera T. Chen is an important traditional medicine used to treat blood disorders, ischemia, swelling, and epigastric pain. In this study, we investigated the inhibitory effects of latifolin, a major neoflavonoid component isolated from the MeOH extract of D. odorifera, on the inflammatory reaction of thioglycollate-elicited peritoneal macrophages exposed to lipopolysaccharide, with a particular focus on heme oxygenase-1 (HO-1) expression and nuclear factor-κB (NF-κB) signaling. Latifolin significantly inhibited the protein and mRNA expression of inducible nitric oxide synthase and COX-2, reduced NO, prostaglandins E2, tumor necrosis factor-α, and interleukin-1β production in primary murine peritoneal macrophages exposed to lipopolysaccharide. Latifolin also suppressed inhibitor κB-α levels, NF-κB nuclear translocation, and NF-κB DNA-binding activity. Furthermore, latifolin upregulated HO-1 expression via nuclear transcription factor-E2-related factor 2 (Nrf2) nuclear translocation. In addition, using inhibitor tin protoporphyrin IX (SnPP), an inhibitor of HO-1, it was verified that the inhibitory effects of latifolin on the proinflammatory mediators and NF-κB DNA-binding activity were associated with the HO-1 expression. These results suggested that the latifolin-mediated up-regulation of HO-1 expression played a critical role in anti-inflammatory effects in macrophages. This study therefore identified potent therapeutic effects of latifolin, which warrants further investigation as a potential treatment for inflammatory diseases.

  4. Lagerstroemia speciosa L. attenuates apoptosis in isoproterenol-induced cardiotoxic mice by inhibiting oxidative stress: possible role of Nrf2/HO-1.

    PubMed

    Sahu, Bidya Dhar; Kuncha, Madhusudana; Rachamalla, Shyam Sunder; Sistla, Ramakrishna

    2015-01-01

    Myocardial oxidative stress leading to apoptosis and remodeling is the major consequence of ischemic heart disease. In the present study, we investigated the effect of Lagerstroemia speciosa L. leave (LS) extract containing 1 % corosolic acid in the context of cardiovascular disorder by using isoproterenol (ISO)-induced myocardial injury mouse model. Serum was analyzed for specific cardiac injury biomarkers. Cardiac tissue was examined for lipid peroxidation, protein carbonyl content, antioxidant (GSH, GR, GPx, GST, SOD, CAT, NQO1, and HO-1), and apoptosis (cleaved caspase-3, Bax, Bcl-2, p53, and DNA fragmentation) status. Myocardial protein expression of nuclear factor erythroid 2-related factor 2 (Nrf2) in different experimental groups was evaluated. Pathological changes in heart tissue and activities of matrix metalloproteinases (MMPs) were also analyzed. Our results demonstrated that LS pretreatment augmented myocardial antioxidant status and attenuated myocardial oxidative stress. Myocardial apoptosis as well as MMPs activities was significantly prevented by LS pretreatment in ISO-induced mice. In addition, the immunoblot of Nrf2 revealed that LS pretreatment enhanced the nuclear protein expression of Nrf2 when compared to ISO control group. Thus, the overall results indicate that LS has cardioprotective effect and may prevent the myocardial stress by suppressing apoptosis through up-regulation of myocardial antioxidant levels.

  5. Lectin from Abelmoschus esculentus reduces zymosan-induced temporomandibular joint inflammatory hypernociception in rats via heme oxygenase-1 pathway integrity and tnf-α and il-1β suppression.

    PubMed

    Freitas, Raul Sousa; do Val, Danielle Rocha; Fernandes, Maria Ester Frota; Gomes, Francisco Isaac Fernandes; de Lacerda, José Thalles Jocelino Gomes; SantiGadelha, Tatiane; de Almeida Gadelha, Carlos Alberto; de Paulo Teixeira Pinto, Vicente; Cristino-Filho, Gerardo; Pereira, Karuza Maria Alves; de Castro Brito, Gerly Anne; Bezerra, Mirna Marques; Chaves, Hellíada Vasconcelos

    2016-09-01

    Temporomandibular joint (TMJ) disorders show inflammatory components, heavily impacting on quality of life. Abelmoschus esculentus is largely cultivated in Northeastern Brazil for medicinal purposes, having it shown anti-inflammatory activity. We evaluated A. esculentus lectin (AEL) efficacy in reducing zymosan-induced temporomandibular joint inflammatory hypernociception in rats along with the mechanism of action through which it exerts anti-inflammatory activity. Animals were pre-treated with AEL (0.01, 0.1 or 1mg/kg) before zymosan (Zy) injection in the TMJ to determine anti-inflammatory activity. To analyse the possible effect of the hemeoxygenase-1 (HO-1) and the nitric oxide (NO) pathways on AEL efficacy, animals were pre-treated with ZnPP-IX (3mg/kg), a specific HO-1 inhibitor, or aminoguanidine (30mg/kg), a selective iNOS inhibitor, before AEL administration. Von Frey test evaluated inflammatory hypernociception, synovial fluid collection was performed to determine leukocyte counting and myeloperoxidase (MPO) activity 6h after Zy injection, and Evans Blue extravasation determined vascular permeability. TMJ tissue was collected for histopathological analysis (H&E) and immunohistochemistry (TNF-α, IL-1β, HO-1). In addition, TMJ tissue and trigeminal ganglion collection was performed for TNF-α and IL-1β dosage (ELISA). AEL increased inflammatory nociceptive threshold, reduced leukocyte influx along with MPO activity, leukocyte influx into the synovial membrane, and Evans Blue extravasation. It promoted HO-1 overexpression whilst decreased TNF-α and IL-1β expression in the TMJ tissue. AEL reduced TNF-α and IL-1β levels in TMJ tissue and trigeminal ganglion. AEL effects, however, were not observed in the presence of ZnPP-IX. These findings suggest that AEL efficacy depends on TNF-α/IL-1β inhibition and HO-1 pathway integrity.

  6. 4,7-Dimethoxy-5-methyl-1,3-benzodioxole from Antrodia camphorata inhibits LPS-induced inflammation via suppression of NF-κB and induction HO-1 in RAW264.7 cells.

    PubMed

    Shie, Pei-Hsin; Wang, Sheng-Yang; Lay, Horng-Liang; Huang, Guan-Jhong

    2016-02-01

    Several benzenoid compounds have been isolated from Antrodia camphorata are known to have excellent anti-inflammatory activity. In this study, we investigated the anti-inflammatory potential of 4,7-dimethoxy-5-methyl-1,3-benzodioxole (DMB), one of the major benzenoid compounds isolated from the mycelia of A. camphorata. DMB significantly decreased the LPS-induced production of pro-inflammatory molecules, such as nitric oxide (NO), interleukin-1β (IL-1β), and tumor necrosis factor-α (TNF-α) in RAW264.7 cells. In addition, DMB suppressed the protein levels of inducible nitric oxide synthase (iNOS) and cyclooxygenase-2 (COX-2) in a dose dependent manner. Moreover, DMB significantly suppressed LPS-induced nuclear translocation of nuclear factor-κB (NF-κB), and this inhibition was found to be associated with decreases in the phosphorylation and degradation of its inhibitor, inhibitory κB-α (IκB-α). Moreover, we found that DMB markedly inhibited the protein expression level of Toll-like receptor 4 (TLR4). Furthermore, treatment with DMB significantly increased hemoxygenase-1 (HO-1) expression in RAW264.7 cells, which is further confirmed by hemin, a HO-1 enhancer, significantly attenuated the LPS-induced pro-inflammatory molecules and iNOS and TLR4 protein levels. Taken together, the present study suggests that DMB may have therapeutic potential for the treatment of inflammatory diseases.

  7. Ferulic Acid Protects Against Lead Acetate-Induced Inhibition of Neurite Outgrowth by Upregulating HO-1 in PC12 Cells: Involvement of ERK1/2-Nrf2 Pathway.

    PubMed

    Yu, Chun-Lei; Zhao, Xue-Mei; Niu, Ying-Cai

    2016-11-01

    Prenatal lead exposure is associated with poor intellectual development in children. However, there are few breakthroughs in therapeutic intervention of developmental lead neurotoxicity. The aim of this study is to evaluate the hypothesis that ferulic acid-mediated promotion of neurite outgrowth following lead exposure might mainly result from its antioxidant capability by extracellular signal-regulated kinases 1 and 2 (ERK1/2) activation of nuclear factor erythroid 2-related factor 2 (Nrf2). Exposure of PC12 cells to lead acetate inhibits neurite outgrowth and causes oxidative stress as measured by ROS, LPO, GSH/GSSG, and NAD(+)/NADH. FA treatment significantly, although not completely, protected the cells against lead acetate-induced neurite outgrowth inhibition. The effects of FA could be blocked by PD98059, zinc protoporphyrin (Zn-PP), and Nrf2 shRNA. In addition, FA induced heme oxygenase 1 (HO-1) gene expression, enhanced antioxidant response element (ARE) promoter activity, promoted ERK1/2 phosphorylation, and Nrf2 translocation in PC12 cells exposed to lead acetate. ERK1/2 locate upstream of Nrf2 and regulate Nrf2-dependent HO-1 expression in antioxidative effects of FA. Our results suggest that FA is a promising candidate for treatment of developmental lead neurotoxicity. These promising findings warrant future investigation evaluating the FA-mediated potentiation of neurite outgrowth following lead exposure in vivo.

  8. Quercetin Attenuates Manganese-Induced Neuroinflammation by Alleviating Oxidative Stress through Regulation of Apoptosis, iNOS/NF-κB and HO-1/Nrf2 Pathways.

    PubMed

    Bahar, Entaz; Kim, Ji-Ye; Yoon, Hyonok

    2017-09-15

    Manganese (Mn) is an essential trace element required for the development of human body and acts as an enzyme co-factor or activator for various reactions of metabolism. While essential in trace amounts, excessive Mn exposure can result in toxic accumulations in human brain tissue and resulting extrapyramidal symptoms called manganism similar to idiopathic Parkinson's disease (PD). Quercetin (QCT) has been demonstrated to play an important role in altering the progression of neurodegenerative diseases by protecting against oxidative stress. This study aimed to investigate the protective effect of QCT on Mn-induced neurotoxicity and the underlying mechanism in SK-N-MC human neuroblastoma cell line and Sprague-Dawley (SD) male rat brain. The results showed that Mn treatment significantly decreased the cell viability of SK-N-MC cell and increased the release of lactate dehydrogenase (LDH), which was attenuated by QCT pretreatment at 10 and 20 µg/mL. Compared to the Mn alone group, QCT pretreatment significantly attenuated Mn-induced oxidative stress, mitochondrial dysfunction and apoptosis. Meanwhile, QCT pretreatment markedly downregulated the NF-κB but upregulated the heme oxygenase-1 (HO-1) and Nrf2 proteins, compared to the Mn alone group. Our result showed the beneficial effect of QCT on hematological parameters against Mn in rat brain. QCT decrease reactive oxygen species (ROS) and protein carbonyl levels and increased Cu/Zn-superoxide dismutase (SOD) activity induced in Mn-treated rats. QCT administration caused a significant reduction in the Mn-induced neuroinflammation by inhibiting the expression of inflammatory markers such as tumor necrosis factor-α (TNF-α), interleukin-1β (IL-1β), interleukin-6 (IL-6) cyclooxygenase-2 (COX-2) and inducible nitric oxide synthase (iNOS). QCT lowered the Mn elevated levels of various downstream apoptotic markers, including Bax, cytochrome c, cleaved caspase-3 and polymerase-1 (PARP-1), while QCT treatment upregulated

  9. Grape seed proanthocyanidins protects against cadmium induced oxidative pancreatitis in rats by attenuating oxidative stress, inflammation and apoptosis via Nrf-2/HO-1 signaling.

    PubMed

    Bashir, Nazima; Manoharan, Vaihundam; Miltonprabu, Selvaraj

    2016-06-01

    The present study has been designed and carried out to explore the role of grape seed proanthocyanidins (GSP) in the pancreas of cadmium (Cd)-induced cellular oxidative stress-mediated toxicity in rats. Four groups of healthy rats were given oral doses of Cd (5-mg/kg BW) and to identify the possible mechanism of action of GSP 100-mg/kg BW was selected and was given 90 min before Cd intoxication. The causative molecular and cellular mechanism of Cd was determined using various biochemical assays, histology, western blotting and ELISA. Cd intoxication revealed increased levels of proinflammatory cytokines (TNF-α, IL1β and IFN-γ), reduced levels of cellular defense proteins (Nrf-2 and HO-1) and glucose transporter (GLUT-2 and GLUT-4) along with the enhanced levels of signaling molecules of apoptosis (cleaved Caspase-12/9/8/3) in the pancreas of Cd-intoxicated rats. Results suggested that the treatment with GSP reduced blood glucose level, increased plasma insulin and mitigated oxidative stress-related markers. GSP protects pancreatic tissue by attenuated inflammatory responses and inhibited apoptosis. This uniqueness and absence of any detectable adverse effect of GSP proposes the possibility of using it as an effective protector in the oxidative stress-mediated pancreatic dysfunction in rats.

  10. Sulforaphane exerts its anti-inflammatory effect against amyloid-β peptide via STAT-1 dephosphorylation and activation of Nrf2/HO-1 cascade in human THP-1 macrophages.

    PubMed

    An, Ye Won; Jhang, Kyoung A; Woo, So-Youn; Kang, Jihee Lee; Chong, Young Hae

    2016-02-01

    Alzheimer's disease (AD) is the most common neurodegenerative disorder worldwide, accounting for most cases of dementia in elderly individuals, and effective therapies are still lacking. This study was designed to investigate the anti-inflammatory properties of sulforaphane against Aβ1-42 monomers in human THP-1 microglia-like cells. The results showed that sulforaphane preferentially inhibited cathepsin B- and caspase-1-dependent NLRP3 inflammasome activation induced by mostly Aβ1-42 monomers, an effect that potently reduced excessive secretion of the proinflammatory cytokine interleukin-1β (IL-1β). Subsequent mechanistic studies revealed that sulforaphane mitigated the activation of signal transducer and activator of transcription-1 induced by Aβ1-42 monomers. Sulforaphane also increased nuclear factor erythroid 2-related factor 2 (Nrf2) nuclear translocation, which was followed by upregulation of heme-oxygenase 1 (HO-1). The anti-inflammatory effect of sulforaphane on Aβ1-42-induced IL-1β production was diminished by small interfering RNA-mediated knockdown of Nrf2 or HO-1. Moreover, sulforaphane significantly attenuated the levels of microRNA-146a, which is selectively upregulated in the temporal cortex and hippocampus of AD brains. The aforementioned effects of sulforaphane were replicated by the tyrosine kinase inhibitor, herbimycin A, and Nrf2 activator. These results indicate that signal transducer and activator of transcription-1 dephosphorylation, HO-1 and its upstream effector, Nrf2, play a pivotal role in triggering an anti-inflammatory signaling cascade of sulforaphane that results in decreases of IL-1β release and microRNA-146a production in Aβ1-42-stimulated human microglia-like cells. These findings suggest that the phytochemical sulforaphane has a potential application in AD therapeutics. Copyright © 2016 Elsevier Inc. All rights reserved.

  11. Astaxanthin reduces matrix metalloproteinase expression in human chondrocytes.

    PubMed

    Chen, Wei-Ping; Xiong, Yan; Shi, Yong-Xiang; Hu, Peng-Fei; Bao, Jia-Peng; Wu, Li-Dong

    2014-03-01

    Astaxanthin is a red carotenoid pigment which exerts multiple biological activities. However, little is known about the effects of astaxanthin on matrix metalloproteinases (MMPs) in OA. The present study investigated the effects of astaxanthin on MMPs in human chondrocytes. Human chondrocytes were pretreated with astaxanthin at 1, 10 or 50μM, then, cells were stimulated with IL-1β (10ng/ml) for 24h. MMP-1, MMP-3 and MMP-13 were observed. We found that astaxanthin reduced the expression of MMP-1, MMP-3 and MMP-13 as well as the phosphorylation of two mitogen-activated protein kinases (MAPK) (p38 and ERK1/2) in IL-1β-stimulated chondrocytes. Astaxanthin also blocked the IκB-α degradation. These results suggest that astaxanthin may be beneficial in the treatment of OA. Copyright © 2013 Elsevier B.V. All rights reserved.

  12. Expressive writing as a brief intervention for reducing drinking intentions.

    PubMed

    Young, Chelsie M; Rodriguez, Lindsey M; Neighbors, Clayton

    2013-12-01

    The present study examined the effectiveness of expressive writing in reducing drinking behavior. We expected that students prompted to write about negative drinking experiences would show greater decreases in future drinking intentions compared to the neutral and the positive writing conditions. We also expected that decreases in drinking intentions following the writing prompts might differ based on current drinking and AUDIT scores. Participants included 200 (76% female) undergraduates who completed measures of their current drinking behavior. They were then randomly assigned to either write about: a time when they had a lot to drink that was a good time (Positive); a time when they had a lot to drink that was a bad time (Negative); or their first day of college (Neutral), followed by measures assessing intended drinking over the next three months. Results revealed that participants intended to drink significantly fewer drinks per week and engage in marginally fewer heavy drinking occasions after writing about a negative drinking occasion when compared to control. Interactions provided mixed findings suggesting that writing about a positive event was associated with higher drinking intentions for heavier drinkers. Writing about a negative event was associated with higher intentions among heavier drinkers, but lower intentions among those with higher AUDIT scores. This research builds on previous expressive writing interventions by applying this technique to undergraduate drinkers. Preliminary results provide some support for this innovative strategy but also suggest the need for further refinement, especially with heavier drinkers. © 2013.

  13. Expressive Writing as a Brief Intervention for Reducing Drinking Intentions

    PubMed Central

    Young, Chelsie M.; Rodriguez, Lindsey M.; Neighbors, Clayton

    2013-01-01

    The present study examined the effectiveness of expressive writing in reducing drinking behavior. We expected that students prompted to write about negative drinking experiences would show greater decreases in future drinking intentions compared to the neutral and the positive writing conditions. We also expected that decreases in drinking intentions following the writing prompts might differ based on current drinking and AUDIT scores. Participants included 200 (76% female) undergraduates who completed measures of their current drinking behavior. They were then randomly assigned to either write about: a time when they had a lot to drink that was a good time (Positive); a time when they had a lot to drink that was a bad time (Negative); or their first day of college (Neutral), followed by measures assessing intended drinking over the next three months. Results revealed that participants intended to drink significantly fewer drinks per week and engage in marginally fewer heavy drinking occasions after writing about a negative drinking occasion when compared to control. Interactions provided mixed findings suggesting that writing about a positive event was associated with higher drinking intentions for heavier drinkers. Writing about a negative event was associated with higher intentions among heavier drinkers, but lower intentions among those with higher AUDIT scores. This research builds on previous expressive writing interventions by applying this technique to undergraduate drinkers. Preliminary results provide some support for this innovative strategy but also suggest the need for further refinement, especially with heavier drinkers. PMID:24064189

  14. Reduced expression of TANGO in colon and hepatocellular carcinomas.

    PubMed

    Arndt, Stephanie; Bosserhoff, Anja K

    2007-10-01

    The TANGO gene was originally identified as a new family member of the MIA gene family. The gene codes for a 14-kDa protein of so far unknown function. Recently, we identified TANGO as a tumor suppressor in malignant melanoma. In this study we evaluated TANGO transcription in different colon and hepatocellular carcinoma cell lines and tissue samples, to analyze whether loss of TANGO expression is a more general process in tumor development. TANGO was down-regulated or lost in all hepatocellular and colon cell lines compared to primary human hepatocytes or normal colon epithelial cells, respectively, and in most of the tumor samples compared to non-tumorous tissue. These results were confirmed in situ by immunohistochemistry on paraffin-embedded sections of colon and hepatocellular tumors. Functional assays with exogenous TANGO treatment of colon and hepatoma cell lines revealed reduced motility and invasion capacity. Our studies present for the first time the down-regulation of TANGO in colon and hepatocellular carcinoma and provide the first indications for a tumor suppressor role of the TANGO gene in human colon and hepatocellular carcinoma. Thus, functional relevant loss of TANGO expression may contribute to general tumor development and progression, and may provide a new target for therapeutic strategies.

  15. Low concentration of 4-hydroxy hexenal increases heme oxygenase-1 expression through activation of Nrf2 and antioxidative activity in vascular endothelial cells

    SciTech Connect

    Ishikado, Atsushi; Nishio, Yoshihiko; Morino, Katsutaro; Ugi, Satoshi; Kondo, Hajime; Makino, Taketoshi; Kashiwagi, Atsunori; Maegawa, Hiroshi

    2010-11-05

    Research highlights: {yields} Low doses of 4-HHE and 4-HNE induce HO-1 expression in vascular endothelial cells. {yields} 4-HHE and 4-HNE increase the intranuclear expression and DNA binding of Nrf2. {yields} 4-HHE and 4-HNE-induced HO-1 expression depends on the activation of Nrf2. {yields} Pretreatment with 4-HHE and 4-HNE prevents oxidative stress-induced cytotoxicity. -- Abstract: Large-scale clinical studies have shown that n-3 polyunsaturated fatty acids (n-3 PUFAs) such as eicosapentaenoic and docosahexaenoic acids reduce cardiovascular events without improving classical risk factors for atherosclerosis. Recent studies have proposed that direct actions of n-3 PUFAs themselves, or of their enzymatic metabolites, have antioxidative and anti-inflammatory effects on vascular cells. Although a recent study showed that plasma 4-hydroxy hexenal (4-HHE), a peroxidation product of n-3 PUFA, increased after supplementation of docosahexaenoic acid, the antiatherogenic effects of 4-HHE in vascular cells remain unclear. In the present study, we tested the hypothesis that 4-HHE induces the antioxidative enzyme heme oxygenase-1 (HO-1) through activation of nuclear factor erythroid 2-related factor 2 (Nrf2), a master regulatory transcriptional factor, and prevents oxidative stress-induced cytotoxicity in vascular endothelial cells. This mechanism could partly explain the cardioprotective effects of n-3 PUFAs. Human umbilical vein endothelial cells were stimulated with 1-10 {mu}M 4-HHE or 4-hydroxy nonenal (4-HNE), a peroxidation product of n-6 PUFAs. Both 4-HHE and 4-HNE dose-dependently increased HO-1 mRNA and protein expression, and intranuclear expression and DNA binding of Nrf2 at 5 {mu}M. Small interfering RNA for Nrf2 significantly reduced 4-HHE- or 4-HNE-induced HO-1 mRNA and protein expression. Furthermore, pretreatment with 4-HHE or 4-HNE prevented tert-butyl hydroperoxide-induced cytotoxicity. In conclusion, 4-HHE, a peroxidation product of n-3 PUFAs, stimulated

  16. The activation of HO-1/Nrf-2 contributes to the protective effects of diallyl disulfide (DADS) against ethanol-induced oxidative stress.

    PubMed

    Zeng, Tao; Zhang, Cui-Li; Song, Fu-Yong; Zhao, Xiu-Lan; Yu, Li-Hua; Zhu, Zhen-Ping; Xie, Ke-Qin

    2013-10-01

    Diallyl disulfide (DADS) is a garlic-derived organosulfur compound. The current study is designed to evaluate the protective effects of DADS against ethanol-induced oxidative stress, and to explore the underlying mechanisms by examining the HO-1/Nrf-2 pathway. We investigated whether or not DADS could activate the HO-1 in normal human liver cell LO2, and then evaluated the protective effects of DADS against ethanol-induced damage in LO2 cells and in acute ethanol-intoxicated mice. The biochemical parameters were measured using commercial kits. HO-1 mRNA level was determined by RT-PCR. Histopathology and immunofluorescence assay were performed with routine methods. Protein levels were measured by western blot. DADS significantly increased the mRNA and protein levels of HO-1, stimulated the nuclear translocation of Nrf-2 and increased the phosphorylation of MAPK in LO2 cells. The nuclear translocation of Nrf-2 was abrogated by MAPK inhibitors. DADS significantly suppressed ethanol-induced elevation of lactate dehydrogenase (LDH) and aspartate transaminase (AST) activities, decrease of glutathione (GSH) level, increase of malondialdehyde (MDA) levels, and apoptosis of LO2 cells, which were all blocked by ZnPPIX. In mice, DADS effectively suppressed acute ethanol-induced elevation of aminotransferase activities, and improved liver histopathological changes, which might be associated with HO-1 activation. These results demonstrate that DADS could induce the activation of HO-1/Nrf-2 pathway, which may contribute to the protective effects of DADS against ethanol-induced liver injury. DADS may be beneficial for the prevention and treatment of ALD due to significant activation of HO-1/Nrf-2 pathway. © 2013.

  17. Characterization of the antioxidant properties of pentaerithrityl tetranitrate (PETN)-induction of the intrinsic antioxidative system heme oxygenase-1 (HO-1).

    PubMed

    Daiber, Andreas; Münzel, Thomas

    2010-01-01

    Organic nitrates are among the oldest and yet most commonly employed drugs in the chronic therapy of coronary artery disease and congestive heart failure. While they have long been used in clinical practise, our understanding of their mechanism of action and of their side effects remains incomplete. To date, the most commonly employed nitrates are isosorbide mononitrate (ISMN), isosorbide dinitrate (ISDN), and nitroglycerin (GTN). Another nitrate, pentaerithrityl tetranitrate (PETN), has long been employed in eastern European countries and is currently being reintroduced also in western countries. So far, PETN is the only organic nitrate in clinical use, which is devoid of induction of oxidative stress and related side-effects such as endothelial dysfunction and nitrate tolerance. Some of these effects are related to special pharmacokinetics of PETN, but upon chronic administration, PETN also induces antioxidative pathways at the genomic level, resulting in increased expression of heme oxygenase-1 (HO-1) and ferritin, both possessing highly protective properties. There is good experimental evidence that at least part of the beneficial profile of long-term PETN treatment is based on activation of the heme oxygenase-1/ferritin system.

  18. Grape seed extract inhibits VEGF expression via reducing HIF-1alpha protein expression.

    PubMed

    Lu, Jianming; Zhang, Keqiang; Chen, Shiuan; Wen, Wei

    2009-04-01

    Grape seed extract (GSE) is a widely consumed dietary supplement that has antitumor activity. Here, we have investigated the inhibitory effect of GSE on the expression of vascular endothelial growth factor (VEGF) and the mechanism underlying this action. We found that GSE inhibited VEGF messenger RNA (mRNA) and protein expression in U251 human glioma cells and MDA-MB-231 human breast cancer cells. GSE inhibited transcriptional activation of the VEGF gene through reducing protein but not mRNA expression of hypoxia-inducible factor (HIF) 1alpha. The inhibitory effect of GSE on HIF-1alpha expression was mainly through inhibiting HIF-1alpha protein synthesis rather than promoting protein degradation. Consistent with this result, GSE-suppressed phosphorylation of several important components involved in HIF-1alpha protein synthesis, such as Akt, S6 kinase and S6 protein. Furthermore, in the MDA-MB-231 tumor, we found that GSE treatment inhibited the expression of VEGF and HIF-1alpha and the phosphorylation of S6 kinase without altering the subcellular localization of HIF-1alpha, correlating with reduced vessel density and tumor size. Depletion of polyphenol with polyvinylpyrrolidone abolished the inhibitory activity of GSE, suggesting a water-soluble fraction of polyphenol in GSE is responsible for the inhibitory activity. Taken together, our results indicate that GSE inhibits VEGF expression by reducing HIF-1alpha protein synthesis through blocking Akt activation. This finding provides new insight into the mechanisms of anticancer activity of GSE and reveals a novel molecular mechanism underlying the antiangiogenic action of GSE.

  19. Grape seed extract inhibits VEGF expression via reducing HIF-1α protein expression

    PubMed Central

    Lu, Jianming; Zhang, Keqiang; Chen, Shiuan; Wen, Wei

    2009-01-01

    Grape seed extract (GSE) is a widely consumed dietary supplement that has antitumor activity. Here, we have investigated the inhibitory effect of GSE on the expression of vascular endothelial growth factor (VEGF) and the mechanism underlying this action. We found that GSE inhibited VEGF messenger RNA (mRNA) and protein expression in U251 human glioma cells and MDA-MB-231 human breast cancer cells. GSE inhibited transcriptional activation of the VEGF gene through reducing protein but not mRNA expression of hypoxia-inducible factor (HIF) 1α. The inhibitory effect of GSE on HIF-1α expression was mainly through inhibiting HIF-1α protein synthesis rather than promoting protein degradation. Consistent with this result, GSE-suppressed phosphorylation of several important components involved in HIF-1α protein synthesis, such as Akt, S6 kinase and S6 protein. Furthermore, in the MDA-MB-231 tumor, we found that GSE treatment inhibited the expression of VEGF and HIF-1α and the phosphorylation of S6 kinase without altering the subcellular localization of HIF-1α, correlating with reduced vessel density and tumor size. Depletion of polyphenol with polyvinylpyrrolidone abolished the inhibitory activity of GSE, suggesting a water-soluble fraction of polyphenol in GSE is responsible for the inhibitory activity. Taken together, our results indicate that GSE inhibits VEGF expression by reducing HIF-1α protein synthesis through blocking Akt activation. This finding provides new insight into the mechanisms of anticancer activity of GSE and reveals a novel molecular mechanism underlying the antiangiogenic action of GSE. PMID:19131542

  20. HO-1/EBP interaction alleviates cholesterol-induced hypoxia through the activation of the AKT and Nrf2/mTOR pathways and inhibition of carbohydrate metabolism in cardiomyocytes.

    PubMed

    Jin, Xiaohan; Xu, Zhongwei; Cao, Jin; Yan, Rui; Xu, Ruicheng; Ran, Ruiqiong; Ma, Yongqiang; Cai, Wei; Fan, Rong; Zhang, Yan; Zhou, Xin; Li, Yuming

    2017-06-01

    Heme oxygenase-1 (HO-1) is an inducible and cytoprotective enzyme that provides a defense against oxidant damage. The present study screened 137 HO-1/interacting proteins using a profound co-immunoprecipitation (Co-IP) coupled with proteomics, and profiled the global HO-1 interactome network, including oxidative phosphorylation, endoplasmic reticulum and transport vesicle functions. Among these molecules, we observed that a novel interactor, emopamil-binding protein (EBP), is closely related to the cholesterol metabolism process. This study demonstrated that cholesterol promotes excessive oxidative stress and alters the energy metabolism in cardiomyocytes, further triggering numerous cardiovascular diseases. We observed that cholesterol caused the overexpression of EBP and HO-1 by the activation of AKT and Nrf2/mTOR pathways. In addition, HO-1 and EBP performed a myocardial protective function. The overexpression of HO-1 alleviated the cholesterol-induced excessive oxidative stress status by inhibition of the carbohydrate metabolism. Notably, we also confirmed that the loss of partial HO-1 activity aggravated the oxidative damage and cardiac systolic function induced by a high-fat diet in HO-1 heterozygous (HO-1+/-) mice. These findings indicate that the HO-1/EBP interaction plays a protective role in alleviating the dysfunction of oxidative stress and cardiac systolic function induced by cholesterol stimulation.

  1. Tryptanthrin Suppresses the Activation of the LPS-Treated BV2 Microglial Cell Line via Nrf2/HO-1 Antioxidant Signaling

    PubMed Central

    Kwon, Young-Won; Cheon, So Yeong; Park, Sung Yun; Song, Juhyun; Lee, Ju-Hee

    2017-01-01

    Microglia are the resident macrophages in the central nervous system (CNS) and play essential roles in neuronal homeostasis and neuroinflammatory pathologies. Recently, microglia have been shown to contribute decisively to neuropathologic processes after ischemic stroke. Furthermore, natural compounds have been reported to attenuate inflammation and pathologies associated with neuroinflammation. Tryptanthrin (indolo[2,1-b]quinazoline-6,12-dione) is a phytoalkaloid with known anti-inflammatory effects in cells. In present study, the authors confirmed middle cerebral artery occlusion (MCAO) injury triggers the activation of microglia in brain tissue, and investigated whether tryptanthrin influences the function of mouse murine BV2 microglia under LPS-induced inflammatory conditions in vitro. It was found tryptanthrin protected BV2 microglia cells against LPS-induced inflammation and inhibited the induction of M1 phenotype microglia under inflammatory conditions. In addition, tryptanthrin reduced the production of pro-inflammatory cytokines in BV2 microglia cells via nuclear factor erythroid 2-related factor 2 (Nrf2)/heme oxygenase 1 (HO-1) signaling and NF-κB signaling. The authors suggest that tryptanthrin might alleviate the progress of neuropathologies by controlling microglial functions under neuroinflammatory conditions. PMID:28210215

  2. Inhibition of microRNA-153 protects neurons against ischemia/reperfusion injury in an oxygen-glucose deprivation and reoxygenation cellular model by regulating Nrf2/HO-1 signaling.

    PubMed

    Ji, Qiong; Gao, Jianbo; Zheng, Yan; Liu, Xueli; Zhou, Qiangqiang; Shi, Canxia; Yao, Meng; Chen, Xia

    2017-02-28

    MicroRNAs are emerging as critical regulators in cerebral ischemia/reperfusion injury; however, their exact roles remain poorly understood. miR-153 is reported to be a neuron-related miRNA involved in neuroprotection. In this study, we aimed to investigate the precise role of miR-153 in regulating neuron survival during cerebral ischemia/reperfusion injury using an oxygen-glucose deprivation and reoxygenation (OGD/R) cellular model. We found that miR-153 was significantly upregulated in neurons subjected to OGD/R treatment. Inhibition of miR-153 significantly attenuated OGD/R-induced injury and oxidative stress in neurons. Nuclear factor erythroid 2-related factor 2 (Nrf2) was identified as a target gene of miR-153. Inhibition of miR-153 significantly promoted the expression of Nrf2 and heme oxygenase-1 (HO-1). However, silencing of Nrf2 significantly blocked the protective effects of miR-153 inhibition. Our study indicates that the inhibition of miR-153 protects neurons against OGD/R-induced injury by regulating Nrf2/HO-1 signaling and suggests a potential therapeutic target for cerebral ischemia/reperfusion injury.

  3. Expression of heme oxygenase-1 in human vascular cells is regulated by peroxisome proliferator-activated receptors.

    PubMed

    Krönke, Gerhard; Kadl, Alexandra; Ikonomu, Elena; Blüml, Stefan; Fürnkranz, Alexander; Sarembock, Ian J; Bochkov, Valery N; Exner, Markus; Binder, Bernd R; Leitinger, Norbert

    2007-06-01

    Activation of peroxisome proliferator-activated receptors (PPARs) by lipid-lowering fibrates and insulin-sensitizing thiazolidinediones inhibits vascular inflammation, atherosclerosis, and restenosis. Here we investigate if the vasculoprotective and anti-inflammatory enzyme heme oxygenase-1 (HO-1) is regulated by PPAR ligands in vascular cells. We show that treatment of human vascular endothelial and smooth muscle cells with PPAR ligands leads to expression of HO-1. Analysis of the human HO-1 promoter in transient transfection experiments together with mutational analysis and gel shift assays revealed a direct transcriptional regulation of HO-1 by PPARalpha and PPARgamma via 2 PPAR responsive elements. We demonstrate that a clinically relevant polymorphism within the HO-1 promoter critically influences its transcriptional activation by both PPAR isoforms. Moreover, inhibition of HO-1 enzymatic activity reversed PPAR ligand-mediated inhibition of cell proliferation and expression of cyclooxygenase-2 in vascular smooth muscle cells. We demonstrate that HO-1 expression is transcriptionally regulated by PPARalpha and PPARgamma, indicating a mechanism of anti-inflammatory and antiproliferative action of PPAR ligands via upregulation of HO-1. Identification of HO-1 as a target gene for PPARs provides new strategies for therapy of cardiovascular diseases and a rationale for the use of PPAR ligands in the treatment of other chronic inflammatory diseases.

  4. Morin downregulates nitric oxide and prostaglandin E2 production in LPS-stimulated BV2 microglial cells by suppressing NF-κB activity and activating HO-1 induction.

    PubMed

    Dilshara, Matharage Gayani; Jayasooriya, Rajapaksha Gedara Prasad Tharanga; Lee, Seungheon; Choi, Yung Hyun; Kim, Gi-Young

    2016-06-01

    Morin possesses anti-inflammatory activity against septic shock and allergic responses, and prevents acute liver damage. However, the biological mechanism of action of morin in neuroinflammation remains largely unknown. Therefore, the present study investigated whether morin has the ability to attenuate expression of proinflammatory mediators such as nitric oxide (NO) and prostaglandin E2 (PGE2) in lipopolysaccharide (LPS)-stimulated BV2 microglial cells. Morin inhibited the expression of LPS-induced proinflammatory mediators such as NO and PGE2, without any cytotoxic effects. Furthermore, LPS-induced inducible NO synthase (iNOS) and cyclooxygenase-2 (COX-2) were inhibited both at the mRNA and protein levels in response to morin. Morin also attenuated LPS-induced DNA-binding activity of nuclear transcription factor-κB (NF-κB) and its promoter activity. Pyrrolidine dithiocarbamate (PDTC), a specific NF-κB inhibitor, downregulated the expression of LPS-induced iNOS and COX-2, which suggests that morin-mediated NF-κB inhibition is the main signaling pathway responsible for the inhibition of iNOS and COX-2 expression. Additionally, morin increased induction of heme oxygenase-1 (HO-1) activity, leading to the suppression of NO and PGE2 production. Our results indicate that morin downregulates the expression of proinflammatory genes, such as iNOS and COX-2, involved in the synthesis of NO and PGE2 in LPS-stimulated BV2 microglial cells by suppressing NF-κB activity and activation of HO-1. Taken together, the findings of the present study suggest that morin may have potential as a therapeutic for the prevention of neuroinflammation. Copyright © 2016 Elsevier B.V. All rights reserved.

  5. Manganese [III] Tetrakis [5,10,15,20]-Benzoic Acid Porphyrin Reduces Adiposity and Improves Insulin Action in Mice with Pre-Existing Obesity.

    PubMed

    Brestoff, Jonathan R; Brodsky, Tim; Sosinsky, Alexandra Z; McLoughlin, Ryan; Stansky, Elena; Fussell, Leila; Sheppard, Aaron; DiSanto-Rose, Maria; Kershaw, Erin E; Reynolds, Thomas H

    2015-01-01

    The superoxide dismutase mimetic manganese [III] tetrakis [5,10,15,20]-benzoic acid porphyrin (MnTBAP) is a potent antioxidant compound that has been shown to limit weight gain during short-term high fat feeding without preventing insulin resistance. However, whether MnTBAP has therapeutic potential to treat pre-existing obesity and insulin resistance remains unknown. To investigate this, mice were treated with MnTBAP or vehicle during the last five weeks of a 24-week high fat diet (HFD) regimen. MnTBAP treatment significantly decreased body weight and reduced white adipose tissue (WAT) mass in mice fed a HFD and a low fat diet (LFD). The reduction in adiposity was associated with decreased caloric intake without significantly altering energy expenditure, indicating that MnTBAP decreases adiposity in part by modulating energy balance. MnTBAP treatment also improved insulin action in HFD-fed mice, a physiologic response that was associated with increased protein kinase B (PKB) phosphorylation and expression in muscle and WAT. Since MnTBAP is a metalloporphyrin molecule, we hypothesized that its ability to promote weight loss and improve insulin sensitivity was regulated by heme oxygenase-1 (HO-1), in a similar fashion as cobalt protoporphyrins. Despite MnTBAP treatment increasing HO-1 expression, administration of the potent HO-1 inhibitor tin mesoporphyrin (SnMP) did not block the ability of MnTBAP to alter caloric intake, adiposity, or insulin action, suggesting that MnTBAP influences these metabolic processes independent of HO-1. These data demonstrate that MnTBAP can ameliorate pre-existing obesity and improve insulin action by reducing caloric intake and increasing PKB phosphorylation and expression.

  6. Carnosic Acid Protects Mitochondria of Human Neuroblastoma SH-SY5Y Cells Exposed to Paraquat Through Activation of the Nrf2/HO-1Axis.

    PubMed

    de Oliveira, Marcos Roberto; Peres, Alessandra; Ferreira, Gustavo Costa; Schuck, Patrícia Fernanda; Gama, Clarissa S; Bosco, Simone Morelo Dal

    2016-09-29

    Carnosic acid (CA; C20H28O4), which is also called salvin, is a major phenolic diterpene found in Rosmarinus officinalis L. and exhibits antioxidant, anti-inflammatory, and antiproliferative properties. CA activates the nuclear factor erythroid 2-related factor 2 (Nrf2) transcription factor, leading to the upregulation of antioxidant and phase II detoxification enzymes, such as heme oxygenase-1 (HO-1), glutathione reductase (GR), γ-glutamate-cysteine ligase (γ-GCL), and glutathione S-transferase (GST), among others. We have previously demonstrated that CA upregulates the total and mitochondrial synthesis of glutathione (GSH), causing mitochondrial protection against paraquat (PQ) and methylglyoxal (MG). Nonetheless, the complete mechanism by which CA prevented mitochondrial dysfunction was not clear yet. Here, we examine whether HO-1 would be involved in the CA-induced mechanism of mitochondrial protection in SH-SY5Y-treated cells. SH-SY5Y cells were pretreated with CA (1 μM) for 12 h prior to a challenge with PQ at 100 μM for additional 24 h. Zinc protoporphyrin IX (ZnPP IX; a specific inhibitor of HO-1; 10 μM) was utilized prior to exposure to CA in order to investigate whether HO-1 was involved in the cytoprotective effects elicited by CA. We found that the CA-induced Nrf2-dependent HO-1 upregulation ameliorated, at least in part, the mitochondrial function in PQ-treated cells. Therefore, CA protected mitochondria of SH-SY5Y cells and exerted anti-apoptotic effects by activating the Nrf2/HO-1 axis.

  7. Salvianolic Acid B Reducing Portal Hypertension Depends on Macrophages in Isolated Portal Perfused Rat Livers with Chronic Hepatitis

    PubMed Central

    Zhao, Xin; Jia, Hongmei; Yang, Shijun; Liu, Yuetao; Deng, Bo; Xu, Xueyan; Zhang, Tao; Zhou, Hang; Zu, Chengzhe; Yin, He; Li, Ting; Song, Yijun; Wang, Yueqi; Li, Pengtao; Zou, Zhongmei; Cai, Dayong

    2012-01-01

    This study is aimed to investigate the effects of Sal B on portal hypertension (PH). PH with chronic hepatitis was induced by carbon tetrachloride (CCl4) in rats. The model was confirmed with elevated portal pressures and increased serum CD163 levels. The inducible nitric oxide synthase (iNOS) or heme oxygenase-1 (HO-1) in portal triads was assessed. The isolated portal perfused rat liver (IPPRL) was performed at d0, d28, d56 , and d84 in the progression of chronic hepatitis. After constricting with phenylephrine, the portal veins were relaxed with Sal B. The EC50 of Sal B for relaxing portal veins was −2.04 × 10−9, 7.28 × 10−11, 1.52 × 10−11, and 8.44 × 10−11 mol/L at d0, d28, d56, and d84, respectively. More macrophages infiltrated in portal triads and expressed more iNOS or HO-1 as PH advanced. The areas under the curve (AUCs) of Sal B for reducing PH were positively correlated with the levels of iNOS or HO-1 in portal triads, and so did with serum CD163 levels. Sal B reduces PH in IPPRL with chronic hepatitis, via promoting portal relaxation due to macrophage-originated NO or CO in portal triads, partly at least. PMID:23118797

  8. Forsythiae Fructus Inhibits B16 Melanoma Growth Involving MAPKs/Nrf2/HO-1 Mediated Anti-Oxidation and Anti-Inflammation.

    PubMed

    Bao, Jiaolin; Ding, Renbo; Zou, Lidi; Zhang, Chao; Wang, Kai; Liu, Fang; Li, Peng; Chen, Meiwan; Wan, Jian-Bo; Su, Huanxing; Wang, Yitao; He, Chengwei

    2016-01-01

    Forsythiae Fructus, the fruits of Forsythia suspensa (Thunb.) Vahl, Lianqiao in Chinese, is one of the most fundamental herbs in traditional Chinese medicine (TCM). It is a typical heat-clearing and detoxicating herb, according to TCM theory. In this study, we investigated the antitumor effect of Forsythiae Fructus aqueous extract (FAE) on B16-F10 melanoma cells in vivo. The transplanted B16-F10 melanoma in C57BL/6 mice was established and used for the evaluation of the in vivo antitumor effect of FAE. FAE strongly inhibited the growth of B16-F10 cells in vitro and the tumor in vivo. The survival time of tumor-bearing mice was significantly prolonged by FAE. FAE inhibited cancer cell proliferation and angiogenesis in the tumor, as indicated by the decreased expressions of Ki67 and CD31. The levels of ROS, MDA, TNF-[Formula: see text] and IL-6 decreased, while GSH increased in the FAE treatment group, indicating FAE possesses strong anti-oxidative and anti-inflammatory activity. The expression of anti-oxidant proteins Nrf-2 and HO-1, tumor suppressors P53 and p-PTEN, and the MAPK pathways in tumor tissues were upregulated by FAE treatment. These data demonstrated that FAE exhibited strong antitumor activity against B16-F10 murine melanoma both in vitro and in vivo. The antitumor effect of FAE involved decreases in oxidative stress and inflammation in the tumor, which is closely related to the heat-clearing and detoxicating properties of FAE.

  9. Beneficial effects of Camellia Oil (Camellia oleifera Abel.) on ketoprofen-induced gastrointestinal mucosal damage through upregulation of HO-1 and VEGF.

    PubMed

    Cheng, Yu-Ting; Wu, Shu-Li; Ho, Cheng-Ying; Huang, Shang-Ming; Cheng, Chun-Lung; Yen, Gow-Chin

    2014-01-22

    Nonsteroidal anti-inflammatory drugs, such as ketoprofen, are generally used to treat pain and inflammation and as pyretic agents in clinical medicine. However, the usage of these drugs may lead to oxidative injury to the gastrointestinal mucosa. Camellia oil ( Camellia oleifera Abel.) is commonly used in Taiwan and China as cooking oil. Traditional remedies containing this oil exert beneficial health effects on the bowel, stomach, liver, and lungs. However, the effects of camellia oil on ketoprofen-induced oxidative gastrointestinal mucosal lesions remain unknown. The objective of this study was to evaluate the effect of camellia oil on ketoprofen-induced acute gastrointestinal ulcers. The results showed that treatment of Int-407 cells with camellia oil (50-75 μg/mL) not only increased the levels of heme oxygenase-1 (HO-1), glutathione peroxidase (GPx), and superoxide dismutase (SOD) mRNA expression but also increased vascular endothelial growth factor (VEGF) and prostaglandin E2 (PGE2) protein secretion, which served as a mucosal barrier against gastrointestinal oxidative injury. Moreover, Sprague-Dawley (SD) rats treated with camellia oil (2 mL/kg/day) prior to the administration of ketoprofen (50 mg/kg/day) successfully inhibited COX-2 protein expression, inhibited the production of interleukin-6 (IL-6) and nitrite oxide (NO), reversed the impairment of the antioxidant system, and decreased oxidative damage in the gastrointestinal mucosa. More importantly, pretreatment of SD rats with camellia oil strongly inhibited gastrointestinal mucosal injury induced by ketoprofen, which was proved by the histopathological staining of gastrointestinal tissues. Our data suggest that camellia oil exerts potent antiulcer effects against oxidative damage in the stomach and intestine induced by ketoprofen.

  10. Curcumin inhibits superoxide anion-induced pain-like behavior and leukocyte recruitment by increasing Nrf2 expression and reducing NF-κB activation.

    PubMed

    Fattori, Victor; Pinho-Ribeiro, Felipe A; Borghi, Sergio M; Alves-Filho, José C; Cunha, Thiago M; Cunha, Fernando Q; Casagrande, Rubia; Verri, Waldiceu A

    2015-12-01

    This study aimed at evaluating the activity of curcumin in superoxide anion-induced pain-like behavior and leukocyte recruitment in mice. Administration of curcumin 10 mg/kg subcutaneously 1 h before stimulus. KO2 was used as superoxide anion donor. Overt pain-like behaviors were determined by the number of abdominal writhings, paw flinches and time spent licking the paw. Mechanical and thermal hyperalgesia were determined using an electronic anesthesiometer and hot plate, respectively. Cytokine concentration and NF-κB activity were determined by ELISA, antioxidant effect by nitrobluetretrazolium assay and ABTS radical scavenging ability. Myeloperoxidase activity was measured by colorimetric assay. The Nrf2, heme oxygenase-1 (HO-1) and gp91phox mRNA expression was determined by quantitative PCR. Data were analyzed by ANOVA followed by Tukey's post hoc and considered significant when p<0.05. Curcumin inhibited superoxide anion-induced overt pain-like behaviors as well as mechanical and thermal hyperalgesia. Curcumin also inhibited superoxide anion-induced leukocyte recruitment in the peritoneal cavity and in the paw skin inhibited myeloperoxidase activity, oxidative stress, IL-1β and TNF-α production and NF-κB activation as well as enhanced IL-10 production, and HO-1 and Nrf2 mRNA expression. Curcumin inhibits superoxide anion-induced inflammatory pain-like behaviors and leukocyte recruitment by targeting inflammatory molecules and oxidative stress; and inducing antioxidant and anti-inflammatory pathways.

  11. Aged garlic extract enhances heme oxygenase-1 and glutamate-cysteine ligase modifier subunit expression via the nuclear factor erythroid 2-related factor 2-antioxidant response element signaling pathway in human endothelial cells.

    PubMed

    Hiramatsu, Kei; Tsuneyoshi, Tadamitsu; Ogawa, Takahiro; Morihara, Naoaki

    2016-02-01

    The nuclear factor erythroid 2-related factor 2 (Nrf2)-antioxidant response element (ARE) pathway defends cells against oxidative stress and regulates the cellular redox balance. Activation of this pathway induces a variety of antioxidant enzymes, resulting in the protection of our bodies against oxidative damage. It has been reported that aged garlic extract (AGE), a garlic preparation that is rich in water-soluble cysteinyl moieties, reduces oxidative stress and helps to ameliorate of cardiovascular, renal and hepatic diseases. We hypothesized that AGE enhances the expression of antioxidant enzymes via the Nrf2-ARE pathway in human umbilical vein endothelial cells in culture. Gene expression of antioxidant enzymes was measured using real-time polymerase chain reaction. Nuclear accumulation of Nrf2 and antioxidant enzymes expression were evaluated using western blotting analyses. We found that AGE promoted the accumulation of Nrf2 into the nucleus in a time- and dose-dependent manner and increased the gene expression and polypeptide level of heme oxygenase-1 (HO-1) and glutamate-cysteine ligase modifier subunit (GCLM). Moreover, the effect of AGE in elevating the gene expression of HO-1 and GCLM was found to be mediated via Nrf2 activation in human umbilical vein endothelial cells. Taken together, these observations suggest that AGE induces the expression of HO-1 and GCLM, which are antioxidant enzymes, via activation of the Nrf2-ARE signaling pathway.

  12. Alkaloids from Piper nigrum Exhibit Antiinflammatory Activity via Activating the Nrf2/HO-1 Pathway.

    PubMed

    Ngo, Quynh Mai Thi; Tran, Phuong Thao; Tran, Manh Hung; Kim, Jeong Ah; Rho, Seong Soo; Lim, Chi-Hwan; Kim, Jin-Cheol; Woo, Mi Hee; Choi, Jae Sui; Lee, Jeong-Hyung; Min, Byung Sun

    2017-04-01

    In the present study, ten alkaloids, namely chabamide (1), pellitorine (2), retrofractamide A (3), pyrroperine (4), isopiperolein B (5), piperamide C9:1 (8E) (6), 6,7-dehydrobrachyamide B (7), 4,5-dihydropiperine (8), dehydropipernonaline (9), and piperine (10), were isolated from the fruits of Piper nigrum. Among these, chabamide (1), pellitorine (2), retrofractamide A (3), isopiperolein B (5), and 6,7-dehydrobrachyamide B (7) exhibited significant inhibitory activity on lipopolysaccharide-induced nitric oxide (NO) production in RAW264.7 cells, with IC50 values of 6.8, 14.5, 30.2, 23.7, and 38.5 μM, respectively. Furthermore, compound 1 inhibited lipopolysaccharide-induced NO production in bone marrow-derived macrophages with IC50 value of 9.5 μM. Consistent with NO inhibition, treatment of RAW264.7 cells with chabamide (1), pellitorine (2), and 6,7-dehydrobrachyamide B (7) suppressed expression of inducible NO synthase and cyclooxygenase-2. Chabamide (1), pellitorine (2), and 6,7-dehydrobrachyamide B (7) induced heme-oxygenase-1 expression at the transcriptional level. In addition, compound 1 induced the nuclear translocation of nuclear factor-E2-related factor 2 (Nrf2) and upregulated the expression of Nrf2 target genes, NAD(P)H:quinone oxidoreductase 1 and γ-glutamyl cysteine synthetase catalytic subunit, in a concentration-dependent manner in RAW264.7 cells. These findings suggest that chabamide (1) from P. nigrum exert antiinflammatory effects via the activation of the Nrf2/heme-oxygenase-1 pathway; hence, it might be a promising candidate for the treatment of inflammatory diseases. Copyright © 2017 John Wiley & Sons, Ltd.

  13. DIESEL EXHAUST PARTICLE CHEMICALS ACTIVATE HO-1 GENE EXPRESSION VIA THE STABILIZATION OF NRF2 PROTEIN. (R827352C008)

    EPA Science Inventory

    The perspectives, information and conclusions conveyed in research project abstracts, progress reports, final reports, journal abstracts and journal publications convey the viewpoints of the principal investigator and may not represent the views and policies of ORD and EPA. Concl...

  14. DIESEL EXHAUST PARTICLE CHEMICALS ACTIVATE HO-1 GENE EXPRESSION VIA THE STABILIZATION OF NRF2 PROTEIN. (R827352C008)

    EPA Science Inventory

    The perspectives, information and conclusions conveyed in research project abstracts, progress reports, final reports, journal abstracts and journal publications convey the viewpoints of the principal investigator and may not represent the views and policies of ORD and EPA. Concl...

  15. EGb761 ameliorates the formation of foam cells by regulating the expression of SR-A and ABCA1: role of haem oxygenase-1.

    PubMed

    Tsai, Jin-Yi; Su, Kuo-Hui; Shyue, Song-Kun; Kou, Yu Ru; Yu, Yuan-Bin; Hsiao, Sheng-Huang; Chiang, An-Na; Wu, Yuh-Lin; Ching, Li-Chieh; Lee, Tzong-Shyuan

    2010-12-01

    Accumulation of foam cells in the intima is a hallmark of early-stage atherosclerotic lesions. Ginkgo biloba extract (EGb761) has been reported to exert anti-oxidative and anti-inflammatory properties in atherosclerosis, yet the significance and the molecular mechanisms of action of EGb761 in the formation of macrophage foam cells are not fully understood. Treatment with EGb761 resulted in a dose-dependent decrease in oxidized low-density lipoprotein (oxLDL)-mediated cholesterol accumulation in macrophages, a consequence that was due to a decrease in cholesterol uptake and an increase in cholesterol efflux. Additionally, EGb761 significantly down-regulated the mRNA and protein expression of class A scavenger receptor (SR-A) by decreasing expression of activator protein 1 (AP-1); however, EGb761 increased the protein stability of ATP-binding cassette transporter A1 (ABCA1) by reducing calpain activity without affecting ABCA1 mRNA expression. Small interfering RNA (siRNA) targeting haem oxygenase-1 (HO-1) abolished the EGb761-induced protective effects on the expression of AP-1, SR-A, ABCA1, and calpain activity. Accordingly, EGb761-mediated suppression of lipid accumulation in foam cells was also abrogated by HO-1 siRNA. Moreover, the lesion size of atherosclerosis was smaller in EGb761-treated, apolipoprotein E-deficient mice compared with the vehicle-treated mice, and the expression of HO-1, SR-A, and ABCA1 in aortas was modulated similar to that observed in macrophages. These findings suggest that EGb761 confers a protection from the formation of foam cells by a novel HO-1-dependent regulation of cholesterol homeostasis in macrophages.

  16. Reduced Expression of SARM in Mouse Spleen during Polymicrobial Sepsis.

    PubMed

    Gong, Yu; Zou, Lin; Cen, Dongzhi; Chao, Wei; Chen, Dunjin

    2016-12-01

    Objective Immune dysfunction, including prominent apoptosis of immune cells and decreased functioning of the remaining immune cells, plays a central role in the pathogenesis of sepsis. Sterile α and HEAT/armadillo motif-containing protein (SARM) is implicated in the regulation of immune cell apoptosis. This study aimed to elucidate SARM contributes to sepsis-induced immune cell death and immunosuppression. Methods A mouse model of polymicrobial sepsis was generated by cecum ligation and puncture (CLP). SARM gene and protein expression, caspase 3 cleavage and intracellular ATP production were measured in the mouse spleens. Results CLP-induced polymicrobial sepsis specifically attenuated both the gene and protein expression of SARM in the spleens. Moreover, the attenuation of SARM expression synchronized with splenocyte apoptosis, as evidenced by increased caspase 3 cleavage and ATP depletion. Conclusions These findings suggest that SARM is a potential regulator of sepsis-induced splenocyte apoptosis.

  17. Reduced caveolin-1 promotes hyper-inflammation due to abnormal heme oxygenase-1 localizationin LPS challenged macrophages with dysfunctional CFTR

    PubMed Central

    Zhang, Ping-Xia; Murray, Thomas S.; Villella, Valeria Rachela; Ferrari, Eleonora; Esposito, Speranza; D'Souza, Anthony; Raia, Valeria; Maiuri, Luigi; Krause, Diane S.; Egan, Marie E.; Bruscia, Emanuela M.

    2013-01-01

    We have previously reported that TLR4 signaling is increased in lipopolysaccharide (LPS) -stimulated Cystic Fibrosis (CF) macrophages (MΦs), contributing to the robust production of pro-inflammatory cytokines. The heme oxygenase (HO-1)/carbon monoxide (CO) pathway modulates cellular redox status, inflammatory responses, and cell survival. The HO-1 enzyme, together with the scaffold protein caveolin 1 (CAV-1), also acts as a negative regulator of TLR4 signaling in MΦs. Here, we demonstrate that in LPS-challenged CF MΦs, HO-1 does not compartmentalize normally to the cell surface and instead accumulates intracellularly. The abnormal HO-1 localization in CF MΦs in response to LPS is due to decreased CAV-1 expression, which is controlled by the cellular oxidative state, and is required for HO-1 delivery to the cell surface. Overexpression of HO-1 or stimulating the pathway with CO-releasing molecules (CORM2)enhancesCAV-1 expression in CF MΦs, suggesting a positive-feed forward loop between HO-1/CO induction and CAV-1 expression. These manipulations reestablished HO-1 and CAV-1 cell surface localization in CF MΦ's. Consistent with restoration of HO-1/CAV-1 negative regulation of TLR4 signaling, genetic or pharmacological (CORM2)-induced enhancement of this pathway decreased the inflammatory response of CF MΦs and CF mice treated with LPS. In conclusion, our results demonstrate that the counter-regulatory HO-1/CO pathway, which is critical in balancing and limiting the inflammatory response, is defective in CF MΦs through a CAV-1-dependent mechanism, exacerbating the CF MΦ's response to LPS. This pathway could be a potential target for therapeutic intervention for CF lung disease. PMID:23606537

  18. Reduced immunohistochemical expression of adhesion molecules in vitiligo skin biopsies.

    PubMed

    Reichert Faria, Adriane; Jung, Juliana Elizabeth; Silva de Castro, Caio César; de Noronha, Lucia

    2017-03-01

    Because defects in adhesion impairment seem to be involved in the etiopathogenesis of vitiligo, this study aimed to compare the immunohistochemical expression of several adhesion molecules in the epidermis of vitiligo and non lesional vitiligo skin. Sixty-six specimens of lesional and non lesional skin from 33 volunteers with vitiligo were evaluated by immunohistochemistry using anti-beta-catenin, anti-E-cadherin, anti-laminin, anti-beta1 integrin, anti-collagen IV, anti-ICAM-1 and anti-VCAM-1 antibodies. Biopsies of vitiligo skin demonstrated a significant reduction in the expression of laminin and integrin. The average value of the immunohistochemically positive reaction area of the vitiligo specimens was 3053.2μm(2), compared with the observed value of 3431.8μm(2) in non vitiligo skin (p=0.003) for laminin. The immuno-positive area was 7174.6μm(2) (vitiligo) and 8966.7μm(2) (non lesional skin) for integrin (p=0.042). A reduction in ICAM-1 and VCAM-1 expression in the basal layer of the epidermis in vitiligo samples was also observed (p=0.001 and p<0.001, respectively). However, no significant differences were observed with respect to the expression of beta-catenin, E-cadherin, and collagen IV between vitiligo and non lesional skin. Our results suggest that an impairment in adhesion exists in vitiligo skin, which is supported by the diminished immunohistochemical expression of laminin, beta1 integrin, ICAM-1 and VCAM-1. Copyright © 2017 Elsevier GmbH. All rights reserved.

  19. Prostaglandins as negative regulators against lipopolysaccharide, lipoteichoic acid, and peptidoglycan-induced inducible nitric oxide synthase/nitric oxide production through reactive oxygen species-dependent heme oxygenase 1 expression in macrophages.

    PubMed

    Chien, Chih-Chiang; Shen, Shing-Chuan; Yang, Liang-Yo; Chen, Yen-Chou

    2012-11-01

    Although prostaglandins (PGs) were reported to exert proinflammatory and anti-inflammatory effects in macrophages, their action mechanisms remain unclear. The effects of PGs including PGJ2 (J2), Δ-PGJ2 (Δ), 15-deoxy-Δ PGJ2 (15d), PGE2 (E2), and PGF2α (F2α) on lipopolysaccharide (LPS)-, lipoteichoic acid (LTA)-, and peptidoglycan (PGN)-induced inducible nitric oxide (NO) synthase (iNOS)/NO production by RAW264.7 macrophages were investigated. First, we found that induction of cyclooxygenase 2 (COX-2) protein occurred at a time earlier than that of heme oxygenase 1 (HO-1) protein, and the addition of the COX-2 inhibitor NS398 reduced HO-1 protein expression in LPS-, LTA-, and PGN-treated RAW264.7 macrophages. Incubation of RAW264.7 macrophages with the indicated PGs showed that J2, Δ, and 15d significantly induced HO-1 protein expression; however, E2 and F2α did not. Heme oxygenase 1 protein induced by J2, Δ, and 15d was inhibited by the transcriptional inhibitor, actinomycin (Act) D; the translational inhibitor, cycloheximide; and the antioxidant, N-acetyl cysteine (NAC). Increases in intracellular peroxide levels by J2, Δ, and 15d were detected via a 2',7'™-dichlorofluorescein diacetate (DCFH-DA) analysis, and they were prevented by the addition of NAC. In addition, J2, Δ, and 15d produced significant inhibition of LPS-, LTA-, and PGN-induced iNOS protein and NO production by RAW264.7 cells, in accordance with increased HO-1 protein expression. Reductions of LPS-, LTA-, and PGN-induced phosphorylated c-Jun N-terminal kinase, c-Jun protein, and activator protein 1 luciferase activity by J2, Δ, and 15d were identified, and the addition of the HO-1 inhibitor, tin protoporphyrin, reversed the inhibitory effects of Δ and 15d on LPS- and LTA-induced iNOS/NO, phosphorylated c-Jun N-terminal kinase, and c-Jun protein expressions by macrophages. Knockdown of HO-1 protein expression by HO-1 small interfering RNA blocked Δ and 15d inhibition of LPS- and LTA

  20. Effects of Remote Ischemic Preconditioning on Heme Oxygenase-1 Expression and Cutaneous Wound Repair

    PubMed Central

    Cremers, Niels A. J.; Wever, Kimberley E.; Wong, Ronald J.; van Rheden, René E. M.; Vermeij, Eline A.; van Dam, Gooitzen M.; Carels, Carine E.; Lundvig, Ditte M. S.; Wagener, Frank A. D. T. G.

    2017-01-01

    Skin wounds may lead to scar formation and impaired functionality. Remote ischemic preconditioning (RIPC) can induce the anti-inflammatory enzyme heme oxygenase-1 (HO-1) and protect against tissue injury. We aim to improve cutaneous wound repair by RIPC treatment via induction of HO-1. RIPC was applied to HO-1-luc transgenic mice and HO-1 promoter activity and mRNA expression in skin and several other organs were determined in real-time. In parallel, RIPC was applied directly or 24h prior to excisional wounding in mice to investigate the early and late protective effects of RIPC on cutaneous wound repair, respectively. HO-1 promoter activity was significantly induced on the dorsal side and locally in the kidneys following RIPC treatment. Next, we investigated the origin of this RIPC-induced HO-1 promoter activity and demonstrated increased mRNA in the ligated muscle, heart and kidneys, but not in the skin. RIPC did not change HO-1 mRNA and protein levels in the wound 7 days after cutaneous injury. Both early and late RIPC did not accelerate wound closure nor affect collagen deposition. RIPC induces HO-1 expression in several organs, but not the skin, and did not improve excisional wound repair, suggesting that the skin is insensitive to RIPC-mediated protection. PMID:28218659

  1. Haem arginate infusion stimulates haem oxygenase-1 expression in healthy subjects

    PubMed Central

    Doberer, D; Haschemi, A; Andreas, M; Zapf, T-C; Clive, B; Jeitler, M; Heinzl, H; Wagner, O; Wolzt, M; Bilban, M

    2010-01-01

    BACKGROUND AND PURPOSE Haem oxygenase 1 (HO-1) is an inducible protein that plays a major protective role in conditions such as ischaemia-reperfusion injury and inflammation. In this study, we have investigated the role of haem arginate (HA) in human male subjects in the modulation of HO-1 expression and its correlation with the GT length polymorphism (GTn) in the promoter of the HO-1 gene. EXPERIMENTAL APPROACH In a dose-escalation, randomized, placebo-controlled trial, seven healthy male subjects with a homozygous short (S/S) and eight with a long (L/L) GTn genotype received intravenous HA. HO-1 protein expression and mRNA levels in peripheral blood monocytes, bilirubin, haptoglobin, haemopexin and haem levels were analysed over a 48 h observation period. KEY RESULTS We found that the baseline mRNA levels of HO-1 were higher in L/L subjects, while protein levels were higher in S/S subjects. HA induced a dose-dependent increase in the baseline corrected area under the curve values of HO-1 mRNA and protein over 48 h. The response of HO-1 mRNA was more pronounced in L/L subjects but the protein level was similar across the groups. CONCLUSIONS AND IMPLICATION HA is an effective inducer of HO-1 in humans irrespective of the GTn genotype. The potential therapeutic application of HA needs to be evaluated in clinical trials. PMID:20718734

  2. Resveratrol loaded solid lipid nanoparticles attenuate mitochondrial oxidative stress in vascular dementia by activating Nrf2/HO-1 pathway.

    PubMed

    Yadav, Aarti; Sunkaria, Aditya; Singhal, Nitin; Sandhir, Rajat

    2017-08-04

    Vascular dementia (VaD) is the leading cause of cognitive decline resulting from vascular lesions. Recent studies have shown that mitochondrial dysfunctions and oxidative stress are involved in cognitive decline. The aim of the present study was to evaluate the beneficial effects of resveratrol-loaded solid lipid nanoparticles (R-SLNs) in permanent bilateral common carotid artery occlusion (BCCAO) induced model of VaD. R-SLNs prepared had average size of 286 nm and 91.25% drug encapsulation efficiency with sustained release. Moreover, R-SLNs had 4.5 times higher levels of resveratrol (RSV) in brain compared to when administered as free RSV. Neurobehavioral analyses revealed that R-SLNs administration successfully ameliorated cognitive decline observed in BCCAO rats. Administration of R-SLNs to BCCAO animals showed significant reduction in mitochondrial reactive oxygen species (ROS) generation, lipid peroxidation, and protein carbonyls. In addition, R-SLNs significantly improved redox ratio and Mn-superoxide dismutase (Mn-SOD) activity. R-SLNs administration resulted in significant reduction in hypoxia-inducible factor 1α (HIF-1α) levels, whereas, nuclear factor (erythroid-derived 2)-like 2 (Nrf2) and heme oxygenase 1 (HO-1) levels were increased after R-SLNs treatment. Taken together, the results demonstrate that R-SLNs could be a novel and promising therapeutic strategy in VaD as well in other age-related neurodegenerative disorders. Copyright © 2017 Elsevier Ltd. All rights reserved.

  3. The Successive Component-separated Magnetic-Transitions on Pseudoternary Compounds Ho1-xGdxRh2Si2

    NASA Astrophysics Data System (ADS)

    Shigeoka, Toru; Morita, Tetsuhiro; Fujiwara, Tetsuya; Matsubayashi, Kazuyuki; Uwatoko, Yoshiya

    Magnetic measurements on pseudoternary compounds Ho1-xGdxRh2Si2, which substitute Gd having no quadrupole for Ho, were performed. They exhibit a successive component-separated magnetic transition; the c- and ab-components of magnetic moments independently order at different temperatures TN1 and TN2, respectively. The partial ordered state, a frustration appears for TN1 >T >TN2: for the phase II in the magnetic phase diagrams. In the ordered phase, step-like metamagnetic processes appear for TN2 >T; two-step ones appear along the [001] and [100] directions, and a one-step one appears along the [110] direction. The B-T magnetic phase diagrams were constructed. There are six, four and three ordered phases in the B001-T, B100-T and B110-T phase diagram, respectively. Two diagrams of the basal plane directions, B100-T and B110-T, resemble each other. Some interesting or peculiar phase boundaries appear. The Gd composition x dependence of transition temperatures is determined. The transition temperatures TN1 and TN2 increase with increasing x. The x-dependency of TN1 is well scaled by the de Gennes factor: (g-1)2J(J+1) whereas the transition of TN2 is not scaled. Some magnetic features declare that quadrupole interactions play an important role in this compound system.

  4. Magnetism of Ho1-xTbxAl₂ alloys: Critical dependence of a first-order transition on Tb concentration

    DOE PAGES

    Khan, Mahmud; Mudryk, Ya.; Gschneidner, K. A.; ...

    2011-12-27

    HoAl₂ exhibits a first-order spin reorientation transition at 20 K, which is manifested as a sharp peak in the heat capacity. When Ho is partially replaced by only 5% of Tb, the sharp heat-capacity peak in Ho1-xTbxAl₂ (x = 0.05) disappears, and then reappears again for x ≥ 0.07. For x = 0.05, the anomaly corresponding to the spin reorientation transition is barely seen in the heat capacity, but as x exceeds 0.07 the weak anomaly transforms to a sharp peak. The spin reorientation transition temperature increases to 29 K for x = 0.05, and as x increases further themore » transition shifts to lower temperature and returns to ~20 K for x = 0.25. The transition is no longer observed when x exceeds 0.60. Temperature-dependent x-ray powder-diffraction data confirm the first-order nature of the spin reorientation transition for the alloy with x = 0.40, and indicate that the compound retains the room-temperature cubic structure within the sensitivity of the technique. Experimental observations are discussed considering the easy magnetization directions of HoAl₂ and TbAl₂.« less

  5. Saccharomyces cerevisiae expressing bacteriophage endolysins reduce Lactobacillus contamination during fermentation

    USDA-ARS?s Scientific Manuscript database

    One of the challenges facing the fuel ethanol industry is the management of bacterial contamination during fermentation. Lactobacillus species are the predominant contaminants that decrease the profitability of biofuel production by reducing ethanol yields and causing “stuck” fermentations, which i...

  6. Santamarin, a sesquiterpene lactone isolated from Saussurea lappa, represses LPS-induced inflammatory responses via expression of heme oxygenase-1 in murine macrophage cells.

    PubMed

    Choi, Hyun-Gyu; Lee, Dong-Sung; Li, Bin; Choi, Yeon Ho; Lee, Seung-Ho; Kim, Youn-Chul

    2012-07-01

    Saussurea lappa C.B. Clarke (Compositae) is indigenous to India and Pakistan. The dried root of S. lappa has been traditionally used for alleviating pain in abdominal distention and tenesmus, indigestion with anorexia, dysentery, nausea, and vomiting. Santamarin is a sesquiterpene lactone isolated from S. lappa. In the present study, santamarin inhibited inducible nitric oxide synthase (iNOS) protein, reduced iNOS-derived nitric oxide (NO), suppressed COX-2 protein and reduced COX-derived PGE(2) production in lipopolysaccharide (LPS)-stimulated RAW264.7 cells and murine peritoneal macrophages. Similarly, santamarin reduced tumor necrosis factor-α (TNF-α) and interleukin-1β (IL-1β) production. In addition, santamarin suppressed the phosphorylation and degradation of IκB-α as well as the nuclear translocation of p65 in response to LPS in RAW264.7 cells. Furthermore, santamarin induced heme oxygenase (HO)-1 expression mRNA and protein level that plays a cytoprotective role against inflammation. The induction of HO-1 is primarily regulated at the transcriptional level, and its induction by various agents is mediated by the nuclear transcription factor E2-related factor 2 (Nrf2), master regulator of antioxidant responses. Unbound Nrf2 translocates into the nucleus and binds to the antioxidant response element (ARE) in the upstream promoter region of many antioxidative genes, where it initiates their transcription. The effects of santamarin on LPS-induced NO, PGE(2), TNF-α, and IL-1β production were partially reversed by the HO-1 inhibitor, tin protoporphyrin (SnPP). Therefore, our data suggest that the anti-inflammatory effect of santamarin in macrophages may be exerted through a novel mechanism that involves HO-1 expression.

  7. Tertiary-butylhydroquinone upregulates expression of ATP-binding cassette transporter A1 via nuclear factor E2-related factor 2/heme oxygenase-1 signaling in THP-1 macrophage-derived foam cells.

    PubMed

    Lu, Qian; Tang, Shi-Lin; Liu, Xiao-Yan; Zhao, Guo-Jun; Ouyang, Xin-Ping; Lv, Yun-Cheng; He, Ping-Ping; Yao, Feng; Chen, Wu-Jun; Tang, Yan-Yan; Zhang, Min; Zhang, Da-Wei; Yin, Kai; Tang, Chao-Ke

    2013-01-01

    Tert-butylhydroquinone (tBHQ), a synthetic phenolic antioxidant, is commonly used as a food preservative because of its potent antilipid peroxidation activity. Several lines of evidence have demonstrated that dietary supplementation with antioxidants has an antiatherogenic function through reducing cholesterol uptake or promoting reverse cholesterol transport. In this study, we investigated whether tBHQ affects expression of ATP-binding cassette transporter A1 (ABCA1) and the potential subsequent effect on cellular cholesterol homeostasis. tBHQ increased ABCA1 protein levels and markedly enhanced cholesterol efflux from THP-1 macrophage-derived foam cells. Furthermore, tBHQ reduced calpain-mediated ABCA1 proteolysis via activation of nuclear factor E2-related factor 2 (Nrf2) and heme oxygenase-1 (HO-1). Inhibition of HO-1 with a pharmacological inhibitor or siRNA and knockdown of Nrf2 suppressed the stimulatory effects of tBHQ on ABCA1 expression and calpain activity. Nrf2/HO-1 signaling is required for the regulation by tBHQ of ABCA1 expression and cholesterol efflux in macrophage-derived foam cells and an antiatherogenic role of tBHQ is suggested.

  8. Physiological capillary regression is not dependent on reducing VEGF expression

    PubMed Central

    Olfert, I. Mark

    2015-01-01

    Investigations into physiologically-controlled capillary regression report the provocative finding that microvessel regression occurs in the face of persistent elevation of skeletal muscle vascular endothelial growth factor-A (VEGF) expression. Thrombospondin-1 (TSP-1), a negative angiogenic regulator, is increasingly being observed to temporally correlate with capillary regression, suggesting that increased TSP-1 (and not reduction in VEGF per se) is needed to initiate, and likely regulate, capillary regression. Based on evidence being gleaned from physiologically-mediated regression of capillaries, it needs to be recognized that capillary regression (and perhaps capillary rarefaction with disease) is not simply the reversal of factors used to stimulate angiogenesis. Rather, the conceptual understanding that angiogenesis and capillary regression each have specific and unique requirements that are biologically constrained to opposite sides of the balance between positive and negative angioregulatory factors may shed light on why anti-VEGF therapies have not lived up to the promise in reversing angiogenesis and providing the cure that many had hoped toward fighting cancer. Emerging evidence from physiological controlled angiogenesis suggest that cases involving excessive or uncontrolled capillary expansion may be best treated by therapies designed to increase expression of negative angiogenic regulators, whereas those involving capillary rarefaction may benefit from inhibiting negative regulators (like TSP-1). PMID:26660949

  9. Sildenafil induces angiogenic response in human coronary arteriolar endothelial cells through the expression of thioredoxin, hemeoxygenase and vascular endothelial growth factor.

    PubMed

    Vidavalur, Ramesh; Penumathsa, Suresh Varma; Zhan, Lijun; Thirunavukkarasu, Mahesh; Maulik, Nilanjana

    2006-08-01

    This study was undertaken to investigate the effect of phosphodiesterase-5 (PDE5) inhibitor, sildenafil, on angiogenic response in human coronary arteriolar endothelial cells (HCAEC). The cells exposed to sildenafil (1-20 microM) demonstrated significantly accelerated tubular morphogenesis with the induction of thioredoxin-1 (Trx-1), hemeoxygenase-1 (HO-1) and VEGF. Sildenafil induced VEGF and angiopoietin specific receptors such as KDR, Tie-1 and Tie-2. This angiogenic response was repressed by tinprotoporphyrin IX (SnPP), an inhibitor of HO-1 enzyme activity. Sildenafil below 1 muM has no angiogenic effect as evidenced by reduced tuborogenesis. Sildenafil along with SnPP inhibited both VEGF and Angiopoietin-1 (Ang-1) protein expression. Therefore our results demonstrated for the first time that sildenafil is a very potent pro-angiogenic factor.

  10. Heme-Oxygenase-1 Expression Contributes to the Immunoregulation Induced by Fasciola hepatica and Promotes Infection

    PubMed Central

    Carasi, Paula; Rodríguez, Ernesto; da Costa, Valeria; Frigerio, Sofía; Brossard, Natalie; Noya, Verónica; Robello, Carlos; Anegón, Ignacio; Freire, Teresa

    2017-01-01

    Fasciola hepatica, also known as the liver fluke, is a trematode that infects livestock and humans causing fasciolosis, a zoonotic disease of increasing importance due to its worldwide distribution and high economic losses. This parasite immunoregulates the host immune system by inducing a strong Th2 and regulatory T immune response by immunomodulating dendritic cell (DC) maturation and alternative activation of macrophages. In this paper, we show that F. hepatica infection in mice induces the upregulation of heme-oxygenase-1 (HO-1), the rate-limiting enzyme in the catabolism of free heme that regulates the host inflammatory response. We show and characterize two different populations of antigen presenting cells that express HO-1 during infection in the peritoneum of infected animals. Cells that expressed high levels of HO-1 expressed intermediate levels of F4/80 but high expression of CD11c, CD38, TGFβ, and IL-10 suggesting that they correspond to regulatory DCs. On the other hand, cells expressing intermediate levels of HO-1 expressed high levels of F4/80, CD68, Ly6C, and FIZZ-1, indicating that they might correspond to alternatively activated macrophages. Furthermore, the pharmacological induction of HO-1 with the synthetic metalloporphyrin CoPP promoted F. hepatica infection increasing the clinical signs associated with the disease. In contrast, treatment with the HO-1 inhibitor SnPP protected mice from parasite infection, indicating that HO-1 plays an essential role during F. hepatica infection. Finally, HO-1 expression during F. hepatica infection was associated with TGFβ and IL-10 levels in liver and peritoneum, suggesting that HO-1 controls the expression of these immunoregulatory cytokines during infection favoring parasite survival in the host. These results contribute to the elucidation of the immunoregulatory mechanisms induced by F. hepatica in the host and provide alternative checkpoints to control fasciolosis. PMID:28798750

  11. Heme-Oxygenase-1 Expression Contributes to the Immunoregulation Induced by Fasciola hepatica and Promotes Infection.

    PubMed

    Carasi, Paula; Rodríguez, Ernesto; da Costa, Valeria; Frigerio, Sofía; Brossard, Natalie; Noya, Verónica; Robello, Carlos; Anegón, Ignacio; Freire, Teresa

    2017-01-01

    Fasciola hepatica, also known as the liver fluke, is a trematode that infects livestock and humans causing fasciolosis, a zoonotic disease of increasing importance due to its worldwide distribution and high economic losses. This parasite immunoregulates the host immune system by inducing a strong Th2 and regulatory T immune response by immunomodulating dendritic cell (DC) maturation and alternative activation of macrophages. In this paper, we show that F. hepatica infection in mice induces the upregulation of heme-oxygenase-1 (HO-1), the rate-limiting enzyme in the catabolism of free heme that regulates the host inflammatory response. We show and characterize two different populations of antigen presenting cells that express HO-1 during infection in the peritoneum of infected animals. Cells that expressed high levels of HO-1 expressed intermediate levels of F4/80 but high expression of CD11c, CD38, TGFβ, and IL-10 suggesting that they correspond to regulatory DCs. On the other hand, cells expressing intermediate levels of HO-1 expressed high levels of F4/80, CD68, Ly6C, and FIZZ-1, indicating that they might correspond to alternatively activated macrophages. Furthermore, the pharmacological induction of HO-1 with the synthetic metalloporphyrin CoPP promoted F. hepatica infection increasing the clinical signs associated with the disease. In contrast, treatment with the HO-1 inhibitor SnPP protected mice from parasite infection, indicating that HO-1 plays an essential role during F. hepatica infection. Finally, HO-1 expression during F. hepatica infection was associated with TGFβ and IL-10 levels in liver and peritoneum, suggesting that HO-1 controls the expression of these immunoregulatory cytokines during infection favoring parasite survival in the host. These results contribute to the elucidation of the immunoregulatory mechanisms induced by F. hepatica in the host and provide alternative checkpoints to control fasciolosis.

  12. Reduced Protein Expression in a Virus Attenuated by Codon Deoptimization

    PubMed Central

    Jack, Benjamin R.; Boutz, Daniel R.; Paff, Matthew L.; Smith, Bartram L.; Bull, James J.; Wilke, Claus O.

    2017-01-01

    A general means of viral attenuation involves the extensive recoding of synonymous codons in the viral genome. The mechanistic underpinnings of this approach remain unclear, however. Using quantitative proteomics and RNA sequencing, we explore the molecular basis of attenuation in a strain of bacteriophage T7 whose major capsid gene was engineered to carry 182 suboptimal codons. We do not detect transcriptional effects from recoding. Proteomic observations reveal that translation is halved for the recoded major capsid gene, and a more modest reduction applies to several coexpressed downstream genes. We observe no changes in protein abundances of other coexpressed genes that are encoded upstream. Viral burst size, like capsid protein abundance, is also decreased by half. Together, these observations suggest that, in this virus, reduced translation of an essential polycistronic transcript and diminished virion assembly form the molecular basis of attenuation. PMID:28698233

  13. Expression of the RNase III enzyme DROSHA is reduced during progression of human cutaneous melanoma

    PubMed Central

    Jafarnejad, Seyed Mehdi; Sjoestroem, Cecilia; Martinka, Magdalena; Li, Gang

    2016-01-01

    Aberrant expression of miRNAs and their biogenesis factors has been frequently observed in different types of cancer. We recently reported that expression of DICER1 is reduced in metastatic melanoma. Nevertheless, so far very little is known about the expression pattern of other miRNA biogenesis factors in this type of malignancy. Here, we investigated the expression pattern of DROSHA in a large set of melanocytic lesions by tissue microarray and immunohistochemistry (n = 409). We found that nuclear expression of DROSHA is markedly reduced in the early stages of melanoma progression (P = 0.0001) and is inversely correlated with melanoma thickness (P = 0.0001), AJCC stages (P = 0.0001), and ulceration status (P = 0.002). We also confirmed the reduced expression of nuclear DROSHA by a second specific antibody raised against a different region of the DROSHA protein. In addition, we observed that the reduced nuclear expression of DROSHA during melanoma progression is accompanied by an increased cytoplasmic expression of this protein (P = 0.0001). Finally, we found that expression pattern of DROSHA varies from that of DICER1 and concomitant loss of expression of both DICER1 and DROSHA confers the worse outcome for melanoma patients. Our results demonstrate a reduced nuclear expression of DROSHA which further highlights a perturbed miRNA biogenesis pathway in melanoma. In addition, the aberrant subcellular localization of DROSHA indicates possible deregulation in the mechanisms responsible for its proper localization in the nucleus. PMID:23370771

  14. Z-ligustilide ameliorated ultraviolet B-induced oxidative stress and inflammatory cytokine production in human keratinocytes through upregulation of Nrf2/HO-1 and suppression of NF-κB pathway.

    PubMed

    Wu, Zhouwei; Uchi, Hiroshi; Morino-Koga, Saori; Shi, Weimin; Furue, Masutaka

    2015-09-01

    Ultraviolet B (UVB), a harmful environmental factor, is responsible for a variety of skin disorders including skin inflammation through reactive oxygen species (ROS) and inflammatory mediator production. Here, we investigated the effect of Z-ligustilide (Z-lig), an active ingredient isolated from the medicinal plants Cnidium officinale and Angelica acutiloba, on UVB-induced ROS generation and inflammatory mediator production in normal human epidermal keratinocytes (NHEKs) as well as its underlying mechanisms. Z-lig significantly rescued UVB-induced NHEKs damage in a dosage-dependent manner. Pretreatment of NHEKs with Z-lig inhibited UVB-induced ROS production in NHEKs. Both silencing the nuclear factor E2-related factor 2 (Nrf2) and the supplement of tin protoporphyrin IX (SnPP), a haeme oxygenase-1 (HO-1) inhibitor, cancelled the inhibitory effect of Z-lig on UVB-induced ROS upregulation in NHEKs. Moreover, pretreatment of NHEKs with Z-lig reduced UVB-induced nuclear factor kappa B (NF-κB)-dependent inflammatory mediators (IL-6, IL-8 and MCP-1) production at both mRNA and protein level. In the presence of Z-lig, UVB-induced NF-κB subunit p65 nuclear translocation was abolished, and the IκBα degradation was suppressed. Taken together, these findings suggest that Z-lig can suppress UVB-induced ROS generation through Nrf2/HO-1 upregulation and inflammation by suppressing the NF-κB pathway, suggesting that Z-lig may be beneficial in protecting skin from UVB exposure. © 2015 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  15. Pathological significance and prognostic implications of heme oxygenase 1 expression in non-muscle-invasive bladder cancer: Correlation with cell proliferation, angiogenesis, lymphangiogenesis and expression of VEGFs and COX-2

    PubMed Central

    Matsuo, Tomohiro; Miyata, Yasuyoshi; Mitsunari, Kensuke; Yasuda, Takuji; Ohba, Kojiro; Sakai, Hideki

    2017-01-01

    Heme oxygenase 1 (HO-1) is a stress-response protein and its expression is associated with malignant potential and poor prognosis in several types of cancer. The present study investigated the association between HO-1 expression levels and the pathological features, clinical outcomes and other associated factors in patients with non-muscle-invasive bladder cancer (NMIBC). HO-1 expression was evaluated using immunohistochemistry in 147 formalin-fixed tissue specimens. The proliferation index, microvessel density, lymph vessel density and expression of cyclooxygenase (COX)-2 and vascular endothelial growth factor (VEGF)-A, -C, and -D were also investigated. Correlations among variables were analyzed by multivariate analysis. Survival was assessed using Kaplan-Meier survival curves and multivariate statistics. HO-1 expression levels in high-grade and pT1 tumors were significantly higher compared with low-grade and pTa tumors, and were correlated with the proliferation index (P<0.001), lymph vessel density (P=0.021) and COX-2 expression levels (P=0.003). The proliferation index and COX-2 expression levels were also identified as independent contributing factors in multivariate models. Kaplan-Meier survival curves associated HO-1 expression with a poor prognosis in metastasis-free (P=0.047) and cause-specific survival (P=0.017), but not with urinary tract recurrence (P=0.231). Furthermore, HO-1 expression was identified by multivariate analysis to be a significant predictor for cause-specific survival (hazard ratio, 4.08; 95% confidence interval, 1.06–15.66; P=0.004). HO-1 has an important role in the malignant aggressiveness of NMIBC and its expression is associated with cause-specific survival. HO-1-associated activities are regulated by cancer cell proliferation, lymphangiogenesis and COX-2. The results suggest that HO-1 may be a potential therapeutic target and a useful predictive prognostic factor in patients with NMIBC. PMID:28123555

  16. Amelioration of Ischemia/Reperfusion Injury During Resuscitation from Hemorrhage by Induction of Heme Oxygenase-1 (HO-1) in a Conscious Mouse Model of Uncontrolled Hemorrhage

    DTIC Science & Technology

    2012-10-01

    synthetic triterpenoid that has been shown to possess potent anti-inflammatory and antioxidant properties, and is a potent inducer of HO-1. The...synthetic triterpenoid that has been shown to possess potent anti-inflammatory and antioxidant properties, and is a potent inducer of H0-1. The hypothesis... antioxidant properties, and is a potent inducer of H0-1 and is being investigated as an additive to a new resuscitation fluid that might being

  17. Tetrahydroxy stilbene glycoside (TSG) antagonizes Aβ-induced hippocampal neuron injury by suppressing mitochondrial dysfunction via Nrf2-dependent HO-1 pathway.

    PubMed

    Jiao, Chenli; Gao, Feng; Ou, Li; Yu, Jinhua; Li, Min; Wei, Peifeng; Miao, Feng

    2017-10-05

    Amyloid-beta peptide (Aβ) ranks as a pivotal cause of Alzheimer's disease (AD), a common devastating dementia form in elderly. Recent research corroborated the beneficial roles of tetrahydroxystilbene glucoside (TSG) in alleviating the learning and memory of AD model and aged mice. Unfortunately, the underlying mechanism remains poorly elucidated. Here, treatment with non-toxic TSG dose-dependently antagonized Aβ-induced cyto